
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

IMPLEMENTATION OF A HYPERTEXT TRANSFER
PROTOCOL SERVER ON A

HIGH ASSURANCE MULTILEVEL SECURE PLATFORM

by

Evelyn Louise Bersack

December 2000

Thesis Advisor:
Second Reader:

Cynthia Irvine
Geoffrey Xie

Approved for public release; distribution is unlimited

DT1C Qls'ii. LTY Ii,iis:S5^uiD 4

20010215 017

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE : Implementation of a HyperText Transfer Protocol
Server on a High Assurance Multilevel Secure Platform

5. FUNDING NUMBERS

6. AUTHOR(S) Evelyn Louise Bersack

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

ABSTRACT (maximum 200 words)
In a client/server environment on a local area network (LAN), a server should provide various network applications

including a hypertext transfer protocol (HTTP) server. HTTP is a client/server, request/response application protocol that is
used on the World Wide Web (WWW). It provides the definition and means for transferring objects across internets. A server
used in the context of a multilevel secure (MLS) LAN should be no exception. A MLS LAN should be capable of providing an
HTTP web server that can be used by commercially available web browsers executing on client workstations. This server
needs to be aware of the MLS environment and provide clients access to all web pages and objects for which they are
authorized.

This thesis implements an HTTP web server running on a high assurance host in a MLS LAN. The web server is based on a
commercially available web server application. The commercially available application has been modified and configured to
run on the high assurance host. This thesis discusses the details for implementing the web server on the high assurance host.

The result of this thesis is an HTTP web server application that runs on a high assurance host servicing clients on a MLS
LAN that are using commercially available web browsers. These clients now have the capability of web browsing at varying
levels of classification on one workstation.

14. SUBJECT TERMS Hypertext Transfer Protocol, Web Server, Multilevel Secure, Local Area
Network, High Assurance

15. NUMBER OF PAGES

144

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATIO
N OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

11

Approved for public release; distribution is unlimited

IMPLEMENTATION OF A HYPERTEXT TRANSFER PROTOCOL SERVER
ON A

HIGH ASSURANCE MULTILEVEL SECURE PLATFORM

Evelyn Louise Bersack
Civilian, United States Army

B.S., University of Arizona, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2000

Author: /^^^^Z^W^ H/AJA^fe- 7 Evelyn Louise Bersack

Approved by: >HLC+- S. <r-J<>UST*t^
ynthia Irvine, Thesis Advisor

^L
Geoffrey Xie, Second Reader

r^X
Dan Boger, Chaigpaan

Computer Science Department

in

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

In a client/server environment on a local area network (LAN), a server should
provide various network applications including a hypertext transfer protocol (HTTP)
server. HTTP is a client/server, request/response application protocol that is used on the
World Wide Web (WWW). It provides the definition and means for transferring objects
across internets. A server used in the context of a multilevel secure (MLS) LAN should
be no exception. A MLS LAN should be capable of providing an HTTP web server that
can be used by commercially available web browsers executing on client workstations.
This server needs to be aware of the MLS environment and provide clients access to all
web pages and objects for which they are authorized.

This thesis implements an HTTP web server running on a high assurance host in a
MLS LAN. The web server is based on a commercially available web server application.
The commercially available application has been modified and configured to run on the
high assurance host. This thesis discusses the details for implementing the web server on
the high assurance host.

The result of this thesis is an HTTP web server application that runs on a high
assurance host servicing clients on a MLS LAN that are using commercially available
web browsers. These clients now have the capability of web browsing at varying levels of
classification on one workstation.

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. PURPOSE 1
B. RESEARCH QUESTIONS 1
C. OVERVIEW 2
D. BENEFITS OF RESEARCH 3
E. ORGANIZATION OF THESIS 5

II. BACKGROUND 7
A. HYPERTEXT TRANSFER PROTOCOL 7
B. APACHE SOFTWARE FOUNDATION PRODUCT 14
C. XTS-300 PLATFORM 16
D. NPS MULTILEVEL SECURE LOCAL AREA NETWORK

PROJECT 17

III. ANALYSIS OF THE APACHE SOFTWARE PACKAGE 23
A. IMPLEMENTATION REQUIREMENTS 23
B. IMPLEMENTATION DECISIONS 24
C. PROBLEMS AND DIFFICULTDES 29

IV. IMPLEMENTATION OF AN APACHE-BASED HTTP WEB SERVER ON
THE XTS-300 COMPUTER 33
A. APACHE SOURCE DIRECTORY STRUCTURE 34
B. MAKEFILE MODIFICATIONS 36
C. PHASE ONE 37
D. PHASE TWO 46
E. PHASE THREE 47
F. PHASE FOUR 50
G. DOCUMENTATION MODIFICATIONS 51

V. SECURITY CONSIDERATIONS 53
A. DIRECTORY STRUCTURES AND FILE ACCESS 53
B. APACHE ADD-ON MODULES 53
C. SECURE SOCKET LAYER 59

VI. CONCLUSIONS AND FUTURE WORK 63
A. DISCUSSION 63
B. FUTURE WORK 64
C. CONCLUSIONS 65

APPENDIX A: GLOSSARY 67

APPENDIX B: APACHE SOFTWARE LICENSE FILE 71

APPENDIX C: DIRECTORY LISTING 73

APPENDIX D: MODIFICATIONS TO CONFIGURATION FILES 79

Vll

APPENDIX E: MODIFICATIONS TO SOURCE CODE 81

APPENDIX F: MODIFICATIONS TO HEADER FILES 95

APPENDIX G: TOP LEVEL MAKEFILE 97

APPENDIX H: SERVER CONFIGURATION FILE 101

APPENDIX I: APACHE MODULES 117

LIST OF REFERENCES 121

INITIAL DISTRIBUTION LIST 125

vni

LIST OF FIGURES

Figure 1 HTTP Request Message 12
Figure 2 HTTP Response Message 13
Figure 3 MLS LAN Configuration 19
Figure 4 Basic LAN Architecture 20
Figure 5 Basic MLS LAN Architecture 21

IX

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF TABLES

Table 1 HTTP Methods 12
Table 2 HTTP Status Codes 14
Table 3 Renamed Apache Files 51
Table 4 Documentation Files Referencing Renamed Files 51

XI

THIS PAGE INTENTIONALLY LEFT BLANK

Xll

ACKNOWLEDGMENTS

I must thank my husband, Stephen, daughter, Samantha, and son, Patrick for all of
their patience, understanding, help, and frequent fishing trips. Without their cooperation
and understanding, my time at NPS would have been more difficult than it was. Thanks
Steve, Samantha, and Patrick.

I also want to thank Mr. David Shifflet for all of his time and contributions to this
project. He provided many hours of help and guidance. Without his knowledge and
experience, the timing issue might not have been solved. Thank you Dave.

I finally want to thank my thesis advisor Dr. Cynthia Irvine. She provided much
needed guidance, support, motivation, and wisdom. Thank you Dr. Irvine.

XIII

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

I. INTRODUCTION

A. PURPOSE

In a client-server environment on a local area network, the server should support

and provide various network applications such as File Transfer Protocol (FTP), Simple

Mail Transfer Protocol (SMTP), Telnet (a remote login facility), and HyperText Transfer

Protocol (HTTP). A server used in the context of multilevel secure (MLS) local area

network (LAN) should be no exception and provide these same network applications. A

MLS LAN should be able to provide network applications that are capable of running at

multiple security levels based on the level of the session between the client and server.

By providing an HTTP application on a server in a MLS LAN, the server can now

provide web-browsing capabilities to its clients running at different session levels. This

would allow clients to use a web browser to access web pages, documentation, graphic

images, and other information on the server at varying levels of security classifications.

The HTTP application on the server must be aware of the MLS environment and be

configured to know what level of classification and assurance the client is requesting. It

should also be able to provide the correct level of access to its web pages and

information.

B. RESEARCH QUESTIONS

Several research questions are addressed in this thesis. The majority of the

questions deal directly with implementing an HTTP server on a high assurance platform,

more specifically the Apache web server package [Ref. 1]. Access control to the web

pages that are being served is also a concern. The negotiation of the contents of the pages
1

that the server can access is not investigated. For this implementation, the server should

have no idea about the contents of the pages it is serving to its client but be concerned

about whether it has access to the objects the client is requesting.

The following questions are specifically addressed in this thesis.

1. Can the "Apache" software package be modified to run on the Wang XTS-

300?

2. How difficult will it be to port the existing "Apache" software onto the XTS-

300 platform?

3. Which version of the "Apache" software should be used?

4. Will there be any side effects that would adversely affect enforcement of

access control policies?

5. Will the evaluation rating or trustworthiness of the system be adversely

affected by the addition of an HTTP server? Will additional trusted code be

required to support the server?

6. Will the modified "Apache" software package be easily maintainable across

future upgrades to the XTS-300 STOP Operating system and/or "Apache"

software?

C. OVERVIEW

The purpose of this thesis is to implement and test an Apache-based HTTP Web

Server application on a high assurance host operating in a Multilevel Secure (MLS) Local

Area Network (LAN) operating at the Naval Postgraduate School (NPS) Center for

2

INFOSEC Studies and Research Laboratory. This application will be implemented using

a software package called Apache. Apache is available free from the Apache Software

Foundation and can be downloaded from the Apache Software Foundation web site at

www.apache.org [Ref. 2]. The Apache package is to be implemented on a Wang XTS-

300 computer running the STOP-4.4.2, UNIX-like operating system [Ref. 3]. The goal of

this undertaking is to provide a low cost commercially available HTTP Web Server

application that can be configured and easily maintained on the XTS-300 platform.

D. BENEFITS OF RESEARCH

In a typical environment that handles classified information, the information is

stored on some type of removable storage device that is kept locked and secured in a safe.

When access to the information is needed, the storage device is removed from the safe

and used in an isolated environment. When the user is finished with the information, the

storage device is returned to the safe. There must be strict documented access security

policies and procedures in place in this type of environment to ensure the prevention of

disclosure and/or penetration of the information. Occasionally, the policies and

procedures are not followed, and the information is compromised.

A high assurance multilevel secure (MLS) workstation eliminates the need for this

type of environment. Information at all levels of classification can reside on the same

high assurance MLS workstation. The high assurance MLS workstation enforces a strict

access control policy that prevents the unwarranted disclosure and penetration of

information.

The Department of Defense (DoD) conducts and supports testing programs and

maneuvers that produce test information at all levels of classification. If this information

resides on a high assurance MLS workstation, it will be protected by the access control

policies in place on that platform. A drawback with using a high assurance MLS

workstation is that in order for users (Program Managers, Test Engineers, and customers)

to access their information they must have direct access to the host. This is an impractical

restriction to place on the users, but allowing them access to the information through a

network and COTS web browser is practical. To support this COTS web browser, a

HyperText Transfer Protocol (HTTP) web sever application must be available on the high

assurance MLS host. This high assurance MLS host could then be configured to act as an

HTTP server in a MLS LAN environment. The users would not need direct access to the

host but only require a client workstation, equipped with a COTS web browsing

application, configured on the MLS LAN. The HTTP server, constrained by the access

control policies enforced by the high assurance MLS host, allows users access to

information that is centrally located but available to only authorized and identified users.

Information served through such an HTTP server in a MLS LAN environment would not

be vulnerable to unwarranted penetration and disclosure. The MLS LAN provides the

same degree of security and access control that the stand-alone MLS host provides while

allowing users the advantage of using their workstation and COTS web browsing

application.

This solution is more practical and beneficial. All levels of data and information

reside on a MLS host preventing the need for separate storage devices at different

classification levels that must be kept locked in a safe. The access control policies are

strictly enforced by the MLS host and are not left up to chance by relying on the user to

follow documented procedures. It is practical because most offices have COTS

workstations with COTS web browsing applications. Special "custom-built" applications

and programs are not needed to access the information, just a COTS workstation

enhanced to be a trusted client on the MLS LAN with a COTS web browsing application

is required. This thesis aims to provide the HTTP server application hosted on the high

assurance MLS workstation so this benefit can be achieved.

E. ORGANIZATION OF THESIS

The remainder of this thesis is organized as follows:

Chapter II provides background material on the HyperText Transfer Protocol, the

Apache Software Foundation Apache Web Server Package, the XTS-300 Platform, and

the NPS Multilevel Secure Local Area Network Project.

Chapter HI discusses the design constraints and source code requirements needed

to implement an Apache-based server on a host in a MLS LAN environment and how

these requirements can be met. It also discusses some of the initial problems encountered

while trying to satisfy these constraints and requirements.

Chapter IV outlines the phases used to implement the Apache-based server. It

highlights the changes made to the configuration files that were used to create the

Makefiles for the C language source code compilation. It details the parameters used in

the platform-dependent configuration C language header file. It discusses the major

changes to the C language source code to enable the server to run in a MLS LAN

environment.

Chapter V discusses some security considerations surrounding the Apache-based

server. It describes some of the Apache add-on modules that are or could be considered

security related. It provides a brief discussion on Secure Socket Layer (SSL) and its

inclusion into an Apache-based server.

Chapter VI answers the questions asked in this chapter. It suggests some topics for

future work related to this thesis.

There are several Appendices in this thesis. Appendix A is a glossary of terms and

acronyms. Appendix B is a complete directory listing of files on the XTS-300. Appendix

C is the Apache Software License File. Appendices D-H are Apache files that have been

modified for this Apache-based server implementation. Appendix I provides a listing of

Apache add-on modules provided with the Apache server software package.

II. BACKGROUND

This chapter provides background information on the HyperText Transfer

Protocol (HTTP), the Apache Software Package, the Wang XTS-300, and the Naval

Postgraduate School (NPS) Multilevel Secure (MLS) Local Area Network (LAN) Project.

A. HYPERTEXT TRANSFER PROTOCOL

The HyperText Transfer Protocol (HTTP) is a client/server, request/response

application protocol that runs on top of TCP (Transmission Control Protocol). TCP is an

internet transport protocol that is connection-oriented and has a reliable data transfer

service as well as congestion control mechanism [Ref. 2]. The application that most

widely uses HTTP is the World Wide Web (WWW). HTTP has been used in the web

since 1990 and has now gained the position as the most used protocol on the Internet

[Ref. 4]. The protocol defines the format of the messages that can be passed between a

client, usually a web browser such as Netscape Communicator or Microsoft Internet

Explorer, and a server such as Apache, Microsoft Internet Information Server, or

Netscape Enterprise Server.

There are several key terms used with HTTP. The following are some of the

terms used within this overview.

1. Cache: A program's local store of response messages and the subsystem that

controls its message storage, retrieval, and deletion. [Ref. 5]

2. Client: An application program that establishes connections for the purpose of

sending requests. [Ref. 5]

3. Connection: A transport layer virtual circuit established between two

application programs for the purpose of communication. [Ref. 5]

4. Entity: The information transferred as the payload of a request or a response.

[Ref. 5]

5. Message: The basic unit of HTTP communication, consisting of a structured

sequence of octets transmitted via the connection. [Ref. 5]

6. Object: A file, such as a HyperText Markup Language (HTML) file, a JPEG

image, a GIF image, a Java applet, and/or an audio clip. [Ref. 2]

7. Request: An HTTP request message. [Ref. 5]

8. Resource: A network data object or service, which can be identified by a

Uniform Resource Identifier (URI). [Ref. 5]

9. Response: An HTTP response message. [Ref. 5]

10. Server: An application program that accepts connections in order to service

requests by sending back responses. [Ref. 5]

11. URI: Uniform resource identifier. Formatted strings that identify, via name,

location, or any other characteristic, a resource. [Ref. 5] (Defined in IETF

RFC 2396 [Ref. 6].)

12. URL: Uniform resource locator. Formatted strings that identify the location

of an object. (Defined in IETF RFC 2396 [Ref. 6].)

13. User Agent: The client that initiates a request.

HTTP was developed to help simplify the way users access information on the

Internet. HTTP is generic in nature. It can be used to transfer ASCII text, hypertext,

audio, images, and any other Internet accessible information or data. The information

that can be transferred using HTTP is flexible, both in content and length. HTTP is a

stateless protocol in that the server keeps no state information about the client's activities

or requests. However there is an option, called "cookies" that can be used to allow the

server to keep some information about the client and user. There are currently two

versions of HTTP that most current servers and clients support simultaneously. HTTP

1.0 was proposed in Internet Engineering Task Force (IETF) Request for Comment (RFC)

1945 [Ref. 7] as an informational RFC. HTTP 1.1, currently the standard, was first

proposed in IETF RFC 2068 [Ref. 8] and later clarified in IETF RFC 2616 [Ref. 5]. The

IETF has several RFCs that are related to HTTP including RFC 2145 that discusses the

use of the HTTP version numbers [Ref. 9] and RFC 2295 that discusses "Transparent

Content Negotiation with HTTP 1.1" [Ref. 10]. Another HTTP related RFC is RFC 2617,

"HTTP Authentication: Basic and Digest Access Authentication" [Ref. 11]. This proposal

improves on the security methods for authenticating users to a server and outlines

methods for authenticating users to a server without sending passwords in clear text form

(the method used in HTTP 1.0).

HTTP 1.0 was simple in nature. The client initiated a TCP connection, the server

accepted the connection, the client sent a request, the server serviced the request and then

closed the connection. One major disadvantage to HTTP 1.0 was that, by default, the

TCP connection was closed after each transfer of an object. A web page might be

compromised of several objects that include hypertext and images. HTTP 1.0 would

require that a TCP connection be established for each object on the page. For example, if

a page contained one hypertext file and six graphic images, seven separate TCP

connections would need to be established. This connection establishment/teardown is

very inefficient. It adds overhead traffic to the network, which contributes to network

congestion. It is also slower because each connection requires the initial establishment.

A partial remedy was proposed in an effort to overcome this limitation but was proven to

be relatively ineffective. HTTP 1.0 was also found to have several bugs and

shortcomings. These problems lead to the proposal of HTTP 1.1.

HTTP 1.1 was first proposed in IETF RFC 2068 [Ref. 8] and clarified in IETF

RFC 2616 [Ref. 5]. These RFCs attempt to make HTTP a well-behaved, well-defined,

generic Internet protocol. The proposal clearly specifies that HTTP 1.1 must be

compatible with HTTP 0.9 and HTTP 1.0. This backward compatibility allows for ease

of migration and upgrading of client/server applications that were initially designed for

HTTP 1.0. One area of improvement was the TCP connection state. HTTP 1.1 allows

persistent TCP connections. This greatly improves the efficiency of the protocol. A

connection may be used for one or more message/object exchanges. The

requests/responses can be pipelined without waiting for each response to be serviced, so

that a single TCP connection can be used more efficiently and with much lower elapsed

time. These persistent connections also come with a drawback. The issue as to when to

close the TCP connection must now be considered. Three methods have been specified.

The client can explicitly request to close the connection using a Close connection header

10

field option within the message. The server can issue a Close connection response using

a header field option informing the client that the connection will be closed. The server

can time-out on an inactive connection and then close the connection.

HTTP 1.1 provides for virtual hosts allowing service providers to assign multiple

domain names to a single IP address. The server will be able to distinguish the pages

from the domain name used in the URL. This is accomplished using the Host header

field in the request message [Ref. 12]. This is a major change from HTTP 1.0 in that this

Host header field must be present in the message so that the server can correctly service

the request.

HTTP 1.1 also improves the caching capabilities of clients and servers. It

provides well-defined rules and a caching model, which allows both servers and clients to

control the level of cachability and the conditions under which the cache should update its

contents [Ref. 12].

There are two main types of HTTP messages that both HTTP 1.0 and HTTP 1.1

support, the request message and the response message. The client usually sends the

request message to the server. The server responds to a client's request with a response

message.

The first line of the request message is called the request line. It has three distinct

fields: the method field, the Uniform Resource Locator (URL) field, and the HTTP

version field. The method field is a key word that indicates to the server what action is

being requested. The URL field gives information about the location of the object being

requested. The version field is the version of HTTP the client is using [Ref. 2].
11

Following the request line are header lines. Most header lines are optional. Some header

lines provide information about the client and what type of information the client is

capable of handling. These header lines help the server do its job better by allowing the

server to send objects to the client that it can handle and interpret. One header line that

must be present with HTTP version 1.1 is the Host header line. If the requested URI

does not include an Internet host name for the service being requested, then the Host

header field must be given with an empty value [Ref. 13]. This line specifies the host on

which the object resides. It allows for virtual hosts (see preceding paragraphs for

explanation). Following the request line and header lines, an empty line followed only by

a carriage return, CR, and line feed, LF, is sent to indicate the end of the request message.

Method URL Version CR LF
header field name value CR LF

■

header field name : value CR LF
CR LF

Figure 1 HTTP Request Message After Ref. [14]

Method Definition Version

GET Get a header and resource from the server 1.0

HEAD Return just the header, no resource 1.0

POST Send information to the server 1.0

OPTIONS Return the list of methods allowed by the
server 1.1

TRACE Trace a request to see what the server sees 1.1

DELETE Delete a resource on the server 1.1

PUT Create or change a file on the server 1.1

CONNECT Enables proxies to switch to a tunneling mode
for protocols like SSL 1.1

Table 1 HTTP Methods

12

The response message has three sections: a status line, header lines, and then the

entity body. The first line of the response message is called the status line. It has three

distinct fields: the protocol version field, a status code, and a corresponding status

message. The version field is the version of HTTP the server is using. The status code

and corresponding message indicate the result of the request from the client [Ref. 2].

Following the request line are header lines. Some header lines provide information about

the server, connection information and general information. Other header lines will give

information about the object being sent to the client such as the type of object being sent

and the length of the object so that the client knows how to handle the object and how

much data to expect. Following the status line and header lines, an empty line followed

only by a carriage return, CR, and line feed, LF, is sent to indicate the beginning of the

object. The object is then sent.

Version Status Code Phrase CR LF
header field name value CR LF

"

header field name : value CR LF
CR LF

Entity Body

Figure 2 HTTP Response Message After Ref. [14]

13

Code Range Meaning
100-199 Informational
200-299 Client request successful
300-399 Client request redirected, further action necessary
400-499 Client request incomplete
500-599 Server errors

Table 2 HTTP Status Codes

B. APACHE SOFTWARE FOUNDATION PRODUCT

The Apache Software Foundation has information about its activities and products

at its web site, www.apache.org [Ref. 2].

The Apache HTTP server project is a collaborative software development effort

aimed at creating a robust commercial-grade, featureful, and freely available source code

implementation of an HTTP (Web) server [Ref. 2].

The Apache software version 1.3.12 was downloaded from the Apache Software

Foundation site. Included in this package is C language source code for the server

application, Readme files, Makefiles, configuration files, HTML documentation for the

server, example source code for creating and adding platform/application dependent

modules and information to help port, configure, and manage an Apache-based server.

The application has already been successfully ported to many different platforms and all

of these ports are freely available. The openness of Apache's source code is one of the

major reasons for its popularity [Ref. 15].

The Apache software is covered by a license allowing its distribution (see

Appendix B). The Apache Software Foundation provides no formal support for the

Apache server software. The information available in their documentation as well as on

14

their web site [Ref. 2] is useful. In addition, there are also several web sites dedicated to

the support of sites with Apache-based servers. There are numerous reference books

available that provide varying levels of detail of information on Apache. The range of

topics for reference books include configuration, maintenance, and optimization of

Apache, to adding custom built modules, to securing an Apache-based server.

Apache is designed to work on a network. On a Unix platform, it can be activated

as a daemon, running in the background waiting for a client application to request service

[Ref. 15]. It can also be activated through an application that services network

connections.

Apache is setup through configuration files. These files contain Apache directives

that control the server's behavior. Using the configuration file makes Apache extremely

versatile and gives the administrator comprehensive control over the features and security

provided by Apache [Ref. 15].

The Apache Software Foundation package provides many additional modules that

administrators can configure into the server to meet their needs. To add a module to an

Apache-based server, the module must be compiled and built with the server. It must then

be configured with the correct directives in the server configuration file. The ease of

adding and configuring add-on modules allows administrators to fine-tune an Apache-

based server and only configure the modules they require. There is also a large amount of

third party modules available for Apache servers that can provide more capabilities and

flexibility [Ref. 15]. A list of the modules provided with the Apache source code

package is presented in Appendix I.

15

It is this flexibility, coupled with Apache's stability and performance, and the

availability of its source code that makes it the most popular choice of web server

software on the Internet [Ref. 15].

C. XTS-300 PLATFORM

The XTS-300 product is a combination of STOP 4.4.2, a multilevel secure

operating system, and a Wang Government Services Inc. supplied x86 hardware base

[Ref. 16]. The current hardware platform is Pentium-based. STOP is a Unix-like

multiprogramming operating system designed not only to support much of the Unix

System V interface for applications software but to produce and run object programs that

adhere to a subset of the "Intel 386 Family Binary Compatibility Specification 2" as well

[Ref. 16].

The XTS-300 provides network connectivity in the evaluated configuration,

through TCP/IP and single level Ethernet built into the Trusted Computing Base (TCB).

However, it does not provide network application servers [Ref. 16].

The XTS-300 provides Mandatory Access Control (MAC) that allows for

enforcement of both a security and an integrity policy. Enforcement of the mandatory

confidentiality policy is based on a mechanism that meets the requirements formally

expressed in the Bell and LaPadula security model [Ref. 17]. Mandatory integrity policy

enforcement is based on a mechanism that adheres to the Biba integrity policy model

[Ref. 18]. The system implements Discretionary Access Control (DAC) and provides for

user identification and authentication needed for user ID-based policy enforcement [Ref.

16].

16

Implementation of a Secure Attention Key (SAK) provides a trusted path

mechanism. The system enforces the "principle of least privilege", giving users no more

authorization than that required to perform their functions [Ref. 16]. The TCB makes use

of hardware features to provide process separation and TCB isolation. The TCB has been

designed and implemented to resist penetration [Ref. 16].

The XTS-300, STOP 4.4.2, was evaluated against the Department of Defense

(DoD) TCSEC [Ref. 19] and rated at level Class B3. This Class B3 rating implies not

only incorporation of particular security features but also a high level of assurance [Ref.

16].

D. NPS MULTILEVEL SECURE LOCAL AREA NETWORK PROJECT

The Naval Postgraduate School (NPS) Multilevel Secure (MLS) Local Area

Network (LAN) project's goal is to provide true multilevel access to information over a

LAN [Ref. 20]. This is an ongoing project at the NPS Center for INFOSEC Studies and

Research Department.

There are three main components that comprise the MLS LAN: a high assurance

multilevel secure server, a Trusted Computing Base Extension (TCBE) with a Trusted

Application Protocol Server (TPS), and a Secure Session Server that resides on the high

assurance server.

The first component is the high assurance multilevel secure server platform. The

server must be equipped with a Trusted Computing Base (TCB) which provides a

penetration resistant security enforcement mechanism for the MLS LAN operations [Ref.

20] [Ref. 21] [Ref. 22]. The TCB will provide the mandatory and discretionary access
17

controls to information as well as user identification, authentication, and authorization

services [Ref. 21] [Ref. 22]. The Wang XTS-300 acts as the high assurance server in the

MLS LAN. It is equipped with a TCB that enforces the security policies on the protocol

application servers.

The second component in the MLS LAN is the Trusted Computing Base

Extension (TCBE) [Ref. 23]. The TCBE has three main functions: establish a trusted path

between the user and the high assurance workstation, enforce the object reuse provision

of the TCB, and enforce access control policies [Ref. 22]. The TCBE is required because

commercial-off-the-shelf (COTS) workstations running COTS operating systems and

applications are not trusted or trustworthy. The COTS workstations are equipped with a

TCBE that will provide a trusted path to the high assurance server. The client workstation

used in the MLS LAN is a Pentium-based personal computer (PC) running Microsoft

Windows NT.

The TCBE in place for this implementation was software driven. A software

application was provided that allowed the user to establish a trusted path with the high

assurance server. A trusted software application, the Trusted Path Server (TPS)

(sometimes referred to as the TCBE server) is used to communicate with the client and

provide the trusted path [Ref. 24]. This communication connection is made over Ethernet.

The TPS is responsible for accepting user logins and session level negotiations for the

client workstations. It is also responsible for associating a username and session level

with each login from the client workstation.

18

The third component of the MLS LAN is a software program called Secure

Session Server (SSS) [Ref. 24]. This is a trusted application on the high assurance server

that acts much like the Unix "inetd" daemon. It accepts protocol requests on various port

numbers and creates a process to handle the communication with the client. For each

accepted protocol request, the SSS receives the user ID and session level, provided

through the TPS, associated with the client workstation. The SSS uses this information to

create the protocol server to handle the client's request. The server executes as the user ID

and at the session level of that user. The data is passed back and forth from the client to

the protocol server via the SSS.

Client

High
Assurance

MLS
Server

Figure 3 MLS LAN Configuration After Ref. [22]

The protocol server and the Secure Session Server communicate through a

"pseudo socket". The pseudo socket can be described as the communication medium, or a

19

Virtual socket, or the read/write buffer between the two processes. Its only function is to

pass data between the two processes.

The two figures below represent a basic LAN Architecture and a MLS LAN

Architecture. A basic LAN has no trusted components and cannot provide high assurance

access control to multilevel information. This information is vulnerable to attacks and

disclosure from any client that has access to the LAN.

Client

Application
Server Host

Client

Client

Client

Figure 4 Basic LAN Architecture

With a MLS LAN Architecture, there are trusted and high assurance components

that provide access control and protection to the multilevel information. The trusted

architecture includes the high assurance host and clients enhanced with the TCBEs. In the

MLS LAN, once a client-server connection is established (a trusted path), other clients

(trusted or not) cannot penetrate the trusted connection. Information cannot be attacked or

20

disclosed through the trusted path and the high assurance server enforces access control

policies on application servers servicing client requests.

Trusted
Computing

Base

Trusted Computing
Base Extensions

Non-TCBE enhanced
client (unable to
access protected

information)

Figure 5 Basic MLS LAN Architecture After Ref. [23]

21

THIS PAGE INTENTIONALLY LEFT BLANK

22

III. ANALYSIS OF THE APACHE SOFTWARE PACKAGE

A. IMPLEMENTATION REQUIREMENTS

This Apache-based server was implemented to function in a MLS LAN

environment. A MLS LAN server application implemented on the XTS-300 is accessed

through a Trusted Computing Base Extension, TCBE. The XTS-300 MLS LAN

applications are the Trusted Path Server, TPS, and Secure Session Server, SSS. The XTS-

300 would do all authentication of the user and session level. If a request for an HTTP

service comes through the TCB tunnel, the SSS would activate the HTTP server

application. All information passed between the client and server would pass through this

protected trusted path. The communication between the server and the client would be

accomplished through "pseudo sockets" rather than network sockets. The pseudo socket

will be the communication path between the server application and the SSS. This pseudo

socket communication imposed several requirements and restrictions on the HTTP server.

1. The server must be activated by another application namely the Secure

Session Server (SSS).

2. The server must be stand-alone; it should not spawn or create children or

additional processes.

3. The implementation calls for no parameters or arguments to be passed to the

server application.

4. The server must communicate (both read and write) to the Secure Session

Server through the pseudo sockets rather than network sockets.

23

5. The Secure Session Server must be configured to recognize and correctly

respond to HTTP client requests.

6. The server must not adversely affect the evaluation rating of the system.

7. The server should be permitted read-down privileges, allowing users at a

higher level read access to lower level objects.

8. The server should not be permitted read-up privileges, not allowing users at a

lower level read access to higher level objects.

The rest of this chapter addresses these requirements and concludes with a section

on the difficulties and problems encountered during the porting of the Apache-based

server and what solutions were attempted to solve these problems.

B. IMPLEMENTATION DECISIONS

1. The server must be activated by another application namely the Secure

Session Server (SSS).

This requirement was accomplished through modification of the server

configuration file. One of the Apache directives is ServerType. The directive controls the

way in which Apache handles multiple copies of itself as well as how Apache is

activated. The arguments are inetd or standalone (default value). By using inetd, the

server knows that it has been activated by another process. On a Unix platform, the inetd

daemon receives requests for network applications through port numbers. The inetd

daemon will then activate the corresponding server and hand off the connection to the

server to allow it to service the request.

24

2. The server must be stand-alone; it should not spawn or create children or

additional processes.

This requirement was accomplished through the ServerType directive. By setting

the value to inetd, another process servicing network connections (on a Unix platform this

is the inetd daemon) is responsible for activating individual servers each time an HTTP

request comes in. The server will exit once it has finished servicing the request. The inetd

option will be used on the XTS-300 platform to allow the SSS to activate one server at a

time. The Apache Group has declared this method of activation as clumsy and inefficient

[Ref. 25]. The Apache server was designed to be a server daemon that runs all the time

and handles the network connections itself. The basic concept of the Apache server is that

the server has several child servers. The parent server waits for a request and then hands

the request off to a child or spawns another child to handle the request, allowing the

parent to service another request. This method is fast; the parent quickly services the

request by passing it to a child and is ready for the next request to come it. It also uses

memory efficiently since the server configuration file is read at initial activation and the

parameters are cached in the parent server's memory where they can be shared with all

the children. By using the inetd option, each client request activates a new server

specifically for that client. This results in a slower response time since the server must

read the server configuration file and open any log files before it is ready to service the

request. Because it cannot share memory with other servers, memory is used inefficiently.

The multilevel secure environment will take full advantage of these two

conditions resulting from using the inetd option. The memory of a server running at one

25

classification level can not be shared with a server running at a different classification

level. All log files must also be kept at different levels, thus preventing write-down. The

inetd option supports these restrictions. Without the inetd option, the child servers are

trusted with respect to MAC policies and untrusted with respect to DAC policies. This is

unaccepted. The servers should be untrusted in both areas to allow the TCB to enforce the

access control policies. The inetd option allows all application servers, activated as

children of the Secure Session Server, to be untrusted with respect to MAC and DAC

policies.

3. The implementation calls for no parameters or arguments to be passed to the

server.

This was a problem since the server needs to know where to find the main

configuration file. This path information is usually passed as an argument to the process.

If using the inetd option and the inetd daemon on a Unix platform, you can specify

options and arguments to pass to the application in the inetd.conf file. The SSS does not

have this capability. The solution was to hardcode the configuration file path name in a

configuration header file that is included with the Apache source code. The ap_config.h

header file allows numerous platform-dependent parameter and variable definitions. This

header file is to be modified based on the platform that Apache will be built on. The

following line was added under the "XTS" block of definitions

#define SERVER_CONFIG_FILE /usr2/bersack/http/conf/httpd.conf

This definition is intended to be used as a constant. Once the configuration file is

in place it should not be renamed or moved. The renaming or moving of the configuration
26

file will require a complete recompilation of the server. This definition could and should

be removed once the Secure Session Server is configured to pass arguments to server

applications, acting like the Unix inetd daemon.

4. The server must be able to communicate (both read and write) to the Secure

Session Server through the pseudo sockets rather than network sockets.

This involved searching through the Apache C language source code to isolate the

system-level calls that wrote to and read from the network sockets. Once these calls were

identified, they were modified to call functions that communicate with the pseudo socket

instead. These pseudo socket functions had been written and implemented in other

network applications ported to this platform. Also, the network socket setup code had to

be isolated and modified so that a network socket was not opened for communication, but

redirected to communicate with the pseudo socket. To minimize changes to the Apache

source code, the network socket structure was filled with data for the pseudo socket. This

eliminated the need to find all references to the network socket variable and change it to

the pseudo socket variable.

5. The Secure Session Server must be configured to recognize and correctly

respond to HTTP client requests.

The Secure Session Server (SSS) reads a configuration file that has the following

format:

Protocol ID Port# APS Path

27

The Protocol ID represents the protocol name, for HTTP it would be HTTP. The

Port # is the network port number that the daemon should listen to for HTTP traffic. The

default port number for HTTP is 80. This is a well-known port number and used by all

commercially available web browsers. The APS Path is the full pathname for the

application program server (APS). For this version of the Apache-based server the full

pathname is /usr2/bersack/apachel3/src/httpd. By adding the following line to the SSS

configuration file, the SSS will be able to activate the server for any HTTP requests

arriving on port 80.

HTTP 80 /usr2/bersack/apachel3/src/httpd

This line must be changed and/or modified if the server application is moved or

renamed or if the port number the server can service changes.

6. The server must not adversely affect the evaluation rating of the system.

The Apache-based HTTP server runs on the XTS-300. It communicates through

the Secure Session Server (SSS). It is an untrusted application and does not enforce a

security policy. It does not add to the Trusted Computing Base (TCB) on the XTS. For

this reason, the software package should have no effect on the evaluation rating of the

system. There are basic security issues concerning any Apache-based server hosted on

any platform that must be addressed. These issues are discussed in the Apache

documentation. Some security issues related to an Apache-based server in a MLS LAN

environment are discussed in Chapter V.

28

7. The server should be permitted read-down privileges, allowing users at a

higher level read access to lower level objects.

The server does not enforce this policy. The XTS-300 will enforce the access

control policies. The server is activated at the session level the user is running at, with the

permissions allowed for that user. The XTS-300 enforces the access control policies

pertaining to the user ID and current session level. The Apache-based server will be

constrained by the TCB. This will be true for objects embedded in a web page that the

server tries to access as well as for the web page itself. If the object is at a lower level, the

server will have access to the lower level objects but not to higher level objects. If the

XTS-300 allows the server access to an object, the server will send that object to the

client. If the XTS-300 does not allow the server access to an object, the server will not be

able to serve the object to the client and will send an error message instead.

8. The server should not be permitted read-up privileges, not allowing users at a

lower level read access to higher level objects.

The discussion for requirement 7 above applies to this requirement also.

C. PROBLEMS AND DIFFICULTIES

Several problems were encountered during this porting project. The first problem

was encountered after the Apache-provided files were installed on the XTS-300. All of

the text files had extra control characters at the end of each line. A generic shell script

was written that would remove these control characters from the files and save the fixed

file. This later led to problems with the image files that came as part of the Apache

software package. All of the control characters were removed from these image files. This
29

corrupted the files. The client could not display the image, since it was corrupt. Once this

problem was isolated, all of the image files were replaced and the client was able to

correctly display them.

The next problem was to determine all of the various parameters and definitions

to set in the configuration header file, ap_config.h, for the XTS-300 platform. A majority

of the C language #define statements in the configuration header file are used to define or

undefine system calls and functions specific to a particular target platform. The Apache

documentation on porting defines a few of these parameters, but there are many others

that were discovered as the porting progressed. A few of the parameters were incorrectly

defined or used with default values. These caused numerous problems during the testing

stage. The full list of parameters and variables that were set and used for the XTS-300

platform are discussed in the next chapter and provided in Appendix F.

The XTS-300 platform has very primitive debugging capabilities. Debugging was

accomplished by adding print statements to the source code. This in itself caused several

problems that included debug file creation, file access, and writing to the file.

A problem arose while testing the initial build of the server. An attempt was made

to use a Telnet session on the local host machine to communicate with the server. This

was tested before any pseudo socket code had been added and with minimal changes to

the base Apache source code. Had the server been configured correctly, it should have

sent a response message to the request message sent using the Telnet session. The Telnet

session seemed to talk to the server and produce output to the error log file when errors

were detected on the server side. However, the Telnet session did not produce the

30

expected response output to the window the Telnet session was running in. It was

determined that the Telnet session was not echoing the characters from the response

message to the window. To remedy this problem, a terminal echo program was used

instead of the Telnet session. This program did provide the expected response headers

and messages and indicated that the server was responding and working correctly.

Several other minor problems were encountered during the project. They are

discussed in the next chapter, as they arose during the testing of the server.

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

IV. IMPLEMENTATION OF AN APACHE-BASED HTTP WEB

SERVER ON THE XTS-300 COMPUTER

All modifications, additions, and changes made for this Apache-based

implementation are presented in this chapter. It first describes the directory structure

organization of the Apache files residing on the XTS-300 platform. It highlights the

changes made to the configuration files that were used to create the Makefiles for the C

language source code compilation. The parameters used in the platform-dependent

configuration C language header file are described. It discusses the major changes to the

C language source code to enable the server to run in a MLS LAN environment. The

phases used to implement the Apache-based server are outlined.

The Apache-based web server was implemented in phases. The first phase

concentrated on getting the server compiled with minimal changes to the base Apache C

language source code. Once the server was compiled, the server was tested on the local

host to ensure it was functioning as expected.

The next phase was to modify the C language source code to allow the server to

communicate through pseudo sockets rather than network sockets. Once these

modifications were finished, the server was tested in a client/server environment in the

MLS LAN to isolate and correct problems.

The final phase was to test the server at different session levels, with different

clients, and with different user personas. Problems arose during this phase that required

modifications to the server configuration file.

33

We begin with a description of the Apache source directories and Makefiles.

A. APACHE SOURCE DIRECTORY STRUCTURE

The Apache-provided files were organized in a hierarchical tree directory

structure. The top-level directory contains files describing basic Apache information,

installation guidance, licensing agreement, and PGP keys for the Apache developers. It

has five subdirectories: cgi-bin, conf, htdocs, icons, and src.

The cgi-bin directory contains sample test cgi-scripts to use if the mod_cgi

module is used.

The conf directory contains sample server configuration files that should be

modified for the target platform.

The htdocs directory contains HTML pages about the Apache server. The Apache

manual is under this directory and contains valuable information to help implement and

configure an Apache-based server. The manual documents are the same documents found

at the Apache web site [Ref. 2].

The icons directory contains image files used with the Apache HTML

documentation and manual.

The src directory contains all the files needed to compile and link the Apache

server. It contains porting instructions, installation and configuration scripts, template

Makefile, and general Readme instruction files. The top-level Makefile resides in this src

directory. There are several subdirectories under the src directory that contain the C

language source code and header files for the Apache server. These subdirectories are ap,

34

helpers, include, lib, main, modules, os, regex, and support. Each of these subdirectories

contain a Makefile that is used to compile the source code in the directory.

The src/ap directory contains source code files that have various Apache system

defined functions that can be used if the target platform does not support a particular

function.

The src/helpers directory contains various scripts that are executed when the top-

level Configure script is executed. These scripts help determine the operating system of

the target platform and various characteristics of that operating system.

The src/include directory contains all of the Apache-provided C language header

files required for the compilation of the Apache server.

The src/lib directory contains a subdirectory, expat-lite that provides source code

used to parse XML files.

The src/main directory contains the core C language source code for the Apache

server. Most of the modifications made for this implementation were to C language

source code files in this directory.

The src/modules directory contains subdirectories of source code for Apache-

provided add-on modules. These subdirectories are example, experimental, extra, proxy,

and standard. The example directory contains example modules to help programmers

with the Apache API and module concept. The experimental directory contains work-in-

progress modules. The extra directory is provided to hold third-party modules. The proxy

directory contains the C language source code for the Apache proxy module. The

35

Standard directory contains the C language source code for the standard Apache-provided

modules.

The src/os directory contains subdirectories that have C language source code

related to a specific operating system. These subdirectories are bs2000, mpeix, netware,

os, os390, tpf, unix, and Win32. The src/os/unix directory was used in this implementation

for the XTS-300 platform.

The src/regex directory provides C language source code to parse regular

expressions (wildcards, ranges, the Unix ~) used in directives in the server configuration

file.

The src/support directory contains example files and scripts that provide support

for operating system functions such as log rotation and starting/stopping the server.

A complete listing of all files under the top-level directory is provided in

Appendix C.

B. MAKEFILE MODIFICATIONS

The Unix "make" program is a software engineering tool. It aids in the

development of large programs by keeping track of which portions of the entire program

have been changed, compiling only those parts that have changed since the last compile.

The make program relies on a file that provides rules and instructions for it to execute.

The default filename for the make file is Makefile. Apache uses this default convention.

The Apache-provided Configure script dynamically builds all of the Makefiles

using the options and parameters defined for the platform in the Configure file. The top

36

level Makefile and all lower level Makefiles are created this way even though template

Makefiles are supplied with the source code. The Apache documentation recommends

modification of the Configure script, rather than manual modification of Makefiles. This

is suggested since there are several Makefiles created for the subdirectories when the

Configure script is executed and using the Configure script ensures that all the Makefiles

have the updated parameters needed for the specific target platform. The top-level

Makefile has calls to lower level Makefiles that are needed to build the Apache-based

server. A complete listing of the top-level Makefile is provided in Appendix G.

C. PHASE ONE

This phase concentrated on compiling, linking, and testing the server on the XTS-

300 platform. The main goal was to get the Apache source compiled and linked, with as

few modifications as necessary, so that it could be executed on the XTS-300 platform.

The initial step in this phase was to determine the version of Apache source code

to implement. This step involved downloading a version, loading it onto the XTS-300,

compiling and linking it, and ensuring that the required tools to support the configuration

of the Apache server were available on the XTS-300 platform.

When this project was first undertaken, the Apache Software Foundation had just

released Apache version 2.03a. This version was downloaded from the Apache Software

Foundation web site and installed on the XTS-300 computer. The documentation for this

version stated that two configuration management tools were needed in support of

building the Apache server. These were "libtool 1.3" and "autoconf 2.13". Each had to be

built and installed on the platform that Apache was to be built on. These two applications

37

are freely available GNU software applications. They were downloaded from the GNU

web site [Ref. 26] and installed on the XTS-300. After some modifications to their

Makefiles (needed for the XTS-300 platform), they were both compiled and linked.

At this point, the first attempt to build Apache was attempted. However, the

Apache configuration file did not seem to recognize the presence of libtool and autoconf.

The Apache documentation was unclear as to where these two tools had to reside in

relation to the source code and configuration file; i.e. in the same directory as the

configuration file, in a bin directory, or as a user-specified full path name within the

server directory structure. Several configuration attempts were tried, but the Apache

configuration script was still unable to recognize that these applications were present on

the system. Rather than play a potentially endless guessing game, an alternative was

chosen.

Documentation for Apache 1.3.12 contains no references to autoconfig or libtool,

so it was decided to try this version of the software. This decision had several additional

advantages. At the time of this port, the 1.3.12 version was the latest stable version of

Apache. The 2.0* versions were being updated almost monthly on the web site with bug

fixes and enhancements. Most of the known bugs in the 1.3.12 version are documented

and fixes are available. Also the 1.3.12 package includes template Makefiles that do not

rely on autoconfig or libtool. The project could concentrate on the Apache server rather

than on tools that the server depended on to be built.

The second step was to use the Apache provided Configure script to create the

platform dependent Makefiles. This script called several other provided scripts. One script

38

checked for location and presence of C language header files on the target system so that

the include statements could be generated in the dynamically created ap_config_auto.h

file.

The first script the Configure script called was the GuessOS script to determine

the operating system to configure for. The GuessOS script used the Unix "uname"

command with different options to try to determine the platform, operating system, and

operating system version number if applicable. Once this information is determined, the

script sets default parameters that the Configure script would use to generate the

Makefiles. The GuessOS script could not interpret the XTS-300 STOP operating system

because it was not a predefined case in the script. To remedy this situation, the following

modifications were added to the GuessOS file:

##############################

ADDED FOR XTS-3 00

##############################

:Stop4.:STOP:*)
echo "${SYSTEM}-xts3 00-stop4.4"; exit'O

##############################

The "SYSTEM" variable is the host name. The line returned from this script for

this implementation is holmes-xts300-stop4.4.

Once the GuessOS script was modified to recognize the XTS-300 STOP operating

system and return this information to the Configure script, the Configure script had to be

modified to use the returned information correctly. The Configure script has many case

statements that switch on the parameters returned from the GuessOS script. These case

39

Statements are used to define and set parameters used in the Makefiles. All of the

Makefiles are generated using this Configure script. The following lines were initially

added to the Configure script file:

##########################

ADDED FOR XTS-3 00

#########################

-xts300-stop4.)
OS='XTS'
CFLAGS="$CFLAGS -g -DXTS -

I/usr2/shifflet/wip/include "
LDFLAGS="$LDFLAGS -lcass -lmw -lsocket -Igen"
LIBS="$LIBS -L/lib -lsocket -lmw -Igen -

L/usr/lib -lcrypt -L/usr2/shifflet/wip/lib -lut_cass -lcass"
RANLIB=true
LN=ln

#########################

The "OS" variable defines the platform the server was built for. The "CFLAGS"

are used as compile options and defines the parameter "XTS". This parameter was used to

isolate added code in the C language source files and headers to distinguish that the code

was added for this implementation. The other variables are basic C language Makefile

parameters used to define specific pathnames and options to use for this platform.

The Configure script also uses the Configuration file to control which add-on

modules should be included and compiled. Execution of the Configure script generates a

generic C language source code file called modules.c. The Configuration file contains

directives for which add-on modules to compile with the Apache server. Modules are

included for compilation by uncommenting the appropriate line corresponding to the

module in the Configuration file. The format of the line is an "AddModule" directive

40

followed by the path/mod_name of object code of the module. The Configure script

would then try to match the mod_name to a C language source file in the directory

specified by path. If the Configure script could not find a matching C language source

file, it would look at the module definitions within the C language source files in the

directory to try to find a match. The Configure script only inspected the first word of the

module definition. Some module definitions had two or three word definitions. When

none of the first-word definitions matched the parameter the Configure script was

searching for, the Configure script assumed that the add-on module could not be found.

This produced an error message when the Configure script was executed. By changing the

Configure script to inspect the entire first line in the module definitions, the parameter

could be matched and no error messages were generated. Two lines were modified in the

Configure script to look at the entire first line of a module. The modified lines with

changes in bold are:

if Is -It $file Configuration.tmpl | line | \

modname='egrep 'Amodule .*;' $modbase.c | line |\

Once these changes were complete, the Configure script could be executed. It

produced the top-level Makefile as well as all subdirectory Makefiles.

The next step was to attempt to compile the unmodified source code. The

compilation depends upon the C language ap_config.h header file that is used to define

platform specific calls, functions, definitions, and parameters. It is also used to undefine

default values predefined for all platforms. Compilation errors were expected on this first

attempt since nothing had been added to this header file for the XTS platform. These

41

errors helped define the platform-dependent parameters and variables required in the C

language header file ap_config.h. The error messages also indicated functions that could

not be found in the system C language libraries and inconsistencies with variables defined

in the system C language header files. After a lot of investigation into the Apache

documentation, the XTS-300 programming manual, and documentation on other projects

that ported applications to the XTS-300, the following list of parameters were added to

the ap_config.h file to specify the "XTS" definitions (A complete final version of all

modifications is provided in Appendix F.):

*

* ADDED FOR XTS

#elif defined(XTS)

#include <sys/types.h>
#include <sys/shm.h>
#include <sys/ipc.h>
#include <setjmp.h>
#include <time.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <signal.h>
#include <sys/signal.h>
#include <stdio.h>
#include <ctype.h>
#include <errno.h>
#include <sys/stat.h>
#define NEED_INITGROUPS /* need groups */
#undef HAVE_MMAP /* do not have mmap() */
#define HAVE_SHMGET /* do support shmget() */
#undef HAVE_GMTOFF /* no gmtoffset function */
#undef HAVE_CRYPT_H /* no crypt.h header file */
#undef HAVE_SYS_RESOURCE_H /* no sys/resource.h header
file */
#undef USE_MMAP_SCOREBOARD /* do not use mmap */
#undef USE_SHMGET_SCOREBOARD /* do not use shmget
scoreboard */

42

#define USE_LONGJMP /* use the long jump functions */
#define USE_FCNTL_SERIALIZED_ACCEPT /* use this option for
fcntlO */
#define NO_MMAP /* do not mmap() */
#define NO_KILLPG /* do not have killpgO */
#define NO_SETSID /* do not have setsidO */
#define NO_USE_SIGACTION /* do not use sigactionO */
#define NO_LINGCLOSE /* do not allow linger close of
connections */
#define NO_GETTIMEOFDAY /* system gettimeofday only wants
one parameter */
#define NEED_DIFFTIME
#define S_ISLNK(mode) 0 /* no symbolic links set to 0
(false) */
typedef int pid_t;

#define lstat stat /* redefine lstat to stat */

#define STDIN_FILENO 0
#define STDOUT_FILENO 1
#define STDERR_FILENO 2
#define SIGCHLD SIGCLD /* redefine SIGCHLD to SIGCHD */

The Mnclude statements define XTS system C language header files to be

included in files when compiled. The parameter "pid_t" had to be type-cast as an integer.

This variable, which describes a process ID on Unix platform, was not defined in any of

the XTS system header files so it had to be created. The other tidefine and #undef

statements are used to indicate if certain functions are available on the underlying

platform or if the server should use functions that are provided as part of the Apache

server source code package. The Apache documentation explains many of these #define

parameters and suggests default values for them. Determination of which parameters that

were ultimately defined or undefined resulted from searching the XTS-300 programming

manual to see if the function was supported by the XTS-300.

43

Once the ap_config.h file was modified another compilation was attempted. There

were far fewer errors this time. The compiler complained about a getpass() function in the

ap_getpass.c file. The function was not properly defined for the XTS platform. A return

data type was not correctly typecast for the XTS system getpass() function. The following

changes in bold were made to the ap_getpass() function in ap_getpass.c:

#if defined (XTS)
(int) pw_got = getpass(prompt);

#else
pw_got = getpass(prompt);

#endif

Another similar complaint was reported with an initgroup() function in util.c file.

The XTS does not support this supplemental group function. The function had a

provision for platforms that do not support this option so the flag was set for the XTS.

The following change in bold was made to the initgroupO function in util.c:

#if defined(QNX) | | defined(MPE) | | defined(BEOS) | |
defined(TPF) || defined(TANDEM) || defined(NETWARE) jj
defined(XTS)

Another modification was associated with the fcntl() system call. The XTS system

function fcntlQ expected a different data type of parameter passed to it than what was

being used in the Apache source code. Two lines were modified in the http_main.c file:

while ((ret = fcntl(lock_fd, F_SETLKW, (int)&lock_it)) < 0
ScSc errno == EINTR) {
while ((ret = fcntl(lock_fd, F_SETLKW, (int)&unlock_it)) < 0
&& errno == EINTR) {

After all of these modifications, the server was compiled and an executable was

created.

44

The server was then tested in a standalone mode. When the server executes, it

reads a server configuration file called httpd.conf whose pathname is passed as an

argument to the program. The server configuration file required several changes to define

attributes specific to the XTS and server directories. The following changes were made to

the server configuration file httpd.conf (A complete listing of the httpd.conf file is

provided in Appendix H):

ServerRoot /usr2/bersack/http

Port 2000

#User nobody-
User bersack
#Group #-1
Group other

ServerAdmin bersack@holmes

ServerName 131.12 0.10.99

DocumentRoot "/usr2/bersack/http/htdocs"

LogLevel debug

The server was now activated as a standalone ServerType listening for traffic to

arrive on port 2000. To communicate with the server, a Telnet session on the local host

was attempted. The problem with this approach was discussed in the Chapter III-C. A

terminal echo program was used instead. This program allowed the user to specify the

port to communicate on and the message to send. Several lines could be sent to the server

before sending the termination sequence: an empty line followed by a CR and LF. The

server responded to each request. If the URL was not correct, an error message was

logged to the error file and an error response message was sent. If the server could service

45

the request, the object was sent to the terminal echo program and displayed. These

experiments showed that the server was working correctly.

D. PHASE TWO

This phase concentrated on making the server communicate through pseudo

sockets, as described in Chapter EL-D, rather than network sockets. This involved

modifications to source code, the ap_config.h header file, the Configure script, and the

server configuration file httpd.conf.

The first step of this phase was to identify and isolate the Apache system read and

write calls that communicated with the network sockets. This proved to be very

challenging. Several debug statements were added to various functions to help track the

flow of the source code. Two functions were finally found in the buff.c source file called

ap_read() and ap_write(). The comments for these functions claimed they were the

lowest level read and write functions, calling the XTS system read() and system write()

functions. The ap_read() and ap_write() functions were modified to use macro

definitions in place of calls to the system read() and write() functions. The macro

definitions are defined in the ap_config.h header file. If the functions were compiled with

the "USE_P_SOCKET" (this definition was added to the Configure script to be added to

all of the Makefiles), the macro definitions would reference the pseudo socket functions.

If this option was not defined for the compilation, the macro definitions would reference

the system-defined functions. This allowed the server to be compiled to use a pseudo

socket or a network socket. The only modification required for this switch is the inclusion

or absence of the definition of the "USE_P_SOCKET" parameter in the Makefiles.

46

The macro definitions were added to the ap_config.h header file. A full listing of the

additions to the ap_config.h header file is provided in Appendix F.

The file http_main.c source file was modified to add the pseudo socket code. It

was also modified to create and open a debug file that was used to help track down

problems.

The final modification to be made in the http_main.c source code file was ensure

the variable used for communication to the network socket referenced the information for

the pseudo socket. This centralized the code and was more efficient than tracking down

all references to the network socket variable and changing it to reference a pseudo socket

variable. A complete listing of modifications in httpjnain.c is provided in Appendix E.

After all modifications and additions were complete, old compiled object code,

libraries, and the executable file were removed from the system using the "clean" option

in the Makefile. This was done to ensure a complete recompiling and linking of all source

code. The server was compiled and linked and an executable file was created.

The server configuration file was modified so that the ServerType was set to inetd.

Also the Trusted Path Server configuration file was modified so that it would activate the

HTTP server.

E. PHASE THREE

The third phase of the server port was the testing phase.

Testing the server uncovered operational problems. The first major concern was

whether the server was correctly and completely transmitting large files. The small files

47

would be completely transferred but large files would not. The buffer size for the Secure

Session Server (SSS) communication was set to transfer data in chunks of 4096 bytes but

did not keep track of how much data had been sent. Since the objects the server could

send were of various size, the server needed to keep track of how much data it had sent to

the SSS and how much it had left to send. The read/write functions that communicated

with the SSS in http_main.c were modified to keep track of the amount of data sent and

the amount of data waiting to be sent.

Even after this modification, all data in the files was not sent completely. Debug

statements were added to the source code to follow the flow of the program. The problem

was tracked to an Apache function that called a platform-dependent system function

called writevQ. The XTS-300 does not support this function. After some research into the

Apache documentation, a #defme parameter called "NO_WRITEV" was discovered. This

parameter needs to be defined if a platform does not support the writev() function. This

definition was added to the ap_config.h file and the server was recompiled. The server

now served the pages completely.

Another problem encountered was with image files. The first inclination was to

blame the image problem on the writev() problem, but once this was corrected the image

files were still not correctly displayed by the client. After much debugging and searching

through Apache handlers and C language source code, the image files on the XTS-300

were determined to be corrupt (see previous chapter). Once new images files were loaded

onto the XTS-300, they were transferred and displayed by the client. The only

modification needed for this problem was good image files.

48

The hardest and most challenging problem was related to the debug file creation.

At times the server would be activated, create the debug file without writing to it, and exit

without servicing the client request. Other times, if the debug file existed, the server

would work properly. Even when the file was created a priori, successful service was hit

and miss. Sometimes the server would service the request and other times it would just

exit. This problem was very frustrating because no errors were being written to the error

log and the information in the debug file gave no clues as to what the problem could be.

The debug log would show that the server would get the request but never respond to it.

After a lot of trial and error, and frustration, the problem was finally isolated to a timing

problem. The SSS was activating the server and immediately signaling that it had data for

the server to read. Sometimes the server was not ready to handle this signal and would

just exit when the signal occurred. Other times it would service the signal but not have

time to respond. To solve the problem, the SSS was modified so that it activated the

server and then waited for the server response that it was ready for data. The code in

http_main.c was modified so that it had time to create and open the debug file, setup the

pseudo socket and then respond that it was ready for data. This solved the hit and miss

service problem as well as the file creation problem.

The same type of behavior was occurring on the close of the connection. The SSS

would close its communication connection with the server before the server could issue

the close-connection response. This resulted in the client waiting for more data to be

transferred from the server. The client had no indication that the data transfer was

49

complete. This was solved by having the SSS inform the client that the connection was to

be closed.

The server now seemed to be working correctly in the MLS LAN environment.

F. PHASE FOUR

The final phase was to try the server at different session levels. The first attempt

to request that the server serve a page at a high classification level resulted in no service.

The error log file could not be created at this level in the current directory it was directed

to write to. As a solution, the server configuration file, httpd.conf, was modified to place

all server write-able files in the /tmp directory on the XTS-300. This directory exists at all

levels. Once this change was made, the server worked at all levels and with different user

personas.

The modjnclude module was added to the server and configured in the server

configuration file to attempt to have the server serve a dynamic web page comprised of

objects at different levels. An HTML file was created that used the include command to

try and include files that were at different classification levels. In theory, the low session

level server should not be able to access the higher level objects and report with an error

message. The higher level server would have access to these lower level objects. The

server responded correctly, serving only objects that the XTS TCB allowed access to. At

the lower level, the high level objects were not included and not sent to the client. At the

higher level, all lower level objects were included and sent to the client. This showed that

the XTS TCB was correctly enforcing the access control policies on the server.

50

The server implementation on the XTS-300 platform in the MLS LAN was now

complete.

G. DOCUMENTATION MODIFICATIONS

The maximum length of a filename on the XTS-300 is twenty-three characters.

While transferring the Apache-provided files from a floppy disk to the XTS-300, some of

the documentation file names were too long for the XTS-300. Thus some files had to be

renamed. The table below shows a list of files that were renamed on the XTS-300

platform.

Original File Name Renamed as
conf/highperformance.conf-dist
htdocs/manual/content-negotiation.html
htdocs/misc/known_client_problems.html

conf/highperf.conf-dist
htdocs/manual/content-neg.html
htdocs/misc/known_problems.html

Table 3 Renamed Apache Files

These files were referenced in the following documentation files:

File Name Referenced (in htdocs/manual/)
content-negotiation.html index.html

new_features_1 _0.html
mod/core.html
mod/mod_autoindex.html
mod/mod_mime.html
mod/mod_negotiation.html
misc/FAQ.html
misc/custom errordocs.html

known_client_problems.html env.html
index.html
misc/compat_notes.html
misc/index.html

Table 4 Documentation Files Referencing Renamed Files

51

These documentation files were modified to reference the renamed files. Note that

the file highperformance.conf.dist is an example file provided to help set up a

configuration file for the server. It was not referenced in any of the documentation files.

52

V. SECURITY CONSIDERATIONS

A. DIRECTORY STRUCTURES AND FILE ACCESS

The Apache Software Foundation Apache Security Tips web site has a lot of

useful information for the basic installation of the Apache server and the web pages it

serves [Ref. 27]. It suggests that all files, directories, and parent directories, on a Unix

system, be owned by root and be write-able by root only. This is also suggested for the

log files and log file directories [Ref. 27]. It is suggested that the server be only

read/write-able by root, thus preventing any user from replacing the executable, but

executable by all. In a MLS LAN environment, it is not practical for the log files to be

restricted this way. The server is activated by the SSS as a user, so the user needs at least

write permission to the log files and read permission for the server configuration files.

Apache-based servers also use .htaccess files to read in user-defined directives.

Users can configure these .htaccess files in their home directories. The user-defined

directives can sometimes add insecure options to the server by overriding directives in the

server configuration file. Directives can be placed in the server configuration file to

prevent the server from using these files thereby preventing Administrative directives to

be overridden and closing the potential security hole.

B. APACHE ADD-ON MODULES

Several of the Apache add-on modules are security related or can contribute to the

overall security of the server. Directives for these modules placed in the server

configuration file can create tighter security restrictions and access. Some of the more

53

common ones are discussed below. A complete listing of Apache provided modules is

provided in Appendix I.

1. mod_access: This module provides access control to directories based on the client

hostname or IP address that is sent in a request header field. Access to the server on

the XTS-300 is currently designed to be through the Trusted Path. This access is

controlled by user identification and authorization and the session level. This module

could be used within a company to provide additional policy granularity to

discriminate among departments. If each department had different subnet addresses,

directories could be allowed or denied access to according to the department subnet

addresses. This module is configured in this implementation using the default values

in the server configuration file. It could be useful in a MLS LAN environment to

provide additional policy granularity.

2. mod_auth, mod_auth_anon, mod_auth_db, mod_auth_dbm, mod_auth_digest,

mod_digest: These modules provide for user authentication using various methods.

With the NPS MLS LAN, the user is already identified and authorized before the

server is started. These modules did not need to be configured in this implementation.

It is recommended that some type of authentication method be used whether through

Apache-provided modules or implementation provided.

3. mod_autoindex: This module provides an automated file listing of a directory on the

server if one is not present. By default, this module looks for an index.html file in the

directory requested by the client. If this file is not present, the server creates a

directory listing of all files in the directory and sends this listing in response to the

54

client's request. This module could be very informational and provide a great amount

of detail about a directory. It could be used in a covert channel. The client could be

searching directories looking for files the server can access. It is recommended that

this module not be configured in a MLS LAN environment.

4. mod_cern_meta: This module allows for CERN metafile semantics. Metafiles are

HTTP headers that can be output in addition to the normal range of headers for each

file accessed. This module can be used to provide a way to send extra information

about a file, such as classification level, in a server response header line. This module

is not configured in this implementation, but could be useful in a MLS LAN

environment to provide additional information about the objects being served.

5. mod_cgi, mod_actions: These modules provide for execution of Common Gateway

Interface (CGI) scripts. The mod_cgi module can be used with the mod_include

module to support server side includes (SSI) that execute cgi-scripts. It has been well

documented that allowing users this capability (i.e. cgi) can very risky and insecure. If

users are allowed to write their own scripts they can introduce many security holes,

allowing crackers to find out information about the server, or even delete and

overwrite files [Ref. 28]. To overcome the security issues, the server should only

provide trusted cgi-scripts and not allow users to create their own [Ref. 29]. There are

several useful web sites that address security issues related to CGI including the

World Wide Web Consortium web site [Ref. 30] and SecurityPortal web site [Ref.

31]. The mod_cgi module is configured in this implementation using the default

values in the server configuration file. The mod_actions module is not configured

55

with this implementation. If these modules are configured in a MLS LAN

environment, it is recommended that the Administrator fully research the security

issues to ensure correct configuration.

6. modjieaders: This module provides for user customizable response headers. This can

be used to provide information about the classification of the object, the session level

of the user or other security related parameters. This module is not configured in this

implementation but could be useful in a MLS LAN environment to provide additional

security related information about the objects the server is serving.

7. mod_include: This module provides a handler for parsing files that include references

to other files within them. It allows the server to dynamically build or add to a web

page before sending it to the client. Using the server side include (SSI) statements in

the web page, the server constructs the document before it is sent to the client. This is

one way the server can handle web pages that contain links to higher levels of

information. If the client is at a low session level and requests a page that has objects

that are at higher levels, the high level objects will not be found and not sent to the

client. Many of the security issues related to CGI are also related to SSI. Another

security concern is the client's possible knowledge of the existence of files at higher

levels. This module is currently configured in this server implementation to show

proof of concept on creating dynamic web pages that contain references to different

levels of classification. The use of SSI demonstrated the enforcement of the security

policies on the server. This module could be useful in a MLS LAN environment to

provide dynamic web pages containing objects at varying classification levels.

56

8. mod_info: This module provides comprehensive information about the server

configuration. It provides information about the server configuration file, modules

built into the server, and log file names. This is a very informational module but

clients should not have access to the information it provides. It is recommended that

this module not be configured in a MLS LAN environment.

9. mod_log_config: This module provides a file logging mechanism. Several log files

are supported including a request log that logs all requests made to the server. The

request log file contains information such as the object being requested and the

requesting client address. These log files, if used, need to be read-protected so clients

can not read them. If users are allowed to read the customized error log, the

information could be invaluable to a hacker as it can reveal problems with the server

configuration and CGI scripts [Ref. 32]. However in this implementation, they need to

be write-able by users to allow the server to write to them. They must also exist at all

levels of classification. This module is not configured in this implementation. The

default error log provided enough information for this implementation and a

customized error log was not configured. Use of a ring mechanism might allow

privileged access to these files while preventing casual access by users. This module

could be useful in a MLS LAN environment to keep track of cgi-scripts and other

objects that clients are requesting or to create custom logs for the server.

10. mod_setenvif: This module is used to set environment variables based on the

attributes of the request. It is used with mod_access to control access based on

information in the client's header lines, i.e. whether the request has been redirected

57

from another untrusted site, information about the browser (secure or insecure). This

module could be used within a company to provide additional policy granularity to

discriminate among departments. This module is not configured in this

implementation but could be useful in a MLS LAN environment to provide additional

policy granularity.

11. mod_speling: This module attempts to correct misspellings of URLs. This module is

also very large and will greatly increase the size of the server. This is not a major

security concern but clients knowing that this module is present, could try guessing

games to see if they can access files on the server that they would otherwise not know

were there. This module is not configured in this implementation and is not

recommended in a MLS LAN environment.

12. mod_status: This module provides information on the server status, activity, and

performance. The client should have no need to know this information. With the

ServerType as inetd, this module is useless. This module is not needed in this

implementation.

13. mod_userdir: This module allows users to have home web pages on the server. This

privilege could lead to security issues if the user has cgi-scripts that others can access

or if the cgi-script is badly written. This module is configured using the default values

in the server configuration file. If this module is configured in a MLS LAN

environment, the security issues related to the module should be investigated.

14. mod_usertrack: This module allows the server to use cookies to track user activity.

The server generates a "cookie", a unique identification number, and sends this
58

cookie to the client who stores the cookie in a file located on its machine. The only

thing the client needs to store is the cookie number and the web server it was received

from. The server stores information about the user (name, credit card number,

preferences) in a log file on the server machine using the cookie as in index and key.

Each time the client/user makes a request to this server, it will include the cookie. The

server will use the cookie as an index into the file to retrieve information specific to

the user. This cookie log file should not be readable by clients because the

information contained in the file could be used by hackers to pose as other users to

gain access to their information. This module is not configured in this

implementation. If this module is configured in a MLS LAN environment, the log file

needs to be created with the correct user access.

15. mod_vhost_alias: This module creates dynamically configured virtual hosts (see

Chapter II-A for an explanation on virtual hosts). This module, like mod-access, could

be used within a company to provide additional policy granularity to discriminate

among departments. This module is not configured in this implementation but could

useful in a MLS LAN environment to provide addition policy granularity.

C. SECURE SOCKET LAYER

Secure Socket Layer (SSL), also known as Transport Layer Security (TLS), is an

encrypted communications protocol used to send information securely across networks. It

is a layer that sits between the web server and the TCP/IP layers, transparently handling

decryption and encryption on secure connections [Ref. 15]. The IETF RFC 2817

discusses using SSL/TLS with HTTP [Ref. 33]. SSL uses the HTTPS protocol ID and

59

listens to port number 443. Incorporating SSL into an Apache-based web server is more

involved than just having the server listen to port 443 for requests. The Apache Software

Foundation has a project called Apache-SSL that outlines the steps for adding SSL into

an Apache-based web server and is described at its web site at www.apache-ssl.org [Ref.

34]. This Apache project describes what needs to be done to make an Apache-based web

server support SSL.

There is also a commercially available third party add-on module, mod_ssl, that

can be used with an Apache-based server. It can be downloaded from the mod_ssl web

site, www.modssl.org [Ref. 35], along with instructions for incorporating it into an

Apache-based server. SSL libraries from OpenSSL [Ref. 36] are also needed to support

both the Apache-SSL software and the mod_ssl software. These can be downloaded from

the OpenSSL web site, www.openssl.org [Ref. 35]. The OpenSSL libraries must be

configured and compiled on the same platform as the Apache-based server. Once

configured and compiled, the Apache-SSL software and/or the mod_ssl software can be

compiled. At one time, the United States also required the RSAREF library for SSL in

order to comply with patent regulations in the United States [Ref. 37]. This patent

regulation has since expired. The RSAREF libraries had to be configured and compiled

before the mod_ssl module could be compiled. The mod_ssl module relies on functions

defined in the OpenSSL libraries. The mod_ssl module actually patches the Apache web

server source code, so mod_ssl can not be built into the Apache server like most of the

other add-on modules. The process is rather detailed and a step-by-step procedure needs

to be followed to correctly obtain an Apache-based server that can support SSL. After the

60

compilation, there are several SSL server directives that need to be configured in the

server configuration file.

Once the Apache-based SSL server has been compiled and configured to listen to

port 443, the job is not complete. The server should have a private key and a signed

certificate from a recognized authority (IETF RFC 2585 discusses public keys and HTTP

[Ref. 38]). These procedures described above are the minimum required to configure SSL

into an Apache-based server. More steps are required if advanced SSL options are being

considered. Incorporating SSL into an Apache-based web server takes time, research,

software resources other than the Apache software, and testing. This undertaking is

beyond the scope of this thesis and is referred as future follow-on work in the next

chapter.

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

VI. CONCLUSIONS AND FUTURE WORK

This chapter provides answers to the questions asked in the first chapter. It

suggests some topics for future work related to this thesis.

A. DISCUSSION

Several questions were posed at the beginning of this thesis questioning the

possibility and ease of implementation of an Apache-based server on a high assurance

multilevel secure platform and the effects it would have on the trustworthiness of this

platform. All of these questions were answered indirectly throughout the thesis. The

overall result is that an Apache-based server was successfully modified to operate on a

high assurance host acting as a server in a MLS LAN.

The structure of the Apache software is designed to support customized ports and

platform specific web servers. The majority of the modifications was limited to a select

few files. These were: two configuration scripts, one C language header file, and two C

language source code files. These centralized changes will allow future Apache upgrades

to be accomplished with relative ease on the XTS-300.

This Apache-based server is constrained by access controls and policies enforced

by the XTS-300 Trusted Computing Base. It causes no adverse side affects to this

environment. The Apache-based server is an application layer protocol server that the

MLS LAN Secure Session Server controls. It should not affect the trustworthiness or

evaluation rating of the XTS-300.

63

B. FUTURE WORK

This thesis can provide many follow-on projects.

The Apache Software Foundation released a new version, 1.3.14, of the Apache

web server just before this thesis was complete. There is also the 2.0 version that requires

the GNU tools autoconf and libtool. Follow-on work could include downloading these

versions and incorporating the changes made for the XTS Apache-based web server. This

will provide the latest version of an Apache-based web server and also the GNU tools.

Another follow on thesis would be to incorporate Secure Socket Layer (SSL) into

the server. This was briefly discussed in Chapter V. Incorporating and testing an SSL

Apache-based server would take considerable time and effort. This effort would provide

an Apache-based server capable of serving https requests. It would also provide a server

that is up to date with current Internet standards and advances. Additional study would be

needed to determine if there are any security advantages to adding SSL for finer grained

policies at the application level.

Follow-on and continued work would be learning and investigating the many

capabilities of an Apache-based web server. The Apache server has many add-on modules

that add great flexibility and capabilities to servers. These were not explored in this thesis

but should be explored in the future to maximize the utility of the server.

A final area of interest would be to continue experiments with server side includes

(SSI) to create dynamic web pages. The use of SSIs was briefly investigated in this

research to show proof of concept.

64

C. CONCLUSIONS

This implementation of an Apache-based server on a high assurance multilevel

platform was a success. The implementation process came with positive and negative

experiences. The Apache-provided code was structured and written in such a way that

modifications could be easily made and incorporated. This was a positive experience

because it allowed the modifications to be centralized in a small amount of code.

Working on the XTS-300 platform without a good debugging tool was difficult and

challenging at times. This was a negative experience that added complications to the

testing of the Apache-based server. However, it also provided a positive experience

because without these complications the underlying timing issue might not have been

noticed and corrected. The overall experience from this thesis was a very positive one,

mostly due to the talented team of professionals that supported and helped with the effort.

65

THIS PAGE INTENTIONALLY LEFT BLANK

66

APPENDIX A: GLOSSARY

Apache A commercially available HTTP web server application written by the
Apache Software Foundation Project.

CGI Common Gateway Interface. A protocol for scripts to gather information
from a user request and respond to it.

Client An application program that establishes connections for the purpose of
sending requests.

COTS Commercial-off-the-shelf

CR Carriage return

DAC Discretionary Access Control. A means of restricting access to objects
based on the identity of subjects and/or groups to which they belong [Ref.
19].

DoD Department of Defense

FTP File Transfer Protocol. The standard protocol of the Internet architecture
for transferring files between hosts [Ref. 39].

GIF Graphical Interchange Format.

GNU A foundation that provides software products and tools.

HTML HyperText Markup Language. A language used to construct World Wide
Web pages [Ref. 39].

HTTP HyperText Transfer Protocol. An application level protocol based on a
request/reply paradigm and used in the World Wide Web [Ref. 39].

IETF Internet Engineering Task Force. A task force responsible for providing
short-term engineering solutions for the Internet [Ref. 39].

Internet The global internet based on the Internet (TCP/IP) architecture, connecting
millions of hosts worldwide [Ref. 39].

IP Internet Protocol. A protocol that provides a connectionless, best-effort
delivery service of datagrams across the Internet [Ref. 39].

JPEG An image in the Joint Photographic Experts Group format [Ref. 39].

LAN Local Area Network. A network based on any physical network
technology that is designed to span distances of up to a few thousand
meters [Ref. 39].

LF Line Feed

MAC Mandatory Access Control. A means of restricting access to objects based
on the sensitivity of the information contained in the objects and the

67

MLS

NPS

RFC

SAK

Server

SMTP

SSS

SSI

SSL

STOP

TCB

TCBE

TCP/IP

TCP

TCSEC

Telnet

TLS

TPS

URI

URL

formal authorization of subjects to access information of such sensitivity
[Ref. 19].

Multilevel Security. The ability of a system to contain information with
different sensitivities that simultaneously permits access by users with
different security clearances and needs-to-know, but prevents users from
obtaining access to information for which they lack authorization [Ref.
40].

Naval Postgraduate School

Request For Comment

Secure Attention Key

The provider of a service in a client/server distributed system [Ref. 39].

Simple Mail Transfer Protocol

Secure Session Server

Server Side Include

Secure Socket Layer. A protocol layer that runs over TCP to provide
authentication and encryption of connections. Also known as Transport
Layer Security (TLS) [Ref. 39].

The Unix-like Operating System used on the Wang XTS-300 platform.

Trusted Computing Base

Trusted Computing Base Extension

Transmission Control Protocol over Internet Protocol

Transmission Control Protocol. Connection-oriented transport protocol of
the Internet architecture. TCP provides a reliable, byte-stream delivery
service [Ref. 39].

Trusted Computer System Evaluation Criteria

Remote terminal protocol of the Internet architecture. Telnet allows you to
interact with a remote system as if your terminal is directly connected to
that machine [Ref. 39].

Transport Layer Security. Also known as Secure Socket Layer.

Trusted Path Server.

Uniform resource identifier. Formatted strings that identify, via name,
location, or any other characteristic, a resource. [Ref. 5] (Defined in IETF
RFC 2396 [Ref. 6].)

Uniform resource locator. Formatted strings that identify the location of
an object. (Defined in IETF RFC 2396 [Ref. 6].)

68

WWW World Wide Web. A hypermedia information service on the Internet [Ref.
39].

XTS-300 A combination of a multilevel secure operating system and a Pentium
based computer.

69

THIS PAGE INTENTIONALLY LEFT BLANK

70

APPENDIX B: APACHE SOFTWARE LICENSE FILE

* The Apache Software License, Version 1.1
*
* Copyright (c) 2000 The Apache Software Foundation. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. The end-user documentation included with the redistribution,
* if any, must include the following acknowledgment:
* "This product includes software developed by the
* Apache Software Foundation (http://www.apache.org/)."
* Alternately, this acknowledgment may appear in the software itself,
* if and wherever such third-party acknowledgments normally appear.
*
* 4. The names "Apache" and "Apache Software Foundation" must
* not be used to endorse or promote products derived from this
* software without prior written permission. For written
* permission, please contact apache@apache.org.
*
* 5. Products derived from this software may not be called "Apache",
* nor may "Apache" appear in their name, without prior written
* permission of the Apache Software Foundation.
*
* THIS SOFTWARE IS PROVIDED >'AS IS'' AND ANY EXPRESSED OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.

*
* This software consists of voluntary contributions made by many
* individuals on behalf of the Apache Software Foundation. For more
* information on the Apache Software Foundation, please see
* <http://www.apache.org/>.
*
* Portions of this software are based upon public domain software
* originally written at the National Center for Supercomputing Applications,
* University of Illinois, Urbana-Champaign.
*/

71

THIS PAGE INTENTIONALLY LEFT BLANK

72

APPENDIX C: DIRECTORY LISTING
This is a complete directory listing of the Apache-based server files on the XTS-

300. The top-level directory is apachelS. Files that were modified for this

implementation are in bold. Files in bold-italics only had debug statements added to

various functions with no changes to the Apache-provided source code.

apachel3/:
ABOUT_APACHE
Announcement
Makefile
Makefile.tmpl
README.configure

apachel3/cgi-bin:
printenv test-cgi

apachel3/conf:
access.conf-dist
access.conf-dist-win
highperf.conf-dist
httpd.conf-dist

apachel3/htdocs:
apa che_pb.g i f
index.html.ca
index.html.cz
index.html.de
index.html.dk
index.html.ee

apachel3/htdocs/manual:
bind.html
cgi_path.html
oonteiit-nego. html
custom-error.html
dns-caveats.html
dso.html
ebcdic.html
env.html
footer.html
handler.html
header.html
images/
index.html
ins tal1-tp f.html

WARNING-NT.TXT
cgi-bin/
conf/
config.layout
config.status*

configure
htdocs/
icons/
install
keys

httpd.conf-dist-win
httpd.conf-dist.nw
magic
mime.types

index.html.en
index.html.es
index.html.fr
index.html.it
index.html.j a.j is
index.html.lu

apachel3/htdocs/manual/images:
custom_errordocs.gif mod_rewrite_figl. fig
home.gif mod_rewrite_figl.gif
index.gif mod_rewrite_fig2.fig

apachel3/htdocs/manual/misc:
API.html
FAQ.html
HTTP_Features.tsv
client_block_api.html
compat_notes.html

footer.html
header.html
howto.html
index.html
known_problems. html

73

license
readme
readme.nt
src/

srm.conf-dist
srm.conf-dist-win

index.html.nl
index.html.po.iso-pl
index.html.pt
index.html.pt-br
index.html.se
manual/

install.html
invoking.html
keepalive.html
license
location.html
man-template.html
misc/
mod/
multilogs.html
netware.html
new_features_l_0•html
new_features_l_l.html
new_features_l_2.html
new_features_l_3.html

process-model.html
readme-tpf.html
search/
sections.html
sourcereorg.html
stopping.html
suexec.html
suexec_l_2.html
unixware.html
upgrading_to_l_3.html
vhosts/
windows.html

mod_rewrite_fig2.gif
sub.gif

perf-hp.html
perf-tuning.html
perf.html
rewriteguide.html
security_tips.html

custom_errordocs.html
descriptors.html
fin_wait_2.html

nopgp.html
perf-bsd44.html
perf-dec.html

apachel3/htdocs/manual/mod:
core. html mod
directive-dict.html mod
directives.html mod.
footer.html mod
header.html mod
index. html mod.
mod_access.html mod.
mod_actions.html mod.
mod_alias.html mod.
mod_asis.html mod.
mo d_au th. h tml mo d.
mod_auth_anon. html mod.
mod_auth_db. html mod.
mod_auth_dbm.html mod.
mod_auth_digest.html mod.
mod_autoindex. html mod.
mod_brows er.html mod.

_cern_meta.html
_cgi.html
.cookies.html
_digest.html
_dir.html
_dld.html
_dll.html
_env.html
_example.html
.expires.html
.headers.html
.irnap.html
_include.html
_info.html
_isapi.html
_log_agent.html
_log_common.html

apachel3/htdocs/manual/search:
manual-index.cgi

apachel3/htdocs/manual/vhosts:
details .html
details_l_2.html
examples.html
fd-limits.html
footer.html

header.html
host.html
index.html
ip-based.html
mass.html

vif-info.html
windoz_keepalive.html

mod_log_config.html
mod_log_referer.html
mod_mime. html
mod_mime_magic.html
mo d_mmap_s tatic.html
mod_negotiation.html
mod_proxy.html
mod_rewrite.html
mod_setenvif.html
mod_so.html
mod_speling.html
mod_status.html
mod_unique_id.html
mod_userdir.html
mod_usertrack.html
mod vhost_alias.html

name-based.html
vhosts-in-depth.html
virtual-host.html

apache13/icons:
a.gif
alert.black.gif
alert.red.gif
apache_pb.gif
back.gif
ball.gray.gif
ball.red.gif
binary.gif
binhex.gif
blank.gif
bomb.gif
boxl.gif
box2.gif
broken.gif
burst.gif
c.gif
comp.blue.gif
comp.gray.gif
compressed.gif
continued.gif

dir.gif
down.gif
dvi.gif
f .gif
folder.gif
folder.open.gif
folder.sec.gif
forward.gif
generic.gif
generic.red.gif
generic.sec.gif
hand.right.gif
hand.up.gif
icon.sheet.gif
imagel.gif
image2.gif
image3.gif
index.gif
layout.gif
left.gif

apachel3/icons/small
README.txt
back.gif
binary.gif
binhex.gif
blank.gif
broken.gif
burst.gif
compl.gif
comp2.gif

compressed.gif
continued.gif
dir.gif
dir2.gif
doc.gif
forward.gif
generic.gif
generic2.gif
generic3.gif

link.gif
movie.gif
p.gif
patch.gif
pdf.gif
pieO.gif
piel.gif
pie2.gif
pie3.gif
pie4.gif
pie5.gif
pie6.gif
pie7.gif
pie8.gif
portal.gif
ps.gif
quill.gif
readme
right.gif
screwl.gif

image.gif
image2.gif
index.gif
key.gif
movie.gif
patch.gif
ps.gif
rainbow.gif
sound.gif

screw2.gif
script.gif
small/
soundl.gif
sound2.gif
sphere1.gif
sphere2.gif
tar.gif
tex.gif
text.gif
transfer.gif
unknown.gif
up.gif
uu.gif
uuencoded.gif
worldl.gif
world2.gif

sound2.gif
tar.gif
text.gif
transfer.gif
unknown.gif
uu.gif

74

apachel3/src:
Apache.dsp
Apache.mak
ApacheCore.def
ApacheCore.dsp
ApacheCore.mak
ApacheCoreOS2.def
ApacheNW.mcp
ApacheNW.mcp.gz
BUILD.NOTES
Configuration
Configuration.1024
Configuration.new
Configuration.tmpl
Configure
Configure.1026

Configure.orig
Makefile
Makefile.config
Makefile.nt
Makefile.tmpl
Makefile_win32. txt
README.EBCDIC
ap/
apachenw.mcp
apaci*
buildmark.c
buildmark.o
changes
helpers/
httpd*

httpd.good*
include/
install
junk
lib/
main/
modules/
modules.c
modules.c.old
modules.o
os/
porting
readme
regex/
support/

apachel3/src/ap:
Makefile
Makefile.tmpl
ap.dsp
ap.mak
ap_base64.c
ap_base64.o
ap_checkpass.c

ap_checkpass.o
ap_cpystrn.c
ap_cpystrn.o
ap_execve.c
ap_execve.o
ap_fnmatch.c
ap_fnmatch.o

ap_getpass.c
ap_getpass.c.orig
ap_getpass.o
ap_md5c.c
ap_md5c.o
ap_shal.c
ap_shal.o

ap_signal.c
ap_signal.o
ap_slack.c
ap_slack.o
ap_snprintf.c
ap_snprintf.o
1ibap.a

apachel3/src/helpers:
CutRule
GuessCodeset
GuessOS
GuessOS.orig
MakeEtags
MakeLint

PrintPath
TestCompile
binbuild.sh
buildinfo.sh
checkheader.sh
dummy.c

find-dbm-lib
findcpp.sh
fmn.sh
fp2rp
getuid.sh
install.sh

mfhead
mkdir.sh
mkshadow.sh
ppl.sh
slo.sh

apachel3/src/include:
alloc.h
ap.h
ap_compat.h
ap_config.h
ap_config.h.bu
ap_config.h.orig
ap_config_auto.h
ap_ctype.h
ap_md5.h
ap_mmn.h
ap_shal.h
buff.h

compat.h
conf.h
explain.h
fnmatch.h
hsregex.h
http_conf_globals.h
http_config.h
http_core.h
http_log.h
http_main.h
http_protocol.h
http_request.h

http_vhost.h
httpd.h
httpd.h.orig
multithread.h
rfcl413.h
scoreboard.h
util_date.h
util_md5.h
util_script.h
util_uri.h

apachel3/src/lib:
Makefile expat-lite/

apachel3/src/lib/expat-lite:
Makefile hashtable.h
Makefile.tmpl hashtable.o
asciitab.h iasciitab.h
changes latinltab.h
dllmain.c libexpat.a
expat.html nametab.h
hashtable.c utf8tab.h

xmldef.h
xmlparse.c
xmlparse.def
xmlparse.dsp
xmlparse.h
xmlparse.mak
xmlparse.o

xmlrole.c
xmlrole.h
xmlrole.o
xmltok.c
xmltok.def
xmltok.dsp
xmltok.h

xmltok.mak
xmltok.o
xmltok_impl.c
xmltok_impl.h
xmltok_ns.c

apachel3/src/main:
Makefile
Makefile.tmpl
alloc.c

http_conf±g.c
http_config.c.orig
http_config.o

http_vhost. c
http_vhost.o
libmain.a

75

alloc.c.orig
alloc. o
buff.c
buff.c.orig
buff.o
gen_test_char*
gen_test_char.c
gen_tes t_char.dsp
gen_tes t_char.mak
gen_test_char.o
gen_uri_delims*
gen_uri_delims.c
gen_uri_delims.dsp
gen_uri_delims.mak
gen_uri_delims.o

http_core.c
http_core.c.orig
http_core.o
http_lo&.c
http_log.c.orig
http_log.o
http_main.c
http_main.c.orig
http_main.o
http_protocol.c
http_protocol.c.orig
http_protocol.o
http_reguest.c
http_request.c.orig
http_reguest.o

apachel3/src/modules:
Makefile experimental/ modules
example/ extra/ proxy/

apachel3/src/modules/example:
Makefile.tmpl mod_example.c readme

apachel3/src/modules/experimental:
Makefile.tmpl mod_auth_digest.c

apachel3/src/modules/extra:
Makefile.tmpl

apachel3/src/modules/proxy:
ApacheModuleProxy.dsp Makefile.tmpl
ApacheModuleProxy.mak mod_proxy.c
Makefile.0S2 mod_proxy.h
Makefile.libdir proxy_cache.c

rfcl413.c
rfcl413.o
test_char.h
uri_delims.h
util.c
util.c.orig
util.o
util_date.c
util_date.o
util_md5.c
util_md5.o
util_script.c
util_script.o
util_uri.c
util uri .o

readme
standard/

mod_mmap_static.c

proxy_connect.c
proxy_ftp.c
proxy_http.c
proxy_util.c

apachel3/src/modules /standard:
Makefile mod_cern_meta.c mod_mime.c
Makefile.0S2 mod_cgi.c mod_mime.0
Makefile.tmpl mod_cgi.0 mod_mime_magic.c
libstandard.a mod_digest.c mod_negotiation.c
mod_access.c mod_dir.c mod_negotiation.o
mod_access.0 mod_dir.o mod_rewrite.c
mod_actions.c mod_env.c mod_rewrite.h
mod_alias.c mod_env.0 mod_setenvif.c
mod_alias.0 mod_expires.c mod_so.c
mod_asis.c mod_headers.c mod_speling.c
mod_asis.0 mod_imap.c mod_status.c
mod_auth.c mod_imap.0 mod_status.o
mod_auth.0 mod_include.c mod_unigue_id.c
mod_auth_anon. c mod_include.0 mod_userdir.c
mod_auth_db.c mod_inf0.c mod_userdir.0
mo d_au th_db.modu1e mod_inf0.0 mod_usertrack.c
mod_auth_dbm.c mod_log_agent.c mod_vhost_alias.c
mod_autoindex. c mod_log_config.c
mod_autoindex 0 mod_log_referer.c

apachel3/src/os:
bs2000/ mpeix/ netware/ os2/

apachel3/src/os/bs2000:
Makefile.tmpl ebcdic.c
bs21ogin.c ebcdic.h

os390/

os-inline.c
os .c

apachel3/src/os/mpeix:
Makefile.tmpl gettimeofday.c os-inline.c

tpf/

os .h

os .h

unix/ win32/

76

dlopen.c mpe_dl_stub.c readme

apachel3/src/os/netware:
Apache.def
ApacheCore.imp
ApacheCoreNW.def
ApacheModuleDigest.def
ApacheModuleExpires.def
ApacheModuleHeaders.def
ApacheModulelnfo.def
ApacheModuleProxy.def

ApacheModuleRewrite.def
ApacheModuleSpeling.def
ApacheModuleStatus.def
getopt.c
getopt.h
main_nlm.c
mod_nlm.c
modules.c

multithread.c
os . c
os.h
precomp.h
test_char.h
uri_delims.h

apachel3/src/os/os2:
Makefile.tmpl os-inline.c

apachel3/src/os/os390:
Makefile.tmpl ebcdic.c
README.os390 ebcdic.h

apachel3/src/os/tpf:
Makefile.tmpl cgetop.c
TPFExport ebcdic.c

apachel3/src/os/tpf/samples:
linkdll.jcl loadset.jcl

apachel3/src/os/unix:
Makefile libos.a
Makefile.tmpl os-aix-dso.c

apachel3/src/os/win32:
ApacheModuleDigest.dsp
ApacheModuleDigest.mak
ApacheModuleExpires.dsp
ApacheModuleExpires.mak
ApacheModuleHeaders.dsp
ApacheModuleHeaders.mak
ApacheModulelnfo.dsp
ApacheModulelnfo.mak
ApacheModuleRewrite.dsp
ApacheModuleRewrite.mak
ApacheModuleSpeling.dsp
ApacheModuleSpeling.mak
ApacheModuleStatus.dsp
ApacheModuleStatus.mak

apachel3/src/os/win32/installer:
apache.iwz installdll/ readme.txt

apachel3/src/os/win32/installer/installdll:
core install.def install.mak
install.c install.dsp test/

apachel3/src/os/win32/installer/installdll/test:
resource.h test.def test.h test.mak
test.c test.dsp test.ico test.re

apachel3/src/regex:
COPYRIGHT engine.ih
Makefile libregex.a
Makefile.tmpl main.c
cclass.h mkh
cname.h readme
debug.c regcomp.c
engine.c regcomp.ih

OS .c os .h util_os2-c

os-inline.c os .h
OS .c xebedic.sh

ebcdic.h os .c samples/
os-inline.c os .h

os-inline.c os.c o
.c os-inline.o os .h

ApacheOS.dsp multithread.c
ApacheOS.mak os.c
MakeModuleMa!< ..cpp os.h
MakeModuleMaJ; ..mak passwd.c
Module.mak.tmpl passwd.h
apache.ico readdir.c
apache.re readdir.h
getopt.c registry.c
getopt.h registry.h
installer/ resource.h
main_win32.c service.c
mod_dll.c service.h
mod_isapi.c util_win32.c
modules.c

regcomp.o regex.mak tests
regerror.c regex2.h utils .h
regerror.ih regexec.c whatsnew
regerror.o regexec.o
regex.3 regfree.c
regex.7 regfree.o
regex.dsp split.c

77

apachel3/src/
Makefile
Makefile.tmpl
ab. 8
ab.c
apachectl
apachectl.8
apxs.8
apxs.pi
dbmmanage
dbmmanage.1
htdigest*
htdigest.1

support:
htdigest.c
htdigest.dsp
htdigest.mak
htdigest.mcp
htdigest .mcp. gz
htdigest.o
htpasswd*
htpasswd.1
htpasswd.c
htpasswd.dsp
htpasswd.mak
htpasswd.mcp

apachel3/src/support/shal:
README.shal convert-shal.pi

htpasswd.mcp.gz
htpasswd.o
httpd.8
httpd.exp
log_server_status
logresolve*
logresolve.8
logresolve.c
logresolve.o
logresolve.pl
phf_abuse_log.cgi
readme

htpasswd-shal.pi

rotatelogs*
rotatelogs.8
rotatelogs.c
rotatelogs.o
shal/
split-logfile
suexec.8
suexec.c
suexec.h

ldif-shal.example

78

APPENDIX D: MODIFICATIONS TO CONFIGURATION FILES
The following additions were made to the GuessOS file:

##############################

ADDED FOR XTS-300

##############################

:stop4.:ST0P:*)
echo "${SYSTEM}-xts3 00-stop4.4"; exit 0

##############################

The following additions were made to the Configure file:

##########################

ADDED FOR XTS-3 00

#########################

-xts300-stop4.)
OS='XTS'
CFLAGS="$CFLAGS -g -DXTS -I/usr2/shifflet/wip/include

DUSE_P_SOCKET"
LDFLAGS="$LDFLAGS -lcass -lmw -lsocket -Igen"
LIBS="$LIBS -L/lib -lsocket -lmw -Igen -L/usr/lib -lcrypt

L/usr2/shifflet/wip/lib -lut_cass -lcass"
RANLIB=true
LN=ln

#########################

79

THIS PAGE INTENTIONALLY LEFT BLANK

80

APPENDIX E: MODIFICATIONS TO SOURCE CODE

All changes and additions are indicated by bold face type.

1. The following changes were made to ap_getpass() function in the

ap_getpass.c file:

#if defined (XTS) /* added for XTS */
(int) pw_got = getpass(prompt) ;

#else
pw_got = getpass(prompt);

#endif /* end add for XTS */

2. The following line was modified in the initgroupO function in the utilc file:

#if defined(QNX) || defined(MPE) || defined(BEOS) || defined(TPF) |

defined(TANDEM) || defined(NETWARE) || defined(XTS) /* mod for XTS */

3. The following two functions, ap_read() and ap_write(), were found to be the

low-level functions that called the XTS system read() and write() functions. They are

defined in the buff.c source file. The changes made allow the functions to communicate

with both pseudo socket and network sockets.

/* the lowest level reading primitive */
static int ap_read(BUFF *fb, void *buf, int nbyte)
{

#ifdef USE_P_SOCKET /* added for XTS */
extern int my_fd;
#endif /* end add for XTS */

int rv;

#ifdef WIN32
if (fb->hFH != INVALID_HANDLE_VALUE) {

if (!ReadFile(fb->hFH,buf,nbyte,&rv,NULL)) {
errno = GetLastError();
rv = -1;

}

81

}
else

#endif
rv = PREAD(fb->fd_in, buf, nbyte); /* mod for XTS */

return rv;

/* the lowest level writing primitive */
static int ap_write(BUFF *fb, const void *buf, int nbyte)
{

#ifdef USE_P_SOCKET /* added for XTS */
extern int my_fd;
#endif /* end add for XTS */

int rv;

#ifdef WIN32
if (fb->hFH != INVALID_HANDLE_VALUE) {

if (!WriteFile(fb->hFH,buf,nbyte,&rv,NULL)) {
errno = GetLastError();
rv = -1;

}
}
else

#endif
#if defined (B_SFIO)

rv = sfwrite(fb->sf_out, buf, nbyte);
#else
#ifdef _OSD_POSIX
/* Sorry, but this is a hack: On BS2000, currently the send() call
* has slightly better performance, and it doesn't have a maximum
* transfer size of 16kB per write. Both write() and writevO
* currently have such a limit and therefore don't work
* too well with MMAP files.
*/

if (fb->flags & B_SOCKET)
rv = send(fb->fd, buf, nbyte, 0);

else
#endif
TMP_OUT_l(tmpf_outbuff, nap_write nbyte [%d] \n", nbyte, tmpf);

rv = PWRITE(fb->fd, buf, nbyte); /* mod for XTS */
#endif

return rv;

4. This following lines of code were added to the beginning of the source code

file httpjnain.c. They define a signal handler and the functions needed to communicate

with the pseudo sockets. It also sets up parameters for the debug file.
82

*

* ADDED FOR XTS
*

#ifdef USE_P_SOCKET
int my_fd;
char tmpf_out[80];
FILE *tmpf = NULL;

// internal functions to handle read with timeout
void handler(int signo)
{
//do nothing, just return
int debug_on = 0;

if (tmpf) {
TMP_OUT_l(tmpf_out,"received signal [%d]\n", signo, tmpf);

}
dbugd(debug_on, "handler(): entered signo = " , signo);

}

/* Wait for input to be available in the PSKT
* Accepts: timeout in seconds
* Returns: 1 if have input, else 0
*/

long server_input_wait (long seconds)
{
long result;
int sel_res;
fd_set rfd, xfd;
struct timeval tmo;
tmo.tv_sec = seconds; tmo.tv_usec = 0;
FD_ZERO (&rfd);
FD_ZERO (&xfd);
FD_SET (my_fd,&rfd);
FD_SET (my_fd,&xfd);
sel_res = pskt_select_cli(my_fd+l,&rfd,0,&xfd,&tmo);
if (FD_ISSET(my_fd,&xfd))
{

result = -1;
}else if (FD_ISSET(my_fd,&rfd))
{

result = sel_res ? 1 : 0;
}else{

result = 0;
}
return result;

}

int psin_with_pause(char *s, int length)
{

// Do a 'zero' delay select,
// just in case data is waiting there
// and we have already gotten the signal
// from the SSS child process

// TMP_OUT_0("in psin_with_pause()\n",tmpf);
long wait_res = server_input_wait(0);

83

if (!wait_res)
{

// Nothing waiting, pause until data is available
// TMP_OUT_0("in psin_with_pause() pausing\n",tmpf);

pause();
}
if (wait_res == -1)
{

// TMP_OUT_0("in psin_with_jpause() returning 0\n",tmpf);
return(0);

}else{
if (errno == EINTR) errno = 0;

// TMP_OUT_0("in psin_with_pause() calling
pskt_read_stop_at_cli()\n", tmpf) ;

int tmp_res = pskt_read_from_cli(my_fd, s, length);
// TMP_OUT_0("in psin_with_pause() pskt_read_stop_at_cli() all
done\n",tmpf);

TMP_OUT_l(tmpf_out,"Read len [%d]\n", tmp_res, tmpf);
return(tmp_res);

}
}
int pbin_with_pause()
{

// Do a 'zero' delay select,
// just in case data is waiting there
// and we have already gotten the signal
// from the SSS child process
long wait_res = server_input_wait(0) ;

if (!wait_res)
{

// Nothing waiting, pause until data is available
pause();

}
if (wait_res == -1)
{

return(0);
}else{

if (errno == EINTR) errno = 0;
return(pskt_read_char_cli(my_fd));

}
}
int pbout_handler(char c)
{

int again =2; // Retry twice after full buffer
int result = 0;
while ((result != EOF) && (result != 1)) {

result = pskt_write_char_svr (my_fd, c) ;
if (!result) {

// The PSKT buffer must be full,
if (!again) {

errno = ENOSPC;
result = EOF;

}else{
// Wait, then try again
poll(NULL, 0, 100); // Use poll to get 0.1 second delay
again--; // decrease remaining chances

}
}

}
84

return result;
}
int psout_handler(char *s, int total_len)
{

int again = 2; // Retry twice after full buffer
int result = 0;
int tmplen = total_len;
char *tmp_s = s;

TMP_OUT_l(tmpf_out,"psout_handler writing [%d]\n", tmplen, tmpf);
while ((result != EOF) && (result != total_len)) {

result = pskt_write_to_svr(my_fd, tmp_s, tmplen);
TMP_OUT_l(tmpf_out,"result is [%d]\n", result, tmpf);

if ([result) {
if (!again) {

errno = ENOSPC;
result = EOF;

}else{
poll(NULL, 0, 100); // Use poll to get 0.1 second delay
again--; // decrease remaining chances

}
}else if (result != tmplen) {

tmplen -= result;
tmp_s += result;
result = 0;
again = 2; // reset remaining chances
poll(NULL, 0, 100); // Use poll to get 0.1 second delay

}else{
// result = strlen(s); //We wrote it all out, return full

size
result = total_len; // We wrote it all out, return full

size
}

}
return result;

}

#endif

5. The following lines were added to the http_main.c source file to setup the

SIGURG signal handler:

*
* ADDED FOR XTS
*

#ifdef SIGURG
signal(SIGURG, timeout);

ftendif

85

6. The following lines were changed in httpjnain.c because the XTS-300 fcntlQ

function expects different data types than those being used:

while ((ret = fcntl(lock_fd, F_SETLKW, (int)&lock_it)) < 0 && errno ==
EINTR) { /* mod for XTS */
while ((ret = fcntl(lock_fd, F_SETLKW, (int)&unlock_it)) < 0 && errno ==
EINTR) { /* mod for XTS */

7. This is the main function call in httpjnain.c. The changes added for this

Apache-based implementation are in bold.

int REALMAIN(int arge, char *argv[])
{

int c ;
int sock_in;
int sock_out;
char * s;

*
* ADDED FOR XTS
*

#ifdef USE_P_SOCKET /* added for XTS */

char tmplogfile[80];
sprintf(tmplogfile, "/tmp/http_log.tmp");
tmpf = fopen(tmplogfile, na+n);
if(tmpf == NULL) {

printf{"failed to open %s\n", tmplogfile);

}
if(chmod(tmplogfile, 438)) {

printf("failed to chmod on %s\n", tmplogfile);

}

// FILE *tmpf2 = freopen(tmplogfile, "a", stdout);

TMP_OUT_0("hello world\n",tmpf);
TMP_OUT_l(tmpf_out,"Started HTTPD pid is [%d]\n", getpidO, tmpf);

#endif // end add for XTS

#ifdef SecureWare
if (set_auth_parameters(arge, argv) < 0)
perror("set_auth_parameters");

if (getluidO < 0)
if (setluid(getuid()) < 0)

perror("setluid");
if (setreuid(0, 0) < 0)
perror("setreuid");

#endif

86

#ifdef SOCKS
SOCKS ini t(argv[0]);

#endif

#ifdef TPF
EBW_AREA input_parms;
ecbptr()->ebrout = PRIMECRAS;
input_parms = * (EBW_AREA *)(&(ecbptr()->ebw000)) ;

#endif

MONCONTROL(0) ;

coiranon_init () ;

if ((s = strrchr(argv[0], PATHSEPARATOR)) != NULL) {
ap_server_argvO = ++s;

}
else {

ap_server_argvO = argv[0];
}

ap_cpystrn(ap_server_root, HTTPD_ROOT, sizeof(ap_server_root));
ap_cpystrn (ap_server_confname, SERVER_CONFIG_FILE,

sizeof(ap_server_confname));

ap_setup_prelinked_modules() ;

while ((c = getopt(argc, argv,
"D:C:c:xXd:f:vVlLR: StTh"

#ifdef DEBUG_SIGSTOP
" Z: "

#endif
)) != -1) {

char **new;
switch (c) {
case 'c':

new = (char **)ap_push_array(ap_server_post_read_config);
*new = ap_pstrdup(pcoiranands, optarg);
break;

case 'C :
new = (char **)ap_push_array(ap_server_pre_read_config);
*new = ap_pstrdup(pcommands, optarg);
break;

case 'D':
new = (char **)ap_push_array(ap_server_config_defines);
*new = ap_pstrdup(pcommands, optarg);
break;

case 'd':
ap_cpystrn(ap_server_root, optarg, sizeof(ap_server_root));
break;

case 'f':
ap_cpystrn(ap_server_confname, optarg,

sizeof(ap_server_confname));
break;

case 'v':
ap_set_version();
printf("Server version: %s\n", ap_get_server_version());
printf("Server built: %s\n", ap_get_server_built());
exit(0);

87

case 'V :
ap_set_version();
show_compile_settings();
exit(O);

case '1':
ap_suexec_enabled = init_suexec();
ap_show_modules();
exit(O);

case 'L':
ap_show_directives();
exit(O);

case 'X':
++one_process; /* Weird debugging mode. */
break;

#ifdef TPF
case 'x':

os_tpf_child(&input_parms.child) ;
set_signals();
break;

#endif
#ifdef DEBUG_SIGSTOP

case 'Z':
raise_sigstop_flags = atoi(optarg);
break;

#endif
#ifdef SHARED_CORE

case 'R':
/* just ignore this option here, because it has only
* effect when SHARED_CORE is used and then it was
* already handled in the Shared Core Bootstrap
* program.
*/

break;
#endif

case 'S':
ap_dump_settings = 1;
break;

case 't':
ap_configtestonly = 1;
ap_docrootcheck = 1;
break;

case 'T':
ap_configtestonly = 1;
ap_docrootcheck = 0;
break;

case 'h':
usage(argv[0]);

case '?':
usage(argv[0]);

}
}

ap_suexec_enabled = init_suexec();
server_conf = ap_read_config(pconf, ptrans, ap_server_confname);

if (ap_configtestonly) {
fprintf(stderr, "Syntax 0K\n");
exit(O);

}
88

if (ap_dump_settings) {
exit(O);

}

child_timeouts = !ap_standalone || one_jprocess;

#ifdef BEOS
/* make sure we're running in single_process mode
one_process = 1;

#endif

Yuck! */

#ifndef TPF
if (ap_standalone) {

ap_open_logs(server_conf, plog);
ap_set_version();
ap_init_modules(pconf, server_conf);
version_locked++;
STANDALONE_MAIN(argc, argv);

}
#else

if (ap_standalone) {
if(!tpf_child) {

memcpy(tpf_server_name, input_parms.parent.servname,
INETD_SERVNAME_LENGTH);

tpf_server_name[INETD_SERVNAME_LENGTH+1] = '\0';
ap_open_logs(server_conf, pconf);

}
ap_set_version();
ap_init_modules(pconf, server_conf);
version_locked++;
if(tpf_child) {

copy_listeners(pconf);
reset_tpf_listeners(&input_parms.child);
server_conf->error_log = NULL;

#ifdef SCOREBOARD_FILE
scoreboard_fd = input_parms.child.scoreboard_fd;
ap_scoreboard_image = &_scoreboard_image;

#else /* must be USE_TPF_SCOREBOARD or USE_SHMGET_SCOREBOARD */
ap_scoreboard_image =

(scoreboard *)input_parms.child.scoreboard_heap;
#endif

}

child_main(input_parms.child.slot) ;
}
else

STANDALONE_MAIN(argc, argv);

#endif
else {

conn_rec *conn;
reguest_rec *r;
struct sockaddr sa_server, sa_client;
BUFF *cio;
NET SIZE T 1;

ap_set_version();
/* Yes this is called twice. */
ap_init_modules(pconf, server_conf);
version_locked++;
ap_open_logs(server_conf, plog);
ap_init_modules(pconf, server_conf);

89

set_group__privs () ;

#ifdef MPE
/* Only try to switch if we're running as MANAGER.SYS */
if (geteuidO == 1 && ap_user_id > 1) {

GETPRIVMODE();
if (setuid(ap_user_id) == -1) {
GETUSERMODE();
ap_log_error(APLOG_MARK, APLOG_ALERT, server_conf,

"setuid: unable to change to uid: %d",
ap_user_id);

exit(1);
}
GETUSERMODE();

}
#else

/* Only try to switch if we're running as root */
if (!geteuid() && setuid(ap_user_id) == -1) {

ap_log_error(APLOG_MARK, APLOG_ALERT, server_conf,
"setuid: unable to change to uid: %ld",
(long) ap_user_id);

exit(1);
}

#endif
if (ap_setjrap(jmpbuffer)) {

exit(O);
}

#ifdef TPF
/* TPF's Internet Daemon passes the incoming socket nbr (inetd mode
only) */

sock_in = sock_out = input_parms.parent.socket;
/* TPF also needs a signal set for alarm in inetd mode */

signal(SIGALRM, alrm_handler);
#elif defined(MPE)
/* HP MPE 5.5 inetd only passes the incoming socket as stdin (fd 0),
whereas HPUX inetd passes the incoming socket as stdin (fd 0) and stdout
(fd 1).

Go figure. SR 5003355016 has been submitted to request that the
existing functionality be documented, and then to enhance the
functionality to be like HPUX. */

sock_in = fileno(stdin);
sock_out = fileno(stdin);

#else
sock_in = fileno(stdin);
sock_out = fileno(stdout);

#endif

*
* ADDED FOR XTS
*

#ifdef USE_P_SOCKET

int shmid, debug_on =1;
int result, pskt_handle;

90

access_ma my_sess_level;
get_current_level (&my_sess_level);

// Find our PSKT, using the PSKT Map DB
result = access_pmap_db();
if (result == PMAP_INITIALIZED)
{

struct passwd *pw;
unsigned long euid;
euid = geteuid ();
if (pw = getpwuid (euid))
{

result = get_pskt_handle(pw->pw_name, my_sess_level,
&pskt_handle);

}else{
TMP_OUT_0("Could NOT acess pw entry\n", tmpf);
exit(1);

}
}else{

TMP_OUT_0("Could NOT access PMAP DB\n", tmpf);
exit(1);

}

if (result == PMAP_FOUND)
{

TMP_OUT_l(tmpf_out,"Using PSKT [%d]\n", pskt_handle, tmpf);
}else{

TMP_OUT_0("Could NOT find PSKT\n", tmpf);
exit(1);

}

// initialize access to the PSKT
result = pskt_attach(pskt_handle);
if (result != PSKT_INITIALIZED)
{

TMP_OUT_0("pskt_attach error\n", tmpf);
exit(l);

}

// find the PSKT connection we are supposed to use
result = pskt_find_connection(getpid(), &my_fd);
if (result != PSKT_FOUND)
{

TMP_OUT_0("pskt_find_connection error\n", tmpf);
exit(l);

}else{
TMP_OUT_l(tmpf_out,"Using PSKT fd [?Sd]\nn, my_fd, tmpf);

}

// make sure we handle signals from the SSS child process
sigset(SIGURG, handler);

// make sure we speed up data transfer with flush calls
/ / pskt_f lush_re<juired () ;

sock_in = my_fd;
sock_out = my_fd;

91

#endif

1 = sizeof(sa_client) ;
if ((GETPEERNAME(sock_in, &sa_client, &1)) < 0) {/* mod for XTS */

/* get peername will fail if the input isn't a socket */
perror("getpeername") ;
memset(&sa_client, '\0', sizeof(sa_client));

}

1 = sizeof(sa_server);
if (GETSOCKNAME(sock_in, &sa_server, &1) < 0) { /* mod for XTS */

perror("getsockname") ;
fprintf(stderr, "Error getting local address\n");
exit(l) ;

}
server_conf->port = ntohs(((struct sockaddr_in *) &sa_server)-

>sin_port);
TMP_0UT_1(tmpf_out,"Server port [%d]\n", server_conf->port, tmpf);
cio = ap_bcreate(ptrans, B_RDWR | B_SOCKET);
cio->fd = sock_out;
cio->fd_in = sock_in;
conn = new_connection(ptrans, server_conf, cio,

(struct sockaddr_in *) &sa_client,
(struct sockaddr_in *) &sa_server, -1);

*
* ADDED FOR XTS

#ifdef USE_P_SOCKET
result = pskt_set_aps_ready(my_fd);
if (result != PSKT_FOUND)
{

TMP_OUT_0("pskt_set_aps_ready error\nn, tmpf);
exit(1);

}
#endif // end add for XTS

while ((r = ap_read_request(conn)) != NULL) {

if (r->status == HTTP_OK)
ap_process_request(r) ;

if (!conn->keepalive || conn->aborted)
break;

ap_destroy_pool(r->pool) ;
}

ap_bclose(cio);
}
exit(0);

92

8. The following code was added to the function child_sub_main() in

http_main.c to define the SIGURG signal handler when the pseudo sockets are not being

used:

#i£ndef USE_P_SOCKET /* added for XTS */
#if defined(SIGURG)

signal(SIGURG, timeout);
#endif
#endif /* end add for XTS */

93

THIS PAGE INTENTIONALLY LEFT BLANK

94

APPENDIX F: MODIFICATIONS TO HEADER FILES
The following lines are the final additions to the C language configuration header

file ap_config.h.

/*************************

* ADDED FOR XTS

#elif defined(XTS)
typedef int pid_t;
#define lstat stat
#include <sys/types.h>
♦include <sys/shm.h>
#include <sys/ipc.h>
#include <setjmp.h>
#include <time.h>
#include <fcntl.h>
#include <sys/socket .h>
♦include <sys/wait.h>
♦include <signal.h>
♦include <sys/signal.h>
♦include <stdio.h>
♦include <ctype.h>
♦include <errno.h>
♦include <sys/stat.h>
♦define NEED_INITGROUPS
♦undef HAVE_MMAP
♦define HAVE_SHMGET
♦undef HAVE_GMT0FF
♦undef HAVE_CRYPT_H
♦undef HAVE_SYS_RESOURCE_H
♦undef USE_MMAP_SCOREBOARD
♦undef USE_SHMGET_SCOREBOARD
♦define USE_LONGJMP
♦define USE_FCNTL_SERIALIZED.
♦define NO_MMAP
♦define N0_KILLPG
♦define NO_SETSID
♦define NO_USE_SIGACTION
♦define N0_LINGCL0SE
connections */
♦define NO_GETTIMEOFDAY
parameter */
♦define NEED_DIFFTIME
♦define S_ISLNK(mode) 0
♦define NO_WRITEV

need groups */
do not have mmap() */

/* do support shmget() */
/* no gmtoffset function */

no crypt.h header file */
no sys/resource.h header file */
do not use mmap */
do not use shmget */
use the long jump functions */

ACCEPT /* use this option for fcntl()
do not have mmap() */
do not have killpgO */
do not have setsid() */
do not use sigactionf) */
do not allow linger of close

/*
/*

/*
/*
/*
/*
/*

/* system gettimeofday only wants one

/* need difftime() */
/* no symbolic links set to 0 (false) */
/* do not use writev() */

♦define HTTPD_R00T "/usr2/bersack/http"
♦define SERVER_CONFIG_FILE
♦undef PLATFORM
♦define PLATFORM "XTS-300"
♦define STDIN_FILEN0 0
♦define STD0UT_FILEN0 1
♦define STDERR_FILEN0 2
♦define SIGCHLD SIGCLD

'/usr2/bersack/http/conf/httpd.conf'

/* redefine SIGCHLD to SIGCHD */

95

// set up stuff for pseudo sockets
#ifndef USE_P_SOCKET // not using pseudo sockets

#define PBIN getc
#define PSIN fgets
#define PREAD read
#define PSIN_RET fgets
#define PBOUT putchar
#define PSOUT fputs
#define PWRITE write
#define PFLUSH fflush
#define PFEOF feof
#define PFERROR ferror
tdefine PCLEARERR clearerr
tdefine PUNGETC ungetc
#define GETPEERNAME getpeername
#define GETSOCKNAME getsockname

#else // pseudo socket definitions
#include "pmap_db.h" //to find our PSKT
#include "pskt.h" //to access our PSKT
#include "util.h" // for check_access
#define PBIN(fd) pbin_with_pause()
#define PSIN(s,n,fd) psin_with_pause(s,n)
#define PREAD(fd,s,n) psin_with_pause(s,n)
#define PSIN_RET(s,n,fd) ((PSIN(s, n, fd)) ? s : NULL)
#define PBOUT(c) pbout_handler (c)
#define PSOUT(s) psout_handler (s,strlen(s))
#define PWRITE{fd,s,n) psout_handler (s,n)
#define PFLUSH(fd) pskt_flush(my_fd);
#define PFEOF(fd) pskt_error(my_fd)
#define PFERROR(fd) pskt_error(my_fd)
#define PCLEARERR(fd) // NOOP
#define PUNGETC(c, fd) pskt_ungetc_cli(my_fd, c)
#define GETPEERNAME(fd,addr,len) pskt_get_peer(my_fd,addr,len)
#define GETSOCKNAME(fd,addr,len) pskt_get_host(my_fd,addr,len)

#define TMP_OUT_0(s,fd) fwrite(s, strlen(s), 1, fd); fflush(fd);
#define TMP_0UT_1(dest,s,al,fd) sprintf(dest, s, al); fwrite(dest,
strlen(dest), 1, fd); fflush(fd);

int psin_with_pause(char *s, int length);
int pbin_with_pause();

#endif

96

APPENDIX G: TOP LEVEL MAKEFILE
This is the listing of the top-level Makefile generated by the Configure script. The

platform specific lines for the XTS are indicated in bold.

Apache Makefile, automatically generated by Configure script.
Hand-edited changes will be lost if the Configure script is re-run.
Sources: - ./Makefile.config (via Configuration)
- ./Makefile.tmpl

MODULES= \
modules/standard/libstandard.a

SUBDIRS=regex os/unix ap main lib modules
SUBTARGET=target_static
SHLIB_SUFFIX_NAME=
SHMOD_SUFFIX_NAME=
SHLIB_SUFFIX_LIST=
SHLIB_EXPORT_FILE S=

Inherited Makefile options from Configure script
(Begin of automatically generated section)

SRCDIR=.
EXTRA_CFLAGS=
EXTRA_LDFLAGS=
EXTRA_LIBS=
EXTRA_INCLUDES=
EXTRA_DEPS=
OSDIR=$(SRCDIR)/os/unix
INCDIR=$(SRCDIR)/include
INCLUDES0=-I$(OSDIR) -I$(INCDIR)
SHELL=/bin/sh
OS=XTS
CC=cc
CPP=cc -E
TARGET=httpd
OPTIM=
CFLAGS1= -g -DXTS -I/usr2/shifflet/wip/include -DUSE_P_SOCKET

-DUSE_HSREGEX -DUSE_EXPAT -1$(SRCDIR)/lib/expat-lite
-DNO_DL_NEEDED

INCLUDES1=
LIBS_SHLIB=
I»DFLAGS1= -lcass -lmw -lsocket -Igen
MFLAGS_STATIC=
REGLIB=regex/1ibregex.a
EXPATLIB=lib/expat-lite/libexpat.a
RANLIB=true
LIBS1= -L/lib -lsocket -lmw -Igen -L/usr/lib -lcrypt

-L/usr2/snifflet/wip/lib -lut_cass -lcass

(End of automatically generated section)

CFLAGS=$(OPTIM) $(CFLAGS1) $(EXTRA_CFLAGS)
LIBS=$(EXTRA_LIBS) $(LIBS1)
INCLUDES=$(INCLUDES1) $(INCLUDESO) $(EXTRA_INCLUDES)
LDFLAGS=$(LDFLAGS1) $(EXTRA_LDFLAGS)

97

OBJS= \
modules.o \
$(MODULES) \
main/libmain.a \
$(OSDIR)/libos.a \
ap/libap.a

.c.o:
$(CC) -c $(INCLUDES) $(CFLAGS) $<

Used to generate import library for OS/2
.SUFFIXES: .def
.def.a:

emximp -o $@ $<

all: Configuration $(TARGET)

Configuration: Configuration.tmpl
©echo "++ File 'Configuration' older than 'Configuration, tmpl', "
©echo "++ or still doesn't exist. Please consider copying

'Configuration.tmpl'"
©echo "++ to 'Configuration', editing and rerunning 'Configure'."
©echo "++ If not, you will at least have to touch 'Configuration'."
©false

$(TARGET) : $(EXTRA_DE PS) $(SUBTARGET)

target_static: subdirs modules.o
$(CC) -c $(INCLUDES) $(CFLAGS) buildmark.c
$(CC) $(CFLAGS) $(LDFLAGS) $(LDFLAGS_SHLIB_EXPORT) \

-o $(TARGET) buildmark.o $(OBJS) $(REGLIB) $(EXPATLIB) $(LIBS)

target_compile_only: subdirs modules.o
${CC) -c $(INCLUDES) $(CFLAGS) buildmark.c

target_shared: $(SHCORE_IMPLIB) $ (SHARED_CORE_EP)
lib$(TARGET).$(SHLIB_SUFFIX_NAME)

$(CC) $(INCLUDES) $(CFLAGS) $(LDFLAGS) $ (LDFLAGS_SHLIB_EXPORT) \
-o $(TARGET) -DSHARED_CORE_BOOTSTRAP main/http_main.c \
ap/libap.a $(LIBS) $(SHCORE_IMPLIB)

lib$(TARGET) .ep : lib$(TARGET) . $(SRLIB_SUFFIX_NAME)
$(CC) $(INCLUDES) $(CFLAGS) $(LDFLAGS) $(LDFLAGS_SHLIB_EXPORT) \

-o lib$ (TARGET) . ep -DSHARED_CORE_TIESTATIC main/http_main. c\
-L. -1$(TARGET) $(LIBS)

lib$(TARGET).$(SHLIB_SUFFIX_NAME): subdirs modules.o
$(CC) -c $(INCLUDES) $(CFLAGS) buildmark.c
$(LD_SHLIB) $(LDFLAGS_SHLIB) -o lib$(TARGET).$(SHLIB_SUFFIX_NAME)

buildmark.o $(OBJS) $(REGLIB) $(EXPATLIB) $ (LD_SHCORE_DEF) $(LD_SHCORE_LIBS)
@if [" .$(SHLIB_SUFFIX_LIST)" != .]; then \

rm -f lib$(TARGET).$(SHLIB_SUFFIX_NAME).*; \
for suffix in $(SHLIB_SUFFIX_LIST) ""; do \

[".$$suffix" = .] && continue; \
echo "In lib$(TARGET).$(SHLIB_SUFFIX_NAME)

lib$(TARGET).$(SHLIB_SUFFIX_NAME).$$suffix"; \
In lib$(TARGET).$(SHLIB_SUFFIX_NAME)

lib$(TARGET) .$(SHLIB_SUFFIX_NAME) .$$suffix; \
done; \

fi

subdirs:
©for i in $(SUBDIRS); do \

echo "===> $(SDP)$$i"; \
case ".$(OS)" in \

98

.OS390 I .TPF) (cd $$i && $ (MAKE) SDP='$(SDP)') || exit 1;; \
*) (cd $$i && $(MAKE) $(MFLAGS_STATIC) SDP='$(SDP)'

CC='$(CC)' AUX_CFLAGS='$(CFLAGS) ' RANLIB= ' $ (RANLIB) ') || exit 1; ; \
esac; \
echo »<=== $(SDP)$$i"; \

done

support: support-dir

support-dir:
@echo "===> $(SDP)support"; \
cd support; $(MAKE) $(MFLAGS_STATIC) SDP='$(SDP)' CC='$(CC)'

AUX_CFLAGS='$(CFLAGS)' RANLIB='$(RANLIB)' || exit 1; \
echo "<=== $(SDP)support"

clean:
-rm -f $(TARGET) lib$(TARGET).* *.o
@for i in $(SUBDIRS); do \

echo "===> $(SDP)$$i"; \
(cd $$i && $(MAKE) $(MFLAGS_STATIC) SDP='$(SDP)' $@) || exit 1;

\
echo "<=== $(SDP)$$i"; \

done

distclean:
-rm -f $(TARGET) lib$(TARGET).* *.o
©for i in $(SUBDIRS); do \

echo "===> $(SDP)$$i"; \
(cd $$i && $(MAKE) $(MFLAGS_STATIC) SDP='$(SDP)' $@) || exit 1;

\
echo "<=== $(SDP)$$i"; \

done
-rm -f include/ap_config_auto.h
-rm -f modules.c
-rm -f modules/Makefile
-rm -f regex/Makefile
-rm -f lib/Makefile
-rm -f Makefile.config
-rm -f Makefile

install:
@echo "++ Sorry, no installation procedure available at this level."
©echo "++ Go to the parent directory for an 'install' target."

We really don't expect end users to use this rule. It works only with
gcc, and rebuilds Makefile.tmpl. You have to re-run Configure after
using it.
depend:

cp Makefile.tmpl Makefile.tmpl.bak \
&& sed -ne '1,/A# DO NOT REMOVE/p' Makefile.tmpl > Makefile.new \
&& gcc -MM $(INCLUDES) $(CFLAGS) *.c » Makefile.new \
&& sed -e 'l,$$s: $(INCDIR)/: $$(INCDIR)/:g' \

-e 'l,$$s: $(OSDIR)/: $$(OSDIR)/:g' Makefile.new \
> Makefile.tmpl \

&& rm Makefile.new
for i in $(SUBDIRS); do \

(cd $$i && $(MAKE) CC='$(CC)' AUX_CFLAGS='$(CFLAGS)'
RANLIB='$(RANLIB)' depend) || exit 1; \

done

#Dependencies

$(OBJS): Makefile subdirs

DO NOT REMOVE
buildmark.o: buildmark.c include/ap_config.h include/ap_mmn.h \

99

include/ap_config_auto.h os/unix/os.h inelüde/ap_ctype.h \
include/hsregex.h include/httpd.h include/alloc.h include/buff.h \
include/ap.h include/util_uri.h

modules.o: modules.c include/httpd.h include/ap_config.h \
include/ap_mmn.h include/ap_config_auto.h os/unix/os.h \
include/ap_ctype.h include/hsregex.h include/alloc.h include/buff.h \
include/ap.h include/util_uri.h include/http_config.h

100

APPENDIX H: SERVER CONFIGURATION FILE
This is the final server configuration file, httpd.conf, used with this

implementation. The changes are in bold.

Based upon the NCSA server configuration files originally by Rob McCool.

This is the main Apache server configuration file. It contains the
configuration directives that give the server its instructions.
See <URL:http://www.apache.org/docs/> for detailed information about
the directives.

Do NOT simply read the instructions in here without understanding
what they do. They're here only as hints or reminders. If you are unsure
consult the online docs. You have been warned.

After this file is processed, the server will look for and process
@@ServerRoot@@/conf/srm.conf and then @@ServerRoot@@/conf/access.conf
unless you have overridden these with ResourceConfig and/or
AccessConfig directives here.

The configuration directives are grouped into three basic sections:
1. Directives that control the operation of the Apache server process as a
whole (the 'global environment').
2. Directives that define the parameters of the 'main' or 'default' server,
which responds to requests that aren't handled by a virtual host.
These directives also provide default values for the settings
of all virtual hosts.
3. Settings for virtual hosts, which allow Web requests to be sent to
different IP addresses or hostnames and have them handled by the
same Apache server process.

Configuration and logfile names: If the filenames you specify for many
of the server's control files begin with "/" (or "drive:/" for Win32), the
server will use that explicit path. If the filenames do *not* begin
with "/", the value of ServerRoot is prepended -- so "logs/foo.log"
with ServerRoot set to "/usr/local/apache" will be interpreted by the
server as "/usr/local/apache/logs/foo.log".

Section 1: Global Environment

The directives in this section affect the overall operation of Apache,
such as the number of concurrent requests it can handle or where it
can find its configuration files.

ServerType is either inetd, or standalone. Inetd mode is only supported on
Unix platforms.

ServerType inetd

ServerRoot: The top of the directory tree under which the server's
configuration, error, and log files are kept.

NOTE! If you intend to place this on an NFS (or otherwise network)
mounted filesystem then please read the LockFile documentation
(available at <URL:http://www.apache.org/docs/mod/core.html#lockfile>);
you will save yourself a lot of trouble.

101

Do NOT add a slash at the end of the directory path.

ServerRoot /usr2/bersack/http

The LockFile directive sets the path to the lockfile used when Apache
is compiled with either USE_FCNTL_SERIALIZED_ACCEPT or
USE_FLOCK_SERIALIZED_ACCEPT. This directive should normally be left at
its default value. The main reason for changing it is if the logs
directory is NFS mounted, since the lockfile MUST BE STORED ON A LOCAL
DISK. The PID of the main server process is automatically appended to
the filename.

#LockFile logs/accept.lock

PidFile: The file in which the server should record its process
identification number when it starts.

PidFile /tmp/httpd.pid

ScoreBoardFile: File used to store internal server process information.
Not all architectures require this. But if yours does (you'll know because
this file will be created when you run Apache) then you *must* ensure that
no two invocations of Apache share the same scoreboard file.

ScoreBoardFile /tmp/apache_runtime_status

In the standard configuration, the server will process this file,
srm.conf, and access.conf in that order. The latter two files are
now distributed empty, as it is recommended that all directives
be kept in a single file for simplicity. The commented-out values
below are the built-in defaults. You can have the server ignore
these files altogether by using "/dev/null" (for Unix) or
"mil" (for Win32) for the arguments to the directives.

#ResourceConfig conf/srm.conf
#AccessConfig conf/access.conf

Timeout: The number of seconds before receives and sends time out.

Timeout 10

KeepAlive: Whether or not to allow persistent connections (more than
one request per connection). Set to "Off" to deactivate.

KeepAlive Off

MaxKeepAliveRequests: The maximum number of requests to allow
during a persistent connection. Set to 0 to allow an unlimited amount.
We recommend you leave this number high, for maximum performance.

MaxKeepAliveRequests 100

KeepAliveTimeout: Number of seconds to wait for the next request from the
same client on the same connection.

KeepAliveTimeout 300

102

Server-pool size regulation. Rather than making you guess how many
server processes you need, Apache dynamically adapts to the load it
sees that is, it tries to maintain enough server processes to
handle the current load, plus a few spare servers to handle transient
load spikes (e.g., multiple simultaneous requests from a single
Netscape browser).

It does this by periodically checking how many servers are waiting
for a request. If there are fewer than MinSpareServers, it creates
a new spare. If there are more than MaxSpareServers, some of the
spares die off. The default values are probably OK for most sites.

MinSpareServers 5
MaxSpareServers 10

Number of servers to start initially should be a reasonable ballpark
figure.

StartServers 0

Limit on total number of servers running, i.e., limit on the number
of clients who can simultaneously connect if this limit is ever
reached, clients will be LOCKED OUT, so it should NOT BE SET TOO LOW.
It is intended mainly as a brake to keep a runaway server from taking
the system with it as it spirals down...

MaxClients 150

MaxRequestsPerChild: the number of requests each child process is
allowed to process before the child dies. The child will exit so
as to avoid problems after prolonged use when Apache (and maybe the
libraries it uses) leak memory or other resources. On most systems, this
isn't really needed, but a few (such as Solaris) do have notable leaks
in the libraries. For these platforms, set to something like 10000
or so; a setting of 0 means unlimited.

NOTE: This value does not include keepalive requests after the initial
request per connection. For example, if a child process handles
an initial request and 10 subsequent "keptalive" requests, it
would only count as 1 request towards this limit.

MaxRequestsPerChild 0

Listen: Allows you to bind Apache to specific IP addresses and/or
ports, in addition to the default. See also the <VirtualHost>
directive.

#Listen 3000
#Listen 12.34.56.78:80

BindAddress: You can support virtual hosts with this option. This directive
is used to tell the server which IP address to listen to. It can either
contain "*", an IP address, or a fully qualified Internet domain name.
See also the <VirtualHost> and Listen directives.

iBindAddress *

103

Dynamic Shared Object (DSO) Support

To be able to use the functionality of a module which was built as a DSO you
have to place corresponding ^LoadModule' lines at this location so the
directives contained in it are actually available _before_ they are used.
Please read the file README.DSO in the Apache 1.3 distribution for more
details about the DSO mechanism and run 'httpd -1' for the list of already
built-in (statically linked and thus always available) modules in your httpd
binary.

Note: The order is which modules are loaded is important. Don't change
the order below without expert advice.

Example:
LoadModule foo_module libexec/mod_foo.so

ExtendedStatus controls whether Apache will generate "full" status
information (ExtendedStatus On) or just basic information (ExtendedStatus
Off) when the "server-status" handler is called. The default is Off.

#ExtendedStatus On

See if we can include the module mod_include
for server side includes
AddModule mod_include

Section 2: 'Main' server configuration

The directives in this section set up the values used by the 'main'
server, which responds to any requests that aren't handled by a
<VirtualHost> definition. These values also provide defaults for
any <VirtualHost> containers you may define later in the file.

All of these directives may appear inside <VirtualHost> containers,
in which case these default settings will be overridden for the
virtual host being defined.

If your ServerType directive (set earlier in the 'Global Environment'
section) is set to "inetd", the next few directives don't have any
effect since their settings are defined by the inetd configuration.
Skip ahead to the ServerAdmin directive.

Port: The port to which the standalone server listens. For
ports < 1023, you will need httpd to be run as root initially.

Port 2000

If you wish httpd to run as a different user or group, you must run
httpd as root initially and it will switch.

User/Group: The name (or #number) of the user/group to run httpd as.
. On SCO (ODT 3) use "User nouser" and "Group nogroup".
. On HPUX you may not be able to use shared memory as nobody, and the
suggested workaround is to create a user www and use that user.
NOTE that some kernels refuse to setgid(Group) or semctl(IPC_SET)
when the value of (unsigned)Group is above 60000;
don't use Group #-1 on these systems!

#User nobody

104

User bersack
#Group #-1
Group other

ServerAdmin: Your address, where problems with the server should be
e-mailed. This address appears on some server-generated pages, such
as error documents.

ServerAdmin bersack@holmes

ServerName allows you to set a host name which is sent back to clients for
your server if it's different than the one the program would get (i.e., use
"www" instead of the host's real name).

Note: You cannot just invent host names and hope they work. The name you
define here must be a valid DNS name for your host. If you don't understand
this, ask your network administrator.
If your host doesn't have a registered DNS name, enter its IP address here.
You will have to access it by its address (e.g., http://123.45.67.89/)
anyway, and this will make redirections work in a sensible way.

ServerName 131.120.10.99

DocumentRoot: The directory out of which you will serve your
documents. By default, all requests are taken from this directory, but
symbolic links and aliases may be used to point to other locations.

DocumentRoot "/usr2/bersack/http/htdocs"

Each directory to which Apache has access, can be configured with respect
to which services and features are allowed and/or disabled in that
directory (and its subdirectories).

First, we configure the "default" to be a very restrictive set of
permissions.

<Directory />

Options FollowSymLinks
AllowOverride None

</Directory>

Note that from this point forward you must specifically allow
particular features to be enabled - so if something's not working as
you might expect, make sure that you have specifically enabled it
below.

This should be changed to whatever you set DocumentRoot to.

<Directory "/usr2/bersack/http/htdocs">

This may also be "None", "All", or any combination of "Indexes",
"Includes", "FollowSymLinks", "ExecCGI", or "MultiViews".

Note that "MultiViews" must be named »explicitly* "Options All"
doesn't give it to you.

Options Indexes FollowSymLinks MultiViews

105

This controls which options the .htaccess files in directories can
override. Can also be "All", or any combination of "Options", "Filelnfo"
"AuthConfig", and "Limit"

AllowOverride None

Controls who can get stuff from this server.

Order allow, deny-
All ow from all

</Directory>

Now changes so server side includes can be used

AddType text/html .shtml
AddHandler server-parsed .shtml

<Directory n/usr2/bersack/http/htdocs/mls_test">
Options +Includes

</Directory^

UserDir: The name of the directory which is appended onto a user's home
directory if a -user request is received.

<IfModule mod_userdir.c>

UserDir public_html
</IfModule>

Control access to UserDir directories. The following is an example
for a site where these directories are restricted to read-only.

#<Directory /home/*/public_html>
AllowOverride Filelnfo AuthConfig Limit
Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec
<Limit GET POST OPTIONS PROPFIND>
Order allow,deny
Allow from all
</Limit>
<LimitExcept GET POST OPTIONS PROPFIND>
Order deny,allow
Deny from all
</LimitExcept>
#</Directory>

DirectoryIndex: Name of the file or files to use as a pre-written HTML
directory index. Separate multiple entries with spaces.

<IfModule mod_dir.c>

Directoryindex index.html
</IfModule>

AccessFileName: The name of the file to look for in each directory
for access control information.

AccessFileName .htaccess

106

The following lines prevent .htaccess files from being viewed by
Web clients. Since .htaccess files often contain authorization
information, access is disallowed for security reasons. Comment
these lines out if you want Web visitors to see the contents of
.htaccess files. If you change the AccessFileName directive above,
be sure to make the corresponding changes here.

Also, folks tend to use names such as .htpasswd for password
files, so this will protect those as well.

<Files ~ ,,/v\.ht">

Order allow,deny
Deny from all

</Files>

CacheNegotiatedDocs: By default, Apache sends "Pragma: no-cache" with each
document that was negotiated on the basis of content. This asks proxy
servers not to cache the document. Uncommenting the following line disables
this behavior, and proxies will be allowed to cache the documents.

#CacheNegotiatedDocs

UseCanonicalName: (new for 1.3) With this setting turned on, whenever
Apache needs to construct a self-referencing URL (a URL that refers back
to the server the response is coming from) it will use ServerName and
Port to form a "canonical" name. With this setting off, Apache will
use the hostname:port that the client supplied, when possible. This
also affects SERVER_NAME and SERVER_PORT in CGI scripts.

UseCanonicalName On

TypesConfig describes where the mime.types file (or equivalent) is
to be found.

<IfModule mod_mime.c>

TypesConfig conf/mime.types
</IfModule>

DefaultType is the default MIME type the server will use for a document
if it cannot otherwise determine one, such as from filename extensions.
If your server contains mostly text or HTML documents, "text/plain" is
a good value. If most of your content is binary, such as applications
or images, you may want to use "application/octet-stream" instead to
keep browsers from trying to display binary files as though they are
text.

DefaultType text/plain

The mod_mime_magic module allows the server to use various hints from the
contents of the file itself to determine its type. The MIMEMagicFile
directive tells the module where the hint definitions are located.
mod_mime_magic is not part of the default server (you have to add
it yourself with a LoadModule [see the DSO paragraph in the 'Global
Environment' section], or recompile the server and include mod_mime_magic
as part of the configuration), so it's enclosed in an <IfModule> container.
This means that the MIMEMagicFile directive will only be processed if the
module is part of the server.

<IfModule mod_mime_magic.c>

MIMEMagicFile conf/magic

107

</IfModule>

HostnameLookups: Log the names of clients or just their IP addresses
e.g., www.apache.org (on) or 204.62.129.132 (off).
The default is off because it'd be overall better for the net if people
had to knowingly turn this feature on, since enabling it means that
each client request will result in AT LEAST one lookup request to the
nameserver.

HostnameLookups Off

ErrorLog: The location of the error log file.
If you do not specify an ErrorLog directive within a <VirtualHost>
container, error messages relating to that virtual host will be
logged here. If you *do* define an error logfile for a <VirtualHost>
container, that host's errors will be logged there and not here.

ErrorLog /tmp/error_log

LogLevel: Control the number of messages logged to the error_log.
Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.

LogLevel debug

. .
The following directives define some format nicknames for use with
a CustomLog directive (see below).

%h %1 %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\'

#LogFormat
combined
#LogFormat "%h %1 %u %t \"%r\" %>s %b" common
#LogFormat "%{Referer}i -> %U" referer
tLogFormat "%{User-agent}i" agent

The location and format of the access logfile (Common Logfile Format).
If you do not define any access logfiles within a <VirtualHost>
container, they will be logged here. Contrariwise, if you *do*
define per-<VirtualHost> access logfiles, transactions will be
logged therein and *not* in this file.

#CustomLog logs/access_log common

If you would like to have agent and referer logfiles, uncomment the
following directives.

#CustomLog logs/referer_log referer
#CustomLog logs/agent_log agent

If you prefer a single logfile with access, agent, and referer information
(Combined Logfile Format) you can use the following directive.

#CustomLog logs/access_log combined

Optionally add a line containing the server version and virtual host
name to server-generated pages (error documents, FTP directory listings,
mod_status and mod_info output etc., but not CGI generated documents).
Set to "EMail" to also include a mailto: link to the ServerAdmin.

108

Set to one of: On | Off | EMail

ServerSignature On

Aliases: Add here as many aliases as you need (with no limit). The format is
Alias fakename realname

<IfModule mod_alias.c>

Note that if you include a trailing / on fakename then the server will
require it to be present in the URL. So "/icons" isn't aliased in this
example, only "/icons/"..

Alias /icons/ "@@ServerRoot@@/icons/"

<Directory "@@ServerRoot@@/icons">
Options Indexes MultiViews
AllowOverride None
Order allow,deny
Allow from all

</Directory>

ScriptAlias: This controls which directories contain server scripts.
ScriptAliases are essentially the same as Aliases, except that
documents in the realname directory are treated as applications and
run by the server when requested rather than as documents sent to the

client.
The same rules about trailing "/" apply to ScriptAlias directives as to
Alias.

ScriptAlias /cgi-bin/ "@@ServerRoot@@/cgi-bin/"

"@@ServerRoot@§/cgi-bin" should be changed to whatever your ScriptAliased
CGI directory exists, if you have that configured.

<Directory "@@ServerRoot@@/cgi-bin">

AllowOverride None
Options None
Order allow,deny
Allow from all

</Directory>

</IfModule>
End of aliases.

Redirect allows you to tell clients about documents which used to exist in
your server's namespace, but do not anymore. This allows you to tell the
clients where to look for the relocated document.
Format: Redirect old-URI new-URL

Directives controlling the display of server-generated directory listings.

<IfModule mod_autoindex.c>

Fancylndexing is whether you want fancy directory indexing or standard

IndexOptions Fancylndexing

109

Addlcon* directives tell the server which icon to show for different
files or filename extensions. These are only displayed for
Fancylndexed directories.

AddlconByEncoding (CMP,/icons/compressed.gif) x-compress x-gzip

AddlconByType (TXT,/icons/text.gif) text/*
AddlconByType (IMG,/icons/image2.gif) image/*
AddlconByType (SND,/icons/sound2.gif) audio/*
AddlconByType (VID,/icons/movie.gif) video/*

Addlcon /icons/binary.gif .bin .exe
Addlcon /icons/binhex.gif .hqx
Addlcon /icons/tar.gif .tar
Addlcon /icons/world2.gif .wrl .wrl.gz .vrml .vrm .iv
Addlcon /icons/compressed.gif .Z .z .tgz .gz .zip
Addlcon /icons/a.gif .ps .ai .eps
Addlcon /icons/layout.gif .html .shtml .htm .pdf
Addlcon /icons/text.gif .txt
Addlcon /icons/c.gif .c
Addlcon /icons/p.gif .pi .py
Addlcon /icons/f.gif .for
Addlcon /icons/dvi.gif .dvi
Addlcon /icons/uuencoded.gif .uu
Addlcon /icons/script.gif .conf .sh .shar .csh .ksh .tcl
Addlcon /icons/tex.gif .tex
Addlcon /icons/bomb.gif core

Addlcon /icons/back.gif ..
Addlcon /icons/hand.right.gif README
Addlcon /icons/folder.gif ^DIRECTORY~~
Addlcon /icons/blank.gif ^BLANKICON^

Defaultlcon is which icon to show for files which do not have an icon
explicitly set.

Defaultlcon /icons/unknown.gif

AddDescription allows you to place a short description after a file in
server-generated indexes. These are only displayed for Fancylndexed
directories.
Format: AddDescription "description" filename

#AddDescription "GZIP compressed document" .gz
#AddDescription "tar archive" .tar
#AddDescription "GZIP compressed tar archive" .tgz

ReadmeName is the name of the README file the server will look for by
default, and append to directory listings.

HeaderName is the name of a file which should be prepended to
directory indexes.

If MultiViews are amongst the Options in effect, the server will
first look for name.html and include it if found. If name.html
doesn't exist, the server will then look for name.txt and include
it as plaintext if found.

ReadmeName README
HeaderName HEADER

110

Indexlgnore is a set of filenames which directory indexing should ignore
and not include in the listing. Shell-style wildcarding is permitted.

Indexlgnore .??* *- *# HEADER* README* RCS CVS *,v *,t

</IfModule>
End of indexing directives.

Document types.

<IfModule mod_mime.c>

AddEncoding allows you to have certain browsers (Mosaic/X 2.1+) uncompress
information on the fly. Note: Not all browsers support this.
Despite the name similarity, the following Add* directives have nothing
to do with the Fancylndexing customization directives above.

AddEncoding x-compress Z
AddEncoding x-gzip gz tgz

AddLanguage allows you to specify the language of a document. You can
then use content negotiation to give a browser a file in a language
it can understand.

Note 1: The suffix does not have to be the same as the language
keyword those with documents in Polish (whose net-standard
language code is pi) may wish to use "AddLanguage pi .po" to
avoid the ambiguity with the common suffix for perl scripts.

Note 2: The example entries below illustrate that in quite
some cases the two character 'Language' abbriviation is not
identical to the two character 'Country' code for its country,
E.g. 'Danmark/dk' versus 'Danish/da'.

Note 3: In the case of 'ltz' we violate the RFC by using a three char
specifier. But there is 'work in progress' to fix this and get
the reference data for rfcl766 cleaned up.

Danish (da) - Dutch (nl) - English (en) - Estonian (ee)
French (fr) - German (de) - Greek-Modern (el)
Italian (it) - Portugese (pt) - Luxembourgeois* (ltz)
Spanish (es) - Swedish (sv) - Catalan (ca) - Czech(cz)
Polish (pi) - Brazilian Portuguese (pt-br) - Japanese (ja)

AddLanguage da .dk
AddLanguage nl .nl
AddLanguage en .en
AddLanguage et .ee
AddLanguage fr .fr
AddLanguage de -de
AddLanguage el .el
AddLanguage it .it
AddLanguage ja .ja
AddCharset ISO-2 022-JP .jis
AddLanguage pi .po
AddCharset ISO-8859-2 .iso-pl
AddLanguage pt .pt
AddLanguage pt-br .pt-br
AddLanguage ltz .lu
AddLanguage ca .ca
AddLanguage es .es
AddLanguage sv .se
AddLanguage cz .cz

111

LanguagePriority allows you to give precedence to some languages
in case of a tie during content negotiation.

Just list the languages in decreasing order of preference. We have
more or less alphabetized them here. You probably want to change this.

<IfModule mod_negotiation.c>

LanguagePriority en da nl et fr de el it ja pi pt pt-br ltz ca es sv
</IfModule>

AddType allows you to tweak mime.types without actually editing it, or to
make certain files to be certain types.

For example, the PHP 3.x module (not part of the Apache distribution - see
http://www.php.net) will typically use:

#AddType application/x-httpd-php3 .php3
#AddType application/x-httpd-php3-source .phps

And for PHP 4.x, use:

#AddType application/x-httpd-php .php
#AddType application/x-httpd-php-source .phps

AddType application/x-tar .tgz

AddHandler allows you to map certain file extensions to "handlers",
actions unrelated to filetype. These can be either built into the server
or added with the Action command (see below)

If you want to use server side includes, or CGI outside
ScriptAliased directories, uncomment the following lines.

To use CGI scripts:

#AddHandler cgi-script .cgi

To use server-parsed HTML files

#AddType text/html .shtml
#AddHandler server-parsed .shtml

Uncomment the following line to enable Apache's send-asis HTTP file
feature

#AddHandler send-as-is asis

If you wish to use server-parsed imagemap files, use

#AddHandler imap-file map

To enable type maps, you might want to use

#AddHandler type-map var

</IfModule>
End of document types.

112

Action lets you define media types that will execute a script whenever
a matching file is called. This eliminates the need for repeated URL
pathnames for oft-used CGI file processors.
Format: Action media/type /cgi-script/location
Format: Action handler-name /cgi-script/location

MetaDir: specifies the name of the directory in which Apache can find
meta information files. These files contain additional HTTP headers
to include when sending the document

#MetaDir .web

MetaSuffix: specifies the file name suffix for the file containing the
meta information.

tMetaSuffix .meta

Customizable error response (Apache style)
these come in three flavors

1) plain text
#ErrorDocument 500 "The server made a boo boo.
n.b. the (") marks it as text, it does not get output

2) local redirects
#ErrorDocument 404 /missing.html
to redirect to local URL /missing.html
#ErrorDocument 404 /cgi-bin/missing_handler.pi
N.B.: You can redirect to a script or a document using server-side-includes.

3) external redirects
fErrorDocument 402 http://some.other_server.com/subscription_info.html
N.B.: Many of the environment variables associated with the original
request will *not* be available to such a script.

Customize behaviour based on the browser

<IfModule mod_setenvif.c>

The following directives modify normal HTTP response behavior.
The first directive disables keepalive for Netscape 2.x and browsers that
spoof it. There are known problems with these browser implementations.
The second directive is for Microsoft Internet Explorer 4. 0b2
which has a broken HTTP/1.1 implementation and does not properly
support keepalive when it is used on 301 or 302 (redirect) responses.

BrowserMatch "Mozilla/2" nokeepalive
BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-1.0

The following directive disables HTTP/1.1 responses to browsers which
are in violation of the HTTP/1.0 spec by not being able to grok a
basic 1.1 response.

BrowserMatch "RealPlayer 4\.0" force-response-1.0
BrowserMatch "Java/1\.0" force-response-1.0
BrowserMatch "JDK/1\.0" force-response-1.0

</IfModule>

113

Allow server status reports, with the URL of http://servername/server-status
Change the ".your_domain.com" to match your domain to enable.

#<Location /server-status>
SetHandler server-status
Order deny,allow
Deny from all
Allow from .your_domain.com
#</Location>

Allow remote server configuration reports, with the URL of
http://servername/server-info (requires that mod_info.c be loaded).
Change the ".your_domain.com" to match your domain to enable.

#<Location /server-info>
SetHandler server-info
Order deny,allow
Deny from all
Allow from .your_domain.com
#</Location>

There have been reports of people trying to abuse an old bug from pre-1.1
days. This bug involved a CGI script distributed as a part of Apache.
By uncommenting these lines you can redirect these attacks to a logging
script on phf.apache.org. Or, you can record them yourself, using the script
support/phf_abuse_log.cgi.

#<Location /cgi-bin/phf*>
Deny from all
ErrorDocument 403 http://phf.apache.org/phf_abuse_log.cgi
#</Location>

Proxy Server directives. Uncomment the following lines to
enable the proxy server:

#<IfModule mod_proxy.c>

#ProxyRequests On

#<Directory proxy:*>
Order deny,allow
Deny from all
Allow from .your_domain.com
#</Directory>

Enable/disable the handling of HTTP/1.1 "Via:" headers.
("Full" adds the server version; "Block" removes all outgoing Via:

headers)
Set to one of: Off | On | Full | Block

#ProxyVia On

To enable the cache as well, edit and uncomment the following lines:
(no cacheing without CacheRoot)

#CacheRoot "@@ServerRoot@@/proxy"
#CacheSize 5
#CacheGcInterval 4
#CacheMaxExpire 24
#CacheLastModifiedFactor 0.1
#CacheDefaultExpire 1

114

#NoCache a_domain.com another_domain.edu joes.garage_sale.com

#</IfModule>
End of proxy directives.

Section 3: Virtual Hosts

VirtualHost: If you want to maintain multiple domains/hostnames on your
machine you can setup VirtualHost containers for them.
Please see the documentation at <URL:http://www.apache.org/docs/vhosts/>
for further details before you try to setup virtual hosts.
You may use the command line option '-S' to verify your virtual host
configuration.

If you want to use name-based virtual hosts you need to define at
least one IP address (and port number) for them.

#NameVirtualHost 12.34.56.78:80
#NameVirtualHost 12.34.56.78

VirtualHost example:
Almost any Apache directive may go into a VirtualHost container.

#<VirtualHost ip.address.of.host.some_domain.com>
ServerAdmin webmaster@host.some_domain.com
DocumentRoot /www/docs/host.some_domain.com
ServerName host.some_domain.com
ErrorLog logs/host.some_domain.com-error_log
CustomLog logs/host.some_domain.com-access_log common
#</VirtualHost>

#<VirtualHost _default_:*>
#</VirtualHost>

115

THIS PAGE INTENTIONALLY LEFT BLANK

116

APPENDIX I: APACHE MODULES

Apache Add-On Modules

Module Name Type Description Security
Related

mod_access Access Control Provides access control based on
client hostname or IP address

Y

mod_actions Dynamic Content Provides for executing CGI
scripts based on media type or
request method. Module lets you
run CGI scripts whenever a file
of a certain type is requested.
This makes it much easier to
execute scripts that process files

Y

mod_alias URL mapping Provides for mapping different
parts of the host filesystem in the
document tree, and for URL
redirection

N

mod_asis HTTP response Provides for .asis files. Any
document with mime type
httpd/send-as-is will be
processed by this module. Allow
file types to be defined such that
Apache sends them without
adding HTTP headers

N

mod_auth Access Control Provides for user authentication
using textual files

Y

mod_auth_anon Access Control Allows "anonymous" user access
to authenticated areas

Y

mod_auth_db Access Control For user authentication using
Berkeley DB files

Y

mod_auth_dbm Access Control Provides for user authentication
using DBM files

Y

mod_auth_digest Access Control Provides for user authentication
using MD5 Digest
Authentication

Y

mod_autoindex Directory Handling Provides for automatic directory
indexing

Y

mod browser Obsolete Obsolete in 1.3.*
mod_cern_meta HTTP response Provides for CERN httpd

metafile semantics; meta
information is descriptive
information contained in the file

Y

117

mod_cgi Dynamic Content Provides for execution of
Common Gateway Interface
(CGI) scripts

Y

mod cookies Obsolete Obsolete in 1.3.*
mod_digest Access Control Provides for user authentication

using MD5 Digest
Authentication

Y

mod_dir Directory Handling Provides for "trailing slash"
redirects and serving directory
index files

N

mod did Obsolete Obsolete in 1.3.*
mod dll Obsolete Obsolete in 1.3.*
mod_env Environment Provides for passing

environment variables to
CGI/SSI scripts

Y

mod_example Development Provides example code for
writing user defined modules

N

mod_expires HTTP response Provides for generation of
Expires HTTP headers (refers to
document validity and
persistence

N

mod_headers HTTP response Provides for customization of
user headers

Y

mod_imap Misc. Processes *.map files, imagemap
files

N

mod_include Dynamic Content Provides a handler for parsing
files before they are sent to the
client

Y

mod_info Internal Content Provides for comprehensive
server configuration

Y

mod_isapi Dynamic Content Implements Internet Server extension API
for Windows

mod log agent Obsolete Obsolete in 1.3.*
mod log common Obsolete Obsolete in 1.3.*
mod_log_config Logging Provides for logging of requests

made to the server
Y

mod_log_referer Obsolete Obsolete in 1.3.*
mod_mime Content type Provides for determining types of

files from the filename
(determine meta information
about documents)

N

mod_mime_magic Content type Provides for determining the
MIME type of a file, like the file

N

118

command in UNIX

mod_mmap_static Misc. Provides mmappingO of a
statically configured list of
frequently requested but not
changed files (experimental)

N

mod_negotiation Content type Provides for content negotiation,
selection of the document that
best matches the clients
capabilities

N

mod_proxy Misc. Implements a proxy/cache for
Apache

Y

mod_rewrite URL mapping Provides a rule-based rewriting
engine to rewrite requested
URLs on the fly

N

mod_setenvif Environment Provides the ability to set
environment variables based
upon attributes of the request

Y

mod_so Misc. Provides for loading of
executable code and modules
into the server at start-up or
restart time (experimental)

N

mod_speling URL mapping Attempts to correct misspellings
of URLs

Y

mod_status Internal Content Provides information on server
status, activity, and performance

Y

mod_userdir URL mapping Provides for user specific
directories, allows users to home
web pages

Y

mod_usertrack Logging Uses cookies to provide for a
clickstream log of user activity
on a site

Y

mod_vhost_alias URL mapping Creates dynamically configured
virtual hosts by allowing the IP
address and/or Host: header of
the HTTP request to be used as
part of the pathname to
determine what files to serve

Y

119

THIS PAGE INTENTIONALLY LEFT BLANK

120

LIST OF REFERENCES

1. Apache Software Foundation, "Apache Project", http://httpd.apache.org

2. The Apache Software Foundation, "About the Apache HTTP Server Project",
http://www.apache.org/ABOUT_APACHE.html, February 1999.

3. Wang Government Services, Inc., 7900 Westpark Drive, McLean, VA 22102,
XTS-300 User's Manual, STOP 4.4.2 Version, March 1998.

4. World Wide Web Consortium, "HTTP - HyperText Transfer Protocol",
http://www.w3c.org/Protocols/Overview.html, v 1.186 2000/07/06.

5. Fielding, R., Gettys, J., Mogul, J.C., Frystyk, H, Masinter, L., Leach, P., and
Berners-Lee, T., "HyperText Transfer Protocol - HTTP/1.1", Internet Engineering
Task Force Request For Comment 2616, June 1999,
http://www.ietf.org/rfc/rfc2616.txt

6. Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifiers
(URI): Generic Syntax", Internet Engineering Task Force Request For Comment
2396, January 1997, http://www.ietf.org/rfc/rfc2396.txt

7. Berners-Lee, T., Fielding, R., and Frystyk, H, "HyperText Transfer Protocol -
HTTP/1.0", Internet Engineering Task Force Request For Comment 1945, May
1996, http://www.ietf.org/rfc/rfcl945.txt

8. Fielding, R., Gettys, J., Mogul, J.C., Frystyk, H, and Berners-Lee, T., "HyperText
Transfer Protocol - HTTP/1.1", Internet Engineering Task Force Request For
Comment 2068, January 1997, http://www.ietf.org/rfc/rfc2068.txt

9. Fielding, R., Gettys, J., Mogul, J.C., Frystyk, H, and Berners-Lee, T., "Use and
Interpretation of HTTP Version Numbers", Internet Engineering Task Force
Request For Comment 2145, May 1997, http://www.ietf.org/rfc/rfc2145.txt

10. Holtman, K., Mutz, A. "Transparent Content Negotiation in HTTP", Internet
Engineering Task Force Request For Comment 2295, March 1998,
http://www.ietf.org/rfc/rfc2295.txt

11. Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A.,
and Stewart, L., "HTTP Authentication: Basic and Digest Access Authentication",
Internet Engineering Task Force Request For Comment 2617, June 1999,
http://www.ietf.org/rfc/rfc2617.txt

121

12. World Wide Web Consortium, "HTTP Activity Statement",
http://www.w3.org/Protocols/Activity.html, October 2000.

13. Fielding, R., Gettys, J., Mogul, J.C., Frystyk, H., Masinter, L., Leach, P., and
Berners-Lee, T., "HyperText Transfer Protocol - HTTP/1.1", Internet Engineering
Task Force Request For Comment 2616, June 1999,
http://www.ietf.org/rfc/rfc2616.txt, Section 14.23.

14. Xie, Geoffrey, "CS4550 Computer Networks II - Summer 2000 Lecture Notes",
Naval Postgraduate School, Monterey, CA, Summer 2000.

15. Wainwright, Peter, Professional Apache, Wrox Press Ltd., 1999.

16. Wang Government Services, Inc., 7900 Westpark Drive, McLean, VA 22102,
"XTS-300 Release 4.4.2", http://www.radium.ncsc.mil/tpep/epl/entries/CSC-EPL-
92-003-D.html, March 31,1998.

17. Bell, D. E., and LaPadula, L., Secure Computer Systems: mathematical
Foundations and Model, M74-244, MITRE Corp., Bedford, MA, 1973.

18. Biba, K. J., Integrity Considerations for Secure Computer Systems, ESD-TR-76-
372, MITRE Corp., 1977.

19. Department of Defense Trusted Computer System Evaluation Criteria, DoD
5200.28-STD, December 1985.

20. Irvine, C. E., Anderson, J., Robb, D. A., and Hackerson, J., "High Assurance
Multilevel Services for Off-the-Shelf Workstation Applications", Proceedings of
the National Information Systems Security Conference, Crystal City, VA, pp. 421-
431, October 1998.

21. Irvine, C. E., Levin, T., Wilson, J. D., Shifflet, D., and Pereira, B., "A Case Study
in Security Requirements Engineering for a High Assurance System", to appear in
Proceedings of the Symposium on Requirements Engineering for Information
Security, March 2001.

22. Wilson, James D., A Trusted Connection Framework for Multilevel Secure Local
Area Networks, Naval Postgraduate School Master's Thesis, Monterey, CA, June
2000.

23. Balmer, Steven R., Framework for a High-Assurance Security Extension to
Commercial Network Clients, Naval Postgraduate School Master's Thesis,
Monterey, CA, September 1999.

122

24. Bryer-Joyner, Susan, and Heller, Scott, D., Secure Local Area Network Services
For A High Assurance Multilevel Network, Naval Postgraduate School Master's
Thesis, Monterey, CA, March 1999.

25. Laurie, Ben, and Laurie, Peter, Apache: The Definitive Guide, Second Edition,
O'Reilly & Associates, 1999, page 67.

26. The GNU Project Web Site page, http://www.gnu.org

27. The Apache Software Foundation, "Apache HTTP Server: Security Tips",
http ://ww w. apache. org/docs/misc/security_tips .html

28. Wainwright, Peter, Professional Apache, Wrox Press Ltd., 1999, page 391.

29. Wainwright, Peter, Professional Apache, Wrox Press Ltd., 1999, page 212.

30. World Wide Web Consortium, "The Word Wise Web Security FAQ",
http://www.w3c.org/security/faq/www-security-faq.html

31. SecurityPortal, The Focal Point for Security on the Net,
http ://w w w. securityportal .com

32. Wainwright, Peter, Professional Apache, Wrox Press Ltd., 1999, page 308

33. Khare, R., and Lawrence, S., "Upgrading to TLS Within HTTP/1.1", Internet
Engineering Task Force Request For Comment 2817, May 2000,
http://www.ieft.org/rfc/rfc2817.txt

34. Apache - SSL, "Apache Secured by SSL", http://ww.apache-ssl.org

35. "mod_ssl, The Apache Interface to OpenSSL", http://www.modssl.org

36. OpenSSL, http://ww.openssl.org

37. Wainwright, Peter, Professional Apache, Wrox Press Ltd., 1999, page 359.

38. Housley, R., K., and Hoffman, P., "Internet X.509 Public Key Infrastructure
Operational Protocols: FTP and HTTP", Internet Engineering Task Force Request
For Comment 2585, May 1999, http://www.ietf.org/rfc/rfc2585.txt

39. Peterson, Larry L., and Davie, Bruce S., Computer Networks, A Systems
Approach, 2e, Academic Press, 2000, pages 673-698.

123

40. Eads, Bradley, Developing A High Assurance Multilevel Mail Server, Naval
Postgraduate School Master's Thesis, Monterey, CA, March 1999.

124

INITIAL DISTRIBUTION LIST

1. Defen se Technical Informati on Center
8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Dr. Cynthia E. Irvine
Computer Science Department Code CS/Ic
Naval Postgraduate School
Monterey, CA 93943-5000

Dr. Geoffrey Xie
Computer Science Department Code CS/Xg
Naval Postgraduate School
Monterey, CA 93943-5000

Mr. James P. Anderson
James P. Anderson Company
Box 42
Fort Washington, PA 19034

7. Mr. David Shifflet
Computer Science Department Code CS
Naval Postgraduate School
Monterey, CA 93943-5000

Ms. Evelyn L. Bersack.
3525 E. Cuervo Lane
Yuma, AZ 85365

125

9. Carl Siel
Space and Naval Warfare Systems Command
PMW161
Building OT-1, Room 1024
4301 Pacific Highway
San Diego, CA 92110-3127

10. Commander, Naval Security Group Command
Naval Security Group Headquarters
9800 Savage Road
Suite 6585
Fort Meade, MD 20755-6585

11. Ms. Deborah M. Cooper
Deborah M. Cooper Company
P.O. Box 17753
Arlington, VA 22216

12. Ms. Louise Davidson
N643
Presidential Tower 1
2511 South Jefferson Davis Highway
Arlington, VA 22202

13. Mr. William Dawson
Community CIO Office
Washington DC 20505

14. Capt. James Newman
N64
Presidential Tower 1
2511 South Jefferson Davis Highway
Arlington, VA 22202

15. Mr. James Knoke
Wang Government Services Inc.
7900 Westport Dr.
McClean, VA 22102-4299

16. Mr. Michael Focke
Wang Government Services Inc.
7900 Westport Dr.
McClean, VA 22102-4299

126

