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Abstract 

This report is reviewing both linear and quadratic time-frequency representations. The linear 

representations discussed are Short-Time Fourier Transform and S-transform. The quadratic 

representation discussed is the Wigner distribution. We outline the motivations, interpreta- 

tions, mathematical fundamentals, properties, and applications of these linear and quadratic 

time-frequency representations. We also compare these three different time-frequency analy- 

sis techniques and show that each technique has its strengths and drawbacks. Simulated 

data sets have been used for the comparison. The choice of the particular time-frequency 

representation depends upon the specific area of application and what we aim to achieve with 

a local frequency analysis. We show that time-frequency analysis methods should enable us 

to classify signals with a considerably greater reflection of the physical situation than can be 

achieved by the conventional Fourier Transform method alone. 
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Resume 

Ce rapport examine les representations lineaire et quadratique de temps-frequence. Les 

representations lineaires qu'on examine sont la transformee ' et la transformee de Fourier ä 

temps reduite. La representation quadratique qu'on examine est la distribution de Wigner. 

Nous donnons les grandes lignes au sujet des motivations, interpretations, mathematique fon- 

damentale, proprietes, et les applications de ces representations lineaires et quadratiques de 

temps-frequence. Nous comparons aussi ces trois techniques differentes d'analyses de temps- 

frequence et montrons que chaque techniques a ses forces et ses problemes. Des ensembles 

de donnees simulees ont ete utilises pour des comparaisons. Le choix de la representation 

en temps-frequence depend du domaine d'application specifique et ce que nous pouvons ac- 

complir avec une analyse de frequence locale. Nous montrons que les methodes d'analyse 

temps-frequence devraient nous permettre de classifier des signaux avec une interpretation 

plus grande de la situation physique que peut etre accompli par la methode conventionnelle 
seule. 
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Executive Summary 

One of the central problems in High Frequency (HF) radar data is the analysis of a time 

series. The problem at hand is how to extract the information present in the data and 

use it to its full potential. In order to address this problem we turn to the field of signal 

analysis and data representations. The Fourier Transform is at the heart of a wide range of 

techniques that are used in HF radar data analysis and processing. Mapping the data into 

the temporal frequency domain is an effective way of recording the data such that their global 

characteristics can be assessed. However, the change of frequency content with time is one of 

the main features we observe in HF radar data. Because of this change of frequency content 

with time, radar signals belong to the class of non-stationary signals. The analysis of non- 

stationary signals requires technique that extend the notion of a global frequency spectrum 

to a local frequency description. The spectral energy density function that is obtained by 

means of a Fourier Transform, the so-called power spectrum, shows the frequencies that 

are present in our data, but does not reveal where changes in the frequency content occur. 

Consequently, for the interpretation of radar data in terms of a changing frequency content, 

we need a representation of our data as a function of both time and frequency. Only, 

quite recently, the joint time-frequency representation of signals has become a major area of 

research in signal processing. 

The time-frequency representations characterize signals over a time-frequency plane. They 

thus combine time-domain and frequency-domain analyses to yield a potentially more re- 

vealing picture of the temporal localization of a signal's spectral components. They may 

also serve as a basis for signal detection, characterization, coding, and processing. A com- 

plete and comprehensive theory for joint time-frequency analysis does not yet exist. There 

is no unique time-frequency representation of a signal that satisfies all the properties of a 

physically correct joint time-frequency energy density function. However, discarding the re- 

quirement that all properties must be satisfied in one time-frequency representation, a class 

of joint time-frequency representations can be derived that serves as a model of a local power 

spectrum. 

In order to employ the concept of a local power spectrum in HF radar signal analysis we 

need to decide which time-frequency representation is to be used. This choice cannot be 

made on the basis of a mathematical analysis alone. We should also take into account what 

we aim to achieve with a local frequency analysis.   Our main area of application of the 



time-frequency representation is the analysis of experimental HF radar data. A study of 

the properties of different time-frequency representations should provide us a guideline as to 

which representation is to be chosen in these applications. 

This report is reviewing both linear and quadratic time-frequency representations. The 

linear representations discussed are Short-Time Fourier Transform and S-transform. The 

quadratic representation discussed is the Wigner distribution. We outline the motivations, 

interpretations, mathematical fundamentals, and properties of these linear and quadratic 

time-frequency representations. We also compare these three different time-frequency analy- 

sis techniques and show that each technique has its strengths and drawbacks. Simulated 

data sets have been used for the comparison. The comparison allows us to determine what 

would be the most effective methods under different conditions. The choice of the particular 

time-frequency representation depends upon the specific area of application and what we 

aim to achieve with a local frequency analysis. We show that time-frequency analysis meth- 

ods should enable us to classify signals with a considerably greater reflection of the physical 

situation than can be achieved by the conventional Fourier Transform method alone. 

Author, Thayananthan, Thayaparan, Linear and quadratic time-frequency representations, Defence Research 

Establishment Ottawa, DREO TM 2000-080, November 2000. 
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Sommaire 

Un des problemes centraux dans les donnees des radars ä haute frequence est l'analyses des 

series temporelles. Le probleme consiste ä savoir comment extraire l'information presente 

dans les donnees et de l'utiliser ä son plein potentiel. En vue d'adresse ce probleme nous 

nous tournons vers le domaine des representations et d'analyses des signaux. La transformee 

de Fourier est au cceur d'un large eventail de techniques qui sont utilisees dans l'analyse et 

le traitement des donnees des radars ä hautes frequences. Le mappage des donnees dans le 

domaine temporel de frequence est une facon effective d'enregistrer les donnees tel que leurs 

caracteristiques globales peuvent etre evaluer. Cependant, le changement des composantes 

spectrales avec le temps est une des caracteristiques que nous observons dans les donnees 

radar ä haute frequence. Ces signaux radars appartiennent ä la classe des signaux non sta- 

tionnaires ä cause de ce changement de composantes spectrales avec le temps, L'analyses des 

signaux non stationnaires exige des techniques qui etende la notion de spectre de frequence 

globale ä une description locale. La courbe de densite spectrale d'energie qui est obtenu au 

moyen de la transformee de Fourier, qui est aussi appelee le spectre de puissance, montre les 

frequences qui sont presente dans nos donnees, mais ne montre pas oii les changements de 

frequences se produisent. En consequence, pour Interpretation des donnees radars en terme 

de changement de composantes spectrales, nous avons besoin d'une representation de nos 

donnees en fonction du temps ainsi que des frequences. La representation temps-frequence 

est recemment devenue un des domaines majeurs de recherche dans les traitements des sig- 

naivx. 

Les representations temps-frequence caracterisent les signaux dans un plan de frequence et 

de temps. Ainsi ils combinent les analyses du domaine des frequences et du temps pro- 

duisant ainsi une image beaiicoup plus claire de la localisation temporelle des composantes 

spectrales des signaux. Ils peuvent aussi servir comme une base pour la detection, la char- 

acterisation, le codage, et le traitement. II n'y a pas de representation unique de signaux qui 

satisfassent toutes les proprietes representation correcte d'une courbe de densite spectrale 

d'energie temps-frequence. Cependant, en mettant de cotee le fait que toute les proprietes 

doivent etre satisfaites dans la representation temps-frequence, une classe de representation 

temps-frequence peut etre deriver comme un modele de spectre de puissance locale. 

Avant d'employer le concept de puissance spectral locale dans l'analyse des signatix radars 

ä haute frequence, nous avons besoin de decider quelle representation temps-frequence sera 

vn 



utiliser. Ce choix ne peut etre fait seulement sur une base mathematique. Nous devons 

aussi tenir compte de ce que nous voulons accomplir avec l'analyse de frequence locale. 

Notre application principale des representations temps-frequence est l'analyse des donnees 

experimentales des radars ä haute frequence. Une etude des proprietes des differentes 

representations temps-frequence devrait nous fournir un guide a savoir quelle representation 
doit etre choisie pour cette application. 

Ce rapport examine les representations lineaire et quadratique de temps-frequence. Les 

representations lineaires qu'on examine sont la transformed S et la transformed de Fourier ä 

temps reduite. La representation quadratique qu'on examine est la distribution de Wigner. 

Nous donnons les grandes lignes au sujet des motivations, interpretations, mathematique fun- 

damentale, proprietes, et les applications de ces representations lineaires et quadratiques de 

temps-frequence. Nous comparons aussi ces trois techniques differentes d'analyses de temps- 

frequence et montrons que chaque technique a ses forces et ses problemes. Des ensembles 

de donnees simulees ont ete utilises pour des comparaisons. Le choix de la representation 

en temps-frequence depend du domaine d'application specifique et ce que nous pouvons ac- 

complir avec une analyse de frequence locale. Nous montrons que les methodes d'analyse 

temps-frequence devraient nous permettre de classifier des signaux avec une interpretation 

plus grande de la situation physique que peut etre accompli par la methode conventionnelle 
seule. 

Auther, Thayananthan, Thayaparan, Representation linaire et quadratique en temps-frequence, Center de 

Recherches pour la Defense, Ottawa, DREO TM 2000-080, Novembre 2000. 
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1    Introduction 

Spectral analysis began in the second half of the 19th century, with the discovery that 

the line spectra of atoms and molecules are unique identifiers, and that the characteristics 

of the spectral lines, shape, and width, are indications of the environment. About the 

same time, the study of continuous spectra, particularly black-body radiation, became a 

forefront problem. The explanation of these spectra revolutionized chemistry, physics, and 

engineering, as they were the seeds for the discovery of modern physics and chemistry. The 

main effort of spectral analysis in the last 150 years has been the study of signals that do 

not change in time. However, in the last 50 years it has been realized that for many natural 

and man-made signals, their spectra to change with time. 

One of the central problems in High Freqxiency (HF) radar data is the analysis of a time 

series. The problem at hand is how to extract the information present in the data and 

use it to its full potential. In order to address this problem we turn to the field of signal 

analysis and data representations. The Fourier Transform is at the heart of a wide range of 

techniques that are used in HF radar data analysis and processing. Mapping the data into 

the temporal frequency domain is an effective way of recording the data such that their global 

characteristics can be assessed. However, the change of frequency content with time is one of 

the main features we observe in HF radar data. Because of this change of frequency content 

with time, radar signals belong to the class of non-stationary signals. The analysis of non- 

stationary signals requires technique that extend the notion of a global frequency spectrum 

to a local frequency description. The spectral energy density function that is obtained by 

means of a Fourier Transform, the so-called power spectrum, shows the frequencies that 

are present in our data, but does not reveal where changes in the frequency content occur. 

Consequently, for the interpretation of radar data in terms of a changing frequency content, 

we need a representation of our data as a function of both time and frequency. Only, 

quite recently, the joint time-frequency representation of signals has become a major area of 

research in signal processing. 

The development of the physical and mathematical ideas needed to explain and understand 

time-varying spectra has evolved into the field now called "time-frequency analysis". It 

has been an exciting development due to the introduction of many concepts and myriad of 

applications. The basic idea is to find a density in time and frequency that indicates which 

frequencies are present in the signal and how they change in time.   This is in contrast to 



the Fourier transform that shows only the frequencies present in the signal, but does not 

reveal how frequencies change in time. The ultimate aim is to have a consistent theory of 

such densities and use them in the same manner as any other joint density. Such densities 

of time and frequency are called distributions or representations. 

The time-frequency representations characterize signals over a time-frequency plane. They 

thus combine time-domain and frequency-domain analyses to yield a potentially more re- 

vealing picture of the temporal localization of a signal's spectral components. They may 

also serve as a basis for signal detection, characterization, coding, and processing. A com- 

plete and comprehensive theory for joint time-frequency analysis does not exist yet. There 

is no unique time-frequency representation of a signal that satisfies all the properties of a 

physically correct joint time-frequency energy density function. However, discarding the re- 

quirement that all properties must be satisfied in one time-frequency representation, a class 

of joint time-frequency representations can be derived that serves as a model of a local power 
spectrum. 

In order to employ the concept of a local power spectrum in HF radar signal analysis we 

need to decide which time-freqiiency representation is to be used. This choice cannot be 

made on the basis of a mathematical analysis alone. We should also take into account what 

we aim to achieve with a local frequency analysis. Our main area of application of the 

time-frequency representation is the analysis of experimental HF radar data. A study of 

the properties of different time-frequency representations should provide us a guideline as to 

which representation is to be chosen in these applications. 

This report is reviewing both linear and quadratic time-frequency representations. The lin- 

ear representations discussed are Short-Time Fourier Transform (STFT) and S-transform. 

The quadratic representation discussed is Wigner distribution. We outline the motivations, 

interpretations, mathematical fundamentals, and properties of these linear and quadratic 

time-frequency representations. We also compare these three different time-frequency analy- 

sis techniques and show that each technique has its strengths and drawbacks. The simulated 

data sets have been used for the comparison. The comparison allows us to determine what 

would be the most effective methods under different conditions. The choice of the particular 

time-frequency representation depends upon the specific area of application and what we 

aim to achieve with a local frequency analysis. We show that time-frequency analysis meth- 

ods should enable us to classify signals with a considerably greater reflection of the physical 

situation than can be achieved by the conventional Fourier Transform method alone. 



The report is organized into nine sections. In Section 2, we review the time domain and 

frequency domain as defined by the Fourier Transform. We review in more detail some impor- 

tant relationships between the time and frequency representations, which are fundamental 

for the time-frequency analysis. In particular, we introduce the concept of instantaneous 

frequency, mean frequency, mean time, group delay and power spectrum. 

Signals in nature are real. Nevertheless, it is often advantageous to define a complex signal 

that in some sense or other corresponds to the real signal. In Section 3 we describe the 

motivations for seeking a complex signal representation and its relation to the concept of 

instantaneous frequency. 

Because the time and frequency representations are related via the Fourier Transform, the 

signal's time and frequency behaviors are not independent. For example, when a signal's 

time duration gets narrower, its frequency bandwidth must become wider. We cannot make 

the time duration and frequency bandwidth arbitrarily small simultaneously. This assertion 

is traditionally named uncertainty principle, which plays an important role in the joint time- 

frequency analysis. In Section 4 we give mathematical proof of the uncertainty principle. 

In Section 5 we introduce the concept of time and frequency marginals, total energy, charac- 

teristic functions, global averages, time and frequency shift invariance, and weak and strong 

finite support, which are important for the time-frequency analysis. 

It is the primary goal of this report to introduce the signal's joint time-frequency represen- 

tations. Analogous to the classical Fourier analysis, we present in parallel the methods of 

linear and quadratic (or bilinear) joint time-frequency representations. Sections 6 and 8 are 

devoted to the Short-Time Fourier Transform and the S-transform, respectively. Section 7 

is devoted to the Wigner distribution. 

Section 6 discusses linear time-frequency representation, the Short-Time Fourier Transform. 

The STFT is considered in some detail, with emphasis placed on basic properties, running- 

window, time resolution versus frequency resolution, and the limitations and strengths of 

the STFT. 

Section 7 considers quadratic time-frequency representation, the Wigner distribution. We 

review the basic properties, time-dependent power spectrum, and the pseudo Wigner dis- 

tribution. We discuss the occurrence of quadratic cross-term interference that significantly 

obscures the applications of the Wigner distribution. We also compare the Wigner distrib- 



ution with STFT. 

Section 8 discusses linear time-frequency representation, the S-transform. We derive the 

5-transform from the STFT. In this section we review the general properties of 5-transform, 

progressive resolution of the time-frequency domain, and the generalized S-transform. In 

this section we also present computer simulation results with the aim of comparing different 

time-frequency representations. Finally, general conclusions are summarized in Section 9. 



2    Description of Signals in the Time and Frequency 
Domains 

2.1    Introduction 

This section provides a brief review of the fundamentals to time and frequency analysis. 

Signal analysis is the study and characterization of the basic properties of signals and was 

historically developed concurrently with the discovery of the fundamental signals in nature, 

such as the electric field, sound wave, and electric currents. A signal is generally a function 

of many variables. For example, the electric field varies in both space and time. Our main 

emphasis will be the time variation, although the ideas developed are easily extended to 

spatial and other variables, and we do so in the latter part of the report. 

Among the number of infinite possible representations to study the signal, the most impor- 

tant are time and frequency, because they are closely related to our everyday life. The time 

variation of a signal is fundamental because time is fundamental. However, if we want to gain 

more understanding, it is often advantageous to study the signal in a different representation. 

This is done by expanding the signal in a complete set of functions, and from a mathematical 

point of view there are an infinite number of ways this can be done. What makes a partic- 

ular representation important is that the characteristics of the signal are understood better 

in that representation because the representation is characterized by a physical quantity 

that is important in nature or for the situation at hand. Besides time, the most important 

representation is frequency. 

Based on frequency behaviors, signals can further be grouped into two categories. First is 

the one whose frequency contents are not changed with time. It has been well known that 

the frequency behavior of this kind of signal can be well characterized by the conventional 

Fourier Transform (FT). Very often, people call this type of signal a stationary signal. The 

second type of signals are those frequency contents evolve with time. This kind of signal is 

usually called a non-stationary signal. The majority of signals encountered in the real world 

belong to this category. Because the conventional Fourier Transform does not tell how a 

signal's frequency contents change in time, the classical Fourier analysis is not adequate for 

many real signals. 

In recent years, the time honoured technique of Fourier analysis has given way to more ad- 



vanced representations known as joint time-frequency representations. In music, the chang- 

ing tones are essential. A bird's chirp is a good example of frequency changing with time, 

as well as the voice of a person in conversation, where the harmonic tones carry all the in- 

formation. While these examples are auditory, simply watching a sunset as the sky changes 

color is another case of changing frequencies. As with all these examples, it is change in 

frequency with time that contains the information, not necessarily the frequency itself. The 

goal of this report is to systematically discuss new representations that describe a signal's 

behavior in time and frequency domains simultaneously. 

The discussion in this section mainly follows that of Brigham [1975], Oppenheim and Schäfer 

[1975], Papoulis [1977], Bracewell [1978], Bloomfield [1976] Portnoff [1980], Cohen [1989, 

1995], Rioul and Vetterli [1991], Hlawatsch and Boudreaux-Bartels [1992], Strang and Nguyen 

[1995], Vetterli and Kovacevic [1995], Qian and Chen [1996], Hlawatsch [1998], Mertins [1999] 

in addition to the references given. Although the materials presented in this section may not 

be completely new, it is certainly beneficial to go through them before reading the rest of the 

report. The concepts introduced in this section will be extensively used for the developments. 

2.2    Description of Signals in the Time Domain 

The term signals generally refers to a function of one or more independent variables, which 

contain information about the behavior or nature of some phenomenon. The common ex- 

amples of the signals include electrical current, image, speech signals, pressure, and elec- 

tromagnetic field, etc., which all produced by some time-varying processes. The simplest 

time-varying signal is the sinusoid. It is a solution to many of the fundamental equations, 

such as Maxwell equations, and is common in nature. We shall denote a signal by s(t). It is 

characterized by a constant amplitude, a, and constant frequency, u0, 

s(t) = a cosu0t (1) 

The general signal can be written in the form 

s(t) = a(t) cosö(t) (2) 



where the amplitude, a(t), and phase, 9(t), are now arbitrary functions of time. To emphasize 

that they generally change in time, the phrases amplitude modulation and phase modulation 

are often used, since the word modulation means change. It is also often advantageous to 

write a signal in complex form 

s{t) = A(t)eiipit) = sr + iSi (3) 

where sr and s, are real and imaginary parts of the signal. It is important to note that the 

phase and amplitude of the real signal are not generally the same as the phase and amplitude 

of the complex signal. We have emphasized this by using different symbols for the phases 

and amplitudes in equations (2) and (3). 

2.2.1    Instantaneous Power 

In the case of electromagnetic theory, the electric energy density is the absolute square of 

the electric field and similarly for the magnetic field. This was derived by Poynting using 

Maxwell's equations and is known as Poynting's theorem. In circuits, the energy density is 

proportional to the voltage squared. For a sound wave it is the pressure squared. Therefore, 

the energy or intensity of a signal is generally | s(t) |2. That is, in a small interval of time, At, 

it takes | s(t) |2 At amount of energy to produce the signal at that time. Since | s(t) |2 is the 

energy per unit time it may be appropriately called the energy density or the instantaneous 

power since power is the amount of work per unit time [Cohen, 1989, 1995]. Therefore 

| s(t) |2   =   instantaneous power at time t 

| s(t) |2 At   =   the fractional energy in the time interval At at time t 

2.2.2    Total Energy 

If | s(t) |2 is the energy per unit time, then the total energy is obtained by summing or 

integrating over all time [Cohen, 1989, 1995; Mertins, 1999] 



E = J  I s(t) I2 dt (4) 

For signals with finite energy we can take, without loss of generality, the total energy to be 

equal to one. For many signals the total energy is infinite. For example, a pure sine wave 

has infinite total energy, which is reasonable since to keep on producing it, work must be 
expended continually. 

2.2.3    Time Averages, Mean Time, and Duration 

In this section and the following sections, we review some basic connections between a 

signal's time and frequency representations. The most important relationship in terms of 

joint time-frequency analysis, however, is the relationship between a signal's duration and 

frequency bandwidth. The concepts introdiiced in this section play significant roles in joint 
time-frequency analysis. 

The average time is defined as [Young, 1962; Taylor, 1982; Cohen, 1989, 1995; Qian and 
Chen, 1996; Mertins , 1999]: 

<t>=  ft | s(t) |2 dt (5) 

The reasons for defining an average are that it may give a gross characterization of the 

density and it may give an indication of where the density is concentrated. 

A measure for the duration of a signal, denoted by T, can be found as the standard deviation 

fft around the average time [Young, 1962; Taylor, 1982; Cohen, 1989, 1995; Qian and Chen, 
1996; Mertins, 1999]: 

T2 = o-l = J{t- < t >)2 | s(t) |2 dt=<t2>-<t >2 (6) 

where < t2 > is defined similarly to < t >. The standard deviation is an indication of the 

duration of the signal: in a time 2at most of the signal will have gone by. If the standard 

deviation is small then most of the signal is concentrated around the mean time and it will go 

by quickly, which is an indication that we have a signal of short duration; similarly for long 



duration. It should be pointed out that there are signals for which the standard deviation is 

infinite, although they may be finite energy signals. That usually indicates that the signal 

is very long lasting. The average of any function of time, g(t), is obtained by [Cohen, 1966, 

1989, 1995] 

<g(t)>=Jg(t) \s(t)\2 dt (7) 

Note that for a complex signal, time averages depend only on the amplitude. 

2.3    Description of Signals in the Frequency Domain 

Although a given signal can be represented in many different ways, the most important are 

the time and frequency representations. The significance of the quantity time is easy to 

understand, because it is fundamental. The majority of signals encountered in our everyday 

life are directly related to time. The frequency representations, on the other hand, were not 

popular until the early 19th century when Fourier first proposed the harmonic trigonometric 

series. Since then, the frequency representation has become one of the most powerful and 

standard tools for studying signals. By using frequency representations, we could better 

understand many physical phenomenon and accomplish many things that cannot achieved 

based on time representations. The bridge between time and frequency is the Fourier 

Transform. 

2.3.1    Fourier Transform 

The signal can be represented as a sum of sinusoid frequency components [Brigham, 1974; 

Bloomfield, 1976; Papoulis 1977; Bracewell, 1978] 

s(t) = -^= I S(u)ej^duj (8) 
\/2TT J 2TT 

The waveform is made up of the addition (linear superposition) of the simple waveforms, 

ejurt, each characterized by the frequency, u;, and contributing a relative amount indicated 

by the coefficient, S(u). S(LO) is obtained from the signal by 



S(u) = -7==     s(t)e-*"dt (9) 

and is called the spectrum or the Fourier Transform. Since S(iv) and s(t) are uniquely related 

we may think of the spectrum as the signal in the frequency domain or frequency space or 
frequency representation. 

2.3.2    Discrete Fourier Transform 

In dealing with a discrete time series of N points with a sampling interval of T, the Discrete 

Fourier Transform (DFT) is used (where k = 0...N - 1 and m = 0...JV - 1) [Papoulis, 1977; 

Hlawatsch, 1998; Mertins, 1999] 

■n 1      N~l 

i-tr     ''■    -\ *■       *—■>        r. „v      -i27rnfcT Sl^=M Y,4kT}e-^~ (10) lNT>     N fc=0 

and its inverse relationship is: 

s lkT}= E 5^le NT (ii) 

The Fourier Transform and its inverse establish a one-to-one relation between the time 

domain and frequency domain. The time domain and frequency domain constitute two 

alternative ways of looking at a signal. Although the Fourier Transform allows a passage from 

one domain to the other, it does not allow a combination of the two domains. In particular, 

most time information is easily accessible in the frequency domain. While the spectrum S(u) 

shows the overall strength with which any frequency / is contained in the signal s(t), it does 

not generally provide easy to interpret information about the time localization of spectral 

components. Strictly speaking, this information is contained in the space spectrum but often 

comes in a form that is not easily interpreted as is discussed in the following sections. 
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2.3.3 Spectral Amplitude and Phase 

As with the signal, it is often advantageous to write the spectrum in terms of its amplitude 

and phase [Papoulis, 1977; Bracewell, 1978; Cohen, 1995; Mertins, 1998] 

S(u) = B{u) e*Kw) (12) 

We call B(u>) the spectral amplitude and ip(u>) the spectral phase to differentiate them from 

the phase and amplitude of the signal. 

2.3.4 Energy Spectrum Density 

In analogy with the time waveform we can take | S(u>) |2 to be the energy spectrum density 

per unit frequency [Cohen, 1989, 1995]: 

| S(u>) |2   =   energy spectrum density at frequency UJ 

| S(u>) |2 Au   =   the fractional energy in the frequency interval Au> at frequency UJ 

That | S(UJ) |2 is the energy density can be seen by considering the simple case of one 

component, s(t) = S(u>o) e^Wot, characterized by the frequency, LUQ. Since the signal energy 

is | s(t) |2, then for this case the energy density is | S(üüQ) |2. Since all the energy is in one 

frequency, | S(UJQ) |2 must then be the energy for that frequency. 

The total energy of the signal should be independent of the method used to calculate it. 

Hence, if the energy density per unit frequency is | S(OJ) |2, the total energy should be the 

integral of | S(u) |2 over all frequencies and shoiild equal the total energy of the signal 

calculated directly from the time waveform [Brigham, 1974; Bloomfield, 1976; Papoulis 1977; 

Bracewell, 1978; Cohen, 1989, 1995; Mertins, 1998] 

E = I | s(t) |2 dt= I' | S(u) |2 du (13) 
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This identity is commonly called Parceval's or Rayleigh's theorem.   To prove it consider 
[Cohen, 1995] 

(14) E = J' \s{t)\2 dt   =   i- j j I SV) S{u) e*"-»')* da; da;' dt 

=   j j S*{J)S{üj)6{u-J)düüdJ (15) 

=   y | 5(w) |2 da; (16) 

where in going from equation (14) to (15) we have used 

J_| ei^')tdt = 6(u)_J) (17) 

The energy density spectrum tells us which frequencies existed during the total duration of 

the signal. It gives us no indication as to when these frequencies existed. The mathematical 

and physical ideas needed to understand and describe how the frequencies are changing in 
time is the subject of this report. 

2.3.5    Mean Frequency, Bandwidth, and Frequency Averages 

If | S(u) |2 represents the energy density in frequency then we can use it to calculate averages, 

the motivation being the same as in the time domain, namely that it gives a rough idea of 

the main characteristics of the spectral density. 

In a similar way as the average time, the average frequency, < UJ >, and its standard 

deviation, <TU, are given by [Young, 1962; Taylor, 1982; Cohen, 1989, 1995; Qian and Chen, 
1996; Mertins, 1998]: 

<ui > J UJ I S(u) |2 duj (18) 
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B2 = al   =    f (u-<u >)2 | S(UJ) |2 dco (19) 

=   < to2 > - < u >2 (20) 

B is commonly known as the bandwidth. The average of any frequency function, g(ui),\s 

< g(u>) >= Jg(u) | S(u;)|2 du (21) 

2.4    The Frequency and the Time Operators 

From the definition, the equation (18), shows that when we want to calculate the average 

frequency we first have to obtain the spectrum. But that is not so. There is an important 

method that avoids the calculation of the spectnim, simplifies the algebra immensely, and 

moreover will be central to our development in the later sections for deriving time-frequency 

representations. 

2.4.1     The Frequency Operator 

For convenience one defines the frequency operator [Qian and Chen, 1996; Cohen, 1989, 

1995]: 

W=~ (22) 
3 dt 

and it is understood that repeated use, denoted by Wn, is to mean repeated differentiation, 

/l\n  dn 

*•*>-(j)  5=*) (23) 

We are now in a position to state and prove the general result that the average of a frequency 

function can be calculated directly from the signal by way of [Qian and Chen, 1996; Cohen, 

1989, 1995] 

13 



<g{u)>   =   J g(u)\S(u)\2dLü (24) 

=   f s*(t)g(W)s(t)dt (25) 

= Js*{t)9(]d\)s(t)dt w 

In words: Take the function g(u) and replace the ordinary variable u by the operator 4 -f; 

operate on the signal, multiply by the complex conjugate signal, and integrate. Before we 

prove this we must face a side issue and discuss the meaning of g(W) for an arbitrary 

function. If g is wn, then the procedure is clear, as indicated by equation (23). If g is the 

sum of powers, then it is also clear. For a general function we first expand the function in a 

Taylor series and then substitute the operator W for u> [Cohen, 1995]. That is, 

if    g(u) = J2 9nUJn    then    g(W) = £ gnW
n (27) 

To prove the general result, equation (26), we first prove it for the case of the average 
frequency [Cohen, 1995]: 

<LO> = J oj\S(u)\2duj   =   i- J J j us*^)s(*')e^-<'>" du dt dt (28) 

=   ^IfJ'*®«')^^*'* (29) 

=   ) ff s*(t)jt6(t-t')s(t)dtdt (30) 

=   /-*(*)j|»(*)A (31) 

These steps can be repeated as often as necessary to prove it for g = un. Hence 

(1 ,7     \     n 

--j   s(t)dt = I s*(t)Wns(t)dt (32) 
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Having proved the general result for functions of the form g = con, we now prove it for an 

arbitrary function, g(u), by expanding the function in a Taylor series [Cohen, 1995] 

<g(u,)> = j g(üj)\S(u;)\2dLü   =   J£ gnu
n\S{u)\2du (33) 

=   T.9nj s*(t)Wns(t)dt (34) 

=    f s*(t) g(Wn) s(t) dt (35) 

Manipulation Rules. 

The frequency operator is a Hermitian operator, which means that for any two signals, s\{t) 

and s2(t) [Cohen, 1989, 1995; Hlawatsch, 1998; Mertins, 1999], 

/ s*1(t)Ws2(i)dt = J s2(t) {W Sl{t)Y dt (36) 

This is ready proved by integrating by parts. Also, a real function, g(u), of a Hermitian 

operator, g(W), is also Hermitian. That is, 

/ s*1(t)g(W)s2(t)dt = j s2(t){g(W)s1(t)}*dt      [if g(u) is real] (37) 

An important property of Hermitian operators is that their average value as defined by 

equation (35) must be real, so in the maniptilation of averages we can simply discard the 

imaginary terms since we are assured that they add up to zero. 

We now derive the second simplification for the average square of frequency [Cohen, 1995]. 

We have 

<u2 > f s*(t)W2s(t)dt   =    f s*{t)WWs(t)dt (38) 

=    [ Ws(t){Ws(t)}*dt (39) 
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=   J \Ws(t)\2dt (40) 

This is an immense simplification since not only do we not have to find the spectrum, we 

also avoid a double differentiation. Therefore, the average frequency and average square of 
frequency is given by [Cohen, 1995] 

< UJ > = J u\S(u;)\2 du = j s*(t) - jt s(t) dt (41) 

<u2>=J u2\S(u)\2du;   =   Js*(t)(±£\   a(t)dt 

-/ dt 
s(t) dt 

The bandwidth is given by [Cohen, 1995] 

(42) 

(43) 

(44) 

(T. = y (w- <uj>)2\s(u)\2dw 

= / -*(t) ( 

J  \j dt 

ld_ 
~3~dt 

- < u >)   s(t) dt 

< LO >      S(t) dt 

(45) 

(46) 

(47) 

2.4.2    The Time Operator 

In the above discussion we emphasized that we can avoid the necessity of calculating the 

spectrum for the calculation of averages of freqiiency functions.    Similarly if we have a 
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spectrum and want to calculate time averages, we can avoid the calculation of the signal. 

The time operator is defined by [Qian and Chen, 1996; Cohen, 1989, 1995] 

J du 
(48) 

and the same arguments and proofs as above lead to [Cohen, 1995] 

< g(t) > = j g(t) \s(t)\2 dt = j S» g(T) S(u) du (49) 

In particular, 

<t>= f t \s(t)\2 dt = S*(u) (-- ^- j S(u) du (50) 

<r > = / t2\s(t)f dt   =   S»(-±)   ^2S{u)du 

=   -J S*(u)-^S(u)du 

-/ du 
S(u) du 

(51) 

(52) 

(53) 

2.4.3    Mean Frequency and Instantaneous Frequency 

Consider first 

Ws(t) = WA(t)ev®   =   -^A(t)e^ 
J dt 

- ('w-'S)'(4) 

(54) 

(55) 
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Therefore, the mean frequency is [Fink, 1966; Mandel 1974; Cohen and Lee, 1986; Cohen, 
1995] 

<u> = J u,\S(u,)\2du>   =   J s*(t)- | s(t) dt (56) 

=   /  (*'W _^.2 

^wy ^(t) dt (57) 

The second term is zero. This can be seen in two ways. First, since that term is purely 

imaginary part it must be zero for < u > to be real. Alternatively, we note that the 

integrand of the second term is a perfect differential that integrates to zero [Cohen, 1995]. 
Hence 

< u) > = J <p\t) \s(t)\2dt = J <p'(t)A2(t)dt (58) 

This is an interesting and important result because it says that the average frequency may 

be obtained by integrating "something" with the density over all time. This something must 

be the instantaneous value of the quantity for which we are calculating the average. In this 

case the something is the derivative of the phase, which may be appropriately called the 

frequency at each time or the instantaneous frequency , ut(t) [Cohen, 1989, 1995; Qian, 
Chen, 1996; Vakman, 1996] 

Ui(t) = if (t) (59) 

Instantaneous frequency, as an empirical phenomenon, is experienced daily as changing col- 

ors, changing pitch, etc. Whether or not the derivative of the phase meets our intuitive 

concept of instantaneous frequency is a central issue and is addressed in subsequent sections. 

2.4.4    Mean Time and Group Delay 

The identical derivations can be used to write the mean time. In particular [Cohen, 1989, 

1995; Qian and Chen, 1996; Vakman, 1996] 
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<t> = - f ^'(üj)\S(Lü)\2duj (60) 

It, says that if we average —ip'(u)) over all frequencies we will get the average time. Therefore 

we may consider —tp'(uj) to be the average time for a particular frequency. This is called the 

group delay and we shall use the following notation for it [Rihaczek, 1969; Papoulis, 1977; 

Cohen, 1995] 

tg(u) = -<</>'(w) (61) 

2.4.5    The Translation Operator 

Many results in signal analysis are easily derived by the use of the translation operator, ejrW, 

where r is a constant. Its effect on a function of time is [Cohen, 1989, 1995; Qian and Chen, 

1996; Hlawatsch, 1998; Mertins, 1999] 

ejTWf(t) = f(t + r) (62) 

That is, the translation operator translates function by r. Note that it is not Hermitian. To 

prove equation (62) consider [Cohen, 1995] 

j™ /(«) - E {JV1- S(t) = £  ni 5= !{t) (63) 
n=0 "• n=0   ""   UL 

But this is precisely the Taylor expansion of f(t + r) and hence equation (62) follows. 

Similarly, the operator e~ieT translates frequency functions, 

ej9TS(to) = S(Lü + e) (64) 
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2.5    The Covariance of a Signal 

If we want a measure of how time and instantaneous frequency are related, the calculation 

of the covariance or the correlation coefficient is desired. Consider the quantity [Cartwright, 
1974; Cohen, 1989, 1995; Mertins, 1999] 

<t<p(t)>= J tip'(t)\s(t)\2dt (65) 

which may be thought of as the average of time multiplied by the instantaneous frequency. 

If time and frequency have nothing to do each other then we would expect < £</?'(£) > to 

equal < t >< <p (t) >=< t >< u >. Therefore the excess of < t<p'(t) > over < t >< w > 

is a good measure of how time is correlated with instantaneous frequency. This is precisely 

what is called the covariance of a signal by [Cartwright, 1974] 

CovtaJ =< t (p'(t) > - < t >< u > (66) 

The correlation coefficient is the normalized covariance 

r =  67 

The reason for defining the correlation coefficient in the standard considerations is that it 

ranges from minus one to one and hence gives an absolute measure. That is not the case 

here, but nonetheless it does give a good indication of the relationship between the time and 
frequency. 

2.5.1    The Covariance of a Spectrum 

Suppose we consider in the frequency domain so that time is tg and frequency is to. It is 

reasonable to define the covariance by [Cartwright, 1974; Cohen, 1995] 

Cov^ =<tgu > - <tXuj > (68) 
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with 

< tgiü >= - < WI/J'(LJ) >= ~ I  wV>'(w) \S{u)\2du (69) 

For equations (66) and (68) to be identical we must have 

/ t<p'(t) \s(t)\2dt = - f Lü^\üO) \S(cu)\2dcj (70) 

It is an interesting identity because it connects the phases and amplitudes of the signal and 

spectrum. 

2.5.2    When is the Covariance Equal to Zero ? 

If the covariance is to be an indication of how instantaneous frequency and time are related, 

then when the instantaneous freqxiency does not change the covariance should be zero [Cohen, 

1995]. That is indeed the case. Consider 

s(t) = A(t) ej"ot (71) 

where the amplitude modulation is arbitrary. Now 

< t<p(t) >= I tojQ \A(t)\2 dt = oj0 <t> (72) 

But since < u> >= u>o, we have 

< a; >< t >= o;0 < t > (73) 

and therefore the covariance and correlation coefficient are equal to zero. Similarly, if we 

have a spectrum of the form S(u) = B(u) ejü}t°, then there is no correlation between time 

and frequency. In general, 
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Covtü, = 0   ;    r = 0 for  s(t) = A(t) ejüJot (74) 

or 

S(w) = B(w)e*"» (75) 

2.6    Power Spectrum 

The square of the Fourier Transform | S(u) |2 is called power spectrum, which indicates how 

the signal energy is distributed in the frequency domain. While the Fourier Transform S(u) 

is a linear function of the analyzed signal, the power spectrum | S(LO) |2 is quadratic to the 

signal s(t). The Fourier Transform S(u) in general is complex, whereas the power spectrum 

I S(u) I is always real. The Fourier Transform and the power spectrum are the two most 

important tools for frequency analysis [Lampard, 1954; Schroeder and Atal, 1962; Papoulis, 

1977; Cohen, 1989, 1995; Qian and Chen, 1996; Mertins, 1999]. 

According to the Wiener-Khinchin theorem, the power spectrum can also be written as the 

Fourier Transform of the signal's auto-correlation function, i.e., 

\S(co)\2=J R(r)e-*^dT (76) 

where the auto-correlation function R(r) is computed by 

R{r) = j s*(t-r)s(t)dt (77) 

The representation (76) is useful, which leads to a feasible way of designing the joint time- 

frequency representations. For example, if we make R(T) time dependent, such as R(r,t), 

then the resulting Fourier Transform manifestly is the function of time and frequency, i.e., 

P{t,u) = f R(t,T)e~i"TdT (78) 

which links the power spectrum to time. Hence, we name P(t,u) the time-dependent spec- 

trum.  Good examples include the STFT spectrogram as well as Wigner distribution.  We 
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shall elaborate on this subject in more detail in the following sections. 

2.7    Nonadditivity of Spectral Properties 

Many of the conceptual difficulties associated with time-frequency analysis are a reflection 

of the basic properties of signals and spectra. It must be emphasized the frequency content 

is not additive. Suppose we have a signal composed of two parts, the spectrum will be the 

sum of the corresponding spectrum of each part of the signal [Papoulis, 1977; Cohen, 1989; 

Qian and Chen, 1996; Hlawatsch, 1998] 

s = Sl + s2    ;     S = S1 + S2 (79) 

However, the energy density is not the sum of the energy densities of each part 

| S |2   =   | Si + S2 |2=| Si |2 + I S2 |2 +2 3?{S*S2} (80) 

^   |S1|
2 + |S2|

2 (81) 

Thus the frequency content is not the sum of the frequency content of each signal. The 

physical reason is that when we add two signals, the waveforms may add and interfere in 

all sort of ways to give different weights to the original frequencies. Mathematically this is 

reflected by the fact that the energy density spectrum is the absolute square of the sum of 

the spectra. How the intensities change is taken into account by equation (80). 
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3     Instantaneous Frequency and the Analytical Signal 

3.1    Introduction 

The concept of "instantaneous" frequency has a long history in physics and astronomy. 

Historically the methodology and description of instantaneous frequency has not always been 

associated with time-frequency distributions or a time-varying spectrum. A comprehensive 

theory of joint time-frequency distributions would be able to encompass and clarify the 

concept of instantaneous frequency, so it is important to appreciate the work has been done 

along these lines. It was Armstrong's [1936] discovery that frequency modulation for radio 

transmission reduces noise significantly, which produced a concerted effort to understand 

and describe the mathematical and conceptual description of frequency modulation and 

instantaneous frequency. Early comprehensive works on the analysis of frequency modulation 

were those of Carson and Fry [1937] and Van der Pol [1946], who defined instantaneous 

frequency as the rate of change of phase of the signal. This definition implies that we have 

some procedure for forming a complex signal from a real one. 

Signals in nature are real. Nevertheless, it is often advantageous to define a complex signal 

that in some sense or other corresponds to the real signal. In this section we describe the 

motivations for seeking a complex signal representation and its relation to the concept of 

instantaneous frequency. One of the motives for defining the complex signal is that it will 

allow us to define the phase, from which we can obtain the instantaneous frequency. 

We seek a complex signal, z(t), whose real part is the "real signal", sr(t), and whose imag- 

inary part, Si(t), is our choice, chosen to achieve a sensible physical and mathematical 
description, 

z{t) = sr+jSi = A(t)ej^ (82) 

If we can fix the imaginary part we can then imambiguously define the amplitude and phase 
by [Cohen, 1995] 

A(t) = ^jsl + s?     ;     ip{t) = arctan (j\ (83) 
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using equation (59), we get 

Ui(t) = v{t)={*iSr^8i) (84) 

for the instantaneous frequency. 

3.2    The Analytical Signal 

A major step was made by Gabor [1946], who from the observation that both sinwt and 

cos u)t transform into an exponential ejurt if we use only their positive spectrum, generalized 

to the arbitrary case with the prescription to "suppress the amplitudes belonging to negative 

frequencies and multiply the amplitudes of positive frequencies by 2". He noted that this 

procedure is equivalent to adding to the signal an imaginary part, which is the Hubert 

transform of the signal. The positive frequencies are multiplied by 2 to preserve the total 

energy of the original signal (see Section (3.2.1)). 

To see how Hilbert transform arises from the above prescription, suppose the real signal, 

s(t), has the spectrum, 5(w), then the complex signal, z(t), whose spectrum is composed of 

the positive frequencies of S(u) only, is given by the inverse transform of S(u), where the 

integration goes only over the positive frequencies [Gabor, 1946; Bedrosian, 1953; Nuttall, 

1966; Rihaczek, 1966; Cohen, 1995; Vakman, 1996], 

1        r°° 
z(t)=2-==  /     S{u)e3Wtdt (85) 

\Z2-K Jo /2TT 

We now obtain the explicit form for z(t) in terms of the real signal s(t) [Cohen, 1995]. Since 

1 /-00 

S(u>) = -== /      s(t)e~3U}tdt (86) 

we have 

z(t)   =   2-4= s(t)e~jult e^dt du (87) 
V27T   J0      J 

25 



fOO      f i 

=    - J    J  sit^e^-^dtdu (88) 

and using 

f Jo 
eJUJX duj = 7T 6(x) + - 

0 X 
(89) 

we obtain 

1   r°°      i 

IT JO 
n6(t-t') + 

t' 
dt (90) 

yielding 

A[S] = Z(t) = 8(t) + ?-    f   p^dt 
7T   J      t — t (91) 

We use the notation A[s] to denote the analytic signal corresponding to the signal s. The 

reason for the name analytic is that these types of complex functions satisfy the Cauchy- 

Riemann conditions for differentiability and have been traditionally called analytic functions. 

The second part of equation (91) is the Hubert transform of the signal and there are two 

conventions to denote the Hubert transform of a function, s(t) and H[s(t)] [Bedrosian, 1953; 

Nuttall, 1966; Rihaczek, 1966; Cohen, 1995; Vakman, 1996] 

H[s(t)] = s(t) = J- j p*± 
IT   J     t —t 

S^   dt (92) 

Therefore using equation (59) the Instantaneous Frequency (IF) is given by (59) [Papoulis, 
1977; Vakman, 1996]: 

IF 
dt        dt \s(t)/ 

(93) 

The derivative of the phase of the analytic signal conforms to our expectations of instan- 

taneous frequency for a wide variety of cases, particularly narrow-band signals. There has 
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been considerable controversy over whether this represents the proper mathematical expres- 

sion of instantaneous frequency, and a number of other definitions have been given [Shekel, 

1953; Gupta, 1975]. In a series of seminal papers Vakman [1972,. 1976, 1980] has addressed 

the concepts of instantaneous frequency and the analytic signal and has brought forth the 

fundamental issues regarding these subjects. The review article on the subject is given by 

Vakman and Vainshtein [1978] 

3.2.1    Energy of the Analytic Signal 

Because we have insisted that the real part of the complex signal be the original signal, 

normalization is not preserved. Recall that the spectnim of the original real signal satisfies 

\S(u)\ = \S(—u>)\ and therefore the energy of the original signal is [Cohen, 1995] 

/r°° 1    r°° 1 
\S(uj)\2dcü = 2 /     \S(u)\2du=- \2S(uj)\2duj = -Ez (94) 

Jo 2 Jo 2 

That is, the energy of the analytic signal is twice the energy of the original signal. In 

addition, the energy of the real part is equal to the energy of the imaginary part 

Es = EH[s] (95) 

which can be seen by considering \z(t)\2 - \s(t) +j H[s]\2. When this is expanded the middle 

term is [Cohen, 1995] 

// 

s*(tMf) + s(t)s>{t')    ,dt 

t-t 

since the integrand is a two dimensional odd function. 

3.2.2    Paradoxes Regarding the Analytic Signal 

There are five paradoxes or difficulties regarding the notion of instantaneous frequency if it 

is defined as the derivative of the phase of the analytic signal [Cohen, 1989, 1995]. First, 

instantaneoiis frequency may not be one of the frequencies in the spectrum. That is strange 
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because if instantaneous frequency is an indication of the frequencies that exist at each 

time, how can it not exist when we do the final bookkeeping by way of the spectrum? 

Second, if we have a line spectrum consisting of only a few sharp frequencies, then the 

instantaneous frequency may be continuous and range over an infinite number of values. 

Third, although the spectrum of the analytic signal is zero for negative frequencies, the 

instantaneous frequency may be negative. Fourth, for a bandlimited signal the instantaneous 

frequency may go outside the band. All these points are illustrated by the following simple 
example. 

Example: Instantaneous Frequency for the Sum of Two Sinusoids 

Consider 

s{t)   =   s1{t) + s2(t) (97) 

=   A1eTlt + A1e
iuit (98) 

=   A(t)ej^ (99) 

where the amplitudes Ax and A2 are taken to be constants and ui and u>2 are positive. The 

spectrum of this signal consists of two delta functions at u\ and u2, 

S(UJ) = AI6{OJ-LüI) + A26(U-Lü2) (100) 

Since we take u>! and u2 to be positive, the signal is analytic.   Solving for the phase and 
amplitude, 

,,N / Aisinuit + A2sinuj2t\ 
<p(t) = arctan   -i i——I 2- (101) 

\ Ai cos corf + A2 cos cj2tj 
v      ; 

A2{t) = Al + A% + 2AXA2 COS(CJ2 - ux)t (102) 
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Figure 1: The instantaneous frequency for the signal s(t) = Aiejl0t + A2e
j20t. The spectrum 

consists of two frequencies, at u> = 10 and u — 20. In (a) A\ = 0.2 and A2 = 1. The 
instantaneous frequency is continuous and ranges outside the bandwidth. In (b) Ai = —1.2 
and A-i = 1. Although the signal is analytic the instantaneous frequency may become 
negative [after Cohen, 1995]. 

and taking the derivative of the phase we obtain 

,1 1 A2 - A2 

Wi = <p'{t) = -(W2 + wi) + 2^2 - ^l)   ^jwgx1 (103) 

By taking different values of the amphtudes and frequency we can illustrate the points above. 

This is done in Figure 1. 

One last paradox regarding the analytic signal needs to be discussed. If instantaneous 

frequency is an indication of the frequencies that exist at time t, one would presume that 

what the signal did a long time ago and is going to do in the future should be of no concern; 

only the present should count. However, to calculate the analytic signal at time t we have 

to know the signal for all time. This paradox has been analyzed by Vakman [1976]. A more 

detail discussion about the instantaneous frequency and the analytical signal can be found 

in Vakman [1976]. 
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4    The Uncertainty Principle 

4.1    Introduction 

The uncertainty principle states that a signal cannot be arbitrarily concentrated with respect 

to both time and frequency [Papoulis, 1977; De Bruijn, 1967; Folland and Sitaram, 1997] 

The basic consequence of the Fourier Transform relation is that a narrow waveform yields a 

wide spectrum and a wide waveform yields a narrow spectrum and both the time waveform 

and frequency spectrum cannot be made arbitrarily small simultaneously. This observation 

is known as the uncertainty principle of signal analysis. The uncertainty principle is a 

fundamental statement regarding Fourier Transform pairs. A graphical illustration of the 

uncertainty relation between the time and frequency representations of a signal is shown in 
Figure 2. 

The uncertainty principle expresses a fundamental relationship between the standard de- 

viation of a function and the standard deviation of its Foiirier Transform. The standard 

deviations of the time and frequency density functions, at and CTW, are defined as the para- 

meters that describes the broadness of the signal in time and frequency domains respectively. 
For convenience we repeat the definitions here: 

r2   =   a2
t = J (t- < t >)2 | s(t) |2 dt (104) 

■     B2   =   al = j (u- < Lo >)2 | S(u) |2 du (105) 

With these two measures, T and B, for the broadness of a signal, the uncertainty relation 
can be expressed as [Gabor, 1946] 

TB>\ (106) 

We refer to the inequality equation (106) as Gabor's relation, in order to distinguish it 

from Heisenburg's uncertainty relation of quantum mechanics. Although the two relations 

are the same in their mathematical expression, they relate to different physical concepts. 

In quantum mechanics the uncertainty relation emerges in a probabilistic context, while in 
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tune frequency 

Figure 2: The uncertainty relation for time and frequency marginals. A broad waveform in 
time gives a narrow frequency spectrum and vice versa. 

signal analysis it is an expression of the simple fact that one cannot make T and B arbitrarily 

small. An excellent discussion of the uncertainty principle in signal analysis and its relation 

to quantum mechanical concepts can be found in Cohen [1989]. 

4.1.1    A More General Uncertainty Principle 

A stronger version of the uncertainty principle is [Cohen, 1995] 

o% <ru>ly/l + 4Covl (107) 

where Covtli, is the covariance as defined by equation (66). 
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4.2    Proof of the Uncertainty Principle 

First, let us note that no loss of generality occurs if we take signals that have zero mean 

time and zero mean frequency. The reason is that the standard deviation does not depend 

on the mean because it is defined as the broadness about the mean. If we have a signal sold, 
then a new signal defined by [Cohen, 1995] 

SnewW - C-'<"><H-<'» Sold(t+ < t >) (108) 

has the same shape both in time and frequency as sold except that it has been translated in 

time and frequency so that the means are zero. Conversely, if we have a signal snew(t) that 

has zero mean time and zero mean frequency and we want a signal of the same shape but 
with particular mean time and frequency, then 

Soid(t) = e j<ul>t snew(t- < t >) (109) 

The bandwidth expressed in terms of the signal is as per equation (44): 

*1 = JUJ
2
\ S(u) |2 doo = J | s(t) |2 dt (110) 

The duration is 

(T2 = J t2 | s(t) |2 dt (HI) 

and therefore 

°hl = / \ts(t) |2 dt x J | s'(t) |2 dt (112) 

It should be noted that no other assumptions or ideas are used in equation (112). The fact 

that s and S are Fourier Transform pairs is reflected in equation (110). 

Now, for any two functions (not only Fourier Transform pairs) 
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f  I fix) |2 dx J  | g(x) [2 dx >    I f*(x) g(x) dx (113) 

which is commonly known as the Schwarz inequality [Cohen, 1995].   Taking f = ts and 

g = s gives 

/ ts*(t)s'(t)dt (114) 

There are many proof of the inequality. A simple one is to note that for any two functions 

J  \f(x)\2 dx J \g(x)\2 dx-  \j r(x)g( (x) dx \J j \f(x)g(y)-f(y)g(x)\2dxdy 

(115) 

which is readily verified by direct expansion of the right hand side. Since the right hand side 

is manifestly positive, we have equation (113). 

The integrand, written in terms of amplitude and phase, is [Cohen, 1995] 

ts*(t)s'(t)   =   tÄA + jtip'Ä* 

=   \itA>-\A* + itV>'it) 

(116) 

(117) 

The first term is a perfect differential and integrates to zero. The second term gives one half 
since we assume the signal is normalized and the third term gives j times the covariance of 

the signal. Hence [Cohen, 1995] 

2   2    \ [ ts*(t)s'(t)dt 
2 1 1 

= I - 2 + 3 Cov^l2 = - + Cov2
w (118) 

Therefore we have the uncertainty principles as given by equation (107). Since Cov2^ is 
always positive, it can, if we choose so, be dropped to obtain the more usual form, equation 

(106). 
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It is important to note that the proof depends on only four things: first, on | s(t) |2 being 

the density in time; second, on taking | S(u) |2 as the density in frequency; third that s(t) 

and S{u) are Fourier pairs; and fourth, on defining T and B as standard deviations of time 
and frequency. 

It should also be noted from the preceding steps that the uncertainty principle is calculated 

only from the marginals (see Section 5.2). Hence any joint distribution that yields the 

marginals will give the uncertainty principle. It has nothing to do with correlations between 

the time and frequency or the measurement for small times and frequencies. What does it 

say is that the marginals are functionally dependent. But the fact that marginals are related 

does not imply correlation between the variables and has nothing to do with the existence 

or nonexistence of a joint distribution [Cohen, 1989; Qian and Chen, 1996; Hlawatsch, 1998; 
Mertins, 1999]. 

4.3    The Uncertainty Principle for the Short-Time Fourier Trans- 
form 

There are many things one can do to signals to study them. However, if we do something 

to a signal that modifies it in some way, one should not confuse the uncertainty principle 

applied to the modified signal with the uncertainty principle as applied to the original signal 

[Cohen, 1995]. One of the methods used to estimate properties of a signal is to take only a 

small piece of the signal around the time of interest and study that piece while neglecting 

the rest of the signal. In particular, we can take the Fourier Transform of the small piece of 

the signal to estimate the frequencies at that time. If we make the time interval around the 

time t small, we will have a very high bandwidth. This statement applies to the modified 

signal, that is, to the short interval that we have artificially constructed for the purpose of 

analysis. The process of chopping up a signal for the purpose of analysis is called the Short- 

Time Fourier Transform procedure. Although we will be studying the short-Time Fourier 

Transform in Section 6, this is an appropriate place to consider the uncertainty principle for 
it. 

From the original signal s(t) one defines a short duration signal around the time of interest, 

t, by multiplying it by a window function that is peaked around the time, t, and falls off 

rapidly. This has the effect of emphasizing the signal at time, t, and suppressing it for times 

far away from that time.  In particular, we define the normalized short duration signal at 
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time, t, by [Cohen, 1995] 

_ s{r)h(r-t) 

Jj\s(T)h(T-tWdr 

where /i(i) is the window function, t is the fixed time for which we are interested, and r is 

now the running time. This normalization ensures that 

j Mr) |2 dr = 1 (120) 

for any t. Now r}t(r) as a function of the time r is of short duration since presumably we 

have chosen a window function to make it so. The time, t, acts as a parameter. The Fourier 

Transform of the small piece of the signal, the modified signal, is 

Ft(u) = -L= j e"*" nt(r) dr (121) 

Ft(u) gives us an indication of the spectral content at the time t. For the modified signal 

we can define all the relevant quantities such as mean time, duration, and bandwidth in 

the standard way, but they will be time dependent. The mean time and duration for the 

modified signal are [Cohen, 1995] 

/     ^       f    i    i M2J        / r\s(r)h(r-t)\2dr 
<r>t=J  rMr)|  dr =   /|a(T)Ä(T_t)|adT (122) 

rp2 f, ^      ^2,     ^,2. f(T-<T>t)*\S(T)h(T-t)[2dT 
T2 = j{r-< r »  Mr)| dr = j \a{r) h{r _ t){2 dr  (123) 

Similarly, the mean freq\iency and bandwidth for the modified signal are [Cohen, 1995] 

<u>t=ju \Ft(u;)\2du = J rft{r) - ±-nt(r)dr (124) 

B\ = J (tv-<LO>t)
2\Ft(tü)\2du (125) 
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4.3.1    Time-Dependent and Window-Dependent Uncertainty Principle 

Since we have used a normalized signal to calculate the duration and bandwidth, 

immediately write that [Cohen, 1995] 
we can 

1 
2 

BtTt >   - (126) 

This is the uncertainty principle for the Short-Time Fourier Transform. It is a function of 

time, the signal, and the window. It should not be confused with the uncertainty principle 

applied to the signal. It is important to understand this uncertainty principle because it 

places limits on the technique of the Short-Time Fourier Transform procedure. However, it 

places no constraints on the original signal. It is not possible to have arbitrarily good time 

resolution simultaneously with good frequency resolution. A long time window gives poor 

time resolution but relatively good frequency resolution. A large bandwidth window gives 
poor frequency resolution but relatively good time resolution. 
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5    Time-Frequency Distributions: Fundamental Ideas 

5.1    introduction 

The basic objective of time-frequency analysis is to devise a function that will describe 

the energy density of a signal simultaneously in time and frequency, and that can be used 

and manipulated in the same manner as any density. We now begin our study of how to 

construct such distributions and in this section we describe the main ideas. The discussion in 

this section mainly follows that of Moyal [1949], Papoulis [1977], Cohen [1989, 1995], Rioul 

and Vetterli [1991], Hlawatsch and Boudreaux-Bartels, Qian and Chen [1996], Hlawatsch 

[1998], Mertins [1999], in addition to the references given. To crystallize our aim we recall 

that the instantaneous power or intensity in time is 

\s(t)\2   =   instantaneous power or energy density at time t, or 

\s(t)\2 At   =   the fractional energy in the time interval At at time t 

and the density in frequency, the energy density spectrum, is 

|5(u;)|2   =   energy spectrum density at u, or 

|S(u;)|2 ALO   =   the fractional energy in the frequency interval Aco at frequency u 

What we seek is a joint density, P(t,u), so that 

P(t,Lo)   =   the intensity at time t and frequency to, or 

P(t, u>) At ALO   =   the fractional energy in the time-frequency cell At Aw at t, LU 

5.2    Marginals 

Summing up the energy distribution for all frequencies at a particular time should give the 

instantaneous energy, and summing up over all times at a particular frequency should give 

37 



the energy density spectrum. Therefore, ideally, a joint density in time and frequency should 

satisfy [Papoulis, 1977; Cohen, 1989, 1995; Hlawatsch and Boudreaux-bartels, 1992; Qian and 

Chen, 1996; Mertins, 1999] 

j P{t,u) du = \s{t)\2 (127) 

f P(t,Li)dt=\S(Lü)\2 (128) 

which are called the time and frequency marginal conditions. 

5.3 Total Energy 

The total energy of the distribution should be the total energy of the signal [Papoulis, 1977; 

Cohen, 1989, 1995; Hlawatsch and Boudreaux-Bartels, 1992; Qian and Chen, 1996; Mertins, 
1999] 

E = j J P(t,u)du)dt = J \s(t)\2dt = J \S(u)\2dco (129) 

Note that if the joint density satisfies the marginals, it aiitomatically satisfies the total energy 

requirement, but the converse is not true. It is possible that a joint density can satisfy the 

total energy requirement without satisfying the marginals. The spectrogram that we study 

in the next section is one such example. The total energy requirement is a weak one and that 

is why many distributions that do not satisfy it may nonetheless give a good representation 
of the time-frequency structure. 

5.4 Characteristic Functions 

5.4.1     One-Dimensional 

The characteristic function is a powerful tool for the study and construction of densities. 

Suppose P(x) is a one-dimensional density of the quantity x. The characteristic function is 

the Fourier Transform of the density [Moyal, 1949; Cohen, 1966, 1989, 1995] 
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M(9) = f ej6x P(x) dx =< ej6x > (130) 

The characteristic function is the average of eJ0x, where 9 is a parameter. By expanding the 

exponential we have 

M{6) = f ej0x P(x) dx = [ JT [-^T~ PW dx = ^3—r<xn> (131) 

which is a Taylor series in 6 with coefficients jn < xn >. Since the coefficients of a Taylor 

are given by the nth derivative of the function evaluated at zero, we have [Cohen, 1995] 

1 dnM{9) 
<* >=^-^r-l*=° (132) 

The fact that moments can be calculated by differentiation rather than by integration is 

one the advantages of the characteristic function, since differentiation is always easier than 

integration. Of course, one has to find the characteristic function and that may be hard. 

Fourier Transform pairs are uniquely related and hence the characteristic function determines 

the distribution [Cohen, 1989, 1995], 

P(x) = ^-  [ M{6)e-jBxd6 (133) 
2TT J 

Some general properties that a function must posses if it is a proper characteristic function are 

easily obtained. By proper we mean a characteristic function that comes from a normalized 

positive density [Cohen, 1995]. First, taking o = 0we see that 

M(0) = I P(x) dx = 1 (134) 

Taking the complex conjugate of equation (130) and using the fact that densities are real, 

we have 

M*{6) = I e'j6x P*(x) dx = M(-9) (135) 
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or 

M*(-9) = M{9) (136) 

The absolute value of the characteristic function is always less than or equal to one [Cohen. 
1995], 

I M{9) |< 1 (137) 

This follows from 

I M{6) | = J ejex P(x) dx< j' | ej9x | | P(x) \ dx = J P(x) dx = 1 (138) 

We know that the characteristic function at the origin is equal to one and therefore 

I M{6) \< M(0) (139) 

5.4.2    Two-Dimensional 

The two-dimensional characteristic function M(0, r), is the average of e
jex+JTy, [Moyal, 1949; 

Cohen, 1966, 1989, 1995] 

M(6, r) =< ej6x+jTy >= f J ej6x+JTy P(x, y) dx dy (140) 

and the distribution function may be obtained from M(9, r) by Fourier inversion, 

P{x, y) = ^JJ M(9, r) e-
j9x-™ d9 dr (141) 

Therefore the joint characteristic function of a time-frequency density is given by [Cohen, 
1995] 
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M(9, r) =< ej9t+JTU} >= f f P{t, u) em+JTUJ dt du (142) 

5.5 Global Averages 

The average value of any function of time and frequency is to be calculated in the standard 

way [Moyal, 1949; Cohen, 1966, 1995, 1999] 

< g(t, w) > = f f g(t, u) P(t, u) dt du (143) 

If the marginals are satisfied then we are guaranteed that averages of the form 

< 9i(t) + g2(u) >   =   11 {gi(t)+g2(u)}P(t,u;)dtdu (144) 

=   Jgi(t)\s(t)\2dt + Jg2(uj)\S(Lü)\2diü (145) 

will be correctly calculated since the calculation requires only the satisfaction of the mar- 

ginals. 

5.6 Time and Frequency Shift Invariance 

Suppose we have a signal s(t) and another signal that is identical to it but translated in time 

by £o- We want the distribution corresponding to each signal to be identical in form, but 

that the one corresponding to the time shifted signal be translated by t0. That is [Papoulis, 

1977; Cohen, 1989, 1995; Qian and Chen, 1996; Mertins, 1999] 

if    s(t) -► s(t - t0)    then    P(t, u) -» P(t - to, u) (146) 

Similarly, if we shift the spectrum by a constant frequency we expect the distribution to be 

shifted by that frequency, 
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if    S(UJ) -> S(u - uo)    then    P(t, to) -» P(t, u - u0) (147) 

Both of these cases can be handled together. If s(t) is the signal, then a signal that is trans- 

lated in time by t0 and translated in frequency by UJ0 is given by ejulot s(t - t0). Accordingly, 

we expect the distribution to be shifted in time and frequency in the same way, 

if    s{t) — e*"0's(t - t0)    then    P(t,u) -> P(t - t0,u - u0) (148) 

5.7    Weak and Strong Finite Support 

Suppose a signal doesn't start until t^ We want the joint distribution also to not start until 

ii- Similarly, if the signal stops after time t2 we expect the distribution to be zero after 

that time. If that is the case we say the distribution has weak finite time support. The 

reason for the word weak will be apparent shortly. Similarly, if the spectrum is zero outside 

a frequency band, then the distribution should also be zero outside the band. In such a 

case we say that the distribution has weak finite spectral support. We can express these 

requirements mathematically as [Cohen, 1989, 1995; Qian and Chen, 1996] 

P(t,u)   =   0     for t outside (tx,t2) if s(t) is zero outside (tut2) (149) 

P{t,u)   =   0     for u outside (LüI,U;2) if S(w) is zero outside (^u^)       (150) 

Now suppose we have a signal that stops for a half hour and then starts again. We would 

expect the distribution to be zero for that half hour. Similarly, if we have a gap in the 

spectrum, then we expect the distribution to be zero in that gap. If a distribution satisfies 

these requirements, namely that it is zero whenever the signal is zero or is zero whenever 

the spectrum is zero, then we say the distribution has strong finite stipport: 

P(t,u)   =   0 if s(t) is zero for a particular time (151) 
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P(t,u>)    =   0 if S(u>) is zero for a particular frequency (152) 

Strong finite support implies weak finite support, but not conversely. 

5.7.1    Distributions Concentrated in a Finite Region 

A signal cannot be both of finite duration and bandlimited in frequency [Cohen, 1995]. 

Therefore if a distribution satisfies the weak finite support property it cannot be limited to 

a finite region of the time-frequency plane. If it were, it would be both time and frequency 

limited, which is impossible. If it turns out that a distribution is limited in a finite region, 

then it does not satisfy the finite support properties and/or the marginals. 

5.8    Uncertainty Principle 

In Section 4 we emphasized that the uncertainty principle depends on only three statements. 

First and second are that the time and frequency standard deviations are calculated using 

|s(i)|2 and ^(a;)]2 as the respective densities, 

T2   =    I (t-<t>)2\s(t)\2dt (153) 

B2   =    f (Lü-<u>)2\S{uj)\2duj (154) 

and the third is that s(t) and S(u) are Fourier Transform pairs. From a joint distribution 

the standard deviations are obtained by 

a2   =    I f (t-<t>)2P{t,cü)dtdto= f (t-<t>)2P(t)dt (155) 

°l   =    f f (oJ-<üü>)2P{t,u)dtdtü= f (u~ < Lü >)2 P(u) du (156) 
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When the standard deviations calculated using the joint distribution give the same answer 

as when calculated by equations (153)-(154), we will get the correct uncertainty principle. 

This will be the case when the marginals are correctly given, 

P{t) = \s(t)\2       and       P(u) = \S(Lü)\
2 for uncertainty principle (157) 

Therefore, any joint distribution that yields the correct marginals will yield, and is totally 

consistent with, the uncertainty principle [Cohen, 1995]. 
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6    The Short-Time Fourier Transform 

6.1    Introduction 

The Short-Time Fourier Transform (STFT) is the most widely used method for studying non- 

stationary signals [Dziewonski et al, 1969; Oppenheim, 1970, 1975; Levshin, 1972; Kodera et 

ed., 1976; Allen and Rabiner, 1977; Altes, 1980; Portnoff, 1980; Cohen, 1989, 1995; Qian and 

Chen, 1996; Hlawatsch, 1998; Merlins, 1999]. The concept behind it is simple and powerful. 

Suppose we listen to a piece of music that lasts an hour where in the beginning there are 

violins and at the end drums. If we Fourier analyze the whole hour, the energy spectrum 

will show peaks at the frequencies corresponding to the violins and drums. That will tell us 

that there were violins and drums but will not give us any indication of when the violins 

and drums were played. The most straightforward thing to do is to break up the hour into 

five minute segments and Fourier analyze each interval. Upon examining the spectrum of 

each segment we will see in which five minute intervals the violins and drums occurred. If we 

want to localize even better, we break up the hour into one minute segments or even smaller 

time intervals and Fourier analyze each segment. That is the basic idea of the Short-Time 

Fourier Transform: break up the signal into small time segments and Fourier analyze each 

time segment to ascertain the frequencies that existed in that segment. The totality of such 

spectra indicates how the spectrum is varying in time. 

Can this process be continued to achieve finer and finer time localization? Can we make the 

time intervals as short as we want? The answer is no, because after a certain narrowing the 

answers we get for the spectrum become meaningless and show no relation to the spectrum 

of the original signal. The reason is that we have taken a perfectly good signal and broken it 

up into short duration signals. But short duration signals have inherently large bandwidths, 

and the spectra of such short duration signals have very little to do with the properties 

of the original signal. This should be attributed not to any fundamental limitation, but 

rather to a limitation of the technique which makes short duration signals for the purpose of 

estimating the spectrum. Sometimes this technique works well and sometimes it does not. 

It is not the uncertainty principle as applied to the signal that is the limiting factor; it is 

the uncertainty principle as applied to the small time intervals that we have created for the 

purpose of analysis. The distinction between the uncertainty principle for the small time 

intervals created for analysis and the uncertainty principle for the original signal should be 

clearly noted and the two should not be confused. 
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It, should be always noted that in the Short-Time Fourier Transform the properties of the 

signal are scrambled with the properties of the window function, the window function being 

the means of chopping up the signal. Unscrambling is required for proper interpretation and 
estimation of the original signal. 

The above difficulties notwithstanding, the Short-Time Fourier Transform method is ideal 

in many respects. It is well defined, based on reasonable physical principles, and for many 

signals and situations it gives an excellent time-frequency structure consistent with our 

intuition. However, for certain situations it may not be the best method available in the 

sense that it does not always give us the clearest possible picture of what is going on. Thus 

other methods have been developed, which are discussed in subsequent sections. 

6.2    The Short-Time Fourier Transform and Spectrogram 

To study the properties of the signal at time i, one emphasizes the signal at that time and 

suppresses the signal at other times. This is achieved by multiplying the signal by a window 

function, h(t), centered at i, to produce a modified signal [Cohen, 1995], 

st(r) = S(T) h(r - t) (158) 

The modified signal is a function of two times, the fixed time we are interested in, t, and the 

running time, r. The window function is chosen to leave the signal more or less unaltered 

around the time t but to suppress the signal for times distant from the time of interest. That 
is, 

i \      j S(T)   f°r r near * ) 
St[T) ~ { 0        for r far away from t ] (159) 

The term "window" comes from the idea that we are seeking to look at only a small piece 

of the signal as when we look out of a real window and see only a relatively small portion of 

the scenery. In this case we want to see only a small portion. 

Since the modified signal emphasizes the signal around the time t, the Fourier Transform 

will reflect the distribution of frequency around that time, 
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S*M   =   ^ I e-^Tst(r)dr (160) 

=   — / e~jUJT S{T) h{r - t) dr (161) 
27T   J 

The energy density spectrum at time t is therefore [Schroeder and Atal, 1962; Kodera et al, 

1976; Portnoff, 1980; Rabiner and Allen, 1980; Crochiere and Rabiner, 1983; Nawab and 

Quatieri, 1988; Cohen, 1989, 1995] 

PSP(t,uJ) = \St(u;)\2 = \=  [ e~julT S(T) h(r - t) dr 
2TT J 

(162) 

For each different time we get a different spectrum and the totality of these spectra is the 

time-frequency distribution, P$p. It goes under many names, depending on the field; we 

shall use the most common phraseology, "spectrogram." 

Since we are interested in analyzing the signal aronnd the time t, we presumably have chosen 

a window function that is peaked around t. Hence the modified signal is short and its Fourier 

Transform, equation (161), is called the Short-Time Fourier Transform. However, it should 

be emphasized that often we will not be taking narrow windows - which is done when we 

want to estimate time properties for a particular frequency. When we want to estimate 

time properties for a given frequency we do not take short times but long ones, in which 

case the Short-Time Fourier Transform may be appropriately called the Long-Time Fourier 

Transform or the Short-Frequency Time Transform. 

6.2.1    Characteristic Function 

The characteristic function of the spectrogram is straight forwardly obtained [Moyal, 1949, 

Cohen, 1966, 1989, 1995], 

MSP(6,T)   =   J J \St(üü)\2ejet+jT"dtduj (163) 

=   Aa{9,T)Ah(-6,T) (164) 
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where 

A.{6,T) = J8*(t-±T)8(t + ±T)ei«dt :i65) 

is the ambiguity function of the signal, and Ah is the ambiguity function of the window 

defined in the identical manner, except that we use h{t) instead of s(t). Note that A(-9, r) = 

A*(6,-r), a relation we will use later. 

6.3    General Properties 

6.3.1 Total Energy 

The total energy is obtained by integrating over all time and frequency. However, we know 

that it is given by the characteristic function evaluated at zero (see Section 5.4). Using 
equations (164) and (165) we have 

ESP   =   J J Psp(t,iü)dtdiü = MSp(0,0) (166) 

=   As(0,0)Ah(0,0) (167) 

=   J \s(t)\2dtx J \h{t)\2dt (168) 

Therefore, we see that if the energy of the window is taken to be one, then the energy of the 

spectrogram is equal to the energy of the signal. 

6.3.2 Marginals 

The time marginal is obtained by integrating over frequency [Cohen, 1995], 

P(t)   =   J \St(u)\2du; (169) 
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=   — / S(T) h{r - t) S*(T) h*(r - t) e-^-T') dr dr du             (170) 

=    f s(r) h(r - t) S*(T) h*(r' - t) 8{T -r')dr dr (171) 

=   / \s(r)\2 \h(r - t)\2 dr (172) 

=   J A\r) A\(r - t) dr (173) 

Similarly, the frequency marginal is 

P{UJ) = j B2{J) B2
H(UJ - J) dw (174) 

As can be seen from these equations, the marginals of the spectrogram generally do not 

satisfy the correct marginals, namely \s(t)\2 and ^(u;)!2, 

P(t)^A2(t) = \s(t)\2 (175) 

P(u)^ B2
(Lü) = \S(Lü)\

2 (176) 

The reason is that the spectrogram scrambles the energy distributions of the window with 

those of the signal. This introduces effects unrelated to the properties of the original signal. 

Notice that the time marginal of the spectrogram depends only on the magnitude of the 

signal and window and not on their phases. Similarly, the frequency marginal depends only 

on the amplitudes of the Fourier Transforms. 

6.3.3    Averages of Time and Frequency Functions 

Since the marginals are not satisfied, averages of time and frequency functions will never be 

correctly given [Cohen, 1995], 
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< 9i(t) + g2(t) >   =   I f {9i{t)+g2(cü)}PSp(t,u;)dudt (177) 

< 9i(t) + 92(t) >   ±   I gi(t)\s(t)\2dt + I g2(u)\S(u;)\2du (178) 

This is in contrast to other distributions we will be studying where these types of averages 

are always correctly given. 

6.3.4 Finite Support 

Recall from our discussion in Section 5.7 that for a finite duration signal we expect the 

distribution to be zero before the signal starts and after it ends. This property was called 

the finite support property. The spectrogram does not satisfy this property, because the 

modified signal as a function of t will not necessarily be zero since the window may pick up 

some of the signal. That is, even though s(t) may be zero for a time t, s(r) h(r -1) may not 

be zero for that time. This will always be the case for windows that are not time limited. 

But even if a window is time limited we will still have this effect for time values that are 

close to the beginning or end of the signal. Similar considerations apply to the frequency 

domain. Therefore the spectrogram does not possess the finite support property in either 
time or frequency. 

6.3.5 Localization Trade-Off 

If we want good time localization we have to pick a narrow window in the time domain, 

h(t), and if we want good frequency localization we have to pick a narrow window, H(u>), in 

the frequency domain. But both h(t) and H{u) cannot be made arbitrarily narrow; hence 

there is an inherent trade-off between time and frequency localization in the spectrogram 

for a particular window. The degree of trade-off depends on the window, signal, time, 

and frequency. The uncertainty principle for the spectrogram quantifies these trade off 
dependencies, as we discussed in Section 5.8. 
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6.3.6 One Window or Many ? 

We have just seen that one window, in general, cannot give good time and frequency localiza- 

tion. That should not cause any problem of principle as long as we look at the spectrogram 

as a tool at our disposal that has many options including the choice of window. There is no 

reason why we cannot change the window depending on what we want to study. That can 

sometimes be done effectively, but not always. Sometimes a compromise window does very 

well. One of the advantages of other distributions that we will be studying is that both time 

and frequency localization can be done concurrently. 

6.3.7 Entanglement and Symmetry Between Window and Signal 

The results obtained using the spectrogram generally do not give results regarding the signal 

solely, because the Short-Time Fourier Transform entangles the signal and window. Therefore 

we must be cautious in interpreting the results and we must attempt to disentangle the 

window. That is not always easy. In fact, because of the basic symmetry in the definition 

of the Short-Time Fourier Transform between the window and signal, we have to be careful 

that we are not using the signal to study the window. 
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7    The Wigner Distribution 

7.1     Introduction 

The representations that describe a signal's frequency behavior fall predominantly into two 

categories: linear representations such as the Fourier Transform and quadratic representa- 

tions such as the power spectrum. Previously we described the linear joint time-frequency 

representations, the Short-Time Fourier Transform. In this section, we will introduce the 

counterpart to the power spectrum: the quadratic, or bilinear, joint time-frequency represen- 

tation. Although dozens of bilinear joint time-frequency representations have been proposed 

over the last five decades, we shall discuss the Wigner distribution because it is simple and 
powerful. 

In the following sections, we discuss the motivation and general properties of the Wigner 

distribution. What makes the Wigner distribution so unique are its descriptions of a signal's 

time-varying nature better than many other representations, such as STFT Spectrogram. 

Moreover, the Wigner distribution possesses many properties useful for signal analysis. The 

problems of the Wigner distribution have been so-called cross-term interference that severely 

limits the application of the Wigner distribution. The discussion in this section mainly 

follows that of Papoulis, 1977; Claasen and Mecklenbrauker [1980a,b, 1983], Cohen [1989, 

1995] Hlawatsch and Boudreaux-Bartels, [1992], Qian and Chen [1996], Hlawatsch [1998], 

Mertins [1999], in addition to the references given. 

7.1.1     Time-Dependent Power Spectrum 

The square of the Fourier Transform is called the power spectrum, which characterizes the 

signal's energy distribution in the frequency domain. While the Fourier Transform is linear, 

the power spectrum (PS) is the quadratic function of frequencies. Accordingly, we also 

use the square of Short-Time Fourier Transform to describe the signal's energy distribution 

in joint time-frequency domain. According to the Wiener-Khinchin theorem, the power 

spectrum can also be considered as the Fourier Transform of the auto-correlation function 

R(T) [Lampard, 1954; Schroeder and Atal, 1962; Papoulis, 1977; Cohen, 1989; Qian and 
Chen, 1996] 
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PS(t,.w) =| S(Cü) I2- / R(T) exp(-jur) dr (179) 

where R(T) is computed by 

R(T)= f s{t)s*{t-T)dr (180) 

Equation (179) is not a function of time, which indicates how much energy is present in 

frequency over üü over the entire time period. But it does not show how the spectrum 

is distributed in time. Based on equation (179), there is no way to tell whether or not 

a signal's power spectrum changes over time. Therefore, the standard power spectrum is 

inadequate a depict signals whose frequency contents evolve with time. 

By examining equation (179), we can see that one possibly way to depict a time dependent 

spectrum is to make the auto-correlation function time-dependent. The resultant Fourier 

Transform of the time-dependent auto-correlation function R(t, r), with respect to variable 

r, is then a function of time, i.e., 

P(t,cj) = f R(t,r) exp(-jo;r)dT (181) 

We name P(t,u) a time — dependent power spectrum [Qian and Chen, 1996]. 

Apparently, the choice of R(t, r) is not arbitrary. For example, because P(t, to) presum- 

ably describes the time-dependent spectrum, adding all instantaneous-time power spectrum 

P(t0,u) should yield the total power spectrum ^(u;)!2, i.e., 

f P(t,Lu)dt=\S(uj)\2 (182) 

which is traditionally called the frequency marginal condition [Cohen, 1989; Qian and 

Chen, 1996]. Conversely, the integration along the frequency axis should be equal to the 

instantaneous energy, i.e., 

— / P(t,Lü) dto =\ s(t) |2 (183) 
27T J 
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which is commonly known as the time marginal condition [Cohen, 1989; Qian and Chen, 

1996]. If P(t,u) represents signal energy distribution in the joint time-frequency domain, 
then we hope it is real valued, i.e., 

P(t,u) = P*(t,u) (184) 

From the conventional energy concept, we also wish that the time-dependent spectrum would 
be non-negative. 

7.2    The Wigner Distribution 

The Wigner distribution is the prototype of distributions that are qualitatively different from 

the spectrogram. The discovery of its strengths and shortcomings has been a major thrust 

in the development of the field. It has often been studied in contrast to the spectrogram. 

The Wigner distribution was originally developed for the area of quantum mechanics in 1932 

[ Wigner, 1932] and was introduced for signal analysis by a French scientist Ville 16 years 

later [Ville, 1948]. In the Wigner distribution, the time-dependent auto-correlation function 
is chosen to be 

R{t,r)=s*(t--T)s(t + -T) (185) 

Substituting the above time-dependent auto-correlation into equation (181) yields [Papoulis, 

1977; Claasen and Mecklenbrauker, 1980; Cohen, 1989; Hlawatsch and Boudreaux-Bartels, 

1992; Qian and Chen, 1996; Hlawatsch, 1998; Mertins, 1999] 

W{t'u)    =   2^/S*(i_^r)s(i + r)e_JTaJrfr (186) 

= hls*{tü + l6)s{uj-le)e~jtßde (187) 
The equivalence of the two expressions is easily checked by writing the signal in terms of 

the spectrum and substituting into equation (186). The Wigner distribution is said to be 

bilinear in the signal because the signal enters twice in its calculation. 
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Notice that to obtain the Wigner distribution at a particular time we add up pieces made up 

of the product of the signal at a past time multiplied by the signal at a future time, the time 

into the past being equal to the time into the future. Therefore, to determine the properties 

of the Wigner distribution at a time t we mentally fold the left part of the signal over to the 

right to see if there is any overlap. If there is, then those properties will be present now, at 

time t. Everything we have said for the time domain holds for the frequency domain because 

the Wigner distribution is basically identical in form in both domains. Another important 

point is that the Wigner distribution weighs the far away times equally to the near times. 

Hence the Wigner distribution is highly non-local. 

Equation (187) is usually called as the auto-Wigner distribution. Accordingly, the cross- 

Wigner distribution is defined as 

W(t, U) = ± I s(t + \r) g*(t - \T) e-*™ dr (188) 

7.2.1    Range of the Wigner Distribution 

The Wigner distribution satisfies the finite support properties in time and frequency [Cohen, 

1987a,b; Cohen, 1989; Hlawatsch, 1984, 1988, 1998; Qian and Chen, 1996; Mertins, 1999] 

W(t,u)   =   0    for t outside (ti,t2)       if s(t) is zero outside (ti,t2) (189) 

W(t,u)   =   0    ior Lü outside (ui,u)2)       if S(u) is zero outside (ui, üü2)       (190) 

The time and frequency support of the Wigner distribution are claimed as desirable prop- 

erties. If the time series is non-zero in a certain range (ti,t2) and zero elsewhere, then the 

Wigner distribution is also non-zero in this range (ti,t2) and zero elsewhere. This is shown 

in Figure 3a and Figure 3b. The time support characteristic of the Wigner distribution 

seems to be a very attractive property, but may be a bit misleading. One should not in- 

fer that any zero-valued region in the time series has a corresponding zero-valued region in 

the Wigner distribution. This is true only if the zero-filled region extends to ±oo. Figure 

4 illustrates that the cross-term inherent in the Wigner distribution contaminate the zero 
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region if it has non-zero regions on either side. Here the time series has a large zero re- 

gion in the middle. The dominant signal seen in the Wigner distribution is centered around 

time=64, in the middle of the zero region. This plot inspires the seeming paradox that the 

marginal property is satisfied (i.e., the integral over frequency of Wigner distribution gives 

the instantaneous power in the time series), and yet the Wigner distribution is non-zero in 

the region where the time series is zero (likewise for the integral over time and the non-zero 

frequency regions). Figure 5 shows the result of performing the Wigner distribiition on a 

three component signal. In Figure 6, a time series with a signal in the first part and noise 

in the second part, illustrates the fact that a noisy region can contaminate the non-noisy 

region in the Wigner representation. 

Other distributions such as the Cone-Kernal distribution [Zhao et al, 1990], the Choi- 

Williams distribution Choi and Williams, 1989], as well as the smoothed Pseudo Wigner 

Distribution (see the following subsection) [Hlawatsch and Boudreaux-Bartels, 1992] reduce 

the effect of these cross-terms, but in doing so fail to satisfy the marginal properties of the 

Wigner distribution. 

7.2.2    The Characteristic Function of the Wigner Distribution 

We have [Cohen, 1989, 1995] 

M(9,r)   =   J J ej6t+JTWW(t,Lü)dtdcü (191) 

= h JJIeJ6t+jTU1 s*{t ~ lT>) s{t+\T>) e~jT'"dT'dt du     (192) 
=     J f   e>"6(T-T)8*(t-±T)8(t + ±T')dTdt (193) 

=   / s*(t-^r)s(t+^r)ejetdt (194) 
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0 10       20       30       40       50       60 
Time 
(°) 

(b) 

Figure 3: A sample time series with a non-zero region, (b) The Wigner distribution of the 
time series in (a). The Wigner distribution has finite support. It is zero in the region for 
t < ti where ii is the start of the signal, and in the region for t > t2 where ti is the end of 
the signal. 
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Figure 4: A sample time series with zero-filled region, (b) The Wigner distribution of the 
time series in (a). The Wigner distribution has compact support, but it is not identically 
equal to zero when the signal is zero. In fact, the zero region of the signal corresponds to 
the maximum peak in the Wigner distribution. 
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0 c- 

100  120 

0   20  40  60  80  100  120 
Time 
(b) 

Figure 5: A sample time series with three distinct regions, (b) The Wigner distribution of 
the time series in (a). The cross-terms in the Wigner distribution heavily contaminate the 
signal, and the high frequency burst is not detected. 

59 



Figure 6: A sample time series with a sinusoid in the first 100 points, and normally distributed 
noise in the last 28 points. The vertical black line denotes the boundary between the two 
regions, (b) The Wigner distribution of the time series in (a) without the noise region, (c) 
The Wigner distribution of the time series in (a). The noisy region is propagated into the 
sinusoidal part of the signal. 
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=   A(9,T) (195) 

This function and variants of it have played a major role in signal analysis. This particular 

form is called the symmetric ambiguity function. It was first derived by Ville [1949] and 

Moyal [1949] and its relation to matched filters was developed by Woodward [1953]. We have 

previously discussed it in the calculation of the characteristic function of the spectrogram, 

equation (165). In terms of the spectrum the characteristic function is [Cohen, 1989, 1995] 

M(0, r) = J S*(oo + ±9) S(Cü - ^0) e*™ dt (196) 

7.3    General Properties of Wigner distribution 

In the preceding section, we discussed the concept of time-dependent spectrum and the 

Wigner distribution. Compared to STFT, the Wigner distribution not only has a better 

resolution, but also does not suffer the window effects. We now discuss the basic properties 

of the Wigner distribution. 

7.3.1    Time and Frequency Shift Invariance 

If we time shift the signal by to and/or shift the spectrum by UJQ, then the Wigner distribution 

is shifted accordingly [Cohen, 1989, 1995], 

if   s(t) -► ejüJot s(t - t0)   then   W(t, u) -+ W(t -t0,w- w0) (197) 

To see this we replace the signal by ejwots(t - t0) in the Wigner distribution and call Wsh 

the shifted distribution, 

W.h{t, u) = i- / e-'^-^Mt - to - \T) x e-j^t+T/2h(t -t0 + \T) e'^dr (198) 
2TT J 2 2 
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= 2^JS*{t~to~ \T^ ~to + l^e-^-^dT (199) 

= W(t-tQ),u-u0) (200) 

7.3.2    Reality 

The Wigner distribution is always real, even if the signal is complex. This can be verified 

by considering the complex conjugate of W(t,u) [Cohen, 1989, 1995], 

W*(t,u)   =   -L f a{t-±T)s*{t + ±T)er»dT (201) 

f~°° 1 1 
L     S^ + 2T) S*^ ~ 2T) ^^ dT (202) 

1    f°° 
2^ J- 

f°° 1 1 
loo s^+2T)5^~2r)e~J'Ta;dr (203) 

=   W(t,u) (204) 

The fact that the Wigner distribution is real for any signal can also be seen from the char- 

acteristic function. Recall that M*(-0, -r) = M(9,T) is the condition for a distribution to 

be real. But the characteristic function of the Wigner distribution is the ambiguity function, 
A(0,r), equation (194), which does satisfy this property. 

7.3.3    Symmetry 

Substituting -u for u into the Wigner distribution we see that we obtain the identical form 

back if the signal is real [Cohen, 1989, 1995]. But real signals have symmetrical spectra. 

Therefore, for symmetric spectra the Wigner distribution is symmetrical in the frequency 

domain. Similarly for real spectra the time waveform is symmetrical and the Wigner distri- 

bution is symmetric in time. Therefore, 
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W(t,co)   =   W(t, —u)for real signals = symmetrical spectra, S(UJ) — S(—u>)    (205) 

W(t,u)   =   W(—t,u)ioi real spectra = symmetrical signals, s(t) = s(—t)        (206) 

7.3.4    Time and Frequency Marginals 

The Wigner distribution satisfies the time-freqnency marginals 

/ W(t,u)duj = \s(t)|2 (207) 

f W(t,u)dt = \S(u;)\2 (208) 

Both of these equations can be readily verified by examining M(6,0) and M(0,r).    By 

inspection of equation (194) and equation (196) we have 

M(6,0)= [ \s(t)\2ei9tdt     ;     M(0,r) = y \S(oo)\2eiruldw (209) 

But these are the characteristic functions of the marginals and hence the marginals are 

satisfied. To do it directly [Cohen, 1995], 

P(t)= f W(t,u)du   =   Y  f j s*{t-^T)s(t + ^r)e-JTU>drdcü (210) 

=   J s*{t-±T)8(t + ±T)6(r)dT (211) 

=   KOI2 (212) 

and similarly for the marginal in frequency. Since the marginals are satisfied, the total energy 

condition is also automatically satisfied, 
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E = 11 W{t,u)dudt= f \s{t)\2dT = l (213) 

7.3.5    Instantaneous Frequency and Group Delay 

Let s(t) = A(t)exp(jip(t)), where amplitude A(t) and phase <p(t) both are real-valued func- 
tions. Then 

which says that, at time t, the mean instantaneous frequency of Wigner distribution is equal 

to the mean instantaneous frequency of the analyzed signal [Cohen, 1995; Qian and Chen, 
1996]. 

Assume that the Fourier Transform of signal s(t) is S(LO) = B(UJ) exp(jiß(u)). Then the first 

derivative of the Phase 4>'(LU) is called the group delay. For Winger distribution, we have 

/ tW(t.u)dt 
-r-üJtW(t,üj)dt=-l/>'(u) (215) 

JW(t,cj)dt      \S(LU) 

which says that the conditional mean time of the Wigner distribution is equal to the group 

delay [Cohen, 1995; Qian and Chen, 1996]. These results are important because they are 

always true for any signal. Recall that for the spectrogram they were never correctly given. 

7.4    The Wigner Distribution of the Sum of Multiple Signals 

As discussed in the preceding sections, the Wigner distribution not only possesses many 

useful properties, but also has better resolution than the STFT spectrogram. Although 

the Wigner distribution has existed for a long time, its applications are very limited. One 

main deficiency of the Wigner distribution is the so-called cross-interference [Papoulis, 1977; 

Hlawatsch, 1984, 1998; Cohen, 1989, 1995]. Suppose we express a signal as the sum of two 
pieces, 
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s(t) = Sl{t) + s2{t) (216) 

Substituting this into the definition, we have 

W(t,u) = Wu(t,u) + W22(t,Lo) + W12(t,Lü) + W21(t,u) (217) 

where 

W12(t,uj) = ±- I s\{t-K)s2{t + \r)e~^dT (218) 

This is called Wigner distribution. In terms of the spectrum it is 

WU&CJ) = ±j Sl(u> + \e) S2(co - \e) e-*»M (219) 

The cross Wigner distribution is complex. However, W\2 = W^, and therefore W\2{t,uj) + 

W2i(t,u>) is real. Hence 

W(t,u) = Wn(t,Lu) + W22(t,Lu) + 2$l{W12(t,uj)} (220) 

We see that the Wigner distribution of the sum of the two signals is not the sum of the 

Wigner distribution of each signal but has the additional term 2$l{Wi2(t,uj)}. The term 

is often called the interference term or the cross-term and it is often said to give rise to 

artifacts. Because the cross-term usually oscillates and its magnitude is twice as large as 

that of the auto-terms, it often obscures the useful time-dependent spectrum patterns. 

Figures 7 and 8 give two examples to get a better idea about the cross-term interference. 

The Wigner distribution sometimes places values in the middle of the two signals both in 

time and in frequency. Sometimes these values are in places in the time-frequency plane at 

odds with what is expected. A typical case is illustrated in Figure 7. 
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Figure 7: The Wigner distribution of the sum of two chirps illustrating the cross terms [after 
Qian and Chen, 1996]. 

0.000 0.005 0.010 0.015 0.020 0.025 (sec) 

Figure 8: The bottom plot is a time waveform that contains four frequency tones. The 
right plot is the traditional power spectrum. The middle one is the joint time-frequency 
representation [after Qian and Chen, 1996]. 
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From equation (220), each pair of auto-terms creates one cross-term. For N individual 

components, the total number of cross-terms is N(N - l)/2. In the simple case, such as in 

Figure 8, we can easily identify the cross-term interference. For real signals, the pattern of the 

cross-terms, which usually overlap with auto-terms could be more complicated and confusing. 

Consequently, the desired time-dependent spectrum could be deceiving and confusing. 

Figure 8 illustrates the sum of four frequency tones. The bottom plot is time waveform. The 

right plot is the traditional power spectrum. The middle plot is the desired time-dependent 

spectrum. The conventional power spectrum indicates that there are four different frequency 

tones, but it is not clear when those different frequency tones occur. The time-dependent 

power spectrum not only shows four frequency tones, but also tells when they take place. 

How to reduce the cross-term interference without destroying the useful properties of the 

Wigner distribution has been very important to time-frequency analysis. 

7.5    Pseudo Wigner Distribution 

For a given time the Wigner distribution weighs equally all times of the future and past. Sim- 

ilarly, for a given frequency it weighs equally all frequencies below and above that frequency. 

There are two reasons for wanting to modify this basic property of the Wigner distribution. 

First, in practice we may not be able to integrate from minus to plus infinity and so one 

should study the effects of limiting the range. Second, in calculating the distribution for 

a time t, we may want to emphasize the properties near the time of interest compared to 

the far away times. To achieve this, note that for a given time the Wigner distribution is 

the Fourier Transform with respect to r of the quantity s*(t - \T) s(t + \T). The variable 

r is called the lag variable. Therefore if we want to emphasize the signal around time t, 

we multiply this prodxict by a function that is peaked around r = 0, h(r) say, to define 

the pseudo Wigner distribution [Claasen and Mecklenbrauker, 1980b; Cohen, 1989, 1995; 

Hlawatsch and Boudreaux-Bartels, 1992; Qian and Chen, 1996; Hlawatsch, 1998] 

Wp8(t, u) = J h(r) s*(t - \T) s(t + l-r) e~^ dr (221) 

The Wigner distribution is highly non-local and the effect of the windowing is to make it 

less so. One of the consequences of this is that the pseudo Wigner distribution suppresses, 

to some extent, the cross-terms for multicomponent signals. This is because we have made 
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the Wigner distribution local. While windowing the lag does suppress the cross-terms, it 

also destroys many of the desirable properties of the Wigner distribution. For example the 

marginals and instantaneous frequency properties no longer hold. 

7.6    Discrete Wigner distribution 

The continuous time Wigner distribution introduced in the previous sections is of great value 

in analyzing and gaining insight into the properties of continuous time signals. Because the 

majority of signals that we deal with are discrete time signals, in the present section we shall 

address the subject of discrete Wigner distribution [Claasen and Mecklenbrauker, 1980a, 

1983; Cohen, 1987a,b; Cohen, 1989; Mertins, 1999]. 

By letting u = r/2 in equation (186), the Wigner distribution becomes [Qian and Chen, 
1996] 

W{t, u) = 2 f s*(t - u) s{t + u) e~2ju,u du (222) 

Assume the interval of the integration (222) is A. We have an approximation of the integral 

by 

W{t, w) = 2A ]T s*(* - nA) s(t + nA) e~2juJnA (223) 

If the signal s(t) is sampled in every T second, T = A, then we obtain the discrete time 
Wigner distribution as 

W(mT, U) = 2TJ2 
s*((m - n)T) *((™ + n)T) e~2j"nT (224) 

n 

where n and m are integer-vulued. Obviously, 

W(mT, u + ^) = W(mT, u) (225) 
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Therefore, the period of W(mT,u) is TT/T rather than 2n/T required by sampling theory. 

The equation (225) implies that the highest frequency component in equation (225) must be 

less than or equal to 7r/(2T). If the signal bandwidth is larger than TT/(2T), then aliasing will 

occur. In order to obtain an aliasing-free discrete time Wigner distribution, we have to double 

the sampling rate. The simplest way of doubling sampling is to apply the interpolation filter. 

If the original sample interval is T second, then the interval of the interpolated samples is 

T/2 second. Applying this result into equation (224), we have 

W{mT/2, u) = 2T/2 £>*((m - n)T/2) s{{m + n)T/2) e"
2^T/2 (226) 

n 

The period of (226) becomes 2n/T, which is exactly what we anticipate. Let the normalized 

frequency 6 = uT/2. Without loss of generality, we further assume that T = 2, then equation 

(226) reduces to 

oo 

W{m,6) = 2   J2    s*(m-n)s(m + n)e-2j6ri (227) 

7.7    Comparison of the Wigner Distribution with the Spectrogram 

It has often been said that one of the advantages of the Wigner distribution over the spec- 

trogram is that we do not have to bother with choosing the window. This viewpoint misses 

the essence of the issue. The spectrogram is not one distribution, it is an infinite class of 

distributions and to say that an advantage is that one does not have to choose makes as 

much sense as saying one book is better than a library because we don't have to choose which 

book to read. Here is the point: The Wigner distribution in some respects is better than any 

spectrogram. It is not that we do not have to bother about choosing a window, it is that 

even if we bothered we wouldn't find one that produces a spectrogram that is better than 

the Wigner. In particular, the Wigner distribution gives a clear picture of the instantaneous 

frequency and group delay. In fact, the conditional averages are exactly the instantaneous 

frequency and group delay. This is always true for the Wigner distribution; it is never true 

for the spectrogram. We could search forever and never find a window that will produce a 

spectrogram that will give the instantaneous frequency and group delay, although sometimes 

a good approximation is achieved. 
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Another property of the Wigner distribution is that it satisfies the marginals and always 

gives the correct answers for averages of functions of frequency or time and always satisfies 

the uncertainty principle of the signal. On the other hand, the spectrogram never gives the 

correct answers for these averages and never satisfies the uncertainty principle of the signal. 

The main deficiency of the Wigner distribution is the so-called cross-term interference. At 

any time instant, if there is more than one frequency tone, then the Wigner distribution 

may become messed up because of the presence of undesired terms. However, the cross- 

terms highly oscillate and are localized, which always occur in the midway of the pair of 

corresponding auto-terms. On the other hand, although spectrogram resolve the components 

at certain cases, it often cannot resolve the components effectively. 
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8    The S-Xransform 

8.1 Introduction 

The ^-Transform is a new transform that produces a time frequency representation of a 

time series. It is a generalization of the Fourier Transform to the case of non-stationary time 

series. It uniquely combines a frequency dependent resolution with simultaneously localizing 

the real and imaginary spectra. It was first published in Stockwell et al. [1996c], and since 

has seen several interesting applications [Eramian, 1996; Chu, 1996; Osier and Chapman, 

1996; Stockwell, 1999; Stockwell et al., 1996a; Stockwell et al, 1996b; Varanini et al., 1997; 

Mansinha et al, 1997a; Mansinha et al, 1997b; Fritts, 1998; Eramian et al, 1999]. 

8.2 Derivation of the S-Transform from the Short Time Fourier 
Transform 

What follows is the original derivation of the S-Transform that demonstrates the relationship 

between the S-Transform and the Short-Time Fourier Transform. 

Recall that, the spectrum S(f) of a time series s(t) is given by the standard Fourier analysis 

as [Stockwell et al, 1996c; Mansinha et al, 1997b]: 

/oo 
s(t) e~i2nft dt (228) 

-oo 

and its inverse relationship is: 

/oo 
S(/)ei2ir/t<ft (229) 

-oo 

The spectrum S(f) can be referred to as the "time-averaged spectrum". 

If the time series s(t) is windowed (or multiplied point by point with) a window function 

g(t) then the resulting spectrum is 
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/oo 

s(t) g(t) e-i2^ dt (230) 
-OO 

The S-Transform can be found by first defining a particular window function, a normalized 
Gaussian 

,2 

0(*) = —7=e 5? (231) 

and then by allowing it to be a function of translation r and dilation (or window width) a 

[Stockwell et al, 1996c; Mansinha et al, 1997b]. 

/OO 1 ft-l-l2 

sW-^e-S^e-^/'dt (232) 
-oo ay 2TT 

which, with a particular value of a, is similar in definition to the Short-Time Fourier trans- 

form (see Section 6). The Gaussian window is chosen because it is the most compact in time 

and frequency [Janssen, 1992]. In fact, this is a special case of the Multiresolution Fourier 

Transform [Wilson et al, 1992]. Because this is a function of three independent variables, it 

is impractical as a tool for analysis. Simplification can be achieved by adding the constraint 

restricting the width of the window a to be proportional to the inverse of the frequency (or 

proportional to the period) [Stockwell et al, 1996c; Mansinha et ai, 1997b] 

*(/) = TJl (233) 

Thus one has the S-Transform [Stockwell et al, 1996c; Stockwell, 1999; Mansinha et al, 
1997b]: 

ST(T, f) = \j= /_ s(t) e-M^ e-^ft dt (234) 

The one dimensional function of the time variable r and fixed parameter /x defined by 

STir,^) is called a voice (as with Wavelet Transforms). The one dimensional function of 

the frequency variable / and fixed parameter n defined by ST(n, f) is called a local, or a 

local spectrum [Stockwell et al, 1996c; Stockwell, 1999]. 
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One can see that the zero frequency voice of the 5-Transform is identically equal to zero. 

This adds no information, therefore ST(T, 0) is defined to be independent of time and equal 

to the average of the function s(t) [Stockwell et al, 1996c; Stockwell, 1999], 

i      — 
ST(T,0)= lim- /'*(*)* (235) 

—>0° 1    J    2 

The S-Transform can be written as a convolution of two functions over the variable t [Stock- 

well et al, 1996c; Stockwell, 1999] 

/oo 
p(t,f)g(r-tj)dt (236) 

-oo 

or 

ST(T,f)=p(T,f)*g(T,f) (237) 

where 

p(rj) = S(T) e~i2^T (238) 

and 

9(r, f) = H= e~T~^ (239) 

Let B(a,f) be the Fourier Transform (from r to a) of the 5-Transform ST(r,f). By the 

convolution theorem [Brigham, 1975] the convolution in the r (time) domain becomes a 

multiplication in the a (frequency) domain [Stockwell et al, 1996c; Stockwell, 1999]: 

B{a,f) = P(a,f)G{a1f) (240) 

Likewise, P(a, f) and G(a, f) are the Fourier Transform of p(r, f) and g(r, f). Explicitly, 
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B(a,f) = S{a + f)e-^r~ (241) 

where S(a + f) is the Fourier Transform of (238), and the exponential term is the Fourier 

transform of the Gaussian function (239). Thus the S-Transform is the inverse Fourier 

Transform (from a to r) of the above equation (for / ^ 0) {Stockwell et al, 1996c; Stockwell, 
1999]. 

ST(T, f) = [°°  S(a + f) e-2!^ ei2™T da (242) 

The exponential function in equation (242) is the frequency dependent localizing window 

and is called the voice Gaussian. It plays the role of a low pass filter for each particular 
voice. 

The S-Transform improves on the Short-Time Fourier Transform in that it has better res- 

olution in phase space (i.e., a more narrow time window for higher frequencies), giving a 

fundamentally more sound time frequency representation [Daubachie, 1990]. 

8.3    Properties of the S-Transform 

Because of the absolutely referenced phase information in the S-Transform, many advanta- 

geous characteristics of the S-Transform arise. 

8.3.1     Inverse of the S-Transform and the Fourier Transform 

If the ^-Transform is indeed a representation of the local spectrum, one would expect that the 

simple operation of averaging the local spectra over time would give the Foiirier Transform 

spectrum [Stockwell et al, 1996c; Stockwell, 1999]. This is indeed the case with the 5- 
Transform 

/oo 

ST(r, f) dr = S(f) (243) 
-oo 

74 



where S(f) is the Fourier Transform of s(t). It follows that s(t) is exactly recoverable from 

ST(r,f) 

s(t) = [°°  (T ST(r, f) dr) ei2^ df (244) 
J — oo    VJ—oo ) 

This shows that the S-Transform is a generalization of the Fourier Transform to non- 

stationary time series. 

8.3.2    Progressive Resolution of the Time-Frequency Domain 

The sampled frequencies of a time series consisting of N points with a sampling interval 

of T are fn = n/(NT). Thus the periods sampled range from NT for the first harmonic 

(ignoring the DC level), NT/2 for the second harmonic, and so on as function of 1/n. 

Because of this, one would expect that it is easier to tell (given one period of an oscillation) 

the difference between the second and third harmonic (where the difference in period is 

AT = (iVT/3 - NT/2) = NT/6) and the 33rd and 34th harmonic (where the difference in 

period is AT = (iVT/33 - 7VT/34) = 0.00089 * NT/2). 

This is illustrated in Figure (9). In Figure 9a, "short-lived Zow-frequency signals" are shown 

(short-lived because they last for one period). Because the periods are quite different, it is 

very easy to discern the difference. Thus it is easy to distinguish short-lived low-frequency 

signals from each other. 

In Figure 9b, the "short-lived /ug/i-frequency signals" are shown (again, short-lived because 

they last for only one period). It is very difficult to resolve these two signals, since their 

periods are quite similar (in fact the difference in period is smaller that the sampling interval 

of the time series). Thus it is difficult to distinguish short-lived high-frequency signals from 

each other. 

This illustrates that, for short-lived oscillations, the high frequencies are difficult to resolve 

from each other, and hence high frequencies have poor frequency resolution. It also illustrates 

that, for short-lived oscillations, low frequencies are easy to resolve from each other, and 

hence low frequencies have good frequency resohition. Short-lived high frequency signals have 

good time resolution, compared to short-lived low frequency signals. This pattern (Figure 

10) of (high frequency) = (good time resolution) and (poor frequency resolution) while (low 
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frequency) = (poor time resolution) and (good frequency resolution), is characteristic of the 

^-transform. The relationship between temporal and frequency resolution is directly related 

to uncertainty principle. 

8.3.3 Frequency Resolution Depends on the Signal 

Increasing the resolution with which one can measure the frequency of an oscillating function 

depends on the length of time that signal exists within the time series. A common error 

is to state that the resolution depends on the length of time that one measures. This is 

illustrated in Figure 11. In part (a), a time series consists of a pure sinusoid of frequency 

/ = 0.125. The non-zero region of the signal lasts for 128 points (there are 256 total points in 

the time series). Part (b) shows the amplitude spectrum in the region / = 0.1 to / = 0.15. 

One can see the width of the central lobe of the peak, which limits the resolution which 

one can resolve frequency components, and the familiar sine function sidelobes. When one 

adds more points to the time series by zero padding (Figure lie), the width of the central 

lobe does not change, it is merely sampled more finely (Figure lid). It is only when the 

signal itself exists for a long time that extending the integration range (as in Figure lie) 

of the Fourier Transform will actually increase the frequency resolution (Figure llf). This 

fact comes into play with the ^-Transform. It is suggested that the proper method to define 

resolution is to examine the time-frequency space defined by the S-transform. Only if S- 

transform examination shows that the signal lasts for several periods would it be appropriate 

to average over a longer time interval. Frequency resolution depends on the length of the 

signal, not the length of the measurement, therefore the frequency dependent resolution of 
the 5-transform is appropriate. 

8.3.4 The S Transform and Generalized Instantaneous Frequency 

It can be shown that the ^-Transform provides an extension of instantaneous frequency to 

broadband signals [Bracewell, 1978]. A particular voice of the 5-Transform can be written 

as [Stockwell et al, 1996a,c; Stockwell, 1999; Mansinha et al, 1997b] 

ST(rJ0) = A(Tj0)e
i*^ (245) 
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Figure 9:  (a) One period of a signal of frequency 2/256 and of a signal with frequency = 
3/256. The difference in period is easily observed. There are some 42 points between trough 
of the 3/256 signal, and that of the 2/256 signal,  (b) One period of a signal of frequency 
33/256 and of a signal with frequency = 34/256.   The different period is very difficult to 
detect. Thus the frequency dependent resolution of the 5-transform is explained (note the 
change in the x-axis. 
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Figure 10: (a) The resolution of time frequency space when the signal is viewed as a time 
series, having precise time resolution, and no frequency resolution, (b) The resolution of 
time frequency space when the signal is viewed in the 5-Transform representation, having 
frequency dependent resolution, (c) The resolution of time frequency space when the signal 
is viewed as a spectrum, having no time resolution, and precise frequency resolution [after 
Stockwell, 1999]. 

where 

A(r, f0) = MS(r, f0)Y + %{S(r, /„)}* (246) 

and 

$/r  t) = arctan (®{S(TJo)} (247) 

Since a voice isolates one specific component, one may use the phase in equation (245) to 

determine the instantaneous frequency [Bracewell, 1978] 

/F(r,/o) = 2^^{27rr/o + *(r'/o)} (248) 

The validity of equation (248) can be seen for the simple case of s{t) = cos(2mj£) where the 

phase function $(r, /) = 2TT(UJ — f)r. 
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Figure 11: A 256 point sinusoidal time series with a frequency of 32/256. It is non-zero 
for a region of 128 points, (b) A region of the amplitude spectrum of the time series in 
(a), (c) The same time series in (a) but now zero padded up to a length of 768. Note the 
change in the x-axis. (d) A region of the amplitude spectrum of the time series plotted in 
(c). The resolution has not changed, but the frequency sampling interval is smaller, (e) The 
time series in (a) but now exists (non-zero) for 384 points, (f) A region of the amplitude 
spectrum of the time series plotted in (e). Because the signal has lasted for a longer time 
interval, it is possible to measure the frequency with much higher resolution than in (d). 
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8.3.5    Linearity 

The S-Transform is a linear operation on the time series s(t). This is important for the case 

of additive noise in which one can model the data as data{t) = signal(t) + noise(t) and thus 

the operation of the S-Transform leads to [Stockwell et al, 1996c] 

ST{data} = ST{signal} + ST{noise} (249) 

This is an advantage over the bilinear class of time-frequency representations (TFRs) where 

one finds [Cohen, 1989] 

TFR{data) = TFR{signal) + 2 * TFR{signal} * TFR{noise} + TFR{noise)      (250) 

8.3.6    The Generalized 5-Transform 

Definition (234) was derived under the assumption that the width a of the Gaussian modula- 

tion function is proportional to the inverse of frequency. Thus the Gaussian window function 

is [Stockwell et al, 1996c; Stockwell, 1999; Mansinha et al, 1997b]: 

1       _ t2 

9{t,<r) = —j=e  ^ (251) 
(T\/27r 

with 

k 
v=j (252) 

Normally k is set to unity as in definition (234), providing approximately one modulated 

sine and cosine cycle. However k may be increased for increasing frequency resolution, with 

a corresponding loss of resolution in time. Expression (234) is then modified slightly: 

s{t)L^e-L^-e~i2,ftdt (253) 

-oo v27T 
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The inverse S-transform is still found by equation (244). 

8.4    The Discrete S-Transform 

The discrete analog of equation (242) is used to calculate the discrete S-Transform by taking 

advantage of the efficiency of the FFT (Fast Fourier Transform) and the convolution theorem. 

Let, s[kT], k = 0,1,..., N — 1 denote a discrete time series, corresponding to s(t), with a time 

sampling interval of T. The discrete Fourier Transform is given by [Brigham, 1975] 

5^] = ^f>^e~^ <254) 

where n = 0,1,...,N — 1. In the discrete case, the S-Transform is the projection of the vector 

defined by the time series s[kT] onto a spanning set of vectors. The spanning vectors are not 

orthogonal, and the elements of the S-Transform are not independent. Each basis vector (of 

the Fourier Transform) is divided into N localized vectors by an element-by-element product 

with the N shifted gaussians, such that the sum of these N localized vectors is the original 

basis vector. 

Using the discrete analog of equation (242), the 5-Transform of a discrete time series s[kT] 

is given by (letting / —> n/NT and T —> jT) [Stockwell et al., 1996b,c; Mansinha et at., 

1997b] 

ST[jT, JL] = E S[-j^r] e~V- e~*- (255) 

and for the n = 0 voice it is equal to the constant defined by [Stockwell et al, 1996c] 

m=u 

where j, m and n = 0,l,...,iV-l. Equation (360) puts the constant average of the time series 

into the zero frequency voice, thus assuring the inverse is exact for the general time series. 

The discrete S'-Transform suffers the familiar problems from sampling and finite length, 
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giving rise to implicit periodicity in the time and frequency domains. The convolution 

operations are implicitly 'wrap-around', giving rise to edge effects. 

The calculation of the ^-Transform is very efficient, using the convolution theorem both ways, 

each to the advantage, and utilizing the efficiency of the Fast Fourier Transform algorithm. 

An approximate count of the number of operations is given in the parentheses after each 

numbered section below (letting n = n/NT, m = m/NT, k = kT and j = jT). Thus using 

equation (256) 

1. Fourier transform the original time series s[k], with N points and sample interval T, 

to give S[m] using a FFT (Fast Fourier Transform) routine. This is only done once 

(NlogN operations) [Stockwell et at., 1996c; Stockwell, 1999]. 

2. Calculate the localizing Gaussian G[n, m] for the required frequency n, (N assignment 
statements). 

3. Shift the spectrum S[m] to S[(m + n)} for the frequency n. (One pointer addition) [1st 

use of the convolution theorem]. 

4. Multiply S[(m + n)} by G[n,m] to give B[n,m]. (N multiplications) [2nd use of the 

convolution theorem]. 

5. Inverse Fourier transform B[n,m] m to j to give the row of ST[n,j] corresponding to 

the frequency n. (NlogN operations). 

6. Repeat steps 3, 4 and 5 until all the rows of ST[n,j] corresponding to all discrete 

frequencies n have been defined. 

The computational efficiency of the Fast Fourier transform has been used whenever possible. 

The total number of operations is approximately N(N + NlogN) operations. Considering 

that the S'-Transform has N2 points, the number of operations per computed transform point 

is the same as the standard FFT when the time series is multiplied by an apodizing function 

(N + NlogN operations). 
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8.5    Discrete Inverse S-Transform 

The discrete inverse of the S-Transform is performed through the intermediate step of com- 

puting the discrete Fourier Transform. Summing the ^-matrix along the voices (rows) gives 

(n ^ 0) [Stockwell et al, 1996c; Stockwell, 1999] 

N^} n ^ ^     m + n,     2,ry   .2™; 

Reordering the sequence of summation, we have 

j=0 iVJ m=0 ^VJ j=0 

By the orthogonal property, the sum over j is zero unless m = zero in which case it is equal 

to TV. Thus the average of the voices of ST(n/NT,jT) is [Stockwell et al, 1996c; Stockwell, 

1999] 

E m^,m = £ ™„,„S[^] e~^ (259) 
j=0 -1   J m=0 J¥-t 

That is, 

^g^[^,;T]=5[^] (260) 

Therefore the discrete inverse of the 5-Transform is (Vn): 

^gg^X,}^ (2.1) 

In the limit at n = 0, the width of the voice Gaussian decreases to zero. The zero frequency 

is the average of the time series and is constant. The value of ST(n/NT,jT) for n = 0 is 

simply the average of s(kT). Every value along the voice for n = 0 can be filled with this 
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value. In the representation equation (255), the voice Gaussian function at n = 0 is replaced 

with the Kronecker delta function 6mfi. The S-Transform is exactly invertible. 

8.6    Comparison of Time-Frequency Representations 

Figure 12 shows a chirp signal. In part (b) the Instantaneous Frequency calculated using 

the Hilbert transform is shown. It accurately represents the linearly increasing frequency. 

There are some edge effects due to the implicit wrap around of the time series, in the Fourier 

representation used to calculate the Hilbert Transform. Part (c) shows the amplitude of the 

5-Transform of the time series in (a). It also accurately represents the chirp signal. The edges 

have been removed with a 5% Hanning window taper. Part (d) is the Short-Time Fourier 

Transform calculated using a Gaussian window (for comparison with the S-Transform) with 

a standard deviation of 8 points. Part (e) shows the Wigner Distribution of the chirp signal. 
All methods faithfully represent the chirp signal. 

Figure 13 shows the combination of a chirp signal with an increasing frequency, with that, of 

one with a decreasing frequency. It is interesting to see that, in the time domain, the nature 

of the signal is not at all obvious, as it has been with previous examples. In part (b) the 

Instantaneous Frequency calculated using the Hilbert transform is shown. It performs quite 

poorly with the multi-component signal. Part (c) shows the amplitude of the S-Transform 

of the time series in (a). It also accurately represents the crossing chirp signal. Part (d) 

is the Short-Time Fourier Transform calculated using a Gaussian window with a standard 

deviation of 8 points. It does a nice job of representing the signal. Part (e) shows the 

Wigner Distribution of the crossed chirp signal. While the chirps are detectable, the cross- 

terms greatly reduce the reliability of detecting them. 

Figure 14 shows a sample time series composed of 3 distinct local frequency components. 

The first half has a low frequency, the second half has a high frequency, and in the first half 

a high frequency component is added. In part (b) the Instantaneous Frequency calculated 

using the Hilbert transform is shown. Again this performs poorly with the multi-component 

signal. In the region where two frequencies are present, the instantaneous frequency oscillates 

wildly. Part (c) shows the amplitude of the S-Transform of the time series in (a). It 

accurately represents all three components. The low frequency component has very good 

frequency resolution, while the high frequency transient signal has very good time resolution, 

and is reliably detected.   Part (d) is the Short-Time Fourier Transform calculated using a 
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Figure 12: A chirp function with a linearly increasing frequency, (b) The instantaneous 
frequency of the time series in (a), (c) Amplitude of the 5-transform for the time series in 
(a), (d) The generalized instantaneous frequency calculated from the S-transform for the 
time series in (a), (e) Amplitude of the STFT for the time series in (a), (f) The Winger 
distribution for the time series in (a). For such a simple and clean time series, all methods 
do a very good job in finding the frequency chirp. 
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Figure 13: Another chirp function with a linearly increasing frequency added to one with 
a decreasing freqiiency. (b) The instantaneous frequency of the time series in (a), (c) 
Amplitude of the S-transform for the time series in (a), (d) The generalized instantaneous 
frequency as calculated from the S-transform for the time series in (a), (e) Amplitude of the 
STFT for the time series in (a), (f) The Winger distribution for the time series in (a). 
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Figure 14: A sample time series with 3 distinct components, (b) The instantaneous frequency 
of the time series in (a), (c) Amplitude of the 5-transform for the time series in (a), (d) 
Amplitude of the STFT for the time series in (a), (e) The Winger distribution for the time 
series in (a). 
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Figure 15: A complicated tiem series with a sinusoidally modulated frequency in the first 
512 points, then two sets of crossing chirps in the next 512 points. All throughout the time 
series, high frequency bursts of short duration are added, (b) The instantaneous frequency 
of the time series in (a). This identifies the sinusoidal modulation in the first half well, but 
misses the bursts and the crossed chirps, (c) Amplitude of the ^-transform for the time 
series in (a). This identifies all features, (d) Amplitude of the STFT for the time series in 
(a). This does a good job, however the high frequency bursts are under represented, (e) The 
Winger distribution for the time series in (a). The signal is poorly represented. 
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Gaussian window with a standard deviation of 8 points. This does detect both the low 

frequency signals, but the high frequency transient is washed out at this resolution due 

to the fact that the constant width window is averaging over a long period of time. The 

low frequency component is represented with poor frequency resolution. Part (e) shows 

the Wigner Distribution of the crossed chirp signal. While the two low frequencies are 

detectable, the cross-terms greatly reduce the reliability of detecting them. Also the high 

frequency transient is not detected. 

Figure 15 shows a sample time series composed of 3 distinct local frequency components 

as in Figure 14 but now with a noise component of standard deviation 0.5 added. The S- 

Transform does detect the signal, but the other methods perform poorly. For simple signals 

the Wigner distribution does very well, but so does the instantaneous frequency. Because 

of the simplicity of the instantaneous frequency, it should perhaps be attempted first. For 

noisy signal, or ones with complicated time frequency structure, in order to be sure of the 

representation one should use the 5-Transform. 

In studying the various techniques, it is apparent that every one has its strengths and 

weaknesses. For locally narrowband signals the Instantaneous Frequency and the Wigner 

Distribution work very well. For most time series, the Short-Time Fourier Transform does 

give a reasonable representation of the time frequency structure. However, for the general 

non-stationary time series, the S-Transform does a better job of simultaneously localizing 

all the frequency components. 
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9    Conclusion 

The time-frequency representations are powerful tools for the analysis and processing of 

non-stationary signals for which separate time-domain and frequency-domain analyses are 

not adeqiiate. In this report, we outline the motivations, interpretations, mathematical 

fundamentals, and properties of linear and quadratic time-frequency representations. 

This report is reviewing both linear and quadratic time-frequency representations. The 

linear representations discussed are Short-Time Fourier Transform and S-transform. The 

quadratic representation discussed is the Wigner distribution. We also compare these three 

different time-frequency analysis techniques and show that each technique has its strengths 

and drawbacks. Simulated data sets have been used for the comparison. For locally narrow 

band signals the Instantaneous Frequency and Wigner distribution methods work very well. 

For most time series, the Short-Time Fourier Transform does give a reasonable representation 

of the time-frequency structure. However, for the general non-stationary time series, the S- 

transform does a better job of simultaneously localizing all the frequency components. 

Although we have attempted to provide a coherent framework of time-frequency represen- 

tations, a truly unified framework is difficult to obtain because the large variety of exiting 

methods and approaches cause the field of time-frequency analysis to be somewhat disparate. 

It is clear that the choice of the particular time-frequency representation depends upon the 

specific area of application and what we aim to achieve with a local frequency analysis. We 

show that time-frequency analysis methods should enable us to classify signals with a consid- 

erably greater reflection of the physical situation than can be achieved by the conventional 

Fourier transform method alone. 

Our main areas of application of the time-frequency representation are the analysis of ex- 

perimental HF radar data and ISAR (Inverse Synthetic Aperture Radar) image data. We 

will examine and compare different time-frequency representations discussed in this report 

to detect accelerating target such as aircraft by a HF radar in the presence of clutter back- 
ground. 
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