REPORT DOCUMENTATION PAGE

Form Approved OMB NO. 0704-0188

/

Public Reporting burden for this collection of	information is estimated to average 1 hour per	response, including the time	e for reviewing instruction	ons, searching existing data sources, timates or any other aspect of this collection		
of information, including suggestions for redu	cing this burden, to Washington Headquarters	Services, Directorate for inf	formation Operations and	d Reports, 1215 Jefferson Davis Highway,		
1. AGENCY USE ONLY (Leave Bland	k) 2. REPORT DATE	work Reduction Project (07	REPORT TYPE	AND DATES COVERED		
	December 18, 200	0 · 0	FINAL 01 Ju	n 96 – 31 May 01		
		5		EDS		
4. IIILE AND SUBILLE Design Analysis and Pro	cessing of Functionally Grade	d Structural	FUNDING NUMB	ENS		
Materials - Final Report	cessing of I unchonany Grades		DAAH04-96-1	-0197		
6. AUTHOR(S)						
R.J. Diefendorf, J. G. Go	ree, M. Grujicic, P.F. Joseph					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			PERFORMING OF	RGANIZATION REPORT NUMBER		
Clemson University, Clem	ison, SC 29634		6473 - II			
			anovico prid la			
9. SPONSORING / MONITORING AC	JENCY NAME(S) AND ADDRESS(ES)) 10	AGENCY REPO	MONITORING RT NUMBER		
DO Boy 12211						
Research Triangle Park N	IC 27709-2211		ARO 35814.26-MS-DPS			
researen mangle raik, i	t₩ #FFV7 ⁻ ##\$\$					
11. SUPPLEMENTARY NOTES		k				
The views, opinions and/o	or findings contained in this re	port are those of	the author(s) ar	id should not be construed		
as an official Department of t	he Army position, policy or d	ecision, unless so	designated by	the documentation.		
12 2 DISTRIBUTION / AVAILABIL	ITY STATEMENT	1'		N CODE		
Approved for public relea	use: distribution unlimited.					
rippioted for public felde						
13. ABSTRACT (Maximum 200 words	.)					
A multi-length scale com	putational methodology is dev	eloped to analyze	processing/mic	crostructure and		
microstructure/properties/performance relationship in advanced structural materials. Such methodology is based on						
combining scientific and engi	neering disciplines of fluid me	echanics, heat trai	ister, chemical	gas/surface thermodynamics		
and kinetics, atomistic model	ing techniques, stochastic mic	rostructure evolut		This methodology is then		
and singular stress analysis, and micro-mechanics analytical and computational approaches. This methodology is then						
applied to advanced coaling and functionally graded materials processed by the chemical vapor deposition (CVD) and the Lease Engineered Net Shaping (LENS TM) processes. The methodology allows the astablishment of direct links						
the taser engineered inter site pressure flow rates laser ractering velocity etc.) the resulting materials						
microstructure (grain size and distribution morphological and crystallographic texture, etc.) and properties (strength						
strain-to-fracture, etc.). In response to the computational challenges of multi-length scale modeling, parallel computing						
is utilized and a highly-efficient inter-processor communications method is developed which substantially reduces the						
simulation time.	•		•	•		
14. SUBJECT TERMS				15. NUMBER OF PAGES		
Functionally Graded M	aterials, Atomistic Simulation	, Decohesion, Vo	ronoi Cell	50		
FEM, nonlinear fracture, mixed mode fracture, multiple asymptotic crack solutions,						
Chemical Vapor Deposition,	Monte Carlo, Crystal Plastici	ty, Computational	Fluid			
Dynamics						
				IV. TRICE CODE		
17 SECTIDITY CLASSIEICATION	19 SECUDITY OF ASSIERCATION		ASSIETCATION			
OR REPORT UNCLASSIFIED	ON THIS PAGE UNCLASSIFIED	OF ABSTRACT UNC	CLASSIFIED			
NSN 7540-01-280-5500				Standard Form 298 (Rev.2-89) Prescribed by ANSI Std. 220, 19		
	۲ ۲	TIC GUALITY IN	isessand 4	LIESCHOOL ON WINDLOW 734-19		
				_		
		00101	17 10)		
	2		11 14	2		

Table of Contents

4
3
5
8
••
9
2
0

List of Appendices

- Appendix A: Multi-length Scale Modeling of Microstructure Property Relations
- Appendix B: Voronoi Cell Finite Element Analysis of Effective Properties Of Functionally Graded Materials
- Appendix C: Multiple Asymptotic Solutions For Mixed Mode Fracture In Power Law Hardening Materials
- Appendix D: Multi-length Scale Modeling of Chemical Vapor Deposition Process
- Appendix E: Bernes 2000 Prototype Scale Chemical Vapor Deposition Reactor

Statement of the Problem Studied

Advanced structural materials are generally developed using various empirical methods. Such methods are typically time-consuming and costly and do not enable the advances in development of one type of material to be easily utilized to make similar advances in development of materials of other types. The main objective of the present work was to develop a multi-length scale methodology for analyzing the relationships between: (a) process parameters and the resulting materials microstructure and (b) microstructure properties and performance in advanced materials (coatings, functionally-graded materials, etc.) processed by CVD and LENSTM techniques. The work was also aimed at combining various scientific and engineering disciplines such as: chemical thermodynamics and kinetics, fluid dynamics and heat transfer, stochastic computational methods for prediction of microstructural evolution, atomistic simulation techniques, micromechanics approaches and nonlinear fracture mechanics.

Summary of Most Important Results

1. Atomic simulations combined with the first-principle electronic-structure calculationbased interatomic potentials, have been utilized to determine the grain boundary/interface decohesion potentials and relate them to the interface orientation and grains misorientation. This approach revealed a critical role of grain boundary sliding in the process of decohesion. This work was done in collaboration with Dr. Genrich L. Krasko of the U.S. Army Research Laboratory in Aberdeen Proving Ground, and has resulted in eight journal publications [1-8] and one technical report [9]. Selected results pertaining to this portion of the project are given in Appendix A.

2. The Voronoi Cell Finite Element formulation has been utilized to determine the effective microstructure-sensitive elastic and plastic properties of functionally graded materials. Results show that the effective properties of FGMs are more reliably determined using this method than the more commonly used self-consistent approach. This portion of the work has resulted in two journal publications [10,11]. Selected results pertaining to this portion of the project are given in Appendix B.

3. A combined finite element, singular value decomposition method has been established to study the asymptotic singular stress fields, including higher order terms, for cracks, interface cracks and wedges in power law hardening materials. This method is versatile with respect to geometry and loading. These capabilities have led to the following two key findings for fracture in functionally graded materials: 1) For plane strain fracture near conditions of pure mode I, the asymptotic stress field is not mixed mode. Rather it is in a higher order form. In FGMs, due to the combination of materials, it is likely that a crack will grow in a manner that fluctuates around pure symmetric mode I conditions, where this new asymptotic solution is required. 2) For interface fracture it has been discovered that two asymptotic solutions are necessary to describe the full range of loading conditions. The first is a higher order solution, again near mode I, and the second is believed to be non-separable. Efforts to determine this non-separable solution are underway. This portion of the work resulted in five journal publications [12-16] with one in review [17], another about to be submitted [18] and two presentations [19,20]. Selected results pertaining to this portion of the project are given in Appendix C.

4. Multi-length scale modeling of the chemical vapor deposition process is carried out to combine the reactor scale, the grain-size scale and the atomistic scale. This modeling effort combines various approaches from the disciplines of reactive-gas fluid dynamics and heat transfer, gas and surface chemical thermodynamics and kinetics, van-der Drift-type modeling of microstructure evolution and kinetic Monte Carlo atomistic-scale deposition modeling techniques. The approach allows determination of the relationship between the process parameter and the microstructure and quality of the CVD-grown film/coating. This portion of the work has resulted in five journal publications [21-25] and one conference presentation [26]. Selected results pertaining to this portion of the project are given in Appendix D.

5. To develop experimental capabilities needed to complement the work described above, a large-scale CVD reactor has been installed at Clemson University. This equipment is valued at approximately \$500,000, and was donated by Dupont to the P.I., who was instrumental in the design of the equipment. Preliminary runs involving CVD of TiN coatings have been carried out and the results obtained indicate that major redesign of the CVD reactor is needed in order to enable the level of process control suggested by the multi-length scale simulation studies after CVD process. Selected pictures showing the CVD reactor are given in Appendix E.

6. A large-scale parallel-computing Monte Carlo Model is developed to analyze microstructure evolution during LENS[™] rapid manufacturing process. The model enables establishment of the relationship between the process parameters and the resulting materials microstructure. This portion of the work has resulted in one manuscript, which will be submitted for publication in January 2001 [27].

List of All Publications and Technical Reports

Journal Publications

1. Grujicic, M., Zhao, H. and Krasko, G.L., "Atomistic Simulation of S3 (111) Grain Boundary Fracture in Tungsten Containing Various Impurities," International Journal of Refractory Metals and Hard Materials, Vol. 15, 1997, pp. 341-355.

2. Joseph, P.F. and Zhang, N., "Multiple Root Solutions, Wedge Paradoxes, and Singular Stress States that are not Variable-Separable," Composites Science and Technology, Vol. 58, 1998, pp. 1839-1859.

3. Grujicic, M. and Zhao, H., "Optimization of 316 Stainless Steel/Alumina Functionally Graded Materials for Reduction of Damage Induced by Thermal Residual Stresses," Materials Science and Engineering, A252, 1998, pp. 117-132.

4. Grujicic, M. and Zhang, Y. "Determination of Effective Elastic Materials Properties in Functionally Graded Materials Using Voronoi Cell Finite Element Formulation," Materials Science and Engineering, A251, 1998, pp.64-76.

5. Zhang, N. and Joseph, P.F., "A Nonlinear Finite Element Eigenanalysis of Singular Plane Stress Fields in Bi-material Wedges Including Complex Eigenvalues," International Journal of Fracture, Vol. 90, 1999, pp. 175-207.

6. Zhang, N. and Joseph, P.F., "A Nonlinear Finite Element Eigenanalysis of Singular Stress Fields in Bi-material Wedges for Plane Strain," International Journal of Fracture, Vol. 94, 1998, pp. 299-319.

7. Grujicic, M., Zhao, H. and Krasko, G., "Atomistic Simulation of Effect of Impurities on $\Sigma 3$ (111) Grain Boundary Fracture in Tungsten," Journal of Computer-Aided Materials Design, 4, 1997, pp. 183-192.

8. Grujicic, M. and Lai, S., "Effect of Martensitic Transformation in Ti-15 at % V β -phase Particles on Lamellar Boundary Decohesion in γ -TiAl: Part 1 Derivation of Interface Decohesion Potentials," Journal of Materials Science, 33, 1998, pp. 4385-4400.

9. Grujicic, M. and Lai, S., "Effect of Martensitic Transformation in Ti-15 at % V β -phase Particles on Lamellar Boundary Decohesion in γ -TiAl: Part 2 Finite Element Analysis of Crack-Bridging Phenomenon," Journal of Materials Science, 33, 1998, pp. 4401-4415.

10. Grujicic, M., and Lai, S., "Atomistic Simulation of Chemical Vapor Deposition of (111)-oriented Diamond Film Using a Kinetic Monte Carlo Method," Journal of Materials Science, 34, 1999, pp. 7-20.

11. Grujicic, M., and Zhang, Y., "Crystal Plasticity Analysis of the Effect of Dispersed bphase on Deformation and Fracture of Lamellar $\gamma + \alpha_2$ Titanium Aluminide," Materials Science and Engineering, A265, 1999, pp. 285-300.

12. Grujicic, M., and Zhang, Y., "Combined Atomistic-Crystal Plasticity Analysis of the Effect of Beta Phase Precipitates on Deformation and Fracture of Lamellar $\gamma + \alpha_2$ Titanium Aluminide," Journal of Materials Science, 34, 1999, pp. 1419-1437.

13. Gadi, K.S., Joseph, P.F., Zhang, N. and Kaya, A.C., "Thermally induced logarithmic singularities in a composite wedge and other anomalies," Engineering Fracture Mechanics, 65, 2000, pp. 645-664.

14. Loghin, A., Zhang, N. and Joseph, P.F., "A Nonlinear Finite Element Eigenanalysis of Antiplane Shear Including Higher Order Terms," Engineering Fracture Mechanics, 66, 2000, pp. 441-454.

15. Grujicic, M., and Zhang, Y., "Crystal Plasticity Analysis of Stress-Assisted Martensitic Transformation in Ti-10V-2Fe-3Al (wt.%)," Journal of Materials Science, 35, 2000, pp. 4635-4647.

16. Grujicic, M., and Lai, S., "Grain-scale Modeling of Microstructure Evolution in CVDgrown Polycrystalline Diamond Films," Journal of Materials Synthesis and Processing, 2000, pp. 73-86.

17. Grujicic, M., and Lai, S., "Multi-length Scale Modeling of CVD of Diamond: Part I A Combined Reactor Scale/Atomic Scale Analysis," Journal of Materials Science, 35, 2000, pp. 5359-5369.

18. Grujicic, M., and Lai, S., "Multi-length Scale Modeling of CVD of Diamond: Part II A Combined Atomic scale/Grain Scale Analysis," Journal of Materials Science, 35, 2000, pp. 5371-5381.

19. Grujicic, M., Zhao, H. and Krasko, G., "Atomistic Simulation of Σ3 (111) Grain Boundary in Tungsten Containing Various Impurities," Army Research Laboratory, ARL-TR-2051, September 1999.

20. Grujicic, M. and Lai, S., "Multi-Length Scale Modeling of Chemical Vapor Deposition of Titanium Nitride Coatings,"

21. Grujicic, M and Columbus, D., "A Comparative Discrete-Dislocation/Crystal-Plasticity Analysis of Bending of a Single Crystalline Microbeam," accepted for publication in Journal of Materials Science, November 2000.

22. Miller, R.S., Cao, G, and Grujicic, M., "Monte Carlo Simulation of Three-Dimensional Non-isothermal Microstructure Evolution: Application to LENSTM Rapid Fabrication," to

be submitted for publication in Journal of Materials Synthesis and Processing, January 2001

23. Loghin, A. and Joseph, P.F., "Loading Dependent Higher Order Asymptotic Solutions in Nonlinear Mixed Mode Fracture," submitted to Engineering Fracture Mechanics, October 2000.

Conference Presentations

1. Joseph, P.F. and Erdogan, F, "Stress Field Near the Tip of a Crack Parallel to an Interface," 13th Congress of Applied Mechanics, University of Florida, June, 1998.

2. K.S. Gadi, Joseph, P.F., B. Han, N. Zhang, and A.C. Kaya, "Thermally Induced Logarithmic Stress Singularities in a Composite Wedge," ASME IMECE, Anaheim, CA, November 1998.

3. Grujicic, M., Diefendorf, R.S. and Lai, S.G., "Multi-length scale Modeling of CVD of Diamond," International Conference on Carbon, Charleston, S.C., July 11-15, 1999.

4. Loghin, A. and Joseph, P.F., "A Nonlinear Finite Element Analysis for Higher Order Terms," 37th meeting of the Society of Engineering Science, Columbia, SC, October 23-35, 2000.

List of All Participating Scientific Personnel Showing Any Advanced Degrees Earned by Them While Employed on the Project

Prof. R. Judd Diefendorf	P.I.
Prof. James. G. Goree	Co-P.I.
Prof. Mica Grujicic	Co-P.I.
Prof. Paul F. Joseph	Co-P.I.
Mr. Ningsheng Zhang	Received PhD degree in December 1997
Mr. Shugang Lai	Received PhD degree in May 2000
Mr. Hezeng Li	Received MS degree in December 1999
Mr. Hui Zhao	PhD candidate. Did not pass PhD qualifying exam. Left the
	University January 1999.
Mr. Yun Zhang	PhD candidate. Did not pass PhD qualifying exam. Left the
	University August 1999.
Mr. Michael Brown	MS candidate. Transferred to Business School January 2000.
Mr. Derek Columbus	MS candidate. To graduate in January 2001
Mr. Guoxin Cao	PhD degree. Started in August 2000
Mr. Adrian Loghin	PhD candidate. To receive diploma in May 2001.

Bibliography

1. Grujicic, M., Zhao, H. and Krasko, G.L., "Atomistic Simulation of S3 (111) Grain Boundary Fracture in Tungsten Containing Various Impurities," International Journal of Refractory Metals and Hard Materials, Vol. 15, 1997, pp. 341-355.

2. Grujicic, M., Zhao, H. and Krasko, G., "Atomistic Simulation of Effect of Impurities on $\Sigma 3$ (111) Grain Boundary Fracture in Tungsten," Journal of Computer-Aided Materials Design, 4, 1997, pp. 183-192.

3. Grujicic, M. and Lai, S., "Effect of Martensitic Transformation in Ti-15 at % V β -phase Particles on Lamellar Boundary Decohesion in γ -TiAl: Part 1 Derivation of Interface Decohesion Potentials," Journal of Materials Science, 33, 1998, pp. 4385-4400.

4. Grujicic, M. and Lai, S., "Effect of Martensitic Transformation in Ti-15 at % V β -phase Particles on Lamellar Boundary Decohesion in γ -TiAl: Part 2 Finite Element Analysis of Crack-Bridging Phenomenon," Journal of Materials Science, 33, 1998, pp. 4401-4415.

5. Grujicic, M., and Zhang, Y., "Crystal Plasticity Analysis of the Effect of Dispersed bphase on Deformation and Fracture of Lamellar $\gamma + \alpha_2$ Titanium Aluminide," Materials Science and Engineering, A265, 1999, pp. 285-300.

6. Grujicic, M., and Zhang, Y., "Combined Atomistic-Crystal Plasticity Analysis of the Effect of Beta Phase Precipitates on Deformation and Fracture of Lamellar $\gamma + \alpha_2$ Titanium Aluminide," Journal of Materials Science, 34, 1999, pp. 1419-1437.

7. Grujicic, M., and Zhang, Y., "Crystal Plasticity Analysis of Stress-Assisted Martensitic Transformation in Ti-10V-2Fe-3Al (wt.%)," Journal of Materials Science, 35, 2000, pp. 4635-4647.

8. Grujicic, M and Columbus, D., "A Comparative Discrete-Dislocation/Crystal-Plasticity Analysis of Bending of a Single Crystalline Microbeam," accepted for publication in Journal of Materials Science, November 2000.

9. Grujicic, M., Zhao, H. and Krasko, G., "Atomistic Simulation of Σ3 (111) Grain Boundary in Tungsten Containing Various Impurities," Army Research Laboratory, ARL-TR-2051, September 1999.

10. Grujicic, M. and Zhao, H., "Optimization of 316 Stainless Steel/Alumina Functionally Graded Materials for Reduction of Damage Induced by Thermal Residual Stresses," Materials Science and Engineering, A252, 1998, pp. 117-132.

11. Grujicic, M. and Zhang, Y. "Determination of Effective Elastic Materials Properties in Functionally Graded Materials Using Voronoi Cell Finite Element Formulation," Materials Science and Engineering, A251, 1998, pp.64-76.

12. Joseph, P.F. and Zhang, N., "Multiple Root Solutions, Wedge Paradoxes, and Singular Stress States that are not Variable-Separable," Composites Science and Technology, Vol. 58, 1998, pp. 1839-1859.

13. Zhang, N. and Joseph, P.F., "A Nonlinear Finite Element Eigenanalysis of Singular Plane Stress Fields in Bi-material Wedges Including Complex Eigenvalues," International Journal of Fracture, Vol. 90, 1999, pp. 175-207.

14. Zhang, N. and Joseph, P.F., "A Nonlinear Finite Element Eigenanalysis of Singular Stress Fields in Bi-material Wedges for Plane Strain," International Journal of Fracture, Vol. 94, 1998, pp. 299-319.

15. Gadi, K.S., Joseph, P.F., Zhang, N. and Kaya, A.C., "Thermally induced logarithmic singularities in a composite wedge and other anomalies," Engineering Fracture Mechanics, 65, 2000, pp. 645-664.

16. Loghin, A., Zhang, N. and Joseph, P.F., "A Nonlinear Finite Element Eigenanalysis of Antiplane Shear Including Higher Order Terms," Engineering Fracture Mechanics, 66, 2000, pp. 441-454.

17. Loghin, A. and Joseph, P.F., "Loading Dependent Higher Order Asymptotic Solutions in Nonlinear Mixed Mode Fracture," submitted to Engineering Fracture Mechanics, October 2000.

18. Loghin, A., Zhang, N. and Joseph, P.F., "Near Mode I Fracture in Power Law Hardening Materials," to be submitted for publication, January, 2001.

19. K.S. Gadi, Joseph, P.F., B. Han, N. Zhang, and A.C. Kaya, "Thermally Induced Logarithmic Stress Singularities in a Composite Wedge," ASME IMECE, Anaheim, CA, November 1998.

20. Loghin, A. and Joseph, P.F., "A Nonlinear Finite Element Analysis for Higher Order Terms," 37th meeting of the Society of Engineering Science, Columbia, SC, October 23-35, 2000.

21. Grujicic, M., and Lai, S., "Atomistic Simulation of Chemical Vapor Deposition of (111)-oriented Diamond Film Using a Kinetic Monte Carlo Method," Journal of Materials Science, 34, 1999, pp. 7-20.

22. Grujicic, M., and Lai, S., "Grain-scale Modeling of Microstructure Evolution in CVDgrown Polycrystalline Diamond Films," Journal of Materials Synthesis and Processing, 2000, pp., 73-85.

23. Grujicic, M., and Lai, S., "Multi-length Scale Modeling of CVD of Diamond: Part I A Combined Reactor Scale/Atomic Scale Analysis," Journal of Materials Science, 35, 2000, pp. 5359-5369.

24. Grujicic, M., and Lai, S., "Multi-length Scale Modeling of CVD of Diamond: Part II A Combined Atomic scale/Grain Scale Analysis," Journal of Materials Science, 35, 2000, pp. 5371-5381.

25. Grujicic, M. and Lai, S., "Multi-Length Scale Modeling of Chemical Vapor Deposition of Titanium Nitride Coatings," accepted for publication in Journal of Materials Science, November 2000.

26. Grujicic, M., Diefendorf, R.S. and Lai, S.G., "Multi-length scale Modeling of CVD of Diamond," International Conference on Carbon, Charleston, S.C., July 11-15, 1999.

27. Miller, R.S., Cao, G, and Grujicic, M., "Monte Carlo Simulation of Three-dimensional Non-isothermal Microstructure Evolution: Application to LENSTM Rapid Fabrication," to be submitted for publication in Journal of Materials Synthesis and Processing, January 2001

Appendix A

Multi-length Scale Modeling

Of

Microstructure Property Relations

Figure 7 Equilibrium configuration of the $(\overline{110})_{\beta}/(\overline{111})_{\gamma}$ interface (bicrystal A): (a) Atomic positions projected onto the $(\underline{110})_{\beta}/(\underline{211})_{\gamma}$ plane; (b) Atomic positions projected onto the $(\overline{110})_{\beta}/(\overline{111})_{\gamma}$ interface plane. Interfacial dislocations are marked as D_1 and D_2 .

Figure 8 Equilibrium configuration of the $(001)_{\beta}/(0\overline{1}1)_{\gamma}$ interface (bicrystal B): (a) Atomic positions projected onto the $(\overline{110})_{\beta}/(\overline{111})_{\gamma}$ plane; (b) Atomic positions projected onto the $(001)_{\beta}/(0\overline{1}1)_{\gamma}$ interface plane. Interfacial dislocations are marked as D_1 and D_2 .

Figure 9 Equilibrium configuration of the $(1\overline{10})_{\beta}/(2\overline{11})_{\gamma}$ interface (bicrystal C): (a) Atomic positions projected onto the $(\overline{110})_{\beta}/(\overline{111})_{\gamma}$ plane; (b) Atomic positions projected onto the $(\overline{001})_{\beta}/(0\overline{11})_{\gamma}$ plane; (c) Atomic positions projected onto the $(1\overline{10})_{\beta}/(2\overline{11})_{\gamma}$ interface plane. Interfacial dislocations are marked as D_1 and D_2 .

Figure 10 Equilibrium configuration of the $(\overline{111})_{\gamma 1}/(111)_{\gamma 2}$ interface (bicrystal D): (a) Atomic positions projected onto the $(\underline{011})_{\gamma 1}/(011)_{\gamma 2}$ plane; (b) Atomic positions projected onto the $(\overline{111})_{\gamma 1}/(111)_{\gamma 2}$ interface plane. Interfacial screw dislocations are marked as D₁.

Figure 11 Variation of the decohesion potential for the $(\underline{110})_{\beta}/(\underline{111})_{\gamma}$ interface with the normal displacement U_n in the $[\overline{110}]_{\beta}/[\overline{111}]_{\gamma}$ direction and tangential displacements U_t and U_b in the $[001]_{\beta}/[0\overline{11}]_{\gamma}$ and $[1\overline{10}]_{\beta}/[2\overline{11}]_{\gamma}$ directions, respectively.

Figure 12 Variation of the decohesion potential for the interface $(001)_{\beta}/(011)_{\gamma}$ with the normal displacement U_n in the $[001]_{\beta}/[0\overline{1}1]_{\gamma}$ direction and tangential displacements U_t and U_b in the $[\overline{110}]_{\beta}/[\overline{111}]_{\gamma}$ and $[1\overline{10}]_{\beta}/[2\overline{11}]_{\gamma}$ directions, respectively.

Figure 13 Variation of the decohesion potential for the interface $(110)_{\beta}/(211)_{\gamma}$ with the normal displacement U_n in the $[1\overline{10}]_{\beta}/[2\overline{11}]_{\gamma}$ direction and tangential displacements U_t and U_b in the $[\overline{110}]_{\beta}/[\overline{111}]_{\gamma}$ and $[001]_{\beta}/[0\overline{11}]_{\gamma}$ directions, respectively.

Figure 14 Variation of the decohesion potential for the interface $(\underline{111})_{\gamma 1}/(\underline{111})_{\gamma 2}$ with the normal displacement U_n in the $[\overline{111}]_{\gamma 1}/[\underline{111}]_{\gamma 2}$ direction and tangential displacements U_t and U_b in the $[\overline{011}]_{\gamma 1}/[\overline{011}]_{\gamma 2}$ and $[\underline{211}]_{\gamma 1}/[\underline{211}]_{\gamma 2}$ directions, respectively.

	$(\overline{110})_{\beta}/(\overline{111})_{\gamma}$ Interface: Bicrys	stal A				
Devementar	Dislocation Type					
rarameter	D ₁	D2				
Line Direction, l		$[\begin{array}{c} [0 \ 0 \ 1]_{\beta} \\ [0 \ \overline{1} \ 1]_{\gamma} \end{array}$				
Burger's Vector, b	$\frac{1/2 \ \mathbf{a}_{\beta} \ [0 \ 0 \ 1]_{\beta}}{1/2 \ \mathbf{a}_{\gamma} \mathbf{c}_{\gamma} / \sqrt{ \mathbf{a}_{\gamma}^{2} + \mathbf{c}_{\gamma}^{2} \ [0 \ \overline{1} \ 1]_{\gamma}}}$	$\begin{array}{c} 4 \ \mathbf{a}_{\beta} / \sqrt{2} \ [\overline{1} \ 1 \ 0]_{\beta} \\ 4 \ \mathbf{a}_{\gamma} \mathbf{c}_{\gamma} / \sqrt{\mathbf{a}_{\gamma}^2 + 5 \mathbf{c}_{\gamma}^2} \ [\overline{2} \ 1 \ 1]_{\gamma} \end{array}$				
Dislocation Spacing, λ	$\frac{7/2}{4} \frac{\mathbf{a}_{\beta}}{\mathbf{a}_{\gamma} \mathbf{c}_{\gamma}} \frac{\mathbf{a}_{\beta}}{\sqrt{\mathbf{a}_{\gamma}^{2} + \mathbf{c}_{\gamma}^{2}}}$	$\frac{10 a_\beta / \sqrt{2}}{14 a_\gamma c_\gamma / \sqrt{a_\gamma^2 + 5 c_\gamma^2}}$				
$(001)_{\beta}/(0\overline{1}1)_{\gamma}$ Interface: Bicrystal B						
Parameter	Dislocation Type					
T di di di di cici	D ₁	D ₂				
Line Direction, l	$[\overline{1} \ \overline{1} \ \overline{0}]_{\beta} \\ [\overline{1} \ \overline{1} \ \overline{1}]_{\gamma}$	$[\overline{3} \ 4 \ 0]_{\beta}$ $[\overline{3} \ 2 \ 2]_{\gamma}$				
Burger's Vector, b	$\frac{2 \ \mathbf{a}_\beta / \sqrt{2} \ [\overline{1} \ 1 \ 0]_\beta}{2 \ \mathbf{a}_\gamma c_\gamma / \sqrt{\mathbf{a}_\gamma^2 + 5 c_\gamma^2} \ [\overline{2} \ 1 \ 1]_\gamma}$	$\frac{a_{\beta}/5\ [4\ 3\ 0]_{\beta}}{a_{\gamma}c_{\gamma}/\sqrt{9a_{\gamma}^{2}+25c_{\gamma}^{2}}\ [4\ 3\ 3]_{\gamma}}$				
Dislocation Spacing, λ	$\frac{7 \mathbf{a}_{\beta} / \sqrt{2}}{10 \mathbf{a}_{\gamma} \mathbf{c}_{\gamma} / \sqrt{\mathbf{a}_{\gamma}^{2} + 5 \mathbf{c}_{\gamma}^{2}}}$	$\frac{21 \ \underline{a_{\beta}}/5}{20 \ \underline{a_{\gamma} c_{\gamma}}/\sqrt{9 \underline{a_{\gamma}}^2 + 25 \underline{c_{\gamma}}^2}}$				
	$(1\overline{1}0)_{\beta}/(2\overline{1}\overline{1})_{\gamma}$ Interface: Bicrystal C					
Donomatan	Dislocation Type					
Tarameter	D ₁	D ₂				
Line Direction, l	$[\overline{1} \ \overline{1} \ 0]_{eta} \ [\overline{1} \ \overline{1} \ \overline{1}]_{\gamma}$	$\begin{array}{c} [3 \ 3 \ 7]_{\beta} \\ [\mathbf{\overline{1}} \ 1 \ \mathbf{\overline{3}}]_{\gamma} \end{array}$				
Burger's Vector, b	$\frac{1/2 \ \mathbf{a}_{\beta} \left[0 \ 0 \ 1\right]_{\beta}}{1/2 \ \mathbf{a}_{\gamma} \mathbf{c}_{\gamma} / \sqrt{ \ \mathbf{a}_{\gamma}^{2} + \mathbf{c}_{\gamma}^{-2}} \left[0 \ \overline{1} \ 1\right]_{\gamma}}$	$\frac{a_\beta/\sqrt{134}[\overline{7}\overline{7}6]_\beta}{a_\gamma c_\gamma/\sqrt{a_\gamma^2+65 c_\gamma^2}[471]_\gamma}$				
Dislocation Spacing, λ	$\frac{7/2 \ \mathbf{a}_{\beta}}{4 \ \mathbf{a}_{\gamma} \mathbf{c}_{\gamma} / \sqrt{\mathbf{a}_{\gamma}^{2} + \mathbf{c}_{\gamma}^{2}}}$	$\frac{21 \ \mathbf{a}_\beta / \sqrt{134}}{22 \ \mathbf{a}_\gamma \mathbf{c}_\gamma / \sqrt{\mathbf{a}_\gamma^2 + 65 \mathbf{c}_\gamma^2}}$				
	$(1\overline{1}0)_{\beta}/(2\overline{11})_{\gamma}$ Interface: Bicry	stal D				
Parameter	Dislocation Type					
rarameter	D ₁					
Line Direction, l	[0 1 1] _γ					
Burger's Vector, b	$1/2 a_{\gamma} c_{\gamma} / \sqrt{a_{\gamma}^2 + c_{\gamma}^2} [0 \overline{1} 1]_{\gamma}$					
Dislocation Spacing, λ	$25/2 a_{\gamma} \sqrt{(a_{\gamma}^{2} + 2c_{\gamma}^{2})/(a_{\gamma}^{2} + c_{\gamma}^{2})}$					

Table I: Parameters Characterizing Interfacial Dislocation for the three Beta/Gamma and one Gamma/Gamma Interfaces Analyzed in the Present Work

	Interface Type					
Parameter						
	$(110)_{\beta}/(111)_{\gamma}$	$(001)_{\beta}/(011)_{\gamma}$	$(110)_{\beta}/(211)_{\gamma}$	$(111)_{\gamma 1}/(111)_{\gamma 2}$		
Designation	А	В	C	D		
n-direction	$[\overline{11}0]_{\beta}/[\overline{111}]_{\gamma}$	[001] _β /[0 11] _γ	$[\mathbf{1\overline{1}0}]_{\beta}/[\mathbf{2\overline{11}}]_{\gamma}$	$[\overline{111}]_{\gamma 1}/[111]_{\gamma 2}$		
t-direction	[001] _β /[011] _γ	$[\overline{110}]_{\beta}/[\overline{111}]_{\gamma}$	$[\overline{110}]_{\beta}/[\overline{111}]_{\gamma}$	$[0\overline{1}1]_{\gamma1}/[01\overline{1}]_{\gamma2}$		
b-direction	[1 10] _β /[2 11] _γ	$[1\overline{1}0]_{\beta}/[2\overline{1}\overline{1}]_{\gamma}$	$[001]_{\beta}/[\mathbf{0\overline{1}1}]_{\gamma}$	$[2\overline{11}]_{\gamma 1}/[2\overline{11}]_{\gamma 2}$		
$\delta_{\mathbf{n}}, \mathbf{\AA}$	0.5	0.5	0.5	0.5		
λ_t , Å	3.21	4.54	6.81	123.5		
$\lambda_b, Å$	4.54	4.54	3.21	5.78		
α ₀	-0.013	-0.21	-0.148	-0.039		
α1	-1.5	1	0.42	-1		
α2	0	0	-0.2	0		
α3	0	0	-3.42	0		
α4	0.5	0	1.17	0		
α5	0	0	5	0		
σ _{max} , GPa	7.37	4.57	7.29	2.01		
τ _{max,t} , GPa	1.09	11.77	29.2	0.160		
τ _{max,b} , GPa	1.11	5.60	1.20	1.65		
$\Phi(U_n \rightarrow \infty), J/m^2$	2.02	1.25	2.03	0.561		

Table II.Decohesion Potential Parameters for the Three Beta/Gamma and
One Gamma/Gamma Interface Analyzed in the Present Work

(b)

 (\wedge)

(e)

Figure 9 Contour plots at the overall normal strain of 2% in the vertical direction of: (a) the normal equivalent plastic strain (in percents), (b) the changes in Euler angle (in degrees) and (c) the hydrostatic stress (in 100MPa) for the single-phase (matrix) polycrystalline material in which the grain boundaries are represented using the cohesive zone model, and (d), (e) and (f) are the corresponding contour plots for the two-phase (matrix + stable beta) material.

Figure 10 Contour plots for the normal equivalent plastic strain (in percents) for the single-phase (matrix) material at the overall normal strains of (a) 1%, (b) 1.7% and (c) 2.1%. The corresponding contour plots for the change in Euler angle (in degrees) (d), (e) and (f). The corresponding contour plots for the hydrostatic stress (in 100MPa), (g), (h) and (i).

Appendix B

Voronoi Cell Finite Element Analysis

Of

Effective Properties of Functionally Graded Materials

Figure 5. (a) Schematic representation of the microstructure of a graded ceramic/ metal region. The microstructure consisting of dispersed particles embedded in a continuous matrix is observed for large and small volume fractions of the metal and ceramic, as in (b) and (d). In the intermediate region where the volume fractions of the two materials are comparable to each other, the microstructure consists of intertwined clusters of the two phases.

Figure 8. Effect of the number of Voronoi cell elements on the range of in-plane properties for the microstructure consisting of 0.2 volume fraction of elliptical inclusions (aspect ratio in the range 1–2). One of the 100 element square RMEs used is shown in (a), while one of the 25 element square RMEs used is shown in Figures 5(a) and 5(b).

Figure 9. Effect of the number of Voronoi cell elements on the range of in-plane properties for the microstructure consisting of intertwined clusters of the two materials (volume fraction of the two materials ≈ 0.5). One of the 600 element RMEs used is shown in (a).

Figure 10. Comparison of the experimentally measured Young's modulus (a) and Poisson's ratio (b) in Ni/MgO FGM with the ones predicted by the Self Consistent Method (SCM), the Equivalent Inclusion Method (EIM) and the Voronoi Cell Finite Element Method (VCFEM). The experimentally measured porosities are shown in the insert of figure (b).

Figure 11. Comparison of the experimentally measured Young's modulus (a) and Poisson's ratio (b) in Ni_3Al/TiC FGM with the ones predicted by the Self Consistent Method (SCM), the Equivalent Inclusion Method (EIM) and the Voronoi Cell Finite Element Method (VCFEM). The experimentally measured porosities are shown in the insert of figure (b).

Figure 10. The finite element simulation results of thermally induced: (a) interface decohesion, (b) cracks in Al₂O₃ (layer 1), 90% Al₂O₃/10% 316 stainless steel (layer 2) and 70% Al₂O₃/30% 316 stainless steel (layer 3), (c) plastic strain and (d) voids in 316 stainless steel, (e) radial residual stress, σ_r , and (f) axial residual stress, σ_z , in the case of the graded 316 stainless steel/Al₂O₃ interface characterized by the exponent p=2.0. 1/2, 2/3, etc. in (a) refer to the interfaces separating layers 1 and 2, 2 and 3, etc.

Appendix C

Multiple Asymptotic Solutions For Mixed Mode Fracture In Power Law Hardening Materials

This figure shows how the linear elastic double root for plane strain fracture in the upper figure ($\alpha = 360^{\circ}$, $s_1 = s_2 = -0.5$) splits into two distinct asymptotic solutions when material hardening is taken into account in the lower figure. The values of s_1 and s_2 are defined by, $\sigma_{ij}(r, \theta) = A_1 r^{s_1} \overline{\sigma}_{ij}^1(\theta) + A_2 r^{s_2} \overline{\sigma}_{ij}^2(\theta)$. The mode I dominant solution is higher order ($s_2 > s_1$), while the mode II dominant solution is mixed mode ($s_2 = s_1$).

This figure shows how the linear elastic double root for plane strain interface fracture in the upper figure ($\alpha = 180^{\circ}$, $s_1 = s_2 = -0.5$) splits into two distinct asymptotic solutions when material hardening is taken into account in the lower figure. The values of s_1 and s_2 are defined by, $\sigma_{ij}(r, \theta) = A_1 r^{s_1} \overline{\sigma}_{ij}^1(\theta) + A_2 r^{s_2} \overline{\sigma}_{ij}^2(\theta)$. The mode I dominant solution is higher order ($s_2 > s_1$), while the mode II dominant solution is believed to be non-separable.

Appendix D

Multi-length Scale Modeling

. Of

Chemical Vapor Deposition Process

Figure 2. Sequence of steps involved in the nucleation of a new layer on an atomically flat (111) surface. Open circles represent diamond carbon atoms, shaded circles designate hydrocarbon carbon atoms, and small black circles stand for hydrogen atoms. Surface reactions (listed in Table I) involved in various steps of the process are given in parenthesis.

Figure 3. Growth of an (100)-oriented film by trough insertion mechanism. Open circles represent diamond carbon atoms, shaded circles designate hydrocarbon carbon atoms, and small black circles stand for hydrogen atoms. Surface reactions (listed in Table I) involved in various steps of the process are given in parenthesis.

Figure 5. Reactor- and atomic scale analyses predicted (111)- and (100)oriented film deposition rates as a function of (a) the substrate temperature and (b) concentration of CH₄ in feed gas. The remaining processing condition are as indicated in Figure 4.

Figure 5. Top view of an (111)-oriented diamond film obtained under the following CVD conditions in the reactor: Reactive gas at the reactor inlet (0.4% CH₄, 92.5% H₂), T_{heator}= 2000 K, T_{substrate}= 1000 K, p= 20.25 Torr, Heater-to-Substrate Distance = 1.3cm. Deposition times: (a) 0.87s; (b) 1.81s; (c) 2.07s and (d) 2.85s. Nomenclature: B - 3-carbon bridge, C - Twin covered by regular crystal, D - Dislocation loop, E - Edge, G - Gap, I - Island, K - Kink, N - Nucleus, T - Twin, V - Void

Figure 6. The side view of the four (111)-oriented diamond films shown in Figures 5(a)-(d).

Figure 9. Top view of four (100) surface configurations obtained under the CVD conditions identical to the ones listed in Figure 5. Deposition times: (a) 0.01s; (b) 0.018s; (c) 0.032s and (d) 0.208s. Nomenclature: B—BCN mechanism, D—Dimer insertion mechanism, P—Pit, I—Island, T—Trough insertion mechanism.

Figure 10. Side view of the four (100)-oriented diamond films shown in Figures 9(a)-(d).

Figure 8. Effect of the substrate temperature on the concentration of vacancies and entrapped hydrogen atoms in (111)- and (100)-oriented diamond films, (a), and twins in (111)-oriented diamond films, (b), under the CVD conditions specified in Figure 5. Error bars represent on standard deviation over five simulation runs.

Figure 2. The microstructure of polycrystalline diamond films deposited under the growth-rate parameter, $\alpha =:$ (a) 1.0; (b) 1.05; (c) 1.5; (d) 2.95 and (e) 3.0. Both the x- and y-axis are normalized with respect to the average nucleus spacing, d₀. The following line type nomenclature is used: dash-dot=grain boundaries, solid={100} facets, dotted ={111} facets, dashed = {100}/{100} facets, and three-dot space={111}/{111} facets.

Figure 4. (a) The distribution function for the grain size normalized with respect to the average nucleus spacing, d_0 , at five film thicknesses for the growth-rate parameter α =1.5. (b) The distribution function for the grain size normalized with respect to the corresponding average grain size, \overline{d} , for five α values and three film thicknesses.

Appendix E

Bernes 2000

Prototype Scale

Chemical Vapor Deposition Reactor

