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Nonlinear Control 
Of Fighter Aircraft 

Preface 

The research described in this final report was performed at The Boeing Company, 
Saint Louis, Missouri, under Contract F49620-96-C-0011, entitled "Nonlinear Control of Fighter 
Aircraft." The program was managed by Dr. Marc Q. Jacobs of the Dynamics and Control 
Branch, Directorate of Mathematical and Computer Sciences, Air Force Office of Scientific 
Research, Boiling Air Force Base, DC. 

Boeing's program manager and principal investigator was Dr. Kevin A. Wise. The 
research described herein was performed by Dr. Kevin A. Wise, Dr. Jackson L. Sedwick, Dr. 
Yutaka Dceda, Dr. Rowena L. Eberhardt, and Mr. Joseph S. Brinker. 

The research reported here was conducted during the period June 1996 through June 
1999. 
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Chapter 1 

Introduction 

New aircraft systems are being designed to satisfy requirements for a low radar signature, 

low infrared signature, and low visible signature. "Low observability" (LO) will be central to all 

future fighter aircraft. The design of LO air combat systems is a multidisciplinary problem in 

aerodynamics, control, electromagnetics, and structural design. Critical flight control research 

problems for these kind of aircraft exist in nonlinear and adaptive control, reconfigurable control, 

multivariable control, performance optimizing control, tailless aircraft control, and thrust 

vectoring for envelope expansion. New control system design, analysis, and optimization tools 

are needed to address the challenges of controlling these highly nonlinear aircraft. 

The Nonlinear Control of Fighter Aircraft research was focused on exploiting recent 

developments in the use of Linear Matrix Inequalities (LMIs) for tailless fighter control system 

design, analysis, and optimization. Specific progress was made in the following three areas: 

• Tailless Fighter Flight Control Design 

• Stability Analysis Of Gain Scheduled and Reconfigurable Flight Control Systems 

• Aeroservoelastic Filter Optimization 

1.1 Research Objectives. Accomplishments and Transitions 

Our research objectives in flight control design addressed the challenges associated with 

tailless fighter system modeling, design, and analysis. Tailless fighters have aerodynamics that 

are very nonlinear, and they are typically unstable in multiple axes. Our flight control design 

research objectives in tailless fighter flight control system design address this nonlinear flight 

control design problem using a linear parameter varying (LPV) approach, and using LMIs, 

design H2 and Hm optimal control systems within this context, using the LPV models to 

represent the nonlinear control system (including gain scheduling). 

The research objectives in stability analysis focused on using LMIs for analyzing 

conventional gain scheduled control systems (currently used in fighter aircraft) as well as 
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reconfigurable flight control systems. In industry, fighter aircraft flight control systems are 

analyzed using conventional linear analysis methods on aircraft models representing a trimmed 

flight condition. These analyses do not address the gain scheduling and time varying parameters 

(some slowly varying, some fast) that are actually present in the flight control system 

implementation and aircraft dynamics. 

In recent years, reconfigurable flight control svstems have emerged and are being flight 

tested in research aircraft. In transitioning reconfigurable flight control systems to production 

aircraft, engineers will need analysis tools to assess stability margins. By modeling 

reconfigurable flight control systems as a gain scheduled LPV system, LMIs can be used to 

assess system stability. The development of this capability was addressed under this research 

program. 

The research objectives in aeroservoelastic (ASE) filter design focused on using LMIs to 

design filter coefficients over a range of flight conditions. The rate and acceleration 

measurements used in flight control systems are corrupted by flexible body motion. Filters are 

designed to remove these signals so that they are not amplified by the control system feedback. 

Typically, notch filters combined with low pass filters are used. These filters must be robust to 

the aircraft's varying mass properties, stores (weapons), and flight conditions. Robustness, 

typically built into the design by using wide notch filters, usually results in large amounts of 

phase lag near the loop gain crossover frequency. For tailless fighters that are unstable in 

multiple axes, this phase lag may be unacceptable Our research objectives in this area were 

focused on developing tools for ASE filter design to improve upon this time consuming and 

difficult problem. 

The following paragraphs briefly summarize the research objective, accomplishments made, 

and transitions on the technology in each area. The LMI software used to perform this research 

was transitioned from Stanford University (Stephen Boyd) to Boeing. Journal papers [1-3] and 

conference papers [4-8] disseminating this research are listed at the end of this chapter in the 

references. 

&-< 
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Tailless Fighter Flight Control Design 

The research objective was to develop LMI based design tools for tailless fighter flight 

control design. Accomplishments include: 1) Deriving a new LQR based approach for pitch 

plane flight control system design, integrating the approach into an automated design tool, and 

transitioning this tool to the National Air Intelligence Center (NAIC) in Dayton; 2) Developing 

design models and LMI software for H2 and H„ optimal control system design. Seventeen 

different H2 and H„ optimal control system designs formulations were implemented. Chapter 

2 summarizes the LMI design problems. These tools have been transitioned to Boeing's 

Guidance and Control Technology IRAD for further maturation and application to aircraft flight 

control system design problems. 

Stability Analysis Of Gain Scheduled and Reconflgurable Flight Control Systems 

The research objective was to develop a LMI based proof of stability tool for reconflgurable 

flight control systems. Accomplishments include development of LPV based models for 

modeling gain scheduled and reconflgurable flight control systems, formulation of the LMI for 

stability analysis, and application of the approach to Boeing's Tailless Advanced Fighter Aircraft 

(TAFA). The LMI analysis was applied to a gain scheduled control system and was used to 

assess system stability in the presence of gain scheduling and time varying model parameters. 

The LMI analysis was also applied to a reconflgurable flight control system designed to 

accommodate battle damage, and was used to assess system stability during reconfiguration of 

the flight control system. These tools were also transitioned to Boeing's Guidance and Control 

Technology IRAD for further maturation and application to aircraft flight control system design 

problems. 

Aeroservoelastic Filter Optimization 

The research objective was to develop an LMI based tool for optimizing ASE filter designs 

to minimize phase lag at frequencies near the loop gain crossover frequency subject to 

constraints on providing a niinirnum gain attenuation at the flexible body modes. This tool must 

also accommodate the aircraft's varying mass properties, weapons load out, and flight 
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conditions. Our accomplishments include the preliminary development of an LMI tool for 

designing these filters, and application of the tool to Boeing's TAFA aircraft model. It was 

found during this research that the LMI problems grew to extremely large size, saturating the 

memory on our workstations. This problem caused limited success in this area. Chapter 4 

discusses the problem set up and our results. 

1.2 Organization of the Report 

Chapter 2 presents theory for H2 and Hm optimal flight control system design, application 

of these design methods to the Boeing TAFA aircraft, and linear simulation results comparing 

conventional and LMI designs. A detailed description of the Boeing TAFA aircraft is presented 

in this report in Appendix A, as well as linear models at key flight conditions (also in the 

appendices). Each Chapter contains at its end the references used in the chapter. 

Chapter 3 details the development and application of LMIs for stability analysis of gain 

scheduled and/or reconfigurable flight control systems. 

Chapter 4 summarizes our progress in developing a LMI based tool for ASE filter 

optimization. 

1.3 Chapter 1 References 

1. K. A. Wise and D. Broy, "Agile Missile Dynamics and Control," Journal of Guidance, 

Control, and Dynamics, Vol. 21, No. 3, 1998, pp. 441-449. 

2. K. A. Wise, "Fighter Aircraft Control Challenges and Technology Transition," Systems and 

Control in the Twenty-First Century, Birkhauser, 1996. 

3. K. A. Wise and J. S. Brinker, "Stability and Flying Qualities Robustness of a Dynamic 

Inversion Aircraft Control Law," Journal of Guidance, Control, and Dynamics, Vol. 19, No. 6, 

1996, pp. 1270-1278. 

4. K. A. Wise and J. S. Brinker, "Nonlinear Simulation Analysis of a Tailless Advanced Fighter 

Aircraft Reconfigurable Flight Control Law," to be published in the Proc. of the AIAA GNC 

Conference, Portland, OR, August, 1999. 

5. K. A. Wise and J. S. Brinker, "Reconfigurable Flight Control for a Tailless Advanced Fighter 

Aircraft," Proc. of the AIAA GNC Conference, Boston, MA, August, 1998, pp. 75-87. 
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6. K. A. Wise and J. L. Sedwick, "Stability Analysis of Reconfigurable and Gain Scheduled 

Flight Control Systems Using LMIs " Proc. of the AIAA GNC Conference, Boston, MA, 

August, 1998, pp.118-126. 

7. K. A. Wise and J. L. Sedwick, "Nonlinear Control Of Agile Missiles Using State Dependent 

Riccati Equations, Proc. Of the 1997 ACC, Albuquerque NM, June 1997, pp. 379-380. 

8. K. A. Wise and D. Broy, "Agile Missile Dynamics and Control," AIAA paper No. 96-3912, 

presented at the AIAA GNC Conference, San Diego CA, August 1996. 
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Chapter 2 

Tailless Fighter Flight Control System Design Using LMIs 

2.1 Introduction 

This chapter presents derivations of H2 and Hx LMIs for controller design and applies 

tnem to a tailless aircraft at a single flight condition. The theoretical results presented in this 

chapter build the foundation for using LMIs in analyzing stability for a reconfigurable (gain 

scheduled) control system that is presented later in Chapter 3. 

In general, H2 and Hx controller design is easily accomplished using control system design 

and analysis packages like MATRTXx and Matlab by solving Riccati equations. The difficult 

problem that these tools do not address is the stability analysis of gain scheduled and/or 

reconfigurable control systems addressed later in Chapter 3. Modeling these systems using LPV 

models and posing the stability question in a LMI framework gives the engineer a new tool in the 

analysis of complicated flight control systems. The derivation of controller design formulas 

presented in this chapter aid in the set up and understanding of the material presented in Chapter 

3. The controller design formulas are presented for LTI systems, then followed by time varying 

systems. The time varying models represent models typically used for gain scheduled flight 

control systems. 

2.2 H2 Controller Design Using LMIs 

This section contains the derivation and LMI problems for rmm'mizing the H2 norm 

between an exogenous variable w and the regulated variable z applied to a linear time invariant 

(LTI) system. Included is the LMI problem for solving the standard regulator problem, and LMI 

problems for linear time varying systems. 

2.2.1 H2 -Norm Minimization 

Consider the plant described by 
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x = Ax + Bxw+B2u Q js 

z = Cxx+Dxxw+Dx2u 

where E{w(x )WT
 (C, )}= 78 (t -C,), and with the state feedback control u = -Kx. The 

controller design problem is to select the feedback gain matrix K to minimize the H2 -norm 

between w and z. This problem is described by 

rmnE\]zT(x)z(x)dx\. (2-2) 
.0 

Define 

p(t)^E{x(ty(t)}>o 

then, using Eq. (2.1) 

E{ZZ
T
}=(CX-DX2K)P(CX-DX2K)

T
 + Ab- 

using zrz = Tr (zzr ) = £ rj* = H* we have 

^{zVJ^rr^z7") 

= 7> [CXPC[ - DX2KPCT
X - CXPKTDX\ - DX2KPKTD^ - DXXDX\ ) 

--Tr(ClCxP)-Tr(CT
xDX2KP)-Tr(PKTDl2Cx)+Tr(Dx2KPK^ 

Defining 

Y=KP 

and the slack variables 

X = DX2KPKTDx
T

2>0 

= DX2KPP-'PKTI$2>Q. 

= DX2YP-]YTDX
T

2>0 

Then, using the Schur complement, this matrix inequality can be written as 
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0     P 

To   o " i 0" "o   DnYP~x' I 0" 

L° p~\ [rTDii p 0        /    J JTDT
n   P 

= 
'DnYP-xYTDT

n   DUY~ 

YTD[2           P 
>C 

= 
-   X      DnY 

_YTD[2      P 
>0 

>0 

Now, 

= Tr(C[C}P)-2Tr(C[DuKP)+Tr(X)+Tr(DnD[l) 

The state transition O(r) satisfies 

Q = (A-B2K)4>,   0(0) = / 

with 

0 

Assuming x0 = 0, 

p(t)=E{x(ty(t)} 

=*(')]>-' (* )^wfc K (CK*'r (C)A^ (0 
0 0 

= (D (/) JO)"1 (x )5I5I
r(D-r (x )ch<bT (t) 

0 

Differentiating yields 

P = (A-B2K)P+P(A-B2K)T+BlBl 

or 

-?+AP - 527+/Mr - YTBT
2 +B$ = 0 

■8- 

gk 

Nonlinear Control 

Of Fighter Aircraft 



Nonlinear Control 

Of Fighter Aircraft 

For stability, we have 

P-AP-PAT + B2Y + YTBT
2 -B.BI £0. 

The controller design problem in Eq. (2.2) can now be reformulated as the following LMI 

problem. 

H2 Controller LMI Problem 

min )TV (C(qP)- 27> (CT
xDl2KP)+Tr (X)+Tr (DUD[X )dt (2.3) 

subject to 

P-AP-PAT+ B2Y + YTBT
2 - BXB\ > 0 

>0 
X      DnY 

YTDT
n     P 

with K = YP~l. 

2.2.2 LMIs For Standard LQR Problems 

A special case of the above H2 design problem is the familiar LQR problem that minimizes 

E\\{xTQX + uTRu)dV 

with QT = Q > 0 and RT = R > 0 for the LTI plant JC = Ax+Bu. For this special case 

z = 
QYl     0 

0    P/2 

Then, 
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c> = 
0 

. Ai = 
"o" 
0 . A2 = 

" 0 " 

r o 1 
ClQ=Q,   C(Dn=0,   Ar,A>=0>   A^ = 

_R/2Y_ 

x = 
0   R/

2
KPK

T
R

T/2 

X    Dnr 

12 rix 

o        o 

0   R/
2
KPK

T
R^

2 

0 YTR 
TA 

o 
R/

2
Y 

This last expression implies that 

R^KPKJR^  R/
2
Y 

YTR 
TA 

>o. 

Also, that Tr (X) = Tr (R^
2
KPK

T
R

T/2
). The following LMI problem solves for the feedback 

gain matrix K. 

LQR LMI Problem 

rpmTr(QP)+Tr(X) (2.4) 
P.X.Y 

subject to 

-AP-PAT+BY+YTBT-W>0 

x    R/
2
Y 

YTR
T

A      p 
>0 

withP = Pr, X = XT, K = YP-1, and W >0 given. 

0L' 
-10- 
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2.2.3 H2 -Norm Minimization For Linear Time Varying Systems 

Another variation of the above H2 -norm minimization problem is to consider a linear time 

varying (LTV) plant where the time variations are introduced by gain scheduling. Consider the 

LTV plant described by 

x = A(t)x + B(t)u + w 

z = QA(t)x + R^(t)u 
(2.5) 

with the state feedback control u = -K (t)x. The controller design problem is to select the time 

varying feedback gain matrix K(t) to minimize the #2-
normbetween w and z over a time 

interval [/min, tmm ]. The following LMI problem solves for the feedback gain matrix K (t). 

LTV LMI Problem 

min     [Tr(Q(t)P)+Tr(X(t))dt (2.6) 
P{!\X(t\Y{t). 

subject to 

P(t)-A(t)P(t)-P{t)AT (t)+B(t)Y(t)+YT {t)BT (t)-W(t)>0 

X{t) Ry*(t)Y(t) 

YT(t)RA(t)        P(t) 
>0 

with P(t) = PT(t), X{t) = XT(t), K{t)=Y{t)p-\t), rmin </</_,and W(t)>0 given. 

In addition to solving this LMI problem, the control designer can minimize the |z|2 and keep 

this norm above a prescribed level. Consider the LTV plant described by 

x = A(t)x + B(t)u + w 

z = Q&(t)x+R%(t)u 

-11- 
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with the state feedback control u = -K (t)x. The controller design problem is to select the time 

varying feedback gain matrix K(t) to minimize the H2 -norm between w and z over a time 

interval keeping the \z\ above f(t). The following LMI problem solves for the feedback gain 

matrix K(t). 

LTV LMI Problem For Prescribed Level Of [^ 

min        y '     ' 
T(I).I*(»U(»).)'(/).7«,  

max 

subject to 

Y(0-r(0>0 

Y-»-Y(0+T(0>0 

y^-HQ(t)P(t))-Tr{X(t))>0 

P(t)-A(t)P(tyP(t)AT{t)+B(t)Y(t)+YT(t)BT(t)-W(t)>0 

x{t)      A%r(0J>0 
YT(t)RA(t)        P(t)     J 

with P(t) = PT(t), X(t) = XT(t), K(t) = Y(t)p-l(t), tmia<t<tmsx,y(t)>0,md W(t)>0 

given. 

2.2.4 H2 Controller Design and Simulation Results 

In this section the H2 LMI controller design problem is applied to the Boeing Tailless 

Advanced Fighter Aircraft (TAFA) model described in Appendix A. A pitch rate command 

flight control system was designed using the LMI standard LQR formulation, and for 

comparison, a robust servomechanism flight control system [7] was also designed. 

LQR Plant matrices 

"-4.281534e+00    1.022817e+01    -7.686167e+01 0.0 
1.029299e+00    -1.889328e+00    5.527753e-03 2.089781e-01 

0.0                     0.0                     0.0 1.0 
0.0 0.0 -3.457440e+03 -9.643200e+01 

-12- 
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B = 

0.0 
0.0 

0.0 
3.457440e+03 

The LQR LMI problem is 

mmTr(QP)+Tr(X) 

subject to 

-AP - PA7 + BY+YTBr -W>0 

X      R^Y 

YrR
rA       p 

>0 

with P = PT, X = XT, K = YP~l, and W > 0 given. The resulting LMI controller gains are 

Kum =[-2.176814e-01   -4.819290e-02   -9.456374e-02]. 

The Robust Servo feedback gains are 

^=[-2.6859336-01   -5.909616e-02   -1.102195e-0l] 

Figure 2.1 illustrates a step response comparing the two designs. Both flight control designs 

produce similar responses. 

•13- 

£-' 



Nonlinear Control 

Of Fighter Aircraft 

1.2 

CM i 

% 1 

©   0.8 
o 
ü 

I   0.6 
E 
o 
Z   0.4 

0.2 

0 

 -, 

^ LMLLÖR 

' T-  

RS_LQF 

i 

i 

0 2 3 
Time (sec) 

Figure 2.1 i/2 Controller Step Acceleration Command Simulation Response 

2.3 #„ Controller Design Using LMIs 

In this section LMI problems are formulated for minimizing the H„ norm between an 

exogenous variable w and the regulated variable z applied to a linear time invariant (LTI) 

systems and for linear t\ne varying systems. 

Consider the plant shown in Figure 2.2, described by 

x = Ax + Biw+B2u 
z = Cix + Duw+Dl2u 

y = C2x + D2iw 

with controller given by 

xk=Akxk+Bky 

u = Ckxk+Dky " 

(2.8) 

-14- 
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w z 

p 
u y 

K 

Figure 2.2 Controller Design Model 

Substituting for y in Eq. (2.8) results in 

xk = Akxk + BkC2x + BkD2lw 

u = Ckxk + DkC2x + DkD2lw ' 

Closing the loop with the plant model (Eq. (2.8)) yields 

x = Ax + Bjv+B2 (Ckxk + DkC2x+DkD21w) 

xk=Akxk+BkC2x + BkD2lw 

z = Qx + Duw+Dn (Ckxk + DkC2x+DkD2lw) 

(2.9) 

Expressing Eq. (2.9) in matrix form defines the closed loop system matrices (Ac„Bd,Ccl,Dcl) as 

*j 

A + B2DkC2   B2Ck 

BkC2 A 
B1+B2DkD2l w 

z = [q+Dl2DkC2   Dl2Ck] + [Du+Dl2DkD21]w 

To formulate the controller design problem within the LMI framework we would like to write 

the closed loop system matrices such that the controller matrix parameters (Ak ,Bk,Ck,Dk) 

appear affinely in the description of closed loop system. Let 

-15- 
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0 = 

and let 

A    Bk 

4 = 

B = 

'A   0" 
0    0 *0 = 0 

c 

"0   B2~ 

I    0 
C = 

"0 

.C2 

I' 

0 

C0 = [Q   0] 

Vn=[0   Dn]   Z>21 

0 

D. 21 

Then 

Acl=\+B®C 

Bcl=B0 + BQV2l 

Ccl=C0 + VnQC 

The fact that the controller parameter matrices appear affinely in the closed loop system is key to 

using an LMI to solve for the controller that yields internal stability and provides an 4 gain 

from w to z 

\zTzdx < — jwTwdx 

To proceed, the Bounded Real Lemma can be used to rum the H„ controller design problem into 

a LMI. 

Lemma 1 

Consider a continuous time transfer function T(s) (not necessarily niinimal) with realization 

T (s ) = D + C (si - A )"' B. The following statements are equivalent: 

i) D+CisI-Aj'B^  <yandRe(X((^))<0, 

&-' 
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ii) There exists a symmetric positive definite solution X to the LMI 

ATX + XA   XB    CT' 

BTX       -y/    DT 

C D    -yl 

<0. 

For a proof of this lemma see references [1] and [2]. The above LMI can be shown to be 

equivalent to the more familiar Algebraic Riccati Inequality by using the following lemma. 

Lemma 2 

The matrix 
Q   s 
ST   R 

< 0 if and only if R< 0, and Q-SR~lS' < 0 

Proof of Lemma 2 

Q   s 
ST   R 

I   SR-1 

0     / 

Q-SR-'S'    0 

0 R 

I      0 

R-lST   I 

Now, consider the LMI stated in condition ii). Partition it as follows 

ATX+XA    XB 

BTX       -yl 

C   D 

which is equivalent to 

ATX+XA    XB~ 

BTX       -yl_ 

Combining results in 

.     CT' 
1     DT 

:     -7/ 
<0 

CT 

DT 
—[C   D]<0. 
-y 

ATX+XA+y'lCTC     XB+y~'CTD ' 

BTX+y-'DTC      y~'(DTD-y2l) 
<0 

which is equivalent to 
-17- 
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a(D)<y 
ATX + XA+r'CTC+y(XB+rXCTD)(fl-DTD){BTX+r'DTC)<<) 

which is the Algebraic Riccati Inequality associated with the Bounded Real Lemma. 

Now, consider the description of the closed loop system which is affine in the controller 

parameter 0. Our approach is to solve a LMI problem to obtain X and 0. To proceed, 

consider the following lemma 

Lemma 3 

Given *F = *Fr e Rmxm, and two matrices P and Q of column dimension m, find a matrix 0 

such that 

V + PTQQ+QTeP<0 (2-10> 

Denote WP and WQ as any matrices whose columns form a basis for the null space of P and Q, 

respectively. Then the inequality in Eq. (2.10) is solvable for 0 if and only if 

W^WP<0 

W*y¥WQ<0' 

For a proof of this lemma see references [2] and [3]. By combining Lemma 1 and Lemma 3, we 

obtain the following theorem which a states the necessary and sufficient conditions for the 

existence of an Hm (suboptimal) controller. 

Theorem 1 

Consider the proper, niinimal plant P(s). Define 

V=[ß   0   Z#] 

Q=[C   V2X   0] 

-18- 
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and let Wv and WQ be two matrices whose columns span the null spaces of V and Q, 

respectively. Then the Hm controller can be found if and only if there exists some positive 

definite matrix Xd such that 

W^xWp<0 

where 

4V = 

-\nT A0Xd+XclAQ     B0    XdC0 

T, 

Bl        -yi A7; 
c«x;{       A, -yi 

~A\xd+xd\  XdB0 tfl 
BlXd         -y/ Ar, 

Q          A. -yi 

\-l Proof: From Lemma 1, the controller K(s) = Dk+Ck (sI-AkJ Bk is an Hm controller if and 

only if the LMI 

<0 

holds for Xcl < 0. Substituting fci {Ad,Bd,Cd,Dd) gives 

AiXd + xclAd XdBc, cl 
BclXcl -yi Dl 

C« A, -yi 

A0Xcl+XdA0   XdBQ    C0 

-7/    A7". 
A.    -7/ 

B0Xd 

CT@TBXcl+XdA,   0   £r0r££ 

v2\©BTxd      o z^©7"^ 
0 0 0 

XdBQC XdBQC 0 

0 0 0 

£>120£ Z>120Z>21 0 
<0 

■4) "^C/ + -!*c/"4>         -* c/-°0 cl 
^o%            "0" A7; 

Q           A. -y/ 

.vd 

CT 

■^21 

0 
©T[BTXd   0   Zg] + 

''JTri 

XclB 
0 

£ 12   . 

Q[C V2] O]<O 

>£ 

-19- 
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(2.11) 

Note that 5^ ^J^   0   v£\ where P =[B   0   Ztf]. Thus, 

Py     = P 

xcl 0 0" 

0 I 0 

0 0 0 

The left null space of V is related to the left nullspace of PXd by 

W0   = 
x;l 0 0 

0 / 0 

0 0 0 

wD 

Now, using Lemma 3, we can eliminate 6 from Eq. (2.11) obtaining 

Wl 
\*-J o  o" \x-J 0   0 

0 /   0 Vx 0 /   0 

0 0   0 0 0   0 

WP<0 

W^xWP<0 

and 

Kvxwe<vM 

Theorem 1 says that the set of //„ controllers is non-empty if and only if there exists a matrix 

Xd satisfying W^xWP<0 and W£*¥xWe <0. This characterization involves both Xd and 

it's inverse X'J. These conditions can be reduced to the more familiar H„ Riccati equations as 

follows. 

-20- 
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Theorem 2 

Consider the proper, minimal, plant P(s) of order n. Let WX2 and W2X denote null spaces of 

(l-Dx\DX2)BT
2 and (/-AÄ)Q> respectively. Then, the //_ controller (for fixed y) is 

solvable if and only if 

i)   max{ä(A,),ö(Ä1)}<Y 

ii) There exists symmetric positive definite matrices R and S such that 

WT 
"12 AR + RAT-yB2B2

T + 
CXR 

A — 

Tr 

WT 
"21 

ATS+SA-yC2
TC2 + 

-if 

BfS 

LA J 

yi -Ai 
A  — 

-A7; Y/. 

y/ -Ai 
-Ai Y' . 

-A 

XJ 
^12 <0 

-,\ 

W2X<0 

(2.12) 

(2.13) 

where 

B2=B2D;2   A = A-B2CX   Bl=Bl-B2Dll 

CX=(I-DX2D;2)CX Du=(l-DnD;2)Du 

C2=DX
+

2C2 A = A-BXC2 CX=CX-DXXC2 

BX = BX(I-D;XD2X) DXX=DXX(I-D;XD2X) 

and rank(I-RS)<k (where k is the order of the controller). Using X = IR~* and Y=yS~\ 

along with the simplifying assumptions 

A, = o DX\[DX2 cx]=[i o] D2X[D
T

2X  #]=[/ o] 

the above Algebraic Riccati Inequalities (ARIs) can be written as 

-21- 
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ATX+XA+x(y-2B]B[-B2B
T

2)X+ClCl<0 

AY+YAr
+ Y(y-2Ci

TC1-CT
2C2)Y+BlB( <0 

X>0   Y>0   p{XY)<y2 

which are the more familiar H„ Riccati expressions. 

The proof of Theorem 2 is based upon Theorem 1 and introduces notation and algebra common 

to much of the published literature on LMIs. 

Proof: From Theorem 1 the set of Hm controllers in non empty if and only if W$<bxWv < 0 

and WlVr Wo<0 for some Xcl >0 of dimension (n + k)x(n+k) (k is the order of the 

controller). To express these inequalities in terms of the plant state space model, partition Xcl 

and X'J as 

Xc = 
S     N 

and X;l = 
R     M 

MT    * 

Substituting these into 4>x   yields 

<^ = 

AR + RAT    AM     r\      RQ 

MTAT        0 0     MTC] 

CXR 

o    -yi    DT
n 

-yi CM   A, 

with V- 
0     Ik   0     0 

BT
2     0    0   D\2 

The nullspace of V, ker (P ), has the form 

Wv = 

\wx 0" 

0 0 

0 I 

w2 0 

-22- 
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where ker(P) = 
W, 

w, 2J 
,i-e.,[5j   A'] = [0   0]. Noting that the second row of Wp is 

zero, the condition Wl® x Wv<0 reduces to 

Wx    0 AR+RAr Bx     RC? 'Wx   0 
0    / $ -?/ A3; 0    I 

W2   0 QR Ai   -y* W2   0 
<0 

Re-arranging results in 

ker(i?)   0 
0       / 

AR+RAT   RCl 

C,R 

%    A7; 
A. 
-7/ 

ker(tf)   0 
0       / 

<0 

The next step consists of expressing ker (R) in terms of the plant matrices. 

ker(R) = 

where B2 = B2D?2, then B2Ui2 = B2D*2Un = 0. Next, we see that 

wn 0 " '  h 0 " ~W 0" 

L-4X un\ Ui Uu\ 0 /_ 

0 

-BT
2    Ux 

Wn   0 
[if   Ar

2]ker(Ä) = [5[   Z«] 

= [BT
2-D^BT

2    Dl2UX2] 

=[*[-Ar
2A

+/4r  AÄ][^2  ° 

= "(i-Ar
2A

+/K  AÄ][^2  ° 
= [o o] 

Substituting for ker(i?) gives 

0     I 

W12   0 
0    / 

X  o 
0    I 

w„   0 

-23- 
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wn 0 0" 
T 

BT
2Wn ua 0 

0 0 / 

AR + RA1 

CXR 

RC( 

if      A7! 
AL 
-yi 

wn 0 0" 

-BT
2Wn ul2 0 

0 0 / 

<0 

Combining terms results in 

W?2(AR + RAT-yB7Bl)wn   Wx
T

2RCT
xUn    Wfa 

uT
ucxRWn -yu(2ul2   Ux\Dn 

BX
TWX2 DT

nUn        -^/ 

<0 

Further simplification can be made by using UnUT
n =1- DX2DX2, resulting in 

WT(AR + RAT-yB2B
T

2)wi2   WX
T

2RCT
X    W& 

CXRWX2 

B\Wn 

-yi     A: 
A»      -*i* 

<0 

which is equivalent to Eq. (2.12). A similar proof is constructed for Eq. (2.13). ■ 

The following sections summarize H„ controller design formulas, followed by design results 

applying the //„ LMI controller to the Boeing TAFA aircraft. 

2.3.1 State Feedback ARE //„ Controller Formulas 

The //„ controller formulas presented in this section solve an algebraic Riccati Equation 

(ARE) formulas to yield a state feedback control u = -Kx. Consider the following LTI plant 

x = Ax + Bxw+B2u 

z = Cxx + Dxxw+Dx2u 

The control is obtained by solving the ARE for P 

ÄTP + PÄ + Q-PRP = 0. (2.14) 

The feedback gain matrix is 
-24- 
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K = (RUBT
2 + RnBT

x )P + (RUD(2 + RnDT
n )CX 

where 

Rn=-D+DnZ 

Rn=D+D+T+RuZ-xRli 

DU=UDU 

A A A  —     A 

A = A-B1ZD;1C1 

B2=B2D
+ 

A = A-B2CX 

Q = Cf(l-DnZD{i)c> 

R=B2B2
T
+B\ZB( 
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(2.15) 

5,=B,-52A, 

U = I-Dl2D
+ 

C^UC, 

23.2 H„ Controller LMI Problem 

The LMI problem summarized here solves for the optimal y and forms the state feedback 

control u = -Kx. This problem is similar to the LMI controller design problem posed by 

Gahinet and Apkarian in [2]. This problem set up is applicable to extensions made in applying 

LMIs to gain scheduled systems. 

Consider the LTI plant described by 

x = Ax + Blw+B2u 
z = Qx+Dnw+Duu 

(2.16) 

The controller design problem is to select the feedback gain matrix K to minimize the i^-norm 

between w and z. 

H„ Controller LMI Problem 

minv (2.17) 

subject to 

-25- 
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-AR-RAr+yB2B
T

2    -RC(    -B\ 

-CXR Y/„,     -A. 
-B -A7;   yk 

>0 

R>0 

K = (RuBT
2+RnB()R + (RnD^ + *12A

r>)Q 

wiJi 

R„=-D+DUZ M2 

.+ 7-1+7"   ,    D    V-1 DT RU=D+D+1+R12Z-'R{2 

Du=UDn 

r]=D;lDn-y2I 

B2=B2D+ 

A = A-B2Cl 
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Bl=Bl-B2Du 

U = I-DnD+ 

Q=uq 

Consider the following graphic illustrating the optimization software's convergence to the 

optimal Y • 

Phase 1 
Feasible Solution 

Optimization 
Path 

Figure 2.3 Hx Controller LMI y Optimization 
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The LMI optimization software begins by finding a feasible solution within the feasible region, 

denoted by X in Figure 2.3, and then converges to the optimal y^. As y approaches y^ this 

often leads to ill conditioning in the #„ problem, where very small numerical changes in y 

produce very large changes in the magnitude of the feedback gains. H„ practitioners [4] then 

back off on the numerical value for y, making it larger, thus making the feedback gains 

reasonable (for implementation) leading to a sub-optimal control. The next LMI problem setup 

addresses this fact within the LMI framework. 

2.3.3 Hm Controller LMI Problem With Lower Bound Constraint 

The LMI problem summarized here solves for a sub-optimal y along the optimization path 

(shown in Figure 2.3) and forms the state feedback control u = -Kx. Consider the LTI plant 

described by 

x = Ax+Blw+B2u 
z = Cxx + Dnw+Dnu 

(2.18) 

The controller design problem is to select the feedback gain matrix K to minimize the H„ -norm 

between w and z. 

Hx Controller LMI Problem 

*niny (2.19) 

subject to 

nT -AR-RAT+yB2Bl   -RC(    -5, 

-CXR yln,    -A. 

-Ar -A'    Y4. 

>0 

R>0 

y-y >0 

K = (RnBT
2 + Rl2B[ )R + (RnDT

n + RnDT
n )C, 

with 
-27- 
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Rl2=-D+DuZ 

Ru=D+D+r+RnZ-]Rl2 

B2=B2D
+ 

A = A-B2C1 

Bx = Bx-B2Dn 

U = I-DnD+ 

CX=UCX 

DU=UDU 

-7-1 _ n-in     v2T 

and y > 0 given as the desired sub-optimal gain. 

Figure 2.4 illustrates the solution from this LMI problem. In this LM1 problem the software 

minimizes y along the optimization path subject to the constraint that y -y > 0. 

Phase 1 
Feasible Solution 

Optimization 
Path 

Figure 2.4 Hx Controller LMI y Optimization With Lower Bound Constraint 

Here the optimization software is constrained in the minimization of y to keep y - y > 0. The 

lting controller using this design has feedback gains that are much smaller in size, and as a resu 
result does not amplify sensor noise. We refer to this as gain conditioning. 

2.3.4 Methods Used To Improve Numerical Accuracy And Conditioning 

This section discusses an additional constraint that was added to the LMI problem in order to 

satisfy the LMI constraint in Eq. (2.17) to within an el, and a weighting matrix added to 

improve numerical conditioning in solving for the H^ controller. 
-28- 
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Let 

L(y,R)= 

-AR-RAT+yB2Bl   -RC(    -B\ 

-C,R yl„,     -Ai 

-AT -Ai   yin. 

The LMI problem in Eq. (2.17) uses the constraint that L(y,R)> 0. Figure 2.5 illustrates 

bounding L(y,R)>0 by ahypersphereofradius e.i.e. 0<L(y,R)<eI. 

L(y,R) 

Constraint Added To 
Make L(y,R) Small 

Figure 2.5 Bounding L(y,R) With zl 

When using an ARE (Eq. (2.14)) '.o form the control gain matrix one can put the solution matrix 

P back into the ARE to see how well the ARE is satisfied (usually the ARE produces a matrix 

that is not zero). To improve how well the inequality is satisfied, we investigated constraining 

L (y, R ) by adding 0<L(y,R)<eI asan additional constraint in the LMI problem. We found 

this had no effect on improving how well the inequality was satisfied. 

In addition to investigating the above constraint, we also examined various scaling matrices 

to eliminate ill conditioning in the R matrix. The scaling was added to the LMI constraint in Eq. 

(2.17) as GL(y,R)GT > 0. Eigenvalues of the R matrix were examined to scale the matrix to 

improve the condition number.  Like before, we found that this had no effect on the numerical 

accuracy in satisfying the LMI constraints. 
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23.5 An H„ Controller LMI Problem With Gain Conditioning 

The LMI problem summarized here optimizes y, while at the same time incorporates a lower 

bound constraint on y by using a bias Ay . (This LMI problem incorporates gain conditioning 

in the LMI problem setup as discussed previously in Section 2.3.3. 

Consider the LTI plant described by 

x = Ax + B1w+B2u 

z = C^x + Dnw+Dx2u 
(2.20) 

The controller design problem is to select the feedback gain matrix K to miriimize the H„ -norm 

between w and z. 

H^ Controller LMI Problem 

subject to 

miny 

~            A                                A                              A        A _ 

-AR-RA7 +yB2B
T

2 -AC,7" -A 
-CXR Ik 

A 

-B? -« yi*. 

>0 

R>0 

-ARn-RmAT+AyB2B
T

2    -RmCT
x      -Bx 

-QRm Ay/.,      -A,   >0 

-B\T -A,     AY/fl. 

y-y =Ay 

K = (RuBT
2+Rl2B[)Rm +(RnDl

T
2+Rl2D(i)Cl 

(2.21) 

with 
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Rn=-D+DuZ 
iDr 

B2=B2D+ 

A = A-B2Q 

5, = B,-B2DU 

U = I-DUD+ 

Q=UQ 
Rl,=D+D+T+Rl2Z-'R(2 

= Dn=UDu 

Z-^A'.'A.-Y2/ 

and f >0 given. 

Note that the feedback gain matrix K is calculated using the matrix R„. This problem set up 

accomplishes the goal of making the feedback gain magnitudes reasonable. Unfortunately, it 

makes the LMI problem size very large. 

23.6 H„ Controller LMI Problem For LTV Systems Caused By Gain Scheduling 

In Packard and Becker [5,6] the problem of designing gain scheduled H„ controllers was 

addressed. In this work the problem was made simple by assuming that a constant global y 

could be found that would apply over the entire flight envelope. This is a poor assumption for 

flight control systems because the desired dynamics/response (for an aircraft or missile) greatly 

varies with speed and altitude. 

Consider the problem of scheduling the control gain matrix with a parameter / as 

follows: 

Scheduling Parameter 

'l<2 
i  i   i +4-4- 

'N 
■> t 

Not Necessarily A Uniform Grid 

This requires gridding the parameter space. At each grid point a Hm controller is designed using 

an optimal control (Ymin) and solution matrix R good at each grid point. In the implementation 

the control is no longer optimal because of Y and R variations caused by the scheduling. From 

the LTI case, Eq. (2.17), R =yP~l with R = 0. Now, 
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at 

=Yp-i+Yp-ipp-i 

This leads to 

yp-lpp-i=yp-l_p 

= i-R-R 
(2.22) 

The LMI problem of calculating the optimal control for linear time varying systems requires 

including the variations due to the scheduling. This leads to the following LMI problem: 

w   Controller LMI Problem 

miny 

subject to 

R-iR-AR-RAr+yB2Bl -RC( -B\ 
y 

-CXR                  yi„, -Ai 

-%             -A7; yi. 

>0 

R>0 

K = (RnBT
2 +R12Bl)R + (RuD^+RnDl,)C, 

with 

Du=UDn 

Z-l=DjDn-y2I 
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(2.24) 

D+ = D;1 Bx =B1-B2DU 

R12=-D+DUZ 
B2=B2D

+ U = I-DnD+ 
R„=D+D+T+ Ä,Z_1Är, A                                             A A 

A = A-B2Q c, = ucx 
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In Packard [5,6] the y term in Eq. (2.24) is assumed to be zero because y is global, and then 

basis functions are used to approximate R. This simplifies the problem. In this research this 

term is included. 

In aircraft and missile applications, the following process is recommended for developing 

flight control designs. First, develop point designs over the flight envelope by gridding the 

scheduling parameter space. Next, fit a surface to the resulting optimal y designed at each 

discrete point as shown in Figure 2.6 

fit 1 l2 *N Scheduling 
Parameter 

Figure 2.6 Surface Fit To Optimal y 

This surface models the relative "size" of the y 's, and the variations caused by the scheduling 

parameters. Next, scale this surface by the scalar parameter |X, also shown in Figure 2.6. Now, 

use polynomials as basis functions to represent R and y as follows (a is the scheduling 

variable): 

R = R0+Rxa + R2a
2+~-+RfiLi 

R = R1+2R2a+---+5RfL* 

y=y0+y,a+y2a
2 

y-=Yi+2y2ct 

The LMI problem becomes 

min    y 
R0,Rt,R1,-,R,,tL 

subject to 

(2.25) 
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R-±R-AR-RAT+-<[B2B
T

2 -RCT
X -B\ 

1 
-QR Vn, -Ai 
-Bl -A7": 1U 

>0 (2.26) 

R>0 

Now the LMI optimization variables arejiandJ^.Ä,,^,—.Ä,. The term - in Eq. (2.26) is 

now a known function, capturing the variations introduced by the flight envelope. 

2.3.7 Hm Controller Design and Simulation Results 

In this section a pitch rate command flight control system was designed using the Hm LMI 

controller design problem stated in Section 2.3.2. The design problem was applied to the Boeing 

Tailless Advanced Fighter Aircraft (TAFA) model described in Appendix A. For comparison, 

the standard ARE approach using y -iteration was used to design a Hm flight control system 

(presented in Section 2.3.1). The design results showed that both controllers performed the 

same. 

Plant matrices 

"-4.281534e+00 1.022817e+01 -7.686167e+01 0.0 0.0 0.0 

1.029299e+00 -1.889328C+00 5.527753e-03 2.08978 le-01 0.0 0.0 

A 0.0 0.0 0.0 1.0 0.0 0.0 
A = 

0.0 0.0 -3.457440e+03 -9.643200e+01 0.0 0.0 

-1.35469 le+00 0.0 0.0 0.0 -1.275106e-03 0.0 

1.50777 le+03 0.0 0.0 0.0 0.0 4.018092e+02 
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0.0 0.0 

0.0 0.0 

0.0 
3.457440e+03 

B2 = 
0.0 
0.0 

0.0 1.35469le+00 

0.0 0.0 

-9.010294e-01   0.0 0.0 0.0 1.503492e+00 0.0 
7.557224e+01   0.0 0.0 0.0 0.0 1.995138e+01 

0.0 0.0   -3.457440e+02   -9.643200e+00 0.0 0.0 

A = 
0.0 

0.0 

3.457440e+02 
A = 

'9.010294e-01 

0.0 

0.0 

The LMI controller gains are 
K

LMI ~ [-2.283433e+01   -2.242353e+01   1.840982e+O2   8.538090e+00   5.152192e+01   -5.398792e-0l] 

The //_ ARE feedback gains are 

£^=[-7.9166606-01 -7.164470e-01 4.918770e+O0 2.491234e-01 1.639036e+00 -3.16920le-05] 

Figure 2.7 illustrates a step response comparing the two designs. Both flight control designs 

produce similar responses. 

&-' 
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Figure 2.7 H„ Controller Step Acceleration Command Simulation Response 
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Chapter 3 

Stability Analysis Of Reconfigurable and Gain Scheduled Flight Control 

Systems Using LMIs 

3.1 Introduction 
Stability analysis methods currently used by industry for analyzing gain scheduled flight 

control systems do not address the time varying parameter dependence of the models used in the 

analysis. The proof of stability for these conventional control laws is provided by linear analyses 

(gain and phase margins) at discrete points in the flight envelope and by extensive numerical 

simulation in non-real-time and real-time simulators. However, proving stability by numerical 

simulation may not find all the flight conditions where the aircraft's stability and flying qualities 

fail to meet requirements. This approach can also be very expensive in manpower and schedule. 

The development of a proof-of-stability tool capable of analyzing gain scheduled control laws, as 

well as reconfigurable flight control laws, will significantly reduce development costs and will 

provide confidence that the control laws will work. 

In addition to providing normal mode operation, fly-by-wire digital flight control systems are 

being designed to be reconfigurable and damage adaptive [1]. This capability, once matured, 

will greatly improve flight safety. However, it complicates the analysis of the flight control 

laws. In this paper the reconfigurable control laws are designed to be similar to gain scheduled 

control laws. This is not true for all reconfigurable control law designs, and the analysis methods 

developed here may or may not apply to all reconfigurable flight control systems. In our case the 

reconfigurable control laws are scheduled with parameters that, if known, would stabilize the 

aircraft and provide the pilot with control over its trajectory. 

Conventional linear stability analysis (point designs with linear analysis) of reconfigurable or 

gain scheduled flight control laws always raises the a question of validity due to the 

transient/time varying nature of the problem. For gain scheduled flight control laws the gains are 

often scheduled with angle-of-attack, which may not be slowly varying in modern fighter 

aircraft. For reconfigurable controls, the control laws often change very quickly with the 
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identification of a failure or damage. If these systems can be adequately modeled using time- 

varying parameter dependent models, then linear matrix inequalities (LMIs) can be used to 

analyze stability. 

There has been much recent progress made in using LMIs for control system analysis and 

design [2-7]. For the past few years the CDC and ACC conferences both have had special 

sessions and workshops in which LMIs have played a central role. Doyle [7] appropriately refers 

to these developments as a "postmodern control theory." Virtually all aspects of control are 

being developed: optimal realizations; controller synthesis; norm scaling; multiplier synthesis, 

and robustness analysis/synthesis for real parameter variations. Boyd [4] outlines many of the 

control synthesis problems which can be posed as LMI problems. 

The following table lists four categories we have used to describe the scheduling parameters 

for parameter dependent models: 

Category Scheduling Parameters 

I Known Slow 

II Known Not Slow 

III Inaccurate Slow 

rv Inaccurate Not Slow 

Category I models contain systems whose parameters are known and do not vary with time. This 

is the analysis model that is assumed for conventional gain scheduled flight control systems used 

in industry. Issues for this catego-y include: 1) Implementation of the gain schedule (rates) and 

the finite approximation of a continuum (interpolation strategy); 2) Accuracy of local stability 

analysis based upon point design and analysis. 

Category II contains systems whose parameters are known and vary with time. Here the gain 

scheduling parameter space is gridded and at each grid point there is a polytope of parameter 

rates. If parameter dependent Lyapunov functions are used for analysis, the derivative of the 

Lyapunov matrix (P) must be included. This creates a partial differential inequality analysis 

problem, requiring approximation methods for solution. 

Category HI contains systems whose parameters are not precisely known or measurable and 

do not vary with time. For this problem one could set up a polytopic linear matrix inequality, 

-39- 

gk 



Nonlinear Control 

Of Fighter Aircraft 

and prove stability by finding a Lyapunov function that, when using the control gains at a fixed 

grid point (the centroid), is valid within a convex region about the centroid grid point as well. 

Category IV contains systems whose parameters are not precisely known or measurable and 

vary with time. This problem can be addressed by coupling the techniques used to address 

Category II and III systems. 
In this research we are trying to exploit the recent developments using LMIs for parameter 

dependent systems to produce a method/tool that can be used to analyze the stability 

characteristics of reconfigurable flight control systems. Our approach requires modeling the 

closed loop system dynamics in such a way that LMIs can be applied. This approach is very 

similar to the ongoing research of Packard, Becker, Balas, Gahinet, Apkarian [2,3] and others 

who are developing algorithms for linear parameter varying gain scheduled control system 

design. To proceed we must develop a model of the aircraft that is parameterized with the 

amount of battle damage sustained. A coupled pitch-roll-yaw model is developed in Section 2 

that is parameterized with wing damage. In Section 3, a gain scheduled control law for the pitch- 

plane is designed and scheduled with the damage parameter. In Section 4, our approach for 

analyzing stability using LMIs is presented. Two tutorial examples using linear time invariant 

systems are presented illustrating the stability guarantees from the LMI analysis. The approach 

is then applied to the tailless fighter model using a control that is gain scheduled with the amount 

of wing damage. To reduce the computational burden associated with the LMI problems to be 

solved, only the pitch-plane is analyzed. The final section discusses conclusions. 

3.2 Tailless Fighter Model With Battle Damage 

High fidelity nonlinear simulations are often used to produce linear models of the aircraft's 

dynamics. Once in linear form, control laws are designed and analyzed, and are then 

"scheduled" with parameters that describe the operating point or flight condition. The idea here 

is to create a set of linear models for the aircraft's dynamics and control laws, based upon these 

scheduling parameters. The control laws will then be designed in a conventional way, based 

upon point-wise models, but the set (using a closed loop system) will be used for analysis. 

Consider the linear differential inclusion (LDI) [4] given by 
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where Q^r, The LDI can be thought of as describing a family of linear time varying (LTV) 

systems. Specific LDIs of interest include linear time invariant (LTI) systems, where Q is a 

singleton. For LTI systems, the LDI reduces to 

x = Ax + Buii + Bww 

z = Cx+D„u + Dzww 
(3.2) 

with 

Q = 
A    Bu     Bw 

When a is a polytope, the LDI is a polytopic LDI (PLDI), with Q described by a list of its 

vertices in the form 

£l = Co< \A *.J B*,\ A Ki Kj. 

.c> A.4 A-.i. 
> [cL On* DmX 

This characterization of the LDI Eq. (3.1) is used in our approach. In Boyd [4] the idea of using 

LDIs to analyze nonlinear systems of the form 

x = f(x,u,w,t) 

z = g(x,u,w,t) 
(3.3) 

is discussed. If, for each (x,u,w,t) there is a G(x,u,w,t)e Q. suchthat 
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f(x,U,w,t) 
g(x,u,w,t) 

= G(x,u,w,t) (3.4) 

then certain important properties about the nonlinear system can be inferred from analysis of the 

LDI (such as the trajectories converging to zero, etc.). Conditions for the existence of G are 

/(0,0,0,0) = 0, g(0,0,0,0)=0,and 

3/ 
dx 

3/ 
du 

3/" 
3H- 

3? 
dx 

3« 
du 

3? 
eQ     \/x,u,w,t. 

Aircraft and missile models (Eq. (3.3)) are typically modeled using forms similar to Eq.(3.4). 

Here we are proposing to model the aircraft dynamics using Eq. (3.4), under battle damage, and 

form a linear parameter dependent model of the dynamics. 

The aircraft under study is the Boeing Tailless Advanced Fighter Aircraft (TAFA) model. 

Brinker [1] contains more descriptions of the baseline TAFA aircraft, control laws, control     . . 

effectors, and damage models. 

A high fidelity six degree-of-freedom (6DOF) simulation of the TAFA was constructed in 

MATRIXx. Using the "trim" and "linearization" features of MATRIXx, 1 g linear models were 

extracted from the 6DOF with varying levels of b<Ae damage (wing missing). The linear 

parameter dependent model presented in this section is a model of the coupled pitch-roll-yaw 

dynamics at a low altitude high speed flight condition (h=0 ft., Mach = 0.9) with battle damage 

(wing missing). 

The battle (wing) damage was parameterized by the variable pD e [0,1], where 0 represents a 

healthy aircraft, and 1 represents a severe damage mode with the entire right wing missing. 

Intermediate values of pD, say 0.1, represents the outer 10% of the wing missing. The linear 

parameter dependent state space model is given by: 

x = A(pD)x + B(pD)u. 
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Using increments of 0.1 for pD, eleven models were extracted from the 6DOF for different 

levels of wing damage. The elements of the A and B matrices were then fit using polynomials in 

pD. Linear, cubic, and quintic polynomials were used to model the matrix elements. For the 

quintic polynomial, the matrices are reconstructed as follows: 

A = A0+AlpD+A2p
2

D+A3p
3

D+A4p
i

D +4po 

B = B0+BlpD+B2pl+B3pl+BAp
4

D
+B5pD 

To determine which polynomial model to use, the polynomial approximations were compared 

with the matrices obtained from the 6DOF. Error matrices were formed for each polynomial 

model using E = A - A, and the norm of the error matrix was calculated. The |£|, |E|2, ||£|L, 

and |£|   norms were all used to measure the accuracy. Figures 3.1 and 3.2 show numerical 

results comparing linear, cubic, and quintic polynomials as a function of wing damage parameter 
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A Matrix 

5th Order Polynomial 
Selected To Form LPV Model 

0.4 0.6 
Damage Parameter Rho 

Figure 3.1 Polynomial Approximation Of The A Matrix 
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B Matrix 

5th Order Polynomial 
Selected To Form LPV Model 

0.4 0.6 
Damage Parameter Rho 

Figure 3.2 Polynomial Approximation Of The B Matrix 

Figure 3.1 shows that the linear and cubic polynomials in pD do not adequately model the A 

matrix (at pD close to zero and at unity). The quintic polynomial maintains the norm of the 

error less than 0.5, and was selected to model the dynamics. Figure 3.2 shows that the wing 

damage parameter pD enters linearly into the B matrix. As a result, the linear polynomial 

adequately models the wing damage control powers.  Numerical values for the quintic 

polynomial coefficients can be obtained electronically by contacting the first author at 

kevin.a.wise@boeing.com. 
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3.3 Gain Scheduled Flight Control Design 

A pitch rate command flight control design was developed to accommodate the varying 

levels of wing damage based on the Robust Servo Linear Quadratic Regulator (RSLQR) 

formulation [8]. The RSLQR is based on a linear time invariant (LTI) optimal control solution 

that produces a constant gain state feedback controller which is then gain scheduled with the 

amount of wing damage pD. To produce an output feedback implementation, projective control 

theory [9] is used to project the dominant eigenstructure of the state feedback RSLQR design 

into an output feedback design. 

Figure 3.3 illustrates the pitch rate command controller architecture. This controller 

architecture uses pitch rate and normal acceleration feedback. Integral control is employed on 

the pitch rate command error to provide zero steady state error to a step command. An aircraft 

with multiple longitudinal plane control effectors can be accommodated via a predefined control 

mixing, in which the mixing can also vary with flight condition. This approach ensures that the 

control effector blending is smooth across the flight envelope, and thus prevents excessive 

surface motion due to gain schedule variations. 

The stick shaping logic required for implementation is not designed in the RSLQR process. 

Instead the stick shaping is set in the 6DOF controller implementation to achieve a desired pitch 

response sensitivity. In the 6DOF implementation the stick actually commands normal 

acceleration which is then converted to an equivalent pitch rate command prior to entering the 

LQR command structure. 
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Figure 3.3 Longitudinal controller structure. 

The feedback gains for this output feedback controller were designed using an automated tool 

that adjusts the LQR penalty matrices. The gain matrix K for the output feedback contains 3 

gains. It* location in the inner loop control architecture is shown in Figure 3.3. Figure 3.3 also 

shows a splitter gain used to feed-forward the command directly to the virtual actuator. This 

gain has proven to be very important in shaping the zero dynamics to get good flying qualities. 

Figure 3.4 shows the resulting feedback gains and splitter gain plotted against the wing 

damage parameter pD. The negative of the gains were plotted using a logarithmic scale to 

highlight the magnitude changes. Several of the gains have significant magnitude changes 

between design points. 
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K spl 

K Nz 

K. 

K intq 

Figure 3.4 Pitch Controller Output Feedback Gains 

Analysis results for each of these point designs is shown in Figure 3.5 along with the target 

values for the flying qualities. To evaluate the flying qualities a low order equivalent system 

(LOES) was fit to the closed loop frequency response. The LOES model is 

K(s + I*)e T„s 

8&fc*    *2+2CJpav+< 

A maximum liklihood tuning algorithm was used to adjust the model parameters. The tuning 

algorithm used the error in matching the target parameters ((Osp, C,sp, 4), a minimum stability 

margin requirement (6 dB and 45 deg. phase), and number of iterations (10) as stopping criteria. 
-48- 
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The analysis results show that the LQR tuning algorithm was able to obtain identical flying 

qualities as the healthy aircraft for values of pD < 0.5, but did not converge (using a strict set of 

criteria) for larger values of p0. At the larger values of pD the phase margin requirement 

terminated the design process. Further trade studies could be performed relaxing requirements to 

further improve the match with the target flying qualities. 

0 0.5 1 
Damage Parameter Rho 

0 0.5 1 
Damage Parameter Rho 

Damage Parameter Rho 
8 26 

0 0.5 1 
Damage Parameter Rho 

Figure 3.5 Point Design Flying Qualities Analysis 
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3.4 Stability Analysis Using LMIs 
The key to using LMIs for proving stability is to model the system as a linear parameter 

varying (LPV) system and to use a standard Lyapunov argument for proving exponential 

stability. First, consider the linear system given by 

x(t)=A(t)x(t). (3-5) 

Trajectories for Eq. (3.5) can be expressed using its state transition matrix as 

jc(r) = *(M)x(r). <3-6) 

For quadratic stability considerations, the Lyapunov function is given as 

V(t) = xT(t)P(t)x(t) (3-7) 

where P(t) > 0   Vf > 0. Substituting Eq. (3.6) into (3.7) yields 

V(t) = xT (x)<Dr {t,x)P(t)®(t,t)x(%) 

Differentiating yields 

-50- 

(3.8) F(r) = /(x)<I>r(r,T)[^(/)P(0+^(0^(0+^(0]<1>(^>(x) 
= xT(t)[P(t)+AT(t)P(t)+P(t)A(t)]x(t) 

If there exists positive constantse,, e2, and e3 such that e,7 < P (t) < e2I and 

/>(0+^(0/>(0+/>(040^-E3'. (3-9> 
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V(t)<-z3x
T(t)x(t)=-^E2x

T(t)x(t). (3.10) 

Since zJ<P(t)<e2I, 

zlX
T(t)x(t)<V(t)<z2x

T(t)x(t). (3.11) 

Substituting V(t)<e2x
T (t)x(t) into Eq. (3.10) results in 

V(t)<-^V(t). 
£•> 

Integrating this expression yields 

]nV(t)-]nV(x)<-^-(t-x) 
£2 

In 
fv(t)^ 

V    v ' ) 

m. 
V(x) 

<-±(t-x) 

( 
exp -h-(t-x) 

V(t)<V(x)cxp -^-(t-x) (3.12) 

From Eq. (3.11), V(x )< z2x
T (x )x(x ) and V(t)>EjX7" (t)x(t). Substituting these expressions 

into Eq. (3.12) results in 

f   e ^ 
Z,xT (t)x(t)<£2x

T (x)x(x)exp -—(t-t) 
\     E2 
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Dividing by xT (x )x (x ) and using Eq. (3.6) we have 

f(t)x(t)      XT(x)^(t,x)Q>(t,x)x(x)^E2 

XT(T)X(X) xT(x)x(x) 
exp -^(t-x) 

V.     2 

^ 

Which implies that 

2    £ 3>(,,xf <^exp -?.(/-x) 
£, ^    E2 

2e. 
-(r-T) 

which shows that the trajectories of Eq. (3.5) are bounded exponentially. 

Like the previous linear system in Eq. (3.5), stability for reconfigurable or gain scheduled 

control laws modeled using a LPV model described by 

x = A(p)x(t) (3.13) 

can be guaranteed by establishing that a Lyapunov Inequality can be satisfied everywhere within 

a region p e P  of parameter values, that is to say that there exists a?>0 such that 

P + AT(p)P + PA(p)<0   VpeP 

This analysis however does not give any measure of the degree of stability nor the amount of 

stability sacrificed by requiring stability over a wide range of parameter values. 

To this end we utilize the standard Lyapunov argument which says that if there exists an 

e, > 0,E2 > 0,e3 > 0 and a JFsuch that 
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Ej<W<E2I, (3-14> 

and 

W + ATW + WA<-£3I 

then the state transition matrix O {t,i) satisfies 

N^JP" 

Letting y = — and P = — this leads to the following inequalities 
e2 £2 

P>0,   P>I,   P + ATP + PA<^I 

and with y > 0, this implies 

H<.* l     4('-^) 

W e 
2 

where X(i>) denotes the minimum eigenvalue of P. This leads to the following LMI problem 

(letting ji = -y) which is the focus of this paper. 

LMI Problem 

min       ji (315) 

subject to 
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P(p)>0 (0 
7-P(p)>0 (») 

V.I-P(P)-AT(P)P(P)-P(P)A(P)>O (i/0 

for all p e P. Then if u<0, the system is stable and 

H',* i   *<«-*) 

VM^) 
(3.16) 

The parameter \i can be used as a measure of the degree of stability. The inequality (/i) has been 

introduced to scale the problem, otherwise the optimization problem would be homogenous in \i 

and P(p). The following examples illustrate its use. 

Example 1 

Consider the linear system described by x = Ax with 

A- 
-5    1 

1    -5 

Since this is a LTI system th-. LMI problem described in Eq. (3.15) does not contain a P term. 

Also, since it is LTI it is very easy to determine stability (\ (A)= -4,-6). However, this simple 

example will clearly indicate how \i in Eq. (3.16) can be used as a measure of stability, and the 

bound on the state transition matrix can be determined analytically and computationally (as a 

LMI optimization problem). The constraints in Eq. (3.15) restrict the P matrix as follows: Let 

P = 
P\    Pi 

Pi    Pi 
(3.17) 
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From constraint (i) we have: px > 0, p3 > 0, and pxp3 -p
2

2>0. From constraint («) we 

have:   \-px >0, \-p2 >0,and (l-&)(!-P3)~pi *0- ^ 

7W,      AWj 

m2   w, 
= ATP+PA = 

-10px+2p2 Pi-10p2+p3 

X 2/72-10/73 

From the constraint (/«) we have: |i-7w,>0, p.-/«3 >0,and (n-m,)^-^)-/^2 >0. To 

minimize \i by selecting px, p2, and p3, we can infer from the symmetry that px =p3. Then, 

,2       _2 
(1-A)0-A)-Aaa5(l-A|-A2^0 

For the problem of minimizing u\, the above inequality is an equality, reducing to pi = (l - px) . 

Using px >0 and \-px >0 we have p2 = \-px- Thus minimizing p. also leads to 

(n-/n,)(|i-m3)-/n2
2=0. Substituting yields 

H2-(4-24/?1)^+(-96+192/71) = 0 

which has a niinimum at \i = -8 no matter what />, is. Using 0 < p\ < 1, p2 = 1 -px, and 

/73=/7j, the eigenvalues of P are at X, = 2px -1 and Xj = 1. The minimum eigenvalue of P gives 

the tightest bound (px =1), P = /, which gives 

1     e*M) = e* (3.18) 
^) 

(note that -4 is the right most X, (A)). Figure 3.6 (a) plots the actual norm of the state transition 

matrix (solid) against the LMI bound in Eq. (3.18). For this example they are identical. 
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Example 1 Bound On State Transition Matrix 

a) 
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2 

b) 

Example 2 Bound On State Transition Matrix 
2.4 

2 

1.b 

1 

U.b 

0.5 1 
Time 

Figure 3.6 LMI bounds on the state transition matrix. 

Example 2 

Consider the linear system described by x = Ax with 

0     1 
-5   -2 

which has eigenvalues at \ = -1 ± 2j. Using the same procedure as in Example 1, the P matrix 

in Fq. ^3.17) is calculated as 

P = p2 
17   1 

1    3 

To minimize \i in the LMI (Eq. (3.14)), p2=(2-y[2)/\0. This yields a p. = -0.5858, 

and^(P) = l,   3-2>/2. The l(P) = 0.17157, which gives 
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= 2.4e^' (3.19) 

Figure 3.6 (b) plots the norm of the state transition matrix (solid) against the LMI bound in Eq. 

(3.19). Note for this example the bound is somewhat conservative. 

3.5 TaH'.ess Fighter Analysis Results 

The LMI problem described in Eq. (3.15) was used to analyze the tailless fighter 

reconfigurable / gain scheduled flight control system. The scheduling parameter used was the 

wing damage parameter pD. Results are presented using the category definitions described in 

the Introduction. 

The LMI convex optimization produces the optimal p. and P matrix for Eq. (3.15) at the 

polytope vertices used in defining the analysis problem. The proof of stability uses the p. and the 

minimum eigenvalue of P, X (?), to bound the state transition. Since the scheduling problem is 

infinite dimensional and gridding of the parameter space is used to make the problem finite 

dimensional, one must still check how well the constraints in Eq. (3.15) are satisfied between the 

grid points. 

Stability Analysis For Category I Systems 

Category I systems are linear systems whose scheduling parameters are known and do not 

vary with time. A conventional linear analysis on each discrete flight condition is valid and is 

typically used to analyze stability. 

The LMI analysis method in Eq. (3.15) was applied to the pitch-plane tailless fighter system 

described in Section 3 at each discrete value of pD, assuming that p0 = 0. Here each discrete 

flight condition is analyzed separately. Solving the 11 LMI problems produces the following 

results: 
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PD maxfReMAfan») \lFromEq. (4.21) l(P) 

0.0 -2.4972 -0.04161 2.2573 x 10-4 

0.1 -2.4048 -0.03984 2.1643 xlO-4 

0.2 -2.2151 -0.03845 2.0933 x 10-* 
0.3 -1.9608 -0.03708 2.0222 x 10-4 

0.4 -1.6196 -0.03577 1.0528 x 10"* 
0.5 -0.9905 -0.03466 1.8897 x 10"» 
0.6 -0.2471 -0.03258 1.7671 x 10"» 
0.7 -0.0918 -0.02940 1.5978 x 10-4 

0.8 -0.0584 -0.02616 1.4250 x 10-4 

0.9 -0.0447 -0.02294 1.2523 x 10-4 

1.0 -0.0393 -0.01991 1.0893 x 10-* 

The first column is the wing damage parameter. The second column is the maximum real part of 

the eigenvalues for the closed loop system matrix using the gain scheduled control. The third 

and fourth columns form the exponential bound described in Eq. (3.16). The LMI analysis 

shows that the system is stable, but conservatively bounds the state transition matrix. Here LMI 

analysis is not really necessary since the examination of the eigenvalues of the closed loop 

system matrix suffices to prove stability. 

Stability Analysis For Category II Systems 

Category II systems are linear systems whose scheduling parameters are known and vary 

with time. A conventional linear analysis at each discrete flight design point ignores the fact that 

the scheduling parameters can vary with time. Here, polytope vertices are introduced to 

accommodate the time varying scheduling parameter. 

Rates of change of parameters will produce a P term in the Lyapunov inequality in the LMI 

(Eq. (3.15)) which can be described by 

P = ^So"P 
peP OP 

If we assume that the rates of the parameter variations p are known, the problem becomes 

determining the partial derivatives 3 P/9p . The presence of these terms creates a linear partial 

differential inequality. In the LMI problem we must find a \i valid for the entire range of 

parameter values 0 < p < 1. To solve this problem we use basis functions (similar to [5,6]) in 

which we model P(p ) using polynomials. The polynomial model is 

fr_A 
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p(p)=i>' 
(=0 

where DP is the order of the polynomial. Then, 

dP 
3p    tt 

Polytope vertices are then formed at the min and max rates for pD. Since we can not add the 

wing back on, the min rate is modeled as pD = 0. The maximum rate was varied to determine 

the impact on the LMI analysis. 

Figure 3.7 shows the LMI stability analysis results for the Category II system model. The 

four curves represent results using different max rates (pmax = 0.02,   10) and different order 

polynomials for P ( p ), (DP = 5,   3). The optimal \i determined from the convex optimization 

was u. = -0.01991, and was the same for all four cases. The plots in Figure 3.7 show how well 

the optimal P satisfies the LMI constraints at points in between the 0.1 pD grid spacing. The 

first plot shows the (P > 0) constraint was satisfied. The second plot shows that the (/ - P > 0) 

constraint is violated in betweea oD = 0.9 and 1.0. The third constraint in the LMI, 

\iI-P(p)-AT (p)P(p)-P(p)A(p)>0, was examined atthe vertices where p =0 and 

where p = pmax. The curves show X(A) where A = -P(p)-AT (p)P(p)-P(p)A(p), which 

we would like to be positive, and show that this is also violated in between pD = 0.9 and 1.0. 

However, as long as the optimal \i is big enough to make 

\iI-P(p)-AT (p)P(p)-P(p)A(p)Z0 we have a good solution to the LMI problem. The 

difference between \i and X, (A) can be thought of as a "stability margin" in the analysis. Close 

examination of the most negative point in Figure 3.7 (lower right plot) shows that the optimal \i 
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= -0.01991 is not big enough to cover X (A) = -0.02273. This result indicates that the P matrix 

does not prove stability at this value of pD. (Later we will show how to correct this problem.) 
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Figure 3.7 Category II stability analysis results. 
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Stability Analysis For Category in Systems 

Category III systems are linear systems whose scheduling parameters are not precisely 

known and are slowly varying with time. Since the scheduling parameters are not accurately 

known, the feedback gains that are scheduled with these parameters may not match the dynamics 

as intended. In this case we would like the gains to provide stability and performance in a 

convex region about the nominal or centroid grid point 

This convex region must be formed based upon estimates of the accuracy in estimating the 

scheduling parameters. For example, consider the following scheduling parameter centered at 

Centroid 
I       Grid Points 

♦   A 
*-$—fri—<?~r*—$~~> 

I     Poo» 
pr—.—-pi 

Uncertain Region 

Feedback gains have been designed at each grid point. Estimates on the accuracy of the 

scheduling parameter define the uncertain region, which in this example we have assumed is 

smaller than the grid size. To analyze stability using the gains designed at pnom, a convex 

polytope covering the uncertainty region is formed and analyzed. 

Consider the parameter dependent system described by Eq. (3.13). The LMI problem for this 

system is infinite dimensional because of the continuous parameters used for scheduling. The 

problem can be made finite dimensional by densely gridding the p parameter space. 

To include uncertainties in the parameter p , consider a nominal value with ±3ap variations, 

described by 

Pi = p-3op<p<p+3cp=p2 

Then, 
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(3.20) 

Consider the case where the system matrix A(p) can be represented as A(p) - 

4 + 4P+4P2. Using Eq. (3.20), p2 =92p2 +29(1-9 )p1p2+(l-6)2 p2
2. But we can write 

p=92p1+26(l-9)PlP^ + (l-9)2p2. This allows us to describe A(p) as 

A(p)=Q2[A0+A]p]+A2p^] + ^(l-Q)[A0+Ax^+A2plp2] 

+ (l-9)2[4,+4p2+4P2] 
(3.21) 

where the weights 92, 20 (1 -9 ), and (1 -9 )2 are non-negative and sum to unity. This 

represents A(p) in barycentric coordinates at the point p between p, and p2. Also, A(p) is 

in the convex hull formed by the vertices of the triangle represented by the bracketed expressions 

in Eq. (3.21). This can be shown graphically as follows: 

This can be generalized to any degree of polynomial. For system data A(p) represented by a 

polynomial of degree Z^.i.e. A(p) = 2^Aip', there will be a convex polytope that has DA+\ 
1=0 

vertices that will enclose the system data in the interval [p,,   p2 ]. Let the jth vertex be denoted 

as v,. Then 
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VJ = L^J 

where for j<DA-i 

1     '  (k + DA-i\ \i],      „ V-*   t ^--ml 7   >-*> p= rij 
'A 

and for j"£DA-i 

^->^Hrr;>->c 
j 

where the brackets denote binomial coefficients. It is straight forward that this procedure can be 

extended to any number of scheduling parameters. 

Figure 3.8 shows the LMI stability analysis results for category m systems. Here, the 

polytope vertices are enclosed using the above method with 3ap = 0.1. The first curve listed in 

the legend shows results from category II (c p = 0, DP = 3, p^ = 0.02) for cv/inparisofi. The next 

three curves use (pmax = 0.02) and different order polynomials for P(p ), (DP =5,   3). The 

fourth curve listed incorporates additional constraints to prevent X(A) from becoming too 

negative. By adding additional LMI constraints in between 0.9 and 1.0, the resulting optimal P 

matrix better satisfies the constraints. The cost is a larger computational LMI problem. The 

optimal |i for the Category III model was \i = -0.01632. We see from the figure that by adding 

the additional constraints in between pD = 0.9 and 1.0 the LMI analysis proves stability. 
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Stability Analysis For Category IV Systems 

Category IV systems are linear systems whose scheduling parameters are not precisely known 

and vary with time. Our solution approach for Category IV models combines the approaches 

used for Category II and III systems, forming polytope vertices based upon the uncertainty in p 

and p . Figure 3.9 shows the LMI stability analysis results. Here, the polytope vertices were 

formed using 3op = 0.1 with (pmax = 5), and different order polynomials for P(p ), 

(DP=\,   3). The third curve listed in the legend added additional constraints to keep the 

constraints satisfied in between pD = 0.9 and 1.0. In calculating the fourth curve, grid points at 

small values of pD were dropped and new grid points in between pD = 0.9 and 1.0 were added, 

where the total number of grid points was kept equal to the original problem (thus keeping the 

size of the LMI problem constant). The optimal \i for each curve listed in Figure 3.9 was \i = - 

0.01627, -0.01586, -0.01574, and -0.01632, respectively. The results prove stability for the gain 

scheduled control in the presence of time varying uncertain parameters. 
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Figure 3.8 Category III stability analysis results. 
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Figure 3.9 Category IV stability analysis results. 
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3.6 Chapter 3 Conclusions 
A parameter dependent model of a tailless fighter with battle damage was developed to 

investigate methods of stability analysis for reconfigurable flight control systems. Stability 

analysis methods using linear matrix inequalities were presented for parameter dependent models 

characterized by their scheduling parameters. Four categories of scheduling parameters were 

discussed along with their respective analysis method. For reconfigurable control systems that 

can be modeled within this framework, the linear matrix inequalities approach used for stability 

analysis provides a proof of stability for the gain scheduled control system. 
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Chapter 4 

Aeroservoelastic Filter Design and Optimization Using LMIs 

4.1 Introduction 

This chapter presents the development of a LMI based tool for optimizing aeroservoelastic 

filter coefficients used in the filtering inertial measurement signals (angular rates and 

translation^ accelerations). Limited success was obtained in developing this tool due to the 

extremely large sizes of the resulting LMI problems. 

4.2 ASE Compensation Filter Design 

The influence of the structural modes on the sensor measurements must be attenuated 

through the use of aeroservoelastic (ASE) compensation filters prior to use in the control law, 

since insufficient attenuation of these effects can lead to instability. Under the RESTORE 

program, linearized models of the ASE dynamics were extracted from the TAFA 6DOF at the 

high speed and low speed flight conditions, and were used to design ASE compensation filters 

for the flight control system. Under RESTORE, the ASE compensation filters were designed to 

gain stabilize the system at frequencies above the first structural mode by providing at least 8 dB 

of attenuation at these frequencies. Over design of these filters can result in excessive low 

frequency phase lag which degcs-les rigid body stability margins and flying qualities. As a 

result, the filters were designed to meet the high frequency attenuation goals while minimizing 

low frequency phase lag. The resulting filters are shown in Figure 4.1 and a corresponding 

frequency response in Figure 4.2. 

Frequency responses of the linearized ASE dynamics showed the highest amplitude peaks in 

the 40-50 rad/s region with slightly lower peaks at higher frequencies. Since the highest peaks 

were at the lowest resonant frequencies, utilization of low pass filters to provide the required 

attenuation was not a viable option. A reasonably low order filter (i.e. < 4th order) would require 

a very low break frequency, which would lead to excessive low frequency phase lag. A notch 

filter provides a viable method for attenuating the low frequency peaks by concentrating the 

attenuation in the desired frequency range. Keeping the attenuation band of the notch filter 
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narrow minimizes the associated low frequency phase lag. Cascading the notch filter with a low 

pass filter provides attenuation above the notch filter frequency to attenuate higher frequency 

modes. This filter combination is commonly used in ASE filter design. 

The notch - lag filter combinations designed for the TAFA airframe are provided in Figure 

4.1. ASE compensation filters were made as common as possible for all signals in a given axis 

to prevent an adverse performance impact when the signals are blended. An example of this is 

the calculation of stability axis rates. If the roll rate and yaw rate are processed by filters with 

different bandwidths and then transformed to stability axis, the resulting signal can differ 

significantly from a filtered version of the true stability axis rates. Unmatched filters introduce a 

phase discrepancy between the signals leading to the degraded results. The lag filters used in the 

lateral directional axis were scheduled with Mach to gain the required structural mode 

attenuation at low speeds while preserving good rigid body stability margins at high speeds. 

a, 6, q, Az^ s2 +2116 50 

s2 + 18.4s+2116 s+50 

ß, 4>, P, r s2+1600 
— ~~*" s2 + 16s+1600 

Ay s2 + 1600 a>» 
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0.4 1.2 
Mach 

04 1.0 
Mach 

Figure 4.1 TAFA ASE Compensation Filters 

An example of the frequency response analysis used to validate the ASE compensation filters 

is provided in Figure 4.2. This data is for the longitudinal axis at the low altitude ingress / egress 

flight condition described in Reference 1. 

The first row of plots shows the magnitude of the frequency response relating the ASE 

contribution to sensed pitch rate and normal acceleration to the pitch axis control effector inputs. 

This data shows high frequency peaks in the frequency response curves which exceed 20 dB, 
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indicating the need for ASE filtering in the control law design. The highest peaks occur in the 

40-50 rad/sec region as discussed above. 

The second row of plots shows the open loop frequency response with the loop broken at the 

actuator for each of the TAFA pitch axis control effectors. The open loop model includes the 

rigid body and ASE dynamics, linearized TAFA baseline control law, actuator and sensor 

dynamics, digitization effects, and time delays. ASE compensation filtering was not included in 

this analysis to determine the need for filtering. The magnitude frequency responses with the 

loop broken in the trailing edge flap (TEF) and pitch thrust vectoring channels show resonant 

peaks exceeding 0 dB in the high frequency region (above 20 rad/sec). This indicates 

insufficient attenuation of the structural modes and the potential for instability (stability depends 

on the phase characteristics in this frequency band). Since the phase at these frequencies is 

uncertain, gain stabilization of the structural modes is desired, indicating the need for ASE 

compensation filtering. 

The last row of plots in Figure 4.2 repeats the open loop frequency response analysis with the 

addition of the ASE compensation filters described in Figure 4.1. These data show that these 

filters provide the desired attenuation of the structural modes, while maintaining good rigid body 

stability margins! The loop gain at this flight condition results in no 0 dB gain crossovers, 

thereby yielding an infinite phase margin. The -180° phase crossovers occur in the 10 - 20 

rad/sec region, yielding gain margins in excess of 10 dB. 

These ASE compensation filters were also integrated into the TAFA 6DOF for analysis. 

Nonlinear simulations with the ASE dynamics described in Appendix A was performed to verify 

that the closed loop system was unstable prior to incorporation of the ASE compensation filters, 

and that the desired low order response characteristics (flying qualities) were obtained after the 

filters were added. 
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4.3 Optimization of ASE Filter Coefficients 

In the Boeing Phantom Works, a tool called COMPASE is typically used to optimize ASE 

filter coefficients to minimize phase lag at low frequencies, subject to satisfying gain attenuation 

constraints at the flexible body modes. The input to COMPASE is a worst-case magnitude 

frequency response built over a range of flight conditions, store loadings, and mass properties. 

These filters are designed to be robust to the aircraft's configuration so that control law changes 

are not required when different weapons are loaded onto the aircraft. 

COMPASE is a conjugate gradient based optimization tool. It optimizes ASE filter 

coefficients to provide gain attenuation at the flexible body modes while minimizing phase lag at 

low frequencies. It is time consuming to use, and sometimes has difficulty in convergence. 

The design of ASE filters are in the critical path for developing an aircraft's control laws. 

Using analytical models for the flexible dynamics, these filters are designed and integrated into 

the control laws. After completion of ground vibration testing and structural mode testing, these 

filters are often re-designed based on measured frequency response data. Tool improvements in 

this area could significantly reduce the costs and schedule associated with the design of the ASE 

filters. 

Boyd [2,3] investigated using LMIs to design finite impulse response filter. Instead of 

designing the frequency response X(co) of the filter directly, the power spectrum 

R (co) = \X (co )|  is designed, leading to 

find J?(co) 

suchthat   Z,2(cD()<Ä((ü/)<f/2(Q)1),     i = \,-,M 

J?(Cö)>0,     (oenc[0,27c] 

where I (CD) and f/(co) are magnitude bounds for the filter, l(coj)<|Zco/|<t7(coi), 

i = 1, • • •, M. This approach requires M to be sufficiently large. 

The ASE filters for TAFA (Appendix A) are implemented at 600 Hz, which is the rate that 

the IMU provides data to the flight control system. This data is buffered and processed at 100 

Hz to form the feedback measurements for flight control. The high sample rate (600 Hz) creates 
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a large number of frequencies, M. As a result the size of the LMI problem grew too large for 

numerical optimization. 

If the sample rate for implementation is lowered, the problem size does become 

implementable. Figure 4.3 shows the upper bound C/(co) and lower bound l(co) frequency 

responses for a 200 Hz filter design using 52 frequency points (M = 52). 
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Figure 4.3 200 Hz Filter Design Bounds 

The spike at 7.32 inputs the notch required to attenuate the first bending mode. Using these 

design constraints, the LMI problem was solved optimizing the filter tap coefficients. For a filter 

with 21 tap coefficients the results were 

x[0]=0.789425 
x[l]=-0.320252 
x[2]=0.241448 
x[3]=-0.148961 
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x[4] = 
x[5] = 
x[6] = 
x[7] = 
x[8] = 
x[9] = 
xtlO] 
x[ll] 
x[12] 
x[13] 
x[14] 
x[15] 
x[16] 
x[17] 
x[18] 
x[19] 
x[20] 

0.060187 
-0.027118 
0.026300 
-0.023576 
0.066692 
0.021337 

=0.026092 
=0.027752 
=0.006417 
=0.058977 
=0.026731 
=0.106196 
=0.011379 
=0.303340 
=-0.077172 
=0.555990 
=-0.569076 

Figure 4.4 shows the resulting frequency response. 

10' 10" 10 
Normalized Frequency (rad/s) 

Figure 4.4 200 Hz Filter Frequency Response 
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Here the notch filter shown in Figure 4.4 would be combined with a low pass filter to roll off the 

larger gains at the upper frequencies. 

4.6 Chapter 4 Conclusions 
Our research in this area has shown that designing FIR filters using LMI tools is feasible. 

Our application to designing ASE filter coefficients is probably no the best application for this 

theory. The resulting LMI problems become very large in size and easily exceed the memory of 

most common work stations. As a result, this does not improve the toolset for the control system 

designer. 
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Appendix A 

Boeing Tailless Advanced Fighter Aircraft 

The Boeing Tailless Advanced Fighter Aircraft (TAFA), illustrated in Figure A.1, is a 

conceptual design of an advanced fighter configuration which blends an extensive suite of 

conventional and innovative control effectors to achieve high agility in a low observable design. 

The TAFA is a single engine, single seat fighter designed for air to air or air to ground missions. 

Wing: 
Area 580 ft2 

L.E. Sweep 40 deg 
Aspect Ratio 2.45 

Canard: 
Area 70.84 ft2 

L.E. Sweep 40 deg 
Aspect Ratio 1.71 

"X 

§*- 38.30 FT 

Figure A.1: Three-View of TAFA Aircraft 

The TAFA airframe is characterized by a chined forebody, symmetric air inlets, and the lack 

of a vertical tail. The wing and all moving canard are thin and feature a moderate aft sweep with 

no dihedral. The wing is equipped with leading edge passive porosity that can be used as a low 

rate roll control device during covert maneuvers. The passive porosity strip consists of a series 
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of valves which can be opened to reduce the lift on one wing of the aircraft, thereby producing a 

roll maneuver. 

The trailing edge of the wing features ailerons, trailing edge flaps and aft body split flaps. 

The trailing edge flaps provide a powerful pitch control effector which can also be deflected 

differentially to augment the ailerons during rolling maneuvers. If necessary, the flaps and 

ailerons can be deflected in opposing directions to generate yawing moments without inducing 

roll. The aft body split flaps are "clamshell" devices which consist of two panels on each side of 

the aircraft. One panel opens above the wing and the other below the wing to produce yawing 

moments while inducing very little roll. The all moving canards are used as a low rate trim 

device for performance optimization, but also provide supplementary yaw control power through 

differential deflections. In addition, the canards generate substantial nose down control 

capability to help meet control margin requirements at high angles of attack. 

The TAFA is powered by a moderate bypass ratio turbofan engine equipped with axi- 

symmetric thrust vectoring. The pitch and yaw thrust vectoring enhance maneuvering 

capabilities and stability augmentation. In addition, compressor bleed air is routed to forebody 

ports for pneumatic control. The ports are mounted to serve as a yaw control device. 

The TAFA is designed for fly-by-wire control using hydraulically and electromechanically 

actuated control effectors. Movable surfaces utilize hydraulic actuators while the pneumatic 

forebody blowing and leading edge passive porosity employ electromechanical actuators. The 

system is designed to be tri-redundant on all flight critical sensors and control effectors. 

In order to support design, analysis, and simulation of reconfigurable control laws for the 

TAFA aircraft, a math model was created using the structure shown in Figure A.2. The structure 

of this model is used for both linear analysis and nonlinear simulation. All components are used 

for linear analysis. Some of the high frequency effects are excluded from the nonlinear 

simulation to reduce throughput requirements. 
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Figure A.2: Block Diagram of TAFA Analysis / Simulation Model 

The components of Figure A.2, with the exception of the flight control system, describe the 

TAFA airframe and hardware subsystems. Descriptions of these models are provided in the 

following sections. 

A.lMass Properties Models 

The TAFA mass properties model generates the vehicle weight, inertia matrix, center of 

gravity, and inverse inertia m -arix for use by the aerodynamics, propulsion, and equations of 

motion modules. A static model (i.e. mass properties do not change with fuel burn) is used. 

The model supports a variety of vehicle configurations representing different stores and fuel 

loadings. These are.useful in evaluating a flight control design's sensitivity to knowledge of the 

vehicle's mass properties. The mass property models for the TAFA were taken from the Boeing 

ASTOVL program, where a similar configuration was explored. The TAFA mass property 

models are provided in Table A. 1. 
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Configuration Weight 
(II)) 

I\\ Ivy         !// 
(sliig-ft2) 

l\/ 1 Seg 151.eg    Wieg 

(in) 

Clean, 2 AIM-9 & 2 28064 14578 93604   103855 559 373.5 0        100 

AIM-120 internal carry 

VLwith6AIM-120 30494 22329 97090   114520 -234 379 0        100 

Take Off, 2 AIM-9, 39684 28154 110616 134103 994 386 0       100 
2 AIM-120 

Take Off, 2 GBU-24 43714 45624 115963 115963 -1502 393 0        100 

VL, 1HARM 28448 19195 95202   109372 90 376 -3.23 100 

CTOL, 1 1200 lb store 28664 19785 95282   110000 36 377 -4.95 100 

Combat Wt, 2 AIM-9, 34569 19245 99692   114355 682 379 0       100 
2AIM-120,60%fuel 

Table A.1: TAFA Mass Properties Models 

The center of gravity parameters are given in terms of a fuselage station (FS), butt line 

station (BL) and waterline station (WL). These quantities are measured positive aft from the 

nose, out the right wing, and up, respectively. 

A.2 Aerodynamics Models 

The TAFA aerodynamics model computes the body axis aerodynamic forces and moments 

acting on the vehicle. Non-dimensional aerodynamic coefficients are computed and 

dimensionalized based on the vehicle's flight condition and geometry to create the forces and 

moments. The non-dimensional coefficients are a function of the vehicle's ripd body states, 

atmospheric conditions, and control surface positions. The moment coefficcuts are translated to 

the vehicle's center of gravity. Reductions in control surface effectiveness due to structural 

flexibility are also modeled. 

The TAFA aerodynamics model is based on Boeing wind tunnel testing of a tailless 

ASTOVL configuration. Control increments for the leading edge passive porosity and forebody 

blowing were estimated from test data derived on other Boeing programs. The resulting 

database provides a six degree of freedom aerodynamics model that covers the complete range of 

flight operations from Mach 0 to 2.5, altitude from 0 to 80,000 ft, angles of attack from -2 to 48 

deg, and sideslip angles from -20 to 20 deg. The nonlinear database includes static, dynamic 
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coupling and control surface effectiveness terms. The aerodynamic effects of external stores are 

not modeled. 

The baseline aerodynamics model computes the non-dimensional force and moment 

coefficients at the reference center of gravity using Equation (A.l). 

C() = C(l (M,a, ß)+£C( Ä (Mtatb,)KFlßi +£c( yj (M,a,8„8,)+^C( ^ (A-1) 

The form of this equation is the same for the force and moment coefficients, and thus the ( ) 

subscript denotes any selected force or moment coefficient: x,y,z, for the axial, lateral, and 

vertical forces, -£,m,n for the roll, pitch, and yaw moments. The terms in Eq. (A.l) are looked up 

from tables using multi-dimensional linear interpolation. 

In Equation (A.l), C(, (M,a, ß ) is the controls neutral term which represents the static 

forces and moments acting on the vehicle when all of the control effectors are at their zero 

positions. This term is a function of the vehicle's mach M, angle of attack a and sideslip ß . 

The Xc( )s (^'a'5< )KF/R, 
term represents the aerodynamic forces and moments due to 

i 

deflections of the individual control effectors. The control increments are modeled in terms of 

individual surface deflections (e.g. left and right) rather than collective and differential 

deflections to support subsequent integration of faihrt and damage models. The control 

increments are scaled by a factor KFIRi which represents a loss in control effectiveness due to 

structural flexibility of the surface and supporting structure. This effect will be discussed in 

detail in the following section. 

An additional term, £C( yj (M,oc,5„8;), models the forces and moments induced by the 
ij 

interaction between control effectors. The deflection of one surface may alter the airflow over 

another surface, thus altering its effectiveness. This effect is modeled by the controls interaction 

term. 

The final term in the aerodynamic coefficient build up is the dynamic term, which consists of 

the aerodynamic damping derivatives (e.g. C„ ) scaled by their respective rotational rates (e.g. 
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r). These terms are scaled by hiy, where / is the reference length and V is the vehicle's 

airspeed. The reference length is the mean aerodynamic chord c for the longitudinal plane, and 

the wing span b for the lateral directional plane. 

The control powers of the various effectors are compared in Figure A.3 at a subsonic flight 

condition (Mach 0.6). In these plots, the line types (solid, dashed, dotted) on the plots 

correspond to the order that the effectors are listed in tbx y-axis label of the plot. 

The first row of plots compares the nose up and no.se down pitch control power of the trailing 

edge flaps and canards as a function of angle of attack. The pitching moment increment 

produced by each control effector is plotted for maximum surface deflections. The trailing edge 

flaps provide more nose up control power across the angle of attack regime due to the small 

positive deflection limit on the canard. On the other hand, the canard provides more nose down 

control power than the trailing edge flap over most of the angle of attack envelope. 

The second row of plots compares the roll control power of the ailerons, trailing edge flaps, 

and leading edge passive porosity. The ailerons and trailing edge flaps are used differentially in 

this case. The first plot compares the rolling moment coefficient increment generated by 

maximum deflection of each effector as a function of angle of attack. The trailing edge flaps 

have the most control power; however, this analysis assumes that all of the deflection capability 

is available for roll. In reality, the differential trailing edge flap deflection capability may be 

limited based on the collective deflection utilized for pitch (i.e. the axis prioritization assigned to 

the control effector). The aileron provides more roll control power than the leading edge passive 

porosity. At angles of attack above 10 deg, the leading edge passive porosity provides up to half 

of the aileron control power, thus making it a viable low rate roll device. The second plot 

compares the linearity of the control powers as a function of deflection (percentage of maximum) 

at a fixed angle of attack. The aileron and trailing edge flap control powers are piecewise linear 

with a reduced control derivative at higher deflections. The leading edge passive porosity 

control power is linear with deflection. 

The third row of Figure A.3 compares the yaw control power of the aft body split flaps, 

canards, and forebody blowing. The canards are used differentially in this case.. The first plot 

compares the yawing moment coefficient increment generated by maximum deflection of each 

effector as a function of angle of attack. The aft body split flaps are most effective at low angles 
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of attack, while the forebody blowing is most effective at high angles of attack. The second plot 

compares the linearity of the control powers as a function of deflection (percentage of maximum) 

at a fixed angle of attack. The aft body split flap and forebody blowing control powers are linear 

with deflection, while the differential canard control derivative varies with deflection. The 

largest control derivative occurs in me low to moderate deflection region. 
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Figure A3: TAFA Aerodynamic Control Increments 

-84- 



f Nonlinear Control 

Of Fighter Aircraft 

Once the aerodynamic force and moment coefficients are computed at the reference center of 

gravity, the aerodynamics moments are translated to the actual center of gravity of the vehicle. 

This consists of calculating the incremental moments induced by the aerodynamic forces acting 

through a point displaced from the center of gravity. The computation is shown in Equation 

(A.2). 

c'l \c<] "1/b 0 0 1 [T    (FSc-FSrfJ/n 
cm = cm + 0 1/c 0   « -(BL^-BL^/U 

c„J Lc„J ref . 0 0 1/bJ {[  (WL,-WLrf)/12 LCZJ 

(A.2) 

The aerodynamic force and moment coefficients are then dimensionalized to form forces and 

moments using the vehicle geometry and dynamic pressure. The force and moment equations 

are summarized in Equation (A.3). 

Fx=qSCx     L=qSbC, 
Fy=qSCy    M = qScCm 

Fz=qSCz    N = qSbCn 

(A3) 

The forces (Fx, Fy, Fz) are in lbs, and the moments (L, M, N) are in ft-lbs. 

The airframe geometry constants for the TAFA aircraft are provided in Table A.2. 

TAFA Airframe Geometry Constants 

FSref=382in S = 590 ft2 

BLr^Oin b = 37.98 ft 

WLref=100in c = 19.415 ft 

Table A.2: TAFA Airframe Geometry Constants 
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A.2.1 Aerodynamic Flexibility Effects 

The aerodynamic flexibility effects model a reduction in control effectiveness due to 

structural flexibility of the control surface and supporting structure. Derivation of these effects 

requires a detailed analysis of the aerodynamics loads and the structural characteristics of the 

vehicle. This data was not available for the TAFA aircraft and thus the aerodynamic flexibility 

effects from the F-15 ACTIVE aircraft were used. 

The aerodynamic flexibility model reduces the control effectiveness as a result of wing / 

surface flexure under the aerodynamic loads. The actuator takes the surface to its commanded 

position; however, the "effective" position (relative to the air stream) is less due to flexing of the 

wing and/or surface. This effect is modeled as a scale factor on the control surface aerodynamic 

increments. 

For the TAFA planform, the aerodynamic flexibility effects are most prominent on the 

trailing edge flap and aileron effectors. The aft body split flaps consist of two panels (on each 

side of the aircraft), one of which opens above the wing and the other below the wing. The 

panels tend to produce torsional moments on the wing in opposite directions. These torsional 

moments cancel each other to nullify wing flexure due to their aerodynamic loads on the aft body 

split flap panels. Aerodynamic flexibility of the canards is not expected to be "significant due to 

their low aspect ratio and moderate leading edge sweep. These factors tend to produce a small 

angular deviation of the elastic axis of the surface from the vehicle centerline, thus minimizing 

changes m the local angle of attack of the surface due to flexure. Aerodynamic flexibility does 

not affect the leading edge passive porosity or forebody blowing since these effectors since they 

do not utilize hinged surfaces operating in the air stream. 

As a result, the aerodynamic flexibility effects are applied to the trailing edge flaps and 

ailerons only. The control power reduction is reflected in all axes, and is characterized by the 

flex-to-rigid scale factor (KF/R) shown in Figure A.4. The scale factor is commonly a function of 

mach and altitude to reflect movement in the surface center of pressure with mach, as well as 

variations in loads with changes in dynamic pressure. 
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Figure A.4: TAFA Aerodynamic Flexibility Effect Model 

A3 Propulsion Model 
The TAFA propulsion system model computes the body axis forces and moments induced by 

the engine's gross thrust, the ram drag of the engine inlet, and the nozzle thrust vectoring angles. 

The model is static and is a function of the power lever angle (PLA), the aircraft rigid body states 

(rotational rate, angle of attack, sideslip, and velocity), and the aircraft mass properties and 

geometry data. Nozzle dynamics are modeled in the actuation system. 

The propulsion model is based on tabulated steady-state performance data of a moderate 

bypass ratio turbofan engine. The gross thrust and ram drag data is interpolated from these 

tables based on the aircraft's Mach number, altitude, and PLA. The propulsion data is shown in 

Figure A.5 for reference. 
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Figure A.5: TAFA Propulsion System Data 
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The engine gross thrust (FG) data is resolved to the engine axes by transforming it through 

the thrust vectoring angles. The axi-symmetric nozzle deflection is modeled via pitch (8-rvp) 

and yaw (Syvy) vectoring angles. Sequential orthogonal transformations through the yaw and 

pitch vectoring angles resolve forces from engine to nozzle axes, as illustrated in Figure A.6. 

-F7 

A/C Body Axes 

^\                      \         \ 

Nozzk 6dt 
CMraU 

Figure A.6: Relationship Between Engine and Nozzle Axes 

The propulsive forces, in engine axes, are defined in terms of the engine gross thrust and 

vectoring angles as 

FXE = FG cos^TVpJcosß-rvy) 

FyE =FG ^ÖxvpJsir^ÖTVy) 

FZE =FGsin(5TVp) 

(A.4) 

The body axis propulsive forces and moments are formed from gross thrust and inlet (ram) 

drag contributions. The gross thrust forces are transformed from engine axes to body axes via 

rotations through the engine installation angles. These angles represent the orientation of the 

engine with respect to the vehicle body axes. The transformation from body axes to engine axes 

is accomplished via sequential rotations through the engine yaw (\|rE) and pitch ( 6E ) 
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installation angles. The roll orientation of the engine is assumed to be coincident with the body. 

The body axis forces due to gross thrust are defined as 

rxG 
cos(eE)cos(\|/E)   -sin(vE)   sin(0E)cos(\|/E)' 
cos(0E)sin(\}fE)     cos(\|fE)     sin(eE)sin(\|/E) 

-sin(9E) 0 cos(eE) 

Fx, 

H 
Fz 

(A.5) 

Moments due to gross thrust are computed based on the gross thrust forces and the offset 

between the thrust centerline and the vehicle center of gravity. This yields 

M 
MM 

MN 

G 

G 

= rxFr, = 

-(FSN0Z-FScg)/12' 
(BLN0Z-Blcg)/12 

-(WLN0Z-WLcg)/12 

XG 

G 

G 

H 
Fz 

(A.6) 

The ram drag forces and moments are comprised of a static and a dynamic contribution. The 

static forces and moments are dependent on the vehicle's angle of attack and sideslip, while the 

dynamic forces and moments depend on the vehicle's rotational rates. 

The ram drag static forces are computed from the inlet ram drag (Dram) and the vehicle's 

angle of attack and sideslip as 

FX 

FY 

ram 

ram 

'ram J 

-Dram*cos(a)*cos(ß) 
-D^sinCß) 

-Dram*sin(a)*cos(ß). 

(A.7) 

The static ram drag moments are based on the ram drag forces and the inlet location relative to 

the vehicle's center of gravity, and are computed as 
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-(FS^-FS^m" 
(BL^-Blcg)/^ 

-(WL^-WLcg)/!^ 
X 

FX ■"■ram 
Fy Iram 

Fz .   ^ram _ 

(A.8) 

The dynamic ram drag forces are based on the vehicle's ram drag, rotational rates (p, q, r) 

and airspeed (V), and are computed as 

FYinl 

inl FZ 

D ram rp sy ^1 — [f X CO] 
D ram 

V 

-(FSiri-FScg)/^' 

(BLiri-Blcg)/^ 

-(WL^-WLcg)/^ 

(A.9) 

The dynamic ram drag moments are computed from the dynamic ram drag forces based on the 

location of the inlet relative to the vehicle's center of gravity. The computations are summarized 

below. 

ML 

MM 

M N 

inl 

inl 

inl J 

= rxFinl 

-(FS^-FSeg)/^" 

(BL^-Blcg)/^ 

-(WLiri-WLcg)/^ 

FXini 

FZinl 

(A.10) 

The total propulsive forces and moments are formed by summing the gross thrust, static ram 

drag, and dynamic ram drag contributions. The TAFA propulsion mode constants are provided 

in Table A.3. 

TAFA Propulsion Model Constants 

FS„oz = 587.61 in FSram = 208.87 in 

BLnoz = 0 in BLram = 0in 

WLnO2=100in WLnun = 83.23 in 

FSini = 208.87 in 6E = 0 deg 
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BLini = Oin \|/E = 0 deg 

WLini = 83.23 in 

Table A3: TAFA Propulsion Model Constants 

A.4 Rigid Body Dynamics 

The TAFA Rigid Body Dynamics model implements the rigid body six degree of freedom 

equations of motion. The translational dynamics are propagated in an inertial reference frame, 

while the rotational dynamics are propagated via quaternions. Additional dynamic parameters 

are computed and output from the model. The model supports flat earth equations of motion. 

The inputs to the model are the total body axis forces and moments acting on the vehicle, as well 

as the vehicle mass properties. 

The TAFA Rigid Body Dynamics model first computes the translational (linear) and 

rotational accelerations acting on the vehicle. To compute the linear acceleration, the 

acceleration due to specific forces is first computed as 

iBlm (A.11) 

where m is the vehicle mass. This is the total acceleration due to external forces, excluding 

gravity. Note that the specific force vector is expressed in the body frame. The specific force is 

transformed to the inertial frame and added to gravity to form the total linear acceleration of the 

vehicle, expressed in the inertial frame. 

a'=g'+Ci(fJ/m) (A.12) 

The body-to-inertjal transformation matrix C^ is computed from the body-to-inertial attitude 

quaternion q^ = (q0,qx,q2,03)• 

C' = 

'    2   .   „2       Jl       „2 
00+01   -02-03 

2(0,02+0003) 0O-012+02-032 

2(0,03-0002) 2(^3+00?,) 

2(0,03+0002) 

2(0203" 0001) 
„2      „2      „2   ,   _2 
00-01  - 02 + 03 

(A.13) 

Since the body-to-inertial transformation is available here, the gravity vector is also transformed 

to the body frame for use elsewhere. 
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The angular acceleration of the vehicle, expressed in the body frame, is computed as 

&Mm = rl(mB-ö>BxIö>B) (A.15) 

where I is the inertia matrix. 

The vehicle linear and angular accelerations are then integrated to produc * velocity, position, 

angular rate, and attitude. The linear inertial acceleration vector is integrated to produce a linear 

inertial velocity vector. 

The linear inertial velocity vector is integrated to produce an inertial position vector. 

x' =\\'dt 

The angular acceleration vector is integrated to produce an angular velocity vector. 

>" 

= j&Bdt 

(A.16) 

(A.17) 

äB = (A. 18) 

Using the body attitude quaternion, the angular velocity vector is transformed to form an attitude 

quaternion rate 

0    -p   -Q   -RTq0 

* / . JL / ZX. **     —   
0 R    -Q 

0      P 
1x (A.19) 

P 

Q   -R 
R    Q    -P     0 Ifc_ 

which is integrated to produce a body attitude quaternion 

q'B=jq'Bdt. (A.20) 

In all cases, the preceding vector integrals are reducible to independent scalar integrals on the 

components of the vectors. The scalar integrals are evaluated numerically using the integration 

method and time step selected by the user. 

The TAFA Rigid Body Dynamics model then converts the vehicle state vector elements from 

the inertial frame to a geographic (local level) frame according to the Earth model. The Flat 
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Earth model assumes that the inertial coordinate frame used in propagating the state vector is the 

geographic, North-East-Down coordinate frame. It simply passes the position and velocity 

vectors through, renaming their elements to North, East, Down, and Vn, Ve, Vd respectively. 

The body-to-inertial attitude quaternion is also passed through and renamed to the body-to- 

geographic attitude quaternion. The position vector is transformed to Latitude, Longitude, 

Altitude (Latitude and Longitude are computed from the North and East positions divided by the 

earth radius, while Altitude is computed as -Down). Finally, the gravity vector for the Flat Earth 

model is computed, which is just a constant [0, 0, 32.174] ft/s/s. 

Once the dynamics propagation is completed, additional useful quantities are computed 

which may be required as flight control feedback or inputs to sensor models. The North-East- 

Down components of the vehicle velocity are used to compute the vehicle's speed (velocity 

magnitude) and the flight path angles. The speed is computed as 

Velocity_jps = \\vfD\\ = ^+VE
2+V^) 

The vertical flight path angle is computed as 

Y = sin" 
Velocity _fps t 

while the heading (horizontal flight path) angle is computed as 

(A.21) 

(A.22) 

X = tan" (A.23) 

The wind velocity v£    at tho vehicle's location, which is the velocity of the local air mass, 

is used to compute the vehicle velocity with respect to the air. 

vÄED -V NED .NED 
(A.24) 

This air-relative velocity is transformed to the body frame to form the body-frame air-relative 

velocity, 

U_wrt_air 

vL,=   V_wrt_air  , (A.25) 
W_wrt_air 

which is subsequently used to compute aerodynamic angles and rates. 
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The geographic-to-body transformation matrix CB
G is computed from the body-to-geographic 

transformation quaternion q* =(q0,qltq2,q3). A matrix transpose is included in the calculation 

to produce a matrix which will transform in the opposite sense as the quaternion. 

q\ + q] - q\ - q\    2(?& +Q&)     2fe^ ~ *&) 
2feft-«foft)     ql-ll+ll-lt     %9s+9o9i) <A-26> 
2foft + 90?2 ) 2fe?3 - 00*1) *0 - tf - 9l + «3 . 

The geographic frame is the same as the North-East-Down frame, so the geographic-to-body 

transformation matrix CB
G can be used as a North-East-Down-to-body transformation matrix 

CB   . The matrix is used to transform the body velocity and the body air-relative velocity to the 

body frame. 

CB = 

VB =CB    NED 
-GT£ 

~u V 
V -CB vE 
w kJ 

(A.27) 

,B     „r"8«^0 

B\air C"v C T B\air 
- 

U_wrt_air v ' N_wrt_air 

V_wrt_air -CB 
*-"G 

v E_wrt_air 

W_wrt_air V 
' D_wn_air _ 

The rate of change of the body components of velocity are computed using the Coriolis equation, 

vB
B = (dv/dt))B-äBxvB

B 

(A.28) U 
V 

W 

= üB-äBxxB
B 

where 

a' = fJ/m+gJ. (A-29) 

The Euler angles describing the orientation of the body relative to the local level, North-East- 

Down frame are computed from elements of the geographic-to-body transformation matrix. 
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Roll = <D = ATAN2(CB
C(2,3),CB

GV,3)) 

Pitch = e = sin"1 (- CB
C (U)) (A-3°) 

Yaw = ¥ = ATAN2(CB
G (1,2), C£ (1,1)) 

The ATAN2 function is the four-quadrant arctangent function. To prevent an argument error 

due to numerical round off errors, the argument of the arcsine function is limited to the range ±1 

inclusive. 

The vehicle's air-relative velocity and its acceleration and angular rate are used to compute 

the true airspeed, aerodynamic angles, and aerodynamic angle rates. Two of the aerodynamic 

angles (angle of attack and sideslip) are then used to transform the body angular velocity vector 

to the wind axes coordinate frame. Because the wind frame is a rotating frame, this is not the 

body angular velocity with respect to the wind frame, but merely the projection of the body 

angular velocity into the wind frame. 

P. 
a 
R. 

rIPr,S _ = CBco  = 

cosßcosa     sinß     cosßsina 
-sinßcosa   cosß   -sinßsina 

- sina 0 cosa 

P 

Q 
R 

(A.31) 

The true airspeed is computed as 

VTAS = Airspeed_fps = ||<a/r (A.32) 

The aerodynamic angles are computed as follows. 

x=ATAN2(W,U) Angle of attack 

ß=sin-I(F/F7,5) Sideslip angle 

ßfl = ATAN2(V,U) "Body" Sideslip angle 

aT=cos~l(u/VTAS) Total angle of attack 

aT = cos"1 (U IVTAS) Aerodynamic roll angle 

To prevent an argument error due to numerical round off errors, the argument of the inverse sine 

and inverse cosine functions are limited to the range ±1 inclusive. If Airspeed is zero, then 

sideslip and total angle of attack are set to zero. 
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The aerodynamic angle rates are undefined if the airspeed is zero. Furthermore, the angle of 

attack rate and sideslip rate are undefined if the sideslip angle is ninety degrees (causing 

U = w = 0), and the total angle of attack rate is undefined if the total angle of attack is zero (so 

V = W = 0). The rates are set to zero in these circumstances. However, rather than performing 

an explicit check that values are equal to zero and setting the results to zero, a small value is 

added to the airspeed and to W2. Both of these quantities are greater than or equal to zero; 

adding a small value to each makes them strictly greater than zero. 

V     =V    + 10*6 y
TAS\        rTAS T1U 

w2 = w2+10-* 

Using these perturbed quantities in the denominators of the equations for aerodynamic angle 

rates prevents division by zero errors and gives results of zero in the cases described above. The 

error introduced is negligible. 

The aerodynamic angle rates are computed as 

.     UW-WÜ 
a = 

U2+W{ 
(A.33) 

P       VTJ-VVT« (A.34) 

■   _ UVTAS    VTASU 
tXr   ~~ T   vTAS^v2 + wx 

wher.-) 

(A.35) 

.   Ju,r,w).(u,v,w) (A36) 
TAS y 

and 

(Ü, V, W) = (f / m + g)B -äB
w x v^a/r (assumes wind is not time-varying) (A.37) 

Finally, load factors are computed from the specific forces acting on the vehicle. The body- 

frame Normal and Side load factors are computed from the body-frame Z and Y components of 

specific force respectively. 
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NZCG_g_plm_up = -f-Q£ (A.38) 

mcG ,.?&£■ (A.39) 6      32.174 
The Normal Load Factor is computed from the stability frame Z component of specific force, 

i.e., the acceleration due to Lift force. The Lift force is found by transforming body-frame X and 

Z components of specific force by angle of attack. 

a5 (z) = LI m = -(f B (x) / m)sina + (f B (z) I m)cosa (A.40) 

NL_g = - 32.174 (A.41) 

A.5 Flexible Vehicle (Structural) Dynamics 

The flexible vehicle dynamics model captures the effects of the vehicle's structural flexibility 

on the sensor measurements. These effects are dependent on the location of the sensors and the 

shapes of the various structural modes. The influence of the structural modes on the sensor 

measurements must be attenuated through the use of aeroservoelastic (ASE) compensation filters 

prior to use in the control law, since insufficient attenuation of these effects can lead to 

instability. 
Linear analysis is commonly used to evaluate the impact of the structural dynamics on the 

control system performance and to determine the ASE filtering requirements. Linear models of 

the ASE dynamics are generated at various flight conditions using an integrated high fidelity 

model of the vehicle's aerodynamic and structural characteristics. The model determines the 

excitation of the structural dynamics caused by the aerodynamic and inertial loads acting on the 

vehicle, and +he subsequent impact on sensor measurements. The model also captures the effect 

of the vehicle's flexure on the rigid body dynamics. The resulting linear ASE dynamics model is 

then combined with linear models of the rigid body dynamics, control system, and avionics 

subsystems to design ASE compensation filters and evaluate system performance. 

The 6DOF model captures the effects of the structural flexibility on the sensor 

measurements, but neglects the influence of the structural flexibility on the rigid body dynamics 
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since this is generally a secondary effect  The equations used to model the structural dynamics 

are based on those described in References 2 and 3. 

The equations governing the structural mode dynamics have the form 

[,» +2CCV+CD?]!, =-Sk(8>(8,)+h(8,K/^ +ol(ö>„]»aS,fr)] (A.42) 
mi j 

where 

\   -    Generalized coordinate of the i* structural mode 

£, -    Damping of the r* structural mode 

CO,. -    Natural frequency of the i* structural mode (rad/sec) 

m, -    Generalized mass of the i* structural mode (slug) 

<)>, (ö ) -Deflection of the i* structural mode at the location of control effector 8, (ft/ft) 

F(ö ) -Force due to control effector 5, which acts to excite the structural mode of interest. 

This force lies in the plane of interest for bending modes. For torsional 

modes, the direction of the moment producing force is used. 

a i (S ) -   Slope of the i* structural mode at the location of control effector 8, (rad/ft) 

mR      -Mass of control effector hj (slug) 

£.       -Offset between the center of gravity and the hinge line of control effector 8, (ft) 

I   -    Moment of ine~ua of control effector 8; about its hinge line (slug-ft2) 

The <(), (bj )F(&J ) term on the right hand side represents the excitation of the i* structural mode 

by the direct forces applied by the control effectors. The remaining terms on the right hand side 

represent the effect of the inertial reaction torque induced by the angular acceleration of the 

control effectors on the excitation of the structural mode. The excitation forces are summed over 

the control effector suite. 

The effect of the structural modes on the sensor measurements depends on the location of the 

sensors along the mode shape. The effect of a given mode is proportional to the slope or 

deflection of the mode at the sensor location. The overall effect of the vehicle's flexibility on the 
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sensor measurements is the sum of the contributions from the various modes. Sensed quantities 

for a given mode are related to the mode shape as follows 

a, =c,(a% (Angle of Attack) 

ß, =of(ßX, (Sideslip) 
Pi, q, ,r, =c t {Gyro% (Rotational Rates) 
A,. =«>,(*£, (Altitude) 
A  ,A2 = §i(

Accel% (LinearAcceleration) 
0/ .6, ,V, =at(Gyro% (Body Attitudes) 

For these equations, the quantity in parenthesis indicates the point at which the noted mode slope 

or deflection is defined. The mode slopes and deflections are defined with respect to the axis of 

interest. 

Since detailed structural mode characteristics of the TAFA aircraft were not available, a 

structural model was created by combining the structural mode data of the F-15 ACTIVE with 

the TAFA aerodynamics. This model is approximate since it assumes the structural mode 

frequencies and mode shapes for the TAFA and F-15 ACTIVE are the same, but retains realism 

by capturing the structural mode excitation supplied by the relative forces and moments exerted 

by each control effector. The contribution of the ASE dynamics to the sensor measurements was 

verified to be comparable to that of the F-15 ACITVE. 

The first step in the development of the ASE dynamics model was to identify grid points on 

the F-15 ACTIVE structural model which correspond to the approximate locauon of the control 

effectors and sensors on the TAFA aircraft. These grid points are required to define the mode 

slopes and deflections used in the ASE dynamics differential equations. Since the aircraft are 

similar in size, the TAFA control effector and sensor locations were assumed to correspond to 

similarly located devices on the F-15 ACTIVE planform. The grid points used are provided in 

Table A.4. 

The next step was to model the forces and inertial reaction torques which form the forcing 

terms that excite the structural modes. The direct force terms are computed directly from the 

TAFA aerodynamics and propulsion models, and are simply the force increments due to the 
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various control effectors. These terms come directly from the nonlinear aerodynamic and 

propulsion models and thus vary with flight condition and maneuver level. 

TAFA Sensors / Control Effectors 

Trailing Edge Flap, Aft Body Flap, Aileron 

Thrust Vectoring Nozzle 

Canard 

Leading Edge Passive Porosity 

Forebody Blowing 

Accelerometers 

Gyros 

AoA / Sideslip 

Altimeter 

F-15 ACTIVE Sensors / Control Effectors 

Stabiiator 

Thrust Vectoring Nozzle 

Canard 

Aileron 

(Location on Forward Forebody) 

Accelerometers 

Gyros 

AoA / Sideslip 

Accelerometer Location 

Table A.4: Grid Points Used in Development of TAFA Structural Dynamics Model 

The inertial reaction torque terms are a function of the geometry of the control effectors. 

Since a detailed structural model of the TAFA was not available, the control effector geometry 

data was estimated as described below. The inertial reaction torque only exists for control 

effectors which rotate a significant mass about a pivot point. As a result, the leading edge 

passive porosity and forebody blowing do not produce a significant inertial reaction torque. The 

mass, offset between the effector center of gravity ard pivot axis, and the moment of inertia of 

the effector about its pivot point must be estimated. 

The mass of the aerodynamic control effectors was estimated by multiplying the surface area 

of the control effectors by a density (mass/surface area). The density was computed using mass 

property data for the F/A-l 8C/D control surfaces, and assumed to be the same for the TAFA 

aerodynamic control effectors. The density of the F/A-l 8C/D trailing edge flap (TEF) was used 

for the subsequent computations, and was found to be: 

F/A-18C/D TEF Weight        117.39 lb 

F/A-l8C/D TEF Surface Area     47.45 ft2 

density 2.47 lb/ft2 = 0.07689 slug/ft2 
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This led to the mass values for the TAFA aerodynamic control effectors provided in Table A.5. 

The mass of the thrust vectoring nozzle was based on mass property data for the F-15 ACTIVE, 

and is also provided in the table. 

Control Effector Surface Area (ft1) Mass (slug) 

Trailing Edge Flap 25.2 1.94 

Aft Body Split Flap 10.9 0.84 

Aileron 7.7 0.59 

Canard 20.1 1.54 

Thrust Vectoring Nozzle - 9.1 

Table A.5: Mass Properties of TAFA Control Effectors 

The offset between the center of gravity and pivot point of each control effector, ^Rj, was 

estimated from the geometry of the control effectors. The effectors were assumed to have 

uniform density and thus the center of gravity is at the geometric center. The distance from the 

geometric center to the pivot point was thus taken as the required offset. The values are provided 

in Table A.6. 

Control Effector 

Offset Between eg 

and Pivot Point (ft) 

Trailing Edge Flap 1.68 

Aft Body Split Flap 1.28 

Aileron 0.7 

Canard 1.6 

Thrust Vectoring Nozzle 1.0 

Table A.6: Offset Between eg and Pivot Point of TAFA Control Effectors 
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The final quantity required for the inertial reaction torque model is the moment of inertia of 

each control effector about its pivot axis. This data was estimated from the mass moments of 

inertia for simple geometrical shapes (e.g. a thin rectangular plate). The resulting inertia data is 

provided in Table A.7. 

Control Effector 

Moment of Inertia 

(slug-ftf) 

Trailing Edge Flap 36.38 

Aft Body Split Flap 5.2 

Aileron 5.95 

Canard 3.88 

Thrust Vectoring Nozzle 75 

Table A.7: Moment of Inertia of TAFA Control Effectors 

Using this data, the structural dynamics were integrated into the TAFA 6DOF. Longitudinal 

(symmetric) and lateral directional (anti-symmetric) modes were implemented separately. The 

lateral directional model includes lateral axis bending as well as torsional mode effects. These 

effects combine to form the forcing function for the lateral directional modal dynamics. The 

ASE model in the TAFA 6DOF is configured so that linear models can be extracted at selected 

operating points. 

An example of the linear ASE dynamics model extracted from the TAFA 6DOF is provided 

in Figure A.7. This figure shows the magnitude of the frequency response relating the ASE 

contribution to sensed pitch rate and normal acceleration to the pitch axis control effector inputs. 

This data is for the low altitude ingress / egress flight condition described in Reference 1. This 

data shows high frequency peaks in the frequency response curves which exceed 20 dB, 

indicating the need for ASE filtering in the control law design. 
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Figure A.7: Frequency Responr f of Longitudinal Axis Flexible Vehicle Dynamics Model for 

Low Altitude Ingress / Egress Flight Condition 

A.6 Actuator Models 
The actuator models describe the dynamic response characteristics, position limits, and rate 

limits of the TAFA control effectors. Both high and low fidelity actuator models are available. 

The low fidelity model assumes position and rate limit capabilities based on nominal operating 

conditions. The high fidelity model computes the position and rate limit capabilities based on 

the surface loads (i.e. hinge moments). The hinge moment effects reduce the position and rate 

capabilities of the actuators at high dynamic pressure conditions. 

The sign conventions of the TAFA control effectors are described in Figure A.8. 

Aerodynamic effectors and thrust vectoring sign conventions are described in terms of a positive 

deflection of the trailing edge (T17.). A positive command to the forebody blowing effector vents 

thrust out the left side of the all craft to yield a positive yawing moment Positive commands to 

the leading edge passive porosity and aft body split flap (left or right) effectors cause them to 

open relative to their neutral position. 

Leading Edge Passive Porosity 
(+ open) 

Canard -^«.^^ 
(+ TEDown) 

Axi-Symmetric Pitch / Yaw Thrust Vectoring 
Aft Body Split Flap (+ open) 
Trailing Edge Flap (+ TE Down) 
Aileron (+ TE Down) 

(+ TE Down/+ TE Left) 

■Forebody Blowing 
(+ -* + Yaw) 

Figure A.8: TAFA Control Effector Sign Conventions 
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The actuator dynamics of the various control effectors are modeled using first or second 

order transfer functions with position and rate limits. The position and rate limits are applied to 

the integrator states rather than the integrator outputs to prevent windup during periods of 

saturation. The first order actuator dynamics are characterized by a bandwidth (co B ), while the 

second order actuator dynamics are characterized by a damping ratio (£) and natural frequency 

(con). The linear transfer functions of these models are provided below. 

.2 
G>B CD 

5C    s+coB   5C    s
2+2^cons+ 

(A.43) 
CO 

The dynamic parameters used to characterize the TAFA actuators are provided in Table A.8. 

Surface Dynamics 
Canard C0B = 40 rad/s 
LE Passive Porosity <»„ = 30 rad/s 
Trailing Edge Flap C0B = 40 rad/s 
Aileron C0B = 40 rad/s 
Aft Body Flap C0B = 40 rad/s 
Vectoring Nozzle C=0.8, to, = 80 rad/s 
Forebody Blowing C0B = 20 rad/s 

Table A.8: TAFA Actuator Dynamics 

The low fidelity actuator models use position and rate limits which characterize the 

capability under moderate loads. These limits are provided in Table A.9. 

Position Rate 
Surface Limits Limits 
Canard -80°/10° 707s 
LE Passive Porosity 0/1 10 s-1 

Trailing Edge Flap -30°/45° 907s 
Aileron -30°/30° 1207s 
Aft Body Flap 0790° 1207s 
Vectoring Nozzle -30°/30° 607s 
Forebody Blowing ±0.006 0.06 s-1 

Table A.9: TAFA Low Fidelity Actuator Model Position and Rate Limits 
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The high fidelity actuator models reduce the position and rate limit capabilities of the 

actuator due to the aerodynamic loads acting on the effector at the current operating condition. 

Worst case models are formed by assuming the load always oppose motion of the surface. The 

aerodynamic loads do not affect the leading edge passive porosity, forebody blowing and thrust 

vectoring effectors, and thus their position and rate limits are unchanged from the low order 

model. Position and rate limit capabilities of the aerodynamic control effectors are characterized 

by the torque-speed curve shown in Figure A.9. 

Rate Limit (8) 

Hinge 
HM,«,       Moment (HM) 

Figure A.9: High Fidelity Actuator Model Torque-Speed Curve 

The torque-speed curve is characterized by a no load rate limit (8 n0 load) and a stall torque 

(HMmax)- The stall torque is the maximum load which the actuator can oppose to move the 

surface. The position and rate limits are computed from the torque-speed curve based on the 

current hinge moment load acting on the surface. The torque-speed is characterized by the 

equation 

Y HM 
HM max 

= 1 . (A.44) 

*.°noload ) 

The hinge moment of each surface is computed based on a dimensionalized hinge moment 

derivative and the surface deflection. The equation is 

HM=q*Ssurf^*CHM*|8| (A.45) 

where 
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q Dynamic pressure 

S surf Surface area of the effector 

t Offset between surface center of pressure and hinge line 

CHM Hinge moment derivative for given effector 

8 Deflection of given effector. 

I he position limits for a given effector are computed as the minimum of the deflections 

which yield the associated stall torque and the physical deflection limits of the effector. The 

equations are provided below. 

HM, lmax 
'maxHM      q*Ssurf*^*C HM 

Supper limit - mm^°maxHM '   maxphysical limit / 
(A.46) 

Slower limit - max\  OmaxHM »Oininphysical lirrlit J 

The corresponding rate limit is computed from the equation for the torque-speed curve as 

*max — °no load' 1- 
HM 

HM max 
(A.47) 

The rate limit capability is limited by a maximum achievable rate (8]^) which characterizes 

the actuator's capability under the mechanical load imposed by the fin inertia, gearing, linkages, 

etc. The rate limit (8 ^ it )
is assumed to equal the rate limit capability of the low fidelity 

actuator model so that the high fidelity model's rate capability will not exceed that of its low 

fidelity counterpart. 

Data was obtained from Boeing's ASTOVL program indicating stall torque and no load rate 

limit requirements for the actuators. These values are assumed for the TAFA aircraft and are 

provided in Table A. 10. 

Surface 

Stall Torque 

(in-lb) 
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Trailing Edge Flap 320000 145 90 

Aileron 57000 170 120 

Canard 290000. 105 70 

Aft Body Flap 35000 180 120 

Table A.10: TAFA High Fidelity Actuator Model Parameters 

The remaining parameters required for the TAFA high fidelity actuator model are those used 

to compute the hinge moments of the various control effectors as a function of dynamic pressure 

and surface deflection. A detailed hinge moment database would be collected by instrumenting 

the control effectors during wind tunnel testing and measuring the shear force, root bending 

moment and hinge moment as a function of flight condition and surface deflection. This 

database would include variations with mach and angle of attack to characterize changes in the 

air load acting on a given surface and movement of the center of pressure of the surfaces. A high 

fidelity hinge moment database is not available for the TAFA aircraft and thus a simple model 

will be used to capture the effects of hinge moments on the actuator position and rate 

capabilities. 

Preliminary data obtained from the ASTOVL program showed that the trailing edge flaps 

and ailerons could reach their full deflection at dynamic pressures up to 560 psf. Comparable 

capability was assumed for the canard and aft body flap, and used to compute the hinge moment 

model parameters. The surface area of the effectors and the offset between the center of pressure 

and surface hinge line were estimated from the TAFA planform. The hinge moment derivative 

was then computed assuming that the maximum surface deflection yielded a hinge moment equal 

to the stall torque when the dynamic pressure was 560 psf. The resulting hinge moment model 

parameters a^e provided in Table A.l 1. 

Surface 

Surface Area 

scft2) 

Center of 

Pressure to 

Hinge Line 

Offset 

/(in) 

Hinge Moment 

Derivative 

CHM(l/deg) 

Trailing Edge Flap 25.2 20.2 0.0246 

Aileron 7.7 8.4 0.0552 

■108- 

0~' 



Nonlinear Control 

Of Fighter Aircraft 

Canard 202 192 0.0167 

Aft Body Flap 10.9 15.4 0.0043 

Table A.11: TAFA Hinge Moment Model Parameters 

A.7 Sensor Models 

The TAFA sensor models simulate the expected signal characteristics yielded by the sensors 

on board the aircraft. These sensors include accelerometers, gyros, angle of attack and sideslip 

probes, the air data system, and the navigation / attitude reference system. All sensed signals are 

computed as the true value altered by a time delay, measurement bias, and zero mean white 

noise. The sensor model for a given feedback channel is shown in Figure A. 10. 

True 
Signal 

Lquations 
of Motion 

Time 
Delay \r~~r Sensed Signal 

Bias Gaussian 
White Noise 

Figure A.10: TAFA Sensor Model 

Specifications for the maximum time delay, bias level and noise standard deviation for each type 

of sensor are provided in Table A.12. The time delay parameter includes generation of the signal 

as well as the time between signal generation and utilization by the flight control algorithms. 

Sensor Type Time Delay 

(msec) 

Bias Noise Standard 

Deviation 

Accelerometers 

AX,AY,AZ(ft/^) 0 0.1 0.5 

Gyros 

P (deg/s) 0 0.0 0.32 

q, r (deg/s) 0 0.0 0.08 

AoA / Sideslip Probes 
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Angle of Attack (deg) 0 0.2 0.2 

Sideslip (deg) 0 0.1 0.2 

Air Data System f 

Mach 10 0.01 0.01 

Airspeed (ft/s) 10 1.0 10.0 

Dynamic Pressure (psf) 10 0.0 10.0 

Navigation / Attitude 

Reference 

Altitude (ft) 10 0.0 6.0 

Roll Attitude (deg) 10 0.0 0.2 

Pitch Attitude (deg) 10 0.1 0.2 

Yaw Attitude (deg) 10 0.1 0.2 

Engine Thrust 

Estimated Gross Thrust 10 10.0 300.0 

Table A.12: TAFA Sensor Model Parameters 

A.8 Flight Control System Digital Effects 

The flight control system digital effects model characterizes the time delay (i.e. phase lag) 

caused by the computational lag of the control laws. The computational lag is the time required 

for the control laws to generate control surface commands once the stick commands and sensor 

feedbacks are available in the flight control processor. The computational lag is equivalent to a 

time delay which adds phase lag to the loop response, thereby influencing stability and flying 

qualities. 

The TAFA computational delay was estimated based on data collected under Boeing's 

Intelligent Flight Control (IFC) program (NASA funded effort). The IFC program is developing 

reconfigurable flight control laws which use system identification to generate on-line estimates 

of the stability and control derivatives. This data is used to form linear models of the plant at the 

current operating condition. The plant models used with a Riccati equation solver to generate 

linear quadratic control law gains on-line. The IFC program is using a Shark digital signal 

processing (DSP) chip to perform the system identification, while the Riccati solution and 

control law computations are performed on the main processor (68040 chip). The Riccati 
■110- 

&* 



«. Nonlinear Control 

Of Fighter Aircraft 

solution is performed as a background task, which yields a 20 Hz computation rate. The control 

law calculations are performed at 80 Hz. Timing analysis on the flight hardware has shown 

computational delays for the calculation of the control laws of approximately 6 msec. 

The Boeing TAFA control laws are based on a dynamic inversion control architecture with 

on-line single layer neural networks to cancel the error between the plant model and the actual 

plant dynamics. System identification is used to generate control derivatives used by the on line 

control effector management (ICEM) to generate control effector commands which produce the 

required control moments while optimizing specified performance objectives (load alleviation, 

...). This approach niinimizes the need for system identification for stabilizing the aircraft 

following failure or damage. As a result, the system identification is not time critical and thus 

can be relegated to a background task. Boeing's dynamic inversion control laws have been 

executed at 80 Hz in real time on a variety of flight processors, including 68040 and i960 chips. 

Current processors (e.g. Pentium, Power PC,...) far exceed the throughput capabilities of the 

68040 and i960, and are expected to be able to handle the additional overhead of the on-line 

neural networks and ICEM. Timing analysis on the selected flight processor will be required to 

determine whether the system identification can be run as a background task on the main 

processor or whether a DSP chip will be required to host these algorithms. Due to increased 

throughput capability of current processors, it is reasonable to expect that the reconfigurable 

flight control algorithms will exhibit computational delays similar to those observed with the IFC 

algorithms. A computational delay of 10 msec is assumed for conservatism. 

A.9Loads Model 

The TAFA loads model characterizes the shear forces and toques at various points on the 

aircraft due to the aerodynamic loads acting on the vehicle. The loads acting on the vehicle must 

remain within the structural limits to preserve flight safety and the vehicle's fatigue life. The 

loads acting on the vehicle are a function of the flight condition and control effector utilization. 

It is common for aircraft control laws to employ maneuver load alleviation logic, which utilizes 

the control in a manner which keeps the loads within the structural limits while achieving the 

desired maneuvers. 
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The TAFA loads model generates the shear force, bending moment and torque moment at 

critical points on the aircraft structure. The points were selected to be the canard root, wing root 

and wing fold as shown in Figure A.11. 

Wing Fold 

Wing Root 

Canard Root 

Figure A.11: TAFA Loads Model Definitions 

Loads are monitored for both sides of the aircraft. The shear force is measured positive up and 

expressed in pounds. A positive bending moment acts to bend the tip of the wing or canard over 

the top of the aircraft, while a positive torque moment acts to raise the leading edge of the wing 

or canard. The torque and bending moments are expressed in inch pounds. 

The loads model was developed using the MSC/NASTRAN doublet lattice aerodynamic 

method on a flat lifting surface model approximating the TAFA planform. The aerodynamic 

model was built to best approximate the important features of the actual aircraft configuration 

given the constraints of the doublet lattice aerodynamic method. The model panel geometry was 

designed to incorporate the canard, leading and trailing e^ge flaps, and the aileron. The layout of 

the wing panel arrangement was complicated by the very low taper ratio and constant chord 

trailing edge control surfaces. The left half of the aircraft was modeled/and symmetry was 

assumed. 

The aft body split flaps are a clam shell device, with one panel opening above the wing and 

the other below the wing. The aft body flaps produce negligible lift and thus do not have a 

significant contribution to the shear force at the wing root or wing fold. The panels above and 

below the wing produce a net torque and bending moments near zero since the contributions of 

the upper and lower panels cancel each other. Based on these considerations, the aft body split 

flaps were excluded from the loads model. The thrust vectoring and forebody blowing devices 
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apply forces directly to the aircraft's fuselage and thus do not contribute to the aerodynamic 

loads of interest. 

Aerodynamic analyses were conducted to identify the effect of the aircraft state variables 

(angle of attack, sideslip, rotational rates, control surface deflections) on each component load 

for a variety of flight conditions. Symmetric and anti-symmetric unit trim variable analyses were 

conducted at Mach numbers 0.6,0.8, 0.9,1.1,1.2, and 1.4 to produce pressure distributions 

across the planform. These pressures were then integrated into canard, wing root, and wing fold 

shear force, bending moment and torsion moment. This analysis produced derivatives of the 

desired loads with respect to each aircraft state variable. The loads are then calculated by 

multiplying each load derivative by its respective state variable, and summing the contributions 

across the state variables. 

A.10 Atmosphere Model 

The TAFA atmosphere model describes the properties of the air near the vehicle. These 

properties include basic atmospheric conditions (pressure, temperature, speed of sound, air 

density, and air coefficient of friction), as well as atmospheric disturbances (winds, and 

turbulence). These models are described in the following sections. 

A.10.1 Atmospheric Conditions 

The TAFA atmosphere model implements MIL-STD-210A and US Standard Atmosphere 

1966 Supplements models for use in simulation and analysis. The model allows the user to 

select from the various atmosphere models (source and day type). In addition, the user is 

allowed to include pressure and temperature biases as a possible aid in matching flight test data 

results. The model produces outside air temperature, static pressure, air density, speed of sound, 

and the air coefficient of friction as a function of altitude. The available atmosphere models are: 

MIL-STD-210A        Tropical Day 

MIL-STD-210A        Polar Day 

MIL-STD-210A        Hot Day 
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MIL-STD-21OA        Cold Day 

U.S. Standard Atmosphere    Standard Day (45° N Spring/Fall) 

U.S. Standard Atmosphere    Hot Day (30° N July) 

U.S. Standard Atmosphere    Cold Day (75° N January) 

The equations governing the MIL-STD-210A and U.S. Standard Atmosphere 1966 

Supplements differ, primarily in the fact that the MIL-STD-210A models use the standard day 

temperature gradients for calculations with all day types. Temperature gradients for the selected 

day type are used in calculations for the U.S. Standard Atmosphere 1966 Supplements models. 

As a result, the U.S. Standard Atmosphere 1966 Supplements models are implemented via the 

appropriate equations, while the MIL-STD-210A models are stored as tables. 

The model produces outside air temperature, static pressure, air density, speed of sound, and 

the air coefficient of friction as a function of altitude for the selected day type. The model also 

allows the user to specify pressure and temperature biases as a possible aid in matching flight test 

data results. The pressure biases can be added in two ways as given by the equation 

P = P 
rP0 + dP0^ 

Po 
+ B^ (A.48) ■'Bias 

where Pnom is the nominal pressure profile for the selected day type, P0 is the sea level pressure 

for the selected day type, dP0 is the sea level pressure increment, and PBial is the pressure bias. 

The sea level pressure increment produces an effect which increases with altitude while 

maintaining a hydrostatically balanced model. The pressure bias is constant over all altitudes, 

and yields a model which is not hydrostatically balanced. The temperature bias is applied as 

T=Tnom + TBias (A.49) 

where Tnom is the nominal temperature profile for the selected day type, and TBia3 is the 

temperature bias. The temperature bias also maintains a hydrostatically balanced model. 

A.10.2 Wind and Turbulence 

The TAFA simulation is supported by wind and turbulence models which implements the 

MIL-1797 A steady state wind, wind shear, turbulence, and discrete gust characteristics for use 
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in simulation analyses. The model allows the user to activate any combination of these 

atmospheric characteristics. The wind and turbulence models are described in detail below. 

The steady state wind specifies a constant wind magnitude and direction which is 

independent of altitude. The wind shear component models wind variations as a function of 

ground clearance altitude. Linear, logarithmic and vector shear models are available. The linear 

and logarithmic shear models describe a constant direction wind whose magnitude varies with 

altitude. The vector shear model describes a constant magnitude wind whose direction varies 

with altitude. The turbulence models are implemented using the Dryden spectra for linear (axial, 

lateral, vertical) and rotational (roll, pitch and yaw) disturbances. Light, moderate and severe 

turbulence models are available for both high and low altitude flight. The discrete gust models 

implement a single gust profile, triggered at a specified altitude, specified as a function of time, 

altitude, or distance traveled. 

The net result of the wind and turbulence model is linear wind velocity components in 

inertial axes, and rotational gust components in the body axes. The linear wind components are 

combined with the aircraft's inertial velocity to create airspeed components. The body axis 

airspeed components are used to compute angle of attack and sideslip angles. The rotational gust 

components are combined with the body axis rotational rates to drive the damping terms of the 

aerodynamics model. 

The implementation of the angle of attack and sideslip rate computations does not entirely 

account for the turbulence influence. For example, the angle of attack rate is computed as 

uw—wii 
a = 2 2 

(A.50) 

The wind and turbulence effects are included in the linear velocity terms, but not the linear 

acceleration terms. Analytical computation of the linear acceleration terms is not possible when 

turbulence is active since this would involve differentiating a random process. The influence of 

turbulence on the angle of attack and sideslip rates can only be accurately captured by 

numerically differentiating the corresponding angle of attack and sideslip angles. An alternate 

approach is to numerically differentiate the linear velocity terms for use in the above equation. 

Refined computation of the angle of attack and sideslip rates due to turbulence is left for user 

implementation since the preferred approach may be application dependent. 
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The steady state wind model specifies a constant wind magnitude and direction which does 

not vary with altitude. The direction is specified by an inertial heading and direction relative to 

the horizontal plane. 
The linear wind shear model characterizes wind variations as a linear function of ground 

clearance altitude. The wind speed varies linearly with ground clearance altitude with the wind 

maintaining a constant direction. The wind shear model contains only horizontal plane wind 

components, with the vertical wind shear component being zero. The linear wind shear model 

parameter definitions are illustrated in Figure A. 12. 

2    WSmagH 

0 WSaltH 
Ground Clearance Altitude (ft) 

Figure A.12: Linear Wind Shear Model Definitions 

The logarithmic wind shear model characterizes wind variations as a logarithmic function of 

ground rLarance altitude. The wind speed varies logarithmically with ground clearance altitude, 

with the wind maintaining a constant direction. The wind shear model contains only horizontal 

plane wind components, with the vertical wind shear component being zero. The MIL_SPEC 

logarithmic shear model differs for up-and-away flight and carrier take off and landing. The 

desired characteristic is selectable in the model. The logarithmic wind shear model has the form 

WS = WSmag*^-^L 
M20/zo) (A.51) 

where hcLls the ground clearance altitude, zo = 2.0 for up-and-away and zo = 0.15 for carrier 

takeoff and landing, and WS is the wind shear magnitude. The up-and-away and carrier wind 

shear models are illustrated in Figure A. 13 
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Figure A.13: Logarithmic Wind Shear Model 

The vector wind shear model describes a constant magnitude wind whose direction varies 

linearly with ground clearance altitude. The vector wind shear model contains only horizontal 

plane wind components, with the vertical wind shear component being zero.  A specified change 

in wind direction occurs over a specified change in altitude. The vector wind shear model 

parameter definitions are illustrated in Figure A. 14. 

?  WSdir+ 
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c o 

.8     WSdir 
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Figure A.14: Vector Wind Shear Model 
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The continuous turbulence models are implemented using the Dryden spectra. Light, 

moderate and severe turbulence models are available for both high and low altitude flight The 

spectra are implemented using weighting filters driven by Gaussian white noise sources to 

produce the required correlation characteristics. Linear (axial, lateral, and vertical) and 

rotational (roll, pitch, and yaw) turbulence models are implemented. The linear turbulence is 

directed along the horizontal flight path angle, while the rotational turbulence spectra are 

implemented in body axes. Gust multipliers are provided to scale (or turn off) the turbulence in 

selected axes. 
The Dryden spectra and continuous domain weighting filter implementations are summarized 

in Figure A. 15. 
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Figure A.15: Dryden Turbulence Spectra and Continuous Weighting Filter 

Implementation 
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The turbulence model parameters for light, moderate, and severe turbulence are provided in 

Table A. 13. 
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Condition 

RMS Intensities ~ ft/sec 

(ou, OV, aw) 

Scale Lengths ~ ft 

(Lu, Lv, Lw) 

Altitude > 1000 ft au=Gv=ofw; function of 

altitude and turbulence 

severity shown in Figure 

A.16 

Lu=1750 

Lv = Lw = 875 

Altitude < 1000 ft 

(Carrier 

Environment) 

GU=1.77, Cv=1.69, aw=1.06 Lu=Lv=Lw=100 

Altitude < 1000 ft 

(Land 

Environment) 

Cw=0.1*U20 

au=aw/(0.177+0.000823h)°- 

4 

Ov=CFu 

Lu=h/(0.177+0.000823h) 1 -2 

Lv=Lu/2 

Lw=h/2 

U20 = 15 knots (light turb.), 30 knots (moderate turb.), 45 knots (severe turb.) 

Table A.13: Turbulence Model Parameters 

0 5        10        15        20 25       30 
RMS Turbulence Amplitude, a ~ ft/sec 
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Figure A.16: Medium / High Altitude Turbulence Intensities 

The discrete gust models implement a single gust profile, triggered at a specified altitude, and 

specified as a function of time, altitude, or distance traveled. The time dependent gusts can be 

used to implement user specified gust profiles in the axial, lateral, vertical and roll axes. The 

altitude and distance dependent gusts exhibit a one minus cosine characteristic and can be 

employed in one of the four axes (axial, lateral, vertical and roll). The user is allowed to specify 

the frequency of the gust profile, the maximum gust magnitude, and distance between gusts. 

The discrete gust as a function of time model implements a single gust profile, triggered at a 

specified altitude. If a gust profile is not provided, the MIL-SPEC discrete gust profile of Figure 

A. 17 is applied in the lateral and vertical directions. The gust profile of Figure A. 17 represents 

an actual wind gust encountered during air vehicle flight testing. 

1 2 

Time From Start of Gust - Sec 

Figure A.17: MIL-SPEC Discrete Gust Profile 

The discrete gust as a function of altitude or distance models implement a single gust profile, 

triggered at a specified altitude. These gusts exhibit a one minus cosine characteristic and can be 

employed in one of the four axes (axial, lateral, vertical and roll). The user is allowed to specify 
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the frequency of the gust profile, the maximum gust magnitude, and distance between gusts. 

Definitions of these parameters are shown in Figure A. i 8. 
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Figure A.18: One Minus Cosine Discrete Gust Model 
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