
REPORT DOCUMENTATION PAGE
AFRL-SR-BL-TR-01-

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing ir
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-C
4302 Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

ÖCrO^
the
ing

.._, , .rently

1. REPORT DATE (DD-MM-YYYY)
27-11-00

Final

4. TITLE AND SUBTITLE
Run-Time Assurance for Distributed Computing Systems

6. AUTHOR(S)
B. M. McMillin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The University of Missouri-Rolla
Rolla, MO 65409

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Maj. David Luginbuhl

801 N. Randolph St. Rm 732

Arlington, VA 22203-1977

01-9-93 to 31-10-97

5a. CONTRACT NUMBER

5b. GRANT NUMBER
F49620-93-1-0409P0 0001
5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

8. PERFORMING ORGANIZATION REPORT
NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12 D'^-BUT.ON/AVAI^g^^TJYE^ STATEMENTA

Approved for Public Release
unlimited Distribution Unlimited

13. SUPPLEMENTARY NOTES

DT1C QUALITY ISS^CTED 3

20010109 097
14. ABSTRACT
This work, as an AASERT Augmentation to F49620-92-J-0546, has developed a powerful concept in
evaluating formal specifications concurrently with distributed program execution for the
purposes of error detection, fault tolerance, and security. This concept is realized in the
CCSP evaluation system for axiomatic proofs, for interval temporal formulae, and for a

security calculus. We have validated
This concept through nontrivial examples of distributed programs including a dynamic group
membership protocol, a distributed database scheduler, of a responsive system modeling
railroad trains on intersecting tracks, and of a secure warehouse management system.
Moreover, the spinoff technologies from this work, in of themselves have become useful. CCSP
can also be used as a debugging tool for distributed programs. Properties used in CCSP can be
visualized using abstract glyphs. Both of these achievements may help to bring more use of
formal methods into the mainstream.

15. SUBJECT TERMS
Temporal Logic, Responsive Systems, Visualization

16. SECURITY CLASSIFICATION OF:

a. REPORT
unclassified

b. ABSTRACT
unclassified

C. THIS PAGE
unclassified

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Bruce M. McMillin
19b. TELEPHONE NUMBER (include area
code)
(573J-341-6435

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Overview

Motivation

Our original goal of the parent project was to find ways to execute program specifications along with the
actual program's execution for purposes of run-time assurance - namely for error detection within the
scope of fault tolerance. If the execution of the program does not satisfy the specification at run time,
then an error has occurred. Since error detection is conceptually the most difficult problem in fault
tolerance, this quantification of error detection has proved quite powerful - a system need not rely on
hardware or software confidence to avoid or detect errors; the specification provides the absolute truth
of correctness.

Actually doing this is difficult even in the sequential environment as one must ask the question "What is
an appropriate level of specification and how does it correspond with the resulting program code?" In
the distributed parallel environment with which we are concerned, the challenge becomes greater due to
the absence of a globally consistent state in which to evaluate the specification.

The ASSERT funding beyond the parent project's goal was to increase the participation of women in
Computer Science while addressing the problems of a run-time system and of visualizing program
behavior.

Methodology

The notion of "the program satisfies the specification' is a powerful abstraction as it immediately draws
the researcher into the area of formal logic to express the specification. This, coupled with an existing
set of axioms and inference rules for a particular (programming) language provides the appropriate level
of representation for run-time error checking. Essentially, the same tools used in program verification
are immediately applicable to run-time assurance, namely execution of the proof outline in either a
predicate or temporal framework.

Our work provides the run-time semantics to carry out such executions, possibly in the presence of
failed hardware and/or software or security intrusions. Nor are we limited to formalized verification
systems; our methods work quite well with informally specified assertions. We have developed a set of
tools (described below) to carry out these evaluations.

Technical Details

The Axiomatic Approach to Program Verification

The axiomatic approach to program verification is based on making assertions about program variables
before, during and after program execution. These assertions characterize properties of program
variables and relationships between them at various stages of program execution.

Overall Proof Approach.

Distributed programs are composed of a set of communicating sequential processes. In many programs,
it is desirable to save part of the communication sequence between processes. This is done with use of
"dummy" or auxiliary variables that relate program variables of one process to program variables of
another. In general, to prove properties about the program, first properties of each component process
are derived in isolation. These properties are combined to obtain the properties of the whole program
using "global" auxiliary variables; if the proofs do not interfere, then this composition is valid. We use
Hoare's CSP as a model.

Operational Evaluation of Axiomatic Assertions

Taking an application's proof outline from the verification environment to the distributed operational
environment is not a straightforward task. Since assertions may involve global annotations to the
program state, we need some way of communicating this state, efficiently. Observing that no state
change can influence a CSP process until some communication occurs (since process states are local),
we can simply defer update of global state information until an algorithmic communication occurs.
Thus, each communication in CSP is augmented with two functions which prepare copies of a processes'
global auxiliary variables for communication and unions these variables into a process' local state,
respectively. Since we only need to send the most recent copy (and only a newer copy) variables are
time stamped with a Lamport clock. Then, the latest copy of each global auxiliary variable is merged
with the local processes' state. These communicated auxiliary variables, in turn, along with the
sequential processes' state, are what the assertions are evaluated against.

These ideas were embodied in the package CCSP which is reported in:

"CCSP - A Formal System for Distributed Program Debugging," Programming and Computer Software,
Plenum Publishers, Vol. 21. No. 1, 1995, pp. 45-50, E. Arrowsmith and B. McMillin.

The full CCSP source is available from http: //www. umr.edu/ecl.htmi

Program Visualization

The understanding of program behavior is becoming vitally more important now that software is
becoming an integral part of industry and everyday life. However, even the best documented code is
often not sufficient enough to completely and correctly relay the actual program behavior.
The problem lies beyond being familiar with the programming language and is hidden in the complex
mathematics, which govern the program's behavior. This behavior is not easily detected and varies from
one program to the next. We propose a method for describing program behavior using two general
properties of iterative programs: feasibility and progress. This method can be easily applied to trivial
and simple code but an automated tool is required to generate the properties for more realistic code.
Therefore, an automated program visualization tool was developed to illustrate the program's behavior
in terms of the two properties proposed. Wheels take as input program code, reverse engineers the
behavior by analyzing the code and then visually relays the extracted information back to the user
allowing the user to gain a visual understanding of program behavior. The intent of this research is to
use this understanding as a means of learning and teaching as well as a means for providing run time
assurance to check the expected behavior.

This work is reported in

"Wheels: An Automated Program Analysis Tool," The 8th International Conf. on Software Engineering
and Knowledge Engineering, June 10-12, 1996, Lake Tahoe, NV, pp. 269-276 (with A. Sun).

Student Participants

The following students were supported during the lifetime of this grant.

Name Topic Status

Elizabeth
Arrowsmith

Developed the CCSP System Left the Program to pursue
Ph.D. at Washington
University

Aggie Sun Declarative Approach to Generalizing the
Understanding of Program Behavior through
Program Visualization

Ph.D. 1996

Contribution

We feel we have developed a powerful concept in evaluating formal specifications concurrently with
distributed program execution. Moreover, the spinoff technologies from this work, in of themselves have
become useful. CCSP can also be used as a debugging tool for distributed programs. Temporal
Subsumption functions as a quick and powerful proof checker for Hoare triples. Both of these
achievements may help to bring more use of formal methods into the mainstream.

It is unfortunate that, despite a one-year extension, no suitable women Ph.D. students wer found and the
3rd year funding had to be turned back.

