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STATISTICAL PREDICTION OF LAMINAR-TURBULENT TRANSITION 

ROBERT RUBINSTEIN*  AND MEELAN CHOUDHARF 

Abstract. Stochastic versions of stability equations are considered as a means to develop integrated 

models of transition and turbulence. Two types of stochastic models are considered: probability density 

function evolution equations for stability mode amplitudes, and Langevin models based on representative 

stability theories including the resonant triad model and the parabolized stability equations. The first type 

of model can describe the effect of initial phase differences among disturbance modes on transition location. 

The second type of model describes the growth of random disturbances as transition proceeds and provides 

a natural framework in which to couple transition and turbulence models. Coupling of parabolized stability 

equations with either subgrid stress models or with conventional turbulence models is also discussed as an 

alternative route to achieve the goal of integrated turbulence and transition modeling. 

Key words, turbulence, transition, parabolized stability equations, resonant triads 

Subject classification. Fluid Mechanics 

1. Introduction. Recent developments in computational fluid dynamics flows have revealed the need 

for integrated modeling of turbulence and transition. In many external aerodynamic flows, such as the flow 

past high-lift airfoil configurations, low-pressure turbine blades, and the Mars flyer design proposed by NASA 

(C. L. Streett, private communication), accurate prediction of crucial bulk parameters like the lift and drag 

coefficients requires that flow computation be transition sensitized. In high-lift applications in particular, the 

laminar and turbulent regions are tightly coupled through the dependence of separation and reattachment 

characteristics on transition location; the predicted flow can vary from fully attached to massively separated 

depending on the transition location imposed on the flow solver [25]. Recent computations [38] have shown 

that whereas most turbulence models can predict many external flows with adequate accuracy provided a 

transition location is specified in advance, no single turbulence model can predict this location in all cases. 

A basic obstacle to the integration of turbulence and transition modeling lies in the quite distinct 

viewpoints of previous research in these fields. Transition studies typically formulate deterministic equations 

like the Orr-Sommerfeld equation in a wide variety of different problems, whereas turbulence studies apply 

statistical methods to describe the features common to all turbulent flows. This distinction is best illustrated 

by comparing the simplest turbulence model, the mixing-length model [49] and the simplest transition 

prediction scheme, the eN method [5], [41]. The eN method is a deterministic procedure based on the linear 

amplification of the most unstable mode, whereas the mixing-length model appeals to a statistical mechanics 

analogy to describe the effects of turbulence on the mean flow. 

Although these divergent viewpoints arise from the need to describe radically different flow physics, 

recent developments have tended to bring these fields closer together; thus, recent investigations of bypass 

transition [33] analyze random initial disturbances, implicitly posing the transition problem statistically. In 

any case, a synthesis of turbulence and transition modeling is demanded by the need for accurate, seamless 

computation of transitional flows throughout the entire transition process, from the initial disturbances to 
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fully developed turbulence. 

One approach to integrated modeling of turbulence and transition is to apply low Reynolds number 

turbulence models directly to transitional flows [1], [7], [11]; this approach treats transition as a special 

kind of 'non-equilibrium' turbulence. Another general approach is to sensitize existing turbulence models 

to transition, often by introducing a new field quantity like intermittency [45], [26], [40]. An entirely new 

approach which treats transition beginning from turbulence modeling is given in [46]. Certainly, models of 

this type will play a valuable role in the aerodynamic design process. However, due to the limited transition 

physics embedded in such models, typically through curve fits and/or ad hoc calibration against a relatively 

sparse measurement database, they are not likely to explain potential anamolies in measured aerodynamic 

performance or yield reliable answers when extrapolation to completely new flow situations (e.g., the Mars 

flyer application) is required. 

In broad terms, the present work is motivated by the desire to retain as much of the transition physics 

revealed by recent advances in understanding of the transition process reviewed, for example by [16], [22], 

[14], and [27], yet allow for integrated aerodynamic predictions in a realistic setting. To that end, the current 

investigation begins with transition and has the ultimate goal of incorporating turbulence prediction in a 

seamless fashion. Given this overall goal, two main areas present themselves as candidates for further work. 

The first of these areas concerns the prediction of transition in isolation from the turbulent flow computation, 

whereas the second area of need is related to the mechanics of coupling the transition prediction with the 

computation of the turbulent flowfield. 

First, let us consider the prediction of transition itself. As noted by Reshotko [34], laminar-turbulent 

transition in a convectively unstable boundary layer corresponds to the forced response of a rather complex 

oscillator, namely the laminar basic state. Under the relatively benign disturbance environments that are 

typical of external aerodynamic flight, the above response may be decomposed into three broad stages: 

excitation of linearly unstable eigenmodes of the oscillator due to forcing from the external disturbances (i.e., 

the process of receptivity), initially exponential growth of these eigenmodes as they propagate downstream, 

and the variety of nonlinear interactions which ensue after the eigenmodes have achieved sufficiently large 

amplitudes and which eventually lead to turbulence. Any attempt to model the transition process on a 

rational basis must account for all three stages of the 'oscillator' response. 

The current engineering methods for transition prediction typically involve the linear propagation phase 

alone, with little or no account of receptivity (which initiates transition) or the nonlinear interactions (which 

actually cause the onset of transition). In spite of their success in predicting transition in a wide range of 

flows, these iV-factor methods lack the physical basis necessary to explain the effects of surface roughness 

and free-stream unsteadiness, which may be particularly significant in flows such as swept wing boundary 

layers and high-lift flows. Thus, as an essential aspect of integrated modeling of transition and turbulence, 

it is necessary to develop rational prediction methods that couple the various stages of transition itself. 

A preliminary attempt along these lines, which focused on a controlled disturbance environment involving 

sinusoidal surface waviness and a monochromatic acoustic disturbance, was presented in [3]. However, 

considerable advancement is necessary to enable similar predictions in a realistic setting. 

In view of the complexity of the forcing fields encountered in practical applications, integrated transition 

prediction needs to be performed within a stochastic framework that is capable of analyzing the effects 

of randomness and uncertainties in the flow environment. The concept of stochastic transition prediction 

represents a major theme behind the work reported in this paper. The objective here is not so much to 

develop and present a well-tested recipe towards this goal, but to outline the various issues introduced by 



stochasticity, explore potential ways in which they might be addressed, and examine the potential merits 

and demerits of each approach. Although mainly aimed at integrated transition and turbulence modeling, 

we note that such work would also be relevant to developing stochastic control schemes for laminar-turbulent 

transition. 

In principle, statistical consideration of the forced-oscillator response should include the uncertainties 

associated with both oscillator characteristics (i.e., undisturbed laminar state) and the forcing environment. 

Of these two, the stochastic character of the forcing is perhaps more important, and is what is emphasized 

here. In general terms, we consider how deterministic models for a given stage of the transition process 

(which may be considered as well-established at this point) may be extended to a stochastic setting by 

treating the input conditions as random rather than fully specified. 

In this paper, we assume that the dominant receptivity occurs through linear mechanisms and hence the 

overall problem of stochastic disturbance evolution in a boundary layer may be decomposed into two separate 

problems: the receptivity problem that predicts the statistics of initial disturbances (i.e., instability modes) 

as functions of input forcing, and the propagation stage which predicts how these statistical characteristics 

evolve as the instability waves amplify and eventually interact through nonlinear mechanisms. Given the 

system parameters (i.e., a plant model), the response of a linear, deterministic system to stochastic input 

can be predicted rather simply since the second moments of the response are directly proportional to those 

of the input, with the scaling factor begin the known (deterministic) transfer function. Thus, it is relatively 

straightforward to extend the available models for receptivity and linear growth to a stochastic setting. 

Accordingly, we focus our attention on stochastic aspects of the nonlinear propagation phase, for which 

there is no unique transfer function as the latter now becomes a function of the input parameters (i.e., initial 

amplitude spectrum). 

As transition progresses, a sequence of secondary and higher order instabilities are excited leading to the 

emergence of smaller scales of motion; with continued excitation of small scales, memory of the details of the 

original state fades, and gradually a statistically steady state of turbulence is reached. Two points are worth 

noting in this context. First, as the system becomes chaotic during the laminar breakdown stage, stochastic 

modeling is necessary even if there were no uncertainties in the forcing environment. Second, stochastic 

formulation of the transition models provides a natural link between transition theory and turbulence mod- 

eling. Of course, passing from a deterministic to a stochastic transition analysis is not trivial, particularly 

in view of nonlinearity of the problem. The details of the path to turbulence, in which different modes are 

significant during different phases in the evolution, is highly case dependent. Therefore, a direct simulation 

of the stochastic problem, which would require simulating a large number of these paths, is impractical. This 

problem is much more severe than the problem of simulating fully developed turbulence, in which ergodicity 

helps permit the evaluation of statistics. The present paper represents but a first step to a statistical model 

of transition. 

An outline of the paper is as follows. To begin, we briefly review the theory of receptivity, since in 

many external flows, receptivity analysis will determine the initial disturbance spectrum. Following [8], we 

emphasize the stochastic aspects of the problem, namely the connection between the random free-stream 

disturbances and roughness distributions and the probability density function of the phase and amplitude of 

the generated Tollmien-Schlichting waves. 

The subsequent evolution of the generated instability waves (particularly, during the nonlinear stage) is 

examined next. On a determinstic level, the disturbance evolution problem can be addressed using models 

of varying degrees of sophistication and accuracy including Craik's model for resonant triads of Tollmien- 



Schlichtung waves [12], rational high Reynolds number asymptotics [14], parabolized stability equations [4], 

large eddy simulation [18], and direct numerical simulation [33],[51]. To achieve the goal of integrated 

transition and turbulence modeling, we start by applying these models in a stochastic setting, treating the 

initial disturbance spectrum as random rather than deterministic. We begin by considering the simplest 

model for nonlinear disturbance interactions, namely Craik's model [12], which provides a simplified account 

of nonlinear interactions via a viscous critical layer. Despite its shortcomings from the viewpoint of systematic 

asymptotics [14], this model has been shown to yield predictions which agree reasonably well with many 

experimental observations [20]. In the present context, it provides a simple model to illustrate the combined 

effects of nonlinearity and randomness on the propagation of instability waves. Moreover, by connecting the 

amplification of subharmonics to the growth of phase coherence, this model suggests a link between transition 

and turbulence, where the growth of phase coherence is closely connected to energy transfer. Fully developed 

turbulent flow exists because of a balance between triad interactions, which promote phase coherence, and 

coupling to all other modes which destroys it [23]. The resonant triad model can be understood from this 

viewpoint as the first phase in establishing this balance. 

We next outline the extension of the resonant triad model to more complex interactions. Specifically, we 

examine the interactions between more than three instability waves, nonlinear effects in a non-equilibrium 

critical layer, and predictions for the strongly nonlinear regime. These extensions raise the important issue 

of modeling the effects of higher order modes which have not been explicitly resolved by the model being 

considered. The model which seems best suited for engineering predictions of transition and could potentially 

extend into the strongly nonlinear regime is the parabolized stability equations (PSE) [16]. A preliminary 

discussion is given concerning how PSE can be treated in a stochastic setting. 

Finally, we describe our proposal for a general, integrated turbulence and transition model: a generalized 

PSE restricted to a relatively small number of modes with the effect of the remaining modes accounted for 

through modified damping and random forcing. The crux of our proposal is that turbulence effects can also 

be included in the model the same way. Such a model would be a compromise between transition-sensitized 

Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) or direct numerical simulation 

(DNS). 

2. Stochastic aspects of the disturbance generation and evolution through the weakly non- 

linear stage. 

2.1. Summary of the receptivity problem. The statistical analysis of transition in a convectively 

unstable flow begins with the random initial conditions, which, barring uncertainties or inaccuracies in the 

mean flow prediction, are the only source of randomness in the problem. In the Goldstein-Ruban-ZavoPskii 

theory [15], [36], [52], receptivity is analyzed as the excitation of a free Tollmien-Schlichting wave through 

the interaction between a specified ambient unsteady disturbance with surface roughness of known shape 

and size. Provided that the wavenumber spectrum of the surface roughness and the characteristic frequency 

of the ambient disturbance overlap respectively the wavelength and frequency of a free Tollmien-Schlichting 

wave, in low-speed flows, this wave can be excited and subsequently amplified. 

Receptivity analysis is most often formulated as a deterministic problem. Although some stochastic 

aspects have been explored in [8], this analysis was limited to evaluating the rms amplitude of the instability 

wave. By averaging over the roughness distribution, phase information is lost, and only averages remain. 

This work has been extended to transient analysis of receptivity by formulating the problem as a stochastic 

differential equation. The result is a description of the growth of receptivity amplitudes by means of a 

Fokker-Planck equation [37]. The conclusion from this work for the present purpose is simply this: because 



receptivity is a linear problem, if the phases in the disturbance environment are random, then the phases in 

the initial random distribution of Tollmien- Schlichtung waves will also be random. 

While randomness of the phase has no influence on the linear evolution of the instability waves, there 

exist cases in which the disturbance phase can have a significant impact on the nonlinear evolution as 

illustrated later in this section. 

2.2. Resonant triad evolution in a boundary layer. The defects of deterministic transition pre- 

dictions based on linear amplification alone are well-known: the analysis cannot account for the rapid onset 

of three-dimensional behavior as transition is approached, or for the mean-flow modification due to the dis- 

turbance growth. This is because both of these features are due to disturbance nonlinearity and the neglect 

of nonlinear effects on disturbance evolution eventually invalidates the theory. In the following subsections, 

we illustrate the dependence of disturbance evolution on the relative initial phase of different instability 

modes in the simplest context to set the stage for a stochastic analysis of nonlinear disturbance evolution. 

Many weakly nonlinear analyses have been introduced in transition theory to explain the onset of three- 

dimensional behavior. We consider the simplest theory of this type, namely Craik's theory [12] of resonant 

interaction between a triad of Tollmien-Schlichting waves which shows how oblique subharmonics can be 

amplified, even if they are linearly damped. 

2.2.1. Craik's model: deterministic triad interaction problem. The analysis [12] begins with a 

primary, two-dimensional Tollmien-Schlichting wave in a two-dimensional parallel mean flow 

(2.1) *3 = ReiAMyyl"*-» *!} 

which, together with a pair of resonant subharmonics, 

(2.2) *1>2 = Re{A1;^1;l(y)e^a^x±ßz-^'2^} 

represents a special case of a resonant triad of waves. Here, x,y,z denote the streamwise, normal, and the 

spanwise directions respectively; t denotes time, <x,ß, and u> denote the disturbance wavenumber and fre- 

quency for a given mode, <pi (i — 1,2,3) denote the appropriately normalized eigenfunctions. The disturbance 

amplitudes At (i — 1,2,3) are slowly varying functions of space, 

1   B A - 
(2.3) Ai = Ai{x)   wi*hl^^l «« 

or of time, 

1 dA- 
(2.4) Ai = Ai(t)   with | — -^- | « w 

depending on whether the disturbance evolves in space x or time t. The latter distinction is perhaps 

unimportant for this paper. However, to facilitate comparison with previous deterministic analyses, we will 

treat only the spatial case herein. 

Under the parallel-flow assumption, Craik's heuristic analysis led to the following set of ordinary dif- 

ferential equations for the (complex) amplitudes of the resonant triad of waves defined in Eqs. (2.1) and 

(2.2): 

h — äbi + b3b*2 

h — äb-2 + b3bl 

(2.5) 63 = ab3 + e^hh 



where bi, (i — 1,2,3) denote normalized forms of the complex amplitudes Ai and the dot denotes differen- 

tiation along the evolution coordinate (i.e. x for the spatial disturbance evolution considered here). In Eq. 

(2.5), a and a are the normalized linear growth rates of the subharmonic and primary waves respectively, 

and the angle <p models the effect of detuning between the primary and subharmonics. Eq. (2.5) applies 

only in the parallel-flow limit, in which the nonlinear growth is assumed to occur on a scale that is much 

smaller than the scale of the mean boundary layer growth (i.e. nonparallel scale). Eq. (2.5) also applies 

more generally to problems in which the growth rates become weak functions of x through small effects of 

non-parallism. This generalization will be used in a subsequent case study. 

An important simplification of Eqs. (2.5) is provided by the equations for parametric excitation: 

h — äbi + b3bl 

b-2 — ö-b-2 + hbl 

(2.6) k = <rb3 

wherein the nonlinear term in the equation for the primary amplitude b3 has been dropped, hence b3 under- 

goes purely linear growth. This limiting case corresponds to the parametric region | b± \, \ b-2 |-C| bi | which 

is typical of the initial phase of nonlinear growth. 

In terms of amplitude-phase variables defined by 

(2.7) bi = rie
i0', 

Eq. (2.5) becomes 

h — r2r3 cos 9 + urx 

f2 = nr3 cos 9 + or2 

h — nr'2 cos(0 -0) + 0T3 

(2.8) 9 = — sinU -0)- — sin 0 - ^^ sin 0 
r3 r2 r± 

Observe that the amplitude evolution depends, not on the individual phases 0i, but only on the single phase 

variable 

(2.9) 0 = 0± + 02 - 03 

Many special solutions and properties of the triad equations can be derived [12], [48]; however, for 

the purposes of transition studies, a simple generic picture is adequate. In general, the subharmonics are 

amplified, eventually overtaking the primary. During growth, the amplitudes of the subharmonics become 

equal (r± — T2. — r) and a condition of phase-locking (0 — 0) develops. After the onset of phase-locking, the 

solution undergoes explosive growth, leading to a finite-time singularity of the solution [48]. Amplification 

can occur even if the subharmonics are linearly stable (a < 0), and also even if the primary is linearly stable 

(a- < 0) [30]. 

This behavior is immediately apparent from the closed-form solution for the case of parametric excitation 

Eq. (2.6): 

h{t) = |[&i(0) + b2W]^t-1),a+°t + \lhio) - &2(o)*]e-(e',-1>/<r+?t 

(2.10) b2(t) = \[h(0)* + &2(0)]e(e',-1>/'+?t - ^i(0)* " &2(0)]e-(e"-1)/<r+?t 



which shows that the subharmonics can amplify exponentially even if <j — 0. Eq. (2.10) illustrates the 

two features noted above: at sufficiently long time, amplitudes of the two subharmonics become equal (i.e. 

I h \ — \ b-2 |), and bib-2 becomes real so that 0 approaches zero. 

The parametric excitation case also reveals that amplification is phase-dependent: if 62(0) — —&i(0) is 

real, so that the initial phase ff(O) — IT, then the growing double exponential term does not occur and we 

have 

(2.11) 

&i(*) =  ^Oje-^"-1^-1-** 

62(f) = -61(0)e-(e"-1^<r+?*. 

In this case, the subharmonics will actually decay in the absence of linear growth. 

We note that the dependence of subharmonic amplification on its phase relative to the primary wave 

is well-known in the context of mixing-layer instabilities [30]. Analogous behavior in wall-bounded flows, 

albeit not equally emphasized in the literature, has been measured [39] and theoretically predicted [53]. 

Unfortunately however, the effects of initial phase lag on transition location have not been explored in detail 

as yet. A preliminary attempt using admittedly crude modeling is made below (see Fig. 2.8). Further 

examination using both nonlinear PSE and wind tunnel experiments is planned for the near future. 

The general features of triad evolution are depicted in Fig. 2.1 which were obtained from numerical 

integration of Eqs. (2.5) using a fourth-order Runge-Kutta method starting from initial values of the phase 

0(0) — Nir/4, N — 1, • • • 16. In all cases, initial amplitudes were held fixed at ri(0) — r-2(0) — 0.1, rg(0) — 1.0 

with initial growth rates ä — 0. (i.e. linearly neutral subharmonics), and a — 0.1. Figure 2.1 shows 

both the evolution of the phase, in which "locking" is clearly evident, and the evolution of the primary 

and subharmonic amplitudes; a strong connection between subharmonic amplification and phase locking is 

suggested by a comparison between the phase and amplitude evolution. 

1.75 
1.5 

1 25 

0.75 

0.5 
» 
3 
g-0.25 

0.1 0.2 0.3 

FIG. 2.1. Effect of initial phase on subharmonic amplification in the nonlinear evolution of a resonant triad. The 

downstream development of the phase variable 0 and of the primary and subharmonic amplitudes are shown for variable initial 

0. Parameters in Eq. (2.5) are: <r — 0.1 and ä — 0; the dephasing factor <ft — 0. Initial conditions are: primary amplitude 

r'i{0) — 1.0 and subharmonic amplitudes ri(0) = r2(0) — 0.1. The initial phase 0(0) is uniformly distributed from IT to IT. 

The governing equations are fully nonlinear triad interactions, Eq.  (2.5). 



Observe that even though the triad system Eq. (2.5) supports an equilibrium solution of the form 9 — IT, 

that solution is unstable, with the only long-time attractor being the phase-locked solution 9 — 0 as observed 

earlier by [14] in a similar context using high Reynolds number asymptotic theory. 

Fig. 2.2 shows the same calculation for the linear theory of parametric excitation. The picture is 

naturally considerably simpler since the primary only undergoes linear growth. The curve with 9(0) — IT 

maintains its initial value througout. Therefore, unlike the fully coupled case illustrated by Fig. 2.1, the 

subharmonic amplitude in this case continues to decay during its evolution. 

FIG. 2.2. Effect of initial phase on subharmonic amplification in the case of parametric excitation. Disturbance parameters 

and initial conditions are as in Fig. 2.1. 

2.2.2.  Stochastic formulation of triad evolution:   probability density function approach. 

The analysis of subharmonic growth suggests a role for a statistical theory of resonant interactions. Since 

the growth of subharmonic disturbances depends on their initial phase, an exact description will require a 

knowledge of the initial phase; but if these initial conditions are referred to a receptivity calculation, then 

as Sect. 2.1 suggests, even if the initial disturbance amplitudes were known with relative precision, the 

initial phase distribution could not be established in general. Thus, the initial conditions for the theory of 

subharmonic growth are best described by a probability density function (PDF) for initial amplitudes and 

phases. From this viewpoint, the best description of subharmonic growth is given by the evolution of this 

PDF. 

For the sake of brevity, we formulate the evolution equation for the case of equal subharmonic amplitudes, 

i'i — r-i — T. This condition is preserved by the equations of motion, and as noted previously, the system 

eventually evolves to this condition in any case. Applying standard methods [31], one finds that the joint 

probability density P(r,r-i,9;t) of amplitudes r,r3 and the phase variable 9 satisfies the first order partial 

differential equation 

(2.12) 

where 

dP      d 
dt      dr 

(Frn + ^rJF,P) + -^(F0P)^0 

Fr — rrd cos 9 + or 

F3 — r2 cos(0 - 9) + OT3 



(2.13) F„ = — sin(0 - 9) - 2r3 sin 9. 

Closed equations for the moments of P cannot be obtained, since moments of any given order are found to 

depend on moments of higher order. 

The initial PDF is taken to be independent Gaussian distributions for amplitudes, and initially uniformly 

distributed phase, 

(2.14) P(r,r3,9; 0) = ^N(r \ r0,a0)N(r-i | r3>0, <?*) 
Zir 

where 

(2.15) N(x | xo, a) = —=h=e~{x~x^I'1**. 
V2TT<7

2 

Since Eq. (2.12) is a linear first-order partial differential equation in a conservative form, numerical 

integration is straightforward. The method used for solving this equation numerically is described in detail 

in Appendix I. The numerical integration reproduced the qualitative features of the deterministic analysis as 

described earlier via Figs. 2.1 and 2.2. The marginal probability densities for subharmonic amplitude and 

phase, 

POO /*27T 

P(r3,t) =  /      dr /       d9 P(r,rd,9;t) 

f-OO f-OO 

(2.16) P{9,t)= j      dr dr-i P(r,rd,9;t) 
Jo Jo 

are shown for the case of parametric excitation in Fig. 2.3. 

This case is chosen for preliminary code verification because the primary amplitude probability density 

must be constant as a function of the centered normalized variable j — (r — (r))/a. The primary amplitude 

PDF remains Gaussian and unchanged after this normalization. Fig. 2.3 shows that the subharmonic 

amplitude becomes bimodal as time increases. The bimodality arises because paths exist for which the 

subharmonic amplitude decays at first. This M-shaped PDF can be compared with the measurements of 

[29] in the analogous case of a transitioning mixing layer. Fig. 2.3 also presents another picture of the strong 

tendency to phase locking. 

For quantitative validation of the method, we compare the results with some partially analytic results 

available for the case of parametric excitation. A straighforward calculation shows that the distribution of 

phase is related to the initially uniform distribution ip through the equation 

1 — cos %p 

sin1 tp + (cos if? — l)2i?2 

where %p is uniformly distributed, and the factor R is the double exponential of Eq. (2.10), i.e., 

(2.17) (W = -2R .  2 ,   ,  , ,x9TW# 

(2.18) R = exp[-exp((rt - 1) + at]. 
a 

The marginal probability density function of the phase is compared with the exact result in Fig. 2.4 . The 

agreement is satisfactory. Analytical expressions for the amplitude PDF's cannot be derived; however, the 

mean and variance of the primary and subharmonic are easily evaluated numerically in this case. The results 

are compared with the predictions of the PDF code in Fig. 2.4. The agreement is satisfactory except that 

the predictions of the subharmonic standard deviation become inaccurate near the end of the simulation. 

This inaccuracy may reflect the low order accuracy of the finite volume algorithm used in the code. 
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FIG. 2.3. Subharmonic amplitude and phase PDF's for different Re under parametric excitation. Initial phase is uniformly 

distributed from w to IT; initial primary amplitude is Gaussian with mean 1 and standard deviation 0.1, and equal initial 

subharmonic amplitudes are Gaussian with mean 0.1 and standard deviation 0.01. Disturbance parameters <?,&,$ are as in 

Fig. 2.1. As Re increases, the initially Gaussian subharmonic amplitude PDF becomes bimodal and the initially uniform phase 

PDF becomes concentrated at 0 — 0. 

FIG. 2.4. Validation of numerical solution of joint PDF evolution equation for parametric excitation case: initial conditions 

are as in Fig. 2.3. Left - comparison between exact (dots) phase evolution and numerical solution (lines) of joint PDF equation- 

Right - comparison between exact (symbols) and computed (lines) amplitude statistics. Disturbance parameters <J,ä,<p are as 

in Fig. 2.1. 

2.3. Stochastic form of triad evolution: particle method. Although direct solution of the PDF 

evolution equation Eq. (2.12) is feasible, the computation time required is excessive. Even with the as- 

sumption that the amplitudes of the two subharmonic modes are equal, integration up to the time that the 

subharmonics exceed the primary required several days on a workstation. As noted in Ref. [31], the main 

difficulty in integrating any PDF evolution equation is dimensionality: updating a PDF with d variables 

with N degrees of freedom each requires about Nd operations per time step. 

The particle method of Pope [31] mitigates this difficulty at the expense of a coarser description of 

the PDF. In the present problem, the particle method can be formulated as follows. Consider the general 
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problem with independent amplitudes ri,T2,r3. Replace the initial PDF by a sum of delta functions, 

(2.19) 

P(n, r2, r3, 9; 0) PS       ^      P(m, n2, n3, n9) x 
ni,71-2,71-3,71-0 

S(n - rni)6(r2 - rn2)ö(r-ä - rri3)ö(9 - 9ne) 

where the points rrH, 9ng at which the PDF is sampled are arbitrary, but deterministic. These points could 

be chosen based on a Gaussian quadrature scheme, for example. Note that if the variables rt, 9 are assumed 

to be independent initially, then 

(2.20) P{n\,ri2,nz,ne) — P(ni)P(n2)P{n3)P(9) 

Next, the deterministic evolution equations are integrated for an ensemble of initial conditions ri(0) 

f"ni!r2(0) — rri2,r-i(0) — rTl3,9(0) — ffng. The PDF at time t is approximated by the discrete sum 

(2.21) 

P{ri,r2,r3,0;t) &       ^      P{n1,n2,n3,ne) x 

Sin - rni(t))S(r2 - rn,2{t))5{r-s - rri3(t))S(9 - 9n,(t)). 

This scheme is not a Monte Carlo method, because the initial PDF is not sampled randomly; instead, the 

sampling is deterministic but weighted according to the specified initial PDF. An important feature of the 

method, which is evident from Eq. (2.21), is that it conserves total probability. 

To assess the accuracy of this particle method, the statistics shown in Fig.  2.4 were recomputed and 

compared with the exact results in Fig. 2.5. Evidently, the agreement is much more satisfactory. 

FIG. 2.5. Comparison between theoretical and computed amplitude statistics for parametric excitation: lines - computation 

(particle method), symbols - theory. Initial conditions and disturbance parameters <?,&,$ are as in Fig. 2.1. 

One must note, however, that one of the advantages of the probability density function approach is that 

it is robust with respect to any finite-time singularities observed in individual solutions of the deterministic 

evolution equations. The particle method, on the other hand, requires one to remove any trajectories that 

approach a singularity (and to account for this removal in some reasonable manner). However, this is not 

necessarily a significant limitation as the singularities indicate limitations of the underlying (deterministic) 

model and, hence, are either delayed or bypassed altogether in a real application after the model is suitably 

generalized to include the relevant physics neglected previously. 
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2.4. Stochastic triad evolution: case study and comparison with experiment. The particle 

method was applied to examine stochastic aspects of the triad evolution in a flat-plate boundary layer. In 

particular, the case of a symmetric resonant triad which had previously been examined in Ref. [53] in a 

deterministic setting was considered. This triad was comprised of a two-dimensional fundamental wave with 

a dimensionless frequency F — 115 x 10-6 and its subharmonics with a spanwise wavenumber given by 

ß/Re — 0.22 x 10~6. (For a definition of these dimensionless parameters, the reader is refered to [53].) 

To allow for the effects of the growth of the mean boundary layer, as well as the effects of small detuning, 

the triad equation set Eq. (2.5) was replaced by the slightly more general system 

h - a(x)h + 5i,23(a0&2&3 

h - ä(x)b2 + S2,i3(x)Kh 

(2.22) k = a{x)h + 53,12(^)6162 

where the x dependence of the linear growth rates a and ä and the nonlinear interaction coefficients reflect 

the effects of weak mean-flow non-parallelism. The interaction coefficients Sijk can be complex to allow 

for detuning effects. The evolution variable is streamwise distance, measured in this case as a downstream 

Reynolds number. This system can also be written in terms of amplitude and phase variables as 

h - an + Ri,23(x)r2r3 cos(9 + (f>i(x)) 

f-i - ar2 + R2;n(x)r2r1 cos(9 + (f>2(x)) 

h - ard + Ri,i2(x)nr2 cos((f>9(x) - 9) 

(2.23) 6 = Ri i2— sm(4>-i(x) -9)-R2 31 — sin(0 + <p2(x)) - R± 23—sm(9 + cpAx)) 
r-3 i'i T\ 

where we have set 

(2.24) SiJk = Rtjke**'. 

The values of the nonlinear coefficients Sijk as functions of the Reynolds number were based on Table 

1 of [53]. The initial PDF is given in Eq. (2.14). 

The results are shown in Fig. 2.6. The right-hand graph can be compared with Fig. 2 of [53]. The 

subharmonic amplitudes are initially unequal; however, the tendency of these amplitudes to equalize is 

evident. The subharmonics overtake the primary at a Reynolds number of about 700., in agreement with the 

analysis of [53]. After this point, the entire system undergoes explosive growth leading to a singularity in all 

three amplitudes. The left-hand graph shows the corresponding phase evolution. Both the close connection 

between the development of phase locking and the onset of explosive nonlinear growth and the effect of initial 

phase on subharmonic growth which were observed in the previous model problems also exist in this more 

realistic example. 

In order to illustrate the connection between subharmonic amplification and transition, the conditions 

analyzed in [53] were modified slightly. In Fig. 2.7, the initial amplitudes of the two subharmonics are 

one-half the initial primary amplitude. Initial standard deviations of the amplitudes are set at ten percent 

of the mean. The effect of initial phase difference on subharmonic growth is considerably enhanced by this 

change of initial amplitude. 

To connect this analysis to transition, Fig. 2.8 shows the probability that the subharmonic amplitude 

exceeds the local primary amplitude. Although the crossover location is not the same as the transition 

onset location (which cannot be predicted within the limited framework of resonant triad interaction), it 
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FIG. 2.6. Phase locking and subharmonic amplitude equalization during triad evolution in the problem analyzed in lief. 

[53]. Left - phase evolution as a function of Reynolds number. Right - amplitudes of primary and subharmonics as functions 

of Reynolds number.  The right-hand figure can be compared with Fig. 2 of Ref. [53]. 
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FIG. 2.7. Effect of initial phase on triad evolution. Primary and subharmonic amplitudes are shown as functions of 

local Reynolds number. All triad evolution parameters are based on Fig. 2 of Ref. [53], except that the initial subharmonic 

amplitudes are both equal to 0.5 times the initial primary amplitude. 

does harbinger the potential onset of stronger nonlinear interactions and, hence, the approach of transition 

(assuming, of course, that the primary amplitude involved is significantly large as well). 

With a suitable generalization of the underlying model, then, a stochastic transition theory will indicate 

the probabilistic spread in transition location as a function of uncertainties in the initial disturbance char- 

acteristics. In that spirit, Fig. 2.8 may be viewed as a measure of variation in transition onset probability 

with downstream location. 

A qualitative comparison with experimental results [39] is shown in Fig. 2.9. Here, the subharmonic 

amplitude at selected downstream locations is plotted as a function of initial phase difference between the 

primary and subharmonic waves. 
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FIG. 2.8. Transition onset probability based on subharmonic growth as function of local Reynolds number. The conditions 

analyzed are the same as in Fig. 2.7. Transition onset is assumed to occur when the primary and subharmonic amplitudes are 

equal.  The spread in transition onset location is due to uncertainty of the initial phase and amplitude. 
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FIG. 2.9. Subharmonic amplitude as a function of initial phase difference between subharmonic and primary modes: left 

theory, right - experiment of [39].  The triad parameters are somewhat different, therefore the comparison is qualitative. 

3. Extension of stochastic formulation to more general nonlinear disturbance evolution 

models. By accounting for the rapid onset of three-dimensionality in transitional flows, the resonant triad 

model overcomes one of the important limitations of linear stability theory; this was actually one of the 

motivations behind the original development of the theory. Nevertheless, the resonant triad model cannot 

be used to predict the onset of transition in general flows. One obvious problem is that by limiting the 

analysis to a system of only three interacting modes, resonant triad theory can describe neither a wide-band 

spectrum of initial disturbances nor the generation of a wide-band spectrum through nonlinear interactions as 

transition proceeds. Moreover, like linear theory, it predicts an indefinite growth of the disturbances, which 

ultimately contradicts the starting assumption of weak nonlinearity. Finally, transition may not necessarily 

occur as a consequence of resonant triad interaction: there exist other, qualitatively different scenarios such 

as oblique or fundamental breakdowns and wave-vortex interactions, which may initiate transition and which 
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may require a different type of modeling. 

We will therefore discuss other deterministic disturbance evolution models and their implications for 

statistical modeling. 

3.1. Overview of deterministic models. The simplest way to improve the resonant triad model 

is to increase the number of modes in the analysis. Although this type of model remains restricted to 

weak nonlinearity the growing disturbances can be spread over a larger number of modes; the consequent 

possibility that the amplitude of any one mode can saturate might extend the limits of applicability of the 

assumption of weak nonlinearity. Evidence supporting this conjecture comes from the analysis of a five-wave 

resonant system in [53], in which it is found that the effect of additional modes is to delay the onset of 

explosive nonlinear growth. 

Standard perturbation methods can be used to derive governing equations for more complex interactions 

of wave amplitudes. The simplest generalization of the resonant triad model is [53] 

(3-1) (^ + wu^ + W*^) Ai = ^Ai + Y,hi'J+ksmAiAk 
^ ' j,k 

where the indices l,k,j vary over a finite set of modes. In addition to describing the interactions of a larger 

set of modes, Eq. (3.1) allows for off-resonant interactions through the variation of the phase factor hij+k- 

Under strongly off-resonant conditions, the various modes can still communicate through the mean-flow 

correction (A0) which is retained in this model. Of course, the significant distortion of mode shapes (and 

concomitant modification of the growth rates ji) under a strong enough mean-flow correction is not explicitly 

accounted for in the model. The model also allows spanwise modulations of the modal amplitudes. 

In the framework of the same perturbation scheme, the equation which incorporates the next order 

corrections is [53] 

*L     w   —     W.   — -     -tf^L —      d2t°l    d2        d'2^ d'2\\ 
dt ' dx ' dz 2 \ da2 dx2     dadß dxdz      dß2 dz2) ) 

(3-2) = £ 
},k    . 

{ SijkAjAk + ( Clik-^— + Clik -^—- j Ak> hij+k + 2_^ Cijkrhi,j+k+rAjAkAT 

This equation exhibits higher order nonlinearities through the cubic coupling terms, a more complex, 

amplitude-dependent dispersion through the terms proportional to C\A and C\A, and dependence on the 

spatial derivatives of the modal amplitudes. The definitions of all the coefficients are given in the original 

reference [53]. 

The question arises whether the higher order models like Eq. (3.2) represent an essential improvement 

over the lowest order approximation Eq. (3.1). The answer is that this entire class of nonlinear theories 

has fundamental limitations which are not addressed by formulating higher order theories. As mentioned in 

the Introduction, this entire class of models can be criticized from the viewpoint of more systematic high 

Reynolds number asymptotics, because these theories do not properly reduce to linear theory in the far 

upstream limit. In fact, as noted by [53], the 'self-consistent assignment of harmonics at x — 0' constitutes 

a difficulty for the theory. Moreover, evaluation of the coefficients in terms of linear eigenfunctions shows 

that their values are dominated by contibutions from nonlinear critical layers. This observation suggests an 

important role for the nonlinear development of the critical layers. 

Both of the above considerations have led to a re-evaluation of triad and generalized triad theories from 

the standpoint of systematic high Reynolds number asympotic expansions.   A representative result is the 

15 



integro-differential equation of Goldstein and Lee [14] 

dA      4        2    fx 

— = -A + -i /     (x - x1)
2A3(x1)A*(2x - x1)dx1 

K±(x | xi,x2)A(xi)A(x2)A*(xi + x2 — 2x)dx2dx± 
J — oo J — OO 

(l + irH)A3-i /     [2(a.--a.-1)
3Aa(a.-1)A(a.-2)A*(2a.-1+a.-2-2a.-) + 

^(cc I xi,x2)A(xi)A3(x2)A*(xi + 2x2 - 2x)\dx2dxx 
/X r-X\       f-X'Z 

/       /     K3(x | xi,x2,x3)A(xi)A(x2)A(X3)A*(xi + x2 + x3 - 2x)dx3dx2dx±. 

In this equation, the primary amplitude is A3, and the subharmonic amplitudes are A± — A2 — A. The 

coefficients K{ and kernel functions K{ are known in terms of closed-form expressions. All of the relevant 

definitions are given in [14]. 

The form of the integral terms on the right sides of Eq. (3.3) show that the solution matches the linear 

solution in the limit x —t —oo. Achieving the correct matching was indeed the goal of the entire analysis. 

It is reassuring that, in spite of the differences in the form of the nonlinear term involved, solutions of Eq. 

(3.3) in fact are qualitatively analogous to those of Craik's model. There is an initial phase of parametric 

amplification of the subharmonics followed by explosive nonlinear growth of all three modes. The same 

sensitivity to initial relative phase also exists; the nonlinear growth phase of the evolution can be delayed 

for certain values of initial phase [14]. 

A simpler equation than Eq. (3.3) has been derived in [28]: 

dA0 _ 
—— — KQAQ 
dx 
dA 3TT R

J f°° 
(3.4) — = KQbA + — —iA*A0 + iMA(x) \     dx'   \ A(x - x') |2 

dx 10  A JQ 

The linear growth of the primary suggests purely parametric excitation, but the subharmonic evolution 

equation contains both an algebraic nonlinearity similar to the Craik model (attributed to a viscous critical 

layer), and a nonlinear self-interaction term. Indeed, after dropping the self-interaction term, Eq. (3.4) 

reduces to a special case of Eq. (2.6). Again, all of the notation in Eq. (3.4) is defined in [28]. Analogous 

theories for other types of wave interactions such as wave-vortex interaction, oblique mode breakdown, and 

phase-locked interactions have also been developed; see, for instance [10], [50]. 

While the asymptotic theories have aided greatly in our understanding of the various transition scenarios, 

each of them pertains to some specific kind of dominant physical balance. Also, in some cases, the underlying 

asymptotic behavior is only established at unpractically large Reynolds numbers. Hence, such models are 

perhaps not well-suited for engineering prediction of transition. Another transition model, which accounts 

for mean-flow nonparallelism and disturbance nonlinearity in a composite sense, is the PSE model introduced 

by Herbert [4], [16]. Albeit not as rigorous as the high Reynolds number asymptotic theories, it is better 

suited as a general purpose transition prediction tool and has been shown to yield surprisingly accurate 

predictions through somewhat past the rise of the mean skin-friction curve. 

To formulate the PSE for a two-dimensional incompressible mean flow Uo(a,-,2/), the disturbance field 

u(cc, y, z, t) representing both velocity and pressure is written as a Fourier series 

(3.5) ü = ^ A.m,n{x, y)e iimßz — nwt) 
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where the complex amplitudes ATO?n are further decomposed into a slowly varying shape function and a 

rapidly oscillating phase 

(3.6) A-m,n{x,y) - ^fm,n{x,y)exp v   I     ^-m,ri\X }OJX 

The wavenumbers am,n are determined so that the downstream evolution of the complex amplitudes WTOi„ is 

as slow and smooth as possible. While there are many alternatives to implement this constraint, a common 

one is the integral 

(3.7) dy*- — = 0 

where the asterisk denotes complex conjugation. The above constraint both renders the decomposition in Eq. 

(3.6) unique and ensures the approximate validity of the marching approximation to the originally elliptic 

Navier-Stokes equations. The details of this procedure are discussed, for example, in [6]. 

The final PSE equations can be expressed in the general form 

(3.8) D      <P        ,  ,» r. 
dx 

Bn 
d*r, 

dy 
= Vr, 

<92* 

dy 
m,ri    .   e 

T Irr, 

Here the matrices ATO?n, • • • DTO?n depend on the complex wavenumber aTO?n and its streamwise derivatives. 

The nonlinear forcing term fm,n can be written as a sum of multilinear forms: 

fm,n = fm,n(*, V*) = ^ BM,«[*M> V*«] X 

i-\-k—mJ-\-l—n 

(3.9) exp i /    <Xij(x') + ak,i(x') - am,n(x')dx' 

In what follows, the indices on the multilinear forms B and its arguments will be dropped to simplify the 

notation. 

The mode WQ,O represents the mean flow perturbation. The evolution equation for WQ,O 

(3.10) Don^O.O + AQ,0 
dx 

R     ö*o,o _ .,    <92*o,o   , r D0,0—ö  — v0,0—7T^ r IQ,0 
dy 

contains the mean Reynolds stress gradients fo,o-   Hence, the equation for the total mean velocity field 

U — UQ + WQ,O (where the sum is restricted to velocity components only), is governed by 

(3.11) 

where 

(3.12) 

u • vu -VF + «/ 
<92U 
dy2 + fo,o 

fo,o=   X)  B[*ro,n,V*. 

The PSE equations provide a closure for the term fjjQ since evolution equations for ^m,n are given by Eq. 

(3.8). 

The PSE equation Eq. (3.8) is a type of triple decomposition in which the fluctuations are projected onto 

components which have known evolution equations rather than being separated into steady and unsteady 

parts as in Reynolds averaging. The terms im,n with (m,n) ^ (0,0) which also arise in the PSE can be 

understood as generalized Reynolds stress gradients. 
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PSE calculations in this form have typically been carried out only for a short distance past the point at 

which the skin friction begins to rise. Eventually the iterative numerical process (which includes nonlinear 

iterations coupled within the ^iterations required to determine the functions am>n in Eq. (3.6)) fails to 

converge before laminar breakdown is completed. To some extent, the nonconvergence may be delayed by 

treating the nonlinear 'source' term in an implicit fashion ([2]). However, the validity (or at least accuracy) 

of the PSE model itself becomes questionable in the laminar breakdown region. This region involves a 

rapid adjustment of the mean flow from laminar to turbulent flow, typically over a rather small number of 

wavelengths. This means that the terms in d2 /dx2 are not necessarily negligible, and that the decomposition 

of the fluctuations into "wave" and "amplitude" components becomes suspect. Only extensive testing will 

show whether or not the PSE could be applied into the breakdown region. Therefore, from the standpoint of 

integrated transition and turbulence modeling, it will be desirable to switch over to a conventional turbulence 

model somewhere in the breakdown region. 

3.2. Stochastic formulation: PDF evolution equations for modal amplitudes. We now con- 

sider how to recast the deterministic models from Sect. 3.1 in stochastic form, specifically as a closed 

evolution equation for the joint probability density function of modal amplitudes. These models fall into a 

natural hierarchy, which progresses from purely algebraic nonlinearity (Eq. (3.1)), to integral nonlinearity 

(Eq. (3.3)), to a nonlinear partial differential equation (the PSE system Eq. (3.8)). As already noted at 

the beginning of this section, except for requiring the resolution of a PDF with a very large number of 

independent modal amplitudes, there is no difficulty in formulating a closed PDF evolution equation cor- 

responding to systems like Eq. (3.1) with purely algebraic nonlinearity However, the formulation of PDF 

evolution equations for systems with non-algebraic nonlinearities like Eq. (3.3) and Eq. (3.8) will present 

closure difficulties. 

An expanded set of modes, as suggested in Eq. (3.1), is easily accomodated in the stochastic formulation, 

at least in principle. The only problem with an expanded set of modes is the practical problem of solving 

a PDF evolution equation containing a large number of modes. However, deriving evolution equations for 

the joint probability density function of modal amplitudes corresponding to either high-Reynolds number 

asymptotic theories or the PSE model introduces a new difficulty because these equations all couple infor- 

mation from different points, either through the spatial derivatives which occur in Eqs. (3.1) and (3.2), or 

through the spatial integral in Eq. (3.3). This coupling between different points makes it impossible to 

derive an equation for the single-point probability density without closure assumptions as described below. 

In general terms, given an evolution equation for a random field A(x) 

(3.13) Ä = f(A,VA) 

where the dot denotes differentiation with respect to the evolution variable, the probability density V{A) 

satisfies the continuity equation 

(3-14) *r = £_mA}VA)]A)^ 

The unclosed conditional expectation (f(A,VA) \ A) occurs in Eq. (3.14) because the derivative VA 

couples information from any point x to information from infinitesimally nearby points. The conditional 

expectation projects this information onto local information at x. As an alternative, it is possible to formulate 

the continuity equation for V without conditional expectations, but only as a coupled equation for both V 

and the two-point joint probability density V2(A, A'), where A — A(x) and A' — A(x'). This again leads to 

an unclosed hierarchy of equations for joint PDF's of higher order. 
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Conditional expectations do not appear in Craik's triad model, because in the notation of the model Eq. 

(3.13), / depends only on the local amplitude A, hence trivially 

(3.15) {f(A)\A) = f(A), 

which allows an immediate closure for the Craik triad system. On the other hand, assuming that the matrix 

A is invertible, the evolution equation for the probability density F(W) corresponding to the PSE equations 

Eq. (3.8) is given by 

dV 
dx 

_d_ 
<9* 

/ ßm 
A^DW + A^BZ — 

\ dV 
* 

(3.16) +A_1V 
<92* 
dy2 *)+A-1(f(*,V*) | *) V\ =0 

which obviously contains unclosed conditional expectations. 

Here we will only outline the simplest, most basic closure scheme for the PDF equation Eq. (3.16), the 

conditionally Gaussian closure [13]. The basis of the closure is the observation that in a Gaussian random 

field, conditional expectations containing multipoint quantities are all closed by linear regression, which is 

exact for Gaussian fields. To illustrate this idea, consider the simplest case of a zero mean homogeneous 

Gaussian random field (f>(x). The Gaussian property implies that the conditional expectation of the field 

value 4>{x + r) given the value 4>{x) satisfies the linear regression equation 

(3.17) 

Consequently, 

(3.18) 

{<f>(x + r)\<f>(x)) = 
{<f>(x + r)<f>(x)) 

<f>(x). 

<A*)l*(*)> = -^^(*) 

and other derivatives can be evaluated similarly. The conditionally Gaussian closure simply applies results 

like Eq. (3.18) to a general random field, even if it is non-Gaussian. This step can be compared to the 

quasi-normal hypothesis often invoked in moment closures. 

Of course, application to PSE would involve inhomogeneous random fields. The requisite modifications 

of Eq. (3.17) are presented in Appendix II. Here, we simply quote the resulting closure for the PSE equation, 

(3.19) 

?       ß    rr f ß(^f\       ß \ dV       d 
dx 

+A"1V lw/92(*>  ,   d +     c(*,*)-c(*, *)[*-(*]>; 
dy2        dy 

+A-1 ( f (*, |-C(*, *) • C(*, *)[* - (*>], 

dx 
C(*,*)-C(*, *)[*-<*)]* r> = o 

This equation contains first and second order statistics of the field W which are defined in terms of the 

probability density V by 

(3.20) (*> =  f cM *P(*) 
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and 

(3.21) C(*,*) =  f d* **P(*) 

In Eq. (3.21), the product f$ is an outer product. 

We have not yet addressed the issue of how to implement an integral constraint such as Eq. (3.7) in 

a stochastic formulation, however, further comments are offered in Sect. 3.3 below. Although Eq. (3.19) 

provides a complete theory of the evolution of the joint probability density function of modal amplitudes, it 

must be emphasized that it is based on the assumption of the conditionally Gaussian closure. As in turbulence 

theory, this assumption cannot be justified a priori; its evaluation can only be based on comparisons with 

experimental or numerical data. Although not be discussed in this work, other closure schemes based on 

mapping closure or on Wierner-Hermite expansions (Y. Kaneda, private communication) are also possible. 

However, they will all require a significant effort in terms of formulation, validation, and refinement. Thus, 

similar to the triad model in Sect. 2, it is worth investigating the application of the particle method to the 

PSE system. 

3.3. Stochastic formulation: truncation of modal amplitude equations and Langevin models 

for transition. The particle method will require calculating a large number of individual trajectories with 

a deterministic model, whether the PSE or other deterministic model. Any PSE calculation obviously will 

require a truncation of the Fourier series Eq. (3.5) to a finite sum of modes. However, to facilitate the 

computation of the required number of particle trajectories, it is necessary to further reduce the number 

of modes retained in whatever deterministic framework is applied for the stochastic analysis. Accordingly, 

in the present section, we consider how a reduced order model could be obtained as part of the stochastic 

formulation. This amounts to deriving 'effective' equations governing a limited number of explicitly resolved 

modes. Such model reduction is particularly important for natural transition, which would contain a wide 

spectrum of modes at the outset. 

For simplicity, consider a general resonant interaction model 

(3.22) Ai = 7ijAj + CiikAjAk   (i,j, k = l,N) 

where the matrix 7^ is diagonal, so that there is no linear coupling between the modes. 

Suppose that the modes can be divided into two sets: slow, large amplitude resolved modes A+, the 

modes Ai with 1 < i < Nr, and fast, small amplitude unresolved modes A~, the modes Ai with Nr < i < N. 

Let it be required to model the evolution of the complete system by solving modified equations for the 

resolved modes alone. It is possible to rewrite Eq. (3.22) for the resolved modes in the form 

Ai  — yjip + CiprAr J Ap + dpqAp Aq + dTSAr As 

\0.Z0) = 'JipA.p + OipqAp Aq  + Ji 

where we have introduced the effectively modified linear growth rates 

(3.24) 7*p = jip + yip 

where 

(3.25) gip — CiprAr 
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and the forcing attributed to unresolved interactions 

(3.26) fi = CirsA-Aj. 

At this point, Eq. (3.23) is nothing more than a formal restatement of the original equations Eq. (3.22). 

But since the unresolved modes are assumed to vary rapidly compared to the resolved modes, it may be 

reasonable to replace the terms fa and cjip in Eq. (3.26) by random quantities with statistics to be evaluated 

from the resolved part of the motion. Thus, we replace the term fi by a random force with correlation 

function 

(3.27) (fifj) = CirsCj[m(A~A~A^A^}. 

and the quantity gip by a random tensor with correlation function 

(3.28) \9ip9jq) — OiprCjqS{Ar As) 

This approximation replaces the problem of explicitly computing the evolution of the unresolved modes with 

the problem of modeling of the correlations on the right sides of Eqs. (3.27) and (3.28). 

Eq. (3.23) shows that the unresolved modes modify the linear growth rates and act as a random force 

on the resolved modes. These effects will reduce the phase coherence of the resolved modes and could 

consequently prevent the indefinite growth of the disturbance amplitudes. One may also observe this on the 

basis of the PDF evolution equation for this model. In the absence of any random forcing, the PDF evolution 

equation only contains spatial derivatives of the convective type (see Eq. (2.12)). Random forcing will add 

diffusive terms to this equation and diffusion will counteract the tendency toward phase coherence exhibited, 

for example, in Fig. (2.4). The link between the reduction of phase coherence and the suppresion of modal 

amplitude growth is demonstrated experimentally in Refs. [9] and [29]. Another viewpoint on this link in 

the context of resonant triad theory appears in Ref. [48], which observes that higher-order nonlinearity of 

the type exhibited in Eq. (3.2) causes amplitude-dependent reduction of phase coherence, which entirely 

suppresses explosive growth. 

To investigate the connection between reduced phase coherence and inhibition of subharmonic growth 

more closely, we repeated the simpler triad computation from Ref. [53] after modifying the phase in Eq. (2.23) 

by adding white noise of various amplitudes to its right hand side. This phase randomization is equivalent 

to randomization of the coefficient matrices in the modified PSE equations Eq. (3.45). Specifically, we set 

(3.29) 9 = — sin((f> -9)- — sin 9 - — sin 9 + Aw{x) 
r-3 r.2 ri 

where w(x) is a white noise process and the amplitude A was set equal to 0.010, 0.050, 0.100, 0.200. The 

degree of phase decorrelation caused by the random forcing is revealed by comparing the phase evolution 

shown in the left-hand plots in Figs. 3.1-3.4 with the phase evolution in the absence of random forcing 

shown in Fig. 2.6. At the smallest noise amplitude A — 0.010, the phase locking near 9 — 0 is only 

weakly perturbed: the phase fluctuates by about O.lir about the deterministic value. At this level of phase 

randomization, the nonlinear evolution of the phase dominates the effect of random forcing. But when 

A — 0.200, it is apparent that the phase evolution is almost entirely dominated by the random forcing, 

and the phase appears to evolve as a Brownian motion. Correspondingly, subharmonic growth is almost 

entirely suppressed in this case. Intermediate values of the noise amplitude delay the crossover between the 

amplitudes of the subharmonics and the primary. 
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We stress that in Figs. 3.1-3.4, the suppression of energy growth in the subharmonics has been ac- 

complished entirely through phase randomization: energy has not been removed from the system directly 

in these calculations. In effect, the phase-locked attractor, which promotes subharmonic growth, has been 

destroyed by stochasticity. 

Another viewpoint on the connection between phase coherence and nonlinear growth is through the 

bicoherence [29], [35]. This statistic is a third-order joint moment which measures the correlation between one 

modal amplitude and the product of two others. Large bicoherence indicates strong triadic coupling between 

modes, which cannot be revealed by second-order statistics. Experimentally, it has been observed that in 

forced transition, the bicoherence spectrum is initially strongly peaked, indicating three-mode resonance. 

As transition proceeds, the bicoherence spectrum broadens and weakens, indicating that more modes are 

coupled to each other, but that the degree of correlation between them has been reduced. In future work, 

we will consider the possibility of modeling this aspect of transition through stochastic PSE models, which 

have a more general validity than the present stochastic triad model. 

FIG. 3.1. Effect of random noise perturbation of phase evolution equation on subharmonic amplification during resonant 

triad evolution. The conditions are those of Fig. 2.6, with white-noise perturbation of the phase evolution equation Eq. (3.29 

with amplitude A — 0.010. 

To complete the reduced-order modeling, the correlations Eqs. (3.27) and (3.28) must be expressed in 

terms of the resolved fields alone. As an example of a possible approximation, suppose that the amplitudes 

of the unresolved modes are small enough that nonlinear interactions among them can be ignored. This 

approximation leads to the simple "driven-mode" approximation 

(3.30) Ä-^7ijAj+CijkA+A+. 

This equation can be solved explicitly in the form 

(3.31) 

where 

(3.32) 

AT{x) dy dAx - y)Ci,jk{y)A+{y)A+{y) 

Gii.{x-y)5ü.e-™(*-rt 

is the linear response.   The substitution of Eq.   (3.31) for the amplitudes At   in Eqs.   (3.27) and (3.28) 

achieves the goal of expressing these correlations in terms of the resolved modes Af. 
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FIG. 3.2. Effect of random noise perturbation of phase evolution equation on subharmonic amplification during resonant 

triad evolution. The conditions are those of Fig. 2.6, with white-noise perturbation of the phase evolution equation Eq. (3.29 

with amplitude A — 0.050. 
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FIG. 3.3. Effect of random noise perturbation of phase evolution equation on subharmonic amplification during resonant 

triad evolution. The conditions are those of Fig. 2.6, with white-noise perturbation of the phase evolution equation Eq. (3.29 

with amplitude A — 0.100. 

Because it uses the linear response function Eq. (3.32) to eliminate the unresolved modes, this approx- 

imation can be compared to the quasi-normal theory of turbulence. A refinement is offered by the direct 

interaction approximation (DIA) [23]. This approximation was developed as a statistical closure theory for 

systems with a large number of nonlinearly coupled modes. Applied to a general system with a quadratic 

nonlinearity, the basic assumption behind this approximation is that the nonlinear interactions among any 

specific modal triad may be treated as small, although the overall effect of all possible triad interactions may 

nevertheless be quite significant. 

The DIA improves on the quasi-normal theory by replacing the linear response function of Eq. (3.32) by 

a generalized response function defined as follows. First, evaluate the linearized equation for the response of 
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FIG. 3.4. Effect of random noise perturbation of phase evolution equation on subharmonic amplification during resonant 

triad evolution. The conditions are those of Fig. 2.6, with white-noise perturbation of the phase evolution equation Eq. (3.29 

with amplitude A — 0.200. 

A    to an infinitesimal perturbation £j as 

(3.33) 5Ä~ — -jijSÄJ + djköÄjA^ + djkAjöÄ^ + &. 

The generalized response function is defined as the average 'sensitivity matrix' 

(3.34) Gij — 
6A£ 

which replaces the linear response function Eq. (3.32) in Eq. (3.28). The theory is completed by an evolution 

equation for the response matrix Gij. In the context of transition theory, the generalized response function 

can perhaps be compared to the quantities a of the PSE: unlike linear theories based on the Orr-Sommerfeld 

equation, PSE determines these functions in a fully nonlinear, coupled fashion. Similarly, the DIA response 

function replaces the linear response by a quantity which accounts for nonlinear interactions. 

Note that the integration in Eq. (3.32) introduces history effects, similar to the high-Reynolds number 

asymptotic models. This again introduces closure difficulties for stochastic formulations of the amplitude 

evolution equations. 

3.4. Link to turbulence modeling. The results of Sects. 3.2 and 3.3 will now be applied to the PSE 

equations. Our goal is to develop a usable stochastic form of the PSE equations in which only a reasonably 

small set of modes is resolved explicitly, and the effects of the remaining modes is modeled through random 

forces and random coefficients. This model will provide a natural interface between transition modeling and 

turbulence modeling if the unresolved motion can be characterized statistically by a turbulence model. 

The breakdown of PSE calculations shortly after the rise in the skin friction coefficient has been discussed 

in Sect. 3.2.1. To continue the PSE past this point, and perhaps even into the fully turbulent region, we 

will assume that the PSE model would be adequate if the basis of modes could be expanded indefinitely; 

but rather than explicitly resolving the new modes generated during the phase of rapid spectral broadening 

by PSE, we will treat them as unresolved components of the motion to be modeled following Eq. (3.23). 

Since these modes are both faster in time scale and smaller in amplitude than the resolved modes, this type 
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of modeling is reasonable. Our contention will be that a randomized PSE model will provide two required 

parts of an integrated turbulence and transition model, namely a transition-like model which applies into 

the breakdown region, and which interfaces naturally with a RANS model which will be applied in the fully 

turbulent region. 

Following the notation of Sect. 3.3, we decompose the disturbance into resolved and unresolved modes 

as 

i{x,y)e i(mßz—nwi) i(mßz—nwi) 
7 y ^-m,n\X^y)e 

\m\>M,\n\<N 

(3.35) +        Y,        A->-,2/)e^™*)+        £        A" >•, 2/)e^™*) 
\m\<M,\n\>N \m\>M,\n\>N 

where the + modes will be resolved explicitly and the — modes will be modeled. After applying the wave- 

amplitude decomposition Eq. (3.5), the resolved modes are found to satisfy the equations 

u — /   , J~m,n\ 

\m\<M,\n\<N 

A.-{x,yyW*-™V 

(3.36)Dro,n*+>n + Aro,, 
dm 

Br 
dm 

= V„ 
d2m 

+ fro,n(*+, V*+) + Fro,n(*-, V*-) o '   *^m,n      o —   v TO,n      o   o ox dy oyz 

where the contributions from the unresolved modes appear in the term FTO?n which is defined by 

(3.37) Fra,„(*-, V*-) = fra,„(*-, V*+) +f™,„(*+, V*-) + f™,„(*", V*-) 

and the terms on the right side of Eq. (3.37) are defined by 

(3.38) 

(3.39) 

(3.40) 

where 

(3.41) 

i-\-i' —mJ-\-f —n 

fro>n(*+,v*-)=      Y      B[*tj>v*-i>,r]Ai,j, 
i-\-ir —m,j-\-f —n 

fro,n(*-,v*-)=       Y      Bi*7,pWi',f]Aij, 

i ,j ,m,n 

v ,j' ,m,n 

v ,j' ,m,n 

i-j-ir —m,j-\-f —n 

^■i,j,if ,jf ,mji — exp i /    otij{xT) + otitjt{xT) — amjl(x
f)dxf 

For brevity of notation, restrictions on the summation ranges in Eq. (3.40) which arise from the definitions 

in Eq. (3.35) have been omitted in Eqs. (3.38)-(3.40). 

The modified PSE Eq. (3.37) can be rewritten as 

E 
TO' ,7V    L 

D' *P+       4- A' 
ßib+ 

m.n.m' ,n' dy 

(3.42) V TO,n      ö   9 oyz + fra,„(*+,V*+)+qra,, 

where the new convective coefficients include the effects of unresolved modes: 

(3-43) Y   Dm,n,m',n'*m',„' = Dro,„*+,n + fro,n(*+, V*") 

(3.44) 

(3.45) 

V A' 
/  j      TO-,n,TO-r,nr 

dx 
t\n 

dm 

ßip+ 
ERt u*m',n'   _ R 

Dm,n,m',ri        a — &r< 

dx "t" *m,n\ = 
dm 
dx ) 

dy 

ß\$r+ 
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and the forcing term 

(3.46) qm,n = fm,n(*-,V*-) 

contains contributions from unresolved modes alone. 

Eqs. (3.42)-(3.46) simply restate the PSE equations with a larger set of modes. The goal now is to 

model the effect of the added fields W~ without explicitly resolving them, as in large eddy simulations of 

turbulence. One approach would be to develop approximate equations of evolution for the unresolved scales 

in terms of the resolved scales. Instead, it is also possible to treat the random couplings in Eqs. (3.43)-(3.45) 

and the term qTO,„ in Eq. (3.46) as Gaussian random processes with statistics determined by the resolved 

fields as discussed in Sect. 3.2. When this is done, the original PSE is replaced by a Langevin-like model 

which includes a random force. Unlike a strict Langevin model, in which a random force is added to a 

deterministic equation, the model proposed here will have both a random force and random coefficients. 

Applications of Langevin models to turbulence theory have been proposed by [31]. 

The random force qTO,n has the correlation function 

(3.47) <qro,n q-ra,_„> = Y, (B[*fc,PV*fc',r 
i-\-ir— TO, j-\-jr— n, k-\-kr ——m, l-\-lr ——n 

Note, first, that Eq. (3.47) defines a space-time correlation and, second, the process q is not white noise in 

time. 

We will outline one particular model, suggested by Sect. 3.2, to close the PSE equations for resolved 

modes. To begin, replace the complete PSE equation for the unresolved modes, following Eq. (3.23) by 

(3.48) Dro,n*-in + Aro,n-^ + Bro,n-^= £ B[*+,V*+,,]. 
i+i'—m,j+j'—n 

In making this approximation, we argue that the disturbances represented by the mode amplitudes W~ are 

small compared to the resolved disturbances W. Then it is reasonable to ignore the nonlinearity of the W~ 

evolution equations and treat the W~ modes as driven by the resolved modes. 

The matrices A • • • D in Eq. (3.48) contain the complex growth rates am>n which are found in PSE as 

part of the modal evolution. Since the W~ modes are not to be explicitly resolved, one might replace these 

quantities by the linear growth rates obtained by linearizing the governing equations about the resolved 

disturbance 

(3.49) Ü°= Y,        Amjn(x,y)e^m^-n^K 
\m\<M,\n\<N 

With this prescription for the complex growth rates, Eq. (3.48) is determinate, and the force correlation Eq. 

(3.47) can be evaluated in terms of the resolved disturbance alone. 

By specializing to the (m, n) — (0,0) mode, we can form the equation for the mean flow modification. In 

this equation, the amplitude of the random perturbation W^~0 can be expected to grow in comparison to the 

resolved stresses qo,o- As noted earlier, the sum W^~0 + q0,o defines the Reynolds stress gradients. Although 

the PSE Langevin model is a completely consistent turbulence theory, in the interests of economical calcu- 

lations, it can be replaced by a turbulence model once the random contribution dominates the contribution 

from the resolved modes. Relevant switchover strategies of this type have been proposed in a somewhat 

different context by Spalart [42] for detached eddy simulation and by Speziale [43] for combining DNS with 

RANS. 
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It is also of some interest to note that the PSE equations include a kind of two-equation model. To derive 

this model, we replace the modal amplitude vector W by a vector W in which the amplitude components 

pertain only to the velocities. Indeed, multiplying Eq. (3.8) by W^ n gives a disturbance energy equation, 

(9* ~ (9* ~ (92* 

Since W is a vector and the quantities A • • • D are matrices, the products in Eq. (3.50) are all scalars. The 

effective dissipation rate in this equation is the last term, ^^ fTO?n; its equation, also found from Eq. (3.8) 

is 

<9W* <9W* <92\jr* 

Note that the above dissipation rate represents only the nonlinear energy transfer from large to small scales. 

It ignores viscous dissipation; in that sense, it may differ from the total dissipation rate used in conventional 

two-equation models. 

We conclude by briefly discussing how the PDF equation for PSE modal amplitudes can be modified to 

account for the random force introduced above as a model for the unresolved modes. A complete PDF model 

for the stochastic PSE cannot be formulated exactly, because of the implicit procedure used to determine the 

growth rates a. The evolution of these quantities is highly path dependent, and it is impossible to construct 

a stochastic model of the evolution of all possible transition paths. Also, the appearance of stochastic 

coefficients will require extensions to the standard methods. Thus, the present discussion will be limited to 

a very special case, namely we will assume that the a can be determined once and for all for all paths, and 

only the effect of the random force term q will be considered. 

Using the conditionally Gaussian closure, the modified equations will have the form 

dV_     _d_ 
dx + <9* 

A-'D^ + A-'B) ^^ 
dy 

+ |-C(*,*)-C(*, *)[*-(*>] 

/r)2 <ifi\       r)2 

+A~ly ("V    + 9^C(*' *} ' C(*' *)[* " (*]): 

+A-1 (f(*, |-C(*, *) • C(*, *)[* - (*>], 

|^C(*,*) -C(*, *)[*-<*)]*)   V 

! [ d2r d2v   /,j,ßv\ 

,oco. d2V     /Ta*\ d2V      /dVdVY.      n          H21  
dVdV,v \*~dy I '  a*>a;a*,v \~dx~dy/, 

Again, the crucial effect of the random force appears in the last two lines of Eq. (3.52) which are 

diffusive terms indicative of the weakening of modal correlations. These diffusive terms again have the 

effect of preventing the indefinite buildup of modal phase correlations, a critical feature of any theory which 

proposes to integrate the dynamics of transition and of turbulence. We stress, however, that numerical 

solution of Eq. (3.52) is probably impractical. 

Could a model like Eq. (3.52) be used in practice? The large number of degrees of freedom could perhaps 

be handled by the particle method, by finding a simpler system than the stochastic PSE equations for which 
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the PDF of the modal amplitudes is also governed by Eq. (3.52). This recommendation of Pope [31] has 

been succesfully applied to problems like reacting flows, which in a Lagrangian frame reduce to ordinary 

differential equations. In the present problem, the 'paths' are evolving fields described by partial differential 

equations. Extension of the particle method to this class of problems will require further generalization of 

the basic particle method formulation. The more fundamental problem for stochastic formulation of the 

PSE is that each transition path will correspond to a distinct evolution of the complex wavenumbers am>n. 

Thus, even more approximations will be needed to formulate the PSE in a fully stochastic setting. 

4. Summary and future work. Integrated modeling of transition and turbulence has emerged as a 

crucial need in many practical aerodynamic applications. To retain the physical basis necessary to explain 

the relevant parametric dependencies and, hence, achieve the desired prediction accuracy, such integrated 

computations must be done seamlessly over the entire transition process, from the initial disturbances to fully 

developed turbulence. Thus, two levels of integration are inherent to an approach of this type, a coupled 

prediction of the laminar-through-transitional and turbulent regions of the flowfield (at the top) and an 

integrated prediction of the various stages of transition (on the tier underneath). In addition, it is desirable 

to pose the transition prediction problem in a stochastic context, in order to both facilitate an easy interface 

with the statistical models for turbulence and to quantify the effect of randomness and/or uncertainties 

associated with the input quantities that are required for transition prediction. The present work may be 

regarded as an embryonic attempt to explore the above needs, with an emphasis on the stochastic aspects of 

nonlinear disturbance evolution in a laminar boundary layer and its potential continuation into the regions 

of laminar breakdown as well as the fully turbulent flow downstream. 

The fundamental properties of resonant wave interactions in boundary layer flows are that subharmonics 

can grow rapidly through parametric excitation, and that parametric growth is typically followed by an 

explosive nonlinear growth of all modal amplitudes. The explosive growth phase can be delayed if the initial 

phases are suitably related. Our calculations confirm these findings by previous researchers and quantify 

the dependence of disturbance amplitudes on the initial conditions by evaluating the evolution of their joint 

probability density function for a given description of the initial disturbances not in deterministic terms, but 

in terms of corresponding statistical measures. 

A basic objection to both linear stability theory and resonant interaction theory is that the predicted 

indefinite amplification of disturbances is not observed, even though the mean flow could in principle provide 

an energy source for such growth. 'Nonlinearity,' without further qualification, is sometimes cited as the 

reason for the saturation of the disturbance amplitude; but even the spreading of the disturbance over every 

more modes is not an explanation. Instead, the prevention of the development of strong phase correlations 

by coupling to a larger set of modes appears to have a significant role as well. Therefore, in developing an 

integrated theory of transition and turbulence, it will be important to recognize the proper role of phase 

correlations in determining the onset of transition. 

The probabilistic analysis has been extended to the PSE equations, which are to date the most compre- 

hensive, albeit non-rigorous, model for engineering prediction of laminar-turbulent transition. The crossover 

from the PSE equations to a turbulence model has been described through a PSE Langevin model, in which 

the PSE equations are modified by random forces and random dephasing terms. When the random per- 

turbations grow sufficiently, the PSE Langevin model can be replaced by a RANS model in the interest of 

economy of computation. 

Our conclusion is that a stochastic formulation of the PSE transition model can link transition modeling 

and turbulence modeling in the required seamless fashion. Stochastic closures for unresolved motions are the 
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most important requirement. The recommendations in Sect. 3.3 were based directly on transition theory, 

but an interesting alternative (which may be easily implemented in practice) would be to apply the ideas of 

large eddy simulation to formulate analogs of the Smagorinsky and dynamic Smagorinsky model appropriate 

to transitional flows within the PSE framework. This approach has the potential to make the crossover to 

turbulence models much more straightforward. 

The primary motivation behind considering reduced-order models for PSE was to facilitate engineering 

predictions through the transition region. However, another benefit would be to provide detailed physical 

insights into the transition process via a coupled PSE-LES/DNS approach. Essentially by extending the 

PSE predictions further into the laminar breakdown region, the computational domain for LES/DNS could 

significantly shortened (see, for example, [19], [32]). Indeed, if PSE calculations can be successfully continued 

even into the turbulent region, there is the interesting possibility of being able to predict sublayer dynamics 

including wall streaks and bursting frequencies. Application of PSE in this respect offers an attractive 

alternative to other modal analyses of fully turbulent flows which have been pursued over many years ([54], 

[47]). Of course, to make this application feasible, extensive comparisons against numerical and, where 

available, experimental databases will have to be carried out. We also plan to conduct an a priori analysis of 

the simulation data, both in order to evaluate the accuracy of candidate models for residual stress components 

and to ascertain the validity of PSE methodology past the onset of transition. 

So far, we have focused our attention on stochastic, integrated prediction of the transition process. The 

next phase of this work will involve linking transition prediction and conventional CFD codes. In brief, the 

overall computation involves an iterative procedure consisting of a RANS computation over the entire flow 

field coupled with an 'unsteady' computation (PSE and residual stress) over the laminar and transitional 

region. The mean flow (obtained directely from RANS or via a boundary layer solver) is fed from the RANS 

model to the transitional module, which predicts the extent of the laminar and transitional regions, plus the 

mean Reynolds stress distribution. This information, in turn, is injected into the RANS simulation. This 

procedure is analogous to 'zonal' modeling for fully turbulent flow fields, except that the zonal boundaries 

are not predetermined in our case (also, the unsteady calcualtion may take place over a different grid using 

spatial marching approach instead of a pseudo-time marching typical of RANS calculations). A robust im- 

plementation of this procedure will require special attention to numerical convergence of the global iteration 

procedure. Other related numerical issues have recently been investigated in [44]. 
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6. Appendix I: Finite volume integration of PDF evolution equation. In this Appendix, we 

present a brief description of the numerical method used to solve the PDF evolution equation Eq. (2.12) for 

a resonant triad. 

We apply finite volume discretization, dividing the space of the independent variables r, r%, ff into rect- 

angular cells with side lengths Ar, Arg, Aff, where 

(6.1) N(x | x0,a) =       1   , e-(*-*o)*/2<r' 
V27T<72 

and assuming that P is constant in each cell. Let cell (i,j,k) be bounded by the planes r — (i + l)Ar, r — 

iAr, r-i — (j + l)Arg, r% — jAr-i,ff — (k + 1)A0, ff — kAff Let Pij,k denote the value of P in this cell, and let 

1*1 jk denote the value of P on the face on which r — iAr, with analogous definitions for the values 7r3 and 

ir9. Integrating Eq. (2.12) over each cell produces the discrete equation 

(6-2) Pi,j,k (t + At) = PiJtk (t) + —— {Tlijk + Flijk + Tlj,k } 
At 

where 

:FTi,i,H = Jdr^{FTP) 

= Fr((i + l)Ar,jAr3,kAff)irl+1Jik - Fr(iAr,jAr3,kAff)irlJik 

= Fd(iAr, (j + l)Ard,kAff)irli+ljk - Fd(iAr,jArd,kAff)irlijk 

Ki,k^ jdff^iFoP) 

(6.3) = F0(iAr,jArd, (k + 1)AÖ)TT^ fc+1 - F0(iAr,jArd, kAff)^k. 

The assumption that P is constant in each cell implies that the fluxes T can be evaluated exactly, but 

the problem remains to evaluate the values on the faces ir by interpolating the values of P in each cell. The 
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most obvious procedure of averaging the values of P across each face: 

^i,3,k — 7^[Pi,j,k + P,j-l,k] 

(6-4) Ki,k = \[I3i,i,k + Pi,j,k-i] 

is well-known to be unstable [17]. A stable scheme results from the "upwind" method 

fRt., r S P(i,3,k) ifFr(i,j,k)>0 
(6.5) ir,- A u — < 

hh       \ P(i-l,j,k)    ifFr(i,j,k)<0 

with analogous definitions for 7r3 and ir9, in which the value of ir is the value of P at the cell into which the 

corresponding flux T points. 

The accuracy of the computation degrades quickly if there is a probability flux across the boundaries 

of the region of integration. Since the amplitude distributions spread out, the region of integration must 

increase to prevent any loss of total probability. To maintain the total probability, the box sizes are rescaled 

at each time-step so that a fixed number of boxes always contain all but a small specified amount of the 

total probability. The rescaling is done on the basis of the standard deviations of the marginal distributions 

P(r) and P(r3). Strictly speaking, rescaling based on the standard deviation is accurate only for Gaussian 

distributions, for which the region from about —4.5a to +4.5<r contains almost all of the probability; however, 

the calculations showed that this simple procedure was satisfactory in practice. 

To implement this variable box-size, the governing equation is modified as follows: define the rescaled 

variables 

r — crrx + m 

(6.6) r3 — a-3'x-i +m3. 

Note that since the problem is periodic in 9, rescaling of 9 is not possible. Instead of Eq. (2.12) we solve the 

modified equation 

(6J)     f+II (K* -&x - ^)+ it, ^ - ***> - **w)+UF'^ - ° 
where the fluxes Fr,Fz,Fe are the same as the fluxes in Eq. (2.6) and 

rh = / FrPdV 

m3 = / F3PdV 

xFrPdV 

(6.8) <ja =  / x3F3PdV. 

For parametric excitation, the governing equation Eq. (2.12) is modified by altering the flux terms to 

Fr — rr3 cos 9 + or 

F3 — ar3 

(6.9) F9 = -2rzsmd 

with the second modification Eq.   (6.8) for rescaling, but otherwise, the numerical integration method is 

unchanged. 
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7.  Appendix II: Results for inhomogeneous Gaussian random fields. In this Appendix, we 

derive some results used to formulate the conditionally Gaussian closure for PDF evolution equations. 

For an inhomogeneous Gaussian random vector field 4>i(x), introduce the statistics 

ai(x) - (if>i{x)) 

Qj(y,%) = {ipi{v)){ipj{x)) ~ (^i(y)^j(x)) 

(7.1) = -Wtiy) - mvMMx) - mm)- 

Note that the covariance matrix C is nonsingular. 

Conditional expectations are found from the linear regression equation which is exact for Gaussian 

random fields 

(7.2) 0>i(y) I 1>i(x) ■ ■■4>n(x)} = a,i(y) + Cim(y,x)Cmj(x,x)   1[4>j(x) - a,j(x)] 

Consequently, conditional expectations of derivatives are given by 

\~dx^  ' ^^ " "^XH = a'i(X) + ~^T^V,X^ \y=x ^mjix/X^l^jix) - (lj(x)] 

I' d2%t>i \ d2Qm 
(7-3) \~dx^^  I ^^ " " "^«W ) = a'i^> + ~(är(y>X^ \v^x ^mjix/x)-1^^) - (lj(x)] 

where we can substitute 

(7.4) gcM |^= «(.))(«,,)> - I (^*W) + (^W) 
so that multiplication by the viscous term V leads to a dissipative correlation. 
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