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Abstract 

This project aims first at improving the modeling of the inflation characteristics of 
parachutes reefed with a slider, in particular the type of round and cruciform parachutes 
decelerating military systems. We are also investigating the inflation performance of new- 
si ider designs such as heavy sliders, variable grommet friction sliders, computer- 
controllc<fsliders, etc. Specifically, we want to find out whether such designs can lead to 
lower and reliable opening shocks together with short inflation times, and optimal 
inflation reliability. 

Wc report on the results obtained dunng the first half of FY00 as well as on the 
analysis of the test drop data collected in FY99. Both FY99- and FYOO-datasets were the 
result of lest drops of full scale and half-scale cruciform and flat circular parachutes, in 
unreefed as well as in slider-reefed configurations. Other FY00 results discussed in this 
report include an exciting new theory of unsteady drag, which will prove valuable in 
improving the accuracy of our parachute inflation simulation codes. 
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1. Executive summary of results, up to present 

The two main goals of this research project are: 

n To continue the development of a simulation code of slider-reefed parachute inflation 
by including more realistic modeling and by performing a validation through the use 
of a large database of ram-air, flat circular and cruciform parachute inflation data 
This database is to be established either from the available literature or from new drop 
tests performed by this PI and his team. 

2) To propose and study new slider designs aimed at improving the inflation 
performance of cargo airdrop parachute systems (cup-shaped parachutes). 

1. Inflation simulation code development 

The improvements of the inflation model that where made in FY98 and FY99 
included: 1) the addition of an extra degree of freedom for the simulation of ballistic 
trajectories; 2) the use of a general time evolution for the calculation of instant parachute 
surface area as applied to slider-reefed flat circular and cruciform parachutes; and, 3) a 
new drag coefficient evolution equation to simulate more accurately the effects of 
unsteady aerodynamics on CD. The first half of FYOO saw more modeling refinements as 
well as more parachute data collection for validation purposes; 

• Mew mode! for the calculation of the drag coefficient of accelerating and 
decelerating bluff shapes. 

The effects of unsteady aerodynamics on parachute inflation enter through the time- 
variation of the drag coefficient during the parachute canopy spreading phase as well as 
after when the parachute-payload system quickly settles into steady flight. In FY99 a 
parachute deceleration model based on the drag coefficient of accelerating disks showed 
good agreement with our FY99 data on half-scale cruciform and flat circular parachutes. 

* This good agreement was unfortunately not repeated in a comparison done in FYOO, 
Vising full-scale parachute data. For this reason a new drag coefficient model was 
formulated and shown to compare favorably with both half-scale and full-scale data. As 
described in the following section and in a paper recently submitted to Journal of 
Aircraft (see Appendix 2), the model includes new drag equation evolution formulae for 
both accelerating and decelerating bluff shapes. The model is better motivated from a 
physics point-of-view. It is also detailed, and yet general enough to make non-trivial 
predictions on the value of CD before and during unsteady motions without resorting to 
the usual "added mass" parameterization, which has been shown to not apply to all 
parachute deceleration profiles. 

• Simulation modeling of the early pressuri7ation stage 

Slider-reefed parachutes inflate through the two stages of early pressurization and 
slider descent (see Appendix 1 for definitions). During early pressurization the parachute 



adopts a temporary inflated (and inflating) shape as the slider remains pressed against the 
canopv and the payload continues to decelerate. So far, only the slider-descent stage had 
been considered in our computer model. In FYOO a full model of early pressunzation was 
tested and added to allow the complete simulation of a payload's trajectory during both 
stages. The model is based on Ludtke's /6-law which has been shown to be very 
successful in reproducing correctly the time dependence of the drag force during the 
inflation of a wide variety of unreefed parachutes [1], This new model is described in 
Section 3 below and also in Appendix 2 where it was used in the validation of the 
unsteady drag model discussed previously. 

• New test drop data for code validation 

In FY99 over 60 test drops were performed on half-scale cruciform and flat circular 
parachutes with, and without sliders. More test drops were performed in FYOO, this time 
30 drops on both half- and full-scale cruciform parachutes and flat circular parachutes 
outfitted with new slider sizes. In particular, these parachutes were dropped under the 
same ballistic conditions, with and without sliders in order to isolate the effects of the 
slider reefing for opening shock control. 

• Code validation 

Code validation of slider reefing inflation dynamics is continuing at this time and will 
be presented in the final report of this project. Current features being tested include: 1) 
assuming a near constant surface area during slider descent, which is more justified for 
cupped chutes than for ram-air ones because of their low aspect ratio; 2) adding the 
newly-found unsteady drag equations to describe the post-inflation phase of the 
parachute-payload trajectory; and 3) using this same unsteady drag equation to justify 
new approximations in the equation of motion of the slider-descent phase. 

2. New slider designs 

New slider designs were studied theoretically in FY 98 and FY99 using the 
inflation code, and drop-tested using '/i-scale and full-scale parachutes in FY 99 and 
FYOO. The slider designs listed in the original proposal included: 

- Concept A: passive slider, with variable friction pads on the suspension lines. 
- Concept B: passive slider, fitted with weights to increase its inertia. 
- Concept C: smart (or "active") active slider, fitted with a micro-processor 

which would control micro-brakes according to input signals collected by a 
slider-mounted altimeter and/or accelerometer. 

Three new concepts were added in FY99 namely: 

- Concept D: Passive or active slider linked via bridle to a pilot chute of 
variable inflated surface area. 

- Concept E: Inflation sequences along a non-vertical (i.e. ballistic) trajectory. 



-     Concept F: Double reefing, where a slider is used in conjunction with line 
reefing applied near the crown area of the parachute. Slider descent would be 
initiated by the cutting of the reefing line by a pyrotechnic cutter activated by a 
time fuse, altitude sensor or any other microprocessor-based hardware sewn on 
the parachute. 

The results of the past two and a half years are as follows: 

• Computer simulations have shown that concept B (i.e. tuning slider weight) provides 
little inflation control because of unsteady aerodynamics effects which make the 
slider's motion insensitive to slider mass; 

• The test drops performed in FY99 have shown that concept A (i.e. slider friction 
tuning) may not be practical given that the line tension differential above and below 
the slider is smaller on cruciform and circular parachutes than on ram-air parachutes 
due to their smaller aspect ratio. Smaller line tension result in little friction usable for 
inflation control purposes. 

• The test drops performed in FY99 have shown that concept D offers the reliability, 
simplicity of implementation and wide range of inflation control; 

• Concepts C, D and F provide a useful first active slider design which could mitigate 
the negative effects of abnormally hard openings; however concept C may be the 
hardest to implement given the sophisticated hardware needed. 

• Computer simulations have shown concept E to further reduce the amount of 
maximum opening shock. 

FYOO has seen our efforts focusing on concept F, which has been shown 
experimentally to be the simplest, cheapest and most versatile implementation of active 
opening shock control. In a way, concept F marks a departure from the philosophy of 
using a~"smart slider" on a "dumb chute", going instead to that of using a "dumb slider" 
on a "smart chute". Our past simulations and test drops of active slider concept? has 
shown that it is far more easier to control slider dynamics via parachute pressurination 
than by any other means. 

In FYOO four more test drops were performed to test such doubly-reefed parachutes. 
In all tests the parachutea flew in a slider-up configuration (or "drogue" phase) for at 
least four second before a pyrotechnic cutter severed the crown reefing line. The tests 
were performed with two new sliders of sizes that were different from the FY99 designs, 
as well as with suspended payloads of up to 300 lbs. 



2. Summary of Accomplishments - FYOO (first half of the year) 

The following was accomplished during the first half of FYOO: 

•    Testing of important improvements to the Ideal Parachute Model computer program 
which included more accurate physics to describe the drag effects of unsteady " 
aerodynamics and a new model of early pressurization; 

• Execution of dozens of computer simulations, 50% of which where on round 
parachutes, 0% on ram-air parachutes and 50% on cruciform parachutes; 

• Hiring and training of Ms. Becky Brocato, Mr. Rodney Kutz and Mr. Carlos 
Manglano to work on this project. These students are Aerospace Engineering seniors 
at Saint Louis University. 

• Ms. Brocato and Mr. Manglano wrote a paper entitled Size and Speed Scaling Study 
of Parachute Inflation. Their paper was the result of the testing of the Ludtke's t6- 
model discussed previously. The paper won the third prize at a competition that 
took place on April 26-28 2000, during the Region V AIAA Student Conference 
(Wichita, KS). 

• Continuation of the collecting of un-reefed and slider-reefed round parachute and 
cruciform data using the equipment developed during FY99. 

• Travel to U.S. Army research facilities in Natick, MA and Yuma, AZ to attend New 
World Vistas - Precision Air Delivery (or NWV-PAD) meetings. 

• Continued the patent application process for the double reefing concept (i.e. concept 
F), in collaboration with R. Benney - Natick Army Soldier Systems Center. 

• Submitted the paper entitled Using Galilean Relativity for the Study of Unsteady 
Drag, for publication in the Journal of Aircraft. A copy is included in Appendix 2. 

»    Submitted two abstracts/papers to the 16th AIAA Aerodynamic Decelerator Systems 
Technology Seminar and Conference, which will take place in Boston MA at the end 
of May 2001. The papers are entitled Deceleration Modeling ofUnreefed Cruciform 
and Round Parachutes During and After Inflation - and - Inflation and Glide Studies 
of Slider-reefed Cruciform Parachutes. 



3. Inflation simulation code development 

3.1 General introductory remarks 

The modeling of the trajectory of an inflating or post-inflating parachute is first 
based on the combined parachute/load Newtonian equation of motion, here written for a 
purely v, rtical trajectory for the sake of simplicity: 

ma(t) = ~pZ{t)v\t) + W (3.1) 

Here m, a, v. pand Wcorrespond to the system's total mass, descent acceleration or 
deceleration, descent speed, air density at deployment altitude and system all-up-weight 
respectively. However, such an equation cannot be solved until the time dependence of 
the drag area E(t) ( - CD(t)S(t))) is known. Until recently, most unreefed parachute 
inflation studies have used Ludtke's law, namely [1]: 

I(r) = 
CD(tßna,)S(tßnal)-CD (0)5(0) 

t6 
1 final 

t6+CJ0)S(0)        (3.2) 

Ludtke's formulation requires the knowledge of the empirical inflation time tfinni. all other 
inputs being available from measurements performed "on the laboratory floor". On the 
other handTthe inflation of slider-reefed parachutes (slider descent stage only) can be 
described by the Ideal Parachute Model, which uses a differential equation derived from 
the slider's own Newtonian equation of motion, namely [2-4]: 

^f = [(/:, +A',Z(/)) + (A'fl+A'ftI
1 :(0 + A'fl'

:(0)]v:(/)        (3.3) 
dr 

The K-factors are known constants or functions of time written in terms of a parachute's 
specific construction characteristics. These factors have the following property: 

A., A, * 0 &. Aa. A„, A'f = 0   ; ram-air parachute 

and 

A,, A: = 0 & Aa,Afc,Af * 0 ; round or cruciform parachute 

As shown in references 2 and 3, these K-factors can be directly related to a parachute's 
initial drag area, final drag area, suspended weight, descent velocity prior to slider 
descent down the suspension lines and suspension line lengths. These K-factors also 
depend on the slider construction characteristics such as weight and surface area. Finally, 



parachutes decelerating while/«//;- opened have long been described using an expression 
based on the concept of added mass, which expresses the drag coefficient as 

CD(0=Cr;i + 2A{|^r) (3-4) 

Here I'and S refer to known representative parachute volume and surface area. On the 
other hand, constant A' is the s.-called added mass parameter. Equation (3.4) has been 
shown to work in invisci'd flow conditions, but also in some but not all parachute 
applications [see Appendix 2 and references therein]. 

3.2 New models for the description of unsteady drag (at fixed surface area) 

Parachute dynamics depends in a crucial manner on the knowledge of the time evolution 
of the drag coefficient. But, as discussed at length by Sarpkaya and Isaacson [5] and by 
Sarpkaya [6], such time evolution is complicated because the fluid moving about objects 
in unsteady motions is no longer characterized by a constant value of the Reynolds 
number. Accelerated and decelerated motions imply a host of new phenomena including 
a time-dependent wake shape, time-dependent vortex shedding intervals and locations, 
hard-to-predict boundary layer transitions and laminar-to-turbulent flow transitions, and 
values of the drag coefficient that are much greater than unity [7, and Appendix 2]. This 
was shown quite clearly in several tow tank studies of cylinders, plates and disks at low 
and medium Reynolds number and in parachute test drops [8, 9 and Appendix 2]. Most 
importantly, these experiments have also shown that the time dependence of the drag 
coefficient for accelerating motions is not the same for that of decelerating motions 

The following formulas represent an improvement over equation (3.4), and is 
applicable to a much greater number of parachute applications (see Appendix 2 for 
details). These formulas are to be used together with the standard drag force equation 
written as follows: 

FD(t)=±Cl)(t)pSv{t)2        (3.5) 

Our review of the tow tank literature on the drag of accelerating bluff shapes has 
shown that accelerating parachutes would have a drag coefficient given by (see 
Appendix 2 for details): 

Cp*(20-6)Oib        0.3<S<10     (3.6) 

CD = C'f* ■ (4.67)*""     0<S<0.3       (3.7) 

cD(t) = c;r" - 2k{-^]s      S>> I0     (3'8) 



where 5 is the so-called acceleration modulus defined as: 

,     Da 
5 = ^ 

(3.9) 

Note that equation (3.8) is that same as (3.4), but is restricted to accelerations of non- 
streamlined objects in the high-Jregime. Equations (3.7) - (3.9) are the result of a direct 
fit of a tow tank experiment performed by Iversen and Ralent, which covered low and 
intermediate Reynolds number values [7]. 

In the case of decelerating parachutes, we have proposed a new formula based on 
the Galilean equivalence between bodies decelerating in a static fluid and those drifting 
and accelerating with a moving fluid (again, see Appendix 2 for details): 

cD(t)=c; 
v(ty 

V   v, J 
(3.10) 

where 

ß'= 2 + (3.11) 

Equations (3.10) and (3.11) were tested via a comparison with our half- and full- scale 
parachute data, as shown in figures 1 and 2. 

3.3 Simulation of the early pressunzation staue 

Early pressurization takes place after the parachute has been pulled out of the bag, 
a process initiated as soon as the suspension lines have deployed and stretched taut 
(Appendix 1). Early pressurization begins when the parachute adopts a tube-like shape 
and ends when it has an inverted pear-like shape (figure 3). During this stage the slider 
remains pressed against the skirt because of its own built-in drag, and begins to move 
only when the pressure inside the parachute is high enough to cause a high enough line 
tension differential above and below the slider to push it down. The beginning of slider 
descent marks then end of the early pressurization stage. Lengthening the duration of 
early pressurization is one sure way to reduce opening shock since even a partly opened 
parachute will generate enough drag to cause a substantial deceleration of the payload. 

Until recently, our parachute inflation code did not simulate the payload 
deceleration sustained during early pressurization. Such defect has been corrected by 
using again Ludtke's formalism (equation (3.2)), this time to describe the temporal 
change during early pressurization of the parachute's diameter as measured at its mid- 
section (see figure 3). The logic behind this idea is that Ludtke's model has been shown 
to be very successful in describing the unreefed inflation of many parachute shapes [1]. 



Our idea is to assume that the model could do well for inflating parachutes that are 
shaped like inverted pears (see figure 3), and unreefed at their mid-section. 

This idea was validated by looking at the data generated during drops NWY114 
and NWV116, which involved full-scale Natick-Army cruciform parachutes with a 110 
lbs pavload. In those two cases the slider had a very high drag area and descended ver> 
slowlv and over a very short distance down the suspended lines. For that reason, most o! 
the hi'ah drag forces sustained occurred during early pressunzation and post-inflation 
deceleration A computer model thus using equation (3.1), with (3.2) during early 
pressunzation and (3.10) during post inflation deceleration was used to produce the 
emulated forces shown in figures 4 and 5. The comparison of ^"*°^*™ 
with experimental data, also show in these figures, indicates a good agreement xuth tins 

theory. 

3.4 Testin? and using the complete inflation code 

The second half of FY00 will see the testing and use of our inflation code, updated and 
upgraded with the features discussed previously. To recapitulate, the upgraded code will 
be based on Newton's equations as applied for a pseudo-ballistic trajectory: 

ma=-jpS(t)CD(t)vUWcosB (3.12) 

where 

dB sin0 
— =-g-7T~ (3      ' dl |vi 

Simultaneously, the following drag coefficient formulas would be used to simulate the 

different inflation stages: 

.    Equation (3.2) when 0 < t < tearlyPres:   (early pressunzation stage) 

.    Equation (3.3) with Kb ~ Kc ~ 0, when tearlyprCss < ' < t^cra«™,   (slider descent stage) 

.    Equation (3.10) when rjWHtf„f«« < / < W*/7   (post-inflation stage) 

The results of the validation of this upgraded code will be presented in this project's final 

report. 

3.5 Test drop data for code validation 

As of now over 96 test drops have been performed in Missouri and Illinois to produce 
inflation data for the purpose of code validation and slider design testing. The parachutes 
tested so far were: A 15ft-diameter, half-scale model of the USAF C-9 personnel 
emergencv flat circular parachute, and a (30 year-old and very porous) 28 ft-diameter 
personnel'emergency flat circular parachute used by the U.S. Navy. Reference 2 give 
ample details on their construction, including the type of cloth used. We found these 



parachutes to have a 22 ft/sec and 16.6 ft/sec terminal descent rate while earning 
payloads of 100 and 120 lbs respectively. The other parachutes tested included a one-of- 
a-kind U S. Army-Natick 24ft cruciform parachute, built out of two 9.2ft-by-24.0ft panels 
sewn into a cross and attached to 20 suspension lines of length 19.7 ft. The cloth had a 
permeability of 30 to 45 cfm and was made of 200 denier nylon; the suspension lines 
were made of MEL-C-7515 Type V chord. Also tested were half-scale models of this U.S. 
Army cruciform parachute, built out of two 4.2ft-by-10.7ft panels and 20 suspension 
lines'of length 12.2 ft and 17.0ft. The cloth used was the same as for the full- scale article 
and the suspension lines were of MIL-C-7515 Type I-A chord. The terminal speed of 
these cross chutes was measured at 17.8 ft/sec and 32 ft/sec while carrying payloads of 
100 and 128 lbs respectively. 

In FY99 the test payloads were dropped from a Cessna 411 twin-engine aircraft over a 
commercial drop zone located in Bowling Green MO. In FY00, the drops were earned 
out from a Beech King Air C-90 twin-turbine aircraft over the Vandaha Municipal airport 
in Vandalia, IL. The drops were conducted between 1000 and 2000 feet MSL (i.e. DOOft 
AGL in the St. Louis MO area) from speeds ranging between 90 and 110 kias. 

As described in details in the FY99 final report, the payloads consisted of 100 lbs steel 
tubs shaped as half-scale models of the U.S. Army A-22 container, with dimensions of 
24in x 20in x 23in. Payload weight could be adjusted by adding cement sacs at the 
bottom of the tubs. Each tub was instrumented with a load cell inserted on each of the 
two parachute risers, and with an electronic barograph located inside the tub. These 
instruments sent data to an on-board data acquisition system recording at a rate of 500 
Hz. All components were built using off-the-shelf components. 

The riser loading recorded during those tests are shown in Appendix 3. Note that not all 
drops were fully instrumented, as sometimes required by the nature of the test. 



4. Active slider design 

Our simulations and test drops of active slider concepts performed over the past two 
vears have shown that the cheapest and most flexible implementation of an "active  or 
"smart" slider is that of the doubly reefed parachute. As its name indicates, the concept 
involves the use of a standard slider in conjunction with a reefing line routed through 
nnaS c~vn near the crown area of the parachute as shown in figures 6 and 7. During the 
firs" portion of the drop (or "drogue phase"), the reefing line would be used to restrict the 
parachute canop> to a partly-inflated shape, such as those shown in figure 3. At a given 
altitude or time, or according to other parameters measured by on-board sensors, the 
reefing line would be severed to allow full inflation of the canopy. 

The simplicity of the idea resides in the fact it requires no special hardware on the 
slider itself other than a hole cut in the fabric to insure inflation reliability, to keep the 
latter in the "up" position during the drogue phase. And only one cutter would be needed 
to tneeer the double unreefing of the crown line and slider during canopy spreading 
phase.~Here the combined action of the slider's own drag and small parachute crown 
radius (while reefed) would keep the slider naturally pushed against the parachute skirt 
without any extra rigging. Upon cutter activation, crown reefing would be deactivated to 
allow full canopy inflation which in turns would create the necessary line tension 
differential above and below the slider to generate a down-pushing force on the latter. 

This concept would thus make use of a single parachute to perform the function of 
two parachutes, thus leading to rigging simplicity and low cost. It would also reduce the 
opening shock sustained by cruciform parachutes since, after cutter activation, the 
inflation process would evolve through two inflation stages of finite duration. The time 
delav caused bv these two stages would ensure early deceleration of the payload to lower 
speed, at the moment of full canopy spreading and thus to smaller opening shocks. 
Desii:.iin« for a desired opening shock would be simply done by adjusting the slider 
dimensions, namely slider vent hole size and slider perimeter, and crown reefing line 
length. In particular, the circumference of the crown reefing line would determine the 
descent speed of the system prior to cutter activation. The lower such speed would be the 
lower the opening shock. All size combinations so far tested have shown the expected 
reductions in opening shock. For example, see figure 8 as well as the riser load evolution 
curves of drops NWV45 and NWV131 in Appendix 3. 

A patent application is currently being put together in collaboration with Natcik. 
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APPENDIX 1. 

DEFINITIONS 



The slider 

A slider is a simple rectangle of nylon fabric re-enforced with nylon straps along its 
edges. The parachute's suspension lines are routed through grommets also ngged at the 
slider's corners on a ram-air canopy, or along its periphery on a round canopy. As its 
name indicates, its construction allows the slider to move up or down the suspension lines 
depending on the balance of the forces acting on it. 

Two slider configurations 

Sliders come into two basic varieties: the pilot-chute-controlled (or PCC) configuration, 
where the slider is additionally linked via bridle to the parachute's extraction/pilot chute 
or the sail configuration, where the slider is not attached to the pilot chute. In the case of 
the PCC, the amount of slider drag is mostly determined by the pilot chute size. In the 
case of the sail slider, slider drag is determined only by the amount of fabric covering the 
nylon strap that defines its shape. So far, commercial ram-air parachutes have used both 
configurations, while only the sail design has been used on commercial round parachutes. 

The four stages of parachute deployment and inflation 

The inflation stages of slider-reefed parachutes are very similar to those of skirt-reefed 
cargo parachutes: both begin with line deployment which is then followed by the 
extraction of the parachute itself out of the bag/container (or "bag strip"). This is 
followed by early pressurization, a stage during which the parachute gets its first "gulp" 
oi air and begins inflating. However, the parachute is not allowed to spread completely 
during this st"age because of line reefing or slider reefing, which constrains to a small 
proiected surface area the parachute's skirt on a round parachute or aspect ratio on a ram- 
air parachute. With line reefing, full canopy spreading begins only after the reefing line is 
severed bv a time-activated cutter. In the case of slider reefing, canopy spreading is only 
achieved when the line tension differential above and below the slider overcomes the 
latter's drag force which initially keeps it pushed against the base of theparachute. In 
most cases^maximum loading of a parachute's structure occurs during this last inflation 
stage. 

<* 
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Abstract 

We present a new point of view for the study of the drag force experienced by objects 

accelerating or decelerating along straight and non-periodic trajectories. The formalism is 

based on relating via Galilean transformations the drag force experienced by an object in 

a given reference frame to the drag force sustained by the same object in another 

reference frame. In such alternate frames, the fluid may now be in motion but its 

dynamics relative to the object remains the same. We apply this idea to the study of a 

disk accelerating in a static fluid under a constant external force, a situation that is shown 

to be equivalent to the same object decelerating downwind or accelerating upwind under 

the same external force. We also consider the example of a high-drag object decelerating 

in a static fluid under a constant external force, which in another reference frame can be 

seen as accelerating downwind under the influence of the same external force. A new 

drag coefficient equation for motions accelerating under a constant force is derived from 

the data of Iversen and Balent (Journal of Applied Physics, 22, pp. 324 - 328, 1951). 

Also proposed is new drag coefficient equation for decelerating motions in a static fluid, 

which is compared with parachute test drop data. 
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NOMENCLATURE 

A = Constant of integration, equation (13) 

a(t) = instant acceleration 

b0 = initial value of the drag area used in equation (29) 

bi = time-normalized drag area difference used in equation (29) 

Co = drag coefficient 

CD
dak = drag coefficient of a disk accelerating in a static fluid 

CD""' = initial value of the drag coefficient 

CD
s"ad> = drag coefficient in steady motion 

Ck = Opening shock factor 

C(s(t) I D) = effective drag coefficient in equation (3) 

D = characteristic diameter 

FD = force of drag 

Ftx, = external force, assumed constant 

Fmax = maximum parachute opening force 

K = "added mass" coefficient 

~K(s(t) I D) = effective "added mass" coefficient in equation (3) 

R = disk radius 

Re = Reynolds number 

s(t) = total displacement of an accelerating body 

S = reference surface area 



Sflat = parachute surface area as measured on a flat surface 

t/nJl = final time of canopy spreading during parachute inflation 

tmax = time of maximum drag during parachute inflation 

v(t) - instant speed 

v, = speed at the beginning of the acceleration/deceleration 

\y = speed at the end of the acceleration/deceleration 

vrf/ = speed of a particular reference frame 

Vrehund = speed of the fluid at infinity, relative to the moving object 

Vsnatch = parachute descent speed at the end of suspension line deployment 

V7- = terminal speed 

V= volume of the apparent mass 

Vehutt = volume of the air enclosed inside the inflated shape of parachutes 

ß'= exponent defined in equation (20) 

5= acceleration modulus 

5, = initial acceleration modulus 

c = small time increment 

p = air density 

Superscripts 

' = designates quantities measured in any Galilean frame moving with respect to the fluid 



INTRODUCTION 

Inflated parachutes and other high-drag objects often travel along trajectories that 

are far from being characterized by a constant velocity and constant drag coefficient - . 

Even during flight or cruise they may undergo unsteady motions such as during a turn 

maneuver or during oscillations caused by excess air spilling from alternate sides. This 

means that before reaching terminal velocity, these objects may feature drag coefficients 

that are time-dependent as well as motion- and trajectory-dependent. This introduces an 

additional level of complexity in the standard drag equation, which then must be 

expressed in terms of a time-dependent drag coefficient: 

FD(t)=±CD(t)pSV(t)2 (1) 

Such time dependence is due to many factors, which often times play equal parts 

in defining a specific drag evolution profile. As discussed at length by Sarpkaya and 

Isaacson* and by Sarpkaya3, the fluid moving about objects in unsteady motions is no 

longer characterized by a constant value of the Reynolds number. Here accelerated and 

decelerated motions imply a host of new phenomena including a time-dependent wake 

shape, time-dependent vortex shedding intervals and locations, hard-to-predict boundary 

layer transitions and laminar-to-turbulent flow transitions, and values of the drag 

coefficient which are much greater than unity 22"31. This was shown quite clearly in 

several tow tank studies of cylinders, plates and disks at low and medium Reynolds 

number22'26 and in parachute test drops18,31. The time-dependence of the drag coefficient 

may also arise from the geometry of the motion itself, as with motions that periodically 

return a body back into its own wake. As in the case of immersed pendulums, the body 



encounters a flow that is far from being at rest and is most likely turbulent. Finally, there 

are significant differences in drag time evolution between seemingly similar motions. 

Comparing the tow tank studies of uniformly accelerated cylinders   and of disk 

accelerating to terminal speed22, one finds profound differences in drag coefficient 

evolution that go beyond shape differences. The same can be said when comparing 

accelerating motion and decelerating motions. Here low-Reynolds number tow tank 

studies of decelerating cylinders and plates have shown wake vortices changing sizes, 

and detach laterally and away from the wake-generating body32. This contrasts with the 

wake of an accelerating cylinder, which adopts a potential flow pattern after the 

disappearance of the primary wake vortices32. The lack or aerodynamic similarity 

between these two motions is particularly evident in swiftly decelerating motions where 

bodies are stricken from the rear by previously-shed wake structures31, an event that is 

never encountered in accelerating motions. 

Given this complexity, many unsteady drag studies have borrowed from the idea 

that an accelerating object causes similar accelerations of portions of the surrounding 

fluid mass, which in effect change the effective inertia of the object. This idea suggests 

writing the drag force as the sum of the standard drag v2-term and of a so-called "added 

mass" term that is proportional to acceleration ' : 

FD = ±Ctr+pSv2 + KpV& (2) 

V is the volume of the co-accelerated air mass, which will be different from the that of the 

moving object. The constant Co'""* is the value of the drag coefficient when the body is 

travelling at constant velocity1. In conditions where incompressible and laminar flow 

prevail, the value of K can be shown to be constant, exclusively shape-dependent and 



obtained via potential flow theory17,33, 4. In contrast, the value of K as applied to various 

applications generating turbulent wakes has been shown to vary with time, object shape, 

size and speed, and even with trajectory. For example, Cochran, White and Macha18 

found K to be time-dependent in their study of fast-opening, highly-loaded parachutes 

dropped from a high ceiling. 

Equation (2) can be made to work correctly when application-specific constant 

values and/or time-dependent functions are replacing Co'eady and K. In another parachute 

study, Macha19 found that the simulation of highly porous, supersonic parachutes 

decelerating in the range of 20 to 40 g's could use constant values of K to accurately 

reproduce experimental data over several parachute types and speeds. Contrary to 

potential flow theory however, such values had to be adjusted according to the initial 

speed and terminal speed of the pay load under consideration. On the other hand, 

Sarpkaya and Garrison showed in their study of cylinders moving at constant acceleration 

that Co"aa> and K could be meaningfully replaced by functions of the instant 

displacement s(t) in order to give 

FD = \c^)pSvUK^)pV^ (3) 

with D being the cylinder diameter, and S and V being proportional to the cylinder's 

surface area and volume respectively27. These authors showed this formulation to be 

valid at Reynolds numbers of up to 5.2 x 105. 

Being that motion-specific has made unsteady drag theory an empirical science. 

In this paper we wish to show that, quite contrary to this expectation, some generalizing 

is possible in cases that can be related by Galilean transformations of reference frames. 

In particular, it will be shown that such transformations can relate the drag equation of 



specific accelerating motions to that of specific decelerating motions and vice-versa. To 

illustrate the concept, new specific drag formulas valid for discs accelerating to terminal 

speed in a static fluid are derived from empirical data and transformed into corresponding 

formulae applicable for downwind decelerations and upwind accelerations. It will also be 

shown that Galilean transformations can be used to search for an a priori unknown 

expression of the drag force, using a known one as obtained in another equivalent 

Galilean reference frame. In particular, this strategy will be used to derive a new formula 

describing the drag coefficient of decelerating bluff shapes in a static fluid, by using 

plausible assumptions on the motion of the same object accelerating downwind in another 

reference frame. Such a formula is validated via the comparison with detailed parachute 

test drop data. 

Galilean Relativity and Equivalence Classes for Unsteady Motions 

Galilean transformations relate the coordinates (x, y z, t), speed (v) and 

acceleration (a) of an object moving in one reference frame to the corresponding set of 

coordinates and variables of the same object seen from another reference frame moving 

at constant velocity vre/ (Figure 1). More specifically these transformations are 

formulated as follows: 

x'= x- vreft,        y'= y,        z'= z,        /' = /,        v'= v- vref,       a'= a (4) 

Galilean equivalence classes 

Going into different reference frames related by specific Galilean transformations 

permit to lump together motions that seems at first very different. Consider the motion 

depicted in figure la, namely that of an object increasing its speed from v, to v/in a static 

fluid while under a constant external force Fexl. Depending on the speed vre/of the 



alternate reference frame, such motion can be transformed into other motions involving 

speed gain, speed loss and even speed loss followed by speed gains. For example, figure 

lb shows the case of a reference frame characterized by vref > vf where the object looses 

speed in a fluid moving rearwards at -vrcf. Aerodynamically, nothing has changed since 

the speed of the object relative to the fluid remains the same. Both decelerating and 

accelerating motions appear, on the other hand, when v, < vre/ < vf: here the body first 

decelerates downwind to a full stop from an initial speed of v,-' = v,- vref, then reverses 

direction and accelerates upwind until it reaches its final value v, '= v/-vre/ 

The type of external force and trajectory define broad equivalence classes 

characterized by the same fluid dynamics relative to the moving body. Being Galilean- 

invariant classes, these would include both accelerated and decelerated motions within 

each class, depending on the value of vre/. Here we are interested into two specific 

classes, which are defined as follows: 

• Class 1: Acceleration along a straight line in a fluid at rest, under the influence of an 

constant external force; 

• Class 2: Deceleration along a straight line in a fluid at rest, under the influence of an 

constant external force. 

In both classes, the presence of a constant external force brings the body into a state of 

dynamical equilibrium with drag, to ultimately generate a constant-speed motion. An 

example of class-1 motion includes powered aircraft accelerating in static air, a motion 

that would be Galilean-equivalent to one involving a deceleration with, or acceleration 

into a head wind. On the other hand, class-2 examples would include a parachute 

decelerating in static air, a case that is Galilean-equivalent to that of a ground vehicle 



powered by a sail and accelerating downwind while being opposed by a constant external 

force such as friction. Other classes can be defined similarly, using other types 

acceleration profiles and/or external forces, such as the constant-acceleration motion 

27 studied by Sarpkaya and Garrison  . 

It is to be emphasized that using Galilean transformations may also be helpful in 

finding the best experimental conditions for the study of a particular motion. In contrast 

to accelerations for example, the physics of decelerations is more difficult to study in tow 

tank experiments because of the difficulty in establishing exactly the correct initial 

conditions in a tank's limited amount of space, particularly when the initial state includes 

high speeds and non-zero accelerations. On the other hand, test-dropping objects from 

aircraft can be carried out, buTagain for a limited set of initial conditions. Fortunately, 

being of class-2 type means that decelerated motions in static fluids can also be studied as 

accelerations in reference frames where the fluid is also moving, a perspective that may 

be easier to setup in tow-tank experiments. 

Drag coefficient transformation 

Considering the 1-dimensional equation of motion of an object subjected to a drag 

force and to a constant external force Fex,, 

ma=-12Cl)(t)Spv2 + Fw        (5a) 

and considering also the equation of the same object as measured from a moving 

reference frame, 

ma^-jC^nS'pv'2-^       (5b) 

one finds the following relation between the drag coefficient measured in each reference 

frames, after assuming Fext = F„,' and using equation (4): 



CDv'2 = CDv2 (6) 

This result means that the product CDv2 has the same value in all reference frames, i.e. is 

Galilean-invariant. On the other hand, because speed is not Galilean-invariant, the value 

of the drag coefficient wont be either, instead changing from frame-to-frame as 

CD =        \,2 (7) 

For example, in cases where v' is greater than v, equations (6) and (7) imply smaller 

values of the drag coefficient in moving reference frames. This observation also applies 

to the steady state value of the drag coefficient. Additionally, the corresponding terminal 

speed vr' would increase being related to CD
s,eady'through the well-known formula 

*      \l s*o/~*sleaify 

IF 
(8) 

pSC'jJ 

Acceleration-Deceleration Equivalence: Kinematics of 

Class-1 Bodies Moving with Respect to Static or Moving Fluid 

Using Galilean transformations permits to study a great number of accelerated or 

decelerated motions belonging to a given Galilean class. As example we discuss the 

basic, yet very instructive class-1 case of a disk accelerating from rest to its terminal 

velocity under the influence of an external force. Such a case was studied experimentally 

by Iversen and Balent22 using disks accelerating in water under the force of gravity via 

line tension. These tow tank experiments involved submerged disks being pulled from 

rest by a rope attached to weights falling outside the tank. The driving weights ranged 
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between 2 and lOlbs, disk diameters (D) between 1ft and 2ft, speeds between 0 to 4 

ft/sec, accelerations 0 to 4 ft/sec2, and Reynolds number reaching 1000. These authors 

found that the instant value of the drag coefficient (as defined by (1)) could be graphed as 

a sole function of the acceleration modulus S, a dimensionless ratio given by: 

S - ^ (9) 

Iversen and Balent showed that the beginning of the disks' fall was characterized by very 

large acceleration modulii, namely 5~ 10, to be followed by monotonically decreasing 

values as the disks reached terminal speed. CD was shown to converge towards its steady 

state value as «5 went to zero. Interestingly, they also showed how potential flow-inspired 

expressions like equation (2) could be justified at very large S. 

The correlation between CD and 6 as mapped by Iversen and Balent can be 

summarized by the formulae below, which we derived by curve-fitting their graphical 

data: 

C£a*(20-<?)046 0.3<S<10      (10a) 

cu,k ä c„eo*y. (4.67)*"'      0<S<0.3        (10b) 

Equations (10a) and (10b) were defined to have the same value and the same slope at 8 = 

0.3. This particular value of the acceleration modulus marks in this tank experiment a 

distinct but smooth transition between the high- and low-5 regimes. 

Iversen and Balent also discussed the limit 8 -» oo, which occurred at the onset of 

motion from the disk's initial state of rest. These authors argued that the fluid motion 

about the disk actually corresponds to potential flow before the formation of the annular 
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vortex at the disk's edge. For a short while, this would allow the use of equation (2) for 

the description of disk drag. Their data appear to confirm this trend, and the fact that at 

large acceleration modulii, the value of K decreases with <5and converges to a value close 

to potential flow theory. In the light of this observation, rewriting equation (2) in terms of 

the acceleration modulus would give: 

qf*(0= czr* + 2K 5       8» 10 (10c) 
\SD) 

It is interesting to note that the drag coefficient of objects uniformly accelerating 

from rest may also feature a one-to-one dependence on the acceleration modulus similar 

to (10c), as can be shown with the case of the accelerated cylinders studied by Sarpkaya 

and Garrison27. Here the motion allows for a simple relationship between S, a, v(t) and 

s(t), namely s(t)/D = (28)A . Using this result in (3) and calculating the ratio 2F/pSv2 

from (1) would yield a drag coefficient entirely dependent on 8, in a form similar to (10c) 

with C = C(S) and K = K(8). 

Except at the onset of the motion, Iversen and Balent reported little dependence of 

CD on Reynolds number, a fact explained by the wake of disks being fully turbulent at 

relatively low R« as compared to more streamlined shapes like cylinders. Perhaps this 

observation could help answer the unresolved issue of whether equations (lOa-c) are still 

valid when the disk is travelling at constant speed at t = 0 or, more interestingly, when 

a(0) *0. 

Medium-5, low-mass solution 

Simple kinematics can be derived analytically in the medium-6 and low-mass 

regime, by combining equation (10a) with the general equation of motion (5) while 

12 



assuming ma« Fexl. Here it is also assumed that v(0) is actually different from zero, 

but small enough to be relevant to the dynamics included in (10a) at high acceleration 

modulii. Under such assumptions, the resulting equation of motion is recast as 

a = 
IF.,8 0 54 

0.3<S<10    (11) 
DSp200Ab 

a result which shows acceleration increasing with acceleration modulus. Equation (11) 

can be exactly separated in terms of a(t) and v(t) and integrated, thus yielding: 

0(0 = 
IF.. 

DOMSp20OAb 

2.17 

-2.35 (13) 

v(/) = v(0)335 + 3.35]       2F"' 0.46o^on0-46 

2.17   N030 

(12) 
v |_ Zr4öS/?20u   j      j 

These forms are of course consistent with the empirical data of Iversen and Balent. 

Transformations to other class-1 cases 

Defining the acceleration modulus with respect to the speed of the fluid at infinity 

relative to the moving object, as in 5 = Da/vrelwlJ, makes this ratio explicitly invariant in 

all reference frames. Given that the fluid in the tank study of Iversen and Balent was at 

rest, this makes the acceleration modulus 8 in equations (9) and (10) a Galilean invariant 

as well. However, the specific form of the drag coefficient will change from frame to 

frame because it is not Galilean-invariant, as specified by equation (6). This also means 

that in other frames, the acceleration modulus is no longer the sole determinant of the 

value of CD (0- For example we consider the case of a disk moving in a reference frame 

moving at vre/> vr. Here v' = -vrf/and v'f= vT-vre/, which defines an upwind decelerating 
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motion. In the medium-5 regime the drag coefficient would be given by the following, as 

derived from (10a), (4) and (7): 

(v'+v f)
2 

CiWUCff-i-^F-       (14) 

where drag now depends on two independent variables, namely S' (or 8) and v'. On the 

other hand, looking at very high acceleration modulii where drag is either described by 

(2) or (10c), we get: 

COCO* 
Da' 

uv+vn 
(v'+v)3 

(v'K 
(15) 

It is interesting to note that when S is very large, the inertial term is much greater than 

the steady drag term, which in this case yields the following Galilean-covar/a«/ 

expression, 

C'oit) 
2KV( Da' 

(16) 
__ SD Uv')2 

that is, a form which has the same mathematical form in all reference frames but not 

necessarily the same value. 

Searching for a New Formulation of Bluff Body Drag for 

Decelerations in a Static Fluid 

Little is known about the mathematical expression of the drag force exerted on 

decelerating objects in a static fluid, except for equation (2) being applied to motions in 

inviscid fluids or in other very specific cases2,3"19. Here we use Galilean transformations 

to derive an unknown drag formula using as input another drag equation presumed to be 
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valid in other reference frames. More specifically, we discuss the case of the drag 

generated by a bluff body decelerating in static air as would, for example, inflated 

parachutes decelerating people, vehicle or cargo. 

Consider the case of a high-drag object decelerating in static air from an initial 

speed v, to a final speed vf, the latter being the teiminal speed vr generated by the 

external force Feil via equation (8). Consider also any reference frames that are co- 

moving at speed vref> v,. In such frames the fluid is moving rearward and the resulting 

Galilean transformation makes the object look as accelerating in a downwind direction, 

from an initial speed of v,' = v,- - v„/to a final speed of v7 ' = vr - vref. In other words, the 

object is observed drifting with the wind and accelerating to a constant final speed. In 

what follows we derive a formula for the drag coefficient based on considerations 

obtained in the reference frame of such wind drifters. The derivation is based on the 

following assumptions: 

•    Convergence to zero-drag coefficient at large times 

In situations where the external force is very small, wind drifters will settle in 

time into a constant speed that is near to windspeed. In other words, in the limit where 

F„, or vr« 0 , one has ma'«- (1/2) CD'pSv'2, which implies that the drag coefficient 

converges as C 'D -> 0 in a sufficiently long time as v' -» vr -vre/ * 0. Remarkably, this 

property should be valid regardless of shape and speed range. Of course the specific 

manner in which this convergence occurs is object- and speed-dependent. For example, 

cylinders with boundary layer transitions happening while accelerating to drift speed 

would converge in a manner that is different from that of disks which do not have such 

transitions. 
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•    No dependence on instant deceleration 

By definition, a class-2 motion involves the generation of wake sections produced at 

earlier times that travel at a faster speed than sections produced at later times. In extreme 

cases such as with a swiftly decelerating parachute, wakes generated at earlier times can 

collide with, and even deflate the parachu'e when the latter's initial speed is at least four 

times the values of the final speed31. For smaller speed differences, one could anticipate 

the wake sections created at earlier times to still interact with the more recently created 

sections and body, but more gently. Such an interaction could result in the overall wake 

being more homogeneous and less-time varying than wakes of accelerating objects (in a 

static fluid), that is, less dependent on the amount of deceleration sustained instantly by 

the body (i.e. a(t)). Moreover, it is conceivable that deceleration-independent wakes 

could be generated at high-Reynolds numbers where that are no boundary layer 

transitions; they could also be generated when there are no attached or separating large- 

scale fluid elements that could directly re-contact with the body. On the other hand, we 

would anticipate some dependence on the initial acceleration or deceleration. 

Thus the drag coefficient of such drifters can be estimated using these assumptions in 

concert with the fact that the product CD'v'2 is a Galilean invariant, by writing this 

product in terms of the wind speed relative to the drifter: 

CDv'2 = 5(v'-v^f     (17) 

B and /?'are constants to be evaluated later. Such an expression does indeed guarantee a 

drift speed equal to wind speed when Fexl is zero. Also, being exclusively speed- 

dependent means that the type of power-law embodied in (17) should actually apply 
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regardless to the actual magnitude of Fext. However, it will be shown that the exponent is 

actually dependent on the external force. 

Since B and /?' are Galilean-invariant, one has via (7) the following result in the 

reference frame where the fluid is at rest: 

CJt)=Bv(t) 0-2 (18) 

n particular, equation (18) should hold for both initial and final values of the drag 

fficient, namely CD
ini' = B v/7''2 and CD

s,ead}" = B vf'2. This provides the necessary 

information for the calculation of B and /?', and of the final form of the drag coefficient 

coe 

equation: 

CD«)=C? 
v(r) 

N/r-2 

v v, ; 
(19) 

where 

In *- Ü 

ß'=2 + 
vc- steady 

In 
'v^ 

(20) 

Wrj 

It is interesting to note that exponent /?' not only change with object shape, but 

also with the instant value of the drag coefficient at the beginning of the deceleration, as 

well as with the actual amount of the applied external force. On the other hand, reference 

to fluid density and viscosity is only made implicitly through Co""' and vT. Also clear is 

the fact that the acceleration modulus is not much of a factor here in contrast to 

accelerating objects from rest, as seen in the previous section. 
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Initial conditions 

A non-trivial feature of this model is that identical shapes may have different drag 

properties depending on the history of the motion prior to deceleration (i.e. t < l,) as well 

on the magnitude of Fexl. This is shown in Tables 1 and 2, which display the values of /?'- 

2 and of CD'n" for different initial conditions where the applied external force is constant 

at all times except at th where possibly Fext(t < tj *Fext(t > tj. The tables display the 

cases where the final speed is equal to zero (or Fext = 0), or when an object is travelling at 

zero-acceleration prior to deceleration with drag balanced by Fex,(t < tj (leading to CD"" 

= CD
s'eady), or when the object accelerates prior to /,■ with the drag profile of a disk (Eq. 

(10)) accelerating under a constant external force different from F^t > /,). Note that in 

the last case, writing the initial value of the acceleration modulus as 8ti_c in Tables 1 and 

2 reflects the fact that the value of the acceleration modulus Jjust before the beginning of 

the deceleration may not be the same just after, given that our model may not yield a 

continuous a(t) at t = /,-. 

Some estimates can be obtained by studying the example of a jet-powered vehicle 

towing a deceleration parachute, which is assumed to have the drag profile of a disk when 

accelerated. Consider first the case where parachute drag is balanced exactly by engine 

thrust prior to reducing engine power at t,. In this case a(t) = 0 and CD(t) = CD"" 
y at / < 

t, which, according to Tables 1 and 2, means that ß'-2 = 0 and CD
Mt = CD

Mady ~ 0.5. Here 

the drag force would vary as FD(t) oc v2. This would contrast with the case where, prior to 

:,, the aircraft provides unbalanced thrust causing an acceleration. As before, engine 

power would be reduced at /,. Assuming S,.c ~ 0.5 for example would give a maximum 

drag coefficient of CD""' = 2.55 according to Table 2. Being dependent on initial and final 
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speed, exponent ß'-2 would then be approximated by ß'-2 ~ 0.6, 1.39 and 5.33 for speed 

ratios of Vj/v/~ 5.0, 2.0 and 1.20 respectively. In other words, the drag force would van- 

as FD ocv26, V339 and v733 respectively. 

It is interesting to note that in the limit of very high v, Ay -ratios, the drag force 

would change as FD(t) ccv2. Also CD would be a constant but with a value different from 

CD
s,ead>, depending on the history of the motion. As discussed in more details the next 

section, the model may provide an explanation as to why the use of equation (2) with 

constant CDmay make sense in some turbulent wake deceleration applications after all. 

Finally, these examples show that depending on the history of the motion, deceleration 

may or may not depend on the acceleration modulus and if so, only indirectly. 

Freely decelerating body in a static fluid: 

An interesting solution can be obtained analytically when considering the case of 

an object decelerating in a static fluid without the application of the external force Fexl. 

As discussed before, one uses equations (5) and (19) together with ß' = 2 in order to get: 

ma=-jC£"S/>v2      (21) 

an equation that can be recast as follows, using (9): 

C""DSp 
6 =    \ (22) 

2m 

Equations (21) and (22) can be integrated exactly to yield: 

v(0 = v, 
v,pSCD 

1+ —^ 1 2 m 
(23) 

As expected the speed would converge to zero, here in a time scale defined by the ratio 

2m/v,pSCD'"". Equation (22) also shows that although CD does not depend on S, the 
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decelerating motion itself is ^dependent. Moreover, equation (22) implies that Jis 

constant and determined partly by the history of the motion prior to t, as is now shown. 

Assuming the object to have the profile of an accelerated disk in the range of 0 < S< 10 

before the beginning of deceleration, equation (22) and (23) would have the following 

form at t = t,\ 

S, = (20-Sl.c)
0Ab^£~ (24) 

2m 

v(0= v- 

046 v,pS(20 5lre) 
1+ ~ / 2m 

(25) 

Here again the difference between S,_c and 5, reflects the fact that the value of the 

acceleration modulus Jjust before the beginning of the deceleration may not be the same 

just after, given that aft) may not be continuous at / = f,-. Note also that transforming this 

solution into a frame characterized by vref = v, will give a solution applicable to a wind 

drifter reaching windspeed in the same time scale of2m/vipSCDm' ■ 

Comparison with Parachute Drop Data 

Like disks, parachutes are characterized by high drag. They also display no 

boundary layer transitions because of airflow separation taking place at the leading edge 

(i.e. skirt) of the canopy35. Therefore a validation of the ideas embodied in (19) and (20) 

can be carried out using the data of the parachute drops we have collected. In the 

following, the model is applied to parachute motion during the post-inflation phase, an 
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event characterized by the canopy decelerating to terminal speed while remaining fully 

opened. 

Experimental conditions and theoretical model 

The tests consisted in dropping parachutes at 1000 feet MSL (i.e. 500ft AGL in 

the St. Louis MO area) from an aircraft Hying at speeds ranging between 90 and 110 kias. 

The suspended loads consisted of 100 lbs steel tubs shaped as half-scale models of the 

U.S. Army A-22 container, with dimensions of 24in x 20in x 23in (figure 2). Each tub 

was instrumented with a load cell inserted on each of the two parachute risers (figure 3). 

and with an electronic barograph located inside the tub. These instruments sent data to an 

on-board data acquisition system recording at a rate of 500 Hz. All components were 

built using off-the-shelf components36-38. The parachutes tested were as follows: A 15ft- 

diameter, half-scale model of the USAF C-9 personnel emergency flat circular parachute, 

and a (30 year-old and very porous) 28 ft-diameter personnel emergency flat circular 

parachute used by the U.S. Navy. References 35, 39 and 40 give ample details on their 

construction, including the type of cloth used. These parachutes were found to have a 22 

ft/sec and 16.6 ft/sec terminal descent late while carrying payloads of lOO and 120 lbs 

respectively. The other parachutes tested included a one-of-a-kind U.S. Army-Natick 24ft 

cruciform parachute, built out of two 9.2ft-by-24.0ft panels sewn into a cross and 

attached to 20 suspension lines of length 19.7 ft. The cloth had a permeability of 30 to 45 

cfm and was made of 200 denier nylon; the suspension lines were made of MIL-C-7515 

Type V chord. Also tested were half-scale models of this U.S. Army cruciform parachute, 

built out of two 4.2ft-by-10.7ft panels and 20 suspension lines of length 12.2 ft and 

17.0ft. The cloth used was the same as for the full- scale article and the suspension lines 
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were of MIL-C-7515 Type I-A chord. The terminal speed of these cross chutes was 

measured at 17.8 ft/sec and 32 ft/sec while carrying payloads of 100 and 128 lbs 

respectively. 

The comparison of our model with the parachute riser force data is based on the 

drag force calculated from this equation of motion: 

ma = - 2 pSC"D 
icaJy 

(       \ P'-2 
V 

VV 
v2-pVchuIC,a+WcosO (26) 

dB sin 6 

■*-*-w       (27) 

Equation (27) accounts for the time-changing component of weight that is parallel to 

drag. Under our deployment conditions, the parachute-payload system always traveled 

along a parabolic-like trajectory, which however appeared linear at the level of a length 

scale defined by the parachute diameter and suspension line length. 

In addition to the new drag equation discussed previously, equation (26) includes 

a term representing the inertia of the air enclosed inside the parachute throughout the 

deceleration process. This term takes into account the fact that, while remaining at rest 

with respect to the canopy, this enclosed air makes the parachute look more like a filled 

solid than a hollow shell. Note that enclosed air has nothing to do with the air that is co- 

accelerated ahead of, or behind the parachute as discussed previously in relation to 

equation (2). In the proposed model, the effects of external co-accelerated air (or "added 

mass") would be represented by the \P~2 -term. For all zero-porosity and zero- 

permeability parachutes the volume of such enclosed air is equal to that of the inflated 

parachute. In a 20 ft-diameter circular parachute for example, the enclosed air would 

have a mass of about 4.8 slugs which near sea level would be comparable to the mass of 
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the 2001bs payload that is usually suspended under such a parachute. Understood as such, 

using (26) to simulate parachutes with vents, slots and other openings, or with porous 

fabric, would be more ambiguous given the difficulty of defining what exactly is 

"enclosed air". In these cases some of the air entering the parachute exits through the 

openings at a rate determined by parachute speed and by the surface area of the vents and 

slots. In other words, the amount of enclosed air which is at rest and remains at rest 

inside the parachute will be smaller but also much more difficult to calculate. On the 

other hand, an extreme case that can still be described accurately by (26) would be that of 

very high-porosity and/or -permeability parachutes, such as cruciform parachutes, where 

the amount of enclosed air and corresponding acceleration term are very small. 

Initial conditions 

As explained previously, our deceleration model depends on the initial values for 

the parachute's descent rate and drag coefficient. In the context of our test drops such 

numbers are obtained at the very end of the inflation phase. As discussed in reference 31, 

calculating the drag coefficient from test drop data is particularly difficult, given that the 

needed acceleration, instant opened surface area and velocity evolutions have to be 

measured independently and at a level of accuracy that is beyond the capabilities of our 

instrumentation package. Instead, we have used Ludtke's well-established simulation 

method to duplicate the time dependence of the parachute riser force, drag area and 

payload descent rate during, and at the end of inflation35,41. Ludtke's formalism is based 

the use of 

ma = - \pS{t)CD(t)v2 +■ WcosO     (28) 

together with 
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S(t)CD(t) = b/+b0      (29) 

where b0 corresponds to the parachute's drag area prior to inflation, i.e. b0 = S(0) CD(0). 

On the other hand, b, is expressed in terms of b0 and of the drag area at the end of 

inflation, namely as b, = [(S(l}nß)CD(tjnß) - b0)]/(tfß) 6. Test drops performed over the 

past decades have shown Ludtke's t6 -law to work very well with most inflating, 

unreefed and unslotted parachutes made of near-zero permeability cloth35. Established 

from the direct measurement of the ratio 2(ma-Wcos6)/pv2, this law takes into 

consideration all effects relevant to the unsteady aerodynamics affecting an inflating 

parachute, including co-accelerated air mass and the actual opening and spreading of the 

canopy. Like equation (26), equation (28) neglects the elastic response of the suspension 

lines and parachute cloth during inflation, which for the light payload weight being tested 

here, allows the full transmission of the drag force to the load measuring cells in a time 

scale much shorter than the inflation time. A comparison between Ludtke's model and 

the measured riser loading during inflation is shown in figures 4 through 7. 

The relationships between the variables measured in the test drops at the end of 

inflation (i.e. t = tj"ß) and the initial values needed in (19) and (20) can be written as 

CD'n" s CD 0/nß) and v, =v(tjnß). Their numerical values were obtained by 

.    directly comparing the riser load curves with the computer solutions of equations 

(27), (28) and (29), using the direct measurements of m, p, S(0) (from video), S(tJ"ß) 

(from video), Fdrag(t}
nß) (load cell), //(load cell) and CD

steady (terminal descent rate 

measurement); 

assuming an initial drag coefficient estimated at CD(0) ~ 1 because of the tub's near 

cubical shape; 
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tuning the values of CD'"" and v(0) for best fits of (28)-(29) to the overall measured 

drag force. 

In addition to CD'"", this procedure yielded v, as a product and allowed a subsequent 

numerical solution of (26)-(27) without any further parameter tuning or measurement. 

Figure 8 ohows the effects of changing me values of//, v0 and CoOj"11) S/, which 

demonstrates that such fitting is not unique. This problem is partly solved by comparing 

the calculated Co""' with Wolfs compilation of the world's data on the parachute opening 

shock factor Ck 
42. The latter is a dimensionless constant defined as C* = 2Fmax/pSßal 

vsnatch , with Fmax , ^snatch and Sflal corresponding to the maximum drag force sustained, the 

descent speed at the end of suspension line deployment and the parachute's total surface 

area respectively. Wolf showed that Ck scaled reasonably well over five orders of 

magnitude of the mass ratio p (SßaJ
L5/m, for a large number of parachute sizes, parachute 

types and deployment conditions. Given that CD
in" = 2FD(tJnß)/pSßalv(tJnß)2, one has: 

s~*tnit   _   s~* 

fFD(tf)^ ( v 
xnaich 

V(f?')) 
(30) 

The consistency check for CD'n" was thus calculated from (30), using Wolfs value of Q, 

the simulation values for Fmax, FD(tjnß) and v(tfß), the known aircraft speed for vsna!ch 

and an explicit measurement ofSßal. 

Comparison with experiment 

Figures 4 through 7 show the comparison between calculated and experimental 

riser force, during and after inflation. In agreement with most unreefed parachutes studies 

of the past   , the computer simulations show that the moment of maximum opening force 

occurs before the full spreading of the parachute. Discarding the brief variations of 
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measured drag during the early part of inflation caused by the elastic nature of the 

suspension lines and fabric flutter, the agreement between theory and experiment is good. 

In particular, our deceleration model gives a good estimate of the deceleration rates after 

the end of inflation (very high rates) and just prior to settling into terminal velocity (very 

low rates). According to (19) such rates should be proportional to /" . 

Figures 9 through 12 show the corresponding time evolution of the calculated 

drag coefficient. Figure 11 in particular shows the effect of changing the values of v0 and 

CD(i'r) Sj- Quite remarkably, the half-scale parachutes feature higher values and rates 

than the full-scale parachutes. This could be explained by the fact that, in our tests, the 

inflation time scale is much smaller for the half-scale than for the full-scale parachutes. 

Being deployed under similar aircraft speeds, drop altitudes and payload weights, this 

translates to higher opening forces for the smaller chutes than for the large ones. All this 

would therefore contribute to drag coefficients that would be larger for the former than 

for the latter. Table 3 shows the calculated values of CD
in" I CD

s'ead>', v,/vr and ß' for the 

four parachute tested. According to (ll>) the drag force would vary a^ 

FD oc vs 29, v5 9S, v2'2 and v200 for the half-scale cruciform parachute, half-scale C-9 

parachute, full-scale cruciform parachute and the full-scale Navy round parachute 

respectively. Finally, another point of interest is the minimum value of CD(0, which is 

smaller than CD
s'eady by about 20% to 30%. Such a dip appears to be present also in the 

post-inflation portion of the data collected by Strickland and Macha in their study of 

parachutes undergoing wake recontact31. The high rate of drag coefficient change, 
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together with such dip is consistent with the picture of the parachute being "pushed" by 

portions of its own wake that were produced at an earlier time. 

Most interestingly, the full-scale parachutes featuring CD(t) ~ CD
s'ead> points to the 

suitability of describing the drag force by the sum of a steady drag term and an added 

mass-like terms as in equation (2). Our model (i.e. equation (26)) would predict a value 

of* =7. In contrast, the drag force generated by the half-scale parachutes cannot be re- 

written this way. As far as very-low or very high permeability/porosity parachutes go, the 

use of equations (19) and (20) together with Wolfs opening shock factor data and 

equation (30) could allow some measure of prediction on the applicability of equation 

(2). 

Concluding Remarks 

The idea of using Galilean equivalence classes to study unsteady drag allows the 

grouping of many different types of motions which share the same aerodynamic 

properties. Perhaps the most interesting equivalence is the one that exists between 

decelerating parachutes and wind drifters. Good agreement was shown between test drop 

data and the drag calculated from our wind drifter-inspired model. However, more 

experiments, in particular tow tank experiments, are needed to validate completely some 

of the assumptions made. In particular, a careful investigation is needed to verify the 

presumed independence on the instant value of the deceleration (i.e. aft)) that lead to the 

derivation of (19). Moreover, the dependence on the external force needs to be clarified 

as well. 
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Table 1. 

Values of exponent ß'-2 for different initial conditions where Fext(t < tj *Ftxt(t > tj. 

I   Fal = 0,vr = 0 
i      t<t<t. 

a(t <ti) = 0 
v(t < t$ = vT 

Coo <tj = c,r* 

Accelerating 
disk, t < /, 
0 < 8 < 0.3 

<y,°.6/ln4.67 

ln(v, /vr) 

Accelerating 
disk, t < ti 
0.3 <£< 10.0 

In 
((2<K_.) 046N 

si steady 

In(v,/vr) 

Accelerating 
disk, t < t, 
J » 10.0 

In 
'     ( 2KS,_, V 

1 + steady \SDC% 

ln(v,/vr) 
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Table 2. 

Values of CD""' for different initial conditions, where Fex,(t < tt) *Fext(t > tj. 

Fen   =  0,V7. =  0 a(t <tt) = 0 
v(t <tj)=VT 

CD(t <tj = Co""1* 

Accelerating 
disk, t < t, 
0 < S < 0.3 

Accelerating 
disk, t < t, 
0.3 <8< 10.0 

Accelerating      j 
disk, t < t, 
£»10.0 

si mil /-~* steady X       u'5 

C^'4.67"- (20- ^.,)°46 2*^,.-, 

SD 
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Table 3. 

Calculated deceleration properties of the parachutes studied in the test drops. 

Input data displayed in figures 4 through 7. 

Half-scale cross 
D= 10.7 ft 

Half-scale C-9 
D= 15.0 ft 

Full-scale cross 
D = 24.0 ft 

Full-scale Navy 
D = 28.0 ft ' 

f-   mil //->  steady 3.25 3.12 1.06 «1.00 

v/vT 1.43 1.33 1.63 1.52 & 1.41 

P' 5.29 5.98 2.12 1.95 & 2.13 
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Figure Captions 

Fisure 1. Accelerating object as viewed from different Galilean reference frames. 

Fisure 2. Top view of the A-22 container payload model, with packed parachute on the 

top tray. The data acquisition system is visible through the window cut in the carboard. 

Ficure 3. Close-up view of the A-22 payload, parachute riser and integrated load cell. 

Figure 4. Total parachute riser force, per unit payload weight, versus time (sec). Half- 

scale U.S. .Army cruciform parachute. The smooth, continuous line corresponds to the 

calculated force using equation (26) through (29). The arrow marks the end of inflation 

and the beginning of the post-inflation deceleration phase. 

Figure 5. Total parachute riser force, per unit payload weight, versus time (sec). Half- 

scale USAF C-9 personnel emergency flat circular parachute. The smooth, continuous 

line corresponds to the calculated force using equation (26) through (29). The arrow 

marks the end of inflation and the beginning of the post-inflation deceleration phase. 
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Fieure 6. Total parachute riser force, per unit payload weight, versus time (sec). Full- 

scale U.S. Navy personnel emergency flat circular parachute. The smooth, continuous 

lines correspond to the calculated force using equation (26) through (29). The calculated 

curve with the highest load corresponds to the 90ft/sec, 625 ft2 case. The arrow marks the 

end of inflation and the beginning of the post-inflation deceleration phase. 

Figure 7. Total parachute riser force, per unit payload weight, versus time (sec). Full- 

scale U.S. Army cruciform parachute. The smooth, continuous line corresponds to the 

calculated force using equation (26) through (29). The arrow marks the end of inflation 

and the beginning of the post-inflation deceleration phase. 

Figure 8. Total parachute riser force, per unit payload weight, versus time (sec) - full- 

scale U.S. Army cruciform parachute. The smooth, continuous lines correspond to the 

calculated force using equation (26) through (29). The lines feature the same input values 

as in figure 7, except for tf, v0 and CD Sf which are: 1.5 sec, 95 fps, 325 ft2 (grey line); 

1.7 sec, 120 fps, 325 ft2 (black line); 1.5 sec, 95 fps, 450 ft2 (diamonds). The 

discontinuity on the right-hand-side of the calculated curves corresponds to the end of 

inflation and the beginning of the post-inflation deceleration phase. 

Figure 9. Evolution of the calculated drag coefficient versus time (sec) during the post- 

inflation deceleration phase. Half-scale U.S. Army cruciform parachute. Same input 

parameters as figure 4. 
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Figure 10. Evolution of the calculated drag coefficient versus time (sec) during the post- 

inflation deceleration phase. Half-scale USAF C-9 personnel emergency flat circular 

parachute. Same input parameters as figure 5. 

Figure 11. Evolution of the calculated drag coefficient versus time (sec) during the post- 

inflation deceleration phase. Full-scale U.S. Navy personnel emergency flat circular 

parachute. Same input parameters as figure 6, with the upwards-pointing curve 

corresponding to the 90ft/sec, 625 ft2 case. 

Figure 12. Evolution of the calculated drag coefficient versus time (sec) during the post- 

inflation deceleration phase. Full-scale U.S. Army cruciform parachute. Same input 

parameters as figure 7. 
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Figure 1 

VrEf> Vf 

(a) (b) 

40 



Figure 2 
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Figure 3. 
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APPENDIX 3. 

TIME PLOTS OF THE MEASURED RISER LOADING 
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Figure 3. The many stages of parachute deployment and inflation. Steps a and b: bag and 
main chute deployment. Steps c through c: parachute unfolding and early pressurization. 
Steps/through h: late inflation and canopy spreading. Figure extracted from reference 
10. 
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Figure 6. Slider design, which includes 
four corner grommets and vent hole at center. 
The fabric filling is shown in red. 

01"*, 
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Figure 7. Crown reefing for a cruciform 
parachute. The design shows eight 
reefing rings (in red), one reefing line (dotted line) 
and one cutter (green arrow). 
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