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SUMMARY 

Cracks that form in aircraft engine turbine blades, disks, vanes, and rotors under high 

frequency vibrational loads during flights have caused many Class A incidents (loss of aircraft) in 

the USAF fighter fleet. These high-cycle fatigue failures are responsible for unacceptable loss of 

life, costly redesigns and retrofits, and huge maintenance costs. More important, high-cycle 

fatigue failures result in grounding of the fleet for days to weeks. The USAF has identified high- 

cycle fatigue as the primary air readiness problem. 

The high-cycle fatigue problem exists because the load spectrum experienced by engine 

components is not known. In the damage tolerance philosophy used to manage aircraft engine 

integrity, this means crack growth rates cannot be adequately predicted, which means components 

cannot be reliably designed and inspection intervals cannot be set with confidence. 

Thus, a way is needed to determine the load history of in-service components. The load 

spectra deduced by finite element analysis of engine vibration characteristics are not pertinent 

because of aberrations from mission uniqueness, unforeseen pilot maneuvers, wind gusts, and the 

like. Pilot reports are subjective and on-board sensors are not usually fielded. A possible solution 

is to extract load spectra information from the markings on the crack surfaces. This seedling 

program investigated whether parameters of the fatigue load could be obtained by analyzing the 

crack face topography. 

We obtained laboratory specimens of Ti-6AMV that had ^:en tested to failure under 

prescribed fatigue loading conditions and selected areas of the fracture surfaces that had been 

produced at various values of K^, stress range, and stress ratio—the three important load 

parameters for fatigue. Using a confocal optics microscope, we made topographic maps of these 

areas and analyzed the topographs with Fourier and wavelet techniques. 

The energy power spectral density (EPSD) curves from the Fourier analysis showed clear 

systematic variations with AK, stress ratio, and hence K^. The curves varied in height with AK; 

the shape of the curves varied with stress ratio. For any given wavelength between 0.5 and 10 |im, 

a linear relationship existed between the square root of EPSD and AK. Moreover, a stress ratio of 

0.8 produced a linear EPSD curve in this wavelength range, whereas a stress ratio of 0.1 produced 

a concave shape. 

IV 



These results show that load parameter information is encrypted in the roughness details of 

the fracture surfaces. Wavelet results confirmed these findings, but were less definitive because the 

fracture areas examined were small relative to the grain size of the alloy and because of noise in the 

elevation data. Nevertheless, the Fourier results reveal the opportunity, when fully explored and 

properly analyzed, to determine quantitative load spectra parameters from the fracture surface 

topography. 

We then examined an aircraft component that had acquired a crack during service to 

determine if the load history that caused the crack could be identified. The topographies of areas 

along the crack growth direction were characterized, then analyzed with the Fourier method. The 

EPSD curves from the components were interpreted, using the results from the laboratory 

specimens to estimate quantitatively the load conditions responsible for the failure and their 

variation with crack depth. Strictly from the fracture surface elevation data, we determined that the 

crack grew to a length of 1.5 mm under rather constant AK level of about 5 MPaVm after 

initiating at a higher value. At this crack depth, the AK increased strongly and linearly to 

10 MPaVm in the next millimeter of crack advance. We further estimated that the stress ratio was 

about 0.8. 

Thus, a route has been demonstrated for extracting load information from fracture surfaces. 

The next steps are to develop topography characterization techniques capable of resolving finer 

fracture surface features, develop size scaling procedures for roughness features ranging from 

nanometers to millimeters, develop wavelet analysis techniques to obtain fracture-site-specific 

signals, and develop a computational model of microstructural deformation and microfailure. The 

resulting technology will enable load conditions and crack evolution kinetics to be extracted from 

the fracture surfaces of a failed part and will constitute a leapfrog advance in the state of practice of 

failure analysis. 
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INTRODUCTION 

Fractography, the art of interpreting markings on fracture surfaces to deduce how and why 

a failure occurred, is an important aspect of many failure investigations.1 Fractography is often 

relied on to determine whether the material was defective, the component design was inadequate, 

or the allowable operating conditions were exceeded. Hence, fractography implicates wha* was 

responsible for the failure and provides the basis for modifications to reduce the likelihood of 

future failures. 

Generally, fractographic results are qualitative and consist of the failure mode, the load 

conditions, the fracture initiation site, and the propagation direction. Fractures are classified as 

ductile, brittle, or intergranular; the loads that caused the failure are identified as cyclic, overload, 

or environment-assisted; the crack is determined to have initiated at a material defect, a machining 

or damage mark, or at a stress concentrating feature of the component geometry. When the origin 

of the crack can be pinpointed, the initiation site can be examined with microscopes and chemical 

analysis instruments to determine the nature of the defect. 

Although all this information is very useful, the failure analyst would often like to know 

additional and. if possible, quantitative information. For example, what were the loads (their 

magnitude, duration, frequency) that operated and led to the fracture? How long did it take for the 

crack to form? And once formed, what was its growth history? Did it propagate at a uniform 

speed, or did it experience periods of acceleration, deceleration, or perhaps hesitation? A w?y to 

quantitatively extract the load parameters and the crack kinetics from the fracture surfaces "üuld be 

of great utility. 

Several years ago. we began thinking whether such information might be encrypted in the 

fracture surfaces and. if so. how it might be extracted. We participated in a Navy workshop2 

where the topic of interest was fatigue failures of helicopters and fixed-wing aircraft. 



An unacceptable frequency of accidents was causing safety concerns, incurring huge 

maintenance costs, and compromising the air readiness of the fleets.* Component designers at the 

workshop told us that fatigue problems could be reduced if the fatigue load spectra were known. 

Components were designed on load spectra deduced by finite element analysis of engine vibration 

characteristics. In reality, however, the load spectra experienced by a component during service 

can be quite different because of mission uniqueness, unforeseen pilot maneuvers, wind gusts, and 

the like. Overloads are not reliably obtained from pilot reports, and on-board sensors are not 

usually fielded. 

It occurred to us at this workshop that load spectra might be obtainable from the fracture 

surfaces. We reasoned that the important loads in the spectrum were those that affected the fatigue 

process, and since these loads affected crack growth, they might manifest themselves on the 

fracture surfaces. We considered that the extent and nature of out-of-plane deformation should be 

a function of the loads and hence should be accessible from the topography. Thus the fracture 

surface may act as a load spectrum gauge! 

' It is difficult to estimate the total annual cost of aircraft fatigue failure to the military. When we asked the question 
to representatives of the military and industry, we learned that the costs fall into several categories, failure 
investigations, redesign and retrofitting, and maintenance, but the greatest concern of aircraft fatigue is air readiness. 
A dollar value cannot be placed on having the fleet grounded. 

Failure investigations. "The costs of engineering root cause investigations frequently run into the multiple 
millions of dollars. These investigations require large cross-disciplinary groups of investigators (from 20 to 100 
people), laboratory verification of failure scenarios, and costly engine tests (about $40,000 per day). (One specific 
accident investigation cost S23M. Otha Davenport, SPO USAF.) These investigations also can take many months 
to complete, during which time the unresolved problem can lead to additional field failures, possibly resulting in 
loss of aircraft and life." Dr. Jerrol W. Littles, Jr.. Pratt & Whitney 

Redesign and retrofitting. "The potential for saving a costly redesign and retrofitting of the fleet if the cause were 
known and another solution such as damping could be used would be enormous. For example, the fourth stage 
blade failure in a single crystal material, which was never fully understood, ended up costing the government 
probably over 20 million dollars. If we knew the failure mode, we might have prevented failure by adding damping 
or redirecting air flow." Dr. Theodore Nicholas. AFRL. Program Manager, Materials Characterization, HCF 
Science and Technology Program. The Navy experienced "extreme trouble with cracking in helicopter rotor heads 
caused by uncertainty in fatigue crack growth rates, because the load spectrum was not known." The problem was 
addressed at great expense by redesigning the component and changing the material. John T. Cammett, Naval 
Aviation Depot, Cherry Point. NC. 

Maintenance costs. Annual costs for just one specific failure mode and component—high-cycle fatigue of aircraft 
engines—were S200M in FY94, S150M in FY92-3, and S220M in FY88-91. Robert J. May, Jr., USAF 
Propulsion Product Group Manager. The Navy, with a fleet of 100's of helicopters, requires each to be inspected at 
intervals as short as every 10 hours of flight. John T. Cammett, Naval Aviation Depot, Cherry Point, NC. 

Air readiness. High-cycle fatigue is the No. 1 air readiness concern of the USAF. Dr. Deutch USAF. If just one 
recurring failure mode could be eliminated, countless days or weeks of not being in a readiness posture in the field 
could be avoided. 



This idea may not be so far-fetched. For example, in certain situations a procedure for 

deducing AK from fracture surfaces already exists.34 When striations are visible and a correlation 

with load cycle and striation can be established, the rate of change of crack length with load 

application can be obtained and correlated with data from controlled fatigue crack growth tests in 

the laboratory to deduce AK. Even in the absence of striations, skilled fractographers can often 

estimate the crack growth rate to an accuracy of half an order of magnitude5 and, using the Paris 

law, obtain an estimate of AK. Furthermore, recent work by fracture scientists in Japan6-' 

suggests a relationship between striation height-to-width ratio and the stress ratio, R. 

To be more useful and generally applicable, however, the load spectra extraction procedure 

needs to be more systematic, more quantitative, and more precise. The fact that engineers 

experienced at assessing fracture surfaces can reach consensus on approximate load conditions 

suggests that an objective method is possible. If the eye and brain can perform this function, it 

must be possible to develop an instrument and software to do the same. A preliminary effort was 

conducted by SRI to test whether fracture surface topography was sensitive to load conditions,89 

and a seedling program was initiated by DARPA to conceive an approach and investigate this 

possibility. This report describes the results of the seedling program and presents a plan for 

elevating fractography from a qualitative, subjective, two-dimensional art to a quantitative, 

objective, three-dimensional science. 



BACKGROUND 

We first consider how a fracture surface forms. Figure 1(a) shows the slip bands that 

formed in the grains of a nickel alloy after 1200 stress cycles.10 These bands of localized 

dislocations he on crystallographic planes or low shear resistance and hence are oriented differently 

in adjacent grains. Where the bands encounter a grain boundary, dislocation motion stops, 

because of the misalignment of the slip planes in the adjacent grain. Stresses at such intersections 

are created because the displacement produced by the band is not transferred to the neighboring 

grain and the strain discontinuity is accommodated in the grain boundary. 

Figure 1(b) shows the same area after 4000 cycles. The density of the slip bands has 

increased, and the resulting increase in stress at the grain boundaries has caused the boundaries to 

separate. The failed grain boundaries become islands on the fracture surface. Moreover, the grain 

boundary facets may contain steps where the slip bands intersected. 

As cycling continues, slip band activity continues, additional grain boundaries fail, and 

ligaments between grains stretch, neck, and rupture, resulting in a macrocrack and two opposing 

fracture surfaces containing roughness features on a range of size scales. The tortuous topography 

belies the deformation and failure processes that took place in the microstructure. Second phase 

particles, inclusions, pores, and inherent flaws (when they are present) also influence the failure 

process and hence the fracture surface. 

In the case of fatigue failure, an additional phenomenon can affect the fracture surface. In 

the unloading phase of the load cycle, the crack faces relax toward each other. If they make 

contact, they can modify the roughness features. Especially for conditions where the lower loads 

are a small fraction of the maximum loads or even compressive, the features standing up in relief 

can be deformed to different shapes. This phenomenon is called closure and has an important 

effect on fatigue crack growth rate. 

Thus, the topography of a fracture surface is dictated by the microstructure and the 

deformation and microfailure processes exacted on the microstructure by the applied loads. This 

suggests that the load history experienced by a failed component is recorded in the fracture surface 

and encrypted in the roughness details. The challenge is to develop a procedure for extracting this 

information. 



(a)  • '%'*■///.6-&f' 

NM-312581-1 

Figure 1.   Fatigue cracks in nickel after 1200 (a) and 4000 (b) tension-compression 
load cycles. (Ref. 1) 



The first steps were taken in this seedling program. To determine whether fracture surfaces 

were sensitive to loading conditions, we obtained fracture specimens tested under cyclic loads 

under controlled conditions of different AK, quantified the topographies of their fracture surfaces, 

and applied Fourier and wavelet analysis techniques to the elevation data. We looked for 

correlations in roughness signatures and features of the analyses with load parameters. To 

demonstrate a route for extracting load parameters from fracture surfaces, we then performed a 

similar analysis of a field failure and applied the modest database from the laboratory specimens to 

estimate AK as a function of crack length. 



ANALYSIS OF LABORATORY FRACTURE SPECIMENS 

Pratt & Whitney, which has conducted many fracture tests over the years to determine the 

fatigue properties of turbine engine material, made its large inventory of tested specimens available 

to this program. We selected for analysis two compact-tension specimens of Ti-6A1-4V that had 

been tested to examine fatigue crack growth behavior in the near-threshold regime. A crack had 

been driven through the specimens under a range of well-controlled and documented loading 

conditions according to the ASTM E647 requirements for load shedding." The fracture surfaces 

were produced at constant stress ratio, R = K^/K^, and varying stress range, AK = 

Kra - K^, with successive areas produced under a slightly lower or slightly higher AK. Two 

values of R were examined: 0.1 and 0.8. The variation of load conditions for each specimen is 

shown in Figure 2. In total, 13 load conditions and 119 fracture surface areas were examined. 

SURFACE TOPOGRAPHY CHARACTERIZATION 

Small areas on the fracture surface in each fatigue test section were selected at a certain 

spacing along the crack growth direction, and their topography was characterized by a system 

known as a FRASTAscope.12" This system was developed at SRI and consists of a confocal- 

optics-based scanning laser microscope; a precision, computer controlled x-y-6 stage: and 

computer programs that control data acquisition, manipulation, and display. Tables 1 and 2 

summarize the locations of the areas we chose for examination and the corresponding AK values. 

The size of each area was 140.3 ^m in the crack growth direction and 466.5 jim in the orthogonal 

direction. The number of elevation data points in the crack propagation direction was 600 and in 

the orthogonal direction 2000. Data spacing, thus, was 0.233 urn in both directions. Figure 3 

shows the contrast image and gray-scale elevation image of a typical area. 
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Figure 2.   Stress intensity range, SK, as a function of crack length during multiple 
fatigue tests in Specimens 8353 and 8354. 



Table 1.    Crack Length and Stress Intensity Range for Several 
Fatigue Tests in Specimen No. 8353 (R = 0.1) 

File Test Run Crack  Length Stress  Intensity 

No. Number (mm) Ranqe, AK.  (MPaVm) 

1 Run No. 1 9.9238 8.52 

2 10.320 7.99 

3 10.739 7.45 

4 11.148 6.96 

5 11.557 6.53 

6 12.128 5.96 

7 12.670 5.46 

8 13.236 5.00 

9 13.927 4.48 

10 Run No. 2 15.222 6.94 

11 15.448 6.14 

12 15.659 5.46 

13 15.878 4.86 

14 16.050 4.47 

15 16.165 4.15 

16 Run No. 3 16.685 6.50 

17 16.800 5.98 

18 16.919 5.53 

19 17.064 5.01 

20 ' 17.203 4.54 

21 Run No. 4 17.633 6.53 

22 17.696 6.01 

23 17.770 5.50 

24 
I 17.849 5.01 

25 ■ 17.923 4.51 

26 i        Run No. 5 19.228 I                 7.46 

27 19.489 !                 7.03 

28 ; 19.789 I                 6.54 

29 20.147 !                 6.01 

30 20.508 J                 5.53 

■ 31 20.858 |                 5.08 

32 , 21.364 1                 4.51 

33 Run No. 6 22.545 7.50 

34 ! 22.784 6.96 

35 
I 23.256 5.97 

36 23.487 5.53 

37 23.815 4.97 



Table 1.    Crack Length and Stress Intensity Range for Several 
Fatigue Tests in Specimen No. 8353 (R = 0.1) (Concluded) 

File Test  Run Crack  Length Stress  Intensity 

No. Number (mm) Ranqe, AK,  (MPaVm) 

38 Run No. 7 24.326 9.11 

39 25.065 9.52 

40 25.880 10.00 

41 26.695 10.53 

42 27.404 11.02 

43 28.026 11.49 

44 28.628 11.97 

45 29.246 12.51 

46 29.746 12.97 

47 30.259 13.49 

48 30.770 14.03 

49 31.173 14.48 

50 31.684 15.10 

51 31.989 15.49 

52 32.390 16.03 

53 33.109 17.06 

54 33.409 17.53 

55 33.708 18.03 

56 34.326 19.10 

57 34.834 20.08 

58 35.243 20.92 

59 35.756 22.06 

60 36.159 23.05 

61    ; 36.568 24.12 

62   ; 36.871 24.96 

63   : 37.274 26.18 

64    i 37.584 27.15 

65    ' 37.899 28.22 

66    ! 38.105 28.94 

67    J 38.407 30.07 

68    i 38.824 31.77 

69 39.327 34.02 

70 39.736 36.04 

71 40.472 40.21 

72 41.118 44.68 

10 



Table 2.    Crack Length and Stress Intensity Range for Several 
Fatigue Tests in Specimen No. 8354 (R = 0.8) 

File Test  Run Crack  Length Stress  Intensity  Range, 
No. Number (mm) AK,  (MPaVm) 

1 Run No. 1 10.927 4.52 

2 11.554 4.01 
3 12.266 3.49 
4 13.063 2.99 

5 14.008 2.50 
6 14.661 2.20 

7 Run No. 2 15.400 4.05 
8 15.705 3.49 

9 16.017 3.01 
10 16.391 2.53 

11 Run No. 3 17.140 3.97 
12 17.315 3.53 
13 17.562 3.01 
14 17.866 2.47 

15 Run No. 4 18.519 3.45 
16 18.908 4.05 
17 19.195 4.57 
18 19.393 4.95 
19 19.682 5.58 
20 19.870 6.07 
21 20.076 6.58 

22 Run No. 5 21.580 4.47 
23 22.075 4.03 
24 22.748 3.51 
25 23.406 3.05 
26 24.323 2.52 
27 24.930 2.22 

28 Run No. 6 25.756 4.98 
29 26.299 5.52 
30 26.794 6.02 
31 27.181 6.47 
32 27.645 7.05 
33 27.950 7.46 
34 28.329 8.00 
35 28.628 8.45 
36 29.002 9.06 
37 29.294 9.56 
38 29.583 10.10 
39 29.804 10.50 
40 30.099 11.09 
41 30.307 11.54 
42 30.526 11.98 
43 30.736 12.45 
44 30.963 12.93 
45 31.166 13.58 
46 31.440 13.99 
47 31.722 14.60 

11 



Crack Growth Direction 

400 

I- 
100 tun 

H h 100 tun 

NM-312581-3 

Figure 3.   Contrast and gray-scale elevation images of an area on the fracture surface of Specimen 8353. 
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FAST FOURIER TRANSFORM (FFT) ANALYSIS 

A fast Fourier transform (FFT) analysis was applied to a row of data points parallel to the 

crack growth direction, and the elevation power spectrum density distribution was calculated. 

Each row contained 600 data points; however, only the central 512 (=2y) points were analyzed; 

The EPSD curves for individual rows exhibit significant differences, as shown in Figure 4. due to 

local differences in microstructure. Such microstructural effects, although important from a 

materials science viewpoint, obscure the effect of loading. Noting that the stress intensity range, 

AK. used to represent the loading condition is an average value over the length of the crack front 

and not a local AK acting on a single grain or a few grains, we depressed local microstructural 

effects and emphasized the effects of loading condition by averaging the EPSD results over 2000 

lines wavelength-by-wavelength. 

The averaged EPSD curves from the different locations on the fracture surface are closely 

parallel between wavelengths of 0.5 Jim and 20 urn (see Figure 5, for example). Choosing the 

square root of the EPSD [SQRT(EPSD)] value at a wavelength of 5 Jim as a representative index 

of the roughness of each area and plotting these values as a function of position on the fracture 

surface, we obtain the results shown in Figures 6(a) and 6(b) for Specimens 8353 (R = 0.1) and 

8354 (R = 0.8), respectively. Also plotted are the AK values corresponding to the fracture surface 

locations or crack lengths. 

At first inspection, the behaviors of SQRT(EPSD) and AK as a function of crack length 

seem quite different, and a correlation between load and roughness is not clear. For example, 

when the load bedding tests were initiated at a higher AK, the SQRT(EPSD) values did not start at 

a higher value, but instead gradually increased to a higher value before decreasing with decreasing 

AK. In the monotonically increasing AK fatigue test, the SQRT(EPSD) values initially decreased 

before increasing. 

In seeking to unify these results, we plotted all of the SQRT(EPSD) values in Figure 6 as a 

function of AK. The results in Figure 7 show three regions for each specimen: (1) a linear 

relationship in the low AK region (less than about 8 MPaVm for 8353 and about 6 MPaVm for 

8354). although a significant scatter exists; (2) a transition region (between 8 and 16 MPaVm for 

8353 and between 6 and 9 MPa Vm for 8354); and (3) another linear relationship region at higher 

AK (above 16 MPaVm for 8353 and 9 MPaVm for 8354). 
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(a) EPSD Curve of Data along Line 400 (b) EPSD Curve of Data along Line 800 

! 

(c) EPSD Curve of Data along Line 1200 (d) EPSD Curve of Data along Line 1600 

NM-312581-4 

Figure 4.   EPSD Curves for the roughness profiles along several lines shown in Figure 3. 
(Specimen 8353) 
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Figure 5.   Averaged EPSD curves from five locations on the surface in Test Run 1 for Specimen 8353. 
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Figure 6.   Square root of EPSD values and stress intensity range, AK, 
as a function of crack length for Specimens 8353 and 8354. 
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Figure 7.  Summary of the relationship between SQRT(EPSD) and AK for Specimens 8353 
and 8354. 
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The equations for these linear relationships are given below: 

8353 low AK region:        SQRT(EPSD) = 4.710 + 1.067* AK 

8353 higher AK region:    SQRT(EPSD) = 4.116 + 0.1077* AK 

8354 low AK region:        SQRT(EPSD) = 6.776 + 0.6553* AK 

8354 higher AK region:    SQRT(EPSD) = -2.957 + 1.156* AK 

The relationship between SQRT(EPSD) and AK is not simple, but can be explained in 

terms of crack tip plastic deformation and crack closure, as discussed below. 

CRACK CLOSURE EFFECT ON THE FRACTURE SURFACE TOPOGRAPHY 

Two competing processes are responsible for the deformation topography of the fracture 

surfaces: (1) the roughening of the surface due to increasing AK or K^ and (2) the flattening of 

the surface due to crack closure.* When the AK values are low, Figure 7 indicates that the 

SQRT(EPSD) value increases with increasing AK. In this region, the effect of roughening of the 

surface with increasing AK is dominant. 

However, when AK reaches a certain value, the SQRT(EPSD) starts to decrease as AK 

continues to increase (transition region in Figure 7). In this region, crack closure begins to have an 

effect, flattening asperities on the fracture surfaces and gradually overcoming the effect of surface 

roughening with increasing AK. The surface flattening effect outpaces surface roughening as AK 

increases. Thus, the SQRT(EPSD) values decrease despite the increase in AK. 

As AK continues to increase, the effect of surface roughening starts to overcome the effect 

of surface flattening, and the SQRT(EPSD) values start to increase again as AK increases. This is 

the third region in Figure 7. 

With the above explanation in mind, we examined and compared the results in Figure 6. 

Recall that Specimen 8353 was tested at a stress ratio R = 0.1 and 8354 at R = 0.8, and that AK 

and K^ were higher for Specimen 8353 than for Specimen 8354. Since the AK in the first region 

is low and crack closure is unlikely for either specimen, the SQRT(EPSD) in the first region of the 

specimen tested under higher AK (Specimen 8353) should show higher values. Figure 7 confirms 

this. Conversely, the test condition with lower stress ratio should result in a higher degree of crack 

" Crack closure is the phenomenon of the faces of a crack contacting and perhaps deforming each other when the load 
is reduced toward Kmn during load cycling. 
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closure, and so the drop in the SQRT(EPSD) of Specimen 8353 (with R = 0.1) should be M« 

significant man ma, of Specimen 8354 (with R - 0.8). Figure 7 also shows th, to be me case. 

Thus crack closure can explain me results from the two specimens, so we examined the 

individual fatigue test results more closely. Figure 8 is a magnified view of the resute showr,tn 

Rsure 6 In these load shedding tests, die AK was decreased as me crack extended. When AK 

above a certain thrasho.d as shown in Figure 8. the SQRT(EPSD) exhibits low values and the 
higher the value of AK, the lower the SQRT(EPSD) value. If the AK values are below the 

threshold, the trend in SQRT(EPSD) change is similar to that of AK. 

This threshold trend is observed also for tests in which AK was increased as the crack 
grew, Figure 8(b). Here the changes in SQRT(EPSD) above the threshold line are tie same ^.for 
L load shedding test; i.e., the higher AK is above the threshold line, the lower the SQRT(ffSD) 

value. This trend is consistent with crack closure modifying the fracture surfaces at AK s above 

the threshold value. 

ADDITIONAL EFFECTS OF CRACK CLOSURE 

To delineate the effect of crack closure on the surface roughness, we compared the EPSD 

curves from the fracture surface areas in the third region in Ftgure 7 a. similar AKs of about . 
,7 MPaÄ in the samples 8353 (R = 0.1) and 8354 (R = 0.8). The four cun.es ,n Ftgnre 9 (two 

for R = 0 1 and the outer two for R = 0.8) show that, within the same R-valne, the EPSD curves 
have the same shape and are parallel each other; however, a, different R-values, the curves have 
different shapes. The curves for R = 0.8 are nearly straight between wavelengths of 0.5 um and 
20 unv however, the curves for R = 0.1 deviate from linear below 1 pr, and above 4 pm. Thts 

suggests that crack closure more significandy affects the features below the scale of 1 um and 
above 4 um. In the transition region, the EPSD values decrease and the curves bow more as AK 

increases, as shown in Figure 10. This suggests that as AK increases, crack closure effects 

become more important. 

The EPSD changes in the load shedding tests were also examined. We examined the first 

fatigne test in each sample where crack growdt was initiated at AK well above the threshold1 bne 
shown in Figure 8. EPSD values were initially low, but gradually increased. The shape of EPSD 
curves during this change is shown in Figure 11. The EPSD curves corresponding to tmpal htgh 

AK exhibit bowing; however, as AK decreases below the threshold AK, the value the EPSD 
curves become straight Again these curves suggest that the higher AK loading induces crack 

closure effects that cause bowing of the EPSD curves. 
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Figure 8.   Possible correlation of SQRT(EPSD) behavior with AK behavior. 
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Figure 9. Comparison of EPSD curves for tests under similar stress intensity range but different stress ratios. 
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NM-312581-010 

Figure 10.  Changes observed in the shape of EPSD curves as AK increases in the transition zone 
of R = 0.1 specimen. 
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Figure 11.   EPSD curves showing changes in their shape with AK for two specimens. 
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We looked in the technical literature for results from other investigators that might support 

these findings. Figure 12 shows an observation by Newman of crack opening stress ratios for 

2024-T3 aluminum alloy at low and high stress ratios.14 A striking similarity exists in the shape of 

the curve for R = 0.7 with our SQRT(EPSD) curve for R = 0.8 shown in Figure 8. The curve in 

Figure 12 suggests that, due to the crack closure and re-deformation of the fracture topography, 

less stress is necessary to open the crack. In other words, the lower the opening stress, the higher 

the effect of surface deformation and flattening of the surface. 

WAVELET ANALYSIS 

Wavelet analysis was applied to the topographic data files by Professor Naoki Saito and 

Dr. Jean-Marie Aubry of the Mathematics Department of the University of California at Davis 

(Appendix A). The objectives were (1) to classify the fracture surfaces according to stress 

intensity range, AK, and (2) to identify signatures that specify the loading condition and can be 

used to discriminate others. 

To conduct the classification study, the available data set needed to be split into training and 

test data sets. The training data set was used to construct the classification rules, and the test data 

set was used to access and evaluate whether such rules can predict the classes of the fracture 

surfaces. 

The Local Discriminate Basis15 (LDB) algorithm first decomposes the training signals into a 

basis dictionary, which is a large collection of the basis functions (such as wavelet packets and 

local cosine functions) localized in both space and spatial-frequency. Then, it computes 

discriminant information at each coordinate in the dictionary. The origin?! LDB algorithm uses the 

difference of energy distributions as the discriminant measure, whereas the-modified LDB16 (we 

call this LDB+) uses the probability density function (pdf) in each coordinate, i.e., the way the 

coefficients are distributed. Then, a complete orthonormal basis called LDB (or LDB+), which 

"can see" the distinguishing signal features among signal classes, is selected from the dictionary by 

maximizing such discriminant information. After the basis is determined, expansion coefficients in 

the most important several coordinates (features) are fed into a traditional classifier such as the 

Linear Discriminant Analysis (LDA). Finally, the corresponding coefficients of the test signals are 

computed and fed to the classifier to predict their classes. 
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Our experiments can be grouped into two categories: 

SSnX o^SSTpacelmain data, or frequency-domam 

data). 
(2,   Application of 2D LDB algorithms »the same data sets viewed as images. 

Summary of ID Classification Results 

.   to general, the greater the diffemnce in stress intensity range, toe lower the 
misclassification rates. 

.   The misclassification rate varies with toe number of LDB features used. 

higher (8.4%-41%). 

Summary of 2D Classification Results 

.   We computed the 2D power spectrum (modulus of the 2D Fourier transform) of 
each image as the basic data set. 

.  Thebestandmos,robustresul.swereobtoinedbytoeLDBbasedonftelocal 

-._- cosine dictionary. 

.   Again, the more different the stress intensity factors, the lower the 
misclassification rates. 

' XÄÄPÄ/ÄSSSSKT 
small (20% ~ 35%). 

.  The variance of misclassification rates for toe 2D results is much smaller than for 
the ID case. 
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These preliminary results suggest that wavelet analysis principles are well suited to 

overcome the challenges of extracting and discriminating fracture surface features. However, the 

technique must be extended and adapted to address issues of noise in the data and the linking of 

information over a range of size scales. Moreover, more decisive results will likely be obtained by 

increasing the size of the area chosen for LDB application. The results are discussed in a later 

section, and suggestions for modifying the procedure are discussed in the section entitled Next 

Steps. 

The success achieved in correlating Fourier results with load parameters, however, 

encouraged us to attempt an analysis of a field failure. In the next section, we describe how we 

applied the findings from the laboratory specimens to interpret the fracture surfaces of a crack in an 

aircraft turbine component. Appendix B describes how we applied fracture surface topographic 

analysis to assist a team investigating the failure of a space shuttle component. 
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ANALYSIS OF FIELD FAILURES 

Two aircraft engine components u.a. had acquired cracks during service (Figure 13) were 

provided to SRI for analysis" Component 39 had a part« crack «-->-. 
Component 20 had a through-crack. Figur* 14 snows the fracture surface. The dtscoft«d 
regions on both components are probably oxide films that formed durmg servtce. The crack 
Client 39 appaLly initiated at a single site near the midpoint, whereas the crack m 
SL 20 originated ftom several smal. cracks, which nucleated near me mtdpom^d 

m3- The concentric eltiptical mafidngs indicate me crack ftonts at vanous stages of men 

advance. 

TOPOGRAPHY CHARACTERIZATION 

We chose to analyze small areas of the crack faces a, regu.ar distances (indicated by the tick 

maIks in Figure .5, from the crack origins along a line A-A normal to the ^"^ * 
confoca. optics scanning laser microscope was used to produce elevanon maps of small areas of 
r,rac ture surface 140 x 89 part a. 250-pm intervais a.ong a fine from the crack ongm to Ute 

of each pixel was measured. The dam spacing was 0.233 pan in each dtrecnon. 

Figures 16 and 17 show a series of contrast images and gray-scale topography images. 

The shades of gray indicate relative height: ligKer areas are higher, and darker areas are lower. 
TU! 11 near tite component exteriors, which were covered by the fi.m, are smoother than 

elsewhere and hence were omitted in the evaluation. 

FOURIER ANALYSIS AND FRACTURE PARAMETER CORRELATION 

Differences in me topographies arising from differences in loading conditions are no, eas.ly 

discerned from F.gures .6 and 17. To obtain an alternative representation of the topography, we 

applied a one-dimensional fast Fourier transform operation, row by row, .0 400 rows of 
512 (2') elevation dan, points. Figures .8 and 19 show Ute energy power spectral den .ty (EPSD) 

curve for each of the areas in Figures 16 and 17 obtained by averaging the 400 rows. In 
F gures 18 and !9, «he square root of the sum of the squares of the real and tmagtnary corn^nts 
JL elevation amplitudes normalized by a crack extension distance ,s presented as a functton of 
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NM-2037-1 

Figure 13. Two aircraft engine components that acquired cracks during 
service. (Component 39 had a part-through crack not visible in this 
photo, and Component 20 had a through-crack along the component 
axis.) 
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(a) Contrast Image at Edge (70 urn) (b) Elevation image at Edge (70 urn) 

M 

(c) Contrast Image at 320 urn from Surface (d) Elevation Image at 320 urn from Surface 

$*A*-:"--.-"-'' 
^t-"-::1;' -V   .J5§l 

L ^i,*™. 

■■'"'*J^-:'?i.-:;?SJ« -\Vr> 

Alp 
«i^i '-T 

v.vv-^- .- .. v S:-.-. .■■ 

(e) Contrast Image at 570 urn from Surface (f) Elevation Image at 570 urn from Surface 

(g) Contrast Image at 820 urn from Surface (h) Elevation Image at 820 urn from Surface 
NM-2037-5 

Figure 16.  A series of contrast and gray-scale elevation images at various locations along 
Line A-A for Component 39. 
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x.     o '.Jalo '      frt Elevation Image at 1070 urn from Surface (i) Contrast Image at 1070 urn from Surface        (]) Elevation .mag«   

»™^^^7s^^      (l)Elevation image at1320 urn from Surface 

(m) Contrast Image at 1570 um from 
Surface       (n) Elevation Image at 1570 urn from Surface 

™"s"mageat 1820 urn from^cT      (p) Elevation .mage at 1820 urn from Surface 

Figure 16   A series of contrast and gray-scale elevation images at various locations aiong 
Line A-A for Component 39. (continued) 
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(q) Contrast Image at 2070 urn 
from Surfa^T      (r) Elevation Image at 2070 urn from Surface 

(s) Contrast Image at 2320 urn 
from Surface        (t) Elevation Image at 2320 urn from Surface 

"JcZTlma^ 2570 "um from Surface        (v) Elevation Image at 2570 urn from^urfa«. 

Figure 16   A series of contrast and gray-scale elevation images at various locations along 
Line A-A for Component 39. (concluded) 
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(a) Contrast Image at Edge (70 urn) (b) Elevation Image at Edge (70 urn) 

(c) Contrast Image at 320 urn from Surface (d) Elevation Image at 320 urn from Surface 

(e) Contrast Image at 570 urn from Surface (f) Elevation Image at 570 urn from Surface 

(g) Contrast Image at 820 urn from Surface (h) Elevation Image at 820 urn from Surface 

NM-2037-8 

Figure 17.  A series of contrast and gray-scale elevation images at various locations along 
Line A-A for Component 20. 

36 



(i) Contrast Image at 1070 urn 

(k) Contrast Image at 1320 urn 

(m) Contrast Image at 1570 urn 

(o) Contrast Image at 1820 urn 

(j) Elevation Image at 1070 um 

(I) Elevation Image at 1320 urn 

(n) Elevation Image at 1570 urn 

(p) Elevation Image at 1820 urn 
NM-2037-9 

Figure 17.  A series of contrast and gray-scale elevation images at various locations along 
Line A-A for Component 20. (continued) 
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(q) Contrast Image at 2070 urn 

I   20pm   I 

(r) Elevation Image at 2070 urn 

(s) Contrast Image at 2320 urn (t) Elevation Image at 2320 urn 

(u) Contrast Image at 2570 urn (v) Elevation Image at 2570 urn 

(w) Contrast Image at 2820 urn (x) Elevation Image at 2820 urn 

NM-2037-10 

Figure 17.  A series of contrast and gray-scale elevation images at various locations along 
Line A-A for Component 20. (continued) 
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(y) Contrast Image at 3050 urn 

I 2°ym | 

(z) Elevation Image at 3050 urn 
NM-2037-11 

Figure 17.  A series of contrast and gray-scale elevation images at various locations along 
Line A-A for Component 20. (concluded) 

39 



E 
3. 

E o 
c 
'5» 
•c 

a> O 
o <D 

6 3 

s 8 
Ll_ 

if 
o 

Ü  tit Iff _ = ,-, o o o o o o 
S P S N oj 1^ oj r- rvj 
m  K   -^  O  CO  l/> 00  O  CO 

Z     . 

I 

s 
2 
< 
z 

II  

■0 E 
CO LL 

s 
0 

CD 

'X 
CO 
CO 

O 
5 c 
CO 
CD X3 
< 
co 
.c 

> u z 
LU 

O 
LÜ a 

to 

CO 
♦■» c 
CD 
c 
o 
Q. 
E 
o o 
o 
< 

1 < 
CD 
c 
_l 

CD 

c 
o 
CO 
CO 
c 
o 

"55 
SL 

cs > 
S 
CO 
CD 
£ 
U 

CO 
c 
CD 
TJ 

E 
3 

8. 
c 
o 
to 

111 

CO 

s 
3 

E 
8- 

ALISN3Q MnVlL03dS"U3MOd N0I1VA313 

40 



in 111 i  i—i IIH ■ i i  i—i in n i i  i—i iiu ii i i—i im 11 i i—r 

£££££££££££ 
CJOOOOOOOOO 
CM IH. .>j h- CM (^ rj N (N h- 

£ C 
'to» 

k. ■c 

o> O 
a CO 

S 3 

b U- 

in i i i—r 
CO o 
CM 

X 

I 

o 
CM 

c 
CO c 
o a. 
E 
o 
ü 
k. 
o to 

o < 
*" < 

CD 
c 
_] 

<D 
JT 
♦* 

o> c 
o 

*•■% CO 
E CO ^» c 

o 
+-f 

> CO 

z CO 
in      ÜJ 3 
10     3 o 
2 o CO 

UJ > 

e to 
CO 

_l 0) 
< e 
K 3 
< Ü 

a & 
CO CO c 

CD 
•u 
E 
? 

8 ^ co 
t_ 
CD 

T- S 
SL 
c 
o 
CO > 
CD 

UJ 

OS 

s 
o> 

£5 

AIISN3Q WnUi03dS"ü3M0d NOI1VA313 

41 



spatial frequency or roughness wavelength, rate than as a function of position (as in 

Figures 16 and 17). 
The averaged EPSD curves for the various fracture surface areas vary in heigh, and shape 

identical; see Figures 20b and 20c, for example. 

Figure 21 shows how Ute surface roughness varies with crack depth. We arbitrarily 
,     iT^ul a wavelength of 5 par and plotted die square root of this value versus crack 

selected the EPSD at a wavelengtn or   p. v relationship 

depth. ^^^^ZT^l^^oL^r^^^ If 

If ÄH n ct k initiation and early growlh occurred a. a relatively high AK, cracktng » Ute 

ZrTat increasing AK. This interpretation suggest te the component fatled under some 

and minimum at the central neutral axis. 

The curve for Component 20 ties close to that for Component 39, although fewer data 

f„m The effect of the oxide fdm is to lower the EPSD values, as seen m Ftgure 18 and 
figures 20(a) and 2CVd), hut dte resulrs for the two components are conststent when no ox.de 

exists on the surface. 
Thus the analysis so far has provided an answer to one aspect of dte load question-the 

m„de oHoaoing. The nex, question is me magnih.de of the load. With the lack of a value from 
^ consignations, we turned to correlation with dam from the laborato-y specmens where 

the loading conditions were known. 
Comparisons were made from two viewpoints: (1) dte shapes of the EPSD curves and 

(2) the heights of the EPSD curves. The shape of an EPSD curve seems to be sensmve «, the 
sl^m o R An EPSD curve from a higher R-value surface is straight« than te from a lower 
rvlTslce.Figure22comParesEPSDeurvesofCompone„t39wid,curvesfroma 
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Figure 21. Square root of EPSD values at 5 urn wavelength as a function of crack 
position for Components 39 and 20. 
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Figure 22. Comparison of EPSD curves of Component 39 with those of a laboratory reference specimen. 
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laboratory specimen in which the crack was propagated at a stress ratio of 0.8. The shapes of the 

curves match closely; therefore, chose to correlate the results of Components 39 and 20 with those 

from the specimen tested under a stress ratio of 0.8. Moreover, we speculate that the components 

experienced a high R value, perhaps about 0.8, because the EPSD curves from the laboratory 

specimen tested at R = 0.1 were significantly more convex. 

We next attempted to correlate the heights of the curves to obtain AK values. When we 

correlated the AK with the square root of the EPSD at a wavelength of 5 urn for the laboratory 

specimen tested at R = 0.8, we obtained the following relationship 

(EPSD)1/2 = -2.957 + 1.156 x AK (R = 0.8) 

Because the ranges of the EPSD of both components were smaller than those from the 

laboratory specimen (due possibly to closure effects), we had to extrapolate to determine AK 

information. The converted results, shown in Figure 23, suggest that the cracks in the engine 

components grew to a length of 1.6 mm under rather constant AK conditions of about 5 MPaVm 

after initiating at a higher AK. At this crack depth, the stress intensity range increased strongly and 

linearly to 10 MPaVm in the next millimeter of crack advance. Such a variation in AK with crack 

depth is consistent with vibratory bending stresses, because bending deflections produce higher 

stresses near the component surface. 

WAVELET ANALYSIS AND FRACTURE PARAMETER CORRELATION 

To determine whether wavelet analysis could determine the load conditions that produced 

the fracture surfaces of Component 39, Professor Naoki Saito and Dr. Jean-Marie Aubry of the 

Mathematics Department of the University of California at Davis applied the Local Discriminate 

Basis algorithm and the Linear Discriminant Analysis algorithm to the elevation data. Training data 

were obtained from the laboratory specimens described above, which had areas of fracture surfaces 

produced at AK levels of 6.6, 8.8, 11.0, 13.2, and 16.5 MPaVm. Test data sets from 

Component 39 consisted of 80 randomly chosen square areas 64 pixels on a side (0.233 Jim per 

pixel). A majority rule was then applied to get a classification for the whole image. When the 

classification rules obtained from the training data were applied to the test data, all areas of 

Component 39 were indicated to have been produced at a AK of 6.6 MPaVm or lower. This 

agrees with the linear regression results of Figure 23, except for the results at crack lengths larger 

than 2.0 mm. Details of the wavelet analysis procedures are given in Appendix A. 
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Saito and Aubry also attempted to classify the surfaces by using a roughness parameter 

defined as follows 

R*(y) = JV1+fx(x>y)dx/Jdx 

RyW = J->/l+fy
2(x,y)dy/Jdy, 

where fx=dz/dx, fy =3z/3y, and z = f (x,y) is a fractograph representing the elevation data. Jdx 

represents the length of the specimen in the horizontal direction, which in fact is parallel to the 

crack propagation for all the available datasets. Jdy represents the length of the specimen in the 

vertical direction (perpendicular to the crack propagation). One can easily see that, if the profile is 

perfectly flat, then R, = 1 (or Ry = 1). 

The variation of this roughness index with crack depth (distance from the crack origin) for 

Component 39 is shown in Figure 24. Whether the parameter is measured in the direction of crack 

propagation or parallel to the crack front, the trend is J-shaped, in good agreement with the trend 

for EPSD or its square root shown in Figure 21. Furthermore, the roughness parameter was 

correlated with AK by applying it to the laboratory specimen and used to evaluate Component 39. 

Stress intensity range values of 11 MPaVm and 6.6 MPaVm were indicated at locations 2500 

and 1000, respectively, in Figure 15(a). These values agree well with those from the Fourier 

analysis shown in Figure 23. 
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DISCUSSION 

This seedüng study has demonstrated a method for extracting quantitative estimates of load 

parameters from analysis of topographic features of failure surfaces. This is the first time such a 

prediction has been made. If the method can be validated and made ^r-fnendly, it will represent 

a major advance in the state of practice of failure analysis. 

The method consists of three parts: (1) characterization and mathematical analysis of 

fracture surfaces topography, (2) development of a reference database using well-characterized 
laboratoryspecimens,and(3)relatingthereferencedatatofieldfailuretopographyand 

determining the service load. The Fourier method demonstrated two;WI^£*£ 
of EPSD curves appears to depend on the stress-ratio, and the magnitude of the EPSD (or square 

root of EPSD) relates to DK. Further exploration of EPSD curve shape with wavelet techniques 

could allow other fatigue parameters such as R-value and Kmax to be determined. 

The fast Fourier transform analysis of the data may not be optimal. The Fourier results 

presented here are highly averaged. Therefore, the EPSD curves are rather smooth and shift up or 
down within the 0.5 to 15 urn wavelength range. Individual lines of topographic data, however, 

show significant hash, because of the roughness contribution of the microstructure. 

The topographic relief produced by the microstructure is several times greater than that       ' 

produced by inelastic deformation and hence masks the effects produced by the loads, making the 

extraction of load parameters difficult. Therefore, we analyzed the rveraged EPSD curves to 

suppress microstructural effects and accentuate the load-induced topography. 

Although the EPSD curve showed that features having certain wavelengths exist on the 

surface, the locations on the fracture surface where these features exist were not indicated. This is 

a serious limitation of the fast Fourier analysis in interpreting fracture surface topography. 
Therefore, we applied wavelet analysis, which does not have this shortcoming, to the elevation 

data from the two aircraft engine components and used the results from the same laboratory 

specimens to evaluate the results. 

To obtain the training data, the local discriminant basis method was applied to ID and 2D 
Fourier treatments of the elevation data from the laboratory specimens. Classification rules were 

established for surfaces produced at DK values of 6.6, 8.8, 11.0,13.2, and 16.5. When the rules 
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were applied to the regularly spaced locations on the fracture surface of Component 39, all areas 

were classified as DK = 6.6. This result suggests that nonstandard wavelet analysis techniques 

will be required to discriminate among fracture surfaces produced under different DK conditions. 

We see three main reasons wavelet analysis did not produce more decisive results: (1) 

crack closure effects, (2) the size of the area (64 pixel by 64 pixel) chosen for LDB analysis, and 

(3) noise in the topography data file. We explain how these aspects influence the results below. 

We confirmed that crack closure significantly influences the fracture surface roughness and leaned 

how the wavelet and FFT results and their relationship with DK are affected. Figure 8 shows that 

DK of 6.6, 8.8, and 11 are in the transition regions and a relationship between the surface 

roughness and DK in this region is not linear. Thus, when we analyze the fracture surfaces of 

these regions, the LDB results will be mixed. However, we believe that wavelet analysis can 

provide solutions. 

Crack closure does influence the topography of fracture surfaces, and we believe that the 

degree of alteration of the surface is a function of the degree of closure, which in turn is a function 

of DK and the stress ratio. The crack closure effects result in local changes and thus are best 

characterized with wavelet techniques. We envision that wavelet can identify those local closure 

features on the surface that can be used to classify the surfaces in the transition region. One reason 

for the wide scatter in the LDB results was the small size of the area we chose to investigate relative 

to the material grain size. With a pixel spacing of 0.233 u.m, the area investigated, 64 pixel by 

64 pixel, was 15 urn square, which is approximately the area of an average grain (about 

10-20 |im). Since the behavior of any individual grain at the macro crack tip will differ from other 

grains due to differences in orientation, properties, and surrounding grains, the topography of the 

examined area will not be representative of the material overall. Thus the local microstructure 

dominated the LDB analysis results and obscured the effects of loading condition. It is necessary 

to consider special way to assess the average effect of loading. 

Another source of error was noise in the topography data, which arose from the inability of 

the confocal microscope to get unambiguous light reflection from high angle facets in the fracture 

surface. During scanning, the reflected light intensity was monitored at every pixel point as the 

distance between the fracture surface and the optical microscope changed. The light intensity of a 

specific pixel reaches its peak when the surface is in the focal plane of the microscope optical 

system and the microscope records the value of the peak light intensity and the elevation of the 

pixel. A problem arises, however, when the reflected light intensity is low, because the 

microscope cannot determine when the peak is reached at a specific pixel. Thus, the recorded peak 

50 



Mltf arhitrarv and its elevation is different from the surrounding area. This single 
position could be arbitrary and its were 

is an ideal task for wavelet analysis. 

»* - rrrt™sir:r«trrr 

Figure 23. . 
The „ex. steps are to devetop wavelet and Fourier techniques ,o identic and extract stgnals 

from JZZZöL tha, re,ate to ,oad and crack history parameters and ,o build a database of 
from topograpny computational models for micro- 

the section entitled Next Steps. 
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CONCLUSIONS 

Failure-analysis-critical load parameter information is encrypted on the fracture surfaces of 

failed structural components. 

Mathematical analysis of fracture surface topography can provide quantitative estimates of 

the load conditions that caused the failure. 

A leapfrog advance in the state of practice of failure analysis is imminent. 

A 3D fractography analysis technology would enhance air readiness and avoid hundreds of 

millions in annual maintenance costs. 
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NEXT STEPS 

Much was learned during this seedüng program. The load sensitivity of fracture surface 

topography was confirmed, a route for extracting load information was demonstrated, the 
limitations of Fourier analysis were shown, GA the requirements for extending wavelet analysts 
were clarified. We realized the need to examine features at much higher resolution, the need for a 

microstructural failure model, the need to apply wavelet analysis to larger areas relaüve to the 

material grain size, and the need to handle noise in the elevation data. 

REQUIRED SIZE SCALES 

Both the Fourier and the wavelet analyses of the elevation data from the laboratory 
specimens discriminated fracture surfaces produced under different load conditions. This confirms 

previous findings suggesting that fracture surface features are sensitive to the loading conditions 
that caused the crack. The physical reason must he in the deformation and microfailure behavior of 

the microstructure. Referring to Figure 1, the slip band activity and the grain boundary rupture 

activity are two processes that form the fracture surfaces in this nickel alloy, and hence these 

processes must be sensitive to the characteristics of the load history. 

The confocal optics method used here to measure fracture surface topography has a 
resolution limit of 0.25 um and hence is quite capable of capturing fracture surface features on the 
scale of the grains (about 10 urn in the titanium turbine blade alloy, TJ-6A1-4V). However, the 
steps on the grain surfaces produced by interacting slip bands are typically below this resolution. 

Thus, a higher resolution characterization instrument is needed. The atomic force 

microscope is capable of measurements as fine as several angstroms and hence capable of 
recording roughness features produced by shp bands. A problem then is combining features over 
a wide size range. Fortunately, much thought has been given to this problem, and several schemes 

exist for linking disparate size scales (see Reference 18, for example). 

ANALYSIS OF ADDITIONAL SAMPLES OF DIFFERENT STRESS RATIOS 

In this program, we examined the fracture surfaces of laboratory specimens produced 
under two stress ratios, R = 0.1 and R = 0.8, and found clear differences in the characteristics of 

the data. To establish the relationship between R and topographic features, we need to examine 

53 



surfaces produced under other stress ratios, say, R = 0.3 and R = 0.5. If the results show a 

consistent trend, then a unified empirical equation may predict the relationship among the 

SQRT(ESPSD), DK, and stress ratio. Such an equation can be used to extract the loading 

conditions from the fracture surface topography and to interpret crack closure phenomena at the 

crack tip. 

ROBUST FEATURE EXTRACTION 

From our classification experiments, we realized that it is critically important to extract the 

features that are 

(1) Distinguishing the data belonging to the different classes 

(2) Common and invariant within the data belonging to the same class. 

It is item (2) that we need to address more for any tough classification problems such as the 

fractography data. The reason for emphasizing the common features among the same class is both 

for robustness of the features and for shedding light on the underlying physics; we need to extract 

the features insensitive to the variations of the data in the same class. 

SPIKE REMOVAL BY CONTINUOUS WAVELETS 

The fracture surface elevation data obtained with confocal optics microscopy contain 

undesirable spikes that may influence almost all frequency components in the Fourier analysis. 

Since the high roughness of the data contains useful information that must be preserved, 

conventional denoising techniques cannot be used. A continuous wavelet transform of these data 

and the properties of wavelet coefficients related to local smoothness of the data may be effective in 

detecting and removing the spikes. 

LINKING LOCAL FEATURES TO PHYSICAL FRACTURE MODELS 

The specific fracture features responsible for producing the "characteristic fingerprint" of a 

given load condition in a given microstructure may lead to a much more realistic fracture model. 

That is, if we understand how the microstructure is dissipating energy at specific load conditions, 

the fracture mechanicians and materials scientists may be able to generate a model that mimics those 

microstructural cracking phenomena. This would, in turn, generate a model that links the 

wavelet/Fourier analysis to physical reality. One thing to consider in this scenario would be the 
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effect of pain orientation, with respect to tine crack propagation direction, on the fracnare features 

produced. This effect conld be nsed if or when we consider craek propagation wuhan specftc, 

nonisotropic grains. 

It seems to us that the newer sets of dictionaries of bases, such as local Fourier, brushlets, 

edgelets and curvelets, which are capable of detecting and characterizing oriented and stnped 

patterns,' may be better tools to exttact features and link them to the physical model, This project 

requires close collaboration between mathematicians, fracture mechanicians, and materials 

scientists. 

The empirical correlation between the stress intensity and the EPSD needs to be understood 

in terms of the micromechanisms that produce the fracture surface. 

Needed at this point is a reference database of topographic maps and EPSD curves from 

fracture surfaces generated under conditions in which the important load parameters are varied 

independently and systematically over the entire range of interest for each alloy of interest. Such 

databases, known as fractography atlases, currently exist in a qualitative form as a collecüon of 

SEM micrographs and are used to reach subjective, approximate conclusions regarding the causes 

of a failure. An atlas of topographs and EPSD curves would allow objective and quantitative 

conclusions and represent a quantum improvement over current handbooks. 
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APPENDIX A 

CLASSIFICATION OF FATIGUE FRACTURE SURFACE TOPOGRAPHY 
USING MULTISCALE AND SPACE-FREQUENCY METHODS 



Classification of fatigue fracture surface 

topography using multiscale and 

space-frequency methods 

Naoki Saito and Jean-Marie Aubry 

January 26, 2000 

Abstract 

We explored the application of local discriminant basis (LDB) 

methods, which efficiently extracts discriminant local features, to clas- 

sify fractographs (fracture surface topography data) of titanium spec- 

imens according to the loading parameter AK, the stress intensity 

factor, under which the fracture propagated. 

Our experiments are mainly grouped into two categories. 1) Appli- 

cation of ID LDB algorithms along either row or column or circular di- 

rections with varying parameters (normalizations, filter? discriminant 

measures, number of features, space-domain data or frequency-domain 

data). 2) Application of 2D LDB algorithm to the same datasets 

viewed as images with varying parameters. 

From the results on the above experiments, we found the follow- 

ing. 1) In general, the larger the difference between the AK values of 

these classes, the lower the misclassification rates. This suggests that 

fracture surface elevation data definitely contains the information sen- 

sitive to AK. 2) 2D classification on the Fourier domain is more stable 

than ID classification, mainly because we can assume more statistical 

independence on the 2D image patches, and the Fourier magnitudes 
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are translation invariant. 3) It is still difficult, however, to single out 

the features only sensitive to the change of AK from the elevation 
data. The local variability of the data is so severe that even the two- 
class classification problems is tough (e.g., the misclassification rate 
ranges around 30% to 40%). We need to apply the majority rule on 
the classification results of many samples for correct classification. 

Based on these findings, we recommend the following actions should 

be taken: 1) Develop robust feature extraction and classification algo- 
rithms, which are insensitive to the local variations in microstructures 
2) Link local features to physical fracture models with the collabora- 
tion with the material science experts. 3) Build stochastic models that 
can simulate the similar topographic data from the available samples. 
4) Integrate multiple sensors and resolutions for better and relevant 

feature extraction for load parameter estimation. 

1    Introduction 

1.1    High cycle fatigue and structural failure 

High cycle fatigue is a cause of failure for materials, especially metals, occur- 

ring when a cyclic load is applied at some location. Usually a small initial 

defect already exists, around which the stress concentrates. When the cyclic 

load is applied, the stress amount oscillates between values Kmin and Kmax 

and a fatigue fracture propagates through the material. 

If this happens to a critical part in an aircraft, such as a turbine blade, 

and the undetected fractures reach the point of final rupture, consequences 

can be dramatic. Therefore, a better understanding of this phenomenon is 

very important. After the failure occurred, one would like to diagnose the 

causes of the fracture propagation, for instance, the stress intensity factors 

Kmin and tfmax or their difference AK. This information is to be used 

later, for example, to determine during which part of the flight most fracture 
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propagation occurs, and to improve the fracture-resistance of the material. 

1.2 Existing approaches 

The method currently used by aircraft engine manufacturers to analyze frac- 

tographs is by trained human eyes. These people usually work on SEM 

images, not elevation data as we do. 
First studies at SRI [5, 6, 7, 8, 9, 19] proved some feasibility of using 

the (mean) power spectrum of adjacent rows of elevation data as a tool 

to discriminate and estimate the AK. Some aspects of our work are an 

extension of this idea (§ 5.2.3 and 5.3.2). 

1.3 Fundamental hypotheses 

This study is based on the first fundamental assumption that the history 

of the fatigue parameters is encrypted on the fracture surface. A second 

hypothesis is that, for a given material, only the AK parameter is relevant 

and governs the fracture surface topography; all other variations due, for 

instance, to the fine-scale material structure, are considered as random but 

constant in a probabilistic sense. In other words, we suppose that the law of 

the stochastic process creating the fracture depends only on AK. 

Note that this is a very strong hypothesis. One aspect of this work is to 

try to validate it. 

2    Mathematical formulation 

2.1    Probabilistic setting 

In all generality, we can pose the problem as follows. Suppose that the 

material is fixed, and let (V,F,V) be a probability space. According to the 

fundamental hypotheses, there exists, for each value of the parameter AK 
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in a certain range, a random process u € Ü •-> /AJT(W) whose realizations 

represent the fracture surface topography of a piece of material that was 

broken under high-cycle fatigue with the parameter AK. Each realization 

foK(w) is thus a function from S -» R, where S C I2 is the area where 

the fracture surface is analyzed. For a given location x € S, /A*(w)(*) is 

the actual elevation of this particular sample at coordinate x (note that in 

practical applications, 5 is a finite set of discrete points). 

The problem we want to solve is now: given a function fx : S -»• R 

representing the fracture topography of a sample broken under some unknown 

conditions (X stands here for experiments), determine or estimate AK such 

that fx can be viewed as a realization of the process f&K- 

This is not a good question in our setting, because the answer may not be 

unique. Rather, we formulate it in a Bayesian sense: considering all possible 

values of AK, what is the probability density function (pdf) AK H+ pfx (AK) 

that fx is indeed a realization of fAK ? Once this is answered, we can chose 

"the" AK to be the point of maximum likelihood in pfx, or its expectation 

/ AKpfx (AK), or whatever suits best to the application. 

The calculation of pfx, however, requires two types of information: a 

prior probability p0 on AK, and the law of the process u *-> /**(<*>)■ The 

first one may be obtained from technical considerations: for instance in the 

case oi an airplane turbine blade, we may know what sort of loads to expect 

in normal service, and thus have a prior probability distribution for AK (we 

can use uniform distribution, if this knowledge is not within the range of 

aeronautical engineers' predictions). The second one is not available, as we 

discussed in Introduction. 
As is often the case in statistics, we do not have the law of the stochastic 

process of interest and we have to estimate it from a few sample realizations, 

which are the laboratory samples fractured under known conditions in our 

case. 
Here we must leave the world of the rigorous Bayesian theory for more 
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practical matters. 

2.2    Classification problem 

In our case, the number of available realizations of the process is very small 

(less than five per AK), and moreover we only have them for a limited set of 

AK values (see § 3). Therefore we must (temporarily) give up the estimation 

problem and concentrate on the simpler classification problem. 

Let us give the classical formulation of a signal classification problem. 

We first define appropriate spaces of input signals (or patterns), extracted 

features, outputs (or responses), and mapping functions among them. Let 

X C R" denote a signal space (or a pattern space) which is a subset of 

the standard n-dimensional vector space and which contains all signals (or 

samples/patterns) under consideration. In this case, the dimensionality of 

the signal space or equivalents the length of each signal is n. Let 2) = 

{1,2,... ,K) be a set of the class or category names to which the input 

signals belong. We call this space a response space. 
Signal classification can be considered as a mapping function (usually 

many-to-one) d : X -> 2) between these two spaces. Direct manipulation 

of signals in the signal space for classification is prohibitive because: 1) the 

signal space normally has very higli dimensionality (e.g., for a typical segment 

of fractograph image we use fr: our experiments, n = 64 x 64 = 4096), 

and 2) the existence of noise or undesired components (whether random or 

not) in signals makes classification difficult. On the other hand, the signal 

space is overly redundant compared to the response space. Therefore, it is 

extremely important to reduce the dimensionality of the problem, i.e., extract 

only relevant features for the problem at hand and discard all irrelevant 

information. If we succeed in doing this, we can greatly improve classification 

performance both in its accuracy and efficiency. 

For this purpose, we set up a feature space 5 C Rfc where k<n between 

the signal space and the response space. A feature extractor is defined as a 
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map /:%->$, and a classifier (or predictor) as a map g : 5 -* ?)• Let 

X = {(a^j/j)},^! C X x 2) be a training (or learning) dataset with N pairs 

of signals x* and responses (class names) yt This is the Hr.taset to be used to 

construct a feature extractor /. Let Nc be the number of signals belonging 

to class c so that we have N = Ni + h NK-  Also, let us denote a set 

of class c signals by {*|e)}-!Lei = {x{}i€lc where Ic C {1,... , N} is a set of 

indices for class c signals in the training dataset with \IC\ = Nc. 

Preferably, the performance of the whole process should be measured 

by the misclassification rate using a test dataset V = {(?/,', a?i)}£L'i (which 

has not been used to construct the feature extractors and classifiers) as 

(1/iV) YlZi s(y'i ~ d(xi))> where (J(r ^ °) = 1 and 6(°) = °- If we use 

the resubstitution (or apparent) error rates (i.e., the misclassification rates 

computed on the training dataset), we obviously have overly optimistic fig- 

ures. 
For this application, we focus on the feature extractors of the form 

/ = e(fc) o $, 

where 0(i) : X -> 5 represents the selection rule (e.g., picking most impor- 

tant k coordinates from n coordinates), and & € O(n), i.e., an n-dimensional 

orthogonal matrix. In particular, we consider matrices representing the or- 

thonormal bases in the basis library (consisting of wavelet packets or local 

trigonometric bases) as candidates for &. As a classifier g, we adopt Linear 

Discriminant Analysis (LDA) of R. A. Fisher [2]. 

2.3    Feature extraction using LDB 

We briefly review the principles of feature extraction using the Local Dis- 

criminant Basis algorithm of Coifman and Saito [18, 17]. 

Let R" be the space of the signal to analyze. We assume that n is a 

dyadic number of the form 2J0, and we are given a hierarchical system of 

orthonormal bases for R". 
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Such a system is composed of: first an orthonormal basis £g which is 

(usually) simply the standard basis of IT. Then, Rn is decomposed into two 

orthogonal subspaces of dimension n/2, the first one having an orthonormal 

basis B\ and the second one an orthonormal basis B\. The same decompo- 

sition is applied to each of the subspaces, recursively up to some maximum 

decomposition level ji < jo (in practice h = jo - 1 or j0 - 2). At level j, K" 

is thus decomposed as the orthogonal sum of 2j subspaces of dimension 2J0_J, 

each of them with its orthonormal basis B{ {k = 0,..., 2>-' - 1). The number 

Ndl of such bases for K" that can be built by concatenating complementary 

sub-bases (with maximum decomposition level ji) is given by the recurrence: 

TV = 7V?_j -I-1. These bases form a redundant dictionary for K". 

For instance, with ji = 2, the decomposition is symbolized on Figure 1, 

and we have five possible bases: {B°}, {£$, B{], {Bj, B2
2, B3

2}, {B0
2, B\, B\], 

{BlBlBlB*}. 

R° 

Bl B\ 

Bl B\ B\ Bl 

Figure 1: Hierarchy of bases 

Such a hierarchical system of orthonormal bases can be obtained using the 

discrete wavelet transform (DWT) or local trigonometric transform (Local 

Cosine, Local Sine, Local Fourier). See [11] for more details. 

LDB achieves the construction of a feature extractor of the form / = 

e(fc) o ^ in two steps. First, # is selected as the rotation to the "best" 

basis among the Nh available. Then 0^ selects the k "best" vectors in this 

basis. Here "best" is to be understood as most suitable for the discrimination 

problem at hand. 
The choice of the "best" basis and vectors is the central problem of LDB. 

For this we use some criterion 6, saying that a basis B is better than a basis 
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B'if 6(B) > Ö(B'). 
However, the number Njt can be huge, and it would be very inefficient to 

check each possible basis one by one. So we need the criterion 6 to be in ad- 

ditive form, i.e. for each vector v we have 6{v) and 6{B) = X)„eB S(V). This 

allows the selection of the basis to be done hierarchically, by the following 

procedure. Let B{ be some sub-basis in our dictionary, itself being decom- 

posed in two sub-bases B& and B^. If 8{B{) > ^B^ + ^+i). then 

we keep {B{} in the decomposition of Rn; else we replace it by the pair of 

bases {Bit'MtlY 
Starting from the bottom level {B{\k = 0,...,2> - 1}, this recursion 

yields the basis in the dictionary that maximizes the criterion .5. Moreover, 

once the basis is selected, the same criterion (already computed) can be used 

to select the k best vectors. 
We have a few important remarks. First, imposing additivity is a huge 

restriction. Actually, the true criterion to use would be to minimize the 

misclassification rate when the k best vectors in the selected basis are supplied 

to the classification module g. But this criterion is clearly not additive, 

and this problem creates combinatorial explosion. The choice of an additive 

criterion will be discussed in § 2.5. Another way to understand this remark 

is to remember that in general, "the best k vectors are not the k best". 

Secondly, once we resign ourselves to using an additive criterion, it is no 

longer necessary to chose the discriminating vectors in a basis. We can simply 

take the k vectors in the whole dictionary that maximize 6, regardless of their 

linear dependence. However, experimentally, lifting this restriction does not 

improve the results, but makes the computation slightly more demanding (in 

memory). 

2.4    Linear Discriminant Analysis 

Fisher's LDA first tries to do its own feature extraction by a linear map 

AT : X -+ $ {in this case not necessarily orthogonal matrix).   This map 
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A simultaneously minimizes the scatter of sample vectors (signals) within 

each class and maximizes the scatter of mean vectors of classes around the 

total liean vector. To be more precise, let mc:={l/Nc) ^TjJi xi be a mean 

vecto: of class c signals.1 Then the total mean vector m can be defined 

as m:= J2Ü=i i"c»wc, where nc is the prior probability of class c (which can 

be set to Nc/N without the knowledge on the true prior probability). The 

scatter of samples within each class can be measured by the within-class co- 

variance matrix Sw:= Y^=\ *c£c, where Ec is the sample covariance matrix 

of class c: 2:c:=(l/JVe)Ei!Lei(*ie) ~ m^xf - mc)
T. The scatter of mean 

vectors around the total mean can be measured by the between-class covari- 

ance matrix Eb:=Y^=i ^c{mc - m){mc - m)T. Then, LDA maximizes a 

class separability index J{A):-tx[{AT EbA)~l{AT EWA% which measures how 

much these classes are separated in the feature space. 

This requires solving the so-called generalized (or pencil-type) eigenvalue 

problem EbA = EWAA, where A is a diagonal matrix containing the eigen- 

values. Once the map A is obtained (normally k = K - 1), then the feature 

vector ATXi is computed for each i, and finally it is assigned to the class 

which has the mean vector closest to this feature vector in the Euclidean 

distance in the feature space. This is equivalent to bisecting the feature 

space £ by hyperplanes. In this application we regard LDA as a classifier 

although, as explained, it also includes its own feature extractor AT. LDA is 

the optimal strategy if all classes of signals obey multivariate normal distri- 

butions with different mean vectors and an equal covariance matrix [3], [12]. 

In reality, however, it is hard to assume this condition. Moreover, since it 

relies on solving the eigensystem, LDA can only extract global features (or 

squeezes all discriminant information into a few [K -1] basis vectors) so that 

the interpretation of the extracted features becomes difficult, it is sensitive 

^he sample mean operation (1/Ar
c) "£,^i in this subsection can be replaced by expec- 

tation Ec for general cases; however, in this paper, we focus our attention on the cases of 
a finite number of samples, so we stay with the sample mean operations. 
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to outliers and noise, and it requires 0(n3) calculations. 

2.5    Discriminant criterion jg 

Let us first concentrate on the two-class classification problem. Suppose also 

that the probability laws for each of these classes are known: probability p0 

for class 0 and px for class 1. These distributions are the pdf's for 1"-valued 

random variables C0 and Cu respectively. 
Let v be a unit vector in R". We consider the projected probabilities p0|* 

and pl]v, that is, the pdf (on R) of (C0,v) and {Cuv), respectively. 
If p0{v = Pl{v then obviously v is not a discriminating feature: viewed 

from this direction, C0 and Cj look exactly,the same. On the contrary, if 

p0]v is very different from p1]v: then v is a good discriminating feature. Our 

criterion 6 should measure this difference. 
In information theory, the difference between two pdf's can be measured 

by the relative entropy, or Kullback-Leibler Information, defined by: 

J(P0\v.Pl\v) ■= J P0\v lOg (^.J • 

This formula is not symmetric, however, so we may prefer its symmetrized 

version: 

S{po\v,Pl\v) ■=.J(P0\v,Pl\v) + J(Pl\v,P0\v)- ~ 

The symmetric relative entropy can easily be generalized to any number 

of classes, taking the sum of (asymmetric) relative entropies for all pairs of 

classes. 
Certainly, this is the most straightforward choice for 6{v). However, in 

practice, we stumble on the same ubiquitous issue: we still do not know the 

probabilities po and px. What we have are only a finite number of realizations 

of each class, constituting the training set. 
Two workarounds are available. First, one can try to evaluate the prob- 

abilities p0|t, and pi\v.   Since these are one-dimensional distributions, it is 
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possible to approximate them by the histogram of the values in the training 

set, or its smoothed version by convolution with some kernel or averaged 

with shifted versions of itself. Averaged Shifted Histograms (ASH) are, by 

the way, a particular case of kernel convolution. 
Another option is to give up the pdf-based criteria, and use the sum of 

energies instead, simply taking 

jE(0|MM;=D<*.«>l2'°«(!Mf 
co.ci .\(ci,v)\ 

2 

where Co and a are taken in the training set for class 0 and 1, respectively. 

And its symmetrized version: 

SE(0\v, l\v) := JE{0\v, 1\V) + JE{l\v, 0\v) 

with the straightforward generalization to any number of classes. 

As before, this measures the difference between the projection of each 

class on the feature v. 

2.6    Modified Relative Entropy 

At some point in this study we tried to improve the criterion used. In our 

case, our main problem is that we only have a very limited set of training 

data. We cannot avoid the fact that they all come from the :ame laboratory 

sample, for instance. As for the selected features, we want them to be truly 

discriminating between elements of different AK classes for any given ele- 

vation data, as long as the specimen is the same metal (e.g. Titanium). In 

some sense, we would like to reject features that are apparently too specific 

to the actual piece of metal used for the training. 
Let H denotes the classical (Shannon) entropy of a probability distribu- 

tion function. We recall that H{q) := - f qlog{q) is small when q is a well 

concentrated distribution. Suppose that S(p0\v,P\\v) is large (i.e., very dis- 

criminant). Then there are several cases to which we need to pay attention. 
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(1) If both H(po\v) and H(pi\v) are small (i.e., well concentrated), then 

this vector is an important feature extractor for both classes and it is very 

unlikely that "chance" (i.e., something too specific in this training data) 

would make this vector appear important for both classes. So we should 

keep this vector. 
(2) If, for instance, H{p0]v) is small and H(p1]v) is large, then this is 

precisely what we want to avoid, because it indicates that this vector is good 

only for this class 1 training samples and may not carry the generalization 

ability for the classification problems. LDB might retain such vectors. 

(3) If both H{p0]v) and H(pl{v) are large, then this vector is specific to 

neither class 0 nor class 1. However, there is no reason to discard this vector 

since it still carries good discriminant information. So, we keep this one too. 

From the above consideration, we propose a Modified Relative Entropy 

based on pdf's: 

M(p0]v,pllv) = S{pQ]v,Pl\v) -Amax(H{polv),H{pllv)) + Bmin(#(p0|,,),#(Pn»)) 

where A and B are positive constants balancing the relative importance one 

may want to impose on effects. We then search the basis that maximizes the 

sum of M (or its obvious modification in the case of more than two classes) 

from the dictionaries of bases. 

3    Data sets 

The following elevation matrices were provided by SRI. We mention the ma- 

terial (a Titanium alloy), a reference identification, the AK (when known), 

the dimension in pixels, the horizontal and vertical scale of the originals 

(matrices used for classification were rescaled at the same scale). 
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~AK = 6 
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^ 

AK = 15 

Figure 2: Example of elevation data 
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3.1    Titanium sample #8354 

This is a laboratory sample that was submitted to a stress test with constant 

ratio R = Kmax/Kmin = 0.8. Parameter AK = Kmax - Kmin varies from 2.2 

to 14.6 (units: ksiv^nT). 
The stress test is composed of a series of runs. The first run starts with 

a value of AK high enough for the fracture, initiated by an initial dent, to 

propagate. The value of AK is then gradually reduced, until it is under the 

threshold below which the fracture does not propagate anymore. Another 

run is then started. The last run receives increasing values of AK until the 

final failure. 

3.1.1    First data 

This batch of data is the first dataset we received. The complete runs of 

8353 and 8354 came later. 
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Name AK Dimension xy scale 

(/xm/pixel) 

z scale 

(jxm/gray level) 

8354/Ti6.0 6 718 x 178 0.36 78.25/256 

8354/Ti6.1 6 479 x 638 0.29 62.66/256 

8354/Ti6-2 6 479 x 638 0.29 62.66/256 

8354/Ti6_3 6 479 x 638 0.29 62.66/256 

8354/Ti8.0 8 718 x 478 0.36 78.25/256 

8354/Ti8_l 8 479 x 638 0.29 62.66/256 

8354/Ti8_2 8 479 x 638 0.29 62.66/256 

8354/Ti8.3 8 479 x 638 0.29 62.66/256    . 

8354/TilO.O 10.1 718 x 478 0.36 78.25/256 

8354/TilO.l 10.1 479 x 638 0.29 80.42/256 

8354/TÜ0.2 10.1 479 x 638 0.29 80.42/256 

8354/TÜ0.3 10.1 479 x 638 0.29 80.42/256 

8354/Til2_0 12 718 x 478 0.36 116.59/256 

8354/TÜ2.1 12 479 x 638 0.29 88.11/256 

8354/TÜ2.2 12 479 x 638 0.29 105.80/256 

8354/TÜ2.3 12 479 x 638 0.29 137.08/256 

8354/TÜ5.0 15 718 x 478 0.36 142.37/256 

8354/TÜ5.1 15 479 x 638 0.29 128.60/256 

8354/TÜ5.2 15 479 x p38 0.29 84.09/256 

8354/TÜ5-3 15 479 x 638 0.29 128.60/256 
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3.1.2    Run 1 

Name AK Dimension xy scale 

(//m/pixel) 

z scale 

(pm/gray level) 

8354/TH0927 4.52 600 x 2000 0.23 43.01/256 

8354/TÜ1554 4.01 600 x 2000 0.23 53.95/256 

8354/TU2266 3.49 600 x 2000 0.23 58.42/256 

8354/TH3063 2.99 600 x 2000 0.23 58.42/256 

8354/TÜ4008 2.50 600 x 2000 0.23 58.42/256 

8354/TÜ4661 2.20 600 x 2000 0.23 58.42/256 

3.1.3    Run 2 

Name 

8354/TÜ5400 

8354/TÜ5705 

8354/T16017i 

8354/TH6391 

AK 

4.05 

3.49 

3.01 

2.53 

Dimension 

600 x 2000 

600 x 2000 

600 x 2000 

600 x 2000 

xy scale 

(^xm/pixel) 

0.23 

0.23 

0.23 

0.23 

z scale 

(/um/gray level) 

65.07/256 

65.07/256 

65.07/256 

72.39/256 

3.1.4    Run 3 

Name 

8354/TÜ7140 

8354/TÜ7315 

8354/TÜ7562 

8354/TÜ7866 

AK    Dimension 

3.97 

3.53 

3.01 

2.47 

600 x 2000 

600 x 2000 

600 x 2000 

600 x 2000 

xy scale 

(^m/pixel) 

0.23 

0.23 

0.23 

0.23 

z scale 

(/*m/<pray level) 

72.39/256 

72.39/256 

72.39/256 

72.39/256 
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3.1.5    Run 5 

Name AK Dimension xy scale 

(/xm/pixel) 

z scale 

(^m/gray level) 

8354/TU8519 3.45 600 x 2000 0.23 72.39/256 

8354/TÜ8908 4.05 600 x 2000 0.23 72.39/256 

8354/TH9195 4.57 600 x 2000 0.23 72.39/256 

8354/TH9393 4.95 600 x 2000 0.23 72.39/256 

8354/TH9682 5.58 600 x 2000 0.23 72.39/256 

8354/TH9870 6.07 600 x 2000 0.23 72.39/256 

8354/Ti20076 6.58 600 x 2000 0.23 72.39/256 

3.1.6    Run 7 

Name AK Dimension xy scale 

(/zm/pixel) 

z scale 

(iim/gray level) 

8354/Ti21580 4.47 600 x 2000 0.23 72.39/256 

8354/Ti22075 4.03 600 x 2000 0.23 72.39/256 

8354/T122748 3.51 600 x 2000 0.23 72.39/256 

8354/Ti23406 3.05 600 x 2000 0.23 72.39/256 

8354/Ti24323 2.52 600 x 2000 0.23 72.39/256 

8354/Ti24930 2.22 600 x 2000 0.23 72.39/256 
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3.1 

3.2 

Thi 

rati 

4.1. 

7    Run 8 

Name AK Dimension xy scale 

(/zm/pixel) 

z scale 

(/zm/gray level) 

8354/Ti25756 4.98 600 x 2000 0.23 72.39/256 

8354/Ti26299 5.52 600 x 2000 0.23 72.39/256 

8354/Ti26794 6.02 600 x 2000 0.23 72.39/256 

8354/Ti27181 6.47 600 x 2000 0.23 72.39/256 

8354/Ti27645 7.05 600 x 2000 0.23 84.00/256 

8354/Ti27950 7.46 600 x 2000 0.23 96.38/256 

8354/Ti28329 8.00 600 x 2000 0.23 96.38/256 

8354/Ti28628 8.45 600 x 2000 0.23 109.07/256 

8354/Ti29002 9.06 600 x 2000 0.23 109.07/256 

8354/Ti29294 9.56 600 x 2000 0.23 109.07/256 

8354/Ti29583 10.10 600 x 2000 0.23 112.71/256 

8354/Ti29804 10.50 600 x 2000 0.23 112.71/256 

8354/Ti30099 11.09 600 x 2000 0.23 112.71/256 

8354/Ti30307 11.54 600 x 2000 0.23 112.71/256 

8354/Ti30526 11.98 600 x 2000 0.23 139.67/256 

8354/Ti30736 12.45 600 x 2000 0.23 139.67/256 

8354/Ti30963 12.93 600 x 2000 0.23 139.67/256 

8354/Ti31166 13.58 600 x 2000 0.23 139.67/256 

8354/Ti31440 13.99 600 x 2000 0.23 151.97/256 

8354/Ti31722 14.60 600 x 2000 0.23 162.30/256 

►    Titanium sample #8353 

s is a laboratory sample that was submitted to a stress test with constant 

o R = tfmax/tfmin =0.1.  Parameter AK = Kmax - tfmin varies from 

3 to 44.68. 
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3.2.1    Run 1 

Name AK Dimension xy scale 

(//m/pixel) 

z scale 

(/xm/gray level) 

8353/Ti09924 8.52 600 x 2000 0.23 74.93/256 

8353/TÜ0320 7.99 600 x 2000 0.23 74.93/256 

8353/TÜ0739 7.45 600 x 2000 0.23 93.60/256 

8353/TÜ1148 6.96 600 x 2000 0.23 93.60/256 

8353/TH1557 6.53 600 x 2000 0.23 120.22/256 

8353/TH2128 5.96 600 x 2000 0.23 120.22/256 

8353/TH2670 5.46 600 x 2000 0.23 120.22/256 

8353/TH3236 5.00 600 x 2000 0.23 120.22/256 

8353/TÜ3927 4.48 600 x 2000 0.23 120.22/256 

3.2.2    Run 2 

Name AK Dimension xy scale 

(/xm/pixel) 

z scale 

(^m/gray level) 

8353/TÜ5222 6.94 600 x 2000 0.23 120.22/256 

8353/TÜ5448 6.14 600 x 2000 0.23 120.22/256 

8353/TÜ5659 5.46 600 x 2000 0.23 120.22/256 

8353/TÜ5878 4.86 600 x 2000 0.23 120.22/256 

835?,Til6050 4.47 600 x 2000 0.23 120.22/256 

8353/TÜ6165 4.15 600 x 2000 0.23 120.22/256 
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3.2.1    Run 1 

Name AK Dimension icy scale 

(^m/pixel) 

z scale 

(/jm/gray level) 

8353/Ti09924 8.52 600 x 2000 0.23 74.93/256 

8353/TÜ0320 7.99 600 x 2000 0.23 74.93/256 

8353/TÜ0739 7.45 600 x 2000 0.23 93.60/256 

8353/TÜ1148 6.96 600 x 2000 0.23 93.60/256 

8353/TÜ1557 6.53 600 x 2000 0.23 120.22/256 

8353/TÜ2128 5.96 600 x 2000 0.23 120.22/256 

8353/TH2670 5.46 600 x 2000 0.23 120.22/256 

8353/TÜ3236 5.00 600 x 2000 0.23 120.22/256 

8353/TH3927 4.48 600 x 2000 .   0.23 120.22/256 

3.2. 2    Run 2 

Name AK Dimension xy scale 

(jim/pixel) 

z scale 

(^m/gray level) 

8353/TÜ5222 6.94 600 x 2000 0.23 120.22/256 

8353/TÜ5448 6.14 600 x 2000 0.23 120.22/256 

8353/TÜ5659 5.46 600 x 2000 0.23 120.22/256 

8353/TÜ5878 4.86 600 x 2000 0.23 120.22/256 

8353/TH6050 4.47 600 x ?000 0.23 120.22/256 

8353/TH6165 4.15 600 x 2000 0.23 120.22/256 

• 
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3.2.3    Run 3 

Name AK Dimension xy scale 

(^m/pixel) 

z scale 

(fit"./gray level) 

8353/TÜ6685 6.50 600 x 2000 0.23 120.22/256 

8353/TÜ6800 5.98 600 x 2000 0.23 120.22/256 

8353/TÜ6919 5.53 600 x 2000 0.23 120.22/256 

8353/TÜ7064 5.01 600 x 2000 0.23 120.22/256 

8353/TH7203 4.54 600 x 2000 0.23 120.22/256 

3.2.4    Run 4 

Name AK Dimension xy scale 

(jim/pixel) 

z scale 

(/xm/gray level) 

8353/TH7633 6.53 600 x 2000 0.23 120.22/256 

8353/TÜ7696 6.01 600 x 2000 0.23 120.22/256 

8353/TÜ7770 5.50 600 x 2000 0.23 120.22/256 

8353/TÜ7849 5.01 600 x 2000 0.23 120.22/256 

8353/TÜ7932 4.51 600 x 2000 0.23 120.22/256 

3.2.5    Run 6 

Name AK Dimension xy scale 

(/zm/pixel) 

z scale 

(/i.n/gray level) 

8353/TÜ9228 7.46 600 x 2000 0.23 120.22/256 

8353/TÜ9489 7.03 600 x 2000 0.23 120.22/256 

8353/TÜ9789 6.54 600 x 2000 0.23 120.22/256 

8353/Ti20147 6.01 600 x 2000 0.23 120.22/256 

8353/Ti20508 5.53 600 x 2000 0.23 120.22/256 

8353/Ti20858 5.08 600 x 2000 0.23 120.22/256 

8353/Ti21364 4.51 600 x 2000 0.23 120.22/256 
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3.2.6    Run 7 

Name AK Dimension xy scale 

(/xm/pixel) 

2 scale 

(^m/gray level) 

8353/Ti22545 7.50 600 x 2000 0.23 120.22/256 

8353/Ti22784 6.96 600 x 2000 0.23 120.22/256 

8353/Ti23256 5.94 600 x 2000 0.23 120.22/256 

8353/Ti23487 5.53 600 x 2000 0.23 120.22/256 

8353/Ti23815 4.97 600 x 2000 0.23 120.22/256 

3.2.7    Run 8 

Name AK Dimension xy scale 

(/xm/pixel) 

z scale 

(/zm/gray level) 

8353/Ti24326 9.11 600 x 2000 0.23 120.22/256 

8353/Ti25065 9.52 600 x 2000 0.23 120.22/256 

8353/Ti25880 10.00 600 x 2000 0.23 120.22/256 

8353/Ti26695 10.53 600 x 2000 0.23 120.22/256 

8353/Ti27404 11.02 600 x 2000 0.23 120.22/256 

8353/Ti28026 11.49 600 x 2000 0.23 120.22/256 

8353/Ti28628 11.97 600 x 2000 0.23 120.22/256 

8353/Ti29246 12.51 600 x 2000 0.23 120.22/256 

8353/Ti29746 12.97 600 x 2000 0.23 120.22/256 

8353/Ti30259 13.49 600 x 2000 0.23 120.22/256 

8353/Ti30770 14.03 600 x 2000 0.23 120.22/256 

8353/Ti31173 14.48 600 x 2000 0.23 120.22/256 

8353/Ti31684 15.10 600 x 2000 0.23 120.22/256 

8353/Ti31989 15.49 600 x 2000 0.23 120.22/256 

8353/Ti32390 16.03 600 x 2000 0.23 120.22/256 
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3.3    Component #39 (titanium) 

Component #39 is one of the aircraft engine components that actually failed 

in service. The AK parameter is unknown in this case. Fractographs were 

taken at nine regularly spaced locations, starting from the edge of the com- 

ponent where the crack initiated. 

Name AK Dimension xy scale 

(/am/pixel) 

z scale 

(/xm/gray level) 

B39/TiEDG ? 719 x 478 0.23 29.32/256 

B39/Ti0250 ? 719 x 478 0.23 29.32/256 

B39/Ti0500 ? 719 x 478 0.23 29.32/256 

B39/T10750 ? 719 x 478 0.23 29.32/256 

B39/TÜ000 ? 719 x 478 0.23 29.32/256 

B39/TÜ500 ? 719 x 478 0.23 29.32/256 

B39/TÜ750 ? 719 x 478 0.23 29.32/256 

B39/Ti2000 ? 719 x 478 0.23 29.32/256 

B39/Ti2500 ? 719 x 478 0.23 29.32/256 

4    Data preparation 

As one can see, it is very difficult to conduct statistical analysis on these 

datasets, for we have a very small number of samples (maximum five images 

in each AK class) of high dimension (up to 600 x 2000). It would make no 

sense to try to extract features in this space. Instead, we simulate a large 

number of samples in a smaller space by sub-sampling the images. This 

artificially creates a nice statistical set, but one must keep in mind that it 

is basically biased by the fact that the samples are not at all independent: 

they come from the same piece of metal, sometimes they even overlap. One 

must be very careful on this point, and try to correct the bias as much as 

possible. 
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Also, one must check that the horizontal and vertical scales of the files 

we want to compare are the same, and rescale them if needed. 

4.1    One-dimensional sampling 

We can sample rows or columns of the matrix (the "row" direction corre- 

sponding to the direction of propagation of the fracture), or along other 

shapes such as circles. Optionally, we could take their Fourier transform and 

study them in the frequency domain. 
One-dimensional computation is easier and faster, and it was the first way 

we tried to validate the method. However, we should keep a critical eye on 

the results, because the dependence between the samples in this case is very 

strong (by continuity, two neighboring rows have about the same profile). 

Moreover, at the very beginning of this study, we were given only five 

images, each one in its AK class (8354/Ti6.0, 8354/Ti8.0, 8354/TilO.O, 

8354/Til2_0, 8354/Til5_0). So we had to split them to make the training 

and test data sets: first half of the matrix in the training set, the second one 

in the test set, eventually with some randomization. In this case, the test set 

is very dependent from the training set, and the significance of the results 

may be very weak. For instance, the classification could be (and actually 

was) based on the mean elevation or slope of the sample, which depend only 

on the d^La acquisition procedure and not on the AK. This is not what we 

want: we want to select features that are pertinent only to the parameter 

AK. We tried to correct this baleful effect by normalizing the mean and the 

first order moment to zero, so that each sample has the same overall elevation 

and slope. 
Later, other locations (but still from the same piece of metal) for each 

class were added to our collection (8354/TiAJ!:_n, n = 1,2,3). Since, in each 

class, locations 1 and 2 do not overlap, we could use one of them as training 

• set, the other one as test set, for a more realistic trial. 
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4.2 Two-dimensional sampling 

We also prepared and examined two-dimensional samples. We took small 

square "patches" of size 32 x 32 or 64 x 64 (powers of two are more suitable to 

multiresolution analysis). Usually they were taken at random, but sometimes 

with a fixed pattern such as checker-board tiling. Optionally, we could take 

their Fourier transform and study them in the frequency domain. A typical 

number of patches is 128 on each image. 
In the case of two-dimensional sampling, the problem of the dependence 

between neighboring samples seems less present. We do not have the means 

to give a precise formulation of this statement, because this requires a proba- 

bilistic model of the surface, which we do not have, but a coarse justification 

is given by the remark that, when using a regular tiling, a square of side c 

only has 4c points that are close to points of its neighbors, while its total 

number of points c2. 

4.3 Computational aspects 

The computations were done on an Intel Pentium II machine (450 MHz CPU, 

128 MB RAM) running Linux as an operating system. 
The data preparation and feature extraction routines were implemented 

in C++. The files were converted and manipulated as Scientific Data Sets in 

Hierarchical Data Format (a fi's iormat developed by the National Center for 

Supercomputing Applications, freely available at http://hdf.ncsa.uiuc.edu). 

For one-dimensional analysis, the Local Discriminant Basis code (ldb) 

and its version using Averaged Shifted Histograms (ldbkash) had already 

been developed by one of us (Saito). 
For two-dimensional analysis, the program to compute the energy dis- 

tribution on the basis dictionary (tf energy2d), and the program using the 

output of the latter to compute the LDB (ldb2d) had also already been 

written. The code computing the Averaged Shifted Histograms of the coef- 
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ficients in the basis dictionary (tfkash2d), as well as the code using these 

histograms to compute the probability distributions-based LDB (ldbkash2d) 

were developed as a part of this project. 
The actual classification using LDA was done in S-plus using a code from 

Venables and Ripley [20]. 

5    Overview of the results 

5.1    Note on the interpretation 

The results are given in the form of misclassification rates, that is. the per- 

centage of total errors made by the classifier over the total number of sam- 

ples. The classifier was first tested on the training data (resubstitution error 

rate), then on the test data. We often give both in the following tables, but 

as explained in Introduction, the second number is the one that has more 

significance. 
For two-class classification problems, the worst misclassification rate should 

be 50%, in which case the classifier operates "at random", and is of no use. 

Misclassification rates > 50%, if they occur, indicate a potential flaw in our 

fundamental hypotheses. 
Misclassification rates < 50% are positive results. Though an error rate 

of, say, 35%, may not seem very encouraging, we should remember that we 

are trying to classify the whole images, not only the small samples that were 

created for doing the statistics. 
So we can apply a rule deciding that the class of the whole image is the 

class of the majority of the samples. Assuming that we have N independent 

sample on the image, and that the probability of making an error on one 

sample is p, the probability pM of having a majority of errors is 

k=0    ^    ' 
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Using the Central Limit Theorem, we can approximate this probability 

for large N by 

where erfc is the normal tail error function defined by 

As long as p < 1/2, the error rate for the whole image decreases expo- 

nentially with N. 

5.2    One-dimensional classification 

5.2.1    Data preparation: one file per class 

As we saw it before, constructing a statistical classifier requires a large num- 

ber of training samples. In our case, the number of available images (el- 

evation matrices) is very limited; actually, when we started this study, we 

only had one image for each of five values of AK: 8354/Ti6.0, 8354/Ti8.0, 

8354/TilO.O, 8354/TÜ2.0, and 8354/Til5_0. 
Since a preliminary study had shown some results using one-dimensional 

Fourier transform on the rows of these images, we began our exploration in 

the same direction. For the simplest problem of two-class classification (for 

instance between 8354/Ti6.0 and 8354/TÜ5-0), we would take half of the 

rows of each image for training, and the second half for testing the classifier. 

Other options include : taking columns, randomized rows or columns, 

random circles... We also tried to take off the mean and/or the first order 

moment of each sample, in order to suppress the artifact caused by the overall 

elevation of the samples. Here is an example of misclassification rates between 

8354/Ti6.0 and 8354/TÜ5-0, obtained using ldb with Daubechies 10 filter to 

extract the 50 most discriminant (in the sense of symmetric relative entropy) 

features. 
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The first number represents the misclassification rate when the classifier 

is applied to the training data itself; the second number is for the test data. 

raw mean 0 first moment 0 bothO 

rows 0% 30% 0% 1% 0% 31% 1.5% 23% 

columns 0% 0% 0% 0% 0% 1.8% 0% 1.1% 

random rows 0% 0% 0% 0% 0.42% 0.84% 2.1% 3.3% 

random col. 0% 0% 0% 0% 0.14% 0% 0.42% 0.7% 

random circles 3.1% 6.1% 0.63% 4.2% 12% 14% 35% 44% 

Unfortunately, these figures are not statistically significant, for the simple 

reason that training and test samples are not statistically independent: they 

come from the same image! This bias is even worse when they are random- 

ized. Moreover, we see that when the mean and the first order moment are 

removed, the performance drops. This suggests that classification is actually 

done on the overall elevation and slope of each image, rather than on its 

intrinsic surface characteristics. 
Nevertheless, this kind of very primitive experiment can yield some inter- 

esting conclusion. We explored further the two-class one-dimensional classi- 

fication on all possible pairs of the five classes we had at that point. Here 

are the results obtained using ldb with Daubechies 10 filter, 50 most dis- 

criminant features, random columns, mean and first order moment set to 

zero. Results above the diagonal use the first half of randomized columns for 

training, second half for testing; results below the diagonal use the second 

half of randomized columns for training, first half for testing. 

AK = 6 AX = 8 AX = 10 AX =12 AX = 15 

AX = 6 8.8% 13% 3.1% 6.7% 7.4% 8.5% 0.42% 0.7% 

AX = 8 6.8% 11% 12% 17% 2.8% 5.7% 0.7% 0.42% 

AX = 10 4.3% 5.8% 8.8% 12% 4.2% 6.4% 3.2% 3.8% 

AK = 12 7.2% 7.2% 4% 4.5% 4.5% 6.3% 0.14% 0.42% 

AX = 15 0.14% 0.84% 0.56% 0.97% 1.8% 2.5% 0% 0.56% 
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As previously noticed, because of the statistical dependence, these results 

are completely biased (in regard of what would be the performance of the 

classifier in a teal situation). But a general tendency can be observed: the 

more different the AKs, the lower the misclassification rate. This is an 

important confirmation of our fundamental hypothesis. 

5.2.2    Two files per class 

A more realistic test of our methods is of course the case when the samples 

used to test the classifier are independent from the ones used to train it. 

In order to keep all other parameters (the physical conditions of the experi- 

ments) as neutral as possible for the classification problem, training and test 

samples were taken from the same piece of metal at different locations {AK 

being the same within each class). These samples are noted 8354/TiAÜT.n, 

with AK=6, 8, 10, 12, 15 and n=l, 2, 3 corresponding to three different 

locations. Locations 1 and 2 do not overlap at all, and thus we can use them 

for the test where training and test samples are independent. 

Here we show the results for Ti6/Til5 classification, with various sam- 

pling schemes, using Daubechies 10 wavelets for ldb or ldbkash and extracting 

50 basis vectors. Ml means that the mean and the first moment are set to 

zero. Here the first number is the misclassification rate obtained with files 

#1 as coining set, files #2 as test set; the second number is obtained with 

files #2 as training set, files #1 as test set. 

ldb Ml + ldb ldbkash 

rows 100% 50% 30% 50% 100% 50% 

columns 9.5% 41% 8.4% 40% 19% 37% 

rows, randomly shifted 8.1% 50% 48% 47% 7.7% 42% 

columns, randomly shifted 23% 43% 49% 46% 24% 42% 

random circles 75% 50% 47% 45% 96% 50% 

Bad results and extreme variation suggests that ldb(kash) is much too sen- 

sitive to the particular feature of the samples. The asymmetry between each 
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pair of results is quite surprising : in almost all cases the pair Ti6.2/Til5.2 

seems better for training than Ti6.1/Til5.1. This could result from some 

special property of these files, b-vl this is obviously not what we are looking 

for. 
Figure 3 shows the 10 most discriminant LDB vectors computed for the 

Ti6.1/Til5.1 classification problem. Some of the vectors suggests that the 

discriminant information may be in the Fourier (i.e., wavenumber or spatial 

frequency) domain. This observation lead us to the next set of experiments. 

vXV\AA/VW^ -     A     A 
V/    \/ 

200 «00 800 1000 

Figure 3: Example of top 10 seleted basis vectors 

5.2.3    Fourier domain 

We then conducted the classification experiments in the Fourier domain, and 

use a basis of Local Cosines to analyze it. This is a refinement of the original 

idea of looking at the power spectrum of each sample: the effect of using the 
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LCT-based LDB is to (automatically) find a discriminating portion of the 

Fourier domain. 
We FFT-ed each row, column and circle, and comput-J the energy dis- 

tributions in the Fourier domain. These data were supplied to the LDB 

algorithm. Note that when no filter was employed, which means that LDA 

classification was directly applied on the whole energy distributions, the com- 

putation time severely increased because we used all (or half) of the 512 

coordinates. 

dlO+s let Ida all Ida 2nd half 

rows 24% 41% 18% 35% 20% 45% 51% 51% ■ 

columns 14% 39% 10% 41% 5.9% 36% 0% 50% 

random circles 16% 50% 67% 50% 65% 48% 0% 50% 

The last column shows the result obtained when we tried the classifi- 

cation based on the second half of the Fourier domain (high frequencies). 

This attempt was suggested by other evidence from SRI that some useful 

information may exist in the highest frequency region. 

However, the results are still not very conclusive (slightly better than in 

the spatial domain, but not much). 

5.2.4    Summary of results for one-dimensional c'jiSsification 

• In general, the more different the stress intensity factors (AAT), the 

lower the misclassification rates. 

• The misclassification rate varies with the number of LDB features used 

(violating independence of each sample). 

• If both the training and test datasets are selected from the same region 

randomly, then the misclassification rates are very small (0.4 % to 17 

%). 
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• If the training and test datasets are selected from the two different re- 

gions without randomization, then the misclassification rates are much 

higher (8.4% to 41%). 

5.3    Two-dimensional classification 

We thus decided to move on to two-dimensional classification. Although 

theoretically the problems are very similar, in practice a number of technical 

difficulties appear. The main one is that the dimensionality of the signal 

space. In the one-dimensional problems, the dimension of the signal space 

was the length of the rows or columns, at most 700 points. In two-dimensional 

problems, if we want to take patches of reasonable size as our samples, say 

64 x 64, the dimension jumps to 4096. Here the need for extracting the 

significant features before doing the classification is even bigger, because the 

classifiers such as LDA perform very badly (and need a huge computation 

time) in high dimensions. 
We work here on the same files as before: 8354/TiA.R'-n, with AK = 

6,8,10,12,15 and n = 1,2,3 corresponding to three different locations. In 

the following we used location 1 as training samples and location 2 as test 

samples, and vice-versa. 
On each image, we take a certain number (128) of small square samples 

(64 x 64) as our training or test datasets. Here the patches are randomly 

sampled. Note that in these two-dimensional experiments, we did not remove 

the mean and the first moment from each sample. 

5.3.1    Spatial domain 

The following results were obtained using ldb2d with Daubechies 10 filter, 

extracting the 50 most discriminant features. First number of each pair is 

the training misclassification rate, the second one is the test misclassification 

rate. Results above the diagonal use file #1 for training, file #2 for testing; 
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Results below the diagonal use file #2 for training, file #1 for testing. 

AK = 6 AK = 8 AK = 10 AK = 12 AK = 15 

AK = 6 18% 29% 21% 45% 21% 44% 6% 46% 

AK = 8 23% 30% 29% 59% 23% 55% 7% 44% 

AK = 10 19% 47% 26% 57% 35% 52% 8% 57% 

AK = 12 17% 46% 24% 55% 28% 54% 6% 63% 

AK=15 7% 48% 8% 39% 6% 55% 6% 64% 

5.3.2    Fourier domain 

We obtained the misclassification rates using the 50 most discriminant fea- 

tures computed by ldb2d with LCT on the energy distributions of the image 

patches in the Fourier domain. First number of each pair is the training mis- 

classification rate, the second one is the test misclassification rate. Results 

above the diagonal use file #1 for training, file #2 for testing; Results below 

the diagonal use file #2 for training, file #1 for testing. 

AK = 6 AK = 8 AÜT = 10 AK = 12 AX = 15 

AK = 6 16% 48% 15% 48% 8% 29% 2% 36% 

AK = 8 27% 49% 16% 43% 12% 30% 4% 31% 

AK = 10 17% 50% 18% 39% 23% 44% 5% 46% 

AAT = 12 11% 34% 12% 28% 23% 47% 13% 52% 

AK = 1D 2% 33% 2% 30% 8% 47% 14% 55% 

The results appear to be slightly better in the Fourier domain. Figure 4 

shows the typical Fourier domain energy distributions on these two classes 

of surfaces, and the partition patterns of the Fourier domain computed by 

the LDB with LCT. 

5.4    Two-dimensional classification using new data 

After doing the experiments described in § 5.3, we received the complete 

elevation data for samples 8353 and 8354.  Among the different runs, AK 
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AK = 6 (Fourier)       AK = 15 (Fourier)      Localization (LCT) 

Figure 4: Fourier-transformed samples (energy) and the selected LCT local- 

ization 

takes a large range of values, that can be used later for the regression problem 

of estimating AK from samples. However, we still concentrate on the simpler 

two-class classification problem here, the classes being chosen among AK = 

6,8,10,12,15, for the purpose of comparison with the previous experiments. 

In ea^ run, we take the closest values to these AK's: 

• in the AK = 6 class we have: 8354/TÜ9870 and 8354/Ti26794 for sam- 

ple 8354, and 8353/TÜ2128,8353/TÜ6800, 8353/TÜ7696, 8353/Ti20147, 

8353/Ti23256 for sample 8353; 

• in the AK = 8 class we have:   8354/T128329 for sample 8354, and 

8353/TÜ0320 for sample 8353; 

• in the AK = 10 class we .have:  8354/Ti29583 for sample 8354, and 

8353/Ti25880 for sample 8353; 
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• in the AK = 12 class we have:  8354/Ti30526 for sample 8354, and 

8353/Ti26628 for sample 8353; 

• in the AK = 15 class we have:  8354/Ti31722 for sample 8354, and 

8353/Ti31684 for sample 8353. 

This time we can use the two different pieces as training data and test 

data, which are now completely independent. For different results, we use 

here ldbkash2d with the modified relative entropy presented in § 2.6. The 

test is run in the Fourier domain using LCT, and the number of features 

selected is 5. Results above the diagonal use 8353 for training, 8354 for 

testing; Results below the diagonal use 8354 for training, 8353 for testing. 

AK = 6 AK = S AK = 10 AiT =12 AK = lö 

AK = 6 16% 33% 16% 33% 16% 33% 15% 41% 

AK = 8 33% 18% 44% 44% 43% 56% 42% 50% 

AK=10 33% 16% 40% 53% 47% 54% 45% 53% 

AK = 12 32% 19% 41% 54% 44% 47% 45% 49% 

AK = 15 32% 20% 30% 58% 42% 53% 47% 49% 

With a few exceptions, the results are clearly negative (the same ex- 

periments with the classical relative entropy are neither better, nor worse). 

Several reasons can be imagined, but we certainly need to review our fun- 

damental hypotheses. Most likely, the parameter AK is not the only one to 

influence the surface topography in this case, and we must take into account 

other factors, such as the ratio R = Kmax/Kmin, which is different on the 

samples 8353 {R = 0.1) and 8354 (R = 0.8). Some other evidence from SRI, 

using the mean Fourier power spectrum of rows in these samples, corroborate 

this hypothesis. 

5.5    Classification of Component #39 data 

We finally conducted a series of experiments on the fractographs taken on 

Component #39 (see page 3.3), one of the aircraft engine components that 
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actually failed in service. The AK parameter in this case is truly unknown. 

Since we did not develop any regression code, the best thing we could do was 

to apply to each fractograph the classifier constructed, 03 explained above, 

to discriminate between two known AK values. 

Training samples were taken from the 8353 data set in a first experiment, 

and from both 8353 and 8354 data sets in a second experiment. We used all 

files corresponding to the values of AK previously analyzed; 6, 8, 10, 12, 15. 

The same parameters as in §5.4 were used for the LDB/LDA algorithm. As 

the test datasets, 80 samples of size 64 x 64 were randomly chosen in each 

C39 fractographs, and a majority rule was then applied in order to get a 

classification for the whole image. 
Using the classification rules for Ti6/TiX where X=8,10,12,15, all the C39 

fractographs were classified as Ti6, with an overwhelming majority. In all 

other classification experiments, such as Ti8/Til0, the classification results 

appeared random, and each case the majority vote was close to 50 %. 

The results seem to indicate that the C39 fractographs were fractured 

under the stress conditions lower than DK < 6. This observation is also 

supported by the following experiments using the roughness parameters. Let 

z = f(x, y) be a fractograph representing the elevation data. We quantified 

the roughness of a profile of a fractograph by 

Rziv)   =   fy/l + f^{x,y)dx/Jdx, 

Ry(x)   =   Jy/l + f${x,y)dy/Jdy, 

where fx = dz/dx, fy = dz/dy. J dx represents the length of the specimen 

in the horizontal direction, which in fact is parallel to the crack propagation 

for all the available datasets. / dy represents the length of the specimen 

in the vertical direction (perpendicular to the crack propagation). One can 

easily see that if the profile is perfectly flat, then Rx = 1 (or Ry = 1). 

Figure 5 compares the roughness parameters of the specimens of 8354 

Run 8 (and one specimen from Run 5) with those of C39 specimens. 
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8354 Run8 roughness // crack 8354 Run8 roughness l_ crack 
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Figure 5: Comparison of roughness parameters of profiles of fractographs. 

(a) 8354 Run 8 #-; (b) 8354 Run 8 Ä-; (c) C39 Ä-; (d) C39 Ry. For (a) 

and (b), the numbers in the vertical axis represent DK of the specimen. For 

(c) and (d), the numbers in the vertical axis represent the location of the 

specimen in fim. The box in each plot represents the 50 % of the population 

of the roughness parameters for the given fractograph. The dot in the center 

of the box represents the median of the roughness parameters for the given 

specimen. The circles represent extremely high values such as outliers. 
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6 Conclusion 

We summarize our study on these fractography datasets as follows: 

• For the two-class classification problems, in general, the larger the dif- 

ference between the AK values of these classes, the lower the mis- 

classification rates. This suggests that fracture surface elevation data 

definitely contains the information sensitive to AK. 

• 2D classification on the Fourier domain is more stable than ID classi- 

fication, mainly because we can assume more statistical independence 

on the 2D image patches, and the Fourier magnitudes are translation 

invariant. 

• It is still difficult, however, to single out the features only sensitive to 

the change of AK from the elevation data. The local variability of the 

data is so severe that even the two-class classification problems is tough 

(e.g., the misclassification rate ranges around 30% to 40%). We need 

to apply the majority rule on the classification results of many samples 

"    for correct classification as described in § 5. 

7 Recommendations 

Based on our experience on' the above experiments, we recommend that the 

following actions should be taken. 

1. Develop robust feature extraction and classification algorithms. 

2. Develop an algorithm to remove undesired spikes. 

3. Link local features to physical fracture models. 

4. Build stochastic models. 

5. Integrate multiple sensors and resolutions. 
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We now describe each project, which can be further divided into several 

subprojects. 

7.1    Robust Feature Extraction and Classification 

From our classification experiments, we realized that it is of critical impor- 

tance to extract the features that are: 1) Distinguishing the data belonging 

to the different classes, and 2) Common and invariant within the data be- 

longing to the same class. It is 2) that we need to address more for any 

tough classification problems such as the SRI fractography data. The reason 

for emphasizing the common features among the same class is both for ro- 

bustness of the features and for a possibility of shedding a light to a better 

understanding of the underlying physics: we need to extract the features 

insensitive to the variations of the data in the same class. 

Both the original and the probabilistic versions of the local discriminant 

basis (let us call them LDB and LDB+, respectively) methods tried to em- 

phasize more about the aspect 1) above, although the criteria used in LDB+ 

implicitly and weakly used the aspect 2). In our projects, we will more 

explicitly explore the aspect 2). 

7.1.1    Development of LDB++ 

W- are currently implementing and refining the discriminant measure we 

described in § 2.6. Let H(p0\v), #(pi|„) be the entropy of class 0 and class 1 

samples projected on a given basis vector v in the dictionary of bases such 

as the local Fourier dictionary or wavelet packet dictionary. Let S{p0\v,Pi\v) 

be the symmetric relative entropy that is used for the LDB+ method. From 

the discussion in § 2.6. we propose to use the following new criteria: 

M{po\v,Pi\v) = S(po\v,Pi\v) - Amax(H(po\v),H(pi\v)) + Bm\n{H{po\v),H{pi\v)). 

Another possibility is: 

A/(P0|.,Pi|t,) = S(polv,pllv) - A\H{p0\v) - #(pi|„)| • {H{p0\v) + H(pMv)). 
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A and B are positive constants balancing the relative importance one may 

want to impose on effects. We then search the basis that maximizes the 

sum of M(po|e,Pi|«) from tb<\ dictionaries of bases. In the experiment we 

conducted in § 5.4, we only tested the one of the above formula with A = 

B = 0.5. We need to conduct more tests and research how to find optimal 

A and B. 

7.1.2 Subtraction of common structures using the joint best basis 

We should also discard the truly common and shared coordinates between the 

two classes for any classification tasks since they are useless for that task. To 

do this more explicitly, we have reached a simple idea of common structure 

subtraction using the joint best basis algorithm. This strategy, although very 

simple, must be tried for any practical classification problems. 

Step 0: Expand all the signals of both classes into a dictionary of bases. 

Step 1: Find a joint best basis that is efficient to compress both classes. 

Step 2: Starting from the most energetic coordinates, mark the coordinates 

that give us low discriminant values measured by relative entropy. 

Step 3: Remove such energetic but non-discriminant coordinates from both 

classes of signals. 

Step 4: Apply the LDB, LDB+, or LDB++ for the residuals. 

This strategy should really enhance the genuine difference between these two 

classes. 

7.1.3 The local Fourier dictionary, local shifts, and image segmen- 

tation 

Another major development we would like to incorporate is the local Fourier 

dictionary as our basic dictionary for feature extraction. The local Fourier 
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dictionary has many attractive properties that the wavelet packets and local 

cosine dictionaries cannot have: the local shift invariance, the oriented fea- 

ture extraction capability, to name a few (see e.g., [16]). These properties are 

particularly attractive for the fracture surface classification because: 1) the 

corresponding features within the same regions should be aligned properly 

before the LDB feature extraction; 2) we expect that the surface images with 

larger magnifications will reveal the striation patterns locally depending on 

the stress conditions. To treat the feature alignment problems, we recently 

proposed the idea of the Best Local Translation Basis (BLTB) using the local 

Fourier dictionary [16]. At this point, this algorithm is designed for ID sig- 

nals. We will implement and improve this algorithm for 2D images. For the 

oriented feature extractions and more generally, image segmentation based 

on the oriented patterns, we recently launched investigation of segmentation 

via sparsity constraints in the local Fourier dictionary. The idea here is to 

fully utilize the best basis algorithm using the sparsity constraint to capture 

the homogeneously and isotropically oriented regions as much as possible. 

We expect that the regions containing more than two different orientations 

should be split into finer boxes. Therefore, the idea is to detect the smallest 

boxes in the best basis partition patterns to identify the texture boundary, 

and the largest boxes as a part of the homogeneous texture regions, and then 

merge the smaller boxes into the larger boxes if they share the same texture. 

These algorithms, i.e., the BLTB and the texture se^iientation via sparsity 

constraints can be significant by-product that may be generated from this 

research since it is easy to foresee such algorithms can be useful for the other 

context that is of DARPA's interest (e.g., ATR, other pattern recognition 

applications). 

7.1.4    Robust entropy estimation 

We have also realized that the robust entropy estimation from a given set of 

data is critically important for all of the projects above. Currently, we are 
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using the histogram-based entropy estimator of Hall and Morton [4] and its 

variants. These entropy estimators are good if: 1) the number of available 

samples are large; 2) the true pdf satisfies a certain regularity conditions 

(e.g., no heavy tails, etc); and 3) the underlying distribution is ID. There- 

fore, if one of these conditions are violated, we need to consider alternatives. 

The local Fourier dictionary immediately violates the condition 3) since their 

expansion coefficients are complex numbers (i.e., 2D in nature). Therefore, 

we need good and robust entropy estimator for the local Fourier dictionary. 

Even for the local cosine and wavelet packet dictionaries, the condition 1) 

and 2) may be violated from time to time. The entropy estimators we are 

currently examining are kernel-based density estimator and graph-theoretical 

density estimator (e.g., the one based on the minimum spanning trees). With 

our Ph.D. student, Jen-Jen Lin, we recently obtained a method to compute 

entropy without using the pdf [10]. This method uses the higher order cumu- 

lants instead of the pdf's. This also works for the multidimensional distribu- 

tions. We have a plan to examine its stability and compare its performance 

with those of the pdf-based methods. 

7.2    Spike Removal by Continuous Wavelets 

As we already mentioned, the fractography elevation data contains the un- 

desirable spikes that may influence almost all frequency components in the 

Fourier analysis. Since the roughness of the data contains useful information, 

which must be preserved, conventional denoising techniques such as wavelet 

thresholding of Donoho and Johnstone cannot be employed; those cannot 

distinguish rough features from spikes. We suggest the use of a continuous 

wavelet transform of these data, and the properties of wavelet coefficients 

related to local smoothness (the so-called Holder regularity) of the data to 

detect and remove the spikes. 
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7.3 Linking Local Features to Physical Fracture Mod- 

els 

This is one of the key component of our future project, and will be con- 

ducted with the fractography and material science experts. If we understand 

the specific fracture features responsible for producing the "characteristic 

fingerprint" of a given load condition in a given microstructure, this may 

lead to a much more realistic fracture model. That is, if we understand how 

the microstructure is dissipating energy at specific load conditions, the frac- 

ture mechanists and material scientists may be able to generate a model that 

mimics those microstructural cracking phenomena. This would, in turn, gen- 

erate a model that links the wavelet/Fourier analysis to physical reality. One 

thing to consider in this scenario would be the effect of grain orientation, 

with respect to the crack propagation direction, on the produced fracture 

features. This could be used if/when we consider crack propagation within 

specific, non-isotropic, grains. 
It seems to us that the newer sets of dictionaries of bases, such as local 

Fourier, brushlets [13], and edgelets [1], which are capable of detecting and 

characterizing oriented and striped patterns, may be ideal tools to extract 

features and link them to the physical models. This project requires real 

close collaboration with fracture mechanists and material scientists. 

7.4 Building Stochastic Models 

While the fracture mechanists and material scientists develop the relevant 

fracture models, we also would like to build stochastic models that are able 

to generate as many fracture surfaces as one wishes, which are similar to the 

observed fracture surfaces of a given loading condition. If we can successfully 

build such models for different loading conditions, then the model parameters 

should reflect the difference of the loading conditions. This in turn may be 

incorporated to the physical fracture models of Section 2.3. We have a couple 
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of projects in this directions. 

7.4.1 Simple stochastic models using the least statistically-dependent 

bases 

Statistical independence is one of the most desirable properties as a coordi- 

nate system in terms of redundancy reduction. If the coordinates are sta- 

tistically independent, modifying one coefficient does not affect the other 

coefficients at all. Therefore, if we can find such a coordinate system for a 

given class of images, we can use this system for a variety of purposes, e.g., 

compression, modeling, and simulation. In reality, however, it is difficult to 

obtain such a coordinate system because: 1) a given image may not con- 

sist of independent components in the first place; or 2) even so, numerical 

algorithms to obtain such a basis become extremely complicated and expen- 

sive. Based on these observations, we very recently developed an algorithm 

that quickly selects a basis (from the dictionaries) that is "closest" to the 

statistically-independent coordinate system in the sense of relative entropy 

[14], [15]. The simplest stochastic model of fracture surfaces is to assume 

that the LSDB coordinates are statistically independent, and each fracture 

surface obeys the stochastic process that can be specified by the product 

of empirical marginal pdf's of the LSDB coordinates. We can then easily 

simulate and sample new images from this model by: 1) independently sam- 

pling the LSDB coefficients using the standard sampling methods such as 

the inversion method or the rejection method; and 2) performing the inverse 

transform from the LSDB coordinates to the pixel coordinates. 

7.4.2 Stochastic models incorporating dependence among local 

features 

If the LSDB coordinates do not provide us with truly or nearly independent 

coordinates, we will incorporate the dependence among the LSDB coordi- 

nates. We will start with a simple dependence model such as the pairwise 
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dependence model, then develop more elaborate models such as the Markov- 

chains or Markov Random Fields on the local features/LSDB coordinates. 

The simplest dependence model is the pairwise dependence model that 

approximates the true pdf by a product of bivariate pdf's. The issue of 

this simple model then is how to make pairs of the LSDB coordinates. We 

will use the mutual information to quantify the dependence between the two 

coordinates. Once we make the pairs of the coordinates, we can sample 

and simulate the coefficients using the standard simulation techniques such 

as the rejection method. By looking at the simulation results, we know 

how important the dependence structure is for the texture models. For the 

coordinates of complex numbers, such as the local Fourier coordinates, we 

can also compute the mutual information on the magnitude and the phase 

separately, which is extremely interesting to examine. 

If the pairwise dependence is not enough to model the images faith- 

fully, we will proceed to build more elaborate probability models such as 

the Markov chain on the LSDB coordinates. Here, the simplest algorithm is 

to start from the most energetic coordinate, then find the most dependent 

coordinate on the first coordinate, then find the most dependent coordinate 

on the second coordinate, and repeat until we exhaust the indices. If, in the 

middle of the process, the dependence of all the remaining coordinates on 

the already-selected coordinates becomes too weak, then we can break the 

chain at this point, and th^n start the new chain from the most energetic co- 

ordinate that is still left. In both the simple pairwise model and the Markov- 

chain model, if we could reduce the dimension from n to m « n, then it 

would significantly speed up the both pairing procedure ( 0{m{m - l)/2) 

instead of 0{n(n - l)/2) for checking pairs) and the actual sampling from 

the models. In fact, this dimension reduction even may reduce the amount 

of unwanted noise in the images. We will compare the performance of the 

reduced models with that of the full models. 
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7.5 Integrating Multiple Resolutions and Sensors 

We should incorporate all the pertinent data available to infer the loading 

condition that generated the observed fracture surfaces. So far, we used only 

the surface elevation data measured by the FRASTAscope, with the fixed 

magnification. We should be able to get more information about the perti- 

nent features by looking at different resolutions. We will also examine SEM 

images, which are more commonly available to many fractographers. This 

availability implies that a large empirical rules and diagnostics are accumu- 

lated among the experienced fractographers. Our goal here is to interview 

these fractographers to find out what features they are looking for to infer 

the loading conditions and history. The FRASTAscope can also generate the 

contrast/reflectivity images of fracture surfaces. These images may be used 

to link the surface elevation data and the SEM images. 

7.6 Summary of our recommendations 

The above projects may lead to a better classification performance and better 

understanding of the underlying physics of the fatigue fractures, which is the 

key of the entire project. We also believe that this project will generate 

significant by-product that will be useful for other area of DARPA's interest. 
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APPENDIX B 

ANALYSIS OF A FAILED SPACE SHUTTLE COMPONENT 

During testing of a high pressure pump in the space shuttle fuel tank, a crack about 6 inches 

long and 0.290 inch deep was found in a 0.070-inch blend radius of the turbine housing after 32 

starts. A failure analysis team from Pratt & Whitney, Rocketdyne, and NASA Lewis looking into 

the cause and evolution of this crack wanted to know when in the test history the crack initiated, if 

the crack was unstable in the late stages of development, and whether propagation resulted from 

engine start/stop cycles or power level changes. To answer these questions, they hoped to identify 

and interpret features on the crack surfaces. 

The housing, which functions as a pressure vessel for high temperature (up to 500°F) 

hydrogen and steam, is made of a wrought nickel-base alloy with a maximum average grain 

diameter of 9 p.m. Chemical analysis showed a higher concentration of hydrogen near the surface 

than in the bulk of the material, and metallographic sections through the crack showed higher 

hydrogen concentration along the crack and at the crack tip. Engineering estimates of the strains 

indicated levels sufficiently beyond yield that linear elastic fracture mechanics principles would not 

apply. Several elastic-plastic models predicted the maximum stress intensity at the tip of the crack 

when it was 0.075 inch long to be 43 to 77 ksiÄ A K^ of 77 ksiÄ should produce crack    . 

growth in hydrogen. 

Fractographic features were not distinctive enough to characterize the stress state, but 

macroscopically there were large changes in the surface texture. The team therefore sought other 

methods to analyze the fracture surface topography. A small section of one fracture surface 

(Section 6B from Unit 9-1, shown in Figure B-l) was sent to SRI for analysis. 

SRI used the FRASTAscope to produce topographic maps of 29 areas of the fracture 

surface along the line A-A. Each area was 139.8 urn in the direction of crack growth (i.e., in the 

through-thickness direction) and 177.0 u.m in the perpendicular direction. This area was divided 

into a 600 by 800 pixel array and, hence, the data spacing was 0.233 u.m in both directions. 

Figure B-2 shows contrast images and gray-scale topography images of selected areas. 
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Figure B-1.   Fracture surface from a Space Shuttle turbine housing. The topographies of areas along 
the line A-A were characterized and analyzed by FFT. 
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(a) Contrast image of the area at 69.3 urn 
from the inner edge 
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(c) Contrast image of the area at 2379 urn 
from the inner edge 

(b) Gray-scale topography image of the 
area at 69.3 urn from the inner edge 

(d) Gray-scale topography image of the 
area at 2379 urn from the inner edge 
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Figure B-2.   A series of contrast and gray-scale topography images of selected areas 
along the line A-A in Figure B-1. 
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(e) Contrast image of the area at 2469 urn 
from the inner edge 
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(g) Contrast image of the area at 2869 urn 
from the inner edge 

(f) Gray-scale topography image of the 
area at 2469 urn from the inner edge 

(h) Gray-scale topography image of the 
area at 2869 |jm from the inner edge 
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Figure B-2.   A series of contrast and gray-scale topography images of selected areas 
along the line A-A in Figure B-1. (Continued) 
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(i)  Contrast image of the area at 4269 urn 
from the inner edge 
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(k) Contrast image of the area at 4469 urn 
■   from the inner edge 

(j) Gray-scale topography image of the 
area at 4269 urn from the inner edge 

(I) Gray-scale topography image of the 
area at 4469 urn from the inner edge 
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Figure B-2.   A series of contrast and gray-scale topography images of selected areas 
along the line A-A in Figure B-1. (Continued) 
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(m) Contrast image of the area at 4659 urn 
from the inner edge 

(n) Gray-scale topography image of the 
area at 4659 urn from the inner edge 
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Figure B-2.   A series of contrast and gray-scale topography images of selected areas 
along the line A-A in Figure B-1. (Concluded) 
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A fast Fourier transform analysis was applied to the elevation files, and the averaged 

elevation power spectrum density (EPSD) distribution was computed for each area. The results are 

plotted in Figures B-3(a), (b), and (c), where the parameter is the distance from the centroid of the 

area to the edge of the housing. Between the wavelengths of 0.5 and 10 Jim, the EPSD curves are 

roughly parallel to one another and slightly concave. To examine the variation of surface 

roughness with crack depth, we plotted the value of the ESPD at the arbitrarily chosen wavelength 

of 5 |im versus distance from the housing edge, Figure B-4(a). A plot of the square root of the 

EPSD versus crack depth is shown in Figure B-4(b). These figures show two large peaks in 

fracture surface roughness. 

In light of the results presented in the body of this report, these peaks suggest loading 

excursions at crack depths of 2.5 mm and 4.5 mm. Because reference data for this nickel-base 

alloy have not been generated, we are unable to convert the EPSD values to quantitative estimates 

of K^ or AK. However, the slight concavity in the EPSD curves is reminiscent of the shape of 

the curves for the titanium alloy reported in the body of this report. Therefore, one might speculate 

that the R value (o^Ja^) is closer to 0.1 than to 0.8. 

Several smaller peaks are also evident in Figure B-4 and suggest smaller overloads. A 

similar analysis performed on center-cracked panels of aluminum alloy sheet showed similar EPSD 

peaks at crack lengths where overloads were applied.9 Greater peak heights were obtained with 

larger overloads. 

It would be of great interest to compare the results of Figure B-4 with the run time history 

(starts/stops and power changes versus time) of the engine. 
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(a) Elevation Power Spectrum Density Plot of the First Seven Areas along the Line A-A 
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(b) Elevation Power Spectrum Density Plot of the Middle Six Areas along the Line A-A 
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Figure B-3.   Elevation power spectrum density plots of the areas along the line A-A. 
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(c) Elevation Power Spectum Density Plot for the Last Eight Areas along the Line A-A 
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Figure B-3.   Elevation power spectrum density plots of the areas along the line A-A. (concluded) 
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(a) EPSD values as a function of crack depth 
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(b) SQRT(EPSD) values as a function of crack depth 
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Figure B-4.  Variation of EPSD and SQRT(EPSD) as a function of crack depth. 
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