
AFRL-IF-RS-TR-2000-161
Final Technical Report
December 2000

DYNAMIC CRYPTOGRAPHIC CONTEXT
MANAGEMENT (DCCM)

Trusted Information Systems

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F314

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

20010220 053

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-161 has been reviewed and is approved for publication.

APPROVED:^, .

MELVIN J. OSTER
Project Engineer

FOR THE DIRECTOR:

WARREN H. DEBANY, Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGA, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

DYNAMIC CRYPTOGRAPHIC CONTEXT MANAGEMENT (DCCM)

David M. Balenson, Peter Dismore,
Michael Heyman, Peter S. Kruus,

Caroline Scace, and Alan T. Sherman

Contractor: Trusted Information Systems
Contract Number: F30602-97-C-0277
Effective Date of Contract: 07 August 1997
Contract Expiration Date:
Short Title of Work:

Period of Work Covered:

Principal Investigator:
Phone:

AFRL Project Engineer:
Phone:

30 March 1999
Dynamic Cryptographic Context
Management (DCCM)
Aug 97 - Mar 99

Peter Dismore
(443) 259-2300
Melvin J. Oster
(315)330-1870

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Melvin J. Oster, AFRL/IFGA, 525 Brooks Road, Rome, NY.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden lor this collection ol informition is estimated to overage 1 hour per response, including the time lor reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection it mlormation. Send comments regarding this burden estimate or any other aspect of this collection ot inlormation. including suggestions lor reducing this burden, to Washington Headquarters Services, Directorate lor Information
Operations and Reports, 1215 JelfBrson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project 107040188), Washington, DC 20503.

1. AGENCY USE ONLY Heave blank) 2. REPORT DATE

DECEMBER 2000

3. REPORT TYPE AND DATES COVERED

Final Aug97-Mar99
4. TITLE AND SUBTITLE

DYNAMIC CRYPTOGRAPHIC CONTEXT MANAGEMENT (DCCM)

6. AUTHOR(S)

David M. Balenson, Peter Dismore, Michael Heyman, Peter S. Kruus,
Caroline Scace, and Alan T. Sherman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Trusted Information Systems
NAI Labs, Network Associates Inc.
3060 Washington Road
Glenwood MD 21738

S. FUNDING NUMBERS

C - F30602-97-C-0277
PE- 62301E
PR- F314
TA- 74
WU-21

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES)

Defense Advanced Research Projects Agency Air Force Research Laboratory/IFGA
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22201-1714 Rome NY 13441-4505

10. SPONSORINGIMONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2000-161

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Melvin J. Oster/IFGA/(315) 330-1870

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The Dynamic Cryptographic Context Management (DCCM) project efficiently provides security for very large, dynamically
changing groups of participants. The DCCM system has two novel distinguishing characteristics. First, policy plays a key
role in DCCM. Groups at all levels have policies. These policies are represented, they are negotiated, and a cryptographic
context - an unambiguous set of mechanisms and configuration - is created to make particular interactions possible subject to
these policies. Second, DCCM implements a scalable key management system based on One-way Function Trees (OFT) that
can handle group sizes up to 100,000 members and can dynamically handle members entering and leaving groups.

This report culminates the research of the project by presenting the integrated architecture that has been developed and
implemented to demonstrate the fulfillment of our research goals. Experimentation results with the system are also presented.

14. SUBJECT TERMS

Access control, Authentication, Authorization, Confidentiality, Cryptographic Context, Security
policy, Cryptrography, Integrity, Group-key management, Large group management.Multicast,
Multi-Party Security, One-Way Function Trees, Peer-Peer Security Protocols, Group Keys
17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

28
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSIS«. 238.18
Designed using Perform Pre, WHS/DIOR, Oct 94

Contents

Contents
Figures !
Tables l

1. Introduction
2. Secure groups

2.1. Group organization *
2.2. Group lifecycle
2.3. Group operations

3. Policy
4. Policy negotiation
5. Key management

5.1. Variations of the Fiat-Naor conference key pre-distribution scheme 6

5.2. One-way function trees (OFT) °
5.2.1. OFT structure °
5.2.2. OFT operations '
5.2.3. OFT properties °

5.3. Key management summary '
6. Implementation architecture

6.1. Constraints •
6.2. High-level architecture j
6.3. Demonstration system

7. Demonstration System Results J*
8. Conclusions
9. Acknowledgments
10. References

Figures

Figure 1: Example cryptographic context negotiation template *
Figure 2: Cryptographic context negotiation ~
Figure 3: A one-way function tree •'
Figure 4: DCCM high-level architecture l0

Figure 5: Demonstration architecture

Tables

Table 1: Summary of resource usage of adding or deleting a member with OFT.
Table 2: Demonstration System Timings

...8

.12

1. Introduction

The Dynamic Cryptographic Context Management (DCCM) project [2] efficiently provides security for very
large, dynamically changing groups of participants. For example, command and control of tactical military forces
requires several types of protection among a very large group of participants, perhaps from different countries or
from different Armed Forces units, grouped together under one command for some time period or for a specific
exercise. By "large," we mean groups with number of members ranging from 10,000 to 100,000 or more. By
"dynamic," we mean new members may be added to the group at any time and existing members may be evicted
from the group, thereby requiring immediate changes to some of the security provisions. Members need not be
humans; they can be a variety of communicating entities, including sensors, mobile client workstations, server
workstations, or network nodes.

The DCCM system has two novel distinguishing characteristics. First, policy plays a key role in DCCM. Groups
at all levels have policies. These policies are represented; they are negotiated; they are managed; and a
cryptographic context—an unambiguous set of mechanisms and configuration—is created to make particular
interactions possible subject to these policies. Second, DCCM has a scalable key management system that can
handle group sizes up to 100,000 members and can dynamically handle members entering and leaving groups.

This final report presents:
• The DCCM view of a secure group: its organization; lifecycle; and operations;
• Secure group policy and a Cryptographic Context Negotiation Template to represent it;
• Policy negotiation via a Cryptographic Context Negotiation Protocol;
• The One-way Function Tree (OFT) method for large group key management;
• The architecture of a demonstration system incorporating the DCCM concepts; and
• The results and lessons learned from implementing the demonstration system.

2. Secure groups

A secure group is a collection of members who are authorized to access a set of information. Secure group
mechanisms enable the members, and only the members, to access the information. DCCM supports group policies
that require group confidentiality and/or group integrity of the information.

Group confidentiality protects the group information from disclosure to non-group members. In order to provide
confidentiality in a dynamically changing group, security mechanisms must provide forward and backward secrecy.
Forward secrecy means that evicted members cannot access future information. Backward secrecy means that new
members cannot access past information.

Group integrity protects information from modification by non-group members. Members of a secure group can
verify that information has not been modified by anyone outside of the group, and that it originated from an
authorized group member. Group integrity does not allow a member to determine which individual group member
created a message, i.e., individual source authentication.

DCCM does not provide mechanisms to support individual source authentication of information or to maintain
the availability of information.

2.1. Group organization

DCCM recognizes and supports a range of models for the organization of a secure group, from a strict
hierarchical model to a broad flat model. A hierarchical group is based on inherent structure of the members
forming a group. This structure is typically found in groups created for organizational collaboration, such as an
industrial consortium or a military coalition. The security policies and supporting infrastructure for the group also
take advantage of existing structure and relationships between members. For example, there may be multip e
authentication policies and servers for a group, based on the existing policies within the hierarchy or across multiple
hierarchies.

A flat group has no group structure or relationships between group members. It is typically used for individual
collaboration or information distribution, such as web broadcasts or pay-per-view. DCCM allows each member to
have its own security policy, or to subscribe to a known security policy. In a flat model, certain members may
advertise a policy designed to meet certain goals that other members with similar goals can use as well.

The most basic entity in a DCCM secure group is the participant. A participant is a single entity that is involved
in secure group communication. Typically a participant represents a person, but it can represent a sensor, a Personal
Digital Assistant (PDA), or a piece of software. DCCM supports all security services for all participants, and
assumes that all participants have the same group communication capabilities. DCCM fully supports the many-to-
many model of group communications, meaning all participants can both send and receive information. DCCM can
also support the one-to-many model (one sender with many receivers) within its support of the many-to-many
model.

A group of participants sharing a secure group communication mechanism for a specified period of time for a
common purpose is a session. A session implies that all of the participants share the same security mechanisms,
share the same security policy for those mechanisms, and share a common security configuration, including
cryptographic keys, for the enforcement of the policy. For example, a single lecture broadcast from a semester long
class would be a session.

A DCCM/?rq/ecf is a set of sessions occurring over time. All of the sessions within a project will use the same
cryptographic context, or policy, and support the same set of participants. The project is the unit of administration
for access control for DCCM. DCCM administers the list of participants in a project and enforces an access control
policy between project members and non-members. Within a project, any project participant is free to participate in
any session announced for the project. All project members are authorized for all sessions within that project.
Project members may choose not to participate, but that is not a security relevant decision. Multiple sessions can
occur simultaneously within a project, and a participant can join more than one of these sessions.

The highest level of organization of secure groups in DCCM is a system. A system is the supporting
infrastructure for a set of related participants that transcends individual projects. The system maintains a single
authentication database that is used across multiple projects. The DCCM authentication mechanism utilizes a
system base key, or shared secret, that is established when a participant joins the system and authenticates for the
first time, typically with a public key mechanism. DCCM amortizes the high cost of the public key authentication
over the creation of multiple projects.

2.2. Group lifecycle

All groups go through several phases during their life. The first phase of DCCM, even before any groups are
formed, is the induction of participants into a DCCM system. As previously noted, participants authenticate
themselves once to a DCCM system and establish a shared key that is used for all future secure operations.

During the next phase, a DCCM project is created from the set of participants authenticated to the system. One
of the participants takes on the role of project initiator. The project initiator specifies a list of participants and a
proposed security policy for the project. The DCCM system infrastructure uses the proposed policy in negotiation
(see Section 4) with each of the proposed participants to derive a cryptographic context for the project.

Once the cryptographic context and membership are established for a project, the key management mechanism
establishes the group keys and distributes them to all of the participants (see Section 5, Key management).
Participants then use the keys for protecting their group communications. DCCM mechanisms support cryptography
at any level in the network stack. Typically, group cryptography is found at the network, transport, or application
level.

The group is actively managed during its lifetime (see Section 2.3, Group operations). Participants may be added
or removed from the group; keys may expire; and eventually the group is dissolved.

2.3. Group operations

DCCM defines the following group operations for each project:
• Add. Participants can be added to a project. There are three security relevant aspects to adding participants

to an existing project. First, the project initiator applies an access control policy for the project to determine
if the participant can be added. Second, the project policy must specify whether or not new participants are

to have access to communications or information generated before they joined the project. If not, a new
project key has to be generated when a new participant joins the project. Finally, the project policy must
specify how to negotiate the project cryptographic context when new participants are added. Because the
negotiation process ensures that the project context is fully compliant with the policies of all participants, a
new participant may require a change that is mutually exclusive with an existing member. An even more
subtle problem during late additions is that existing members may actually have a different policy depending
on the project membership. A new member may require a fresh negotiation for the project cryptographic

context. . . . ,
• Remove. Participants can be removed from a project. A remove is used when a participant is no longer

participating, but still authorized for a group. There is no change to the group key.
. Evict. When participants are evicted from a project, their authorizations are revoked and the group key is

changed to prevent them from obtaining further access to any project information.
. Freeze Freezing a participant is a special case of removing a participant. When a participant is frozen, they

are not removed from the group keying mechanism, but the system does not send any further key updates to
the participant. This operation is useful for a member who knows they will be unable to receive or protect
key information for a period of time.

• Thaw. Thawing a participant resumes the distribution of key update messages to the participant. A thaw

reverses a freeze. . .
. Resync Resynchronizing a participant resends the latest key update information for that participant only. In

addition, it will thaw a frozen participant. A resync operation is used when a participant unexpectedly stops
receiving key update information or suspects that its keying material is out of date.

In addition to the project level operations, a participant may also be evicted from the system, which results m an
eviction from any projects containing the participant. A participant may choose to join or leave sessions within a
project but those are not security relevant operations. By definition in DCCM, all participants in a project are
authorized for all sessions within that project. That authorization is constant, regardless of a participant s choice to

exercise it.

3. Policy

A security policy is a set of rules specifying how to protect information. Policies can be described by whom they
cover and by what they cover. In DCCM, every organizational entity has a policy. When a participant joins the
DCCM system, they bring with them their security policy for the protection of their information. It may be a policy
specific to them, such as in a flat group model, or the policy may be an organization policy covermg all of the

members of some hierarchy. . . , ..
Policies can cover different security attributes at different levels of abstraction. For example, a high-level policy

would state that confidentiality must be protected; a mid-level policy would state that strong encryption must be
used; and a low-level policy would specify that triple-DES encryption in CBC mode must be used. Policies can ako
specify allowable behavior as a range of options. For example, a policy might state that at least moderate strength
integrity mechanisms must be used.

A policy that contains a range, or set of allowable actions, cannot be enforced by multiple participants with any
expectation of interoperability. Interoperability can only be achieved when it can be guaranteed that all of the
participants will enforce the policy exactly the same. DCCM accomplishes interoperability by distributing a policy
mat is completely unambiguous; there are no ranges or options. A policy that specifies a singular instantiation in
DCCM is referred to as a context, specifically a cryptographic context.

There are several problems, however, in creating a cryptographic context that can be enforced by all participants,
regardless of their initial policy and their security capabilities. The first problem is specifying a common syntax for
representing policy information. There are other policy representations under research, such as SPSL 19J and
GSAKMP [14], but neither of them is designed to express group policy including multiple levels of abstraction.

The second problem is specifying common semantics for the interpretation of a policy. Many common security
terms and descriptions can be implemented or interpreted in different ways. This situation holds at both high levels
and low levels of abstraction. For example, what is strong encryption? Does it imply specific algorithms, specific

key lengths, specific protocols, or all of them? Is 64 bits of key length strong, or is 128? At low levels of
abstraction, does 3DES mean CBC mode and three key EDE?

Without common semantics there is no way to support a common mapping or translation between policy
abstractions and implementing mechanisms across the various participants in a project. DCCM addresses this
problem with a Cryptographic Context Negotiation Template (CCNT) [3].

The CCNT is the common thread for policy representation, distribution, and negotiation in DCCM. It captures
policy information at a low level of abstraction to ensure common semantics and interoperability between
participants. Mapping from high level constructs to a CCNT can be performed locally; outward representation of
policy is made only at the level of the CCNT.

The CCNT represents policy as an «-dimensional space. Each axis in the space represents a different aspect of
the policy. Each value along an axis is a specific mechanism or configuration for that attribute. For example,
confidentiality is the vertical axis in Figure 1, and it has the possible values of 3DES, CAST, IDEA, and RC4.
DCCM contexts, which are unambiguous sets of mechanisms, are single points in the «-dimensional space.
Contexts can be proscribed by only a single value on any axis. DCCM policies, which are ranges or sets of
allowable mechanisms, are sets of points in this space. Policies are proscribed by ranges of values or separate
discrete values on multiple axes. Note that a policy is not required to have an intersection with every axis in the
space. Policies can have a "don't care" with respect to that attribute.

Context examples:

(4,4,3)-OFT keyed 3DES
implemented in IPsec

(1,2,5) - password based idea
keys in Speakfreely

* * * > key management
O !Z o
5i?l =* X -i

Figure 1: Example cryptographic context negotiation template

The CCNT is designed to represent a broad view of group security policy. Possible axes include:
Data confidentiality;
Key management;
Implementation mechanism;
Temporal secrecy (forward secrecy, backward secrecy);
Key lifetime;
Key recovery;
Group authentication;
Layer for group security;
Source authentication;
Integrity;
Required data throughput;
Eviction; and
Error handling.

The axes are not built into DCCM, but are specified in a context file. Axes can be easily added to the policy space
by changing the context file; no other changes are required to the system.

4. Policy negotiation

A project context is created through a negotiation protocol during project creation in the DCCM system. The
Cryptographic Context Negotiation Protocol (CCNP) [4] creates a folly specified cryptographic context for the
project that fulfills the individual policies of the group participants. Viewed graphically in Figure 2, cryptographic
context negotiation finds the intersection between the allowable policies of the project participants.

Project Initiator's
Organization or
Local Policy
Constraints

Figure 2: Cryptographic context negotiation

The process starts with the project initiator. The project initiator proposes a policy (area 2) for the project.
Whatever is proposed is constrained by the initiator's own local policy (area 1). Each participant finds the
intersection (area 4) between the proposed policy and their own local policy (area 3) and chooses a response (area 5)
from the intersection. The initiator chooses the final project context from the intersection of the responses.

Careful selection of the proposal by the project initiator can effect different negotiation strategies. If the initiator
creates a proposal that is actually a context, i.e., there is only one choice for each axis, then negotiation becomes a
directive action. The proposal is the policy (context) for the project; accept it as it is or do not join the project. A
broad range of policy values (up to the full set of their local policy) proposed by the initiator increases the likelihood
of an intersection occurring between a wide range of participants. The smaller the set in the proposal, the higher the
chances that some participants will be unable to comply with or enforce the project's policy, and will, therefore, be
unable to join the project.

5. Key management

The DCCM project requires a scalable method for establishing session keys for large dynamic groups. The
method has to support efficient establishment of a shared secret key, as well as changing this key when group
members are added or evicted. The following types of methods were considered:
. Simple linear methods, such as a Simple Key Distribution Center (SKDC), scale poorly to large groups, but are

easy and straightforward to implement and employ with small-to-moderate size groups.
• Information-theoretic methods, such as Blundo's Symmetric Polynomials (BSP) [7] and Chiou-Chen's Secure

Lock (CSL) [10], require large amounts of space per user and scale exponentially with the number of members
in a group.

• Multi-party methods based on Diffie-Hellman key agreement, such as the Group Diffie-Hellman (GDH) method
developed under the DARPA-sponsored Cliques project [1], and Burmester-Desmedt methods [8], require slow
public-key operations and typically scale linearly with the size of a group. These methods seem better suited
for small-to-moderate size groups of 10's or 100's of members. The GDH algorithm is especially attractive

when distributed or decentralized control is needed. The Burmester-Desmedt method has the unique quality of
constant delay (relative to group size) during initial key establishment.

• Distributed, fault-tolerant systems developed by Reiter et ah [17], and related dynamic virtual private network
(DVPNs) developed by Rodeh et ah [18] include group key distribution techniques that are better suited for
small-to-moderate size groups, but incorporate highly desirable fault-tolerant characteristics.

• Hierarchical, tree-based methods include Wallner et a/.'s Logical Key Hierarchy (LKH) [13][19]. These
methods represent group members as the leaves, and the group key as the root of a logical tree, and update keys
via encrypting node keys down the tree. Time, space, and broadcast complexity all grow logarithmically
relative to the size of a group, and hence these algorithms scale best to very large groups.

For further discussion of related work and additional references, see [2] and [6].

5.1. Variations of the Fiat-Naor conference key pre-distribution scheme

The Fiat-Naor conference key pre-distribution scheme is a hybrid computational and information-theoretic group
keying method that allows any subset of n users to compute a conference key without any interaction [12]. A non-
interactive scheme might be useful in group communications applications when transmission delay is large, the
number of parties is the conference is very large, or one party broadcasts messages to a set of receivers who may not
be able to transmit. The Fiat-Naor scheme is unconditionally secure against a conspiracy of at most w users pooling
their secrets together and the size of the secret key is optimal. However, to compute a conference key a user may
need to add exponentially many secrets, making the scheme impractical.

Under the DCCM project, Dr. Yvo Desmedt developed several variants to the Fiat-Naor conference key pre-
distribution scheme in which there is often no need for any computation to derive the conference key [11]. These
keys are truly pre-distributed and the variants do not require more memory nor more randomness that the original
Fiat-Naor scheme.

5.2. One-way function trees (OFT)

The hierarchical methods are best suited for the DCCM project. While exploring the use of LKH, the DCCM
project developed a new hierarchical method for large dynamic group keying based on the novel application of One-
way Function Trees (OFTs) [5][6] [16]. The OFT method, like LKH, represents group members as the leaves and
the group key as the root of a logical tree. However, rather than "pushing" the group key down the tree, the OFT
method "pulls" the group key up the tree, using one-way functions.

5.2.1. OFT structure.
As shown in Figure 3, an OFT is a binary tree, each node x of which is associated with two cryptographic keys:

a node key kx and a blinded node key k'x = g (kj. The blinded node key is computed from the node key using a one-
way function g; it is blinded in the sense that a computationally limited adversary cannot find kx from k'x.

A group manager maintains a one-way function tree. Each leaf is associated with a member of the group. The
manager uses a symmetric encryption function E to communicate securely with subsets of group members, using
unblinded keys as encryption keys as explained below.

A randomly-chosen key is assigned to each member. This key is shared with the manager (via an external secure
channel), and the key is assigned as the node key of the member's leaf. A variety of choices are possible governing
who chooses the keys. In particular, the key could be chosen by the manager, member, or a combination thereof
(see Section 5.2.3).

Each internal node/? of the tree has exactly two children. The interior node keys are defined by the rule:

kp^ffgPcJ.gfiJ), (1)

where x and y denote the left and right child of the node p, respectively. The function g is one-way, and can be
based on a cryptographic hash function such as MD5 or SHA-1. The function/does not need to be one-way; it
needs to mix its inputs—the bitwise exclusive-or function XOR is a fast, simple, and effective choice. The node key
associated with the root of the tree is the group key, which the group can use to communicate with privacy among
group members and/or authentication of group membership.

group
manager

group key

logical
entities

group
members

kx kY

Figure 3: A one-way function tree

The security of the system depends on the fact that each member's knowledge about the current state of the key
tree is limited by the following invariant:

OFT security invariant - each member knows the unblinded node keys on the path from its node to the root, and
the blinded node keys that are siblings to its path to the root, and no other blinded or unblinded keys.

This invariant is maintained by all operations that add members to the group, and by all operations that delete
members from the group.

McGrew and Sherman [16] discuss the properties of/and g in detail and give some preliminary observations
regarding the security of OFT. A rigorous proof of the necessary and sufficient properties of/and g needed to
satisfy formal security requirements for OFT remains an open problem.

5.2.2. OFT operations.
The operations of adding and evicting members rely on the communication of new blinded key values, from the

manager to all members, after the node key associated with a leaf has changed. To maintain security, each blinded
node key must be communicated only to the appropriate subset of members. If the blinded key k'x changes, then its
new value must be communicated to all of the members who store it. These members are associated with the
descendants of the sibling of x, and they know the unblinded node key ky, where y is the sibling of x. To provide the
new value of the blinded key to the appropriate set of members, and keeping it from other members, the manager
encrypts it', with ky before broadcasting it to the group. (Here and throughout, we shall use the verb "broadcast" in
the sense of "group broadcast"—sending a message from the group manager to all members of the group.)

Adding a member—when a new member joins the group, an existing leaf node x is split, creating new nodes
left(x) and right(x). The member associated with x becomes associated with left(x), and the new member is
associated with right(x). Both members are given new keys. The old member receives a new key because its former
sibling knows the old blinded node key and could use this information in collusion with another group member to
find an unblinded key that is not on his path to the root. The new values of the blinded node keys that have changed
are broadcast securely to the appropriate subgroups, as described in the previous paragraph. The number of blinded
keys that must be broadcast to the group is equal to the distance from x to the root plus two. In addition, the new

member is given its set of blinded node keys. In order to keep the height h of the tree as low as possible, when a
new member is added, the leaf closest to the root is split.

Evicting a member—when the member associated with a leaf x is evicted from the group, the member assigned to
the sibling of* is reassigned to the parent/? of x and given a new leaf key value. If the siblings of x is the root of a
subtree, then p becomes y, moving the subtree closer to the root. In this case, one of the leaves of this subtree is
given a new key (so that the evictee no longer knows the blinded key associated with the root of the subtree). The
new values of the blinded node keys that have changed are broadcast securely to the appropriate subgroups,
allowing all members to construct the new group key. The number of keys that must be broadcast is equal to the

distance from x to the root. ■ • ■ ,
Initialization—group initialization is the process through which the group establishes an initial group

communications key. For the OFT method, this process involves two steps. First, the group manager broadcasts
some information to the group members needed to apply the OFT key-updating procedures. Second, the members
compute a shared group communications key, which is needed to begin secure group communications.

Group initialization is separate from group induction. During group induction, each member establishes an
individual group base key known only by the member and the group manager. Group initialization assumes that
each member has already established an individual group base key.

In the first step of OFT group initialization, the manager broadcasts every blinded node key in the OFT to all
group members. In this broadcast, each blinded node key is encrypted by the unblinded key of the sibling node, so
that only members in the sibling subtree can learn the blinded node key. All members receive the entire broadcast,
which consists of a sequence of encrypted blinded node keys.

5.2.3. OFT properties. . „„
This section comments briefly on the security, resource usage, and salient characteristic features of the Uf 1

method.
The security properties of OFT stem from the system invariant stated above, from the strength of the component

one-way function, and from the random selection of leaf keys. In short, evicted members cannot read future
messages, even with collusion by arbitrarily many evicted members, and newly admitted group members cannot

read previous messages.,• A A
Evicted members have some information about the key tree but not enough to directly compute any unblinded

node key After a member is evicted, the keys along the path from the member's node to the root change. After this
change, the evictee knows only the blinded keys of the siblings of the nodes along the path from the evictee to the
root These blinded nodes are insufficient to directly compute any unblinded key.

Interestingly, OFT is a centralized, member-contributory method. OFT is centralized in the sense that the group
manager plays a special trusted role. OFT is member contributory in the sense that each leaf can contribute entropy
to the group communication key.

With the OFT method, the number of keys stored by group members, the number of keys broadcast to the group
when new members are added or evicted, and the computational efforts of group members, are logarithmic in the
number of group members. The hierarchical nature of OFT distributes the computational costs of re-keying among
the entire group, so that the manager's computational burden is comparable to that of a group member. Table 1
below summarizes the salient resource usage of adding or deleting a member with OFT in terms of time, memory,
number of bits broadcast, and number of random bits needed. In the table, n is the group size, K is the size of a key
in bits and h is the height of the OFT (h = lg n when the tree is balanced). Either the member or the manager could
generate the random bits needed at the leaves. See [6] and [16] for more details, including comparisons with other
key establishment methods such as SKDC and LKH.

Resource
Measure

Group Member
Cost

Group
Manager Cost

Time h h

Memory hK 2nK
Bits broadcast 0 hK + h

Random bits
generated

0 K

Table 1: Summary of resource usage of adding or deleting a member with OFT

5.3. Key management summary

OFT was chosen as the group keying method for the DCCM project. While the simple SKDC, Group Diffie-
Hellman, and other group keying methods may often be appealing for moderate size groups, many applications will
likely demand a method that scales logarithmically in total delay and member memory usage. For such applications,
especially if the add-member is more frequent than the evict-member operation, the OFT and other hierarchical
methods look attractive for their constant-time add-member. LKH and OFT are similar methods, with LKH offering
relatively simpler security semantics, and with OFT requiring fewer bits to transmit for re-keying. If it is critical for
the application to minimize the number of bits broadcast, the number of random bits generated, or if a member-
contributory method is needed, then OFT may be the method of choice.

6. Implementation architecture

The DCCM concepts described in this paper, in particular OFT, the CCNT, and the CCNP, have been instantiated
in a set of Java toolkits for use in producing demonstrations of providing security for very large groups. Two
toolkits were produced, a group key toolkit implementing the OFT algorithm, and a DCCM toolkit implementing the
DCCM group policy management [15].

6.1. Constraints

The design of the DCCM toolkit assumed several constraints. These constraints are a result of the existing
structure on the Internet and the state of the current deployment of multicast technologies. The constraints are:

• No individual participant addressing. The design must function without the ability to address a participant
individually on the network. Participants may have unique identities, but they may not be network
addressable due to private addressing schemes hidden behind a firewall or network address translation box.
A participant can address a known server individually and set up a connection, but the participant must
initiate the connection.

• Firewalls will block unknown ports. DCCM must not use unknown or nonstandard ports for its
communications. If unknown ports are used and participants are protected by a firewall, then the
communications will be dropped until specialized configuration of the firewall can be performed.

• Multicast communication is unreliable. Multicast does not provide a connection paradigm. DCCM cannot
assume that messages arrive at any point in the DCCM system. DCCM cannot assume that messages arrive
in order.

• Multicast communication is subject to fragmentation. Fragments may arrive out of order or not at all. For
simplicity, the DCCM design assumes that a message cannot be larger than the standard ethernet MTU of
1500 bytes.

6.2. High-level architecture

The functionality of DCCM is provided through several key software components that can be placed in different
parts of an overall system depending on the application and its use of group security mechanisms. As shown in
Figure 4, there is a single system component that services multiple instances of the other components.

The System component provides the long-term state of a DCCM system. It maintains the internal DCCM
participant list, role information, and authentication shared secret. It enforces project contexts through its
implementation of the key management mechanism for a project. The System component also supports the creation
and maintenance of individual projects by storing the project membership list and mediating the project context
negotiation process.

The Participant component provides the long-term state for an individual participant. It manages the
participant's registration in a DCCM system, the shared secret, a list of projects for the participant, and the group
keys for the projects that include the participant. The participant enforces the cryptographic context, specified in the
CCNT, for each project in which it participates.

A participant is represented during policy negotiation by a Negotiation component. An instantiation of the
negotiation component represents a single policy during project formation. All of the participants with the same

policy are represented by the same negotiation component. This procedure limits the number of negotiators
involved in a negotiation. Depending on the organization of the members joining a project, the negotiator may be
used to represent different policies. In a hierarchical organization, the negotiation component will represent the
organization's policy, and a participant will not have a choice of negotiators. In a flat organization with autonomous
participants, the negotiators will represent various public policies that participants will select from. If none ot the
policies offered is acceptable, a participant can be its own negotiator.

A participant joins a DCCM system through a System Registration component. There can be multiple
registration components, each understanding a specific authentication and enrollment policy. In a DCCM system
comprised of previously unrelated organizations, the organization's existing authentication infrastructure can be
used by a registration component for each organization. The registration component can also enforce enrollment
policy For example, it can limit the negotiation components used by participants, thus specifying the allowable
policies. The registrar can also limit the roles allowed for a participant. Finally, a registrar can remove or evict a
participant from the system, and force their removal from all projects as well.

I

r^ . I
r1

System
Regislrafio i

1:M

i
Participant

-1 1:M

I
Negotiator

oou J
D -I OU -T

System

O Policy Mgmt
□ GroupMgrrt
O Group Keying
Ü Multicast Traffic
A Session Mgmt OD

Figure 4: DCCM high-level architecture

The Project Initiator component supports the entity that creates a project, typically one of the participants^ I
allows the creation of the initial policy proposal, specified in a CCNT; manages the negotiation protocol (CCNP)
with the mediator in the system component and the negotiators; and manages the project membership list with the
system component. Once the project is created, the project initiator will have the authority to perform group

°P%he Session Initiator supports the creation of sessions within a project. The session initiator is the interface
between the DCCM keying mechanism and whatever security mechanism is used for the session The session
Stor will communicate the group session key to the mechanism at session estabhshment, and will then send key
updates as they occur. There can be multiple sessions within a project.

6.3. Demonstration system

An important part of vetting the concepts from the DCCM research was creating a working demonstration
system. A demonstration system has been implemented and tested for DCCM utilizing the architecture: descnbed
above. The demonstration system was implemented to support a generic group key management interface, and the

10

OFT mechanism was implemented to this interface. The demonstration system provides one example of how to
utilize the DCCM components in a simple system architecture. As shown in Figure 5, the demonstration system
architecture, the components are organized into a single client image and a server. For the simplicity, the
demonstration includes a single registrar in the server. All of the roles for a participant are included in the client.

The DCCM client software is designed to perform key management for a multi-party application. For the
demonstration system, DCCM will invoke an application specific class specified in the Session Description Protocol
(SDP) for the project. This application specific class will be invoked with the current group key whenever there is a
keying event. The class will then set the key for the application in whatever manner is appropriate for that
application: writing a file, invoking a command, or possibly using inter-process communication. For example, the
spi command can be invoked in the Linux FreeSwan IPsec implementation to establish or change a key for a
security association.

Key:
* OrgarizarJonReblionsripi

\\ Ftolicy Storage andManagemert

Figure 5: Demonstration architecture

7. Demonstration System Results

Using the demonstration system described above, key performance characteristics were measured for different
size groups to test the hypothesis that DCCM implementing the OFT key management scheme scales to 100,000
members and provides efficient group keying for dynamically changing groups. The results were measured using a
single server machine running on a Pentium II 400 MHz platform with 128MB memory. The participants were
"dummy" participants that were pre-loaded into the server database. None of the participants existed on the
network. This was possible because the OFT operations measured were all carried out with multicast
communications. As long as the participant was in the server database, the messages produced were identical
whether the participant was physically connected to the network or not.

The results in Table 2 below show that indeed, the DCCM architecture can handle up to 100,000 members.
While the initial keying time for 100,000 members grew substantially over the 50,000 member test, that was due to
memory exhaustion and paging on the server machine. The demonstration is written in the Java language for
portability. Unfortunately, Java does not provide access to its memory management or the underlying
implementation footprint of its objects. Further optimization of the use of the Java language, or additional memory
on the server machine will reduce the initial keying time for huge groups.

11

DCCM effectively handles the dynamic nature of large groups by providing efficient re-keying of the group.
Even with 100,000 members, DCCM with OFT was able to re-key the group in 1 second with only ~1K bytes of
network traffic.

Number of
Participants

Initial OFT
Keying Time

Rekey Time for
Single Member

Eviction

Initial Keying
Payload Size

(bytes)

Rekey Payload
Size (bytes)

100 10 seconds < 1 second 8,171 761

1,000 41 seconds < 1 second 77,681 849

10,000
1 minute, 49

seconds
< 1 second 774,298 985

50,000
10 minutes, 31

seconds
< 1 second 3,867,546 1049

100,000
10 hours, 9
minutes, 14

seconds
1 second 7,734,462 1105

Table 2: Demonstration System Timings

8. Conclusions

Providing policy-based security for large dynamic groups is a challenging problem. It is also a challenge to
envision maintaining the security of a group with 100,000 members. There are applications where a secure group of
that size is meaningful, and DCCM provides solutions to several important aspects of the problem. DCCM
introduces the concept of a group cryptographic context that enforces secure interoperability among group members.
A Cryptographic Context Negotiation Template is used to represent, distribute, and negotiate group security
policies A Cryptographic Context Negotiation Protocol is used to create a group cryptographic context for a
project A new keying algorithm, One-way Function Trees, is used to provide group confidentiality and group
authentication keys. During project operation, the One-way Function Tree key mechanism achieves very efficient
re-key operations. Its overall cost in terms of time and memory grows logarithmically with the size of the group.

Future work should expand both the policy and key management dimensions of DCCM, as well as explore new
applications for DCCM. Future policy work should focus on representing policy at higher levels of abstraction,
formalizing the languages used for policy representation, negotiating group policy at higher levels, and projecting
abstract policy onto concrete mechanisms. Policies need to be expanded to represent applications where local
autonomy of some mechanisms is desired or necessary; interoperability of security mechanisms may be necessary at
the communication level, but not at higher levels.

Future group key management work should provide additional security mechanisms for group security, such as
individual source authentication. There is also significant opportunity to enhance group key management techniques
to efficiently handle surges in membership and large changes in membership.

Applications other than multi-party applications may also benefit from DCCM concepts and the One-way
Function tree key algorithm. For example, a large set of two-party applications, where the applications run in
parallel and do not need to be protected from each other, may use DCCM to provide ease of administration
scalability, and rapid revocation in place of individually managing the security associations. An example of parallel
two-party applications is a collection of Virtual Private Network connections that together form a coalition.
Traditionally each connection is administered and keyed separately, but they could have the same key and be
administered from a central location.

9. Acknowledgments

The DCCM project was performed at NAI Labs, The Security Research Division of Network Associates Inc.
(formerly the Advanced Research and Engineering (AR&E) Division of Trusted Information Systems, Inc. (TIS)).

12

Support for the DCCM project was provided by the Defense Advanced Research Projects Agency (DARPA)
through Air Force Research Laboratory (AFRL) Contract No. F30602-97-C-0277.

The DCCM system was originally conceived and proposed by Dennis Branstad. During the life of the project the
team included David Balenson, Dennis Branstad, Peter Dinsmore, Michael Ferguson, Michael Heyman, Peter
Kruus, David McGrew, Matthew Mundy, Caroline Scace, Alan Sherman, and Jay Turner. This paper is based on
the work of this talented team, and portions have been excerpted from project reports and briefings. The OFT
method for large group key management was developed by David McGrew and Alan Sherman, with contributions
from Michael Harding. The demonstration implementation was performed by Michael Ferguson, Michael Heyman,
Peter Kruus, Matthew Mundy, and Caroline Scace.

10. References

[I] Ateniese, G., M. Steiner, and G. Tsudik, "Authenticated group key agreement and related protocols," Proceedings ACM
Conference on Computer and Communications Security, 1998.

[2] Balenson, D., D. K. Branstad, D. A. McGrew, and A. Sherman, Dynamic Cryptographic Context Management (DCCM)
Report 1: Architecture and System Design, TISR #0709, TIS Labs at Network Associates, Inc. (June 2,1998).

[3] Balenson, D., D. K. Branstad, D. A. McGrew, J. W. Turner, and M. Heyman, Dynamic Cryptographic Context Management
(DCCM) Report 2, version 2: Cryptographic Context Negotiation Template, TISR #0745-2, TIS Labs at Network Associates, Inc.
(February 24, 1999).

[4] Balenson, D., D. K. Branstad, P. Dinsmore, M, Heyman, and C. Scace, Dynamic Cryptographic Context Management
(DCCM) Report 3: Cryptographic Context Negotiation Protocol, TISR #0757, TIS Labs at Network Associates, Inc. (February
24,1999).

[5] Balenson, D., McGrew, D, and A. Sherman, "Key management for large dynamic groups: one-way function trees and
amortized initialization," NAI Labs, Advanced Security Research Journal, vlnl (Fall 1998), pp 29-46.

[6] Balenson, D., D. McGrew, and A. Sherman, "Key management for large dynamic groups: one-way function trees and
amortized initialization," Internet Draft (work in progress), draft-balenson-smug-groupkeymgt-oft-02.txt, October 1999.

[7] Blundo, C, A. de Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung," Advances in Cryptology: Proceedings of
Crypto92, E. F. Brickell, ed., LNCS 740, Springer-Verlag (1992), 471^186.

[8] Burmester, M. and Y. Desmedt, "A secure and efficient conference key distribution system," Advances in Cryptology:
Proceedings ofEurocrypt94, A. De Santis, ed., LNCS 950, Springer-Verlag (1994), 275-286.

[9] Condell, M., C. Lynn, and J. Zao, "Security Policy Specification Language," Internet Draft (work in progress), draft-ietf-
ipsec-spsl-00.txt, October 21, 1998.

[10] Chiou, G. and W. Chen, "Secure broadcasting using the secure lock," IEEE Transactions on Software Engineering, 15:8
(August 1989), 929-934.

[II] Desmedt, Y., "Efficient Variants of the Fiat-Naor Key Predistribution Scheme," December 1999.

[12] Fiat, A. and M. Naor, "Broadcast encryption," Advances in Cryptology: Proceedings of Crypto '93, D.R. Stinson, ed.,
Springer-Verlag (1994), 480-491.

[13] Harney H. and E. Harder, "Logical key hierarchy protocol," Internet Draft (work in progress), draft-harney-sparta-lkhp-sec-
00.txt, March 1999.

[14] Harney, H. and E. Harder, "Group Secure Association Key Management Protocol," Internet Draft (work in progress), draft-
harney-sparta-gsakmp-sec-00.txt, April, 1999.

[15] http://www.nai.com/nai labs/asp set/crypto/crvpt dccm.asp, DCCM website.

[16] McGrew, D., and A. Sherman, "Key establishment in large dynamic groups using one-way function trees," TIS Report No.
0755, TIS Labs at Network Associates, Inc., Glenwood, MD (May 1998).

[17] Reiter, M., K. Birman, and R. van Renesse, "A security architecture for fault-tolerant systems," TR 93-1354, Cornell
University (June 3,1993).

[18] Rodeh, O., K. Birman, and M. Hayden, "Dynamic virtual private networks," TR 97-1654, Cornell University (1997).

13

[19] Wallner, D., E. Harder, and R. Agee, "Key management for multicast: Issues and architectures," Internet Draft (work in
progress), draft-wallner-key-arch-01.txt, September 15,1998.

14

DISTRIBUTION LIST

addresses number
of copies

AFRL/IFGA 2
ATTN: MELVIN GSTER
525 8RÖ0&S ROAD
ROME, NEW YORK 13441-4505

TRUSTED INFORMATION SYSTEMS 2
NAI LASS*'NETWORK ASSOCIATES
3060 WASHINGTON ROAD
GLENHOODs-HD 21738

AFRL/IFÖIL 1
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROME NY 13441-4514

ATTENTION: DTIC-OCC 1
DEFENSE TECHNICAL INFO CENTER
8725 JOHN J. KTNGMAN ROAD, STE 0944
FT- BELVOZR* VA 22Ö6Q-621S

DEFENSE ADVANCED RESEARCH 1
PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINSTON VA 22203-1714

ATTN: NAN PFRINNER 1
IIT RESEARCH INSTITUTE
201-HILL ST.
RONE, NY 13440

AFIT ACADEMIC LIBRARY 1
AFIT/LDR* 2950 P.STREET
AREA 8* BLDG 642
WRIGHT-PATTERSON AF3 OH 45433-7765

AFRL/NLNE 1
2977 P STREET*' STE 6
WRI6HT-PATTEKS0N AF8 OH 45433-7739

DL-1

AfRL/HESC-TDC
2698 a STREET^ 3LÖG 190
WRI6HT-PATTERSON AFS 0U 4 5 433-760 4

ATTN: SHDC IM PL
US ARHY 5PACE & FISSILE DEF CHD
P.O. SOX 1500
HUNTSVILLE AL 35807-3801

TECHNICAL LIBRARY D0274<PL-TS)
5PAWARSYSCEM
53560 HULL ST.
SAN DIEGO CA 92152-5001

CDRs-US ARNY AVIATION & NISSILE CHD
REDSTONE SCIENTIFIC INFORMATION CTR
ATTN: AHSAW-RD-08-R^ (DOCUMENTS)
REDSTONE ARSENAL AL 35898-5000

REPORT LIBRARY
MS P364
LOS ALAMOS NATIONAL LABORATORY
LOS ALANOS NM 87545

ATTN: D1BORAH HART
AVIATION BRANCH SVC 122.10
F0810A, RH 931
800 INDEPENDENCE AVE, SW
WASHINGTON.DC 20591

AFIWC/flSY
102 HALL 8LVD,
SAN ANTONIO TX

STE 315
78243-7016

ATTN: KAROLA R. YOURISON
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE
PITTSBURGH PA 15213

USAF/AIR FORCE RESEARCH
AFRL/VS0SA<LI8RARY-SLDG
5 WRIGHT DRIVE
HANSCOM AFB HA 01731-3004

LABORATORY
11 03)

DL-2

ATTN: EILEEN LADUKE/0460
MITRE CORPORATION
202 BURLINGTON RO
BEDFORD PiA 01730

OUSD(P)/DTSA/DUTD
ATTN: PATRICK S. SULLIVAN, JR.
400 knm »Avy DRIVE
SUITE 300
ARLINGTON-VA 22202

DL-3

MISSION
OF

ÄFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

