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I. INTRODUCTION AND SUMMARY 

As recently as 1991, the Former Soviet Union (FSU) reportedly stockpiled 

weapons with bacterial and viral payloads that cause anthrax, pneumonic plague, 

glanders, smallpox, Marburg hemorrhagic fever and other diseases. The end of the Cold 

War and the 1992 Russian ban on all biological weapon activity, however, lend credence 

to Russian claims regarding the complete destruction of FSU biological weapon 

stockpiles. Unfortunately, the immensity of the FSU biological warfare (BW) program 

and the corresponding potential for international proliferation of BW capabilities remain 

troubling realities.2 

Upwards of eight countries may now have, or may be pursuing, biological 

weapons of mass destruction (WMD).3 Iraq's relentless pursuit of biological weapons 

during the 1980s and 1990s4 is a clear signal that future adversaries of the U.S. may also 

be willing to bear great costs and risks in acquiring and maintaining BW capabilities. 

Moreover, since biological weapons are probably already in arsenals of totalitarian 

regimes, the U.S. is forced to deal with both BW and state-sponsored bioterrorism 

threats. Domestic bioterrorism issues are also receiving considerable attention at various 

levels of government. 

Preventing, treating, and managing mass casualties are key activities of military 

and civilian health care providers in response to either offensive BW operations or 

bioterrorist attacks.5'6 These medical countermeasures will be most effective when the 

disseminated disease-causing agents and the initially exposed people are rapidly 

identified. If neither the biological agents nor the exposed individuals are known, there 

may be no opportunities for preventative or prophylactic measures; health care providers 

1998 Congressional Hearings on Intelligence and Security, Joint Economic Committee of the United 
States Congress, Terrorist and Intelligence Operations: Potential Impact on the U.S. Economy, 
Statement by Dr. Kenneth Alibek, May 20, 1998. 
Office of the Secretary of Defense, Proliferation: Threat and Response, November 1997, p. 46. 
Concerns about proliferation span the spectrum from sharing biological warfare expertise through selling 
biological weapon hardware. 
Proliferation: Threat and Response, pp. 5, 9, 16, 25, 30, 34, 38, and 42. 
1998 Counterproliferation Program Review Committee Report to Congress, Report on Activities and 
Programs for Countering Proliferation and NBC Terrorism, Figure 3.2, pp. 3-12. 
U.S. Army Medical Research Institute of Infectious Diseases, Medical Management of Biological 
Casualties, Handbook, Third Edition, July 1998. 
Arnold F. Kaufmann, Martin I. Meltzer, and George P. Schmid, The Economic Impact of a Bioterrorist 
Attack: Are Prevention and Postattack Intervention Programs Justifiable?, Emerging Infectious 
Diseases, Vol. 3, No.2, April-June 1997. 



must then "catch up" with the disease as it unfolds. This latter course of action is 

perilous, especially in the case of a highly contagious disease like smallpox. By the time 

a symptomatic individual seeks medical attention and the contagious disease is accurately 

diagnosed, he or she might have already infected many other individuals and an epidemic 

could be well under way.7 

A weapon or terrorist device containing the causal agent of a contagious and 

incurable disease represents a double-edged sword. The primary offensive advantage is 

that just one initial infection could lead to tens or even hundreds of casualties, including a 

significant number of health care providers. On the other hand, the main disadvantage of 

such a weapon or device is the risk that it might backfire on the attacker or may even 

initiate a pandemic with widespread, unintended consequences. This disadvantage is 

undoubtedly one reason why FSU biological weapon doctrine emphasized the following 

effect-target pairs: a) lethal diseases and long-range strategic targets at great distances 

from the FSU, and b) incapacitating diseases and medium-range theater targets well 

beyond the front lines.8 

The present study describes an approach for quantitatively analyzing the spread of 

a contagious disease that could be initiated by either the military employment of a 

biological weapon or an act of bioterrorism. Of particular interest here are time histories 

of four cohorts: 1) Susceptible individuals, 2) Exposed and infected (incubating) 

individuals, 3) Infectious (contagious) individuals, and 4) Removed (alive and 

noncontagious, or dead) individuals. The objective SEIR curves characterize health care 

and mortuary service needs as functions of time for a known disease, for given initial 

conditions, and for an assumed time-varying rate of disease transmission. 

Disease characteristics such as mean values and standard deviations of both the 

incubation period and the period from infection until removal comprise the input for the 

SEIR approach under consideration. Beginning numbers of individuals for all four 

cohorts are the initial conditions that must also be specified as input. Perhaps most 

importantly, the present approach calls for a time-varying rate of disease transmission to 

be derived from actual epidemic data. 

Within the SEIR framework, new and "successful" exposures entail both an 

increase in the size of the exposed cohort and an offsetting decrease in the size of the 

7 Potomac Institute for Policy Studies, Seminar on Emerging Threats of Biological Terrorism: Recent 
Developments, Proceedings Report, PIPS-98-3, 16 June 1998, p. 16. 
Terrorist and Intelligence Operations: Potential Impact on the U.S. Economy. 



susceptible cohort. Newly exposed and infected individuals stay in the exposed cohort 

throughout the average incubation period, after which they immediately enter the 

infectious cohort. During their dwell time in the infectious cohort, symptomatic 

individuals expose and infect susceptible individuals in accordance with epidemiological 

circumstances and disease characteristics. The SEER, sequence finally comes to an end 

for an individual when he or she leaves the infectious cohort and enters the removed 

cohort, wherein each member is either alive and immune, or dead and no longer a source 

of infection. 

Certain epidemiological circumstances surround any outbreak of a disease and 

these (along with disease characteristics) virtually determine the rate at which the disease 

is transmitted from person to person. These circumstances encompass factors such as 

physical profiles of the susceptible cohort, frequency and types of possible contacts 

between infectious and susceptible individuals, prevailing health care practices, health 

care system capacity, and disease awareness levels. To be sure, the epidemiological 

circumstances surrounding a recorded outbreak are unlikely to be fully reproduced in any 

future outbreak, but an assumption of similarity provides a logical basis for predictions of 

BW or bioterrorism casualties. 

Epidemic models come in many shapes and sizes: empirical, semi-empirical, 

linear, nonlinear, deterministic, stochastic, spatial, temporal, continuous, discrete, et 

cetera.9 This paper adapts and extends a nonlinear, deterministic, discrete-time model 

that was developed for analyses of measles in human populations, as well as foot and 

mouth disease among cattle herds.10 This SEER algorithm with a time-varying disease 

transmission rate is a flexible and powerful tool for understanding disease dynamics, 

especially when disease characteristics and the driving source function can be derived 

from observations. It is the dynamics of a contagious disease, as opposed to its spatial or 

geographical distribution, that receives attention herein. 

The number of new infections per unit time drives the aforementioned SEER 

model. In general, dates of new infections in an actual epidemic are not observable in the 

same sense as dates of death, or even symptom onset dates. The former dates usually 

must be inferred from the latter ones. But the date of a new infection is related to a date 

9 Denis Mollison (Ed.), Epidemic Models: Their Structure and Relation to Data (Cambridge University 
Press, Publications of the Newton Institute, 1995), pp. 17-33. Part I of this book puts forward a 
conceptual framework for epidemic models and describes several fundamental methodological issues. 

10 D. T. Haydon, M. E. J. Woolhouse, and R. P. Kitching, An analysis of foot-and-mouth-disease epidemics 
in the UK, IMA Journal of Mathematics Applied in Medicine & Biology, Vol. 14, 1997, pp. 1-9. 



of death or to a symptom onset date through a random variable: respectively, the period 

from the new infection until death, or just the period of incubation. One way of inferring 

new infection dates is simply to use an average value of the appropriate random variable, 

and this path was followed by Haydon, Woolhouse, and Kitching. In the present study, 

average new infections per unit time are derived from epidemiological data by applying 

the Monte Carlo method. 

Comprehensive epidemiological information is now available on the 1994-1996 

African outbreaks of Ebola hemorrhagic fever (EHF).12 In particular, the 1995 EHF 

outbreak in Kikwit, Democratic Republic of the Congo,13 began with one initial infection 

(the "index" case) and ultimately involved 315 cases, including 255 fatalities. Two series 

of epidemiological data for this Kikwit EHF outbreak are excellent vehicles to 

demonstrate the potential of a semi-empirical approach. The Monte Carlo method is thus 

applied to daily fatality data and to daily symptom onset data. Next, two differing sets of 

Monte Carlo calculations are reconciled and, as a consequence, the results for average 

new infections per unit time reflect both deaths and recoveries. These daily infection 

results are, in turn, used with the Haydon-Woolhouse-Kitching SEIR algorithm to 

evaluate cohort time histories and the time-varying rate of disease transmission. 

With a semi-empirical time-varying rate of disease transmission in hand, the 

Haydon-Woolhouse-Kitching algorithm can be revisited to address "what-if" questions. 

For instance, if a future offensive BW operation or bioterrorist attack infected ten people 

with the Ebola virus, and if these ten infections were surrounded by epidemiological 

circumstances like those of the 1995 EHF outbreak in Kikwit, what would happen? How 

many people would be infected as a function of time? How many people would become 

ill as a function of time? What would be the total number of fatalities? 

In essence, a key analytical objective of the present study is to forge new and 

meaningful links between deterministic "mean-field" epidemic models and inherently 

random outbreak data (symptom onset dates, for example, or dates of death). Another 

important analytical objective is to explore the predictive value of these links. 

11 Ilya M. Sobol', A Primer for the Monte Carlo Method (CRC Press, Inc., 1994), pp. 40-47. 
12 See the special 300-page supplement (Volume 179, Supplement 1) to the Journal of Infectious Diseases 

(JID) for February 1999. 
13 Ali S. Khan, F. Kweteminga Tshioko, David L. Heymann et al, The Reemergence of Ebola Hemorrhagic 

Fever, Democratic Republic of the Congo, 1995, JID, Vol. 179 (Supplement 1), pp. S76-S86. 
14 Epidemiological circumstances surrounding the 1995 EHF outbreak in Kikwit are characterized or 

represented by this semi-empirical time-varying rate of disease transmission. These circumstances are 
described in the preceding reference and they are reviewed in the main body of this paper. 



The main body of this paper covers the analytical framework and input, a 

requisite transitional investigation, and output. With regard to framework and input, the 

author examines the SEIR algorithm and reviews epidemiological aspects of the Kikwit 

EHF outbreak. The next items for discussion are Monte Carlo calculations and the 

derivation of average new infections per unit time. In terms of output, there are both 

retrospective and predictive SEIR results. And finally, observations on principal findings 

and unresolved issues are presented. 

II.       THE SEIR FRAMEWORK AND AN EHF EPIDEMIC 

A.        Haydon-Woolhouse-Kitching SEIR Algorithm 

In analyzing the dynamics of foot and mouth disease among cattle herds in the 

United Kingdom, the investigators (Haydon, Woolhouse, and Kitching) introduced a set 

of four finite-difference equations.15 These equations relate the susceptible (S), exposed 

(E), infectious (I), and removed (R) cohorts and they also determine time dependencies 

through a time-varying disease transmission rate (£). For a single time step At and an 

arbitrary number n of time steps, the equations can be written as follows: 

(1) S[n] = S[n-l]-P[n-l]xAt, 

(2) E[n] = E[n-l] + (P[n-l]-P[n-aa -l])xAt, 

(3) I[n] = I[n-l] + (P[n-oa-l]-P[n-Ca-l])xAt, 

(4) R[n] = R[n-l] + P[n-Ca-l]xAt 

and 

(5) P[n] = 5[n]xS[n]xI[n]. 

Equations (2), (3), and (4) contain the parameters oa and ^a which are, 

respectively, the average dwell time in the exposed cohort (or average incubation period) 

and the average dwell time in both exposed and infectious cohorts (or average period 

from infection to removal).16 In addition, this algorithm also invokes the assumption of a 

time-independent total population, No: 

(6)    NQ = S[n] + E[n] + I[n] + R[n]. 

1 An analysis of foot-and-mouth-disease epidemics in the UK, p.4. 
16 Haydon, Woolhouse, and Kitching chose to use the sum of aa and va instead of £,, where va is the average 

dwell time in the infectious cohort. These quantities must be expressed as integral multiples of the time 
step to implement the algorithm. 



The function P connects the SEIR cohorts and it deserves special attention. 

Generally speaking, since P represents a nonlinearity, the algorithm's results for one set 

of initial conditions cannot be scaled in a linear fashion to obtain valid results for other 

initial conditions. Moreover, there are three distinct interpretations of the function P. A 

close look at equations (1) and (2) reveals that P[n-l]xAt is the number of new infections 

at time step n (or, in other words, the number of individuals that leave the susceptible 

cohort and enter the exposed cohort at time step n). And similarly, P[n-sa -l]xAt is the 

number of individuals that leave the exposed cohort and enter the infectious cohort at 

time step n, while P[n-£a -ljxAt is the number of individuals that leave the infectious 

cohort and enter the removed cohort at time step n. 

Connections between the function P and the four cohorts suggest the types of 

epidemiological information that could be employed to implement the algorithm. Dates 

of entry for the removed cohort comprise the epidemiological data that are most likely to 

be available. Occasionally, entry dates for the infectious cohort (or, more accurately, 

symptom onset dates) are reportable characteristics of an outbreak or epidemic. But new 

infection dates (i.e., entry dates for the exposed cohort) tend to be either unknown or very 

uncertain epidemiological data. 

By analogy with chemical reaction kinetics18, mathematical epidemiologists often 

assume that contacts between susceptible and infectious individuals are random and that 

the possible number of such contacts is proportional to the product of S and I. This 

assumption, the previous observation concerning P[n-l]xAt, and equation (5) lead to the 

interpretation that £[n-l]xAt is the fraction of all possible contacts between susceptible 

and infectious individuals at time step n-1 that becomes infected at time step n. In the 

same vein, when P[n-l]xAt is divided by I[n-1], this ratio becomes the number of new 

infections at time step n per infectious individual at time step n-1. 

Haydon, Woolhouse, and Kitching acquired data on the destruction of diseased 

cattle herds and constructed an empirical time history of the removed cohort.    To 

' An individual in the context of this SEIR algorithm is an epidemiological unit, which could be one 
person, one animal, one plant or even a collection thereof. In the paper by Haydon, Woolhouse, and 
Kitching, the epidemiological unit is the herd of cattle on a single farm. 

1 Epidemic Models: Their Structure and Relation to Data, p. 85. Contacts between individuals are likened 
to molecular collisions, but the contacts of interest may be either direct or indirect. Interesting contacts 
can involve the transfer of contagia from infectious to susceptible individuals, and transfer mechanisms 
include intimate physical interactions, handling of biohazardous materials, handshakes, face-to-face 
conversations and droplet projections, inhalation of an infectious aerosol, etc. 



implement their algorithm, they took four separate steps: a) estimate the average 

incubation and infectious periods; b) derive P from equation (4); c) solve equations (1), 

(2), and (3) to determine the other cohort time histories; and d) obtain the time-varying 

rate of disease transmission from equation (2). This retrospective analysis provided new 

information on the temporal nature of a virulent epidemic, roles of primary and secondary 

infections, and the effectiveness of disease control measures. 

A self-consistency problem arises, however, when the algorithm is implemented 

in the above manner. More specifically, because the foregoing implementation involves 

the direct utilization of raw epidemiological data (which reflect various incubation and 

infectious periods), the algorithm's input is inconsistent with its output (which can only 

describe the average progression of an epidemic). This input-output inconsistency will 

occur whenever actual or observed removal times are uniformly shifted by C,a time steps 

to define the new infection rate. 

To achieve a self-consistent implementation of the algorithm, an average time 

history for the new infection rate must be extracted from both epidemiological data and 

realistic variations in either infection-to-removal times or symptom onset times, as 

appropriate. A transitional investigation is thus necessary to connect epidemiological 

data and its inherent randomness with a deterministic epidemic model. This matter will 

be carefully addressed after a discussion of the 1995 EHF outbreak in equatorial Africa. 

B.        EHF Epidemiological Data 

The 1995 EHF outbreak in the Bandundu region of the Democratic Republic of 

the Congo (DRC) extended from early January until the 16th of July.20 Both of the major 

health care facilities in this southern DRC region, the Kikwit II Maternity and Kikwit 

General Hospitals, were engulfed by EHF patients, and 80 health care workers 

succumbed to the disease. By the beginning of May 1995, more than 50 southern DRC 

residents had died of EHF. Even though the very first EHF outbreak took place in the 

northern DRC and it claimed 280 lives in 1976, not until early May did southern DRC 

health officials come to believe that EHF (rather than epidemic dysentery) was again the 

cause of numerous deaths. 

19 The same inconsistency would occur if observed symptom onset times were uniformly shifted by aa time 
steps to arrive at P[n-1]. 

20 Descriptive information on this EHF outbreak in the DRC is from The Reemergence ofEbola 
Hemorrhagic Fever, Democratic Republic of the Congo, 1995.   The outbreak happened in and around 
the city of Kikwit, which then encompassed a population of about 200,000. 



The Centers for Disease Control (CDC) in the U.S. received specimens on the 9th 

of May; subsequent test results showed that the Ebola virus (Zaire subtype) was indeed 

the causative agent for the disease in 14 patients. An international commission was 

quickly established for the management of this EHF outbreak. The commission's 

activities encompassed, among other things, training sessions for numerous health care 

workers and physicians on the 12th and 14th of May, as well as the provision of protective 

clothing and equipment. 

EHF signs and symptoms are diverse. Initially, the infected individual may 

experience an abrupt onset of fever, a severe frontal headache, malaise, loss of appetite, 

joint and diffuse muscle pain, loss of strength, and perhaps a slow heartbeat or 

conjunctival inflammation. Intermediate symptoms might be non-bloody or bloody 

diarrhea, abdominal pain, pharyngitis, difficulty in breathing, severe nausea, and 

vomiting. In the final stage of the disease, there could be a maculopapular rash and 

uncontrolled bleeding, and the afflicted individual may then go into shock and die. 

^ Case records for 310 diseased individuals showed that 53 percent were female, 

the median age was 37 years (with a range from two months to 71 years), and the average 

age of survivors (-32.8 years) was about five years younger than that of nonsurvivors 

(-38.5 years). A review of 224 case records also yielded a mean period of 9.6 days from 

symptom onset to death. 

Reliable dates of death for 237 EHF cases and approximate dates of symptom 

onset for 291 EHF cases are displayed in Figures II-1 and II-2, respectively. The first 

date of death in Figure II-1 is the 2nd of March; the first date of EHF symptom onset in 

Figure II-2 is the 6th of March. Missing, incomplete, and inaccurate case records 

prevented researchers from constructing complete sets of epidemiological data; in other 

words, Figure II-l does not account for all 255 EHF deaths and Figure II-2 doesn't 

encompass all 315 EHF cases. Another void occurs because published accounts of the 

Kikwit EHF outbreak do not identify corresponding dates of symptom onset and death. 

The 1976 EHF outbreak in the DRC lasted about two months and involved 

extensive nosocomial transmission of the disease (i.e., transmission taking place in a 

hospital) primarily because needles and syringes were reused without sterilization. 

Eighteen years later, the second EHF outbreak in the DRC lasted six months and 

involved several waves of nosocomial transmission, albeit there was little or no reuse of 

unsterile needles or syringes. Epidemiological findings (new symptomatic cases after the 

12th of May or after day 90 in Figure II-2) suggest that the 1995 outbreak was finally 



brought under control when health care providers adhered to strict barrier nursing 

procedures and when they routinely utilized protective clothing and equipment. 

OBSERVED   FATALITY  DISTRIBUTION 
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Figure II-l. Ebola Hemorrhagic Fever Fatalities in the Bandundu Region of the Democratic Republic 
of the Congo from 2 March through 16 July 1995. 
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Figure II-2. Onset of Ebola Hemorrhagic Fever Symptoms During the 1995 Outbreak in the 
Democratic Republic of the Congo. 
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Epidemiological evidence from the 1995 outbreak strongly indicates that the 

disease was transmitted to susceptible individuals through direct person-to-person 

contacts, the projection of infectious droplets directly onto mucous membranes, and other 

contacts with infectious body fluids. This evidence also indicates that the disease is 

rarely transmitted from one person to another via an infectious aerosol, especially at 

distances of a few meters or more. Lastly, burial rituals and direct contacts with cadavers 

may have infected some susceptible individuals. 

The international public health community was surprised by the 1995 EHF 

outbreak in Kikwit.21 This community now recognizes that disease-detection capabilities, 

disease-response systems, and basic public health practices must all be improved in 

developing countries. Additionally, it recognizes the need for better international 

preparedness and the importance of accessible protective equipment and supplies. 

III.      AVERAGE NEW INFECTIONS PER UNIT TIME 

The basic problem at hand is to backtrack from fatality or symptom onset 

observations and to derive average new infections per unit time. At the core of this 

problem are random variations of the infection-to-removal time and the incubation 

period. One convenient way to numerically simulate random variables is the Monte 

Carlo method, and a straightforward computerized application of the method generates a 

temporal profile of new infections for each statistical trial. Furthermore, numerous 

Monte Carlo trials yield a statistical database, which is amenable to analysis using the 

standard tools of descriptive statistics. 

There are four principal steps in the computable algorithm for a single Monte 

Carlo trial. First, randomly select and then round off an infection-to-removal time (or 

incubation period) for each and every fatality (or case of symptom onset). Second, 

backtrack in time to identify when all infections occurred. Third, compile the total score 

for each time step. And fourth, save the calculated temporal profile of new infections for 

subsequent manipulation. In the case of the 1995 EHF outbreak in Kikwit, two sets of 

complementary epidemiological data are available (Figures II-1 and II-2); consequently, 

the four-step algorithm must be executed twice. 

21 David L. Heymann, Deo Barakamfitiye, Mark Szczeniowski et al, Ebola Hemorrhagic Fever: Lessons 
from Kikwit, Democratic Republic of the Congo, JID, Vol. 179 (Supplement 1), pp. S283-S286. 

10 



Monte Carlo trials for symptom onset data and a separate database of trials for 

fatality data are resources for the construction of three average temporal profiles of new 

infections. One average temporal profile (from symptom onset data) encompasses 

survivors and nonsurvivors, another average profile (from fatality data) deals only with 

nonsurvivors, and the corresponding difference profile characterizes new infections just 

among survivors. Because dates of death usually are more reliable than symptom onset 

dates, there is a reconciliation of average new infections per unit time for nonsurvivors 

with average new infections per unit time just for survivors, and it produces a composite 

temporal distribution of all new infections. 

All computations for this paper were performed on a personal computer using 

Mathematica software.22 Mathematica notebooks with numerical procedures and results 

are obtainable from the author. 

A.        Characterization of the Random Variables 

The incubation period for EHF depends on how the individual is infected with the 

Ebola virus. A needle stick or other mishap during a surgical procedure on an infectious 

patient could infect a health care professional who, in turn, would exhibit symptoms in 

two or three days. Less direct modes of infection may produce symptoms in several days 

or even a few weeks. A mean incubation period of nine days and a standard deviation of 

two days are assumed for the 1995 EHF outbreak in Kikwit. 

As indicated previously, fatality and symptom onset data from the Kikwit 

outbreak show that the mean time from symptom onset until death was about 10 (or, 

more precisely, 9.6) days. The mean infection-to-removal time is therefore estimated to 

be 19 days, with an assumed standard deviation of three days. 

The incubation period, a, and the infection-to-removal time, £,, are random 

variables without well-defined probability distributions. To examine influences of 

different distributional assumptions, the joint probability distribution of a and C, is defined 

to be either the product of independent normal distributions or the product of independent 

Weibull and lognormal distributions.23 Normal distributions are selected because of their 

prevalence, but Weibull and lognormal distributions are often employed in reliability and 

22 Stephen Wolfram, The Mathematica Book, 3rd ed., (Wolfram Media/Cambridge University Press, 1996). 
23 Lennart Rade and Bertil Westergren, BETA Mathematics Handbook, 2nd ed., (CRC Press, 1990), pp. 375 

and 395. 
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hazard models.24   Plots of the alternative distributions for the two random variables 

appear in Figures III-1 and III-2. 

TWO INCUBATION PERIOD PDFs 

Normal 

Weibull 

0 2 4 6 8        10       12 
Incubation Period In Days 

Figure III-l.   Normal and Weibull Probability Density Functions (PDFs) for the Random 
Variable a (Incubation Period). 

0.14 
TWO INFECTION- TO- RECOUAL PERIOD PEFs 
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Infection- To- Removal Period In Days 

Figure III-2.   Normal and Lognormal Probability Density Functions (PDFs) for the Random 
Variable C, (Infection-to-Removal Period). 

24 Paul A. Tobias and David C. Trindade, Applied Reliability (Van Nostrand Reinhold Company, 1986). 
The Weibull distribution tends to be most applicable when the first of many flaws (immune system 
limitations) produces a failure (symptom onset), whereas the lognormal distribution is often applicable 
when a degradation process (illness) leads to a failure (death). 

12 



B.        Monte Carlo Results 

The epidemiological data sets in Figures II-1 and II-2, along with the PDFs in 

Figures III-1 and III-2, constitute the input for Monte Carlo calculations. In accordance 

with the previous description of the four-step algorithm, the computer completes a Monte 

Carlo trial when the number of new infections at every time step is determined for each 

set of input data. One time series of observations and a total of K Monte Carlo trials 

clearly yield a sample of K separate values for the number of new infections at each time 

step, and a sample mean differs from the true mean by some amount e. Defining E as the 

true standard deviation about the true mean, a "loose" bound25 on the error in a sample 

mean is 

(7)   £<3E/VK. 

For 1,000 Monte Carlo trials and a true standard deviation of either 2 or 3, 

equation (7) tells us that the error in a sample mean would be less than 0.19 or 0.28, 

respectively. In practice, such error bounds tend to be of less concern than probable 

errors, which are smaller by a factor of 4.45. 

Figure III-3 displays two profiles of average daily exposures (i.e., average new 

infections per unit time) for normally distributed random variables; similarly, Figure III-4 

shows comparable profiles for the Weibull and lognormal distributions. One common 

temporal profile in these two figures is associated with an input of fatality data; the other 

common profile is related to an input of symptom onset data. Though qualitative 

differences between like profiles in Figures III-3 and III-4 tend to be insignificant, a few 

quantitative differences between unlike profiles in the same figure suggest some 

incompatibilities between the two sets of epidemiological data. Specifically, with regard 

to the time frame from day 70 to day 76 in both figures, symptom-related and fatality- 

related average daily exposures can differ by substantial negative amounts. 

If the set of fatality data in Figure II-1 is indeed relatively reliable, the above- 

mentioned negative differences between average numbers of daily exposures would point 

to inaccuracies in the symptom onset data (Figure II-2). To better understand quantitative 

differences that matter most, other graphical comparisons are necessary. 

1 A Primer for the Monte Carlo Method, pp. 15-16. 
' A Primer for the Monte Carlo Method, p. 16. 
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Figure III-3.   Average Daily Exposures (Average New Infections Per Unit Time) for the Two 
Epidemiological Data Sets of Figures II-l and II-2, Normally Distributed Random Variables, and 
1000 Monte Carlo Trials. 
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Figure III-4.   Average Daily Exposures (Average New Infections Per Unit Time) for the Two 
Epidemiological Data Sets of Figures II-l and II-2, Weibull and Lognormal Distributions, and 1000 
Monte Carlo Trials. 
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Figure III-5 is a stacked bar chart that again displays average daily exposures for 

independent normal distributions. Red (or dark) bars in this chart represent the same 

temporal profile that appears in Figure III-3 for an input of fatality data. White bars 

signify average differences between symptom-related and fatality-related daily 

exposures, and these average differences are estimates of nonfatal new infections. Stacks 

of red and white bars in Figure III-5 thus make up a composite profile of average fatal 

and nonfatal daily exposures. Also, there are relatively few white bars with negative 

values in this profile and only two of these (at days 74 and 75) are appreciable. 

Another stacked bar chart is displayed in Figure III-6, which is associated with the 

independent Weibull and lognormal distributions for a and C,. Red (or dark) bars therein 

comprise an alternative depiction of the profile in Figure III-4 that comes from fatality 

data, while the white bars again refer to nonfatal exposures (or new infections). Neither 

qualitative nor quantitative differences between Figures III-5 and III-6 are noteworthy. 

On the average, different distributional assumptions (normal-normal versus Weibull- 

lognormal distributions) lead to very similar composite exposures. One reason for this 

distributional insensitivity may be the fact that the Monte Carlo algorithm relies upon 

rounded (integer) values of the random variables. 

CCMPOSnE   EXPOSURE   DISTRIBOTICN 
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Figure III-5. Average Fatal (Red or Dark) and Nonfatal (White) Daily Exposures for the Two 
Epidemiological Data Sets of Figures II-l and II-2, Normally Distributed Random Variables, and 
1000 Monte Carlo Trials. 
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Figure III-6. Average Fatal (Red or Dark) and Nonfatal (White) Daily Exposures for the Two 
Epidemiological Data Sets of Figures II-1 and II-2, Weibull and Lognormal Distributions, and 1000 
Monte Carlo Trials. 

C.        Average Daily New Infections in a Format for SEIR Calculations 

Because the Haydon-Woolhouse-Kitching SEER algorithm invokes the mean field 

assumption, the first incubation period should begin on day 0 and extend through day 8. 

Accordingly, there ought not to be any infectious individuals until day 9, and secondary 

infections shouldn't occur before day 10. The upshot is that average daily exposures in 

Figure III-5 or III-6 must be censored to reflect these initial conditions. 

Negative average nonfatal exposures in Figures III-5 and III-6 pose another 

censoring problem and, in subsequent SEER, calculations, they will be ignored in favor of 

positive average fatal exposures. But when average nonfatal and fatal exposures are both 

positive quantities, their sum will be adopted as the censored value. 

Figure III-7 demonstrates how the above censoring procedure alters Figure III-5. 

The arrow in Figure III-7 identifies the date (May 12, 1995, or day 90) when the 

international public health community became actively involved in the implementation of 

rigorous EHF controls. 
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CENSORED COMPOSITE EXPOSURE DISTRIBUTION 
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Figure III-7. Censored Version of Average Fatal and Nonfatal Daily Exposures in Figure III-5. 

IV.      SEIR RESULTS 

A.        Retrospective Investigation 

The SEIR framework and Monte Carlo calculations of average new infections per 

day facilitate a better understanding of EHF dynamics in the 1995 Kikwit outbreak. 

There are several ways to numerically solve equations (1) through (6). Here, a 

rearrangement of equation (6) replaces the recursion relationship in equation (3), viz., 

(8) I[n]=N0-S[n]-E[n]-R[n]. 

The numerical scheme thus evaluates S, E, I and R at each time step by utilizing 

known values of the function P in equations (1), (2), (8) and (4); subsequently, equation 

(5) enables an evaluation of the disease transmission rate, E,. 

Initial conditions for this investigation are as follows: 

(9) S[0]=N0-E[0], 

(10) E[0] = 1, 

and 
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(11) I[0]=R[0]=0. 

To fully account for the initial chain of events in the SEIR framework, two other 

conditions are essential. The first infected individual leaves the exposed cohort after the 

average incubation period (aa), and the same individual enters the removed cohort in 
77 

accordance with the average infection-to-removal time (C,a). Mathematical statements   of 

these conditions are 

(12) E[oa]=E[oa-l] + (P[aa-l]-E[0])xAt 

and 

(13) RKJ = 1. 

Some investigators argue for a "true mass-action assumption" and a disease 

transmission rate, ß, that does not explicitly depend on the overall size of the time- 

independent total population, N0.28 Their SEIR model is almost identical to the one under 

consideration up to now, except that 

(14) £ = ß/N0 

and, substituting for £, in equation (5), 

(15) P[n]xAt / I[n] = ß[n]xS[n] / N0. 

In the case of a limited outbreak within a large total population, the ratio of S to N0 is 

always close to unity. This observation and equation (15) thus implies that ß[n] 

approaches the average number of new infections at time step n+1 per infectious 

individual at time step n. 

The time-independent total population is basically an upper bound on the number 

of individuals who could be directly or indirectly contacted by members of the infectious 

cohort. For the 1995 EHF outbreak, a reasonable estimate of N0 is Kikwit's total 

population of 200,000. The precise value of N0 does not affect cohort temporal behavior 

27 A few comments about equations (12) and (13) are appropriate. The function P is assumed to be zero for 
negative arguments. That is, equation (2) simply cannot accommodate a movement out of the exposed 
cohort until one day after the average incubation period. Equation (12) guarantees that the initially 
infected individual will move out of the exposed cohort at the right time. It is also apparent that equation 
(4) can't allow an entry into the removed cohort until one day after the average infection-to-removal 
time. Hence, equation (13) assures that the initially infected individual will enter the removed cohort on 
time. And lastly, note the average incubation period (9 days) and the average infection-to-removal time 
(19 days) are as before. 

28 Epidemic Models: Their Structure and Relation to Data, pp. 84-94. 
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(unless everyone becomes infected); however, it can influence the disease transmission 

rate (especially Q. 

The calculated temporal profile for the removed cohort is in Figure IV-1, and the 

calculated final number of removals is 297 (237 deaths plus 60 recoveries). An 

incomplete reconciliation of fatal and nonfatal average daily exposures accounts for the 

difference between 297 removals and the original 291 cases of symptom onset. 
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Figure IV-1.    Time-Varying Total Number of Removed Individuals that Is Calculated from the 
Average Daily Exposures in Figure III-7. 

Exposed and infectious cohort calculations are in Figure IV-2. The time history 

of the exposed cohort reaches its maximum on day 76, and the time history of the 

infectious cohort attains its somewhat larger maximum on day 86. In view of the fact 

that the average infectious period is one day longer than the average incubation period, it 

is not surprising that the infectious cohort can contain slightly more individuals than can 

the exposed cohort. 
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Figure IV-2.    Instantaneous Numbers of Exposed (Incubating) and Infectious Individuals that Are 
Calculated from the Average Daily Exposures in Figure III-7. 

Average daily exposures and temporal profiles for the susceptible and infectious 

cohorts control the temporal behavior of the disease transmission rate via equation (5). 

Before discussing disease transmission numerical results, a brief review of the basic 

reproductive ratio (say, R0) is useful.30 If the average infectious period is ua, and if b,0 and 

ßo are disease transmission rate constants, the formula for the basic reproductive ratio is 

(16)       Ro = £oXNoXVa = ßoXVa. 

Equation (16) defines R0 as the average number of infections that are caused by a single 

infectious individual during his or her infectious period. A basic reproductive ratio of at 

least uniT is therefore required to sustain an epidemic. Furthermore, this last observation 

and equation (16) yield the minimum epidemic-sustaining value of £0 or ß0. 

Figure IV-3 displays calculations of ß for two sizes of the total population as well 

as the minimum constant value of ß (i.e., ß0) that would have sustained the EHF 

epidemic.   The impact of this total population variation can be explained by means of 

29 Of course, no transmission of any disease can occur whenever the infectious or susceptible cohort is 
empty. 

30 Epidemic Models: Their Structure and Relation to Data, pp. 17-33. 
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equation (15). For two identical outbreaks in large and small total populations, there can 

be no outbreak-to-outbreak differences either in the function P or in. any of the SEIR 

cohorts. The logical inference is that different values of N0 must alter the ratio of S to N0, 

and that an offsetting change in ß becomes a necessity. As an outbreak unfolds in a small 

total population, the ratio of S to N0 decreases significantly over time but, during the 

same outbreak in a large total population, this ratio remains close to unity. Hence, an 

outbreak in a small total population generates a higher rate of disease transmission than 

does the identical outbreak in a large total population. 
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Figure IV-3.    Calculated Time-Varying Rate of Disease Transmission, ß, for the 1995 EHF 
Outbreak in Kikwit, DRC. The Solid (or Dashed) Curve Represents the Disease Transmission Rate 
for a Total Exposable Population of 200,000 (or 1,000). 

Another feature of Figure IV-3 warrants some discussion, namely, the large spike 

within the timeframe from day 139 to day 148. Firstly, the last two fatalities in Figure II- 

1 are separated by 20 days, and the last two cases of symptom onset in Figure II-2 are 

separated by 22 days. Secondly, the last case of symptom onset precedes the last fatality 

by only four days. In terms of our SEIR model and its average parameter values, the last 

case of symptom onset and the last fatality comprise a "follow-on" outbreak, which is 

distinct from the "main" outbreak. This distinction surfaces in Figure III-7, and the 

transmission rate spike for the follow-on outbreak is likewise consistent with the 

calculated infectious cohort in Figure IV-2. 
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Lastly, the solid curve in Figure IV-3 is actually the superposition of two 

calculations for the total population of 200,000. The disease transmission rate ß is one of 

the calculated quantities, as discussed above. The other calculated quantity is the left- 

hand side of equation (15), i.e., the average number of new infections at time step n+1 per 

infectious individual at time step n. Because the total population of 200,000 is much 

greater than the 300 or so removals, the two calculated quantities are indistinguishable. 

B.        Predictions for Equivalent Epidemiological Circumstances 

The disease transmission rate in Figure IV-3 is a quantitative characterization of 

the epidemiological circumstances that surrounded the Kikwit EHF outbreak. Assuming 

equivalent circumstances will prevail throughout a future EHF epidemic, this 

transmission rate and a new set of initial conditions set the stage for a prediction. The 

numerical scheme for a prediction still relies on equations (1), (2), (4), (5) and (8). And 

since the function P is no longer a known quantity, it too must be evaluated in a stepwise 

fashion using known values of £ or ß and computed values of S and I. 

The only change in the previous initial conditions is the replacement of equation 

(10) by 

(17) E[0] = l,5, 10, 15 and 20. 

Obviously, if the total exposable population is again 200,000, a "prediction" for one 

exposure or infection on day 0 should replicate cohort time histories in Figures IV-1 and 

TV-2. 

In the foregoing retrospective analysis of the 1995 Kikwit outbreak, a large 

change in the total exposable population (from 200,000 to 1,000) did have an effect on 

the time history of ß (particularly when the ratio of S to N0 fell below 0.9 or so). This 

linkage between N0 and ß should be carefully considered in the predictive process. For 

the time being, input for cohort predictions is composed of a total population of 200,000, 

the appropriate time history of ß in Figure IV-3, and equation (15). Comparable 

historical and future epidemiological circumstances suggest that even 20 initial infections 

are unlikely to produce more than about 6,000 (20x300) removals. And 6,000 removals 

would constitute only three percent of the total exposable population (or, necessarily, the 

final ratio of S to N0 would be 0.97). 

Exposed, infectious, and removed cohort time histories for the five different 

values of E[0] are in Figures IV-4, IV-5, and F/-6.  For one initial infection, cohort time 
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histories in these figures do indeed match their counterparts in Figures IV-1 and IV-2. In 

the event of 20 initial exposures, predictions say that the exposed cohort could contain as 

many as 1,400 (20x70) individuals, that about 1,500 (20x75) individuals could be 

members of the infectious cohort, and that almost 6,000 removals would occur. This 

threefold observation, as well as an inspection of the five time histories for each cohort, 

point to linear behavior. As anticipated, the ratio of S to N0 stays near unity and the 

function P really depends on only one cohort (I). 
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Figure IV-4.    Instantaneous Number of Individuals in the Exposed Cohort for Different Initial 
Conditions (1,5,10,15, and 20 Exposures on Day 0) and a Total Exposable Population of 200,000. 

I 

I 23 



INFECTIOUS  COHORTS  FOR VARIOUS  DAY 0 INFECTIONS 
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Figure IV-5.    Instantaneous Number of Individuals in the Infectious Cohort for Different Initial 
Conditions (1, 5,10,15, and 20 Exposures on Day 0) and a Total Exposable Population of 200,000. 
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Figure IV-6.    Cumulative Number of Individuals in the Removed Cohort for Different Initial 
Conditions (1, 5,10,15, and 20 Exposures on Day 0) and a Total Exposable Population of 200,000. 
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Figures IV-7, IV-8, and IV-9 display additional cohort predictions that are based 

on a total exposable population of 1,000 and the compatible ß function. Unlike exposed 

cohort calculations in Figure IV-4, for instance, time histories in Figure IV-7 are not just 

temporal replicas of one another with scalable peak values. The onset of nonlinear cohort 

behavior occurs roughly at an elapsed time of 50 days, when the solid and dashed ß 

curves diverge in Figure IV-3. Thereafter, in the presence of multiple initial infections, 

the decreasing ratio of S to N0 (= 1,000) severely constrains the E, I, and R cohorts. 
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Figure IV-7.    Instantaneous Number of Individuals in the Exposed Cohort for Different Initial 
Conditions (1, 5,10,15, and 20 Exposures on Day 0) and a Total Exposable Population of 1,000. 

I 25 



INFECTIOUS COHORTS FOR VARIOUS DBS' 0 INFECTIONS 

25 50    75    100   125 
Time In Days 

150 175 

Figure IV-8.    Instantaneous Number of Individuals in the Infectious Cohort for Different Initial 
Conditions (1,5,10,15, and 20 Exposures on Day 0) and a Total Exposable Population of 1,000. 
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Figure IV-9.    Cumulative Number of Individuals in the Removed Cohort for Different Initial 
Conditions (1, 5,10,15, and 20 Exposures on Day 0) and a Total Exposable Population of 1,000. 
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The total number of predicted removals is displayed in Figure IV-10 as a function 

of the initial infections, and the two curves in this figure portray removal predictions for 

total populations of 200,000 (solid curve) and 1,000 (dashed curve). Unconstrained and 

constrained removal predictions for 20 initial infections differ by a factor of 7, even 

though the variation in the exposable population is much greater (a factor of 200). This 

range of possible outcomes is in conformance with epidemiological circumstances of the 

1995 Kikwit outbreak. To be sure, other epidemiological circumstances and another 

population variation could engender either a broader or a narrower predictive range. 
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Figure IV-10.    Total Number of Removals as a Function of the Number of Initial Infections for 
Exposable Populations of 200,000 and 1,000. 

C.        Unique Epidemiological Circumstances and Their Impact 

An act of bioterrorism in a metropolitan area of the United States undoubtedly 

would involve unique epidemiological circumstances. Some of these circumstances may 

inhibit the spread of a contagious disease, but other circumstances might facilitate disease 

transmission. In the former category are prevailing U.S. medical capabilities, which are 

among the best in the world. Once numerous cases of symptom onset became known to 

U.S. health care providers and officials, the medical system's response would probably 

be prompt and effective. But the high mobility of people in and around large U.S. cities 
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would tend to rapidly transmit a contagious disease before the medical system could 

swing into action. 

If a bioterrorist attack went undetected in a city, and if it infected hundreds or 

even thousands of individuals with the Ebola virus, people would experience EHF 

symptoms from 4 to 16 days after the attack. Most cases would not be apparent until day 

10, and another week or more could be required to identify the disease and to understand 

the full extent of this bioterrorism event. Eventually, all face-to-face and physical 

contacts of every symptomatic individual would have to be traced and followed (or, 

perhaps, isolated) long enough to assure the absence of disease. 

Unfortunately, an EHF vaccine does not exist and there are no effective drugs for 

either post-exposure prophylaxis or therapy. Today's medical systems can provide EHF 

patients with life support and/or compassionate care, but current medical capabilities are 

insufficient to abort or ameliorate the disease's natural course. Patient isolation, barrier 

nursing  techniques,   and  strict  disinfection  procedures   for biohazardous  materials 
•2 1 

(including corpses) are primary EHF epidemic controls. 

Historical EHF outbreaks such as the one in Kikwit emphasize the importance of 

disease awareness and the avoidance of early medical mistakes. An optimistic view is 

that the U.S. medical system in a metropolitan area would respond to, for instance, 1,000 

index cases with a high level of disease awareness and with little amplification of the 

disease in medical facilities. From a pessimistic perspective, however, most EHF cases 

in the U.S. would be managed with Kikwit-like levels of disease awareness and 

nosocomial disease transmission. 

A thousand index cases and the attendant secondary infections could conceivably 

exhaust even the plentiful medical resources of a modern metropolis such as greater 

Washington, DC (with its population of 4,000,000). Under the pessimistic premise that 

Kikwit-like epidemiological circumstances would surround a future bioterrorism event in 

Washington, the time-varying rate of disease transmission in Figure IV-3 (solid curve) is 

applicable. And since a total of 300,000 (300x1,000) removals is still rather small with 

respect to an exposable population of 4,000,000, this number (300,000) of EHF cases is a 

plausible upper bound. Similarly, to bound cohort temporal behavior for 1,000 index 

cases, 50 should multiply cohort time histories in Figures IV-4, IV-5, and IV-6 for 20 

initial infections. 

31 World Health Organization, WHO Recommended Guidelines for Epidemic Preparedness and Response: 
Ebola Hemorrhagic Fever (EHF), WHO/EMC/DIS/97.7, July 1997, p.3. 
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The previous rough upper bounds are not in conflict with more precise numerical 

results in Figures IV-11, IV-12, IV-13, and IV-14. That is to say, for a total population of 

4,000,000, these figures display cohort time histories with the following maximum 

values: 276,000 removals (Figures IV-13 and IV-14), 73,000 symptomatic cases (Figure 

IV-12), and 68,000 incubational cases (Figure IV-11). 
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Figure IV-11.    Instantaneous Number of Individuals in the Exposed Cohort for 1,000 Initial 
Infections and for Various Total Populations. 
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Figure IV-12.    Instantaneous Number of Individuals in the Infectious Cohort for 1,000 Initial 
Infections and for Various Total Populations. 
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Figure IV-13.    Cumulative Number of Individuals in the Removed Cohort for 1,000 Initial 
Infections and for Various Total Populations. 
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Figure IV-14.    Total Number of Removals versus the Total Population for 1,000 Initial Infections. 

30 



Realistic lower-bound predictions of secondary EHF infections should reflect the 

implementation of stringent epidemic controls throughout the geographical area(s) of 

concern. According to Figure III-7, a considerable majority of Kikwit EHF infections 

happened before the emplacement of controls (day 90). The same figure illustrates that 

post-control average daily infections almost vanished within a period of 35 days (from 

day 90 to day 125). Figure IV-15 is the summation of Figures IV-11, IV-12, and IV-13. 

Each of its temporal profiles presents the overall time-varying number of exposed, 

infectious, and removed individuals for a specific total population. At any given time, 

therefore, a temporal profile in Figure IV-15 identifies how many removals would 

ultimately take place in the absence of any other new infections. 
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Figure IV-15.    Instantaneous Projected Number of Removals for 1,000 Initial Infections and for 
Various Total Populations. 

As recognized previously, the mobility of Washingtonians is likely to facilitate 

contacts with contagious people and, thereby, to accelerate disease transmission. Just as 

notable are the speed and reach of modern communication capabilities; i.e., the careful 

utilization of these capabilities might enable the U.S. medical system to swiftly and fully 

institute epidemic controls throughout the affected region(s). In the hypothetical situation 

where epidemic controls are emplaced on day 70 and completely effective on day 71 (as 

well as thereafter), Figure IV-15 says that 91,000 removals (80 percent deaths and 20 

percent recoveries)  should  be  anticipated under early  Kikwit-like  epidemiological 
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circumstances.   Of course, the full realization of these 91,000 removals happens on day 

89 (day 70 + 18 + 1) in Figure IV-13. 

No attempt is made here to review the U.S. medical system and its epidemic 

response time following an undetected bioterrorist attack. Nevertheless, this author 

argues that pertinent historical outbreak data and some knowledge of potential response 

times are adequate to derive meaningful quantitative bounds on bioterrorism casualties. 

A parallel argument applies to a military theater of operations and U.S. military casualties 

due to biological warfare. 

V.       CONCLUDING OBSERVATIONS 

Figures IV-1 through IV-15 typify what can be readily learned about the 

dynamics of a contagious disease and how to use this knowledge for predictive purposes. 

Predictions of BW and bioterrorism casualties inform military and public health care 

planners regarding dimensions of "unthinkable" medical crises. This paper advocates a 

semi-empirical predictive approach so those health care planners can relate BW and 

bioterrorism medical requirements to actual historical events. Arguably, semi-empirical 

casualty predictions are least likely to be either gross underestimates or unreal 

overestimates. 

The role of epidemiological circumstances in the dynamics of a contagious 

disease is most important. As a case in point, consider the 1996 EHF outbreak in 

Mayibout 2, Gabon. Eighteen people found a chimpanzee cadaver in February and they 

proceeded to skin, butcher, cook, and eat the meat.32 Because of another Gabon outbreak 

in late 1994 and early 1995, Gabonese medical personnel were well aware of EHF and 

ready to deal with it when advanced cases showed up at the same hospital (Makokou 

General) in early 1996. These medical personnel had the requisite equipment and 

materiel for barrier nursing techniques and, on the second day of the epidemic, they 

imposed rigorous infection controls.33 Another significant factor is that the small 

Gabonese village of Mayibout 2 is remote and it takes a boat trip of six or seven hours to 

reach a larger population center. The outcome of this 1996 outbreak in Gabon was a total 

32 Alain-Jean Georges, Eric M. Leroy, Andre A. Renaut et al, Ebola Hemorrhagic Fever Outbreaks in 
Gabon, 1994-1997: Epidemiologie and Health Control Issues, JID, Vol. 179(Supplement 1), pp. S65- 
S75. 

33 None of the Gabonese medical people became infected with the Ebola virus during this outbreak. 
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of 31 fatal and nonfatal EHF cases, a far cry from the 315 cases in the 1995 DRC 

outbreak. 

EHF outbreaks of the last 25 years clearly demonstrate that a) missteps in health 

care facilities can quickly transform one case of a contagious disease into a medical 

nightmare, and b) informed medical personnel and the right preparations can avert a 

disaster. Above and beyond the early identification of EHF cases and medical 

preparedness, a deeper understanding of EHF dynamics might reveal other opportunities 

to mitigate or interrupt an outbreak. 

Semi-empirical predictions of BW and bioterrorism casualties for other 

contagious diseases will necessarily depend on historical outbreaks and associated 

epidemiological circumstances. Unfortunately, for diseases like pneumonic plague and 

glanders, usable and relevant epidemiological data may not exist. The epidemiological 

concept of a surrogate or substitute disease could prove to be a viable way to fill data 

gaps, but the development of such a concept is the subject of another study. 
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