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FOREWORD 

This report describes the results of some preliminary theoretical work in the area of 
quantum mechanical computing which has been performed by the Strategic Systems (K) 
Department at the Naval Surface Warfare Center (NAVSWC) as part of a molecular 
computing focused technology initiative. 

This report has been reviewed and approved by Ted Sims, Space Sciences Branch 
Head, and James L. Sloop, Space and Surface Systems Division Head. 

Approved by 

JU^T JcArrvUf 
R. L. SCHMIDT, Head 
Strategic Systems Department 
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INTRODUCTION 

Despite the obvious practical considerations (e.g., stability, controlability), certain 
quantum mechanical systems seem to naturally lend themselves in a theoretical sense to the 
task of performing computations. The purpose of this report is to describe one such 
idealized system-the quantum harmonic computer. As its name might suggest, this 
theoretical device employs the well known energy characteristics of quantum mechanical 
oscillators; the associated creation and annihilation operators; and the quantum mechanical 
axioms of state preparation and observability to perform computations. It is demonstrated 
that programs can be written for this device in terms of quantum mechanical observables 
and creation and annihilation operators which will algorithmically manipulate oscillator 
energy states to perform the desired calculations, the results of which are eigenvalues of a 
well defined system observable. By definition, these programs are equivalent to Turing 
machines, so that anything that is Turing computable is also computable with this device. 

It is well known that many physical systems (e.g., photon gas, crystals, phonons, diatomic 
molecules) can be approximated by collections of quantum harmonic oscillators. Although 
the development herein may suggest such implementations, we emphasize that our intent 
has been theoretical in nature rather than practical. 

QUANTUM MECHANICAL HARMONIC OSCILLATOR 

In order to provide a more complete foundation for the discussions which follow, we 
provide in this section a brief sketch of the one-and m-dimensional quantum mechanical 
harmonic oscillators. Although we adopt the Dirac notation, our development is standard 
and can be referenced in more detail in most basic quantum mechanics texts [e.g., 
References 1, 2]. 

The ideal classical harmonic oscillator is a particle of mass m constrained to move 
along an axis and subject to a restoring force proportional to the displacement from the 
force center. The corresponding quantum mechanical oscillator is a particle of mass m in 
one dimension with energies generated by the Hamiltonian operator 

H=J-(p2
+mW), (2-1) 

2m 
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where w is the natural angular frequency of oscillation, and q and p are the position and 
momentum operators, respectively, related by the commutator 

[&PHK (2-2) 

Here t\ is Planck's constant divided by 2w. 

The energy eigenvalue problem for this system is given by the time-independent 
Schrodinger equation 

H|E>=E|E>, (2-3) 

where E is the energy eigenvalue associated with the system state described by the "ket" 
vector |E>. 

Using this we may now construct the vector space of the dynamical states of the 
system. Let 

a=(2^7M<o)-1/2(p-ima)9) (2'4) 

and 

fl+=(2fcm<o)-1/2(p+imG>0. (2-5) 

It is readily seen that the operator ä and a* are Hermitean conjugates and that application 
of (2.2) provides the commutator relation 

[a/T]=l. (2-6) 

Furthermore, it is easily shown that the Hamiltonian operator of (2.1) can be written in 
terms of d and a* as 

H=(N+ 1/2)W, (2-7) 

where 

N=«+a. (2-8) 

Thus, the eigenvalue problem of (2.3) is equivalent to constructing the eigenvectors of the 
operator N.   It should be noted that N is Hermitean and a system observable. 

For the sake of brevity, we omit its detailed development and simply state the well 
known result that the spectrum of eigenvalues of N is the set of non-negative integers {0, 
1, 2, ..., n, ...} from which we may form the orthonormal state vectors 
|0>,|l>,|2>,...,|n>,..., where 

N\n>=n\n>. (2-9) 

For the same reason as above, we also state without proof the following well-known 
properties of the operators a* and a: 

a+|n>=(n+l)1/2|«+l> (2-10) 
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fl|n>=(n)1/2|n-l> (2-n) 

a|0>=0 (2-12) 

and 

|n>=(n!)-1/2(a+)n|0>, (2-13) 

where |0> is called the ground state of the system. 

Upon application of (2.7) and (2.9) to (2.3), it is easily verified that 

H |«>=(«+1/2)*» |«>, (2-14) 

i.e., the energy states of the oscillator are quantized into discreet multiples of >>w with 
ground state energy l/2tiw. 

Consider now the m-dimensional system of m  distinguishable, noninteracting 
oscillators with system Hamiltonian 

(2.15) 

i=l 

where each Aj in the summation has the form of (2.7) with all associated operators having 
the appropriate i subscript. If |n;> denotes the eigenvectors of H;, then the tensor product 
of eigenvectors 

(2.16) 
\n1n2...nm>*\nl>\n2>...\nm> 

forms a complete orthonormal set Sm of eigenvectors of H in (2.15) so that 

HK»2-«„>=E (»,+i/2)i»» Kvv (2-17) 

and 

^\n1nr.Mm>=J:^i\nlnr..nm>=f:ni\n1nr..nm>. (2-18) 

Analogous to (2.6), it can be shown that the operators ä. and a? obey the following 
commutation rules: 
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[ä^äjl =0 

' (ij = 0,l,-,m) (2.19) 

It is convenient at this point to introduce several new operators which will prove 
useful in the following sections. Define the new operator ß . as 

?ili    10 ,nr0 

and 
arß# 

(2.20) 

(2.21) 

so that 

and 

A 
A Art a.eaßt 

&]\n>=\ni+l> 

(2.22) 

(2.23) 

(2.24) 

It is easily verified that a. and a^ obey the following commutation relation for 
1 <j, j<m: 

[a,&+]=ll'H'ni = ° 1   J    1 0, otherwise 
(2.25) 

We also define the identity operator f; as 

so that for any operator y,- » 

I,>>=|n> 

A A 
A    T T     * A 

Y I=lY =Y • 

(2.26) 

(2.27) 
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QUANTUM HARMONIC COMPUTER:  DEFINITIONS 

In this section we develop a set of definitions that will provide for a precise description 
of the quantum harmonic computer.   Let Sm be as defined in the previous section and 

QmcSm> wnere 

Qmst\nini-nm> |»,e{0,l},3:ii*/M;3*n2*;n}. (3.1) 

Each eigenvector in Qm is called an instantaneous description (ID). The quantum numbers 
nx and n2 in each ID are called the state and pointer, respectively. Also define the following 
sets of operators: 

S£w={&p&;|lsism}, (3-2) 

1-H&1. K -a- T} (13) 

where 

t=EN, (3-4) 
j=3 

and 

Xm
=2mUr\m. (3-5) tn        in        ■ m 

We note that f is Hermitean and is a system observable. 

An Rm-quadruple is a 4-tuple of one of the following three types: 

«pj£4> (3-6) 
i «2 n2 1' 

ninn«+2AV 
(3-7) 

where« is the quantum number describing the eigenstate of the n2 oscillator; k and / are 

non-negative integers; Aje^; and 
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f       At A, ... At , k*0 
Ak= ~FST (3.9) 

1    I       /,      ,k=0. 
Each i?m-quadruple may be interpreted as being the instruction: "if the state is nx and the 
eigenstate of the n2

th oscillator is n for some ID, then apply the following operators to the 
ID." 

A program Pm is a finite nonempty set of 7?m-quadruples, no two of which have the 
same state quantum number. Let p-nji x represent any i?m-quadruple, where x is any of 

the operator pairs in (3.6) - (3.8), and X, Y e Qm.    A program Pm induces a basic Pm 

transition X^-*-Y from X to Y if there is a pePm such that N.X = n.X; N X = n X; and 

Y = xX.   A finjte sequence Xl-*Y—-*■...^-* Z of such transitions is called a /^-computation 

if there is no p'ePm or WeQm with Z—+W. In this case the eigenvector Z is called the 
resultant. The eigenvector X is called the initiator. It will always be assumed here that for 
every initiator, the pointer quantum number n2 = 3 and the state quantum number na = 1. 

We may now define the m-dimensional quantum harmonic computer rm as the 
4-tuple 

r.-«?., ** Pm> x) (3.io) 

Informally, rm can be thought of as an m-dimensional quantum mechanical harmonic 
oscillator which serves as a memory/storage medium for any ID in Qm. This oscillator 
interfaces with a "device" which imposes upon it energy eigenstate transitions via the 
application of a sequence of operators from Rm as algorithmically dictated by Pm. 

NUMERICAL COMPUTATION USING rm:   SIMPLE EXAMPLES 

It is obvious that there is a one-to-one correspondence between Pm programs and Turing 
machines [3, 4]. Hence, as long as we view m as being potentially infinite (i.e., adding extra 
oscillators as needed), anything Turing computable is also Pm computable. In this section 
we provide examples of Pm program which compute several non-negative integer arithmetic 
functions and illustrate the associated Pm computations using simple initiators. 

In order to perform these computations, we make use of the following symbolic 
representation for a non-negative integer J: 
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J„J>S    üsL (4-1) 
J+l times 

(thus 5' ■ 111111). Also, we may assume without violating any quantum mechanical 
principles that initiators may be prepared with the required state and pointer quantum 
numbers, as well as any combination of quantum numbers n;e{0,l} for 3<i<m. Initiators 
may therefore be prepared which can contain within the energy states of oscillators 3 
through m symbolic representations for non-negative integers of the form (4.1). We adopt 
the convention that if / and K are two non-negative integers which are to be symbolically 
represented within an initiator with J appearing first, then the initiator will be prepared with 
n; = 1 for 3 <. i <. J+3, J+5 < i <. J+K+5, and n; = 0 elsewhere for i > 2 (thus m >. 
J+K+5). An initiator prepared in this manner is said to be properly prepared. 

Each of the sample Pm programs described below are designed to produce a resultant 
from a properly prepared initiator via the sequential application of operators in Rm. The 
computed solution is the eigenvalue of f when applied to the resultant. 

Example 1. The setyl is a Pm program which computes J+K for J,K non-negative integers, 
where 

^{lla,^)0, 10&2&;, 21a;(a1)°, 20a2
+&;, Sla^a,)0}. 

For the sake of clarity we have used (&J" in A, but note that by (3.9) and (2.27) it need not 
be made explicit. Effectively, this Pm program produces a resultant in which oscillators 3 and 
J+5 have transitioned to their ground states and (neglecting the state and pointer) J+K 
oscillators remain in their first excited state. Thus the computed solution J+K is the 
eigenvalue of f when applied to the resultant. 

In order to illustrate this let 7=2 andi^l and choose m =J+K+5=8. The associated 
P8 computation is: 

a,(o.) aja, a,(a,) 
11311101 \>-^-*—+113oi 101 l>-?-l» |24011011>_^U 

*   + > A      V rt A  +   A+ *       / *      \C 

a,(o,) «2«, ,       a7(ai) 
|25011011> 2 * -126011011>-^> |37011011>^^- 

137011001>, 

so that 
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f |37011001>=3 [37011001>. 

As an aside, we note that in general the composite operator d^^Cd^2^)2 will always 
produce the desired resultant for J+K for any properly prepared initiator. 

Example 2. The set B is a Pm program which computes J-K for J>K where J and K are 
non-negative integers: 

Ä={11&
%(Äi)0. 10&1&1> 21*2«*!)°, M&Z&l, M&K&y, 30&2&l 41d„2(a1)°, 40d2&;, 51d2d;, 

eia^y, 60&2&1, n&2&l 70d2
+(d1

+)2, Sld^d/, 80d2
+(d,)7, QOd^)0, M&^y]. 

Although not necessary, we have again made (dj)0 explicit. Here B produces a resultant 
in which oscillators 3 through K+3 and /+5 through J+K+5 have transitioned to their 
ground states and J-K oscillators remain in their first excited state. Thus the eigenvalue of 
T when applied to the resultant is J-K B also needs a ground state oscillator after the 
representation of K in the initiator. Thus we choose m=J+K+6. 

As an illustration, let 7=2 and K=l, as before, so that m=9.   P9 produces the 
following computation: 

|131110110>-2-i-»|l30110110>-^|240110110> 

A   + * A       ^O A   +   A   + 

|250110110> " W > |260110110>-^ 1370110110>-^L 

\o A   +/  *      \C 

1380110110>gW > 1390110110>-*^ [480110110^'(&l)°, 

A A   + + 

|48011010»-^ |5701lOlCK»-^ 1660110100>^l 

|7501101()0>-?^|840110100>-^^|830110100>^^1 
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1140110100>   4   '   > | i40010100>-^-U |250010100>   2   x 

A   +  A   + A   + * A      V O 
a2ai  ,„m,ninn   «a(«i) a,a, 

|260010100>-^* |370010100> "^'"  > |380010100>-^ 

A  ^ A  VO A   * + 

[470010100> 7 * . |470010000>-^^ |560010000>, 

so that 

f |560010000>=11560010000>. 

Again we note that the composite operator 

A A A A       f A   +\_/-frl /  A   +\4 

<*J+K+5-aJ+5aK+r-a3(a2Y '(«l) 

will always produce the desired resultant for J-K, J>K, for any properly prepared initiator. 

r4 LOGIC GATES 

Because of the obvious equivalence between Turing machines and Pm programs, we can 
construct Pm-programs which produce logic function computations. In this section we prove 
a series of theorems which state that specific 4-dimensional quantum harmonic computers 
can serve as basic logic gates. Let us assume that the energy states of the third and fourth 
oscillators represent truth values for propositions r and s, respectively, where n—0 means 
"false" and nt=l means "true" for ie {3, 4}. The truth value obtained from a r4 logic gate 
computation is the eigenvalue of   f  when applied to the associated resultant. 

Theorem 1.  (04, R4, V, X) is an OR gate, where 

V={lla2
+«;, 10a2

+(&;)2, 20(a2)°a;, 21«^«;}. 

Proof: 
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Ä       Ä A A   + 

|1311>^-U|2411>-^i>|3410>;f|3410>=l|3410>. 

| I310>-i-i> |2410>-^—\ |3410>;f |3410>=1 |3410>. 

|1301>-^—i—13401> ;f|3401>=l|3401>. 

A  +f A   +0 

[1300>g2 gl   >|3400> ;T|3400>=0|3400>. 

Theorem 2.  (ß4, i?4, A , X) is an AND gate, where 

A={lla2
+a^l0a2

+(a^21^ 

Proof: 

«2al 
A       /  A   +V 2 

1311> ►|2411>-5—U-|4410>;f|4410>=l|4410>. 

a,a ioifw   2ai  i„,„   &2("i) cLa, 
1310> ► |2410> * |53io>^-U |4300>;r|4300>=014300>. 

\2 A    +/  A   +..0 

11301> »|3401>   4    > |4400>;f|4400>=0|4400>. 

11300> ► |3400>    ^    S |4400>;f|4400>=014400>. 

10 
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Theorem 3.  (ß4, Ä4,    V , X) is an XOR gate, where 

Proof: 

11311>-^>I2411>a4 ttl   . |4410>g2   l  > |6310>-^* |5300>;f |5300>=015300>. 

a+a+ (a Ydi*}* 
|i3io>^-U|2410>    **     *   > |5410>;f |5410>=1 |5410>. 

11301> |3401>    "     '   > |5401>;7|5401>=115401>. 

11300> 13400>    V     X   > |5400>;f |5400>=015400>. 

Theorem 4.  (<24, R4, ~V, X) is a NOR gate, where 

~V-{lld^, 10a2
+(al)3, 20d2

+a;, Slft,^)2, 30(5^)°(ftIf, 41&.&;, 40ft;ft;}. 

Proof: 

11311>^_V |2301>-i-U |3401>-i—^-> |5400>;r|5400>=015400>. 

ft3«i ftjfti (ftj°(al)2 

11310>^-^ |2300>^-i> |3400>    V     1  > |5400>;r|5400>=015400>. 

» +/ » +\3 A      A + 

|1301> ,|4401>-^-Ui54oo> ;r|5400>=0|5400>. 

11 
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a.*(a*}^ * + « + 

|1300>^—L^|4400>^l^|54oi> ;f|5401>=l|5401>. 

Theorem 5.  (Q4, R4, ~A, X) is a NAND gate, where 

~A={llft2X 10a2
+(&;^21a^d;,20(a^)^^ 

Proof: 

L + A + 
a2ai ä^Äi a«: A (A*\i 

1311> ^i241l>^^|3410>^-^|4310>^^U|6300>;f|6300>=0|6300>. 

11310> ► [2410>    4>yiJ
t |6410>;f|6410>=l |6410>. 

|1301> ».|540l>_r—+ |6401>;f|6401>=l|6401>. 

A+(A*\4 * + « + 

|1300>-^—U|5400>-^X|6401>;f|6401>=l|6401>. 

Theorem 6.  (ß4, i?4,    ~J/ , *) is a NXOR gate, where 

~# = {lla^a;,10a2
+(a;)3,20a2

+&;, 30(a^)°(d;)2, 3MJi&t?9 41ft^Äj, 40ft;ft;} 

Proof: 

11311>-3— |2301>^-U ]3401>^ *> K l\ |5401>;f |5401>=115401>. 

12 
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A A   + A   +   A   + > A       V ft   S  A   +vO 
a3ax a,ai (aj («1) 

|1310>^-1V|2300>^-U|3400>    v > |5400>;r[5400>=0|5400>. 

a2(a,) a.a, 
1130l>^_L-|4401>-t_l* |5400>;r|5400>=015400>. 

a2(ai) £+\3 
a4al 1300>^^—i-> |4400>-^-^ |5401>;r|5401>=l |5401>. 

13 
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the Standard Distribution for 
Unclassified Scientific and Technical 
Reports. 
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be limited. If blank, the abstract is assumed to be 
unlimited. 

Standard Form 298 Back (Rev. 2-89) 




