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Statement of the Problem Studied 

Advanced structural materials are generally developed using various empirical 
methods. Such methods are typically time-consuming and costly and do not enable the 
advances in development of one type of material to be easily utilized to make similar 
advances in development of materials of other types. The main objective of the present 
work was to develop a multi-length scale methodology for analyzing the relationships 
between: (a) process parameters and the resulting materials microstructure and (b) 
microstructure properties and performance in advanced materials (coatings, functionally- 
graded materials, etc.) processed by CVD and LENS™ techniques. The work was also 
aimed at combining various scientific and engineering disciplines such as: chemical 
thermodynamics and kinetics, fluid dynamics and heat transfer, stochastic computational 
methods for prediction of microstructural evolution, atomistic simulation techniques, 
micromechanics approaches and nonlinear fracture mechanics. 



Summary of Most Important Results 

1. Atomic simulations combined with the first-principle electronic-structure calculation- 
based interatomic potentials, have been utilized to determine the grain boundary/interface 
decohesion potentials and relate them to the interface orientation and grains 
misorientation. This approach revealed a critical role of grain boundary sliding in the 
process of decohesion. This work was done in collaboration with Dr. Genrich L. Krasko of 
the U.S. Army Research Laboratory in Aberdeen Proving Ground, and has resulted in 
eight journal publications [1-8] and one technical report [9]. Selected results pertaining to 
this portion of the project are given in Appendix A. 

2. The Voronoi Cell Finite Element formulation has been utilized to determine the effective 
microstructure-sensitive elastic and plastic properties of functionally graded materials. 
Results show that the effective properties of FGMs are more reliably determined using this 
method than the more commonly used self-consistent approach. This portion of the work 
has resulted in two journal publications [10,11]. Selected results pertaining to this portion 
of the project are given in Appendix B. 

3. A combined finite element, singular value decomposition method has been established to 
study the asymptotic singular stress fields, including higher order terms, for cracks, 
interface cracks and wedges in power law hardening materials. This method is versatile 
with respect to geometry and loading. These capabilities have led to the following two key 
findings for fracture in functionally graded materials: 1) For plane strain fracture near 
conditions of pure mode I, the asymptotic stress field is not mixed mode. Rather it is in a 
higher order form. In FGMs, due to the combination of materials, it is likely that a crack 
will grow in a manner that fluctuates around pure symmetric mode I conditions, where this 
new asymptotic solution is required. 2) For interface fracture it has been discovered that 
two asymptotic solutions are necessary to describe the full range of loading conditions. The 
first is a higher order solution, again near mode I, and the second is believed to be non- 
separable. Efforts to determine this non-separable solution are underway. This portion of 
the work resulted in five journal publications [12-16] with one in review [17], another 
about to be submitted [18] and two presentations [19,20]. Selected results pertaining to this 
portion of the project are given in Appendix C. 

4. Multi-length scale modeling of the chemical vapor deposition process is carried out to 
combine the reactor scale, the grain-size scale and the atomistic scale. This modeling effort 
combines various approaches from the disciplines of reactive-gas fluid dynamics and heat 
transfer, gas and surface chemical thermodynamics and kinetics, van-der Drift-type 
modeling of microstructure evolution and kinetic Monte Carlo atomistic-scale deposition 
modeling techniques. The approach allows determination of the relationship between the 
process parameter and the microstructure and quality of the CVD-grown film/coating. 
This portion of the work has resulted in five journal publications [21-25] and one 
conference presentation [26]. Selected results pertaining to this portion of the project are 
given in Appendix D. 



5. To develop experimental capabilities needed to complement the work described above, a 
large-scale CVD reactor has been installed at Clemson University. This equipment is 
valued at approximately $500,000, and was donated by Dupont to the P.L, who was 
instrumental in the design of the equipment. Preliminary runs involving CVD of TiN 
coatings have been carried out and the results obtained indicate that major redesign of the 
CVD reactor is needed in order to enable the level of process control suggested by the 
multi-length scale simulation studies after CVD process. Selected pictures showing the 
CVD reactor are given in Appendix E. 

6. A large-scale parallel-computing Monte Carlo Model is developed to analyze 
microstructure evolution during LENS™ rapid manufacturing process. The model enables 
establishment of the relationship between the process parameters and the resulting 
materials microstructure. This portion of the work has resulted in one manuscript, which 
will be submitted for publication in January 2001 [27]. 
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Figure 13  Variation of the decohesion potential for theinterface 
(110)ß/(211)T with the normal displacement Un in the [ll0]ß/[211]Y 
direction and tangential displacements Ut and Ub in the 
[110]ß/[lll]7 and [001]ß/[011]Y directions, respectively. 
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Figure 14  Variation of the decohesion potential for the interface 
(Ul)Yl/(lll)72 with the normal displacement Un in the 
[lll]Yl/[lll]v2 direction and tangential displacements Ut and Ub in 
the [011]Yi/[011]72 and [211]Yi/[211]Y2 directions, respectively. 
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Table I:   Parameters Characterizing Interfacial Dislocation for the three Beta/ 
Gamma and one Gamma/Gamma Interfaces Analyzed in the Present Work 

(110)ß/(lll)Y Interface: Bicrystal A 

Parameter 
Dislocation Type 

Di D2 

Line Direction, 
1 

[110]ß 
[211]Y 

[0 0 1]ß 
[0 1 1]Y 

Burger's Vector, 
b 

1/2 aß [0 0 l]ß 

1/2 ayCyA/aZ-Ky4 [0 11]Y 

4aßV2[110]ß 
4 aYcY/v/aY

2+5cY
2 [2 1 l]y 

Dislocation Spacing, 7/2 a6 

4 ayC{/y/ay'i+CyJ' 
lOaß/v/2 

14avCv/\/ av2+5cv
2 

i       1      v           i                    I 

(001)ß/(0U)Y Interface: Bicrystal B 

Parameter 
Dislocation Type 

Di D2 

Line Direction, 
1 

[1 1 0]ß 

[1 1 1]Y 

[3 4 0]ß 

[3 2 2]Y 

Burger's Vector, 
b 

2aßV2[110]ß 
2 aYcY/v"aY

z+5cY
z [2 11]Y 

aß/5[4 3 0]ß 
aYc/v

/9aY
2+25cY

z [4 3 3]Y 

Dislocation Spacing, 7 aßV2 
10 a^A/a^+Scv^ 

21 aß/5 
20 aYcY/v

/9a^/+25cY
z 

(110)ß/(211)Y Interface: Bicrystal C 

Parameter 
Dislocation Type 

E>1 D2 

Line Direction, 
1 

[1 1 0]p 
[1 1 1]Y 

[3 3 7]ß 

[H3]Y 

Burger's Vector, 
b 

l/2aß[0 01]ß 

1/2 OyCyfy/rf+Cy* [0 1   l]y 
aßV134[7 7 6]ß 

aycY/v
/aYZ+65cY

z [471]Y 

Dislocation Spacing, 
I 

7/2 aß 
4 ayc/v/a^+c,/ 

21 aßV134 
22 ayCy/v/aZ+oSc/ 

(110)ß/(211)Y Interface: Bicrystal D 

Parameter 
Dislocation Type 

Di 

Line Direction, 
1 [0Ti]7 

Burger's Vector, 
b 1/2 ayCyVaZ+c/ [0 1 1]Y 

Dislocation Spacing, 
I 

25/2 ay^/(a/+2c/)/(a/+c/) 
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Table II.     Decohesion Potential Parameters for the Three Beta/Gamma and 
One Gamma/Gamma Interface Analyzed in the Present Work 

Parameter 

Interface Type 

(U0)p/(1U)Y (001)ß/(011)Y (110)ß/(211)Y (lll)Yl/(lll)Y2 

Designation A B C D 

n-direction [U0]ß/[111]V [001]ß/[011]Y [110]ß/[211]Y [IÜ]Yl/[lll]Y2 

t-direction [001]ß/[011]Y [üo]ß/[m]Y [üo]ß/[m]Y [011]Yl/[011]Y2 

b-direction [110]ß/[211]Y [110]ß/[211]Y [001]ß/[011]Y [2Ü]Yi/[2Ü]Y2 
ön,Ä 0.5 0.5 0.5 0.5 

XfcA 3.21 4.54 6.81 123.5 

Xh,k 4.54 4.54 3.21 5.78 

cto -0.013 -0.21 -0.148 -0.039 

«1 -1.5 -1 0.42 -1 

Ct2 0 0 -0.2 0 

a3 0 0 -3.42 0 

CC4 0.5 0 1.17 0 

as 0 0 -5 0 

ömax) *JJT 3 7.37 4.57 7.29 2.01 

tniax,t5 GPa 1.09 11.77 29.2 0.160 

^max.b» tr"a 1.11 5.60 1.20 1.65 
<D(Un-fc»)5j/m2 2.02 1.25 2.03 0.561 
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Figure 9 Contour plots at the overall normal strain of 2% in the vertical direction of: (a) the normal 
equivalent plastic strain (in percents), (b) the changes in Euler angle (in degrees) and (c) the hydro- 
static stress (in lOOMPa) for the single-phase (matrix) polycrystal.li.ne material in which the grain 
boundaries are represented using the cohesive zone model, and (d), (e) and (f) are the corresponding 
contour plots for the two-phase (matrix + stable beta) material. 
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Figure 10 Contour plots for the normal equivalent plastic strain (in percents) for the single-phase 
(matrix) material at the overall normal strains of (a) 1 %, (b) 1.7% and (c) 2.1 %. The corresponding 
contour plots for the change in Euler angle (in degrees) (d), (e) and (f). The corresponding contour 
plots for the hydrostatic stress (in lOOMPa), (g), (h) and (i). 
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Appendix B 

Voronoi Cell Finite Element Analysis 

Of 

Effective Properties of Functionally Graded Materials 
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Figure 5. (a) Schematic representation of the microstructure of a graded ceramic/ 

metal region. The microstructure consisting of dispersed particles embedded in 

a continuous matrix is observed for large and small volume fractions of the metal 
and ceramic, as in (b) and (d). In the intermediate region where the volume frac- 
tions of the two materials are comparable to each other, the microstructure con- 
sists of intertwined clusters of the two phases. 
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Figure 8. Effect of the number of Voronoi cell elements on the range of in-plane prop- 
erties for the microstructure consisting of 0.2 volume fraction of elliptical inclusions 

(aspect ratio in the range 1-2). One of the 100 element square RMEs used is shown 

in (a), while one of the 25 element square RMEs used is shown in Figures 5 (a) and 5 (b). 
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ment Method (VCFEM). The experimentally measured porosities are shown in the 

insert of figure (b). 
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Figure 10. The finite element simulation results of thermally induced: (a) interface decohesion, (b) 
cracks in A1203 (layer i), 90%Al2O3/10% 316 stainless steel Gayer 2) and 70%Al2O3/30% 316 

stainless steel (layer 3), (c) plastic strain and (d) voids in 316 stainless steel, (e) radial residual stress, 
GK and (f ) axial residual stress, az, in the case of the graded 316 stainless steel/Al2C>3 interface char- 
acterized by the exponent p=2.0.1/2,2/3, etc. in (a) refer to the interfaces separating layers 1 and 
2,2 and 3, etc. 
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Multiple Asymptotic Solutions 

For Mixed Mode Fracture 

In Power Law Hardening Materials 
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Figure 3b. 
n=3, nonlinear elastic, 
plane strain 
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This figure shows how the linear elastic double root for plane strain 
fracture in the upper figure (a = 360°, Sj = s2 = -0.5) splits into two 
distinct asymptotic solutions when material hardening is taken into 
account in the lower figure. The values of si and S2 are defined by, 
Gjj (r, 0) = Ajr5'öjj (6) + A2r

S: a? (9). The mode I dominant solution is 

higher order (s2 > s,), while the mode II dominant solution is mixed 

mode(s2 =8,). 
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This figure shows how the linear elastic double root for plane strain interface fracture 
in the upper figure {a = 180° ,sr = s2 = -0.5) splits into two distinct asymptotic 
solutions when material hardening is taken into account in the lower figure. The 
values of si and s2 are defined by, a;j (r, 6) = A/'aj (0) + A2r

S2 äj (6). The mode I 

dominant solution is higher order (s2 > sl), while the mode II dominant solution is 
believed to be non-separable. 
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Figure 2. Sequence of steps involved in the nucleation of a new layer on an 
atomically flat (111) surface. Open circles represent diamond 
carbon atoms, shaded circles designate hydrocarbon carbon atoms, 
and small black circles stand for hydrogen atoms. Surface 
reactions (listed in Table I) involved in various steps of the process 
are given in parenthesis. 
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Figure 3. Growth of an (lOO)-oriented film by trough insertion mechanism. 
Open circles represent diamond carbon atoms, shaded circles 
designate hydrocarbon carbon atoms, and small black circles stand 
for hydrogen atoms. Surface reactions (listed in Table I) involved 
in various steps of the process are given in parenthesis. 
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Figure 5. Reactor- and atomic scale analyses predicted (111)- and (100)- 
oriented film deposition rates as a function of (a) the substrate 
temperature and (b) concentration of CH4 in feed gas. The 
remaining processing condition are as indicated in Figure 4. 
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Figure 5. Top view of an (lll)-oriented diamond film obtained under 
the following CVD conditions in the reactor: Reactive gas at 
the reactor inlet (0.4% CH4, 92.5% H2), Theator= 2000 K, 
Tsubstrate= 1000 K, p= 20.25 ToiT, Heater-to-Substrate 
Distance = 1.3cm. Deposition times: (a) 0.87s; (b) 1.81s; (c) 
2.07s and (d) 2.85s. Nomenclature: B - 3-carbon bridge, 
C - Twin covered by regular crystal,  D - Dislocation loop, 
E - Edge, G - Gap,  I - Island, K - Kink, N - Nucleus, 
T-Twin, V-Yoid 
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JS. L.        I 

Figure 6.     The side view of the four (111 )-oriented diamond films 
shown in Figures 5(a)-(d). 
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Figure 9. Top view of four (100) surface configurations obtained under 
the CVD conditions identical to the ones listed in Figure 5. 
Deposition times: (a) 0.01s; (b) 0.018s; (c) 0.032s and (d) 
0.208s. Nomenclature: B—BCN mechanism, D—Dimer 
insertion mechanism, P—Pit, I—Island, T—Trough 
insertion mechanism. 
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Figure 10.    Side view of the four (lOO)-oriented diamond films shown in 
Figures 9(a)-(d). 
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Figure 8. Effect of the substrate temperature on the concentration of 
vacancies and entrapped hydrogen atoms in (111)- and 
(lOO)-oriented diamond films, (a), and twins in (lll)-oriented 
diamond films, (b), under the CVD conditions specified in 
Figure 5. Error bars represent on standard deviation over five 
simulation runs. 
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Figure 2. The microstructure of polycrystalline diamond films deposited under the 
growth-rate parameter, a=: (a) 1.0; (b) 1.05; (c) 1.5; (d) 2.95 and (e) 3.0. 
Both the x- and y-axis are normalized with respect to the average 
nucleus spacing, d0. The following line type nomenclature is used: dash- 
dot=grain boundaries, solid={100} facets, dotted ={111} facets, dashed = 
{100}/{100} facets, and three-dot space={lll}/{lll} facets. 
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Figure 4.        (a) The distribution function for the grain size normalized 
with respect to the average nucleus spacing, d0, at five film 
thicknesses for the growth-rate parameter a=1.5. (b) The 
distribution function for the grain size normalized with 
respect to the corresponding average grain size, d, for five a 
values and three film thicknesses. 
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Bernes 2000 
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49 




