COMPUTING WITH QUANTUM MECHANICAL OSCILLATORS

BY A. D. PARKS AND J. L. SOLKA STRATEGIC SYSTEMS DEPARTMENT

MARCH 1991

Approved for public release; distribution is unlimited.

DESTRUCTION NOTICE — For unclassified, limited distribution documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

NAVAL SURFACE WARFARE CENTER

Dahlgren, Virginia 22448-5000 • Silver Spring, Maryland 20903-5000

COMPUTING WITH QUANTUM MECHANICAL OSCILLATORS

BY A. D. PARKS AND J. L. SOLKA STRATEGIC SYSTEMS DEPARTMENT

MARCH 1991

Approved for public release; distribution is unlimited.

DESTRUCTION NOTICE — For unclassified, limited distribution documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

NAVAL SURFACE WARFARE CENTER Dahlgren, Virginia 22448-5000 Silver Spring, Maryland 20903-5000

FOREWORD

This report describes the results of some preliminary theoretical work in the area of quantum mechanical computing which has been performed by the Strategic Systems (K) Department at the Naval Surface Warfare Center (NAVSWC) as part of a molecular computing focused technology initiative.

This report has been reviewed and approved by Ted Sims, Space Sciences Branch Head, and James L. Sloop, Space and Surface Systems Division Head.

Approved by

2.7. Schmidt

R. L. SCHMIDT, Head Strategic Systems Department

CONTENTS

<u>Chapter</u>	Page
INTRODUCTION	1
QUANTUM MECHANICAL HARMONIC OSCILLATOR	1
QUANTUM HARMONIC COMPUTER: DEFINITIONS	5
NUMERICAL COMPUTATION USING Γ_m : SIMPLE EXAMPLES	6
Γ ₄ LOGIC GATES	9
REFERENCES	14

.

INTRODUCTION

Despite the obvious practical considerations (e.g., stability, controlability), certain quantum mechanical systems seem to naturally lend themselves in a theoretical sense to the task of performing computations. The purpose of this report is to describe one such idealized system-the quantum harmonic computer. As its name might suggest, this theoretical device employs the well known energy characteristics of quantum mechanical oscillators; the associated creation and annihilation operators; and the quantum mechanical axioms of state preparation and observability to perform computations. It is demonstrated that programs can be written for this device in terms of quantum mechanical observables and creation and annihilation operators which will algorithmically manipulate oscillator energy states to perform the desired calculations, the results of which are eigenvalues of a well defined system observable. By definition, these programs are equivalent to Turing machines, so that anything that is Turing computable is also computable with this device.

It is well known that many physical systems (e.g., photon gas, crystals, phonons, diatomic molecules) can be approximated by collections of quantum harmonic oscillators. Although the development herein may suggest such implementations, we emphasize that our intent has been theoretical in nature rather than practical.

QUANTUM MECHANICAL HARMONIC OSCILLATOR

In order to provide a more complete foundation for the discussions which follow, we provide in this section a brief sketch of the one-and m-dimensional quantum mechanical harmonic oscillators. Although we adopt the Dirac notation, our development is standard and can be referenced in more detail in most basic quantum mechanics texts [e.g., References 1, 2].

The ideal classical harmonic oscillator is a particle of mass m constrained to move along an axis and subject to a restoring force proportional to the displacement from the force center. The corresponding quantum mechanical oscillator is a particle of mass m in one dimension with energies generated by the Hamiltonian operator

$$\hat{H} = \frac{1}{2m} (\hat{p}^2 + m^2 \omega^2 \hat{q}^2), \qquad (2.1)$$

where w is the natural angular frequency of oscillation, and \hat{q} and \hat{p} are the position and momentum operators, respectively, related by the commutator

 $[\hat{q},\hat{p}] = i\hbar. \tag{2.2}$

Here \hbar is Planck's constant divided by 2π .

The energy eigenvalue problem for this system is given by the time-independent Schrodinger equation

$$\hat{\mathbf{H}}|\mathbf{E}\rangle = \mathbf{E}|\mathbf{E}\rangle, \qquad (2.3)$$

where E is the energy eigenvalue associated with the system state described by the "ket" vector |E>.

Using this we may now construct the vector space of the dynamical states of the system. Let

$$\hat{a} = (2\hbar m\omega)^{-1/2} (\hat{p} - im\omega\hat{q}) \tag{2.4}$$

and

$$\hat{a}^{+}=(2\hbar m\omega)^{-1/2}(\hat{p}+im\omega\hat{q}).$$
 (2.5)

It is readily seen that the operator \hat{a} and \hat{a}^{\dagger} are Hermitean conjugates and that application of (2.2) provides the commutator relation

$$[\hat{a},\hat{a}^{\dagger}]=1.$$
 (2.6)

Furthermore, it is easily shown that the Hamiltonian operator of (2.1) can be written in terms of \hat{a} and \hat{a}^{\dagger} as

$$\hat{\mathbf{H}} = (\hat{\mathbf{N}} + 1/2)\hbar\omega,$$
 (2.7)

where

$$\hat{\mathbf{N}} = \hat{a}^{\dagger} \hat{a}. \tag{2.8}$$

Thus, the eigenvalue problem of (2.3) is equivalent to constructing the eigenvectors of the operator \hat{N} . It should be noted that \hat{N} is Hermitean and a system observable.

For the sake of brevity, we omit its detailed development and simply state the well known result that the spectrum of eigenvalues of \hat{N} is the set of non-negative integers {0, 1, 2, ..., n, ...} from which we may form the orthonormal state vectors |0>, |1>, |2>,..., |n>,..., where

$$\hat{\mathbf{N}}|\mathbf{n}\rangle = \mathbf{n}|\mathbf{n}\rangle. \tag{2.9}$$

For the same reason as above, we also state without proof the following well-known properties of the operators \hat{a}^* and \hat{a} :

$$\hat{a}^{+}|n\rangle = (n+1)^{1/2}|n+1\rangle$$
 (2.10)

$$\hat{a}|n>=(n)^{1/2}|n-1>$$
 (2.11)

$$\hat{a}|0\rangle=0 \tag{2.12}$$

and

$$|n\rangle = (n!)^{-1/2} (\hat{a}^{*})^{n} |0\rangle,$$
 (2.13)

where $|0\rangle$ is called the ground state of the system.

Upon application of (2.7) and (2.9) to (2.3), it is easily verified that

$$\hat{\mathbf{H}}|n>=(n+1/2)\hbar\omega|n>,$$
 (2.14)

i.e., the energy states of the oscillator are quantized into discreet multiples of $\hbar w$ with ground state energy $1/2\hbar w$.

Consider now the m-dimensional system of m distinguishable, noninteracting oscillators with system Hamiltonian

$$\hat{H} = \sum_{i=1}^{m} \hat{H}_{i} , \qquad (2.15)$$

(2.16)

where each \hat{H}_i in the summation has the form of (2.7) with all associated operators having the appropriate i subscript. If $|n_i\rangle$ denotes the eigenvectors of \hat{H}_i , then the tensor product of eigenvectors

$$|n_1 n_2 \dots n_m\rangle \equiv |n_1\rangle |n_2\rangle \dots |n_m\rangle$$
 (2.10)

forms a complete orthonormal set S_m of eigenvectors of \hat{H} in (2.15) so that

$$\hat{H}|n_1 n_2 ... n_m > = \sum_{i=1}^m (n_i + 1/2) \hbar \omega |n_1 n_2 ... n_m >$$
(2.17)

and

$$\hat{N}|n_1n_2...n_m\rangle = \sum_{i=1}^m \hat{N}_i|n_1n_2...n_m\rangle = \sum_{i=1}^m n_i|n_1n_2...n_m\rangle.$$
(2.18)

Analogous to (2.6), it can be shown that the operators \hat{a}_i and \hat{a}_i^+ obey the following commutation rules:

$$\begin{array}{c} [\hat{a}_{i},\hat{a}_{j}] = 0\\ [\hat{a}_{i}^{+},\hat{a}_{j}^{+}] = 0\\ [\hat{a}_{i},\hat{a}_{j}^{+}] = \delta_{ij} \end{array} (i,j = 0,1,...,m)$$

$$(2.19)$$

It is convenient at this point to introduce several new operators which will prove useful in the following sections. Define the new operator $\hat{\beta}_i$ as

$$\hat{\beta}_{i} | n_{i} \rangle = \begin{cases} (n_{i})^{-1/2} | n_{i} \rangle, & n_{i} \neq 0 \\ 0, & n_{i} = 0 \end{cases}$$
(2.20)

and

$$\hat{\boldsymbol{\alpha}}_{i}^{*} = \hat{\boldsymbol{\beta}}_{i} \hat{\boldsymbol{a}}_{i}^{*} \tag{2.21}$$

$$\hat{\alpha}_i \equiv \hat{\alpha}_i \hat{\beta}_i \tag{2.22}$$

so that

$$\hat{\alpha}_{i}^{+}|n_{i}\rangle = |n_{i}+1\rangle \tag{2.23}$$

and

$$\hat{\alpha}_{i} | n_{i} > = \begin{cases} |n_{i} - 1 >, n_{i} \neq 0 \\ 0, n_{i} = 0 \end{cases}$$
(2.24)

It is easily verified that $\hat{\alpha}_i$ and $\hat{\alpha}_j^*$ obey the following commutation relation for $1 \le i, j \le m$:

$$[\hat{\alpha}_{i}, \hat{\alpha}_{j}^{\dagger}] = \begin{cases} 1, \ i=j, \ n_{i} = 0\\ 0, \ otherwise \end{cases}$$
(2.25)

We also define the identity operator $\boldsymbol{\hat{l}}_i$ as

$$\hat{\mathbf{1}}_i | \mathbf{n}_i \rangle = | \mathbf{n}_i \rangle \tag{2.26}$$

so that for any operator $\hat{\gamma}_i$,

$$\hat{\mathbf{\gamma}}_{i}\hat{\mathbf{I}}_{i}=\hat{\mathbf{I}}_{i}\hat{\mathbf{\gamma}}_{i}=\hat{\mathbf{\gamma}}_{i}.$$

$$(2.27)$$

QUANTUM HARMONIC COMPUTER: DEFINITIONS

In this section we develop a set of definitions that will provide for a precise description of the quantum harmonic computer. Let S_m be as defined in the previous section and $Q_m \subset S_m$, where

$$Q_{m} = \{ |n_{1}n_{2}...n_{m} > |n_{i} \in \{0,1\}, 3 \le i \le m; 3 \le n_{2} \le m \}.$$

$$(3.1)$$

Each eigenvector in Q_m is called an instantaneous description (ID). The quantum numbers n_1 and n_2 in each ID are called the <u>state</u> and <u>pointer</u>, respectively. Also define the following sets of operators:

$$\mathcal{Q}_{m} = \{ \hat{\alpha}_{i}, \hat{\alpha}_{i}^{\dagger} | 1 \le i \le m \}, \tag{3.2}$$

......

$$\eta_m = \{\hat{N}_1, \hat{N}_2, ..., \hat{N}_m, \hat{T}\}$$
 (3.3)

where

$$\hat{\mathbf{T}} = \sum_{i=3}^{m} \hat{\mathbf{N}}_{i}, \qquad (3.4)$$

and

$$R_m = \mathcal{Q}_m \cup \eta_m. \tag{3.5}$$

We note that \hat{T} is Hermitean and is a system observable.

An R_m -quadruple is a 4-tuple of one of the following three types:

$$n_1 n_{n_2} A_{n_2} A_{1}^{k} A_{1}^{l},$$
 (3.6)

$$n_1 n_{n_2} \hat{\alpha}_2^+ A_1^l,$$
 (3.7)

$$n_1 n_{n_2} \hat{\alpha}_2 A_1^l, \tag{3.8}$$

where n_{n_2} is the quantum number describing the eigenstate of the n_2^{th} oscillator; k and l are non-negative integers; $A_i \in \mathcal{Q}_m$; and

$$A_{i}^{k} = \begin{cases} \underbrace{A_{i} A_{i} \dots A_{i}}_{k \text{ times}}, & k \neq 0 \\ \widehat{I}_{i}, & k = 0. \end{cases}$$
(3.9)

Each $R_{\rm m}$ -quadruple may be interpreted as being the instruction: "if the state is n_1 and the eigenstate of the n_2 th oscillator is n_{n_2} for some ID, then apply the following operators to the ID."

A <u>program</u> P_m is a finite nonempty set of R_m -quadruples, no two of which have the same state quantum number. Let $p=n_1n_{n_2}\hat{\tau}$ represent any R_m -quadruple, where $\hat{\tau}$ is any of the operator pairs in (3.6) - (3.8), and X, Y ϵ Q_m . A program P_m induces a <u>basic</u> P_m transition $X \xrightarrow{\hat{\tau}} Y$ from X to Y if there is a $p \epsilon P_m$ such that $\hat{N}_1 X = n_1 X$; $\hat{N}_{n_2} X = n_{n_2} X$; and $Y = \hat{\tau} X$. A finite sequence $X_1 \xrightarrow{\hat{\tau}} Y \xrightarrow{\hat{\tau}'} Z$ of such transitions is called a P_m -computation if there is no $p''' \epsilon P_m$ or $W \epsilon Q_m$ with $Z \xrightarrow{\hat{\tau}''} W$. In this case the eigenvector Z is called the resultant. The eigenvector X is called the <u>initiator</u>. It will always be assumed here that for every initiator, the pointer quantum number $n_2 = 3$ and the state quantum number $n_1 = 1$.

We may now define the m-dimensional quantum harmonic computer $\boldsymbol{\Gamma}_m$ as the 4-tuple

$$\Gamma_m = (Q_m, R_m, P_m, X) \tag{3.10}$$

Informally, Γ_m can be thought of as an m-dimensional quantum mechanical harmonic oscillator which serves as a memory/storage medium for any ID in Q_m . This oscillator interfaces with a "device" which imposes upon it energy eigenstate transitions via the application of a sequence of operators from R_m as algorithmically dictated by P_m .

NUMERICAL COMPUTATION USING r_m : SIMPLE EXAMPLES

It is obvious that there is a one-to-one correspondence between $P_{\rm m}$ programs and Turing machines [3, 4]. Hence, as long as we view m as being potentially infinite (i.e., adding extra oscillators as needed), anything Turing computable is also $P_{\rm m}$ computable. In this section we provide examples of $P_{\rm m}$ program which compute several non-negative integer arithmetic functions and illustrate the associated $P_{\rm m}$ computations using simple initiators.

In order to perform these computations, we make use of the following symbolic representation for a non-negative integer J:

$$J \leftrightarrow J' = \underbrace{11...1}_{J+1 \ times} \tag{4.1}$$

(thus $5' \equiv 11111$). Also, we may assume without violating any quantum mechanical principles that initiators may be prepared with the required state and pointer quantum numbers, as well as any combination of quantum numbers $n_i \in \{0,1\}$ for $3 \le i \le m$. Initiators may therefore be prepared which can contain within the energy states of oscillators 3 through m symbolic representations for non-negative integers of the form (4.1). We adopt the convention that if J and K are two non-negative integers which are to be symbolically represented within an initiator with J appearing first, then the initiator will be prepared with $n_i = 1$ for $3 \le i \le J+3$, $J+5 \le i \le J+K+5$, and $n_i = 0$ elsewhere for i > 2 (thus $m \ge J+K+5$). An initiator prepared in this manner is said to be properly prepared.

Each of the sample P_m programs described below are designed to produce a resultant from a properly prepared initiator via the sequential application of operators in R_m . The computed solution is the eigenvalue of \hat{T} when applied to the resultant.

Example 1. The set A is a P_m program which computes J+K for J,K non-negative integers, where

$$A = \left\{ 11\hat{\alpha}_{n_{1}}(\hat{\alpha}_{1})^{\circ}, \ 10\hat{\alpha}_{2}^{+}\hat{\alpha}_{1}^{+}, \ 21\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1})^{\circ}, \ 20\hat{\alpha}_{2}^{+}\hat{\alpha}_{1}^{+}, \ 31\hat{\alpha}_{n_{2}}(\hat{\alpha}_{1})^{\circ} \right\}.$$

For the sake of clarity we have used $(\hat{\alpha}_1)^\circ$ in A, but note that by (3.9) and (2.27) it need not be made explicit. Effectively, this P_m program produces a resultant in which oscillators 3 and J+5 have transitioned to their ground states and (neglecting the state and pointer) J+Koscillators remain in their first excited state. Thus the computed solution J+K is the eigenvalue of \hat{T} when applied to the resultant.

In order to illustrate this let J=2 and K=1 and choose m=J+K+5=8. The associated P_8 computation is:

$$|13111011 > \frac{\hat{\alpha}_{3}(\hat{\alpha}_{1})^{\circ}}{\longrightarrow} |13011011 > \frac{\hat{\alpha}_{2}^{+}\hat{\alpha}_{1}^{+}}{\longrightarrow} |24011011 > \frac{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1})^{\circ}}{\longrightarrow}$$

$$|25011011 > \frac{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1})^{\circ}}{|26011011 > \frac{\hat{\alpha}_{2}^{+}\hat{\alpha}_{1}^{+}}{|37011011 > \frac{\hat{\alpha}_{7}(\hat{\alpha}_{1})^{\circ}}{|37011011 > \frac{\hat{\alpha}_{7}(\hat{\alpha}_{1})^{\circ}}}}}}$$

|37011001>,

so that

\hat{T} |37011001>=3|37011001>.

As an aside, we note that in general the composite operator $\hat{\alpha}_{J+5}\hat{\alpha}_3(\hat{\alpha}_2^+)^{J+2}(\hat{\alpha}_1^+)^2$ will always produce the desired resultant for J+K for any properly prepared initiator.

<u>Example 2</u>. The set B is a P_m program which computes J-K for J>K where J and K are non-negative integers:

$$B = \left\{ 11\hat{\alpha}_{n_2}(\hat{\alpha}_1)^\circ, \ 10\hat{\alpha}_2^+\hat{\alpha}_1^+, \ 21\hat{\alpha}_2^+(\hat{\alpha}_1)^\circ, \ 20\hat{\alpha}_2^+\hat{\alpha}_1^+, \ 31\hat{\alpha}_2^+(\hat{\alpha}_1)^\circ, \ 30\hat{\alpha}_2\hat{\alpha}_1^+, \ 41\hat{\alpha}_{n_2}(\hat{\alpha}_1)^\circ, \ 40\hat{\alpha}_2\hat{\alpha}_1^+, \ 51\hat{\alpha}_2\hat{\alpha}_1^+, \ 61\hat{\alpha}_2(\hat{\alpha}_1)^\circ, \ 60\hat{\alpha}_2\hat{\alpha}_1^+, \ 71\hat{\alpha}_2\hat{\alpha}_1^+, \ 70\hat{\alpha}_2^+(\hat{\alpha}_1^+)^2, \ 81\hat{\alpha}_2(\hat{\alpha}_1)^\circ, \ 80\hat{\alpha}_2^+(\hat{\alpha}_1)^7, \ 90\hat{\alpha}_2^+(\hat{\alpha}_1)^\circ, \ 91\hat{\alpha}_2(\hat{\alpha}_1)^\circ \right\} .$$

Although not necessary, we have again made $(\hat{\alpha}_1)^\circ$ explicit. Here *B* produces a resultant in which oscillators 3 through K+3 and J+5 through J+K+5 have transitioned to their ground states and *J-K* oscillators remain in their first excited state. Thus the eigenvalue of \hat{T} when applied to the resultant is *J-K*. B also needs a ground state oscillator after the representation of *K* in the initiator. Thus we choose m=J+K+6.

As an illustration, let J=2 and K=1, as before, so that m=9. P_9 produces the following computation:

$$|131110110\rangle \xrightarrow{\hat{\alpha}_{3}(\hat{\alpha}_{1})^{\circ}} |130110110\rangle \xrightarrow{\hat{\alpha}_{2}^{+}\hat{\alpha}_{1}^{+}} |240110110\rangle \xrightarrow{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1})^{\circ}}$$

$$|250110110 > \xrightarrow{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1})^{\circ}} |260110110 > \xrightarrow{\hat{\alpha}_{2}^{+}\hat{\alpha}_{1}^{+}} |370110110 > \xrightarrow{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1})^{\circ}}$$

$$|380110110\rangle \xrightarrow{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1})^{\circ}} |390110110\rangle \xrightarrow{\hat{\alpha}_{2}\hat{\alpha}_{1}^{+}} |480110110\rangle \xrightarrow{\hat{\alpha}_{8}(\hat{\alpha}_{1})^{\circ}}$$

$$|480110100\rangle \xrightarrow{\hat{\alpha}_{2}\hat{\alpha}_{1}^{+}} |570110100\rangle \xrightarrow{\hat{\alpha}_{2}\hat{\alpha}_{1}^{+}} |660110100\rangle \xrightarrow{\hat{\alpha}_{2}\hat{\alpha}_{1}^{+}}$$

$$|750110100\rangle \xrightarrow{\hat{\alpha}_{2}\hat{\alpha}_{1}^{+}} |840110100\rangle \xrightarrow{\hat{\alpha}_{2}(\hat{\alpha}_{1})^{\circ}} |830110100\rangle \xrightarrow{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1})^{7}}$$

$$|140110100\rangle \xrightarrow{\hat{\alpha}_{4}(\hat{\alpha}_{1})^{\circ}} |140010100\rangle \xrightarrow{\hat{\alpha}_{2}^{+}\hat{\alpha}_{1}^{+}} |250010100\rangle \xrightarrow{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1})^{\circ}}$$

$$|260010100\rangle \xrightarrow{\hat{\alpha}_{2}^{+}\hat{\alpha}_{1}^{+}} |370010100\rangle \xrightarrow{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1})^{\circ}} |380010100\rangle \xrightarrow{\hat{\alpha}_{2}\hat{\alpha}_{1}^{+}}$$

$$|470010100\rangle \xrightarrow{\hat{\alpha}_{7}(\hat{\alpha}_{1})^{\circ}} |47001000\rangle \xrightarrow{\hat{\alpha}_{2}\hat{\alpha}_{1}^{+}} |560010000\rangle,$$

so that

$\hat{\mathbf{T}}|560010000>=1|560010000>.$

Again we note that the composite operator

$$\hat{\alpha}_{J+K+5} ... \hat{\alpha}_{J+5} \hat{\alpha}_{K+3} ... \hat{\alpha}_{3} (\hat{\alpha}_{2}^{+})^{J+1} (\hat{\alpha}_{1}^{+})^{4}$$

will always produce the desired resultant for J-K, $J \ge K$, for any properly prepared initiator.

r₄ LOGIC GATES

Because of the obvious equivalence between Turing machines and P_m programs, we can construct P_m -programs which produce logic function computations. In this section we prove a series of theorems which state that specific 4-dimensional quantum harmonic computers can serve as basic logic gates. Let us assume that the energy states of the third and fourth oscillators represent truth values for propositions r and s, respectively, where $n_i=0$ means "false" and $n_i=1$ means "true" for $i \in \{3, 4\}$. The truth value obtained from a Γ_4 logic gate computation is the eigenvalue of \hat{T} when applied to the associated resultant.

Theorem 1. (Q_4, R_4, V, X) is an OR gate, where

$$\forall = \left\{ 11\hat{\alpha}_{2}^{+}\hat{\alpha}_{1}^{+}, \ 10\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1}^{+})^{2}, \ 20(\hat{\alpha}_{2})^{\circ}\hat{\alpha}_{1}^{+}, \ 21\hat{\alpha}_{n_{2}}\hat{\alpha}_{1}^{+} \right\}.$$

$$|1311\rangle \xrightarrow{\hat{\alpha}_{2}^{+}\hat{\alpha}_{1}^{+}} |2411\rangle \xrightarrow{\hat{\alpha}_{4}\hat{\alpha}_{1}^{+}} |3410\rangle;\hat{T}|3410\rangle = 1|3410\rangle.$$

$$|1310\rangle \xrightarrow{\hat{\alpha}_{2}^{+} \hat{\alpha}_{1}^{+}} |2410\rangle \xrightarrow{(\hat{\alpha}_{2})^{\circ} \hat{\alpha}_{1}^{+}} |3410\rangle; \hat{T}|3410\rangle = 1 |3410\rangle.$$

$$|1301\rangle \xrightarrow{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1}^{+})^{2}} |3401\rangle ;\hat{T}|3401\rangle = 1|3401\rangle.$$

$$|1300\rangle \xrightarrow{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1}^{+})^{2}} |3400\rangle ;\hat{T}|3400\rangle = 0|3400\rangle.$$

Theorem 2. (Q_4, R_4, Λ, X) is an AND gate, where

$$\wedge = \Big\{ 11\hat{\alpha}_{2}^{+}\hat{\alpha}_{1}^{+}, 10\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1}^{+})^{2}, 21\hat{\alpha}_{n_{2}}(\hat{\alpha}_{1}^{+})^{2}, 20\hat{\alpha}_{2}(\hat{\alpha}_{1}^{+})^{3}, 31\hat{\alpha}_{n_{2}}\hat{\alpha}_{1}^{+}, 30(\hat{\alpha}_{n_{2}})^{\circ}\hat{\alpha}_{1}^{+}, 51\hat{\alpha}_{n_{2}}\hat{\alpha}_{1}^{+} \Big\}.$$

$$|1311\rangle \xrightarrow{\hat{\alpha}_{2}^{+}\hat{\alpha}_{1}^{+}} |2411\rangle \xrightarrow{\hat{\alpha}_{4}(\hat{\alpha}_{1}^{+})^{2}} |4410\rangle;\hat{T}|4410\rangle = 1 |4410\rangle.$$

$$|1310\rangle \xrightarrow{\hat{\alpha}_{2}^{+} \hat{\alpha}_{1}^{+}} |2410\rangle \xrightarrow{\hat{\alpha}_{2}^{-} (\hat{\alpha}_{1}^{+})^{3}} |5310\rangle \xrightarrow{\hat{\alpha}_{3} \hat{\alpha}_{1}} |4300\rangle; \hat{T} |4300\rangle = 0 |4300\rangle.$$

$$|1301\rangle \xrightarrow{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1}^{+})^{2}} |3401\rangle \xrightarrow{\hat{\alpha}_{4}\hat{\alpha}_{1}^{+}} |4400\rangle; \hat{T}|4400\rangle = 0 |4400\rangle.$$

$$|1300\rangle \xrightarrow{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1}^{+})^{2}} |3400\rangle \xrightarrow{(\hat{\alpha}_{4})^{\circ} \hat{\alpha}_{1}^{+}} |4400\rangle; \hat{T}|4400\rangle = 0|4400\rangle.$$

Theorem 3. $(Q_4, R_4, \ \ \ X)$ is an XOR gate, where

$$\bigvee = \left\{ 11\hat{a}_{2}^{+}\hat{a}_{1}^{+}, 10\hat{a}_{2}^{+}(\hat{a}_{1}^{+})^{2}, 21\hat{a}_{n_{2}}(\hat{a}_{1}^{+})^{2}, 20(\hat{a}_{n_{2}})^{\circ}(\hat{a}_{1}^{+})^{3}, 31(\hat{a}_{n_{2}})^{\circ}(\hat{a}_{1}^{+})^{2}, 30(\hat{a}_{n_{2}})^{\circ}(\hat{a}_{1}^{+})^{2}, 40\hat{a}_{2}(\hat{a}_{1}^{+})^{2}, 61\hat{a}_{n_{2}}\hat{a}_{1}\right\}.$$

Proof:

-

$$|1311 > \underbrace{\hat{\alpha}_{2}^{+} \hat{\alpha}_{1}^{+}}_{+} |2411 > \underbrace{\hat{\alpha}_{4} (\hat{\alpha}_{1}^{+})^{2}}_{+} |4410 > \underbrace{\hat{\alpha}_{2} (\hat{\alpha}_{1}^{+})^{2}}_{+} |6310 > \underbrace{\hat{\alpha}_{3} \hat{\alpha}_{1}}_{+} |5300 > ;\hat{T}|5300 > =0|5300 >.$$

$$|1310 > \underbrace{\hat{\alpha}_{2}^{+} \hat{\alpha}_{1}^{+}}_{+} |2410 > \underbrace{(\hat{\alpha}_{4})^{\circ} (\hat{\alpha}_{1}^{+})^{3}}_{+} |5410 > ;\hat{T}|5410 > =1|5410 >.$$

$$|1301 > \underbrace{\hat{\alpha}_{2}^{+} (\hat{\alpha}_{1}^{+})^{2}}_{+} |3401 > \underbrace{(\hat{\alpha}_{4})^{\circ} (\hat{\alpha}_{1}^{+})^{2}}_{+} |5401 > ;\hat{T}|5401 > =1|5401 >.$$

$$|1300 > \underbrace{\hat{\alpha}_{2}^{+} (\hat{\alpha}_{1}^{+})^{2}}_{+} |3400 > \underbrace{(\hat{\alpha}_{4})^{\circ} (\hat{\alpha}_{1}^{+})^{2}}_{+} |5400 > ;\hat{T}|5400 > =0|5400 >.$$

Theorem 4. $(Q_4, R_4, \sim V, X)$ is a NOR gate, where

$$\sim \forall = \left\{ 11\hat{\alpha}_{n_2}\hat{\alpha}_1^+, \ 10\hat{\alpha}_2^+(\hat{\alpha}_1^+)^3, \ 20\hat{\alpha}_2^+\hat{\alpha}_1^+, \ 31\hat{\alpha}_{n_2}(\hat{\alpha}_1^+)^2, \ 30(\hat{\alpha}_{n_2})^\circ(\hat{\alpha}_1^+)^2, \ 41\hat{\alpha}_{n_2}\hat{\alpha}_1^+, \ 40\hat{\alpha}_{n_2}^+\hat{\alpha}_1^+ \right\}.$$

$$|1311 > \stackrel{\hat{\alpha}_{3}\hat{\alpha}_{1}^{+}}{\longrightarrow} |2301 > \stackrel{\hat{\alpha}_{2}^{+}\hat{\alpha}_{1}^{+}}{\longrightarrow} |3401 > \stackrel{\hat{\alpha}_{4}(\hat{\alpha}_{1}^{+})^{2}}{\longrightarrow} |5400 > ;\hat{T}|5400 > =0|5400 >.$$

$$|1310 > \stackrel{\hat{\alpha}_{3}\hat{\alpha}_{1}^{+}}{\longrightarrow} |2300 > \stackrel{\hat{\alpha}_{2}^{+}\hat{\alpha}_{1}^{+}}{\longrightarrow} |3400 > \stackrel{(\hat{\alpha}_{4})^{\circ}(\hat{\alpha}_{1}^{+})^{2}}{\longrightarrow} |5400 > ;\hat{T}|5400 > =0|5400 >.$$

$$|1301 > \stackrel{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1}^{+})^{3}}{\longrightarrow} |4401 > \stackrel{\hat{\alpha}_{4}\hat{\alpha}_{1}^{+}}{\longrightarrow} |5400 > ;\hat{T}|5400 > =0|5400 >.$$

$$|1300\rangle \xrightarrow{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1}^{+})^{3}} |4400\rangle \xrightarrow{\hat{\alpha}_{4}^{+}\hat{\alpha}_{1}^{+}} |5401\rangle ;\hat{T}|5401\rangle = 1|5401\rangle.$$

Theorem 5. $(Q_4, R_4, \sim \land, X)$ is a NAND gate, where

$$\sim \Lambda = \left\{ 11\hat{\alpha}_{2}^{+}\hat{\alpha}_{1}^{+}, \ 10\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1}^{+})^{4}, 21\hat{\alpha}_{n_{2}}\hat{\alpha}_{1}^{+}, 20(\hat{\alpha}_{n_{2}})^{\circ}(\hat{\alpha}_{1}^{+})^{4}, 30\hat{\alpha}_{2}\hat{\alpha}_{1}^{+}, 41\hat{\alpha}_{n_{2}}(\hat{\alpha}_{1}^{+})^{2}, 51(\hat{\alpha}_{n_{2}})^{\circ}\hat{\alpha}_{1}^{+}, 50\hat{\alpha}_{n_{2}}^{+}\hat{\alpha}_{1}^{+} \right\}.$$

Proof:

$$|1311\rangle \xrightarrow{\hat{\alpha}_{2}^{+} \hat{\alpha}_{1}^{+}} |2411\rangle \xrightarrow{\hat{\alpha}_{4}^{+} \hat{\alpha}_{1}^{+}} |3410\rangle \xrightarrow{\hat{\alpha}_{2}^{+} \hat{\alpha}_{1}^{+}} |4310\rangle \xrightarrow{\hat{\alpha}_{3}^{+} (\hat{\alpha}_{1}^{+})^{2}} |6300\rangle; \hat{T}|6300\rangle = 0 |6300\rangle.$$

$$|1310\rangle \xrightarrow{\hat{\alpha}_{2}^{+} \hat{\alpha}_{1}^{+}} |2410\rangle \xrightarrow{(\hat{\alpha}_{4})^{\circ} (\hat{\alpha}_{1}^{+})^{4}} |6410\rangle; \hat{T}|6410\rangle = 1 |6410\rangle.$$

$$|1301\rangle \xrightarrow{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1}^{+})^{4}} |5401\rangle \xrightarrow{(\hat{\alpha}_{4})^{\circ} \hat{\alpha}_{1}^{+}} |6401\rangle; \hat{T}|6401\rangle = 1 |6401\rangle.$$

$$|1300\rangle \xrightarrow{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1}^{+})^{4}} |5400\rangle \xrightarrow{\hat{\alpha}_{4}^{+}\hat{\alpha}_{1}^{+}} |6401\rangle;\hat{T}|6401\rangle = 1 |6401\rangle.$$

Theorem 6. $(Q_4, R_4, ~\mathcal{N}, X)$ is a NXOR gate, where

$$|1311> \xrightarrow{\hat{\alpha}_{3}\hat{\alpha}_{1}^{+}} |2301> \xrightarrow{\hat{\alpha}_{2}^{+}\hat{\alpha}_{1}^{+}} |3401> \xrightarrow{(\hat{\alpha}_{4})^{\circ}(\hat{\alpha}_{1}^{+})^{2}} |5401>;\hat{T}|5401>=1 |5401>.$$

$$|1310\rangle \xrightarrow{\hat{\alpha}_{3}\hat{\alpha}_{1}^{+}} |2300\rangle \xrightarrow{\hat{\alpha}_{2}^{+}\hat{\alpha}_{1}^{+}} |3400\rangle \xrightarrow{(\hat{\alpha}_{4})^{\circ}(\hat{\alpha}_{1}^{+})^{2}} |5400\rangle; \hat{T}|5400\rangle = 0 |5400\rangle.$$

$$|1301\rangle \xrightarrow{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1}^{+})^{3}} |4401\rangle \xrightarrow{\hat{\alpha}_{4}\hat{\alpha}_{1}^{+}} |5400\rangle;\hat{T}|5400\rangle=0|5400\rangle.$$

$$|1300\rangle \xrightarrow{\hat{\alpha}_{2}^{+}(\hat{\alpha}_{1}^{+})^{3}} |4400\rangle \xrightarrow{\hat{\alpha}_{4}^{+}\hat{\alpha}_{1}^{+}} |5401\rangle;\hat{T}|5401\rangle=1|5401\rangle.$$

REFERENCES

- 1. M. Chester, Primer of Quantum Mechanics, John Wiley & Sons, New York, NY, 1987.
- 2. E. Merzbacher, *Quantum Mechanics*, John Wiley & Sons, New York, NY, 1970.
- 3. J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, MA, 1979.
- 4. N. Jones, *Computability Theory: An Introduction*, ACM Monograph Series, Academic Press, New York, NY, 1973.

DISTRIBUTION

<u>COPIES</u>

COPIES

ATTN CODE 3T	1	G		1
COMMANDER		н		1
NAVAL WEAPONS CENTER		J		1
CHINA LAKE CA 93555-6001		K		1
		K02	FALLIN	1
ATTN CODE 014	1	K07	HUGHEY	1
COMMANDER		K10		1
NAVAL OCEAN SYSTEMS CENTER		K104	FELL	1
SAN DIEGO CA 91252-5000		K106	BLANTON	1
		K107	HILL	1
ATTN CODE 101	1	K12		1
OFFICER IN CHARGE		K12	SOLKA	15
NEW LONDON LABORATORY		K13		1
DETACHMENT		K13	PARKS	15
NAVAL UNDERWATER SYSTEMS CENT	ER	K14		1
NEW LONDON CT 06320		K40		1
		K50		1
ATTN CODE 01B	1	Ν		1
COMMANDER		N35	TATE	50
NAVAL AIR DEVELOPMENT CENTER		R13	GUIRGUIS	1
WARMINSTER PA 18974-5000		R301	WALCH	1
		R34	LEE	1
ATTN CODE 011	1	R44	SZU	1
OFFICER IN CHARGE				
ANNAPOLIS LABORATORY				
DAVID TAYLOR RESEARCH CENTER				
ANNAPOLIS MD 21402-1198				
INTERNAL DISTRIBUTION				
С	1			
D	1			
D2	1			
D4	1			
E231	3			
E32 GIDEP	1			

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188	
Public reporting burden for this collection of inf gathering and maintaining the data needed, an collection of information, including suggestions Davis Hiohway, Suite 1204. Arlinoton. VA 22202	formation is estimated to average 1 hour per Id completing and reviewing the collection o for reducing this burden, to Washington He 24302, and to the Office of Management and	response, including the time for revie information. Send comments regard adquarters Services, Directorate for li Budget, Paperwork Reduction Project	wing instructions, searching existing data sources, Ing this burden estimate or any other aspect of this nformation Operations and Reports, 1215 Jefferson t (0704-0188), Washington, DC 20503.	
1. AGENCY USE ONLY (Leave blank,) 2. REPORT DATE March 1991	3. REPORT TYPE Final/Mar	and dates covered ch 1991	
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS	
Computing with Quant	tum Mechanical Oscill	ators		
6. AUTHOR(S) A. D. Parks and J. L. Sc	olka			
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
Naval Surface Warfare Dahlgren, VA 22448-5		NAVSWC TR 91-205		
9. SPONSORING/MONITORING AG	ENCY NAME(S) AND	······	10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES				
12a. DISTRIBUTION/AVAILABILITY			12b. DISTRIBUTION CODE	
Approved for public release; distribution is unlimited.				
13. ABSTRACT (Maximum 200 word	ds)			
This report descri computations via the a oscillators. These alg annihilation operators eigenvalues of a well-d	bes an idealized qua algorithmic manipulat gorithms are construct s and are Turing mac lefined Hermitean open	ntum mechanical tion of the energy s ted in terms of ob hine equivalents. rator.	computer which performs states of quantum harmonic servables and creation and Computational results are	
14. SUBJECT TERMS			15. NUMBER OF PAGES 32	
Turing machines		01110 00011101010	16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICAT OF ABSTRACT	TION 20. LIMITATION OF ABSTRACT	
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	SAR	
			Chandrad Carm 200 (Day 2 80)	

NSN 7540-01-280-5500

•

.

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and its title page. Instructions for filling in each block of the form follow. It is important to *stay within the lines* to meet *optical scanning requirements*.

Block 1. Agency Use Only (Leave blank).	Block 12a. Distribution/Availability Statement.			
Block 2. <u>Report Date</u> . Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.	Denotes public availability or limitations. Cite any availability to the public. Enter additional limitation or special markings in all capitals (e.g. NOFORN, REL, ITAR).			
 Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88). Block 4. Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific 	 DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents." DOE - See authorities. NASA - See Handbook NHB 2200.2 NTIS - Leave blank Block 12b. Distribution Code. 			
volume. On classified documents enter the title classification in parentheses.	DOD - Leave blank.			
Block 5. <u>Funding Numbers</u> . To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:	DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.			
C - Contract PR - Project G - Grant TA - Task PE - Program WU - Work Unit	NASA - Leave blank. NTIS - Leave blank. Block 13. <u>Abstract</u> . Include a brief (Maximum 200			
Element Accession No. BLOCK 6. Author(s). Name(s) of person(s) responsible	<i>words)</i> factual summary of the most significant information contained in the report.			
for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).	Block 14. <u>Subject Terms</u> . Keywords or phrases identifying major subjects in the report.			
Block 7. Performing Organization Name(s) and address(es). Self-explanatory.	Block 15. <u>Number of Pages</u> . Enter the total number of pages.			
Block 8. <u>Performing Organization Report Number</u> . Enter the unique alphanumeric report number(s)	Block 16. <u>Price Code</u> . Enter appropriate price code (NTIS only)			
assigned by the organization performing the report. Block 9. <u>Sponsoring/Monitoring Agency Name(s) and</u> <u>Address(es)</u> . Self-explanatory.	Block 1719. Security Classifications. Self- explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and			
Block 10. Sponsoring/Monitoring Agency Report Number. (If Known)	bottom of this page.			
Block 11. <u>Supplementary Notes</u> . Enter information not included elsewhere such as: Prepared in cooperation with; Trans. of; To be published in When a report is revised, include a statement whether the new report supersedes or supplements the older report.	BIOCK 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.			

1

