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ABSTRACT 

Current motion tracking technologies fail to provide accurate wide area tracking of 

multiple users without interference and occlusion problems. These limitations make 

difficult the construction of a practical and intuitive interface, which allows humans to be 

inserted into networked virtual environments in a fully immersive manner. Advances in the 

field of miniature sensors make possible inertial/magnetic tracking of human body limb 

segment orientation without the limitations of current systems. Due to implementation 

challenges, inertial/magnetic sensors have not previously been used successfully for full 

body motion capture. This research proposes to overcome these challenges using multi-axis 

sensors combined with a quaternion-based complementary filter algorithm capable of 

continuously correcting for drift and following motion through all orientations without 

singularities. 

Primarily, this research involves the development of a prototype tracking system to 

demonstrate the feasibility of hybrid RF/magnetic/inertial motion tracking. Construction of 

inertial/magnetic (MARG) sensors is completed using off-the-shelf components. 

Mathematical analysis and computer simulation are used to validate the correctness of the 

complementary filter algorithm. The implemented human body model utilizes the world- 

coordinate reference frame orientation data provided in quaternion form by the 

complementary filter and orients each limb segment independently. Calibration of the 

model and the inertial sensors is accomplished using simple but effective algorithms. 

Physical experiments demonstrate the utility of the proposed system. These experiments 

involve the tracking of human limbs in real-time using multiple inertial sensors. 

The motion tracking system produced has an accuracy which is comparable and a 

latency which is superior to active electro-magnetic sensors. The system is "sourceless" 

and does not suffer from range restrictions and interference problems. With additional 

MARG sensor packages, the architecture produced will easily scale to full body tracking. 

This new technology overcomes the limitations of motion tracking technologies currently 



in use. It will provide wide area tracking of multiple users in virtual environment and 

augmented reality applications. 
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I. INTRODUCTION 

A.        MOTIVATION 

Fully developed networked synthetic environments (SE) stand to revolutionize the 

fields of education, training, business, retailing and entertainment. They will fundamentally 

alter our societies and the way in which mankind views the world. In the educational field, 

synthetic environments will offer the ultimate in hands-on and visualization of difficult 

concepts. They will allow training to transpire in a place much like that in which the skills 

being practiced will be used without exposure to possible hazards and at less cost. In the 

workplace, employees will be able to work "side by side" even though they may be 

physically separated by hundreds or even thousands of miles. Using synthetic 

environments, corporations will obtain a safe, economical and efficient method of testing 

new concepts and systems. Retailers will create virtual department stores where consumers 

will be able to try out products to an unprecedented degree before actually buying them. 

Using synthetic environments, the entertainment industry will be able to create entire 

worlds in which customers will be able to experience thrills and live out entire fantasy lives. 

[Ref. 21.][Ref. 97.] 

The power of the synthetic environment lies in its ability to immerse users in a 

different world. The more complete the immersion, the more effective the synthetic 

environment. For complete immersion, the user should sense and interact with the synthetic 

environment in the same manner in which interaction with the natural world takes place. 

Interaction in the natural world results from body motion. Information regarding the 

surrounding environment is obtained through the five senses. Changes in body posture and 

position directly affect what is seen, heard, felt and smelled. The parameters sensed in the 

environment are altered and manipulated by the actions of the body. Thus, in order for a 

user to interact with a synthetic environment in a natural way and have the synthetic 

environment present appropriate information to the senses, it is imperative that data 

regarding body motion and posture be obtained. Body posture and location data are also 



needed in multi-user environments to drive the animation of avatars which represent the 

actions of users of the environment to each other. 

At this time, there is no practical and intuitive interface that allows an individual 

human to be inserted into a SE in a fully immersive manner. Numerous motion tracking 

technologies are currently in use, but each suffers from its own set of limitations. 

Depending on the technology, these limitations may include marginal accuracy, user 

encumbrance, restricted range, susceptibility to interference and noise, poor registration, 

occlusion difficulties and high latency. Due to these problems, real-time animations of 

avatars must be largely script-based using motion libraries. For the most part, only a single 

user may be tracked in a small working volume. Thus, none of the current technologies 

fulfills the need for wide-area tracking of multiple users. The ideal motion tracking 

technology must meet several requirements. It should have low latency, be tolerant to noise 

and other environmental interference, track multiple users and maintain both adequate 

accuracy and registration throughout a large working volume [Ref. 62.]. 

The primary reason current tracking systems fail to meet the requirements described 

above is the dependence of these systems on a generated "source" to determine orientation 

and location information. This source may be sent by transmitters to body-based receivers 

or it may be sent from body-based transmitters to receivers positioned at known locations 

throughout the working volume. Usually the effective range of this source is extremely 

limited or there may be compromises between resolution and range. Interference with or 

distortion of this source will at best result in erroneous orientation and position 

measurements. If the source is no longer received, it can cause a complete loss of track. 

Huge gains in reliability and capability would be achieved through the development of a 

"sourceless" sensor technology which could determine orientation and position without 

depending on an externally generated source. 

The development of micromachined magnetometers and inertial sensors over the 

last few years makes it possible to determine orientation based on the passive measurement 

of physical quantities which are directly related to the motion and orientation of a rigid 



body to which they are attached. The "sourceless" nature of inertial and magnetic 

orientation tracking makes possible a full body posture tracking system that avoids the 

problems associated with current technologies and ultimately allows tracking over a 

virtually unlimited area. 

Inertial/magnetic orientation tracking is based upon established algorithms in which 

local magnetic field, angular velocity, and linear acceleration data are combined to obtain 

estimates of location and orientation. It involves placing miniature sensor units on the body 

segments to be tracked. In the method discussed here, each unit contains a three-axis 

magnetometer, a three-axis angular rate sensor, and a three-axis accelerometer. In this 

document, nine-axes sensor units of this type are referred to as MARG (Magnetic, Angular 

Rate, Gravity) sensors.[Ref. 6.] Integration of angular rate sensor data provides the 

information necessary to calculate the orientation of a human body segment for relatively 

short time periods. However, sensor drift and bias errors associated with small and 

inexpensive sensors make it impractical to track orientation for long time periods. In the 

long term, accelerometers can be used to determine the direction of the local vertical by 

sensing acceleration due to gravity. In a similar manner, magnetometers can sense the 

direction of the local magnetic field. Thus, use of data from these complementary sensors 

can be used to eliminate drift by continuous correction of the orientation obtained using rate 

sensor data. In this manner a continuously accurate estimate of the orientation of each 

individual limb segment can be obtained. 

The orientation obtained using MARG sensors is in an earth fixed coordinate 

reference frame. Using this information, each limb segment can be oriented within the 

synthetic environment without regard to the orientation of adjacent segments [Ref. 

64.] [Ref. 28.]. The posture of the user can then be reconstructed by simply attaching the 

representations of individual limb segments together in the same manner in which the 

corresponding segments on the body of the user are connected. There is no need for 

transformations between limb segment associated coordinate frames nor for determination 



of joint angles. Body posture is entirely determined based upon limb segment orientation 

and length. 

It should be noted that though it is possible to determine limb segment orientation 

and hence body posture using only inertial and magnetic data, determining position 

requires double integration of linear acceleration data. The inherent noise, manufacturing 

defects, and measurement errors associated with low cost inertial sensors, and the quadratic 

growth of errors through double integration, makes uncorrected acceleration-based 

position tracking impractical for more than a very short period. Positioning of the user's 

avatar within the synthetic environment would thus be better accomplished through the use 

of a long range positioning system which is not susceptible to interference or noise to 

precisely locate a single body reference point. Depending on the accuracy required, GPS 

could be used in outdoor applications to provide the required position vector [Ref. 45.]. A 

more precise spread spectrum radio frequency (RF) positioning system could be used for 

indoor applications or applications requiring greater accuracy.[Ref. 24.] 

In the complete inertial tracking system, individual MARG sensors will output the 

angular orientations of each tracked body segment. The outputs of these sensors will be 

conditioned and at least partially processed by a small wearable computer carried by the 

user. A position vector for at least one point on the body would be determined with the aid 

of an RF spread spectrum positioning system. These data would then be packaged into a 

serialized bit-stream and sent via wireless transmission to a base electronics package for 

further processing and submission to a synthetic environment. The resulting orientation and 

position data would be used to drive the animations of human avatars in a networked virtual 

environment and provide posture and location correct information to the senses of the user. 

If difficulties arise due to intermittent reception of RF positioning information, location can 

be estimated inertially for short periods of time. 



B. GOALS 

The research outlined in this document proposes to demonstrate the feasibility and 

capabilities of full body angle tracking by tracking human limb segments using multiple 

prototype MARG sensors. 

1. Problem to be Solved 

Several challenges have been overcome to bring a magnetic/inertial orientation 

tracking system to fruition. Inertial orientation tracking in high acceleration applications 

without serious drift error requires an integrated nine-axis sensor containing a three-axis 

accelerometer, a three-axis rate sensor and a three-axis magnetometer. Each sensor triad 

must be properly calibrated to determine sensor nulls and scale factors. Filtering and 

combining sensor data in a complementary manner requires the design of an efficient, but 

accurate software filter capable of tracking continuously in all orientations without 

singularities. Furthermore, using world-coordinate frame orientation data to drive the 

animation of an avatar requires development of a simplified human body model which 

allows independent positioning of each limb segment. Since the sensors can not be 

precisely mounted on each limb segment in a predefined position, the human model must 

take into account the offset between the body axes of each limb segment and the axes of the 

attached sensor. Finally, the animation of the avatar must take place with minimal lag and 

latency. 

2. What is Fundamentally New 

This research demonstrates a new technology for human body tracking in 

networked virtual environment applications. It shows that it is possible to construct a full- 

body tracking system capable of accurately determining body posture with minimal lag 

throughout a large working volume without occlusion problems. Unlike current body 

tracking technologies, the system is not continuously dependent upon any external source. 

This work describes the development of a novel nine-axis inertial sensor containing three 

orthogonal accelerometers, three orthogonal angular rate sensors, and three orthogonal 



magnetometers mounted in combination. At the core of the system is a complementary 

filter based upon quaternions. The software filter can track human body limb segments 

through all orientations without singularities. Drift corrections are performed continuously. 

Though the filter is nonlinear, it can be shown through nonlinear simulations and actual 

system performance that linear analysis of the filter is relevant and can by used as a method 

for selecting scale factors and for predicting performance. Animation of the avatar is 

accomplished using only orientation data. There is no need for complex kinematic 

computations to determine joint angles. Novel algorithms allow calibration of both the 

sensors and the human body model offsets quickly and accurately with no special 

equipment. 

3.        Contribution of this Research 

This research demonstrates a new technology that overcomes the limitations of 

motion tracking technologies currently in use. The technology is capable of providing wide 

area tracking of multiple users for synthetic environment and augmented reality 

applications. This system makes a significant step toward "total immersion" of users in a 

networked synthetic environment by allowing them to interface with it using their natural 

bodies. 

C.        METHOD 

Primarily, this research involves the development of a prototype MARG sensor 

tracking system including innovative calibration and angle tracking software. Examination 

of this implementation demonstrates the feasibility of a hybrid MARG/RF motion tracking 

system for networked synthetic environments. 

Mathematical analysis, computer simulation and physical experiments are used to 

validate the correctness of the complementary filter algorithm as well as the human body 

model. The analysis is largely based upon linear approximation of the nonlinear problem. 

Frequency domain methods are used for analytic determination of system response 



characteristics. Nonlinear computer simulations are used to confirm the validity of the 

linear approximations. 

Physical experiments have been completed to convincingly demonstrate the utility 

of the proposed system. These experiments involve the tracking of a human limb using 

prototype inertial sensors. Sensor data is provided to multiple quaternion filter software 

objects. Each quaternion orientation filter object corresponds to a particular human limb 

segment or segments and thus provides the orientation of it. These orientations are used to 

drive the animations of a human model in real-time. 

Qualitative and quantitative results provide data for comparison to other motion 

tracking technologies. Preliminary attempts are made to estimate the performance 

parameters of the prototype system. System sensitivity to interference and noise is also 

examined. 

D.        DISSERTATION ORGANIZATION 

This dissertation contains seven chapters. 

• Chapter II presents a survey of motion tracking technologies currently in use 

with comments regarding the strengths and weaknesses of each. Included is 

a discussion of the performance parameters which are required to track the 

human body for real-time synthetic environment applications. Chapter II also 

provides a framework under which motion tracking technologies can be 

evaluated. 

• Chapter III reviews different methods of representing the orientation of a 

rigid body with particular emphasis on quaternions and Euler angles. Various 

general methods of modeling the human body for synthetic environment 

applications are discussed as well. 



• Chapter IV briefly presents the current state of micromachined sensor 

technology and reviews the fundamentals of software filter theory which 

pertain to human body tracking. 

• Chapter V presents a description of a complementary filter based upon a 

quaternion representation of orientation. Analysis as well as simulation 

results for the complementary quaternion attitude filter are included. 

• Chapter VI describes a prototype system for tracking human limb segments. 

The theory and algorithms used to calibrate the multi-axis sensors and the 

human body model are discussed. 

• Chapter VII presents the results of experiments designed to quantify the 

performance of the prototype system. These data provide some indication of 

the performance which could be expected of a complete human body tracking 

system. 

• The final chapter of this document presents conclusions and outlines the work 

which must be completed to build a complete human body tracking system 

capable of tracking multi-users in a large working environment. 

• Appendix A contains detailed derivations of the Gauss-Newton iteration 

equations. Appendix B contains a derivation of the associated X matrix. 

Appendix C is a video demonstration of the body tracking system in 

operation. 



II. SURVEY OF TRACKING TECHNOLOGIES 

A. INTRODUCTION 

The following survey is meant to establish the technological environment under 

which magnetic/inertial body tracking is introduced. Though specific examples of the 

various types of tracking systems are discussed, no attempt is made to comprehensively 

cover the multitude of tracking systems currently available on the market or being 

researched. Rather, the purpose is to establish the general limitations and performance 

capabilities of the various motion capture technologies available at the time of this writing. 

B. MOTION TRACKING TECHNOLOGIES 

In general, position and orientation tracking has seen insufficient innovation and 

development over the past decade. This continues to hamper advanced development of 

immersive systems that allow participants to enter and navigate simulated environments 

[Ref. 97.]. Today's commercial motion tracking systems are based on optical, magnetic and 

acoustic sources. Inertial sensing has been used for head tracking. RF positioning shows 

promise, but no small scale commercial systems are currently available for indoor use. The 

most popular trackers are active AC or DC magnetic systems. Before each of these 

technologies can be examined, two baselines must be established. First, in order to allow 

comparison of technologies, a "framework for suitability" is needed. Second, it is necessary 

to determine the specific performance characteristics that a human motion tracking system 

should have, based upon the dynamics of human body motion and research relating to 

human factors in synthetic environments. 

a. Framework for Suitability 

Several frameworks for use in the analysis of tracking technologies have 

been suggested [Ref. 62.], [Ref. 78.], [Ref. 21.]. Each proposes a similar method for 

categorizing the strengths and weaknesses of a particular technology. A basic framework 



which is based upon those mentioned above is provided here. Five key measures are 

proposed: resolution, registration, responsiveness, robustness, and sociability. 

Resolution is the smallest change a system can detect. Poor resolution will 

allow the user to move without any corresponding change being expressed by the avatar 

within the synthetic environment. Without fine enough resolution, small details in the 

motion of a user will not be captured. 

Registration is a measure of the correspondence between the position and 

orientation reported by the motion tracking system and the true position and orientation. 

Without adequate registration, it is not possible for individuals to interact with physical 

objects while immersed within the synthetic environment. Nor would it be possible for two 

users to physically interact with each other and perform simple actions such as a handshake. 

Registration is a function not only of tracking accuracy, but the also the fidelity of the 

correspondence between the avatar and the subject being tracked. 

Overall responsiveness is determined by sample rate, data rate, and update 

rate. Responsiveness is fundamentally related to system latency or lag, which can be 

defined as the time delay between the movement of a tracked object and a corresponding 

update of the state of the synthetic environment. Lag which is imperceptible to the user will 

still degrade human performance due to dynamic registration errors. Systems with poor 

responsiveness make it difficult for the user to experience a feeling of presence. In some 

cases, latency can lead to simulator sickness. [Ref. 21.] 

Robustness measures the susceptibility of a tracker to noise and interference 

within the operating environment. In a system with low tolerance to environmental noise, 

extreme errors may be present in the reported position and orientation. Inconsistency in 

these errors may make correction difficult using either software filters or lookup tables. 

Sociability is an important measure of the suitability of a tracking system to 

wide area applications involving multiple users. Good sociability provides an extended 

range of operation under which resolution and registration are maintained as well a fitness 
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for tracking multiple objects. There should be no collateral effects such as one remote 

object altering the reported position of another through either interference or occlusion. 

b.        Performance Requirements 

To determine the minimum requirements for motion tracking performance, 

it is necessary to analyze the speed, force and frequency of human motion. Since hand and 

arm motions represent the quickest motions of the body, it can be assumed that a system 

capable of tracking the hands and arms will be able to track the rest of the body. Normal 

arm movements are accomplished with wrist tangential velocities of up to 3 m/s and 

accelerations not usually exceeding 5 to 6 g. Faster arm motions, such as throwing a 

baseball, may involve velocities of 37 m/s and accelerations in excess of 25 g. Normal hand 

motion bandwidth is around 2 Hz, while the fastest hand motions are in the 5-6 Hz range. 

Reflex actions may be on the order of 10 Hz [Ref. 12.]. Based on these values, a sampling 

rate on the order of 20 Hz would satisfy the requirements of the Nyquist sampling theorem 

[Ref. 14.]. In applications using sensors which are susceptible to noise, a general rule of 

thumb calls for 20 times oversampling. Thus, if 5 Hz is taken as the normal bandwidth of 

hand motions, human motion tracking requires a sampling rate of 100 Hz. 

It is generally accepted that humans are more sensitive to changes in the 

rotation angle of proximal joints than in more distal joints. Changes in the position of a limb 

are usually experienced by the subject as a consequence of sensory receptors in the muscle 

propelling the motion [Ref. 40.]. The minimal passive changes humans will perceive in 

finger joints is about 2.5 degrees. For the wrist or elbow, a change of approximately 2 

degrees is required. The minimal perceptible change in shoulder rotation is about 0.8 

degrees [Ref. 21.]. Thus, a body sensor capable of resolving orientation to within 0.5 

degrees should produce information which will not be in conflict with the kinesthetic 

nervous system of the user. Head tracking requires accuracy that is an order of magnitude 

greater than that required by body tracking applications. [Ref. 47.] Several authors call for 

orientation estimates which are accurate to within a few hundredths of a degree and position 
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which is accurate to within a tenth of a millimeter [Ref. 21.] [Ref. 29.]. Thus, any system 

which is able to meet the stringent requirements of head tracking would satisfy those of the 

rest of the body. 

Humans are extremely sensitive to lag! Depending upon the task, time lags 

of greater than 100 msec can degrade performance. For head tracking applications, delays 

of as little as 60 msec between head motion and visual feedback are known to impair 

adaptation and may cause simulator sickness. If lag exceeds 300 msec, humans will begin 

to dissociate their movements from the displayed environment. A lag of greater than one 

second will force the user to adopt a move-and-wait strategy in order to complete a task. In 

general, as lag increases, user performance and speed decreases while the number of errors 

increases. [Ref. 21.] [Ref. 47.] 

In a typical SE system, there are multiple sources of lag. These include user 

input device lag, application-dependent processing lag, rendering lag, synchronization lag, 

and frame-rate-induced lag [Ref. 95.]. Often, it is difficult to determine that part of the total 

system delay which is due to the input device [Ref. 1.]. In any event, this lag should only 

account for a small portion of the total delay. Typical, input device lag ranges from 10 to 

120 msec depending upon the type of filtering being performed and the mode of operation. 

Kaiman and Weiner predictive filtering can be used to extrapolate future 

time values based on previous user input data. To minimize the lag perceived by the user, 

the prediction algorithm normally attempts to project the user input data to the time at 

which results from these data reach the visual display. [Ref. 95.] This method reduces 

perceived lag as long as the user input device sampling rate is adequate and prediction too 

far into the future is not attempted. 

What follows is a short survey of current methods used for motion tracking. 

Examples of some specific systems are provided to illustrate the current state of the art. 

Many of these systems have fairly high latency, marginal accuracy, moderate noise levels, 

and limited range. At this time, none is capable of fully meeting the need for a natural and 

intuitive whole body interface. Range restrictions produce a severe limitation in many of 
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today's motion measurement technologies due to a dependence upon a generated source, 

which rapidly losses strength as range increases. Often, each user being tracked must 

compete with other users in the virtual environment either for access to the source or for 

space within a small working volume. This severely limits the number of users that can be 

tracked in the same area and essentially requires that all users be tracked in separate remote 

locations. 

1.        Mechanical Trackers 

Mechanical tracking systems are perhaps the oldest motion tracking technology 

[Ref. 80.]. They provide the best means of providing haptic feedback to the user of a virtual 

environment. These systems are fairly accurate and have low latency. Current research 

generally involves using these tracking systems to calibrate other types of trackers. [Ref. 

44.] Mechanical trackers can be placed in two separate categories. Here these categories 

will be termed body-based and ground-based. 

Body-based systems utilize an exoskeleton which is entirely worn by the user of the 

synthetic environment. Goniometers within the skeleton linkages have a general 

correspondence to the joints of the user. These angle measuring devices provide joint angle 

data to kinematic algorithms which are used to determine end effector position as well as 

body posture. Since body-based systems are worn by the user, some other system must be 

used to ascertain position within the environment. 

Attachment of the body-based linkages as well as the positioning of the 

goniometers present several problems. The soft tissue of the body allows the position of the 

linkages relative to the body to change as motion occurs. Even without these changes, 

alignment of the goniometer with body joints is difficult. This is especially true for multiple 

degree of freedom (DOF) joints. Since goniometers must be mounted externally, there will 

always be an offset from their centers of rotation to that of the actual joint. Human joints 

are not perfect hinges or spherical joints. Thus, any technology based upon this 

simplification will incur errors. 
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Due to variations in anthropometric measurements, body-based systems must be 

recalibrated for each user. This recalibration can be complicated and require an extensive 

period of time. Perhaps the most significant drawback of body-based systems is user 

encumbrance. Users must bear the weight of the exoskeleton as well as the annoyance of 

having an cumbersome framework attached to their body. The exoskeleton may make it 

difficult to interact with physical objects in a natural manner. For instance, it may be 

difficult to lie on the floor in certain positions since linkages may be between the user and 

the floor. All of these problems make it improbable that the user will become immersed 

within a synthetic environment and that a feeling of presence will be obtained. 

Ground-based   mechanical   trackers 

typically have six degrees of freedom and 

provide the location and orientation of a 

single  body   segment.   Thus,  joint   angle 

measurement error is not a factor. Typically, 

one end of a boom or shaft is either grasped 

by the user or attached to a device worn by 

user. The other end of the boom is attached to 

a fixed station by a 3 DOF joint. As the user 

moves   the   boom   follows   the   motion. 

Encoders on the joint combined with the 

(possiblv variable) length of the shaft provide   ™ ——————     - r c r Figure 1: Exoskeleton tracking of the 
the information needed to determine location upper body 

and orientation within a synthetic environment. Ground-based mechanical tracking 

systems are limited to a range of approximately two meters by the inertia of the boom 

assembly. Longer shafts become too cumbersome and unwieldy.[Ref. 21.] 

The BOOM (Binocular Omni-Orientation Monitor) is manufactured by FakeSpace 

Inc. It consists of a counterbalanced, 6 DOF shaft with a single immersive stereoscopic 

visualization display attached to one end. Shaft encoders produce translational and 

14 



orientation accuracies of 0.16 inch and 0.1 degree respectively. Latency is on the order of 

200 nsec. The operating radius is three feet horizontally with a vertical range of 2.5 feet. 

[Ref. 22.] 

Mechanical motion tracking systems are fairly accurate and relatively inexpensive, 

but due to several limitations, they are unsuitable for accurately tracking multiple users in 

a large working volume. Body-based systems are difficult to calibrate and extremely 

cumbersome. In order to track over a large range, they must be combined with some other 

type of system. Ground-based systems, while highly accurate, can only track a single object 

over a very limited range. 

2.        Magnetic Trackers 

Magnetic tracking using artificially generated sources is currently by far the most 

widely used technology for virtual and augmented motion tracking applications. For a 

relatively low cost, it can provide modest but reasonable accuracy with no serious 

obstruction or shadowing problems. These systems determine both position and orientation 

by using small sensors mounted on the body to sense a set of generated magnetic fields. The 

sensors contain three mutually perpendicular coils. As the coils are moved through the 

magnetic fields, the induced current within them will change. These changes in strength 

across the coils are proportional to the distance of each coil from the field emitter assembly. 

The emitter assembly itself is constructed of three mutually perpendicular coils that emit a 

magnetic field when a current is applied. Current is sent to these coils in a sequence that 

creates three mutually perpendicular fields during each measurement cycle. In all nine 

induced currents are generated within the sensor coils and used to calculate a position and 

orientation. Each of the three emitted fields creates one induced current in each of the three 

sensor coils, thereby allowing measurement of the nine elements of a rotation matrix 

associated with each sensor. [Ref. 73.] 

At the time of this writing there are two primary manufacturers of magnetic tracking 

systems. The fundamental difference between their products is the type of current supplied 
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to the emitter coils. Polhemus, Inc. uses alternating current (AC) to generate the field [Ref. 

71.]. Ascension, Inc. utilizes direct current (DC). AC current creates continuously 

oscillating magnetic fields [Ref. 4.]. DC systems use pulsed magnetic fields and take 

measurements only after the fields have reached a steady state. This technique requires 

measurement of the ambient magnetic field so that it can be subtracted from the readings 

of the generated fields. Thus in addition to the nine measurements discussed above, three 

passive measurements of the constant magnetic field of the earth are required. 

The shortcomings of magnetic tracking systems are directly related to the physical 

characteristics of magnetic fields. Magnetic fields decrease in power inversely with the 

square of the range as the distance from the generating source increases. This relationship 

limits these systems to a usable range which is no greater than the size of a small room. To 

simulate a larger working volume, user movement must be scaled or modified in some 

other manner [Ref. 65.] As emitter distance increases, position and orientation errors due 

to distortions of the generated field increase with the fourth power [Ref. 46.]. Thus, the 

accuracy of magnetic systems varies within the working volume. Distortions of the 

magnetic field come from several different sources. Changing magnetic fields produce 

eddy currents in metallic objects. The amplitudes of the eddy currents are proportional to 

the inverse cube of the transmitter to metal and receiver to metal separations. [Ref. 46.] The 

use of DC is an attempt to alleviate the eddy currents created by the continuously changing 

fields of AC systems. Ferromagnetic materials also produce magnetization fields due to 

their high permeability. These effects must be added to the distortions due to eddy currents. 

In addition to the eddy currents and possibly magnetization fields from metallic objects, 

magnetic sensors will also pick up noise from other magnetic fields that are generated 

within the environment by electrical devices. Such noise sources may include computer 

monitors, fluorescent lighting and any powered-up electrical wiring which is present within 

the surrounding walls. Even the wires connected to the receivers and transmitters 

themselves produce noise which may be significant [Ref. 46.]. 
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In addition to software filtering, numerous techniques have been used in attempts 

to alleviate the error problems associated with magnetic tracking systems. Most are based 

upon the assumption that the magnetic characteristics within the working volume will not 

change. Function fitting has been attempted, but implementation requires a sacrifice of 

local accuracy to obtain better global accuracy [Ref. 44.]. In addition, a functional 

representation may not capture all of the details of the various distortions which may be 

present or may introduce variations of frequency which are higher than the frequencies of 

the error data. Lookup tables based on the reported position have met with only limited 

success. Livingston and State were able to reduce position errors by 79% within a two 

meter sphere surrounding the field transmitter. Construction of the table required a total 

12,801 samples to obtain 720 valid table entries [Ref. 44.]. The same research determined 

that not only were orientation errors position dependent, but were orientation dependent as 

well. Since the look up table was based only upon position, correction of orientation errors 

was less successful. Creation of even a coarse lookup table which was dependent on 

orientation as well as position would have required taking over 332,826 samples within the 

two meter sphere [Ref. 44.]. 

Improvements in accuracy have also be made by varying the sampling frequency of 

the tracking system relative to the frequencies of the noise sources within the environment. 

Nixon et. al. reduced errors by sampling at twice the carrier frequency of the present 

electrical power and averaging of adjacent measurements [Ref. 46.]. However, when 

multiple noise sources operating at different frequencies were present, it was not possible 

to synchronize with all of them simultaneously. 

Magnetic trackers are affected by many variables. Exact performance is difficult to 

quantify and is mostly application dependent. It has be shown to vary widely from the 

claims made by manufacturers. While manufacturers make latency claims on the order of 

4 msec, observed delays on the order of 30 msec and may increase even further depending 

upon the number of sensors in use and the quality of filtering being performed [Ref. 1.]. 

Update rate also decreases with the number of sensors due to multiplexing. While 
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Figure 2: Electromagnetic Orientation Only Tracking of the Human Body 
From [Ref. 78.] 

manufacturers promise operating ranges of 10 to 15 feet, in most cases the usable range has 

been shown to be much less [Ref. 46.]. Orientation accuracies of between 0.5 and 3.0 

degrees are advertised. Position accuracies are given as anywhere from 0.3 to 3 inches. In 

both cases these values may vary widely depending upon the distance from the transmitter 

and the noise sources which are present.[Ref. 46.]. 

Skopowski did extensive work in tracking the upper body using electromagnetic 

motion trackers. His work included construction of a joint angle based kinematic model of 

the upper body. Difficulty in controlling figure motion indicated that the electromagnetic 

sensors used lacked sufficient position tracking accuracy. Therefore, the interface software 

used only orientation data for computing body joint angles. He concluded that the 

electromagnetic trackers lacked sufficient accuracy and registration to enable their use as a 

true six degree of freedom tracker in human body applications and called for the 

investigation of new tracking technologies to support the insertion of dismounted infantry 

into virtual environments [Ref. 78.]. 
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The susceptibility of magnetic tracking systems to interference makes them 

unsuitable for robust synthetic reality applications. The presence of any magnetic materials 

or power sources within or near the working volume can severely degrade performance. 

Perhaps even more critical is the limited range of these devices. This limitation makes it 

nearly impossible to track more than one user in all but very specialized applications and 

restricts the size of the working volume to that of a small room. 

3.        Optical Sensing 

Optical sensing encompasses a large and varying collection of technologies. More 

research is underway in this area than any other motion tracking technology. The cost and 

the performance of the different optical sensing technologies vary widely. Many are not 

capable of capturing motion data and processing it in real-time. The commonality between 

them is the dependence upon the sensing of some type of light. The light involved may or 

may not be visible to the eye. It may also be the focused light of a laser. It may be generated 

by a source under the control of the tracking system or it may be passive. Detectors may 

range from ordinary video cameras to lateral-effect diodes. In any case, optical systems 

suffer from occlusion problems whenever a required light path is blocked. Interference 

from other light sources may also be a problem. Lighting conditions must be controlled in 

order for the camera to consistently see objects in the environment. Depending upon the 

type of light in use, there may be severe range limitations. 

Here, optical tracking systems are separated into three basic categories. Pattern 

recognition systems sense an artificial pattern of lights and use this information to 

determine position and/or orientation. Image-based systems determine position by using 

multiple cameras to track predetermined points on moving objects within a working 

volume. Structured light and laser systems have shown some promise, but little work 

appears to be under way to make this technology practical. None have been commercially 

marketed. 
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a.        Pattern Recognition Systems 

Pattern recognition systems can be outside-in or inside-out. In outside-in 

systems, the sensors (cameras in the case of optical systems) are fixed and the emitters are 

mobile. The sensors look into the working volume. Inside-out systems use sensors which 

are mounted on mobile objects and the emitters are fixed. These systems require elaborate 

preparation of the working volume. In both cases, position and orientation are calculated 

by viewing points of known intensity in known positions. Outside-in systems have a slight 

advantage in accuracy, since a small movement of the sensor will cause relatively large 

shifts in the apparent positions of emitters in view. The emitters themselves are usually 

infrared LEDs. 

The HiBall tracker developed at UNC Chapel Hill is a classic outside-in 

system designed for head tracking. It utilizes a large number of ceiling-mounted infrared 

LEDs as emitters. The HiBall tracker or sensor is slightly larger than a golf ball. It contains 

six lenses and six photodiodes which are arranged so that each diode can view LEDs 

through several of the lenses. Position and orientation are determined by sequentially 

turning the LEDs in the ceiling on and off until it is determined which ones are in view of 

each of the photodiodes. Refinements over ten years of research and augmentation with 

inertial sensors has produced excellent performance. Position is accurate to 0.5 mm and 

orientation is resolved to within 0.02 degrees. The claimed update rate is greater than 2000 

Hz with a latency of approximately 1 msec. [Ref. 93.]. The primary drawbacks of this 

implementation are its dependence on being under a specially prepared ceiling and its 

inability to track in all orientations. Current research aims at attempting to alleviate some 

of these problems and achieve passive optical sensing in a natural environment. [Ref. 93.] 

The Honeywell LED array helmet tracker is a inside-out system designed 

for cockpit use. It uses an array with 4 LEDs mounted on a helmet. The LEDs are 

sequentially energized, and tracked by an infrared camera. The vector to each emitter is 

calculated using camera optical parameters and the known image of the source. From the 

four vectors, helmet orientation may be determined. [Ref. 25.] 
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b.        Image Based Systems 

Image based systems attempt to determine position through the use of 

multiple 2D images of the working volume. Stereometric techniques correlate common 

tracking points on the tracked objects in each image and use this information along with 

knowledge concerning the relationship between each of the images and camera parameters 

to calculate position. In some cases a single camera may be used and the process is based 

upon a sequence of images taken a different time instants. The tracking points are most 

often fiducial markers which are attached to the body being tracked. In order to calculate 

orientation, three noncollinear points on the each rigid body must be tracked. This process 

is prone to errors due to position inaccuracies, repeatability problems and non- 

simultaneous measurements [Ref. 66.]. The markers themselves may be either passive 

(retroreflective) or active (light-emitting diodes). A great deal of research effort is currently 

being expended on systems which are able to track natural objects in real-time without the 

add of markers. 

All of these systems vary in the number of objects that can be tracked as well 

as the number of cameras that must be used. For many of the systems, the cost is quite high. 

In all cases there must be a compromise concerning lens focal length. A long focal length 

lens makes possible greater resolution over a smaller area than a short focal length lens. 

However, a long focal length has a smaller viewing area which will in turn reduce the size 

of the working volume unless additional cameras are added. Short focal lengths permit a 

larger working area, but at reduced accuracy. No matter how this compromise is resolved, 

these systems require that the entire working volume be within the view of several 

expensive cameras and thus even systems which might be capable of tracking natural 

objects will suffer from many of the limitations of sourced systems. All of these systems 

could be categorized as inside-out. 

Passive marker measurement systems such as Vicon [Ref. 90.], HiRES 3D 

[Ref. 32.], and Peak Motus [Ref. 70.] use light sources placed very near each camera to 

generate light. This generated light is returned from the highly reflective markers. During 
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the post-processing of the motion capture data, an operator of the system must assist with 

marker identification. The Peak Motus system has also been used without markers for 

analysis of athletic performances in a manual video acquisition mode. Higher end systems 

allow a frame rate of 60 Hz. Even for a small area, up to seven cameras may be required to 

achieve proper triangulation of the markers. 

Though reflective marker research continues [Ref. 87.], in general, only 

active marker systems are currently able to produce the information necessary to drive an 

avatar in real-time. The advantage of the active marker approach is that the identity of each 

marker and thus the corresponding anatomical location is known immediately because the 

LEDs are sequentially pulsed by the control and data acquisition hardware. Data reduction 

is therefore greatly speeded up and a correspondence between multiple images can be 

found more quickly. "Phantom marker artifact" problems may be encountered due to the 

reflection of LED pulses from testing surfaces such as the floor. The range at which the 

LEDs may be detected is usually limited to less than eight meters. 

Commercial active marker systems based on light-emitting diodes include 

Selspot II (Selspot Systems Ltd., Southfield, Michigan), OPTOTRAK (Northern Digital 

Inc., Waterloo, Ontario, Canada) and CODA (Charmwood Dynamics Ltd., Leicestershire, 

England). The Selspot II 3-dimensional motion measurement system allows the user to 

collect real-time 3D coordinates of up to 36 infrared LEDs attached to the test subject. It 

also calculates angle, acceleration, and moments. The CODA system is limited to providing 

stick figure animations and movement paths in a 2-D plane. Update rates for active marker 

systems are extremely high. 

Reality fusion has released the GameCam system which is the first image 

based system motion capture system intended for use by the general public. In this system, 

the user must track their own location and position by viewing themselves on the screen. 

This low cost system uses a single standard PC camera to capture the motion of the user. 

Any motion information received from the camera that corresponds to an applicable 

portion of the screen image will alter the game environment. [Ref. 74.] 
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Camera tracking of natural objects without the aid of markers is considered 

by many researchers to be the final solution to human motion tracking challenges. It is 

largely based on computer vision techniques. It is felt that eliminating the need for fiducial 

markers will allow greater mobility and a deeper sense of immersion. To make this 

approach work it will still be necessary to position numerous expensive cameras 

throughout the working volume. A varied array of algorithms are being used to register 

objects in the video image or images captured by the camera with synthetic environment 

models. Some of the more common algorithms include mesh-based modeling, neurofuzzy 

classification, simple shape fitting, feature extraction based tracking and shape-volume 

approximation. Most of these algorithms are computationally demanding and are thus 

unable to deliver high quality motion capture data in real-time using current processing 

power. Often, several algorithms can be used in conjunction with one another. Mesh-based 

modeling breaks the video image into patches. The vertices of the patches can then be used 

as the nodes of a mesh. To register an object in the scene, a correspondence must be found 

between a given mesh model and the mesh which was created using the video image. 

Neurofuzzy classification uses a neural network which has been trained to recognize 

objects within the video image. Once an object has been recognized, knowledge of the 

camera parameters can be used to derive the position of the object. The basic premise of 

feature extraction and matching is that accurate 2D tracking of some basic distinctive 

features of an object in a sequence of images can lead to 3D tracking of the object. The most 

commonly used features are lines, points and curves. This technique is faster than more 

complicated methods, but is sensitive to image noise and occlusion. Simple shape fitting 

attempts to fit polyhedral, cylindrical or spherical models to candidate objects in the scene. 

Surface-volume approximation is similar to simple shape fitting and is usually combined 

with another technique such as mesh-based modeling. 
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c. Structured Light and Laser Systems 

Structured light systems use lasers or beamed light to create a plane of light 

that is swept across the image. Some systems use a laser to scan points, the entire scene, or 

randomly to determine positions [Ref. 62.]. These systems sense the person, not just joints 

or points, thus, a person's body can be a virtual icon, rather than being artificially created 

from limited information. This is primarily a mapping technique, and is too slow for 

position tracking. 

Laser Radar or Ladar measures the time of flight of laser light to an object 

and back. This gives distance information Three such measurements can be used to 

triangulate the position. If the angle of the laser beam is known, then only one measurement 

can give position. These systems are capable of providing very accurate distance 

information but resolution may be poor. Ladar is more appropriate for long distance 

measurements though the diffuse reflections may only have one sixth of the strength of the 

original beam. [Ref. 62.] 

Laser Interferometers require retroreflectors or mirrors be attached to the 

tracked object. Laser light is directed to the reflector and the phase of the reflection is 

compared to the original light. An interference pattern is created and incremental distance 

information is found. Only incremental distance changes in distance are measured, so a 

position correction must be made to maintain registration. The correction may be found 

using laser radar. The orientations of the object be tracked are limited to those in which the 

reflector is accessible to the laser beam. This method is very accurate and precise. 

However, it is probably not suitable for measuring humans. 

Structured light and laser systems are all susceptible to shadowing and 

occlusion problems. In general, they are quite complex and expensive. The measurement 

of orientation increases system complexity even further. They are more appropriate for 

mapping applications than dynamic tracking of human body motion. 
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4. Acoustic Trackers 

Acoustic or ultrasonic trackers are an inexpensive alternative to magnetic trackers. 

They provide modest accuracies and update rates. Both outside-in and inside-out 

implementations are possible. Outside-in systems must divide the maximum update rate by 

the number of emitters being tracked. The number of tracked objects is not limited in 

inside-out systems. 

The physics of sound limit the accuracy, update rate and range of acoustic tracking 

systems. Ranges are longer than that of magnetic trackers and magnetic interference is not 

a problem. However, a clear line of sight must be maintained. Thus, obstruction and 

shadowing can present difficulties [Ref. 21.]. Latency varies with distance due to the 

relatively slow speed of sound. Most current systems utilize 40 kHz tone pulses. Sound in 

this frequency band can be severely affected by noise from metallic objects such as jingling 

keys. Shorter wavelengths more accurately resolve distances, but quickly attenuate. In 

addition, high frequency omnidirectional radiators are expensive to implement and require 

more power. 

Ultrasonic tracking systems can determine position through either time-of-flight 

and triangulation or phase-coherence. Phase-coherence trackers determine distance by 

measuring the difference in phase of a reference signal and an emitted signal detected by 

sensors. This difference is used to calculate changes in positions. Since this is an 

incremental motion technique, initial location must be determined by some other means 

and drift may be a problem. One of the major advantages of phase-coherence systems is 

higher data rates which allow filtering. Both types of systems can be adversely affected by 

echoes and reflections of sound waves. 

5. Inertial and Magnetic Tracking 

Though it is based upon well established algorithms, inertial and magnetic (MARG 

sensor) tracking is a relative newcomer to the motion tracking arena. It has been used to 

determine head orientation in virtual and augmented reality applications, but it has not yet 
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found use in full body tracking applications. Inertial sensing is also finding expanded 

usefulness as a method of augmenting other motion tracking technologies. Practical inertial 

tracking is made possible by advances in miniaturized and micromachined sensor 

technologies, particularly in silicon accelerometers and rate sensors. These advances have 

been driven by the rapidly developing market for low cost automotive vehicle navigation 

and control systems. Unlike other sensor technologies, there is no inherent latency 

associated with inertial sensing. All delays are due to data transmission and processing. 

Thus, an orientation that is calculated using inertial sensor data is likely to be extremely 

accurate and have very low latency. 

A naive approach to inertial orientation tracking would simply involve a single 

integration of angular rate data to determine orientation. However, this solution, which is 

found using only one type of sensor, would be prone to drift over time due to the buildup 

of small bias and drift errors. In order to avoid drift, inertial tracking systems make use of 

other complementary sensors to continuously correct the orientation estimate. Commonly, 

these sensors include an inclinometer or accelerometers to sense the vertical and a set of 

magnetometers to sense the direction of the local magnetic field. In order to track all 

orientations, there must be a separate accelerometer, rate sensor and magnetometer for each 

of the three coordinate axes of a rigid-body. 

Theoretically, it is possible to determine position as well as orientation using 

inertial sensors. This is done on a daily basis by the inertial navigation systems of 

submarines and other platforms which must navigate without the aid of outside references. 

This dead reckoning performance is made possible through the use of very expensive and 

large sensors. Such dead reckoning is not possible with low grade inertial sensors for 

anything longer than relatively short time periods [Ref. 7.][Ref. 26.]. Without outside 

reference, position estimates based on inexpensive sensors will drift in a manner similar to 

orientation estimates based only on angular rate sensors. 

Motion tracking of a two-joint, two-axis arm model using accelerometers and 

miniature gyroscopes was demonstrated Sakaguchi et al. [Ref. 77.] This research attempted 
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to take advantage on the strengths of both sensor types and compensate for their 

weaknesses in a complementary manner. The method proposed does not use Euler 

integration of angular velocity data or complementary filter algorithms. Rotational and 

centrifugal accelerations are calculated based upon the kinematic relationships between the 

sensors and the links and the links with each other. The model is basically two-dimensional 

and no provisions are made to compensate for drift in the yaw axis. "Fingertip" position 

stated accuracy is 0.061mm. 

Fuchs presented the first inertial system for head tracking applications [Ref. 29.]. 

This system utilized a fluid pendulum and three solid state piezsoelectric angular rate 

sensors. The initial system did not include a compass or magnetometers and thus drifted 

about the vertical axis. Subsequent systems include three orthogonal solid-state rate gyros, 

a two-axis fluid inclinometer and a two-axis fluxgate compass [Ref. 27.]. Intersense, Inc. 

was started as a result of this research and continues to produce inertial tracking devices 

designed for head tracking applications. Most the systems currently marketed are hybrids 

which use ultrasonic range-finding to determine or correct position. Advertised 

performance of the IS600 includes an angular accuracy of 0.25 degrees, translational 

accuracy of 0.25 inches and an update rate of up to 150 Hz. Though the response and 

accuracy of the systems is excellent, the use of Euler angles to internally represent 

orientation makes possible singularities in some orientations [Ref. 27.]. Sensor data is 

processed by a complementary separate-bias Kaiman filter which requires periods of "still 

time" to correct for rate sensor drift. [Ref. 27.]. For most normal head tracking applications 

this is not a problem. However, in high acceleration applications requiring orientation 

tracking in all attitudes such limitations are not desirable. While InterSense is alleged to be 

developing and marketing a full body tracking system, the author is unaware of any 

research literature documenting such a system. 

Henault researched software necessary to support inertial sensors capable of 

tracking all orientations. His work included the development of a quaternion attitude filter. 

The filter was tested with a computer simulated inertial tracker, [Ref. 35.]. Use of 
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quaternions in the filter allowed objects to be tracked in all orientations and avoids the 

singularities associated with Euler angle based filters. Another important feature of the 

filter is reduced computational complexity since the incorporated filter uses no 

trigonometric functions. 

6.        RF Positioning 

RF positioning has yet to be applied to the body tracking problem. Radio Frequency 

(RF) position systems are very fast and long range by their nature. Such systems have been 

developed for ships, planes, missiles and various civilian applications such as Long Range 

Navigation (Loran) and the Global Positioning System (GPS) [Ref. 45.]. All of these 

systems are designed to be used at extreme distances. In the past, they could only be used 

in such large-scale applications due to system errors in signal processing, [Ref. 13.]. Recent 

advances in RF systems technology however, make possible translational three degree of 

freedom tracking accuracy of a few millimeters at ranges of up to 100 meters, [Ref. 24.]. 

The speed of a radio signal is 2.99792458 x 108 meters per second. When a signal 

is transmitted, it takes a finite amount of time to travel from point x to point y. If the receiver 

knows the exact time the signal is transmitted and received, it can determine the amount of 

time the radio signal took to travel. Thus delta-time multiplied by the speed of the radio 

signal equals the range between the two points in meters. Using this method, a receiver- 

equipped object can determine its position through triangulation based upon its distance 

from several transmitters with known locations. This is the method used by GPS, [Ref. 45.]. 

Notice in this method that the receiver must accurately measure the exact times of 

transmission and reception with adequate temporal resolution. Alternatively, the difference 

in the time of arrival of a single signal at several locations can also be used to triangulate 

the position of an object equipped with a transmitter, [Ref. 24.]. This method does not 

require exact time synchronization between the receiver and transmitters. 

Radio frequency devices have unique characteristics with both advantages and 

disadvantages. Some advantages important to position tracking are that radio frequencies 
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can penetrate nonmetallic objects, such as walls and the human body. They are resistant to 

masking (hiding), easy to construct, and are scalable to both large and small areas. In a 

closed environment however, radio frequency device performance can be degraded due to 

reflections off surfaces, both metallic and nonmetallic, and is subject to attenuation when 

passing through objects, [Ref. 13.]. 

Spread-spectrum RF signals exhibit two characteristics important to positioning in 

a virtual environment. The first is excellent ranging ability, which allows accurate 

measurement of distance between two points, based on the phase difference in the pseudo 

noise (PN) code sequences of the transmitter and receiver. The second is code division 

multiplexing (CDM) which allows multiple transmitter-receiver pairs to compatibly share 

the same frequency at the same time, [Ref. 13.]. 

RF position tracking can be scaled to an area of any size. The accuracy of the system 

would be dependent upon the frequency, coding and signal processing implementation 

rather than the size of the area. A minimal system for 3 DOF tracking in a VE would require 

four stations placed at known locations within the area in which the tracking is to take place 

and a unit attached to the body to be tracked. The fixed location stations could be 

transmitters and the tracked unit a receiver as with GPS, or the roles could be reversed as 

described in [Ref. 24.]. In the former configuration, processors on the object itself could 

estimate the position of the object. In the latter configuration, position calculations would 

be made by a central processor in communication with each of the fixed location stations. 

Either configuration would be capable of producing highly accurate location data. 

7.        Hybrid Tracking Systems 

Each type of tracking technology has its own set of strengths and weaknesses. The 

ultimate future of motion tracking almost certainly lies in hybrid systems. Many systems 

use one type of technology for sensing orientation changes and another for sensing position. 

Some merely use two separate technologies and choose whatever estimate seems to be the 

most accurate at a particular time instant. The best systems take data from multiple sensor 
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types and use filtering algorithms to combine them and arrive at some type of optimal 

estimate. The inability of micromachined inertial sensor systems to calculate position for 

any extensive period of time in practical applications necessitates that any 6 DOF inertial 

system be a hybrid. The fact that inertial data lends itself to prediction through the use of 

motion derivatives has resulted in the use of inertial sensors in numerous efforts to combat 

latency problems. 

In [Ref. 5.], Azuma demonstrates that predicting future head location using three 

rate gyroscopes and three linear accelerometers is an effective approach for significantly 

reducing dynamic errors in an augmented reality head tracking system. In this study, 

prediction caused dynamic accuracy to increase by factors of 5 to 10. Linear Kaiman filters 

are used to estimate and predict translation terms and an Extended Kaiman Filter (EKF) is 

used to estimate and predict orientation terms. Welch continued predictive work at UNC in 

[Ref. 94.], using a single-constraint-at-a-time (SCAAT) Kaiman filter. Though a 

quaternion representation of orientation is used in the UNC research described above, in 

each case the orientation is converted to an Euler angle representation. 

[Ref. 26.] describes a hybrid outside-in inertial/acoustic system called the 

constellation. This system uses an inertial navigation system which is aided by ultrasonic 

time-of-flight range measurements. The inertial subsystem determines position through 

double integration of triaxial accelerometer data. The ultrasonic ranging system uses a 

"constellation" of ceiling mounted acoustic beacons in a manner very similar to the optical 

HiBall head tracking system developed at the University of North Carolina, Chapel Hill. 

However, the ultrasonic system only calculates position. It does not calculate orientation. 

The stated reasons for using acoustic sensing as opposed to optical are cost, weight, and 

complexity. As with the UNC system, an extended Kaiman filter is used to combine all 

sensor data and calculate an optimal position and orientation estimate. Acoustic range 

measurements are also individually processed using a SCAAT Kaiman filter. 
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8.        Other Technologies 

Suryanarayanan and Reddy investigate the use of surface electromyographic 

(EMG) signals for tracking human movements for virtual environment application and 

control of telemanipulators [Ref. 72.]. This study concentrates on determining elbow-joint 

flexion and extension and using this information to drive an anthropomorphic 

telemanipulator. Accuracy is based on comparisons between the actual elbow joint angle 

and the angle produced by the telemanipulator. Use of EMG is difficult due to the nature 

of the EMG signals and large variations from one user to another. Signals vary based on 

both the speed of motion and the angle of motion. Limb loading and the plane of motion 

relative to the down vector will also affect the EMG signal. [Ref. 72.] utilizes a nonlinear, 

adaptive, intelligent system to track human arm movements. The system attempts to use an 

artificial neural network with fuzzy logic to compute an adaptive gain that compensates for 

the variation in the EMG signals due to speed of flexion. Only data from the biceps was 

used to compute joint angle. RMS joint angles errors where less than 20% during testing. 

Computation delays exceeded 150 msec. 

Several technologies have produced good results in hand tracking applications. 

Most gloves combine a single 3D tracker to track hand position and orientation and 

multiple joint sensors for finger position. The Dataglove by VPL Research, measures 

bending in the proximal joints based on the attenuation of a light signal in each of two fiber 

optic strands sewn into the glove along the fingers and thumb. Sampling rate is 30 or 60 Hz 

[Ref. 67.]. The Cyberglove by Virtual Technologies includes either 18 or 22 resistive-strip 

sensors for finger bend and abduction, and thumb rotation [Ref. 67.]. Unlike the Dataglove, 

the mapping between the sensors and finger positions is linear. The strip sensors are more 

natural and comfortable to wear. Both of these glove technologies could be extended to the 

entire body through the use of a body suit. However, calibration for different users would 

most likely be difficult. 
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C.        SUMMARY 

This chapter presents a brief survey of technologies which are currently being 

researched or commercially marketed. The general limitations and performance 

capabilities of the various motion capture technologies are examined. None is capable of 

fully meeting the need for a natural and intuitive interface. In general, limited range, 

shadowing problems and susceptibility to interference make currently available systems 

unfit for tracking multiple users in the same work space. In addition, most sourced tracking 

systems fall short in categories of robustness and sociability. 

The ideal tracking system would receive high marks in all measurement categories. 

It should be capable of accurately tracking multiple users in a large working volume with 

minimal lag. There should be few errors due to noise sources within the working volume 

or due to collateral effects associated with the tracking of multiple objects or users. The 

update rate should be adequate to capture the entire range of human motion. The ideal 

tracker should be not only be untethered, but also unobtrusive. 
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III. REPRESENTATION OF HUMAN BODY MOTION AND 
MODELING 

A. INTRODUCTION 

The human body can be modeled as a set of links or limb segments arranged in a 

tree-like structure. Individual limb segments can be treated as rigid bodies. Specifying the 

posture of the model involves descriptions of the orientation and position of the individual 

segments. Specification of the nature of the relationships between the links in the structure 

will determine whether the positions and orientations of the segments are described 

individually or are specified relative to one another. The formalisms chosen will have a 

bearing upon the ability to represent all orientations, computational efficiently, storage 

requirements, and transmission bandwidth requirements when operating within a 

networked synthetic environment architecture. In human body tracking applications, the 

type and quality of sensor input being used to drive the animation of the human model 

should also be considered. 

This chapter discusses alternative methods of representing the orientation of the 

individual links of a human model and relating the links to one another. Possible methods 

of representing orientation considered include joint angles, Euler angles, and quaternions. 

Both simple and complex link relations and structures are examined and compared. 

Kinematic structures based upon homogenous transform matrices and quaternion/vector 

pairs are also examined. 

B. RIGID BODY ORIENTATION REPRESENTATION 

A "rigid body" is an idealization of a body with volume and mass which has a shape 

that cannot be changed. That is, such bodies are solid and completely inelastic. Numerous 

methods are available for expressing the orientation of a rigid body. Two of the more 

common methods are Euler angles and quaternions. Other methods of representation 

include direction cosines and vector-angle pairs. Direction cosines represent an orientation 

using the cosines of the angles an appropriate vector makes with the standard orthonormal 
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basis for three space. The nine direction cosines associated with three unit vectors 

correspond to the nine elements of a rotation matrix. Vector-angle pairs specify an a vector 

and an angle of rotation about that vector. These are similar to a unit quaternion. Each 

method has its own set of advantages and disadvantages. Only Euler angle and quaternion 

representations are discussed here. More detailed discussions can be found in [Ref. 17.] and 

[Ref. 42.] 

In order to represent the orientation of a rigid body, it is conventional to choose a 

coordinate system attached to an appropriate inertial frame, and then express all vectors in 

component form relative to these coordinates. A commonly used coordinate system is the 

local "flat Earth" system with an arbitrarily selected origin on the surface of the Earth with 

coordinate axes x, y, and z directed in the local north, east and down directions respectively. 

To specify orientation, it is also necessary, for each rigid body, to specify a "body fixed" 

coordinate system or frame which is attached to the rigid body. This is also an xyz system 

with JC conventionally "out the nose," y "out the right side," and z down or "out the belly." 

(The reader may find it helpful to visualize an aircraft with positive axes pointing out the 

nose, right wing and bottom of the fuselage.) The superscript or subscript "£" is most often 

used to designate Earth coordinates, while "5" is typically used to signify body coordinates. 

The description of the orientation of a rigid body expresses the relationship between these 

two coordinate systems. 

1.        Euler Angles 

Euler angles represent the orientation of a rigid-body using three rotations about 

specified axes. The axes may be orthogonal body fixed, orthogonal earth-fixed, or gimbal 

axes. Thus, when using Euler Angles, it is important that agreement be reached regarding 

the type of axes as well as the ordering of the rotations. If the order of rotations is first about 

a north axis, then about an east axis, and finally about a down axis, the associated angles 

are denoted by the reserved words "roll," "elevation," and "azimuth" respectively. When 
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using the above set of "Euler" angles, there are also reserved symbols for each angle; 

namely, roll is designated by (p, elevation by 6, and azimuth by \|r. [Ref. 52.] 

If the temporal order of rotations is reversed, body-axis rotations yield exactly the 

same orientation as Earth axis rotations. Specifically, starting with a given body in its 

reference orientation, if it is first rotated through the azimuth angle about its belly axis, then 

through elevation about its right side axis, and finally through the roll angle about its nose 

axis, the final orientation of the body will be exactly the same as if these rotations had been 

performed in the reverse order about the north, east and down axes of an earth fixed 

coordinate frame. [Ref. 52.] 

Gimbal axes provide another way of defining Euler angles which helps to resolve 

the apparent temporal conflict. This approach is derived from the terminology and practice 

of naval gunnery and field artillery. To aim an artillery piece, it is necessary to tilt the gun 

barrel upward through an "elevation" angle so that a projectile will travel the desired 

distance when the gun is fired. It is also necessary to rotate the gun carriage to a proper 

"azimuth" angle so it points toward the target. Finally, in most modern guns, when the 

projectile is fired, the "rifling" in the gun tube imparts a "roll rate" (or "spin") to the 

projectile to stabilize its flight toward a target. If the azimuth, elevation, and roll axes all 

intersect in a common point, then the mechanism that moves the gun is called a "gimbal" 

system. Thus, gimbal systems provide a mechanical means for achieving rotations. In this 

case the "temporal" order of the rotations does not matter. That is, the gun is "aimed" at the 

same point regardless of what temporal order the rotations are applied. [Ref. 51.] 

a.        Euler Angle Rotation 

The position of a point in space can be described using a three dimensional 

point vector. If a rigid body is described in terms of point vectors, it can be rotated or 

oriented by rotating each vector individually. This may be completed by multiplying an 

T 
appropriate rotation matrix times the point vectors. The rotated coordinates, v'= [x' y' z'] , 

of a vector v = [xy z]T by an angle (p about the x axis is described by [Ref. 17.] 
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-x- 1    0        0 -xr 'XT 

y = 0 coscp -sin(p y = [rot(x, Cp)] y 
f. 0 sincp  coscp _z_ z_ 

(3.1) 

Likewise, rotations of 0 (elevation) and \|/ (azimuth) about the y and z axes 

respectively can be accomplished by means of the following multiplications. 

(3.2) 
"X " cosG 0 sin0 -x- ~xr 

y = 0     1    0 y = lrot(y, 9)] y 
_z'_ -sin0 0 cos 8 z_ _z_ 

x'~ cos\|/ -sinv|/ 0 "jr -r 

y = siny cosy 0 y = [rot(z,\V)] y 
z\ 0        0     1 _z_ _z_ 

(3.3) 

Thus, the relationship between the earth fixed coordinate system and the body fixed 

coordinate system can be expressed as a single rotation matrix R. 

Ev = [rot(z,y)][rot(y,Q)][rot(x,q>)]Bv 

cos\(rcos0 cos\)/sin0sincp- sin\\icoscp cos\)/sin0coscp+sin\j/sincp 
sin\j/cos0 cos\|/coscp+ siniysin9sincp cosVsincp + sin\|/sin0coscp 

-sin0 cos0sincp cos0coscp 

v = R v 

(3.4) 

(3.5) 

It should be noted that this relationship applies regardless of the physical means by which 

the Euler angle rotations have been achieved. Rotation of the point vector v in Eq. (3.5) 

requires nine scalar multiplications and six additions. There are six trigometric functions. 

b. Transforming Body Rates To Euler Rates 

Unlike linear velocities which may be integrated to obtain position, the body 

rates p, q, and r about the body x, y, and z axes cannot be integrated to obtain Euler angles. 

That is 

(cp,0,y)#J(p q  r)dt 

This will be proved in the following paragraphs. 

The angular rate of a rigid body in earth coordinates, E(0, is given by 

(3.6) 
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CO = 

r    -] r _. 
«>x 0 

Ü), = 0 

5- v 
+ [rot{z, V)] + [rot(z, V)][rot(y, 9)] (3.7) 

where cp, 9, and y are Euler rates measured about roll, elevation and azimuth Euler axes 

respectively. Eq. (3.8) below expresses angular rates about body-fixed axes in terms of 

angular rates about earth-fixed axes. 

CO 
„-1   E „T  E 

= R      co = R     co (3.8) 

By the inverse law of transposed matrices and substitution of Eq. (3.7) into Eq. (3.8). 

Sco= [rot(x,q>)]T[rot(y,Q)]T[rot(z,V)f £(0 = [rot(x, cp)] \rot(y,Q)] '[r<«(z,V)] '  £<o 

[rot(x, q>)f[rot(y, Q)f[rot(z, V|/)]7 + [rot(x, <f>)flrot(y, Q)f + [rot{x, cp)] 

(3.9) 

(3.10) 

From the first term of Eq. (3.10), the rotational rate about an earth fixed down axis 

in body coordinates is given by 

% = [rot(x, (?)]T[rot(y, 6))T[rot(z, y)f 

0 0 -sin 9 
0 = R' 0 = V sin cp cos 6 

v v cos cp cos 9 

(3.11) 

In a similar manner, the following are obtained from the second and third terms of Eq. 

(3.10) respectively. 

ß9 = [rot(x, y)]T[rot(y, 9)f 

0 0 
9 = 9 coscp 

0 -sincp 

(3.12) 

B- T 
<|> = [rot(x, cp)] *P (3.13) 

To obtain expressions of body rates in terms of Euler Rates and angles, Eq. (3.11), 

Eq. (3.10) and Eq. (3.11) are combined to produce 
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p = cp-i|/sin8 

q = 9coscp + \|/sincpcos9 

r = -9sincp + i|/coscpcos9 

(3.14) 

(3.15) 

(3.16) 

In order to solve for cp, e, and y in terms of p, q, and r, it should be noted that Eq. 

(3.15) and Eq. (3.16) involve only e, and y. Thus, multiplying Eq. (3.15) by cos (p and Eq. 

(3.16) by -sin (p and adding produces the result 

6 = gcoscp-rsincp 

Substituting this result into Eq. (3.16) yields: 

sincp      coscp n . 
V = 17Z7Z + r a = <7sec8smcp + rsec0cos(p COSCp COS0 IT T 

Finally, using this result in Eq. (3.14), 

cp = p + \j/sin9 = p + gtan6sincp + rtan9coscp 

In matrix form, these results can be rewritten as: 

(3.17) 

(3.18) 

(3.19) 

1 tanGsincp tanGcoscp 
0     coscp       -sincp 

0 sec9sincp sec0coscp 

= T (3.20) 

where sec G = 1 /cos 0. Evidently, this matrix is singular for 8 = ±90°. [Ref. 16.] 

c. Euler Angle Singularities 

When the nose unit vector of a rigid body points straight up (or down), the 

roll and azimuth gimbal axes are collinear. This means that neither roll or azimuth angles 

are uniquely defined, but rather, only their difference (nose up) or sum (nose down) can be 

specified uniquely [Ref. 51.]. This problem is also manifested in an even more serious way 

with respect to Euler angle rates since, the body rate to Euler rate transformation matrix (T 

in Eq. (3.20)) is singular for this orientation (0 = ±90°). Obviously, this problem only arises 

for rigid bodies which are capable of assuming a vertical orientation. 
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2.        Quaternions 

Quaternions are an extension of complex numbers designed to define a four- 

dimensional volume using three "imaginary" parts and one "real" part. The imaginary 

portion of a quaternion is often termed the "vector" part. The real part of a quaternion is 

sometimes called the "scalar" part. Quaternions are commonly represented using three 

different notations. 

(1) Linear combination of four components: 

q = w + xi + yj + zk (3.21) 

where i,j, and k denote the standard orthonormal basis for three space. 

(2) Four dimensional vector: 

q = (w x y z) (3.22) 

(3) Scalar with a vector imaginary part: 

q = (w,v) (3.23) 

It is also possible to write a quaternion as the sum of two four dimensional vectors. 

For a quaternion q, the vector Re(q) contains the scalar or real part of q. Only the first 

element is nonzero. The vector Ve(q) contains the vector or imaginary part of the 

quaternion. The first element is zero and the last three elements express a vector in 

component form. Thus, 

q = Re(q) + Ve(q) =    °  +  X (3.24) 

w 0 
0 + X 

0 y 
0 z_ 

Intuitively, the three imaginary parts describe a vector and the real part expresses 

an angle of rotation about that vector. The imaginary parts have the following properties 

i*i = i2 = -l (3.25) 

j*j=j2 = -l (3.26) 

k*k = k2 = -l (3.27) 
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and 

ij = k = -ji (3.28) 

jk = i = -kj (3.29) 

ki =j = -ik (3.30) 

a.        Quaternion Operations 

Under the operations of addition and multiplication, quaternions satisfy all 

of the axioms of a field except the commutative law. Let s be a scalar and let 

qx = Wj +xli + y1j + zxk q2 = w2 + x2i + y7j + z2k (3.31) 

The following operations are defined for quaternions. 

Equality 

Two quaternions are equal if and only if they have exactly the same 

components. That is qj and q2 are equal if and only if 

wj = w2 (3.32) 

xj=x2 (3.33) 

yj = y2 (3.34) 

Z] = z2 (3.35) 

Addition 

The sum of two quaternions is defined in the same manner as normal vector 

addition by adding corresponding components. 

<7i + <?2  =  dwl + w2)(*l + x2)(yi + yi)(Zl + Z2» (3.36) 

Each quaternion q has a negative or additive inverse denoted by -q, in which each 

component is the negative of the corresponding component of q. 
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Sralar Multiplication 

Scalar multiplication of a quaternion is commutative and is again defined in 

the same manner as that of a vector in four space. Each component of the quaternion is 

simply multiplied by the scalar. 

sq = (sw, sv) (3.37) 

Quaternion Multiplication 

The product associated with the multiplication of two quaternions is itself a 

quaternion. 

"?1<?2 = (wl+xli + y\J + Zlk)(w2 + x2i + y2J + Z2k) (3.38) 

Using (3.25) through (3.30) and the distributive and commutative properties 

of scalar multiplication, (3.38) becomes 

qxq2 = (wxw2-xxx2-yxy2-zxz2) 

+ i(x1 w2 + wxx2 - zxy2 + yxz2) 

+ j(ylw2 + Z\X2 + wl?2 -*lz2) 

+ k(z1w2-yxx2 + xxy2 + wxz2) (3.39) 

The result given in (3.39) can also accomplished by scalar multiplication of 

the imaginary vectors, taking the dot products of the imaginary vectors (produces a scalar) 

and taking the cross product of the imaginary vectors (produces a vector). That is, 

9i?2 = (wxvx)(w2v2) = (wxw2-v1-v2,wxv2 + w2vx + vxxv2) (3.40) 

Evaluation of Eq. (3.39) or Eq. (3.40) requires a total of 28 scalar operations 

(16 multiplies and 12 additions). Though quaternion multiplication is associative, the cross- 

product makes the operation non-commutative. 

b. Quaternion Forms 

Quaternion Coniueate 

Let q = (w, v), then the quaternion conjugate of q is 
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q = (w,-v) (3.41) 

It can be shown that the conjugate of the product of the two quaternions is equal to the 

product of the individual quaternion conjugates in reverse order. That is 

(<?i92) = <72<?i (3.42) 

The sum of any quaternion and its conjugate will be the scalar quantity 2w. 

Norm 

The norm of a quaternion is sometimes called the length or magnitude of the 

quaternion. Let q = (w x y z), then the norm of q denoted N(q) is 

N(q) = JTq = JW
2 + x2 + y2 + z2 (3.43) 

This definition is the same as the for the length of a four dimensional vector. 

Normalized unit quaternion 

If a quaternion has a norm of unity, each of its components must have an 

absolute value less than or equal to one. Such quaternions are called unit or normalized 

quaternions. 

qnormalized ~   M(a\ \^^"7 

Quaternion (multiplicative) inverse 

In general, the multiplicative inverse of a quaternion q is given by 

,-» = _f_ = A (3.45) 
N2(q)       qq 

Since N(q) = 1 for a unit quaternion, the inverse of a unit quaternion is 

simply q. 

c. Quaternion Transformation Between Coordinate Frames 

It is known that the orientation of a rigid body can always be described as 

a rotation ($) about a single inclined axis (v). If the axis (v) is constrained to unit magnitude, 

the quaternion (qr) representing this orientation is 
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* -:-^ (3.46) 37 = I cos^vsm- 

Evidently, 

Mr = h\2 = 1 (3-47) 

The product of two unit quaternions is also of unit magnitude. The product 

qxq2 is a quaternion rotation from the orientation described by qx to a cumulative 

orientation of qx and <j2- In general, "earth coordinate" rotations multiply from the left and 

"body coordinate" rotations from the right. [Ref. 53.] 

Any scalar can be represented as a quaternion. 

q = (wOOO) (3.48) 

Any three dimensional point vector p = (x y z)rcan be represented as the quaternion with 

the real part set to zero. 

p = (0xyz) (3.49) 

The rotation of a vector, p, by a quaternion q is defined as 

Prorated =   QPQ~l (3-50) 

If q is of unit magnitude such that 

q = fcos^, MSin^J (3.51) 

then 

Protated =  WQ (3-52) 

where u is a unit vector about which the vector/? is rotated through an angle 0. There are 

no singularities and only two trigometric functions involved. 56 scalar operations or twice 

the number needed to evaluate Eq. (3.40) are required to evaluate Eq. (3.52). 
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d. Unit Quaternions In Positive Real Form 

For any given orientation, there are two unit quaternions which may be used 

to represent it. The unit quaternions 

i\ = q2 = -qx = (3.53) 

both represent the same orientation. To eliminate this ambiguity and insure a unique 

solution for an orientation, the angle of rotation, a, may be restricted to -nl2<.a<> n/2. Since 

the real part of such a quaternion will always be positive, it can be recovered using the 

assumption of unit length. Thus, the four elements of a unit quaternion in this positive real 

form are not independent. For such a quaternion q = [ w x y z ] 

from which it follows that 

and 

f.        2       2       2 
VI-x -y -z 

2        2       2,2 x + y  + z   =1 —w 

0        2        2 2 x +y  + z  + w 

(3.54) 

(3.55) 

l (3.56) 

If w is allowed to vary between negative and positive one in Eq. (3.55) and Eq. (3.56), these 

equations become descriptions of the interior and surface of a unit sphere in three- 

dimensional space. This sphere is filled twice, once as w varies between 0 and 1, and once 

as w varies between 0 and -1. 

e. Transforming Angular Rates To A Quaternion Rate 

Angular rates, p, q, and r, may be used to find the derivative of the 

orientation quaternion, q, relative to the earth-fixed coordinate system. Suppose a rigid 

body is first rotated by an angle Q1 about an inclined axis specified by the unit vector vx. If 

vl is in earth coordinates, the unit quaternion representing this rotation is 
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qx = (cosy,   VjSin-jj (3.57) 

Assume the body is then rotated by an angle 02 about a second axis v2 

expressed in body coordinates by the unit quaternion q2- 

e 

For small 02, 

<72 = [cos—,   vjsinyj (3.58) 

COSySl Sinysy (3.59) 

and thus (3.58) becomes 

,2 S(i, v2|) (3.60) 

Assuming 62 changes linearly with time, the orientation expressed by q2 as a function of 

time becomes 

g2(t) = (i, |v2e2/) (3.61) 

for small t. v2e expresses an angular rate of e about a vector v2 in body coordinates. Thus 

v,e = (0 p q r) (3.62) 

and (3.61) becomes 

q2(t) = (l,   \pt \qt \rt) (3.63) 

Taking the derivative of (3.63) with respect to time produces 

-*(,) -q - (o, lp I, Ir) (3.64) 

= \(0,  p q r) (3.65) 

= \% (3.66) 

If #! is the initial orientation is earth coordinates and q2 is a second rotation 

in body coordinates, then q3 is the composite rotation combining the two rotations. 

q3 = qxq2 (3-67) 

45 



By the product rule 

93 = 9l92 + 9i92 = 9i<?2 = 2<?iß(ü (3.68) 

The components of <?3 are given by 

930 = -2(<7llP + 9l29 + <7l3r) (3.69) 

931 = 2"(9ioP + 9i2''-<7i39) (3.70) 

932 = 2^l09 + 9i3P-9n'") (3.71) 

933 = 2^ior+9n9-9i2P) (3.72) 

In general, Eq. (3.69) through (3.72) are expressed by the quaternion multiplication 

q = ^qB(ä = ^9(0 P q  r) (3.73) 

Note that Eq. (3.73) offers the potential of orientation tracking of rigid bodies using no 

trigometric functions whatsoever. [Ref. 53.] 

/. Representing Orientations Without Singularities 

Quaternions can be used to represent all orientations without singularities 

and thus are a logical choice when representing the orientation or a rigid body which may 

go through the vertical. A precise method of overcoming the singularities associated with 

Eq. (3.20) involves transformation of rotational rates sensed in body coordinates into a rate 

quaternion Eq. (3.73), and integrating to get a quaternion representation of orientation [Ref. 

52.]. 

C.        MODELS FOR HUMAN BODY TRACKING 

Unlike dynamics models, kinematic models involve the study of motion 

independent of the underlying forces which cause it. Only geometrical and time related 

properties of motion such as position, velocity and acceleration are defined. [Ref. 17.] 

Kinematic models represent articulated structures as a series of interconnected links. The 

relationships between these links may be extremely complex. They may be described using 

either homogenous transformation matrices or quaternion/vector pairs.[Ref. 30.] 
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1.        Kinematic Models Based On Homogenous Transformation Matrices 

The human body can be modeled as an articulated structure involving links 

connected by revolute joints. Multiple degree of freedom joints can be modeled as multiple 

collocated single degree of freedom joints. Each joint is assigned an individual reference 

frame which is related to the reference frames of adjacent links by a 4 x 4 homogenous 

transformation matrix which expresses both a rotation and a translation. The rules used to 

derive the matrix are dependent on the notation in use. There are two common, but similar 

notations for expressing the relationship between neighboring joints in the an articulated 

structure. These notations are the Denavit-Hartenberg (DH) and the Craig or Modified 

Denavit-Hartenberg (MDH). The DH and MDH notations are equivalent, with the 

exception that the link frame of reference coordinate origin for DH links is attached to the 

outboard motion axis of the link while the corresponding origin for MDH links is attached 

to the inboard motion axis. [Ref. 17.] 

As a body moves, the relationships between the frames associated with the links 

change. Thus, describing a body posture simply involves expressing the relationships 

between adjacent frames. Four parameters are used to describe the relationship. These are 

link length, link twist, link offset, and joint angle. In an articulated structure involving only 

revolute joints, only changes in joint angle occur. All other parameters are fixed. 

Figure 3 depicts frame assignment and the standard MDH parameters associated 

with each link. Link;.! is inboard of axis; and thus Linkj.j is referred to as the inboard link 

and link,- as the outboard link. Again DH is equivalent, but attaches the link frame of 

reference to the outboard motion axis. The four MDH parameters depicted are: 

• inboard link length: at_i = distance from Zi.\ to zr- measured along x,-_i 

• inboard link twist: a ,-_j = angle between Z(.\ and n measured about xt_i 

• outboard link offset: dt = distance from xt_i to xt measured along z,- 

• outboard joint angle: 0 t = angle between JC,-_J to xt measured about zr- 

Once the link parameters have been measured, a MDH transformation matrix which 

relates the frame for z'-l to that of i can be created. It is given below by [Ref. 17.]: 
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1-1 
T;    = 

cos0j -sinö; 0 <n_ i 
sinSjCosCa^ j) COS9JCOS((XJ-_ j) -sin(ctj_ j) -sinCa^ j )^- 
sinoj-sinCa^ j) cosO^sinCa^ ^)  cosCa^j)   cos(a-_j)d- 

0 0 0 1 

(3.74) 

Rotating and positioning the outboard joint coordinate system relative to the inboard joint 

coordinate system requires multiplication of     Tt and Ti+1. This composition of two 

4x4 matrices will require 64 multiplications and 48 additions Taking into account the 

redundant last rows this can be reduced to 36 multiplies and 27 additions [Ref. 88.]. 

Axis; 

Axis i - 1 '" * 

Link, 

Figure 3: Frame Assignment Under MDH After [Ref. 17.] 

2.        Forward and Inverse Kinematics 

Kinematic problems are often separated into two classes. In forward kinematics the 

motion of the end effector is determined indirectly as the accumulation of the 

transformations that lead to it. All joint angles are specified explicitly to define an exact 

position for the entire structure. Complete control is maintained over the kinematic 

structure, but it may be counterintuitive and complicated to use in practice. Forward 

kinematics applications are less demanding computationaly and are commonly used to set 

predefined postures. Inverse kinematics or goal directed motion entails calculating joint 

angles given the position and orientation of the last link or end-effector and possibly some 
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intermediate links. Inverse kinematics is generally not as straightforward as forward 

kinematics. In an under specified system involving a minimal amount of information, there 

may be an infinite number of solutions for a given end-effector position and orientation. As 

the number of links increases, the difficulty of finding an unambiguous solution will 

increase. In such a case, additional constraints or heuristics may be applied to the system to 

allow a unique solution to be selected. The solution may be closed form or it may be arrived 

at numerically. Methods of obtaining closed form solutions may be either algebraic or 

geometric. In any event, the method of solution will tend to be unique for each specific 

case. Performing the computations involved in inverse kinematics in real-time can often be 

difficult even when using a closed form solution. 

Minimizing the number of position/orientation sensors used in body tracking 

applications reduces user encumbrance. However, reducing the number of sensors can 

mean that the orientation of some links will not be tracked directly. Since solving the 

inverse kinematics problem allows the transforms for untracked links which are not directly 

sensed to be found, a great deal of research has been done involving inverse kinematics in 

body tracking applications [Ref. 10.][Ref. ll.][Ref. 85.][Ref. 79.]. In these applications, 6 

DOF sensors are required on all end-effectors such as the hands and feet. The solutions 

found require considerable computational overhead. In addition, the posture of the model 

can be inaccurate if the heuristics and constraints employed cause the selection of a solution 

that does not match the actual position of the user. 

3.        Kinematic Models of the Human Body based on Joint Angles 

Kinematic models of the human body are often quite complex. Attempts to simulate 

the range of motion of the human skeleton typically result in articulated structures 

containing on the order of 60 degrees of freedom [Ref. 11.][Ref. 78.][Ref. 88.]. Such 

models can require a transformation matrix as given by Eq. (3.74) for each link. Since links 

can not be positioned independently with such a model, each change in posture requires up 

to 60 matrix multiplications or at least 3,780 scalar operations to reposition the model. The 
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computational load will increase further if there is a need for inverse kinematic calculations 

to determine the positions of some limbs. Nevertheless, kinematic models based on 

homogenous transformation matrices and joint angles are well suited for use with sensing 

systems which provide joint angles as output. Other alternative models may be more 

appropriate when working with sensors which provide link orientation and/or position 

relative to Earth coordinates as output. 

Noisy or inaccurate sensor information in human body tracking applications can 

result in postures which are unrealistic of impossible for a human to perform. For example, 

when the elbow is completely flexed, inaccuracies in sensor data due to noise or a lack of 

precision can place the upper and fore arms in the same location. Joint angle models based 

on transform matrices allow the implementation of joint limits which match the motion 

limits of a human skeleton. If sensor data results in a calculated position which is beyond 

the joint limits of the link, the limb can simply be placed at the limit and transformations 

can continue based on this "limited" position. Often other representations of limb segment 

orientation are converted to matrix form for this purpose. In [Ref. 88.], orientation data is 

input in quaternion form. These quaternions are then turned into rotation matrices for 

application of joint constraints and submission to the graphics API. 

In networked applications involving body tracking, it is necessary to pass posture 

data between remote locations. If full kinematic models containing all fixed transformation 

matrix parameters are stored at each location, only the variable joint angles need to be sent 

across the network each time a posture update is made. Thus, if a sixty DOF model is used 

and the joint angles are specified using 16 bit numbers, only 120 bytes of information must 

be sent across the network. It should be noted, however, that once the joint angle data has 

been received, each location will be required to perform numerous matrix multiplications 

to reposition the model. It would thus be desirable to find a method of specifying 

orientation with an equivalent network bandwidth requirement that required a more limited 

computational overhead at each location. 
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4. Orientation Only Tracking 

In orientation only tracking applications, the posture of a human model is set using 

only orientation data. Position data for a single reference point is used only to place the 

entire human model within a synthetic environment. 

Inertial sensors provide orientation relative to an earth fixed coordinate reference 

frame. In early inertial angle tracking work in [Ref. 28.], Frey showed that an entire human 

body simulation can be built and animated using only orientation data for each body part. 

This result eliminated the need for human body motion capture systems to track the position 

of each body part and showed that orientation data alone could be used to determine body 

posture. 

Usta created a human model designed to accept a quaternion representation of 

orientation relative to an earth fixed coordinate reference frame. The input data was 

provided by prototype inertial trackers. The quaternions were then turned into rotation 

matrices for submission to the graphics API and the application of joint constraints [Ref. 

88.]. He did not use the quaternions to directly orient individual body segments for 

graphical rendering. Qualitative results from his work are shown in Figure 4. Only static 

tests were performed. 

Other work has discarded the position data from active magnetic systems for 

posture determination and used only orientation data to drive the animation of a human 

model. This orientation data was used to determine joint angles which were applied to 

kinematic models [Ref. 78.], [Ref. 64.]. Though Molet transmitted orientation quaternions 

across a network to save bandwidth, the quaternions were converted to rotation matrices. 

Inverse kinematic calculations were made to allow several joints to be driven with one 

sensor [Ref. 64.]. 

5. Kinematic Models based on Quaternion/Vector Pairs 

Quaternion/vector pairs represent a rotation using a quaternion and a translation 

using a vector. [Ref. 30.] Utilization of sensors which output orientation data in an earth- 
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(a) Initial Position 

(c) Forearm and Upper Arm 

nBlffl»iifc mi 
(d) 90 Degrees of Elevation at the 

shoulder (No singularity) 

Figure 4: Inertial Motion Tracking of the Right Fore and Upper Arm with 
Two Inertial Sensors and a Quaternion Attitude Filter From [Ref. 88.] 

fixed coordinate reference frame is more applicable to the use of kinematics models based 

upon quaternion/vector pairs. In this case, each limb segment can be oriented without 

regard to the orientation of adjacent segments [Ref. 28.]. The posture of the user can be 

reconstructed by simply attaching the representations of individual limb segments together 

in the same manner in which the corresponding segments on the body of the user are 

connected. There is no need for coordinate transformations or the associated transformation 

matrices to determine joint angles. Body posture is entirely determined based upon limb 

orientation and length and the quaternion and vector which represent these parameters. 

Given low noise orientation data of sufficient accuracy, it should not be necessary 

to apply joint angle constraints to correct position errors. If this data is supplied in 

quaternion form, the need to generate rotation matrices and perform numerous matrix 
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multiplications can be avoided. Each limb segment can be oriented via multiplication by 

unit quaternions as described by Eq. (3.52). Limb segments can be positioned through a 

rotated translation vector derived from concatenation of vectors pointed from proximal to 

distal joints. 

Figure 5 depicts a human model designed for the input of quaternions representing 

the orientations of the individual limb segments. The animation of the human figure is 

accomplished without rotation matrices. When all of the limb segments are in their 

reference positions, the body-referenced x axes are pointing north, y axes pointing east and 

z axes point down. The orientation of each limb segment in its reference position is 

described by the unit quaternion 

(3.75) 

The first element of this quaternion is the cosine of the half angle of rotation. When in the 

reference position there is no rotation (cos 0 = 1). 

base 

Figure 5: Human Model Designed For Quaternion Input 
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Each numbered link in Figure 5 has two connection points and a vector which 

connects them. This vector direction is outboard toward the more distal joints. The vector 

Pij extends from the inboard connection point to the outboard connection point of link;'. The 

vectorpij is a quaternion with a real part equal to zero. The length of ptj is equal to the length 

of link;'. Thus, the position and orientation of limb segment y is described by the quaternion/ 

vector pair (qpPij). 

When a link j is no longer in its reference position, the orientation of that link is 

given by the unit quaternion qj. Thus, the orientation transformation applied to each vertex, 

Vj, in the graphical representation of the limb segment corresponding to link; is 

v) = ij»fli (3-76) 

For link 1 the rendered position and orientation is given by vertex transformation 

v'i = Piro + Viii (3.77) 

For link 2 the transformation applied to each vertex is 

v'l = PEO 
+ 9lA>0l9l + 92

v292 (3.78) 

In general, the nth link outboard from the base is positioned and oriented by 

v« = PEo + ^\Po^i + ^7Pn^2 + - + in-lPn.lngn-i + qnvnq„ (3.79) 

Obviously, the links should be positioned and oriented by working outward from the base 

and saving intermediate results. This eliminates the need to repeat identical calculations 

when multiple limb segments are attached to the same inboard link. It should be noted that 

Eq. (3.76) through Eq. (3.79) involve only scalar additions and multiplications. The are no 

trigometric functions or matrix multiplications. Positioning and orienting the structure 

depicted in Figure 5 will require approximately 840 scalar operations. 

In networked simulations, the use of quaternions requires considerably less 

bandwidth than that of joint angles. Specifically, for a unit quaternion all elements are 

within the range +/- 1. Integer representation of a unit quaternion with 1% accuracy 
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therefore requires four bytes. For the purpose of networked simulation, the human body can 

be adequately modeled using fifteen limb segments. Thus, posture updates using a 

quaternion representation require that approximately 60 bytes of information be sent across 

the network. This is roughly the equivalent of that required for the update of a kinematic 

model with 60 degrees of freedom. If unit quaternions in positive real form are used, only 

45 bytes need be transmitted. In addition, the amount of computation at each end will be 

greatly reduced when quaternion representations of orientation are used. 

D.        SUMMARY AND CONCLUSIONS 

Homogenous transform matrices and Euler angles are widely used by both the 

graphics and robotics communities. This utilization is mostly due to their familiarity and 

matrix formulation. There are however several disadvantages to the use of these 

formalisms. Homogenous transform matrices require the storage of 16 numbers, seven of 

which are redundant or constant for any matrix. The composition of two rotation matrices 

requires 36 scalar multiplications and 27 adds. The use of trigometric functions is even 

more expensive since approximation is usually carried out using Taylor series. Within a 

rotation matrix there are at least six trigometric functions which must be evaluated. Each 

requires numerous scalar operations. Use of Euler angles results in singularities whenever 

the inner and outer gimbal rotation axes become collinear. Thus, they are not appropriate 

for tracking the orientation of a rigid body that can assume any orientation. 

Kinematic models of articulated structures which are based on homogeneous 

transform matrices must orient and position each link with respect to the orientation and 

position of the inboard connecting link. Changing the posture of a 60 DOF human model 

will require at least one multiplication of two 4x4 matrices per joint. Kinematic models 

based on homogeneous transform matrices are well suited to tracking systems which 

provide joint angle output. The ability to implement joint limits allows correction of some 

problems which might occur when using noisy or inaccurate sensors. 
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Quaternions and quaternion/vector pairs offer an alternative to rotation matrices 

based on Euler angles and homogenous transform matrices.[Ref. 30.] Though in less 

general use, in terms of computational efficiency and compactness they are superior. 

Thinking about a matrix which expresses a rotation about a non-principal axis is just as 

difficult as imagining a quaternion which specifies a rotation about an arbitrary vector. 

Thus, intuitively quaternions are no more difficult to work with than rotation matrices. 

Storage of a quaternion requires four numbers (three for quaternions in positive real form) 

where as an equivalent rotation matrix requires nine. Quaternion vector pairs require the 

storage of only seven numbers in contrast to the sixteen of a homogenous transform matrix. 

The composition of two rotations and translations using quaternion/vector pairs requires 

only 32 scalar multiplications and 24 additions. In many practical applications, there is no 

need to evaluate any trigometric functions. Quaternion representations of orientation do not 

result in any singularities. 

Kinematic models based on quaternion/vector pairs are computationaly more 

efficient than those based on homogeneous transform matrices. This is especially true when 

they are driven by orientation data which is described relative to a world coordinate 

reference frame. When compared with joint angle updates of posture, the bandwidth 

requirements are roughly the same. If it is necessary to transmit both translation and 

orientation data, quaternion/vector pairs require approximately one fifth the bandwidth of 

homogenous transform matrices. Update of the posture of a 15 segment human model will 

require 840 scalar operations. This is an order of magnitude less than the 3,780 scalar 

operation needed to reset the posture using transform matrices. An articulated structure 

based on quaternion vector pairs includes no notion of joint angles. Thus, it is not possible 

to implement joint angle constraints using this formalism and when using noisy or 

inaccurate sensors it may be advisable to adopt the more traditional approach of a Denavit- 

Hartenberg type system. 

56 



IV.   REVIEW OF FILTER THEORY AND DESIGN 

A.        INTRODUCTION 

In physical applications, sensor outputs are commonly processed by digital 

computers with the intention of making some determination regarding the physical world. 

Examples of these determinations may include estimates of velocity, acceleration, position, 

temperature, pressure, etc. In human body tracking applications, the goal is to use sensor 

signals to estimate the orientation of a rigid-body. Unfortunately, because of size 

limitations and cost considerations, sensor output is rarely of sufficient quality to allow 

direct estimation using naive algorithms [Ref. 49.]. The sensors themselves will have 

accuracy limitations. In addition, the output of the sensors will be corrupted by noise. Thus, 

it is necessary to process sensor output data in a more rigorous manner to separate the actual 

sensor signal from the noise which is present and arrive at the "best" estimate possible 

given the inaccuracy of the sensors themselves. The algorithms used to process the signals 

from the sensors are generally termed filtering algorithms. 

The primary purpose of a filter or filtering algorithm is to separate signals from 

noise. Classic examples of this type of filtering include high and low pass filters which 

respectively attempt to separate low and high frequency noise from a signal. Removal of 

noise from a signal will tend to smooth the output. More sophisticated filtering may also 

combine signals from several sensors in order to produce an estimate which is "optimal" 

with respect to some criteria. These types of filters are usually based upon a probabilistic 

model of the signal being estimated as well as the overall system to which it is related. 

Encapsulation of this model within the algorithm provides the additional capability of 

prediction. This may be important in applications in which timeliness is critical, since a 

predicted value can be used in place of an actual estimate. 

Inertial/magnetic human body tracking is essentially a navigation problem with the 

goal of determining the orientation of each body segment. Sensor input comes from 

miniaturized sensors. No single input is of sufficient quality to accurately determine 
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orientation over a long period. It is therefore necessary to combine the signal from several 

sensors to arrive at an accurate estimate of orientation. Since the effects of lag are so 

devastating to the sense of presence in a synthetic environment, calculation of this estimate 

must not be so computationally demanding that it can not be made in real time. Thus, the 

most accurate filter possible may not be the best choice if it is too slow. 

B. MINIATURE INERTIAL SENSORS 

MEMS, or microelectromechanical systems, are integrated systems combining both 

electrical and mechanical components. Unlike conventional semiconductor manufacturing 

or microelectronics in which electronic circuits are implemented, MEMs devices contain 

three dimensional mechanical structures. These "micromachined" mechanical structures 

have dimensions which are measured in micrometers. By combining microelectronics and 

micromachining, precision electronics are closely integrated on the same device. The 

electronics sense the positions and deflections of the mechanical elements. Since they are 

in such close proximity, parasitics and noise are reduced and reliability is improved. 

[Ref. 9.] 

At least four different micromachining techniques are in use or under development. 

Silicon micromachining is a relatively developed micromachining technique since it is 

closely related to the production of microelectronic circuitry. Silicon is the primary 

substrate material used. Electrochemical etching techniques are being investigated to 

extend the set of basic silicon micromachining techniques. Silicon bonding techniques can 

also be utilized to extend the structures produced by silicon micromachining techniques 

into multiple layers. Excimer laser techniques use an ultraviolet laser to micromachine a 

number of materials without heating them. The excimer laser lends itself particularly to the 

machining of organic materials (plastics, polymers, etc.). LIGA1 is a technique that can be 

used to produce molds for the fabrication of micromachined components. Microengineered 

1. The acronym LIGA comes from the German name for the process (Lithographie, Galvanofor- 
mung, Abformung). 
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components can be made from a variety of materials using this technique. More than one 

micromachining technique can be involved in the manufacture of a hybrid MEMs device. 

Photolithography is used in conjunction with all of the micromachining techniques 

described above. [Ref. 9.] 

Sensors are a specialized type of transducer. MEMs sensors convert a physical or 

chemical quantity into an electrical one. Though each sensor type has a set of advantages 

and disadvantages, the orientation of a rigid body may be determined using only data from 

body-mounted accelerometers, angular rate sensors, or magnetometers. Improved static 

and dynamic accuracy can be obtained by combining data from all of the sensor types in a 

complementary manner. 

MEMs magnetic sensors or magnetometers can use several different methods to 

sense the local magnetic field. Hall effect sensors consist of a conducting material, usually 

a semiconductor, through which a current is passed. In these sensors, changes in anisotropic 

magnetoresistance (AMR) occur when a magnetic field is applied perpendicular to the 

current flow. Two magnetoresistive sensing elements or contacts may be placed on 

opposite corners of the device. Sensing contacts are also placed on the remaining corners 

of the device, opposite each other and perpendicular to the current flow. Changes in the 

magnetic field perpendicular to the plane of the contacts are detected as a change in the 

potential difference between the two sensing contacts. [Ref. 9.][Ref. 43.] 

Several major techniques are used to design MEMs accelerometers. Due to the 

newness of the field, performance ranges and optimal application areas of each have yet to 

be determined. In one technique, a silicon diaphragm to which a mass has been added is the 

basic structure used. Under acceleration, the diaphragm bends causing a change in the 

distance between a stationary and moving electrode. The resulting change in capacitance is 

converted into a voltage. Piezo resistive materials in which the resistance changes as the 

material bends can also be used. Accelerometers based on this technique, consist of a mass 

suspended from thin beams. Under acceleration, a force (f = ma) is developed which bends 

the suspending beams. Piezoresistors positioned where the beams meet the support are used 
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to detect acceleration. Vibrating beam accelerometers (VBAs) use two resonators vibrating 

at their natural frequency. One resonator is compressed by acceleration while the other is 

tensioned. The frequency of the tensioned resonator increases while the frequency of the 

compressed resonator decreases. The acceleration is determined by the difference between 

the two frequencies. [Ref. 9.][Ref. 43.] 

Most miniature and micromachined angular rate sensors are based on the Coriolis 

tuning fork principle. Gyroscopes that use vibrating rather than rotating bodies to detect 

gyroscopic torques from coriolis acceleration are more reliable and less expensive than 

rotating gyros. The "tuning fork" structure is set to stable vibration at its fundamental 

frequency. As it is rotated about its axis, Coriolis acceleration generates a sinusoidally 

varying precession. The amplitude of the generated sine wave is proportional to the input 

angular rate about the axis and is given by 

a = 4v| (4.1) 

where v is the tine velocity, Q is the input rate, and K is the stem torsional stiffness constant. 

[Ref. 43.] 

C.        RANDOM PROCESSES 

In order to work with the output of a sensor, it is necessary that its output signal be 

described in mathematical terms. In filter theory, the characteristics of a signal are captured 

by the notion of the stochastic or random process. The concept of a random process 

associates time with a random variable. In this abstraction, it is imagined that an ensemble 

of identical experiments are conducted simultaneously. In each of these experiments the 

random signal of interest is being generated. The value or state of a random process, X, can 

be examined at any time t. For a fixed time t, the value of the random process is described 

by the random variable, x. 

X{t) = x (4.2) 
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If the parameter t is discrete, then X is a discrete-time random process. If the parameter t is 

continuous, then X is a continuous-time random process. Since X is random, the value at 

time t will generally not be the same for all experiments. What is of interest is the expected 

value, and how the process is correlated with itself in time, and how the process might be 

correlated with other processes in time. 

How a process is correlated with itself in time is expressed by the autocorrelation 

function. The relationship between the state at times ty and t2 is given by 

CO    oo 

Rx{tltt2) = E[X{tx)X(t2)] = E[xxx2] =  J" \xlx2f{xl,x2,tl,t2)dxldx2 (4.3) 

where / is the second order probability density function for X. If a process is closely 

correlated with itself, the value of Eq. (4.3) will be positive. If Eq. (4.3) has a value of zero, 

the process is uncorellated with itself in time. For a stationary process, the value of Eq. 

(4.3) is only dependent upon the difference, T = \t± -12\. The power of a signal is given by 

the autocorrelation function when ^ = t2. That is, 

Rx(t, t) = E[X(t)X(t)] = E[X2(t)} (4.4) 

The relationship between two process is expressed by the crosscorrelation function. 

The correlation between the process Xand Y at the times fj and t2 is given by 

Rxr(tvt:) = E[X{tx)Y{t2)} = E[Xly2] =  J j x1y2f(xvy2,tvt2)dxidy2 (4.5) 

Again, if the processes are uncorellated Eq. (4.5) will have a value of zero. Negative values 

indicate the processes are negatively correlated. Autocovariance and crosscovariance are 

zero mean versions of the autocorrelation and crosscorrelation functions respectively. 

In filter theory, both the input and the output of a filter or system are treated as 

random processes [Ref. 14.]. Thus, filter design becomes an in depth examination of how 
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the input processes of a system are related to the output processes. In practical applications, 

several simplifying assumptions are usually made. Processes are usually treated as Wide 

Sense Stationary (WWS) meaning that second order probability density functions are time 

invariant. It is also usually assumed that processes are ergodic or only a single sample time 

signal of a process is needed to obtain all necessary information about the signal. Proving 

two processes are independent requires that any moment of their joint probability density 

functions will be zero. This is usually very difficult. Thus, independence is usually only 

assumed based upon empirical data [Ref. 14.]. 

x(t) 

D.        LEAST SQUARES FILTERING 

A system is a mathematical model that relates an 

input signal x to the output signal y. Figure 6 shows block 

diagrams of linear systems in the time and frequency 

domains. In each system diagram, the input is related to 

the output by a function. When working in the time y, \ 

domain, this function is call the impulse response (h(t) in 

diagram (a)). The relating function in the frequency 

h(t) y(t) 

(a) Linear System in the 
Time Domain 

H(s) Y(s) 

(b) Linear System in the 
Frequency Domain 

domain is termed the transfer function (H(s) in diagram   p-jg^ 5. Biock Djagrams of 

(b)). Mathematically, the output or a linear system is Linear Systems 

expressed by a convolution integral. In the time domain the integral is written 

y(t) =  J h{x)x(t-z)dx =  ) h{t-x)x{x)dx (4.6) 

In the frequency domain, the convolution integral becomes a simple multiplication. 

Y(s) = H(s)X(s) (4.7) 

It should be noted, that working in the frequency domain is specialized to WSS processes 

[Ref. 14.]. 
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If the input and the outputs of a linear system are random processes, it becomes 

necessary to determine the expected output of the system given an expected input. In the 

time domain for a linear system Eq. (4.6) becomes 

E[Y(t)] = E j h(x)X(t-x)dx 

= \h{x)E[X{t-x)]dx (4.8) 

Filters are described as systems in which the inputs and outputs are random 

processes. In a linear system, the impulse response or transfer function is applied to a noisy 

input to produce an estimate of a desired noiseless output, which is written 

Y(t) = \h(x)X(t-x)dx (4.9) 

The purpose of the filter under least square filtering is to minimize the estimation error. In 

particular, if the estimate of the noiseless output, Y(t), is perfect the difference between 

these two values will be zero. Minimization of the square of the expected error takes the 

form 

e = E{[Y(t)-~Y(t)]2} (4.10) 

where e is the squared error criterion. In linear minimum mean-square error estimation, it 

is assumed that X(t) and Y(t) are related to one another by some linear function. Eq. (4.9) 

replaces Y{t) in Eq. (4.10) with a term involving the filter impulse response and the input. 

e = E 

->2 

Y(t)- jh(x)X(t-x)dx (4.11) 

In the method of nonlinear mean-square estimation it is assumed that the input and 

output processes are related by a nonlinear function. In this case, the squared error criterion 

becomes 

e = E{[Y-g{X)Y} (4.12) 
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where g is some nonlinear function of X. Choosing the form of the function g is difficult 

due to the multitude of possibilities. In theory, the best nonlinear estimator is given by 

g(X) = E[Y\X] (4.13) 

However, in most practical applications this function is difficult to find [Ref. 58.]. In many 

cases, a more tractable problem can be created by approximating a nonlinear relationship 

using a linear function. 

The exact manner in which the transfer function is determined is what characterizes 

the different types of filters. Wiener filters are linear mean square error filters for stationary 

random processes. Complementary filters are a specialization of Wiener filters in which no 

assumptions are made about the signal structure. Kaiman filters are also linear mean square 

error filters in which the estimation process is recursive. The process model of an Extended 

Kaiman filter is nonlinear, but the estimation itself is linear. [Ref. 14.] 

E. WIENER FILTERING 

Linear mean square error filtering began with the work of Nobert Wiener. [Ref. 14.] 

This work attempted to separate one noiselike signal from another. The end result tells how 

past values of input should be weighted in order to estimate the present value of the output. 

The theory developed is characterized by the following assumptions [Ref. 14.]: 

• Both the signal and noise are random processes with known auto- and 
crosscorrelation functions. 

• The criterion for best performance is minimum mean-square error. 

• A solution based upon scalar methods will lead to the optimal filter weighting 
function. 

The significance of the first and third assumptions should be noted. The first indicates that 

the complete spectral characteristics of both the noise and the signal must be known. The 

exact manner in which all signals are related must also be known in order for a Weiner filter 

to produce an optimal estimate. The third assumption emphasizes the reliance of the Weiner 

filter theory upon scalar methods. This reliance makes it difficult to apply Wiener filter 
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theory to systems with multiple time inputs and outputs. Wiener filters may be either 

continuous or discrete. 

1.        Continuous Weiner Filters 

If it is assumed that all processes are stationary and the filter is not time-varying, 

prediction, filtering and smoothing problems may be solved with a Weiner filter. If the 

input signal is continuous, the Wiener filter estimate of the output at a particular time t is 

formulated as 

b 

Y(t) = \h{t-x)X{x)di (4.14) 

a 

The time t may or may not be in the interval [a, b]. X(t) represents the measured data. /i(x) 

is treated as a set of weighting functions. The error should be orthogonal to the data. Thus, 

£[(y(r)-K(rPs)] =E Y(t)X(s)-jh(t - x)X(x)X(s)dx = 0 (4.15) 

This implies that 

E[Y(t)X(s)] = E jh(x)X(t-x)X(s)dx (4.16) 

or 

RYx('>s) = $h(t-x)Rx(x,s)dx (4.17) 

Eq. (4.17) is known as the Wiener-Hopf equation [Ref. 14.]. Theoretically, this result can 

be used to solve for the weighting function given the assumption that the auto- and 

crosscorrelation functions involved are known. However, there is no general solution 

method for all practical applications. Usually, specialized forms based upon one or more 

simplifying assumptions are solved. 

65 



Weiner filters may be causal or noncausal. The weighting function of a noncausal 

filter requires the filter to "look ahead" of real-time and use data which is not yet available. 

The estimate of the output at a particular time t, for a noncausal filter is given by 

Y(t) =   fh(t-T;)X(T)dX (4.18) 

The auto- and crosscorrelation relations can be expressed as 

RYX(S) = j h(z)Rx(S-T)dx (4.19) 

If is assumed that the processes involved are WSS, a closed form solution for the weighting 

function can be found in the frequency domain. Taking the Fourier transform of both sides 

of Eq. (4.19) produces 

SYX(j(o) = H(J(n)SxUa>) (4.20) 

Thus, by rearranging Eq. (4.20) [Ref. 14.] 

SVY(no) 
"<*"» - W (4-21) 

If it is assumed that the input measurement has the following form 

X(t) = Y(t) + n(t) (4.22) 

where n{i) is uncorellated Guassian noise. Then Eq. (4.21) will become [Ref. 86.] 

HU*) = ,   ,Srfft. , (4.23) 

Noncausal filters are applicable to applications in which post-processing of data is 

performed, but are not useful in real-time tracking applications. 

Casual systems are dependent only upon the past and present values of input and 

are therefore applicable in real-time applications. The estimate of the output, for a causal 

filter is given by [Ref. 14.] 
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Y(t + X) = $ hx(a)X(t + a)da (4.24) 

where t is the "present" time. Unfortunately, there is no closed form solution for the 

weighting function in Eq. (4.24). Application of methods such as {novation and spectral 

factorization become necessary [Ref. 14.]. 

Application of continuous filter theory to digital computers which are processing 

sampled data can be difficult. Discretization of a transfer function of a filter formulated in 

continuous time may not produce the results desired. 

2.        Discrete Weiner Filters 

Wiener filtering of discrete data is also a weighting function approach. The 

weighting function again attempts to weigh all past data in a manner which produces the 

best estimate. Given n noisy input measurements at times t± through tn, the estimation 

becomes 

Y = a1X(t1) + a2X(t2)+...+anX(tn) (4.25) 

and the mean square error becomes 

e = E{[Y(kt)-(a1X1+a2X2 + ...+a„Xn)}
2} (4.26) 

To find the minimum of the squared error criterion in Eq. (4.26), the partial 

derivative with respect to each a{ is taken. 

^- = £[(y(0-KW)X(/,)] 

= E[Y- (ajX, + a2X2 + ... + <vW] 

= E[YXS -alXiXl-a2XiX2-...-anXiXn] 

= E[YXi]-a1E[XiX1]-a2E[XiX2]-...-anE[XiXn] 

= RXY(t, /,)-aiy?x(r., ^yajR^tp t2)-...-anRx{ti, tn) = 0 (4.27) 

These n resulting equations can be expressed in matrix form by [Ref. 14.] 
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Ra = 

**('!.',) 

%('i. H) 

*x('».'i> 

**(',..',■> 

%y('i.O 

= An (4-28) 

Rx(tvtn)    ...    %(/„,r„)J " 

This implies that a can be solved for by inverting the n x n matrix R. 

a = R~lRn (4.29) 

The above assumes that each of the auto and crosscorrelation functions in Eq. (4.28) is 

known. 

Inversion of R in Eq. (4.29) can be computationally expensive. This inversion must 

be completed each time a new estimate is required. As the size of the data set increases with 

time, the growing dimension of/? will soon make the problem intractable. A limitation may 

be placed upon the number of previous measures used, but inversion of an n x n matrix will 

still be necessary each time a new data point is received. It should also be noted the Eq. 

(4.28) takes into account only one input and one output. If multiple outputs are involved, 

there will be multiple matrices to be inverted. 

F. KALMAN FILTERING 

The Kaiman filter is an alternate method of formulating the linear minimum mean- 

square error filtering problem which utilizes state space methods [Ref. 14.]. The two main 

features of the Kaiman formulation of the problem are vector modeling of the random 

processes under consideration and recursive processing of the noisy measurement data 

vector. Unlike the discrete time Wiener filter which must reprocess all previous data each 

time a new estimate in required, recursive processing allows an updated estimate to be 

made using only the results from the previous estimate. 

Kaiman filter theory continues the assumption that the spectral characteristics of the 

processes involved are known. All noise sources are assumed to be white and Gaussian 
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[Ref. 49.]. "Whiteness" implies that the noise values are not correlated in time and have 

equal power in all frequencies. Gaussian noise amplitude takes on the shape of a normal- 

bell shaped curve. The probability density of a Gaussian noise source is completely 

described by its mean and variance. Under these assumptions a Kaiman filter will produce 

an optimal estimate of the variables of interest. This optimality is based on Bayes theorem 

and the use of conditional probability density functions [Ref. 91.]. Continuous Kaiman 

filters are only of theoretical interest and are rarely used in practical applications and thus 

will not be discussed here. 

1.        Discrete Kaiman Filters 

Discrete Kaiman filter theory is primarily based upon a process model and the 

measurement equation. The process model express the physical characteristics of the 

system. It predicts how the state of the system changes from one time step to the next. 

Through the process model, unreasonable estimates made using only sensor data may be 

discounted. This model for change is written [Ref. 91.] 

x ^, = $ x + w (4.30) 

where 

• Xn+i and Xn are n x 1 state vectors expressing the state of the system at the times 

n +1 and n respectively. 

• <I>n is an n x n constant state transition matrix expressing the physical equations 
which govern system state transitions. 

• Wn is a n x 1 process noise vector. The n independent white noise sources have a 
known covariance and account for system inaccuracies. 

The measurement equation [Ref. 91.] 

z„+1=nnxn + vn (4.31) 

expresses how measurement data is related to the state of the system. Based on a given set 

of measurements, it defines what state the system should be in. Individual terms are as 

follows 

• Zn is an m x 1 vector of measurement data at time n. 
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• Xn is an n x 1 state vector expressing the state of the system. 

• Hn is an m x n constant measurement matrix which relates measurements to the 
system state. 

• Vn is an n x 1 measurement noise vector. The n independent white noise sources 
account for measurement inaccuracies. These noise sources are uncorellated with Wn 

in Eq. (4.30) and have a known covariance. 

The covariance matrix for the process noise vector, Wn, and the measurement noise 

vector, Vn, vectors is given by 

Qk = E[WkW{] = E[wl] (4.32) 

and 

** = E^kvB = E[vl] (4.33) 

The estimation error is expressed as 

e-k = xk-x-k (4.34) 

and the associated error covariance matrix is 

P-k = E[e-keT] = E[(Xk-X-k)(Xk-X-k)
T) (4.35) 

where the super-minus indicates that the best estimate prior to assimilating the actual 

measurement at the corresponding time. The discrete linear estimation is 

Xk = (I - KkHk)Xk + KkZk (4.36) 

For clarity, Eq. (4.36) can be rearranged and written as 

Xk = x-k + Kk(zk - H/ßcj.) (4.37) 

The second term on the right side of the equation expresses the error or update. The 

subtraction in the term produces the difference between the actual measurement and the 

expected measurement. The n x n weighting matrix, Kk, is the Kaiman gain matrix, which 

is given by [Ref. 14.] 

Kk = P-kHl(HkPkHZ+Rk)-i (4.38) 

Evaluation of Eq. (4.38) requires inversion of an n x n matrix. 
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Determine Kaiman Gain 

i 
Update state and covariance 
estimates 

Xk = X-k + Kk(Zk-HkX-k) 

Xk 

Project for the next cycle 

Xi+1 = a>kkk 

P-k+l = %P^I+Qk 

Figure 7: Kaiman Filter Loop After [Ref. 14.] 

Once initial estimates of the state (x-k), and the error covariance {P-k) are determined, 

Eq. (4.30) and Eq. (4.31) are repeatedly used to obtained updated estimates of the system 

state as depicted in Figure 7. The elements of Kaiman gain matrix will continue to change 

during operation. Examination of Eq. (4.38) reveals that the only non-constant term is the 

error covariance matrix. Thus, changes in the filter gain are directly related to the estimated 

accuracy of the current state estimate. In effect, a Kaiman filter automatically provides 

information about the quality of the estimates while doing the estimation through P-k. 

2.        Extended and Linearized Kaiman Filters 

In some applications, either the dynamic or measurement relations may be 

nonlinear. The measurement equation may be a nonlinear function of the state variables, 

the process model may be nonlinear function of the state variables, or both. These relations 

can be expressed as 
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*n + l =s(xn) + wn (4.39) 

and 

zn + l=f(xn) + vn (4.40) 

where /and g are nonlinear functions of the state. 

Eq. (4.39) and Eq. (4.40) may be linearized by taking partial derivatives of the 

nonlinear functions. Under such conditions the transition or measurement matrices will no 

longer be constant and must be updated each time a new estimate of the state is made. There 

are two basic methods of linearization. In a linearized Kaiman filter, the partial derivative 

of g or / is taken with respect to some nominal trajectory which does not involve the 

measurement data [Ref. 14.]. In an extended Kaiman filter, the partial derivative of g or/ 

may be taken with respect to the current state estimate [Ref. 91.]. The resulting matrix of 

first partial derivatives or the Jocobian is given by 

H» = Tx 

3/. 9/, 
3xj dx2 - 

df2 df2 

3JCJ dx2 •" 
"      dx 

dx1 dx2 

dxl dx2 

(4-41) 

In either case the actual filter remains linear and performs its estimation using a linearized 

model or approximation of a nonlinear problem. 

Neither method of linearization is without risks. Linearized and extended Kaiman 

filters can no longer be proved to be optimal based on a derivation using Bayes theorem 

[Ref. 91.]. In an extended Kaiman filter, there is a potential for bad estimates to get worse 

and lead to an eventual divergence of the filter. This may be especially true under 

circumstances in which the initial uncertainty and measurement errors are large. Linearized 

Kaiman filters will be inaccurate in situations in which the nominal trajectory does not 

closely match the actual trajectory. Recognition and correction of poor performance 

becomes a key component in the design of such filters. 
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The shock of a Kaiman filter expresses the difference between what is actually 

measured and the best prediction of the state. The shock for extended Kaiman filter at time 

i this can be expressed as 

5,. = z1-/(nx)-|iv (4.42) 

where \xx is the mean of the system state and \iv is the mean of the measurement noise. The 

magnitude of a dimensionless shock term is given by 

DS, = sfafii-Hj) + Rt)St (4.43) 

Should the magnitude of Eq. (4.43) become large compared to the number of components 

of S(, it is likely that the filter has lost track [Ref. 91.]. 

Extended and linearized Kaiman filters have performed well in a variety of 

applications. However, it must be recognized that the added complexity of these types of 

filters makes them more computationally demanding than other types of filters. 

Recalculation of the Jacobian during each update cycle takes time. The complexities of the 

nonlinear models involved may make it difficult to produce updated state estimates in a 

timely manner. 

G.        COMPLEMENTARY FILTERING 

Both Weiner and Kaiman filter theory are based on the assumption that the spectral 

characteristics of the processes involved are known. In practical applications this 

assumption is often difficult to satisfy. It may be impractical to model the input signal as a 

random process with known spectral characteristics. Complementary filters are "ad-hoc" 

systems which are not dependent upon these strict assumptions. Though Weiner or Kaiman 

filter theory may be used to select an appropriate transfer function, neither method is 

required. Complementary filters filter the input signal without unnecessary delay or 

distortion. [Ref. 14.] 

Complementary filtering is based upon the use and availability of multiple 

independent noisy  measurements  of the  same  signal.  If the measurements  have 
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complementary spectral characteristics, transfer functions may be chosen in such a way as 

to minimize estimation error. The general requirement is that one of the transfer functions 

complement the sum of the others. Thus, for n measurements of a signal [Ref. 14.] 

l-H1(s)-H2(s)-...-Hn_1(s) = Hn{s) {AM) 

This will allow the signal component to pass through the system undistorted since the 

output of the system will always sum to one. The simplest complementary filter involves 

two noise contaminated measurements of a signal. This situation is depicted in Figure 8. If 

Ni is predominantly low-frequency noise and N2 is high frequency noise, the two noise 

sources have complementary spectral characteristics. Choosing H(s) to be a low-pass filter 

attenuates both noise signals. The output can be written [Ref. 14.] 

Y(s) = X(s) + N1(s)[l-H(s)] + N2(s)H(s) (4.45) 

where 

*(') = 
l 

1 +xs (4.46) 

which satisfies the conditions required by Eq. (4.44). Since both high and low frequency 

data are utilized, the filter output will not suffer from any delay in dynamic response due to 

low-pass filtering. 

Examination of Eq. (4.45) 

indicates that the filter only operates ^ + Ni(s> 

upon the errors and noise involved in 

the system. The transfer function does 

not directly affect the input signal X(s) + N2(s)" 

itself. For this reason, this type of 

filtering is sometimes called 

distortionless filtering. [Ref. 14.] 

Figure 8: Complementary Filter Block 
Diagram 
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Figure 9 depicts a constant 

gain complementary filter for 

attitude estimation. The transform of 

the roll angle from accelerometer 

readings due to gravity is <pa(s), 

while (ps(s) is the roll angle obtained 

by integrating rate signals. If the 

<P» 

5<P,(J) cp(s) 

Figure 9: Transform Domain Block Diagram 
Of Roll Angle Estimation Filter 

accelerometer were noiseless and sensed only gravitational acceleration, k would be set to 

infinity and the attitude estimation would be entirely accelerometer based. Use of noiseless 

rate sensors with no bias would allow attitude estimation using only these sensors and k 

could be set to zero. Since neither sensor is ideal, a compromise value for k that gives the 

best estimate must be found. 

From Figure 9, the output of the filter is given by 

<p(*) = j(*q>B(*)) - *<P(*) + *P, (*) (4-47) 

The filter transfer function based on accelerometer input alone with ys(s) = 0 is given by 

GaW = 
ks <P(J)   _   _    _ 

<M*>      1+Jfcs-1      s + k      1+TS 
(4.48) 

where t = \- With a unit step input, u(t), the frequency domain output of the filter is 

<M5> = \[j7k) = JiFTT) = ls-7Tl (4-49) 

The far right expression is derived through partial fraction expansion  [Ref. 41.]. 

Transforming to the time domain produces 

■kt (p.(/) = l-e      = \-e (4.50) 

Since e~x = 0.37, when t equals x, the filter output due to accelerometer input has increased 

to 1-0.37 = 0.63 or 63 percent of its steady state value. Therefore, the accelerometer input 

is low pass filtered. 

Similarly, the transfer function for rate sensor input alone with cpa(j) = 0 is 
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'(' " W " TTIr1 - 5TI = ITS (4-51> 

With a unit step input, the frequency domain rate sensor output of the filter is 

Transforming to the time domain produces 

; 

%(t) = e~k! = e T (4.53) 

In this case when t = x, the output due to rate sensor input will have decreased to 37 percent 

of its initial value. Eq. (4.53) high pass filters the rate sensor data. 

From Eq. (4.48) and Eq. (4.51), the combined transfer function due to both rate 

sensor and accelerometer input is 

S^L + SifL = ^- + T^- = ft« = , (4.54) 
(Pfl(s)     (fs(s)        1+T5      1+TJ        1+TS v ' 

which sums to unity regardless of the value of £ [Ref. 56.]. Transforming the sum into the 

time domain produces the total response of the filter 

l-e + ex = \ (4.55) 

This means that the initial response of the filter to a step change comes entirely from rate 

input. The rate input decays exponentially over time and is replaced by complementary 

"low frequency" accelerometer input.[Ref. 56.] 

1. Crossover Frequency 

The crossover frequency of a complementary filter represents the value below 

which signals from one type of sensor are given a greater weight and above which signals 

from another type of sensor are favored. At the crossover frequency, signals from both 

inputs are weighted equally. For the filter depicted in Figure 9, below the crossover 
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frequency accelerometer signals are given greater weight. Above, the rate sensor signals are 

more trusted. 

The crossover frequency of a filter of the form in Figure 9 can be found by equating 

the absolute values of the separate transfer functions [Ref. 50.]. Rewriting in the complex 

frequency domain and equating the transfer functions from Eq. (4.48) and Eq. (4.51) 

produces 

(4.56) cpO'co) = (pC/'co) 

<P,0'<O) <Pa0'w) 

The magnitudes of the transfer functions are given by 

and 

cp(/co) 1 
<Pa(/©) 

cpO'co) 

1 +jt(ü 

/rcü 

<P,0) 1 +/CC0 

Jl+T 2   2 
CO 

TO) 

L        22 
A/1 +Z CO 

Thus, at the crossover frequency 

which implies 

1   = TCO 

CO = 

In Hertz, the crossover frequency, £, can be written as 

Jc     2JIT     2JI 

and can be adjusted by varying the filter gain fc.[Ref. 51.] 

(4.57) 

(4.58) 

(4.59) 

(4.60) 

(4.61) 

H.        SUMMARY AND CONCLUSIONS 

Each of the types of filters reviewed above has its own sets of strengths and 

weaknesses. They differ in computational complexity, memory requirements, and 

applicability to discrete implementation on digital computers. They also differ in the 

assumptions on which the underlying theory is based and applicability to problems 
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involving numerous variables to be estimated and multiple outputs. However, the primary 

goal of each is to produce the best possible estimate for the variable or variables of interest 

by minimizing errors due to noise corrupted measurements and inaccuracies due to sensor 

limitations and the precision of the system. 

Weiner filter theory is applicable to filtering problems involving the separation of 

one noiselike signal from another. The end result of solving an integral equation is a 

weighting function which describes the relationship between input and output. Weiner 

filter theory is completely based upon the assumption that spectral characteristics of both 

the signal and noise are known and uses only this information to minimize the mean square 

error. However, in many practical applications the auto and crosscorrelation functions may 

not be known. The scalar formulation of Weiner filter theory makes it difficult to apply to 

problems involving multiple inputs and outputs. Though there may be multiple inputs, only 

a single scalar output may be estimated. Perhaps the greatest obstacle to the discrete 

implementation of a Wiener filter on a digital computer is the requirement that the solution 

be completely recalculated each time additional data in obtained. This requires that all 

previous measurement data be stored in memory and be available for recalculation of the 

solution. As the size of the data set grows, inversion of the covariance matrix soon becomes 

intractable. 

Kaiman filter theory, like Weiner filter theory assumes that the spectral 

characteristics of each signal is completely specified. While Weiner filters use constant 

gains, Kaiman filters have time varying gains which are derived using the Kaiman gain 

matrix. The Kaiman filter incorporates a physical process model as part of the estimation 

process. The end result is a differential or difference equation relating input and output. The 

matrix formulation of the Kaiman filter makes it applicable to a large class of problems 

involving multiple inputs and outputs as well as complex measurement and process 

relationships. Discrete Kaiman filters are particularly applicable to implementation on a 

computer due to their recursive nature. It is not required that all previous data to be kept in 

storage and reprocessed every time a new measurement is taken. Only the most recent 
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estimate and measurement are needed to arrive at a new estimate of the state of the system. 

Kaiman filter theory does assume that all noise sources are white and Gaussian. However, 

it can be proved that the sum of multiple colored noise sources will result in a Gaussian 

distribution and thus a Kaiman filter will still perform well even when the assumptions are 

not true [Ref. 49.]. The traditional Kaiman filter is based upon a linear process model and 

measurement equation. Though the filter can no longer be proved to be optimal, a nonlinear 

process model can be used in a linearized or extended Kaiman filter. Formulation of such 

a process model can be extremely difficult and time consuming. Other difficulties can arise 

due to the additional computational demands of linearization. 

Kaiman filters are highly reliant on having complete measurement statistics and an 

accurate process model. In the absence of either of these requirements, highly inaccurate 

estimates of the system state can result [Ref. 14.]. Complementary Filters are not based 

upon the assumption of having complete statistical data regarding the signals involved in 

the problem and thus are often more robust. Most commonly they are designed to combine 

multiple measurements of the same signal in a complementary fashion. The primary goal 

continues to be minimization of the square of the expected error. Any appropriate 

parameter optimization technique can be used to solve the minimization problem. Often, a 

complementary filter is tuned using empirical data obtained in experimental trials of the 

system. The formulation of a complementary filter is usually more straightforward and 

simpler than that of a Kaiman filter. Though not optimal, a complementary filter can 

produce estimates with an accuracy which is comparable to that of an Kaiman filter, with 

a lower computational overhead and less development time. 

It was stated at the beginning of this chapter that inertial/magnetic tracking of 

human body segments is basically a navigation problem. In recent years, this type of 

problem has most commonly been solved using a complementary filter to integrate the data 

from multiple complementary sensors. Foxlin has had success using a reduced order 

extended Kaiman filter in similar but simpler head tracking applications in which inertial 

sensors were used [Ref. 27.]. The ideal solution to the body tracking problem would be an 
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extended Kaiman filter which incorporates a dynamic model of the human musculoskeletal 

system, and measurement statistics of the sensors. Dynamic models for the musculoskeletal 

system have been studied for many years [Ref. 23.]. Such models are ideal for computer 

simulations of articulated body motions, but they are currently too computationally 

demanding for real-time applications such as human motion tracking. Thus, the challenge 

would be to develop a model that is adequate, but not overwhelmingly complex for motion 

tracking applications. In the end however, it may be the case that a properly tuned 

complementary filter will provide estimates with an accuracy that is comparable to those 

made by an extended Kaiman filter without the associated complexity and development 

time. Thus, the prototype research described here makes use of a complementary filter 

based upon a quaternion representation of orientation and leaves the development of an 

extended Kaiman filter for this application to future work [Ref. 48.]. 
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V. A QUATERNION ATTITUDE FILTER 

A. INTRODUCTION 

Human body tracking using inertial sensors requires an attitude estimation filter 

capable of tracking in all orientations. Singularities associated with Euler angles make them 

unsuitable for use in body tracking applications. Quaternions provide an alternate method 

of orientation representation that is more efficient than the use of rotation matrices and does 

not involve the use of trigometric functions. In addition, quaternions do not suffer from the 

singularities associated with Euler angles. 

The optimality of Kaiman filter theory is entirely based upon the assumption that 

complete statistical data regarding the signals involved in the problem are known. In 

practice this may not be true. Calculation of the Kaiman gains requires the inversion of an 

n x n matrix on each iteration step. In a nonlinear problem such as human-body tracking, it 

becomes necessary to use an extended Kaiman filter. In this case it may be necessary to 

compute Jocobians to linearize both the measurement and process model equations at each 

iteration step. In order to keep the problem tractable, it may also be necessary to simplify 

the involved process model to the point where it is no longer accurate. 

Nonlinear regression analysis is a simpler form of optimal least-squares estimation. 

In this method, a squared error criterion function relating the measurements to the state 

estimate is minimized using a least squares estimate of the true value of the state. The least 

squares estimate can be derived using techniques such as Gauss-Newton and Newton 

iteration. This chapter describes the theory, design, and analysis of a complementary 

attitude estimation filter based upon a quaternion representation of orientation and Gauss- 

Newton iteration. 

B. A QUATERNION ATTITUDE FILTER 

Figure 10 is a block diagram of the complementary quaternion-based attitude 

estimation filter used in this research. The filter takes inputs from three separate sensors. 
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Its output is a unit quaternion representation of the orientation of the tracked object, q. The 

inputs are from a three-axis angular rate sensor (p, q, r), a three-axis accelerometer (hh h2, 

h3), and a three-axis magnetometer (bh b2, £3). 

In an error free, noiseless world, angular rate data could be processed to obtain a 

rate quaternion using the relationship 

q = q\0,   y> 2q 2rJ = 2q ^ (5>1) 

where the indicated product is a quaternion product and the superscriptB means measured 

in body coordinates (See Chapter III for a complete derivation of Eq. (5.1)). Single 

integration of q would produce a quaternion which describes orientation. However, in an 

environment containing noise and errors, the output of angular rate sensors would tend to 

drift over time. Thus, rate sensor data can be used to determine orientation only for 

relatively short periods of time unless this orientation is continuously corrected using 

"complementary" data from additional sensors. 

Accelerometers , 
{hxh2th) 

(hlh2h3blb2b3)
T 

Magnetometer 
(b,b2b3) 

Angular-rate 
Sensors 
(p. q. r) 

CO 

£(g)| 

[XTXYXXT 

^-*^i* (<7 lmq,q lnq) 

q»q 

Figure 10: Quaternion-Based Attitude Filter From [Ref. 8.] 
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Accelerometers measure the combination of forced linear acceleration and the 

reaction force due to gravity. That is, 

"measured = a~S (5-2) 

Since most real-life objects do not experience constant linear acceleration, when averaged 

over time, accelerometers return a gravity vector or the local vertical. Thus, accelerometer 

outputs are used to correct orientation relative to a vertical axis. Similarly, magnetometers 

measure the local magnetic field in body coordinates. This information is used to correct 

rate sensor drift errors in the horizontal plane. 

1.        Parameter Optimization 

Combining filter inputs can be regarded as a parameter optimization problem with 

the goal of minimizing modeling error. The closer the estimated orientation to the actual 

orientation, the smaller the modeling error. Through iteration and calculations based on the 

magnitude and direction of modeling errors, orientation estimations become increasingly 

accurate. Theoretically, when the modeling error is zero, the estimated orientation is equal 

to the actual orientation. 

The three orthogonally mounted accelerometers return an approximation to the 

local vertical, the unit vector h. The magnetometer returns the direction of the local 

magnetic field, b, also normalized to a unit vector. These two vector quantities expressed 

in body coordinates as pure imaginary unit quaternions are 

h = [0 A,  h2 A3] b = [0 bx b2 63] (5.3) 

Combining the vector parts of Ve(h) and Ve(b) from Eq. (5.3) produces a 6 x 1 

measurement vector representing the actual measurements taken by the accelerometers and 

magnetometers. 

?0 = [VeW, Ve(b)]T = [hfchjhfabj7 (5.4) 

Gravity in earth coordinates is always down and can be expressed as the down unit 

vector in quaternion form as 
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m = [0 0 0  1] (5.5) 

The local magnetic field in earth coordinates, once determined and normalized, can 

be expressed in unit quaternion form as 

n = [0    n1  n2 n3] (5.6) 

Eq. (5.5) and Eq. (5.6) are transformed from earth fixed coordinates to body 

coordinates through quaternion multiplication with the estimated orientation, q by 

[Ref. 92.] 

h = q~lmq b = q~lnq (5.7) 

Combining the imaginary parts of Eq. (5.7) into a single 6x1 computed 

measurement vector produces 

y{q) = [Ve{q-lmq), Ve{q-lnq)]T = [Ä»»^]7" (5.8) 

Eq. (5.4) represents the measured gravity vector and local magnetic field while Eq. 

(5.8) is the computed gravity vector and magnetic field found using Eq. (5.7) and is based 

upon the best estimate of the current orientation. The difference between the actual 

measurements and the computed measurement is the error vector or modeling error 

kq) = yo-y{q) (5.9) 

In viewing Eq. (5.9), note that if q = qlrue in Eq. (5.7) and there is no measurement noise, 

the difference between the measured and computed values, e(<?), will equal the zero vector. 

The square of the filter modeling error is termed the criterion function 

cp(s) = tT(q)kq) (5.10) 

In the current version of the filter, q>Q) is minimized using Gauss-Newton iteration [Ref. 

59.]. This method is based on linearized least squares regression analysis where yo is 

considered a vector of data points and y(q) is a vector to be fitted to those points. The full 

correction step to the measured rate quaternion is [Ref. 59.] 
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where the X matrix is defined as 

xtj = (5.12) 

It should be noted that if q is not constrained to unit length as depicted in Figure 10 and 

discussed in Appendix B, a unique solution to the problem it no longer exists and the X 

matrix will not be of full rank. In this case the regression matrix 

s = xTx (5.13) 

will be singular and can not be inverted. The orthogonal quaternion theorem described later 

in this chapter provides a method of avoiding regression matrix singularities and improving 

filter efficiency. 

Eq. (5.11) treats m and n as if they are perfect measurements of forced linear 

acceleration and the local magnetic field. In dealing with data corrupted by noise, a scalar 

multiplier a is used. 

^partial = a^]"*7^) (5-14) 

where o < a < l . In the absence of noise, a would be set to nearly unity. Very noisy or 

inaccurate measurements would demand that the scalar multiplier a be given a value closer 

to zero. For a discrete approximation to a continuous time filter, referring to Figure 10 

a = kAt (5.15) 

Thus, for discrete time step integration, the next estimate of orientation would be 

9/. + 1 = qn + 2qn
BUkt + a[XTX]   X £(?„) = qn + kAtAqfM + qmeasuredAt (5.16) 

In the continuous time domain, Eq. (5.16) becomes 

q = qe + qmeasured = kAqfull +qmeasured (5.17) 
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2.        Analysis 

Figure 11 is a time domain signal flow graph (SFG)[Ref. 4L] of the linearized 

quaternion attitude estimation filter. The inputs n-^ and n2 are maneuver induced noise and 

rate sensor noise respectively. The basis for linearization is the assumption that in the 

absence of measurement noise the computation of Aqfull is exact and therefore 

A<?/«» = Vtrue-1 (5-18) 

This assumption would be correct only if y depended linearly on q, which it does not. 

Nevertheless, simulation studies [Ref. 51.] and physical experiments show that this 

equation offers a very useful approximation for the selection of filter gains and predication 

of filter response. 

Application of Mason's formula [Ref. 4L] to Figure 11 produces 

,   -2        -1 -1.,      ,   -1, 
q     _ kp    + p     _ p   (l+kp   ) _    -l 

qtrue        1 + kp~l 1 + kp~l 
(5.19) 

qirue l+kp l+kp 

where p'1 is the time integration operator [Ref. 4L]. Thus, with correct initial conditions, 

in the absence of noise, 

q = p qtrue = q,r (5.20) 

regardless of the value of k. This means that, under the linearization assumptions, Figure 

10 is a complementary filter since, for all k, if n^ and n2 are zero, then q = qtrue. 

Figure 11: Signal Flow Graph for Linearized System After [Ref. 54.] 
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a.        Noise Response 

Applying Mason's formula to noise disturbances nl and n2 in Figure 11 

produces the following low pass filter transfer functions. 

kP ' it (5.21) 
"i     i + kp~l    P + k 

(5.22) p-1    _   i 
n2        1+kp-1       P + k 

Eq. (5.21) and Eq. (5.22) can be used to find an optimal k value in Eq. (5.17) based upon 

power spectral density functions for both the noise signals and actual maneuvering 

behavior of the tracked object. Unfortunately, this information is typically not available, so 

ad hoc "tuning" of k must usually performed based upon experimental results. [Ref. 96.] 

b.        Response to Initial Condition Errors 

Eq. (5.20) assumes that q has been correctly initialized. In order to 

understand how an erroneous q approaches qtrue over time, consider the following static 

sensor scenario. Suppose the sensor is mounted in a static fixture so that all Euler angles 

are zero and thus 

<W = 0 ° o 0) (5.23) 

Assume that the unit quaternion q is incorrect and is represented by 

q0 = (l 8, 8y 8Z) (5.24) 

where all 6 are small quantities. In the absence of motion and noise, q,rue = o and both nl 

and n-> equal zero. Therefore, Figure 11 can be simplified to Figure 12 as follows: 

<7,rUf 
AQfuii q q 

O- 

-1 

Figure 12: Simplified SFG For Static Testing With Zero Noise After [Ref. 55.] 
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Based on Figure 12, the initial value for AqfuIl is 

<?1   = 1,rue-% =  (°   A   Sy  "5
Z) (5.25) 

Since the first component of qx in Eq. (5.25) will always be zero, it can be assumed that it 

will remained unchanged and q will take on the form 

q = (i i y z) (5.26) 

Figure 13 is a Laplace transform SFG for the scalar x. From the application 

of Mason's formula it follows that 

ö*        l+ks s + k 

Employing the inverse Laplace transform produces the result 

x{t) = 8xe-kt (5.28) 

Equivalent results apply for y(t) and l{t). This implies that any transient errors in q 

resulting from erroneous initialization will persist for a time inversely proportional to k. 

Specifically- 

% = \ (5-29> 

and for any disturbance 5^, the resulting errors in the x component of q will be 

e-(/) = 8^* (5.30) 

Thus, it can be predicted that any error will be reduced to 37% of the initial value by the 

time / = xAg. Similar results apply to 8y and 8.. 

5, 

X(s) 

-1 

Figure 13: Transform Domain SFG For k(s) After [Ref. 55.] 



c. Choosing the Feedback gain value 

If k is too large, the discrete time filter may become unstable or too much 

maneuver induced error will appear in q. From Eq. (5.29), it can be seen that k should not 

be too small if the filter is to converge in a reasonable time period. On the other hand, zAq 

must be larger than the maneuver time constant, Tmaneuver, in order to adequately suppress 

maneuver noise. This result leads to the qualitative requirement 

T « T ^maneuver      Aq (5.31) 

or 

l/''lmaneuver>>'c (5.32) 

The maximum value for k can be quantitatively established through a 

geometric series [Ref. 7.]. Figure 14 is a block diagram of the linearized quaternion attitude 

filter. From this diagram, it can be observed that the estimated rate quaternion is given by 

q = q + q£ 

Discretization of the filter replaces the integral with the summation 

where 

jq dt => Y, 9E(WA')A* 

1 =0 

(5.33) 

(5.34) 

<7e„ = 9.(0), q. = ?£(1A0, q. = 9e(2A0, - (5.35) 

q —►&-«- 

i 

->& 

Figure 14: Block Diagram Of Time Domain Linearized Quaternion Attitude Filter 
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Let qtrue = 0 and assume there is no angular rate input; that is q = o. If an 

error exists then 

9o = 9(0)*<?,rüe = o (5.36) 

Using Euler integration, the first updated estimate is given by 

<?i = <?o + ?oA/ (5.37) 

Since q = o 

qo = -kgo (5.38) 

Substituting into Eq. (5.37) produces 

q\ = 90 + (-*<?o)A/ = (1 - kAt)q0 (5.39) 

For the second updated estimate 

92 = 9i + ?i A* (5.40) 

Again, since q = o 

qi=-kqi =-k(l-kM)q0 (5.41) 

Substituting into Eq. (5.40) produces 

q2 = (l-kAt)qQ + -k{l-kAt)q0At = ... = q0(l-kAtf (5.42) 

In general, the nth estimate is given by the geometric series equation 

qn = q0{\-kAt)n (5.43) 

Based on this result, it can be observed that for values of o < kAt < 2 the geometric series will 

converge since the absolute value of l - kAt will be less than unity. The maximum value for 

k for which the filter can expected to be stable is 
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Based on Eq. (5.43) and Eq. (5.14), when working with perfect noiseless data, values for k 

greater than -£- can be expected to cause correction "overshoots" and oscillations in the 

attitude estimate. 

The above discussion provides guidelines for the selection of "reasonable" 

values for k and A;. With power spectral density functions for qlrue, nj and n2, a Kaiman 

filtering approach [Ref. 14.] could be used for this problem. In the absence of such 

statistical information, gain values may be selected through experimental "tweaking" of the 

scalar gain, k, in laboratory studies. 

3.        Reduced Order Filter 

The filter derivation discussed above is correct if q is constrained to be of unit 

length. Constraining to unit length also allows formulation of a more efficient algorithm. If 

it is assumed that the computed measurement vector, yQ), depends linearly on q, the 

criterion function can be minimized using the relation 

<lnew = Qold + bq (5.45) 

where Aq can be thought of as either a correction to estimated orientation or an update to 

the old estimate to produce the new estimate. Eq! (5.11) gives the Gauss-Newton iteration 

formula for Aq as 

A1fuii = [xrx]   x7e(9) 

Iterative application and recalculation of this correction will lead to convergence for small 

Aq under known conditions [Ref. 60.]. 

It should be noted that if qold is a positive real unit quaternion, the sum in Eq. (5.45) 

will not in general be a unit quaternion. However, in order to ensure that a unique solution 

exists for q, it should be kept as near to the surface of a four dimensional unit hemisphere 

as possible. This will be the case if Aq is small and is tangent to the surface of the sphere 

and thus orthogonal to q. 

Taking the dot product of q with itself produces 
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(q + Aq) • (q + Aq) = q»q + 2{q »Aq) + Aq»Aq = 1 + 2{q • Aq) + O(Aq^) (5.46) 

If Aq is orthogonal to q, the middle term on the right hand side is zero. The square of the 

length of q is thus given by 

\q + Aq\2 =  l + 0(Aq2) (5.47) 

which varies from unity by an order Aq term. 

It is shown below that for any quaternion and any three dimensional vector in 

quaternion form, the quaternion product of the quaternion and the vector will result in a 

vector which is orthogonal to the original quaternion. Furthermore, given any pair of 

quaternions it is possible to express the one as the product of a unique vector and the other 

quaternion. 

a. Orthogonal Quaternion Theorem 

Let p and q be any two quaternions. Then p is orthogonal to q if and only if 

p is the quaternion product of q and a unique vector v (real part equal to zero) where v is 

given by 

v = q~ p (5.48) 

Proof; 

Let q be any quaternion given by 

q = (5.49) 

and let v be any vector in quaternion form which is given by 

(5.50) 

Taking the quaternion product of q and v produces 
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qv = (-q1x-q2y-q3z) 

+ i(qQx - q3y + q2z) 

+j(q3x + q0y-q1z) 

+ k{-q2x + qxy + q0z) 

-qxx -q2y -q3Z 

%x~ 93>' + q2Z 

q3x-t %y- W 
-q2x- *-qty ̂ %\ 

-qxx -q2y -q3z 

%x- qtf* 12Z 

w* q0y- qxZ 

-q2x + qxy + q0z_ 

(5.51) 

The dot product of q and the result from Eq. (5.51) is 

(qv)»q = q»{qv) 

% 

Vi 

1l 

?\ 
= goi-^iX-q^-q^ + q^qoX-q^y + q-^z) 

+ q2(q3x + qQy -q^z) + q3(-q2x + qxy + q0z) 

= -Wxx-q^y-qQqzz + qtfQX-qtf-iy + q^z 

+ q2q3x + q2q0y-q2q1z-q3q2x + q3qiy + q3q0z  = 0 (5.52) 

Thus proving that q and qv are orthogonal for any v. 

Now, suppose p and q are quaternions such that 

p = qv (5.53) 

for some vector v. Then multiplying both sides of Eq. (5.53) by the inverse of q will produce 

q   p = v 

Substitution of the v given by Eq. (5.54) into Eq. (5.53) results in 

p = qv = q{q   p) = (qq~ )p = p 

(5.54) 

(5.55) 

Thus given any pair of orthogonal quaternions, one can be written as the quaternion product 

of the other and a unique vector. 
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Q.E.D. 

According to the above theorem it follows that Aq can be written in the form 

Aq = qv 

where v is a vector in quaternion form such as 

(5.56) 

(5.57) 

and A«? will be orthogonal to q. Using a Taylor series approximation, the computed 

measurement vector given by Eq. (5.8) can be approximated for orthogonal Aq by 

» * 3y * dy 
y(q + Aq)=y(q)+7-&q = y(q)+-£(qv) 

Consequently, as v changes, using the chain rule for partial derivatives, 

(5.58) 

9v] 
dy dq 

dqdvl 

= X l 
0 

PjJ 

(5.59) 

where X is the gradient of y with respect q and is derived in Appendix B. Similarly 

dy  _ dy dq 
dv2 ~ dqdv2 

and 

_3y   _ dy dq 
dv-. 

= X 

(5.60) 

(5.61) 
"3      dqdv3 

Equations (5.59). (5.60), and (5.61) can be used to define a new 6x3 gradient matrix in 

which each of the equations forms a column of the matrix 

x„ = 'A 
3vj dvn dv-. 

(5.62) 
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This matrix linearizes y(q + Aq) with respect to orthogonal Aq and can therefore be used to 

compute an optimal Av as 

Av = X*\ 
-l 

Xv
TZ(q) (5.63) 

from which it follows that the optimal Aq under the linearity assumptions is 

Aq = q(0,Av) (5.64) 

Evaluation of Eq. (5.63) requires inversion of a 3 x 3 matrix rather than inversion of the 4 

x 4 X matrix used in Eq. (5.11). Note that normalization of q to unit quaternion form will 

still be required to correct the 0(Aq2) effects in Eq. (5.47). 

4.        Differential Weighting of Sensor Data 

Due to noise and interference from electromagnetic sources, magnetometer data is 

not as reliable as that produced by accelerometers being used to sense gravity. Differential 

weighting of sensor data allows less weight or confidence to be placed in the magnetometer 

data relative to that of the accelerometers. This approach makes sense since small drift 

errors in the horizontal plane are acceptable in most human body tracking applications as 

long as they are gradual and transient. The effects of noise on the data from a sensor can be 

expressed using a weighting factor. This factor can be used to implement a weighted least- 

squares regression analysis algorithm. 

If it is assumed that each input parameter is affected by an uncorrellated noise 

source, the weighted modeling error can be written 

-~]r 

Ä]-/ij A2-A2 A3-A3 l>i-b1 b2-b2 l>2-b3 kg) = (5.65) 

where w-t is a weighting factor. If it is further assumed that the noise magnitude does not 

differ for sensors of the same type, the weighted modeling error may be rewritten as 

hq) = 
-\T 

vh,t 
A,-A, A2-A2 A3-A3 -(*!-*!) -(*2-*2> ^~h) 

= [ÄJ-AJ Ä2-A2 A3-A3 p(£i-&i) p(b2-b2) p(&3-fc3)J 

(5.66) 

(5.67) 
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where wh is a weighting factor for accelerometer data and wb is a weighting factor for the 

magnetometers. The ratio p controls the relative weight placed on the accelerometer and 

magnetometer data and it will generally be between zero and one. Increasing p above unity 

will cause more weight to placed on the magnetometer data. Decreasing it below one 

indicates that there is more confidence in accelerometer data. In this case the weighted 

criterion function becomes 

<P=(£i-fci)  +(h2-h2)  +(h3-h3)  +p(b1-b1)
2 + p(b2-b2)

2 + p(b3-b3)
2 

= (Chl
2-2hlhl+h1

2) + ... + (p%2-2p%b3 + p\2)) 

(5.68) 

(5.69) 

Using Eq. (5.69) to derive the error criterion function, results in a modified X matrix 

given by 
dhi     9A]     3^1     3^i 

d?0 dqx dq2 d'q-s 

dh2 

9<?o 

3J/2 
dqi 

dh2 3Ä2 

dq3 

dh3 dh3 

dqx 

3A3 

d<?2 

dh3 

dq3 

2dbi 

P ^~ 3<?o 

2dbi 

P ^~" 3<?i 

2dbi 
P r- 

3?2 

2db\ 
p ^ 3<?3 

-idb2 

°qo 

2db2 

p ^~ 
23B2 

P ^~ dq2 

2db2 

P ^~ dq3 

(5.70) 

T3^3    2ob3    2db3    2^3 
P"^~  P ^~  P ^~ P ^~ dq0      dqi       dq2      dq3 

5.        Reduced Rate Drift Correction 

The upper loop of Figure 10 serves to correct rate sensor drift and is essentially a 

low-pass filter. While an attitude update using rate sensor inputs only requires a quaternion 

multiplication and a single integration, calculating a drift correction requires a matrix 

inversion and numerous scalar multiplications. If the drift time constant of the rate sensors 

is long enough and the noise level is low, a drift correction may not be required on every 

filter cycle. 

Eliminating the need to perform drift calculation on every filter cycle leads to a 

significant reduction in computational costs of running the filter. This reduction may be 
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taken advantage of in two different ways. Reducing the number of drift corrections can be 

used to increase the overall update rate of a filter. This may result in a reduction in lag and 

increase in the overall accuracy and resolution of the system. Increasing the drift correction 

interval can also be used to reduce the number of calculations associated with an individual 

filter. In a system in which a single processor is being used to run multiple filters, this 

reduction effectively increases the number of filters which may be operated. For instance 

on a system which is only capable of running three filters at 100 Hz and performing a drift 

correction on every filter cycle, it may be possible to run a much larger number of filters 

by sequencing the drift corrections so that they are only performed for a subset of three of 

the filters on any given update of posture. If the filter time constant is one second, it may 

be possible to operate 100 filters at 100 Hz simultaneously with each filter only performing 

a drift correction after every 100 update cycles. 

C.        FILTER SIMULATION 

Linear analysis provides a method of estimating the response of the filter if the 

initial orientation estimate, q, is inaccurate. Such analysis implies that any transient errors 

in q resulting from erroneous initialization will persist for a time inversely proportional to 

the k used in Eq. (5.14). Specifically, the time constant T is given by Eq. (5.29) as 

_ l 
% - it 

Let fr, be a small quantity representing an initial error in the x component of q. From Eq. 

(5.30) the resulting errors in the x component of q over time will be given by 

e.(r) = 8r<rT/Ti* 

Thus, it can be predicted that any error will be reduced to 37% of the initial value by the 

time t = TA . Similar results apply to By and 8Z. 

Figure 15 is an example plot of simulation results obtained from an earlier version 

of the filter [Ref. 6.]. Since these nonlinear simulation results are in close agreement with 
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linear theory, the validity and value of linearization is established. White noise simulation 

shows noise reduces accuracy, but the filter still works well. 

0       0.1      0.2      0.3     0.4      0.5      0.B      0.7      0.8      0.9       1 

Time (seconds) 

Figure 15: Simulated Nonlinear Filter Response,10 Degree Offset, a=0.1, At=0.1 
From [Ref. 6.] 

Simulation tests performed using noiseless synthetic data and a random starting 

point were reported in [Ref. 51.] In these trials no failures to converge were observed after 

ten cycles of Gauss-Newton iteration. Further simulations were conducted in [Ref. 51.] to 

examine the convergence properties of the filter. In these experiments, the rms (root mean 

square) accuracy of Gauss-Newton iteration was evaluated as a function of max-noise and 

the required number of cycles of iteration to achieve convergence. These results confirmed 

that even with noise levels exceeding 10%, the length of the vector error in q remained at 

only approximately 80% of the maximum data component noise level. 

D.        SUMMARY 

This chapter describes a quaternion based complementary attitude filter. The filter 

is designed to accept sensor data from a nine-axis MARG sensor and produce a quaternion 

representation of the orientation of a tracked rigid body. Due to the use of quaternions, the 

algorithm described is inherently free from orientation singularities. Continuous correction 

of drift regardless of the type of motion being tracked is achieved using Gauss-Newton 
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iteration. This property of the filter makes it particularly applicable to human body tracking 

applications which commonly include short cyclic periods of high linear acceleration. 

The algorithm relies upon the Orthogonal Quaternion Theorem. The theorem both 

resolves the singularity problem of Gauss-Newton iteration applied to quaternion 

orientation tracking and reduces the size of the associated regression matrix from 4 x 4 to 

3x3. This reduction results in a significant computational advantage since the inversion of 

the regression matrix is probably the most time consuming part of the drift correction 

process. This improvement is especially important when simultaneously tracking a large 

number of human limb segments or when implementing the algorithm on imbedded 

microprocessors. 

The described algorithm also includes two scalar gain factors that allow "tuning" of 

the filter to fit a particular tracking situation. Guidelines for choosing values for these 

parameters are provided, but it is believed that final selection of gains is best accomplished 

by adjustment during the course of an experiment. It is conjectured that periods between 

drift corrections can be extended resulting in either a higher update rate or the ability to 

implement a greater number of filters simultaneously using less computing power. 

The quaternion attitude filter fulfills the need for an efficient and robust algorithm 

for sourceless real-time tracking of human limb segments without the computational 

complexity of previous Euler angle based algorithms designed for head tracking or ship and 

aircraft navigation systems. 
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VI. IMPLEMENTATION OF INERTIAL AND MAGNETIC 
TRACKING OF HUMAN LIMB SEGMENTS 

A.        INTRODUCTION 

This chapter describes pertinent details of an implementation of a prototype system 

for tracking human body motions using magnetic, angular rate, and gravity sensors. The 

central data processing algorithm is the quaternion attitude filter described in the previous 

chapter. The goal of the system is to demonstrate the practicality and robustness of inertial 

and magnetic orientation tracking as well as to provide a test-bed for further experiments 

and future system development. Several features are considered imperative if these goals 

are to be meet. Among these are 

• Orientation tracking of any three or more human limb segments using nine- 

axis MARG sensors 

• Sufficient dynamic response and update rate (100 HZ or better) to capture 

faster human body motions 

• Ability to change quaternion filter operating parameters while the system is in 

operation 

• Calibration of individual sensors without the use of any specialized equipment 

• Simplified human kinematic model based entirely on quaternions capable of 

accepting orientation parameters relative to an earth fixed reference frame in 

quaternion form 

• Automatic accounting for the peculiarities related to the mounting of a sensor 

on an associated limb segment 

• Adjustable human model to take into account anthropometric variations 

between different individuals 

• Creation of data files for recording data relating to posture estimation as well 

as filter operation 

• Archiving of system configurations for retrieval and further experimentation 
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Figure 16 is a diagram of the prototype system. Depicted are three body-mounted 

MARG sensors outputting analog signals to three I/O connection boards. The output from 

each connection board is digitized by an associated A/D converter card. The cards 

themselves are mounted in a standard Wintel desktop computer. All data processing and 

rendering calculations are performed by software running on this single processor machine. 

The display monitor provides a means of visually displaying the estimated posture of the 

tracked individual. The principal components of the system are discussed in detail in the 

following sections. 

Body Mounted SensoE 

866 Mhz 
Penthimin 
Comwter 

Display 
Monitor 

f 

Figure 16: Prototype Inertial and Magnetic Body Tracking 
System 

B. PROTOTYPE MARG SENSORS 

The prototype MARG sensors used in this research were custom built using off-the- 

shelf, low cost components. No significant attempt was made to produce an extremely 

small sensor. Ease of use and construction were the overriding factors affecting sensor 

design. These sensor components are housed in a lightweight case constructed of birch 

wood to prevent shock damage and to provide a stable temperature environment for the rate 
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sensors (Figure 17). The case material was also chosen to take advantage of its lack of 

magnetic properties. 

The MARG sensors units are designed to combine three mutually orthogonal 

magnetometers, three mutually orthogonal angular rate sensors, and three mutually 

orthogonal accelerometers into a single compact package. To track the entire human body, 

approximately fifteen of these nine-axis units would be required. One sensor would be 

attached to each limb segment to be tracked. The exact number of sensors needed would 

depend upon the desired motion tracking detail to be captured. Three such sensors were 

used in the system described in this research. 

Each        sensor       package 

measures 10.1 x 5.5 x 2.5 cm. The _. 

analog   output   of   the   sensor   is 

connected to a breakout header via a 

thin   VGA  monitor  cable.   Output 

range    is    0-5    vdc.    The   power ,,.„., 

requirement of the sensors is 12 vdc at |Sg| 

approximately 50 milliamperes. The , ,lu 

primary sensing components are a ' 

Crossbow       CXL04M3 

accelerometer [Ref. 18.], a Honeywell 

HMC2003 3-axis magnetometer [Ref. 39.] and three Tokin CG-16D series miniature 

angular rate sensors mounted in an orthogonal configuration [Ref. 84.]. The individual 

components are integrated using a single integrated circuit board with the accelerometers 

mounted separately. The circuit provides a set/reset circuit capability for the 

magnetometers and allows manual adjustment of magnetometer null points. Rate sensor 

output voltage is amplified by a factor of five to attenuate rate sensor oscillator noise. All 

three sensors were fabricated by McKinney Technology of Prunedale, California [Ref. 61.]. 

I •&&»'rwa*\Hr%' •:.'*^^Hflfcwa**",.,t*jf; ■••JBSSS'-I 

.    . ,     Figure 17: Prototype MARG Sensor From 
taaxial [Ref. 61.] 
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1.        Sensor Components 

a.        Crossbow CXL04M3 Triaxial Accelerometer 

The CXL04M3 triaxial accelerometer package contains three silicon 

micromachined Analog Devices ADXL05 accelerometers [Ref. 3.] mounted in an 

orthogonal configuration. The ADXL05 is a force balanced capacitive accelerometer with 

capability to measure dc accelerations which are typical of an inertial force such as gravity. 

When oriented to the earth's gravity, x axis pointing up, the accelerometer will experience 

a positive lg acceleration. Full scale output is selectable from +/-1 to +/- 5g. Dimensions 

of the triaxial package are approximately 25 x 25 x 19mm. Individual accelerometer cans 

have a diameter of 9.4mm and a height of 4.7 mm. Shock survival is 1000g when 

unpowered, 500g powered. Additional pertinent characteristics of the CXL04M3 are given 

in Table 1. 

Characteristic Range Units 

Zero g Output 2.5 +/- 0.1 Volts 

Output Voltage 0-5 Volts 

Sensitivity 500 +/- 5% mV/g 

Noise 5 mgrms 

Bandwidth DC-100 Hz 

Temperature Range -40 to +85 C 

Supply Voltage 5 +/- 0.25 VDC 

Supply Current 24 mA 

Table 1: CXL04M3 Triaxial Accelerometer Specifications After [Ref. 18.] 

b.        Tokin CG-16D Series Rate Gyros 

The Tokin CG-16D is a ceramic angular rate sensor composed of a single 

piezoelectric ceramic column printed with electrodes [Ref. 84.]. It is primarily designed for 
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use as a vibratory gyroscope in vehicle navigation systems. The advertised maximum 

detectable angular rate is given as +/- 90 degrees per sec. Though the response may no 

longer be linear, higher rates have been observed in experiments. Sensor dimensions are 

given as 8 x 8 x 20 mm. Shock survival is 300g. Three CG-16D angular rate sensors are 

mounted in an orthogonal configuration inside each MARG sensor. Due to the unstable 

characteristics of the sensors under temperature changes, internal MARG rate sensor 

circuitry amplifies the sensor output and performs temperature compensation to maintain 

null output voltage at a constant value. Additional pertinent characteristics of the CG-16D 

are given in Table 2. 

Characteristic Range Units 

Reference Voltage 2.4 Volts 

Output Voltage 0-5 Volts 

Sensitivity 1.1+/- 20% mV/deg./sec. 

Output Voltage at zero angular 
rate (25 degrees C) 

+/300 mVolts 

Output Voltage at zero angular 
rate (any Temp.) 

+/-500 mVolts 

Bandwidth 100 Hz 

Temperature Range -5 to +76 C 

Supply Voltage 5 VDC 

Supply Current 7 mA 

Table 2: CG-16D Ceramic Rate Gyro Specifications After [Ref. 84.] 

c.        Honeywell HMC2003 3-Axis Magnetometer 

The Honeywell HMC2003 is a solid state 3-axis magnetometer contained in 

a 20-pin hybrid DIP package [Ref. 39.]. The local magnetic field is measured by three 

permalloy magnetoresistive (MR) Honeywell HMC1001/2 microcircuits which convert 

magnetic fields to a differential output voltage. The transducer is configured as a 
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magnetoresistive Wheatstone bridge. Two "straps", OFFSET and Set/Reset, eliminate the 

need for external coils. DIP footprint is approximately 25 x 19 mm. Shock survival is 100g. 

Pertinent characteristics of the CG-HMC2003 are given in Table 3. 

Characteristic Range Units 

Field Range -2 to 2 gauss 

Output Voltage 0.5-4.5 Volts 

Null Field Output 2.5 Volts 

Sensitivity 1 V/gauss 

Bandwidth 1000 Hz 

Temperature Range -40 to +85 C 

Supply Voltage 6-15 VDC 

Supply Current 20 mA 

Table 3: Honeywell HMC2003 Three-Axis Magnetic Sensor Hybrid 

Specifications After [Ref. 39.] 

2.        Magnetometer Set/Reset 

Early system testing was hampered due to saturation of the MARG sensor 

magnetometers by small magnetic fields. Saturation produced flips or reversals resulting in 

changes in the sensor characteristics. Once saturated, the lack of a built-in reset made it 

difficult to restore the magnetic sensors to a usable condition. Only through repeated 

exposure to various magnetic fields and trail and error iterations could the sensors be 

returned to a functional condition. Often, the magnetometer null points had changed 

following these procedures making it necessary to recalibrate the sensor. 

Manufacturers literature states that HMC1001/2 magnetometer saturation occurs 

due to the influence of a strong magnetic field in excess of 30 gauss which can cause the 

polarity of the MR film magnetization to flip [Ref. 15.]. In practice, changes in the 

magnetometer characteristics were found to occur in the presence of weaker fields such as 
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those caused by exposure to metal scissors or cell-phones. Following such an upset field, a 

strong restoring magnetic field must be momentarily applied to restore, or set, the sensor 

characteristics. The effect is commonly referred to as applying a set or reset pulse. The 

Honeywell HMC1001/2 incorporates a patented on-chip strap for performing the re- 

magnetization electrically. This flipping may be performed manually or automatically at 

various time intervals.[Ref. 15.] 

The prototype MARG sensors used in this research incorporate a manual set/reset 

circuit to electrically restore the magnetometers to proper operation. Activation of the 

circuit is accomplished using a sensor mounted button. The associated circuit is depicted in 

Figure 18. The purpose of the circuit is to set or reset the permalloy film contained in the 

individual magnetometers by applying a current pulse of 3-4 amps for approximately 20- 

50 nsec. 

3. Analog to Digital Conversion 

Analog sensor output signals must be converted to digital form in order to perform 

processing using a digital computer. In this research, analog to digital conversion of sensor 

output voltages was completed external to the sensors using one National Instruments PCI- 

MIO-16XE-50 data acquisition card for each MARG sensor. Each data acquisition card 

was inserted into a PCI slot on the mother board of the data processing computer. The PCI- 

MIO-16XE-50 is a 16-bit A/D converter capable of sampling either 16 single-ended or 8 

double-ended analog input channels. Maximum sampling rate is 20K samples/sec. Input 

voltage ranges are 0 - 10V in single ended mode and -10 to 10V in double sided mode. The 

boards are completely Plug and Play, multifunction analog, digital, and timing I/O boards 

for PCI bus computers. [Ref. 69.] Sensor to board connection was completed using a 

National Instruments SCB68 type I/O connection board.[Ref. 68.] 

4. Data Processing 

The prototype inertial and magnetic body tracking system depicted in Figure 16 

uses an Intel based desktop computer to complete all data processing and rendering 
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Figure 18: MARG Sensor Magnetometer Set/Reset Circuit Schematic From [Ref. 

functions. The computer was manufactured by Micron Electronics, Inc. The single installed 

CPU is an 866 MHz Intel Pentium III. The machine contains 256 MB of RAM. Hardware 

rendering is performed by a NVIDIA GeForce2 GTS video card. The Microsoft Windows 

2000 operating system is used in order to achieve accurate timing of body tracking system 

events. 

C.        SYSTEM SOFTWARE 

The system software implements the estimation as well as calibration algorithms 

which make possible tracking of human body segments using MARG sensors. Drift 

correction is performed using the reduced order form of Gauss-Newton iteration described 

in the previous chapter. Facilities are included to allow performance of experiments related 
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to differential weighting of magnetometer and accelerometer data, variation of intervals 

between drift corrections, and adjustment of the filter gains. A sensor calibration algorithm 

allows system users to calibrate individual sensors by subjecting them to a series of six 90 

or 180 degree rotations followed by two 360 degree rotations oriented with respect to the 

local magnetic field. 

In addition, the system software includes a fully articulated human model based 

entirely on quaternion/vector pairs. No rotation matrices are used to position the model. 

Limb segments are oriented independently of one another and positioned through the 

addition of limb associated vectors. Limb segment lengths are fully adjustable to allow 

compensation for variation in the relative dimensions of limb segments for different 

individuals. The model is positioned and oriented relative to a z axis down coordinate 

system [Ref. 52.]. 

The system software is fully serialized allowing for archival of experimental 

configurations with varying model dimensions and differing filter parameter settings. 

Facilities are provided for creating files containing data related to full body posture 

estimation or data related to the operation of an individual filter object. 

The body tracking software for this research was designed using object oriented 

techniques. All code was written using the Microsoft Visual C++ Integrated Development 

Environment (IDE) and compiled under the Visual C++ 6.0 compiler. The application is a 

Single Document Interface (SDI) which follows the Microsoft Foundation Class (MFC) 

Document/View architecture and application framework conventions. The code is single 

threaded. Estimation and rendering events are window system timer driven at 100 Hz and 

25 Hz respectively. 

Figure 19 is a simplified class diagram of the body tracking software. Minor dialog 

box classes and other user interface classes have been omitted. For clarity, class methods 

and data members are not individually listed. In viewing the figure, the classes can be 

separated into two groups, those under the application document class, 

CBodyTrackingDoc, and those under the application view class, CBodyTrackingView. 
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The classes under the application document class, CBodyTrackingDoc, are related 

to the generation and saving of data as well as the system configuration. These classes 

include CAtoDConverter which retrieves sensor data from the system hardware, CSampler 

which formats data for submission to the quaternion filter, CQuatAttFilter which 

implements the quaternion based attitude filter algorithm and CHumanModelSettings 

which holds data related to the posture and configuration of the human model. 

CSensorCalibrater implements the MARG sensor calibration algorithm. 

CQuaternionEstimator serves as a container class to facilitate object communication. 

CLimbData objects are used to hold the current length and orientation data of individual 

limb segments. CHumanModelDialog and CSensorSettingDialog objects allow user 

adjustment of application settings. All document related classes are serialized. 

The classes under the application view class, CBodyTrackingView are responsible 

for providing a view of the data of the application. These data are contained in the 

document. In the case of the body tracking system, all data pertains to the orientation, 

location, and size of human model limb segments. The CHumanModel class implements a 

human model using objects of type CLimbSegment. The number of CLimbSegment objects 

used is determined by the number of links in the model. 

Figure 20 depicts the major data flow paths between the instantiated objects of the 

system. The primary input to the system is nine-axis MARG sensor data. The state of the 

system may also be affected by the user through the use of dialog boxes. System outputs 

are not depicted. These include visual display of the posture of the articulated human model 

and the creation of data files for post-processing or plotting. MARG sensor data is only 

received by a CSensorCalibrater object when the associated sensor is being calibrated. 

The following sections describe the key classes and algorithms implemented in 

more detail. 
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1.        Quaternion Filter 

The CQuatAttFilter class implements the reduced order quaternion attitude filter 

described in Chapter V using the simplified X matrix derived in Appendix B. The filter is 

complementary in form. Estimation error is minimized using Gauss-Newton iteration. 

Options are included for performing differential weighting of sensor data and reduced rate 

drift correction. Reduced rate drift correction may occur at specified time intervals or may 

be applied to the system filter objects in a round-robin fashion in order to allow a greater 

number of filters to operate at higher update rates. Matrix and quaternion mathematical 

abstractions are handled using objects of the Matrix and Quaternion classes respectively. 

With the exception of the measured rate quaternion, qDot (Eq. (5.1)), and the correction 

quaternion qDotEpsilon (Eq. (5.14)), all quaternions are normalized to unit length. The 

reference unit vectors, m and n, given by Eq. (5.5) and Eq. (5.6) are determined during the 

calibration process and set by an associated object of the CSensorCalibrater class. Expected 

input to the class is nine floating point numbers corresponding to the nine analog output 

voltages of an associated MARG sensor. The angular rate values must be provided in 

radians per second. Magnetometer and accelerometer readings are used to describe the 

components of two directional vectors. Only the direction of these vectors is of importance 

and each is normalized to unit length. Thus, there is no need to follow any particular unit 

convention 

Once the filter object has been instantiated and estimation has begun, the 

estimateRotation method serves as the primary interface to obtain updated orientation 

estimates. The quaternion returned by this method represents the orientation relative to an 

Earth-fixed reference frame of the associated MARG sensor block. Figure 21 depicts the 

control logic flow and the step by step algorithm followed by this method. In viewing the 

figure, it appears that the computational expense of calculating drift corrections based upon 

magnetometer and accelerometer data is much higher than merely updating the orientation 

estimate using only rate sensor data. This is in fact the case. Derivation of the X matrix in 

the "Calculate X Matrix" step requires the computation of multiple partial derivatives (See 
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appendix B) and "Calculate full Delta v step" requires inversion of a 3 x 3 matrix. Filter 

operating parameters and gains may be adjusted as the filter operates using the dialog 

shown in Figure 22. 
Perform orientatioii estimation step 

1 

Return quaternion estimation of orientation 

Figure 21: Orientation Estimation Flow Chart 
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2.        Sensor Calibration 
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orientation estimate produced by 

the    quaternion    filter    depends 

heavily on the data which is input. 

In order for the system to operate 

properly, it is imperative that the 

null point and scale factor of each 

individual    component    of    the 

MARG sensors be determined prior 

to commencing limb tracking. The 

null point and scale factor for each 

component are found through  a 

calibration procedure. Practical use 

of   an   inertial   tracking   system ~ ~    "~ ~M~ 
Figure 22: Dialog For Manually Setting Filter 

requires that this procedure be both   Parameters and Sensor Data Null Voltages and 

efficient and accurate. Unless the 

characteristics of the sensors themselves change, calibration need only be accomplished 

once. Magnetometer calibration may need to be accomplished more often due to changes 

in the local magnetic field. Fortunately, it has been found that slight inaccuracies in the 

magnetometer readings do not adversely affect the overall operation of the tracking system 

to the same degree as inaccuracies in accelerometer and rate sensor data. 

In the body tracking software, the nine digital values corresponding to a given 

MARG sensor data sample are converted to positive floating point numbers. These 

numbers are the single-sided voltages which are output by the sensors. Based upon this 

assumption, each number is formatted for input into the quaternion filter by 

formatted number = (voltage-null point) xscale factorxunits (6.1) 
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In practice the separate units term is not necessary since it can be combined with the scale 

factor and a scalar multiplication can thus be saved. 

An individual linear accelerometer can be calibrated by placing it in a vertical 

position to sense gravity in one direction and then turning it over to sense gravity in the 

other. Half way between the readings taken is the null point. 

,       „      (accel max + accel min) ,, „. 
accel null =  (6.2) 

Multiplication of a correct scale factor times the accelerometer output values will result in 

a product of 1 g in one direction and -1 g in the other. This scale factor can be found using 

,        , (accel units) x2 ., „. 
accel scale = ; : — — (6.3) 

(accel max-accel min) v      ' 

Calibration of a triaxial accelerometer module could be accomplished in a manner similar 

to that described above. The module would have to be placed in six different positions so 

that each accelerometer could sense gravity along both its negative and positive axes. 

An obvious method of magnetometer calibration is very similar to that used for 

accelerometers. Instead of orienting each sensor relative to the gravity vector, each 

magnetometer would have to be placed in a position in which it could sense the maximum 

strength of the local magnetic field along both its negative and positive axes. This may be 

accomplished by pointing the magnetometer axis toward the local north and recording the 

maximum and minimum voltages as the magnetometer is rotated 360 degrees about an axis 

oriented toward the east. Half way between the maximum and minimum readings obtained 

is the null point of the magnetometer. 

(mag max + mas min) ,,  .. mag null = s s 1 (6 4) 

Multiplication of a correct scale factor times the magnetometer output values should result 

in a reading of approximately 0.6 gauss in one direction and -0.6 gauss in the other 

depending upon the actual strength of the local magnetic field. 

, (mag units) x2 ,, ,.. 
mag scale = — (6.5) 

(mag max-mag min) K      ' 
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Complete calibration of a three-axis magnetometer could thus be accomplished by 

performing one such rotation for each individual sensor. 

Determination of the null point of an angular rate sensor can be accomplished by 

recording and averaging over some time period the output of a static sensor. Scale factors 

are determined by integrating the output of angular rate sensor over time. If an angular rate 

sensor is subjected to a known angle of rotation and its output is integrated during the 

period of rotation, the correct scale factor will cause the result of that integration to equal 

the angle of rotation. The scale factor for a rate sensor can therefore be determined 

following a known rotation using 

known rotation ((- &\ 
scale factor = — —; ——— \P.O) 

estimated rotation 

where the estimated rotation term is the result of integrating the output of the sensor with 

a scale factor of unity. In practical applications it may be desirable to make several 

estimates of the scale factor while putting the sensor through several known positive and 

negative rotations and then averaging the results. 

From the above, it is apparent that a MARG sensor could be completely calibrated 

using a level nonmagnetic platform and a simple compass to indicate the direction of the 

local magnetic field. The sensor could be calibrated by placing it in the six positions which 

allow each accelerometer to sense gravitation acceleration in both the positive and negative 

directions, subjecting each rate sensor to one or more known rotations and rotating the 

MARG sensor in a manner such that maximum and minimum local magnetic field readings 

can be obtained for each magnetometer. The following calibration algorithm is 

implemented in the body tracking software as a state machine. The state machine includes 

approximately 33 separate states. Rate sensor scale factors are calculated by averaging the 

estimates produced by one negative and one positive rotation. The steps of the algorithm 

listed below loosely correspond to the actual physical actions which a person doing the 

calibration must perform upon the sensor. 
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Finding Inertial Sensor Null Points and Scale Factors 

1. Place the sensor in a stationary position on a flat level nonmagnetic surface 

with the positive z axis of the sensor pointing down. While the sensor is in this 

position record the maximum voltage reading for the z-axis accelerometer as 

accZMax. Set the rate sensor null points angXNull, angYNull and angZNull to 

the rate sensor readings obtained while in this stationary position. 

2. Rotate the sensor 90 degrees about the positive x-axis. While performing this 

rotation integrate the output of the x-axis rate sensor (Figure 23). 

Figure 23: Rotating Sensor 90 Degrees About Positive x-axis For Rate Calibration 

3. Following completion of the rotation, record the maximum voltage reading for 

the y-axis accelerometer as accYMax. Make a first estimate of the x-axis rate 

sensor scale factor, angScaleXOne, using Eq. (6.6). 

4. Rotate the sensor 180 degrees about the negative x-axis. While performing this 

rotation integrate the output of the x-axis rate sensor. 

5. Following completion of the rotation, record the minimum voltage reading for 

the y-axis accelerometer as accYMin. Make a second estimate of the x-axis rate 

sensor scale factor, angScaleXTwo, using Eq. (6.6). Set the scale factor for the 
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x-axis rate sensor to the average of angScaleXOne and angScaleXTwo. Calcu- 

late the null point for the y-axis accelerometer using Eq. (6.2). 

6. Rotate the sensor 90 degrees about the positive z-axis. While performing this 

rotation integrate the output of the z-axis rate sensor. 

7. Following completion of the rotation, record the minimum voltage reading for 

the jc-axis accelerometer as accXMin. Make a first estimate of the z-axis rate 

sensor scale factor, angScaleZOne, using Eq. (6.6). 

8. Rotate the sensor 180 degrees about the negative z-axis. While performing this 

rotation integrate the output of the z-axis rate sensor. 

9. Following completion of the rotation, record the maximum voltage reading for 

the x-axis accelerometer as accXMax. Make a second estimate of the z-axis rate 

sensor scale factor, angScaleZTwo, using Eq. (6.6). Set the scale factor for the 

z-axis rate sensor to the average of angScaleZOne and angScaleZTwo. Calcu- 

late the null point for the x-axis accelerometer using Eq. (6.2). 

10. Rotate the sensor 90 degrees about the negative y-axis. While performing this 

rotation integrate the output of the y-axis rate sensor. 

11. Following completion of the rotation, record the minimum voltage reading for 

the z-axis accelerometer as accZMin. Make a first estimate of the y-axis rate 

sensor scale factor, angScaleYOne, using Eq. (6.6). Calculate the null point for 

the z-axis accelerometer using Eq. (6.2). 

12. Rotate the sensor 180 degrees about the positive y-axis. While performing this 

rotation integrate the output of the y-axis rate sensor. 

13. Following completion of the rotation, make a second estimate of the y-axis rate 

sensor scale factor, angScaleYTwo, using Eq. (6.6). Set the scale factor for the 

y-axis rate sensor to the average of angScaleYOne and angScaleYTwo. 

14. Calculate the accelerometer scale factors using Eq. (6.3). 

Finding Magnetometer Maximum and Minimum Voltage Readings 

15. Point the sensor x-axis north and rotate the sensor 360 degrees about the y-axis. 

Record the minimum and maximum voltages obtained from the x-axis magne- 
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tometer during this rotation. 

16. Point the sensor y-axis north and rotate the sensor 360 degrees about the x-axis. 

Record the minimum and maximum voltages obtained from the y-axis and z- 

axis magnetometers during this rotation. 

17. Calculate the magnetometer null points using Eq. (6.4). Calculate the magne- 

tometer scale factors using Eq. (6.5). 

Finding Gravity and Magnetic Reference Vectors 

18. Place the sensor in the reference position with the positive *-axis pointing 

toward magnetic north, positive y-axis east, and the positive z-axis pointing 

down. While in this stationary position record the reading produced by the 

magnetometers and accelerometers. Convert these readings using Eq. (6.1). 

The six numbers produced correspond to the x, y, and z components of the two 

reference vectors. 

Once the sequence of rotations becomes familiar, the entire calibration procedure 

can be performed in less than one minute. Figure 24 is shows a console display of 

calibration results. 

In the implementation described above each sensor is calibrated individually. The 

algorithm described could be used to allow calibration of numerous sensors 

simultaneously. In that case, MARG sensor calibration could be carried out by placing the 

sensors in a special apparatus before commencing body tracking. The apparatus could be a 

simple box containing a bin for each sensor. The apparatus could then be put through the 

same sequence of rotations and orientations as those used for an individual sensor. 

Steps 15 through 17 of the calibration procedure could be accomplished separately 

to prepare the system to operate in a different magnetic environment. It also is possible to 

change the orientation and magnitude of the rotations performed to allow magnetometer 

calibration without completing of steps 15 and 16. The maximum and minimum voltage 

output for each magnetometer could be determined if the rate sensor were calibrated 

through one positive and one negative 180 degree rotation about the each axis with the axis 
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Figure 24: Console Display Of Sensor Calibration Results 

orthogonal to the direction of the local magnetic field. This sequence was not used here due 

to the position of the sensor data cable and the reset button on the MARG sensor housings. 

3.        Quaternion Human Body Model 

The quaternion human body model is designed to accept orientation data in 

quaternion form relative to an earth-fixed reference frame. The model posture is set using 

only vector addition and quaternion rotation. Vector addition determines the position of the 

inboard end of each limb segment. Quaternion rotation of limb segment vertices is used to 

set the limb segment attitude. This attitude is set independently of those to which it is 

attached. No homogeneous transform matrices are used. The model includes no provisions 

for joint constraint implementation. The number of polygons and vertices involved in the 

model where kept to a small number in order to minimize the rendering demands on the 

processor. The model is rendered in a north, east, down coordinate system. Figure 25 is a 

wireframe rendering of the quaternion human body model. 
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The orientation quaternions received by 

the model may be mapped to any number of limb 

segments. Thus it is possible, depending on the 

mapping, to animate several limb segments or 

even the entire model using a single sensor. If one 

MARG sensor is mapped to all limb segments, the 

model will rotate as a single unit with an 

orientation corresponding to that of the applicable 

sensor. Setting up a one to one correspondence 

between individual sensors and the movable limb 

segments of the model would allow realistic 

tracking and rendering of full body postures. The 

human model is only a visual approximation of the 

human body. It is not based detailed studies of 

human anatomy. The lengths of the individual 

segments of the model may however be adjusted 

to match the anthropometric measurements of the 

individual being tracked. Figure 26 depicts the dialog box used to adjust limb segment 

lengths and to specify which MARG sensor corresponds to which limb segment or 

segments. The peculiarities of the manner in which each sensor is attached to each limb 

segment are accounted for through the use of an offset quaternion. The offset quaternions 

are found using a calibration routine which requires the user to momentarily stand in a 

reference position. Once the offset quaternions have be calculated, it is assumed that the 

limb/sensor relationships remain constant. 

The human model is implemented in a CHumanModel class. It composed of objects 

of the CLimbSegment class. CLimbSegment objects encapsulate the length, width, depth, 

current orientation, offset quaternion and an associated translation vector for each limb 

segment. Climb segment objects could be used to model any articulated rigid-body. The 

Figure 25: Wireframe 
Rendering Of The Quaternion- 

Based Human Model 
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CHumanModel class sets the limb segment dimensions and arranges them in a 

configuration that is recognizable as a human figure. In this research, all limb segments are 

rendered as a six-sided boxes. To draw figures with a more realistic visual appearance, the 

limb segment could be extended to include a more complex geometry. 

Model Dimensions & Sensor Assignment 
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Figure 26: Human Model Settings Dialog 

a.        Setting Model Position and Posture 

The vertices of an individual limb segment are described relative to a z-axis 

down coordinate system which is attached to the inboard end of the segment. If the sensor 

and limb segment axes are aligned, the orientation of an individual limb segment could be 

set by applying to each vertex, v, the quaternion rotation 

Isensor^sensor (6-7) 

where the unit quaternion qsensor is the estimated orientation produced by the filter 

processing the sensor output data. In practice, due to the irregular shape of human limb 

segments and other factors related to sensor mounting and attachment, it is difficult to 

achieve perfect alignment between the sensor and limb segment axes. This misalignment 

can be taken into account by performing an additional rotation using an offset quaternion. 

The orientation of an individual limb segment must then be set by applying the rotation 

sequence 
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Vsensorloff'ioffqsensor (6.8) 

to each vertex, where q0jjis the offset quaternion for the limb of the vertex. 

To set the position of a individual limb segment it is necessary to find a 

vector which describes the location of the inboard end of the limb segment. Once this vector 

is found the final position of each vertex can be calculated through addition of this vector 

to the rotated coordinates of each vertex. Thus, the final position of a limb segment vertex 

is given by 

P trans + Isensor^off^offlsemor (6.9) 

where ptrans is a 3-space vector describing the location of inboard end of the limb. Using 

homogeneous transformation matrices this final positioning could be accomplished by 

TRsensorR0ffse,V (6-10) 

where T is a homogenous transformation matrix describing the same translation as vtrans, 

RSensor describes the orientation of the sensor relative to an earth-fixed reference frame and 

Rqffset describes the same relation as q0ff. However, this calculation would be less efficient 

and is not used in this research. 

The origin of the human body model is the waist. The position of the human 

model could be set by tracking this location on the user and equating the resulting position 

vector to the origin. (No position tracking is included in this research.) Attached to the 

origin are the torso limb segment extending generally upward and the pelvis limb segment 

with its long axis orientated in a downward direction when the figure is in a normal standing 

position. Attached to the outboard end of the torso are the neck to which the head is attached 

and the shoulders which have a fixed relation to the torso. The outboard ends of the 

shoulders are connected to the upper arms, to which are attached the lower arms and finally 

the hands. The hips, upper legs, lower legs and feet are connected to the pelvis in a similar 

manner. 
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Each limb segment has an associated translation vector, p, which extends 

from the inboard to the outboard end of the segment. Once this vector has been oriented 

using Eq. (6.8) the outboard end point can be used as the origin location for the coordinate 

system of more distal segment attached to the end point. Limb segment origin positions are 

calculated through the addition of translation vectors working from the waist towards the 

body extremities as depicted in Figure 27. Each node represents a limb segment origin and 

^Pwaist Pwaist 

Torso 

Ptorso 

I. Shoulder Neck 

Plshoulder Pneck 

I. Upper Arm      Head 

Pi upper arm 

I. Lower Arm 

Pi. lower arm 

I. Hand I. Foot 

Pr. lower leg 

r. Foot 

Figure 27: Calculation Of Limb Segment Positions 

each edge a translation vector which has been rotated by an offset quaternion and a limb 

orientation quaternion. Positions are determined by traversing the tree from the root to the 

node of a particular limb segment origin and adding the vectors associated with each edge 

in the path. For example, by traversing the displayed tree, it can be seen that the elbow or 

connection point for the inboard end of the right lower arm limb segment is given by 

Pwaist + QtorsoQtorso offPtorsoltorso offltorso + 

ar shoulderQr shoulder offr shoulderQr shoulder offlr shoulder + 

Qr up armQr up arm oflPr up armlr up arm offlr up arm (6.11) 
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in the manner similar to Eq. (3.79). The origins for all other links are located iteratively 

using the same method. 

Actual positioning of the human model is carried out as a two step process. 

This separation allows rendering calculations to be spread over a wider time interval and 

thus reduces the impact on the data filtering processes. In the first step the orientations of 

all limb segments are set. This is accomplished by calling the setPosture method of the 

CHumanModelClass. Filter produced orientations in quaternion form are passed in a 

predetermined order as an input argument. This method is listed in Figure 28. The limb 

// Sets the orientation for each limb segment 
void CHumanModel::SetPosture(CLimbData * angleData) 
{ 

for (int i = 0; i < 16; i++) { 

// Set the orientation of the limb 
m_trackedLimb[i]->SetOrientation(angleData[i].orientation); 

} // end for 

// Set the orientations of the fixed segments 
m_fixedLimb[L_HIP]->SetOrientation(angleData[PELVIS].orientation); 
m_fixedLimb[R_HIP]->SetOrientation(angleDatatPELVIS].orientation); 
m_fixedLimb[L_SHOULDER]->SetOrientation(angleData[TORSO].orientation); 
m_fixedLimb[R_SHOTJLDER]->SetOrientation(angleData[TORSO].orientation); 

} // end SetPosture 

Figure 28: The setPosture Method Of the CHumanModel Class 

segments are positioned and rendered using the renderFigure method. The location of the 

waist or the origin of the human figure is passed as input argument. This vector as are all 

vectors in the software is stored as a quaternion with the real part equal to zero. The 

renderFigure method is listed in Figure 29. 

b.        Body Model Calibration 

Due to the irregular shape of actual human limb segments, it is not possible 

to exactly align the axes of the attached a sensor with those of the limb. Sensor attachment 

will vary from limb to limb and from individual to individual. Thus the use of off-line 
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// Calls draw functions to draw the human 
void CHumanModel::RenderFigure(const Quaternion & vecRoot) 

// Calculate joint locations 
Quaternion waist = vecRoot; 

// Calculate upper body joint location vectors 
Quaternion bodyNeck = waist + m_trackedLimb[TORSO]->GetTranslation(); 
Quaternion bodyHead = bodyNeck + m_trackedLimb[NECK]->GetTranslation(); 
Quaternion IShoulder = bodyNeck + m_fixedLimb[L_SHOULDER]->GetTranslation(); 
Quaternion rShoulder = bodyNeck + m_fixedLimb[R_SHOULDER]->GetTranslation(); 
Quaternion lElbow = IShoulder + m_trackedLimb[L_UP_ARM]->GetTranslation(); 
Quaternion rElbow = rShoulder + m_trackedLimb[R_UP_ARM]->GetTranslation(); 
Quaternion lWrist = lElbow + m_trackedLimb[L_LOW_ARM]->GetTranslation(); 
Quaternion rWrist = rElbow + m_trackedLimb[R_LOW_ARM]->GetTranslation(); 

// Calculate lower body joint location vectors 
Quaternion bodyHip = waist + m_trackedLimb[PELVIS]->GetTranslation(); 
Quaternion lHip = bodyHip + m_fixedLimb[L_HIP]->GetTranslation(); 
Quaternion rHip = bodyHip + m_fixedLimb[R_HIP]->GetTranslation(); 
Quaternion lKnee = lHip + m_trackedLimb[L_UP_LEG]->GetTranslation(); 
Quaternion rKnee = rHip + m_trackedLimb[R_UP_LEG]->GetTranslation(); 
Quaternion lAnkle = lKnee + m_trackedLimb[L_LOW_LEG]->GetTranslation(); 
Quaternion rAnkle = rKnee + m_trackedLimb[R_LOW_LEG]->GetTranslation(); 

// Draw the upper body 
m_trackedLimb[TORSO]->Draw(waist); 
m_trackedLimb[NECK]->Draw(bodyNeck); 
m_trackedLimb[HEAD]->Draw(bodyHead); 
// Draw shoulders 
m_fixedLimb[L_SHOULDER]->Draw(bodyNeck); 
m_fixedLimb[R_SHOULDER]->Draw(bodyNeck); 
// Draw upper arms 
m_trackedLimb[L_UP_ARM]->Draw(lShoulder); 
m_trackedLimb[R_UP_ARM]->Draw(rShoulder); 
// Draw lower arms 
m_trackedLimb[L_LOW_ARM]->Draw(lElbow); 
m_trackedLimb[R_LOW_ARM]->Draw(rElbow); 
// Draw hands 
m_trackedLimb[L_HAND]->Draw(lWrist); 
m_trackedLimb[R_HAND]->Draw(rWrist); 

// Draw the lower body 
m_trackedLimb[PELVIS]->Draw(waist); 
// Draw hips 
m_fixedLimb[L_HIP]->Draw(bodyHip); 
m_fixedLimb[R_HIP]->Draw(bodyHip); 
// Draw uppper legs 
m_trackedLimb[L_UP_LEG]->Draw(lHip); 
m_trackedLimb[R_UP_LEG]->Draw(rHip); 
// Draw lower legs 
m_trackedLimb[L_LOW_LEG]->Draw(lKnee); 
m_trackedLimb[R_LOW_LEG]->Draw(rKnee); 
// Draw feet 
m_trackedLimb[L_FOOT]->Draw(lAnkle); 
m_trackedLimb[R_FOOT]->Draw(rAnkle); 

} // end RenderFigure 

Figure 29: The renderFigure Method Of the CHumanModel Class 
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analytic calculations is not a practical method of deriving an offset quaternion which 

accounts for the misalignment of the two coordinate systems. 

When the human model is in the reference position, the limb segment 

coordinate axes are aligned with the corresponding Earth-fixed axes. That is the x-axis for 

each limb segment points toward the local north, the y-axis points east and the z-axis points 

down. The reference position for the human model is an "attention" type stance facing 

North. The offset quaternions for each limb segment can be derived by noting that while 

the user is in the reference position the equation 

is true. This implies that 

and 

V  =  IsensorqoffVQofflsensor (6.12) 

IsensoAoff =   l (6.13) 

Qojflsensor =   1 (6-14) 

These results and the inverse property of quaternion multiplication further imply that 

<?0// =   qsensor (6.15) 

while in the reference position. The quaternion, qsensor, is output by the quaternion filter 

algorithm and is thus known. 

Complete compensation for the way in which all sensors are attached to the 

limbs of a tracked subject can therefore be accomplished by simply setting q0ff for each 

limb segment to the inverse of the associated qsensor while the subject to be tracked is 

standing in a predetermined reference position. The implemented reference position for this 

research is an attention type stance facing the local magnetic north (Figure 30). The 

calculated offset quaternion will remain valid as long as the sensor positions do not shift 

position relative to the tracked limb segment. 
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The same calibration method could be applied to a model based upon the use 

of homogeneous transformation matrices vice quaternions. Relations which are equivalent 

to those given by Eq. (6.12) and Eq. (6.15) are 

and 

v = RsensorRoffv 

R0ff — "    sensor 

(6.16) 

(6.17) 

where Rsensor is a homogeneous matrix expressing the limb segment orientation relative to 

a earth-fixed reference frame and R0ß expresses the orientation of the limb segment 

coordinate system relative to the that of the sensor. Again, since matrix inversion is very 

expensive computationally in comparison to unit quaternion inversion, Eq. (6.17) is not 

used in this research. 

Figure 30: Body Model Calibration Reference Position 
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D.        SUMMARY 

The body tracking system described in this chapter is able to track the orientation 

of human limb segments using prototype MARG sensors. The MARG sensors are 

calibrated via a series of eight rotations without the need for any specialized equipment. 

The data from each sensor is processed by a reduced order quaternion attitude filter which 

is complementary in form. The incorporated filter algorithm is able to track limb segment 

attitude through all orientations without singularities and continuously corrects for drift. 

Filter output is a quaternion representation of the orientation of a limb segment relative to 

an earth fixed reference frame. 

The orientation quaternions are used to set the posture of a quaternion based human 

model. All model segments are positioned and oriented using quaternion/vector pairs in a 

z-axis down coordinate system. The human body model implements a simple calibration 

method for correcting for misalignment between the coordinate systems of individual 

sensors and limb segments. The calibration method only involves the inversion and 

assignment of a single quaternion for each limb segment while the tracked subject stands 

in a reference position. The minimal computational demands of this method are largely due 

to the overall simplicity of the human model itself. Human model limb segment lengths 

may be adjusted to account for human anthropomorphic differences. 

The prototype MARG sensors where fabricated using low-cost off-the-shelf 

components. Internal sensor circuitry supports magnetometer set/reset of MR film polarity 

and allows manual adjustment of magnetometer null points. Analog MARG sensor output 

digital conversion is performed external to the sensors using a PCI data acquisition card. 

The system software was entirely implemented using C++. It is single threaded and 

runs on a standard Wintel desktop computer. The estimation update rate is at least 100 Hz 

for three filters performing drift correction calculations on each iteration. Rendering frame 

rate is maintained at 25 Hz. 
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VII. EXPERIMENTAL RESULTS 

A. INTRODUCTION 

The chapter describes experiments designed to test the performance of the inertial/ 

magnetic body tracking system. The quantitative and qualitative results presented 

document the accuracy and robustness of the system under various dynamic and static 

conditions. 

The static experiments described relate to the stability, convergence properties and 

accuracy of the orientation estimates produced by the quaternion attitude filter algorithm 

when processing MARG sensor data. All static tests were single MARG sensor 

experiments. Preliminary results are presented which quantitatively illustrate the dynamic 

accuracy of the quaternion filter orientations. This data also allows some conjectures to be 

made regarding system latency. 

The qualitative experiments examine the performance of the system as a whole in 

relationship to the goal of robust posture estimation. The performance of the system while 

using differential weighting of sensor data as well as increased drift correction intervals is 

investigated. The ability of the system to track the posture of various limb segments of the 

human body using three MARG sensors is also qualitatively evaluated. 

The final section of this chapter examines the InertiaCube sensor and Kaiman filter 

algorithm used by Intersense Inc. to process inertial data [Ref. 27.]. The shortcomings of 

this system for full body tracking applications are discussed. This discussion is based upon 

both the observed performance of an Intersense system and an examination of available 

research literature describing the implemented data filtering algorithm. 

B. STATIC STABILITY 

Orientation estimates based solely on angular-rate sensors are prone to drift 

problems. Thus in the past, the idea of using inertial sensors to track orientation for 

extended periods was often criticized due to the mistaken belief that the estimates would 

131 



diverge over time. This criticism was applied regardless of the combination of sensors 

actually in use and was mostly due to difficulties in understanding the complementary 

characteristics of different sensor types and complementary estimation filters. 

The drift characteristics of the quaternion filter algorithm and the MARG sensor 

over extended periods were evaluated using static tests. In each of these experiments the 

stability of the orientation estimate produced with the sensor stationary was monitored for 

a specified period. Through the course of the experiments the estimated orientation was 

recorded at 0.1 second intervals. Figures 31 through 34 display the results. Each plots the 

four components of the estimated quaternion and the length of the quaternion error vector 

versus time. 
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Figure 31: One Hour Static Test Of Orientation Estimate Stability, k = 1.0, p = 1.0 

Figure 31 graphically depicts the drift of each of the four components of the 

quaternion estimate produced by the filter. It can be observed through examination of 

Figure 31 that average total drift is about 1%. During the experiment shown, the filter gain, 

k (Eq. (5.15)), was set to unity. Equal weighting was given to both magnetometer and 
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Figure 32:15 Minute Static Test Of Orientation Estimate Stability, 
No Magnetometer Input, k = 1.0 
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Figure 33:15 Minute Static Test Of Orientation Estimate Stability, 
No Accelerometer Input, k -1.0 
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Figure 34: 60 Minute Static Test Of Orientation Estimate Stability, 
No Rate Sensor Input, k = 1.0 

accelerometer data. It is expected that increasing the filter gain to 4.0 would reduce the drift 

error by a factor of four or to about 0.25 percent. However, due to the observed stability of 

the filter over a one hour period, no further static experiments relating to stability were 

conducted. 

Experiments were also conducted in which magnetometer, accelerometer or rate 

sensor data were disregarded by the filtering algorithm. These results are shown in figures 

32, 33 and 34. As expected, Figure 32 shows continuous drift about the vertical axis of 

approximately 1 degree per second. Poor stability about the North and East axes is apparent 

in Figure 33. Here the total drift is on the order of 3 degrees per second. The greatest 

possible difference between two unit quaternions occurs when they point in directions 

which are exactly opposite each other. At that time the length of the error vector would be 

two. Thus, the magnitude of the rms difference in both Figure 32 and Figure 33 cycles 

between 0 and 2. 
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The lack of any drift in Figure 34 indicates that all drift is due to rate sensor bias. 

Throughout these tests all limb segments of the human model were mapped to the single 

sensor in use. The posture of the human model when viewed on the display monitor 

reflected the results seen in the figures. 

C.        STATIC CONVERGENCE 

Linear analysis of the quaternion filter and nonlinear simulation imply the transient 

errors in q will persist for a time period which is inversely proportional to the filter gain, k 

(Eq. (5.15)). Specifically, by the time xäq following the occurrence of a transient error, it 

is expected that the error magnitude will be reduced to 37% of its original value (Eq.). The 

magnitude of the square of the error should be reduced by 37% by the time 

t = T-P (7.1) äq 
2 

Experiments to test the static convergence of the filter following transient errors 

were conducted to further validate the results of the linear analysis. The MARG sensor 

itself was left in a stationary position throughout each of these experiments. Transient 

orientation errors were introduced into the system by rotating a stable q estimate by an 

error quaternion. Following this rotation, the filter was allowed to reconverge to the 

previous estimate. Error quaternions representing orientation errors of 30 degrees where 

used. Filter gains included 1.0, 4.0, 8.0, 16.0 and 32.0. Setting the filter gain to values 

greater than 200 with an update rate of 100 Hz (as predicted by Eq. (5.44)) was found to 

make the filter unstable. Equal weighting was given to both magnetometer and 

accelerometer data. In each of these experimental trials the filter remained stable and re- 

converged to the previous estimate in the time period predicted by linear theory. Figures 35 

through 38 plot the magnitude of the quaternion filter criterion function (Eq. (5.10)) versus 

time. These data were obtained following rotation of q by the indicated error quaternion. 

Filter gains of 1.0, 4.0, 16.0 and 32.0 are shown. These figures represent a sample of the 

results obtained. 
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Figure 35: Error Convergence Following 30 Degree Transient Error, Jfc = 1.0 
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Figure 36: Error Convergence Following 30 Degree Transient Error, k = 4.0 
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Figure 37: Error Convergence Following 30 Degree Transient Error, k = 16.0 
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Figure 38: Error Convergence Following 30 Degree Transient Error, k = 32.0 
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D. DYNAMIC RESPONSE AND ACCURACY 

Preliminary experiments were conducted to establish the accuracy of the orientation 

estimates and the dynamic response of the system [Ref. 6.]. These experiments were 

completed using a Hass rotary tilt table [Ref. 31.]. The table has two degrees of freedom 

and is capable of positioning to an accuracy of 0.001 degrees at rates ranging from 0.001 

to 80 degrees/second. In order to mitigate any possible magnetic field effects generated by 

the servos of the tilt table, the sensor package was mounted on a nonferrous extension 

above the table. The extension was approximately the length of a human forearm. 

The preliminary test procedure consisted of repeatedly cycling the sensor through 

various angles of roll, pitch and yaw at rates ranging from 10 to 30 degVsec. After each 

motion, the table was left static for approximately 15 seconds. The estimates produced by 

the tracking system where converted to Euler angle form for easier comparison to the tilt 

table rotations. 

Figure 39 is a typical result of the dynamic accuracy experiments. The overall 

smoothness of the plot shows excellent dynamic response. Accuracy was measured to be 

better than one degree. The small impulses which can be observed each time motion is 

initiated are hypothesized to be linear acceleration effects exaggerated by the "whipping" 

motion of the extension on which the sensor was mounted. In qualitative tests, the 

quaternion filter exhibited no difficulty in tracking orientations in which pitch angles 

equaled or exceeded 90 degrees. 

E. QUALITATIVE TESTING 

1.        Weighted Least Squares 

The weighted least squares modification to the quaternion filter algorithm is 

designed to allow orientation estimation to continue in the presence of changing magnetic 

fields. Significantly reducing the weight given to magnetometer data will allow drift about 

the vertical axis. However, this reduction may also make it possible to avoid large short 

time period rotations about the vertical axis in the presence of changing magnetic fields. 
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Figure 39:10 Degree Roll Excursions At 10 deg/sec From [Ref. 6.] 

To examine the weighted least square function of the filter, a MARG sensor was 

repeatedly subjected to a magnetic source. In each trial a speaker magnet was passed over 

the sensor at a distance of approximately 1 cm. Magnetometer weighting values of 0.25, 

0.5, and 1.0 were used. The filter gain, k, was 4.0 in all trials. Figures 40 through 42 plot 

the rms difference between the orientation estimate before exposure to the field and during 

exposure. As expected using a magnetometer weighting factor of 0.25 allows the greatest 

immunity to magnetic field effects as reflected by Figure 42. 

2.        Posture Estimation 

The purpose of the human body tracking system is to estimate the orientation of 

multiple human limb segments and use the resulting estimates to set the posture of the 

human body model which is visually displayed. Numerous experiments were conducted to 

qualitatively evaluate and demonstrate this capability. 

In each experiment three MARG sensors where attached to the limb segments to be 

tracked. Due to the minimal number of sensors available tracking was limited to a single 
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Figure 40: rms Change In Orientation Estimate During Exposure Magnetic Source, 
Magnetometer Weighting Factor: 1.0, k = 4.0 
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Figure 41: rms Change In Orientation Estimate During Exposure Magnetic 
Source, Magnetometer Weighting Factor: 0.5, k = 4.0 
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Figure 42: rms Change In Orientation Estimate During Exposure Magnetic 
Source, Magnetometer Weighting Factor: 0.25, k = 4.0 

arm or leg. In the case of arm and limb segments, sensor attachment was achieved through 

the use of elastic bandages. In most cases this method appeared to keep the sensors fixed 

relative to the limb. Sensor attachment was the most time consuming task when preparing 

to track a new individual. Calibration for sensor/limb axes misalignment was the achieved 

in a nearly instantaneous manner. Adjustment for differences in anthropometric 

measurements were carried out on an "as needed" basis to allow capture of closed loop 

postures. 

Video recordings of the system in operation indicate that posture estimation was 

accurate and showed very little lag. Figures 43 through 44 depict inertial tracking of 

various limb segments. 

3.        Reduced Rate Drift Correction 

It was hypothesized that increasing the drift correction interval for each sensor/filter 

pair would allow full body tracking without an increase in processing power. To test this 
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Figure 43: Inertial Tracking Of the Left Arm Using Three MARG Sensors 

Figure 44: Closed Kinematic Chain Posture Using Three MARG Sensors 
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Figure 45: Inertial Tracking Of the Left Leg Using Three MARG Sensors 

hypothesis, posture estimation was evaluated qualitatively while operating three actual and 

13 simulated filter software objects. Filter update rates were maintained at 100 Hz. 

However, only one filter object performed drift correction calculations on each update 

cycle. This is equivalent to performing drift corrections for each filter object at a rate of 

approximately 6 Hz. Filter gains where not changed to compensate since the most recently 

derived drift correction factor was still used on every update cycle. Qualitative evaluation 

of posture tracking indicated the effects of increasing the drift correction interval for each 

filter object were negligible. 

F. INTERSENSE INERTIACUBE 

The InertiaCube (Figure 46) is an integrated inertial sensing device manufactured 

by InterSense Inc. The InertiaCube senses angular rates about and linear acceleration along 

each of three orthogonal body axes [Ref. 26.]. Manufacturers literature indicates that it 

contains at least a two axis magnetometer [Ref. 37.] and thus is very similar in overall 
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capability to the MARG sensors used in this research. InertiaCube data is processed by a 

complementary separate-bias extended Kaiman filter based upon an Euler angle 

representation of orientation [Ref. 27.]. It has a six-dimensional state vector containing the 

three Euler angles and three angular rate bias terms. Though the system was designed for 

head tracking, head dynamics are not modeled. Nonlinear attitude computation is 

accomplished through a second order integration step formula. System error dynamics are 

obtained by normalizing about a nominal trajectory [Ref. 27.]. 

Qualitative evaluation of an Intersense IS-300 orientation tracking system was 

completed using both the manufacturers demonstration software and the body tracking 

software developed for this research. When using the demonstration application the basis 

of the filter in Euler angles becomes apparent each time the InertiaCube is subjected to a 

pitch angle approaching +/- 90 degrees. In this attitude the roll and yaw values gyrate 

widely while maintaining a constant sum or difference. When tested with the body tracking 

software, the system was configured to output a quaternion representation of orientation. 

While operating in this mode it was not possible to detect any singularities. 

The ability of the InertiaCube to continuously correct for rate sensor drift was tested 

by subjecting the sensor to a series of accelerations and then placing it on a flat surface. 

When using either the demonstration application or the body tracking software, the system 

exhibited its inability to correct for drift unless in a stationary state. Each time the sensor 

was replaced on the flat surface the orientation estimate failed to match the true orientation 

for a short time period before making a sudden and abrupt correction. This phenomenon 

occurred regardless of the operating mode of the Intersense system and is in marked 

contrast to continuously corrected estimates produced by the MARG sensor and the 

quaternion attitude filter. 

The strength of Kaiman filtering lies in the inclusion of a dynamics model for error 

correction and prediction. In the absence of an accurate model, use of a Kaiman filter is 

likely to result in an unnecessarily complex algorithm which is prone to errors when the 

model does not match the dynamics of the modeled system [Ref. 14.]. Since Kaiman filter 
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predictions are primarily based upon dynamics models, any prediction produced by a 

model-less filter should be viewed with suspicion. The inclusion of adjustable gains to 

control rms estimation error and attenuate magnetometer inputs raises doubts that the 

Intersense system is actually using a Kaiman gain to attain a statistically optimal estimate 

of the system state. It appears instead that the system may implement a highly expensive 

extended Kaiman filter algorithm to perform a task which could be done quicker and faster 

by a simpler algorithm such as the quaternion filter algorithm described in this research. 

While the inability of the 

Intersense system to continuously 

correct for drift may not be a drawback 

in head tracking applications, it is 

doubtful that it will be able to function 

properly in a constant high acceleration 

applications such as full body tracking. 

There are no periods of still time for the 

limbs of a human being while walking. 

Though no singularities were observed 

in the experiments described here, the 

use of Euler angles to describe the 

orientation of a human arm which can Figure 46: Intersense InertiaCube 

assume any attitude is questionable. The decision to date of Intersense not to allow direct 

access to the signals produced by the InertiaCube sensor severely limits the application of 

inertial tracking technology with this sensor. 

G.        SUMMARY 

This chapter presents a limited set of experiments designed to document the 

performance parameters of a prototype inertial/magnetic body tracking system. The 

accuracy of system orientation estimates was quantitatively evaluated both statically and 
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dynamically. The overall ability of the system to model human posture in real-time was 

evaluated qualitatively. Examination in the light of human body tracking was also made of 

the Intersense InertiaCube and filtering algorithms. 

The experimental results presented indicate that with the application of the proper 

algorithms and representations, inertial/magnetic orientation tracking can be used to 

accurately track the posture of the human body. The static stability and convergence tests 

show that the orientation estimates are stable and that linear analysis of quaternion filter 

analysis is valid. The static accuracy and dynamic response experiments show the system 

can produce orientation estimates which are accurate and timely enough to be used in real- 

time body tracking applications. For applications in which the system may be subjected to 

variable magnetic fields, the weighted least square experiments show that inertial/magnetic 

tracking may still be expected to produce usable orientation estimates. Qualitative 

experiments show increased drift correction intervals may be used to implement a tracking 

system which operates a larger number of filters simultaneously using limited processing. 

Video recordings of the system in operation demonstrate that inertial/magnetic 

orientation estimation produces accurate body posture estimates in real-time. Sensor and 

body model calibration algorithms make the technology robust and easy to use. With the 

addition of a wireless link and an appropriate position tracking technology, it is apparent 

that the prototype system represents a means of simultaneously tracking a large number of 

users in a large work area without the shortcomings of current motion capture technologies. 

Experimentation with gains and scale factors makes is apparent that it is useful to 

think of the rate sensor data as primarily serving to "quicken" the orientation estimates 

produced using accelerometer and magnetometer data. In head tracking applications this 

may be necessary in order to reduce lag and avoid the possibility of simulator sickness. 

Quickening may also be needed in feedback control applications to ensure stability. 

However, in some body tracking applications it may be possible to use simpler sensors 

including only magnetometers and accelerometers with a relatively high filter gain. This 

possibility presents an important area for future research. 
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VIII. SUMMARY AND CONCLUSIONS 

A. INTRODUCTION 

This research lays the groundwork for a system capable of sourceless tracking of 

the entire human body. The technology of such a system should allow the tracking of 

multiple users over a wide area. Ultimately, each user could be inserted into a networked 

synthetic environment in a fully immersive manner. While the basic ground work and 

theory have been completed in this dissertation, much research remains to complete a full 

body tracking system. Numerous technologies must be merged and adapted to produce a 

practical body tracking system for networked synthetic environment applications. 

The following outlines the work which needs to be done to achieve full body 

tracking and makes suggestions regarding what directions this work should take. The 

implications of this research are discussed. The final section of this document examines 

what conclusions might be drawn from its contents. 

B. MARG SENSORS 

An optimal inertial sensor would have the same size and form factor as a 

wristwatch. It would include an embedded microprocessor on which the filter algorithm is 

implemented. The sensor would be have a self-contained power source and would 

wirelessly transmit orientation data. 

New sensor components continue to appear on the market. These sensors have 

capabilities which are at least equal to and are often superior to those of the preceding 

generation and are an order of magnitude smaller in size. Current technology already 

permits the construction of sensors which are much smaller than either the prototype 

MARG sensors described here or the InterSense InertiaCube. Honeywell now offers the 

HCM1023 three-axis magnetoresistive sensor in a sixteen pin package with an 8.13 x 3.81 

mm footprint. This unit is less than half the size of the HMC2003 with a nearly equal 

sensitivity [Ref. 38.]. The Analog Devices ADXL202E is a two axis acceleration sensor 
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integrated onto a single monolithic IC chip. It measures 5 x 5 x 2mm and has a digital output 

[Ref. 2.]. Tokin America Inc. now offers a smaller version of the CG-16D ceramic gyro 

designated the CG-L33. The CG-L33 measures 8 x 16 x 5mm and has slightly improved 

performance characteristics [Ref. 83.]. 

Smaller and cheaper integrated inertial sensors are on the horizon. In the Spring of 

2001, it is expected that Micro Sensors, Inc. will release a 5 x 5mm micromachined rate 

sensor with capabilities equal to those of the CG-L33 [Ref. 63.]. In the Fall of 2000, Tokin 

America, Inc. released in prototype the MDP-A3U7 3D Motion Sensor [Ref. 82.]. 

Manufacture's literature states that this sensor unit contains in combination ceramic gyros, 

acceleration sensors and terrestrial magnetism sensors and is capable of detecting the 3- 

dimensional posture angle of a body to which it is attached in real time. The sensor 

measures 25 x 36 x 22.5mm and interfaces via USB (Universal Serial Bus). Maximum 

errors in all axes are claimed to be +/- 15 degrees. Maximum pitch and roll angles are 

limited to +/- 60 degrees. It is likely that the large magnitude of the estimation errors as well 

as the limited pitch and roll capabilities are due to manufacturer's data processing 

algorithm and are not characteristics of the sensors themselves. 

The prototype MARG sensors used in this research output nine analog signals 

corresponding to the nine sensor axes. The Texas Instruments TLC2543 is an 11 channel, 

fully configurable, analog to digital converter (ADC) on a single IC. [Ref. 81.] Incoporation 

of an ADC into the MARG sensor would ease data handling by replacing the 15 wires per 

MARG sensor with 3 data wires and 2 power wires. The 3 data lines could be merged into 

a data bus of 15 other MARG sensors. The ADC would also automate the magnetometer 

set/reset circuit by providing clocked and, therefore, constant readings of set and reset 

produced magnetic data. Using the difference of the two magnetic readings taken during 

the set/reset cycle will result in magnetic data that is automatically temperature 

compensated. This is something that was not possible with the analog MARG sensor used 

in this research. 
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In earlier body tracking work, the angular rate sensors were bias compensated in 

software [Ref. 6.]. In the research described in this document, the hardware is considered 

stable enough to eliminate the need for these additional calculations. However, integration 

of a biased angular rate signal will cause a steady state error in a complementary filter. In 

order to achieve better system performance, this correction should be hardware 

implemented in the rate sensor conditioning circuitry using capacitive coupling. Such a bias 

compensation circuit is depicted in Figure 47. 

It is expected that use of the components described here would result in a sensor 

which is as much as five times smaller than the prototype used in this dissertation. Such a 

sensor would be less expensive, easier to calibrate and mount to a human body and perhaps 

more accurate as well. 
+5VA 

7    RATE 

OUT 

GND 

Figure 47: MARG Rate Sensor Bias Compensation Circuit Schematic 
From [Ref. 61.] 
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C.        HUMAN BODY MODELING 

The purpose of the human model used in this research is to demonstrate the 

simplicity of the mathematics underlying an articulated body model designed to use 

accurate fixed reference frame orientation data. Speed of rendering and length of 

development where primary considerations rather than visual appearance. 

Future research should expand this paradigm to include anatomical data to make the 

model correspond more closely to the human skeleton in overall proportion and relative 

placement and attachment. The model should remain mathematically simple. Due to the 

accuracy and low cost of inertial/magnetic orientation tracking, there is no need to include 

joint angle constraints or the ability to track multiple segments using a single sensor. 

Continuing the direct use of quaternions to orient limb segments and vector addition to 

position them, may or may not be advantageous depending upon the rendering speed 

advantages of matrix based graphics hardware and the available network bandwidth. 

Current human animation standards model articulated structures using segments 

and joints [Ref. 33.][Ref. 10.]. Unlike the model used in this research which orients limb 

segments individually using data referenced to an earth-fixed frame, typical humanoid 

animation is performed by altering the angle or angles for each individual joint. The 

orientation of each limb segment is described relative to the inboard segment to which it is 

attached. Conversion of earth-fixed reference frame data to a series of relative joint angles 

could be accomplished. However, joint angle animation is actually less efficient than the 

method used in this research while the network bandwidth requirements are roughly 

comparable. Thus, joint angle based standards should be expanded to allow this alternate 

method of setting body posture. Alternatively, efficient routines for converting earth-fixed 

limb segment orientations to sequential relative joint angles might find wide use. 

The current calibration algorithm is effective and easy to use. Once the subject of 

the tracking experiment stands in a predefined reference posture, sensor to limb segment 

offset compensation can be accomplished in a time period which appears to be 

instantaneous. The calibration is based on the assumption that the limb segment coordinate 
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axes are aligned with earth-fixed axes referenced to the local magnetic field. Since it is 

difficult to have a human subject stand in a very precise pose, in reality there is likely to 

always be some misalignment between the two coordinate systems. Using the ability of the 

sensor mounted magnetometers to find the local north will allow the implementation of a 

two step calibration algorithm. The human subject will still be required to stand in a 

predefined position, however there will no longer be any requirement to face the local 

magnetic north. This north finding ability will also make it possible to reduce offset errors 

further when the subject does face the local north. "Visual tuning" of offsets could be 

accomplished by "on-screen" adjustment of the displayed posture. 

In order to ensure that the user can effectively interact with the virtual environment, 

the model used by the inertial tracking system must be scaled to the user's dimensions [Ref. 

78.]. This type of calibration ensures that, for example when a subject touches their right 

shoulder with their left fingertips, their virtual human representation will do so as well. 

Currently, the model is calibrated to body dimension ratios manually through physical 

measurement. This is an extremely error prone and time consuming process. Some body 

dimensions such as inseam are easily measured. Using a minimal set of such dimensions it 

should be possible to accurately calculate other dimensions through a calibration algorithm. 

The algorithm might involve placing the subject in a series of predefined positions as well 

as model adjustment based on the rendered posture while in these positions. Such an 

algorithm would make it possible for a user of any size to easily enter the virtual 

environment. 

At the time of this writing, 3D color laser scanning is being used to digitize the 

dimensions of recruits at the Marine Corps Recruit Depot in San Diego, CA. The scanning 

process requires a total of 15 - 20 seconds and produces a detailed anatomical model of each 

subject [Ref. 19.].This same technique could be used to produce a human model that is 

perfectly sized for each individual. 

There is no end to the amount of effort that could be expended to produce a body 

model with a realistic appearance. A great deal of research has already been done in this 
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area. Limb segment surfaces could be made anatomically accurate. Muscles and fat could 

be modeled. Realistic clothing could be added. Hair and facial expressions could be 

modeled. Individual fingers could be tracked using another technology. In the end, the 

rendering hardware and the application will dictate how much of this work should be 

applied to the human body model presented here. 

D.        INTERGRATION OF INERTIAL AND RF TECHNOLOGIES 

The ultimate goal of this project is to insert humans into a networked virtual 

environment. A network of 15 MARG sensors will track body posture. In order to 

accurately place the icon of the user in the virtual environment, it will be necessary to know 

body location as well as the posture of the body. To achieve this, the position of one body 

limb segment must be tracked. Unlike acoustic position tracking, Radio Frequency (RF) 

positioning systems are very fast and long range by their nature. Large working volumes 

can be covered using a minimal amount of equipment and positional error magnitudes 

remain constant though out. RF positioning systems can penetrate objects, walls, and the 

human body, and are able to operate with no line-of-sight. Thus, RF positioning is currently 

seen as the technology which will best complement the sourceless capabilities of inertial/ 

magnetic sensing and enable tracking of a multiple users over a wide area. 

Current examples of RF positioning systems include the Global Positioning System 

(GPS) and Long Range Navigation (Loran). In an outdoor application where extremely 

accurate positioning is not required, GPS might be used to locate the position of the tracked 

subject. DGPS has already been successfully integrated with inertial and magnetic sensors 

in AUV navigation systems such as the SANS described in [Ref. 7.][Ref. 96.]. Recently, 

MIT has developed an RF positioning system that shows excellent performance for indoor 

tracking [Ref. 24.]. This system has an accuracy of 2mm within a range of about 5 meters. 

For 3 DOF tracking, a minimal system requires four transmitter stations placed at known 

locations, and a receiver unit attached to the body. Such a system could be easily integrated 

with a 15 MARG sensor system. 
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E.        WIRELESS COMMUNICATIONS 

Tethering a tracked subject to a workstation with wires increases user encumbrance 

and limits the application of hybrid inertial body tracking technology. The MARG sensors 

are sourceless sensors, and RF positioning systems are self-contained receiving units. They 

do not require wire connections to any external sources in order to operate. Thus, a practical 

hybrid system would incorporate multiple MARG sensors, at least one RF position tracker 

and a wearable electronics unit capable of processing sensor data. This sensor data would 

be packaged into a serial bit-stream for wireless transmission to a base electronics package. 

The base unit would further process the sensor data for submission to a networked virtual 

environment and possible retransmission along with other virtual environment data back 

the user. 

The wearable electronics could be a wearable computer such as ViA II PC from 

ViA Inc. [Ref. 89.] The processor and batteries of Flex PCs are configured as a waist belt 

that can be easily and comfortably worn. Data from MARG sensors and the RF position 

system could be routed to such a wearable PC. The role of the wearable PC would be to 

collect and process the data into a desirable state vector form, and wirelessly transmit the 

state vector to a VE station. The state vector may contain body position coordinates and 

limb orientation data as well as other forms of body posture representation. 

The wearable PC and the SE base station would be linked through a wireless local 

area network (WLAN). One possible implementation of the WLAN is to use Lucent 

Technologies WaveLAN wireless products. The minimum implementation requires one 

WavePOINT wireless bridge and one WaveLAN PCMCIA card. Based on experimental 

results, the data rate of such a WLAN is about 1.4 Mbps at a range of 100 meters. The range 

can be up to 300 meters, but data rate will decrease to 100-500 Kbps, depending on the 

transmission environment. The maximum data rate requirement for the body suit is 

162Kbps, assuming that the body suit has fifteen 9-axis MARG sensors sampled atlOOHz, 

and each axis is sampled by a 12-bit AD converter. If sensor data is processed by embedded 
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microprocessors or by the wearable computer and 15 unit quaternions are transmitted, the 

bandwidth requirement could be decreased to approximately 54Kbps. 

Power will be supplied by rechargeable, hot-swappable batteries. By making 

batteries hot-swappable, endurance would not be a problem as long as each battery charge 

allows operation for a reasonable length of time. 

F. FILTERING 

The theory and development of the quaternion attitude filter described in this 

document and in [Ref. 51.] is largely complete. Experimental work involving the selection 

of filter gains in various operating regimes remains to be completed. Though Kaiman filters 

are considered statistically optimal, it remains to be see whether such a filter could be 

developed for and would be of benefit to this application. Only after a Kaiman filter has 

been developed will it be possible to determine whether it would be a better choice than the 

complementary filter based on Gauss-Newton iteration described in this research. 

Kaiman filtering is highly dependent on the quality of the incorporated process 

model. When applied to human body motion tracking, Kaiman filter design requires an 

adequate dynamic model of the human musculoskeletal system, and the measurement 

statistics of the MARG sensors and RF positioning system to be used [Ref. 14.]. Dynamic 

models of the musculoskeletal system are well established and widely used for computer 

simulations of human body motions [Ref. 34.]. These models are given in the form of 

second order differential equations containing parameters representing body segment mass, 

center of mass, and moments of inertia. Though these models are ideal for computer 

simulations of human body motions, they are computationally too complex to work in a 

system requiring real-time tracking of multiple users wearing multiple sensors. 

One possible approach to the modeling problem is to develop a model that is 

adequate but not overwhelmingly complex. Each limb segment could be considered 

independently of the others, or possibly motions of upper body segments could be 

considered independently of motions of lower body segments. This approach suggests that 
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the process model needed for Kaiman filtering may not need to make use of articulated 

body models, but could treat each limb segment as a single rigid body moving under the 

influence of forces produced by muscles and connective tissues [Ref. 96.][Ref. 28.]. The 

availability of reliable MARG sensors allows the gathering of statistical data needed to 

construct the model. 

[Ref. 48.] describes the preliminary development of a reduced order Kaiman filter 

for body tracking applications. To reduce the dimension of the state vector and simplify and 

linearize the state equations, Gauss-Newton iteration is utilized to compute the optimal 

quaternion relating measured to computed acceleration and magnetometer values. This 

filter work, like that described in [Ref. 27.], makes no attempt to model the dynamics of 

human motion. 

G.        A PROTOTYPE INERTIAL TRACKING BODY SUIT 

In order to track a human in a VE, it will be necessary to outfit the user with a body 

suit. This suit would incorporate multiple MARG sensors, at least one RF position tracker 

and an electronics unit capable of processing sensor data. Avoiding encumbrance to the 

user and the method of sensor attachment would be primary concerns in designing the suit. 

Processing of data would be divided between the sensors themselves, the wearable PC and 

a base system. Decisions would have to be made regarding where exactly these divisions 

should be made. Such decisions would be driven by the need to reduce latency and increase 

resolution and registration. Factors involved would include transmission bandwidth and the 

processing power of the various components. 

Two key factors must be considered when determining sensor placement and the 

method of attachment. The sensors must be reasonably stable relative to the bone structure 

of the user and the body suit and sensors must be easily donned. Relative motion between 

the bone structure and the sensor will be an additional source of noise and cause the sensors 

to report attitudes which do not correspond to the actual posture of the user. Most human 

models only attempt to approximate the human skeleton system. For instance the actual 
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complexities of the shoulder and spine are not captured by the human model described in 

this research. Thus, sensors must be attached and placed in a manner which will not 

exaggerate the simplifications of the model. [Ref. 78.] 

H.        POSTURE DATA IN A NETWORKED SYNTHETIC ENVIRONMENT 

Networked synthetic environments suffer from limitations of bandwidth, 

processing power and minimum transmission times. Work needs to be completed to 

facilitate the insertion of a high-resolution human into a networked synthetic environment. 

This goal requires research into different methods of encapsulating gesture data and the 

trade-offs involved in processing at various nodes in the network. Once this has been 

completed an efficient method for sending and processing this data could be developed. 

Quaternion representation of orientation allows all attitudes to be represented 

without singularities. If a human model is composed of 15 separate segments, describing 

this posture using unit quaternions requires 45 floating point numbers. If the same model 

has 60 degrees of freedom, then 60 joint angles must be transmitted. Transmission of 

homogenous transform matrices will require five times the bandwidth of either method. 

Joint angle representation will require the use of forward kinematics. Update of the posture 

of a 15 segment human model using quaternions will require 840 scalar operations. This is 

an order of magnitude less than the 3,780 scalar operations needed to reset the posture using 

transform matrices or joint angles. Quaternions do not allow the possibility of applying 

joint constraints, but given adequate tracking accuracy this should not be a drawback. 

The lag or delay of the posture data being received at remote nodes of the network 

presents another problem area. For instance, in a virtual battlefield simulation network 

delays may cause entities to be targeted based on a position they no longer occupy since an 

updated position has not yet been received. It is not likely that network transmission times 

will be significantly reduced in the near future. A common approach to this problem is 

prediction or dead reckoning based on the last update received [Ref. 98.]. Of course, 

predicting the future position or posture of a human is more difficult than predicting that of 
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a vehicle due to numerous degrees of freedom, and the wide ranges of speed and motion in 

each limb segment. To accomplish such a prediction, velocity or rate data as well as 

location data must be sent across the network. Between position updates, the latest velocity 

data could be integrated or Kaiman filtering could be Used to predict the current position. 

Using this scheme, position updates could be sent only occasionally to correct errors due to 

inaccuracies in the velocity measurements. 

I. CONCLUSIONS 

This research has demonstrated a new technology for tracking the posture of an 

articulated rigid body. The technology is based on the use of inertial/magnetic sensors to 

independently determine the orientation of each link in the rigid body. Though the primary 

application described here was motion capture for inserting humans into networked virtual 

environments, inertial/magnetic orientation tracking could be applied to a broad range of 

problems which require tracking of an articulated structure without being continuously 

dependent upon an artificially generated source. The articulated body can be either animal 

or machine. 

At the core of the system is an efficient complementary filter which uses a 

quaternion representation of orientation. Formulation of the filter is based upon the 

Orthogonal Quaternion Theorem which is presented and proved in this document. Error 

minimization is accomplished using Gauss-Newton iteration. The filter can continuously 

track the orientation of human body limb segments through in all attitudes without 

singularities. Drift corrections are made continuously with no requirement for still periods. 

Though the filter is nonlinear, it is shown through nonlinear simulations and actual system 

performance that linear analysis of the filter is relevant and can by used as a method for 

selecting scale factors and predicting performance. 

The filter processes data from MARG sensors which contain components typically 

combined to form an inertial navigation system. The sensor has nine axes which include 

three orthogonal angular rate sensors, three orthogonal linear accelerometers and three 
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orthogonal magnetometers. All sensor components are of a small form factor. Methods for 

conditioning and digitizing the output of the individual components are presented. 

Magnetometer and accelerometer data are used to create earth-fixed reference vectors. Rate 

sensor data is used to quicken the orientation estimates. While this quickening is typically 

necessary in feedback control applications, it may not be needed in low acceleration 

applications [Ref. 57.]. Sensor calibration is achieved using a novel calibration routine 

which requires no specialized equipment. 

Articulated body posture is represented using a model based entirely on quaternion/ 

vector pairs. Individual limb segments are oriented independently using a quaternion 

representation of the orientation relative to an earth-fixed reference frame. The model is 

mathematically simple. This simplicity reduces significantly the number of calculations 

needed to set the model posture. The underlying simplicity makes possible a quick and 

accurate calibration algorithm which compensates for misalignments between sensor and 

limb segment coordinate axes. The model may be adjusted to match the anthropometric 

measurements of an individual human subject. 

The implemented system tracks human limb segments accurately with a 100 Hz 

update rate. Experimental results demonstrate that inertial/magnetic orientation estimation 

is a practical method of tracking human body posture. With additional sensors, the 

architecture produced could be easily scaled for full body tracking. This new technology 

overcomes the limitations of motion tracking technologies currently in use. It is potentially 

capable of providing wide area tracking of multiple users for synthetic environments and 

augmented reality applications. 
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APPENDIX A. DERIVATION OF GAUSS-NEWTON ITERATION 
EQUATIONS 

Eq. (5.9) defines the quaternion filter error vector as 

e(<?) = yo-y(q) (5.9) 

where yo denotes a measured value and y(q) is the calculated value based on the current 

estimate q. The square of the error or the scalar squared error criterion function is given by 

Eq. (5.10) 

cp(tf) = lTCq)kq) (5-10) 

The criterion function is minimized by finding an "adjustment" to q termed Aq. 

The non-linear function, y(q) can be approximated by linearizing about q. The 

linearization is completed using the first two terms in the Taylor series expansion 

y(q + Aq) = y(q) + XAq + 0(Aq2) (A. 1) 

where q and Aq are treated as four-space column vectors and X is the 6 x 4 multi- 

dimensional derivative of y(q) with respective to q. (See Appendix B for further discussion 

of the X matrix) Ignoring the non-linear portion of the Taylor series expansion and 

substituting Eq. (A.l) into Eq. (5.9) produces a linear approximation of the error vector. 

k'q + ^q) = y0-kq)-xAq = eQ)-x&q (A.2) 

From the inverse law of transposed products, it follows that 

y{q + Aq)T = z(q)T-AqTXT (A.3) 

Thus from Eq. (A.2) and Eq. (A.3), the criterion function can be approximated by 

<P(9) = hqfhq) ~ t(q)XAq-AqTXTz{q) + AqTXTXAq (A.4) 

If Xis of full rank (full column rank) this is a positive definite form in Aq. Each of the terms 

in Eq. (A.4) evaluates to a scalar. By noting this fact and again using the inverse law of 

transposed matrices, it follows that 

159 



kqfxAq = &qTXTt(q) (A.5) 

This result allows the approximated error criterion function to be written 

<p(q) = E(q) S(q)-2&qTXTE(q) + &qTXTXAq (A.6) 

From differential calculus, the minimum or maximum of a function occurs where 

the slope of its tangent or derivative is equal to zero. The gradient (vector derivative) of 

squared error criterion function, (p(<?) is given by 

^1 = - 2XTl{q) + 2XTXAq (A.7) 
dq 

When the criterion function is a positive definite form, the unique minimum of Eq. (A.6) is 

found by equating the gradient to zero and solving for Aq. This result is the Gauss-Newton 

step given by Eq. (5.11) as 

A<? =  [xrx]"'*r£(9) = S-'x^Cq) (5.11) 

The above approximation ignores the 0(Aq2) term based on the assumption that Eq. 

(5.11) will be evaluated iteratively [Ref. 51.]. Simulations have demonstrated that Newton 

iteration, which takes in account this term, performs no better if it is assumed that all 

estimation errors are relatively small. 
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APPENDIX B. DERIVATION OF THE X MATRIX 

There are an infinite number of quaternions that can be used to represent any given 

orientation. These quaternions differ by a scalar multiplier. If q is a unit quaternion and 

~q = aq where a is any non-zero scalar, then 

and 

,   ,2 2 
\q\   = a 

-  —1 aq -l 
qvq     = aqv— = qvq 

a 

(B.l) 

(B.2) 

The elements of the 6 x 4 X matrix are the partial derivatives of the computed 

measurement vector, y(q) with respect to each of the components of the estimated 

orientation quaternion, q. 

Given 

y{q) = [Ve(q-lmq), Ve{q-lnq)]T = [Ä>»»"3]
7 

Then, the X matrix is given by 

(B.3) 

The z'th column of X is 

x = 

dh\ dh\ 

dq0 dqi 

dhi 3^2 

dq0 dqi 

3^3   9&3 

dq0 9<?i 

dq0 dqi 

ob2 obi 

dq0 9^i 

3^3   92>3 

dq0 3^i 

dq2 3^3 

3^2 3^2 

3^2 ^3 

9&3 3^3 

3^2 3^3 

dbj dbi 

dq2  dqs 

obi obi 

dqi  9^3 

9&3  oi>3 

dq2   3^3 

dy       3   —1   - —1  - 
r^ = ~r{q   mq,q   nq) 
dqi      dqi 

(B.4) 

(B.5) 
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By the product rule of differential calculus, it follows that 

4 dq ' - —l da da * - --1 da 
—z~mq + q m-z~, —z-nq + q n-z~ 
dq0 dq0     dq0 dq0J 

Similarly for columns two through three 

3y (da - —1 dq dq ~ --1 dq 
—£- = —z—mq + q m—z-,—z—nq + q n—zr 
dqi      [dqt dq}   dqi dqX/ 

(B.6) 

(B.7) 

3y (dq - —1 dq dq - —1 dq 
—r-= —z-mq + q m—z-,—z—nq + q n—z~ 
dq2      {dq2 dq2  dq2 dq2 

(B.8) 

9y (dq - —1 dq dq - —l dq 
—z- - —z—mq + q m—z-,—z—nq + q n—z~ 
dq-i      [dq3 dq3   dq3 dq3 

(B.9) 

Also from the product rule of differential calculus 

3-1        dq   -l       dq 

dq-,(qq    )=W?     +qH    =0 

-1 

Solving for -J-  produces 

-i 
dq ' -\dq   -i 

35;  = ~q 3? 

(B.10) 

(B.ll) 

This result can be substituted into Eq. (B.6) through Eq. (B.9) to produce the general form 

dqj 

ldq   -A   -     --1    dq    (    -\dq   -\\  -     —1   dq 

V ,i2   ( 
Va,' r -4   vrrq    \mq + q   m-r,   \-q   -=r-q    \nq + q   n— 
dql I *   a* dq 

(B.12) 

To complete this derivation of X, the partial derivatives of y(q) with respect to a q of any 

length are written 

dq 
da0 

= (1 0 0 0) = 1 

£2. = (0 l 0 0) = i 

^«(ooio)-y 

is 
dq3 

= (0001)=* 

(B.13) 

(B.14) 

(B.15) 

(B.16) 
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When using a q of any arbitrary length, an X matrix derived using the above method will 

not be of full rank and the resulting regression matrix will be singular and non-invertible. 

This is due to the result given by Eq. (B.2). Constraining q to be of unit length will 

eliminate this problem. 

The following partial derivatives of the inverse of q are derived by assuming q is a 

unit quaternion so that q~l = q. Under this assumption 

^ = (i o o 0) = l (B.17) 

a/ = (0-ioo) = -« (B.18) 

^ = (oo-i 0) = -; (B.19) 
dq2 

^ = (00 o-i) = -it (B.20) 
dq3 

Since Eq. (B.17) through Eq. (B.20) are partial derivatives of constrained vectors, Lagrange 

multipliers should be used in their formulation [Ref. 76.]. Evidently, Lagrange multipliers 

were not used in the simple derivations shown here. However, computational experiments 

show that the X matrix so derived is of full rank so that the inverse of the regression matrix 

5 = xTx exists and can be used to correctly obtain q by Gauss-Newton iteration [Ref. 51.]. 

In this dissertation, this 4x4 problem is further reduced by combining Eq. (B.17) through 

Eq. (B.20) with the orthogonal quaternion theorem to achieve a still simpler 3x3 matrix 

inversion Gauss-Newton method. 
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APPENDIX C. VIDEO DEMONSTRATION 

This section briefly describes the contents of each portion the video appendix. 

1. Sensor Calibration 

This portion demonstrates the sensor calibration algorithm. The calibration process 

is described as each step is completed. For comparison purposes, tracking performance is 

shown both before and after calibration. 

2. Body Model Calibration 

This portion demonstrates the body model calibration algorithm. The reference 

position is described and visually displayed. The effect of the calibration algorithm on the 

displayed posture can be seen. 

3. Posture Tracking 

This portion demonstrates the dynamic performance of the prototype inertial/ 

magnetic body tracking system. The tracking of various limb segments is shown. 

Adjustment of the model dimensions is performed to allow display of closed loop postures. 

Various filter gains are used through out this video segment. 

4. Magnetic/Gravity Tracking 

Dynamic performance of the system without the use of rate sensor data is shown. 

5. Reduced Drift Correction 

The dynamic performance of the system when performing drift correction at a rate 

of approximately 6 Hz is shown. Overall performance is observed to vary little from that 

seen in the Posture Tracking segment of the video demonstration. 

6. InterSense InertiaCube 
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Video demonstration of the inability of the filtering algorithms associated with the 

InterSense InertiaCube to continuously correct for drift. This performance is contrasted 

visually against the MARG sensor and the quaternion filter algorithm. 
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