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Introduction
As stated in the original application, the overall goal of this research is to

elucidate the complex role of transforming growth factor (TGF) 13s in sequential stages
of mammary epithelial transformation. This knowledge is of potential importance for the
development of rational therapeutic approaches in human breast carcinoma.

Body

Specific Aim 1
The purpose of this Aim was to generate MMTV/tTA + tet-op/TGFI31 S223/225 mice.

MM-V/tTA founder FVB mice were obtained from Dr. Priscilla Furth (Institute of Human
Virology, University of Maryland, Baltimore, MD). During the first year of this award, we
generated tet-op/TGFI31 homozygous founders in a B6D2 mouse strain and cross-bred
them with MMIV/tTA FVB mice. To prevent transactivation of the mutant (active)
TGFP31 minigene, pregnant mice were supplemented with doxycycline in the drinking
water. Since the submission of the grant, it was reported that this approach was
effective in suppressing tTA-mediated transactivation of the tet-op promoter in vivo
(Kistner et al. Nature Med. 93:10933, 1996). Results to date can be summarized as
follows:

1. The F1 generation of this cross is viable. Mice have been alive for close to a
year without any obvious clinical abnormalities.

2. The MM-V/tTA mRNA is expressed in mammary glands, salivary glands, and
ovaries. However, the levels of MMTV/tTA mRNA in the mammary gland are very low.

3. The tet-op/TGFI31 mRNA is detectable in ovarian and salivary gland but NOT
in mammary gland tissues.

4. Expression of tet-opITGFI31 RNA is suppressible with doxycycline in both
salivary gland and ovaries supporting the interaction in vivo of both transgene products.

5. There are no histological abnormalities whatsoever in any of the above
mentioned tissues as far as at 8 months of age.

Revised approach. We hypothesize that there are two potential reasons to
explain our inability to detect the tet-op/TGFpll transgene is the mammary gland of the
F1 mice: [a] the low level of expression of the MMTV in this founder line; and [b] the
possibility that upon removal of doxycycline from the mouse water, those mammary
epithelial cells in which the mutant active TGFPI is expressed, are eliminated by
apoptosis. To test or account for these possibilities, we have revised our approach as
follows:

1. New MMTV/tTA founder mice are being generated at the Vanderbilt-Ingram
Cancer Center Transgenic Mouse and ES Cell Core Facility. In addition, we have
requested other MM-V/tTA founder lines with more robust MMTV expression in the
mammary gland. These will be provided by Dr. Lewis Chodosh (University of
Pennsylvania, Philadelphia, PA).
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2. We are establishing mouse mammary epithelial cell lines from MMTV/tTA +
tet-op/TGFI31 mice. These are being generated in the constant presence of 1 .IM
tetracycline (tet) to maintain the tTA suppressed. Once these lines are established, we
will proceed to remove tet and examine for tet-op/TGFP31 expression by RT-PCR and
other immunological methods. This will confirm that there is expression of the second
transgene product but that the temporal window in which this occurred in the mice was
missed by the in vivo studies.

Specific Aim 2
This Aim proposed to study the effect of mammary TGFP31 overexpression on

different stages of breast transformation in MMTV/neu + TGFa bigenic mice. These
studies are on hold until an appropiate MMTV/tTA + tet-op/TGFP31 bigenic mouse is
generated.

Revised approach. However, due to the enormous complexity of generating a
mouse between these two bigenics bearing FOUR different transgenes, two alternative
equally informative and faster approaches are being considered:

1. Crossing the MMTV/tTA + tet-op/TGFP31 bigenic mice with MMTV/mutant neu
mice (described in Siegel et al. EMBO J. 18:2149-2164, 1999). In these mice, the
mutant neu transgene product exhibits a deletion of a short cysteine-rich
yuxtamembrane region in neu, resulting in constitutive phosphorylation/activation of the
neu tyrosine kinase. Mice develop stochastic mammary tumors with a T50 of <140
days. Homozygous FVB founder MMTV/mutant neu mice have already been provided
by Dr. William Muller (McMaster University, Ontario, Canada)

2. The second alternative will be to treat the bigenic MMTV/tTA + tet-op/TGF31
mice with the carcinogen 7,12-dimethylbenzanthracene (DMBA) given by orogastric
tube at 1 pg weekly x4. In FVB mice, treatment with these doses and intervals of
DMBA results in 100% mammary tumor formation by 20 weeks, with the resulting
breast tumors going through the same histopathological changes described for human
breast cancer (Medina D. J. Mammary Gland Biol. Neopl. 1:5, 1996; Li et al. Mol.
Carcinogenesis 14:75-83, 1995).

Specific Aim 3
This Aim proposed to test the effect of antisense TGF31 and antisense TGF02

on MDA-231 human breast cancer cells. As indicated in the original 'statement of
work', the antisense vectors were generated and transfected into MDA-231 cells.
However, we have been unable to generate stable transfectants with sustained
expression of the antisense. We suspect that this is toxic to the cells as suggested by a
recent report (Rauh-Adlemann et al. Proc. Amer. Assoc. Cancer Res. 39:971a, 1998).

Revised approach. Recent reports, however, suggest that blocking the type II
TGFP3 receptor (TP3RII) in tumor cells might be a more effective way of disrupting
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autocrine TGF13 in tumor cells (Oft et al. Curr. Biol. 8:1243-1252, 1998). Therefore, as
an alternative we are pursuing transfection of expression vectors for dominant negative
TGF13 type II receptor (T13RII) into MDA-231 cells. GFP containing vectors encoding a
truncated T1RII (lacking the cytoplasmic domain) or a Lys-to-Arg ATP site-mutant T13RII
have been obtained from Dr. Martin Oft (University of California, San Francisco). Stably
transfected pools have been generated and are being characterized now by examining
the activity of TGF13-induced luciferase reporter constructs after treatment or not with
exogenous TGF3I1.

This approach is more robust than the originally proposed antisense strategy in
that it will avoid compensatory increases of TGF13 isoforms other than that targeted by
the antisense vector. By eliminating autocrine TGF13 signaling, the dominant negative
receptor approach will block autocrine function of all three TGFI3 isoforms. Cells
transfected with mutant T13RII, will be subjected to the same experimental endpoints
proposed in the original Aim 3.

Reportable outcomes

Dumont N. Genetic and epigenetic contributions to colorectal cancer. APMIS 107:711-
722,1999

Dumont N, and Arteaga CL. Tumor promoting effects of the transforming growth factor
(TGF)-13s. Breast Cancer Res. (In press), 2000

Dumont N, and Arteaga CL. Autocrine transforming growth factor 13 signaling and
mammary epithelial cell invasiveness. Submitted to the DOD 'Era of Hope' Meeting
June, 2000
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Genetic and epigenetic contributions to colorectal cancer

Review article
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Dumont N. Genetic and epigenetic contributions to colorectal cancer. APMIS 1999;107:71 1-22.

Both genetic and epigenetic factors contribute to the development of colorectal cancer. Specific genetic
changes in proto-oncogenes, tumor suppressor genes, and DNA mismatch repair genes have led to a
genetic model of colorectal tumorigenesis. Recent data highlight the importance of the TGF-f3 sig-
naling pathway in regulating the progression of colorectal cancer. The loss of the tumor suppressor
activity of this pathway as well as the potentially cooperative genetic aberrations involving APC, K-
ras, and p.53 are reviewed in the context of the multi-step adenoma-carcinoma sequence that character-
izes the development of colorectal tumorigenesis. In addition, contributing epigenetic factors including
age, diet, angiogenesis, and immune response are also discussed. Combining our knowledge of the
genetic and epigenetic events implicated in this disease may allow a broader understanding of the
pathogenesis of colorectal cancer and hence the design of better anti-tumor interventions.

Key words: Colorectal carcinoma; oncogene; tumor suppressor gene; mismatch repair; transforming
growth factor-fl; epigenetic.

Nancy Dumont, Vanderbilt University Medical Center, 649 Medical Research Building II, Room 622,
Nashville, TN 37232-6838, USA.

Like many cancers, colorectal cancer arises by metastasis. Numerous genes, including proto-
acquisition of genetic alterations that result in oncogenes, tumor suppressor genes, and DNA
cellular transformation. Based on these alter- mismatch repair genes, have been implicated in
ations, a genetic model for colorectal tumorig- the genesis of colon cancer. The discrete genetic
enesis has been proposed (1). However, in ad- changes currently perceived as fundamental to
dition to genetic changes, several epigenetic fac- the multistep process of colorectal tumorigen-
tors have also been shown to contribute to the esis are illustrated in Fig. 1. The tumorigenic
development of colorectal cancer. This paper re- process is initiated when a cell of the normal
views genetic as well as epigenetic contributions epithelium presumably undergoes a genetic
to colorectal cancer, both of which present change that conveys a selective growth advan-
opportunities as potential therapeutic targets. tage. This predisposes it to additional muta-

tions, each of which confers further malignant
potential, thereby leading to the clonal expan-

GENETIC ABERRATIONS AND sion of this cell (1). Thus, neoplasms of the co-
RELATED HISTOPATHOLOGICAL lon are clonal in nature in that they arise from

FEATURES a single cell. Although sporadic mutations ac-
count for the majority of colorectal cancers,

The development of colorectal cancer is a multi- there are two hereditary syndromes in which a
step process involving a series of genetic strong tendency to develop colorectal cancer is
changes in the colonic mucosa that lead sequen- transmitted by dominant inheritance: Familial
tially to hyperplasia, adenoma, carcinoma, and Adenomatous Polyposis (FAP) and Hereditary
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caromosom 5q 12p 18q 17p

alteration LOF GOF LOF LOF

DCC
genes APC K-ras SMADs p 5 3

Normal Hyperproliferative Early Intermediate Late
epithelium epithelium adenoma adenoma adenoma Carcinoma Metastasis

SMAR genes:

hMSH2
hMfSH3
hMSH6
hMLH1
hPMS1
hPMS2

Fig. 1. Genetic changes associated with colorectal tumorigenesis. This process is accelerated by MMR deficiency
(see text for details). Abbreviations: LOF, loss of function; GOF, gain of function; MMR, mismatch repair.
Reproduced from Kinzler & Vogelstein (2) with modifications.

Nonpolyposis Colorectal Cancer (HNPCC) (2). by demonstrating cosegregation of mutant
FAP is a syndrome in which an inherited defect APC alleles in affected kindreds (3, 4). How-
in the adenomatous polyposis coli (APC) gene ever, the chromosome 5q region containing
leads to the development of multiple benign pol- this gene is also frequently affected by loss of
yps throughout the colon, some of which slowly heterozygosity (LOH) events in colorectal ad-
progress to invasive lesions. Thus, defects in enomas and carcinomas from patients without
APC initiate the tumorigenic process, but ad- polyposis (5-7). In fact, over 70% of sporadic
ditional mutations, such as those illustrated in colorectal cancers are believed to involve
Fig. 1, are required for tumor progression. In mutations in APC (8). Studies have shown
contrast to FAP, HNPCC is a syndrome char- that somatic mutations identified in sporadic
acterized by the rapid progression of colorectal tumors are similar to those observed in the
tumors due to inherited defects in DNA mis- germline of patients with FAP, often involving
match repair (MMR) genes. Although the tu- codon 1309 located in the mutation cluster re-
mors from patients with HNPCC go through a gion of the gene (9). These mutations have
series of mutations similar to those described in been identified in adenomas as small as 5 mm,
Fig. 1, additional mutations, unique to consistent with the idea that mutations in the
HNPCC, have been described. Evidence for the APC gene may be the initiating genetic event
role of the genes most commonly implicated in in many tumors (7). This is supported by the
sporadic and hereditary colorectal tumors are fact that excision of adenomatous polyps sig-
discussed individually below. nificantly reduces the incidence of cancer de-

velopment (10). Further support for the role
APC of APC in the development of polyps and col-

One of the earliest steps in the development orectal cancer stems from studies of a mouse
of colorectal cancer is loss of function of the genetic model for FAP known as Min (for
tumor suppressor gene, APC. This gene was multiple intestinal neoplasia). The Min muta-
first identified as the gene responsible for FAP tion, like those in many FAP patients, causes
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premature truncation of the APC protein, and K-ras
mice heterozygous for the Min allele develop Although the three ras genes, K-ras, H-ras,
multiple adenomatous polyps and cancers in and N-ras, are highly homologous, and believed
their intestine (11). to be expressed at relatively equivalent levels in

With respect to histopathological features, the colonic mucosa, only K-ras plays a signifi-
APC mutations lead to dysplastic lesions affect- cant role in the development of colorectal can-
ing the tube-shaped epithelial foldings of the co- cer. Mutations in K-ras can be identified in 50%
lon referred to as crypts. Foci of dysplastic ab- of colorectal cancers (22), and occur most fre-
errant crypts are the earliest identifiable lesions quently in codon 12, with fewer mutations
in colorectal tumorigenesis, and are believed to found at codons 13 and 61 (23). Because K-ras
be the precursors of adenomas (12). In FAP pa- is an oncogene, mutation of one allele is enough
tients, different types of APC mutations are as- to produce an effect. These mutations affect the
sociated with different clinical features despite ability of p2lras to interact with the ras GTPa-
the fact that virtually all mutations result in C- se-activating protein, causing p2lras to remain
terminally truncated APC proteins (2). These in the active GTP-bound state. As a result, the
differences are manifested primarily in extraco- growth and differentiation signal transduction
lonic sites, but may also be manifested by an pathways that include p2lras are constitutively
attenuated form of FAP in which patients de- activated, leading to a continually growth-
velop fewer polyps (13). This phenotype is also stimulated state.
observed in the Min mouse where, depending The frequency of ras mutations appears to be
on the inbred strain carrying the Min allele, correlated with two histopathological features:
wide variations in polyp number are seen. Link- increased tumor size and dysplasia. Studies have
age analysis has demonstrated that much of the shown that 50% of adenomas greater than 1 cm
variation is due to a single locus, named MOM- in diameter harbor K-ras mutations compared
1 (for modifier of Min) (14), which encodes a to only 10% of adenomas less than 1 cm (22).
secreted phospholipase A2 (15). When adenomas are distinguished from one an-

Although the exact mechanism by which other with respect to the degree of dysplasia,
APC mutations cause abnormal growth of col- ras mutations are more prevalent in tumors with
orectal epithelial cells is not clear, the fact that increased dysplasia (24). The higher prevalence
the majority of somatic and germline mutations of ras mutations in later stage adenomas and
in APC generate truncated APC proteins that carcinomas suggests that these mutations may
lack a P3-catenin-binding domain suggests that arise in one cell of a small preexisting adenoma
the interaction between APC and 03-catenin may causing it to progress to a larger and more dys-
be important (16). Indeed, studies have shown plastic adenoma, with greater risk of sub-
that APC and glycogen synthase kinase 3 regu- sequent progression to cancer. This is consistent
late cytoplasmic P3-catenin levels by promoting with the fact that hyperplastic cells containing
its degradation (17). Inactivation of APC in col- mutant ras genes, unlike their dysplastic
orectal cells allows 03-catenin to accumulate and counterparts with mutant APC genes, have little
complex with T-cell factor 4, leading to acti- or no potential to form clinically important tu-
vation of transcription and deregulated cell mors and may eventually regress through
growth (18). The importance of APC and 0-cat- apoptosis (25).
enin in the development of colorectal cancer is

further illustrated by the finding that P-catenin DCC, Smad4, and the tumor suppressor activity
is mutated in a subset of colorectal cancers that of the TGF-/ pathway
lack somatic mutations in APC (19, 20). In ad- LOH affecting the long arm of chromosome
dition to its role in regulating fi-catenin, APC 18 can be detected in more than 70% of primary
may also be involved in regulating apoptosis. colorectal cancers, in about 50% of advanced
Studies have shown that expression of wild-type adenomas, and infrequently in earlier stage ad-
APC in colorectal epithelial cells with APC enomas, suggesting that loss in this region is a
mutations results in cell death (21). Thus, this relatively late event (22). Such losses are also
may be another mechanism by which inacti- correlated with greater mortality and increased
vation of APC leads to deregulated cell growth. propensity for metastatic spread (26, 27). Ef-

713



DUMONT

forts to identify a candidate tumor suppressor which have a phenotype similar to that of the
gene from 18q led to the discovery of a gene Min mice, results in malignant progression of
termed DCC (for deleted in colorectal cancer) the intestinal tumors at a much earlier stage
(28). The DCC gene encodes a transmembrane than that observed in the simple APCA716
protein of the immunoglobulin superfamily. The knockout mice (38). Mice heterozygous only for
predicted structural similarity of DCC to the N- the Smad4 knockout show no apparent tumor
CAM family of cell-surface adhesion molecules phenotype, indicating that the Smad4 gene is a
suggested that it might function in differen- suppressor of tumor progression, but not of tu-
tiation pathways and cell fate determination mor initiation (38). The fact that inactivation
through cell-cell and/or cell-extracellular matrix of Smad4 in APCA716 knockout mice enhances
interactions (29). Therefore, it was hypothesized tumor progression, while inactivation of DCC
that loss of cell-cell contact might explain the in a similar mouse model does not, suggests that
enhanced metastasis observed in patients with the tumor suppressor gene associated with LOH
loss of DCC (29). However, more recent studies on 18q21 is more likely to be Smad4. In support
have shown that inactivation of the murine of this, mutations in the Smad4 gene have been
DCC gene does not affect the proliferation or identified in human colorectal cancers in vivo
differentiation of intestinal epithelial cells, nor (33, 39, 40), and in familial juvenile polyposis,
does it affect the morphogenesis of colonic which, like FAP, is a syndrome characterized by
crypts and villi (30). Moreover, introduction of a predisposition to hemartomatous polyps and
the null DCC allele into the germ line of the gastrointestinal cancer (41).
Min mouse does not accelerate the progression A role for Smad4 in the malignant pro-
of, or modify the phenotype of polyps initiated gression of colorectal tumors is consistent with
in the Min mice (30). Instead, the phenotype of previous findings that have implicated other
mice lacking a functional DCC gene resembles members of the TGF-P3 pathway in colorectal
that of netrin- 1-deficient mice, with defects in tumorigenesis (summarized in Fig. 2). For ex-
axonal projections and brain development (30). ample, as previously mentioned, Smad2 is a can-
These findings fail to support a tumor sup- didate tumor suppressor gene also located on
pressor function for DCC in the development 18q21. Inactivating missense mutations and de-
of colorectal cancer, and are inconsistent with letions of the Smad2 gene have been detected
studies in which reduction or loss of D CC RNA in sporadic colorectal carcinomas (32, 42). In
has been observed in cell lines or xenografts de- addition to Smad2 and Smad4, Smad3 is an-
rived from human colon carcinomas (28, 31). other member of the SMAD family of proteins

The discrepancy between these results may be involved in mediating TGF-P3 signaling. Al-
due to differences in the pathogenesis of col- though mutations in the Smad3 gene have not
orectal cancer between mice and humans. Alter- yet been detected in human colorectal cancer
natively, LOH of 18q21 may not only affect the (43, 44), LOH of Smad3 has been detected in 2
DCC gene, but neighboring genes as well, one (1 sporadic and 1 HNPCC) of 17 colorectal can-
or more of which may be the target of inacti- cers examined (44), and a recent study has re-
vation during colon tumor progression (30). In- ported that inactivation of the Smad3 gene in
deed, other candidate tumor suppressor genes, mice leads to the development of metastatic col-
including Smad2 and Smad4, have been iden- orectal cancer (45). Upstream of the SMAD sig-
tified on chromosome 18q21 (32, 33). Both naling proteins, mutations in the TGF-j3 type II
Smad2 and Smad4 belong to the SMAD gene receptor (TGF-j3RII) have been associated with
family involved in the signal transduction path- microsatellite instability in both colon cancers
ways activated through the TGF-P3 family of re- and colorectal carcinoma cell lines (46-48). Res-
ceptors (34). The TGF-P3s are important regu- toration of TGF-P3RII expression by gene trans-
lators of cell growth and differentiation (35). fection has been found to reverse the transform-
Escape from the growth regulatory effects of ed phenotype (49). There is also evidence that
TGF-P3s is common among many different can- transfection of TGF-P3-responsive human colon
cers (35, 36), including colorectal cancer (37). carcinoma cells with a TGF-031 antisense ex-
Recent studies have shown that inactivation of pression vector increases their tumorigenicity
the Smad4 gene in APCA716 knockout mice, (50). These data taken together highlight the im-
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portance of the TGF-03 signaling pathway in much less frequent in earlier stages of carcino-
regulating the progression of colorectal cancer, genesis, and rare in both adenomas and polyps

(22). Moreover, patients with germline muta-
p53 tions in p53 do not develop polyposis, nor are

The chromosomal region most frequently they at risk for developing colorectal cancer
affected by LOH in colorectal cancers is 17p (54). This suggests that, although p53 plays an
(51), a region which includes the tumor sup- important role in colorectal carcinogenesis, un-
pressor gene, p53. Sequence analysis of the re- like APC it cannot initiate the process. Like-
maining p53 allele from a large number of col- wise, p53-deficient mice are prone to develop
orectal carcinomas in which 17p was affected cancers, but an initiating event is required for
by LOH revealed that missense mutations were tumor development (55, 56). Moreover, the inci-
present in over 80% of the cases (52, 53), indi- dence of colorectal cancer in these animals is
cating that loss of p53 function is an important low, indicating that loss of p53 function alone
step in the development of colorectal cancer. Al- does not cause transformation (57). This is con-
though p53 mutations are extremely prevalent sistent with the role of p53 as a cell-cycle check-
in many advanced colorectal cancers, they are point regulator (58). Abrogation of either p53-

TGF-P3 signaling Role in colorectal tumorigenesis Ref.
component

TGF-P3 -Loss of sensitivity of colon cancer cells to 37
growth inhibitory effects of TGF-P3

-Antisense TGF-l1 increases tumorigenicity 50
of human colon cancer cells

TGF-f3RII -Mutated in colon cancers and in colorectal 46-48
carcinoma cell lines with MSI

-Restoration of Rif expression reverses 49
R1 RI transformed phenotype

4Smad2 -Mutated in sporadic colorectal cancer 32,42

•2I3 "-- 2I3 Smad3 .Smad3-/- mice develop metastatic colorectal 45
cancer

-LOH in 2 (1 sporadic and 1 HNPCC) of 17 44
cancers examined

SSmad4 -Inactivation of Smad4 in APC"" mice 38

enhances tumor progression

-Mutated in human colorectal cancers in vivo 39-40

-Mutated in familial juvenile polyposis 41

Nucleus

Fig. 2. The TGF-P3 signaling pathway and its role in colorectal tumorigenesis. TGF-P3 (represented as a circle)
elicits its effects through binding to specific cell-surface receptors denoted type I (RI) and type II (R11) TGF-
[3 receptors, both of which are transmembrane serine/threonine kinases. TGF-0 binds directly to R11, which is a
constitutively active kinase. The ligand-bound RII then recognizes RI, leading to the formation of a heteromeric
complex, allowing RII to phosphorylate and thereby activate RI. The activated RI phosphorylates Smad-2
or Smad-3, which then associates with Smad-4. This complex translocates to the nucleus where it can initiate
gene transcription. TGF-03, RII, Smad-2, Smad-3, and Smad-4 have all been implicated as possible tumor
suppressors in colorectal cancer, as summarized in the table above (see text for details). Abbreviations: MSI,
microsatellite instability; LOH, loss of heterozygosity. Signaling pathway reproduced with modifictions from
Massague (34).
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dependent cell-cycle arrest or apoptosis could colon (71-74), are associated with extracellular
allow cells that have incurred mutations and are mucin production (73), poor differentiation
not fit to progress through the cell cycle to do (71-73), and diploidy (69, 72). In addition, they
so anyway, resulting in tumor progression, are less likely to have LOH at known tumor

With respect to clinical features, the presence suppressor gene loci on chromosomes 5q, 18q,
of mutant p53, as determined by increased im- and 17p (74). On the other hand, inactivation of
munohistochemical staining or by analysis of TGF-j3RII due to frameshift mutations within
gene sequence, is correlated with poor survival, coding microsatellite sequences occurs fre-
as well as increased cancer recurrence rates (59, quently (47, 48). Although defects in the same
60). MMR genes that are affected in HNPCC have

been identified in sporadic colorectal cancers
MMR genes with microsatellite instability (75), substantial

DNA mismatch repair plays a prominent role differences in the nature and incidence of these
in the correction of replicative mismatches mutations have been reported, suggesting that
which escape DNA polymerase proofreading. the molecular mechanisms underlying insta-
Three genes, MutS, MutL, and MutH, are cen- bility in the sporadic cases differ from those in
tral to the correction of replication errors in E. HNPCC (2, 76). However, mutations in hMSH3
coli (61). In humans, germline mutations in the and hMSH6, two other MutS genes initially
MutS homologue, hMSH2 (62, 63), or in any of identified in sporadic colorectal tumors with
the three MutL homologues, hMLH1, hPMS1, microsatellite instability (77, 78), have recently
and hPMS2 (64-66), have been identified as been reported in HNPCC patients. This sug-
being responsible for HNPCC. These reports gests that the molecular mechanisms underlying
suggest that mutations in hMSH2 and hMLHJ instability may be similar in tumors with micro-
together account for the majority of HNPCC, satellite instability regardless of their sporadic
while mutations in hPMSJ and hPMS2 are less or hereditary nature (79).
frequently observed. A characteristic feature of
tumors arising in individuals with HNPCC is
the presence of microsatellite instability. Micro- EPIGENETIC FACTORS THAT
satellites are regions consisting of single, dinu- CONTRIBUTE TO COLORECTAL
cleotide, or trinucleotide repeats that are widely CANCER
distributed throughout the genome. These se-
quences are prone to replication errors due to Age and diet. Consistent with the multi-hit
their repetitive structure, which favors slippage hypothesis for the development of cancer, the
during replication. Thus, when MMR genes are incidence of colorectal cancer increases with
mutated, errors arising during DNA replication age, as greater numbers of mutations are ac-
are less efficiently corrected, resulting in a cumulated with time (80, 81). Although gen-
replication error-prone (RER+) phenotype. etic aberrations and hereditary disorders play
Affected cells accumulate errors (mutations) at a critical role in the development of colorectal
a much greater rate than normal cells (67). This cancers (section above), the fact that the inci-
is manifested clinically by a much faster pro- dence varies tremendously according to ge-
gression of the disease. In contrast to sporadic ography suggests that other factors must also
colorectal cancers, which may take 10 to 15 be involved (82). One of the major differences
years to develop, patients with HNPCC have in lifestyle between cultures (which may ex-
been found to develop cancers within 2 years plain geographic differences in colorectal can-
after a normal colonoscopy (68). cer incidence) is diet (83). A number of die-

Microsatellite instability is not only a charac- tary components have been implicated as
teristic feature of HNPCC tumors, it is also ob- possible factors in the development of colorec-
served in a subset (about 17%) of sporadic col- tal cancer. The major factors include overall
orectal cancers (69-73). Sporadic tumors with caloric intake, fat content of the diet, and fib-
microsatellite instability share common clinical er intake. The number of calories consumed
and histopathological features with HNPCC tu- per day and the fat content in the diet have
mors. They are usually located in the proximal been consistently positively correlated with the

716



PATHOGENESIS OF COLORECTAL CANCER

risk of developing colorectal cancer (80). The Angiogenesis is not only essential for the ex-
mechanism by which a high-fat diet enhances pansion of the primary tumor, it is also re-
tumor formation may be related to high fecal quired for the establishment and growth of
bile acid levels which stimulate mucosal epi- metastases at distant sites. In fact, there is evi-
thelial proliferation. In contrast, vegetable and dence that systemic suppression of angiogen-
fiber consumption seem to have a protective esis can maintain micrometastases dormant as
effect (84, 85). Fiber may work either by in- a result of a balance between proliferation and
creasing the stool transit time and thereby de- apoptosis (94). Therefore, the degree of angio-
creasing contact with fecal contents, by bind- genesis may be an important factor in deter-
ing luminal toxic compounds, or by providing mining tumor behavior and the propensity to
fuel for colonic bacteria that produce short- metastasize. Indeed, in patients with colorectal
chain fatty acids that may inhibit proliferation cancer, angiogenesis has been correlated with
and promote apoptosis (86). Consistent with a higher recurrence rate and diminished sur-
the protective effects of dietary fiber, the in- vival (95).
take of selenium, an essential trace mineral Immune response. Another epigenetic factor
found in cereal grains, has also been found to important in the development of colorectal can-
be inversely correlated with the incidence of cer is ineffective immune response. Unlike
colorectal cancer (87-89). Since selenium is a virally or chemically induced tumors, spon-
cofactor for glutathione peroxidase, which taneous tumors, such as those arising in the co-
participates in preventing free radical damage lon, elicit a weak immune response. Although
to tissues, part of selenium's protective effect mutant proteins encoded by oncogenes (K-ras)
may be due to a reduction in free radical or tumor suppressor genes (APC, DCC, Smad4,
damage. Smad2, tgf-flRI, tgf-/l3, p53) that have under-

Angiogenesis. In addition to the risk factors gone mutations can be recognized as tumor-spe-
associated with lifestyle, physiological processes cific antigens, their recognition delivers only one
such as angiogenesis also contribute to the of the two signals required for T-cell-mediated
pathogenesis of colorectal cancer. Studies have immunity. This is due to the fact that very few
shown that in order for a tumor to grow beyond professional antigen-presenting cells (dendritic
a few millimeters in diameter, the formation of cells, macrophages, and B-cells) are present in
new blood vessels is required to provide nutri- colorectal tumors (96). Thus, most of the mu-
ents and a means of eliminating metabolic waste tant proteins are processed and presented as
products (90). As tumors get larger, the center antigenic peptides bound to class I MHC on the
of the tumor often becomes hypoxic due to in- surface of colon cancer cells. Since these cells
adequate vascularization, leading to cell death are not professional antigen-presenting cells,
within the hypoxic center. Because hypoxia can they lack the costimulatory signal (B7) that
induce apoptosis in a p53-dependent manner must be recognized by T-cells in order to elicit
(91), low oxygen conditions can provide a selec- an immune response. Recognition of foreign
tive advantage for cells carrying mutations in antigen in the absence of a costimulatory signal
p53, allowing escape from apoptosis. This may leads to T-cell anergy. Consequently, although a
be particularly important in colorectal cancer large number of T-lymphocytes have been iden-
because p53 mutations are prevalent, and occur tified in primary colorectal tumors (97), T-cell-
late in the adenoma-carcinoma sequence. Thus, mediated immunity is ineffective in eliminating
by escaping apoptosis, tumor cells bearing p53 tumor cells. In contrast, natural killer cells have
mutations within a colorectal carcinoma retain a spontaneous cytotoxic capacity against tumor
their proliferative capacity, thereby promoting cells. However, these cells are either not found
tumor expansion. In addition, since p53 ex- or are only present in low numbers in colorectal
pression results in the secretion of inhibitors of cancers (96, 98). In addition, studies have
angiogenesis (92, 93), selection of p53 mutations shown that MHC expression on professional
by hypoxic conditions could lead to loss of ex- antigen-presenting cells within colorectal tu-
pression of antiangiogenic factors, allowing mors is often lost, thereby further compro-
growth of new blood vessels, thereby favoring mising immunity against tumors (99).
further expansion of the tumor. Related to immune function, epidemio-
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logical studies have shown that chronic use of CONCLUSION
aspirin results in a reduced risk of colorectal
cancer (100), and that treatment of FAP pa- Since many genetic aberrations contribute to
tients with non-steroidal anti-inflammatory the development of colorectal cancer, each
drugs (NSAIDs) results in regression of rectal affected gene could potentially be a good thera-
polyps (101). These studies suggest that in- peutic target. Identification of these genetic ab-
flammation may contribute to the develop- errations has provided an opportunity to use
ment of colorectal cancer. NSAIDs mediate different strategies to deliver normal copies of
their effects by inhibiting two enzymes, COX- defective tumor suppressor genes to affected
1 and COX-2, which are responsible for eicos- tissues, or to inactivate oncogenes. Although
anoid synthesis. Analysis of COX-2 mRNA in these avenues hold promise, not all of the gen-
colon cancers and adenomatous polyps re- etic aberrations described above occur in all in-
vealed increases of 86% and 43%, respectively, dividuals with colorectal cancer. In contrast,
compared to in normal mucosa from the same epigenetic factors do indeed contribute to the
patients (102). Consistent with elevated COX- development of all colorectal tumors and there-
2 levels, prostaglandin E2 levels have also been by provide additional opportunities for inter-
found to be elevated in colon cancers and pol- vention. Therapies targeting both genetic and
yps (103, 104). Further support for the role of epigenetic aberrations could be combined to
COX-2 in the development of colorectal cancer provide a broader and more effective therapy
has been obtained using an APC knockout for patients.
mouse with a phenotype similar to that of the
Min mouse. Inactivation of the COX-2 gene in I would like to thank Dr. Lynn Matrisian for criti-
these mice resulted in an 86% decrease in in- cally reviewing this manuscript and Dr. Anne Lenfer-

ink for her assistance in preparing the figures. Thiswork is supported in part by a U.S. Army Breast
trol animals (105). In addition, when animals Cancer Pre-doctoral Training Award.
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Abstract
The transforming growth factor (TGF)-j3s are potent growth inhibitors of normal epithelial cells.
In established tumor cell systems, however,'the preponderant experimental evidence suggests
that TGF-Ps can foster tumor-host interactions which indirectly support the viability and/or
progression of cancer cells. The timing of this 'TGF-P switch' during the progressive
transformation of epithelial cells is not clear. More recent evidence also suggests that autocrine
TGF-P3 signaling is operative in some tumor cells and can also contribute to tumor invasiveness
and metastases independent of an effect on non tumor cells. The dissociation of antiproliferative
and matrix-associated effects of autocrine TGF-P3 signaling at a trascriptional level provides for a
mechanism(s) by which cancer cells can selectively utilize this signaling pathway for tumor
progression. Data in support of the cellular and molecular mechanisms by which TGF-13
signaling can accelerate the natural history of tumors will be reviewed in this section.



Introduction
Although the TGF-Ps can be tumor suppressive [1], there is increasing evidence that

TGF-P secretion by tumor cells and/or stromal cells within the peritumoral microenvironment
can contribute to tumor maintenance and progression. How then, can TGF-j3s be both tumor
suppressive and tumor promoting? This apparent paradox is reconciled by a study which showed
that, in a mouse skin model of chemical carcinogenesis, targeted expression of TGF-PlI in
suprabasal keratinocytes, appears to have dual effects. It suppresses the formation of benign skin
tumors, but once tumors develop, it enhances their progression to a highly invasive spindle cell
phenotype [2..]. These results suggest that the effects of TGF-3 1 are biphasic: TGF-3 1 acts
early as a tumor suppressor, probably by inhibiting the proliferation of nontransformed cells, and
it acts later as a tumor promoter by eliciting an epithelial to mesenchymal transition (EMT).
Additional experiments have suggested that upregulation of TGF-f33 in the spindle carcinomas
was responsible for maintenance of this invasive phenotype [2]. This is consistent with [i] TGF-
133 expression at sites in mouse embryos where epithelial-mesenchymal interactions are
important, like the lung and palatal shelves [3,4]; and [ii] the abnormal lung development and
cleft palate observed in TGF-[33 null mice [5]. Also consistent with an early tumor suppressive
effect is the recent observation that TGF-3 1 -/- mice develop an accelerated progression of
epithelial hyperplasia to colonic adenomas and cancers [6.]. The existence of dual effects for
TGF-P3s in tumor progression follows the observation that TGF-j3-induced growth inhibitory
responses and extracellular matrix responses may represent distinct processes in certain cell
types. For example, overexpression of the antagonistic Smad, Smad7, in pancreatic carcinoma
cell lines not only suppresses TGF-P3 1-mediated growth inhibition, but enhances the ability of
TGF-3 1 to induce matrix-associated transcriptional responses [7.].

The progression of epithelial tumors to an invasive metastatic state is often associated
with EMT, downregulation of cellular adhesion molecules, elevated expression of
metalloproteases, and increased motility and angiogenesis, all of which can be modulated by
TGF-[3s. It is therefore not surprising that the TGF-13s can also promote tumorigenesis by
modulating these critical processes. In support of this view, elevated levels of TGF-f3s are often
observed in advanced carcinomas, and have been correlated with disease progression in several
studies [8-13]. This suggests that secreting higher levels of TGF-P3 may provide an advantage to
tumor cells. Both autocrine and paracrine signaling may be involved in conferring this selective
advantage. While mutations in various components of the TGF-P3 signaling pathway have been
observed in some carcinomas, particularly, colorectal cancers [14,15], an intact TGF-P3 signaling
pathway is often retained in other malignancies as some tumors can exhibit increased
invasiveness in response to exogenous TGF-P [16-21 ]. Moreover, in a recent study of a large
cohort of human breast tumors, loss or low levels of the type II TGF-P3 receptor (TP3RII)
correlated with high tumor grade, but 60% of in situ and invasive breast carcinomas retained
robust levels of TPRII expression by immunohistochemistry [22]. Finally, although Smad4 is
frequently inactivated in pancreatic cancers [23,24], the Smad genes, which encode proteins that
transduce TGF-[3 signals, are rarely mutated in most human carcinomas [25-30]. This suggests
that after cells lose their sensitivity to TGF-j3 growth inhibition, autocrine TGF-P3 signaling may
potentially promote tumor progression. In addition, TGF-[3s produced in excess by tumor cells
may act in a paracrine fashion on the peritumoral stroma, tumor neovessels, or the immune
system, indirectly fostering tumor progression.



AUTOCRINE EFFECTS
Epithelial to Mesenchymal Transition (EMT)

Similar to keratinocytes [2.*], TGF-f31 can also induce a rapid and reversible EMT in

melanoma cells [31], and in both non-tumor [32] and Ha-Ras transformed [17.] mammary

epithelial cells in vitro. In Ha-Ras mammary tumors, EMT appears to be initiated by TGF-P3
produced by peri-tumoral host cells and later maintained by autocrine TGF-P31 as the converted
tumor cells themselves begin to secrete TGF-P 1. The Ha-Ras tumor cells obtained after EMT in
vitro or in vivo display loss of epithelial polarity, downregulation of E-cadherin, disruption of
cell-cell adhesion, and invasive properties in several in vitro assays [17*]. Supporting the
importance of autocrine TGF-[3 for the tumorigenesis of Ha-Ras mammary cells, introduction of
dominant negative T[3RII into these cells retarded tumor formation and prevented EMT in vivo.
Moreover, introduction of the same construct into highly invasive murine colon carcinoma cells,
reconstituted an epithelial phenotype in vitro, and inhibited both tumor outgrowth and the
establishment of metastases [20*]. In colon cancer cells of low invasive potential and with
naturally occurring mutations in the TP3RII gene, re-expression of TI3RII function restored tumor
cell invasiveness [20.]. In another study, expression of a dominant negative TI3RII in clones
derived from a metastatic squamous carcinoma cell line prevented their spontaneous progression
to a spindle phenotype in vivo [21 ]. Furthermore, approximately 90% of colon cancers with
microsatellite instability (MSI) have inactivating mutations of T[3RII [33] and MSI is
significantly correlated with longer patient survival [34], suggesting that complete loss of TP3RII
in carcinomas may limit systemic metastases. Taken together, these results suggest that EMT,
local tumor growth, and metastatic progression can be sustained by autocrine TGF-P3 signaling.

When tumors are grown in nude mice, TGF-f3s made by host cells can induce responses
in tumor cells with intact TGF-P3 signaling with the net effect of these tumor/host interactions
being deleterious to the host. For example, MDA-231 human breast tumor cells secrete
parathyroid hormone-related protein (PTHrP) in response to exogenous TGF- P 1, metastasize to
bone when injected into nude mice, and induce osteolysis and hypercalcemia resulting in host
death. Transfection of these cells with dominant-negative TP3RII, blocks TGF-D31-mediated
stimulation of PTHrP production. Mice injected with these cells exhibited less osteolysis, higher
body weight, lower serum calcium and PTHrP levels, and longer survival than mice injected with
control MDA-231 cells [35*]. On the contrary, accelerated osteolysis and reduced host survival
were observed when mice where injected with tumor cells transfected with a constitutively active
TPRI, suggesting a possible role for TGF-13 mediated responses in the pathogenesis of some
adverse paraneoplastic syndromes.

Several recent studies have contributed to our understanding of the biochemical
mechanisms by which transformed cells can lose autocrine growth inhibition but retain TGF-03-
mediated responses that contribute to tumor progression. For example, oncogenic activation of
the Ras pathway, acting via MAP kinases, causes phosphorylation of Smad2 and Smad3 at
specific Erk consensus sites in the linker region between their DNA-binding and transcriptional
activation domains. This results in loss of nuclear accumulation of Smad2/3 and silencing of
TGF-P3 mediated antiproliferative responses [36..]. In nontransformed mammary cells,
introduction of mutant Ras not only blocks growth inhibition by TGF-[, but also subverts this



pathway into one that can stimulate epithelial to mesenchymal transdifferentiation [17o,20.]. In

MDCK epithelial cells, transfection of the missense mutations Smad2.D450E and Smad2.P445H,
reported in primary colorectal and lung carcinomas, does not abolish TGF-13-mediated growth

arrest. Instead, it increased both basal and TGF-13 stimulated invasiveness, neither of which were

prevented by overexpression of the inhibitory Smad7 [37.]. This suggests the existence of Smad
'gain-of-function' mutations that enhance malignant progression by mechanisms independent of

T13RI and Smad phosphorylation. Another study has shown that Smad7 mRNA levels are
increased in human pancreatic cancers compared to normal pancreas [7.]. Stable transfection of
COLO-357 human pancreatic cancer cells with a Smad7 expression vector results in loss of
TGF-P31 -mediated growth inhibition and p21/Cip1 promoter activity. However, TGF-j31-
induced plasminogen activator inhibitor-I (PAI-1) promoter activity is maintained and, more
importantly, basal PAI-1 promoter activity, PAI-1 mRNA levels, anchorage-independent colony
growth, and tumorigenicity in nude mice, are all increased in the Smad7 transfected clones [7.].
This result suggests another potential mechanism, the overexpression of Smad7, for the
segregation between antiproliferative and matrix-associated TGF-P3 responses. In addition,
overexpression of Smad4 in colon carcinoma cells does not reconstitute TGF-P-mediated
antiproliferative responses [38o,39], but inhibits cell adhesion and spreading, reduces the levels
of urokinase plasminogen activator (uPA) and PAI- 1, and prolongs tumor latency [39],
suggesting an additional function for Smad4 in restraining genes involved in peri-tumor
proteolysis and invasion. This is further supported by reports of homozygous deletion of TI3RI
or homozygous missense mutations of Tf3RII [40,41 ], each coexisting with deletions of Smad4 in
individual tumors. The coexistence of these mutations in the same tumors would not be expected
if the function of these two gene products (TI3RII and Smad4 or TP3RI and Smad4) was limited to
a single common signal transduction pathway. Taken together, these studies suggest that [i] the
threshold for loss of TGF-P antimitogenic effects is lower than that required to lose responses
associated with cell adhesion, invasion, and metastases; [ii] not one but multiple biochemical
mechanisms can contribute to the enhancement or unmasking of the tumor promoting effects of
autocrine TGF-13; and [iii] some of these mechanisms may be independent of Smad function or
TP3RI phosphorylation. The identification of Smad-dependent and -independent genes causally
involved in these TGF-j3-mediated tumor promoting effects requires further research. Of note,
Hocevar et al. [42.] recently reported c-Jun N-terminal kinase (JNK)-dependent TGF-P induced
fibronectin expression in cell lines lacking the Smad4 gene or protein expression.

Increased Motility
TGF-P3 can stimulate the motility of many cell types in vitro [43-45], therefore suggesting

that TGF-f3 production in vivo may enhance migration of tumor cells and metastatic potential.
Indeed, cyclosporine treatment of lung adenocarcinoma cells results in increased cell motility
and anchorage-independent growth in vitro as well as increased metastases in vivo, all of which
can be blocked with neutralizing TGF-P1 antibodies [46]. These results suggest that in vivo
tumor progression by cyclosporine is dependent on autocrine TGF-P11. In prostate cancer cells,
TGF-P 1 stimulates motility without affecting cell proliferation, suggesting that the effects on
motility and proliferation may occur via different biochemical pathways [43].

Whether blockade of the Smad pathway, critical for TGF-f3-mediated antimitogenic
effects [47,48], is also critical for the effects of TGF-13s on cell motility is not clear. Some



evidence suggests that the latter may follow alternative signaling pathways perhaps in
cooperation with activated oncogenes. Atfi et al. [49] recently reported that inactivating
components of the JNK pathway, which via c-Jun regulates AP-1 activity, inhibits TGF-13
mediated induction of 3TP-Lux, a reporter construct that contains Smad and AP-1 binding
elements. Dominant-negative mutants of RhoA, Racl, and Cdc42, GTPases that mediate cell
shape, cytoskeletal organization, and motility, abolish TGF-j3 mediated transcription of AP-1
[49,50], suggesting that the Rho family of GTPases and the JNK pathway are essential
components of TGF-[3 signaling responses. TGF-31 can also upregulate integrin-linked kinase
(ILK) [31 ], a protein associated with fibronectin production and increased cell motility. In
another study, TGF-P 1 treatment of NMuMG mouse mammary epithelial cells increased the
expression of N-cadherin [51], which has been shown to increase motility of squamous cancer
cells [52].

PARACRINE EFFECTS
Induction of Metalloproteases

Matrix metalloproteases (MMPs) play a critical role in the proteolytic degradation of
basement membrane that is required for tumor invasion [53]. The expression of several MMPs,
including MMP-2 [54] and MMP-9 [18,31,55], can be induced by TGF-P3. Moreover, TGF-j31
has been shown to selectively induce MMP-9 activity in a subset of metastatic but not primary
mouse prostate tumors, implying that this TGF-13 1-induced response may be an important
selection step in tumor progression [18]. There is also evidence that TGF-[ increases MT-
MMP-1 and MMP-9 expression in metastatic melanoma [31]. Although MMPs are listed
separately, recent data implicate them strongly in the process of tumor-induced
neovascularization [56], thereby suggesting that their upregulation might be an integral
component of the TGF-p-mediated angiogenic processes discussed below.

Tumor Angiogenesis
It is generally accepted that solid tumors require an adequate blood supply in order to

grow beyond a few millimeters in size. TGF-j3s, particularly TGF-fP1, have been shown to
regulate new blood vessel formation both in vitro and in vivo by a combination of responses that
include increased production of vascular endothelial growth factor (VEGF), facilitation of
VEGF- and basic fibroblast growth factor (bFGF)-mediated capillary sprouting, inhibition of
endothelial cell migration, and increased production of extracellular matrix, among others
(reviewed in [57]). In most cells, T[RI/ALK-5 is the signaling receptor for TGF-[3. However, in
endothelial cells, it has been suggested that ALK-1 may also function as a type I receptor for
TGF-[ [58]. In addition to the type I, II, and III TGF-[3 receptors, endoglin is another integral
membrane protein that binds TGF-I31 and TGF-P33, and is highly expressed in endothelial cells
[59]. Although TGF-P effects appear to be mediated mostly by the receptor-specific Smad2 and
Smad3 proteins [47,48], there is evidence that Smad5 is involved in TGF-P signaling in
hematopoietic cells [60]. Targeted disruption of genes encoding various components of the
TGF-P3 signaling pathway, including TGF-[31 itself [61], its receptors, T[3RII [62], ALK-1 [63],
endoglin [64], and one of its signal transducers, Smad5 [65], has each revealed that these
proteins play an important role in vascular development. The phenotype of the TGF-P31 and
TI3RII knockout mice is virtually indistinguishable and is characterized by defective endothelial
differentiation resulting in abnormal capillary tube formation [61,62]. In contrast, disruption of



ALK-1, endoglin, or Smad5 does not affect endothelial differentiation or vasculogenesis, but
instead they all affect angiogenesis. In addition, endoglin-/- and Smad5-/- mice exhibit impaired
vascular smooth muscle cell development. These results are consistent with previous reports
demonstrating that TGF-13 can regulate smooth muscle cell differentiation and migration in vitro
[66.], thus contributing to pericyte recruitment and vessel stabilization. This hypothesis, as it
applies to tumor angiogenesis, is somewhat challenged by the notion that the majority of intra-
tumoral neovessels seem to lack periendothelial smooth muscle cells [67], suggesting that there
may be additional roles for the TGF-P3s in tumor angiogenesis. In that light, Higaki et al. [68]
recently reported TGF-13 1-mediated stimulation of phosphatidylinositol-3 kinase (PI-3K) activity
and amino acid uptake in vascular smooth muscle cells, suggesting a direct anti-apoptotic role
for TGF-P3. Elucidation of the paracrine mechanisms driving TGF-[3 mediated tumor
angiogenesis requires further investigation.

Further supporting TGF-[3s' role in tumor angiogenesis, administration of a neutralizing
TGF-31 antibody to nude mice harboring CHO cell xenografts transfected with ectopic TGF-P1,
inhibits both tumor growth and intratumor microvessel density [69]. In addition, a monoclonal
antibody that blocks TGF-131, -132, and -P33 has been shown to suppress the growth of TGF-31-
overexpressing renal cancer xenografts [70]. In this study, the TGF-13 blocking monoclonal
abrogated factor VIII staining in the xenografts, suggesting an antitumor mechanism that targets
endothelial cells [70]. Furthermore, TGF-PlI and PAI-I have been shown to inhibit the
conversion of plasminogen to the antiangiogenic molecule angiostatin in medium conditioned by
human pancreatic cancer cells [71]. This suggests an additional proangiogenic mechanism for
TGF-f3 by interferring with the production of endogenous inhibitors of endothelial cell
proliferation. Finally, high levels of TGF-131 mRNA correlate strongly with high microvessel
density in breast tumors, and each of these factors is associated with poor patient outcome [72].

Host Immunosuppression
TGF-131 and TGF-132 are potent immunosuppressants [73]. Thus, elevated levels

of TGF-f3s secreted by tumors could potentially inhibit immune effector cells and favor tumor
progression. In support of this idea, Torre Amione et al. [74] demonstrated that, unlike parental
tumor cells, fibrosarcoma cells transfected to express 10 ng/ml TGF-31 in vitro are unable to
induce cytotoxic T lymphocyte (CTL) responses and can escape immune recognition. Likewise,
EMT6 mammary tumor cells, which produce high levels of TGF-f31, can inhibit CTLs in vivo.
Transfection of these cells with IL-2, a known T-cell growth factor, can reverse this TGF-[3 1
effect and induce tumor rejection [75]. This result suggests that, by dampening the generation of
tumor reactive T cells, TGF-f3 can promote tumor viability. There is also evidence that
overexpression of the soluble TP3RII extracellular domain in thymoma cells can prevent the
progression of unmodified thymoma cells when injected near the primary tumor inoculation site
[76], further suggesting that secretion of soluble T13RII by these cells is sufficient to restore
tumor specific cellular immunity and mediate partial tumor rejection. Overall these results are
consistent with the phenotype of TGF-131 null mice which die shortly after birth as a result of
widespread inflammation and multiorgan T cell infiltration and necrosis [77].

In addition to inhibiting CTL responses, TGF-13s can modulate other immune functions
that may favor tumor progression. For example, CHO cells transfected with an expression vector



encoding latent TGF-3 1, when injected into nude mice, can decrease mouse spleen natural killer
activity and rapidly form tumors [78]. Antagonizing TGF-13s by intraperitoneal injection of an
antibody that neutralizes TGF-131, -P32, and -P3 has the opposite effect. It prevents tumor and
metastases formation by MDA-231 human breast carcinoma cells, and markedly increases
natural killer activity of mouse splenocytes [79]. Consistent with this TGF-j3-mediated
immunosuppressive effect, reduced immune function has been observed in animals bearing TGF-
13 overexpressing tumors [80] as well as in patients with glioblastoma, a common type of brain
tumor that frequently overexpresses TGF-132 [81 ].

The studies mentioned above suggest that tumor cell secreted TGF-P3s may block the
efferent function of immune effectors at sites of tumor implantation. Other reports, however,
suggest tumor cell TGF-13s may modify the afferent component of the immune response and
confer antitumor immunity. Stable infection of breast and glioma tumor cells with antisense
TGF-131 and antisense TGF-P32 retroviruses, respectively, has been shown to restore the
immunogenicity of these tumor cells when injected into immunocompetent animals.
Furthermore, they induce a partial rejection of unmodified less immunogenic established wild-
type tumor cells [82,83]. In both of these studies, in vitro and in vivo CTL activity was markedly
increased in medium conditioned by antisense TGF-j3-infected cells and/or in mice injected with
tumor cells bearing the antisense compared to tumor cells infected with a control vector. These
studies have therapeutic implications for the use of an antisense TGF-f3 based approach as a
means of adoptive immunotherapy against TGF-j3 overproducing tumors.

Alternative Views and Conclusions

A tumor-permissive role for the TGF-13s may not apply to all solid tumors. Indeed,
transfection of an antisense TGF-3 1 expression vector into FET and CBS well-differentiated
human colon cancer cells has been shown to enhance tumor formation in nude mice [84,85],
supporting the notion that, in some fully transformed cells, endogenous TGF-31 can continue to
mediate a tumor suppressor function. In a recent report, mice bearing transplanted gallbladder
Mz-Cha-2 tumors showed inhibition of angiogenesis and leukocyte-endothelial cell interactions
at a distant cranial site and 3-fold higher levels of circulating TGF-P1I compared to tumor-free
mice [86]. This reduction in microvessel density and leukocyte rolling were reversed by
systemic administration of a TGF-131 neutralizing antibody, suggesting a negative role for TGF-
131 in early neovascularization. Moreover, in a recent survey of 104 in situ and invasive primary
breast carcinomas, 40/45 (89%) tumors with low invasive potential and low proliferation rate
exhibited high levels of TP3RII by immunohistochemistry [22]. Whether autocrine TGF-f3
signaling is causally associated with the observed low proliferation and invasiveness in this
subset of breast tumors is a question that remains unclear.

Nonetheless, the potential tumor promoting effects of TGF-P3 provide novel molecular
targets for interventions aimed at altering the natural history of solid tumors. The lack of an
obvious physiological role for TGF-P signaling in post-developmental normal physiological
states suggests that these interventions may in fact be tumor-specific and spare the tumor host
from undue toxicity. Several approaches have been proposed and include the use of [i] blocking
antibodies against TGF-j31, TGF-f32, and TGF-133; [ii] soluble ectodomains of the type II and III



TGF-P3 receptors, which would sequester TGF-P3 isoforms at tumor sites and prevent binding to

cognate receptors [87,88]; and [iii] adenovirus encoding inhibitors of TGF-13 signaling [89], to
name a few. The theoretical and logistical strengths and limitations of these approaches are
beyond the scope of this review. Nonetheless, these represent tools that, if effective in blocking

TGF-f3 action, will allow us to address the net effect of autocrine/paracrine TGF-P3 signaling at
early and late stages of transformation and cancer progression.
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