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Abstract 
This report describes a potpourri of information concerning 
dynamometers that has been in use by various groups within the 
Maneuvering and Control Department of the Hydrodynamics 
Directorate. Because these transducers are complex devices 
requiring care with their calibration and usage, the authors felt that 
the important details should be recorded and made available to 
others at the Center. Following a basic discussion of the operation 
of the transducer and the need for an interaction matrix is a 
suggested calibration procedure that will yield data that completely 
describes the six degree-of-freedom parameter space of the unit. 
Subsequent sections describe numerical methods for the derivation 
of the interaction matrix from calibration data. The first of these 
methods is a Least Squares solution for the interaction matrix, and 
the second is a generalization of the first method that allows 
weighting of the data. Other topics include: a method for 
transformation of an interaction matrix determined relative to one 
coordinate system into an equivalent interaction matrix relative to a 
second coordinate system, and a technique for normalizing the 
interaction matrix. Additional complications arise when dealing 
with rotating dynamometers and such topics as determination of 
the offset angle, and weight and zero compensation are 
investigated. One may wish to use two dynamometers in tandem 
to determine forces and moments about a common reference point; 
the equations required for such operation are described in detail. A 
discussion of data uncertainty is incorporated, and finally, an 
appendix is included which describes how interaction matrices 
obtained from a dynamometer manufacturer were found to be in 
error, and how the methods described in this paper were used to 
detect and correct the errors. 

Administrative Information 
This work was sponsored by PMS 450 under Contract N0002400WR10453 and Program Element 
64558N. The program representative is Mr. Matthew B. King. 

Overview 
A six degree-of-freedom dynamometer is a transducer capable of simultaneously measuring three force 
components, denoted by Fx,Fy, and Fz and referred to as thrust, side force and normal force, and three 

moments, denoted by Mx,My, andM2 and referred to as torque, Y bending moment and Z bending 



moment when using the standard NSWC coordinate system1,2. For the work discussed here, the 
dynamometer is assumed to be mounted on a portion of a vehicle moving through a fluid and measures 
the forces and moments exerted by the fluid on this portion of the vehicle. These six quantities are 
measured relative to a coordinate system fixed within the dynamometer and defined by the placement of 
the various strain gages within the unit which transduce the force and moment measurements into 
voltages. The six output voltages of the dynamometer can be converted back into dimensional quantities 
(lbs and fi-lbs) by using an appropriate method that requires calibration data. 

When a perfect dynamometer is subjected to a known load on one axis only, a known thrust force for 
example, it will produce a single nonzero output voltage and the other five voltage outputs will remain 
zero. In other words, the outputs of a perfect dynamometer represent six independent measurements. 
On the other hand, for most real dynamometers, a known load on a single axis produces six nonzero 
voltage outputs; typically, one primary responding output and five smaller outputs resulting from 
interactions (possibly nonlinear) among the transducing elements within the dynamometer. If these six 
outputs were then interpreted as originating from a perfect dynamometer, then one would incorrectly 
predict that the dynamometer was subjected to loads on all six axes. Instead, one must correct for the 
interaction effects, and the correction may be implemented using a linear or nonlinear method. 

For a six degree-of-freedom dynamometer, the linear correction method takes the form of a 6 x 6 matrix 
routinely termed the interaction matrix. The determination of this matrix for a real dynamometer is an 
additional task, which must be completed during calibration. A suitable numerical method for the 
derivation of the interaction matrix from the calibration data is described in a subsequent section as is a 
similar but more complex method using weighted calibration data. If we group the measurements in the 
order: Fx,Fy,F2,Mx, My andMz, and then denote this ordering with subscripts from 1 to 6, then the 

interaction matrix multiplies the six output voltages from the dynamometer, Vt, to obtain six corrected 

dimensional quantities, Ft or (Fx, F'   Fz, Mx, My and Mz), as shown in Eq. 1: 
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or   F, = Aiyi for i,j = \, ..., 6 (1) 

The repeated index implies summation in Eq 1. 

Summarizing, then, the calibration of a dynamometer is performed in order to determine a set of output 
voltages for a series of known single axis or multiple axis loading conditions. Using this data, one may 
compute an interaction matrix, AtJ, which gives a linear approximation of the behavior of the 

dynamometer. 



Alternatively, recent work has shown that a nonlinear method, such as an artificial neural network, can 
also accurately recover the calibration data. The possibility that a neural network can provide a 
nonlinear correction to the linear approximation afforded by the interaction matrix should be 
investigated. However, because a dynamometer is primarily linear in its response to loads the utility of 
the neural network for this application will have to be clearly demonstrated. Such work is in progress. 

Static Calibration Procedure 
The static calibration of six degree of freedom dynamometers that exhibit interactions must be 
performed in a manner that fully captures the intricacies of the complex behavior of these devices. 
Experience has shown that a dynamometer must be subjected to a substantial number of instances of 
single axis and multiple axis loading conditions in order to completely characterize its performance. 
Furthermore, the selection of the locations of the applied loads is extremely important to define the six 
degree of freedom parameter space that governs the behavior of the dynamometer. The following 
paragraphs will outline a static calibration procedure expected to give good results. Note that 
dynamometers exposed to unsteady loading conditions varying over an extended frequency range should 
be calibrated dynamically to ensure adequate frequency response and to avoid resonances in the 
measuring system3. 

Each channel of the dynamometer will respond with a voltage proportional to the applied load. 
However, these output voltages are also linearly proportional to the excitation voltage Va used to power 
the dynamometer. Therefore, output voltages are typically expressed in terms of juV/Va in order to 
yield results that are independent of the excitation voltage. During calibration, the output voltages for 
each loading condition will be digitized by an A/D converter to give bits that must then be converted 
back into voltages using the appropriate factor for the A/D converter. For purposes of illustration, 
assume a 12-bit A/D converter, which digitizes a +10V range with 4096 bits. Assume also that the 
voltages from each channel are amplified by ah amount specified by a gain factor. For these conditions 
Eq. 2 specifies the conversion from bits to liV/V^ for each channel. 

/*" _ j..Vo * I    ^ I * I 1 r\t\c\f\c\(\ P"   i „. ( ( T t 

v. = bits *\-=^—\*\\000000£-\*\-— * —    > '(2) 
V4096 bit)   { V )   {Gain) ex . 

Therefore, for each loading condition, the A/D conversion factor, the amplifier gain (if used) for each 
channel and the excitation voltage must be specified in order to recover the output voltages in pV/Va . 
If an alternative system is used, then all necessary information required to recover the output voltages in 
fiV'/Va must be given for each loading condition. 

The application of a load at a given location on a six degree of freedom dynamometer is stated in terms 
of three force components and three moment components referred to a coordinate system fixed within 
the dynamometer. The coordinate system that will be used to define the loading conditions is one 
commonly used by dynamometer manufacturers and is shown in Fig. 1. An interaction matrix 
determined relative to this or any other coordinate system may be easily transformed into one relative to 
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Fig. 1 Dynamometer coordinate system (from AMTI). 
Z axis into the paper in left hand sketch. 

the more familiar 2510 coordinate system1,2 by using a method described in a later section. Therefore, 
the coordinate system described in Fig. 1 will be used for this section only, and the standard NSWC 
coordinate system1,2 will be used for the remainder of the paper. 

The origin of the coordinate system is determined as the point where the application of forces produces 
zero moments. This location must be determined during calibration and specified relative to some 
unambiguous and readily identifiable point on the unit such as the geometric center of the top face. 
These offset distances will be denoted by x0, v0 and z0, respectively. On the other hand, the 
application of a load on a dynamometer may be specified relative to an alternative set of axes more 
useful for the problem at hand. The applied forces will not depend on the location of the origin but the 
applied moments will have to be transformed to the new location of the origin. If xx, v, and z,, 
represent offsets from the internal origin to the new user-defined origin, then Eqs. 3 define the moments 
about the new origin in terms of the moments about the internal origin. 

Mx=Mx0-Fyzl+Fzy1 

My=My0-F2x1+FxZi- , 

MX=M*-Fxyx+Fyx, 

(3) 

During calibration, the applied loads for each loading condition will have to be specified. Often they are 
most readily specified relative to some easily identifiable location on the unit such as the geometric 
center of the top face. However, they should properly be referred to the internal origin of the unit. For 
this case, one must invert Eqs. 3 and solve for Mx0, My0 and Ml0. 



Load Placement 
The calibration proceeds by placing a force on the unit at a given location and measuring the output 
voltages. The magnitude of the force (at the same location) is then changed to obtain the next load 
condition. This sequence is repeated for a series of 5-10 force magnitudes linearly increasing up to some 
predetermined calibration maximum. Then, the location is changed and the previous process is repeated. 
For a rotor or stator dynamometer as typically used in the Maneuvering and Control Department, the 
maximum expected thrust is 150 pounds, and the maximum expected side loads are 50 pounds. 
Accordingly, the maximum loads applied during calibration should only be a small percentage higher 
than this. Now, at each location the applied load typically consists of a force component and one or two 
moment components. Of paramount importance, is the selection of the locations at which to apply loads 
such that the resulting force and moment combinations completely describe the six degree-of-freedom 
parameter space of the unit. 

I o—'—i 

\ •—• /' 

Fig. 2 Thrust axis load placement. 

Beginning with loads on the thrust axis (z-axis) of the unit, a series of locations at which loads will be 
placed are specified in Fig. 2. The locations shown in black are required, and the locations shown in 
gray are desirable. A force directed into the paper at the positions denoted by black circles will result in 
combinations of a positive thrust and one positive or negative moment about the x and y axes. Forces 
applied at the gray locations will yield combinations of a force and two moments with different moment 
arms about the x and y axes. A means for applying forces to the unit in the negative thrust direction 
must also be found. The simplest manner in which this may be accomplished may perhaps be to invert 
the unit and apply the loads indicated in Fig. 2 to the bottom face of the unit. A connector is typically 
located on the bottom face, and if the connector interferes with any of the load positions, then this 
position will have to be skipped. 



T  ?   T 

Fig. 3 Side force load placement. 

Side force loads will be placed on the unit at the locations shown in black on the left of Fig. 3. These 
positions may be accommodated by affixing a plate of known dimensions to the top of the unit. A force 
directed into the paper at the positions denoted by black circles will result in combinations of a positive 
side force and one or two positive or negative moments about the x or y and z-axes. This set of locations 
lies in a plane that is located at the center of the thickness dimension of the plate attached to the top of 
the unit. Therefore, the plane lies some small distance above the top of the unit as shown on the right of 
Fig. 3. All of the moments about the x or y axes which result from the locations in this plane share a 
constant moment arm in the z-direction relative to the dynamometer origin. An additional set of 
measurements with a different length moment arm in the z-direction is desirable to fully describe the 
behavior of the dynamometer. This can be accomplished by repeating the set of measurement locations 
described on the left of Fig. 3 with the plane of the measurement locations moved to a second axial 
position as shown on the right of Fig. 3. The desired position of this second plane will be provided. A 
plate with a center hole, which accommodates the body of the dynamometer, should facilitate the 
acquisition of the second plane of data. Acquiring static calibration data at multiple axial locations has 
also been performed by Miller3. 

Summarizing, Figs. 2 and 3 describe a set of as many as 42 measurement locations with 5-10 load 
conditions acquired at each location by varying the magnitude of the applied force. This results in a 
total of 240 to 420 load conditions for the calibration. These positions should be sufficient to fully 
describe the complex behavior of the unit. The measured voltages, A/D conversion factor, the amplifier 
gain (if used) for each channel, the excitation voltage and applied loads for each of the 240 to 420 load 
conditions must be provided in an electronic format (text files with comma or space delimitation). 

After a suitable set of calibration data is obtained, applied forces and moments along with corresponding 
output voltages, the information is used to construct the interaction matrix for the unit. A general linear 
method to accomplish this is provided in the next section. 



Pseudo Inverse Technique 
This appendix describes a linear method for the determination of an interaction matrix from calibration 
data. This method makes use of all of the calibration data and determines the best interaction matrix in a 
Least Squares sense. 

Given a set of N instances of dynamometer measurements with M measurements for each instance, the 
data must satisfy: 

F = VA , (4) 

where F is the set of forces and moments that produces the voltage outputs V. F is an Nx M matrix of 
input forces and moments, V is an A^x M matrix of resulting voltages, and A is an Mx M matrix. Note 
that in this formulation the data are in row format with each row representing a separate instance of the 
calibration process. 

The pseudo-inverse of V can be calculated by computing: 

Pseudo-inverse = (vrv)"V  . (5) 

The pseudo-inverse is an Mx N matrix, and is called an inverse because it produces an Mx M identity 
matrix when it premultiplies V.  Following Gelb4, the pseudo-inverse is the Least Squares solution to 
Eq. 4. Note that the quantity Vr V may be singular and not have an inverse in unusual cases where all 
of the outputs are not exercised by the test inputs. Premultiplying both sides of Eq. 4 by Eq 5 allows one 
to solve for the matrix, A: 

A = (vrv)"VF  . (6) 

This solution applies to the case of data in row format as described by Eq. 4.  For the case of data in 
column format where F is an Mx N matrix of input forces and moments, and V is an Mx N matrix of 
resulting voltages, Eq. 4 is rewritten as: 

F = AV  . (7) 

The solution for A is readily found to be: 

Ä = FVr(vVr)_1  . (8) 

as can be seen by post multiplying both sides of Eq. 7 by the pseudo inverse Vr(VVr) . Eq. 8 gives 
the interaction matrix in the form in which it is normally used. The relationship between Eqs. 6 and 8 is 
easily shown. Noting that F = Fr and V = Vr, these expressions can be substituted into Eq. 7 to obtain 

Fr=AVr  . (9) 

Taking the transpose of both sides of Eq. 9 gives: 



F=(ÄVr)r=VAr  . (10) 

Comparison of Eq. 10 with Eq. 4 shows that A = Ar. This result can also be found by plugging F = Fr 

and V = Vr into Eq. 8 and simplifying. 

Summarizing, the interaction matrix is found from Eq. 8; however, if the data is more conveniently 
arranged in row format, then the solution may also be obtained by using Eq. 6 and taking the transpose. 
This Least Squares solution can be modified to incorporate a weight function in order to favor data 
considered to be more reliable. The development of an interaction matrix with a weighted least squares 
technique may be found in the next section. 

Weighted Least Squares Derivation (Pseudo Inverse) 
Given a set of N instances of dynamometer measurements with M measurements for each instance, the 
data must satisfy: 

F = VA , (11) 

where F is the set of forces and moments that produces the voltage outputs V. F is an Nx M matrix of 
input forces and moments, V is an N x M matrix of resulting voltages, and A is an M x M matrix. Note 
that in this formulation the data is in row format with each row representing a separate instance of the 
calibration process; therefore, A is the transpose of the interaction matrix. 

The matrix formulation of the problem, while convenient, tends to obscure the fact that there are M 
independent Least Squares problems contained in Eq. 11, one for each axis of the dynamometer. The 
Least Squares solution for A will be illustrated by a derivation for one axis (column of F); the 
derivations for the other axes are identical. Then, the final results for the M problems can be 
conveniently expressed by a single solution by again using matrix notation. 

Denoting the first columns of F and A by F, and A,, we can write the weighted error as: 

E,=W(F,-VA1) , (12) 

where E is an Nx / vector of errors, W is an Nx N diagonal matrix that weights the contributions of 
each data spot in the fit, F, and A, are Nx 1 and Mx 1 vectors, and V is the Nx M voltage matrix. To 
compute the sum of the squared errors which is the minimization criterion for a Least Squares fit, one 
forms the quantity: 

E?=E[E,  . (13) 

This cost function represents the weighted sum of squares of the errors between the ¥x load input and 
the resulting F, voltage measurement from the dynamometer. Now, the least squares solution A, is 

found by minimizing E? with respect to A,; that is, taking the derivative and setting it equal to zero: 



ff =^[(F1-VA1)
rW^W(F1-VA1)]=0 

■[F,rWrWF, -FfW'WVA, -AfV7'WrWF1 + A[VrWrWVAI]=0 
a A, 

=0-(F,rW7'Wv)r -VrWrWF] + VrWrWVA, +(AfVrW7'Wv)r = 0 (14) 

=-2V7W7'WF1 +2VrWrWVA, =0 

VrWrWVA, = VrWrWF1 

Premultiplying both sides of the final result of Eq. 14 by the inverse of the left hand side yields: 

A1=(vrW7Wv)"1VrWrWF1 . (15) 

This is the solution for the first column of the A matrix. The derivation for the remaining axes of the 
dynamometer proceeds similarly. Therefore, for the i'" axis the solution becomes: 

A/=(v7W7'Wv)"Vw7'WF, , (16) 

where the subscript i refers to the respective column of the F and A matrices. Finally, matrix notation 
allows us to write the solution to all M least squares problems in a compact form as: 

A = (vrWrWv)rVwrWF  . (17) 

This solution methodology may, of course, be used to derive the results of the unweighted method 
described in the previous section. Accordingly, if W is the identity matrix, Eq. 17 reduces to the result 
given in Eq. 6. The reader is reminded that this solution applies to the case of data specified in row 
format, which is not the usual manner in which the interaction matrix is used. As discovered earlier, the 
interaction matrix may be found as the transpose of the result given in Eq. 17. Thus, the final solution 
for the interaction matrix may be found to be: 

A = Ar = (vrWrWv)"1V7'WrWF r=FrWrWv(v7"WrWv)r1 , (18) 

where the notation Fr,for example, implies the transpose of the N xM matrix of data in row format. 
The result may be further simplified by dealing directly with the matrix W2 = WrW giving: 

A = F^VJVWV)"1 = FW2 Vr(vW2 V^' , (19) 

where W2 is the N x N diagonal matrix given by 
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(20) 

Typically, an interaction matrix that is computed by this method or the unweighted method given in the 
previous section is determined relative to the coordinate system used during calibration. Since 
calibration is normally carried out by the dynamometer manufacturer, the reference coordinate system is 
one normally used by the manufacturer and is not usually the required 2510 coordinate system used at 
NSWC. The following section describes a method to transform the interaction matrix relative to one 
coordinate system into that relative to another desired coordinate system. 

Coordinate System Transformation 
This section describes a method for the transformation of an interaction matrix determined relative to 
one coordinate system into another interaction matrix relative to a second coordinate system. Consider 
Fig. 4, which shows the dynamometer coordinate system (DCS) on the left and the standard coordinate 
system (NSWC) on the right. 

Fig. 4 Dynamometer coordinate system (DCS) on left and standard coordinate system on right. 

The DCS force vector F written in NSWC (2510)u notation is on the left of Eq. 21, and the new force 

vector that we wish to obtain after transformation is F which is shown on the right of Eq. 21: 

10 
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(21) 

The new force vector, F, may be obtained by multiplying by a transformation matrix as shown in 
Eqs. 22 and 23: 

F = TF (22) 

0 0 1 0 0 0 

-1 0 0 0 0 0 

0 -1 0 0 0 0 

0 0 0 0 0 1 

0 0 0 -1 0 0 

0 0 0 
r 

0 

r 
-1 0 

1 -Fy Fx 

) -Fz Fy 
1 Fx F2 

-My Mx 

1 -Mz My 

Mx Mz 

(23) 

F     =   F 

Similarly, the DCS voltage vector V (in fiVlVa ) written in NSWC notation is on the left of Eq. 24, and 

the new voltage vector that we wish to obtain after transformation is V which is shown on the right of 
Eq. 24. Note that we do not wish to change the polarity of the voltages because when the unit is wired 
for operation we will only want to swap the appropriate wires. 

V = 

\Vjy~] \V*\ 
Vß Vfy 
Vß 
V my 

, v = 
Vß 

vm* V my 

Vm. -   mx _ vmz 

(24) 

The new voltage vector, V, may be obtained by multiplying by a transformation matrix as shown in 
Eqs. 25 and 26: 

v=sv (25) 

11 



0   0   10 0 0 
10   0   0 0 0 
0   10   0 0 0 
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s 

v» Vfi 

v* v» 
v* v, 
v»> V 

vm v* 
V mx vm 

(26) 

V   =   V 

Notice that S = |T|. Now, if the original interaction matrix is denoted by A, then the desired transformed 

matrix will be called A. The interaction matrix A satisfies: 

F = AV  . (27) 

Premultiply both sides of Eq. 27 by the transformation matrix T to get: 

TF = TAV       or       F = TAV       from Eq. 22  . 

Next notice that both sides of Eq. 25 may be premultiplied by S"1 to get: 

s-'v=s-1sv=v . 

Then, Eq. 29 may be substituted into Eq. 28 to obtain: 

F=TAS'V  . 

Therefore, the transformed interaction matrix A must be given by: 

A = TAS_1       to satisfy F = AV  . 

Finally, recalling that S = IT| , Eq. 31 may be written as 

A = TA|T| 3 

where T is given by: 

"0 0 1 0 0 0 

-1 0 0 0 0 0 

T = 
0 

0 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 0 0 -1 0 0 

0 0 0 0 -1 0 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 
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Of course, T given above in Eq. 33 will depend upon the particular coordinate system in use by the 
dynamometer manufacturer; a coordinate system other than that shown on the left side of Fig. 4 will 
result in a different matrix for T. Once an interaction matrix relative to a desired coordinate system is 
obtained, one will find normalization of this matrix to be a useful procedure. The next section describes 
such a technique. 

Normalization Technique 
Normalization of the interaction matrix permits easy comparison of an interaction matrix from one 
dynamometer with that from another. A normalized matrix also allows one to easily estimate the size of 
the interaction (off-diagonal) terms relative to the diagonal terms, and to assess the penalty for replacing 
the full interaction matrix with M transformation coefficients (gains) obtained from the diagonal terms. 

Consider a set of N instances of dynamometer measurements with M measurements for each instance. 
For the case of data in column format, F is an Mx N matrix of input forces and moments, V is an 
Mx N matrix of resulting voltages, and A is the Mx M interaction matrix. The data must then satisfy: 

F = AV  . (34) 

In this columnar format each row of the interaction matrix corresponds to the coefficients of the output 
data reduction equation. For example: 

F,=4IFJk+4arJ> + ... + 46Ka.  • (35) 

Therefore, the columns of the interaction matrix represent the coefficients required for a given axis in the 
reduction equation. The first column, for example, contains the coefficients needed to describe the Fx 

contribution. The normalization procedure proceeds by dividing each column of the interaction matrix 
by the diagonal element associated with that column. This will produce ones on the diagonal, and the 
off-diagonal terms may be interpreted as fractions (percentages) of the diagonal element in each column. 
The interaction matrix can then be written as: 

A = AG   and   Ä = AG"1  . (36) 

where A is the original interaction matrix, A is the normalized interaction matrix and G is a diagonal 
matrix of transformation factors that convert the raw voltages to engineering units. Substituting Eq. 36 
into Eq. 34 yields a two-step conversion process: 

F = AGV  , (37) 

where the voltages are first multiplied by G to transform them into engineering units, then the 
engineering units are in turn multiplied by the normalized interaction matrix to account for the 
interactions. 
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An example of a normalized interaction matrix, A, is shown in Table 1: 

1.00        -0.02 0.00 0.00 0.00 0.00 
0.00 1.00 0.02 0.00 0.01 -0.02 
0.00 -0.03 1.00 0.00 0.01 0.00 
0.00 -0.01 -0.01 1.00 -0.01 0.01 
0.01 0.00 0.01 0.00 1.00 0.02 
0.00 0.01 0.00 0.00 -0.01 1.00 

Table 1 Normalized interaction matrix. 

The advantage of this approach is that A is now composed of coefficients that make the interactions 
readily apparent. For the above interaction matrix, the Fx output can be computed by: 

Fx( with interactions )=^t"0-02^    • (38) 

The inverse of the gain matrix, G"1, for this example is shown in Table 2: 

1.53 0.00 0.00 0.00 0.00 0.00 
0.00 -5.95 0.00 0.00 0.00 0.00 
0.00 0.00 -5.95 0.00 0.00 0.00 
0.00 0.00 0.00 5.71 0.00 0.00 
0.00 0.00 0.00 0.00 -8.40 0.00 
0.00 0.00 0.00 0.00 0.00 -8.40 

Table 2 Inverse of the gain matrix. 

The original interaction matrix, A, prior to normalization is provided in Table 3: 

0.652 0.0039 0.0008 -0.0004 0.0005 0.0003 
-0.0007 -0.168 -0.0028 -0.0001 -0.0006 0.0019 
-0.0017 0.0045 -0.167 -0.0002 -0.0017 -0.0005 

0 0.0018 0.002 0.175 0.0007 -0.001 
0.004 0.0002 -0.001 0.0008 -0.119 -0.0019 

-0.0027 -0.0011 0.0003 -0.0007 0.0007 -0.119 

Table 3 Original interaction matrix. 

The subject of rotating dynamometer's is discussed next. The following two sections will cover issues 
such as offset angle and weight and zero compensation for dynamometers that rotate. 

Rotating Dynamometer Offset Angle 
When instantaneous measurements of forces and moments which are acting on a rotating object, such as 
a propeller, are desired, a dynamometer is mounted so that it rotates along with the object. Careful 
consideration must be given to the frequency response of the coupled system. Miller3 suggests that the 
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dynamometer must have a relatively flat frequency response extending from the lowest shaft frequency 
to several times the highest propeller blade frequency, and that it must also be able to measure the steady 
components of the forces and moments. Resonances that may exist in the coupled system that fall 
within this working range must be identified by a dynamic calibration. 

Forces and moments measured by a rotating dynamometer are determined relative to a coordinate 
system fixed within the dynamometer and defmed by the placement of the various strain gages within 
the unit. Therefore, as measurements are acquired at successive time intervals, the reference coordinate 
system is rotating. This is inconvenient. One would prefer that measurements at successive time 
intervals be referred to a fixed set of axes. Typically, when mounting the unit, the Jt-axis (thrust axis) of 
the dynamometer is oriented along the axis of rotation. If the jc-axis of the fixed set of reference axes for 
the vehicle is also oriented along the axis of rotation such that the origins of the two systems are 
coincident, then the transformation from the rotating system to the fixed system is particularly simple 
and requires knowledge only of the instantaneous angle, 0, that exists between corresponding axes of 
the two systems. 

Therefore, an additional task unique to rotating dynamometers is the determination of the instantaneous 
angular position of the device. Ordinarily, this is a trivial matter as the propeller angular position is 
measured; however, after installation of the rotor dynamometer, its initial orientation relative to this 
measured angular position is unknown. This section describes a method for the determination of this 
offset angle, 9off. 

Typically, weights are hung on the prop and the prop is rotated with the weights in place. The rotor 
dynamometer responds with measured force components along the F and Fz axes which vary in 

magnitude as the prop is rotated. When the rotating coordinate system of the dynamometer is precisely 
aligned with the Fz axis vertical, then the entire weight will be sensed along the Fz axis and none will 

be measured along the Fy axis. However, if a small offset angle exists, then the Fy axis will respond 

with a nonzero quantity. This measurement can be used to determine the offset angle. This idealized 
description is complicated by the fact that the dynamometer also measures its own weight and that of the 
prop even with no additional weight applied. Therefore, several measurements are required. 

A given prop position is acquired using the current prop position measurement and the corresponding 
prop position readout. Adjust the prop position until it is at a nominal zero degrees. Measure the prop 
F and F2 loads, the transformed Fy and Fz loads and the prop position with and without the added 

weight applied. The offset angle is then determined from: 

eoJf=smx ^y2      *V 

W 
(39) 

where W is the applied weight, Fy2 is the computed Fy side force measurement (interaction matrix and 

rotation matrix applied) with the weight applied at zero degrees of prop position readout, and F, is the 
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computed F side force measurement (interaction matrix and rotation matrix applied) without the 
weight applied at zero degrees of prop position readout. 

The procedure should then be repeated with the prop adjusted to some desired nonzero angle. Once 
again, calculate the offset for the prop position readout by taking the difference between the computed 
F outputs with and without the weight for the given prop position. A second computation of the offset 
angle will then serve as a check on the previously attained value. 

Rotating Dynamometer Weight and Zero Compensation 
Both rotor and stator dynamometers will measure the weight of the respective propeller parts in water. 
For the case of the rotor dynamometer, the propeller weight will result in a sinusoidal noise that will 
have an amplitude equal to the propeller weight. This is a result of the fact that forces and moments are 
measured with respect to the coordinate system rotating with the dynamometer. This weight 
contribution must be removed in order to measure only those forces and moments exerted by the fluid on 
the rotor or stator, respectively. 

The method for removal of component weights requires that measurements be referred to a coordinate 
system fixed within the vehicle and denoted the body coordinate system. For a fixed stator 
dynamometer, no transformation is required, whereas for the rotor dynamometer, a transformation from 
the rotating dynamometer coordinate system to the fixed body coordinate system is required. This 
transformation from the rotating system to the fixed system is particularly simple and requires 
knowledge only of the instantaneous angle, 6, that exists between corresponding axes of the two 
systems. The transformation is given by: 

1 0 0 0 0 0 

0 COS0 -sin# 0 0 0 

T   = 
0 

0 

sin# 

0 

COS0 

0 

0 

1 

0 

0 

0 

0 

0 0 0 0 COS0 -sm.0 

0 0 0 0 sin# COS0 

(40) 

Recall that for a set of N instances of dynamometer measurements with M measurements for each 
instance with the data grouped in column format, F is an Mx N matrix of input forces and moments, V 
is an Mx N matrix of resulting voltages, and A is the Mx M interaction matrix. The data must then 
satisfy: 

F = AV  . (41) 

Application of the transformation in Eq. 40 to rotor dynamometer data yields forces and moments 
referred to the body coordinate system of the vehicle: 
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F*c=Tro/AV (42) 

Note that a similar approach must be applied to any rotating dynamometer such as those used for 
appendages on the vehicle. 

Now, the weight vector for the propeller (or appendage) will always point vertically downward when 
referred to an inertial coordinate system fixed at the surface of the fluid in which the vehicle is operating. 
However, the vehicle itself may assume any arbitrary attitude while maneuvering. Therefore, the weight 
vector must be transformed from the fixed inertial system into the body coordinate system moving with 
the vehicle. This transformation requires knowledge of the Euler angles: q>, 6, and y/ (roll, pitch and 
yaw) which describe the orientation of the vehicle relative to the fixed inertial coordinate system at a 
given instant in time. 

The transformation matrix may be found in the SNAME paper2 and is given by: 

T      = euler 

cos#cosy cosOsmy/ -sin# 
sinq>sin0cosy/-cosq>siny/   sin #> sin 0 sin y +cos #> cosy   sin^cosö 
cos <p sin 0 cos y/ + sin <p sin y/   cos #> sin 0 sin y-sin #> cosy   cos^?cos0 

(43) 

Applying this transformation to the weight vector yields: 

0 
W   =T "Ac       leuler 0 

w 
(44) 

At this point, dynamometer measurements and the weight vector have been transformed into the body 
coordinate system affixed to the vehicle. Force components measured by the dynamometer may be 
corrected by simply subtracting the weight components. Moment components are corrected by 
subtracting the components of the vector R x Wic, where R is the distance vector from the dynamometer 
origin to the point of action of the propeller (or appendage) weight. Summarizing, then, each instance of 
dynamometer measurements can be corrected to remove the influence of the weight of the propeller (or 
appendage) as follows: 

My 

M. * JNoW 

Fbcx      "bcx 

F       -W rhcy      "bey 

Fbcz ~ ''bez 

^-(RxWj, 
Mfcr(RxWj? 

(45) 
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Repeating this correction for each of the ^ instances of dynamometer measurements yields the Mx N 
matrix offerees and moments referred to the body coordinate system and denoted F^^. 

For rotating dynamometers the subject of zero compensation is somewhat more complicated than for 
those that do not rotate. In general, for a non-rotating instrument, the readings of the instrument at a 
zero condition must be subtracted from all other measurements made by that instrument during data 
collection. However, for a rotating dynamometer, the rotation matrix Tro, used to transform the 
measurements to body coordinates is a nonlinear time-varying transformation. The procedure for zero 
compensation in this case is as follows. 

With the vehicle at rest, so that the fluid exerts no forces and moments upon the propeller (or 
appendage), acquire an instance of dynamometer measurements and correct the components to remove 
the influence of propeller (or appendage) weight as described above. Then, the data should satisfy: 

F»rsT*AV0> (46) 

where V0 is a vector of dynamometer output voltages with zero forces and moments applied to the 
dynamometer. If nonzero, then these voltages represent adjustments that must be subtracted from the 
dynamometer outputs when acquiring data. The vector V0 can be found from: 

V0=A-1Tro,-'F^^=A-,Tro,rFJVoH,   . (47) 

Note that both transformation matrices, Tro, and T„,fr, are orthogonal which implies that they satisfy: 

T-i =TT (48) 

The next section describes the equations that are required to use two dynamometers about a common 
reference center. This might be required when the loads to be measured along one or more axes exceed 
the range of one dynamometer alone. 



Equations for Utilizing Two Six Degree-of-Freedom Dynamometers 
This section describes the equations needed to resolve the output of two six-degree-of-freedom 
dynamometers about a common reference center. Each of the six-degree-of-freedom dynamometers is a 
transducer capable of simultaneously measuring three force components, denoted by Fx,Fy, and F2 and 

three moments, denoted by Mx, My, andMz. 

The simplest and most frequently utilized case involves two dynamometers that are aligned along 
their Fx axis. The desired reference point for the resolved output is a point mid-way between the gages. 
This case is shown in Fig. 5 where the dynamometer on the left is denoted as the forward gage and the 
dynamometer on the right as the aft gage. The reference point is a distance d from each of the 
dynamometers. 

/Sv •6^ t    V Fy 

G MzT 

Fz 

Reference 
Center 

Fig. 5 Two dynamometers aligned along their F, axis and equidistant 
from the reference center. The y-axis is into the paper. 

The equations to obtain the forces and moments about the reference point are: 

F=FX    +FX X XM Xafl 

F =F    +F 
y       yjM       yon 

FZ=FZ    +F2 z zfwd zafi 

M=Mr    + Mr X *fwd *afi 

M=MV    +MV   +d(Fz   -FZ   ) y y/wd yaft        \ zqn       Z/M I 

M=M2    +MZ   +C?(F     -FV ) 
2 Zfod Zqft \     yfwd yafi I 

(49) 
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The most general case involves two dynamometers that are offset from each other along all three 
primary axes. If x,, v, and z, represent the offsets from the forward gage to the desired reference point 
and x2, y2 and z2 represent the offsets from the aft gage, then the equations to obtain the forces and 
moments about the desired reference point are given by: 

F =F    +F 
»      xf~>      x« 

F =F    +F 
y       y/M       y* 

Mx = MXM + MXofl + z, FyM - yx F^ + z2 Fy^ - y2 F^ ^ 

My=M^ +Myeß -zxFXM +X]FZ^ -z2FXafi +x2FZafi 

MM=M,M +MZ^ +yxFXf^ -XlFy^ +y2Fx^ -x2Fy,ft 

If in Eq. 50 the following substitutions are made: 

yx =y2 =zx =z2 =0,   xx=-d   and   x2=d (51) 

then one can see that Eq. 50 reduces to Eq. 49. 

The final section describes how one may determine the uncertainty in dynamometer measurements for 
the most common application. This example will then permit the reader to extend the uncertainty 
calculations to incorporate any of the other topics presented in this paper in a straightforward manner. 

Data Uncertainty 
The starting place for computation of uncertainty in dynamometer measurements is to determine the 
uncertainty present in the applied forces or moments to the dynamometer and in the output from the 
dynamometer during static calibration of the device. This fundamental raw data is obtained as described 
above in the calibration procedure. All of the remaining steps make use of this raw data; uncertainties in 
data at any subsequent step are calculated by propagating the uncertainties in the calibration data through 
the various governing equations at each step. Recall that the purpose of the calibration procedure was to 
produce a linear approximation of. the behavior of the dynamometer by computing the interaction 
matrix, A. Clearly then, the next goal of the uncertainty analysis must be to determine the uncertainty 
that has propagated into each element of the interaction matrix. Then, armed with this information, one 
can then easily determine the uncertainty in future measured forces and moments from the dynamometer 
by propagating the uncertainty in the interaction matrix and in measured output voltages into the 
reduction equation: 

F = VA  . (52> 
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Following Coleman and Steele5, uncertainty in a measurement consists of bias error and precision error. 
Bias error is a constant, systematic error, whereas, precision error is the random contribution often 
referred to as repeatability error. Considering the forces and moments applied to the dynamometer 
during calibration, analysis of the sources of bias error will depend upon the calibration method 
employed. For example, consider a calibration stand using weight pans connected to cables passing 
through pulleys to apply the loading to the dynamometer. If the calibration stand has not been 
accurately leveled, applied forces and moments will not be as expected. If various geometrical distances 
associated with the calibration stand are inaccurately measured, applied forces and moments will be 
affected by this inaccuracy. If the weights used to load the pans have drifted such that their true weight 
is not their stated weight, additional bias errors will creep into the calibration. If the pulleys do not have 
ideal, frictionless bearings, the true applied forces and moments will be altered by pulley resistance. 
Variation in physical constants can lead to bias errors; this is often the case when thermal variations are 
present. Incorrect experimental methods can lead to bias errors. For example, application of forces and 
moments during calibration in ascending or descending order as opposed to a random order can lead to a 
bias uncertainty. Identification of elemental bias errors for other types of dynamometer calibration 
equipment, such as load cells, would proceed in a similar fashion. 

Sources of bias error are also present in the output from the dynamometer. Referring back to Eq. 2, 
repeated below for convenience, biases may be present in the A/D converter, the amplifier gain, and the 
applied excitation voltage. For example, a quantization bias error in the analog-to-digital converter is 
usually taken to be one-half of the least significant bit. Biases from the amplifier and power supply 
should be identified from manufacturer's specifications and should include factors such as gain, linearity 
and zero errors. 

fV_^J 20   V ( 
= bits * 

.4096 bit, 
1000000 pV\   (   1 ' \^ 

\ Gain, \Vex J 
(2) 

A detailed accounting of the sources of bias error is often difficult and requires a careful analysis of the 
calibration device, physical constants and geometrical data, associated experimental equipment and 
calibration procedures. Because of the expense that such a thorough examination may entail, one should 
perform a cursory investigation to estimate the order of magnitude of the biases. If all biases are 
negligible when compared to precision uncertainties, then clearly precision uncertainty will dominate, 
and setting the biases to zero will not significantly alter the calculation. 

Precision error is determined by repetition. For the dynamometer calibration device, the ability to 
repeatedly apply a given force or moment must be quantified. If Ft is a force component applied by the 
calibration device during the itn repetition, and N is the total number of measurements (spots) by an 
independent force gage (calibration standard), then compute a mean and a standard deviation using: 

1/2 1     N 1 N   , \, 
F=—YFI    ^d   SF=—l—Y(FF)2 (53) 
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A 95% confidence estimate of the precision uncertainty at a specific magnitude of applied force is 
estimated as: 

P -^ 
¥~4N 

(54) 

where t represents a value drawn from the Student's /-distribution for a 95% confidence level and 
v = N-\ degrees of freedom. Beware, if Nis small, then a 95% confidence level estimate will be large 
due to the paucity of the data; 5 to 10 trials should be sufficient to characterize the uncertainty level for a 
given force magnitude. One must perform this computation for a selection of force magnitudes 
throughout the dynamic range of the device. Similarly, the precision uncertainty of the output from the 
dynamometer, expressed in //F/F„ , should be determined from repetitions with the same applied force 
or moment combination for a selection of force magnitudes throughout the dynamic range of the device. 

Summarizing, a calibration of a six-degree-of-freedom dynamometer will yield an NxM array of 
applied force and moment components, F, and an NxM array of corresponding output voltages, V. 
(Note that these arrays have been written in row format, for convenience.) To each element of the F and 
V arrays there will be a corresponding bias and precision uncertainty that has been determined as 
described above. One may find, for example, that the bias and precision errors vary with force 
magnitude and are quite different for each axis. This is the most general case requiring distinct bias and 
precision uncertainties for each element of the F and V arrays. Conversely, one may find that the bias 
and precision errors are insensitive to force magnitude and are approximately the same for each axis; in 
this case, a single value of bias and precision uncertainty may be used for each element of the F and V 
arrays. 

To arrive at an overall uncertainty, Uy, for the ith instance (of N instances) of the jth applied force 

component (of M components) one combines the bias uncertainty with the precision uncertainty. The 
root-sum-square (RSS) method is most often used and is given by 

^•=V3 U V 
(55) 

with similar notation for the output voltages. This uncertainty is considered to be a 95% coverage 
estimate when B and P are 95% confidence values. 

Next, consider how uncertainty propagates into a result. A general formula5 for the uncertainty, UR, 

which propagates into a result, R, from uncertainties in M different variables, Xt; i = 1,..., M, where 

R = R(Xl,X2,...,XM) is given by: 

UR = 
8R 

KBX, 

Y    ( 
V, 

dR 

8X, 
Vt + + dR 

BX„ 
£A 

1/2 

(56) 
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When applying this formula to dynamometer measurements, we must determine how uncertainties in the 
calibration data propagate into each element of the interaction matrix and into future measured forces 
and moments. Recall that the solution for the interaction matrix is 

A = (vrv)"VF . (6) 

If we consider only one dynamometer axis at a time (one column of A and F), then Eq. 6 can be 
rewritten as 

VrVA,.=VrF(. . (57) 

which is the classic form of the normal equations for a Least Squares fit problem. In this case, the basis 
functions of the fit are the six output voltages from the dynamometer vis a vis the more commonly 
employed monomials. Therefore, to determine the bias and precision uncertainty propagated into each 
column of the interaction matrix, one must determine how uncertainty in input data propagates into the 
coefficients of a Least Squares fit. Similarly, to determine the uncertainty present in future measured 
forces and moments from the fit (Eq. 52), one must understand how uncertainty propagates through a 
Least Squares fit into the output. This is done by simply applying Eq. 56 to the appropriate equations. 
The primary difficulty when using Eq. 56 is the calculation of the partial derivatives; a simple example 
will be used to make this clearer. 

For example, consider the calculation of the uncertainty propagated into the slope, m, for a linear least 
squares fit of the form, v = mx+b. Recall that this slope depends on N pairs of input data (xny,) as 

described by 

N N 

^Sx'^"Sx'S^ 
w=__w '-»     "       . (58) 

/ N \2 

i=i V, »=i 

The uncertainty in the slope depends upon the uncertainties in each of the abscissas and ordinates of the 
raw data used to construct the fit.  In order to apply Eq. 56 to Eq. 58, one must determine the partial 

derivatives, and , which are found to be 
dxi dyt 

2>  
a*.        JV2>,2-(2>J 8» tfl*?-(5>.r 

Then, the uncertainty in the slope may be found from 

dm  Ny*-JLyi-2m(Nx'-yZx') and dm _   Nx>-Hx< (59) 
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£/_ = 

dm 
U. 

J&-U 

[dx2   " 

(dm 
by,    »)     {dy2   * 

^LUx 
dx        " 

SyN  ", 

1/2 

(60) 

This example illustrates the fact that the analytical derivation of these partial derivatives for the simple 
case of a least squares fit of first order requires some tedious algebra and is clearly the most difficult step 
in applying the uncertainty calculation described by Eq. 56. One can imagine that these calculations 
could be performed for a second order (quadratic) fit with more difficulty, but that higher order fits 
would be too difficult. However, a method has been found by which these derivatives may be computed 
with ease for least squares curve and surface fits of any order, and implementing this method within a 
computer program enables the straightforward calculation of the propagation of uncertainty through such 
fits. The details of that method are too lengthy to reproduce here; however, the interested reader may 
find the information in the report by Hess and Smith.6 

The example demonstrates how to propagate uncertainty into one of the coefficients of a least squares 
fit. For dynamometer calculations this example corresponds to the determination of the uncertainty 
propagated into one element of a given column of the interaction matrix. Given the uncertainties in the 
calibration data, a computer program can very rapidly perform these calculations. The report6 also 
details how uncertainty may be propagated into future values determined from the fit. Thus, 
uncertainties in forces and moments measured by a calibrated dynamometer may be determined. Note 
that Eq. 60 deals with a general uncertainty, U. The propagation of precision uncertainty uses an 
identical equation with U replaced by P; however, the equation required to propagate bias uncertainties 
requires additional terms if biases are correlated. The details may be found in Hess and Smith6 or in 
Coleman and Steele5. 

In a similar fashion, this uncertainty analysis may be extended to other quantities for which the 
governing equations appear in this paper. One proceeds by applying Eq. 56, and computing the required 
partial derivatives. In some cases, the analytic determination of the partial derivatives will be difficult or 
impossible. One may alternatively compute the derivatives numerically using forward, backward or 
central differences. The implementation of such a technique is usually referred to as a jitter program5. 

Conclusions 
All of the techniques described in this paper have been tested and found to give good results. These 
methods have found use with both rotating and fixed dynamometers that have been employed on captive 
models and on free-running radio-controlled models during testing conducted within the Maneuvering 
and Control Department. 
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Appendix 

Interaction Matrix Update from AMTI 

As procedure dictates for a recent set of captive model experiments, the rotor and stator dynamometers 
were sent back to the dynamometer manufacturer (AMTI) for an extensive re-calibration involving 53 
data points. The calibration results were delivered complete with interaction matrices. When the 
calibration results were checked by using the interaction matrices to recover the calibration data, large 
errors were discovered. AMTI was notified, and after investigation, they discovered an error in their 
computer program that generates the interaction matrices. We requested updated interaction matrices for 
all of the AMTI dynamometers in our possession. In accordance with ISO 9000 procedures, this 
appendix addresses the errors that are indicated by this factory update. 

A spreadsheet was constructed that contains a comparison of uncorrected and corrected interaction 
matrices for all of the rotor and stator dynamometers that have been used for various experiments. A 
copy of that spreadsheet is provided below as Table 4. In each case the corrected matrix appears first 
followed by the original uncorrected matrix from AMTI. The matrices have been normalized for easy 
comparison using the procedure described previously. The last two comparisons contain three matrices 
with the third matrix developed using the pseudo-inverse method discussed in a previous section. The 
corrected matrices obtained from AMTI do not use the pseudo-inverse method; instead, they use a subset 
of the calibration data. Therefore, the final comparisons serve as a check on the corrected matrices from 
AMTI. 

NSSN 
ROTOR 
GAINS NORMALIZED 4/00 INTERACTION 

MATRIX FOR M3792 
1.54321 1.00 -0.02 -0.01         -0.02 -0.02 0.01 
-5.95238 0.00 1.00 0.01           0.01 0.00 -0.01 
-5.95238 0.00 0.01 1.00          -0.01 0.01 0.01 
5.68182 0.00 0.01 -0.03          1.00 0.01 0.00 
-8.40336 0.01 0.01 0.01           0.01 1.00 0.00 
-8.40336 0.00 0.01 -0.01          0.00 0.01 1.00 

GAINS % CHG. OLD INTERACTION MATRIX 
FOR M3792 

1.54799 -0.3096 1.00 -0.04 -0.02         -0.05 -0.10 0.04 
-5.95238 0.0000 0.00 1.00 0.01           0.01 -0.01 -0.02 
-5.98802 -0.5988 0.00 0.01 1.00          -0.01 0.02 0.02 
5.68182 0.0000 0.00 0.01 -0.03          1.00 0.02 0.00 
-8.40336 0.0000 0.00 0.00 0.00          0.01 1.00 0.00 
-8.33333 0.8333 0.00 0.01 0.00          0.00 0.01 1.00 

25 



NSSN STATOR 
GAINS NORMALIZED 4/00 INTERACTION 

MATRIX FOR M3795 
1.24224 1.00 -0.02 -0.02 0.00 0.01 0.00 
-4.60829 0.00 1.00 -0.01 0.00 0.00 0.06 
-4.69484 0.00 0.01 1.00 0.00 -0.05 0.00 
2.58398 0.00 0.01 -0.01 1.00 0.00 -0.01 
-3.31126 0.00 -0.02 0.02 0.01 1.00 -0.01 
-3.25733 0.01 0.02 -0.04 0.01 0.01 1.00 

GAINS % CHG. OLD INTERACTION MATRIX 
FOR M3795 

1.24224 0.0000 1.00 -0.07 -0.09 -0.01 0.03 0.01 
-4.60829 0.0000 0.00 1.00 -0.01 0.00 0.00 0.06 
-4.69484 0.0000 0.00 0.01 1.00 0.00 -0.05 0.00 
2.58398 0.0000 0.00 0.01 -0.01 1.00 0.00 -0.01 
-3.31126 0.0000 0.00 -0.02 0.02 0.01 1.00 -0.01 
-3.25733 0.0000 0.00 0.02 -0.04 0.00 0.01 1.00 

ONR 
BODY1 
GAINS NORMALIZED 4/00 INTERACTION 

MATRIX FOR M3849 
1.53374 1.00 -0.02 0.00 0.00 0.00 0.00 
-5.95238 0.00 1.00 0.02 0.00 0.01 -0.02 
-5.98802 0.00 -0.03 1.00 0.00 0.01 0.00 
5.71429 0.00 -0.01 -0.01 1.00 -0.01 0.01 
-8.40336 0.01 0.00 0.01 0.00 1.00 0.02 
-8.40336 o.oo - 0.01 0.00 0.00 -0.01 1.00 

GAINS % CHG. OLD INTERACTION MATRIX 
FOR M3849 

1.53374 0.0000 1.00 -0.05 -0.01 0.00 -0.02 -0.01 
-5.95238 0.0000 0.00 1.00 0.02 0.00 0.01 -0.03 
-5.98802 0.0000 0.00 -0.01 1.00 0.00 0.03 0.01 
5.71429 0.0000 0.00 -0.01 -0.01 1.00 -0.01 0.02 
-8.40336 0.0000 0.00 0.00 0.00 0.00 1.00 0.02 

-8.40336 0.0000 0.00 0.00 0.00 0.00 -0.01 1.00 
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CAPTIVE MODEL ROTOR 
M3665 

GAINS NORMALIZED 4/00 INTERACTION 
MATRIX FOR M3665 

1.57233 1.00 -0.02 -0.01 -0.01 0.00 0.00 
-5.58659 0.00 1.00 0.00 0.00 0.01 0.06 
-5.58659 0.00 0.00 1.00 0.00 -0.06 0.00 
5.37634 0.00 -0.01 0.02 1.00 0.00 0.00 
-8.40336 0.02 0.00 -0.01 0.00 1.00 0.01 
-8.40336 0.00 -0.01 -0.02 0.00 0.01 1.00 

GAINS     %CHG.   OLD INTERACTION MATRIX FOR M3665 
(1/00) 

1.57233 0.0000 1.00 -0.04 -0.02 -0.02 0.01 -0.01 
-5.58659 0.0000 0.00 1.00 0.00 0.00 0.02 0.12 
-5.58659 0.0000 0.00 0.00 1.00 0.00 -0.12 0.01 
5.37634 0.0000 0.00 -0.01 0.02 1.00 -0.01 0.01 
-8.40336 0.0000 0.01 0.00 0.00 0.00 1.00 0.01 
-8.40336 0.0000 0.00 0.00 -0.01 0.00 0.01 1.00 

PSEUDO-INVERSE 
INTERACTION MATRIX M3665 

GAINS     % CHG.     PSEUDO-INV INTERACTION 
MATRIX FOR M3665 

1.56954 0.1773 1.00 0.00 0.00. -0.01 0.00 0.00 
_K tiAAAA 0.7545 0.00 1.00 0.00 0.00 0.01 0.06 
-5.51236 1.3288 -0.01 0.01 1.00 0.00 -0.06 0.00 
5.42294 -0.8668 0.00 -0.02 0.01 1-00 -0.01 0.00 
-8.37161 0.3778 0.02 0.00 0.01 0.00 1.00 0.01 
-8.37189 0.3745 0.03 -0.01 -0.01 0.00 0.01 1.00 

CAPTIVE MODEL STATOR 
M3738 

GAINS NORMALIZED 4/00 INTERACTION 
MATRIX FOR M3738 

1.29199 1.00 -0.01 -0.02 0.00 0.01 0.00 
-4.71698 0.00 1.00 0.00 0.00 0.00 0.02 
-4.73934 0.00 0.01 1.00 0.00 -0.02 0.00 
2.61097 -0.01 0.01 -0.02 1.00 0.00 -0.01 
-2.56410 0.01 0.00 0.00 0.01 1.00 -0.01 
-2.54453 0.01 0.00 -0.02 0.01 0.02 1.00 
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OLD INTERACTION MATRIX FOR M3738 
(2/03/00) 

1.29199 1.00 -0.04 -0.09 0.00 0.02 0.00 
-4.71698 0.00 1.00 0.00 0.00 0.00 0.02 
-4.73934 0.00 0.01 1.00 0.00 -0.02 0.00 
2.61097 0.00 0.01 -0.02 1.00 0.00 -0.01 
-2.56410 0.00 0.00 0.00 0.01 1.00 -0.01 
-2.54453 0.00 0.00 -0.02 0.01 0.02 1.1)0 

GAINS % CHG. PSEUDO-INV INTERACTION 
MATRIX FOR M3738 

1.28593 0.4694        1.00         0.00         -0.01 0.00 0.01 0.00 
-4.67530 0.8836        0.00          1.00         0.00 0.00 0.00 0.02 
-4.68274 1.1941        0.00          0.01          1.00 0.00 -0.02 0.00 
2.62522 -0.5460       0.00         -0.02        -0.02 1.00 0.00 -0.01 
-2.56102 0.1204        0.00         -0.02         0.01 0.01 1.00 -0.01 
-2.56003 -0.6093       0.04          0.00          0.00 0.00 0.01 1.00 

Table 4 Uncorrected and corrected interaction matrices. 

The normalization procedure reduces the interaction matrices to a form where the analysis can be 
performed by inspection. The analysis involved two steps. The first step was to compare the new 
interaction matrices with those computed using the pseudo-inverse method. If large errors remain, then 
the AMTI interaction matrices still cannot be used. The above shows that the difference between the 
matrices computed using the pseudo-inverse method and the AMTI matrices is only greater than 2% for 
the Fx interaction into Mz. Identical matrices were not expected, as AMTI does not use all of the 
calibration data to produce their interaction matrices; however, their corrected matrices appear to be 
reasonable. 

The second step in the analysis procedure was to compare the old and new interaction matrices. There 
are a number of interaction changes that are greater than 2%, and these are shown in red. A threshold 
level of 2% was chosen because the gages are specified as 2% devices. For experimental results that 
relied upon the old interaction matrices, these differences will have to be examined. Since the raw 
voltage data is available, the analysis can be performed again using the updated matrices. An 
examination of the interaction matrices given above shows that the first row ( Thrust or Fx) has had a 
change in the side force Fz correction. For some of the other updated matrices, the Fz correction due to 
My and the Fy correction due to Mz have also been changed. 

The conclusion to be drawn from this analysis is that the new AMTI procedure for computing the 
interaction matrix has been validated using the 56 point calibration data. The errors in the recovery of 
the calibration data can be maintained within the 2% accuracy specified by the manufacturer. Based on 
these calibration results, the updated interaction matrices should be used for the analysis of propeller 
data. 
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