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Thesis Directed by Professor George H. Born 

In an effort to estimate precise satellite ephemeris in real-time on board a satellite, 
the Goddard Space Flight Center (GSFC) created the GPS Enhanced Orbit Determination 
Experiment (GEODE) flight navigation software. This dissertation offers alternative 
methods and improvements to GEODE to increase on board autonomy and real-time total 
position accuracy and precision without increasing computational burden. 

First, GEODE is modified to include a Gravity Acceleration Approximation 
Function (GAAF) to replace the traditional spherical harmonic representation of the 
gravity field. Next, an ionospheric correction method called Differenced Range Versus 
Integrated Doppler (DRVID) is applied to correct for ionospheric errors in the GPS 
measurements used in GEODE. Then, Dynamic Model Compensation (DMC) is added 
to estimate unmodeled and/or mismodeled forces in the dynamic model and to provide an 
alternative process noise variance-covariance formulation. Finally, a Genetic Algorithm 
(GA) is implemented in the form of Genetic Model Compensation (GMC) to optimize 
DMC forcing noise parameters. 

Application of GAAF, DRVID and DMC improved GEODE's position estimates 
by 28.3% when applied to GPS/MET data collected in the presence of Selective 
Availability (SA), 17.5% when SA is removed from the GPS/MET data and 10.8% on 
SA free TOPEX data. Position estimates with RSS errors below 1 meter are now 
achieved using SA free TOPEX data. DRVID causes an increase in computational 
burden while GAAF and DMC reduce computational burden. The net effect of applying 
GAAF, DRVID and DMC is an improvement in GEODE's accuracy/precision without an 
increase in computational burden. 

20001215 137 



Goldstein, David Ben (Ph.D., Aerospace Engineering Sciences) 

Real-time, Autonomous, Precise Satellite Orbit Determination Using the Global 
Positioning System 

Thesis Directed by Professor George H. Born 

In an effort to estimate precise satellite ephemeris in real-time on board a satellite, 
the Goddard Space Flight Center (GSFC) created the GPS Enhanced Orbit Determination 
Experiment (GEODE) flight navigation software. This dissertation offers alternative 
methods and improvements to GEODE to increase on board autonomy and real-time total 
position accuracy and precision without increasing computational burden. 

First, GEODE is modified to include a Gravity Acceleration Approximation 
Function (GAAF) to replace the traditional spherical harmonic representation of the 
gravity field. Next, an ionospheric correction method called Differenced Range Versus 
Integrated Doppier (DRVTD) is applied to correct for ionospheric errors in the GPS 
measurements used in GEODE. Then, Dynamic Model Compensation (DMC) is added 
to estimate unmodeled and/or mismodeled forces in the dynamic model and to provide an 
alternative process noise variance-covariance formulation. Finally, a Genetic Algorithm 
(GA) is implemented in the form of Genetic Model Compensation (GMC) to optimize 
DMC forcing noise parameters. 

Application of GAAF, DRVID and DMC improved GEODE's position estimates 
by 28.3% when applied to GPS/MET data collected in the presence of Selective 
Availability (SA), 17.5% when SA is removed from the GPS/MET data and 10.8% on 
SA free TOPEX data. Position estimates with RSS errors below 1 meter are now 
achieved using SA free TOPEX data. DRVID causes an increase in computational 
burden while GAAF and DMC reduce computational burden. The net effect of applying 
GAAF, DRVID and DMC is an improvement in GEODE's accuracy/precision without an 
increase in computational burden. 



REAL-TIME, AUTONOMOUS PRECISE 
SATELLITE ORBIT DETERMINATION 

USING 
THE GLOBAL POSITIONING SYSTEM 

by 

David Ben Goldstein 

B.S., United States Air Force Academy, 1988 

M.S., University of Houston, 1994 

A thesis submitted to the 

Faculty of the Graduate School of the 

University of Colorado in partial fulfillment 

of the requirement for the degree of Doctor of Philosophy 

Department of Aerospace Engineering Sciences 

2000 



This thesis entitled: 

Real-time, Autonomous, Precise Satellite Orbit Determination 

Using the Global Positioning System 

written by David Ben Goldstein 

has been approved for the Department of Aerospace Engineering Sciences by 

George H. Born, Chalrperi son of Supervisory Committee 

\L^ 1J)M 
Kenn L. Gold, Second Reader 

Date in tj  Z*tw 

The signatories have examined the final copy of this thesis, and we find that both the 

content and the form meet acceptable presentation standards of scholarly work in the 

above mentioned discipline. 



Goldstein, David Ben (Ph.D., Aerospace Engineering Sciences) 

Real-time, Autonomous, Precise Satellite Orbit Determination Using the Global 
Positioning System 

Thesis Directed by Professor George H. Born 

The desire for autonomously generated, rapidly available, and highly accurate 

satellite ephemeris is growing with the proliferation of constellations of satellites and 

the cost and overhead of ground tracking resources. Autonomous Orbit 

Determination (OD) may be done on the ground in a post-processing mode or in real- 

time on board a satellite and may be accomplished days, hours or immediately after 

observations are processed. 

The Global Positioning System (GPS) is now widely used as an alternative to 

ground tracking resources to supply observation data for satellite positioning and 

navigation. GPS is accurate, inexpensive, provides continuous coverage, and is an 

excellent choice for autonomous systems. In an effort to estimate precise satellite 

ephemeris in real-time on board a satellite, the Goddard Space Flight Center (GSFC) 

created the GPS Enhanced OD Experiment (GEODE) flight navigation software. 

This dissertation offers alternative methods and improvements to GEODE to increase 

on board autonomy and real-time total position accuracy and precision without 

increasing computational burden. 

First, GEODE is modified to include a Gravity Acceleration Approximation 

Function (GAAF) to replace the traditional spherical harmonic representation of the 

gravity field. Next, an ionospheric correction method called Differenced Range 

Versus Integrated Doppier (DRVID) is applied to correct for ionospheric errors in the 



IV 

GPS measurements used in GEODE. Then, Dynamic Model Compensation (DMC) 

is added to estimate unmodeled and/or mismodeled forces in the dynamic model and 

to provide an alternative process noise variance-covariance formulation. Finally, a 

Genetic Algorithm (GA) is implemented in the form of Genetic Model Compensation 

(GMC) to optimize DMC forcing noise parameters. 

Application of GAAF, DRVID and DMC improved GEODE's position 

estimates by 28.3% when applied to GPS/MET data collected in the presence of 

Selective Availability (SA), 17.5% when SA is removed from the GPS/MET data and 

10.8% on SA free TOPEX data. Position estimates with RSS errors below 1 meter 

are now achieved using SA free TOPEX data. DRVID causes an increase in 

computational burden while GAAF and DMC reduce computational burden. The net 

effect of applying GAAF, DRVID and DMC is an improvement in GEODE's 

accuracy/precision without an increase in computational burden. 
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CHAPTER 1 

Introduction 

1.1 Dissertation Objectives 

The objectives of this research are to further evaluate and improve 

Goddard Space Flight Center's (GSFC's) Global Positioning System (GPS) 

Enhanced Orbit Determination Experiment (GEODE) [1] software. GEODE is 

evaluated with various processing scheme changes with the understanding that it 

will be employed for real-time satellite Orbit Determination (OD), on board a 

satellite. Improvements to GEODE are sought in terms of enhanced autonomy, 

improved accuracy/precision and reduced computational burden. The goal of this 

research is to autonomously process GPS pseudoranges, in real-time, to produce 

orbit estimates with better than 1-meter total position (3D) Root Sum Square 

(RSS) error for Low Earth Orbit (LEO) satellites. The estimates produced by 

GEODE are compared to Precise Orbit Ephemeris (POE) generated by GSFC and 

the Jet Propulsion Laboratory (JPL). 

1.2 Motivation 

The topic of accurate, autonomous real-time satellite OD is receiving 

significant attention [2-8] and with GPS Selective Availability (SA) being turned 



off on 2 May 2000, it will receive even more attention in the near future. Mission 

planners want very accurate (tens of cm to tens of meters) position, velocity 

and/or attitude information in real-time, while minimizing the work required to 

achieve these results (better, faster, cheaper). Several trends driving autonomy, 

timing, and accuracy requirements are planned deployment of constellations of 

satellites, the desire for real-time geodetic measurements, challenging Earth 

resource science objectives and a movement toward reducing dependence on 

ground-based tracking assets [9]. It is even becoming desirable to perform OD in 

real-time, on board an Earth orbiting satellite, where accurate position, velocity 

and attitude information are made available for other satellite instruments [4]. 

An obvious choice for providing observations for an autonomous OD 

scheme is the Global Positioning System (GPS). GPS provides unprecedented 

observability to LEO satellites providing continuous, all-weather observations 

without user intervention. The limitation in using GPS for precise OD used to be 

the accuracy of the measurements. The User Equivalent Range Error (UERE) as 

published by the GPS Joint Program Office (JPO) was 33.3 meters (la) using the 

GPS Standard Positioning Service (SPS) [10]. SPS GPS measurement errors 

were dominated by errors due to SA but SA has now been turned off (as of 2 May 

2000). Now GPS measurement errors are dominated by the ionosphere, 

troposphere, GPS satellite ephemerides, multi-path, and receiver noise. The effect 

the measurement errors have on satellite OD has been minimized, if not 



completely removed, by post-processing the GPS measurements using 

sophisticated filters and data gathered from globally distributed receiving stations. 

Therefore, the distinction between post-processing (or processing in near 

real-time) and real-time is very important when discussing the accuracy attained 

using GPS measurements for satellite OD. Post-processing (also near real-time) 

implies providing solutions at least several hours, usually more, after observations 

are taken. Real-time implies calculating solutions within minutes, seconds or 

even a fraction of a second after observations are made. Herein, real-time OD 

will be defined as completing the calculations required to perform the OD 

measurement update prior to acquiring the next measurement. The main 

differences between these two types of systems are that post-processing systems 

usually corrected for SA, use very sophisticated ionospheric models, use high 

fidelity gravity models and use very accurate GPS satellite ephemerides rather 

than those broadcast. Each of these "differences" require a prohibitive 

computational burden for a real-time system or unacceptable interaction for true 

autonomy. Obviously, since SA has been turned off, post-processing systems no 

longer correct for it. Autonomy defined here, implies minimal or no interaction 

with external resources, except the acquisition of measurements and the collection 

of information in the GPS navigation message. The next two sections of this 

chapter outline several state-of-the-art post-processing and real-time software 

suites to distinguish the differences between these two types of systems. 



1.3 Post-processing Systems 

There are several software packages designed to calculate precise satellite 

ephemeris using GPS observations by post-processing (on the ground) or in near 

real-time. Several examples are the Jet Propulsion Laboratory's (JPL) GPS- 

Inferred Positioning System (GEPSY)/OASIS II (GOAII) [11], the Naval 

Research Laboratory's (NRL) Orbit/Covariance Estimation and Analysis 

Software (OCEAN) [12], Van Martin System Inc.'s (VMSI) MicroCosm®, 

GEODYN, Utopia, etc. GOA II, OCEAN and MicroCosm® are described here. 

1.3.1 JPL's GOA II 

GOA II is a collection of Fortran programs and C-shell or Perl 

encapsulating scripts created by JPL. Most of the following features of GOA II 

were extracted from [13]: 

• batch-sequential and filter-smoother 
• network processing of globally distributed GPS receiver data to eliminate 

SA using white noise clock estimation with one reference clock [14] 
• simultaneous estimation of GPS satellite orbits (generation of precise GPS 

Ephemeris (GPSE)) 
• orbit integration using spherical harmonic gravity field expansion (JGM-2 

70x70 or JGM-3 70x70), the effects of the sun, moon, and planets, plus 
non-gravitational forces to account for atmospheric drag and solar 
radiation pressure 

• modeling of the known dynamics of the Earth, including solid Earth tides, 
precession, nutation, polar motion, pole tides, and ocean loading 

• ionospheric group range delay and phase advance estimation based on 
Bent or IRI95 ionosphere models 

• wet and dry tropospheric delay modeling including ray bending and Earth 
curvature, and the stochastic estimation of mapped zenith delays and clock 
biases as random walk or Gauss-Markov process noise 
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•    estimation of unmodeled or mismodeled forces using the Reduced 

Dynamic Technique (RDT) [15] 

GPS satellite orbits computed using GO AII have a radial RMS in the 7-10 

cm range. Comparison of The Ocean Topography Experiment 

(TOPEX)/Poseidon (T/P) orbits derived from GPS data collected on board the T/P 

satellite compared with orbits produced by other sources (e.g., Doris and Satellite 

Laser Ranging (SLR) analyzed by other institutions) have shown 2-3 cm radial 

RMS and 15 cm 3D RSS [13]. JPL has determined operational GPS orbits for 

T/P for many years with typical latency of 11-17 hours after the last GPS data 

point is received on board the satellite. In comparison, GSFC definitive orbits 

based on Doris and SLR data are delivered with a latency of about 40 days. The 

definitive GSFC orbits and JPL orbits generated with GOAII have an RMS 

difference of less than 4 cm radially [16]. JPL has automated GOA U to produce 

orbits with sub-10 cm radial RMS accuracy with about 10-hour latency but recent 

improvements in JPL's processing system might soon reduce this to around 

1-hour latency. JPL anticipates OD accuracy at the 1 cm level (1 <r radially) will 

be demonstrated in the not too distant future [16]. In this dissertation GEODE 

T/P position estimates will be compared against JPL GOA II POE. 

1.3.2 NRL's OCEAN 

OCEAN is a precise satellite OD software system created by the 

Astrodynamics and Space Applications Office of the Naval Center for Space 



Technology at the NRL. The OCEAN suite contains a batch weighted least 

squares estimation technique and an extended Kaiman filter and backwards 

smoother to process various range, Doppler and angle observations. It can 

process GPS data or SLR data. The previous information and the following 

features were extracted from [12]. 

• Choice of Earth gravity models including JGM-2 or EGM96 
• Jaccia 1971 atmospheric drag model 
• Solar radiation pressure using vehicle macro-modeling 
• Sun, Moon and planetary third body accelerations 
• Models solid Earth and Ocean tide accelerations 
• Processes externally available precise or broadcast GPS ephemerides 
• Capable of processing multiple satellites and ground stations 

simultaneously 
• Differential correction using ground station receiver data 
• Estimation of unmodeled or mismodeled (empirical) accelerations 

OCEAN was used to process T/P data from 18 November 1993 when all GPS 

satellites had Anti-Spoofing (AS) off but only 17 of 24 satellites had SA off. AS 

is the encryption of the GPS P-code to keep adversaries from "spoofing" a Precise 

Positioning System (PPS) capable receiver [17]. Turning AS off essentially 

allows a dual frequency receiver, without decryption capabilities, to receive 

carrier phase and pseudorange measurements on both the LI and L2 channels. 

Only the data from the 17 SA off satellites were processed. The results compared 

to JPL's T/P POE with precise GPSE are shown below in Table 1.1. 



Table 1.1 - OCEAN OD Results 

RMS 
Precise GPSE 

(simulated post-processing) 
Radial 0.10 m 

Along-track 0.31m 
Cross-track 0.16 m 

Total 0.37 m 

Again, the GPS data in this study are SA and AS free. 

1.3.3 VMSI's MicroCosm® 

MicroCosm® is a satellite orbit and geodetic parameter estimation 

software suite developed by VMSI. MicroCosm® improves upon and fully 

implements the NASA GEODYNII, version 8609, precision orbit and geodetic 

parameter determination software system. The following details concerning 

MicroCosm® were extracted from [18]: 

Bayesian least squares batch processor 
automatic carrier phase cycle slip detection and removal 
network processing of globally distributed GPS receiver data to eliminate 
SA using single, double or triple differencing 
simultaneous estimation of geodetic parameters 
orbit integration using spherical harmonic gravity field expansion (JGM-2 
70x70 or JGM-3 70x70), the effects of the sun, moon, and planets, plus 
non-gravitational forces to account for atmospheric drag and solar 
radiation pressure 
modeling of the known dynamics of the Earth, including solid Earth tides, 
precession, nutation, polar motion, pole tides, and ocean loading 
estimation of zenith tropospheric parameters for each IGS ground station 
estimation of radial, in-track and cross-track empirical accelerations 



MicroCosm® was used to perform orbit determination for the 

GPS/Meteorology (GPS/MET) experiment using GPS carrier phase observations. 

Internal and external orbit overlap comparisons show MicroCosm® is capable of 

estimating GPS/MET orbits at the 30 cm 3D RSS level [19]. In this dissertation, 

GEODE GPS/MET position estimates will be compared against MicroCosm® 

generated GPS/MET orbits. 

1.4 Real-time Systems 

There are also several real-time software suites available. Examples are 

JPL's Real-time GIPSY, the Microcosm Autonomous Navigation System 

(MANS) [20], the Brazilian National Institute of Space Research's (INPE's) 

ORBesT [21] and GSFC's GEODE [22]. Also, the University of Nottingham's 

Institute of Engineering Surveying & Space Geodesy (IESSG) developed another 

unnamed system [2]. There is currently no published information on space 

qualified (actually flown in space) precise, real-time OD software. Real-time 

GIPSY and the University of Nottingham's system are discussed below; GEODE 

is discussed in Chapter 2. 

1.4.1 JPL's Real-time GIPSY (RTG) 

RTG is an ANSI C version of GOA-II created by JPL to accommodate 

high data rates (1 Hz) and improve portability to systems other than UNIX. JPL's 

goal is to incorporate all the precise models from GOA-II, make it suitable for 



imbedded systems such as GPS receivers and make it capable of real-time 

processing [16]. Compiler options in RTG allow it to be scaled to meet various 

processor load requirements [16]. To provide the best accuracy, RTG will be 

used in conjunction with a global Wide Area Augmentation System (WAAS) or a 

Wide Area Differential GPS (WADGPS) system. Without WAAS or WADGPS 

RTG has shown 3D RSS values in the 4-6 meter range when used to process T/P 

data with broadcast GPS ephemeris and SA on [16]. 

1.4.2 The University of Nottingham's Study 

In a study for the UK Defense and Evaluation Research Agency (DERA), 

The Institute of Engineering Surveying & Space Geodesy (IESSG) at the 

University of Nottingham developed an extended Kaiman filter, using Reduced 

Dynamic Tracking (RDT), to generate real-time satellite position estimates with 

radial RMS error of 1.08 m 1 a and a 3D RSS error of 3.95 m la [2]. IESSG 

used real and simulated Standard Positioning System (SPS) data from T/P. They 

reported the filter converged after approximately five hours [23]. They used a 

JGM-2 45x45 gravity field, a simple drag model (due to T/P's relatively high 

orbit), and broadcast GPS ephemerides. The application required approximately 

500 kb of computer memory and the code could produce solutions within one 

minute of recording an observation. A trade study between microprocessors was 

also performed finding a military standard 1750A microprocessor (8086 

equivalent) to be more than capable of producing the solutions each minute [2]. 
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1.5 Post-processing / Real-time Comparison 

A comparison of the characteristics common to post-processing and real- 

time systems is shown below in Table 1.2. Details of research outlined in this 

dissertation to close the gap between post-processing and real-time systems are 

presented next. 

Table 1.2 - Post-processing/Real-time Comparison 
Area of Concern Post-processing Real-time 

SA Treatment Differential Correction Broadcast DGPS 
GPSEUsed Precise Broadcast 
Gravity Model JGM-2 70x70, JGM-3 

70x70 or EGM-96 
300x300 

Truncated Models (45x45 
largest, usually 30x30) 

Drag Model Complex Simple 
Radiation Pressure Model Complex Simple or Not at All 
Ionospheric Model Bent, IRI95, PRISM None 
Observations Used Pseudorange, Integrated 

Doppler 
Pseudorange 

Filter Type Usually Batch or 
Sequential 

Extended Kaiman Filter 

Empirical Force Estimation Usually RDT None 

1.5.1 Error Sources in Real-time 

SA was the U.S. Air Force's intentional degradation of GPS measurement 

accuracy. SA was formally implemented on 25 March 1990 and turned off on 2 

May 2000. SA is accomplished through the dithering of GPS satellite clocks [10]. 

The usual method for dealing with SA is to collect data at geographically 

separated locations with known position and use single or double differencing to 

remove SA errors. Fortunately, SA is no longer a factor in real-time satellite OD 

as there is currently no real-time method to reduce its contribution to degrading 

OD accuracy. 
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Another error source that is difficult to deal with in real-time is error in the 

knowledge of the GPS satellite's position. Currently the method used to calculate 

GPS satellite position, in real-time, is to evaluate a series of equations using 

information broadcast by each GPS satellite. In Zumberge [24] the RMS errors 

between the broadcast and precise GPS ephemeris for the period 1 July 1993 - 22 

Oct 1993 are reported as 1.2 m radial, 3.2 m cross-track and 4.5 m along-track. 

The total 3D RSS error is therefore 5.7 m. Depending on the type of GPS data 

utilized (including or not including S A and/or AS), the difference in accuracy 

between the broadcast and precise ephemerides has been reported to be a 

significant source of error in determining the orbit of a satellite using GPS 

observations [12,25-27]. To mitigate the errors in broadcast GPS ephemerides, 

precise ephemerides are often used. There are two methods of obtaining the 

precise ephemerides: solving for the GPS orbits simultaneously with the user 

satellite state and fixing the GPS ephemerides to an independent determination, 

such as the International GPS Service for Geodynamics (IGS) [28]. Both of these 

methods require significant overhead and are therefore not implemented in real- 

time systems. However, predicted GPS ephemerides are available and in certain 

circumstances could be uplinked daily to a satellite. Chapter 2 presents a 

comparison of real-time satellite OD error results using broadcast and precise 

GPS ephemerides. 

The model used to predict the acceleration due to the Earth's gravity can 

be a significant error source in real-time systems. Therefore, a tradeoff study is 
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performed in Chapter 3 to determine the effect of using various truncated gravity 

models. In addition a gravity acceleration approximation method is introduced to 

recover the accuracy of large models while reducing computational burden. 

Measurement errors due to the ionosphere can also affect satellite OD 

accuracy. Chapter 4 presents details concerning the magnitude of errors due to 

ionospheric path delay seen by the GPS/MET satellite and an innovative method 

of removing these errors when a single frequency GPS receiver is used. The 

technique presented is known as Differenced Range Verses Integrated Doppler 

(DRVID) [29]. 

Due to limited space environment knowledge, computational burden 

restrictions and the desire for autonomy, all the forces acting on a satellite cannot 

be modeled. Therefore, Dynamic Model Compensation (DMC) is presented in 

Chapter 5 to not only estimate unmodeled and mismodeled forces as part of the 

filter state but also to simultaneously provide a method of formulating the filter 

process noise variance-covariance. 

One challenge with DMC is tuning of the time correlation coefficient and 

the process noise standard deviation. Chapter 6 presents a Genetic Algorithm 

(GA) in the form of Genetic Model Compensation (GMC) [9]. GMC adaptively 

tunes the constants used in DMC. 
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1.6 Dissertation Summary 

There are significant differences between the satellite OD accuracy 

attainable in a post-processing scenario as compared to in real-time. The purpose 

of the research presented in this dissertation is to offer suggested improvements to 

GSFC's GEODE software suite to enhance autonomy, improve accuracy and 

reduce computational burden. 

Chapter 1 provides a definition of the term real-time and a review of state- 

of-the-art post-processing and real-time software suites and their differences. 

Chapter 2 discusses details of GEODE and the spacecraft and data used to 

evaluate GEODE's performance. Chapter 3 deals with the accuracy and 

computational burden of the gravitational model used in GEODE and suggests a 

promising method to significantly reduce the computational burden. This 

gravitational approximation sacrifices computer memory but not accuracy. 

Chapter 4 describes the errors due to the ionosphere in GPS measurements and 

suggests a method to estimate and remove ionospheric error using a technique 

called Differenced Range Versus Integrated Doppier (DRVTD) [29-32]. 

Chapter 5 presents a derivation of an XYZ and a Radial, In-track, Cross-track 

(RIC) version of Dynamic Model Compensation (DMC) [9], results of two 

simulations implementing RIC DMC and the improvements to GEODE through 

the use of DMC. Chapter 6 details an extension of DMC by the use of a Genetic 

Algorithm (GA) to adaptively tune the time correlation coefficient (T ) and 
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Standard deviation of the DMC forcing noise (a) [9]. Finally, Chapter 7 provides 

conclusions and suggestions for future work. 



CHAPTER 2 

GEODE and GPS/MET 

This chapter provides an overview of the Orb View-1 satellite (formerly 

known as MicroLab-1) carrying the GPS/MET experiment and information 

concerning the GPS measurements collected by GPS/MET. Details are provided 

on GEODE and results presented concerning the optimization of inputs to 

GEODE. Finally, a Lagrange scheme is introduced to interpolate precise GPS 

ephemerides and a method presented for removing the effects of SA from 

GPS/MET data collected 2-10 Feb 1997. 

2.1 GPS/MET 

Orb View-1 was launched on a standard Pegasus rocket from Vandenberg 

AFB, CA, on 3 April 1995 into a 747 x 732 km orbit with an inclination of 70.0°. 

The primary payload on board Orb View-1 is the Optical Transient Detector 

(OTD) used in imaging lightning strikes. OTD has a 10-km resolution, a 

1,300-km swath width, and is managed by the NASA Marshall Space Flight 

Center [33]. GPS/MET is a secondary payload on board the Orb View-1 satellite 

built by Orbital Sciences Corporation (OSC). The GPS/MET experiment relies 

on an active limb sounding technique using radio occultation observations taken 
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by the on board GPS receiver. Figure 2.1 shows a diagram of the occultation of a 

GPS signal by the Earth's atmosphere. 

Non-Occulting 
GPS Satellites^ 

Occulting GPS 
Satellite 

Atmosphere 

Figure 2.1- Occultation Description 

The GPS/MET receiver is a JPL modified TurboRogue with a microstrip 

patch antenna [19]. The occultation data is used for recovery of accurate 

refractivity, pressure, temperature and moisture profiles of the atmosphere [34]. 

Optimal occultation tracking is performed when the GPS/MET antenna is 

pointing in the anti-velocity direction, therefore, a fixed yaw steering 

configuration is implemented. Orb View-1 is gravity-gradient stabilized and 

attitude is maintained using three torque rods, six Sun sensors, two Earth sensors 

and a magnetometer mounted on the gravity boom. Attitude accuracy of 5-10° is 

maintained. The GPS/MET antenna phase center is offset from the Orb View-1 

satellite's center of gravity (CG) by 
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-0.507 m in the x direction 

0.039 m in the y direction 
-0.178 m in the z direction [19] 

See Figure 2.2 for a diagram and Figure 2.3 for a photo of OrbView-1. 

Field of 
View 

Direction of 
Flight 

 ► 

Solar Panels 

Nadir 

I 
GPS/MET 
Antenna 

CG Boom & 
Tip Mass 

Figure 2.2 - OrbView-1 and GPS/MET 

Figure 2.3 - Orb View-1 Satellite 
Photo Courtesy of: http://www.orbimage.com/satellite/orbviewl/orbviewl.html 
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2.2 GEODE 

GSFC developed GEODE as a real-time software analysis package [35]. 

GEODE is highly modular, programmed in ANSI C and has been targeted to 

UNIX and PC systems as well as the RAD6000 RISC microprocessor. It requires 

a modest 400 kilobytes of computer RAM. GEODE was originally designed as 

experimental software to fly on the SSTI Lewis satellite contracted by NASA to 

TRW [35]. GEODE is implemented with an Extended Kaiman Filter (EKF), 

which feeds a real-time state propagator. GEODE is designed to be hosted on 

either a spacecraft flight computer, or in a GPS receiver's processing unit. Pre- 

launch orbit determination studies using GEODE indicate that 1 a orbit accuracy 

of 10 m in position, and 0.01 m/s in velocity may be attained in the presence of 

SA. The pre-launch studies were accomplished with Extreme Ultraviolet 

Explorer (EUVE) and T/P raw pseudorange data. The SSTI Lewis satellite was to 

be placed in a 523 km, Sun Synchronous orbit [36]. Unfortunately, SSTI Lewis 

was lost shortly after its launch in August of 1997 and therefore GEODE is not 

flight qualified. Below is a summary of relevant information concerning GEODE 

[37]. 

JGM-2 30x30 gravity model 
Solar and Lunar point mass 3rd body force model 
Harris-Priester atmospheric drag model 
Geometrical editing of measurements with high ionospheric errors 
Broadcast GPS ephemerides used 
Extended Kaiman Filter (EKF) implemented 
UDUT factorized state error covariance 
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Uplink of polar motion coefficients, accurate a priori state information and 
a priori state error and process noise covariance terms 
Processes pseudorange measurements only - not carrier phase 

Figure 2.4 is generated using position data estimated by GEODE 

compared to post processed POE (accurate to approximately 30 cm radially) 

generated with MicroCosm®. The observations used by GEODE are GPS 

pseudoranges collected by the GPS/MET experiment on 4 Feb 1997. AS is off 

but SA is on. There are 24 hours of data with one pseudorange processed every 

10 seconds. It took less than one minute to process the entire 24 hours of data on 

a 450 MHz Pentium II with 128 MB RAM. The filter converged after processing 

approximately two hours of data and yielded a converged 3D RSS error of 

11.61 m. All RMS and RSS statistics presented in this dissertation are calculated 

using converged estimates (after 2 hours) only. Figure 2.4 shows plots of the 

Radial, In-track and Cross-track (RIC) errors compared to the MicroCosm® mean 

of J2000 POE, along with the square root of the filter's estimated state error 

covariance (positive and negative), also called the estimated standard deviation. 

Figure 2.4 also shows the RIC RMS values and the mean of the errors in each 

direction. A brief description of why the RMS and mean of errors are shown in 

this dissertation as well as a brief discussion of systematic errors follows. 

Without any systematic errors the RMS values presented would indicate 

the level of precision and accuracy attained by GEODE. In the presence of 

systematic errors, the RMS really only provides a measure of precision. In Figure 

2.4 systematic errors can be seen in the periodic nature of the plots and possibly in 
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the mean of the comparison error. For instance, the cross-track plot in Figure 2.4 

shows a periodicity with frequency of once per satellite orbit. This "once per rev" 

periodicity is probably caused by GEODE/POE coordinate transformation 

differences but could also be due to errors in the filter's dynamic and 

measurement models. Periodicities in errors are not revealed in the mean and 

RMS of error statistics. Looking at plots and/or plotting the power spectrum of 

the errors can reveal periodic errors. The in-track plot in Figure 2.4 shows a mean 

in the difference between the POE and the filter's estimate of-1.12 m in the in- 

track direction. It is difficult to ascertain the cause of the error mean but it could 

be from systematic or random errors. Systematic errors can be introduced into the 

filtering process through the GPS pseudorange measurements, the mechanics of 

the filter, the observation model or the dynamic model. Random errors are most 

certainly introduced in the GPS pseudorange measurements but could also be 

introduced in other ways. 

Since the source of the mean of comparison error shown in the in-track 

plot in Figure 2.4 cannot be determined, no conclusions can be drawn from it 

alone. However, if a change is made to GEODE that decreases the error mean, 

then it might be concluded the change reduced some systematic error. In this 

dissertation improvements to GEODE will be gauged not only by their affect on 

the RMS and RSS of the errors between GEODE's satellite position estimates and 

POE but also by the affect on the mean of the comparison errors. 
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3D RSS Error = 11.61m 
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Figure 2.4 - GEODE GPS/MET Position Error in Mean of J2000 Rotated to RIC 
Statistics Are Calculated Based On Converges Estimates Only 

2.2.1 UDUT Factorized Covariance 

The conventional Extended Kaiman Filter (EKF) formulation is shown 

below [38]. 

Pk =«>(tk,tk_1)Pk-1<i>T(tk,tk_1) + Qk (2-1) 

yk=Yk    -Y, 
observed -^computed 

Kk=PkH^(HkPkH^+R)_1 

x
k 

=x
k
+K

kyk 

Pk=(l-KkHk)Pk 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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where 

Pk = time updated covariance matrix at time k 

Pk.i = measurement updated covariance at time k-1 

Qk = process noise covariance matrix at time k 

yk = measurement residual at time k 

Kk = Kaiman gain at time k 

Hk = observation-state matrix at time k 

Xk = A priori estimate of the state at time k 

Xk = best estimate of the state at time k 

R = Observation Error Covariance Matrix 

Implementation of the conventional EKF can lead to filter divergence either 

through inaccuracies in the mathematical models used in the filter (dynamic or 

measurement models) or through the state error covariance matrix becoming non- 

positive definite. Since errors introduced during the computational procedure are 

the cause of the covariance matrix becoming non-positive definite, a 

reformulation of the algorithm can minimize these errors [38]. Therefore, several 

filter algorithm modifications have been developed to improve the numerical 

stability of the Kaiman filter. 

The UDUTfactorized covariance implementation of the Kaiman filter was first 

introduced by Thornton and Bierman [39, 40] where 

P = UDUT (2.6) 

U is unit upper triangular and D is diagonal. Factorizing the state error 

covariance matrix in this way avoids square roots, guarantees non-negativity of 

the computed covariance and keeps the filter numerically stable and accurate [37]. 
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Numerical stability means that an algorithm computes the same result even when 

the initial conditions are slightly perturbed. The UDUT factorization provides 

numerical stability [41]. The UDUT factorization algorithm performs the time 

and measurement updates on the U and D matrices rather than directly updating 

the P matrix. The algorithm is implemented in GEODE so the measurement 

update is performed on each measurement independently. Maybeck shows both 

the numerical advantages and computational burden changes due to employing 

various covariance factorizations. Maybeck's conclusion is that with a 10 

member state and two measurements to update, UDUT factorization provides the 

best balance of numerical stability and reduced computational burden [41]. The 

algorithm as implemented in GEODE can be found in the GEODE Mathematical 

Specification [37]. 

2.2.2 Process Noise 

Kaiman filter algorithms use the process noise covariance matrix, Qk, to 

correct the state error covariance for inadequacies in the force model. See 

equation (2.1). Without process noise, elements of the covariance matrix 

asymptotically approach zero, as does the Kaiman gain. When this occurs, as 

seen in equation (2.4), the filter begins ignoring measurements [38]. Ignoring 

measurements forces the filter to rely solely on the dynamic model and since the 

system's dynamics are linearized, filter divergence can result. 
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GEODE's EKF uses a "physically connected" algorithm for calculating 

the gravitational acceleration's contribution to the position and velocity 

components of the state error covariance [37]. The "physically connected" 

algorithm uses gravity model variances in the position and velocity process noise 

formulations. Gravitational acceleration forces are chosen since they provide the 

largest force model errors. The formulation of the position and velocity process 

noise components (upper left 6x6 of the Q matrix) rely heavily on radial, in-track, 

and cross-track correlation times provided to GEODE in the uplink command file. 

These correlation times change depending on the semi-major axis of the user 

satellite's orbit and the degree and order of the gravity model used in GEODE. 

The correlation times are calculated using an algorithm presented in Wright [42] 

and Fortran code is available with GEODE for these calculations. Example 

correlation times for various truncations of the JGM-2 and EGM-96 gravity 

models are shown in Chapter 3. 

Random-walk algorithms are implemented for the remaining elements of 

the state, i.e., the receiver clock bias, receiver clock bias drift rate, atmospheric 

drag coefficient (CD) and the solar radiation pressure coefficient (CR). The 

process noise covariance algorithms for these elements of the state are also found 

in the GEODE Mathematical Specification [37]. 
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2.2.3 Dual Frequency GPS Observations 

GEODE was designed for use with a single frequency GPS receiver. 

Therefore, several changes are made to GEODE's measurement handling 

procedures to take advantage of dual frequency GPS observations. The reason for 

the change is that the GPS/MET data was collected using a dual frequency 

receiver, with AS off. 

2.2.3.1   Ionospheric Correction 

If dual frequency GPS measurements are used in GEODE, the PI and P2 

measurements can be combined to remove the first order ionospheric effects on 

the pseudorange and phase measurements [10,43]. The ionospheric time delay at 

the Li frequency is 

1 
AtL,= 1     c 

f      f2       ^ 

f2-f2 
V1!        l2 ) 

(PP.-PPJ (2-7) 

Likewise the ionospheric time delay at L2 is 

2       C 
(PP,-PP2) (2-8) f2-f2 

V1!        X2 

where 

c = the speed of light in a vacuum = 299,792,458 m/s 

fi = 1575.42 MHz 

f2 = 1227.6 MHz 

pp = pseudorange measurement taken on Lj 

pp = pseudorange measurement taken on L2 
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Therefore, the ionosphere free pseudorange measurement is: 

p   =p   +cAtL =pp +cAtL 

or 

(      f2 

Pp3 = PP, + Ark-PpJ 
Vxl        L2 

leading to 

(   f2    \ 

Pp = , f2-f2 
V1!        l2 J 

PP, " f2-f2 

VT1        r2 J 

(2.9) 

(2.10) 

(2.11) 

Substituting in the LI and L2 frequencies and simplifying we get: 

1698pPi-1031pP2 

Pl>3~ 667 

an approximation to this equation is: 

pp3 =2.5pPi-1.5pp2 

Likewise, the following can form the ionospheric free phase measurement: 

As ApP] = cAtL], 

A^L, =~fL AtLi and A^ = -fL2AtLz 

(2.12) 

(2.13) 

leading to 

and thus 

<t>L31 = *L, ~ A(t>Ll and   <|)LM = (|)L2 - A(|)L2 

*L,., =K +fL,AtLl 
and K,=K +fL,AtL, 

(2.14) 

(2.15) 

(2.16) 

using equation (2.7) 
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X            1 f f
LfL

2   1 Ll    L2 

f2    -f2 
\%         L2 ) 

(PP,-PPJ (2.17) 

now using equation (2.10) 

fL      ,                               V 
(2.18) 

and 

*LU=+L1+-^-(PP3-PP1) (2.19) 

To convert the phase measurement to range units use 

PL, =         ' (2.20) 

Figure 2.5 shows a plot of the dual frequency ionospheric corrections for 

the 4 Feb 1997 GPS/MET data. The solar flux (F10.7) for the 4 Feb 1997 is 

approximately 70. The benign solar flux environment contributes significantly to 

the low (3.93 m) mean of the ionospheric delay on this day. The elevation of the 

GPS satellites with respect to the Orb View-1 satellite is also shown on the plot in 

Figure 2.5 for the largest ionospheric corrections. Distinction between 

measurements taken while the Orb View-1 satellite is in the Sun (day) and in 

darkness (night) is also made on the plot. The difference in the mean between the 

day and night corrections is significant (2.79 m), as expected. 
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mean 3.93 m 

Figure 2.5 - GPS/MET Dual Frequency Ionospheric Delay Corrections 

2.2.3.2   Interfrequency Bias 

Another important consideration when using dual frequency GPS data is 

to correctly handle the GPS satellite interfrequency bias. Differences in the 

hardware signal paths of the LI and L2 signals on board each GPS satellite create 

a space vehicle (SV) dependent group delay differential between LI and L2 [44]. 

The L1-L2 interfrequency bias is broadcast in the navigation message and is 

designated with the variable Tgd. The Tgd correction is implemented for single 

frequency users because the broadcast clock correction coefficients are based on 

the effective code phase using dual frequency ionospheric corrections. Therefore, 

the single frequency user must adjust for this differential delay. GEODE does 

account for Tgd so it must be removed when processing dual frequency data. 
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Table 2.1 shows a comparison of the errors between GEODE and MicroCosm® 

POE when GEODE uses single and dual frequency measurements. Although the 

3D RSS and mean of the radial error errors improved with use of the dual 

frequency ionospheric corrections, the mean of the in-track error changed by over 

3 meters. One possible explanation is an unknown systematic error is introduced 

by the application of the dual frequency correction. There could be errors 

associated with the Tgd correction itself as JPL found errors in the initial broadcast 

Tgd values and began estimating new values for the Air Force to broadcast starting 

in 1999 [44]. Another possibly error source could be that the receiver 

interfrequency bias is not being accounted for adequately in the estimation of the 

receiver clock bias. No additional insight into the cause of the in-track error mean 

increase is found by comparing the measurement residuals in Table 2.2 or by 

looking at plots of the errors in Figure 2.6 and Figure 2.7. Qualitatively, it can be 

said that the precision of the GEODE estimate using dual frequency 

measurements is improved but nothing definitively can be said about its accuracy. 

The dual frequency GPS/MET ionospheric corrections will be used in Chapter 4 

to compare GEODE results achieved with application of the Differenced Range 

Versus Integrated Doppier (DRVTD). 

Table 2.1 - GEODE GPS/MET Single Versus Dual Frequency Error Results 
GPS/MET - 4 Feb 1997 Error Mean (m) RMS Error (m) 

R I C R I C 3D 
Single Frequency 0.55 -0.99 -0.10 2.74 10.24 2.15 10.81 
Dual Frequency 0.11 2.04 -0.11 2.48 9.68 2.12 10.21 
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Table 2.2 - GEODE GPS/MET Single Versus Dual Frequency Measurement 

Residuals 

GPS/MET 4 Feb 1997 Measurement 
Residual RMS (m) 

Measurement 
Residual Mean (m) 

Single Frequency 44.96 -0.11 
Dual Frequency 44.60 -0.07 

g w 

3D RSS Error = 10.81 m 
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i          i          i         i          i 
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Figure 2.6 - GPS/MET Single Frequency Results 
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3D RSS Error = 10.21 m 
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Figure 2.7 - GPS/MET Dual Frequency Results 

2.2.4 Height Of Ray Path (HORP) Editing 

GEODE uses a technique called HORP to edit out measurements that 

travel through the atmosphere [37]. HORP editing requires two user inputs 

contained in the uplink command file: atmosphere height, h, and maximum 

central angel, amax- h and otmax are shown in Figure 2.8. 
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atmosphere 

Figure 2.8 - HORP Editing 

Measurements are edited out if d < RE +h and a > amax. Here 

a = cos 
Kser PGPS 

(2.21) 

and 

elevation = — cos ' 
2 

f A X ' W 
IY" \~r A| I Miserly 

(2.22) 

If the input for h in the uplink command file is set to 0.0 then 

h=kser|-15km (2.23) 

If h is set to 0.0 when processing GPS/MET data all measurements taken below 

approximately -3.72° elevation will be considered for editing. Again, 
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measurements will not be edited out unless <RE+h and a>ar As 

shown in Table 2.3, the value of amax can significantly affect GEODE's results. 

Table 2.3 - GEODE GPS/MET Varying amax Results 

GPS/MET - 4 Feb 1997 Mean Error (m) RMS Error (m) 

amax* (deg) elevation R I c R I c" 3D 

70 4.6 0.12 4.11 -0.07 4.18 14.77 2.64 15.58 
75 -0.5 0.12 4.11 0.07 4.18 14.77 2.64 15.58 
80 -5.4 0.09 3.49 -0.08 4.46 15.41 2.64 16.26 
85 -10.2 0.04 2.71 -0.14 4.15 13.35 2.62 14.23 
90 -14.9 0.24 0.12 -0.13 3.81 11.71 2.30 12.52 
95 -19.6 0.43 -1.90 -0.13 3.15 11.17 2.25 11.82 
96 -20.5 0.42 -1.54 -0.11 3.11 11.04 1.99 11.64 
97 -21.4 0.48 -1.06 -0.11 2.86 10.63 1.92 11.18 
98 -22.3 0.54 -1.12 -0.12 2.94 10.96 2.42 11.61 
99 -23.2 0.63 -1.34 -0.11 3.09 11.05 2.22 11.69 
100 -24.1 0.55 -0.99 -0.10 2.74 10.24 2.15 10.81 
101 -25.0 0.67 -1.94 -0.09 2.96 10.53 2.01 11.12 
102 -25.9 0.66 -1.61 -0.09 3.08 10.53 2.01 11.15 
103 -26.8 0.96 -3.18 -0.09 3.01 11.06 1.86 11.61 
104 -27.7 0.99 -3.71 -0.09 2.99 11.27 2.07 11.85 
105 -28.5 0.99 -3.71 -0.09 2.99 11.27 2.07 11.85 

* amax is nominally set to 70° 

** h = 0.0 implies 15km below the satellite altitude of «747 km 

2.2.5 Polar Motion and AUT1 

In determining the transformation matrices between the Earth Centered 

Inertial (ECI) mean of J2000 coordinate system and an Earth Centered Earth 

Fixed (ECEF) coordinate system, two parameters are used which require 

prediction, and therefore, are challenging to implement in a real-time filter flown 

on board a satellite. The two parameters are the pole location (polar motion) and 

the difference between the UT1 and UTC time systems. 
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2.2.5.1   Polar Motion 

Polar motion takes into account the fact that the celestial ephemeris pole, 

which is normal to the true equator, is in motion with respect to the terrestrial 

reference frame. In other words, the rotational pole moves within the Earth. The 

maximum amplitude of polar motion is 0.3 arc seconds or approximately 9 m on 

the surface of the Earth [45]. Polar motion consists largely of two motions, an 

annual elliptical component with a period of 365 days and a Chandler circular 

component with a period of about 435 days [46]. The motion is difficult to 

predict and is determined by observations. 

The coordinates of the Earth's instantaneous pole location are measured 

by the International Polar Motion Service (IPMS) in terms of xp and yp 

components in the polar plane. xp is measured along the Greenwich meridian and 

yp is measured along the 90° W meridian. Past values of xp and yp are published 

in the International Earth Rotation Services Final Bulletin found at: 

ftp://maia.usno.navy.mil/ser7/finals.all 

A plot of xp and yp from May 1976 to May 2000 are shown in Figure 2.9. 
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Figure 2.9 - Polar Motion Plot 

The United States Naval Observatory (USNO) also supplies polar motion 

predictions published in the International Earth Rotation Service (IERS) Bulletin- 

A. The estimated accuracy of the predictions is 0.005 arc-second for the 40-day 

predictions [37]. The predicted values of xp and yp are obtained by evaluating the 

following trigonometric functions for the day of interest: 

xp = a2 + a2 cos A + a3 sin A + a4 cos B + a5 sin C (arc-seconds) (2.24) 

y = a6 + a7 cos A + a8 sin A + a9 cos B + a,0 sin C (arc-seconds) (2.25) 

where 

A = - 
271 

365.25 
(MJD-Tp) (radians) (2.26) 



c = 271 

435 
(MJD-Tp) (radians) 
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(2.27) 

MJD = Modified Julian Date = JD of interest - 2500000.5 days 

Tp = epoch of the prediction 

The 10 coefficients are published in the IERS Bulletin-A found at: 

http://hpiers.obspm.fr/iers/bul/bula/bulletinA 

The effect of not including polar motion in GEODE depends on the size of 

the pole wander. The results in Table 2.4 show the effects on GEODE's position 

estimates with and without polar motion when GPS/MET data is processed. The 

comparison is again made against one day of MicroCosm® POE. 

Table 2.4 - GEODE GPS/MET Results With and Without Polar Motion 
GPS/MET-4 Feb 1997 Mean Error (til) RMS Error (m) 

R I C R ■■■,'-.!■ ■':...■. C 3D 
With Polar Motion 0.55 -0.99 -0.10 2.74 10.24 2.15 10.81 
Without Polar Motion 0.65 -0.99 -0.12 2.98 13.05 3.16 13.76 

2.2.5.2   AUT1 

The calculation of the Greenwich Hour Angle (GHA) requires Greenwich 

Sidereal Time (GST), which uses the UT1 time system. UT1 is a time scale 

measured by the rotation of the Earth. UTC is the time scale used worldwide for 

technical and scientific activities and is a compromise between highly stable 

atomic time and irregular Earth rotation. The current practice is to keep the 

difference between UT1 and UTC less than 0.9 seconds by adjusting UTC by 
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integer leap seconds. The USNO distributes the UT1-UTC prediction known as 

AUT1 in the IERS Bulletin-A. AUT1 is calculated by the following equation as 

presented in the IERS Bulletin-A: 

AUT1 = u, + u2 (MJD -TUT1) + u3 (MJD -TUT1 f (seconds) (2.28) 

where 

MJD = Modified Julian Date = JD of interest - 2500000.5 days 

Tun = MJD of the epoch of prediction 

The estimated accuracy of the AUT1 prediction is 0.0048 seconds for a 40 day 

prediction. The effect of not including AUT1 in GEODE is far more significant 

than not including polar motion. See Table 2.4 and Table 2.5. 

Table 2.5 - GEODE GPS/MET Results With and Without AUT1 

GPS/MET - 4 Feb 1997 Mean Error (m) RMS Error (m) 
R I c R I C 3D 

WithAUTl 0.55 -0.99 -0.10 2.74 10.24 2.15 10.81 

Without AUT1 1.68 25.80 -0.9 4.37 28.96 59.73 66.53 

2.2.6 All in View Versus Cyclic 

GEODE has the capability to process measurements from all GPS 

satellites in view or to process the measurements from only one satellite at a given 

observation epoch. The keywords associated with these different processing 

schemes in the uplink command file are ALL for all in view and CYCLIC for 

processing only one observation at each observation epoch. The reason the 
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CYCLIC option is implemented is SA. Since the effects of SA are time 

correlated it is thought that by spacing the processing of GPS observations at the 

same period as the correlation in SA, the SA errors would appear more random 

[4]. Therefore, a time variable is also included in the uplink command file known 

as minimum sampling frequency. This minimum sampling frequency is 

nominally set at the correlation time of SA (3-5 minutes) [37]. In reality, tuning 

the minimum sampling frequency yields significant changes in GEODE's 

estimates. Table 2.6 shows a comparison of GEODE results when processing all 

in view verses cyclic. Table 2.7 shows results of tuning the minimum sampling 

frequency. An additional advantage to only processing one GPS measurement at 

each observation epoch is reduced computational burden since measurements 

from a minimum of 5 and a maximum of 8 GPS satellites are available at each 

observation epoch. The CYCLIC scheme is used throughout this dissertation as 

no accuracy / precision improvement is shown when processing all GPS satellites 

in view, even with SA free data. 

Table 2.6 - GEODE GPS/MET ALL vs. CYCLIC Comparison 
GPS/MET - 4 Feb 1997 Mean Error (m) RMS Error (m) 

R I C R ■■■-■ :,!■■: C 3D 
CYCLIC-*110 0.55 -0.99 -0.10 2.74 10.24 2.15 10.81 
ALL 1.68 -4.48 -0.08 4.38 13.94 2.05 14.76 

* 110 is the minimum sampling frequency in seconds 
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Table 2.7 - GEODE GPS/MET Min Sampling Frequency Tuning Results 

GPS/MET-4 Feb 1997 Mean Error Ml RMS Error (m) 
min sampling frequency R I C R I C 3D 

10 (sec) 0.67 -2.26 -0.06 3.36 11.53 1.77 12.14 
20 0.61 -1.87 -0.09 2.99 10.77 1.98 11.35 
30 0.60 -1.70 -0.10 3.03 10.83 2.17 11.45 
40 0.60 -1.70 -0.10 3.03 10.83 2.17 11.45 
50 0.62 -2.27 -0.09 3.01 10.75 1.93 11.33 
60 0.61 -1.82 -0.09 2.93 10.67 2.00 11.24 
70 0.66 -1.84 -0.09 3.07 10.98 2.07 11.59 
80 0.61 -1.52 -0.10 2.70 10.44 2.03 10.97 
90 0.65 -1.67 -0.10 2.85 10.43 2.15 11.03 
100 0.62 -2.04 -0.10 3.09 11.06 2.25 11.70 
110 0.55 -0.99 -0.10 2.74 10.24 2.15 10.81 
120 0.68 -1.88 -0.08 3.22 10.83 1.77 11.43 
130 0.63 -1.88 -0.10 3.16 10.46 2.31 11.17 
180 0.49 -0.98 -0.09 3.16 10.10 2.76 10.94 
240 0.50 -0.45 -0.06 3.98 12.18 2.80 13.12 
300 0.27 -0.02 -0.12 4.48 15.09 3.06 16.04 

2.2.7 Antenna Phase Center Offset From Satellite Center of Gravity (CG) 

Since the phase center of a GPS antenna may not be coincident with the 

CG of the satellite it is important to account for this offset when computing the 

predicted measurement. As reported earlier, the phase center of the GPS/MET 

antenna is offset from the Orb View-1 CG by 

-0.507 m in the x direction 
0.039 m in the y direction 

-0.178 m in the z direction [19] 

The OrbView-1 satellite's attitude is maintained with 5-10° accuracy. Since a 

10° attitude error translates to a maximum of a 4 cm error in x, y, or z, the offsets 

detailed above can be assumed to be fixed. Here, x is in the in-track direction, y 

is in the cross-track direction and z is in the radial direction. GEODE currently 
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has the capability to map the antenna phase center to the satellite's CG through a 

transformation from RIC coordinates to inertial coordinates. Obviously, a more 

rigorous approach would be to use accurate attitude information along with the 

above body fixed offsets to more precisely account for the offset in inertial space. 

Unfortunately, GEODE does not currently have this capability. Results are 

shown in Table 2.8 using no offset and the offset reported above. The 26 cm 3D 

RSS and over 1 m in-track bias improvements came with no additional 

computational burden as GEODE accounts for the offset even when it is zero. 

Table 2.8 - GEODE GPS/MET Antenna Phase Center Mapping Results 

GPS/MET - 4 Feb 1997 Mean Error (rn) RMS Error (m) 

Antenna Offset (m) :  !Rv-\.:- I C R ..I .■'■:)■ ■:'..\C ■■'■■< 3D 
0.0 0.0 0.0 0.63 -2.06 -0.10 2.70 10.54 2.03 11.07 

; 0.178 -0.507 -0.039 0.55 -0.99 -0.10 2.74 10.24 2.15 10.81 

2.2.8 Lagrange Interpolation of Precise GPS Ephemerides 

The motivation for investigating the accuracy of precise GPS ephemerides 

compared to broadcast ephemerides is to determine the accuracy gained in 

satellite OD and the feasibility of using precise GPS ephemerides in a real-time 

OD scheme on board a satellite. Several organizations, JPL being one of them, 

produce GPS ephemeris predictions that are more accurate than those broadcast. 

Satellite OD in real-time can use either broadcast or predicted precise 

ephemerides. Obviously, post-processed precise ephemerides cannot be used in a 

real-time scenario. This section includes a comparison of broadcast and precise 

ephemerides, a comparison of GEODE interpolated ephemerides and ephemerides 
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interpolated using an International GPS Service (IGS) executable (reported 

accuracy of this interpolator is at the mm level), a comparison of Lagrange 

interpolated ephemerides and IGS ephemerides and finally the Lagrange 

interpolation algorithm. 

2.2.8.1   Broadcast Versus Precise GPS Ephemerides 

The first comparison is between broadcast and precise ephemerides for 

GPS PRN01 on 2 Feb 1997. Zumberge [24] reports broadcast ephemerides are 

accurate to 5 to 10 meters. Figure 2.10 shows a slightly smaller 3D RSS position 

error of 3.71 m, however, only 4 hours of data are plotted. The time bias error in 

the lower of the two plots in Figure 2.10, is the difference between the broadcast 

GPS clock correction and the correction supplied with the precise ephemerides. 

The large step decrease in the bias error at the two-hour point is due to switching 

to a new set of broadcast ephemerides. 
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Figure 2.10 - Broadcast vs. Precise Ephemeris PRN01 2 Febl997 
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2.2.8.2   GEODE Interpolation Versus Precise GPS Ephemerides 

The next comparison is between GEODE's interpolation of precise 

ephemerides and interpolation done by the IGS software. "Truth" data is 

generated using the IGS software and output at 1-second intervals. GEODE's 

interpolator is then used to interpolate between 5-min, 15-min and 30-min interval 

data, simulating the uplink of a set of precise ephemerides. The 30-min interval 

data would be the best choice since it requires the least uplink overhead. Figure 

2.11 shows the results of GEODE's interpolator using precise ephemerides at a 

5-min interval. It is not known what causes the excursion at the start of the 

position error plot. Figure 2.12 shows the results of GEODE's interpolator with 

15-minute interval precise ephemerides. GEODE's interpolator is not 
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documented in the Mathematical Specification so it is difficult to ascertain the 

cause of the excursions and larger error. The 15-minute interval GPS 

ephemerides could not be used due to the large errors. 
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Figure 2.11 - GEODE Interpolator with 5-Minute Interval Ephemeris 
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Figure 2.12 - GEODE Interpolator with 15-Minute Interval Ephemeris 

2.2.8.3   Lagrange Interpolation Versus Precise GPS Ephemerides 

Next, a Lagrange interpolation scheme is used and the results compared to 

the IGS interpolation. The best results are attained using the 5-minute ephemeris 

interval but the result achieved with the 12th order interpolation and 30-minute 

interval is the best balance of accuracy, upload minimization and reduced 

computational burden. It is interesting to note that the Lagrange interpolation 

performed worse using 17th order than 12th order. Figure 2.13 shows the 12th 

order Lagrange interpolation using 30-minute interval data and Figure 2.14 shows 



the 17th order interpolation using 30-minute interval data. A summary of the 

results for each of the above methods is shown in Table 2.9. 
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Figure 2.13 - Lagrange with 30-Minute Interval and 12th Order Interpolation 
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Figure 2.14 - Lagrange with 30-Minute Interval and 17th Order Interpolation 

Table 2.9 - Statistics of Results 
Method Ephemeris 

Interval (min) 
Interpolation 

Order 
RSS of Range 
Error (meters) 

RMS of Bias 
Error (meters) 

Broadcast n/a n/a 3.7072 0.05129 
GEODE 5 n/a 3.8995 0.0001556 
GEODE 15 n/a 629.03 0.0006 
Lagrange 30 12 0.0040 0.001692 
Lagrange 30 17 0.0055 0.00343 

2.2.8.4   Precise Ephemerides Interpolation Conclusions and Lagrange 
Algorithm 

The conclusion drawn from these results is that the GEODE interpolator 

needs to be replaced. It produces inconsistent results and it requires ephemerides 

closely spaced in time. The Lagrange interpolation scheme performs more 

consistently, is much more accurate with ephemerides at lower frequency and its 
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computational burden is smaller than GEODE's. Below find the algorithm used 

for Lagrange interpolation borrowed from Hofmann-Wellenhof [ 17]. 

Assume functional values f(tj) are given at epochs tj, j = 0,1,..., n. Where 

n is the order of the interpolation. Here f(tj) are the GPS satellite x, y, z position 

values and the GPS clock bias values. Then, 

lM   (t-t,)(t-t,)-(t-t„) 

*(,"('.-«.X'J-«.)-('.-.) 
(2.29) 

The interpolated value at epoch t follows from the summation 

f(t) = Zf(tjH(t) (2-30) 
j=0 

The implementation of the algorithm shown above in GEODE is: 

Given:   GPS ephemeris (xi; y,, Zj) and biasj at times U   i = 1 to n 
Find: GPS ephemeris (x, y, z) and bias at time T 

x = 0  y = 0  z = 0  bias = 0 

i = 1 to n 
li=l 
t; = time of ephemeris at time i 
j = 1 to n 

ifi^j 
tj = time of ephemeris at time j 

li = li*(T-tj)/(ti-tj) 
end if 

endj 
X = X + 1; * Xj 

y = y + lj * yi 

Z = Z + lj * Zi 

bias = bias + 1; * biaSi 

endi 
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2.2.8.5   GEODE Results Using Precise GPS Ephemerides 

There is only a marginal improvement in GEODE's position estimates, 

compared to MicroCosm® POE, when precise GPS ephemerides are used instead 

of those broadcast.   Table 2.10 shows a comparison of the results using 

GPS/MET data. The minimal improvement is most likely due to SA. SA can 

cause tens of meters of error in the pseudorange measurement and is such a 

dominating error source it swamps the errors introduced by using broadcast 

ephemerides. 

Table 2.10 - GEODE GPS/MET Results Using Precise GPS Ephemeris 
GPS/MET-4 Feb 1997 RMS Error (m) 

R I ■■-e-'i R I C 3D 
Broadcast Ephemeris 0.55 -0.99 -0.10 2.74 10.24 2.15 10.81 
Precise Ephemeris 0.58 -1.05 -0.09 2.99 10.11 1.97 10.73 

Table 2.11 shows results of processing GEODE on SA free T/P data from 

5 May 2000. Here the GEODE solution is compared to POE generated by JPL. 

While the improvement on the GPS/MET data is only 0.74%, the improvement to 

the T/P data is 10.0%. Therefore, it is concluded that in the presence of SA using 

precise GPS ephemerides is unnecessary while in the absence of SA, using 

precise GPS ephemerides may be a viable method of improving OD accuracy. 

Table 2.11 - GEODE T/P Results Using Precise GPS Ephemeris 
T/P-5 May 2000 RMS Error (m) 

R I C R I C 3D 
Broadcast Ephemeris 0.21 -0.04 0.01 0.35 1.06 0.44 1.20 
Precise Ephemeris 0.22 -0.16 0.00 0.34 0.97 0.31 1.08 
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2.2.9 JPL High-Rate GPS Clock Estimates 

In order to assess GEODE's accuracy with SA off, data with SA free 

measurements are needed. The TYP data mentioned in the previous section can be 

used but at the T/P altitude (1336 km), ionospheric effects are smaller and the 

satellite's dynamic environment is more benign. GPS/MET, on the other hand, is 

lower (750 km altitude) and thus experiences larger measurement errors due to 

ionosphere and a more challenging dynamic environment. Unfortunately, there 

are no periods during the GPS/MET mission when SA is off. Therefore, high rate 

GPS clock estimates produced by JPL using GOAII are used instead of the 

broadcast or precise GPS clock estimates [47]. The high rate clock estimates are 

found at: 

ftp://sideshow.ipl.nasa.gov/pub/gipsy products/hrclocks/ 

2.2.9.1   JPL High-Rate GPS Clock Estimate Challenges 

There are several challenges in using the JPL high rate GPS clock 

estimates. There are sporadic time periods, for different GPS satellites, when the 

high rate clock estimates are not available. Figure 2.15 shows two several hour- 

long periods where the high rate estimates are not available. The 3 Feb 1997 

GPS/MET data has only 7 out of 25 GPS satellites without gaps. The typical gap 

length is 2-3 hours. 
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Figure 2.15 - High Rate Clock Corrections for PRN 4 on 3 Feb 1997 

Another challenge of using the high rate clock estimates is there are 

discontinuities from one day to the next due to changes in the reference ground 

clocks used to generate the estimates [47]. Also, satellite clock estimates 

available on one day may not be available the next day. Fortunately, each 

24-hour arc uses the same reference ground clock and usually satellites are not 

dropped during a 24-hour arc. 

A final item of interest is a bias between the broadcast clocks and the high 

rate clocks. As seen in Figure 2.16 and Figure 2.17, the high rate GPS clock 

estimates from 3-5 Feb 1997 are biased by 72.3 m for PRN 2 and 71.8 m for 

PRN 9. The bias is not constant over the coarse of a day and slowly increases 
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over time. The data for all other GPS satellites on these days have similar biases. 

The bias between the broadcast clocks and the JPL high rate clocks is due to a 

bias between the reference ground clock used in the estimation of the JPL high 

rate clocks and GPS system time [48]. Fortunately, the bias is absorbed in the 

estimate of the receiver clock bias, since it is nearly constant for all satellites. 

x10 3-5 Feb 1997 - prn02   bias = 72.33 m 

10 

broadcast clock bias 
high rate clock bias 
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Time (hours) 

80 

Figure 2.16 - Broadcast vs. High Rate Clock Biases for PRN 2 
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Figure 2.17 - Broadcast vs. High Rate Clock Biases for PRN 9 

2.2.9.2   Application of JPL High Rate GPS Clock Estimates 

While application of the JPL high rate clock estimates does not completely 

remove the effects of SA, due to the reasons mentioned above, it does provide a 

pessimistic indication of the results attainable with SA off. When processing the 

4 Feb 1997 GPS/MET data, gaps in the high rate clock data are interpolated 

through and where data is not available for a GPS satellite, the satellite's 

measurement is not used. Table 2.12 shows results when the high rate GPS clock 

estimates are used instead of those broadcast for single and dual frequency and for 

precise and broadcast ephemerides. As expected, the case where the high rate 
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GPS clocks are used with dual frequency ionospheric correction and precise GPS 

ephemerides provide the most accurate and most precise results. 

Table 2.12 - GEODE GPS/MET SA Off Results Comparison 
GPS/MET-4 Feb 1997 Error Mean(m) RMS Error (m) 

Single Frequency R I c R I C 3D 
Broadcast Clock Biases 
Broadcast GPS Ephemerides 

0.55 -0.99 -0.10 2.74 10.24 2.15 10.81 

Broadcast Clock Biases 
Precise GPS Ephemerides 

0.58 -1.05 -0.09 2.99 10.11 1.97 10.73 

High Rate Clock Biases 
Broadcast GPS Ephemerides 

0.28 -3.59 -0.04 2.22 7.23 0.77 7.60 

High Rate Clock Biases 
Precise GPS Ephemerides 

0.30 -3.56 -0.03 2.31 6.95 0.74 7.36 

Dual Frequency R I C R I C 3D 
Broadcast Clock Biases 
Broadcast GPS Ephemerides 

0.11 2.04 -0.11 2.48 9.68 2.12 10.21 

Broadcast Clock Biases 
Precise GPS Ephemerides 

0.11 2.01 -0.11 2.48 9.22 2.03 9.76 

High Rate Clock Biases 
Broadcast GPS Ephemerides 

-0.08 -1.38 -0.04 2.10 6.14 0.86 6.55 

High Rate Clock Biases 
Precise GPS Ephemerides 

-0.06 -1.35 -0.03 1.91 5.43 1.04 5.85 

2.3 SA Free T/P Data 

Another data set used in the research performed for this dissertation is 

from the T/P satellite (collected on 5 May 2000). Again, SA was turned off on 2 

May 2000. Additional information regarding T/P can be found at: 

http://topex-www.jpl.nasa.gov/ 

While the dynamic environment and ionospheric effects on T/P (1336 km 

altitude) are more benign than those at lower altitudes, SA free T/P data is also 

used to gauge GEODE's performance. 
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Figure 2.18 shows plots of the radial, in-track and cross-track errors 

between GEODE's position estimates for T/P and JPL's POE. The 1.2 m 3D RSS 

error is a significant improvement over the GPS/MET results (6.55 m 3D RSS) 

with high rate GPS clock estimates used to reduce the effects of SA. Another 

indication of the significance of SA being turned off is the measurement residual 

plot in Figure 2.19. A comparison between a plot of the measurement residuals 

for the GPS/MET data with high rate GPS clock estimates applied (shown in 

Figure 2.20) and the T/P measurement residuals (shown in Figure 2.19) shows an 

order of magnitude difference. The T/P measurement residual RMS is 3.3 m 

while the GPS/MET measurement residual RMS is 31.5 m. Table 2.13 shows a 

summary of T/P results with and without precise GPS ephemerides. Improvement 

to GEODE will be gauged in this dissertation by processing both GPS/MET and 

T/P data. 

3D RSS Error = 1.20 m 

Figure 2.18 - GEODE SA Free T/P Results 
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Figure 2.19 - T/P Measurement Residuals 
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Figure 2.20 - GPS/MET with High Rate GPS Clock Estimates - Measurement 
Residuals 
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5 May 2000 Error Mean (m) Error RMS (m) 
R I C R I C 3D 

T/P 0.21 .-0.04 0.01 0.35 1.06 0.44 1.20 
TOEX with Precise GPS 
Ephemerides 

0.22 -0.16 0.00 0.34 0.97 0.31 1.08 

2.4 Summary 

The data collected by both the GPS/MET experiment on board the 

OrbView-1 satellite and T/P is extremely valuable in gauging the 

accuracy/precision of the real-time satellite OD software suite known as GEODE. 

Several GEODE processing schemes are investigated and results are presented for 

several modifications to GEODE that improve performance and provide insight 

into GEODE's abilities in an SA free GPS environment.    Results presented in 

Table 2.12 and Table 2.13 will be used as a benchmark to compare results 

achieved with suggested improvements to GEODE in Chapters 3-6. 



CHAPTER 3 

Earth Gravity 

Post-processing and near real-time Precise OD (POD) systems have the 

luxury of using state-of-the-art work stations or networked systems, while real- 

time systems are limited to the latest space qualified hardware. Unfortunately, the 

processing capability difference between ground computers and those found on 

satellites is significant. High-end flight computers have roughly the equivalent 

computational power of a 60 MHz Pentium I [49]. Therefore, on board OD 

systems must minimize the computational burden of their software while 

maximizing accuracy and autonomy. One area where computational burden can 

be reduced significantly, without overly decreasing accuracy, is the degree and 

order of the gravitational acceleration model used. 

This chapter presents the results of an investigation into the effects on 

accuracy and computational burden of the degree and order of the gravity model 

used in propagating an orbit and in performing satellite OD. Since 20% of 

GEODE's computational time is spent evaluating gravitational accelerations, a 

method is also investigated to significantly reduce GEODE's computational 

burden by replacing spherical harmonic coefficient with an approximation 

method. 
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3.1 Model Size Integration Results and Computational Burden Estimates 

The size (degree and order) of the gravity model used in propagating a 

satellite orbit from one time to the next significantly affects the accuracy of the 

propagation. But, as the degree and order of the gravity model increase, so does 

the computational burden on the computer used for the propagation. In 

performing real-time, autonomous satellite OD, it is highly desirable to minimize 

the computational burden while maximizing accuracy. The accuracy required by 

the integrator depends on the altitude of the satellite and the type of estimation 

filter used. The higher the satellite, the smaller the size of the gravity model 

needed to achieve the same accuracy. Figure 3.1 shows a comparison of 

accelerations calculated at various altitudes between a full 70x70 JGM-2 gravity 

model and truncated models. The trends, as expected, show decreasing accuracy 

with smaller models and lower altitude. 

The filter type also affects the size of the gravity model needed. If the 

filter is a batch or batch-sequential, then the state is not measurement updated 

after each measurement is processed. Therefore, the integration time used in a 

batch or batch-sequential processor is typically a day or longer. On the other 

hand, an EKF updates the state every time a measurement is processed, thereby 

significantly reducing the integration time. In the case of processing the 

GPS/MET data, the measurements are 10 seconds apart so the integration time 

between measurements is only 10 seconds. 
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Figure 3.1 - Acceleration Accuracy Comparison of Various Size Gravity Models 
at Various Altitudes 

To accurately assess the size of gravity model to be used in an on board 

EKF, the filter must be run with real or simulated data using various size gravity 

models. The position and velocity estimates are then compared to "truth" to 

assess accuracy. 

Another method that can be used to guide the choice of the size of the 

gravity model used in real-time OD is to perform a one-day integration using an 

orbit similar to the satellite's mission orbit. This process can be used to narrow 

the design space used for optimizing accuracy/precision versus computational 

burden. Table 3.1 shows a comparison between GPS/MET orbit propagations 
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performed with several truncations of the EGM-96 gravity model. The first 

column is the number of coefficients in the spherical harmonic coefficient 

expansion used to calculate the acceleration. The second column shows the 

number of Floating Point Operations (FLOPS) required in Matlab to calculate the 

non-spherical gravitational acceleration at one point. The third column shows the 

time required to propagate a low Earth, circular orbit for one full day using 

GEODE. Each of these estimates of computational burden are roughly 

proportional, as expected. The final column shows the 3D RSS error of the 

truncated models compared to the full 70x70. 

The initial conditions for the propagation using the 70x70 gravity model 

are shown in Table 3.1. The initial conditions of the propagations performed with 

truncated gravity models are adjusted to provide the best fit to the 70x70 model. 

Table 3.1 - Computational Burden and Accuracy of Various Truncations of the 
EGM-96 Gravity Model 

Model 
Size 

Number of 
Coefficients 

Number of 
Matlab Flops 

GEODE 
Integration 
Time (sec) 

EGM-96 
RSS Error 

Gompared to 
70x70(m) 

5x5 36 528 51.5 91.80 

10x10 126 1553 52.1 31.40 

20x20 456 5103 55.8 6.13 

30x30 986 10653 64.8 1.61 

40x40 1716 18211 68.1 0.61 

50x50 2646 27761 77.9 0.13 

70x70 5106 52853 98.0 N/A 
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Table 3.2 - Initial Conditions of Propagation With EGM-96 70x70 Gravity Model 

Osculating Elements 
a 7122.463 km 
e 0.00143 
i 70.00° 

Q 196.54° 
CO 233.66° 
u 2.47° 

The purpose of Table 3.1 is to show the computational burden required 

and propagation accuracy attainable with truncations of the EGM-96 model. As 

shown in Table 3.1, there is only a 4.5 m difference in accuracy between the 

20x20 truncation and the 30x30 truncation but over a 16% computational burden 

difference. With knowledge of the accuracy attainable with various truncations 

the next step is to compare OD accuracy. 

3.2 GEODE Results and Computational Burden Changes with Various 
Gravity Model Truncations 

There is a moderate improvement in the 24-hour propagation accuracy 

between a 20x20 truncation and a 30x30 truncation (roughly 4.5 m) at the 

GPS/MET altitude and inclination. This section presents a comparison of the 

GEODE OD accuracy and computational burden using various truncations of the 

JGM-2 and EGM-96 models. Table 3.3 presents the JGM-2 Earth gravity state 

noise correlation times generated with Fortran 77 code produced by GSFC called 

autocor4.for (see Section 2.2.2). Table 3.4 shows GEODE's results with various 

truncations of the JGM-2 gravity model using the data in Table 3.3. 
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There is only a one-meter difference in OD accuracy between the 20x20 

truncation and the higher order truncations. The best results are obtained using 

the 26x26 truncation. It is also interesting to note that although there is only a 

one-meter accuracy improvement from the 20x20 truncation to the 30x30 

truncation, there is an 11% difference in the processing time. In general, the 

accuracy and precision increase as the degree and order of the gravity model 

increase. 

The EGM-96 Earth gravity state noise correlation times are listed in Table 

3.5 and the GEODE results are listed in Table 3.6. GEODE performed similarly 

with both gravity models. A comparison between the 3D position error RSS for 

both the JGM-2 and EGM-96 models can be seen graphically in Figure 3.2. The 

conclusion from these results is that a 30x30 gravity model provides the best 

balance of accuracy, precision and computational burden. Next a method will be 

presented to replace GEODE's current method of calculating Earth gravity in an 

attempt to maintain or improve accuracy and precision while reducing the 

computational burden. 
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Table 3.3 - Earth Gravity JGM-2 State Noise Correlation Times 

autocor4.for Direction 
R I ,;. c .,.. 

:  5x5 386.2048 24.5966 754.0956 
10x10 211.0938 4.5542 420.7908 
20x20 136.1409 0.1918 271.4699 
21x21 132.9159 0.2454 264.8726 

:   22x22 129.8031 0.1773 258.6294 
23x23 127.0829 0.2589 253.0201 
24x24 124.4671 0.2155 247.7713 
25x25 122.0885 0.1718 242.9791 
26x26 119.9174 0.1766 238.5807 

:    27x27 117.9191 0.1658 234.5325 
28x28 116.1295 0.1952 230.8798 
29x29 114.4664 0.1525 227.5483 

i      30x30 112.9898 0.15918 224.5475 
40x40 104.9078 0.1340 208.1667 
50x50 102.8627 0.1311 204.0012 
70x70 102.4124 0.1301 203.0799 

Table 3.4 [ - GEODE GPS/MET JGM-2 Comparison 
GPS/MET 
4Febl997 

Mean Error (m) RMS Error (m) 

Gravity 
Model 

Run Time 
(sec) 

R I C R I e 3D 

05x05 60.0 1.71 -5.57 -0.06 25.42 53.87 29.42 66.43 
10x10 64.0 0.54 -2.03 0.62 7.66 18.16 7.15 20.96 
20x20 64.4 0.52 -0.97 0.02 3.12 11.05 2.93 11.85 
22x22 68.7 0.66 -1.14 0.05 2.90 10.53 2.26 11.15 
24x24 69.0 0.58 -0.91 -0.07 2.77 10.56 2.56 11.21 
25x25 69.5 0.58 -0.88 -0.07 2.78 10.36 2.03 10.92 
26x26 71.1 0.60 -1.02 -0.06 2.69 10.18 2.06 10.73 
27x27 71.7 0.57 -0.97 -0.06 2.72 10.26 2.13 10.82 
28x28 72.0 0.56 -0.99 -0.06 2.74 10.31 2.26 10.91 
30x30 72.5 0.55 -0.99 -0.10 2.74 10.24 2.15 10.81 
40x40 76.9 0.52 -0.90 -0.07 2.71 10.14 2.29 10.75 
50x50 86.0 0.52 -0.88 -0.05 2.71 10.12 2.41 10.75 
70x70 117.8 0.52 -0.88 -0.05 2.70 10.11 2.38 10.74 
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Table 3.5 - Earth Gravity EGM-96 State Noise Correlation Times 

autocor4.for Direction 
R I c 

5x5 387.2046 25.1933 754.8398 
10x10 211.0605 4.8500 420.5247 
20x20 134.3853 0.3476 267.6209 
21x21 131.0949 0.3915 261.1110 
22x22 ■■■', 128.4610 0.3233 255.8411 
23x23 : 126.1396 0.3875 251.0632 
24x24 123.9387 0.3443 246.6534 
25x25   r 121.9078 0.3012 242.5654 
26x26     : 120.0385 0.3004 238.7804 
27x27    ,; 118.2884 0.2866 235.2359 
28x28 116.7078 0.3085 232.0099 
29x29 115.2452 0.2680 229.0789 
30x30 113.9493 0.2710 226.4442 
40x40 106.6019 0.2344 211.5380 
50x50 104.5926 0.2283 207.4407 
70x70 104.1469 0.2267 206.5280 

Table 3.6 - GEODE GPS/MET EGM-96 Comp arison 

GPS/MET 
V- 4Febl997 

Error Mean (m) RMS Error (m) 

Gravity Model R I ;: ■.:.£ R I ,'u.C ■. 3D 
05x05 1.71 -5.58 -0.06 25.45 53.88 29.40 66.45 
10x10 0.54 -2.01 0.62 7.70 18.21 7.16 21.03 

20x20 0.52 -0.96 0.01 3.13 11.03 2.94 11.83 
22x22 0.57 -0.87 -0.08 2.78 10.55 2.63 11.22 
24x24 0.57 -0.87 -0.08 2.78 10.55 2.63 11.22 

25x25 0.57 -0.82 -0.07 2.82 10.40 2.11 10.98 
26x26 0.60 -0.98 -0.07 2.71 10.21 2.12 10.78 
27x27 0.57 -0.95 -0.07 2.73 10.26 2.16 10.84 

28x28 0.56 -0.95 -0.07 2.75 10.33 2.26 10.92 

30x30 0.55 -0.97 -0.11 2.75 10.25 2.18 10.83 
40x40 0.53 -0.90 -0.07 2.71 10.16 2.35 10.78 
50x50 0.52 -0.88 -0.06 2.71 10.13 2.42 10.76 

70x70 0.53 -0.88 -0.06 2.71 10.12 2.40 10.75 
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Figure 3.2 - JGM-2 / EGM-96 3D Position Error RSS Comparison 

3.3 Gravitational Acceleration Approximation Function (GAAF) 

Improving the speed of gravitational acceleration computations can 

significantly reduce the computational burden of an on board computer 

performing real-time satellite OD. Several methods currently used to improve the 

speed of computing gravitational accelerations are truncating the gravity model, 

pre-selecting a significant subset of coefficients, or tuning a truncated gravity 

field through estimation. Another method described in Hujsak [50] represents 

gravitational accelerations in terms of an instantaneous two-body acceleration for 

an instantaneous pseudocenter of the Earth. A set of pseudocenters at various 

heights and fixed latitude and longitude are fit to polynomials or polynomial 

quotients. The polynomial coefficients are calculated at various latitudes and 

longitudes. The stored coefficients are used to calculate the gravitational 
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acceleration. First, polynomials are evaluated using the satellite's height to 

recover a set of six pseudocenters surrounding the desired latitude and longitude 

of the satellite. Then, a six-point, bi-variate interpolation scheme is implemented 

to recover the pseudocenter at the given latitude and longitude. The pseudocenter 

is then used to recover the gravitational acceleration. 

In the following development of GAAF, the method of pseudocenters is 

introduced and the benefits of ignoring the C2,o geopotential coefficient term in 

pseudocenter formulation are discussed. Next polynomial representation of 

pseudocenters as a function of height is shown, followed by interpolation of 

pseudocenters on a sphere of common height. Finally, storage requirements are 

shown. 

3.3.1 Method of Pseudocenters 

Given the Earth Centered, Earth Fixed (ECEF) gravitational acceleration 

on a spacecraft, äECEF, and using the restricted two-body equation of motion, a 

pseudocenter, cECEF, can be calculated. In equation (3.1) pECEF is a pseudoradius 

to the spacecraft. 

aECEF=_li ~ (3-1) 
P 

In the above equation aECEF is the nonspherical acceleration calculated 

using spherical harmonic coefficient expansion of the nonspherical gravitational 

coefficients. Now the actual radius to the satellite is the pseudoradius plus a 

pseudocenter. A pseudocenter is a vector from the center of the Earth to where 
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the center of the Earth would need to be for the nonspherical acceleration acting 

on the satellite to equal the restricted two-body acceleration acting on the satellite. 

rECEF = PECEF +CECEF W-4) 

or 

^ECEF = %CEF ~~ PECEF W'^J 

By definition, 

PHPECEFI (34) 

and 

PECEF 
= PPECEF \3-->) 

Also, since the pseudoradius vector is in the opposite direction of the acceleration: 

PECEF =-1^ (3-6) 
PECEF | 

Therefore, substituting equation (3.5) into equation (3.3) yields: 

CECEF = rECEF _ PPECEF Kp'O 

Now, dot product both sides of equation (3.1) with p yielding: 

|äECEF| = -^— (3-8) 
P 

Therefore, 

P-Jr^-r P.») 
aECEF| 

Leading to the result: 

p       f PECEF (p. 1U) 
aECEF 



or 

CECEF — rECEF + yfczr 
ECEF 

|3/2 
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(3.11) 
•'ECEF 

3.3.2 Benefits of Pseudocenter Formulation Without the C2,0 (J2) Term 

As noted in HujaK [50] the magnitude of the pseudocenters are less than 

15 km (|cECEF| < 15km) for all heights above 100 km. However, omitting the C2,o 

term from the gravitational acceleration calculation yields |cECEF| < 250 meters 

which can halve the storage requirements for the support data. The omitted C2,o 

acceleration is then added in after the pseudocenter is used to recover the 

acceleration. Let 

aECEF0  
— aECEF      aECEFC2 0 

(3.12) 

where 

•lECEFc C2.0 

^2,0 ~      3 2 v   \ x 
*U? " 1 

v j 

"^2,0 ~_ 3 „ 

If 

2r3ir 
51* 

J 

-1 

_r    3^zfRE 
2,0 ~     3 

\2f fz\
2     ^ 

ry 

[51] 

and C2,o = -h = -1.082626925638815xl0"03 (from JGM-2) 

Now the pseudocenter is calculated independent of C2,o- 

(3.13) 

-ECEFn        ^ECEF 
+ ^] 

•*ECEF„ 

•'ECEFn 

3/2 (3.14) 
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3.3.3 Polynomial Representation of Pseudocenter as a Function of Height 

The first step in creating a set of coefficients by which gravitational 

acceleration can be recovered is to determine the altitude range of the spacecraft. 

Hujsak [50] uses an altitude range of 400 km to 1500 km. However, since the 

proposed real-time OD system will be used with spacecraft in circular or near 

circular orbits, smaller ranges are investigated here. Hujsak [50] suggests using 

quotients of polynomials of the form: 

C: 
a0+a1x + a2x

2+....+an_1x
n ' 

l + bjX+....+bd_jX d-l 

where 

x = 
h-hmin 

h„„ -h max mm 

Hujsak [50] reports n + d < 8 if the height in equation (3.16) is limited to 

hmax = 1500 km > h > h^ = 400 km. 

In this study, the GPS/MET spacecraft, altitude 

hmax = 752 km > h > hmin = 732 km, 

is considered first. Up to seventh order polynomials of the form 

C; =a0 +a!X + a2x
2+...+a7x

7 

are considered for the ease of implementation. 

(3.15) 

(3.16) 

(3-17) 
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3.3.4 Pseudocenter Interpolation on a Sphere of Common Height 

Hujsak [50] suggests a six-point, bi-variate interpolation scheme to take 

the pseudocenters calculated from the coefficients to the pseudocenter for a given 

latitude and longitude. Figure 3.3 shows the points used in the six-point, bi- 

variate interpolation scheme [52]. The circles represent the pseudocenters 

calculated at the fixed latitudes and longitudes while the square represents the 

latitude and longitude of the current satellite position. 

A<|) 

AX 

-#- 

Figure 3.3 - Six-Point Bi-Variate Interpolation Scheme 

The equation used for the six-point, bi-variate interpolation is: 
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c0(<|>p,\,h) = c0(<|>0 +pA(|),Xo +qAX,h) 

=.5q(q-l)c((|)0,X0-AX,h) 

+ .5p(p-l)c((|)0-A(t),Xo>h) 

+ (l + pq-p2-q2)c((|)0Ao,h) (3.18) 

+.5p(p - 2q +1) c(<|>0 + A(|), X0, h) 

+.5q(q - 2p +1) c((|>0, X0 + Ak, h) 

+ pq c((j)0 + A(|), A,0 + AA., h) 

where 

P        A<|) 

= (V^o) 
q AX 

(3.19) 

3.3.5 GAAF Storage Requirements 

Hujsak [50] suggests larger increments of longitude as latitude increases to 

reduce storage requirements. In order to simplify indexing into the arrays holding 

the pseudocenter coefficients, there is an overlap between sets of pseudocenter 

coefficients, i.e., latitudes -59° and -60° are contained in sets 3b and 2b (see Table 

3.7). The longitudes contained in 3b are -2°, 0°, 2°,...,360°. Single precision (4 

byte) floating point variables are used. The number of storage bytes needed for 

each latitude and longitude is calculated by: 

# coefficients/pseudocenter * 3 pseudocenters * 4 bytes 
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At the GPS/MET altitude, 1,774,296 bytes are required (1.69 MB) 

compared to 5,024,832 bytes (4.79 MB) for the original implementation. The 

tradeoff is a smaller altitude and inclination range but the storage reduction is 

significant. Table 3.7 shows the longitude increments for different latitudes and 

the storage requirements for each range. 

Table 3.7 - Original GPS/MET GAAF Storage Requirements For 3 Coefficients 
latitudes AX Mats #lons #byteseach total bytes 

3b -75° to -59° 2.0° 17 182 36 111,384 

2b -61° to -47° 1.5° 15 242 36 130,680 

1 -49° to 49° 1.0° 99 362 36 1,290,168 

2a 47° to 61° 1.5° 15 242 36 130,680 

3a 59° to 75° 2.0° 17 182 36 111,384 
Total 1,774,296 

To decrease the complexity of implementing GAAF, coefficients are also 

generated using a single longitude increment of 1°. The number of bytes required 

to store the simplified implementation is 151 * 362 * 3 * 3 * 4 or 1,967,832 bytes 

or (1.88 MB). The small increase in the number of bytes required is worth the 

improved simplicity of implementation. A detailed explanation of how GAAF is 

implemented and validated is shown next. 

3.3.6 Integration With GAAF 

The first task in implementing GAAF is to create a capability to generate 

highly accurate gravitational accelerations at multiple latitudes, longitudes and 

heights. Since GEODE already has a JGM-2 30x30 gravity model working, 

"subroutines" (classes) are taken from GEODE and augmented to include the full 

JGM-2 70x70 gravity model. The updated subroutines are then reintroduced into 
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GEODE. This is done to validate the new gravity model and to provide a method 

for evaluating GAAF. A GPS/MET orbit is integrated with GEODE and the 

results are compared to an integration performed with Analytical Graphics' 

Satellite Toolkit (STK). Additional information about STK can be found at 

http://www.stk.com. A direct comparison in the Earth Centered Inertial (ECI) 

coordinate system shows a 3D RSS error of 0.738 meters. There is no definitive 

explanation for the difference, except possibly differences in the way both 

programs handle polar motion, differences in nutation and precession constants 

and differences in the UTC to UT1 time conversion. Figure 3.4 shows the 

difference between the 70x70 GEODE trajectory and the 70x70 STK trajectory. 

3D RSS Error = 0.738 m 

8 12 16 
Integration Time (hours) 

Figure 3.4 - GEODE / STK Integration Comparison 
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Another method used to ensure the new 70x70 gravity model is working 

properly is to compare the difference between a 70x70 and 30x30 propagation in 

GEODE and the difference between a 70x70 and 30x30 propagation in STK. The 

"differences" comparison shows that truncating the gravity model manifests itself 

the same way for both the STK and GEODE propagations. Figure 3.5 shows the 

excellent agreement between the STK/GEODE truncation comparisons. 

8 12 16 
Integration Time (hours) 

Figure 3.5 - GEODE / STK Difference Comparison 

The conclusion from these results is the JGM-2 70x70 gravity model 

implemented in GEODE is working correctly. The JGM-3 and EGM-96 gravity 

models are implemented and validated in GEODE in the same way. 
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The next step is to implement GAAF with the GEODE integrator and 

compare the results to a 70x70 propagation. With the gravitational accelerations 

now available, a method is devised to determine the height range, height 

increment and number of polynomial coefficients to use for the GPS/MET orbit. 

Since the Orb View-1 satellite carrying GPS/MET is in a near circular orbit with a 

maximum altitude of just over 749 km and a minimum altitude of just over 734 

km, an altitude range of 732 - 752 km is chosen. The decimated range is chosen 

to attempt to reduce the size of the memory needed to store the GAAF data. 2 to 

8 polynomial coefficients are used to fit the pseudocenters. Hujsak [50] suggests 

using a quotient of polynomials as in equation (3.15) but this method could not be 

duplicated, so, polynomials are used as shown in equation (3.17). 

Pseudocenters at fixed latitude and longitude are fit to polynomials using 

the following methodology: 

Example: 

let height increment for fit Ah = 2 km 
hmin = 732 km, rw = 752 km 
<|> = 30° 
X = 30° 

n = number of pseudocenters to fit = 11 
p = number of polynomial coefficients = 2 through 8 

therefore from equation (3.16) 

x = [0   0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9   1.0]T (3.20) 

ä = [a0    a,   a2   ...   ap_,] (3.21) 



y.-t Ci,l      Ci,2      Ci,3      Ci,4      Ci,5      Ci,6      Ci,7      Ci,8      Ci,9      Ci,10      C ,„r 
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(3.22) 

X = 

1     x,    x, 
2 
2 

1       X3       Xj 

1    xn    xu 

rP-1 

.P-l 

,P-1 

,P-1 

„r 

(3.23) 

Now the normal equation can be defined as: 

y = Xä+"e (3.24) 

where the solution to the normal equation for ä yields the coefficients of the 

polynomial that "fits" the vector of pseudocenters, y. There are many ways to 

solve the normal equation. The method of least squares, as detailed in 

Montgomery [53], is 

ä = (XTX)_1XTy (3.25) 

However, due to the computational burden of performing an inverse on a matrix 

as large as 50x50 (a much larger matrix is required for fitting a larger height 

range), a Givens orthogonal transformation is used to solve for ä [39]. Here an 

orthogonal transformation is performed to upper triangularize the matrix 

[X   y] (3.26) 

resulting in a matrix of the form 



hl ... hln 
bl 1 

0 ... ... ... 

0 0 b-nn bn 
n 

0 0 0 
1 
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(3.27) 

Then, back substitution is performed to solve for ä, where an = bn/hm and so on. 

Orthogonal transformations require less computational burden to solve the normal 

equation [39].   Table 3.8 shows the pseudocenter elements at § = 30° and X = 30° 

for the height range of 732-752 km at 2 km increments. Figure 3.6 shows the 

linear nature of the pseudocenters. 

Table 3.8 - Test Pseudocenters 
height X yi y2 y3 

:  732 0 26.1723 -40.4541 32.0436 

.:■:.■■-.734 ::. 0.1 26.2094 -40.5061 32.0783 

736 0.2 26.2465 -40.5578 32.1126 

738 0.3 26.2835 -40.6093 32.1466 

740 0.4 26.3204 -40.6605 32.1803 

742 0.5 26.3572 -40.7115 32.2135 

744 0.6 26.3940 -40.7623 32.2465 

746 0.7 26.4307 -40.8128 32.2790 

748 0.8 26.4674 -40.8631 3 32.3113 

750 0.9 26.5040 -40.9131 32.3432 

:■;" 752 1 26.5405 -40.9629 32.3747 
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Figure 3.6 - Linear Nature of Pseudocenters 
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Next, the most appropriate number of polynomial coefficients to fit the 

pseudocenters is determined. The Residual Mean Square (RMS) (a2) [53] is 

calculated for set of polynomials where 

2_^yTy-äTXTy 

n-p 

Table 3.9 shows the polynomial coefficients calculated and their 

(3.28) 

corresponding residual mean square error. At 30° latitude, 30° longitude and with 

a 2 km height increment, the best fit is p = 3. To determine the best height 

increment and number of polynomial coefficients for the GPS/MET orbit, a range 

of height increments from 0.25 to 4 km are used along with a range of polynomial 
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coefficients from 2 to 8 (first order to seventh order). The RMS error is 

calculated at multiple (100's) latitudes and longitudes. The best fit is determined 

by the average of the RMS errors. The GPS/MET orbit produced a best fit with 

the height increment at 3.0 km and p = 3. An example set of coefficients and 

RMS values for various order polynomials are shown below in Figure 3.7. 

Table 3.9 - Example GPS/MET GAAF Coefficients and RMS for yl 

aO al a2 a3 a4 a5 a6 a7 a2 

p = 2 26.173 0.3681 1.05e-07 

p = 3 26.172 0.3714 -0.00332 2.80e-ll 

p = 4 26.172 0.3714 -0.003046 -0.000182 2.10e-ll 

p = 5 26.172 0.3714 -0.003036 -0.00020 8.36e-6 9.35e-10 

p=:6 26.172 0.3714 -0.003037 -0.000197 5.93e-6 9.71e-7 1.45e-08 

p = 7 26.172 0.3714 -0.003038 -0.000193 -2.41e-6 8.44e-6 -2.50e-6 5.06e-07 

p = 8 26.172 0.3714 -0.003040 -0.000177 -4.53e-5 7.44e-5 -4.95e-5 1.25e-5 7.08e-05 
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RMS 

Height Increment (km) 

Number of Coefficients 

Figure 3.7 - GPS/MET Polynomial Fit RMS Error 

The pseudocenter coefficients are then calculated and stored in a file 

formatted as an array in the C programming language. The array variable is then 

initialized as a static variable in C and the coefficients are accessed according to 

latitude and longitude. Six sets of coefficients are accessed each time an 

acceleration is calculated. Below find the equations used to recover acceleration 

from the pseudocenter coefficients with p = 3. The six pseudocenters at the given 

height are calculated to interpolate between the fixed latitudes and longitudes. 

Equation (3.18) is used for the bi-variate interpolation. First, the pseudocenters 

are calculated from the tables of polynomial coefficients. 
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cECEFn =a0+a1x + a2x

2 i = 1,2,3 (3.29) 

where and ao, ai and a2 are the polynomial coefficients. 

=     h      hmin (3 30) 
h„-h max mm 

hmin = 732 km 
hmax = 752 km 

Next, six sets of pseudocenters are used to interpolate using equation (3.18). 

Then the pseudoradius is calculated by 

PECEF 
= rECEF ~ CECEF0 

and the acceleration (without the C2,o term is calculated) 

(3.31) 

äECEF^^1^ (3-32) 

aECEF = aECEF0 
+ aECEFC2 „ (j.JjJ 

where äECEF    is found by equation (3.13). The acceleration in the ECEF 

coordinate system is then rotated to the J2000 system by the transpose of the 

transformation matrix [J2000toECEF]. Here 

[J2000toECEF] = [TODtoECEF][MODtoTOD][J2000toMOD] (3.34) 

where the definition of the transformation matrices above can be found in Lee 

[37]. 

With the code written to recover gravitational accelerations from the array 

of polynomial coefficients a 24-hour GPS/MET propagation is performed with the 

GEODE integrator. However, here GAAF is used instead of spherical harmonic 

coefficient expansion. First order polynomials are used to fit the pseudocenters to 
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minimize storage requirements. The results are compared to a propagation 

performed using the 30x30 and 70x70 JGM-2 models. Table 3.10 shows the orbit 

errors and 3D RSS error of the difference between the 30x30 and the 70x70 and 

GAAF and the 70x70.  The run times for the various integrations are also 

included in the table. The GAAF run time is 19.3% shorter than the 30x30 model 

and more accurate. GAAF works wonderfully, increasing accuracy while 

decreasing computational burden. Figure 3.8 shows a plot of the propagation 

errors. 

Table 3.10 - GPS/MET GAAF and 30x30 Integration Compared to 70x70 
GPS/MET - 4 Feb 1997 Integration RMS Error (m) 

Gravity Model Run Time (sec) R I C 3D 
70x70 121.5 

30x30 vs 70x70 74.4 2.41 1.03 2.57 3.67 
GAAF* vs 70x70 60.1 0.14 0.06 0.13 0.02 

*GAAF created using 70x70 JGM-2 Gravity Model 
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Figure 3.8 - GPS/MET GAAF and 30x30 Integration Compared to 70x70 

3.4 GAAFinGEODE 

The final step in assessing the accuracy and computational burden of 

GAAF is to use it in GEODE for satellite OD. Table 3.11 shows the GEODE OD 

results using GAAF.   The results in Table 3.11 confirm the claim in Hujsak [50] 

that the computational burden of GAAF is equivalent to the computational burden 

of a 5x5 gravity model with the accuracy of a 70x70. GAAF maintains accuracy 

in GEODE and significantly reduces the computational burden with first order 

polynomials (2 coefficients per pseudocenter direction). This first order 

GPS/MET implementation of GAAF requires only 1.28 MB of storage space. 



84 
Table 3.11 - GEODE GPS/MET Gravity Model Results Comparison 

GPS/MET 
4 Feb 1997 

Mean Error (m) RMS Error (m) 

Gravity Model 
*Run 
Time 
(sec) 

R I C R I C 3D 

JGM-2 05x05 39.5 1.71 -5.57 -0.06 25.42 53.87 29.42 66.43 
JGM-2 30x30 45.6 0.55 -0.99 -0.10 2.74 10.24 2.15 10.81 
JGM-2 70x70 83.2 0.52 -0.88 -0.05 2.70 10.11 2.38 10.74 

GAAF 39.2 0.52 -0.88 -0.05 2.71 10.11 2.38 10.74 

EGM-96 30x30 45.6 0.55 -0.97 -0.11 2.75 10.25 2.18 10.83 

JGM-3 30x30 45.6 0.52 -0.91 -0.11 2.74 10.24 1.98 10.78 

Run on 450MH Z Penti umll, L28 MB RAM 

3.5 JGM-3 and EGM-96 Gravity Models 

The JGM-3 and EGM-96 gravity models are also implemented in 

GEODE. Table 3.11 shows no improvement in OD accuracy or precision in 

GEODE when different models are used instead of the JGM-2 model. 

3.6 Summary 

Although there is a moderate increase in the propagation accuracy 

between a JGM-2 20x20 gravity model and a JGM-2 30x30 gravity model, the 

OD accuracy and the computational burden difference between the two JGM-2 

models is minimal. The best choice in balancing accuracy/precision and 

computational burden in a real-time OD system appears to be a 30x30 gravity 

model. Also, the type of model (JGM-2, JGM-3 or EGM-96) does not appear to 

affect OD accuracy with GEODE. 
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A different approach significantly reducing computational burden while 

maintaining accuracy is Hujsak's Gravity Acceleration Approximation Function 

(GAAF) [50]. GAAF maintains the accuracy of a 70x70 gravity model with the 

computational burden of a 5x5 model. GAAF improves GEODE's computational 

burden by 14% compared to GEODE with a 30x30 gravity model. The cost of 

using GAAF is a 1 to 5 MB RAM requirement, depending on the application. 

GAAF should definitely be considered as a viable alternative to conventional 

methods of calculating the gravitational acceleration in real-time OD systems 

where computational burden needs to be minimized. 



CHAPTER 4 

Ionosphere 

Ionospheric errors can significantly degrade the accuracy of the GPS 

pseudorange measurement. These errors can range from a few meters to many 

tens of meters and with SA off, ionospheric errors can be the largest measurement 

error source [10]. Dual frequency GPS users can determine ionospheric errors, to 

first order, using a combination of the PI and P2 measurements as shown in 

equation (2.11). Single frequency users must either rely on ionospheric models or 

a linear combination of the pseudorange and phase measurements. In a real-time 

OD system on board a satellite, the overhead of using a model may be unrealistic. 

Therefore, the Differenced Range Versus Integrated Doppier (DRVTD) [29] 

method is presented and investigated here. The results of a DRVID 

implementation in GEODE are also presented. 

4.1 Differenced Range Versus Integrated Doppler (DRVID) 

The ionosphere is the region of the upper atmosphere between 50 and 

1000 km altitude. It contains electrons and ions formed by the ionizing radiation 

of the Sun. These electrons and ions are in sufficient quantities to significantly 

affect radio wave propagation where the delay experienced by these signals is 

proportional to the number of electrons in the signal's path. Unfortunately, the 
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affects on radio wave propagation are highly variable and change by at least one 

order of magnitude through the course of each day. The effects can be: 

• three times greater on a signal transmitted near the horizon compared to 
one transmitted from the zenith direction 

• five times greater during the day than at night 
• four times greater in November than July 
• three times greater during solar maximum than solar minimum [54] 

Because of this high variability, the ionosphere is very difficult to model. 

There are four regions of the ionosphere formed by different chemical interactions 

with the ultraviolet (UV) radiation from the Sun. Only one of these is of primary 

concern for satellite OD using GPS. It is the F2 region from 210 - 1000 km and 

is the densest and has the highest variability [43]. The peak density in the F2 

region varies between 250 and 400 km. The F2 region can, potentially, cause the 

most significant effects on GPS receiving systems [43]. Another area associated 

with the ionosphere is the protonosphere. Its region designation is H+ and it 

occupies the area above 1000 km and extends to the GPS orbits. It is composed 

of ionized hydrogen and some helium gas, is of very low density and its estimated 

contribution to signal time delay is 10% during the day and approximately 50% at 

night [43]. The protonosphere does not change significantly between day and 

night but is depleted during major magnetic storms and can take several days to 

recover [43]. 

The ionosphere can be a significant error source in using GPS 

measurements. These errors can range from a few meters to many tens of meters 

at the GPS frequencies. There are effectively eight ways the ionosphere effects 
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GPS measurements [43], but only two are significant enough to be discussed here: 

group delay of the signal modulation (absolute range error) and carrier phase 

advance (relative range error). 

Most receivers (unless codeless or Precise Positioning System (PPS) 

capable) can only collect data on the LI frequency and thus the group range delay 

and phase advance of the GPS observations cannot be calculated. Modeling the 

ionosphere is marginally accurate and scaling the coefficients to satellite altitudes 

may cause further inaccuracies [55]. Transmitting measurements or delay 

corrections to a satellite introduces additional complexity and overhead. 

Unfortunately, the systematic errors introduced by not modeling the ionospheric 

range delay and phase advance can hinder the estimation of unmodeled or 

mismodeled forces using techniques like Dynamic Model Compensation (DMC) 

or the Reduced Dynamic Technique (RDT) [9]. In Gold [56] it is shown that 

RDT performs worse than a purely dynamic run if ionospheric errors are not 

removed. Fortunately, the DRVTD measurement can potentially remove the 

systematic ionospheric delay errors that can reduce the accuracy of OD systems 

estimating empirical accelerations. 

The group delay is proportional to the Total Electron Content (TEC) and 

inversely proportional to the frequency squared of the modulated signal. The 

TEC is the number of electrons in a vertical column having aim2 cross-section 

and extending from the receiver to the GPS satellite. The following equation is 

used to calculate the group delay in units of time [10]: 
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40.3, 

cf2 Atp    = —TEC (4.1) 
"inn 

where 

c = the speed of light in a vacuum = 299,792,458 m/s 
f = signal frequency i.e. fL_ = 1575.42 MHz and fu = 1227.6 MHz 

or expressed in units of range 

40.3, 

f2 Apion=—TEC (4.2) 

While the range measurement is delayed, the ionosphere advances phase. Phase 

advance, in units of time, is calculated by 

or expressed as phase range 

40 3 At»,.=-yTEC (4.3) 

40 3 
AP*„=-—TEC (4-4) 

Techniques for dealing with ionospheric errors include modeling, using 

direct measurements, using a dual frequency receiver or combining range and 

phase measurements on a single frequency receiver. 

There are many models available to estimate TEC to attempt to calculate 

the range delay and/or phase advance of GPS measurements. The simplest and 

most readily available is the Klobuchar model consisting of eight parameters 

contained in the broadcast navigation message. Surprisingly, the simple 

Klobuchar model consistently exceeds its design goal of 50% accuracy. 
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Unfortunately, very complex models using hundreds of coefficients can only 

marginally improve accuracy and cannot consistently surpass 75% accuracy [30]. 

Another method of generating ionospheric delay corrections is JPL's 

Global Ionosphere Map (GBVI). Dual frequency GPS measurements are taken 

from a network of GPS receivers. These measurements are processed and maps 

of the electron content of the ionosphere are produced. GEVI will be integrated 

into the FAA's operational WAAS software [16]. GEVI operations can take place 

in real-time, on board a satellite; however, there is significant overhead in 

providing the maps to the satellite for processing. It is unknown what the 

computational burden of the GEVI software is but it requires a 383 KB file each 

day [57]. WAAS or WADGPS will broadcast ionospheric corrections but, again, 

neither system is currently operational. 

The DRVTD technique can be attributed to MacDoran [29] although 

previous work had been done as early as 1966 [31]. Due to similarities between 

the original signal structures and those used in GPS, DRVDD is generalized for 

use with single frequency GPS measurements [58]. The DRVTD technique is 

further investigated in Schreiner [31] and Gold [59]. JPL's implementation of 

DRVDD in satellite OD using GPS is called GRAPHIC (Group and Phase 

Ionosphere Calibration) [30, 32, 60]. 

It is important to note that since the pseudorange measurement is 20-100 

times less precise than the phase measurement, the error in the combined DRVDD 

measurement is half that of the pseudorange measurement. The new 
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measurement gets the worst of both data types since it gets the reduced 

information content of the phase delay (due to the phase integer ambiguity) and 

the approximate noise level of the pseudorange measurement [60]. 

4.2 DRVID Development 

The geometric range from the user satellite to each GPS satellite is given 

by: 

pi = V(xu - xGPSi )
2+(y„ - yGpSi )

2+(zu - zGPSi )
2 (4-5) 

The measured code based pseudorange in meters is: 

PPI, = Pi + V - bGPSi c + Apion (4.6) 

where: 

c = the speed of light 
bu = user clock bias 
bGPS = GPS spacecraft clock bias 
Apion = change in range due to ionospheric affects 

The measured beat phase based pseudorange in cycles is [31, 54]: 

f f 
4>LI, +Ni =~Pi "buf +bGPs,f +-Apion (4.7) c c 

where: 

Ni = unknown integer ambiguity, 
f = measurement frequency 

The measured beat phase based pseudorange in meters is: 

- («ki, + N; )j = Pi + buc - bGPSi c - Apion 
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PLI,   = - (<f>Ll, + Ni ) J = Pi + buC - bGPSi 
C - APion (4-8) 

^pNij-Pi-^c + b^c + Ap^ (4.9) 

Now a linear combination of equations (4.6) and (4.7) is made to remove the 

change in range due to the ionosphere. 

Pfli+pLli  pf,,-(^^,)f 
2 2 

PPI>    (flu, + Ni) f _ p. + buc - bGPS|c + Apion + Pj + buc - bGPSic - Api0 
(4.11) 

A       C 

Ppii-H'Lw c 

Piontee,  = 2 ^ = Pi+b"C_bGPS,C + Ni^ (4"12) 

Now the ionospheric free DRVID measurement is given by 

PP^-^LI, J 

^observed = Z (4.13) 

The ionospheric free computed measurement is given by: 

Xomputed =Pi+b„c-bGPSc + Ni— (4.14) 
c 

2f 

The difficulty now becomes solving for the integer ambiguity Nj. N can 

be estimated as part of the state, however, care needs to be taken to account for 

cycle slips on the phase measurement. 
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4.2.1 Estimation of the Integer Ambiguity Ni 

If the integer ambiguity is to be estimated, the new GEODE state would 

become: 

X = [x y z x y z CD CR b b N, - N, - N.]^ (4.15) 

where n is the number of GPS satellites providing pseudorange and phase 

measurements to the user spacecraft at a given epoch. The observation state 

relationship is defined by: 

Yi
k=Gi[X(tk),tk]+€i (4.16) 

Since the observation state relationship is non-linear we take the partial derivative 

of the computed observation equation with respect to the state, i.e., 

(with b = buc) 

Gi[X(tk),tk] = pionfreei =p + b-bGPSiC + Ni^- (4.17) 

where 

p=v(xu - xGPSi )
2+(y» - yGPSi )

2+(zu - zGPSj )
2 (4.i 8) 

ax(t.) 
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(4.20) 

The difficulties involved in this implementation are: dynamically 

adjusting the size of the state to reflect the number of GPS spacecraft being 

tracked and keeping track of cycle slips to reinitialize the appropriate member of 

the state when a cycle slip occurs. Another problem with this implementation is 
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the added computational burden and complexity of adding up to 12 constants to 

the state, depending on the number of channels of the GPS receiver. 

4.2.2 Calculation of Apion Using ApP1 and ApL1 

Another method of calculating the change in range due to ionospheric 

effects is to use beat phase and pseudorange at different epochs. In this manner 

the change in the ionospheric effects can be calculated from one epoch to the 

next. Differencing equation (4.9) at two epochs yields [31]: 

Ap^fe-tfJ (4-21) 

where 0 is the initial tracking epoch and k is the epoch of interest. 

Or 

ApL, =-(Nf-N?)-(pf-pf)-(b^c-b:c)+(bk
GPSiC-b°GPS|c)+(ApLi-Apl.) 

Differencing equation (4.6) at the two epochs yields: 

Ap^ =(pf-pO+(buC-^c)-(bk
GpSic-bGPSlc)+(ApL, -ApLj       (4.22) 

Assuming the integer ambiguity is constant between epochs and adding these two 

"delta range" measurements together yields: 

ApP1|-ApL1=2(Apfon|-ApL|) (4.23) 

There are several ways to account for Ap°on.. One is to model the 

ionosphere so whenever the user receiver starts tracking a new GPS spacecraft the 

ionospheric "bias" (Ap°on ) is calculated. Then with Ap^. known: 



96 

ApL ="r"1    "r-+ApL (4.24) 
k       ApPI -ApLlj 0 

or 

ApL, =— -; ^+ApL, (4.25) 

4.2.2.1   Model Bias DRVID 

In Kubitschek [61] estimation of the Apf^. bias through ionospheric 

modeling using GIM maps applied in conjunction with DRVID provided 

excellent ionospheric error estimation compared to the use of dual frequency 

measurements. Results from [61] for 2 Feb 1997 GPS/MET data are presented in 

the first column of Table 4.1. Estimation of the Apj^. bias using the GIM maps 

requires a 383 KB data file that is updated daily. Uplinking a 383 KB file to a 

spacecraft every day is probably unreasonable overhead. Another approach that 

proved just as accurate as modeling the Apfon. bias in [61] is not estimating the 

bias but allowing the OD filter to estimate it along with the GPS satellite clock 

bias. Allowing the filter to estimate the Ap°on. bias works because the bias is 

constant for each GPS satellite during a continuous tracking arc. Unfortunately, 

real-time filters do not estimate the GPS satellite clock biases so a different 

approach is needed. 
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Table 4.1 - Error Between DRVID Methods and Dual Frequency 

3 Feb 1997 RMS Error between dual frequency and 

PRN# 
bias estimation from 

modeling (m) 
bias = 0 

(m) 

PRN 1 1.668 1.876 

PRN 2 1.888 2.614 

PRN 3 3.213 3.297 

PRN 4 1.635 2.389 

PRN 5 2.187 2.651 

PRN 6 1.121 1.903 

PRN 7 1.861 2.035 

PRN9 1.22 1.916 

PRN10 1.985 2.619 

PRN 14 2.305 4.047 

] PRN15 1.917 2.463 

PRN 16 2.576 5.420 

; PRN17 2.059 2.264 

i PRN18 2.515 3.937 

> PRN19 1.672 2.154 

; PRN21 1.927 2.450 

PRN22 5.74 7.290 

PRN23 1.752 1.820 

PRN24 2.138 2.100 

PRN25 3.171 3.369 

PRN26 0.996 1.604 

PRN27 1.235 5.769 

PRN29 1.009 1.765 

PRN30 0.944 1.391 

PRN31 1.333 1.725 

*   Mean 2.002 2.835 

4.2.2.2   Zero Bias DRVID 

Another less computationally burdensome method presented itself when 

plotting the measurement elevation angles of GPS/MET with respect to GPS 

satellites. Since GPS/MET is an occultation experiment its GPS antenna is 
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pointing in the anti-velocity direction providing reception of "setting" 

occultations. See Figure 2.2. 

Examination of the elevation of the GPS/MET GPS observations indicates 

GPS spacecraft are nominally acquired at or near their highest elevation. Figure 

4.1 through Figure 4.5 show the elevation of the measurements from GPS 

satellites PRN01, PRN16, PRN14, PRN29 and PRN10 taken by GPS/MET on 4 

Feb 1997. The lighter points on the plots distinguish periods when the OrbView- 

1 satellite is in sunlight (Day in the legend of the plots). The darker points are 

when the satellite is in the darkness (Night). 

The elevations for PRNs 1 and 29 show they are nominally acquired at or 

near their highest elevation. The elevations for PRNs 16, 10 and 14 show an 

elevation increase and decrease every third time they are acquired. Seven out of 

the twenty-seven GPS satellites tracked by GPS/MET on 4 Feb 1997 exhibit the 

elevation decrease, increase, decrease phenomenon at approximately 

-15° elevation. This phenomenon is most likely due to occultation of the GPS 

signal. 
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Figure 4.1 - PRN01 GPS/MET Elevation Plot 

24 

PRN16 

12 
Time (hours) 

Figure 4.2 - PRN16 GPS/MET Elevation Plot 
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Figure 4.3 - PRN29 GPS/MET Elevation Plot 
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Figure 4.4 - PRN14 GPS/MET Elevation Plot 
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Figure 4.5 - PRN10 GPS/MET Elevation Plot 

Most of the GPS tracking arcs start with GPS satellites at their highest 

elevation with respect to GPS/MET. Therefore, the assumption that Ap°on. « 0 is 

possible since the change in range due to ionospheric effects is lowest when the 

GPS spacecraft are at their highest elevation. Figure 4.6 shows a plot of the dual 

frequency ionospheric correction at the start of each tracking arc. With zero bias 

DRVED the "bias" at the start of each tracking arc is assumed to be zero. 

However, Figure 4.6 shows the mean of the bias at the start of each tracking arc is 

2.12 m with several significant outliers. The two largest outliers are with PRNs 

29 and 16. Figure 4.3 shows the elevation plot for PRN29 and Figure 4.2 shows 

the elevation plot for PRN16. As seen in the figures, the outliers are caused by 

breaks in the tracking arcs. At the time of each of these tracking arc breaks a 
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cycle slip occurs on the phase measurement introducing a new integer ambiguity. 

Cycle slips also disrupt the DRVID calculations since the phase measurement 

does not have the same integer ambiguity from one epoch to the next. The 

outliers for PRNs 10 and 14 are similarly explained. Also see Figure 4.4 and 

Figure 4.5. 
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Figure 4.6 - Dual Frequency Ionospheric Correction at GPS Tracking Arc Start 

If Apfon « 0 is assumed, equation (4.25) becomes, 

k   (pPL-ppO-fe-O^ 
APL. = « ~ (4.26) 

Now the change in range due to ionospheric effects can be approximated without 

the additional computational burden of estimating integer ambiguities in the state 
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or by estimating the initial Ap°on. bias. To apply this model to spacecraft other 

than GPS/MET, application of the DRVID ionospheric correction should only 

take place when the elevation from the user satellite to the GPS satellite begins 

decreasing and when the elevation decrease begins at high elevation angles. 

Results of estimating Apfon. using DRVID on the GPS/MET data are 

shown in the last column of Table 4.1. The zero bias DRVID estimation 

technique suffered only a 0.833 meter error compared to the model bias 

technique. Figure 4.7 shows a plot of the largest zero bias DRVID errors 

compared to dual frequency shown in Table 4.1 and Figure 4.8 shows the smallest 

zero bias DRVID errors shown in Table 4.1. 
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4.3 DRVIDinGEODE 

The implementation of DRVID in GEODE requires significant 

bookkeeping of the GPS/MET to GPS satellite elevation angles. To ensure the 

measurement epoch with the smallest ionospheric error is chosen to provide 

PP! and <j>L! for equation (4.26), the elevation angle and the phase and 

pseudorange measurements from the previous measurement epoch must be 

available at the current epoch. Then, the previous elevation can be compared to 

the current elevation and when the current elevation is smaller than the previous 

elevation, pp\ and ^ are recorded. Then, the previous epoch is the zero bias 

point. Care must also me taken to ensure cycle slips in the phase measurements 
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are detected during any given tracking arc. If a cycle slip occurs, the zero bias 

point must be reset. 

Figure 4.9 shows an example tracking case where the GPS satellite 

elevation with respect to the user satellite starts at 85° at time 1, then increases to 

90° at time 2 and back to 85° at time 3. In this case, the pseudorange and phase 

measurements from time 2 will be used as p^. and (j)^.. The measurements at 

time 1 and time 2 will be treated as a single frequency. DRVID will be applied to 

the measurement at time 3. 

\   GPSs/c Time El 
1 85° 
2 90° 
3 85°,, 

Figure 4.9 - DRVID Elevation Angle Example 

Figure 4.10 shows a plot of DRVID ionospheric correction estimates 

compared to dual frequency corrections in GEODE. DRVID appropriately 
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estimated the necessary ionospheric corrections in most cases. PRNs 5, 27 and 

16, cause the outliers near hours 11,14 and 17 respectively. Figure 4.12 through 

Figure 4.14 show the relationship between the elevation angle and the error 

between the dual frequency ionospheric correction and the DRVID ionospheric 

correction. In each case a break in the tracking arc and cycle slip occurs so the 

zero point is reset. Since the breaks occur at low elevations, single frequency 

measurements are used for the remainder of the tracking arcs. The vertical lines 

on Figure 4.12 through Figure 4.14 indicate when the satellite is in sunlight and 

darkness. The narrow regions are darkness. 
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4.3.1 DRVID in GEODE Results 

The application of the zero bias DRVID technique to the GPS/MET data 

in GEODE leads to an accuracy improvement close to the improvement realized 

using dual frequency data. Table 4.2 shows a comparison between the single 

frequency, dual frequency and DRVID results for the 4 Feb 1997 data. DRVID 

improves the 3D RSS error by 4.2% for the case without high rate clocks and 

4.5% with high rate clocks. Additional GPS/MET DRVID results are presented 

in Chapters 5 and 6. 

Table 4.2 - GEODE With Ionospheric Correction for GPS/MET 
GPS/MET - 4 Feb 1997 Error'Mean (m) RMS Error (m) 

R I C ■',,. R ■j!.,l-   ■■■■ C 3D 
Without High Rate GPS Clocks 
Single Frequency 0.55 -0.99 -0.10 2.74 10.24 2.15 10.81 
Dual Frequency 0.11 2.04 -0.11 2.48 9.68 2.12 10.21 
DRVID 0.24 -1.14 -0.11 2.63 9.72 2.23 10.32 

With High Rate GPS Clocks 
Single Frequency 0.28 -3.59 -0.04 2.22 7.23 0.77 7.60 
Dual Frequency -0.08 -1.38 -0.04 2.10 6.14 0.86 6.55 
DRVID -0.03 -3.54 -0.04 1.97 6.95 0.90 7.28 

Zero bias DRVID ionospheric corrections are also applied to the SA free 

T/P data. Table 4.3 shows the 3 cm 3D RSS position error improvement. The 

reason the accuracy improvement is proportionally smaller (only 2.5%) than the 

improvement realized on the GPS/MET data is the ionospheric effects on the T/P 

data are smaller due to T/P's higher orbit. 
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Table 4.3 - GEODE With Ionospheric Correction for T/P 

T/P-5 May 2000 Error Mean (m) RMS Error (m) 
R I €    - R I C 3D 

Single Frequency 0.21 -0.04 0.01 0.35 1.06 0.44 1.20 
DRVID 0.20 0.01 0.01 0.35 1.02 0.45 1.17 

While the error RMS and RSS improvements are near those of using dual 

frequency ionospheric corrections, a comparison of the execution time required 

by GEODE with and without DRVID shows a 12.1% computational burden 

increase. This significant increase is a result of the need to calculate and store the 

elevation angle for each satellite being tracked at every measurement epoch. 

Calculating the GPS elevation angle requires computation of the position of each 

GPS satellite in view, therefore, the GPS satellite ephemerides must be evaluated 

for each elevation calculation. The computational burden is reduced significantly 

if all satellites in view are processed for the measurement update (ALL) instead of 

cyclically. 

4.4 Summary 

Differenced Range Versus Integrated Doppler (DRVID) [29] is a 

technique utilizing the difference in the way the pseudorange and phase 

measurements are affected by the ionosphere. Since the ionosphere advances 

phase and delays range measurements, a linear combination of both 

measurements can remove ionospheric errors to first order. 

There are three methods by which DRVID can be applied to estimate GPS 

pseudorange ionospheric corrections. First, the phase integer ambiguity can be 
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estimated as part of the state. Integer ambiguity resolution is not suited to real- 

time systems and therefore is not considered here. The second application of 

DRVID involves estimation of an initial ionospheric bias correction using a 

model such as JPL's GIM. Model bias estimation shows promise, but the 

overhead involved in generating the bias estimates and updating the model is 

probably unreasonable for a real-time system. Application of the zero bias 

DRVID technique to estimate the GPS pseudorange ionospheric correction results 

in an accuracy/precision improvement over using single frequency measurements 

with no ionospheric correction. The zero bias DRVID technique provides 

accuracy very near dual frequency correction but with a 12.1% increase in 

computational burden. 



CHAPTER 5 

Dynamic Model Compensation (DMC) 

The dynamic models used to propagate satellite ephemeris are always 

approximations of the actual forces acting on the satellite. No matter how 

detailed and precise, models will always fall short of describing the real 

dynamics. In real-time satellite OD the dynamic model is used to propagate the 

satellite's position and velocity between measurement epochs. The dynamic 

model might also be used to propagate the satellite's ephemeris for prediction 

purposes. If the dynamic model does not predict the satellite's motion 

accurately enough, the filter in an OD scheme can diverge. Care needs to be 

taken, in a real-time OD system to balance the accuracy requirements of the time 

update of the state with the overhead of the propagator. In choosing a finite 

approximation of the satellite dynamics there will always be forces in the 

dynamic model that will be unmodeled or mismodeled. 

Dynamic Model Compensation (DMC) is a process noise formulation that 

assumes a dynamical system is subject to accelerations not included in the 

systems dynamic model and which possess a random element [9]. These 

accelerations have been called "fictitious" [62], "augmenting", "compensative" 

[9] and "empirical"[4]. Regardless of what they are called, they are estimated in 
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the filter and their formulation includes the development of process noise 

covariance values. DMC was used as early as the 1970's [63] but the 

formulation shown here follows the derivation in Cruickshank [64] and [9]. 

In this chapter, DMC is first introduced through a simple one-dimensional 

example. Then the development is extended to the three-dimensional satellite 

OD problem where accelerations are estimated in Cartesian XYZ coordinates. 

Next, DMC is refined and accelerations are estimated in Radial, In-track and 

Cross-track (RIC) coordinates. Finally, XYZ and RIC DMC are employed in 

two simulations and in GEODE and accuracy/precision and computational 

burden results are presented. 

5.1 Dynamic Model Compensation (DMC) 

Suppose the particle in Figure 5.1 is moving with constant velocity and the 

particle's position is to be estimated from range observations. 

v0 

xo 

Figure 5.1 - Particle Moving at Constant Velocity 

The dynamic model for this system can be expressed in state space form as: 

XoWt-to) X = (5.1) 

leading to the derivative in state space form. 
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(5-2) 

The state transition matrix for this simple system is formed from 

6(t,t0) = A<D(t,t0) 

where the initial condition is <D(t0,t0) = I. A method of calculating the state 

transition matrix for this simple system is Laplace transforms. Here 

<D(t,t0) = L-1[(sI-A)-1] 

The state transition matrix is therefore 

(5.3) 

(5.4) 

<t>(t,t0) = 
1    (t-t„)" 
0       1 

(5.5) 

If stochastic forces perturb the movement of the particle, either random (possibly 

time correlated) and/or deterministic, estimation under the constant velocity 

assumption is not optimal. DMC can be used to improve estimation performance 

in such a situation. Assume that the unmodeled acceleration co(t) can be modeled 

as a first order Gauss-Markov process 

Ö)(t) = ß(ö(t) + U(t) (5.6) 

where: 

co(t) = compensative acceleration 
u(t) = uncorrelated, stationary Gaussian process (white noise) with 
E[u] = 0 and E[uTu] = a^ (standard deviation of the forcing noise) 

ß = — where x is the correlation time and is considered constant 

Now the state can be augmented with the compensative acceleration 
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CO 
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(5.7) 

and 

X = 

x 

CO 

-ßco+u(t) 

0   1 0" X "o" 
0   0 1 X + 0 

0   0 -ß. CO 1 

u(t)=AX+Bu(t) (5.8) 

The general solution, found using convolution, has both deterministic and random 

components 

X(t) = d>w(t,t0)X(t0)+f (Dw(t,t0)Bu(t)dt (5.9) 

fr t 
Deterministic        Random 

The state transition matrix ®w(t,t0) can again be found from <X>(t,t0) = AO(t,t0). 

The Laplace transform method can again be used, but inverting a 3x3 or larger 

matrix can be a challenge. The Symbolic Toolbox in Matlab or Mathematica can 

easily be used for larger matrices. 

"l    At   xAt + x2(e-At/T-l)^ 

0    1 x(l-e-At/T) #w(Uo): 

0    0 -At/T 

(5.10) 

Assuming the initial stochastic state is 

X(t0) = 

0 

0 

COn 

(5.11) 

the deterministic component of equation (5.9) is 



Xdet=tDw(t,t0)X(t0) = 

(ö0TAt + a)0T2(e-At/T 

ö)0<l-e-At/T) 

■1) 

CD0e 
-At/T 

116 

(5.12) 

Now the state propagation model is also augmented and the deterministic portion 

of (5.9) is included. 

X(t) = 

x(t) 

x(t) 

(0(t) 

co0xAt + co0x
2 (e~At/T -1) + v0At + x0 

(ö0x(l-e-A,/T) + v0 

co0e ■At/T 

(5.13) 

The process noise covariance can be formulated from the random terms in (5.9), 

i.e. I  <I>w(t,t0)Bu(t)dt. The calculation of the process noise covariance matrix 

over the time interval At = t -10 is: 

Qw = Jt
t

00)w(t,x)BE[u(t)uT(x)]BTO^t,T)dT 

or since E[u(t)uT(x)] = a2 

Qw=f(Dw(t!x)Ba2BTC(^)dx 
•"o 

where x is the time integration variable, not the stochastic process correlation 

time. The resulting integral is: 

(5.14) 

(5.15) 

Qw = i x(t-T) + x2(e-(t-T)/T-l)" 

x(e-(t-T)/T) 

-(t-T)/T 

x(t-T) + x2(e-(t-T)/T-l) 

x(e^rt) 

,-(t-T)/t 

dT      (5.16) 

where T is substituted for the time integration variable x. 

Evaluation of the integral in equation (5.16) results in: 



Qw = 

VW(1,1) "w(l,2) "w(l,3) 

"w(2,l) "w(2,2) *<w(2,3) 

V»(3,l)       "w(3,2)       VW(3,3). 
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(5.17) 

where: 

Qw(,..)=^(^(l-e-^ )+x4At(l-e-^ J-^+I^t») 

Qw(l,2) ~ Qw(2,l) ~~ au 

(       f 
I_e-AtA   +Ie-2AtA |-x3At(l-e-At/T )+-x2At2 

v(2,2) - au 

/ 3 x00-*'/' _i^"2AtA -+2e'mn --e" 
v   2 2 

+ x2At 
J 

QwM=Qw(,1)=^f^(l-e^)-TaAte-^ 
V2 

v(3,2) - Vw(2,3) T2x2[i(l + e-^ )- -At/T 

Qw(3,3)=^^l-e-^) (5.18) 

Addition of the process noise covariance to an Extended Kaiman Filter 

(EKF) is rudimentary. The algorithm is unchanged except for the time update of 

the state error covariance Pk [Born, 2000 #252]. The new formulation for Pk is: 

P™=®(Wk)PkO
T(tk+1,tk) + Qv 

(5.19) 

At = tk+1 - tk in the formulation of Qw. 

The application of DMC to a real-time satellite OD system using GPS is 

more complex since the state includes constants from the dynamic model, receiver 

clock bias and receiver clock drift terms. Therefore, the state transition matrix 
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and process noise covariance matrices explained above are updated in section 5.2 

to include the additional terms. 

5.2 XYZDMC 

The XYZ DMC derivation shown below follows closely the derivation in 

Cruickshank [9]. As shown in equation (5.6) the stochastic accelerations are 

modeled dynamically by a Langevin equation [9]. Now ß in equation (5.6) 

becomes: 

ß = 

1/T 0 0 

0 1/T 0 

0 0 l/x 

(5.20) 

The Gaussian process, u(t), is uncorrelated in time with zero mean but now has 

constant variance of: 

qu 

< 0 0 

0 el 0 
0     0    a! 

(5.21) 

ß and qu are assumed diagonal for convenience only, indicating the accelerations 

in the three directions are uncorrelated with each other,  T and au are also 

assumed equal in each of the three directions [9]. 

The state vector is augmented with the compensative accelerations, cox, 

coy, coz as shown in equation (5.22). The deterministic components augment the 

time propagation of the state as in equation (5.23). 
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The original 

state vector in 
GEODE 
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z 
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y 
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CD 

CR 
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b JlOxl 

New state vector 

X 

x 

y 
z 

X 

y 
z 

CD 

CR 

b 

b 

»X 

G)y 

CO, 
13x1 

New state augmented with deterministic portion of 
compensative accelerations 

x + CöxxAt + (öxT2(e-At/T -l) 

y + coyxAt + coyx2(e-At/x -l) 

z + (DzTAt + cozx
2(e-At/T -l) 

(5.22)        X = 

X + CDXX I1" -e J 
y + coyx 

(1- 
-e" At/T 

) 

Z + G)ZX (1- 
cD 
cR 
b 

b 

-e- At/T 

) 

ö>„ e" At/T 

«>» c-l 

At/T 

coz e" 
s-1 

At/T (5.23) 
Jl3xl 

5.2.1 XYZ DMC State Transition Matrix 

The state transition matrix is also augmented to include the compensative 

acceleration terms. 

<D = 
[ok 

10x10 [^»RvJiOx 

13x3 

3>: 
ax 
axn 

(5.24) 

The state transition matrix of the original state is shown in equation (5.25) and is 

developed in Lee [37]. 
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4>. 

" 5R(t,)" " 3R"(tt) 

L3R(tk_,)J 
3x3 [sR(Kj\ 3x3 

3R(tt) 5R(tt) 

L3R(tk.,)J 
3x3 -5R(V,)- 3x3              L 

[o] L    Ji, 

[o] L      JU3 

[o] L     Jlx3 

gR(tt) 

3AC„ (t ,) 

gR(tt) 

SACR(tk.,). 

0 

'SAC (t ) 

.^cR(tk.,)J 

[o],., 

[o],., 

[o] L     J2xl [0] L     J2xl 

[0] 

aAb(tt)" 

5Ab(tv„) 

(5.25) 

The state transition matrix of the compensative accelerations with respect to 

themselves: 

<J>  = 

Ö(öx 8(ox öcox 

<3cox xo 
5f°y0 

d(°c0 

d(oy dcay dcoy 

d(ox x0 
5(°yo dcor M> 

d(oz d(oz d(oz 

dco„      3co„     doo, 
y0 

-At/T 

0 

0 

0 
-At/T 

0 

0 

0 
-At/T 

(5.26) 

Again, 

At = tk+1-tk 
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The state transition matrix of the compensative accelerations with respect to the 

original state is: 

"   dr' 

<D coRV 

~dr_ 

do» 

ab" 
d(ö_ 

db 

J3x3 

3x3 

1x3 

1x3 

1x3 

ÖCQ 
Jlx3 

8x_ 

d(ö 

dr_ 

da 

3x3 

3x3 

3 

KRL 

[°Lx3 

(5.27) 

and 

d(On 
(5.28) 

Therefore, 

[*«]-£■ (5.29) 
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®a>KV = 

Atx +T2(e"At/T -l) 0 0 

0 Atx + x2(e~At/T -l) 0 

0 0 Atx +x2(e-At/T -l) 

x (l-e-At/T) 0 0 

0 x (l-e"At/T ) 0 

0 Ox (l-e~At/T) 

"0 0 0" 
0 0 0 
0 0 0 
0 0 0 

(5.30) 

5.2.2 XYZ DMC Process Noise Covariance 

The process noise covariance matrix, Qxyz, is propagated over the time 

interval t0 to t through evaluation of the integral in equation (5.31). 

y,2     0     0 

^xvz 0    a2     0 

0     0    at 

f<D(t,T)BBTa>T(t,T)dT 

Here, B is a matrix of the form: 

(5.31) 

Let 

B = 

0 000000000100 

0000000000010 

0000000000001 

s = 
a2 0 u 

0 au
2 

0 0 

0 

0 

(5.32) 

(5.33) 
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Then the DMC contribution to Qxyz becomes: 

Q-=€. 

f 
J3x3 KRIKRLB [**R][*.VL [0]3X4      KR]K]3 

KVIKRL [^covlKvL [°L4 KvlKL^T 
[°]4X3 [°L3 [°LX4     [°]4x3 

KIKRL [*.][*.VL [°L KIM 1T 
J3x3 

Now let 

^xvz -xyz 

Qxyz(l,l) Qxyz(l,2)        L"J3x4 Qxyz(l,4) 

Qxyz(2,l) Qxyz(2,2)         l_"J3x4 Qxyz(2,4) 

[°Lx3 [°]4X3 Qote4x4 [0]4x3 

Qxyz(4,l) Qxyz(4,2)         L"J3x4 Qxyz(4,4) 

(5.34) 

where the (3,3) sub-matrix Qother, contains process noise contributions for Co, CR, 

b and b. Also, 

Q^a4,=s0«»*R][**RL<n' (5.35) 

The rest of Qxyz is defined as in equation (5.35). Now 

[**R]|>L] = [> +x2(e-At/^ -l)][Atx +T2(e— -l)]l3x3        (5.36) 

and the integral in equation (5.35) is evaluated yielding 

Qxyzcu) =f-T5(l-e~2At/T )+x4At(l-e-At/T )-x3At2+-T2At3ls        (5.37) 

The other sub-matrices of equation (5.34) are determined in like fashion. 

Q xyz(l,2) 
._e-A'A   +±e-2A/T ■T3At(l-e-At/T )+-T2At2 |S      (5.38) 

^xyz(U)       ^xyz(2,l) 



QW,M)=Q*«, = (r5 ('-■"" )-^s"' 

'xyz(2,2) ' T'f-- + 2e-at/T --e At/t A     -2AI/T 
A 

+ T2At 
) ) 

The development of the Q0ther matrix can be found in [37]. 

Mother 

<4,gAt       0 

0       o^At 

0 0 

0 0 

0 

0 

a'At3      ,       u, 
-* + a^At   -i 

0 

0 

a2At2 

a2At2 
D  a2At 

D 
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(5.39) 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

5.3 Radial, In-track, Cross-track (RIC) DMC 

The development that follows is motivated by the desire to estimate the 

compensative accelerations in the radial, in-track, and cross-track directions. RIC 

DMC also provides a more intuitive approach to tuning the time correlation 

coefficient (T) and standard deviation of the forcing noise (au). The state is, 

once again, augmented with the compensative accelerations as shown in equation 

(5.44). The deterministic portion of the compensative accelerations now must be 

rotated from the RIC frame to the XYZ frame to be added to the state. Equation 
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(5.46) shows the rotation of the position components and equation (5.47) shows 

the rotation of the velocity components. 

The original state 
vector in GEODE 

x = 

x 

y 
z 

X 

y 
z 

CD 

c 
b 

b 

R 

10x1 

New state vector 

x 

y 
z 

X 

y 
z 

X=  CD        (5.44) 

cR 
b 

b 

coR 

(X)r 13x1 

New state augmented with deterministic 
portion of compensative accelerations 

x = 

x + Ax 

y + Ay 

z + Az 

x + Ax 

y + Ay 

z + Az 

cD 
cR 
b 

b 

coR   e"At/ 
K

k-1 

co,  e"At/ 

GV e 
-At/tc 

(5.45) 

13x1 

Arxyz = 

"Ax" ©RT RAt + CDRxR(e-At^ "I) 

Ay = T xRIC->xyz (D^jAt + 0)^(6-^-1) 

Az _ö)cTcAt + coc4(e-Ät/Tc-l) 

"Ax" "a)RTR(l-e-At^)" 

xyz Ay = T xRIC-»xyz ^(1-e-^) 
Az G)cTc(l-e-A"- ) 

(5.46) 

(5.47) 

TRIC-»xyzis the transformation matrix from RIC coordinates to xyz coordinates. 

The equations describing TRic-«yz can be found in Lee [37]. 
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5.3.1 RIC DMC State Transition Matrix 

The [<DX] and [<!>„] matrices are the same for the XYZ and RIC versions 

of the state transition matrix. However, the state transition matrix of the 

compensative accelerations with respect to the original state must be rotated to 

RIC coordinates. 

Here, 

<D eoRV 

dr_ 

_5(5_ 

"at" 
da 

dC» 

5co 

5c5 

"5b" 
_5c5 

~5b~ 
5© 

3x3 

3x3 

Jlx3 

1x3 

1x3 

1x3 

5f 

5c5 

dr_ 

5© 

[o] 

3x3 

3x3 

14x3 

[*.vl 
[0L 

3 

3x3 

3 

(5.48) 

81 = 5r   8\1C 

8ä    d\lc  8(ö 

da 
dfc 

lRIC-»xyz 
IC 

Sco 

— = TT 
-,— RIC<-xyz     ~,— 
da 8(0 

3%i IC 

(5.49) 

(5.50) 

(5.51) 

with a similar derivation 



5? T 
,■>— RIC<-xyz    ^— 
oca d(o 

3%. IC 
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(5.52) 

therefore <DmRV becomes, 

om 

T RIC<-xyz 

AtTR+4(e-A,/TR-l)   . 0 0 

0 At^+T^e^'^'-l) 0 

0 0 AtTc+T^(e-A,/Tc-l) 

0 0 

RlC^xyz 0 T.fl-e-*'1') 0 TT 

TR[l-e-A,/TR 

,(l-e-A"Tc) 

"0 0 o" 
0 0 0 

0 0 0 
0 0 0 

and in simplified form: 

G>   PV = coRV 

xRIC<-xyzMrraRRIC 

TT        G> 

[°]4X3 

(»R 

mV 

[°]4X3 

(5.53) 

(5.54) 

5.3.2 RIC DMC Process Noise Covariance 

In RIC DMC separate standard deviations of the forcing noise (CTS) are 

used instead of equal values on the diagonal as in XYZ DMC. Therefore, the S 

matrix takes the form 

S = 

aR 0 0 

0 a\ 0 

0     0    a' 

(5.55) 
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causing QRIC to keep the form of equation (5.56) since the S matrix cannot be 

factored out. 

QRic=r 
•'0 

[(D   lS[<D   f [0>   lS[<D   f [0l [0>   lS[<D f L     orJ^L     corJ3x3 L     tor J ^ L     cov J3x3 L   J3x4 L     ®r J    L     © J3x3 

[°]4X3 [°]4X3 ML     [°L3 
[*.]s[*„£3 [*.]s[*w£3 [o]3x4 [*.]s[*.Jx3 

dT (5.56) 

With the new formulation of the state transition matrix, the upper left 3x3 sub- 

matrix of QRIC becomes: 

L^IBR J^i^foR J3x3 = L •'•RIC<-xyz(*>(BRRIC J^L   RIC<"xyz     raRRic J 

[^coR J^i^coR J3x3 
= LTRIC<_xyzOmRRic JS[$fflRR]cTRIC<_xyz J 

[**]S[*.RL =[TRIc^xyZ^ooRRICS^RRICTRIC^xyz] (5-57) 

Since <i>aR    (defined in equations (5.53) and (5.54)) and S are both diagonal 

L®oR J^L     coR J3x3 
= L •'■RIC«-xyzS®<DRRiC*

)(DRRIC *RIC<-xyz J 

The same development applies to the other members of the QRIC matrix. 

With TRIC = TRIC^xyz, QRICCU) becomes 

QRIC(U) - JtoLTRICS<I)coRRIC^
>
(oRRICTRIcJ3x3dT (5.58) 

Since the transformation matrix TRIG and S are both independent of the variable of 

integration T, 

VRIC(U) 
— IRK™ fTa>R  <B*    1   dT 

JtnL   mRRic    °>
R

RICJ3X3 
lRIC (5.59) 

Now let 
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Q(U)=s{t
t

o[OfflRRicO>LRic]3x3dT 

and define Q as 

Q = 

Q(u) Qo.2> [°L4 Q(W) 
Q(2,l) 0(2,2) |0J3x4 0(2,4) 

[°]4X3 [°]4X3 [°]4X4 [°]4X3 

0(44) 0(4,2) [°L4 0(4.4). 

(5.60) 

Now QRIC becomes, 

iRIC 

ARICO(1,1) ARIC       ^RICV(1,2) ARIC       L^J3X 

*RIC^(2,1)   1 RIC RIC*<(2,2) ^RIC 

[»L J4x3 

V(4,l) IRIC 

T;,CQ, 

[o] 4x3 

T (4,2) ^RIC 

4 

4 

Mother 

V£/,i o\ Ai 

[°]3X4 

Mother 

[°]3X4 

1RICO(1,4) 

■*RIc"(2,4) 

[°]4x3 
0(4,4) 

(5.61) 

The upper left term is shown as an example. The other terms are formulated in 

like fashion. 

"10   0" 

*-RHC®Ltinc=[Atcx+-ex(e-^-l)][Atcx+TJ[(e-^-l)]0   1   0   (5.62) 

L° ° i. 
In the (1,1) term of O^   0>*R    set X = R, in the (2,2) term X = I and in the (3,3) 

termXsC. Now, 

Q(U)x = j;o[Atxx+4(e-— -l)][AtTx+xx(e-^ -iffT■ 

Jt
t[<(e_2M)/Tx-2e-(t-T)/Tx+l)+ 

2(t-T)Tx(e-(t-T)/Tx-l)+(t2-2tT+T2)Tx]dT = 

(±x5
x (l-e-Z- )+xxAt(l-e-^ )-x3

xAt2 +±x2At3} 

(5.63) 



Again, Q(u) 

Q(U)R    o      o 
0    Q(U),     ° 
0 0      Q 

Therefore, the Q matrix can be defined by the following. 

Q(l,l)R
=CTR 

-x5
R (l-e"2^ )+<At(l-e-At/TR )-x^At2 +-x2At3 
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Q(u), = °?({*? H"^')+ ^At(l-e-^ )-T3At2 +ix2At3 

Q(u)c = °c (j4 (l-e"2At/tc )+T*At(l-e-^ )-T3
 At2 4x2At3)       (5.64) 

Q(u)R
=aR 

I_e-A'AR+Ie-2A.AR"j_T3At^_e-A,ARj+IT2At2 

Q(1,2)R-Q(2,1)R 

Q(u),=a2 T4ri_e-AtAl+Ie-2A,Al 

U2 2 
-c3At(l-e-At/T')+-x2At2 

Q(l,2),-Q(2,l), 

Qfl.2*.  = aC 
-At/Tc        -1     -2A|/TC — e "v'c+-e lAt(l-e-At/Tc)+-x2At2 (5.65) 

Q(l,2)c - Q(2,l)c 

Q(1.4)R-Q(4,1)R  "
aB 

'lT3(l_e-2AtAR)_x2Ate-AtAR 



^-^=^(1-^)-^^) 
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Q(l,4)c  - Q(4,l)c  - CTC -x3
c (l-e"2At/Tc )-x2 Ate"At/Tc 1 (5.66) 

Q(2,2)R=4 

Q(2,2),=CTI 

Q(2,2)C
=CTC 

R 
V    v 

.2+2e-A,/TR--e-2At/TB + T2At 

l+2e-At/T'-ie-2At/T'V^2At 
2 2 ) 

x3 f _2+ 2e-A,/Tc _Ie-2AtAc  |+2At (5.67) 

Q(^=Q(4.2)R=^^(i(1+e"At/TR)-e"A,/\ 

Q(2,4)l=Q(4,2),-2x2(i(l + e-^)-e-A^) 

Q(2,4)c=Q(4,2)c=^(i(l + e-Ac)-e-/^ (5.68) 

O       --^-x  (l-e~2At/TR>l 
*    2 

Q(4,4)l=^^(l-e-2^) 

Q(4,4)c=^xc(l-e-^c) 
*      2 

(5.69) 
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And again, 

Finally, 

Mother 

0 

0 

0 

0 

0 

0 

0 

0 

cr'At3      , 
-& + a2At 

a^At2 
D  

"RIC 
— 

*RIC"(I,D •'■RIC      ^Ric"(l,2) A] RIC 

^Ric"(2,l) ''■RIC       ^RIC^(2,2) *I RIC 

[°]4X3 
"(4,1) •'■RIC 

[°L3 
"(4,2) IRIC 

[o] 
M 
V other 

0 

0 

a-At2 
D 

a2At 
D 

3x4 

3x4 

*RIc"(l,4) 

•'■Ric"(2,4) 

[°]4x3 
Q(4,4) 

(5.70) 

(5.71) 

5.4 Single Satellite Range and Range Rate Simulation (Simulation 1) 

Two simulations are developed in Matlab to compare the results of XYZ 

DMC and RIC DMC. Both simulations consist of a user satellite in LEO 

(modeled after the QuikScat orbit). Satellite Toolkit (STK) is used to generate a 

"truth" trajectory using a 70x70 gravity model, atmospheric drag, solar pressure 

and third-body effects from the Sun and Moon. The trajectory is propagated over 

20,000 seconds. Next, tracking satellites in geostationary orbits, with equally 

spaced longitudes, are used to generate simulated observations. The first 

simulation uses three "TrakSats", each separated by 120° of longitude. Range 

and range rate measurements are taken at 20-second intervals with only one 

TrakSat measurement at each observation epoch. Then, zero mean, standard 

deviation 1 m Gaussian noise is added to the range measurements and zero mean, 
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standard deviation 0.1 m/s Gaussian noise is added to the range rate 

measurements. 

An Extended Kaiman Filter (EKF) is then implemented to process the 

range and range rate observations. The dynamic model used by the EKF consists 

of two-body and J2 gravity terms and an exponential drag model. The state 

transition matrix is integrated along with the position and velocity and includes 

two-body, J2 and exponential drag terms. 

5.4.1 Simulation 1 No Process Noise 

The initial EKF implementation did not include DMC nor did it include 

any form of process noise. Figure 5.2 shows the filter's estimated trajectory 

compared to the STK truth data. The standard deviation in the error plot is the 

square root of the estimated state error position variance term. The covariance 

approaches zero since no process noise is used. 

3D RSS Error = 186.02 n 

,                                        II 1               .Ä 1 

1                      y^\ — 1 RMS 1*1.62 m mean 92.143 m 
 Sid Dav msan 0.33 

f\jrx,-^^^^>^---s^------\- y x YXr^^^Xy^        \ - 

12                              3                              4                              5                              6 

200 

100 
•^— C RMS 108.42 m mean-22.339 m I 

/I                          y^X\                   ***.                           StdDev mean 0.17                           |- 

0 

100 

200 

kfh~^ \^/      ^   : 

Figure 5.2 - Simulation 1 No Process Noise Results 
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5.4.2 Simulation 1 GEODE Process Noise 

Next the process noise formulation used in GEODE is added to the 

simulation filter, T and the a s are tuned to minimize the 3D RSS error of the 

filtered solution when compared to the truth data. The error and standard 

deviation statistics are shown in Figure 5.3. Figure 5.3 shows that by adding 

process noise, precision and accuracy improved and the variances appear more 

reasonable. 

3D RSS Error = 75.39 m 

Figure 5.3 - Simulation 1 GEODE Process Noise Results 
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5.4.3 Simulation 1 XYZ DMC 

Next the EKF is implemented with XYZ DMC and T, CTU, CT^, aJ2 and CTCD 

are, again, tuned to produce the lowest 3D RSS error compared to the STK truth 

trajectory. Adding the estimation of the compensative accelerations and the DMC 

process noise significantly improved the filter's precision and accuracy. Figure 

5.4 shows the error and standard deviation statistics for the XYZ DMC case. 

3D RSS Error = 68.12 m 

I RMS 39.01 m mean 6.219 m 
- — Std Dev mean 47.64 
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A> &*& £%#* !*^s* 
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?&& £t^Ä*^ - 

- i ■ i , i        i 

Ü 

Figure 5.4 - Track Simulation 1 XYZ DMC Results 
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5.4.4 Simulation 1 RIC DMC 

The final step in simulation 1 is to convert the compensative accelerations, 

state transition matrix and process noise covariance matrix to RIC coordinates and 

tune the TS and as (TR, TI, TC, aR, CTI, ac, crM, aJ2 and OCD)- Results are shown in 

Figure 5.5. 

3D RSS Error = 43.35 m 
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Figure 5.5 - Simulation 1 RIC DMC Results 

Table 5.1 shows a summary of the results of simulation 1. Adding process 

noise to the filter's covariance matrix significantly improves its accuracy and 

precision. Additional accuracy and precision are gained by estimating 
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compensative accelerations and by applying RIC DMC. RIC DMC improved 

the filter's error RSS by 36.4% compared to XYZ DMC. 

Table 5.1 - Summary of Results with 3 TrackSats and 1 m Noise on Range 
Simulation 1 Error Mean (m) ErrorRMS(m) 

R I •■..Cv R I ...      C    .,•:' 3D 
No Process Noise -23.5 92.1 -22.3 57.8 141.6 108.4 186.0 
GEODE Process Noise -4.6 7.5 -20.5 50.0 40.5 39.3 75.4 
XYZDMC -0.7 6.2 -21.7 38.2 39.0 40.7 68.1 
RIC DMC 1.6 2.7 -12.5 19.5 19.9 33.2 43.3 

5.5 Multi-satellite Range Simulation (Simulation 2) 

The second simulation uses the same STK trajectory as truth. However, in 

this simulation four TrakSats are used, each spaced 90° apart in longitude. Range 

measurements are then calculated artificially from all four satellites at 20-second 

intervals. In simulation 2 there are four range observations at each observation 

epoch and no range rate observations. Obviously, measuring range from all four 

satellites at once is not possible due to interference by the Earth. The additional 

satellite is added and measurements from all satellites at once are used to improve 

the simulation's observation geometry. The improved geometry allows a 

significant improvement in accuracy and precision. The 3D RSS error without 

DMC is 158 m. When RIC DMC is applied the 3D RSS error is 3.1 m. As shown 

in Table 5.1, the best result using RIC DMC in simulation 1 is 43.3 m, 3D. Since 

the objective of this simulation is to determine if transforming DMC to the RIC 

orientation improves solution accuracy, mean of zero, standard deviation 50 m 

Gaussian noise is added to the range measurements instead of 1 m noise. The 



filter result without process noise is a 3D RSS error of 169 m but with GEODE's 

process noise formulation the best result is 50.3 m 3D. Figure 5.6 through Figure 

5.9 show error plots for the various methods and Table 5.2 shows a summary of 

the error statistics for the various methods. 
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3D RSS Error = 169.30 m 

Figure 5.6 - Simulation 2 No Process Noise Results 
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3D RSS Error = 50.26 m 

■ R RMS 28.67 m mean -1.408 m 
Std Dev mean 53.08 

■ I RMS 39.47 m mean 7.045 m 
Std Dev mean 19.47 

i C RMS 12.10 m mean-2.380 m 
- Std Dev mean 15.05 

Figure 5.7 - Simulation 2 GEODE Process Noise Results 

3D RSS Error = 35.16 m 

Figure 5.8 - Simulation 2 XYZ DMC Results 
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3D RSS Error = 32.75 m 

■ R RMS 15.50 m mean-3.513 m 
Std Dev mean 27.88 

— I RMS 25.93 m mean 2.590 m 
— Std Dev mean 11.57 
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Figure 5.9 - Simulation 2 RIC DMC Results 

Table 5.2 - Summary of Results with 4 TrakSats and 50 m Noise on Range 
Simulation 2 Error Mean (m) ErrorRMS(m) 

R I c R I C 3D 
No Process Noise -8.1 25.8 -22.4 53.7 98.8 126.5 169.3 
GEODE Process Noise -1.4 7.04 -2.9 28.7 39.5 12.1 50.3 
XYZDMC -2.1 0.9 -6.4 19.1 26.1 13.7 35.2 
RIC DMC -3.5 2.6 -4.9 15.5 25.9 12.6 32.8 

5.6 Simulation Conclusions 

In both simulations the RIC implementation of DMC outperforms the 

XYZ version. The poor viewing geometry in the first simulation contributes to 

allowing RIC DMC to best XYZ DMC by over 36%. The second simulation 

shows that with better geometry and more observations (even though 50 m noise 

is added) RIC DMC does not outperform XYZ DMC as dramatically. The 
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improvement in the second simulation is slightly under 7%. The several meter 3D 

improvement is worth the difficulty of tuning 6 parameters rather than 2. The 

greater flexibility offered by RIC DMC in adjusting the process noise allowed a 

19% improvement in the radial direction. Next results from DMC 

implementation in GEODE are presented. 

5.7 XYZ DMC in GEODE 

The XYZ implementation of DMC in GEODE is straightforward. The 

three compensative accelerations are added to the state and the deterministic 

portion of equation (5.6) (also shown in equation (5.23)) augments GEODE's 

time propagation of the state. The state transition matrix is augmented with three 

rows and three columns per equation (5.24). The process noise covariance 

formulation in equations (5.36) through (5.43) is implemented in the same manner 

as GEODE's process noise formulation. Finally, x,0^,^,(5^,aCo,andCTCR input 

variables are added to the uplink command file along with a switch to use DMC 

or GEODE's original process noise implementation. 

5.7.1 XYZ DMC Tuning 

Significant effort is involved in tuning the process noise x and a s in the 

application of DMC. The tuning process consists of incrementally changing each 

parameter and recording the error between the filter's estimate and the "truth" 

data. An example of a series of tuning runs for the 4 Feb 1997 GPS/MET data is 
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presented in Table 5.3. In Table 5.3 the bold items are the values being tuned. 

The parameters that achieved optimal results are presented in Table 5.4. The 

results achieved with XYZ DMC are a significant improvement over GEODE's 

original process noise formulation. 

Table 5.3 - GPS/MET XYZ DMC Parameter Tuning 

T °u °b ab 3DRSS 

0.028 0.0001 11.0 0.001 0.0001 0.0001 8.33 
0.03 0.0001 11.0 0.001 0.0001 0.0001 8.32 
0.034 0.0001 11.0 0.001 0.0001 0.0001 8.33 
0.03 0.00005 11.0 0.001 0.0001 0.0001 8.49 
0.03 0.00013 11.0 0.001 0.0001 0.0001 8.35 
0.03 0.0001 10.0 0.001 0.0001 0.0001 8.34 
0.03 0.0001 12.0 0.001 0.0001 0.0001 8.34 
0.03 0.0001 11.0 0.0001 0.0001 0.0001 8.32 
0.03 0.0001 11.0 0.01 0.0001 0.0001 8.36 
0.03 0.0001 11.0 0.001 0.00001 0.0001 8.32 
0.03 0.0001 11.0 0.001 0.0002 0.0001 8.34 
0.03 0.0001 11.0 0.001 0.0001 0.00001 8.32 
0.03 0.0001 11.0 0.001 0.0001 0.0002 8.34 

Table 5.4 - GPS/MET XYZ DMC "Optimal" Parameters 
, Parameter Tuned Value 

T 0.03 

°u 0.0001 

°b 11.0 

CTb 0.001 

acD 0.0001 

CTcR 0.0001 

Optimal tuning results for GPS/MET data when JPL high rate GPS clock 

estimates are applied to attempt to remove SA affects are shown in Table 5.5. 
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Table 5.5 - GPS/MET With High Rate GPS Clocks XYZ DMC "Optimal" 

Parameters 
Parameter Tutted Value 

X 0.03 

°« 0.0001 

°b 5.9 

CTb 0.09 

CTcD 
0.0001 

CTcR 
0.0001 

5.7.2 XYZ DMC GEODE Accuracy/Precision Results 

XYZ DMC implementation significantly improves GEODE's position 

estimates. Table 5.6 shows a comparison of the GPS/MET (no high rate clocks) 

results achieved with GEODE's original process noise formulation and results 

with XYZ DMC in GEODE. Without DRVID XYZ DMC improves the error 

RSS by over 23.0% while DRVID XYZ DMC improves accuracy by over 28.2%. 

Both of the previous comparisons are with the original implementation of 

GEODE. 

Table 5.6 - GEODE Results With and Without XYZ DMC 

4 Feb 1997 GPS/MET Mean of Error (m) 
RMS Error of Filter Compared 

to Truth (m) 
Scheme R I C R I C 3D 

Original Single 0.55 -0.99 -0.10 2.74 10.24 2.15 10.81 
Original DRVID 0.24 -1.14 -0.11 2.63 9.72 2.23 10.32 

XYZ DMC Single -0.18 3.08 -0.14 1.74 7.77 2.41 8.32 
XYZ DMC DRVID -0.30 1.94 -0.14 1.93 7.07 2.56 7.76 

To gauge the accuracy improvement gained using XYZ DMC with SA off, 

results are presented in Table 5.7 and Table 5.8. Table 5.7 shows DMC results 



144 
when JPL high rate GPS clock estimates are applied to GPS/MET data. Table 5.8 

shows DMC results for the S A free TOPEX data. DRVID XYZ DMC provided a 

19.6% improvement over the original implementation in GEODE while XYZ 

DMC without DRVID resulted in only a 16.7% improvement on the GPS/MET 

data. Also, DMC improves the SA free TOPEX 3D position RSS by 10.8% when 

precise GPS ephemerides are not used and 11.1% when precise GPS ephemerides 

are used. 

Table 5.7 - GEODE Results With and Without XYZ DMC Using High Rate 
Clock Estimates to Correct for S A 

4 Feb 1997 GPS/MET Mean of Error (m) 
RMS Error of Filter Compared 

to Truth (m) 
Scheme ¥M :: I C R I C 3D 

Original None 0.28 -3.59 -0.04 2.22 7.23 0.77 7.60 
Original DRVID -0.03 -3.54 -0.04 1.97 6.95 0.90 7.28 

XYZ DMC None -0.21 -0.52 -0.05 2.01 5.94 0.89 6.33 
XYZ DMC DRVID -0.31 -1.19 -0.06 1.95 5.70 1.03 6.11 

Table 5.8 - SA Free TOPEX Results With and Without XYZ DMC 

5 May 2000 TOPEX Mean of Error (m) 
RMS Error of Filter Compared 

to Truth (m) 
Scheme R I c R I C 3D 

Original None 0.21 -0.04 0.01 0.35 1.06 0.44 1.20 

XYZ DMC None 0.19 -0.03 0.02 0.33 0.91 0.45 1.07 

Original Single with 
Precise GPS 
Ephemeris 

0.22 -0.16 0.00 0.34 0.97 0.31 1.08 

XYZ DMC Single 
with Precise GPS 
Ephemeris 

0.20 -0.18 0.01 0.33 0.84 0.33 0.96 
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5.7.3 XYZ DMC GEODE Computational Burden Results 

The computational burden of XYZ DMC is roughly equivalent to that of 

the original process noise implementation in GEODE. 

5.8 RIC DMC in GEODE 

The implementation of RIC DMC in GEODE involves the same 

implementation as XYZ DMC with the addition of the RIC variables to the uplink 

command file and appropriate application of the XYZ to RIC transformation 

matrices as in equations (5.46), (5.47), (5.54), and (5.71). It can be shown that by 

setting TR = Tj = xc and aR = a1 = oc RIC DMC is the equivalent of XYZ DMC. 

The first line of data in Table 5.9 shows the XYZ DMC case applied to RIC 

DMC. Table 5.9 also shows the results achieved with GEODE through tuning of 

the RIC parameters for the case where single frequency GPS measurements are 

used and DRVID is not applied. Table 5.10 shows the optimal RIC DMC 

parameters found through tuning. 
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Table 5.9- GPS/MET RIC DMC Parameter Tuning 

TR h Tc °R <*i 
CTC 3DRSS 

0.03 0.03 0.03 0.0001 0.0001 0.0001 8.32 
0.001 0.03 0.03 0.0001 0.0001 0.0001 8.32 
0.1 0.03 0.03 0.0001 0.0001 0.0001 8.35 
0.03 0.028 0.03 0.0001 0.0001 0.0001 8.33 
0.03 0.032 0.03 0.0001 0.0001 0.0001 8.33 
0.03 0.03 0.3 0.0001 0.0001 0.0001 8.10 
0.03 0.03 0.4 0.0001 0.0001 0.0001 8.08 
0.03 0.03 0.5 0.0001 0.0001 0.0001 8.08 
0.03 0.03 0.6 0.0001 0.0001 0.0001 8.09 
0.03 0.03 0.4 0.00005 0.0001 0.0001 8.07 
0.03 0.03 0.4 0.0002 0.0001 0.0001 8.09 
0.03 0.03 0.4 0.00005 0.00005 0.0001 8.07 
0.03 0.03 0.4 0.00005 0.0002 0.0001 8.09 
0.03 0.03 0.4 0.00005 0.0001 0.00005 8.07 
0.03 0.03 0.4 0.00005 0.0001 0.0002 8.09 

Table 5.10 - GPS/MET RIC DMC "Optimal" Parameters 
;   Parameter Tuned Value 

*R 0.03 

*I 0.03 

XC 0.4 

°R 0.00005 

°I 0.0001 

°c 0.0001 

°b 11.0 

CTb 0.001 

GcD 
0.0001 

CTcR 
0.0001 

5.8.1 RIC DMC GEODE Results 

Table 5.11 shows a comparison of the RIC DMC results using the optimal 

values shown in Table 5.10 compared to the original process noise 

implementation in GEODE. The position error improved from 8.32 m 3D RSS 
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for XYZ DMC to 8.07 m 3D RSS for RIC DMC or 3% (case without DRVID). 

The DRVID improvement is only 2.6%. 

The accuracy improvements realized by RIC DMC in GEODE are much 

smaller than those gained by RIC DMC in the simulations previously described. 

The small improvement in accuracy is probably due to the exceptional observing 

geometry offered by GPS. As shown in the simulations, when the observing 

geometry improves, the utility of RIC DMC decreases. Although RIC DMC 

implementation only improves accuracy marginally for the processing of GPS 

pseudoranges, it may provide additional accuracy improvements when applied to 

different observation types, as in the case where GPS point solutions are used as 

measurements for a filter. Additionally, RIC DMC increased GEODE's 

computational burden by approximately 1%. 

Table 5.11- GEODE Results With and Without RIC DMC 

; 4 Feb 1997 GPS/MET Mean of Error (m) 
RMS Error of Filter Compared 

to Truth (m) 
Scheme R I C ;R /-.;; I C 3D 

Original Single 0.55 -0.99 -0.10 2.74 10.24 2.15 10.81 
Original DRVID 0.24 -1.14 -0.11 2.63 9.72 2.23 10.32 

XYZ DMC Single -0.18 3.08 -0.14 1.74 7.77 2.41 8.32 
XYZ DMC DRVID -0.30 1.94 -0.14 1.93 7.07 2.56 7.76 

RIC DMC Single -0.17 2.89 -0.17 1.70 7.55 2.30 8.07 
RIC DMC DRVID -0.29 1.75 -0.17 1.94 6.92 2.26 7.53 

5.9 Summary 

In this chapter Dynamic Model Compensation is first developed for a one- 

dimensional estimation problem. DMC is then extended to a satellite orbit 
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determination problem and the XYZ and RIC versions are developed. XYZ and 

RIC DMC are then employed in two simulations. In the first simulation, RIC 

DMC lowers the 3D error RSS by 36.4% compared to XYZ DMC. Both XYZ 

and RIC DMC improved accuracy considerably over GEODE's process noise 

implementation. In the second simulation, observing geometry is improved 

causing the RIC DMC accuracy to only improve 7% over XYZ DMC. 

XYZ and RIC DMC are then implemented in GEODE. XYZ DMC 

improves GEODE's error RSS by 23.0% when applied to the processing 

GPS/MET data, 16.7% for GPS/MET data with high rate GPS clocks and 10.8% 

on SA free TOPEX data. XYZ DMC not only improves the position error RSS, it 

does not increase computational burden. 

While RIC DMC significantly improves filter accuracy/precision in the 

simulations it only marginally improves GEODE's performance. The modest 3% 

improvement without DRVID and 2.6% improvement with DRVID (compared to 

XYZ DMC) may not be worth the overhead involved in tuning the additional 

parameters. Finally, RIC DMC increases GEODE's computational burden by 

roughly 1% compared to GEODE's original process noise formulation. 



CHAPTER 6 

Genetic Model Compensation (GMC) 

Genetic Model Compensation (GMC) [9, 64] is an application of a 

Genetic Algorithm (GA) to the optimization of the correlation time of the 

exponential decay (x) and standard deviation (au, ab, a6) of the forcing noise 

from DMC. As seen in Chapter 5 of this dissertation, the values chosen for x and 

the as have a significant effect on filter performance. Normally, the as are 

considered constant and tuned through trial and error testing where the true states 

are available (as shown in Chapter 5). Since x is included in the deterministic 

portion of the DMC augmentation of the state, it can be estimated as part of the 

state. Unfortunately, there are problems associated with estimating x. The 

satellite OD EKF relies on linearization of the state trajectory and 

observation/state relationship. The state members (position, velocity, clock bias, 

clock bias drift rate, coefficient of drag and coefficient of radiation pressure) are 

known, a priori, with sufficient accuracy to guarantee linearity. However, there is 

no way to generate an a priori estimate of x with accuracy to support the 

assumption of linearity. Without accurate a priori knowledge of x, the filter may 

not be able to adjust x to its optimum value and may even diverge [65]. If x and 

the os are tuned, there is no guarantee their optimum value will be chosen or the 
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optimum tuned values will be optimum during actual implementation (flight on 

board a satellite, in this case). GMC was developed and implemented by 

Cruickshank to replace ad hoc tuning and estimation with the genetic estimation 

of CJU, ab, ab and x [9, 64,65]. GMC adapts cru, ab, crb and x as part of the OD 

process. Cruickshank suggests that GMC is perfectly suited for the autonomous 

satellite OD environment since no a priori knowledge of CJU , ab, ab and x is 

needed [9]. 

In this chapter the Genetic Algorithm (GA) is briefly described, the 

algorithm for the application of GMC in GEODE is presented and 

accuracy/precision and computational burden results of GMC are shown. 

6.1 The Genetic Algorithm (GA) 

A summary of the benefits of the GA and a brief description are presented 

here, more detailed information can be found in [66]. The GA is a model of 

machine learning derived from the theoretical mechanisms of evolution in nature. 

In the GA chromosomes represent a population of individuals. The chromosomes 

are a set of binary numbers representing values to be optimized. The individuals 

go through a process of simulated evolution to optimize their values based on a 

fitness function. There are many optimization techniques available however, the 

GA has several qualities that separate it from other search techniques. The GA: 

Operates on coding of the parameter set rather than on the parameters 
themselves 
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• Searches for the optimum from a population of points simultaneously 

rather than from a single point 
• Uses payoff information from the values generated by a fitness function 

rather than the gradient or other auxiliary information to direct the search 
• Uses probabilistic transition rules rather than deterministic transition rules 

[66] 

The GA seeks a global maximum (or minimum) by optimally using 

exploration to investigate unknown areas of the search space and exploitation to 

make use of knowledge found at previously visited points [67]. The three 

operators reproduction, crossover and mutation act on the population allowing 

both exploration and exploitation of the search space. 

6.1.1 Reproduction 

In reproduction, parents are selected randomly from the population in a 

way that favors the most sought after individuals. The most sought after 

individuals may be selected more than once, while least sought after individuals 

may not be selected. The parents (chosen for their fitness for reproduction based 

on a fitness function) are then randomly arranged in pairs for mating. 

6.1.2 Crossover 

Crossover is the random exchange of chromosome strings between mating 

pairs. Crossover is not always performed on the entire population but on random 

pairs of individuals selected for mating. The probability of selection for crossover 

is between 50 and 100%.    Random portions of the chromosomes from one 
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individual are exchanged for those from another. In this way the offspring may 

receive a selection of genes from each parent. 

6.1.3 Mutation 

Mutation is randomly applied to offspring after crossover. Here individual 

genes are randomly altered with very small probability (0.1-0.001). The 

traditional view is that crossover is more important for rapidly exploring the 

search space while mutation provides a small amount of random search, ensuring 

that no point in the search space has zero probability of examination [67]. 

6.1.4 GA Application 

The GA is applied by, first, randomly selecting a population of 

individuals. These individuals are tested by a fitness function to determine which 

are most suitable for reproduction. Then, a probability of reproduction is 

calculated for individuals based on their suitability. Reproduction is 

accomplished by randomly selecting individuals based on their reproduction 

probability. In this way, the best individuals have the highest priority of being 

selected. Individuals may be selected more than once or not at all. Next, 

individuals are randomly paired for mating. Then, crossover of genes is 

performed if randomly decided. Finally, mutation is performed on offspring from 

crossover, again if randomly decided [64]. 
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6.2 GMC Algorithm 

The following GMC algorithm is extracted from Cruickshank [9] and 

applies to the pseudorange measurement only. The algorithm is modified to 

include <x . 
0 

1. Generate an initial gene pool (as base 10 numbers) of size n for 
au, ab, ab and x. Nominally, n =10. A sample distribution for the 
gene pool is [1, 50,100, 500,1000, 3300, 6600,10000, 13000, 16383]. 
Scaling of the gene pool is discussed in section 6.3. 

2. Encode the n base ten numbers (candidate values for au, ab, ab, x ) in 
each gene pool into n binary strings of length q (nominally, q=14). 

3. Randomly group the candidate values into quadruplets [x   CTU    ab    o"b]. 

4. Compute the propagated genetic position, velocity, and clock increments 
for each of the n candidate quadruplets [x   CTU    ab    ab J using: 

5xGMC = jt
t

o[T(t-T) + T2(e-(t-T)/T-l)u(t)dT] (6.1) 

5b=f(t-T)ub(T)dT (6.2) 

5bu = rub(T)dT (6.3) 

The stochastic integrals are evaluated by Riemann sums, i.e.: 

m 

^(uCT^dTsSg^CtDX^-t,) (6.4) 
i=0 

\ m ( At 
5xGMC =£ tksx + x2(eks-l)—u  (t)an (6.5) 

j=A m    ' J 

\ m I       At At 
5b =£ tks—ub (t)ab +—ub (i)ab (6.6) 

j=i v      m    ' m 
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At 

5b=X|— ub.(t)obl (6.7) 

(m-0.5) At 
tks = At - ^ '— (6.8) 

m 

eks = e-to/T (6.9) 

where t{ < ii < ti+1 and u(t) represents the uncorrelated Gaussian random 
noise process. 

5. Compute the predicted genetic pseudorange by 

GPg = Pg " bgc + V = V(
X

G - xg )2 - (yG " yg / - (Z
G - zg )2 - bgc + bGc (6.10) 

where 

Xg = Xu + "XGMC 

yg = yu+5yGMc (6-n) 

Zg = Zu + OZGMC 

bg = bu + 5bGMC + buAt + 5bGMCAt 

be = GPS satellite clock bias 

xu, yu, and zu are the best estimates of the user satellite at the current epoch 
and XG, yc and zG are the GPS satellite's coordinates. 

6. Compute the genetic pseudorange residuals by 

y«, =p.-G«, <6-12> 

where p; is the ith pseudorange measurement. 

7. Compute the fitness function value for each candidate quadruplet 

[x   au    ab   ab] by 

fi =       *!     ; i = l,2,...n (6.13) 
£

gi
R  eg, 

where 
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i = the ith genetic parameter quadruplet 

sgi = the vector of genetic measurement residual for the ith genetic 
parameter quadruplet 

R"1 = a diagonal weighting matrix formed from the observed measurement 
residuals 

a = the maximum value of e R-1e  over all n genetic parameter 

quadruplets 

8. Select the candidate quadruplet [x   CTU    ab   ab]    that yields the 

highest objective function value: 

9. Update [x   CJU    ab    ab 1    for the next formulation of the process noise 

covariance and state transition matrices. 

10. Update the propagation equations for the acceleration, velocity, and 
position states so that xopt will be used in the next time update. 

11. Compute the merit values (probability of reproduction) for the gene pool 
quadruplets: 

V,=T£- (6.15) 

12. Compute the gene pool variances. For any particular gene pool, the gene 
pool variance is defined as: 

$(e)=-Z(ei-°J2 (6-16) 
n i=i 

where 0 represents the gene pool parameter, e.g., a or x. 

13. Perform the reproduction procedure. The probability of reproduction for 
the i* gene pool quadruplet is given by Vj. Reproduction of 
<ru, ab, ab and x are done by quadruplets. 

14. Perform the crossover procedure with the new gene pools. The crossover 
probability is a function of the gene pool variance: 



156 

¥(9) = 0.99 -0.99 W) 
V K(9) 

P««(e) = ¥(e) if y(e)>0.5 (6.17) 

pcross(0) = 0.5if¥(9)<0.5 

where K(9) is the crossover rate factor. Its value is chosen to be of the 
same order of magnitude as the anticipated maximum value of ^(9). 

The probability floor of 0.5 is arbitrarily chosen. Crossover is performed 
on the CTU, ob, ab, x strings separately, not on the quadruplets. 

15. Perform the mutation procedure with the new gene pools. The probability 
of mutation for any particular bit is an input value (nominally set to 
0.01). Mutation is performed on the CTU, ab, ab, x strings separately. 

16. Return to step 3 with the new oa,<Jh,ai,x gene pools. The new gene 

pools become the initial gene pools for the next update at tk+i. 

Figure 6.1 shows the entire GMC algorithm with respect to GEODE. 
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Figure 6.1 - GMC Algorithm 

6.3 GMCinGEODE 

GMC is implemented in GEODE using XYZ DMC only. The values for 

acD and OCR are set at 0.0001, just as in XYZ DMC. The binary string length is 

set at 14 bits giving a range of values for each member of the design space from 

0 to 16383 (214). Each T and a is scaled to allow the design space to more 

appropriately match the tuned DMC values. Additional information concerning 

the constraints placed on the design space for each x and a is presented in section 

6.3.2. The size of the population of quadruplets is set to 10 (n = 10); therefore, 
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there are 40 members in the design space. Fifty intervals are used for the 

Riemann sum calculations shown in equations (6.5) through (6.7), i.e., m = 50. 

The population size and number of Riemann intervals are changeable parameters. 

6.3.1 Implementation 

The implementation of GMC in GEODE is very straightforward. The 

previous implementation of XYZ DMC is left untouched and the part of Figure 

6.1 inside the dashed lines is added to GEODE. All of the GMC processes take 

place just after the time update of the state and just prior to the formulation of the 

state transition and process noise covariance matrices. 

6.3.2 GMC Tuning 

Although trial and error tuning is not supposed to be required in GMC [9], 

GMC results improve dramatically if the range of values allowed for each 

member of the design space is tightly constrained around the tuned DMC values. 

This "bracketing" of the design space is carried out when the binary strings are 

converted to real numbers. The values chosen to bracket the design space for 

both the GPS/MET data with high rate GPS clocks applied and SA free TOPEX 

data are shown in Table 6.1. Table 6.1 also shows the best-tuned DMC values. 

Scaling of the Riemann sums is also performed to keep the genetic 

measurement residuals within reasonable values. Scaling of the Riemann sums is 

performed in a very straightforward and logical manner. Once accomplished, the 
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Riemann sum scaling values are used for all data sets processed with GEODE. 

The 5x, 5y, and 5z Riemann sums are scaled (multiplied) by le6 and the 5b and 

the 8bdot sums are scaled by 100. 

Table 6.1- GMC Design Space Bracketing 
Data Set Best DMC Value Lower Bound Upper Bound 

4 Feb 1997 GPS/MET 
with High Rate GPS 

Clock Estimates 
T, : ■  ■' 0.03 0.001 0.05 

::o-u   ■■ 0.0001 0.00005 0.00015 

ob   ■■■ 5.9 0.001 8.0 

°"bdot 0.09 0.01 0.4 
5 May 2000 TOPEX 

T 0.01 0.001 0.05 

cru 0.0001 0.00005 0.00015 

CTb 
0.01 0.001 8.0 

0"bdot 0.2 0.01 0.4 

6.3.3 GMC in GEODE Results 

The application of the GA in GMC necessitates the use of a significant 

quantity of random numbers. GMC relies on random numbers for decisions in 

reproduction, crossover and mutation as well as in the solution of the stochastic 

integrals using Riemann sums. Since the generation of random numbers depends 

on an initial "seed," the results attained with GMC change whenever a different 

random number seed is used. Therefore, to gauge GMC's performance against 

DMC, statistical hypothesis testing is implemented. Hypothesis testing is a 

procedure where the mean of a population can be compared against a specified 

value [53]. In this case, the position RIC RMS and RSS values achieved using 
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DMC and JPL high rate GPS clock estimates (GPS/MET data) are compared to 

the results of 30 similar GMC runs. The sample size of 30 runs is chosen to 

satisfy the Central Limit Theorem. The Central Limit Theorem states that if the 

sample size n is large (n > 30), the sampling distribution of the sample mean will 

be approximately normal, even if the probability distribution of the population is 

unknown [53]. GEODE is run using GMC 30 times with random random number 

seeds. The radial, in-track, cross-track position errors from the 30 runs are used 

in the hypothesis testing. 

The hypothesis testing procedure as shown in [53] is set up below to 

compare GMC applied to the GPS/MET data with high rate GPS clock estimates 

against GEODE's original process noise formulation with high rate GPS clock 

estimates: 

1. The parameter of interest is the mean of the position RSS of the 30 GMC 

runs, referred to as \i. 

2. The null hypothesis is Ho: (x = 7.60 m (3D position RSS of the original 

process noise implementation in GEODE) 

3. The alternative hypothesis is Hi: \x< 7.60m (reject Ho if the mean of the 
position RSS of the GMC runs is less than 7.60 m) 

4. The type I error probability (the probability of rejecting the null 

hypothesis even when it is true) is set at a = 0.0001. 

5. The test statistic is t0 = X~H-o ^ ^ 
s/vn 

6. Reject Ho if t0 <t0.oooi, 29 = 4.254 

7. Computations: Since x = 6.13 m (sample mean), s = 0.317 (sample 

standard deviation), uo = 7.60 m and n = 30, 
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6-13"7-6 =-28.79 (6.19) 

0    0.317/>/3Ö 

8.   Conclusions: Since t0 = -28.79 < 4.254, we reject H0 and conclude, at the 

0.0001 significance level, the mean of the GMC position RSS is lower 
than the DMC position RSS. In other words, there is a 99.99% probability 
GMC produces a lower 3D position RSS than DMC. 

Similar hypothesis tests are performed for the radial, in-track and cross- 

track RMS values with the result that, at the 0.0001 significance level, GMC 

produces lower radial and in-track errors than GEODE's original implementation. 

The original implementation performs better than GMC in the cross-track 

direction. Figure 6.2 shows a plot of mean GMC results and the original process 

noise implementation in GEODE with the JPL high rate GPS clock estimates 

applied. As reflected in the hypothesis testing mentioned previously, the plots in 

Figure 6.2 show that GMC significantly outperforms the original process noise 

implementation in GEODE in the radial and in-track directions. GMC also 

provides a less biased estimate in the in-track direction. Table 6.2 shows statistics 

of the results using the original version of GEODE, XYZ DMC in GEODE and 

GMC in GEODE when the JPL high rate GPS clock estimates are applied. 
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GMC 3D Error RSS 6.09 m  DMC 3D Error RSS 7.60 m 
1   >       n       r 
GMC Radial RMS 1.95 m Mean -0.269 m 
DMC Radial RMS 2.22 m Mean 0.277 m 

24 

-5 

n         '               '   1                       1                       1 

ft  GMC Cross-track RMS 0.87 m Mean -0.048 m 
 DMC Cross-track RMS 0.77 m Mean -0.035 m 

Ilk .A A   /W 
II            \f    V           \j     yv    \/     \^    V    v     v    \l     v     1 

1                 1                      1                      1                      1                  --i- 
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Figure 6.2 - GPS/MET High Rate GPS Clock GMC/DMC Comparison 
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Table 6.2 - GEODE GMC Results Comparison Using High Rate Clock Estimates 

to Correct for SA 

4 Feb 1997 GPS/MET Mean of Error (m) 
RMS Error of Filter Compared 

to Truth (m) 
Scheme R ■■■"T--- c R I C 3D 

Original single 0.28 -3.59 -0.04 2.22 7.23 0.77 7.60 

XYZDMC single -0.21 -0.52 -0.05 2.01 5.94 0.89 6.33 

XYZ GMC single* -0.28 0.42 -0.6 1.92 5.56 0.81 6.13 

* Mean values for 30 runs 

The mean T and a values chosen by GMC over the 30 runs are different than the 

optimal values found with DMC. Figure 6.3 shows plots of the mean DMC 

parameters determined with GMC over the 30 runs. The horizontal lines are the 

bracket values shown in Table 6.1. The upper bracket value for c^ is off the 

plot. The mean values for x, au, and a6 are close to the tuned DMC values. The 

mean value for ab is quite different and indicates that additional 

accuracy/precision gains may be attained with further DMC tuning. 
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Figure 6.3 - GPS/MET Mean DMC Parameters from GMC 

GEODE with GMC is also used to process the SA free TOPEX data. The 

mean results from the thirty GMC TOPEX runs are shown in Table 5.8 for 

comparison with the original version of GEODE and XYZ DMC in GEODE. 

Hypothesis testing results indicate that with 99.99% certainty, the means of the 

GMC RSS results are smaller than original GEODE. Hypothesis tests also 

indicate that GMC improves the radial and in-track position estimates, with 

99.99% certainty. Again, the original GEODE implementation performed nearly 

the same as GMC in the cross-track direction.   Figure 6.4 shows plots of the 

original GEODE implementation and mean GMC results in the radial, in-track 



and cross-track directions. In the radial and cross-track directions the GMC 

results are nearly exactly the same as original GEODE results. 
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Table 6.3 - SA Free TOPEX GMC Results 

:   5 May 2000 TOPEX Mean of Error (m) 
RMS Error of Filter Compared 

to Truth (m) 
Scheme R I c R I C 3D 

;: Original Single 0.21 -0.04 0.01 0.35 1.06 0.44 1.20 

XYZDMC Single 0.19 -0.03 0.02 0.33 0.91 0.45 1.07 

XYZ GMC Single* 0.19 -0.10 0.02 0.34 0.92 0.45 1.08 

* Mean values for 30 runs 
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GMC 3D Error RSS 1.13m  DMC 3D Error RSS 1.07 m 

- »     I     .                 I                       I i        i 

—■ GMC ln-track RMS 0.98 m Mean -0.219 m 
 DMC ln-track RMS 0.91 m Mean -0.032 m 

illl^V^VA    A,/%A. 

IV       Wv  ^\jy\// 
12 16 20 24 

GMC Cross-track RMS 0.45 m Mean 0.016 m 
DMC Cross-track RMS 0.45 m Mean 0.016 m 

Figure 6.4 - TOPEX GMC/DMC Comparison 

Figure 6.5 shows plots of the mean DMC parameters produced by GMC. 

In this case only the mean value of x is significantly different from the best-tuned 

DMC value. Another interesting aspect of the plot is the spikes just after hours 8 

and 16. The cause of the spikes is not known. 
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Figure 6.5 - TOPEX Mean DMC Parameters from GMC 

The computational cost of using GMC to estimate the XYZ DMC 

parameters is significant. Run time increases by 86% when GMC is used instead 

of XYZ DMC. While the 86% increase is significant, the overall run time when 

processing 24 hours of data for GEODE with GMC is only 90-seconds on a 450 

MHz Pentium II with 128 MB of RAM. Also, the 90-second execution time 

includes a significant amount of file i/o (reading in GPS observations, GPS 

ephemerides and POE and writing out state estimates, covariance matrices, error 

estimates and the Kaiman gain). 
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6.4 Summary 

In this chapter the Genetic Algorithm (GA) as applied to satellite orbit 

determination in the form of Genetic Model Compensation (GMC) is presented as 

an alternative to the DMC tuning process. While GMC does not necessarily 

improve GEODE's accuracy/precision compared to DMC, it does provide 

improvement compared to the original process noise implementation in GEODE. 

GMC also reduces the burden associated with DMC tuning. GMC does introduce 

a significant computational burden, however, it is not so significant that it 

prohibits GMC from potential deployment in a real-time satellite OD scenario. 

GMC is applied here with XYZ DMC but GMC could be extended to estimate 

RIC parameters associated with RIC DMC. 



CHAPTER 7 

Summary, Contributions, Future Work, 

and Conclusion 

7.1 Summary 

The differences between post-processing and real-time satellite orbit 

determination systems are presented in Chapter 1. Details regarding JPL's GOA- 

n, NRL's OCEAN and VMSI's MicroCosm® software suites are provided as 

examples of post-processing systems. Real-time GIPSY and an unnamed system 

from the University of Nottingham are described as real-time examples. The 

main differences between post-processing and real-time systems (with SA off) as 

stated in Chapter 1 are: 

• Post-processing systems can use the best/largest gravity models available 
while real-time systems must use truncated models 

• Post-processing systems estimate GPS ephemerides along with the 
satellite state or use precise GPS ephemerides while real-time systems use 
broadcast GPS ephemerides 

• Post-processing systems use sophisticated ionospheric estimation models 
while real-time systems typically ignore ionospheric errors 

• Post-processing systems use batch or batch sequential processors while 
real-time systems use EKFs 

Chapter 2 includes a description of the Orb View-1 spacecraft and its 

secondary payload GPS/MET. Chapter 2 also provides a detailed description of 
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GEODE, details concerning the optimization of GEODE, a Lagrangian 

interpolation scheme applied to precise GPS ephemerides and a method for 

partially removing the effects of SA on the GPS/MET GPS observations. 

Baseline values of GEODE's performance when processing GPS/MET and T/P 

data are also established in Chapter 2. See Table 7.1. 

Chapter 3 outlines the effect on accuracy of changing the degree and order 

of the gravity model used in propagating satellite ephemeris and in real-time 

satellite OD (see Table 7.1). It is important to again note that GEODE utilizes an 

EKF. Therefore, the OD results presented in Chapter 3 cannot be used to predict 

the effect of using truncated gravity models in a batch processing scenario. 

At the GPS/MET altitude and inclination, there is a 4.5 m accuracy gain 

when a 30x30 truncation of the JGM-2 gravity model is used for a 24-hour 

propagation instead of a 20x20 truncation (both compared to a 70x70 model). 

However, there is only a 1 m 3D RSS improvement in GEODE's OD estimate 

when a 30x30 truncation is used as compared to a 20x20 truncation. While the 

OD accuracy difference is small, the computation time required for processing 

one day of GPS/MET observations is 11% less for the 20x20 truncation compared 

to the 30x30 truncation. Chapter 3 also shows there is no advantage to using 

different models (JGM-3 or EGM-96) than JGM-2 and that there is only a minor 

OD accuracy/precision improvement when truncations larger than 30x30 are used. 

To reduce OD computational burden while maintaining accuracy/precision 

the Gravity Acceleration Approximation Function (GAAF) is also introduced in 
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Chapter 3. At the GPS/MET altitude and inclination it is found that a 20 km 

altitude range could be fit with 1st order polynomials to describe pseudocenter 

coefficients at various latitudes and longitudes. The 20 km - 1st order polynomial 

GAAF implementation requires only 1.88 MB of memory compared to the 4.9 

MB required by the original implementation in [50]. 24-hour ephemeris 

propagation and GEODE OD results confirm that accuracy/precision are 

maintained when GAAF is used and that the computational burden of GAAF is 

equivalent to that of a 5x5 gravity model truncation. 

Measurement errors due to the ionosphere are the topic of Chapter 4. The 

ionosphere is described and the Differenced Range Versus Integrated Doppler 

(DRVID) method of estimating ionospheric measurement errors is presented. 

Measurement errors from the ionosphere are highest when satellites are in 

sunlight and for GPS/MET were sometimes as high as 50 m in 1997. The RMS 

of the dual frequency ionospheric corrections for the 4 Feb 1997 GPS/MET data 

is 2.49 m (2.75 m in sunlight/1.84 m in darkness). Application of dual frequency 

ionospheric corrections to the GPS/MET data only marginally improved the 3D 

position RSS and introduced an in-track bias. The reason for the marginal RSS 

improvement is probably due to the dominating effects of SA errors. 

DRVID utilizes the difference in the way the pseudorange and phase 

measurements are affected by the ionosphere. Since the ionosphere advances 

phase and delays range measurements, a linear combination of phase and range 

measurements can remove ionospheric errors to first order. Unfortunately, in 
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using the phase measurement, an unknown integer ambiguity is introduced. Since 

estimation of phase integer ambiguities in real-time is probably unrealistic and the 

level of interaction required to use an accurate model to predict the initial 

measurement error due to the ionosphere is probably unacceptable in real-time 

OD systems, the zero bias DRVID method is proposed. Zero bias DRVID takes 

advantage of the fact that the measurement error due to the ionosphere is smallest 

when the GPS satellite is at its highest elevation angle with respect to the user 

satellite. Since the minimum measurement error point can be easily determined in 

real-time, the measurement error due to the ionosphere at this point is assumed to 

be zero. All measurements prior to the maximum elevation point, in a given 

tracking arc, are not corrected with DRVID while all measurements taken after 

the maximum elevation point are corrected with DRVID. DRVID introduces a 

12.1% computational burden increase to GEODE but improves the 3D position 

RSS when applied to the four different GPS/MET cases and to the T/P data as 

seen in Table 7.2. 

Dynamic Model Compensation (DMC) is developed and applied in 

Chapter 5. DMC provides process noise formulation and estimation of 

accelerations not accounted for in GEODE's dynamic model. DMC is applied to 

two Matlab simulations with the result that the 3D position error RSS of the 

filtered solution compared to truth is significantly improved when XYZ DMC is 

applied and improved further when RIC DMC is applied. However, when the 

observation geometry is improved in the second simulation, RIC DMC does not 
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provide as significant an improvement as in the first simulation (when observation 

geometry is not as good). 

XYZ DMC also improves GEODE's position estimates. DMC parameter 

tuning results are presented and it is shown that XYZ DMC improves GEODE's 

3D position error RSS by 23.0% over GEODE's original process noise 

formulation on GPS/MET data when high rate GPS clock estimates are not 

applied, 16.7% when high rate GPS clock estimates are applied and 10.0% on SA 

free T/P data. RIC DMC further improves GEODE's position estimates by 3% 

over XYZ DMC. XYZ DMC does not increase GEODE's computational burden 

while RIC DMC increases the burden by roughly 1%. 

Tuning of the DMC time correlation coefficient ( T ) and the standard 

deviation of the forcing noise ( CJ ) can be tedious and time consuming. Also, the 

pre-mission tuning process may yield optimum values that may not be optimum 

during the mission when "real" data is processed. Genetic Model Compensation 

(GMC) is described and GMC GEODE implementation results are presented in 

Chapter 6. GMC is an application of a Genetic Algorithm (GA) to optimize the x 

and c s used by DMC. GA's operate on strings of binary numbers and use 

random processes to arrive at optimum values through reproduction, crossover 

and mutation. 

Since random numbers drive GMC, hypothesis testing is explained and 

applied to determining, with known probability, if GMC improves GEODE's 

position estimates compared to GEODE's original process noise implementation. 
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Thirty GEODE runs are performed using GMC on the GPS/MET data with high 

rate GPS clock estimates applied. The results of the 30 GMC runs are compared 

against results from original GEODE. Hypothesis testing concludes, with 99.99% 

probability, that GMC improves GEODE's position estimates. In fact, the mean 

GMC 3D position error RSS is 19.3% lower than original GEODE. Thirty GMC 

GEODE runs are also performed on the SA free T/P data. Hypothesis testing 

again concludes, with 99.99% probability, that GMC GEODE provides better 

position estimates than original GEODE. In this case, the GMC GEODE 3D 

position RSS is 10.0 % lower than original GEODE. 

The improvements gained through the application of GMC do not come 

without computational cost. GMC increases GEODE's computational burden by 

approximately 86% but GEODE's relatively small overall burden, even with 

GMC, does not prohibit its use in a real-time OD system. 
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Table 7.1 - Chapter 2 through Chapter 4 Results Summary 
Error Mean (m) Error RMS (m) 

Chapter 2 R I ■-'■■'G  .,.-■ R ■'■■■■  1 ■■■■:'■ C 3D 
GPSMET orig single 0.55 -0.99 -0.10 2.74 10.24 2.15 10.81 
GPSMETorigdual 0.11 2.04 -0.11 2.48 9.68 2.12 10.21 

GPSMET orig single PE 0.58 -1.05 -0.09 2.99 10.11 1.97 10.73 
GPSMET orig dual PE 0.11 2.01 -0.11 2.48 9.22 2.03 9.76 

GPSMET orig single hr 0.28 -3.59 -0.04 2.22 7.23 0.77 7.60 
GPSMET orig dual hr -0.08 -1.38 -0.04 2.10 6.14 0.86 6.55 

GPSMET orig single hr PE 0.30 -3.56 -0.03 2.31 6.95 0.74 7.36 
GPSMET orig dual hr PE -0.06 -1.35 -0.03 1.91 5.43 1.04 5.85 

T/P orig single 0.21 -0.04 0.01 0.35 1.06 0.44 1.20 
T/P orig single PE 0.22 -0.16 0.00 0.34 0.97 0.31 1.08 

Chapters 
GPSMET orig single 
JGM-2 05x05 (OD) 1.71 -5.57 -0.06 25.42 53.87 29.42 66.43 
JGM-2 10x10 0.54 -2.03 0.62 7.66 18.16 7.15 20.96 
JGM-2 20x20 0.52 -0.97 0.02 3.12 11.05 2.93 11.85 
JGM-2 22x22 0.66 -1.14 0.05 2.90 10.53 2.26 11.15 
JGM-2 24x24 0.58 -0.91 -0.07 2.77 10.56 2.56 11.21 
JGM-2 25x25 0.58 -0.88 -0.07 2.78 10.36 2.03 10.92 
JGM-2 26x26 0.60 -1.02 -0.06 2.69 10.18 2.06 10.73 
JGM-2 27x27 0.57 -0.97 -0.06 2.72 10.26 2.13 10.82 
JGM-2 28x28 0.56 -0.99 -0.06 2.74 10.31 2.26 10.91 
JGM-2 30x30 0.55 -0.99 -0.10 2.74 10.24 2.15 10.81 
JGM-2 40x40 0.52 -0.90 -0.07 2.71 10.14 2.29 10.75 
JGM-2 50x50 0.52 -0.88 -0.05 2.71 10.12 2.41 10.75 
JGM-2 70x70 0.52 -0.88 -0.05 2.70 10.11 2.38 10.74 

GAAF 0.52 -0.88 -0.05 2.71 10.11 2.38 10.74 
EGM-96 30x30 0.55 -0.97 -0.11 2.75 10.25 2.18 10.83 
JGM-3 30x30 0.52 -0.91 -0.11 2.74 10.24 1.98 10.78 

Chapter 4 
GPSMET orig DRVID 0.22 -0.86 -0.12 2.49 10.00 2.24 10.55 
GPSMET orig DRVID PE 0.24 -0.92 -0.11 2.59 9.68 2.08 10.24 

GPSMET orig DRVID hr -0.03 -3.54 -0.04 1.97 6.95 0.90 7.28 
GPSMET orig DRVID hr PE 0.00 -3.57 -0.04 1.92 6.46 0.81 6.78 

T/P DRVID single 0.20 0.01 0.01 0.35 1.02 0.45 1.17 
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Table 7.2 - Chapter 5 and Chapter 6 Results Summary 
Chapter 5 Error Mean (m) Error RMS (m) 
XYZDMC R I .■    €■"':■ R I -..-. c / 3D 

GPSMETDMC single -0.18 3.08 -0.14 1.74 7.77 2.41 8.32 
GPSMET DMC dual -0.34 5.07 -0.14 1.84 8.44 2.38 8.96 
GPSMETDMC DRVID -0.30 1.94 -0.14 1.93 7.07 2.56 7.76 

GPSMET DMC single PE -0.16 3.09 -0.12 2.00 7.51 2.19 8.08 
GPSMET DMC dual PE -0.33 5.07 -0.12 1.76 7.92 2.22 8.41 
GPSMET DMC DRVID PE -0.26 2.11 -0.12 1.92 6.92 2.15 7.50 

GPSMET DMC single hr -0.21 -0.52 -0.05 2.01 5.94 0.89 6.33 
GPSMET DMC dual hr -0.35 0.87 -0.05 2.11 5.97 0.98 6.41 
GPSMET DMC DRVID hr -0.31 -1.19 -0.06 1.95 5.70 1.03 6.11 

GPSMET DMC single hr PE -0.19 -0.41 -0.04 2.00 5.23 0.84 5.66 
GPSMET DMC dual hr PE -0.33 0.98 -0.04 1.84 4.92 1.11 5.37 
GPSMET DMC DRVID hr PE -0.30 -1.22 -0.05 1.83 4.82 1.00 5.25 

T/P DMC single 0.19 -0.03 0.02 0.33 0.91 0.45 1.07 
T/P DMC DRVID 0.19 -0.20 0.02 0.34 0.89 0.46 1.06 

T/P DMC single PE 0.20 -0.17 0.01 0.33 0.84 0.33 0.96 
T/P DMC DRVID PE 0.20 -0.34 0.01 0.33 0.85 0.35 0.98 

RIC DMC 
GPSMET RIC DMC single -0.17 2.89 -0.17 1.70 7.55 2.30 8.07 
GPSMET RIC DMC DRVID -0.29 1.75 -0.17 1.94 6.92 2.26 7.53 

Chapter 6 
GPSMET GMC single hr* -0.28 0.42 -0.6 1.92 5.56 0.81 6.13 

T/PGMC* 0.19 -0.10 0.02 0.34 0.92 0.45 1.08 

* Mean value for 30 runs 

Results for all GPS/MET and T/P GEODE runs, as described in Chapter 2 

through Chapter 6, are presented in Table 7.1 and Table 7.2. The following 

definitions also apply to Table 7.1 and Table 7.2: 

orig = Original GEODE process noise formulation 
single = No ionospheric correction applied 
PE = Precise GPS ephemerides used 
hr = High rate GPS clock estimates applied to remove SA 
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7.2 Research Contributions 

This dissertation provides an extended evaluation of real-time satellite OD 

using GPS and offers several suggestions to improve the state-of-the-art. The 

affects on real-time OD of using precise GPS ephemerides rather than those 

broadcast, using dual-frequency ionospheric corrections instead of no corrections, 

using S A free GPS measurements, and using various gravity models and truncated 

gravity models are characterized in terms of accuracy/precision and 

computational burden. Also in this dissertation, GAAF is implemented in 

propagation and OD scenarios, zero bias DRVID is developed and implemented, 

DMC is implemented and extended to estimate accelerations in RIC coordinates 

and GMC is employed to reduce the burden associated with tuning DMC. 

7.3 Recommendations for Future Work 

7.3.1 GAAF Coefficient Estimation 

Sophisticated OD filters can simultaneously estimate spherical harmonic 

gravitational coefficients along with the satellite state. It is recommended that the 

capability of estimating GAAF coefficients in an OD scheme be investigated. 

The advantage of estimating GAAF coefficients over spherical harmonic 

gravitational coefficients is that in GAAF, information from each measurement 

will only affect those coefficients whose latitude and longitude are near where the 
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measurement is taken. In estimating spherical harmonic gravitational coefficients 

the processing of each measurement affects all coefficients used in the expansion. 

7.3.2 GMC RIC Extension 

GMC has only been applied to XYZ DMC. An extension of GMC to RIC 

DMC is recommended where the RIC Ts and as (xR,Tt,xc,CTR,at,ac) are 

optimized. In this case, instead of optimizing quadruplets, GMC would optimize 

octuples. The Riemann summations would stay the same as the XYZ GMC 

implementation, only the x s and a s would be different for each of the three 

position summations. Additional reproduction, crossover and mutation 

procedures would also need to be added to take into account the extra four 

members included in each individual. 

7.3.3 Automated DMC Tuning With the Genetic Algorithm 

Another promising application of a GA is tuning of DMC parameters 

outside of GEODE. Here RMS and RSS statistics would be used to gauge 

GEODE's performance. GEODE would be run using all individuals from a given 

generation and the RMS and RSS statistics would be used to compute the merit of 

each individual. Again, each individual is made up of a different set of T s and 

a s. Then the GA procedures of reproduction, crossover and mutation would be 

performed based on the merit of each individual and the next generation would be 

used in GEODE again. This process would be repeated until the GA converges 



on an optimal set of x s and a s. Figure 7.1 shows a diagram of the proposed 

application of the GA to DMC tuning. 
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Figure 7.1 - GA for DMC Tuning 
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7.3.4 GPS Point Solution Measurement 

There are several satellite missions (QuikScat and Picasso) where GPS 

receivers are flown but raw GPS pseudorange and phase measurements are not 

available in real-time and in the case of QuikScat not available for post- 

processing. In both of these cases more accurate satellite position knowledge is 

required than can be determined by the GPS receiver's point solution. Therefore, 

a modification to GEODE is suggested where GEODE would use the GPS 
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receiver's point solution (both position and velocity) as measurements for the 

filter. The modifications to GEODE would include removing the GPS receiver 

clock bias and clock bias drift rate terms from the state, reformulation of the state 

transition matrix and observation state relationship, and declaration of additional 

variable to support the input of the receiver's point solution. 

7.4 Conclusion 

A new era in real-time satellite orbit determination began when SA was 

turned off on 2 May 2000. Meter and sub-meter 3D position accuracy is now 

available in real-time on board a satellite. GSFC's GEODE is a powerful real- 

time satellite OD software suite that goes a long way to make meter level real- 

time OD possible. Part of GEODE's power is realized through GSFC's provision 

of GEODE source code. GEODE's modular nature and the relative ease of 

modification make it flexible and highly usable software. 

This dissertation offers several suggested modifications to GEODE to 

increase its accuracy/precision and autonomy and to decrease its computational 

burden. Accuracy/precision improvements are demonstrated with the application 

of DRVTD, DMC and GMC but each increases GEODE's computational burden. 

GMC improves GEODE's autonomy by allowing the on board filter to adapt to 

changes in the dynamic environment but imposes a significant computational 

burden. While GAAF reduces computational burden, it does not improve or 

degrade GEODE's accuracy/precision. Each suggested improvement provides its 
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own advantages and disadvantages and therefore, the implementation of each 

improvement must be balanced against mission requirements and hardware 

capabilities. 
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