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4. INTRODUCTION

Temporal change of mass lesions overtime is a key piece of information in computer-aided
diagnosis of breast cancer and treatment monitoring, the purpose of the project is to develop an automatic
change detection method to quantitatively extract the clinically important changes of suspicious lesions,
upgrade the existing CAD system, and thus improve the clinical diagnosis of breast cancer. We will build
a site model for each individual patient for monitoring the breast tissue changes and extend our current
research on image registration and change detection to the early detection of breast cancer. Specific aims
include: 1) registration and segmentation of deformable breast tissue structures across a series of
mammograms; 2) construction of a site model of the mammogram for individual patients showing the
locations of regions of interest and associated diagnostic information; 3) identification of clinically
significant changes in both global and local mass areas within the breast; and 4) integration and evaluation
of the developed techniques with existing CAD prototype. At conclusion of this project, we anticipate
achieving the following: 1) establish a reliable technique of monitoring breast tissue changes associated
with cancerous masses; 2) deliver a CAD prototype that can incorporate tissue change information from
additional mammograms; 3) evaluate the merit of combining change detection and CAD for improved
clinical diagnosis using multiple mammograms; and 4) acquire the experience necessary to explore
multimodality imaging for unified detection, diagnosis and treatment assessment of breast cancer.
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The long-term goal of this career development project is to develop image guided diagnosis
methodology through change detection in mammogram sequences for breast cancer detection. The
research requires the knowledge of image analysis, image registration, change quantification, and
machine intelligence.

During the second year of this career development project, I have developed a close research
collaboration with Dr. Matthew Freedman (Radiologist) and Dr. Ben Lo (Medical Physicist) at
Georgetown University Medical Center. I have also developed a strategic collaboration with Dr. Robert
Clarke (Department of Oncology) at the Lombardi Cancer Center. Through them, I have learned more
about breast cancer at both imaging and molecular levels. I have been serving as a Panel Member for the
Study Sections on both Bioinformatics and Bioimaging for the National Cancer Institute since 2000.

As the Director of Imaging and Intelligent Informatics (I3) Laboratory, I am currently serving as
the major advisor to eight full-time graduate students specifically working on breast cancer research. I am
also the Member, Technical Committee (TC) on Neural Networks for Signal Processing (NNSP), IEEE
Signal Processing Society, since 1999; the Member, Program Committee, IEEE Workshop on Neural
Networks for Signal Processing, Australia 2000; the Member, Technical Committee, IEEE Workshop on
Multimedia Information Processing, Australia 2000; the Session Chair, International Joint Conference on
Neural Networks, Washington, DC 1999.

I have been promoted to the rank of Associate Professor after four-year faculty service at CUA.

As the research accomplishments during the second year, I have first identified the following
major research tasks:

1. Construct a patient specific site model based on the outcome of image analysis including objects,
surface, boundaries, and control points, of the normal tissues and detected/suspected lesions. This will
provide a mathematical model for (1) high accuracy change monitoring considering the patient
variation and (2) effective data fusion incorporating prior/domain specific information.

2. Develop a multiple step algorithm for two-dimensional image registration of image sequence data
sets. It consists of three major components: (1) principle axes registration (PAR), (2) site model
support control feature alignment with localized PAR, and (3) deformable data matching via thin-plate
spline (TSP) interpolation.

3. Apply new algorithm to perform change detection from a set of sequence images based on
information theory, where the clinical objectives are lesion verification/detection, lesion localization,
and change quantification.

Follow this plan, major research accomplishments

K Object Skin line
include:
5.1 New hybrid image registration algorithm
Nipple
We have implemented a new hybrid registration Potential
algorithm aimed at the registration of non-rigid objects Control points

with minimal a prior knowledge, in which we have
developed a methodology to combine multiple transforms
together to determine a statistically composite geometric
transform. The purposed algorithm combines rigid and
non-rigid techniques to accomplish the registration tasks.
The algorithm consists of two steps an initial step (rigid transform) which performs multi-object PAR
registration where object correspondence is assumed known, and a final step (non-rigid transform) that
uses thin-plate spline (TPS) based mapping where control point correspondence is determined via a

Figure 1. Patient specific site model.
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detection and correspondence algorithm. The combination of these two steps is new and provides many
advantages over existing methods. The first advantage is no
requirement for point correspondence in the initial step. Only object
correspondence is required which is usually much easier
computationally to determine. True point correspondence is required at
some point in the processing, but performing the determination after
the image has been preliminarily aligned should allow for a more
focused or narrow control point search windows because potential
control points should now be closer spatially. The second advantage is
the ability to model non-rigid transforms by considering each rigid
transform as a piece wise component of a total non-rigid transform
similar to modeling a non-linear function by linear pieces. This
approach is a departure from traditionally registration approaches
which usually follow either rigid or non-rigid transforms. In particular, | Figure 2. Control point extraction.
we apply the combination method to multiple PAR transforms, but the
method is generic and can be applied to any type of transform along as each cluster control point meets
the particular requirement of the registration method in question. For example, to use an elastic
registration method it is assumed we know the point correspondence of control points. In this algorithm,
the image is assumed to contain several clustered control points, which follow a normal distribution, for
which cluster correspondence is known (i.e. objects).
The resulting transform now enables rigid transform
methods to handle non-rigid transform assuming the
clusters are sufficiently distributed through out image.

5.2 Construction of patient specific site model

We have developed a patient specific site model
concept to image-guided lesion monitoring. The site
model was developed to monitor a site from a sequence
of aerial images. In medical imaging, the site model
idea was modified to accomplish application such as @ ®
lesion monitoring, and disease detection. In addition, Figure 3. Control point matching.
through update procedures the site model allows for the
examination of the entire sequence together, to show region progression or to further highlight small
changes. The main modification to the site model idea was the creation of another variable to store
changes. In traditional site model formulations, new objects are added back into the image, but in the
medical environment the site image is untouched. The changes are stored in the change map. The site
image is untouched because it forms the base frame for comparison so any modification could alter
results.

5.3 New change quantification metric

We have developed a new change
quantification metric based on the joint relative
entropy between two images. Unlike other
change detection metrics, the joint relative
entropy is useful in detecting translation only
changes. In addition, the results of the metric tell
us how similar the blocks are to each other.
Difference image analysis is also useful for Figure 4. Control point matching over time.
translation change, but it is highly sensitive to
noise and does not yield a measure of how close the blocks of data are to each other. In addition, this
algorithm is used in the site model update to reprocess the segmented image given the images of the
sequence. The major assumption is that the adjacent images contain the same view. This algorithm is
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based on a 2D statistical segmentation algorithm where pixel relationship is assumed across adjacent
.+ pixels in the (x,y) direction. The algorithm extension s e
takes advantage of the relationship between adjacent
images. So, pixel neighborhood is considered in three
directions (X,y,z). This additional information leads to a
more robust segmentation for change detection.

5.4 Key results and discussion

The registration process is supported by the
concept of a site model and site model operations. The
site model is a mathematical representation of a scene
under analysis. A basic site model contains a geometric
description of a scenes objects (area, size, and other

| attributes), raw data, and simple user input (previous
tumor locations). The environment interacts with the site
model through the site model operations: construction, | .
image-to-site registration and model parameter update. | .
The site model is constructed by thoroughly processing |
the first image in the sequence to obtain the parameters. | «
The site model supports registration in three main ways. | « &
First, the site model forms the reference frame (reference | = —
image) for all subsequent images, thus allowing all of the Figure 5. Mammogram sequence registration.
images in the sequence to be alignment to a common
coordinate system. Second, the model
stores registration parameters like object
contours, control points, and user
identified regions. This effectively
integrates both manual and automatic
control objects in a single place. Third, the
model stores previously detected change,
this enables the current registration
process to exclude the previously detected
changed portion from the current analysis

Site
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which improves algorithm robustness. In | ™ ™ so 100 150 200 250

this research, we focus on the rigid, affine, @
and polynomial based registration
methods to register the sequence of
mammograms of the same patient. Image-
to-site model registration is performed by
a multi-step algorithm consisting of an
initial and final phase. The initial phase
registers the images using the principle
axis of the skin line in conjunction with segmented internal objects to form a multi-object global rigid
spatial-coordinate transform followed by a simple look up table for the intensity transform. The final
registration phase consists of a global thin-plate spline transform derived from the control points of the
interior breast tissue.

Figure 6. Detection of local chang_e‘g in real inammograms over time.

Figure 1 shows the patient specific site model, where potential control points, skin line, nipple
location, as well as object boundaries, for image registration, are extracted and stored. Figure 2 shows the
result of control points extraction using our method. Figure 3 shows the corresponding control points in
two similar breast phantoms. It can be seen that most control points are well matched using our PAR
based initial registration. Figure 4 shows shows the corresponding control points in two real mammogram
sequence. After our initial registration, stable control points are matched for further registration effort.




Figure 5 shows the results of two
cases of mammogram registration
using our hybrid algorithm.
It can be seen that even with breast
deformation, our method can find a
good matching particularly for local
changes. Figure 6 shows the result of
combined image registration and local
change detection. More results are
provided in our attached Technical
Report.

Change detection not only highlights
existence of possible changed regions,
but when combined with the site

50 100 150 200 250 100 200 300 50 100
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Figure 6 Change detection from real mammograms.
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model provides a patient history by showing site progression. One of the key components of change
detection is image registration. In this project, we applied our multi-step registration algorithm to
mammogram sequences. Acceptable registration and change detection were obtained. Improvement in
control object selection and control point extraction would go along way to improving the overall results.
The key to registration is landmarks between the images. In this research, we use objects and points as
landmarks. Current methods of object and point selection are image dependent and ad hoc. Incorrect
assignment of control points/objects could cause erroneous transformation. This change detection is not
exact, but would be sufficient to flag a radiologist to review the area. The main results of this study
consisted of the automatic alignment of mammograms, detection of change in a local window, and
implementation of a mechanism to store and build up patient information via the site model.
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6. APPENDICES

6.1 Key Research Accomplishments

This report presents methodologies and techniques to aid in the automation of the change
detection process. The change detection process finds application in medical imaging specifically applied
to lesion diagnosis and tumor detection. This study is limited to determining change in a previously
selected window (i.e. local change), not change on a global scale. This is accomplished by the
development of site model supported change detection algorithm. The change detection algorithm is
divided into four main tasks: site model construction, preprocessing, registration, and change detection
and quantification. Site model construction and preprocessing use classical signal and image processing
techniques to derive the site model parameters (i.e. build the model). Registration, the most challenging
component, uses a novel multi-step algorithm consisting of multi-object principle axis registration (PAR)
for initial registration and thin-plate spline (TPS) transformation of control points for final registration.
Three methods for combining the multiple transforms of initial registration are considered. They are local,
average, and finite mixture. Local combination yields images containing discontinuity on boundaries.
Average combination produces a smooth image, but assumes a rigid transform for the rest of the image.
Finite mixture combinations produces a smooth image and can be used to model non-rigid deformation
with several rigid transforms. In this study, finite mixture is used because the breast is generally assumed
to be a non-rigid body. The change detection phase is performed by a two step process. Step one
compares the joint relative entropy of the two image blocks with a detection threshold. Step two combines
object area and center of gravity differences between the blocks as a means of quantification.

This complete change detection algorithm was simulated with phantom images and real
mammograms. The benefits of two steps in registration are apparent by looking at the mean square pixel
error between no registration, single object PAR, and multi-PAR/TPS registration where the MSE drops
almost 84% compared to only 70% with PAR alone. The change metric (joint global relative entropy
(GRE)) was compared to two existing video sequence methods chi square and histogram difference. Joint
GRE performed better as it was able to detect intensity changes, shift changes and shift/intensity changes.
The quantification process estimated on average within 15% of the true objects size for the studies under
considerations.

This complete process facilitates change detection by aligning the images and comparing
corresponding regions of interest for change resulting in a accurate detection of local change and a patient
specific site model showing image conditions over time. A key factor that governors this process is the
alignment of the incoming mammograms to the site model. This process could be improved with more
robust control object selection and control point selection, and obtaining sufficient distribution of control
objects/points during the registration phase. Also, improvement of change quantification methods to
consider more complex methods of description and analysis should result in more robust quantification.

6.2 Reportable Outcomes

1) H. Li, Y. Wang, K-J R. Liu, S-H B. Lo, and M. T. Freedman, “Computerized Radiographic Mass
Detection I: Lesion Site Selection by Morphological Enhancement and Contextual Segmentation,” to
appear IEEE Transactions on Medical Imaging 2000.

2) H. Li, Y. Wang, K-J R. Liu, S-H B. Lo, and M. T. Freedman, “Computerized Radiographic Mass
Detection II: Decision Support by Feature Database Visualization and Modular Neural Networks,” to
appear IEEE Transactions on Medical Imaging 2000.

3) J. Xuan, T. Adali, Y. Wang, and E. Siegel, “Automatic Detection of Foreign Objects in Computed
Radiography,” to appear SPIE Journal of Biomedical Optics, October 2000.
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Vol. 11, No. 3, pp. 625-636, May 2000.

5) Kelvin Woods (Major Advisor: Dr. Yue Wang), Doctoral Dissertation, Jmage Guided Diagnosis
through Change Detection in Image Sequences, The Catholic University of America, 2000.

6) K. Woods, Y. Wang, and M. T. Freedman, “Patient site model supported change detection,” Proc.
SPIE Medical Imaging, San Diego, Feb. 2000.
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Abstract

This report presents methodologies and techniques to aid in the automation
of the change detection process. The change detection process finds application
in medical imaging specifically applied to lesion diagnosis and tumor detection.
This study is limited to determining change in a previously selected window
(i.e. local change), not change on a global scale. This is accomplished by the
development of site model supported change detection algorithm. The change
detection algorithm is divided into four main tasks: site model construction,
preprocessing, registration, and change detection/quantification. Site model
construction and preprocessing use classical signal and image processing tech-
niques to derive the site model parameters (i.e. build the model). Registration,
the most challenging component, uses a novel multi-step algorithm consisting of
multi-object principle axis registration (PAR) for initial registration and thin-
plate spline (TPS) transformation of control points for final registration. Three
methods for combining the multiple transforms of initial registration are con-
sidered. They are local, average, and finite mixture. Local combination yields
images containing discontinuity on boundaries. Average combination produces
a smooth image, but assumes a rigid transform for the rest of the image. Finite
mixture combinations produces a smooth image and can be used to model non-
rigid deformation with several rigid transforms. In this study, finite mixture
is used because the breast is generally assumed to be a non-rigid body. The
change detection phase is performed by a two step process. Step one compares
the joint relative entropy of the two image blocks with a detection threshold.
Step two combines object area and center of gravity differences between the
blocks as a means of quantification.

This complete change detection algorithm was simulated with phantom im-
ages and real mammograms.  The benefits of two steps in registration are
apparent by looking at the mean square pixel error between no registration, sin-
gle object PAR, and multi-PAR/TPS registration where the mse drops almost
84% compared to only 70% with PAR alone. The change metric (joint global
relative entropy (GRE)) was compared to two existing video sequence methods
chi square and histogram difference. Joint GRE performed better as it was
able to detect intensity changes, shift changes and shift /intensity changes. The
quantification process estimated on average within 15% of the true objects size
for the studies under considerations.

This complete process facilitates change detection by aligning the images
and comparing corresponding regions of interest for change resulting in a accu-
rate detection of local change and a patient specific site model showing image
conditions over time. A key factor that governors this process is the align-
ment of the incoming mammograms to the site model. This process could be
improved with more robust control object selection and control point selection,
and obtaining sufficient distribution of control objects/points during the regis-
tration phase. Also, improvement of change quantification methods to consider
. more complex methods of description and analysis should result in more robust
quantification.




Chapter 1

Introduction

1.1 Background

Breast cancer is one of the leading causes of death among women today. To help combat this problem doctors
use medical imaging (mammography) as a mechanism to screen patients and identify cases where further analysis is
required. In breast cancer diagnosis, the mammography has proven to be the only way to detect cancer at its earliest
stages, thus improving the patient survival probability[4]. A patient’s survival probability is directly linked to tumor
size upon detection. Tumor size has an apparent relationship to tumor grade or disease progression which can
dictate treatment options. Studies have shown that women at age 40 and up are most at risk for developing breast
cancer. Although this factor alone is not the sole contributor, most women over 40 have screening mammograms
performed periodically (usually one or two years apart) in an effort to detect the existence or onset of a cancerous
condition in the breast. This type of study is called breast cancer screening and usually is limited to asymptomatic
women where craniocaudal (CC) and mediatorial oblique (MLO) mammographic views are acquired and analyzed
for signs of cancer[4]. These images are reviewed manually by a radiologist following a prescribed procedure which
specific viewing apparatus, lighting requirements, and amount of time per case [4]. Generally, a radiologist reviews
four images of a single view ( either CC or MLO) simultaneously. The images are the current left and right breast
aligned over top of the left and right breast taken previously. Figure 1.1 shows the layout for the screening case. By
aligning the images in this manner, change (tissue change) over time can better be identified. This tissue is a key
indicator to the onset of a cancerous condition. Studies have shown a correspondence between tissue change and
underlying biological change. This change is important for applications such as treatment monitoring and lesion
diagnosis. Once change has been detected, further analysis of the region is performed.

1.2 Statement of Problem

Due to limited resources, radiologist often must review a massive number of cases during a period. Also, the
constrains on resources have caused radiologist with less experience in mammography analysis to review cases. The
review of this massive volume (around 8 images per case) of data and inexperience could cause missed tumors,
delayed detection, and false positives which ultimately cause a reduced life expectation upon detection, unnecessary
patient call backs, and unneeded needle biopsies.

To reduce some of the load on the radiologist and to improve diagnosis accuracy, development of automatic
computer aided diagnosis (CAD) system for change detection have been explored [5], [6], [69]. These systems aim
to automate portions of the analysis process. In order to accomplish this task, one must roughly model the analysis
task performed by the radiologists in the course of an examination. Since this research focuses on change detection,
the task modeling discussed here focuses on that task. The radiologists’s analysis process consists of the following
steps: (1) Acquire mammograms of previous and current visit; (2) Mount the image in specific order (see Figure
1.1); (3) Mentally examine images for similar landmarks and mentally adjust view; (4) Identifying corresponding
regions and compare for change. From the examination of these four tasks, it is apparent that steps three and four
would stand to benefit the most from automation as steps one and two are relatively simple.

Several key issues make automation of steps three and four extremely difficult, with step three being the most
difficult. The issue is the fact that mammograms are complex images that do not contain any clearly defined
landmarks. Secondly, differences in breast positioning and compression during acquisition could cause images of
one scene to visually appear different. Finally, breast sizes and consistency can vary with time (e.g. weight loss,
surgery, and age). The research of the clinical problem of change detection in a mammogram sequence of a single
patient uncovers serval difficulties and complex technical problems. The first problem is how do you align a generally
non-rigid object without apparent control points or landmarks? This problem is classified as a image registration
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Figure 1.1: Layout of Screen mammogram analysis

problem. Image registration has been the topic of much research over the years [73]. The other problems are
directly related to change detection. In mammograms, drastically different images can be attained from the same
patient imaged at temporal displayed times. The key questions here are how do we discriminate natural change from
cancerous change and how do we determine the type of change that has occurred? Often in medical imaging, the type
of change that has occurred can direct the type of treatment required. Prime examples are treatment monitoring
and tumor detections. This process we define as change quantification. This definition was motivated by the work
of [18] where quantification is used to define the process of describing the image with some model parameters. The
specific aim of this research is to study image registration and change detection to address the clinical and technical
problems discussed above. The result will be a semi-automatic change detection algorithm.

1.3 Technical Review

Two main approaches were developed to deal with the problem of automatic change detection in mammograms.
They are approaches based on processing a single view of a single breast [5], [6] and approaches based on single view
of multiple breasts (left and right) [8]. [69] presented work that developed an approach to consider both single and
multiple view processing. Use of multiple breast views leads to additional problems because women typically have
significantly different structures between left and right breasts [1]. This causes natural asymmetry to be flagged
as change or lead to landmark confusion [5] while single breast approaches do not have the problem of dealing with
asymmetry. So, most of the research attention has been focused on single breast approaches. Generally, single
breast approaches contain three main steps: (1) preprocessing of the images searching for control points or regions for
use in registration, (2) registration, to align the images into a common framework, and (3) detection and analysis of
local change. The preprocessing is generally handled by classical image processing techniques such as segmentation,
morphological filtering, edge detection, and feature extraction. The registration process is performed by both rigid
and non-rigid forms, but generally the breast is considered a deformable object thus non-rigid forms of registration
should be used [73]. Finally, the local change analysis is performed with various techniques ranging in complexity
from difference image analysis [15] to principle component analysis [81].

Three main research groups have attempted to address the problems of mammogram registration and change
detection. Group [5] approached these problems with a two layered approach. In their approach, they perform a
sequence of two polynomial based (thin-plate spline TPS) registration using different sets of control points. The first
set of control points were extracted from the smoothed dense tissue boundary (i.e. brightest region on mammogram).
The second set was extracted from the interior region of the dense tissue. Correspondence between control points
for the first transform was performed by matching points on the reference image contour with similar points on the
float image contour with the same maximum curvature. For the second transform, points with matching LAWS’s
texture features [87] were matched as control points. This approach has problems when the dense tissue does not




. * occupy a large percentage of the breast which typically occurs in radio-lucent breast [1, Breast book]. In cases like
this, error occurs in transforms when the point to be transformed is far away from the control points thus reducing
the effectiveness of the control points.

Another approach to mammogram registration and change detection was developed by [6]. They consider these
problems by asserting that accurate registration of mammograms is intractable except with elastic transforms, and
the only solution is regional registration [7]. In regional registration, localized areas of the two mammograms are
aligned based on their distance from control points. In their approach, monotony operators are used to extract
vertical and horizontal elongated structures (milk ducts, and blood vessels) in the image which they assume to be
generally stable between images in the sequence. A three-pass Gaussian filter is used on the original mammogram
to mask less prominent structures. This reduces the complexity and limits the monotony operators to detecting
the dominate structures. The cross points of these horizontal and vertical structures make up the pool of potential

; control points. Correspondence between the current image control points and reference image control points is

accomplished by comparing the respective control point signatures. The signatures are created by counting the
number of non-zero pixels that lie in a rectangle that is rotated around the control point. In this configuration, the
direction of the longest structure would yield the highest valve in the signature. The similarity of the signatures
is used as the matching criteria. These values are then passed into a thresholded accumulator matrix for final
point selection. To localize the area where signatures are compared, the nipple location in both images is used to
determine a neighborhood region that surrounds the potential control point. This reduces processing and decreases
the probability of false alarm. Using these control points, regions (of any shape) are determined on the current
image by calculating the distance from a subset of the detected control points. Finally, the regions are compared for
change. This method overcomes the erroneous interpolation problem experienced by [5], but the algorithm uses ad
hoc point matching criteria, localize window size selection, and threshold determination. In addition, [7] assumes
a small mis-registration that restricts the generality of this approach. Both [5] and [6] mainly address registration
so, simple change detection methodologies based on difference image analysis and wavelets respectively are used for
their change analysis. In [9]’s approach, the registration is performed by a radial basis function (RBF) interpolation
process. This approach as other in polynomial based registration methods depends heavily on the existence of
control points in the image pair. This approach only uses control points on the skin line of the breast which has
been extracted through threshold based image segmentation. Control point correspondence is obtained by finding
contour points that are equidistant (measured in the number of contour points from the corresponding nipple) from
the nipple. The control points are then used to solve for RBF parameters which yield the desired transform. Since
the control point are selected only from the skin line, internal structures are not considered in registration. Thus,
this method is unable to track non-rigid changes that occur inside the breast. In addition, use of threshold based
segmentation could lead to a noisy contour. '

Although these methods have had success on limited databases, their limitations could cause erroneous results
when examining mammograms in a more general sense. For instance, consider a mammogram sequence where both
images contain a small dense tissue area (relative to total breast tissue size). Using [63], the control points would be
clustered around the dense tissue area leaving the rest of the image not modeled. So, any transform derived from
these points could not accurately capture any deformation in the not modeled portion of the image thus causing
mis-registration. In addition, consider that the same sequence has a large initial misalignment. This causes the
window sizes, thresholds, and signature matching criteria of [6] to be manually modified to correctly process. The
approach [69)] is insensitive to the above conditions, but would not accurately model the internal structures because
no control points exist in that region. This short fall could possibly cause the detection of false or missed change.
The limitations of [5] [6] [69] are listed in Table 1.1.

Another problem not considered by the above three approaches is a sequences containing more than two images
(ie. Iy Ii—1, I;i—gye..... ). Sometimes in medical analysis, the radiologist will examine further back than previous
images as some change can only be seen over a longer periods of time. In satellite imaging, site monitoring is a
similar task. In this task, sites are monitored through several images (generally two or more). To accomplish this
task [79] uses the site model. The site model is a multimedia representation of an image scene to include object
shapes location, segmented version of scene, previous location of change, extracted features, and a prior domain
expert information. Through the site model operations of construction, registration, and update the site model
tracks the scene over time. This same approach could be used to analyze an anatomical region such as the breast,
brain,or prostate in temporal studies.

1.4 Approach

Thus, considering the limitations listed in Table 1.1 and site model theories, a new algorithm is proposed to perform
non-rigid registration applied to a mammogram sequence. In this algorithm the registration is perform in two steps.
The first step is called initial registration and it aims to correct large global misalignment by treating the breast as
a sum of rigid objects and performing a multi-object principle axis registration(PAR). The objects include large




Limitations

Effect of Limitations

Wirth Method

Only use control points on the skin-line.

Unable to consider deformation of internal

structures

Number of contour points between control points
as measure of control point matching.

Assumes that the number contour points between
two control points is constant across the float and
reference image.

Difference image analysis (detection only).

No quantification

Sallam Method

Used the boundary and interior of dense tissue to
determine control points.

Control points do not model complete image de-
formation in case when dense tissue is a small per-
centage of image

Used threshold methods to segment image.

Yields different contours if intensity ranges differ
for reference and float image.

Difference image analysis (detection only)

No quantification

Brzakovic Method

Assume small initial mis-registration.

Limits use to cases of small registration.

Image dependent processing parameters such as

Requires new parameters for each image.

signature search wintow, size of monotony opera-
tors, and thresholds.

Histogram analysis using raw images (detection
only).

Adhoc signature matching method.

No quantification

Assumes the longest arm of signature will remain
the same in float and reference images.

Table 1.1: Limitation of existing Mammogram registration algorithms

clustering of similar tissue types and the breast skin line. An individual PAR transform is calculated for each object.
Each pixel z; is then passed through each of the T} transforms resulting in multiple point matching #;x in the new
image. The final point location £; is formed by weighting each point £;; by the probability z;, that the point x; was
transformed by T} (or probability that z; belongs to class k ). z;y is derived by considering each of the objects as a
cluster of control points described by a normal distribution. Thus similar [19], we assume that each (z,y) locations
to be made up of a sum of these normal distribution which can be modeled as a finite mixture.

This formulation allows for a weighting of the transform 7} to determine the final transform 7. Thus, creating
a global interpolative transform that weights local characteristics based on their probability of membership. The
next step in the registration process is called final registration. In this step, non-rigid displacements between images
are accounted for using a polynomial based (thin-plate spline) registration. Polynomial based algorithms depend
heavily on the existence of control points between the images. To obtain the control points, we follow a modified
version of the approach discussed in [7] which it extracts the elongated structure from the mammogram and uses
the cross points of vertical and horizontal structures as the control points. The approach is modified by using the
Pearson correlation coefficient [14] to match the potential control point signatures instead of the direction of the
longest arm of the signature.

Similar to registration, change detection is performed by a two step process. The process consists of a detection
phase and quantification phase. The detection phase consists of measuring the relative entropy between the joint
histogram of the float and reference images with the joint histogram of reference with itself. The quantification phase
uses basic geometry to determine an object’s area and center of gravity which are then compared to determine if the
object has change. To add the ability to study longer sequences, the site model was used to support the registration
and change detection process. The site model supports the registration process by defining a reference frame which
all subsequent images will be registered. The site model also fuses user input knowledge with automatically extracted
data into a single model to be used in the registration process. As for change detection the site model stores the
detected changes along with site memory and any other parameter updates.

The automatic change detection algorithm can be summarized into three main steps as outlined below.

Initial Registration

Preprocess mammogram for skin line and internal objects.
Use multi-object PAR on breast tissue using the skin line and internal object to form a finite cluster transform.

Final Registration.

Preprocess the PAR transformed image searching for control points and transform coefficients.
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Use TPS formulation to determine the required transform.

Change Analysis
Use relative entropy for change detection criteria between the image blocks.
Quantify change by determining difference in object area and center of gravity.
Update change map located in the site model.

A complete flow diagram of the process is shown in Figure 1.2.

1.5 Research Scope

During the development of this algorithm, several assumptions were made in order to bound the scope of this
research. First, the mammograms are assumed to be CC and MLO views only (i.e. screening mammograms) of the
same patient acquired overtime. Second, the radiologist initializes the site model parameters by identifying areas
of interest (local change windows) and other prominent landmark points (calcifications, large blood vessels) in the
first image of the sequence. Third, the type of change was limited to growth of a mass, or shrinkage of a mass.
Microcalcification changes can be detected, but will not be considered because drastic gray level difference between
microcalcifications and non microcalcifications. Although, if present in both images of the sequence they may be
used as control points. Fourth, the amount of initial mis-registration is bounded so the skin lines of each breast are
not more that +25°rotated from each other.

1.6 Contributions

The pursuit of this research has led to several contributions in image processing and medical imaging. Contribution
one is the development of a new hybrid registration algorithm aimed at the registration of non-rigid objects with
minimal a pori knowledge. Usually, non-rigid objects are registered with elastic or deformable methods which require
knowledge of a sufficient number of control point pairs. While some rigid methods relax this requirement and usually
only require object correspondence, for example, surface matching and principle axis methods. Use of rigid methods
alone, in non-rigid problems, would allow for limited correspondence knowledge, but could not accurately model
expected non-rigid deformations. The purposed algorithm combines rigid and non-rigid techniques to accomplish
the registration tasks. The algorithm consists of two steps an initial step (rigid transform) which preforms multi-
object PAR registration where object correspondence is assumed known, and a final step (non-rigid transform)
that uses thin-plate spline (TPS) based mapping where control point correspondence is determined via a detection
and correspondence algorithm. The combination of these two steps is new and provides many advantages over
existing methods. The first advantage is no requirement for point correspondence in the initial step. Only object
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+ correspondence is required which is usually much easier computationally to determine. True, point correspondence
is required at some point in the processing, but performing the determination after the image has been preliminarily
aligned should allow for a more focused or narrow control point search windows because potential control points
should now be closer spatially. The second advantage is the ability to model non-rigid transforms by considering
each rigid transform as a piece wise component of a total non-rigid transform similar to modeling a non-linear
function by linear pieces[77]. This approach is a departure from traditionally registration approaches which usually
follow either rigid or non-rigid transforms[73].

Contribution two is the development of a new change metric based on the joint relative entropy between two
images. Unlike other change detection metrics [10], the joint relative entropy is useful in detecting translation only
changes. In addition, the result of the metric tell us how similar the blocks are to each other. Difference image
analysis is also useful for translation change, but it is highly sensitive to noise and does not yield a measure of how
close the blocks of data are to each other.

Contribution three is the application of the site model concept to medical imaging. The site model was develop
to monitor a site from a sequence of aerial images [13]. In medical imaging, the site model idea was modified to
accomplish application such as lesion monitoring, and disease detection. In addition, through update procedures
the site model allows for the examination of the entire sequence together, to show region progression or to further
highlight small changes. The main modification to the site model idea was the creation of another variable to store
changes. In traditional site model formulations, new objects are added back into the image, but in the medical
environment the site image is untouched. The changes are stored in the change map. The site image is untouched
because it forms the base frame for comparison so any modification could alter results.

Contribution four is the development of a methodology to combine multiple transforms together to determine a
composite image transform. In this research, we apply the combination method to multiple PAR transforms, but
the method is generic and can be applied to any type of transform along as each cluster control point meets the
particular requirement of the registration method in question. For example, to use an elastic registration method it
is assumed we know the point correspondence of control points. In this algorithm, the image is assumed to contain
several clustered control points, which follow a normal distribution, for which cluster correspondence is known (i.e.
objects). The resulting transform now enables rigid transform methods to handle non-rigid transform assuming the
clusters are sufficiently distributed through out image.

Contribution Five is the development of a new statistical segmentation algorithm for sequences of images. This
algorithm is used in the site model update to reprocess the segmented image given the images of the sequence.
The major assumption is that the adjacent images contain the same view. This algorithm is based on a 2D
statistical segmentation algorithm where pixel relationship is assumed across adjacent pixels in the (x,y) direction.
The algorithm extension takes advantage of the relationship between adjacent images. So, pixel neighborhood is

considered in three directions (z,y,z). This additional information leads to a more robust segmentation as seen in
[54].

1.7 report Organization

This report is organized into seven chapters. The first chapter contains an introduction, background, problem
statement, and contributions. The second chapter gives a brief tutorial on mammogram formation and screening
procedures. Chapter three discusses the algorithms involved in the site model construction and update. Followed
by chapter four that contains the techniques for image-to-site model registration. Chapter five discusses change
detection while chapter six presents and discuss global results. Finally, chapter seven presents future research
direction.




Chapter 2

Mammography formation and Screening

2.1 Introduction

Breast cancer is one of the leading causes of cancer related deaths among women. Each year more than 100,000
cases are diagnosed and more than 40,000 women die[l]. For many years researchers have studied breast cancer in
search of an understand of breast cancer development. A high prediction rate of who will develop breast cancer is
still an impossible task, although several factors have been identified as leading to the increase risk of breast cancer
development. These factors include: gender, age, family history, age of first-term pregnancy, and previous history
of breast cancer. Because of the gender factor, all women are at risk of developing breast cancer. In fact, women
are 100 times more likely of developing breast cancer than men [4]. Breast cancer is a progressive disease, evolving
through stages of growth. The size of the tumor size when detect has an apparent relationship to tumor grade and
should be considered an important prognostic factor. Mammography, a form of X-ray imaging, has been shown to
be the only method currently available for the reliable detection of early, non-palable, and potentially curable breast
cancer [3]. So, women starting around the age of 40 are imaged every two years or so. These mammograms are
put through rigorous examination for possible cancerous regions utilizing a process called screening mammogram.
The rest of this chapter is organized as follows: tutorial on mammogram formations, and explanation of screening
Mammogram process.

2.2 Mammogram Formation

Mammography is an X-ray image of the breast used to detect, diagnose, or monitor cancerous conditions. It is
usually performed by a trained technician with the ultimate goal of imaging as much breast tissue as possible. The
patient is usually standing with her breast compressed against a support plate [2]. Compression of the breast is
performed to equalize the thickness across the breast which produces a uniform image. A mammogram system is
generally composed of four main components: X-Ray generator, compression device, scatter grid, and acquisition
hardware. The general mammogram process is defined by these four steps. (1) arrange the breast in the compression
apparatus. (2) Transmit a given X-Ray spectrum through the tissue. (3) Collect the X-rays and calculate the signal
strength. (4) Form image using the results form in step (3). Figure 2.1 shows the arrangement of the components
in relation to the breast to be imaged. The usability of the images is directly dependent on the image quality.
Image quality is effected by several interrelated factors such as: contrast, which is useful in soft tissue examination;
unsharpness, which is useful for small calcification; amount of X-Rays absorbed by breast tissue, where higher level
increase contrast but put the patient at risk for radiation-induced carcinogenesis [4]; and high dynamic range which
handles variation of the transmission over the entire mammogram. Thus, the goal is to determine compromises that
best match the given factors. Next, each of the components in the Figure 2.1 will be discussed in more detail.

X-rays are produced by energy conversion when high speed electrons from the cathode hit the anode target as
shown in Figure 2.2. The electrons are discharged from the cathode as a result of heating. This discharge is called
therminic emission. X-rays (photons) are created when the electrons hit the atoms present in the anode. The
area of the anode that is bombarded by the electrons is called the focal spot. The focal spot is directly related to
image resolution. The smaller the focal spot the better the resolution. Since the X-ray emission from the anode is
isotropic, shielding is needed to reduce undesired exposures to the patient and film. The shielding is performed by
an elongated tube with a single opening. The tube opening is capped with a collimator to further reduce unwanted
radiation emission.

The radiation is composed of three general energy levels low, medium, and high. The low and high energy
photons are filtered out because low level photons usually are attenuated some much by the tissue that they do not
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reach the film and the high level photons are unchanged by the tissue causing a low contrast image. This filter is
used to shape the spectrum to achieve the best image quality. Most frequently, a molybolemun filter is used, but
this is variable based on breast composition and thickness. Breast tissue composition goes through several phases
of development during a womens’ life. In each of these stages the breast can be composed of different tissue types.
For example, in infancy the breast is mostly composed of adipose tissue while in puberty the fibroglandular tissue
develops, and in maturity the fibroglandular tissue is replaced by fat tissue. Each of these tissue types attenuate
the X-rays differently which yields different absorption rates.

The next component of a mammogram system is breast compression. Compression is performed using flat
compression plates. A main advantage to compression is the breast tissue is forced to a uniform thickness. This
avoids the problem of overexposing the thinner regions ( near nipple) and underexposing the thicker regions (near
chest wall). A second advantage is that the compression holds the breast in place during imaging. This reduces
image unsharpness caused from tissue motion. Other advantages of compression are reduced absorption rates
because the breast tissue is now thinner, shorter exposure time because the x-ray have a shorter distance to travel,
and confusing and overlapping structures are separated.

Following the breast compression is the scatter grid. The scatter grid is designed to drastically attenuate the
photons that are hitting the plate obliquely. These photons are more than likely the result of scattering from within
the breast tissue. Scatter grids are composed of thin strips of metal laid with a particular spacing. Grids come in
variety of different configurations. They are measured using a term a called grid ratio. This is defined as the ratio
of the length to strip spacing. When the scattered photons are removed there is an increase the image contrast. In
[2] contrast was improved by 17%, 37%, and 54% with the use of filters with ratio valves of 2,4, and 8.

The final component of Figure 2.1 is acquisition hardware. ~Acquisition hardware includes the process that
receives the photons from the scatter grid and then translates it onto the film. This process contains two major
steps. The first step converts the photon into visible spectrum by exposing a luminescent intensifying screen to the
photons. This reaction produces light which is then used to expose film and form the radiographic image. Next,
this image is transformed into a visible image by standard developing techniques.

2.3 Mammogram Screening

Screening mammograms is the term given to the periodic mammograms used in early detection of possible cancers
conditions. The question the radiologist wants to answer using mammograms is, ”Is this mammogram completely
normal or is addition analysis required?” The major goal of mammography is to image the breast in order to
detect cancerous conditions at its earliest stages. With this goal in mind technicians generally try to arrange the
breast to image as much of the tissue as possible. Since the breast is a three dimensional organ, it is important
to obtain multiple views so confusing or overlapping structures can be resolved. Generally, in screening studies
the mediolateral oblique (MLO) and craniocaudal (CC) projects are obtained [1]. Together these two projections
visualize the majority of the breast tissue, although, if sufficient compression is not achieved then the deep tissue
close to the chest wall will not be imaged. Figure 2.3 and Figure 9.4 shows examples of CC and MLO compression
views with a corresponding mammogram.

The mediolateral oblique projection is the most useful projection because this view projects most of the breast
tissue onto the image including breast tissue close to the chest wall. In this projection, the compression plane is
oblique not the patient. The compression plane extends through the nipple from the upper outer quadrant of the
breast to the lower inner quadrant of the breast as shown in Figure 2.4. On the other hand, in the craniocaudal
projection the compression plane is perpendicular to the chest wall. This view shows the thinner portion of the
breast, but can often miss the thicker portion because of positioning. Usually, after the MLO and CC views have
been examined, additional views may be required depending on the review results. The other supplement views
include: lateral, medial, lateromedial, and straight mediolateral. Use of these views depends heavily on the particular
cancerous sign.
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Figure 2.3: Compression plain and sample CC mammogram view

Figure 2.4: Compression plain and sample mammogram for MLO view




Chapter 3

Patient Site model Construction and
Update

3.1 Introduction

The site model is a dynamic mathematical and geometrical description of a scene under analysis. At a minimum,
the site model contains the following parameters: objects, boundaries, object attributes, user input, and associated
raw and processed data. The site model can vary in complexity ranging from detailed object description (building
numbers) to simple boundary information. Pioneering work on the site model was performed by [13] in the analysis of
aerial images for site monitoring and change detection for intelligence gathering purposes. In that research, the goals
of site monitoring and change detection were accomplished through the support of three main model tasks. These
tasks are called site model operations. In [79] the operations are defined as site model construction, image-to-site
model registration, and site model update. Other research on the site model idea was performed by [74]. In [75], the
site model operations are defined as site model acquisition, model-to-image registration and model extension. The
pursuit of both of these research projects resulted in algorithms for automatic building detection [13], automatic and
semi-automatic registration [79], [75], and fusion methodologies for combining user input with automatic processing
results. Next, each of the site model operations will be further defined and discussed.

The first model operations is site model construction. Site model construction consists of deriving the site
model parameters from the initial nput images and user input. In [79], the construction process is as follows:
(1) review two or more input images (overlapping views); (2) create a world coordinate system; (3) derive camera
models for each image; (4) input camera focal length and principal point; (5) determine control points; (6) refine
camera models for each image; (7) add objects and other annotations.  [75] on the other hand, considers a lower
level construction phase which includes (1) line segment extraction, (2) building detection, (3) multi-image epipolar
matching, (4) multi-image triangulation, and (5) projective intensity mapping. These site model parameters which
include detected line segments, buildings locations, camera models, and other control points are extracted using
advanced and classical image processing techniques.

The next site model operation is image-to-site model registration. Image-to-site model registration is the process
of putting a new incoming image (float image) into the same coordinate system as the site model (reference image).
The registration process may be automatic or semi-automatic (user interaction). A general approach is to match,
in some manner (via. criteria), selected site model parameters with newly extracted parameters in order to derive
a transform that describes the recovering transformational geometry (transform) required for alignment. [79], [74]
, [78] describe several registration methods that they use with their site model. The result of this operation is an
aligned image ready for change analysis.

The site model’s ability to describe a scene over time is derived through the site model update procedure. Site
model update allows for the addition of parameters (objects) of the site based on processing results of previous and
current imaging conditions. With these operations, site change, such as a vehicle leaves a parking lot or lesion
increase in size, can be detected and monitored efficiently. To maintain continuity, [79]’s notation for site model
operation will be used throughout the rest of this report.

The site model idea can be extended to medical imaging analysis. In medical imaging, the radiologist often wants
to perform similar types of applications to site monitor and change detection. For example, lesion detection and
treatment monitoring. In these applications, a radiologist examines a temporal sequence (same view) of the same
patient for change that could indicate cancer. When change is found further analysis is performed. For example,
in mammogram screening, temporal sequences of the same patient are used to detect possible regions of interest.

Currently in medical imaging another type of model is used in various processing algorithms [52] called anatomical
atlas (models). Although anatomical models are currently not used in change detection application, it is important




Parameter Size
1 | Skin line 2XN
2 | Raw image MxM
3 | Segmented image MxM
4 | Mask MxM
5 | Center Gavity 1x2
6 | Eigenvalue 2x2
7 | Eigenvector 2x2
8 | Nipple location 1x2
9 | Elongated Structures MxM
10 | Potenital Control points nx2
11 | Image histogram 1xMgl
12 | change map MxM
13 | Internal objects kx2xg
14 | Control point Signatures Lexn
15 | Quantification parameters | Kx3

Table 3.1: Site model parameters

to note the differences between the anatomical model and the site model. The main difference between the site and
an atlas is the site model is specific to a particular scene (patient) where an anatomical model is more a textbook
rendering of the scene that does not consider user input or individual variability. An example is an anatomical
atlas of a MRI brain [57]. In this example, the synthetic brain MR image has the correct tissue percentages. This
difference leads to a more refined name for the site model called the patient specific site model.

In this research, the site model is used to support registration and change detection to achieve the application goals
of lesion detection and treatment monitoring in mammograms. The site model supports registration by providing a
common frame (coordinate system) from which all other images in the sequence are registered. It also provides an
officient mechanism for combining manual site information (user label objects) and automatic information (detected
boundaries and control points) in a useful manner to help facilitate the desired task. The rest of this chapter
considers the specific contents of the model, the signal and image processing techniques used to construct the model
parameters, and the site model update procedures.

3.2 Model Parameters

In this section, the site model components will be listed and their relevance discussed. Since the site model will be
used to support sequence registration and change detection, it contains parameters used in the accomplishment of
these tasks. Parameter order in the site model is arbitrary as the site model is interactive and parameters are used
in a non-linear fashion. There are some parameters that depend on others, and naturally the dependent parameters
would need to be calculated after the required information was available. The site model parameters included in
this implementation are shown in Table 3.1. Next, the purpose of each parameter is discussed.

The first parameter is a N X 2 vector containing the x,y coordinates of the breast skin line. The breast skin
line parameter is used in initial registration as one of the multiple control objects and as the desired curve to be
fit in nipple location estimation. The second parameter in the model is an N x 2 vector containing the (z,v)
coordinates of the largest objects, usually dense tissue, located within the breast tissue. These objects are used in
conjunction with the skin line to perform multi-object registration. The third parameter is the N x 2 contain the z,y
locations of potential control points. These points are the cross points of horizontal and vertical structures (blood
vessels and milk ducts) within the breast. The points are used to form the spatial-coordinate transform in the final
registration phase. The fourth parameter is an image containing both horizontal and vertical structures. This
image is used to generate point signatures for the determination of point correspondence between potential control
points in reference (site) and float (incoming) image. The fifth parameter is the estimated nipple location and is
stored in a 1 x 2 vector. The nipple location is used to localize point correspondence to a neighborhood window in
the correspondence phase of final registration. The sixth parameter in the site model is the raw image histogram
stored in a 1 x MGL vector (MGL is the maximum intensity value in the image). The histogram will be used
as the desired histogram in performing histogram specification between the incoming image and site. Histogram
specification normalizes intensity ranges to that of the site model so object extraction is not biased by intensity
differences. The eighth parameter is the image quantification model parameter estimates. These estimates are used
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to initialize the segmentation of the incoming images so a uniform segmentation is achieved between the images. A
copy of the raw image, raw segmented image and tissue mask are included and used in follow-on processing. Then,
finally space is assigned for user specific input; such as the, number of classes in the scene, prominent landmark
locations, change region of interest, and location of previous change. The number of classes in the scene is used to
initialize the segmentation process. Prominent landmarks provide addition control points in final registration. The
previous change location is used to exclude the change regions from further processing or focus in on specific regions
for analysis.

The site model construction process is summarized in Figure 3.1. See Figure 3.2 for an example of a site model
of a CC view mammogram. Next, the theory and algorithmic formation of each of the parameters will be discussed.

3.3 Model Construction
3.3.1 Segmentation

The segmentation algorithm used in this research is a statistical based algorithm that classifies each pixel as belonging
to one of the K classes. The main premise of this algorithm is that the image’s distribution can be represented by
the gray level histogram of the image. The histogram of an image is defined as the number of times a pixel intensity
falls within a pre-specified range as shown below.
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plu) = NEZI(u,xi) (3.1)
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I(u,z;) = {(1) u;;”i (3.2)

where z is the intensity level of the pixel and [ is an indicator function. Then it is assumed that the histogram can
be mathematical modeled (or composed of) by a sum of K Gaussian distributions or mixture model where each
individual Gaussian distribution identifies a class (tissue type). Finally, each pixel is assigned a class based on its
membership probability. The algorithm is composed of two main components: quantification and segmentation.
The quantification phase consists of estimating the parameters of the mixture model while the segmentation phase
uses these estimates to determine pixel labels in a maximum likelihood sense.

Several studies of natural image statistics have yielded some stochastic image mixture models that best model
the histogram of the X-ray mammographic images[19]. For this research we selected the standard finite normal
mixture (SFNM) model as the histogram model. SFNM can be derived using the following relationships. First the
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‘image is a N x N image where each pixel is assumed to be a random variable. The marginal distribution of the
random variable (pixels) is shown below.

_3 1 (=)

where z is the pixel (random variable), iy is the kth class mean, o} is the k** class variance, and 7 is the distribution
parameter. The SFNM is derived by randomly reordering the pixels with no regard to spatial information. This
allows the pixels memberships to be treated as i.i.d. random variable. The joint distribution of the image is written
as the product of each pixel’s distribution as shown below.

P(X) =ﬁ 3 s €D (————(x" £ ’“)2> (3.4)
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The above equation represents the SFNM model which can be rewritten in the form of a likelihood function condi-
tioned on 6, the free parameters vector.
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In order to use this equation, the feature vector 0, and K must be estimated. Since the components of 6 are
not treated like random variables, the estimation problem is formulated as a maximum likelihood (ML ) estimation
problem [76]. The main goal of ML estimation is to determine valves for 6 and K that cause X to occur. Since
the logarithm is monotonically increasing, maximizing the log-likelihood is equivalent to maximizing the likelihood
function [76]. The ML estimate 9, is that valve of § that maximizes the log-likelihood function. This estimate can
be determined by differentiating the log-likelihood function log P(X/ 0) and setting it equal to zero (i.e. find the
extreme point of the log likelihood function).
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Sometimes maximizing log P(X/6) is too complex to solve in a closed form solution. In cases like this, an
iterative algorithm called the expectation-maximization algorithm (EM) can be used [25] to obtain the required ML
estimates. The EM algorithm is designed to attack what is termed ’'incomplete data problems’ [25]. Incomplete data
problems are defined as problems where part of the data for some reason is unobservable. Take, for instance, the
true pixel labels L of an image as unobservable data and the pixels intensity Y as observable data. The relationship
between observable and unobservable data is shown below

X = (VL) (3.9)
X = T(L) (3.10)

where X is the complete data and T' is a nonreversible many-to-one transformation of L. If L could be observed
directly then the complete information about the image would be known and no processing would be required. The
EM algorithm is divided into a E step, where the likelihood unobservable data L is calculated through the observable
data Y and the current parameter estimates, and a M step, where the unobservable likelihood function is maximized
to yield new parameter estimates. In the SFNM formulation, the E step, for a assumed number of class K, this is
formulated as a membership functions shown below
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where m is the current iteration number ranging from 0...... Then in the M step the updated parameters (x, o2, )
are calculated by maximization of the likelihood with current estimates. The update equation are shown next.

(3.11)
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The EM iterates back and forth until a convergence criteria is reached (under regularity conditions) [25] . The

convergence criteria is reached when the difference between W,(cm) and w,(cm"l) is smaller than some pre-determined
value € .

lﬂ',(cm"'l) - W,(cm). <e (3.13)

A key factor in the use of the EM algorithm is obtaining a reasonable initialization of parameter estimates [25]. If
initialization is not appropriate, then the algorithm could estimate into a local minima, [25]. To combat this problem,
the Adaptive Lloyd Max Histogram Quantization algorithm (ALMHQ) is used to determine the initial parameters
estimates for the EM algorithm. [20]. The ALMHQ algorithm takes the image intensity histogram p and number
of regions K as input then iteratively determines each of the K threshold values by trying to minimize the global
distortion D with respect to the thresholds ¢ and mean gray levels p.

6D 0D 0

o o (3.14)

K tht1
D= [ - e plain (3.15)
k=1

k

After minimization of distortion, the update equations for 1 can be derived as shown below.

pi =2t — pEq (3.16)

The o2 and 7 for each section are calculated once the optimal mean (1) assignment has occurred. Iteration
stops when the parameters no longer significantly change from iteration to iteration. These estimated values are
used as the initial parameter estimates for the EM algorithm. The ALMHQ and EM assume that K is known
however, except in controlled studies this is usually not true. The determination of K is termed a cluster validation
problem[32] and can be solved using information criteria. The most commonly used information criteria is Akaike
information Criteria (AIC). Appendix A describes this approaches along with some examples. Once the parameters
have been estimated the quantification portion is complete. The results form the quantification phase are then used
as input to the segmentation phase.

The segmentation portion consists of two main steps: maximum likelihood classification (MLC) which performs
the initial segmentation, and contextual Bayesian relaxation labeling (CBRL) which performs the final segmentation
[26]. The MLC can be used if we treat [, the true pixel label, as an independent non-random unknown constant.
Then the label assignment is performed by maximizing the likelihood for each pixel in the image. The assignment
of a pixel i into a class k is given by the following relationships

(i — )
P(X/ o) = 7217—02 exp (—(gﬂ) (3.17)

l; = arg{max T(X/ sk, o)} (3.18)

where T is the likelihood function of pixel images for all pixels. The ML estimate of T for k& would yield estimated
kthclass label. This is realized by minimizing the log likelihood function given

1 (s — pw)*
dir = lo, + 3.19
where d;i, is defined as the Mahalanobis distance between the intensity of pixel ¢ and mean of class &.
l; =arg {mgn dik} (3.20)

Thus, the label of the class mean that is closest to the pixel (in terms of Mahalanobis distance) is selected as the
new pixel label.




Figure 3.3: Raw four class phantom at 25db SNR

Relaxation labelling methods like CBRL perform efficient segmentation given initial pixel labels. This is ac-
complished by incorporating contextual information in the segmentation process. Context information is defined
as the information relating a label (or class) to a pixel. The contextual information is considered by defining a
neighborhood bzb pixels around the pixel i. The CBRL derivation starts by defining 63 the pixel neighborhood
and Is; the labels of the neighborhood. lai =lijne 7= 1....b0° j =14. Next, we can derive the neighborhood
membership as

1
T w1 ;I (ki = &, Ligsi) (3.21)
where I is the indictor function given by
1, z=u
I(z,u) = { 0 ztu (3.22)

7, can also be interpreted as the conditional probability of /;. The pdf of the gray level is given by

K
pliflas) = Y mpk(:) (3.23)
k=1

based on SFNM formulation. The segmentation is performed by minimizing the total classification error using the
following relation.

s = ang { e oo gtafon))} (3.24)

where g(z/0)) is the gaussian kernel.

3.3.2 Experimental Simulation

The quantification and segmentation algorithm was simulated with a phantom image and real mammograms. The
phantom was a 40 x 40 image that contained four intensity values (32,42, 52,62) each occupying 25% of the image.
The image was then corrupted by AWGN that yielded a raw image with a SNR of 25dB as seen in Figure 3.3. The
performance of the algorithm was evaluated by the analysis of the quantification and segmentation results. For
quantification the true SFNM model parameters were compared to the estimated parameters. These results are
depicted in Table 3.2. _

From examination of the table the parameters estimates are within 0.5% error for u and 7.0% error for m. Feeding
the parameter estimates into the SFNM model and measuring the GRE between the phantom histogram and model
shows that the distribution closely models the image. Finer estimates can be obtained, but the EM algorithm stop
criteria must be deceased. In this current arrangement, the threshold is set to 5. By decreasing it to 1, the error




pe | P Tk | T i
32 (31821 .25].242 | 69
42 4179 | .25 | .2692 | 9.59
52 | 52.20 | .25 | .2460 | 6.7
62 | 62.08 | .25 | .2429 | 6.19
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Table 3.2: SFNM parameters estimates for four class phantom.

Figure 3.4: Segmented version of four class phantom

percentages drops from 0.5% for p to 0.3%. This error decease is also accompanied by an increase in processing
time.

The results of segmentation of the four class phantom is shown in Figure 3.4. The performance of this portion of
the algorithm was judged using the number of pixels in error and the amount of improvement in GRE between the
processed and unprocessed images. In this example, the number of pixels in error drops drastically after processing
from ___to __.. This, in turn, improves down stream processing by removing unwanted intensity fluctuations in the
image. This segmentation process is not without error. In several simulation runs, it appears that the error pixels
are equally distributed across the image with most of the errors occurring between adjacent classes (i.e. pixels from
class one are classified as pixel from class two). This appears to be attributed to the resolution of the quantification
phase. This is similar to the resolution limitation of a FFT to resolve closely spaced frequencies [77]. If the
quantification groups pixels into adjacent classes then the error feeds through into final segmentation.

The mammogram examined was 500 x 300 with 256 gray levels. From appendix A and [26], the number of
classes for typical mammograms are found to be eight. Figure 3.5 shows a raw mammogram and Figure 3.6 shows
a segmented version of the mammogram divided into individual classes. Because no ground true tissue map exist
for real mammograms the performance will be compared to previous results obtained in [26]. Table 3.3 shows the
estimates for the SFNM parameters for Figure 3.5.

These values roughly follow the results presented in [26]. Differences can be attributed to the imaging environment

1 2 3 4 5 6 7 8
57.30 | 32.80 | 62.84 | 105.17 | 132.24 | 159.53 | 181.45 203.55
2] .46 1.9 204.69 | 162.75 | 82.38 | 81.00 | 76.04 | 52.06
7~ | 0.0002 | .353 | .059 .052 .164 116 .169 .087

Q=

Table 3.3: SFNM parameters estimates for mammogram with 8 classes.
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Figure 3.5: Raw and segmented versions of a mammogram

Figure 3.6: Segmented classes from a mammogram
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Figure 3.7: Mask image

(i.e. equipment used, signal strength, etc.).

3.3.3 Breast Tissue mask formation

The processing mask is formed by segmenting the raw image into two classes corresponding to tissue and non-tissue
(background). Then for every pixel assigned to the tissue class the corresponding pixel location in binary image is
set to one otherwise the pixel location is set to zero.

Mask(i, ) = { (1{ ij Z(l) (3.25)

This mask image serves two purposes. The first purpose is to limit processing to only tissue regions of the image by
multiplying non-tissue pixels by zero. This process increases processing speed and eliminates unwanted background
effect in none tissue regions. The second purpose is to feed a morphological filter designed to extract the breast
contour for use in further processing. Figure 3.7 shows some typical mammograms with the associated mask.

3.3.4 Contour Construction

The contour is constructed by passing the mask image through two morphological filters. Morphological filters are
filters designed through a structuring element to perform different tasks. The structuring element is a ¢ X ¢ mask
where ¢ X q is smaller than the image size. The first filter is a dilation filter and it has the effect of thickening the
object. The second filter is an erosion filter which has the opposite effect (i.e. thinning). The outline can then be
formed by subtracting the dilated image by the eroded image yielding the object outline. A flow diagram of this
process is shown in 3.8. Figure 3.9 shows some example extracted contours.

3.3.5 Object description

Initially point to point correspondence between images is unknown, but object to object correspondence is known.
Using this object correspondence, an initial transform can be derived. Objects in the image include clustered dense
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Figure 3.8: Contour extraction process

Figure 3.9: Extracted mammogram contours.




, tissue and the breast skin line. The first and second moment of the (z,y) coordinates are used to describe the
object’s geometry. The first moment is calculated using the following equation

1 X

Ry =+ ;r (3.26)
where r; is the (z,y) coordinate of a single point on the object of N samples and R, is the center of gravity (first
moment) of the object. The second moment is calculated using this relationship

N
Cr= Zri'rﬁ (3.27)
=1

where C.. is the covariance matrix (second moment) of the (x,%) points of the object. To further describe the object,
the principle axes and dispersion along these axes is desired. The principle axes of a object is the axes about which
the object’s entia is minium. The dispersion along the axis is the spread of (z,y) values. The principle axis and
dispersion have been shown to describe an object’s orientation and scaling [53]. It has also been shown [50] that
eigenvalue analysis [86] yields the principle axis and associated dispersions through the eigenvectors and eigenvalues
of the covariance matrix of the object. So, the final description contains the center of gravity, principles axes and
the dispersion along these axes.

3.3.6 Nipple point estimation

The nipple in most screening mammograms views lies on the extrema of the breast skin line. Several methods exist
to determine the extrema point. In [88], the point is estimated by determining the point on the skin line that is
farthest from the chest wall line. This method is suspectable to noise in chest wall estimation. Another more
stable approach is by [7] which estimates the nipple location through least mean square error approximation of the
skin line to a quadratic function. The skin line is obtained using intensity thresholding. The least mean square
formulation is shown below.

f(@) = co + crz + cpa?, (3.28)
e = Z(yi —co — e1w; — 333)?, (3.29)
=1
G _ g be_o de_
Seg 0 ber 0 beg

where ¢’s are weighting coefficients and 7 is the number of samples in the contour. The above derivatives yield the
following system of equation where cg, c1, ¢z are the unknowns.

n
—2 Z(yz —cg — C1T5 — czacf)

=0 (3.30)
i=1
—2) “mi(ys —co —crzi—cpwf) = 0
i=1
—42931‘(9@' —cp —C1T; — czx?) = 0
i=1

This approach is stable for breast skin lines that closely follow the quadratic function which MLO view images
generally do not. In this research, the method by [7] is extended by the use of statistical segmentation to extract
skin line, and a higher order polynomial as curve fitting function. The nipple estimation procedure is given by the
following steps:

(1) Segment the raw image into classes.

(2) Group those classes into two classes of breast tissue and background forming a binary image.

(8) Extract the skin line using morphological filtering.

(4) Using N contour points f(z;) of skin line, curve fit a nt" order polynomial using least squares. The formulation
is as follows:

f(:(;) = ¢+cazr+ 62.'172 + s CnCL'n (331)

n n 2
- S feog)
i=1 I=1




Method | = Y

GOOD 289 | 279
LEHIGH | 275 | 294
WOODS | 287 | 277

Table 3.4: Estimated nipple locations for a CC contour the methods.

Method | z Y

GOOD 345 | 278
LEHIGH | 238 | 236
WOODS | 367 | 274

Table 3.5: Estimated nipple locations on a MLO contour for the three methods.

This leads to a n + 1 system of equation to be solved for the weighting coefficients ¢ .

(5) Find the critical points of f(x) using the following

#@) _,

- (3.32)

then solve of x.

A nth order polynomial results in n—1 roots. So, to reduce the number of roots to a manageable number complex
roots, zero roots, and roots outside the breast tissue were dropped from analysis. The z yielding the largest f(z) is
selected as the skin line extrema or nipple location.

3.3.7 Simulation Experiments

The performance of this algorithm was tested through comparison with the results obtained by [6] and [88]. The
skin line contours were extracted using the procedure describe in above section. The algorithms were run on several
CC and MLO view mammograms. Table 3.4 shows the z,y location for a representative CC mammogram using the
three methods.

Table 3.5 show the x,y location for a representative MLO

In the CC image, our method obtains a nipple estimate closest to the visually selected nipple, but in the MLO
image the [88] method selects the best nipple. Our method selects the bottom of the nipple in this case. On average,
our method out performs both [6] and [88] because of the low order polynomial used for curve fitting and contour
extraction noise. Table 3.6 shows the MSE between a contour and various order polynomials functions for CC and
MLO mammograms.

From this we see the higher order functions obtains a lower MSE especially on MLO contour which are not
generally quadratic. Thus, with higher order polynomials a more robust nipple estimation is achieved. To further
highlight the need for higher order polynomials, Figure 3.10 shows the nipple locations given various order polyno-
mials. The proposed algorithm results were evaluated by radiologists and were found to be accurate in 95 % of the
cases. Although some cases estimated the top or bottom of the nipple, the 5 % error can be attributed to contour
extraction error. In these cases, the contour was not very smooth causing many local extrema points. This problem
could be addressed using a smoothing filter on the contour before nipple detection.

CC MLO

Order | MSE Order | MSE
2 "415.9 2 3640
5 162.8 5 1419
10 113.4 10 1381
20 415.9 20 1129

Table 3.6: MSE between the contour and n**-order polynomial for CC and MLO views
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Figure 3.10: Estimated nipple locations for 2,3, 4, and 6th order.

3.4 Site Model Update

In [75] and [13] site model update (or extension) is the process of finding and modeling un-modeled buildings (objects)
and adding them to the site database. This is possible because the image-to-site model registration provides the
correspondence (overall alignment and camera angle) necessary to compare regions. Once registration is completed,
the newly aligned images are then processed looking for set model parameters. These new parameters are compared
to existing parameters looking for differences. The differences in parameters are new locations which are then added
to the database yielding a composite view of the scene.

In this research, the use of the site model differs from that of [75] and [79] because the site model is used as
a reference model with a variable parameter (change map) not a variable model where every parameter could be
updated. Site model update, for this application, identifies changes found in new images (registered) and adds
them into the site model parameter change map while leaving the other site model parameters untouched. The
untouched parameters represent the characteristic of the reference image, and by definition of reference should not
be altered. So, overtime this database will contain the reference image information and changes that have taken
place over the sequence. This formulation of the site model meets the main objects stated previously which are to
provide a common registration frame and highlight the change region for possible exclusion from further processing.
Next, the update processes will be explained in more detail.

The site model update process is conducted by modifying the change map (M) parameter with the newly detected
change. The change map parameter is an image the same dimension as the scene image where each pixel M(3,7)
is initialized to zero to start. Then, each time a pixel M(4, ) is identified as being changed the value of M(3, j) is
incremented. Figure 3.11 shows an example change map for a growing object. From Figure 3.11 we see that the
object has grown through four images of the sequence. This map could then be used to quantify the change by
calculating the size, shape, and rate of change for the object through the sequence.




Figure 3.11: Change map for a 4 image sequence



Chapter 4

Site Model Supported Image
Registration

4.1 Introduction

The registration process is supported by the concept of a site model and site model operations. The site model is
a mathematical representation of a scene under analysis. A basic site model contains a geometric description of an
scenes objects (area, size, and other attributes), raw data, and simple user input (previous tumor locations). The
environment interacts with the site model through the site model operations: construction, image-to-site registration
and model parameter update. The site model is constructed by thoroughly processing the first image in the sequence
to obtain the parameters. The site model supports registration in three main ways. First, the site model forms
the reference frame (reference image) for all subsequent images, thus allowing all of the images in the sequence to be
alignment to a common coordinate system. Second, the model stores registration parameters like object contours,
control points, and user identified regions. This effectively integrates both manual and automatic control objects
in a single place. Third, the model stores previously detected change, this enables the current registration process
to exclude the previously detected changed portion from the current analysis which improves algorithm robustness.
This chapter mostly considers the development of the image-to-site model operation starting with registration theory.

Image registration is the process of overlaying two images with the motivation of transforming one of the images,
usually called the float image (I2), into the same coordinate system as the other image called the reference image

(I1). The process consists of two steps. First, perform a spatial-coordinate transform or mapping function (f)
which is used to determine the corresponding coordinate in the new image as shown below.

@, y) = f(z,y) (4.1)

In more complex mappings, f can be broken into f, and f, corresponding to the x-component and y-components
respectively. Typically, (z/,7’) will not map to an integer grid point on the new image so, some interpolation is need
to find the correct (z’,3’). The second step of registration is the intensity transform (g), which is used to assign
an intensity value to the pixel location (z/,3’). Interpolation of the gray levels may also be required to obtain the
intensity of point (x', y'). The mathematical expression for registration is given next.

L(',y) = g(Ii(£(z,))) (42)

Some registration application do not require an intensity transform (i.e. intensity mapping table) such as single
modality registration with similar gray level distributions, but multi-modality applications require a more complex
transform that accounts for gray level differences between the two modalities.

The key problem in image registration is the determination of the spatial-coordinate transform. The most
common types of transforms are rigid (distance between points in the image are preserved under a transform); affine
( straight lines and parallelism are preserved between images); projective (straight lines are preserved); and curved
(straight line on the original image maps to a curve on the new image). The rigid transform is characterized by a
rotation, translation, and scaling which is realized by the following relationship:

F=AX+T (4.3)

where A is the rotation matrix and T is the translation matrix. This equation can be rewritten as the following




flz,y) = T o ] o ] + Jasg ] | (4.4)
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a1l = agy = COS(G), ag) = a12 = sin(0), alz = tm, asg = ty.

The affine transform is more flexible because the a values from the above equation are not restricted to take on
only sin and cos values. The only constraint is A must be real valued. Projective transforms are realized in a
similar manner

u ail @12 a3 T
flzy)=| v azn a2 Gz Yy (4.5)
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where w is the extra homogeneous coordinate. Finally, the curved transform is modeled by a nt* order polynomial
as shown below.

f(z,y) = ago + a10% + ag1y + ...

In complex mappings, each axis (x-axis, y-axis) has its own polynomial defined as f,(z,y), fy(z,y). These polyno-
mials can model several types of transforms. In this research, we focus on the rigid, affine, and polynomial based
registration methods to register the sequence of mammograms of the same patient.

Image-to-site model registration is performed by a multi-step algorithm consisting of an initial and final phase.
The initial phase registers the images using the principle axis of the skin line in conjunction with segmented internal
objects to form a multi-object global rigid spatial-coordinate transform followed by a simple look up table for the
intensity transform. The final registration phase consists of a global thin-plate spline transform derived from the
control points of the interior breast tissue. The intensity transform in this step is also a look-up table. Next each
phase is described in detail, followed by simulation, results, and discussion.

4.1.1 Initial Registration

The main goal of initial registration is to correct for large mis-alignments between images in a sequence. The mis-
alignments come from differences in breast placement upon examination, image acquisition process, and film size
differences. Although the breast is generally considered a non-rigid object [84], a rigid approach is used as the basis
of this phase. This approach is justified by the fact that the distortions, the initial phase is trying to correct, are
more or less rigid in nature. In addition, it can be applied without complex knowledge of the input data (i.e. control
point correspondence). An example change that is consider my this phase is film size differences. This occurs when
different film sizes are used in the acquisition. This type of problem is handled by increasing or decreasing the
image by a global scale factor which is addressed by a rigid transform (scaling). The initial registration is performed
by a multi-object principle axis registration (PAR) algorithm. The objects include the breast skin line and other
extracted internal objects (i.e. clustered dense tissue). The algorithm proceeds as follows: (1) Extract the contours
(skin-line and internal objects) from both images. The contours and objects from the reference image are stored in
the site model. (2) Use PAR. to obtain the transforms for each object. To insure similar objects are extracted from
both images, the incoming images are histogram specified to match the reference image (site). (3) Transform each
pixel of the image using the transform that is closet in terms of Euclidean distance. This type of transform is called
a local rigid transform. The complete process can be summarized into three main steps which are preprocessing,
spatial-coordinate transform, and intensity mapping. Figure 4.1 shows a flow chart of the initial registration process.
Next, each of these phases are explained.

4.1.2 Preprocess

In this phase, the objects used in initial registration are determined. An object is defined, as a cluster of the same
tissue type in the image. Tissue types are identified with statistical segmentation which assigns a label (tissue type)
to each pixel of the image [19] [26]. Clusters are identified by using class based region growing where the joining
criteria is the pixels class membership. In order to perform registration, some level of correspondence must be
established between the images. Visual inspection of extracted objects is used to determine object correspondence.
An important step in this process is the identification of similar objects. This problem can become complex when
the two images have different pixel intensity ranges. This causes the segmentation algorithm to produce different
pixel class assignments resulting in different looking objects. To combat this problem, histogram specification is
performed on the incoming image in order to match the site image. In histogram specification, the goal is to adjust
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Figure 4.1: Process flow for initial registration phase

the intensities of an image so that the image’s histogram matches a desired shape namely the histogram of the site
image [85]. The process consists of three steps:

1. Equalize the input image histogram via histogram equalization [85].

In histogram equalization, the raw image intensity values are adjusted to produce a uniform histogram. Consider
the pixels z in the image to be random variables with a probability density distribution of p (z) and a cumulative
distribution of F, = Pz <= z]. Then an associated uniformly distributed random variable would be y = Jy pz(z)de.
In the digital domain, the integral is replaced by a sum which results in the follow equation.

y = Y";_o P=(3) where y is the new pixel value resulting from the transform y = T'(x).

2. Equalize the desired histogram (histogram of site image).

3. Determine the new gray level by matching the pixel value in the equalized image y with the gray level required
to make the transform equate toy. y = G(2) z = G~1(y) where z is the new intensity level and G is the transform

Now the histogram specified image is then segmented resulting in more similar looking class assignments.

4.1.3 Simulation Experiments

Next, an object extraction example is consider using the sequence shown in Figure 4.2. This sequence is composed
of mammograms of the same patient, acquired at different times.  Figure 4.3 shows the class assignment for Figure
4.2. From this figure we see the segmentation did not yield uniform pixel membership across the sequence. Thus,
object selection becomes subjective. This fact is highlighted by examining the histograms of the images as shown
in Figure 4.4. To correct this problem, the incoming histogram is specified to better match the site image. This
is shown in Figure 4.4. This results in a uniform segmentation across the sequence as seen in Figure 4.5. Region
growing is then applied to both images to create the objects. Objects from Figure 4.2 are shown in Figure 4.6 and
4.7. The objects are then used in the calculation of the spatial transformation.

4.1.4 Spatial transformation

The transform is calculated by using principle axis methodology[50]. The principle axis method is based on de-
termining and manipulating the principle axes of an object in an image. The principle axis of an object is the
axis about which the moments of inertia of the object are minimum. In this method, the objects are registered by
matching the principle axes. This approach only works with objects that only vary in rotation and scaling. The
rotation factor is represented by the eigenvectors of the data scatter matrix and the scaling factor is address by
the ratio of associated eigenvalues of the scatter matrix. Translation is handled by collocating both objects at the
origin. The algorithm is as follows: (1) obtain the associated coordinates of the object of interest in both images.
(2) Determine the center of gravity object using the following equation.
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Figure 4.2: Squence of mammograms

Figure 4.3: Class assignment for raw squence
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Figure 4.6: Selected object in the site image.
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Figure 4.7: Selected object in the float image.




Set | UnRegistered | Registered
1 48.015 37.391
2 45.354 39.613

Table 4.1: Mse between registered and unregistered contours

1 Y
Teg = N ZT'IZ

i=1
r; represents a point (z,y) and N is the total number of points in the object. (3) Translate the objects so the center
of gravity of each object is the origin (0,0) given by g;

(4.6)

Qi =Ti—Teg (47)
(4) Calculate the scatter (covariance) matrix of the translated data points g;’s.

1 N
=52 @) (48)
i=1

(5) Search for the transformation matrix that diagonalizes Af . The transform matrix will be composed of the
eigenvectors of M (principle axis). This can be realized by performing singular valve decomposition (SVD) of M

A=VTMV. (4.9)

where A is a diagonal matrix containing eigenvalues and V' contains the associated eigenvectors. (6) Determine the
scaling matrix by forming a ratio between the axis dispersion (eigenvalues) of each image.

;5% =@, (4.10)

where @ is the diagonal matrix containing the eigenvalues and S? is a diagonal matrix contain scale factors for each
axis. (7) Form the final transform which is a combination of rotation and scaling which is given below.

U=ViSsy, (4.11)

4.1.5 Simulation experiments

This portion of the system was simulated using the skin line contours of the breast as objects. The derived transform
was then applied to the contour points of the float image to obtain a transformed contour. The performance is
measured by the MSE between the contours as shown in Table 4.1. Figure 4.8 shows two examples with raw
unregistered contours with the associated warped contour. From this table and figure it is apparent that after
registration the contours are spatially closer together. The difference between the mse for registered and unregistered
is only be about 22%. This is attributed to the end effects where contour points at the beginning and end of the
contour create large amounts of matching error. Reducing focus to only consider the central portion of the contour
would significantly increase the difference between registered and unregistered mse.

4.1.6 Combination of Spatial Transforms

Assume that multiple corresponding objects can be extracted from the image pair, and from these objects control
points could be determined using either contours, surfaces, or object description. In registration, these control
points are used to determine a spatial-coordinate transform 7" that maps pixel in one image to pixel in another. The
general expression is shown below

z; = T(xs) | (4.12)

where :r:z is the transformed pixel and z; is the pixel to be transformed. Three combination approaches have been
investigated during the course of this research. Approach one, is a standard approach that considers each of the
object pairs as separate registration problems yielding a transform for each object pair. Then a pixel is transformed
by a particular transform via some metric © (i.e. pixel to contour distance).

¢

i = Tlzi) (4.13)
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Figure 4.8: Unregistered and registered breast contours.

where k is the transform index ranging from 1 to K number of transforms calculated. This type of transform is
called a local rigid/non-rigid transform because pixels are transformed based on transforms local to the pixel [73].
The second approach assumes that each of the Ty describes the same transformation. Then the final transform is
obtained by average The signal model is given below

ti=fitw

where f is the transform and w is the noise.

Signal averaging is routinely used to improve the signal to noise ratio of signals that are corrupted by noise
and can be measured repeatedly [77]. In our case we average the transforms created from all of the objects under
analysis to obtain a master transform (T') which is applied to the complete image.

1 K

i=1

where t; represents a sample transform and K equals the total number of transforms in the image. This method
leads to a global rigid/non-rigid transform since each pixel is transformed by the same matrix.

The third approach, considers the control points as belonging to one of K clusters each with its own mean and
variance. Using the mean and variance each cluster can be modeled as a normal distribution. Now, instead of the
pixel x; only being influenced by a single transform it is influenced by a multiple transforms specifically K . The
standard transform equation shown above is modified as follows.

K
T; = Zaika(xi)
k=1

where a;; is the weighting factor for the it* pixel for the kth transform. This formulation reduces back to the
standard transform equation when oy, = 1; oy = 0; [ # 4; Thus each x; in this formulation is the weighted sum of
K transforms. The weight function could take on several forms such as distance, average, or probability membership.
Given that the control points are localized to clusters described by their mean and variance, all of the control point
clusters could be made to define a finite normal mixture model as shown below
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Figure 4.9: Four pixel grid with point (i’,j’) that falls between the points
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where g is a gaussian kernel and ui and Cy are the class mean and covariance respectively. The mixture model
sets the framework for using pixel membership as a weighting criteria. Membership in this context is defined as
which transform is used to transform a pixel. This model has been used in image segmentation to determine pixel
class [19] [28] [54]. Similar to [19] [28] [54] the posterior probability is used as a measure of each pixels probability
membership. The statistical membership of a pixel with respect to a control point cluster can be defined as

9(@i/pk, C)
S, 9(@s/ i, Cr)

Thus each pixel in the float image can now be transformed using a membership weighted transform. The gray
levels of each pixel are assigned using a straight look up table. The procedure is the following: (1) transform the
pixels located at a point (z,y) in the reference image (R;) to a point (u,v) in the float image (Ry) using the selected
transform (7).

Qe = P(Tk/xi) =

(u,v) =T(z,y)

Determine the intensity at point (u,v). Since points (u,v) are generally not integer values (i.e. fall on a grid
point), interpolation is required to select the intensity. Figure 4.9 highlights an example which requires interpolation.
Several interpolation method exist, but for this research Nearest Neighbor interpolation is used. This method assigns
the new value (u,v) from the closets grid point surrounding it. This leads to the following relationship.

w(®,y) = R(T(z,y))

4.1.7 Simulation Experiments

The implementation of the following methods are discuss through some examples. Figure 4.10 shows the original
image pair under consideration. The image pair was created by the addition of a Gaussian filtered block and rigidly
rotating the complete image by 10°. This is a small rotation, but should highlight the effect of the local and global
multiple object transforms on the image. Figure 4.11 and 4.12 shows the resulting image pairs after transformation
by the local rigid and global rigid transform respectively. From examination of Figure 4.11 it is apparent that
discontinuity resulted from the transform as seen on the left hand side of the right image in Figure 4.11. These
discontinuity can be attributed to differences in transform used on adjacent pixels. The global registration pair, on
the other hand, has a smooth look because of the use of a single transform. So, no more cases of adjacent pixels
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Figure 4.10

Image pair transformed using local rigid with three objects

Figure 4.11




Figure 4.12: Image pair produced with the global rigid

Figure 4.13: Phantom image used in finite normal mixture registration




Object | Configuration
1 2 |3
Cl1 5 7 120
C2 100 (4 |5
1C3 20 |25 |10
NC1 |10 |13 |4
NC2 |20 |6 |24
NC3 |5 20| 11
NC4 |5 20 | 11

Table 4.2: Angle rotations for each object in phantom registration image

Number of Objects | Config. 1 { Config. 2 | Config. 3
0 1616 1598 1785
1 960 930 468
2 758 842 410
3 279 504 310

Table 4.3: Mse results for each configuration

being transformed by different transforms. To simulate the finite mixture registration method, we considered a 150
x 150 phantom image containing three control objects and four non-control objects as seen in Figure 4.13. The
control objects are ellipse while the non-control objects are squares 10 x 10. The key thing about the control objects
is that only object correspondence is known not point correspondence. Each of the control and non-control objects
are rotated and translated by different amounts. This simulates a non-linear deformation (non-rigid) between image
sets, and serves to test the combination ability of this registration method. The objects rotation angles are given in
Table 4.2.

Three configurations of rotation angles are considered. These configurations are chosen arbitrary to show the
robustness of the proposed algorithm. In each configuration the image is registered using one, two, or three
transforms. The performance is measured in mean square error (mse) between the reference and warped image
where a lower mse is seen as better performance. Table 4.3 shows the mse for each configuration. From the table
it is apparent that registration by one transform on average reduces the mse by 50%. The mse is deceased another
10% with the addition of another transform. With the addition of the last transform, significant improvement in
mse is achieved. The mse is reduced by approximately 75%. Figure 4.14 shows an example of the reference and
warped image using all three transforms. These results show the benefit of using multiple transforms where possible.

4.1.8 Final Registration

The goal of this section is to fine tune the alignment achieved in the initial phase by considering the breast as a
non-rigid body. This allows for the consideration of the deformation between the image and site model. Deforma-
tions are caused by positioning differences subject weight gain, natural growth, and nonuniform compression during
examination. To handle these deformations, more complex transforms are required. In [68], the polynomial based
transform were shown to be able to handle non-rigid deformation of kidneys so they are selected in this study to
model the deformations of the breast. Various types of polynomial transforms exist such as linear, quadratic, and
cubic [68]. In this research, a thin-plate spline polynomial will be used as the mapping function [5].

The key requirement for use of polynomial based transform is the existence of control points. In some environ-
ments control points are easily obtained (brain images), but in mammograms this task is very difficult because of
lack of anatomical landmarks between images. In this research, the cross points between vertical and horizontal
elongated structures are used as potential control points. These elongated structures represent blood vessels and
milk ducts. To use these points, one must assume they are time and shift invariant for the most part. These points
will be defined as potential control points. Then the potential control points are matched to produce the final control
points which are then used to calculated the thin-plate spline polynomial transform. The fine registration process
concludes with the transformation of the complete image pixel by pixel.

Similar to the initial registration , final registration can be divided into several parts. They are preprocess-
ing, point correspondence, spatial coordinate transform, and intensity mapping. Figure 4.15 shows the complete




Figure 4.14: Reference and warped image from multi-object registration

algorithm flow. Next, each part will be discussed in detail.

4.1.9 Preprocessing

In this part, the potential control points are extracted from the image. This is achieved by detect the elongated
structures in the image using modified monotony operators to highlight both horizontal and vertical structures in
the image[7]. The monotony operators are defined by two overlapping rectangular neighborhoods, one small and
one large, centered around a pixel (%, 7). Figure 4.16 shows an example of both the vertical and horizontal operators
in a image. The operators work as follows: the pixel at (4, 7) is labeled one if the number of pixels in the large
neighborhood that are larger than gpax, exceeds a threshold 7. Otherwise, the operator assigns a zero to the pixel
(4,7). Omax is defined as the maximum gray level in the small neighborhood surrounding the pixel (4,5). The
vertical and horizontal operators are defined by the following relations
vertical:

a={(k)k=1,-p010p} (4.14)
A={(m,n)im=1,-¢0n0 q}

horizontal:

a={(k,0)|l=1,-p0 kO p} (4.15)
A={(m,n)n=1,—¢0Om0Oq}

q>p,7=(q-p) (4.16)

where a is the small neighborhood of length p and A is the large neighborhood of length q. Using the vertical

and horizontal binary images the potential control points are obtained by finding the cross points of vertical and

horizontal elongated structures. This is implemented by applying a logical AND operation to the vertical elongated
structures image A and horizontal elongated structures image I" yielding Y image which only contain cross points.

T=TOA (4.17)

Depending on elongates structure thickness the cross points could contain multiple pixels. In cases like these,
the centroid of the group of pixels is defined as the potential control point.

Following the method defined in [7], a Gaussian kernel is passed over the image several times to blur the image
in an effort to reduce the effects of fine details in structure detection. This leads to detection of only the most
prominent elongated structures. Applying this process to raw images produces an intractable amount of potential
control points[7]. Figure 4.17 and 4.18 shows a raw and blur image with their respective elongated structure images.
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Figure 4.16: Monotony operators for an image




Figure 4.17: Raw mammogram and assocated elongated structures

Figure 4.18: Three pass filter mammogram with associated elongated structures
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Figure 4.19: Matching window location on new mammogram

4.1.10 Point Correspondence

The next step in the fine registration process is matching corresponding control points from the associated pools of
control points in each image. Several methods for point correspondence have been investigated and proposed by
[7). These included a signature matching, which is an algorithm that search for longest direction of an elongated
structure cross point, and a wavelet based approach that examined localized regions. In addition, [5] used laws
texture features to determine correspondence. This research presents two new correspondences methods. The first
is based on the signature matching algorithm by [7], but an attempt is made to match the complete structure not only
longest direction. The second method transposes the new potential control points Og (x4, ) onto the old image and
matches control points based on point distance from an old potential control point Op(p,yp). To improve matching
rates on both methods, only a subset of the potential control pool from the new image are tested at a single time.
This subset is identified as potential control points contained in a k X [ window centered around the point X..

The point X, is the intersection point between a circle centered around the estimated nipple location Oy (2n,yn)
in the new image and a straight line passing through O,, with a slope of m as shown in below. The slope m of the
line is equal to the slope of a similar line in between the potential control point O,(zp,yp) in the site model (old
image) and O, the nipple location in the old image.

Yy=m(x—2n) +Yn (4.18)
_ Yo=Y
Tp—Z,

(x - mn)z + (y - yn)z = (:130 - xp)z + (yp - yo)2

Figure 4.19 shows a pictorial example. Next, each correspondence method will be discussed.
4.1.11 Elongated structure matching

After passing the location criteria (k x ! window), signatures for each potential control point contained, in the local
window, are calculated. The signatures are designed to capture the characteristics of the elongated structures
surrounding a potential control point. The signatures are calculated by forming the elongated structure image
which contains both vertical and horizontal structures. This is realized as a logical OR operations on the vertical
and horizontal structure images as shown below.

Q=ToA (4.19)

The image © now contains cross points and associated vertical and horizontal elongated structures. Figure 4.20
shows some elongated structures derived from a mammogram.




Figure 4.20: Elongated structures detected by monotony operators

The next phase of signature construction is the rotation of a m x n window N, steps around the control point.
This yields A£° for each step. For each step the number of nonzero pixels (NZ ) contained within the sum window
are counted. The number counted for each step is the signature y(A£°) = NZ. This process is shown in Figure 4.21.
The signatures are then matched by measuring the Pearson correlation coefficient [14] between a pair of potential
control point signatures. The resulting coefficient is then applied to a threshold. The Pearson correlation coefficient
is formulated by the follow equations

pm— % (4.20)

2/55,255y,

_ Cy)?
SSw =2 V' =R,

where y is the N, point signature of O,. The Pearson coefficient measures the statistical distance of two distributions.
Because non-rigid deformation occurs between images the corresponding control point signature could be a circularly
shifted version of each other as seen in Figure 4.22. To consider this problem, the complete signature of the new
image control point is circularly shifted by one sample and then Pearson matched. The highest Pearson between all
shifts is taken to be the resulting Pearson value for that (O,,0,) pair.

The Pearson results for a (Op, O,) pair are stored in a modified accumulator matrix. The accumulator matrix
is a N, x N, matrix where N, and N,, are the number of potential control points in the site model (old) and new
images respectively. In traditional accumulator formulations [7] 77, the element (O,, O,) is incremented each time
point O, matches point Oy, but in this research we put the maximum Pearson correlation coefficient the element
corresponding to (Op,Oq4). The final match is performed by taking the maximum value down the columns and
zeroing the other column entries for that column. This is followed by taking the maximum value in each row and
zeroing the other row entries. The resulting matrix should contain only one nonzero value per row and column.
The nonzero elements are the control points.

4.1.12 Simulation experiments

Pearson based control point matches were obtained for the phantom and several real mammograms. The phantom
sequence was composed of two versions of the same image. The second image in the sequence was a rigidly
transformed copy of the first image. The real sequence contained two images of the same patient acquired at
different times. Figure 4.23 shows the potential ’o’ and real control points '+’ for the phantom sequence where
37 out of the 43 potential control points where matched across the sequence. Compare this to Figure 4.24 where
only 5 out of the 36 potential control points where matched. This difference in final control point matching is the
result of the variability of extracting elongated structures from mammograms. In Figure 4.23, the structures remain
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Figure 4.21: Formation of potential control point signature.

Figure 4.22: Potenial control point signature with corresponding shifted version
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Figure 4.23: Potential and Matched Control points via Pearson matching for the phantom study

stable because the rigid transform causes the signatures to be rotated versions of each other which allows for easy
matching. But in Figure 4.24 non-rigid deformation between the image causes the signatures of potential control
points to look drastically different if detected at all. In [58], which uses much the same approach but only considers
a 40 x 40 window using the longest arm of the structure as the matching metric, only obtains 6 control points for
a real sequence. In this research, a smaller 10 x 10 window is used along with the Pearson matching criteria to
obtain comparable results. This reduction in window size is attributed to use of the complete signature information
in matching not just the most dominate structure arm. To increase matches, the local match window currently
at 10 x 10 should be increased. It should be noted that this operation also increases false match probability and
processing time.

4.1.13 Nearest Neighbor match

In this method, initial registration is assumed to have corrected most of the global distortion and mis-adjustment
between the two images. The control point correspondence is then obtained by overlaying the potential control
points from the new image with the potential control points of the old image and calculating the Euclidean distance
from each old potential control point to each new potential control point.

d = {f(ws — 252 + (i — y;)?

with i and j equal to the index of potential control points bounded by ¢ = 1......Nold and j = 1.....Nnew. The
new potential control point with the smallest d value is selected as a match for the old point of interest. Figure 4.25
shows a typical case of a localized window. In the event, a new potential control point is matched to several old
points the match with the smallest d is selected as the final match.

4.1.14 Simulation Experiments

Figure 4.26 shows the same sequence shown in Figure 4.24 where nearest neighbor matching is used. This matching
methodology more than doubles the number of matched control points over matching with Pearson matching method.
It also produces control points that are distributed evenly around the image. This method exceeds the method
presented by [7] at smaller matching window sizes. A key note is the dependence of this method on initial registration.
Without initial registration, distance is not a good enough metric along. Again more matches can be obtained by
increasing window size at a cost to processing time and false match rate.

4.1.15 Spatial-coordinate

The main goal in registration is to obtain a transform T4 such that one of the images could be transformed into
correspondence with the other. In general, an image mapping transform is represented by




Figure 4.24: Potenial control points shown by o and matched control points shown by * via Pearson matching
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Figure 4.25: Local correspondence window for a potential control point




Figure 4.26: Potenial control points shown by o and matched control points shown by * via Nearest nieborhood
method.

TA(x,y) = (fw(x,y)afy(x,y)) (421)

where f(z,y) is the mapping function for = coordinate of (z,y) and fy(z,y) is the mapping function for the y
component of (z,y). Since breast tissue is inherently nonrigid, complex changes can occur between the image in
the sequence. To account for these changes, the function f() needs to be non-linear. [5],[68] selected TPS as the
mapping transform so we apply it in our case. The mapping function for TPS is shown below

f(@,y) = wo + w1z +way + »_ Wig(rs) (4.22)

i=1

g(r;) = riz log r?

given that r; = (z; — )% + (y; —y)2. This transform is made up of a global (affine) portion and (elastic) portion.
These two portions are distinct but can be evaluated simultaneously.

In order to use f(z,y) to transform the image, the coeflicients wp, wy, we, W; must be estimated. This is done
by using the control points determined form the previous section, to formulate a least square approach to coefficients
estimation. The least squares formulation starts with coordinate mapping relation

(U’U) = (fm(w,y)afy(x,y)) (4.23)

where (u,v) is a point in the new image (control point) that is associated with the point (x,y) in the old image
(control point).  Given (u,v) and (z,y) are control points, zero error should occur when transforming (x,y) through
the mapping function.

(u’v) - (fw(xv y)a fy(x7 y)) =0

Rearranging terms and expanding to handle n control points a general error equation is formed given below.




Figure 4.27: Raw phantom sequence
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E =" [(ui— fol@))? + v — fu(w,y))’] (4.24)

i=1

The above equations leads to the normal equations. The relation for the  mapping functions is shown below.

m 1 n
Yo ai [Z T ] = wafyp ™’ (4.25)
=0 j=0 k=1

where a = 0...m and @ =0....c. The coefficients for the y mapping functions are found in a similar fashion. With
the mapping functions f, and f, each pixel is then transformed to produce the warped image. In general, the new
pixel location will not fall on a exact grid point some interpolation is used to obtain the pixel value. In this research,
nearest neighborhood interpolation is used to determine the new pixel value.

4.1.16 Simulation experiments

This process is examined through the following example of a phantom that is made up of two squares where each
square is transformed by a different amount. The image pair is shown in Figure 4.27. Table 4.4 shows the mse
between the reference and the stages of the warped image. From the table one can see the mse decrease through out
the process. Use of PAR, along reduces the mse by 77%. With the addition of TPS the mse is reduces by another
10%. A small decrease in mse after PAR is attributed to the use of only 6 control points. If more control points
had been selected the performance gain of TPS in this process should improve.

4.2 Summary

This registration approach is composed of two main steps an initial step and fine step that are supported by the
site model. The site model supports the registration process by storing user (manual) and automatically extracted




Figure 4.28: Registered phantom sequence

Number in error | Method
395 none

90 PAR

60 PAR-TPS

Table 4.4: Amount of pixels in error for registrations methods
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.+ input for use in registration. The model also provides a common frame for incoming images to register to. Finally,
the site model stores the complete image sequence history in a common place. The initial registration step is aimed
at addressing gross misalignment between the images. This step is rigid model deformation based and requires little
environment knowledge (i.e. control point locations). While the fine registration step requires the identification
of corresponding control points. The fine step is aimed at correcting non-rigid deformation between images in the
sequence. Together mammograms can be robustly registered in support of change analysis. With the mapping
functions derived above each pixel is transformed to produce the new image.




Chapter 5

Site Model Supported Change Detection

5.1 Introduction

Change detection is the process of identifying significant differences as measured by a metric between two or more
objects. In this research, the objects of interest are images or sub-images (i.e. localized windows) in a sequence.
In an image sequence with objects, three types of change can be defined. In the first type of change, defined as
type I, only intensities of the pixels change. In the second type, defined as type II, the intensities remain constant,
but the location or shape of the object changes. In the third type of change, defined as type III, intensities, shape,
and location change. These types of change can be measured either pixel by pixel or image by image. A simple
formulation of a pixel change metric is shown below.

D =S(Ry, R,) &Y
image(i,j) = { (1): D(li),(;),{))(:’y

where D is a change map containing the metric measurements at each pixel. () is the pixel function criteria applied
for processing. For example, in difference analysis the function & would equal abs. v is the metric threshold, Ry
is the transformed image, and R, is the reference model image. Image change is measured in much the same way as
pixel, but the image is evaluated as a whole.

D = So(Ry,Rr)
1, D>
mage = {0 D'<z (5.2)

where So is the image change function, D is a scalar change value, Ry is the float image, and R, is the reference
image. An example of an image change function could be the mutual information between to image blocks as shown

below where
S0 = Zpa:y IOgPa:y

Doy is the joint distribution of an image = with marginal density pa and an image y with a marginal density of py.

Change detection in images has found application in various fields including video sequence processing; satellite
imaging; and medical imaging. In video sequence processing, numerous change detection metrics have been developed
[10]. The main goal in this application is to find abrupt scene changes to aid in sequence compression. The
compression is achieved by sending only a reference image (i.e. first image in sequence) then only scene change
information (global) in subsequent transmissiens. The video change metrics assumes high SNR and the occurrence
of abrupt change. The main motivation is to detect the region of the image that contains the change. No effort
has been put into describing the change. The most research on change detection has been conducted in the satellite
imaging area (remote sensing). In this area, work has been done on building change detection, agriculture crop
analysis, and weather tracking [79], [82]. Some specific change metrics have been developed for synthetic aperture
(SA) images [83], but they take advantage of the multi-spectral data that is inberent to SA imaging. For this reason,
they are not as useful for other applications (i.e. non-SAR applications). Again, as in video change, no effort has
been put into describing the type of change.

In the medical environment, the existence of change and the classification of change are very important. This
change leads to valuable diagnosis information. Since the change metrics for video requires high SNR. and the metrics
for SRA are SAR signal dependent, a new metric is needed. The newly developed change process should also have
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Figure 5.1: Change detection process flow

the capability to quantify change. To accomplish this task, a two step process is developed. The steps are change
detection and quantification. The detection phase is performed by measuring the joint relative entropy between the
two objects with entropy values higher than a user specified threshold marked as change. Quantification consists of
comparing the objects area and center of gravity. Often, in medical applications such as lesions monitoring, change
overtime is of great interest as it can show response to drugs or disease progression. The site model, which is a
dynamic mathematical and geometrical description of a scene under analysis, has been shown to be a useful tool in
the analysis of changing images in a sequence [79]. When applied to the medical change problem, the site model
could store the behavior of an object in the scene as well as over all image behavior. Use of the site model also
allows the integration of user supplied input (domain knowledge) with automatically extracted parameters towards
the goal of change detection. This idea of user input models the real process that a radiologist uses to analysis the
image. Specifically, the site model supports change detection in two main ways. First, the site model provides a
unified location to store change that has been occurring overtime. This feature is useful in monitoring application.
Second, the site model can be used to determine which part of the image should be considered in processing. For
example, the changed portion of a image might not be included in transform calculation. This generates a more
robust transform. The rest of the chapter considers the development of the change algorithm. The complete block
diagram is shown in Figure 5.1.

5.2 Change Analysis Theory

The site model supported change detection algorithm contains two main phases. Phase I is change detection and
phase II is change quantification. Change detection is the process of determining whether two objects (images)
differ. In practice, nothing is ever exactly the same, so the change detection results are measured in comparison
to a threshold. For this research we selected the use of relative entropy as our change metric. Relative entropy
is a measure of the inefficiency of assuming that one distribution exactly matches the other. (ie. distance apart)
Relative entropy is given by the equation.

p(z)
D(p//g) = _p(e)log @
where p(z) and g(z) are the distribution of image P and () respectively. Relative entropy is also known as Kullback
Leibler distance. To utilize this relationship, the distribution of each image is required. These distributions are
modeled by the gray level histogram of the image. The resulting D(p//q) valve is then compared to a threshold
for change determination. The threshold is selected manually and is highly dependent on image dynamic range.
Since spatial information is thrown away during the calculation of the histogram, the use of the marginal densities
makes the metric insensitive to type II changes. To address this problem we, consider the use of the joint densities
because these densities maintain spatial information. This leads to the formulation of a new detection metric relative




Change type | Orignal object Change object

T,y size Intensity | z,y size Intensity
III .| 205,205 | 10 x 10 | 100 205,205 | 10 x 10 | 100
III 100,100 | 10 x 10 | 100 100,100 | 10 x 10 | 100
I 50,435 | 10x 10 | 100 58,426 | 10x 10 | 100
I 250,250 | 10 x 10 | 100 250,250 | 10 x 10 | 115
none 135,333 | - - 135,333 | - -

Table 5.1: Configurations of change blocks in phantom.

de qd Ge | Ga GRE | AHST | Chi
1|1 +3001]0 302 |0 10.8 | .05 .2565
210 12.04 [ 9.89 | 15.86 | 499 | .2 3
310 0 0 0 287 |0 0
41100 [0 -100 | N/A | 256 | .0013 | .00319
5| N/A | N/A | - - 0 0 0

Table 5.2: Change Quantification results

entropy.
D(sz//p:m:) = E Pxy log iwy
xxr

This metric measures the inefficiencies of assuming that p,, is the distribution for p,,.

The next phase of processing is change quantification. In this process, the characteristics of the change are
determined (i.e. amount, shape, change). This is performed in a multistep process. First, segment the image into
two classes. Second, compare the segmentation image with the reference segmented image. Third, form objects
from each image and calculate object shape area and center of gravity. Finally, calculate the object overlap and size
of difference. The results are then stored in the site model for the next stage of processing.

5.3 Simulation Experiments

To simulate this portion of the system, a phantom mammogram sequence containing four manually changed regions
was processed. The three types of change were simulated by modifying a N x IV block of manually changed pixels.
Table 5.1 shows the four different configurations. To make the blocks more natural, Gaussian filters are applied
to smooth out the edges. To isolate the change detection performance, the phantom sequence was assumed to be
perfectly registered. This is accomplished by using the same mammogram in both images of the sequence. We
further assume that the radiologist has identified the regions of interest, a 30 x 30 block of pixels, a pori. Generally,
in most change detection metrics a, function is evaluated yielding a value which is then compared to a threshold.
For this simulation it is assumed the detection threshold is predetermined at 0.5. The performance of joint global
relative entropy (GRE) will be compared to two video sequence metrics, an absolute histogram (AHST) and chi
square metric (CHI). The quantification portion will be tested by quantitative comparison of the phantom blocks.

Table 5.2 contains the results from processing the phantom where ¢, and g4 are the true A area and location
respectively; and §. and gy are the estimated A area and location. For the detection phase of processing we see
that GRE metric obtains favorable detection results on all three types of change. The GRE values are >> than
the threshold. This indicates that possibly the threshold can be increased which would improve robustness by
decreasing the possibility of noise being flagged as change. On the other hand, AHST and CHI fail to detect change
at all. This is attributed to the dependence of these metrics on the marginal densities which do not store spatial
information. The values produced by these two metrics are << than the threshold. One would tend to think that
performance for these metrics could be improved by decreasing the threshold, but this would only serve to flag noise
differences as change. The superiority of the GRE metric can also be seen by examining the ranges of values. The
GRE ranges from 0..10.8, while AHST and CHI teams range from 0..0.3 and 0..0.2 respectively. These ranges can
also be called dynamic range (value ranges). In communication systems dynamic range is a indicator to the systems
sensitive. This same ideal applies to the detection metrics. The GRE metric has a larger spread than AHST and
CHI which allows it to capture more and smaller amounts of change.

In the quantification phase, the algorithm accurately quantifies type III change. In this example, the true area
difference was 300 pixels®. The estimated area difference was 302 pixels®. In this case, the translation was estimated
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with exactly O pixels. In the type II change example the areas remained the same, but a translation of 12 pixels
was recorded. The algorithm estimated an area change of 9 pixels? and a translation of 15 pixels. The error in
the area could be attributed to the inability of the object selection process to extract the object. Generally, this
occurs when the block is the same intensity level as the background. In type I change, the algorithm estimates 0
area change and 0 translation. To fully test the algorithm, an example was selected were no change occurred at all.
These results are shown on the bottom row of Table 5.2. Here we see that GRE, AHST, and CHI did not flag this
region as changed, but it is difficult to tell if AHST and CHI really found no change or are producing values in there
dynamic range.




Chapter 6

Experimental Results and Discussion

6.1 Introduction

The main objective of this research is to detect biological change in a temporal sequence of mammograms. Different
types of change can occur between mammograms acquired overtime. The first type of change is natural change which
includes weight change and tissue composition change. The next type of change is image acquisition change. This
includes the changes caused by breast positioning, breast compression, and differences in imaging equipment. Finally,
change that possibly indicates cancer or the onset of cancer. This type is usually visualized as a microcalcification
or mass [3]. The first two types of change generally affect the complete image and are classified as global change.
On the other hand, the third type of change is usually localized to a region and is classified as local change. Due to
the enormous number of combinations relating to the first two types of change, we focus attention on local change.
In addition, we also only consider change calculated from a radiologist selected localized window. Local change has
been shown to be an indicator of the onset of cancer [4]. Currently, radiologists perform change analysis manually
following a specific procedure [3]. Automation of this task could help to reduce the fatigue felt by the radiologists
which may lead to an increase in analysis accuracies. This chapter presents and discusses the results generated
by applying the developed change detection algorithm to real mammogram sequences. See Figure 6.1 for a system
overview and flow diagram. Next, the results of several example mammogram sequences will be discussed.

6.2 Experiment Results and Discussion

The first example is a sequence composed of two right CC views of the same patient acquired on 1/21/93 and 2/3/99
as shown in Figure 6.2 a and b. The image acquired on 2/3/99 contains a suspicious region located at (77, 317).
Figure 6.2a is taken as the reference image and used to construct the site model. The users input to the site model
is the region of interest, which is a 30 x 30 square centered around the point (77,317). The radiologist selects
the window size manually as seen in Figure 6.3. After construction of the site model, processing new images can
commence. The first step is the extraction of parameters used in initial registration. This includes objects and
their descriptions. Next, multi-object PAR. is performed using 2 of the objects as seen in Figure 6.4. The resulting
initial registration pair is shown in Figure 6.5. Comparing Figure 6.5 and Figure 6.2 we see that most of the
scale difference between the images has been corrected. Finer alignment could be obtained if control points were
known. Using the initially registered image, final registration parameters are extracted. These parameters include
potential control points and their associated signatures. Next, the recently extracted potential control points are
matched with the potential control points from the site model to obtain the final control points. This matching is
performed by two methods in this research. Figure 6.6 shows control points obtained by matching signatures using
the Pearson correlation coefficient while Figure 6.7 shows control points obtained by matching Nearest Neighbor. In
this example, Pearson matching yields 13 control point pairs out of a pool of 66 potential control points or a match
rate of 0.197. This rate is low because the deformation between the site and incoming image produced different
potential control point pools in each image. Thus, signature matching yields few matches when signature correlation
is low. The final control points in this example are clustered into 2 loose groups located on the top and bottom of
the breast. This appears to be caused by the existence of dense tissue near the center of the breast. In dense tissue,
the monotony operators (used to find elongated structures) appear to have problems when the tissue intensities are
nearly constant. Nearest Neighbor matching, on the other hand, yielded 27 control points evenly distributed across
the image. This yields a match rate of 0.409. This number is still low, but more acceptable. Both matching rates
could be improved by the increase in the localized search window size, but the probability of mis-match would also
increase. Mis-match control points cause gross distortion in the transformed image. Since our method of control
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Figure 6.2: Raw mammogram sequence. (a) 1/21/93. (b) 2/3/99.
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Figure 6.5: Multi-object PAR image pair.
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Figure 6.7: Potential 7o/ and final / % / control points using Nearest Neighbor method.

point extraction is based on [58] we suffer the same image dependence problems as [58]. Window sizes, thresholds,
and monotony operator dimensions are among the key parameters that need to be adjusted on a per image basis.
For our research we use a window size of 10 x 10, threshold of 6, monotony operator dimension of 1 and 5. These
values were experimentally determined using visual inspection of initial output. Next, the final transform is derived
and applied to the image pixel by pixel resulting in the pair shown in Figure 6.8.

To perform change detection, the corresponding region of interest from the incoming image is compared to the
site model. The histograms of the two regions are compared in Figure 6.9. From this figure, the difference is
visually apparent as the two regions have different distributions. Three change metrics were applied yielding the
following results: global relative entropy (GRE) 23.63; absolute histogram difference (AHST) 0.885; and chi square
(CHI) 1.0. The last two metrics are video sequence metrics and serve as comparisons of existing change methods.
Given the threshold of 1.5 which was determined experimental, both AHST and CHI miss the change which means
they appear to be insensitive to slight scene changes, but GRE detects the change. In fact, this change resulted in
a GRE value > 1.5. It would appear that the threshold could be increased, but this would increase the probability
of miss.

Unlike the phantom studies performed in the other chapters, no ground truth exists for quantification of the
changed region. For this reason, visual inspection is used to examine the results. The quantification process
determined an area difference of 353 pixels which was verified by an radiologist during a manual inspection. The
detected area is larger then the area estimated by the radiologist because the object extraction process cannot remove
all of the background pixels. 54 out of the 354 pixels are background pixels.

In the next example, the radiologist identified a suspected area (region of interest) on the final mammogram (i.e.
first image). The raw sequence is given in Figure 6.10 and is composed of a right CC view of a patient acquired on
3/5/96 and 2/24/99. The /X’ marks on the image are the location of the change region. On the site image the
1 X7 is the associated point. For this example, two objects were selected for use with the multi-object PAR. Figure
6.11 is the resulting transformed image where /X7 marks the change location. --- control points were matched
out of ___ potential control points to form the TPS transform. The final warped image is shown in Figure 6.12.
From examination of the image it appears distortion occurred, but the location of the /X7 on both images appear
to visually cover the same portion of tissue. In comparing, Figure 6.10, 6.11, and 6.12 we indeed notice this fact.
The image’s distorted look is caused by too few control points on the skin line (or region). Thus, the affect of the
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Figure 6.13: Histogram comparison between the two local change windows

control points on the skin-line pixels is greatly reduced causing a massive warping effect. The algorithm was then
used to see if the area was present on the site mammogram. The intensity histograms of two regions are shown in
Figure 6.13. From here change can be visually determined. To detect the change, GRE, AHST, and CHI metrics
were calculated yielding the following values 22.9, 0.512, and 0.4611 respectively. Again, the GRE metric is >> then
the threshold while AHST and CHI fall below the metric. The quantification results estimate a 530 pixels® change.
The true change is closer to 9 pixels?. The massive error results from the inability to extract the object from the
background of similar pixel intensities resulting in a large selected region.

6.2.1 Summary

Change detection not only highlights existence of possible changed regions, but when combined with the site model
provides a patient history by showing site progression. One of the key components of change detection is image
registration. In this chapter, we applied our multi-step registration algorithm to mammogram sequences. Acceptable
registration and change detection were obtained. Improvement in control object selection and control point extraction
would go along way to improving the overall results. The key to registration is landmarks between the images. In
this research, we use objects and points as landmarks. Current methods of object and point selection are image
dependent and adhoc. Incorrect assignment of control points/objects could cause erroneous transformation. This
change detection is not exact, but would be sufficient to flag a radiologist to review the area. The main results
of this study consisted of the automatic alignment of mammograms, detection of change in a local window, and
implementation of a mechanism to store and build up patient information via the site model.




Chapter 8

Appendix A: Information Criterion

Determining the number of components in a mixture signal is useful in numerous applications from speech processing
to object recognition. These type of problems are termed model selection or cluster validation in the literature [23].
The main goal in these type of problems is to estimate, given the data, the number of components K, are present in
the mixture signal. This is accomplished by evaluating a function (Information Criterion IC) for reasonable valves
of K. K is taken as the K value that yields the minimum function result. The first and most widely used IC is
Akaike Information Criterion (AIC).

8.1 Theory

The AIC formulation can be derived using the following model [23]. Suppose our data is represented by N random
vectors given by Y = {y1,.....yn}. Further assume that the distribution of y is composed of K components where
the distribution of the k** component is fi(Y/ 9’;11) where 6,,; are the ML estimate of the features. So the goal of
the IC is to find the K that maximize the function. Since we assume our distribution is a Gaussian, finding its
maximum is equivalent to minimizing the log of the distribution function. The results are the AIC equations given
below.

AIC(K) = —2log(f(x/¢mi)) + 2% Ka (8.1)

K =argmin AIC(K);2 < K < Ko (8.2)

where f(x/¢nu) is the conditional likelihood function distribution given the maximum likelihood feature vector ¢y,
K, is the number of free parameters to estimflte and was added to make the AIC estimate an unbiased estimate of
the mean distance between f(z/0) and f(z/6') where ¢’ is the estimated parameter vector.

8.2 Simulation Experiments

To illustrate this algorithm two examples were processed a four class phantom shown in Figure 8.1 and a real
mammogram. For each example, the k ranged from 2..10. Figure 8.2 shows the plot the AIC curve for the phantom
and Figure 8.3 shows the plot for the mammogram. From these plots we see that K is4 and K is 8. The results
correspond to results achieved in [27].
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ABSTRACT

This paper reports the development of a non-rigid registration technique to bring into alignment a sequence of a
patient’s single-view mammograms acquired at different times. This technique is applied in a patient site model
supported change detection algorithm with a clinical goal of lesion detection and tracking. The algorithm flow
contains four steps: preprocessing, image alignment, change detection, and site model updating. The preprocessing
step includes segmentation, using standard finite normal mixture and markov random field models, morphological
processing, monotony operators, and guassian filtering. The site model in this research is composed of object
boundaries, previous change, potential control points, and raw/segmented images. In the alignment step, the current
mammogram is aligned to the site model using a two step process consisting of principle axis of the skin line followed
by thin-plate spline using matched points from the potential control point pool. With the assumption of minimal
global change, subtraction and thresholding will be used to create the change map that highlights significant changes.
Finally, the change information will be used to update the site model. This two-step registration process facilitates
change detection by aligning corresponding regions of mammograms so local change analysis can be performed in
a coherent manner. The result of the change detection algorithm will be a local change and a patient specific site
mode] showing past and present conditions.

Keywords: Computer aided diagnosis, Change detection, Principle axis registration, Mutual information registra-
tion, Segmentation, Site model, Feature extraction

1. INTRODUCTION

Breast cancer is one of the leading causes of death among women today. To combat this problem doctors use
medical imaging as a mechanism to determine if any additional tests should be performed. For instance, the
mammography has proven to be the only way to detect cancer at its earliest stages, thus improving the patient
survival probability. This type of study is called breast cancer screening and usually is limited to asymptomatic
women where caniocaudal (CC) and mediatorial oblique (MLO) mammographic views are analyzed.? Tumor size
has an apparent relationship to tumor grade at the time of diagnosis. So, starting at approximately age 40, most
women have screening mammograms performed periodically in effort to detect the existence or onset of a cancerous
condition in the breast. These images are usually reviewed manually by a radiologist who views a two mammogram
sequence composed of a single view, of a single breast, acquired at different times, looking for visually apparent change
between the mammograms.? Studies have shown a correspondence between tissue change and underlying biological
change. This change is important for applications such as treatment monitoring and lesion diagnosis. The review
of this massive volume of data by the radiologist results in missed tumors, delayed detection and false positives which
ultimately cause a reduced life expectation upon detection, unnecessary patient call backs, and unneeded biopsies.

To reduce some of the load on the radiologist and to improve diagnosis accuracy, development of automated
approaches have been considered,® 4 using a single view of one breast and® using single view multiple (left and right)
breasts. Use of multiple breast leads to additional problems because women typically have significantly different
structures between left and right breasts. This causes natural asymmetry to be flagged as change.® The single
breast approaches, on the other hand, do not have the problem of dealing with asymmetry. Generally, single breast
approaches contain three main steps: (1) preprocessing of the images searching for control points or regions for use
in registration, (2) registration, to align the images into a common framework, and (3) detection and analysis of
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local change. The preprocessing is generally handled by classical image processing techniques such as segmentation,
morphological filtering, edge detection, and feature extraction.

The main problem with automating change detection analysis is performing automatic image registration between
mammogram images. This difficultly is attributed to three main problems. First mammograms are complex images
that do not contain any clearly defined landmarks. Secondly, differences in breast positioning and compression
during acquisition could cause two visually different images. Finally, breast sizes and consistency can vary with time
(e.g. weight loss and surgery).

The group® approached these problems by extracting the dense tissue of the breast from both images using
segmentation, and then performing a sequence of two thin-plate spline (TPS) registrations.”  The first TPS
uses control points extracted from the smoothed dense tissue boundary. These contro! points are obtained by
determining the points of maximum curvature on the boundary of both images and comparing statics of surrounding
intensities to determine the correspondence. The second TPS uses control points extracted from the dense tissue
itself. Correspondence between points is performed by a signature match between images which then feeds an
accumulator matrix.® This approach has problems when the dense tissue does not occupy a large percentage of the
image which typically occurs in radio-lucent breast.> In cases like this, error occurs in transforms when the point
to be transformed is far away from the control points thus reducing the effect of the control points.

4 considers these same problems by asserting that accurate registration of mammograms is intractable except

with elastic transforms, and the only solution is regional registration.® In regional registration localized areas of the
two mammograms are aligned based on their distance from control points. In their approach, monotony operators
are used to extract vertical and horizontal elongated structures which they assume to be stable between images in
the sequence. These structures correspond to blood vessels and ducts. A three-pass Gaussian filter is used on
the original mammogram to mask less prominent structures. This reduces the complexity and limits the monotony
operators to detecting the dominate structures. The cross points of these horizontal and vertical structures make up
the pool of potential control points. Correspondence between the current image control points and reference image
control points is accomplished by comparing the respective signatures. To localize the area where signatures are
compared, the nipple location in both images are used to determine a neighborhood region. This reduces processing
and decreases the probability of false alarm. These values are then passed into a thresholded accumulator matrix
for final point selection. Using these control points, regions (of any shape) are determined on the current image
by calculating the distance from a subset of control points. This method over comes the erroneous interpolation
problem experienced by,® but the algorithm uses ad hoc point matching criteria, window size selection, and threshold
determination. In addition,? assumes a small misregistration that restricts the generality of this approach. Both®

and* mainly address registration so, simple change detection methodologies based on difference image analysis and
wavelets respectively.

To address the following problems: control point correspondence issues, TPS interpolation problems, link between
registration and change detection, and restrictive assumptions faced by current mammogram registration algorithms,
we propose a multi-step registration algorithm that aligns non-rigid objects to a common frame called a site model for
change detection.’!  The site model is a mathematical model that over time describes the image scene (i.e. object
locations etc.). This allows for the consideration of more than adjacent mammograms (in time) in the analysis
which can improve detection probability by providing a complete history of previous conditions. The site model
contains various types of data, called site model parameters, such as known anatomical structures, landmark points,
previous tumor locations, segmented and raw data, suspected lesion locations and other informational notes. Site
model parameters can be generated from preprocessing the raw reference image with segmentation, edge detection,
feature extraction, or simple user input such as previous tumor locations, area of interest, and landmarks. The
multi-step registration change detection algorithm has three main steps: initia] registration, final registration and
change detection analysis. Figure la shows a block diagram of the flow.

Initial registration considers all of the breast tissue as a solid object and performs principle axis registration
(PAR) to correct for large misregistration between images. Final registration is performed by a polynomial based
registration algorithm to handle non-rigid deformation that could occur between images. The affine polynomial is
used to represent the mapping function. Polynomial based algorithms depend heavily on the existence of control
points between the images. To obtain the control points, we follow a modified version of the approach discussed
in.> The approach is modified by using the Pearson correlation coefficient!? to match the two potential control
point signatures. The change analysis is performed with a difference image, histogram, and visual inspection.
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Figure 1. (a) Algorithm flow. (b) Detailed algorithm flow.

During the development of this algorithm, several assumptions were made in order to bound the scope of this
£ paper. First, the mammograms are assumed to be CC and MLO views only (i.e. screening mammograms) of the
f same patient acquired overtime. Second, the radiologist initializes the site model parameters by identifying an area
i of interest window and other prominent landmark points in the first image of the sequence. Change is then calculated
- for the pixels in this windows. Third, the type of change was limited to growth of a mass, or shrinkage of a mass.
_Microcalcifications changes will not be addressed in this paper. Fourth, the amount of misregistration is found to
approximately be +/ — 25 degrees rotation and translation between the reference and current mammograms.

f-' The contributions of this paper are as follows: the introduction of a multi-step registration algorithm consisting
. of a rigid first step (PAR) followed by a non-rigid second step (TPS/global affine), verification of* control point
F methodology, improvement of® signature match algorithm using correlation coefficient, and finally introduction of
& the site model concept to medical imaging which enables analysis of the results of more than two mammograms
L : through site model build up. The paper is organized in five sections. Section I introduces the topic. Section II
.- describes the materials and methods used while section III presents the simulation results. Finally, sections IV and
V contain discussion and conclusion respectively.

2. MATERIAL AND METHODS

k. The processing algorithm is broken into three phases: initial registration, final registration, and change detection.
. The complete algorithm flow is shown in Figure 1b. The algorithm starts by performing PAR to obtain an initial
¥ registration. Next, the initial registration is fine tuned using a global affine based registration process. To finish
;' the processing, change detection using a difference based analysis is done. In this section, the theory of each phase
b is discussed in detail.

2.1. Initial Registration

The initialization of the transformation process is performed by preprocessing the images. Preprocessing consists of
image segmentation and morphological filtering. A statistical based algorithm is used for the segmentation process.
The algorithm models image intensity distributions of a NzN image with a standard finite normal mixture model
f:  with three degrees of freedom as shown below.

N? K

f/o) =T]D_mealz/6%) (1)

i=1k=1
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where the unknown parameters are mean puy, variance cr?c, membership 7, and K is the number of classes assumed
to be in the image and g is a Gaussian kernel. Once these parameters are estimated using expectation maximization
‘ (EM) algorithm, pixels are labeled using Contextual Bayesian Relaxation CBRL which considers neighborhood
relationships in pixel assignments.

; After segmentation is complete, the skin line is extracted by grouping pixels that represent breast tissue into a

) single class. This operation forms a binary image which serves two purposes. First, the binary image serves as a
mask that limits processing to the tissue regions of the image. Second, the binary image feeds a morphological filter
designed to extract the breast contour. 3

Morphological filtering can be used to enhance binary images, by processing them using a kernel called a struc-
turing element. The structuring element is designed to shape, distort, or filter the object in a specific manner. The
two morphological operations considered in this research are dilation and erosion.

Dilation is explained by the following equations:

G=F&H 3)

Erosion is explained by the following equations:

G=FoH (