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1    Fully Developed Laminar Flow in Trapezoidal Grooves 

1.1    Introduction 

Internally grooved ducts are used in process equipment to improve heat transfer 

during condensation and evaporation. In some cases, such as a refrigeration cycle 

evaporator or condenser with internal grooves, the vapor flow is cocurrent with respect 

to the liquid flow. In axially grooved heat pipes, the vapor flow is countercurrent to the 

liquid flow. The interfacial shear stress due to the cocurrent or countercurrent vapor 

flow contributes to the liquid pressure drop, which can significantly affect the heat 

transfer capacity of the grooved surface. The objective of the present research was to 

numerically model the flow of liquid in trapezoidal grooves using a finite difference 

approach in order to provide accurate information on the effects of cocurrent and 

countercurrent vapor flow on the pressure drop in the liquid. This geometry was 

chosen due to the fact that rectangular and triangular grooves are special cases of the 

trapezoidal groove, thus making the analysis as general as possible. 

DiCola (1968) solved the conservation of momentum equation for the laminar flow 

of liquid in rectangular grooves with a uniform shear stress imposed at the liquid- 

vapor interface using separation of variables. Unfortunately, this manuscript is no 

longer available in the open literature. Schneider and DeVos (1980) provided the 

exact solution determined by DiCola (1968), along with an expression for the friction 

factor which approximates the exact solution to within 1% by using the first term 

of the infinite series solution. This expression was used by Schneider and DeVos to 

determine the nondimensional heat transport capacity of axially-grooved heat pipes. 

Upon examination of the DiCola equation, it is obvious that the rectangular groove 

is completely full; i.e., the meniscus contact angle is </> = 90°. 

Ayyaswamy et al. (1974) used the Galerkin boundary method to solve the Poisson 

equation to determine the fluid velocity in triangular grooves. In this study, interfacial 



shear stress was zero, and the groove half-angle and contact angle were varied from 

$ = 5 to 60° and <f> = 0.1° to the full groove condition (0 + </> = 90°). The results 

were presented graphically and in tabular form, which included the cross-sectional 

area, mean velocity, hydraulic diameter, and Poiseuille number. It was found that 

the Poiseuille number increased monotonically with meniscus contact angle. 

Ma et al. (1994) determined the Poiseuille number for the flow of liquid in trian- 

gular grooves with liquid-vapor frictional interaction. The groove half-angle ranged 

from 20 < 8 < 60° and the meniscus contact angle was varied from (j> = 0 to 60°. 

The conservation of momentum equation was transformed into the Laplace equation 

in terms of liquid velocity, which was solved using separation of variables and lin- 

ear superposition. Difficulties were encountered with respect to application of the 

liquid-vapor interface boundary condition, since the liquid-vapor interface velocity 

is an unknown function of the vapor velocity. The methodology used to overcome 

this difficulty required an experimentally determined coefficient. A dimensionless 

liquid-vapor interface flow number was introduced to account for the interfacial shear 

stress. This value determined the relative velocities of the liquid and vapor at the 

liquid-vapor interface, which impacted the magnitude of the Poiseuille number. It 

was found that the friction factor increased with the interface flow number and con- 

tact angle. Results from the experiment executed by Ayyaswamy et al. (1974) for no 

liquid-vapor shear stress showed an excellent comparison with the analytical solution 

over the ranges of groove half-angle and contact angle mentioned above. 

Romero and Yost (1996) analyzed the flow of liquid in a triangular groove with no 

shear stress at the liquid-vapor interface. In particular, the flow from a sessile drop 

into the groove was of interest. A nonlinear partial differential diffusion equation was 

presented which described the time-dependent height of liquid in the groove in terms 

of the groove geometry, meniscus contact angle, and fluid properties. A simplified 

similarity solution was presented for the region which was far from the sessile drop. A 

full similarity solution was also shown which accounted for the region near the fluid 

droplet. It was found that the wetting front position was proportional to {Dt)1/2, 

where the diffusion coefficient D was related to the groove geometry, liquid viscosity, 



and liquid-vapor surface tension. 

Lin and Faghri (1997) modeled the flow of liquid in the triangular grooves of 

a rotating miniature heat pipe. A correlation for the friction factor was provided 

in terms of the shear stress at the liquid-vapor interface. The laminar flow in the 

triangular groove was solved using a finite element technique for side lengths ranging 

from hy/1 + tan2 0 = 0.2 to 0.65 mm and liquid-vapor shear stress rlv = 7.7 x 10~5 to 

0.055 N/m2 for a groove half-angle of 0 = 20° and meniscus contact angle </> = 30°. 

A regression analysis was used to represent the data to within ±2.8%. 

Khrustalev and Faghri (1999) analyzed the fully developed laminar flow of liquid 

and vapor in miniature heat pipes using a finite element solution. In particular, the 

case in which the vapor velocity was high and the cross-sectional areas of the vapor 

and liquid were comparable was of interest. It was assumed that, with respect to 

the vapor flow, the liquid velocity at the liquid-vapor interface was zero. For the 

liquid flow, the shear stress at the interface was equal and opposite to that of the 

vapor. This meant that the velocity gradient in the liquid was related to that of 

the vapor via a ratio of absolute viscosities. The momentum equation for the vapor 

domain was first solved to determine the shear stress distribution at the liquid-vapor 

interface. Then the momentum equation for the liquid domain was solved using the 

shear stress information from the vapor solution. The results presented were for a 

specific heat pipe geometry that matched a previous experimental study. It was found 

that the shear stress at the liquid-vapor interface was not uniform, being greater near 

the point of contact with the solid groove wall. This effect was more significant for 

smaller values of meniscus contact angle. In addition, the shear stress at the interface 

became more uniform as the vapor space became more restricted. 

Kolodziej et al. (1999) analyzed the gravity-driven flow of liquid in a triangular 

groove with no shear at the liquid-vapor interface. The shape of the liquid-vapor 

interface was determined in terms of the Bond number and meniscus contact angle. 

Starting with the Young-Laplace relation, a nonlinear boundary-value problem for 

the liquid-vapor interface shape was solved. The flow field was then solved for the 

friction factor using the boundary collocation method. The range of parameters was 



as follows: groove half-angle 9 = 5 to 70°, meniscus contact angle <j> = 5 to 45°, and 

Bond number Bo = pgb2/a = 0.001, 0.01, 0.1, 1.0 and 5.0, where 6 is the vertical 

distance from the liquid-vapor interface to the bottom of the groove. It was found 

that the Bond number had a significant effect on the friction factor of the flow. 

The objective of the present study was to determine the mean velocity, volumetric 

flow rate, and Poiseuille number for the flow of liquid in trapezoidal grooves.  The 

effect of vapor flowing over the liquid-vapor interface was accounted for by relating 

the liquid velocity gradient to the friction factor of the vapor. This approach assumed 

that the liquid velocity did not affect the vapor velocity; i.e., the vapor velocity at the 

interface was zero. In addition, the variation of the shear stress along the liquid-vapor 

interface (Khrustalev and Faghri, 1999) was neglected. The conservation of momen- 

tum equation was solved using Gauss-Seidel iteration with successive over-relaxation. 

The analysis was validated using the results of several previous studies including the 

flow of liquid in rectangular and triangular grooves with liquid-vapor interaction. The 

mean velocity, volumetric flow rate, and Poiseuille number are presented in graph- 

ical and tabular form in terms of the groove aspect ratio (0 < ß < 1.5), groove 

half-angle (0 < 9 < 60°), meniscus contact angle (0 < <f> < 90° - 6), and dimension- 

less shear stress at the liquid-vapor interface (-0.45 < r,; < 5.0). The results were 

used to determine the effects of groove fill amount on the capillary limit of revolving 

helically-grooved heat pipes. The predictions of the improved capillary limit model 

were compared to the experimental data obtained by Castle et al. (2000). 

1.2    Mathematical Model 

A constant property liquid flows steadily in a trapezoidal groove as shown in 

Fig. 1. A meniscus, which is assumed to be circular, comprises the liquid-vapor 

interface (Bo « 1). For fully developed laminar flow, u = w = 0 and v = v{x, z). 



(«) 

(b) 

Figure 1: Flow of liquid in a trapezoidal groove: (a) Coordinate system; (b) Solution 
domain. 



The conservation of mass and momentum equations reduce to (White, 1991) 

_ dv 
Continuity :    — = 0 

dy 

d2v     d2v      1 dp 
Momentum :    7—r + 7—5- = -Tr- 

ete;2     ozl     \x dy 
(1) 

dp     dp 
0 

dx     dz 

Since v is invariant with y, the pressure gradient dp/dy is constant. Therefore, the 

conservation equations reduce to the classic Poisson equation. 

d2v     d2v      1 dp 
+ (2) 

dx2     dz2      fj, dy 

The dimensionless conservation of momentum equation and boundary conditions are 

presented below. 

d2v*     d2v* + 
dx*2     dz*2 

On the groove walls, the no-slip condition is in effect. 

0 < x* < ß,    z* = 0 

v* = 0 

x*=ß,    0 < z* < 1    for   6 = 0 

At the line of symmetry, the velocity gradient is zero in the x* direction 

dv* 
— = 0 :     x* = 0,    0 < z* < (1 + d*) - Ä* 

where 

d* = Ä*Wl- 
/? + tan 0 

The dimensionless radius of curvature is given by 

R* = 
(/3 + tan0)Wl + 

^sec«/) for 0 = 0 

cot0 
sm4> 

sin 0 sin (0 + <j>) _ 
for 0 > 0 

(3) 

ß<x* </Ö + tan0,    z* = (x* -/3) cot 0   for   0>O (4) 

(5) 

(6) 

(7) 



On the liquid-vapor interface, a uniform shear stress in the y direction is imposed. 

dv 
dn* 

= r?v : 0 < x* < ß + tanö, z* = (1 + d*) - VR*2 - x*2 (8) 

The dimensional liquid-vapor interface shear stress can be cast in terms of the friction 

factor of the vapor. 

Tlv = < 

Pv (yvy 

Pv (vv)' 

fv        for co current flow 

/„       for countercurrent flow 

(9) 

The Poiseuille number of the liquid in the groove is given by 

Po = /Re = -A, 
J 2v* 

(10) 

The dimensionless hydraulic diameter is 

Dl 
ß + {ß + tan 0) (1 + d*) - R*2 cos"1    — 

d* 
{ß + secOy1 for ö + ^<TT/2 

2 (2ß + tanö) (ß + secö)-1  for 6 + 4> = TT/2 

f>^+tan6    />z* 

The mean velocity is defined as 
es      pß+taat)    pz" 

^=— v* dz* dx* 
A* Jo Jo 

where the dimensionless cross-sectional area is given by 

(11) 

(12) 

A*=< 

ß + {ß + tanÖ) (1 + d*) - R*2 cos"1    —     for 9 + (j) < TT/2 
(13) 

2/? + tan0 for 6 + <J> = 'K/2 

See Appendix A for derivations of the dimensionless Poisson equation, dimensionless 

boundary conditions, and dimensionless hydraulic diameter and area. 

1.3    Numerical Model 

The elliptic Poisson equation given in eqn. (3) with mixed boundary conditions 

[eqns. (4), (5) and (8)] was solved using Gauss-Seidel iteration with successive over- 

relaxation and a second-order central differencing scheme (Burden and Faires, 1985). 



The symmetry boundary condition was modeled using a first-order forward difference, 

where the shear stress boundary condition employed a first-order backward difference. 

The convergence criteria for the iterative solution was set to e = 10-8 for each case. A 

grid independence check was made in which the number of grids in each direction was 

doubled. When the value for the Poiseuille number did not change by more than 3%, 

grid independence was considered to be reached. The convergence criteria was then 

reduced by an order of magnitude while maintaining the highest number of grids. If 

the Poiseuille number did not change by more than 2%, the solution was considered 

to be independent of both grid size and e. Otherwise, a grid independence check 

was made at the smaller value of e until a converged solution was obtained. In fact, 

the grid independence for 423 of the 446 data points reported was less than 1% as 

documented in Appendix C. 

The numerical model was tested against several existing solutions, such as rectan- 

gular ducts (Fig. 32 and Table 4), triangular grooves without interfacial shear stress 

(Fig. 33 and Table 5), and rectangular and triangular grooves with shear stress (Figs. 

34 and 35 and Tables 6 and 7). See Appendix B for details. 

Shah (1975) determined the friction factors for the laminar flow within ducts of 

various cross sections using a least-squares-matching technique. A comparison was 

made of the Poiseuille number between the present solution and those given by Shah 

(1975) and Shah and London (1978) for laminar flow in a family of rectangular ducts 

(0 = 0°, 0.01 < ß < 1.0). The maximum difference was 0.9%. 

Ayyaswamy et al. (1974) presented the friction factors obtained for laminar flow 

in triangular grooves using the Galerkin method of solution. Romero and Yost (1996) 

derived an equation for the dimensionless volumetric flow rate of liquid in a triangular 

groove using asymptotic methods and a regression analysis. Kolodziej et al. (1999) 

used the boundary collocation method to solve the same problem, except that the 

liquid-vapor interface was not assumed to be circular. The present solution was 

compared to that obtained by Ayyaswamy et al. for 0 = 5° and 60° for the full range 

of meniscus contact angle (0.1° <<?!>< 90° - 0). The maximum percent differences 

for 0 = 5° and 60° were 3.7% and 0.9%, respectively.  In comparison to the results 
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by Romero and Yost (1996), the maximum percent differences were 2.2% for 0 = 5° 

and 2.3% for 6 = 60°. The maximum differences in the comparison with the results 

provided by Kolodziej et al. for the lowest value of Bond number presented (Bo 

= 0.001) was 4.5% for 0 = 5°, and 19.9% for 6 = 60°. This may be due to the 

approximate nature of the solution by Kolodziej et al., which was in terms of a 

truncated infinite summation. 

DiCola (1968) presented the solution for the Poiseuille number for the laminar 

flow of a constant property fluid within a rectangular groove. While interfacial shear 

stress at the liquid-vapor interface was accounted for, the groove was assumed to be 

completely full, with a meniscus contact angle of <f> = 90°. The comparison between 

the equation by DiCola and the results of the present analysis for laminar flow in a 

family of rectangular grooves at the full groove condition {<f> = 90°, 0.1 < ß < 1.0, 

T*V = -0.1, 0.0, and 1.0) resulted in a maximum percent difference of 2.3%. 

The present model was compared to the correlation presented by Lin and Faghri 

(1997), where the friction factor for the flow of liquid in triangular grooves with liquid- 

vapor shear was presented. Unfortunately, not enough information was provided by 

Lin and Faghri to precisely determine the limits, of applicability for their equation. 

Therefore, the correlation was evaluated over a fairly wide range for comparison with 

the present solution. In the range of 0.075 < -r,; < 0.1, the maximum percent 

difference was 2.2%. 

1.4    Results and Discussion 

1.4.1    Parametric Analysis 

A numerical study has been completed in which the flow field in a trapezoidal 

groove has been solved. Specifically, values of the mean velocity, Poiseuille number, 

and volumetric flow rate are reported for various values of the groove aspect ratio, 

groove half-angle, meniscus contact angle, and dimensionless shear stress at the liquid- 

vapor interface (Tables 8-25). Figures 2 and 3 show contour plots of the dimensionless 

velocity obtained for two trapezoidal groove geometries. Figure 2 shows that the flow 



behavior changes significantly with shear stress, even though the variation of r^ is 

relatively small for this case. The maximum velocity is located along the liquid- 

vapor interface for r*v = 0 and 0.25, and within the interior of the flow field for 

T*v = -0.25. For countercurrent flow [Fig. 2(c)], a region of reversed flow occurs near 

the intersection of the groove wall and the liquid-vapor interface. Figure 3 shows 

the velocity field in which the fluid depth is less than that in Fig. 2. In addition, 

the shear stress r*v varies over a wider range in Fig. 3. In contrast to Fig. 2, the 

maximum velocity does not occur at the centerline of the groove, but near the corner 

of the groove due to the greater depth at that location. The length of the groove wall 

that is affected by the reversed flow is greater in Fig. 3(c) due to the fact that the 

angle between the liquid-vapor interface and the groove wall is more acute than that 

in Fig. 2(c). 

Figure 4 and Tables 8, 11, and 14 present the mean velocity versus shear stress at 

the liquid-vapor interface for several values of the groove half-angle. The range of the 

meniscus contact angle (0 < (f> < 90° - 9) was divided equally to show the behavior 

of the mean velocity with <j). The mean velocity increases linearly with shear stress 

since the flow is aided by T*V. In addition, v* increases with groove half-angle and 

meniscus contact angle, which is a result of an increase in cross-sectional area. As 

the groove half-angle 8 increases, v* becomes more sensitive to the meniscus contact 

angle <j> due to the increased length of the perimeter of the liquid-vapor interface. 

Figure 5 and Tables 9, 12, and 15 show that the Poiseuille number decreases 

dramatically as the shear stress at the liquid-vapor interface increases. For counter- 

current flow (T*V < 0), the Poiseuille number is a strong function of shear stress since 

the mean velocity approaches zero. In addition, the Poiseuille number decreases with 

increasing meniscus contact angle for a given value of shear stress. For cocurrent flow 

(T*V > 0), the Poiseuille number is a lesser function of the shear stress, but increases 

significantly with meniscus contact angle. The Poiseuille number is a weak function 

of the groove half-angle. 

The volumetric flow rate versus shear stress for various meniscus contact angles 

can be seen in Fig. 6 and Tables 10, 13, and 16. The volumetric flow rate and mean 
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z* 0.5 / / /   (a) 
v* = 0323^/      /   / 

0194^/       / 
 Öj29__^-^ / 

0.0647_-^ 
V 

z* 0.5 

z* 0.5 

v*=  0.0825 
0 

0 

Figure 2: Dimensionless velocity fields for laminar flow in trapezoidal grooves (ß = 
1.0, 4> = 40°, 0 = 30°): (a) r^ = 0.25 (cocurrent flow); (6) r,; = 0.0; (c) r,; = -0.25 
(countercurrent flow). 
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Figure 3: Dimensionless velocity fields for laminar flow in trapezoidal grooves (ß = 
1.0, <f> = 10°, 0 = 45°): (a) r,; = 5.0 (cocurrent flow); {b) r* = 0.0; (c) r,; = -0.1 
(countercurrent flow). 
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velocity display similar trends. The volumetric flow rate is a linear function of shear 

stress, and increases with meniscus contact angle and groove half-angle. The flow 

rate is slightly more sensitive than the mean velocity with respect to the meniscus 

contact angle. 

The mean velocity, Poiseuille number and volumetric flow rate are given as func- 

tions of the interfacial shear stress for a constant meniscus contact angle in Figs. 7, 

8, and 9 and in Tables 17-25. For 0 = 0 and 30°, the mean velocity increases and 

then decreases with groove aspect ratio. This point will be further elucidated in fol- 

lowing figures. The Poiseuille number (Fig. 8) is a weak function of both 9 and ß for 

cocurrent flow, but varies significantly with ß for countercurrent flow in rectangular 

grooves (9 = 0°). The volumetric flow rate (Fig. 9) follows the same trends as the 

mean velocity, but is more heavily influenced by r^*, ß, and 9. 

Figure 10 and Table 28 present the mean velocity, Poiseuille number and volumet- 

ric flow rate for § = 30° and r*v = 5.0. As mentioned previously, the mean velocity 

increases and then decreases with ß for 9 < 30°. This phenomenon also impacts the 

volumetric flow rate, where V* attains a maximum value with respect to ß for a given 

groove half-angle < 15°. Figure 11 and Table 29 show v*, Po, and V* versus 9 for 

ß = 1.0 and rfv = 5.0. In general, these functions increase with both meniscus contact 

angle and groove half-angle, except for the Poiseuille number for 9 = 0° and 4> < 20°. 

1.4.2    Semi-Analytical and Two-Point Numerical Solutions for v* 

As seen in Figs. 4 and 7, the mean velocity is a linear function of the imposed shear 

stress at the liquid-vapor interface. Since a direct numerical simulation of the liquid 

flow field for a number of values of the shear stress is computer resource intensive, 

it is appropriate to seek a semi-analytical expression for v*. Figure 12(a) shows the 

definition of the parameters involved, where the mean velocity when the shear stress 

is zero (VQ) is given by the numerical solution. The value for the liquid-vapor shear for 

which the mean velocity is zero (TJ* >0) is given by the following force balance analysis. 

Figure 12(b) shows a differential element of the liquid in the groove. A force balance 

between the pressure drop and the shear forces at the liquid-vapor interface and at 
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the wall results in the following relation. 

pyAi - Py+dyAi + nvAiv - T^AW = 0 (14) 

The areas over which the shear stresses rh, and f^ act are Alv = Ptvdy and Aw = Pdy, 

respectively. Using these areas and nondimensionalizing gives 

A\ + T;VP;V - ^r = o (is) 

For Poiseuille flow in ducts of arbitrary cross section, and combined Couette-Poiseuille 

flow between flat plates, the shear stress at the wall is related to the mean velocity 

of the fluid by a constant (White, 1991). In the present analysis, it is assumed that 

this also holds for the flow of liquid in a trapezoidal groove with an imposed shear 

stress at the liquid-vapor interface. 

^ = CXW (16) 

It should be noted that the constant d is probably a function of the groove geom- 

etry and meniscus contact angle. However, since the objective of this analysis is to 

determine the liquid-vapor shear stress when the mean liquid velocity is zero, this 

functionality is unimportant. 

Substituting this relation into the force balance equation results in the following 

expression for mean velocity 

F^-^W+T«) (17) 

where the perimeter of the liquid-vapor interface is 

f 2Ä-si„-' (2±H2?)   for« + #<ir/2 
Pi=\      { R I <18> 

[ 2{ß + tan0) for 9 + 0 = TT/2 

The mean velocity is zero when the shear stress at the liquid-vapor interface is 

Ar 
f. 

'.u,v L 

Iv 

-     „  = 1 (19) 
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Figure 12: Semi-analytical and two-point numerical solutions for v*:  (a) Definition 
of parameters; (b) Force balance on the liquid in a trapezoidal groove. 
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Figures 13(a) and 13(6) show the results of eqn. (19). The numerical results shown 

in Figs. 4 and 7 were extrapolated to determine the values for shear stress at the 

liquid-vapor interface when v* = 0. The prediction given by eqn. (19) is quite good 

given the simplicity of the closed-form solution. The equation for the normalized 

mean velocity as a function of the shear stress is given by 

v' = Wfä = 1 - r' (20) 

where r' = Tiv/r*vfi. The semi-analytical solution for the normalized mean velocity 

is shown in Fig. 13(c) with the corresponding numerical data presented in Figs. 4 

and 7. Equation (20) predicts 93% of the data to within ±30% over the range of the 

meniscus contact angle, groove half-angle, groove aspect ratio and liquid-vapor shear 

stress examined in Figs. 4 and 7. 

The two-point numerical solution of v* as a function of T*V is also shown in Fig. 

12(a). This involves computing the flow field for two values of liquid-vapor shear 

stress. The equation for the normalized mean velocity using this solution is given by 

eqn. (20), but the shear stress when the mean velocity is zero is 

lv,a 

Tlv>°    (l-X/SS) 
(21) 

1.4.3    Regression Analysis 

A linear regression analysis was performed to determine the mean velocity as 

a function of the groove geometry, meniscus contact angle, and shear stress at the 

liquid-vapor interface. Equation (22) and Table 1 show the results of this analysis. 

The regression was found by determining the relationships between the mean velocity 

and each of the groove aspect ratio, groove half angle, meniscus contact angle, and 

interfacial shear stress separately, then summing these relations to arrive at the model 
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shown in eqn. (22). 

V = a9z + b92 + c92ß + dd2<t> + e62T?v + f94> + g9 + h<f>3 + i<j>29 + ^2r*lv + 

k(f>T*v + l^9r*iv + m<f> + nß2 + oß20 + pß2^v + qß6 + rßr^ +      (22) 

sßOcf) + tß9r;v + ußc\>T*iv + vß + WT;V + xß9^r*iv + y 

A statistical software package SPSS (Statistical Package for the Social Sciences) was 

utilized to perform the regression analysis, and the outcome for the coefficients is 

shown in Table 1. A comparison of the observed mean velocity versus the predicted 

mean velocity is presented in Fig. 14. The regression predicts 85.0% of the observed 

data presented in Figs. 4, 7, 10(a), and 11(a) to within ±30%. 

1.4.4    Effect of Groove Fill Ratio 

Figure 15(a) shows the case when liquid evaporates from a trapezoidal groove. 

Initially, the groove is full with 0 + 9 = 90°. The contact angle decreases until 

the minimum meniscus contact angle 0O for the particular solid-liquid combination is 

reached. Past this point, the meniscus detaches from the top of the groove and recedes 

until the lowest part of the meniscus reaches the bottom of the groove (Hopkins et 

al., 1999).   When the thickness of the liquid film at the bottom of the groove is 
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Table 1: Coefficients for regression analysis. 

Coefficient Value Coefficient Value 
a 4.045E-6 m 2.492E-3 
b -4.747E-4 n -0.1780 
c 5.656E-5 0 3.186E-3 
d 3.540E-6 V -9.241E-2 
e 3.970E-5 Q -1.031E-2 

f -2.299E-4 r 7.430E-2 

9 1.767E-2 s 8.072E-5 
h -9.312E-8 t -9.775E-4 
i 7.011E-7 u 4.309E-3 

3 -1.495E-5 V 0.3420 
k -1.460E-3 w 8.266E-2 
I 3.194E-5 X 4.224E-5 

y -0.1780 

on the order of several hundred Angstroms, forces due to London-van der Waals 

interactions with the surrounding liquid and solid molecules induce instabilities in 

the fluid (Ruckenstein and Jain, 1974). These instabilities cause the liquid in the 

groove to bifurcate into two separate flows in the corners of the groove, which are 

each equivalent to the flow in a triangular groove. The liquid in the two corners of 

the groove will continue to recede until it is depleted. 

The dimensions of the grooves analyzed by Castle et al. (2000) were used to 

determine the volumetric flow rate of ethanol in a trapezoidal copper groove as a 

function of the amount of liquid in the groove. Faghri (1995) gives <j>0 = 7° for a 

receding meniscus of ethanol on copper. In terms of the present analysis, as the 

liquid recedes into the groove, the groove aspect ratio ß increases. In addition, after 

bifurcation occurs ß — 0, and the groove half-angle 6 changes to that of the corner of 

the groove. A relation for the point at which bifurcation occurs is provided where the 

liquid is assumed to bifurcate when the lowest part of the meniscus actually reaches 

the bottom of the groove. The radius of curvature at the bifurcation point for the 

trapezoidal groove is 

R*b = l[l + (ß + tzne)2) (23) 

27 



I-W//2— 

(b) (c) 

Figure 15: Effect of groove fill ratio on liquid flowing in a trapezoidal groove: (a) 
Parametric analysis (to scale, h = 0.03831 cm, w = 0.03445 cm, 0 = 14.62°); [b) 
Definition of variables prior to bifurcation of the liquid; (c) Definition of variables 
after bifurcation of the liquid. 
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Figure 16: Meniscus contact angle (in arc degrees) at bifurcation versus 0 for various 
values of ß. 

The meniscus contact angle at bifurcation as a function of the groove geometry is 

-l 

(ßb = tan -l 

sin0 
COS0 + 

2 sin 0(0 +tan 0)' 

!-(/? + tan 0)2 
COS0 

(24) 

= tan -l (3/?2-4)cos0 + /52cos30 
Sß cos 0 + (ß2 + 4) sin 6 + ß2 sin 30. 

This function is shown in Fig. 16 for various values of ß. For ß < 1 (slender 

grooves), the contact angle is negative for all values of 0, which indicates that the 

lowest part of the meniscus cannot reach the groove bottom and still maintain a 

circular shape. For ß = 1, the only value of 4>b for which the meniscus will reach the 

groove bottom is 0 = 0. If the groove aspect ratio is ß > 1, the meniscus can reach 

the groove bottom over a range of 0 values. 

The dimensional height and width of the liquid before and after bifurcation are 

defined in Figs. 15(&) and 15(c). For a given liquid height, the width of the liquid is 

Wi (25) 
w + 2hi tan 0   before bifurcation 

2hi tan 0   after bifurcation 

The radius of curvature of the liquid-vapor interface and the cross-sectional area of • 
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the liquid are 

Wi 

R= < 

i + < cot e - 
sin0 

sin 0 sin (#4- 4>) _ 

httaxi0\ 1 + \cot9 
sin <?!> 

sin#sm(# + <f>) 

before bifurcation 

(26) 
-2 

after bifurcation 

(*(.+*)-#«^f^+^R*y 
before bifurcation 

h2 tan 6 - R2 cos -l 1   +/ijfitanö^/l 
R R 

after bifurcation 

The cross-sectional area of the groove is 

A„ = h (w + h tan 6) 

(27) 

(28) 

Table 30 gives the geometric values of the parametric analysis depicted in Fig. 15(a). 

The radius of curvature of the liquid-vapor interface is shown in Fig. 17(a) as 

a function of the groove fill ratio. When the groove is nearly full, the radius of 

curvature approaches infinity. As the amount of liquid in the groove decreases, the 

radius of curvature is relatively constant, and then becomes very small after the liquid 

bifurcates into the corners of the groove. Figures 17(o) and 17(c) and Table 31 show 

two flow parameters, which were defined as follows. 

F,= 
fJ,V 

{-dp/dy) 
(29) 

ßV 
F2 =      AH_ (30) 

(-dp/dy) 

These parameters allow the presentation of the mean velocity and volumetric flow 

rate before and after bifurcation on the same graph. Both flow parameters increase 
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monotoiiically with groove fill ratio, as expected. In Fig. 17(c), for a groove fill ratio 

of Ai/Äg = 0.158, the volumetric flow rate was 1% of that for the full groove due to 

the decrease in flow area. This figure shows that the groove was essentially shut off for 

Ai/Ag < 0.158, which was just prior to bifurcation. Using the functional relationship 

for mean velocity given by eqn. (17), the volumetric flow rate is 

V*= ThF*{A*+ TlK) (31) 

When T*V = 0, V oc A\, which confirms that the volumetric flow rate should decrease 

rapidly with decreasing flow area for A\ < 1. 

1.4.5    Capillary Limit Analysis for a Revolving Helically-Grooved Heat 

Pipe 

Using the results of the numerical analysis, the capillary limit prediction for a re- 

volving helically-grooved heat pipe proposed by Thomas et al. (1998) was improved 

by accounting for the effects of working fluid fill amount and the shear stress at the 

liquid-vapor interface. The improved model was compared to the experimental data 

collected by Castle et al. (2000), who determined the capillary limit of a revolving 

helically-grooved copper-ethanol heat pipe for radial accelerations of \ar\ = 0.01, 2.0, 

4.0, 6.0, 8.0 and 10.0-g and groove fill ratios of Vi/Vg = 0.5, 1.0 and 1.5. The liquid 

inventory volume and the total groove volume are given by VJ and Vg, respectively. 

The dimensions of the heat pipe examined by Castle et al. (2000) are given in Table 

2. A pressure balance within the heat pipe results in the following expression for the 

capillary limit (Faghri, 1995; Chi, 1976) 

Apcap,max > &Pv + A# + APbf (32) 

The maximum capillary pressure for an axial groove is 

Apcap,max = -5- (33) 

It is assumed that the capillary limit occurs when the liquid bifurcates into the corners 

of the grooves. This statement is based on the results of the variation of the volumetric 
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Figure 17:  Effect of groove fill ratio:   (a) Radius of curvature of the liquid-vapor 
interface; (b) Mean velocity parameter; (c) Volumetric flow rate parameter. 
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Table 2: Specifications of the heat pipe test article examined by Castle et al. (2000). 

Groove Height, h 0.03831 cm 
Groove Base Width, w 0.03445 cm 
Groove Half-Angle, 9 14.62° 
Evaporator Length, Le 15.2 cm 
Adiabatic Length, La 8.2 cm 
Condenser Length, Lc 15.2 cm 
Vapor Space Radius, Rv 0.6795 cm 
Number of Grooves, Ng 50 
Helical Pitch Length, Lp 135.8 cm 
Helix Radius, Rh 0.6992 cm 

flow rate with groove fill ratio in Fig.   17.   The capillary radius when the liquid 

bifurcates is given by eqn. (23). 

Ac = ^[l + (/? + tan0)2] (34) 

The meniscus contact angle at bifurcation is a function of the groove geometry, as 

presented in eqn. (24). These two equations were solved to determine the capillary 

radius at the point of dryout in the following manner. The groove aspect ratio 

was calculated using the groove height and width found in Table 2 (ß = 0.4496). 

This value of ß indicates that the meniscus must recede into the groove before the 

bifurcation point can be reached (Fig. 16). Therefore, eqn. (24) was solved iteratively 

to determine the aspect ratio for which the meniscus contact angle was equal to the 

minimum meniscus contact angle for the copper-ethanol system. The resulting aspect 

ratio was ß = 1.2112. Solving for the height of the meniscus in the groove results in 

h = ht = 0.01422 cm. Substituting this value into eqn. (34) for the meniscus radius 

of curvature gives Rc = 0.02252 cm. 

For a circular cross section heat pipe assuming laminar, incompressible flow with 

uniform heat input and output along the lengths of the evaporator and condenser, 

respectively, the pressure drop in the vapor is 

8/i„LeffQt 
Apv = 

TrpyhfgR* 
(35) 
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The pressure drop in the liquid was found by using the normalized mean velocity 

relation [eqn. (20)] rewritten in dimensional form. 

dpi = -[tß. + ^-)dy (36) 
\tifv*0     htTlv0J 

In a heat pipe, the liquid flows opposite to the vapor in all regions. Therefore, the 

shear stress at the liquid-vapor interface for countercurrent flow was used. 

Pv{Vv 
v2 

Pv \vv) r (07} 
Tlv = -      2      *v ^     ' 

The Poiseuille number of the vapor flow was modeled as laminar flow within a smooth 

tube with a circular cross section 

Po„ = /«Re« = 16 (38) 

Substituting these relations into eqn. (36) gives 

äPl = - f Ä - $£-) * (39) 

It is assumed that the cross-sectional area of the liquid is constant along the length of 

the groove. For a constant heat flux in both the evaporator and condenser sections, 

eqn. (39) can be integrated to determine the total pressure drop in the helical groove. 

AW=L«j^-^=w(^y+i    <4°> tifvQ        hiRyT^Q J y V  Lp 

The maximum liquid velocity in a groove is 

Q 
f/,max — (41) 

(42) 

piMhg 

Similarly, the maximum vapor velocity is 

Qt 
■nR2

vpvhlg 

where the total heat transported by the heat pipe accounts for the contributions by 

all of the individual grooves. 

4 = £4M (43) 
t=i 
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Using the above relations, the liquid pressure drop in a groove as a function of the 

transported heat is 

Api = 
L 'eff ßiQa 4/jLvQt (¥)+1 (44) 
/ifg  yhfv^piAi     irhiRlpvT?vfi 

The body forces imposed on the fluid within a particular groove may either aid 

or hinder the return of the fluid to the evaporator, depending on the groove pitch Lp 

and the circumferential location of the starting point of the helical groove (Thomas et 

al., 1998; Klasing et al., 1999). However, even if the body force hinders the return of 

the fluid, each groove contributes to the heat transported Qt. Therefore, the capillary 

limit equation [eqn. (32)] was first solved for the heat transported by each individual 

groove Qg, and the results were summed to determine the total heat transport Qt- 

Since the pressure drop in the vapor space and the pressure drop in each groove were 

functions of the total heat transport, eqn. (32) was solved iteratively. The body 

forces due to acceleration and gravity were integrated over the length of the groove 

to find the average pressure drop (Thomas et al, 1998). 

Apbf = -pi /    el3- (-Ä+{-g}eZl^ ds + 1 (45) 

Combining the above relations, the general expression for the maximum capillary 

limit for a single helical groove which accounts for shear stress at the liquid-vapor 

interface and the effect of groove fill ratio is given by 

^PvQt 0_ >;Leff   I SßvQt       (    P-lQg  
Re ~ hig  | 7cpvR$      ytifvtpiAi     irhiR3

vpvTfvfi 
(46) 

Pi / 
BX3 -A + {-g}^) ds 

(2itRh + 1 

A closed-form solution for the capillary limit of a heat pipe with straight axial 

grooves and no body forces can be derived from eqn. (46). 

-l 

Q, 
ah 'fg 

cap 
RrL -c-keff 

^— + &P>v R,< 

NghfvipiAi    npvRi l     2/ijr,;i0 

(47) 
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Figure 18(a) shows the results of the closed-form solution [eqn. (47)]. The groove 

geometry given by Castle et al. (2000) was used, except that straight axial grooves 

were assumed (Lp -> oo) instead of helical grooves. Table 32 gives the results of 

the computer model for the geometry analyzed by Castle et al. (2000) for a shear 

stress of r?va = 5.0. This information was used as part of the two-point numerical 

solution, along with the data presented in Table 31 for üj. Over the range of groove 

fill ratio examined, the capillary limit increased with At/Ag by more than three orders 

of magnitude. For this case, the semi-analytical solution and the two-point numerical 

solution were nearly identical due to the low vapor velocities, and hence the low 

liquid-vapor shear stress. This point is further demonstrated in Fig. 18(a) by the 

graph indicated by "No Shear," where the term in eqn. (47) that accounts for the 

effect of liquid-vapor shear on the liquid was dropped by allowing r*vfi -» -oo. The 

maximum difference in the closed form solution compared to the two-point numerical 

solution was 5%. The capillary limit decreases when shear stress is accounted for, as 

expected. Figure 18(6) shows the closed-form solution when water is the working fluid. 

In this case, the difference between the results of the two-point numerical solution 

and the no-shear solution is much more pronounced (45% maximum difference) due 

to the significantly higher vapor velocities involved. The agreement between the 

semi-analytical solution and the two-point numerical solution is quite good. The 

semi-analytical solution offers very close results with a significantly reduced amount 

of computer resources required. 

The capillary limit prediction for the helically-grooved heat pipe given by eqn. 

(46) is shown in Fig. 19 using the semi-analytical solution [eqn. (19)] for \aT\ = 0.0 

and 10.0-g. The capillary limit heat transfer increases both with groove fill ratio 

and working temperature. In addition, Qcap increases significantly with the radial 

acceleration due to the improved liquid pumping ability of the helical grooves (Thomas 

et al., 1998). 

The experimental data collected by Castle et al. (2000) for the capillary limit 

of a revolving helically-grooved heat pipe versus radial acceleration rates are shown 

in Fig. 20, along with the predictions of the present semi-analytical model and that 
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Figure 18: Maximum heat transport predicted by the closed-form solution versus 
groove fill ratio (Straight axial grooves, no body forces, Tsat = 40°C): (a) Ethanol; 
(6) Water. 
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Figure 19: Maximum heat transport versus groove fill ratio for several working tem- 
peratures (Ethanol): (a) \ar\ = 0.0-g; (b) \aT\ = 10.0-g. 
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given by Castle et al. (2000). During the experiments, the working temperature was 

not held constant, so the present model was evaluated at the saturation temperature 

reported for a given value of radial acceleration. For a groove fill ratio of AjAg = 0.5 

[Fig. 20(a)], the present model more closely matches the experimental data than 

the model by Castle et al. (2000), which did not account for the groove fill ratio or 

liquid-vapor shear stress. The maximum difference in the experimental and analytical 

results by Castle et al. (2000) was 418%, whereas the maximum difference for the 

current model was 104%. For At/Ag = 1.0 [Fig. 20(6)], the present model overpredicts 

the experimental data by a maximum difference of 158% and the previous model by 

87%. 

1.5    Conclusions 

A numerical study has been concluded where the mean velocity, Poiseuille number, 

and volumetric flow rate of liquid in a trapezoidal groove have been determined as 

functions of groove geometry, meniscus contact angle and shear stress at the liquid- 

vapor interface. The mean velocity and volumetric flow rate have been shown to 

be linear functions of shear stress, and the Poiseuille number is a strong function 

of the shear stress for countercurrent flow. A semi-analytical solution and a two- 

point numerical solution for the mean velocity were presented and used to predict 

the capillary limit of a revolving helically-grooved heat pipe for various groove fill 

ratios. Interfacial shear stress due to countercurrent flow in a heat pipe decreases the 

maximum heat transport. For cases in which the vapor velocities are high, this effect 

is more pronounced. The groove fill ratio was shown to have a significant impact on 

heat pipe performance. Underfilling the heat pipe examined by 10% resulted in a 

decrease in the predicted capillary limit by approximately 17 to 20% for water and 

ethanol, respectively. 
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2    Fully Developed Laminar Flow in Sinusoidal Grooves 

2.1    Introduction 

Isotropie materials such as quartz glass or borosilicate glass can be chemically 

etched to form micro-grooves for the enhancement of evaporative heat transfer in 

chip-level devices (Kirshberg et al., 1999). A typical etched profile in glass is shown 

in Fig. 21, where the profile is smooth instead of having sharp corners seen in the 

etching of crystalline materials such as silicon (Maluf, 2000). While many studies have 

been performed on sharp-cornered geometries [triangular grooves (Ayyaswamy et al, 

1974; Ma et al., 1994; Romero and Yost, 1996; Lin and Faghri, 1997; Kolodziej et al., 

1999), rectangular grooves (DiCola, 1968; Schneider and DeVos, 1980; Khrustalev 

and Faghri, 1999), and trapezoidal grooves (Hopkins et al, 1999)], very little in- 

formation is available in the open literature on the flow of liquid in rounded-corner 

geometries. Stroes and Catton (1997) compared the capillary performance of trian- 

gular and sinusoidal grooves by means of an experimental study. Two sets of grooves 

were machined into stainless steel test plates such that the cross-sectional areas of 

the grooves were equal. Strip heaters were placed under the plates to provide heat 

input. The test plates were placed at inclination angles of 4 and 6° and ethanol was 

added to the grooves until the liquid reached the lands of the grooves. The average 

wetted length of each set of grooves was recorded as the heat input was varied from 

0 to 25 W. The study showed that the triangular grooves had a greater capillary 

pumping ability compared to the sinusoidal grooves with the same cross-sectional 

area, inclination angle, and heat input. Stroes and Catton postulated that this was 

due to the axial rate of change of the radius of curvature of the meniscus. Sinusoidal 

grooves, however, could dissipate a given heat input with a smaller wetted area than 

triangular grooves due to the larger wetted perimeter found with sinusoidal grooves. 

The objective of the present study was to examine the fully-developed laminar flow 
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Um 

Figure 21: Grooves chemically etched in glass (Courtesy of D. Liepmann, University 
of California at Berkeley). 

of liquid in sinusoidal grooves. The effects of countercurrent and cocurrent vapor 

flow over the liquid-vapor interface were investigated by relating the liquid velocity 

gradient to the friction factor of the vapor. The variation of the shear stress on the 

liquid-vapor interface (Khrustalev and Faghri, 1999) was neglected, and the liquid- 

vapor interface was assumed to be circular (Bo < 1). The mean velocity, volumetric 

flow rate and Poiseuille number were determined as functions of the interfacial shear 

stress, the meniscus contact angle, the groove aspect ratio and the amount that the 

groove was filled. 

2.2    Mathematical Model 

A constant property liquid flows steadily in a sinusoidal groove as shown in Fig. 

22. A meniscus, which is assumed to be circular, comprises the liquid-vapor interface. 

For fully developed laminar flow, the conservation of mass and momentum equations 

reduce to the classic Poisson equation in dimensionless form (White, 1991) 

d2v*     d2v* 
dx*2  '  dz*2 

On the groove wall, the no-slip condition is in effect. 

v* =0 0 < x* < Wi/2,    z* = - <j 1 + cos 
X* 

-^J+1 

At the line of symmetry, the velocity gradient is zero in the x* direction 

dv* 
dx* 

0:     x* = 0,    0<z'<h1 + Er\l- 2R* 
R* 

(48) 

(49) 

(50) 
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(«) 

(b) 

Figure 22: Flow of liquid in a sinusoidal groove: (o) Definition of geometric parame- 
ters; (b) Dimensionless solution domain. 
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The dimensionless radius of curvature is given by 

*-* 
1 + 

where 

d=2ßSm 

(l + cftan<tf 

(d* - tan <f>) 

wi     -, 

(51) 

(52) 

The maximum value for the meniscus contact angle <j> for a wetting fluid can be 

determined for a given geometry by allowing the radius of curvature to approach 

R* ^oo. 

7T 
</>max = tan l\23sir[ 

wi     -, (53) 

At the liquid-vapor interface, a uniform shear stress is imposed in the y direction. 

d£ = r;v:  0<x*< «,f/2, z* = h*l+R^l - (j^* _ JW^F* (54) 

The dimensional shear stress at the liquid-vapor interface can be cast in terms of the 

friction factor of the vapor. 

Pv faf 

Tlv =  < 

Pv (VvY 

fv        for cocurrent flow 

fv       for countercurrent flow 

(55) 

The Poiseuille number of the liquid in the groove is given by 

Dl2 

Po = /Re = -4r J 2v* 
(56) 

The dimensionless hydraulic diameter for the flow of liquid in a sinusoidal groove with 

a circular meniscus is D*h = 4ÄJ/P*, where the dimensionless cross-sectional area of 

the liquid is given by 

w 
A\ =!f (2Ä? - 1) - R* R* cos -l w, 

ß^ + I - I sm -'5+\ 
\2R*J 

for (j) < <£max 

W 
'1- 

wl 

2R* 
(57) 
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*-fe*-i) + g)-»Kg+i for <f> = <j)max (58) 

The dimensionless wetted perimeter is given by the following integral equation. 

p'=2rf+w^n^}dz'   (59) 
The mean velocity is denned as 

lf = ^~ /    v* dz* dx* (60) 
A* Jo       Jo 

See Appendix B for derivations of the dimensionless Poisson equation, dimensionless 

boundary conditions, and dimensionless liquid cross-sectional area and perimeter. 

2.3    Numerical Model 

The elliptic Poisson equation given by eqn. (48) with mixed boundary conditions 

[eqns. (49), (50) and (54)] was solved using Gauss-Seidel iteration with a central 

differencing scheme and successive over-relaxation (Anderson et al., 1984). The con- 

vergence criteria for the iterative solution was set to e = 10~10 for each case. A grid 

independence check was made in which the number of grids in each direction was 

doubled. When the value for the Poiseuille number did not change by more than 1%, 

grid independence was considered to be reached. The convergence criteria was then 

reduced by an order of magnitude while maintaining the highest number of grids. If 

the Poiseuille number did not change by more than 1%, the solution was considered 

to be independent of both grid size and e. Otherwise, a grid independence check was 

made at the smaller value of e until a converged solution was reached. The integral 

equation for the wetted perimeter [eqn. (59)] was integrated numerically since no 

closed-form solution exists. 

The numerical model was tested against an existing solution in the archival liter- 

ature. Shah (1975) determined the friction factors for the laminar flow within ducts 

of various cross sections using a least-squares-matching technique. Table 3 shows 

the comparison of the Poiseuille number between the present solution and that given 

by Shah (1975) for laminar flow in a family of sinusoidal ducts. The agreement is 

excellent, with a maximum difference of 1.1%. 
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Table 3: Poiseuille number versus sinusoidal duct aspect ratio: Comparison of the 
present solution with that given by Shah (1975). 

ß 
Poiseuille Number, Po 
Shah (1975)    Present 

1/4 14.553 14.479 
1/3 14.022 13.931 
1/2 13.023 12.935 

1/V5 12.630 12.543 
2/3 12.234 12.148 

1 11.207 11.115 
2 10.123 10.061 
4 9.743 9.6373 

2.4    Results and Discussion 

A numerical study has been completed in which the flow of liquid in a sinusoidal 

groove has been solved. Figure 23 presents contour plots of the dimensionless liquid 

velocity. The maximum liquid velocity increases with cocurrent shear, and decreases 

with countercurrent shear, as expected. For countercurrent vapor flow, a portion of 

the liquid flows in the -y direction, which is opposite to the direction of the pressure 

gradient. This flow reversal shows the potential of the vapor shear to drive the mean 

velocity of the liquid to zero, or to completely reverse the flow, depending on the 

magnitude of the pressure gradient. 

Figure 24 and Table 39 show the mean velocity, volumetric flow rate and Poiseuille 

number versus shear stress at the liquid-vapor interface for several values of the 

meniscus contact angle. The mean velocity increases with both r*v and 0, but is a 

relatively weak function of <j>. For a given value of meniscus contact angle, the mean 

velocity is linear with Tj* due to an overall force balance on the liquid. The volumetric 

flow rate also increases with r*[v and 0, but is a much stronger function of $ due to the 

increase in the cross-sectional area of the liquid. The Poiseuille number decreases as 

r*iv increases. For cocurrent vapor flow (T,* > 0), Po decreases steadily with r,*„. For 

countercurrent flow, Po increases dramatically with -r,*„ due to the mean velocity 

approaching zero. In general, Po increases with <f> due to the increase in the hydraulic 
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Figure 23: Dimensionless velocity fields for laminar flow in a sinusoidal groove (ß = 
0.5, W*J2 = 0.25, 4> = 25°): (a) r,; = 2.0 (cocurrent flow); (6) r,; = 0.0; (c) r*lv = -0.1 
(countercurrent flow). 
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diameter of the liquid. 

Figure 25 and Table 40 present the mean velocity, volumetric flow rate and 

Poiseuille number versus the groove fill ratio for several values of the groove aspect 

ratio. The mean velocity increases monotonically with area ratio and groove aspect 

ratio. The volumetric flow rate also increases with w*/w* and ß, but drops off rapidly 

for w*/w* < 0.5 due to the decrease in flow area. The Poiseuille number is relatively 

constant for this case. For ß > 0.5, Po decreases and then increases with area ratio. 

For ß = 0.25, Po increases over the range of w*/w* examined. 

2.5    Semi-Analytical Solution for v* 

As seen in Fig. 24(a), the mean velocity is a linear function of the imposed shear 

stress at the liquid-vapor interface. Since a direct numerical simulation of the liquid 

flow field for a number of values of the shear stress is computer resource intensive, 

it is appropriate to seek a semi-analytical expression for v*. Figure 26(a) shows the 

definition of the parameters involved, where the mean velocity when the shear stress 

is zero (v$) is given by the numerical solution. The value for the liquid-vapor shear for 

which the mean velocity is zero (T£I0) is given by the following force balance analysis. 

Figure 26(6) shows a differential element of the liquid in the groove. A force balance 

between the pressure drop and the shear forces at the liquid-vapor interface and at 

the wall results in the following relation. 

PyAi - Py+dyAi + TIVA1V - T^AW = 0 (61) 

The areas over which the shear stresses TLV and T^ act are Atv = Pivdy and Aw = Pdy, 

respectively. Using these areas and nondimensionalizing gives 

A\ + r;vP;v - ^P* = 0 (62) 

For Poiseuille flow in ducts of arbitrary cross section, and combined Couette-Poiseuille 

flow between flat plates, the shear stress at the wall is related to the mean velocity of 

the fluid by a constant (White, 1991). Therefore, in the present analysis, it is assumed 

that this also holds for the flow of liquid in a sinusoidal groove with an imposed shear 
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(a) Mean velocity; (6) Volumetric flow rate; (c) Poiseuille number. 
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Figure 26:  Semi-analytical solution for v*:  (o) Definition of parameters; {b) Force 
balance on the liquid in a sinusoidal groove. 
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stress at the liquid-vapor interface. 

^ = C^f (63) w 

It should be noted that the constant Cx is probably a function of the groove geom- 

etry and meniscus contact angle. However, since the objective of this analysis is to 

determine the liquid-vapor shear stress when the mean liquid velocity is zero, this 

functionality is unimportant. The perimeter of the liquid-vapor interface is 

P,; = 2Ä-Sin->(J|) (64) 

Substituting these relations into the force balance equation results in the following 

expression for mean velocity. 

1 
v* = 

dP* 

The mean velocity is zero when 

A* + 27-,;/?* sin -i / 3_ 
2R* 

(65) 

Tlvfi — 
M 

2R* sin"1 ' ^ 
2Ä" 

(66) 

Figure 27(a) shows the results of eqn.   (66). The numerical results shown in 

Fig. 24(a) were extrapolated to determine the values for shear stress at the liquid- 

vapor interface when v* - 0. Both curves indicate that r*vß increases with <p due 

to the increasing depth of liquid in the groove. The maximum difference between 

the numerical and analytical data is 34%. The equation for the mean velocity as a 

function of the shear stress is given by 

v' = Wfä = 1 - r' (67) 

where r' = Tfv/rfv0. The semi-analytical solution for the normalized mean velocity 

is shown in Fig. 27(b) with the corresponding numerical data presented in Fig. 24. 

Equation (67) predicts 94% of the data to within ±20% over the range of meniscus 

contact angle examined. 
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2.6    Conclusions 

Based on the results of the numerical model of the flow of liquid in a sinusoidal 

groove, the following conclusions have been made: For a given meniscus contact angle, 

the mean velocity was linear with imposed shear stress at the liquid-vapor interface. 

The volumetric flow rate in the groove was negligible for groove fill ratios of less than 

w*/w* < 0.5. The Poiseuille number was a strong function of the countercurrent 

shear stress. A semi-analytical expression was provided to approximate the mean 

velocity as a function of the shear stress at the liquid-vapor interface. 
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Nomenclature 

Ag cross-sectional area of the groove, rn2 

Ai cross-sectional area of the liquid, m2 

Alv area of the liquid-vapor interface, m2 

■Aw area of the groove wall, m2 

M At/h* 

ar radial acceleration vector, m/s2 

A acceleration vector at any point in the helical groove, m/s2 

b distance from the liquid-vapor interface to the bottom of the groove, m 

Bo Bond number, pgb2/a 

d* parameter defined in eqn. (6) 

D diffusion coefficient 

Dh hydraulic diameter, AAt/P, m 

Dl Dh/h 

F, mean velocity parameter, tifv*, m2 

F2 volumetric flow rate parameter, hjV*, m4 

1 friction coefficient, 2x^1 pv2 

9 acceleration due to gravity, m/s2 

h groove height, m 

hiS heat of vaporization, J/kg 

hi height of the liquid in the groove at the wall, m 

K hi/h 

i unit vector in the x direction 

k unit vector in the z direction 

k curvature vector 

La adiabatic length, m 

Lc condenser length, m 

Le evaporator length, m 

Lett effective heat pipe length, Le/2 + La + Lc/2, m 

Lp pitch length, m 
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u total heat pipe length, m 

m mass flow rate, kg/s 

n coordinate normal to the liquid-vapor interface 

n* n/h 

h unit vector normal to the liquid-vapor interface 

N9 
number of grooves 

V pressure, N/m2 

P wetted perimeter, m 

Plv perimeter of the liquid-vapor interface, m 

p* P/h 

p* 
Mi Piv/h 

Po Poiseuille number, /Re, D*h
2/2v* 

Wcap capillary limit heat transfer, W 

Q9 
heat transfer due to a single groove, W 

Qt total heat transported, W 

R radius of curvature of the liquid-vapor interface, m 

Rc capillary radius, m 

Rh radius of the helix, m 

Ry radius of the heat pipe vapor space, m 

R* R/h 

R; dimensionless radius of curvature at bifurcation 

Re Reynolds number, pvDh/ii 

t time, s 

-^sat saturation temperature, K 

U z-direction velocity, m/s 

V y-direction velocity, m/s 

V mean y-direction velocity, m/s 

^l,max maximum mean liquid velocity, m/s 

^j;,max maximum mean vapor velocity, m/s 

V* fjLv/h2(-dp/dy) 
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v* dimensionless mean y-direction velocity 

v% dimensionless mean y-direction velocity when T*V = 0 

v' V*/VQ 

V volumetric flow rate, vAi, m3/s 

V* lJV/[h\-dp/dy)] 

w width of the bottom of the groove, m; z-direction velocity, m/s 

w* w/h 

wi width of the liquid in the groove, m 

w* wi/h 

x, y, z coordinate directions 

x* x/h 

zi distance from the liquid-vapor interface to the groove bottom, m 

z* z/h 

ß groove aspect ratio, w/2h 

e convergence criteria 

6 groove half-angle, rad 

p. absolute viscosity, Pa-s 

p density, kg/m3 

a surface tension, N/m 

nv shear stress at the liquid-vapor interface, N/m2 

rfv Tlv/h(-dp/dy) 

Tj* 0 shear stress at the liquid-vapor interface when v* = 0 

T^ average shear stress at the wall, N/m2 

TI TwIK-dp/dy) 

r' Tivlrivfi 

(j) meniscus contact angle, rad 

0O minimum meniscus contact angle, rad 

(j)b meniscus contact angle at bifurcation, rad 

u) over-relaxation parameter 
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A    Derivation of Selected Expressions for Trapezoidal Grooves 

A.l    Determination of dimensionless Poisson equation 

The governing equations for fluid flow are the conservation of mass and conserva- 

tion of momentum equations. The conservation of mass equation is given by White 

(1991). 

dp 
dt 

+ divpV = 0 (68) 

The conservation of momentum equations (in scalar form) are also given by White 

(1991) 

Du dp      d  /    du -\      d 

Dt dx     dx dx 

+ 

dy 

d_ 
dz 

V 
f du dv 
\dy     dx 

H (dw du 
V dx      dz 

Dv 

where 

dp      d 
pDi = P9y-~dy~ + dx 

dv     du 
^d-x + dy- 

d  (\   dv     ,  ,.   - 
+ ^(2^+Ad,vV 

Dw dp      d 
'lDt=P9z~dz- + d^ 

dw     du 
^~dx- + Tz 

+ 

+ 

d_ 
dz 

d_ 
dy 

dv     dw 
^Wz + -dy- 

dv     dw 
P[d-z+ly- 

9  (^  dw     .  ,. ,-. 
+—   2/x— + A divV 

dz \     dz 

A+-/x = 0 

Expanding eqn. (68) and assuming incompressible flow (p = constant) gives 

' du     dv     dw 

and upon simplification 

>l.£ + *+&,=0 

du     dv     dw 
 1 1 = 0 
dx     dy     dz 

(69) 

(70) 

(71) 

(72) 
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Solving for A in eqn. (70), substituting it into eqn. (69), and expanding divV results 

m 
Du 

pm = P9x 
dp      d_ (    du _ 2 
dx     dx V    dx     3 

du     dv 
dx     dy 

dw 
~dz 

+ d_ 

dy 

d_ 

dy 

f du     dv 
\dy     dx 

Dv 

+ 

dp 

d_ 
dz 

d 
pDi=P9y-dy- + dx 

'    dv     2 du     dv     dw 
dx     dy     dz 

d 
+ Tz 

P 

P 

V 

'dw     du 
. dx     dz 

dv     du 
dx     dy 

dv 
d~z 

dw 

dy 

(73) 

Dw dp      d 
^ = P9*-Yz + dx- 

f dw     du 
»\-dx- + -d-Z 

d_ 

dy 

dv     dw 

d  /    dw     2 
+d~z v^z - r 

du     dv     dw 
dx     dy     dz 

Assuming constant viscosity, substituting eqn.   (72) into eqn.  (73), and expanding 

the total derivatives, the conservation of momentum equations can be written as 

f du       du       du       du\ dp , 

dv       dv       dv        dv 
P^-di + Udx- + Vdy- + Wd-z 

dp 

dy 

d2u     d2u     d2u  I |  
dx2     dy2     dz2 

d2v     d2v     d2v\ 
P9y-^.+^[-d^+ey-2 + d^) (74) 

'dw       dw       dw        dw\ dp 
P\- + u- + v- + w-)=P9z- ß 

d2w     d2w     d2w 

dt ' "dx ' "dy ' ~ dz) ra* dz ' ^\dx2 dy2 dz2 

Equation (74) can be simplified further by assuming steady flow {d/dt = 0) and that 

no body forces are acting on the fluid (gx = gy = gz = 0). This simplification results 

in 

du du        du dp 
p[Ud^ + V^ + Wfz)=~t + f"{dx-2+W 

d2u     d2u     d2 

+ u 
dz2 

(  dv       dv        dv^ 
p{Udi + Vdy' + W^ 'dz 

dp        (&v_     c?v_     cN_ 
~dy~ + ^ \dx2 + dy2 + dz2 (75) 

dw       dw        dw\ 
p^Ute+V^+W^] = dz 

dp 
dz        \ dx2 

fd2w     d2w     d2w + 
dy- 

+ 
dz< 
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Finally, by assuming fully developed flow (u = w = 0, dv/dy = 0) eqns.   (72) and 

(75) reduce to 

_.     .    . dv     n Continuity :    — = 0 
dy 

Fin       fi i) I (if) 
Momentum :    -7r-r + TTT = ~-E~ (76) 

ox1     ozl      jx oy 

dx     dz 

Because v does not change with y, dp/dy is constant, and the momentum equation 

reduces to the Poisson equation. 

d2v     d2v _ ^dp .   . 
dx2     dz2     // dy 

The following definitions of dimensionless variables can be used to write the Poisson 

equation in dimensionless form 

h2 (-dp/dy) h h 

Solving fox v, x, and z gives 

v = -l^v*h2' x = xmh   z = z*h (79) 
ßdy 

Substituting these relationships into eqn. (77) gives 

.2 f_ldP^A      *2 (_l*P„.h2 
V   ndy       J V   \idy       ) _ 1 dp 

d(x*h) d{z*h) ßdy 

Equation (80) can then be simplified to the Poisson equation in dimensionless form. 

*H:+*£ = -i (si) 
dx*2     dz*2 

A.2    Determination of dimensionless boundary conditions 

Figure 1 (a) and (b) shows liquid flow in a trapezoidal groove with the definitions 

of the dimensions used in the analysis. The no-slip boundary condition is applied to 
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the groove walls as shown below. 

0<z<uV2,    2 = 0 

v = 0:     I   w/2<x<w/2 + htan0,    z = (x - to/2) cot 0   for   0 > 0        (82) 

x = w/2,    0<z<h   for   0 = 0 

Using the definitions of the following dimensionless parameters, 

[IV _          *-*        *-£     R- — 
*'- h2(-dp/dy)    X  ~ h    *  ~ i-    p-" 

(83) 
h   ^     2h 

the dimensional no-slip boundary condition can be written in dimensionless form as 

0 < x* < ß,    z* = 0 

v* = 0:     {   ß<x* <ß + taxi0,    z* = (x* - ß) cot 0   for   0>O 

x* = ß,    0 < z* < 1    for   0 = 0 

Along the centerline of the groove, the symmetry condition is used 

dv 

(84) 

dx 
= 0:     rr = 0,    0<z<(h + d)-R 

Using the dimensionless parameters from eqn. (83) and noting that 

d 
h 

R* = ^   d* 
h 

the symmetry condition is cast in the form of 

dv* 
dx* 

0 :     x* = 0,    0 < z* < (1 + d*) - R* 

The shear stress boundary condition is applied to the liquid vapor interface. 

dv 
dn 

H— =T1V: 0<x< w/2 + hta,n0, z = (h + d)- VR2 - x2 

Using the dimensionless variable definitions in eqns. (83) and (86) along with 

(85) 

(86) 

(87) 

(88) 

(89) 

the shear stress boundary condition is shown below in dimensionless form. 

— = 7? : O<x*</3 + tan0, z* = (1 + d*) - VR*2 - x*2 (90) 
dn*       lv 
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A.3    Equation of the meniscus for 8 > 0 

As shown in Fig. 28(a), the equation of the circle which is symmetric about the 

z axis is given by 

x2 + {z - z0)
2 = R2 

where z0 is the location of the center of the circle in the z direction. 

ZQ = h + d 

(91) 

0M|y 
c       W       . - 
- = — + h tan 8 
2      2 

(92) 

Zo = h+jR2- (^ + /itan0)' 

Therefore, the equation of the liquid-vapor interface is 

x* + < z - h+JR2- (! + /itan0)' = R2 (93) 

A relation must be found between the radius of curvature and the meniscus contact 

angle. At Point 2 shown in Fig. 28(6), the slope of the liquid-vapor interface is given 

by 

dz      (h - e) 
dx      htan 8 

The length of the line from Point 2 to Point 3 is 

(94) 

g = yjh2 + h2 tan2 0 = hy/l + tan2 8 (95) 

Therefore, using the law of sines, 

hVl + tan2 8 
sin 7 sin^> 

(96) 

where 

0 + 7 + <£ = 7T (97) 
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Figure 28: Determination of the equation of the circular liquid-vapor interface. 
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Combining the above two equations gives 

e = /i\/l + tan20 
sin 0 

sin(7r — 6 — 4>)_ 

The slope of the liquid-vapor interface at Point 2 is 

dz 
dx 

cot 6 - y/l + cot2 6 
sin0 

(98) 

(99) 
sin(7r — 9 — 4>)_ 

Taking the derivative of the liquid-vapor interface equation [eqn. (93)] with respect 

to x gives the slope at Point 2 in terms of the radius of curvature of the liquid-vapor 

interface 

(— + /itan#) dz 
dx 

(100) 

\A*2-(f+/itanö)2 

Equating eqns. (99) and (100) gives the radius of curvature in terms of the meniscus 

contact angle. 

R= d + htanfl) W1 + jcot0-\/l + cot20 
sincj) 

sin(7r — 6 — 4>) 
for   ö>0 

(101) 

A.4    Equation of the meniscus for 6 = 0 

For the case when the groove half-angle is zero [Fig. 28(c)], the equation of the 

circular arc simplifies to 
( r  -I   N  2 

(102) ar + < z - = Rl 

A+,/*-(!)' 
The slope of the curve at Point 2 is given in terms of the meniscus contact angle. 

= cot<£ (103) 

Differentiating eqn. (102) with respect to x gives and evaluating at Point 2 (x = w/2, 

z = h) gives 

dz (2") 

dz 
dx 

dx ^H 
(104) 

wy 
2) 
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Equating eqns.   (103) and (104) gives the meniscus radius in terms of the contact 

angle. 

Ä=(!) Vl + tan2^ (105) 

A.5    Point of meniscus bifurcation for 8 > 0 

The radius of curvature at bifurcation is given in terms of the geometry of the 

groove as 

Rh = — h+-(- + htaa0) (106) 
h \ 2 / 

The equation of the circular arc for this case is given by 

x2 + (z - Rbf = R2
b (107) 

The slope at Point 2 is given by eqn. (99). Differentiating eqn. (107) with respect to 

x gives 

dz 
dx 

—\-h tan 8 
2  

Rb-h 
(108) 

sin <pb (109) 

Equating eqns. (99) and (108) gives 

Rb = h+ (^ + htm9) |cot0-\/l + cot20 . 
\ 2 J { [_sm(7r - 8 - <pb) 

The meniscus contact angle at bifurcation can be found as a function of the groove 

geometry by equating eqns. (106) and (109) 

<j)b = tan l 

sin 8 
cos 8 + 

2sinfl(/3 + tanfl) 

l-(/3 + tan0)2 
— COS0 (110) 

A.6    Point of meniscus bifurcation for 6 — 0 

For the case when the half-angle is zero, the lower limit of recession is provided as 

follows. The equation of the circular arc is given by eqn. (107). The slope at Point 

2 is shown in eqn. (103). The slope at Point 2 can also be found by differentiating 

eqn. (107) with respect to x and evaluating the result at Point 2. 

dz 
dx 

w 

2 
R-h 

(111) 
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Equating eqns. (99) and (111) gives 

w 
R = h+-t&n<f> (112) 

A.7    Determination of the hydraulic diameter 

In order to present the results of the computations in terms of the Reynolds 

number, the hydraulic diameter of the flow field must be found 

Dk = f (113) 

where Ai is the cross-sectional area, and P is the wetted perimeter. 

P = w + 2h\/l + tan2 9 (114) 

The area of the liquid is found by subtracting the area of the segment of the circular 

arc from the trapezoidal groove area. The area of the trapezoid is 

At = h{w + htaa6) (115) 

The area of the circular segment is given by 

As = R2 cos"1 (^) - dVW^J2 (116) 

where 

d=\lR2-(l)2 (117) 

- = - + /itan0 (118) 
2      2 

d= JjP-^ + ht&ney (119) 

d2 = Ä2-(| + /itanö)2 (120) 

As = R\os-1 ^1-^(1 + ^tan0)2 - (| + /itanfl) ^JIP- (f + Man* 

(121). 
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The cross-sectional area of the fluid is given by 

Ai = h{w + htm6)-R2cos"1 W1 - —^ (^-t-Manö)' 

+ (^ + /itan0) JR
2
- (^ + ht&ii6y 

(122) 

The hydraulic diameter for the flow of liquid in a trapezoidal groove with a circular 

meniscus is 

Dh = 4 { h(w + hta,ri9) - R2cos-1 \ 1 - 
1 fw , , 
— — + /itan0 
R V2 

T2 

+R(- + htao.e\Jl-   i(^ + /itanö)      ► (w + 2hy/l + tan2ö) 

(123) 

A.8    Determination of the unit normal vector to the liquid-vapor inter- 

face 

The unit normal vector to the liquid-vapor interface is related to the curvature 

vector by 

n = — 
\k\ 

(124) 

For z = f(x), the curvature vector is 

k = 
[i + (*02]2 

The magnitude of the curvature vector is given by 

\k\ = 

(-*M) (125) 

[l + (*')2]3/2 

The functional form of the circular arc in terms of z = f{x) is 

(126) 

= zo±VR2 z- z0 xz (127) 

For the present analysis, the lower part of the circular arc is of interest. Therefore, 

z = zQ-VW^ = zQ-ull2 (128) 
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The first derivative of z with respect to x is 

z' = xu-1'2 (129) 

The second derivative of z is 

z" = x2u-z'2 + u-'l2 (130) 

Substituting the above relations into eqn. (125) gives the curvature vector. 

Jb = u-1/2(l + xV1)"1(-^-1/2,l) (131) 

The magnitude of the curvature vector is 

|u-l/2 (X2U-1 + x) 

1*1 = (1 + x2u~lf2 

Since u = R2 - x2 > 0, the above equation reduces to 

\k\=u-l'2{x2u-1 + iy1/2 

The unit normal vector to the liquid-vapor interface is 

(132) 

(133) 

^-(S^ff1 (134) 

A.9    Derivation of the closed form solution for the capillary limit 

The equation for the maximum capillary limit which includes the effects of inter- 

facial shear stress and groove fill ratio is shown below for one helical groove. 

o   ^^eff   1 &ßvQt VlQg 4(J,vQt (2iiRh 

Re  - hig    ]  TCfrR* \h2V*0PlAi        TThiRlPvT^ j   V  V    LP 

ds 

+ 1 

(135) 
r pLt 

-Pi 
(2vRh 

\   h 
Assuming no body forces, the previous equation reduces to 

4/x„Qt 

+ 1 

o_ >L&_ I 8fiyQt ßlQa {2irRh 

Re ~hig  I npvR*     \h2v*oPlAt     nhiB^pvT^0J \ V  Lv 
+ 1 (136) 
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By allowing Lp -> oo, which assumes the grooves are straight axial grooves rather 

than helical, eqn. (136) can be written as 

PlQg 4fJLvQt O   ^Leff  I 8/J.yQt 

Re     hh  ynpvRi     hfv^piAt     -KhiRz
vpvrlvQ 

Factoring terms on the right hand side of the equation gives 

(137) 

Re ~" h{g 

ßiQg      &ßvQt -1 Rv 
hfv^piAi     TrpvR$ \      2htT?vfi 

(138) 

The total heat transfered by the heat pipe is 

& = £& (139) 
i=l 

Assuming each groove transports the same amount of heat, eqn.  (139) can be sim- 

plified to 

Q'     N9 

Substituting this relationship into eqn. (138) gives 

(140) 

O   >£eff 

Rc       /ifg 

ßiQt        SßvQt 

NgtävlpiAi       TTpvRi 
1- 

Rv 

2^,, 
(141) 

Solving for Qu the resulting equation is the maximum capillary limit in a heat pipe 

acting with no body forces and straight axial grooves with the effects of interfacial 

shear stress and groove fill ratio. 

-l 

ktfeap — 
ahf. g 

RCLQS 

ßi + $>p,v 1- 
Ry 

NghfäptAi     -KPvRt \       2htT^ 
(142) 
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B    Derivations of Selected Expressions for Sinusoidal Grooves 

B.l    Determination of dimensionless Poisson equation 

The governing equations of fully developed laminar flow reduce to the Poisson 

equation, as shown by White 1991. 

d2v     d2v      1 dp 
+ (143) 

dx2     dz2      fj, dy 

By substituting the following definitions for the dimensionless variables used in the 

analysis 

[IV  „ _ £       „ _ £ 
V' ~ h2(-dp/dy)    X  ~ h    Z  ~ h 

(144) 

eqn. (143) can be rewritten as 

d2v*     <9V 
+ ^^ = -1 

dx*2     dz*2 

B.2    Determination of dimensionless boundary conditions 

(145) 

Figure 22 shows liquid flow in a sinusoidal groove with the definitions of the 

dimensions used in the analysis. The no slip boundary condition is applied to the 

groove walls as shown below. 

v = 0 :     0 < x < wi/2,    z = - <{ 1 + cos 
2x 

-7T |  — + 1 
wih 

(146) 

Using the definitions of the following dimensionless parameters, 

* - ßV * = -    z* = -    ß= — V  ~ h2(-dp/dy)    X       h h    P     2h 
(147) 

the dimensional no slip boundary condition can be written in dimensionless form as 

x' 
cos v* = 0 :     0 < x* < W*J2,    z* = - 11 + 

Along the centerline of the groove, the symmetry condition is used 

*<j + 1 (148) 

dv 
^ = 0:     x = 0,    0<z<hl + Rjl-(~)   -R 
dx \2RJ 

(149) 
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Using the dimensionless parameters from eqn. (147) and noting that 

p* _ R    j* _ d 

R -h    d ~h 

the symmetry condition is cast in the form of 

'   dv* =0:     x* = 0,    0<z*<h; + R*dl 

(150) 

w7 
-R* 

dx*      "'     ~       "'     " _      -■-<■" y-      \2R* 

The shear stress boundary condition is applied to the liquid vapor interface. 

dv 

(151) 

dn 
rlv: 0<x< Wl/2, z = ht + R^l- (^f - VR2 - x2 (152) 

Using the dimensionless variable definitions in eqns. (147) and (150) along with 

*     n 
(153) 

the shear stress boundary condition is shown below in dimensionless form. 

dv w? 
d- = rl :0<x*< rvt/2, z* = h*l+R^l- y ^ 

B.3    Equation of the meniscus 

VR*2 - x*2 (154) 

To determine the equation of the circular meniscus, a relationship must be made 

based on the slope of the tangent line at the sinusoidal groove wall, which is given by 

dz* 
tan-0 = 

dx* 

The equation of the sinusoid for the groove wall is given by 

z* = - { 1 + cos 
X" 

-.I-+1 

Differentiating eqn. (156) with respect to x* gives 

dz*        7T    . / x 

^=27Sm -.,- + 1 

(155) 

(156) 

(157) 

Therefore, substituting eqn. (157) into eqn. (155) and evaluating x* = w*/2 results 

in the equation of the slope of the tangent line at the wall of the sinusoidal groove. 

dz* 
tan^ = — 

7T     . 
= 2^Sm 

w
i      -, (158) 
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Figure 29: Definition of geometric parameters. 

The slope of the tangent line on the circular meniscus is given by 

dz* 
tanö = 

dx* 
(159) 

circle 

From Fig. 29, the angle 9 can be found as a function of angles a, <j>, and tp 

a = 7T - V (160) 

0 + 0 + a = 7r (161) 

6 = ip-4> (162) 

Taking the tangent of both sides of eqn. (162) and using the trigonometric addition 

formula for tangent gives 

tan0 = tan(t/;-0) (163) 

tan a ± tan ß 
tanfa ±ß) = -—; ;—7, v 1 T tan a tan ß 

(164) 
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tan ib — tan 6 ,,„. 
tanö = ^—, —± 165 

1 + tan ib tan <p 

The general equation for a circle with the z* axis as a line of symmetry is 

x*2 + {z* - z*)2 = R*2 (166) 

Taking the derivative of eqn. (166) with respect to x* gives 

dz* 
2x* + 2(z*-z*o)— = 0 (167) 

Rearranging eqn. (167) to solve for dz* /dx* gives 

dz* x* 
(168) 

"Oi dx* (z* — z\ 

By substituting x* = w*/2 and z* = h* into eqn.   (168) and then substituting the 

result into eqn. (159) gives the slope of the tangent line on the circular meniscus 

dz* w*/2 *     a neun T7        =-fh*      ^ =tang (169) 
dx*  circle i.hl - Zo) 

Combining eqns. (165) and (169) gives 

w\j2 tan ib — tan (b 
(h* — z*)      1 + tan ip tan <b 

Rearranging eqn. (170) to solve for z* gives 

(170) 

-^-) (1 + tan ib tan <f>) 
z*0 = h* + ^4 .     +      .  (171) 0 tan T/J — tan <p 

where z* is the height of the center of the circle on the z* axis. By letting d be the 

distance between the center of the circular liquid-vapor interface and the height of 

the liquid, it can be shown that 

z*0 = h* + d (172) 

£ = ^L (174) 
2       2 
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z: = hi + iiK* 
w. 

(175) 

Combining eqns. (171) and (175) gives 

where 

!R *2 W, 
j- 1 (1 + tan ip tan <fi) 

tan ip — tan 4> 
(176) 

-2-m = 
w, -, 2 

-^- I (1 + tan ^ tan </») 

tan tp — tan 4> 
(177) 

to; 

fi?*2-(^- 

d* - tan <p 
2      1 + d* tan 0 

(178) 

7T 
d* = tan i/i = — sm 

2/5 
— 7T 

2/? 
(179) 

Ä*2- 
w 

w 
(l + cftan</>) 

d* — tan 4> 
(180) 

Ä *2 w 
w, ^-1   (l + d*tan<^)2 

(d* -tan^)2 (181) 

7T2 = ' W' 1 + 
(1 + d* tan 0)2 

(182) 
(d*-tan<£)2). 

The equation of the radius of curvature of the meniscus in terms of meniscus contact 

angle is 

«■-(* 1 + 
(l + d*tan^ 
(d*-tan<£)2). 

(183) 
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Figure 30: Determination of the cross-sectional area of the liquid. 

B.4    Determination of the maximum meniscus contact angle 

The maximum meniscus contact angle can be found when R* -¥ oo in eqn. (183). 

It can be seen that R* ->• oo as (d* - tan<£) -» 0. Therefore 

d* — tan 4>max = 0 (184) 

Substituting eqn. (184) into eqn. (179) for d* results in 

7T 
sin i wi - tan <£max = 0 

Solving for </>max gives the equation for the maximum meniscus contact angle. 

<£max = tan l \ —j sin 
7T 

(185) 

(186) 

B.5    Determination of the hydraulic diameter 

The hydraulic diameter of the flow field must be determined so that the Poiseuille 

number can be calculated. To find D*h = 4Af/P*, it can be shown from Fig. 30 that 

Al + A2 + Az = ^w*lh] (187) 
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A2 = 4^ = J^'/i? -Ax-Az (188) 
2       2 

The area A$ can be found by integrating the equation for the sinusoidal groove wall, 

eqn. (156) over 0 < x* < W*J2. 

A* 
rvJl/2 1   ( 

Jo        2\ 
1 + COS 

X* 
-,l-+l dx* (189) 

A3 = —- - — sin 
"!+\ 

(190) 
4       2TT 

From Fig. 30, Ax is the area above the meniscus. It can be shown that Ax is one-half 

of the area of the segment 

Ax = 
R *2 

COS ■i^_dVÄ^r^ :i9i^ 

where 

d=M/**2-(f t«r (192) 

Thus, the area Ax is 

IVcos-1 \ll- (^ 
wr to; 

l 
w. 

2R* 
(193) 

Substituting eqns.  (190) and (193) into eqn.  (188) gives the cross-sectional area of 

the flow field 

w? 
At =-±{2hl - I) - ET * „-1 iü*cos 

tu, 

H—sin 
7T -| + 1, 

2R 

for    (f) < 4>m*x 

w 
2R* 

(194) 

When the meniscus contact angle approaches the maximum value <f> -» 4>m&x, the area 

Ai-+Q. Therefore, the cross-sectional area of the flow field for this case is 

A* = wW - 2A3 (195) 

A! = w*th\ - ^ + - sin 
' ' 2       7t -*<l+> (196) 
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Z 7T 
for   ^ = ^>n (197) 

In order to determine the wetted perimeter, the following formula will be used to find 

the arc length of the groove wall 

rx2       
= /    y/l + {y')2dx   for   y = f(x) 

J X\ 

=2l vl+ 'dz*_ 
dx* 

dx* (198) 

where 

dz* 
dx* 

ft    . 

= Tßsm 
X' -.(-+1 (199) 

Thus, the arc length can be found by substituting eqn. (199) into eqn. (198) 

rw,72 

= 2/" Jo 

■K 

1+1 2^ I  sm- -*[J + l dx* (200) 

The equation for the wetted perimeter has no closed-form solution, and consequently 

the equation for the hydraulic diameter has no closed-form solution. The reason is 

that the integral in eqn. (200) is elliptic, and must be solved numerically. 
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Figure 31: Computational molecule using a central differencing scheme. 

C    Numerical Code Validation (Trapezoidal Grooves) 

The elliptic Poisson equation given in eqn. (3) with mixed boundary conditions 

[eqns. (4), (5) and (8)] was solved using Gauss-Seidel iteration with successive over- 

relaxation and a central differencing scheme (Burden and Faires, 1985). The compu- 

tational molecule is shown in Fig. 31. The second-order central differences in the 

x* and z* directions are 

dx*2 ~ (Ax*)2 
(201) 

i2„,* d2v <j+i-2<j + <j-i (202) 
dz*2 ~ (Az*)2 

Substituting eqns. (201) and (202) into eqn. (3) gives the following finite difference 

equation 

v- ■   = 
2 2 + 

(Ax*)2      (Az*): 1 + 
1      (v<k-i) , v«*-i)\ 
~^2 \Vi+U  + U

*-IJ ; (Ax*) 

1 /   *(fc-l) 

(Az*) 
.(*) 

2  \viJ+l ' + Vi,j-1 

(203) 

where (Jfc - 1) signifies the solution field from the previous iteration. Successive over- 

relaxation was implemented using the following relation 

v-f>=<<<-»+. (,*?>-<r) (204) 
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where 1 < u < 2. For the present problem, a value of w = 1.3 optimized the 

convergence of the solution. Due to the nature of the rectangular grid used to solve 

eqn. (203), the shear stress boundary condition at the liquid-vapor interface given by 

eqn. (8) was approximated as follows. 

dv*      dv* 
= TU dn* ~ dz*       lv 

(205) 

Discretizing this equation gives the dimensionless velocity at the liquid-vapor inter- 

face. 

v*f = t;*« + r*lv Az* (206) 

The solution procedure was as follows: 

1. Set all parameters. 

2. Compute the radius of curvature, area and hydraulic diameter of the flow field. 

3. Calculate the grid sizes and locate the grid points. 

4. Locate the circular liquid-vapor interface and the side wall of the groove. 

5. Set the initial velocity field to zero. 

6. Begin iterating. 

7. Calculate the updated velocity field away from the boundaries using eqns. (203) 

and (204). 

8. Apply the symmetry boundary condition at x* = 0. 

9. Apply the shear stress condition at the liquid-vapor interface using eqn. (206). 

10. Set the velocity to zero above the meniscus. 

11. Calculate the difference between the previous solution and the most recent 

solution at every grid point. 
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(a). If the maximum difference is greater than the convergence criterion e, then 

place the most recent values into the previous solution and continue to 

iterate. 

(b) If the maximum difference is less than the convergence criterion, then 

calculate the average velocity, Poiseuille number, and volumetric flow rate 

and print the results. 

The convergence criteria for the iterative solution was set to e = 10~8 for each case. A 

grid independence check was made in which the number of grids in each direction was 

doubled. When the value for the Poiseuille number did not change by more than 3%, 

grid independence was considered to be reached. The convergence criteria was then 

reduced by an order of magnitude while maintaining the highest number of grids. If 

the Poiseuille number did not change by more than 2%, the solution was considered 

to be independent of both grid size and e. Otherwise, a grid independence check was 

made at the smaller value of e until a converged solution was reached. In all of the 

results reported, grid independence and the convergence criteria were less than 1% 

unless otherwise noted. 

The numerical model was tested against several existing solutions, such as rectan- 

gular ducts, triangular grooves without interfacial shear stress, and rectangular and 

triangular grooves with shear stress at the liquid-vapor interface. 

Shah (1974) determined the friction factors for the laminar flow within ducts 

of various cross sections using a least-squares-matching technique. For trapezoidal 

ducts, the area and hydraulic diameter are given by 

A* = 2ß + tan 9 (207) 

=     2(2/3 + tan 9) 
h     2ß + tan 9 + sec 9 

Figure 32 and Table 4 show the comparison of the Poiseuille number between the 

present solution and those given by Shah (1975) and Shah and London (1978) for 

laminar flow in a family of trapezoidal ducts.   The agreement is excellent, with a 
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Figure 32: Po versus ß for laminar flow in a rectangular duct. 

maximum difference of 0.9%. While Shah provided a Poiseuille number at ß - 0, this 

could not be obtained with the present numerical solution technique because the area 

of the computational domain approached zero as ß -» 0. As a result, a data point is 

shown at ß - 0.01. 

Ayyaswamy et al. (1974) presented the friction factors obtained for laminar flow 

in triangular grooves using the Galerkin method of solution. Romero and Yost (1996) 

presented the following equation for the dimensionless volumetric flow rate in a tri- 

angular groove 

,3(A*(cf>,a)\l/2 

T(<t>,a)^T(a,a){hl(<l>,a)Y 
cot a 

(209) 

where a = 7r/2 - 0 is the angle from the side of the groove to horizontal, and T(a, a) 

was approximated using asymptotic methods and a regression analysis. 

cot3 a + 3.4 cot4 a + cot5 a 
r(a,a)«- f- + 3.4 cot a + 4 cot2 a + 3.4 cot3 a + cot4 a 

The dimensionless height of the liquid at the line of symmetry of the groove is 

cotacos(a — <p) — 1 
hc = l-\ —. Tv  c sin (a — q>) 

The dimensionless cross-sectional area of the liquid in the groove is 

2 [sin2 (a - <f>) tan a - (a - 4>) + sin(a: - <j>) cos(a - </>)] 

tan2 a sin2 (a — (f>) 
A*(4>,a) 

(210) 

(211) 

(212) 
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Table 4: Poiseuille number versus rectangular duct aspect ratio: Comparison of the 
present solution with that given by Shah (1975) and Shah and London (1978). 

Poiseuille Number, Po 

ß Shah (1975) Shah and London (1978) Present 
0.0 24.000 

0.01 23.619 
0.125 20.585 20.486 

0.2 19.07050 18.958 
0.25 18.233 18.116 
0.4 16.36810 16.246 
0.5 15.548 15.424 
0.6 14.97996 14.856 

0.75 14.476 14.352 
0.8 14.37780 14.255 
1.0 14.227 14.22708 14.104 

For comparison with the present results, the Poiseuille number in terms of the dimen- 

sionless volumetric flow rate is 

7-)*2   A* 

P°=TO (213) 

Kolodziej et al. (1999) used the boundary collocation method to solve the same 

problem, except that the liquid-vapor interface was not assumed to be circular. For 

comparison, the case where Bo = 0.001 was examined. Figure 33 and Table 5 present 

the solutions obtained by Ayyaswamy et al. for 0 = 5° and 60° for the full range of 

meniscus contact angle (0.1° < (f> < 9 + 4> = 90°). While the agreement is excellent 

for 6 — 60°, it is less so for 0 = 5°. This is due to the extreme narrowness of the 

flow field for this case. The maximum percent differences for 9 = 5° and 60° are 3.7% 

and 0.9%, respectively. Figure 33 and Table 5 also show a comparison of the present 

results with those of Romero and Yost (1996). The maximum percent differences are 

2.2% for 0 = 5° and 2.3% for 9 = 60°. Also shown in Fig. 33 and Table 5 are the 

results of Kolodziej et al. for the lowest value of Bond number presented (Bo = 0.001), 

which should correspond to the present case. The agreement with the Kolodziej et 

al. data is less satisfactory, with a maximum percent difference of 4.5% for 0 = 5°, 

and 19.9% for 9 = 60°. This may be due to the approximate nature of the solution 
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Figure 33: Po versus <f> for laminar flow in a triangular groove without shear at the 
meniscus (ß = 0, T*V = 0). 

by Kolodziej et al., which was in terms of a truncated infinite summation. 

DiCola (1968) presented the solution for the Poiseuille number for the laminar 

flow of a constant property fluid within a rectangular groove. While interfacial shear 

stress at the liquid-vapor interface was accounted for, the groove was assumed to be 

completely full, with a meniscus contact angle of <j> = 90°. The analytical solution 

was obtained using separation of variables. Schneider and DeVos (1980) presented 

the following equation which was attributed to DiCola (1968): 

24 11 + 

(/Re), = 

T■ W 

1252" 

96^       1 
sech 

(2n +l)7r5 

w 

(i + ^Y 
25 J 

96w E 7r5,5;3(2«+1)' 
tanh 

(2n + 1) no 
w 

(214) 

where the dimensionless shear stress at the liquid-vapor interface is given by 

r  = 
6rv (215) 

The groove width and depth are w and 6, respectively, rv is the shear stress on the 

vapor at the liquid-vapor interface, /xj is the absolute viscosity of the liquid, and v[ is 
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Table 5: Poiseuille number versus meniscus contact angle for triangular grooves with 
no shear at the liquid-vapor interface (0 = 0, T*V = 0): Comparison of the present 
solution with those given by Ayyaswamy et al. (1974), Romero and Yost (1996) and 
Kolodziej et al. (1999). 

Poiseuille Number, Po 
Ayyaswamy et al. Romero and Yost Kolodziej et al. Present 

* 0 = 5° 0 = 60° 0 = 5° 0 = 60° 0 = 5° 0 = 60° 0 = 5° 0 = 60° 
0.1° 11.422 7.612 11.234 7.645 11.008 7.545 
0.5 11.436 7.767 11.248 7.826 11.015 7.728 

1 11.452 7.963 11.265 8.046 11.033 7.966 
5 11.573 9.403 11.386 9.586 10.682 7.808 11.149 9.365 

10 11.699 10.803 11.513 11.040 10.803 9.158 11.291 10.789 
15 11.801 11.841 11.618 12.093 10.904 10.215 11.366 11.812 
20 11.884 12.642 11.704 12.857 10.988 11.061 11.446 12.606 
25 11.952 13.288 11.777 13.413 11.059 N/A 11.519 13.397 
30 12.007 13.828 11.837 11.120 12.352 11.581 13.770 
35 12.052 11.888 11.171 11.641 
40 12.089 11.931 11.214 11.697 
45 12.117 11.968 11.252 11.750 
50 12.139 11.999 11.799 
55 12.155 12.026 11.843 
60 12.166 12.050 11.887 
65 12.171 12.071 11.929 
70 12.171 12.090 11.969 
75 12.166 12.108 12.009 
80 12.156 12.124 12.053 
85 12.140 12.063 
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Figure 34: Po versus ß for laminar flow in a full rectangular groove with shear at the 
meniscus (<£ = 90°, 9 = 0°). 

the mean liquid velocity. The DiCola equation can be rewritten as 

24 <1 riß2 

2>v* 
Po = 

i-Sx; *4a(2"+l) 
sech 

(2n + 1) 7T 

2£ 

(1 + 0)S 1     192/3 ^ tanh 
(2n + l)?r 

(216) 

**   ^(2n + l)5 2/3 

A negative sign has been introduced to account for the fact that the shear stress on 

the vapor is in the opposite direction compared to that on the liquid. The comparison 

between the above equation and the results of the present analysis are shown in Fig. 

34 and Table 6 for laminar flow in a family of rectangular grooves at the full groove 

condition (<f> = 90°, 0.1 < ß < 1.0, r,; = -0.1, 0.0, and 1.0). The comparison is 

excellent with a maximum percent difference of 2.3%. 

The results of the present model were compared to the correlation presented by 

Lin and Faghri (1997), where the friction factor for the flow of liquid in triangular 

grooves was presented as follows: 

13.163 „ 
fi = s + 0.6211rv Re; 

(217) 

where r* = rv/pivl2 is the dimensionless interfacial shear stress. The prediction errors 

for this equation were between -2.8% and 1.3%. Casting this equation in terms of 
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Table 6: Poiseuille number versus rectangular groove aspect ratio for several values of 
dimensionless shear stress at the liquid-vapor interface (0 = 90°, 6 = 0°): Comparison 
of the present solution with that given by DiCola (1968). 

Poiseuille Number, Po 

ß 
I 

T?V = 0.0 

)iCola (19€ 

it, = 1-0 

58) 
r?v = 0-0 

Present 

ifv = -0-1 

0.1 21.168 10.300 23.708 21.199 10.183 23.788 
0.2 19.070 8.9579 21.535 18.952 8.8446 21.557 

0.3 17.512 7.9693 19.945 17.309 7.8205 19.940 
0.4 16.368 7.2283 18.776 16.219 7.1135 18.740 

0.5 15.548 6.7168 17.934 15.460 6.6213 17.891 

0.6 14.979 6.3590 17.349 14.874 6.2958 17.303 

0.7 14.605 6.1419 16.966 14.485 6.0661 16.920 

0.8 14.377 5.9964 16.738 14.245 5.9265 16.693 

0.9 14.260 5.9513 16.630 14.117 5.8172 16.586 

1.0 14.227 5.9070 16.612 14.158 5.7804 16.570 

the dimensionless quantities used in the present analysis gives 

'Dirt 
Po = 13.163+ 0.6211 'h'lv (218) 

Figure 35 and Table 7 show the comparison of the regression equation and the results 

of the present analysis for countercurrent flow. Unfortunately, not enough 

information was provided by Lin and Faghri (1997) to precisely determine the limits 

of applicability for eqn. (217). Therefore, the equation was evaluated over a fairly 

large range for comparison with the present solution. The agreement is quite good 

between 0.075 < -r*v < 0.1, where the maximum percent difference in this range is 

2.2%. 
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Figure 35:  Po versus —r*v for laminar countercurrent flow in a triangular groove 
(/5 = 0, <£ = 30°, 0 = 20°). 

Table 7: Poiseuille number versus dimensionless shear stress at the liquid-vapor in- 
terface for countercurrent flow (ß = 0, 4> = 30°, 6 = 20°): Comparison of the present 
solution with that given by Lin and Faghri (1997). 

Poiseuille Number, Po 
— T* Tlv Lin and Faghri (1997) Present 
0.025 13.862 12.607 
0.050 14.703 13.885 
0.075 15.733 15.451 
0.100 17.026 17.415 
0.125 18.716 20.030 
0.150 20.818 23.008 
0.175 23.850 27.533 
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D    Tables of Results 

In all of the results reported, grid independence and the convergence criteria were 

less than 1% unless otherwise noted. 

Table 8: Mean velocity versus shear stress at the liquid-vapor interface for various 
values of meniscus contact angle (ß = 1.0, 9 = 0°). 

V* 

T* rlv 0 = 0° 4> = 30° 4> = 60° <£ = 90° 
-0.45 — — — 0.49199E-1 

-0.40 — — — 0.59164E-1 

-0.35 — — 0.32345E-1 0.69436E-1 

-0.30 — — 0.42262E-1 0.79708E-1 

-0.25 — — 0.55480E-1 0.89940E-1 

-0.20 — 0.20770E-1 0.60834E-1 0.10024 

-0.15 — 0.28109E-1 0.70127E-1 0.11052 

-0.10 0.32991E-2* 0.35399E-1 0.78213E-1 0.12070 
-0.05 0.51296E-2 0.42230E-1 0.88438E-1 0.13106 
0.0 0.69877E-2 0.49638E-1 0.97783E-1 0.14126 

0.125 0.11598E-1T 0.68289E-1 0.12099 0.16701 
0.25 0.18327E-1 0.86652E-1 0.14465 0.19269 

0.375 0.23781E-1 0.10501 0.16832 0.21837 
0.5 0.29235E-1 0.12338 0.19198 0.24405 

0.625 0.34690E-1 0.14174 0.21563 0.26835 
0.75 0.40144E-1 0.16010 0.23930 0.29383 

0.875 0.45598E-1 0.17847 0.26295 0.31932 

1.0 0.51053E-1 0.19683 0.28468 0.34959 

1.5 0.72870E-1 0.27029 0.37813 0.44674 

2.0 0.94087E-1 0.34375 0.47158 0.54870 
3.0 0.13832 0.49066 0.65514 0.75258 

4.0 0.18195 0.63757 0.84087 0.95644 

5.0 0.22559 0.78448 1.0265 1.1603 

* Gric 
fGrid 

independence 
independence 

: 2.2% 
: 1.5% 
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Table 9: Poiseuille number versus shear stress at the liquid-vapor interface for various 
values of meniscus contact angle (ß = 1.0, 6 = 0°). 

Po 
T* 0 = 0° 0 = 30° <£ = 60° (£ = 90° 

-0.45 — — — 40.605 

-0.40 — — — 33.803 

-0.35 — — 40.137 28.803 

-0.30 — — 30.719 25.091 

-0.25 — — 25.185 22.236 

-0.20 — 33.313 21.341 19.950 

-0.15 — 24.615 18.514 18.096 

-0.10 27.918* 19.546 16.414 16.570 

-0.05 17.907 16.384 14.680 15.259 

0.0 13.181 13.939 13.277 14.158 

0.125 7.9414* 10.132 10.730 11.974 

0.25 5.0257 7.9851 8.9752 10.378 

0.375 3.8730 6.5888 7.7129 9.1589 

0.5 3.1505 5.6081 6.7624 8.1947 

0.625 2.6551 4.8816 6.0208 7.4528 

0.75 2.2944 4.3217 5.4251 6.8064 

0.875 2.0199 3.8770 4.9372 6.2632 

1.0 1.8041 3.5153 4.5603 5.7804 

1.5 1.2639 2.5598 3.4333 4.4767 

2.0 0.97275 2.0128 2.7530 3.6449 

3.0 0.66589 1.4102 1.9816 2.6575 

4.0 0.50620 1.0852 1.5439 2.0910 

5.0 0.40829 0.88203 1.2646 1.7236 

* Gric indepenc ence: 2.2"; ?o 
f Grid independence: 1.5% 
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Table 10: Volumetric flow rate versus shear stress at the liquid-vapor interface for 
various values of meniscus contact angle (ß = 1.0, 6 = 0°). 

V * 

-rt„ </> = 0° 0 = 30° <£ = 60° <£ = 90° 

-0.45 — — — 0.98398E-1 

-0.40 — — — 0.11832 

-0.35 — — 0.52969E-1 0.13887 

-0.30 — — 0.69210E-1 0.15941 

-0.25 — — 0.90857E-1 0.17988 

-0.20 — 0.24531E-1 0.99625E-1 0.20048 
-0.15 — 0.33199E-1 0.11484 0.22104 

-0.10 0.14160E-2* 0.41809E-1 0.12808 0.24140 
-0.05 0.22016E-2 0.49877E-1 0.14483 0.26212 

0.0 0.29991E-2 0.58626E-1 0.16013 0.28252 
0.125 0.49780E-2^ 0.80339E-1 0.19813 0.33402 

0.25 0.78660E-2 0.10193 0.23688 0.38538 

0.375 0.10270E-1 0.12353 0.27565 0.43674 

0.5 0.12548E-1 0.14514 0.31439 0.48810 
0.625 0.14889E-1 0.16674 0.35312 0.53670 
0.75 0.17230E-1 0.18834 0.39189 0.58766 

0.875 0.19571E-1 0.20995 0.43062 0.63864 

1.0 0.21912E-1 0.23155 0.46620 0.69918 
1.5 0.31276E-1 0.31923 0.61924 0.89348 

2.0 0.40640E-1 0.40599 0.77228 1.0974 

3.0 0.59368E-1 0.57951 1.0728 1.5051 

4.0 0.78096E-1 0.75302 1.3770 1.9128 

5.0 0.96824E-1 0.92653 1.6810 2.3206 

* Gric 
fGrid 

independence 
independence 

: 2.2% 
: 1.5% 
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Table 11: Mean velocity versus shear stress at the liquid-vapor interface for various 
values of meniscus contact angle (ß = 1.0, 6 = 30°). 

v* 
r* <j) = 0° <£ = 20° <£ = 40° 0 = 60° 

-0.375 — — — 0.74804E-1 
-0.3125 — — 0.41206E-1 0.93526E-1 

-0.25 — — 0.56119E-1 0.11224 
-0.1875 — 0.21137E-1 0.71387E-1 0.13096 
-0.125 — 0.32001E-1 0.86165E-1 0.14969 

-0.0625 0.57800E-2 0.42814E-1 0.10150 0.16841 
0.0 0.11068E-1 0.53861E-1 0.11664 0.18713 

0.125 0.21608E-1 0.74276E-1 0.14770 0.22457 
0.25 0.32361E-1 0.97689E-1 0.17876 0.26202 

0.375 0.43114E-1 0.12013 0.20982 0.29946 
0.5 0.53599E-1 0.14258 0.23959 0.33509 

0.625 0.64249E-1 0.16503 0.27028 0.37225 
0.75 0.74898E-1 0.18748 0.30097 0.40941 

0.875 0.85547E-1 0.20993 0.33165 0.44657 
1.0 0.96197E-1 0.23119 0.36234 0.48374 
1.5 0.13879 0.32003 0.48508 0.63238 
2.0 0.18139 0.40887 0.60782 0.78103 
3.0 0.26658 0.58655 0.85008 1.0783 
4.0 0.35177 0.76423 1.0943 1.3756 
5.0 0.43697 0.94191 1.3386 1.6723 
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Table 12: Poiseuille number versus shear stress at the liquid-vapor interface for various 
values of meniscus contact angle (ß = 1.0, 9 = 30°). 

Po 

rfv <£ = 0° 0 = 20° ^ = 40° 0 = 60° 

-0.375 — — — 38.253 

-0.3125 — — 41.349 30.629 

-0.25 — — 30.361 25.493 

-0.1875 — 36.513 23.867 21.849 

-0.125 — 24.117 19.774 19.116 

-0.0625 21.721 18.026 16.785 16.991 

0.0 11.343 14.329 14.607 15.291 

0.125 5.8103 10.390 11.535 12.741 

0.25 3.8797 7.9005 9.5312 10.921 

0.375 2.9121 6.4246 8.1203 9.5556 

0.5 2.3424 5.4127 7.1112 8.5395 

0.625 1.9541 4.6764 6.3039 7.6870 

0.75 1.6763 4.1165 5.6611 6.9893 

0.875 1.4676 3.6763 5.1374 6.4077 

1.0 1.3051 3.3383 4.7023 5.9154 

1.5 0.90460 2.4116 3.5124 4.5250 

2.0 0.69217 1.8876 2.8031 3.6638 

3.0 0.47096 1.3158 2.0043 2.6537 

4.0 0.35691 1.0098 1.5569 2.0802 

5.0 0.28732 0.81939 1.2727 1.7105 
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Table 13: Volumetric flow rate versus shear stress at the liquid-vapor interface for 
various values of meniscus contact angle (ß = 1.0, 6 = 30°). 

v* 
T* Tlv 0 = 0° 0 = 20° <f> = 40° <p = W° 

-0.375 — — — 0.19279 
-0.3125 — — 0.81949E-1 0.24104 

-0.25 — — 0.14197 0.28928 
-0.1875 — 0.28292E-1 0.11160 0.33752 

-0.125 — 0.42833E-1 0.17136 0.38580 
-0.0625 0.32234E-2 0.57307E-1 0.20186 0.43405 

0.0 0.59752E-2 0.72093E-1 0.23197 0.48229 
0.125 0.11665E-1 0.99419E-1 0.29374 0.57879 
0.25 0.17470E-1 0.13075 0.35551 0.67531 
0.375 0.23275E-1 0.16079 0.41728 0.77181 

0.5 0.28936E-1 0.19084 0.47651 0.86364 
0.625 0.34685E-1 0.22089 0.53753 0.95941 
0.75 0.40434E-1 0.25094 0.59856 1.0551 
0.875 0.46183E-1 0.28099 0.65959 1.1509 

1.0 0.51933E-1 0.30945 0.72062 1.2467 
1.5 0.75025E-1 0.42836 0.96473 1.6298 
2.0 0.97926E-1 0.54727 1.2088 2.0129 
3.0 0.14391 0.78510 1.6906 2.7791 
4.0 0.18990 1.0229 2.1763 3.5454 

5.0 0.23590 1.2607 2.6621 4.3101 
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Table 14: Mean velocity versus shear stress at the liquid-vapor interface for various 
values of meniscus contact angle (ß = 1.0, 6 = 60°). 

V* 

r<; </> = 0° 0 = 10° 0 = 20° 0 = 30° 
-0.375 — — — 0.75897E-1 

-0.3125 — — 0.41983E-1 0.98354E-1 

-0.25 — — 0.59724E-1 0.12081 

-0.1875 — 0.28621E-1 0.77466E-1 0.14326 

-0.125 0.73396E-2* 0.41509E-1 0.94812E-1 0.16572 

-0.0625 O.HQQöE-^ 0.54181E-1 0.11263 0.18818 

0.0 0.22642E-1 0.66951E-1 0.13046 0.21107 

0.125 0.37623E-1 0.92099E-1 0.16100 0.25554 

0.25 0.53077E-1 0.11829 0.20175 0.30046 

0.375 0.68746E-1 0.14448 0.23768 0.34537 

0.5 0.84415E-1 0.17067 0.27364 0.39028 

0.625 0.10008 0.19648 0.30959 0.43296 

0.75 0.11477 0.22243 0.34554 0.47756 

0.875 0.13205 0.24839 0.38149 0.52217 

1.0 0.14776 0.27435 0.41744 0.56677 

1.5 0.20674 0.37816 0.56125 0.74520 

2.0 0.26815 0.48199 0.70506 0.92361 

3.0 0.39098 0.68963 0.99268 1.2804 

4.0 0.51380 0.89727 1.2802 1.6372 

5.0 0.63663 1.1049 1.5679 1.9941 

* Grid 
f Grid 

independence: 
independence: 

2.6% 
1.1% 
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Table 15: Poiseuille number versus shear stress at the liquid-vapor interface for various 
values of meniscus contact angle (/? = 1.0, 6 = 60°). 

Po 

Tfv <f) = 0° 0 = 10° 0 = 20° </> = 30° 

-0.375 — — — 40.780 

-0.3125 — — 43.296 31.469 

-0.25 — — 30.434 25.619 

-0.1875 — 30.202 23.464 21.604 

-0.125 31.963* 20.699 19.171 18.676 

-0.0625 15.644* 15.858 16.138 16.447 

0.0 10.361 12.833 13.932 14.663 

0.125 6.2354 9.3294 10.943 12.111 

0.25 4.4199 7.2637 9.0097 10.301 

0.375 3.4125 5.9470 7.6474 8.9617 

0.5 2.7791 5.0344 6.6426 7.9304 

0.625 2.3440 4.3730 5.8712 7.1487 

0.75 2.0440 3.8627 5.2604 6.4810 

0.875 1.8017 3.4591 4.7646 5.9274 

1.0 1.6108 3.1318 4.3543 5.4609 

1.5 1.1347 2.2720 3.2386 4.1534 

2.0 0.87487 1.7826 2.5780 3.3526 

3.0 0.60003 1.2459 1.8311 2.4172 

4.0 0.45659 0.95760 1.4197 1.8904 

5.0 0.36850 0.77764 1.1593 1.5521 

* Grid independence: 2.6% 
t Grid independence: 1.1% 
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Table 16: Volumetric flow rate versus shear stress at the liquid-vapor interface for 
various values of meniscus contact angle (ß = 1.0, 6 = 60°). 

V* 
Tlv 0 = 0° 4>=10° 0 = 20° 0 = 30° 

-0.375 — — — 0.28325 

-0.3125 — — 0.12007 0.36706 

-0.25 — — 0.17081 0.45086 

-0.1875 — 0.56279E-1 0.22155 0.53465 
-0.125 0.75407E-2* 0.81621E-1 0.27116 0.61847 

-0.0625 0.15405E-1T 0.10651 0.32212 0.70229 
0.0 0.23264E-1 0.13164 0.37311 0.78772 

0.125 0.38656E-1 0.18109 0.46046 0.95368 
0.25 0.54535E-1 0.23260 0.57700 1.1213 

0.375 0.70634E-1 0.28409 0.67976 1.2889 
0.5 0.86734E-1 0.33559 0.78261 1.4565 

0.625 0.10282 0.38635 0.88543 1.6158 
0.75 0.11792 0.43739 0.98825 1.7822 

0.875 0.13567 0.48843 1.0910 1.9487 

1.0 0.15181 0.53947 1.1940 2.1152 
1.5 0.21242 0.74359 1.6051 2.7811 
2.0 0.27551 0.94776 2.0164 3.4469 

3.0 0.40172 1.3560 2.8390 4.7785 
4.0 0.52791 1.7643 3.6613 6.1101 
5.0 0.65412 2.1726 4.4842 7.4420 

* Grid 
f Grid 

independence 
independence 

2.6% 
1.1% 
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Table 17: Mean velocity versus shear stress at the liquid-vapor interface for various 
values of groove aspect ratio (<j> = 30°, 6 = 0°). 

V* 

T* /5 = 0.5 0 = 1.0 0 = 1.5 
-0.375 0.14752E-1* — — 

-0.3125 0.19853E-1** — — 

-0.25 0.25245E-1 — — 

-0.1875 0.30603E-1 0.22287E-1" — 

-0.125 0.35952E-1 0.31469E-1** 0.12684E-1* 
-0.0625 0.41301E-1 0.40743E-1 0.19402E-1 

0.0 0.45883E-1 0.49638E-1 0.26119E-1 
0.125 0.56930E-1 0.68289E-1 0.39552E-1 
0.25 0.67443E-1 0.86652E-1 0.52986E-1 

0.375 0.77955E-1 0.10501 0.66420E-1 
0.5 0.88468E-1 0.12338 0.79853E-1 

0.625 0.98981E-1 0.14174 0.93287E-1 
0.75 0.10949 0.16010 0.10672 
0.875 0.12047 0.17847 0.12015 

1.0 0.13102 0.19683 0.13358 
1.5 0.17326 0.27029 0.18732 
2.0 0.21545* 0.34375 0.24105 
3.0 0.30005t 0.49066 0.34852 
4.0 0.38444** 0.63757 0.45599 
5.0 0.46891** 0.78448 0.56346 

* Grid independence: 2.2% 
** Grid independence: 1.2% 
f Grid independence: 1.1% 
ft Grid independence: 2.0% 
X Grid independence: 2.3% 
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Table 18: Poiseuille number versus shear stress at the liquid-vapor interface for various 
values of groove aspect ratio (<f> = 30°, 6 = 0°). 

Po 

^ ,9 = 0.5 0 = 1.0 0 = 1.5 

-0.375 38.108* — — 

-0.3125 28.317** — — 

-0.25 22.260 — — 

-0.1875 18.370 31.045TT — 

-0.125 15.636 21.987** 33.179* 

-0.0625 13.611 16.982 21.692 

0.0 11.976 13.939 16.114 

0.125 9.8457 10.132 10.641 

0.25 8.3110 7.9851 7.9434 

0.375 7.1902 6.5888 6.3368 

0.5 6.3358 5.6081 5.2707 

0.625 5.6629 4.8816 4.5117 

0.75 5.1192 4.3217 3.9438 

0.875 4.6665 3.8770 3.5029 

1.0 4.2905 3.5153 3.1506 

1.5 3.2446 2.5598 2.2468 

2.0 2.6093* 2.0128 1.7460 

3.0 1.8736* 1.4102 1.2076 

4.0 1.4623** 1.0852 0.92301 

5.0 1.1989** 0.88203 0.74697 

* Grid independence: 2.2% 
** Grid independence: 1.2% 
\ Grid independence: 1.1% 
ft Grid independence: 2.0% 
% Grid independence: 2.3% 

100 



Table 19: Volumetric flow rate versus shear stress at the liquid-vapor interface for 
various values of groove aspect ratio (<j> = 30°, 9 = 0°). 

v* 
T* Tlv 0 = 0.5 0=1.0 0=1.5 

-0.375 0.11731E-1* — — 

-0.3125 0.15788E-1** — — 

-0.25 0.20084E-1 — — 

-0.1875 0.24337E-1 0.26218E-1TT — 

-0.125 0.28591E-1 0.37020E-1** 0.14548E-1* 

-0.0625 0.32845E-1 0.47929E-1 0.22456E-1 

0.0 0.36076E-1 0.58626E-1 0.29954E-1 

0.125 0.45208E-1 0.80339E-1 0.45361E-1 

0.25 0.53556E-1 0.10193 0.60767E-1 

0.375 0.61904E-1 0.12353 0.76174E-1 

0.5 0.70252E-1 0.14514 0.91580E-1 

0.625 0.78600E-1 0.16674 0.10698 
0.75 0.86948E-1 0.18834 0.12239 

0.875 0.95806E-1 0.20995 0.13780 
1.0 0.10420 0.23155 0.15320 
1.5 0.13779 0.31923 0.21483 
2.0 0.17134* 0.40599 0.27645 
3.0 0.23862* 0.57951 0.39971 
4.0 0.30573** 0.75302 0.52296 
5.0 0.37291** 0.92653 0.64621 

* Grid i 
** Grid 
f Grid i 
ft Grid 
X Grid i 

ndependence: S 
independence: 

ndependence: ] 
independence: 
ndependence: ' 

1.2% 
1.2% 

L.1% 
2.0% 

1.3% 
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Table 20: Mean velocity versus shear stress at the liquid-vapor interface for various 
values of groove aspect ratio (0 = 30°, 9 = 30°). 

V* 

^ /? = 0.0 0 = 0.5 0=1.0 /3 = 1.5 
-0.25 — 0.33511E-1 0.31252E-1 — 

-0.1875 0.10930E-1 0.44442E-1 0.44545E-1 0.30859E-1* 
-0.125 0.15939E-1 0.55373E-1 0.57663E-1 0.43708E-1T 

-0.0625 0.21027E-1 0.66304E-1 0.70993E-1 0.56557E-1 
0.0 0.26234E-1 0.77458E-1 0.83936E-1 0.68965E-1 

0.125 0.36293E-1 0.99459E-1 0.11017 0.94766E-1 
0.25 0.46235E-1 0.12154 0.13723 0.12056 
0.375 0.56325E-1 0.14362 0.16429 0.14636 

0.5 0.66416E-1 0.16468 0.19135 0.17216 
0.625 0.76507E-1 0.18654 0.21841 0.19796 
0.75 0.86598E-1 0.20840 0.24547 0.22376 
0.875 0.96689E-1 0.23026 0.27253 0.24956 

1.0 0.10678 0.25212 0.29959 0.27537 
1.5 0.14714 0.33957 0.40545 0.37857 
2.0 0.18750 0.42702 0.51262 0.48177 

.3.0 0.26823 0.60191 0.72697 0.68818 
4.0 0.34896 0.77680 0.94131 0.89458 
5.0 0.42968 0.95170 1.1556 1.1009 

* Grid independence: 1.9% 
f Grid independence: 1.3% 
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Table 21: Poiseuille number versus shear stress at the liquid-vapor interface for various 
values of groove aspect ratio (<f> = 30°, 9 = 30°). 

Po 
Tt, 0 = 0.0 0 = 0.5 0 = 1.0 0 = 1.5 

-0.25 — 29.167 38.710 — 

-0.1875 28.606 21.993 27.158 37.289* 
-0.125 19.617 17.651 20.980 26.327* 
-0.0625 14.869 14.741 17.040 20.346 

0.0 11.918 12.618 14.413 16.686 
0.125 8.6153 9.8276 10.980 12.143 
0.25 6.7628 8.0422 8.8153 9.5446 

0.375 5.5513 6.8057 7.3635 7.8621 
0.5 4.7078 5.9353 6.3222 6.6839 

0.625 4.0869 5.2398 5.5390 5.8126 
0.75 3.6107 4.6901 4.9284 5.1426 

0.875 3.2338 4.2448 4.4391 4.6109 
1.0 2.9282 3.8767 4.0381 4.1789 
1.5 2.1250 2.8784 2.9838 3.0397 
2.0 1.6675 2.2889 2.3600 2.3885 
3.0 1.1657 1.6239 1.6641 1.6721 
4.0 0.89603 1.2582 1.2852 1.2863 
5.0 0.72769 1.0270 1.0468 1.0452 

* Grid independence: 1.9% 
f Grid independence: 1.3% 
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Table 22: Volumetric flow rate versus shear stress at the liquid-vapor interface for 
various values of groove aspect ratio (</> = 30°, 9 = 30°). 

* Grid 
fGrid 

independence: 1. 
independence: 1. 

V* 
Tl 0 = 0.0 0 = 0.5 yö= 1.0 0 = 1.5 

-0.25 — 0.38764E-1 0.52371E-1 — 

-0.1875 0.49904E-2 0.51410E-1 0.74649E-1 0.62142E-1* 
-0.125 0.72773E-2 0.64055E-1 0.96632E-1 0.88016E-lt 

-0.0625 0.96006E-2 0.76699E-1 0.11897 0.11389 
0.0 0.11977E-1 0.89602E-1 0.14066 0.13887 

0.125 0.16570E-1 0.11505 0.18464 0.19083 
0.25 0.21109E-1 0.14059 0.22998 0.24278 
0.375 0.25716E-1 0.16613 0.27532 0.29472 

0.5 0.30323E-1 0.19050 0.32066 0.34668 
0.625 0.34931E-1 0.21578 0.36602 0.39846 
0.75 0.39538E-1 0.24106 0.41136 0.45060 

0.875 0.44145E-1 0.26636 0.45670 0.50245 

1.0 0.48752E-1 0.29164 0.50206 0.55450 

1.5 0.67181E-1 0.39280 0.67946 0.76232 

2.0. 0.85609E-1 0.49396 0.85906 0.97014 

3.0 0.12246 0.69628 1.2182 1.3857 

4.0 0.15932 0.89859 1.5774 1.8014 

5.0 0.19618 1.1009 1.9366 2.2170 
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Table 23: Mean velocity versus shear stress at the liquid-vapor interface for various 
values of groove aspect ratio (</> = 30°, 9 = 60°). 

V * 

Tfv 0 = 0.0 0 = 0.5 0 = 1.0 0 = 1.5 

-0.375 — 0.53334E-1 0.75897E-1 0.90127E-1 

-0.3125 0.33653E-1 0.72695E-1 0.98354E-1 0.11443 

-0.25 0.48754E-1 0.92056E-1 0.12081 0.13874 

-0.1875 0.63856E-1 0.11141 0.14326 0.16306 

-0.125 0.78957E-1 0.13077 0.16572 0.18737 

-0.0625 0.94058E-1 0.15013 0.18818 0.21168 

0.0 0.10915 0.17030 .0.21107 0.23708 

0.125 0.13936 0.20824 0.25554 0.28461 

0.25 0.16956 0.24694 0.30046 0.33324 

0.375 0.19976 0.28566 0.34537 0.38185 

0.5 0.22996 0.32438 0.39028 0.43047 

0.625 0.26017 0.36311 0.43296 0.47910 

0.75 0.29037 0.40183 0.47756 0.52772 

0.875 0.32057 0.44055 0.52217 0.57634 

1.0 0.35080 0.47927 0.56677 0.62496 

1.5 0.47161 0.63416 0.74520 0.81945 

2.0 0.58941 0.78905 0.92361 1.0088 

3.0 0.82971 1.0988 1.2804 1.3955 

4.0 1.0700 1.4086 1.6372 1.7821 

5.0 1.3103 1.7183 1.9941 2.1688 
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Table 24: Poiseuille number versus shear stress at the liquid-vapor interface for various 
values of groove aspect ratio (<j> = 30°, 6 = 60°). 

Po 

^ 0 = 0.0 0 = 0.5 0 = 1.0 0=1.5 
-0.375 — 44.783 40.780 40.563 

-0.3125 44.571 32.856 31.469 31.946 

-0.25 30.766 25.946 25.619 26.348 

-0.1875 23.490 21.437 21.604 22.420 

-0.125 18.997 18.263 18.676 19.511 

-0.0625 15.947 15.908 16.447 17.270 

0.0 13.741 14.025 14.663 15.419 

0.125 10.763 11.469 12.111 12.845 

0.25 8.8461 9.6722 10.301 10.970 

0.375 7.5087 8.3612 8.9617 9.5739 

0.5 6.5225 7.3631 7.9304 8.4926 

0.625 5.7654 6.5779 7.1487 7.6307 

0.75 5.1657 5.9440 6.4810 6.9276 

0.875 4.6790 5.4216 5.9274 6.3432 

1.0 4.2758 4.9835 5.4609 5.8497 

1.5 3.1805 3.7663 4.1534 4.4613 

2.0 2.5448 3.0270 3.3526 3.6239 

3.0 1.8078 2.1736 2.4172 2.6197 

4.0 1.4018 1.6956 1.8904 2.0513 

5.0 1.1447 1.3899 1.5521 1.6856 
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Table 25: Volumetric flow rate versus shear stress at the liquid-vapor interface for 
various values of groove aspect ratio (<f> = 30°, 9 = 60°). 

V* 
T* Tlv 0 = 0.0 0 = 0.5 0 = 1.0 0 = 1.5 

-0.375 — 0.14571 0.28325 0.42648 

-0.3125 0.58288E-1 0.19860 0.36706 0.54152 

-0.25 0.84444E-1 0.25150 0.45086 0.65656 

-0.1875 0.11060 0.30439 0.53465 0.77160 

-0.125 0.13675 0.35729 0.61847 0.88664 

-0.0625 0.16291 0.41018 0.70229 1.0016 

0.0 0.18907 0.46526 0.78772 1.1219 

0.125 0.24138 0.56892 0.95368 1.3468 

0.25 0.29368 0.67466 1.1213 1.5769 

0.375 0.34600 0.78045 1.2889 1.8069 

0.5 0.39830 0.88624 1.4565 2.0370 

0.625 0.45062 0,99203 1.6158 2.2670 

0.75 0.50294 1.0978 1.7822 2.4972 

0.875 0.55524 1.2036 1.9487 2.7272 

1.0 0.60760 1.3094 2.1152 2.9573 

1.5 0.81686 1.7325 2.7811 3.8776 

2.0 1.0208 2.1557 3.4469 4.7737 

3.0 1.4370 3.0020 4.7785 6.6035 

4.0 1.8532 3.8483 6.1101 8.4334 

5.0 2.2695 4.6947 7.4420 10.263 
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Table 26: Liquid-vapor shear stress when the mean velocity is zero versus meniscus 
contact angle for ß = 1.0. 

rlv,0 

Analytical Numerical 

<t> 0 = 0° 0 = 30° 0 = 60° 0 = 0° [ 6 = 30° 0 = 60° 
0° 0.13662 0.14152 0.17957 0.16743 0.12910 0.18826 
10° — — 0.35260 — — 0.32225 
20° — 0.39066 0.52077 — 0.30236 0.45252 
30° 0.48838 — 0.68301 0.33968 — 0.59013 
40° — 0.61770 — — 0.48096 — 

60° 0.78192 0.81699 — 0.53204 0.62874 — 

90° 1.0000 — — 0.69298 — — 

Table 27:  Liquid-vapor shear stress when the mean velocity is zero versus groove 
aspect ratio for 4> = 30°. 

— T* Tlv,0 
Analytical Numerical 

ß 0 = 0° 0 = 30° 0 = 60° 0 = 0° 0 = 30° 0 = 60° 
0 — 0.37758 0.50000 — 0.32342 0.45198 

0.5 0.65768 0.51267 0.61200 0.54363 0.44253 0.54762 

1 0.48838 0.50727 0.68301 0.33968 0.39337 0.59013 

1.5 0.31907 0.46283 0.73205 0.24279 0.33430 0.61283 
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Table 28: Mean velocity, Poiseuille number and volumetric flow rate versus groove 
half-angle (</> = 30.0°, r,*„ = 5.0). 

ß 6 v* Po v* 
0.0 15° 0.15039 0.63916 0.34134E-1 

0.0 30° 0.42968 0.72769 0.19618 

0.0 45° 0.77729 0.87321 0.64037 

0.0 60° 1.3103 1.1447 2.2695 

0.5 0° 0.46840* 1.2002* 0.37250* 

0.5 15° 0.72524 1.0147 0.88294 

0.5 30° 0.95170 1.0270 1.1009 

0.5 45° 1.2307 1.1405 1.9737 

0.5 60° 1.7183 1.3899 4.6947 

1.0 0° 0.78448 0.88203 0.92653 

1.0 15° 0.95403 0.92271 1.2882 

1.0 30° 1.1556 1.0468 1.9366 

1.0 45° 1.4570 1.2408 3.3446 

1.0 60° 1.9941 1.5521 7.4420 

1.5 0° 0.56346 0.74697 0.64621 

1.5 15° 0.83014 0.82527 1.2318 

1.5 30° 1.1009 1.0452 2.2170 

1.5 45° 1.15058 1.3144 4.3656 

1.5 60° 2.1688 1.6856 10.263 

* Grid independence: 1.9% 
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Table 29: Mean velocity, Poiseuille number and volumetric flow rate versus groove 
half-angle (/? = 1.0, r,; = 5.0). 

<f> e v* Po V* 
0° 0° 0.22559 0.40829 0.96824E-1 
0° 15° 0.35819 0.26472 0.15874 
0° 30° 0.43697 0.28732 0.23590 

0° 45° 0.51700 0.34103 0.37059 
0° 60° 0.63663 0.36850 0.65412 

10° 0° 0.41271* 0.65741* 0.30402* 

10° 15° 0.56551* 0.54255* 0.45080* 

10° 30° 0.69597 0.57652 0.67168 
10° 45° 0.85547 0.66278 1.0996 
10° 60° 1.1049 0.77764 2.1726 
20° 0° 0.63489 0.75699 0.62239 
20° 15° 0.79550 0.72604 0.87007 
20° 30° 0.94191 0.81939 1.2607 
20° 45° 1.1689 0.95753 2.1112 
20° 60° 1.5679 1.1593 4.4842 

30° 0° 0.78448 0.88203 0.92653 
30° 15° 0.95512 0.92166 1.2896 
30° 30° 1.1556 1.0468 1.9366 
30° 45° 1.4570 1.2408 3.3446 
30° 60° 1.9941 1.5521 7.4420 
40° 0° 0.91623 0.99751 1.2387 
40° 15° 1.0914 1.1027 1.7231 
40° 30° 1.3386 1.2727 2.6621 
40° 45° 1.7251 1.5229 4.7736 
50° 0° 0.98256 1.1480 1.4758 
50° 15° 1.2066 1.2793 2.1575 
50° 30° 1.5161 1.4856 3.4670 
60° 0° 1.0265 1.2646 1.6810 
60° 15° 1.3069 1.4552 2.5940 
60° 30° 1.6723       1.7105 4.3101 
* Grid independence: 1.5% 
f Grid independence: 1.7% 
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Table 30: Geometric values for the parametric analysis to determine the volumetric 
flow rate versus groove fill ratio (h = 3.831 x 10-4 m, w = 3.445 x 10~4 m, fa = 7.0°, 
Ag = 1.703 x 10~7 m2). 

ß e <t> hi (m) wi (m) R{m) Ai (m") Ai/Ag 

0.0 52.31° 7.0° 1.653 x 10-° 4.279x10"° 4.192x10"° 3.674xl0-lu 0.00216 

0.0 52.31° 7.0° 3.401 x 10~° 8.804x10-° 8.625x10-° 1.555xl0-y 0.00913 

0.0 52.31° 7.0° 5.140 x 10-° 1.331 xl0~4 1.303xl0"4 3.552xl0-9 0.02086 

0.0 52.31° 7.0° 6.879 x 10-° 1.781 xlO"4 1.744X10-4 6.362xl0"9 0.03737 

1.049 14.62° 7.0° 1.642 x 10~4 4.302xl0"4 2.314xl0"4 1.805x10-° 0.10603 

0.8991 14.62° 7.0° 1.916 x 10-4 4.445 xlO"4 2.390xl0"4 2.696 xlO"8 0.15833 

0.7868 14.62° 7.0° 2.189 x 10"4 4.587xl0-4 2.467X10-4 3.612x10"° 0.21214 

0.6993 14.62° 7.0° 2.463 x 10-4 4.730x10-" 2.544 xlO"4 4.561x10-° 0.26785 
0.6294 14.62° 7.0° 2.737 x 10"4 4.873 xlO"4 2.621 xlO"4 5.538x10-° 0.32528 
0.5722 14.62° 7.0° 3.010 x 10~4 5.015xHT4 2.697xl0~4 6.541 xl0~B 0.38419 

0.5245 14.62° 7.0° 3.284 x 10-4 5.158xl0~4 2.774xl0"4 7.577x10-° 0.44503 
0.4841 14.62° 7.0° 3.558 x 10~4 5.301 xlO"4 2.851 xlO"4 8.642 xlO-8 0.50757 

0.4496 14.62° 7.0° 3.831 x 10"4 5.444xl0-4 2.928xl0"4 9.732x10-° 0.57159 

0.4496 14.62° 15.0° 3.831 x 10-4 5.444X10"4 3.131 xlO"4 1.091x10-' 0.64063 

0.4496 14.62° 25.0° 3.831 x 10~4 5.444 xlO"4 3.534X10"4 1.218x10-' 0.71541 

0.4496 14.62° 35.0° 3.831 x 10-" 5.444xl0~4 4.201 xlO-4 1.330x10-' 0.78100 

0.4496 14.62° 45.0° 3.831 x 10"4 5.444xl0"4 5.382 xlO-4 1.431x10-' 0.84019 

0.4496 14.62° 55.0° 3.831 x 10"4 5.444xl0"4 7.816xlO"4 1.524x10-' 0.89505 

0.4496 14.62° 65.0° 3.831 x 10~4 5.444xl0~4 1.511x10"° 1.613x10-' 0.94722 

0.4496 14.62° 75.0° 3.831 x 10-4 5.444xl0-4 4.104x10-^ 1.699x10-' 0.99808 
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Table 31: Mean velocity, volumetric flow rate and dimensional flow parameters versus 
groove fill ratio (h = 3.831 x 10"4 m, w = 3.445 x 10"4 m, <f>0 = 7.0°, r,; = 0.0). 

Ai/Ag ^ V* Fi (m2) F2 (m4) 
0.00216 0.35025X10"1 0.23545 xlO"1 9.5703 xlO"12 3.5158xl0"21 

0.00913 0.35025X10"1 0.23545 xlO"1 4.0513X10"11 6.3002 xlO-20 

0.02086 0.35025 xlO"1 0.23545 xlO"1 9.2535X10-11 3.2869X10-19 

0.03737 0.35025 xlO-1 0.23545X10"1 1.6574xl0-lu 1.0545xl0~18 

0.10603 0.14748X10-1 0.98748X10-2 3.9763xl0-lu 7.1783X10-18 

0.15833 0.20927X10-1 0.15367X10"1 7.6824xl0~lu 2.0710X10"1' 
0.21214 0.27194X10"1 0.20498X10"1 1.3031 xlO"9 4.7065 xlO"17 

0.26785 0.32454 xlO"1 0.24398X10-1 1.9688xl0"9 8.9787X10-1' 
0.32528 0.36072 xlO"1 0.26669X10"1 2.7022xl0~9 1.4966xl0~lb 

0.38419 0.38622X10-1 0.27884X10-1 3.4992xl0~9 2.2889xl0~lb 

0.44503 0.39823 xlO"1 0.27979X10"1 4.2948xl0"9 3.2542xl0-lb 

0.50757 0.40251 xlO"1 0.27477X10-1 5.0955 xlO"9 4.4035xl0~lb 

0.57159 0.40053X10"1 0.26559X10"1 5.8784xl0-y 5.7208xl0-lb 

0.64063 0.46394X10"1 0.34479 xlO"1 6.8090xl0"9 7.4268X10-16 

0.71541 0.53536X10"1 0.44431 xlO"1 7.8572 xlO"9 9.5705xl0"lb 

0.78100 0.59941 xlO-1 0.54307X10"1 8.7973xl0-y 1.1698X10-15 

0.84019 0.65595X10-1 0.63933X10-1 9.6271 xlO"9 1.3771 xlO-15 

0.89505 0.70861 xlO"1 0.73575X10-1 1.0400x10-" 1.5848xl0~15 

0.94722 0.75803X10"1 0.83295X10-1 1.1125xl0-B 1.7942xl0"15 

0.99808 0.80163 xlO"1 0.92993X10"1 1.1765x10-" 2.0031X10-15 
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Table 32: Dimensionless velocity, volumetric flow rate and Poiseuille number versus 
groove fill ratio (h = 3.831 x 10"4 m, w = 3.445 x 10"4 m, 0O = 7.0°, r^a = 5.0). 

ß e </> Ai/A9 K V* Po 
1.049 14.62° 7.0° 0.10603 0.44951 0.45997 0.30098 

0.8991 14.62° 7.0° 0.15833 0.55128 0.52375 0.40480 

0.7868 14.62° 7.0° 0.21214 0.61118* 0.46070* 0.56117* 

0.6993 14.62° 7.0° 0.26785 0.65735** 0.49417** 0.57269** 

0.6294 14.62° 7.0° 0.32528 0.66535 0.59419 0.49190 

0.5722 14.62° 7.0° 0.38419 0.66313 0.60976 0.47876 

0.5245 14.62° 7.0° 0.44503 0.64877** 0.45581** 0.62692** 

0.4841 14.62° 7.0° 0.50757 0.62513 0.64739 0.42674 

0.4496 14.62° 7.0° 0.57159 0.59685 0.66990 0.39574 

0.4496 14.62° 15.0° 0.64063 0.62644 0.80169 0.46555 

0.4496 14.62° 25.0° 0.71541 0.65255 0.95976 0.54157 

0.4496 14.62° 35.0° 0.78100 0.66745 1.1183 0.60472 

0.4496 14.62° 45.0° 0.84019 0.68388 1.2631 0.66656 

0.4496 14.62° 55.0° 0.89505 0.69685 1.4068 0.72354 

0.4496 14.62° 65.0° 0.94722 0.71080 1.5446 0.78105 

0.4496 14.62° 75.0° 0.99808 0.72674 1.6838 0.84305 

* Grid indepenc ence: 1 .5% 
** Grid independence: 1.2% 
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Table 33:   Maximum heat transport predicted by the closed-form solution versus 
groove fill ratio (Straight axial grooves, no body forces, Tsat = 40°C, Ethanol) 

Qcap (W) 
MIA, Semi-Analytical Two-Point Numerical No Shear 

0.10598 0.13573 0.13570 0.13590 
0.15830 0.39121 0.39097 0.39217 
0.21209 0.88732 0.88654 0.89115 
0.26782 1.6887 1.6867 1.7001 
0.32519 2.8062 2.8028 2.8329 
0.38408 4.2781 4.2732 4.3323 
0.44492 6.0615 6.0553 6.1585 
0.50745 8.1727 8.1669 8.3322 
0.57146 10.578 10.575 10.822 
0.64063 13.703 13.676 14.049 
0.71520 17.609 17.541 18.093 
0.78097 21.483 21.369 22.112 
0.84028 25.247 25.072 26.027 
0.89489 28.992 28.753 29.933 
0.94715 32.759 32.449 33.879 
0.99765 36.416 36.023 37.725 
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Table 34:   Maximum heat transport predicted by the closed-form solution versus 
groove fill ratio (Straight axial grooves, no body forces, TsaX = 40°C, Water) 

Qcap (W) 
At/Ag Semi-Analytical Two-Point Numerical No Shear 

0.10598 1.7825 1.7787 1.8044 
0.15830 5.0811 5.0508 5.2059 
0.21209 11.338 11.243 11.825 
0.26782 21.130 20.902 22.545 
0.32519 34.292 33.915 37.534 
0.38408 50.924 50.408 57.333 
0.44492 70.242 69.617 81.384 
0.50745 92.136 91.584 109.92 
0.57146 116.02 115.79 142.50 
0.64063 147.75 145.45 184.52 
0.71520 186.60 181.02 236.89 
0.78097 224.33 215.29 288.62 
0.84028 260.28 246.91 338.69 
0.89489 295.11 277.51 388.35 
0.94715 329.09 307.01 438.22 
0.99765 361.03 333.96 486.54 
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Table 35: Maximum heat transport versus groove fill ratio for several working tem- 
peratures (Ethanol, \ar\ = 0.0-g). 

Qcap (W) 

Ail A, Tsat = 40°C TSat = 60°C TSat = 80°C TSat = 100°C 

0.10603 0.0 0.0 0.12 0.23 

0.15833 0.20 0.35 0.61 1.13 

0.21214 0.68 0.97 1.60 2.82 

0.26785 1.47 2.09 3.26 5.55 

0.32528 2.60 3.59 5.53 9.38 

0.38419 4.03 5.61 8.58 14.46 

0.44503 5.86 8.07 12.25 20.64 

0.50757 7.89 10.98 16.66 27.97 

0.57159 10.39 14.30 21.66 36.35 

0.64063 13.49 18.63 28.12 47.21 

0.71541 17.43 24.03 36.34 60.94 

0.78100 21.30 29.40 44.42 74.44 

0.84019 25.06 34.59 52.29 87.63 

0.89505 28.85 39.79 60.19 100.85 

0.94722 32.65 45.02 68.12 114.15 

0.99808 36.32 50.13 75.85 127.22 
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Table 36: Maximum heat transport versus groove fill ratio for several working tem- 
peratures (Ethanol, \ar\ — 10.0-g). 

Qcap (W) 
Ai/Ag Tsat = 40°C Tsat = 60°C Tsat = 80°C Tsat = 100°C 

0.10603 0.34 0.59 0.99 1.87 

0.15833 1.29 1.92 3.11 5.63 

0.21214 3.11 4.53 7.24 12.95 

0.26785 6.07 8.73 13.93 24.80 

0.32528 10.20 14.60 23.29 41.44 

0.38419 15.59 22.44 35.66 63.40 

0.44503 22.18 31.90 50.72 90.16 

0.50757 30.00 43.16 68.63 121.94 

0.57159 38.97 56.05 89.13 158.41 

0.64063 50.55 72.77 115.67 205.61 

0.71541 65.11 93.73 149.02 264.93 

0.78100 79.15 114.49 182.12 323.73 

0.84019 93.52 134.75 214.30 381.04 

0.89505 107.55 155.01 246.58 438.41 

0.94722 121.71 175.46 279.05 496.46 

0.99808 135.45 195.30 310.81 552.75 
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Table 37: Maximum heat transport versus radial acceleration (Ai/Ag = 0.5). 

Qcap (W) 
Castle et al. (2000) Present 

£1 (g) No Dryout Partial Dryout Analytical Analytical 

0.01 — — 19 7.40 

2.0 — — 22 9.56 

4.0 — — 31 13.78 

6.0 7.0 10.0 42 18.32 

8.0 9.5 13.0 58 22.95 
10.0 11.0 13.5 70 27.65 

Table 38: Maximum heat transport versus radial acceleration (At/Ag = 1.0). 

Qcap (W) 
Castle et al. (2000) Present 

£1 (g) No Dryout Partial Dryout Analytical Analytical 
0.01 17.3 25.4 20 34.97 

2.0 17.3 25.4 24 44.64 

4.0 32.7 40.0 39 70.29 
6.0 59.1 64.5 52 98.07 

8.0 88.2 96.4 75 138.04 

10.0 106.4 110.9 92 172.67 
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Table 39: Mean velocity, Poiseuille number and volumetric flow rate versus shear 
stress at the liquid-vapor interface for various values of meniscus contact angle (ß = 
0.5, W*J2 = 0.25, P* = 1.15245). 

4> f,, v" Po V* 
0° -0.1 0.18878 x 10~* 27.088 0.17394 x 10-* 

0° -0.075 0.26896 x 10~* 19.013 0.24782 x W~6 

0° -0.05 0.35104 x 10"* 14.567 0.32344 x 10-J 

0° -0.025 0.43465 x 10~* 11.765 0.40048 x lO"'3 

0° 0.0 0.51353 x 10-* 9.9581 0.47316 x 10-* 

0° 0.0625 0.71345 x 10"* 7.1676 0.65738 x 10-J 

0° 0.125 0.91525 x 10-* 5.5873 0.84330 x 10-J 

0° 0.25 0.13188 x 10"1 3.8774 0.12152 x 10-* 

0° 0.375 0.17224 x 10"x 2.9689 0.15870 x 10-* 

0° 0.5 0.21260 x 10-x 2.4053 0.19589 x 10-* 

0° 0.75 0.29332 x 10"i 1.7434 0.27026 x 10-* 

0° 1.0 0.37404 x 10-x 1.3672 0.34464 x 10-* 

0° 2.0 0.69691 x 10"x 0.73377 0.64214 x 10-* 

25° -0.1 0.32506 x 10-* 27.245 0.39414 x 10~ö 

25° -0.075 0.41572 x 10"* 21.303 0.50408 x 10_iJ 

25° -0.05 0.50437 x 10~* 17.559 0.61158 x 10-J 

25° -0.025 0.59348 x 10"* 14.923 0.71962 x lO-'3 

25° 0.0 0.68259 x 10"* 12.974 0.82768 x 10-a 

25° 0.0625 0.90536 x 10-* 9.7820 0.10978 x 10"* 

25° 0.125 0.11229 x 10_1 7.8870 0.13616 x 10-* 

25° 0.25 0.15650 x 10-1 5.6588 0.18977 x 10"* 

25° 0.375 0.20072 x 10-x 4.4123 0.24338 x 10-* 

25° 0.5 0.24493 x 10_1 3.6158 0.29700 x 10-* 

25° 0.75 0.33336 x 10-1 2.6566 0.40422 x 10-* 

25° 1.0 0.42179 x 10"l 2.0997 0.51144 x 10-* 

25° 2.0 0.77551 x 10-' 1.1420 0.94034 x 10-* 

50° -0.1 0.45097 x 10"* 27.149 0.64296 x 10-J 

50° -0.075 0.54643 x 10~* 22.406 0.77904 x 10-J 

50° -0.05 0.64189 x 10"* 19.074 0.91514 x 10-J 

50° -0.025 0.73345 x 10~* 16.693 0.10457 x 10-* 

50° 0.0 0.82746 x 10-* 14.796 0.11797 x 10-* 

50° 0.0625 0.10625 x 10_i 11.523 0.15148 x 10-* 

50° 0.125 0.12975 x 10"x 9.4363 0.18498 x 10-* 

50° 0.25 0.17586 x 10_i 6.9621 0.25072 x 10_* 

50° 0.375 0.22255 x 10-x 5.5014 0.31728 x 10-* 

50° 0.5 0.26922 x 10- * 4.5477 0.38382 x 10-* 

50° 0.75 0.36256 x 10"x 3.3769 0.51690 x 10~* 

50° 1.0 0.45590 x 10-* 2.6855 0.64998 x 10-* 

50° 2.0 0.82926 x 10-x 1.4764 0.11823 x 10"1 

72.34° -0.1 0.54127 x 10-* 28.188 0.86146 x 10-J 

72.34° -0.075 0.64152 x 10-* 23.783 0.10210 x 10-* 

72.34° -0.05 0.74177 x 10"* 20.569 0.11805 x 10~* 

72.34° -0.025 0.84202 x 10-* 18.120 0.13401 x 10-* 

72.34° 0.0 0.94227 x 10"* 16.192 0.14996 x 10-* 

72.34° 0.0625 0.11929 x 10"' 12.790 0.18985 x 10-* 

72.34° 0.125 0.14354 x 10-1 10.629 0.22844 x 10~* 

72.34° 0.25 0.19309 x 10-x 7.9016 0.30730 x 10-* 

72.34° 0.375 0.24264 x 10"1 6.2880 0.38618 x 10-* 

72.34° 0.5 0.29219 x 10_1 5.2217 0.46504 x 10"* 

72.34° 0.75 0.39129 x 10-x 3.8992 0.62276 x 10-* 

72.34° 1.0 0.49039 x 10-l 3.1112 0.78048 x 10-* 

72.34° 2.0 0.88244 x 10"x 1.7290 0.14044 x 10- x 
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Table 40: Wetted perimeter, mean velocity, Poiseuille number and volumetric flow 
rate versus groove fill ratio for various values of groove aspect ratio (T,* = 0.0, <j> = 0°). 

ß w*Jw* p* ¥ Po V* 
0.25 0.1 0.0731191 0.13005 x 10~4 8.4006 0.35142 x 10~8 

0.25 0.2 0.223950 0.20221 x 10~3 9.6365 0.70676 x 10~6 

0.25 0.3 0.450806 0.63058 x 10~3 11.141 0.84242 x 10~5 

0.25 0.4 0.734032 0.12616 x 10~'2 12.059 0.40386 x 10~4 

0.25 0.5 1.04707 0.20592 x 10~2 12.514 0.12238 x 10~3 

0.25 0.6 1.36011 0.29299 x 10~2 12.849 0.27336 x 10~3 

0.25 0.7 1.64333 0.38585 x 10~2 12.871 0.49958 x 10~3 

0.25 0.8 1.87019 0.47149 x 10~'2 12.940 0.77004 x 10~3 

0.25 0.9 2.02102 0.55519 x 10-2 13.346 0.10799 x 10-2 

0.25 0.999 2.09364 0.74536 x 10"2 15.203 0.18573 x 10-2 

0.5 0.1 0.114187 0.35380 x 10-5 9.4469 0.82578 x 10~9 

0.5 0.2 0.288528 0.19851 x 10~3 8.4052 0.82718 x 10~6 

0.5 0.3 0.531454 0.10922 x 10-2 8.7511 0.20062 x 10-4 

0.5 0.4 0.827649 0.28055 x 10~2 9.3706 0.13311 x 10-3 

0.5 0.5 1.15245 0.51353 x 10~2 9.9581 0.47316 x 10-3 

0.5 0.6 1.47724 0.78593 x 10"2 10.398 0.11735 x 10-'2 

0.5 0.7 1.77344 0.10755 x 10-1 10.780 0.22962 x 10~2 

0.5 0.8 2.01636 0.13817 x 10-1 11.282 0.38892 x 10~2 

0.5 0.9 2.19070 0.17762 x 10"1 12.443 0.64680 x 10-'2 

0.5 0.999 2.30389 0.25467 x 10-1 14.698 0.12692 x 10-1 

0.75 0.1 0.160025 0.11137 x 10~5 10.092 0.21124 x 10~9 

0.75 0.2 0.367435 0.10959 x 10~3 8.9207 0.44516 x 10~ö 

0.75 0.3 0.634966 0.93568 x 10-3 8.4299 0.18655 x 10-4 

0.75 0.4 0.951588 0.31271 x 10-2 8.5312 0.17184 x 10-3 

0.75 0.5 1.29509 0.67001 x 10~2 8.8579 0.74738 x 10-3 

0.75 0.6 1.63860 0.11328 x 10-1 9.2444 0.21238 x 10-'2 

0.75 0.7 1.95522 0.16731 x 10-1 9.7209 0.46642 x 10-2 

0.75 0.8 2.22275 0.23143 x 10"1 10.489 0.89608 x 10-2 

0.75 0.9 2.43016 0.32404 x 10-1 11.885 0.17278 x 10-1 

0.75 0.999 2.58868 0.47659 x 10-1 13.997 0.35626 x lO"1 

1.0 0.1 0.207697 0.45992 x 10"b 10.367 0.73744 x 10~10 

1.0 0.2 0.453879 0.59860 x 10~4 9.4362 0.22830 x 10~ö 

1.0 0.3 0.752420 0.66244 x 10~3 8.7481 0.13415 x 10~4 

1.0 0.4 1.09559 0.27276 x 10"2 8.4926 0.16081 x 10~3 

1.0 0.5 1.46369 0.67927 x 10~'2 8.5590 0.84758 x lO"3 

1.0 0.6 1.83180 0.12785 x 10"1 8.8427 0.27842 x lO-2 

1.0 0.7 2.17497 0.20665 x 10-1 9.3068 0.69688 x 10'2 

1.0 0.8 2.47351 0.31143 x 10"1 10.106 0.15279 x lO"1 

1.0 0.9 2.71969 0.46597 x 10-1 11.485 0.32778 x lO"1 

1.0 0.999 2.92539 0.69923 x 10-1 13.281 0.69692 x lO"1 
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