11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
RESEARCH FOCUSED ON DEVELOPING AND TESTING EFFICIENT ALGORITHMS FOR EXPLICIT MODELING AND BLIND ESTIMATION OF TIME-VARYING COMMUNICATION CHANNELS, AND THE RESULTING SELF-RECOVERING ANTENNA RECEIVERS AND EQUALIZERS IN RAPIDLY FADING MOBILE BATTLEFIELD SCENARIOS. ESTABLISHED THAT FINITELY PARAMETERIZED BASIS EXPANSIONS RENDER SINGLE-INPUT SINGLE-OUTPUT (ISIO) TIME-VARYING (TV) CHANNELS EQUIVALENT TO MULTIVARIATE TIME-INVARIANT (IT) CHANNELS WITH INPUTS FORMED BY MODULATING A SINGLE INPUT WITH THE BASES (J2,J3).

14. SUBJECT TERMS
ANTENNA ARRAYS, TIME-VARYING COMMUNICATION CHANNELS, ALGORITHMS

15. NUMBER OF PAGES
5

16. PRICE CODE

17. SECURITY CLASSIFICATION OR REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION ON THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT
UL
For the final Report of ARO grant No. DAAG55-98-1-0336

This is to certify that research under ARO grant No. DAAG55-98-1-0336 was performed until 9/99 when the award to the University of Virginia ended. Renewed funds under this grant were awarded directly to the University of Minnesota where the PI is currently employed as a professor of the Electrical and Computer Engineering Department. Research until 9/99 focused on the development and testing of efficient algorithms for modeling and blind estimation of time-varying communication channels, and the resulting self-recovering antenna receivers and equalizers in rapidly fading mobile battlefield scenarios.

Briefly, we have developed basis expansion models for single-input single-output (SISO) time-varying (TV) channels and proved them equivalent to multivariate time-invariant (TI) channels with inputs formed by modulating a single input with the bases. SISO-TV fading channels capture phase noise, oscillator drifts, Doppler effects caused by relative motion between transmitters and receivers, and varying multipath propagation encountered with mobile wireless links in the battlefield. They give rise to time- and frequency-selective intersymbol interference (IST) which has been traditionally modeled via random (Rayleigh or Rician) channels; however, by establishing links with existing physical channel measurements, we have discovered that deterministic Fourier bases expansions are well motivated for modeling rapidly fading mobile communication channels when multipath propagation caused by a few dominant reflectors gives rise to (Doppler induced) linearly varying path delays. Our algorithms estimate Doppler frequencies blindly using cyclic statistics and determine the channel orders relying upon rank properties of a received data matrix. By complementing channel (or Doppler) diversity with temporal, or, spatial diversity (available with oversampling or multiple antennas), we have derived blind estimators of TV channels along with direct equalizers. Two deterministic blind equalization algorithms have been derived: one determines the channels first and then the equalizers, whereas the other estimates the equalizers directly. The equalizers are TI, multivariate, zero-forcing, and lend themselves to optimally weighted and adaptive extensions. We have also proved that exploitation of the input's whiteness reduces the amount of spatio/temporal diversity (only two sensors) needed to identify blindly TV channels and mitigate their effects using minimum mean-square error equalizers.

Over the last six months (3/99-9/99) we exploited transmitter-induced redundancy to develop novel channel estimation and symbol recovery approaches for blind identification and equalization of time- and frequency-selective channels where the time variation is modeled deterministically by a basis expansion. The resulting statistical algorithm enables the usage of a single antenna, dispenses with channel disparity conditions of existing approaches, and allows channel order overestimation. In addition, new deterministic algorithms for generalized OFDM systems were introduced which produce reliable estimates with few data points at high SNRs. Simulations illustrate the approaches developed.
Research tasks accomplished (02/98 - 02/99)

Research so far has focused on developing and testing efficient algorithms for: (i) explicit modeling and blind estimation of time-varying communication channels, and the resulting (ii) self-recovering antenna receivers and equalizers in rapidly fading mobile battlefield scenarios. Our recent results are detailed in journal [J1-J4] and conference [C1-C4] publications.

In a nutshell, we have established that finitely parameterized basis expansions render single-input single-output (SISO) time-varying (TV) channels equivalent to multivariate time-invariant (TI) channels with inputs formed by modulating a single input with the bases [J2,J3]. SISO-TV fading channels are of paramount importance both for commercial as well as for military communications because they capture phase noise, oscillator drifts, Doppler effects caused by relative motion between transmitters and receivers, and varying multipath propagation encountered with mobile wireless links in the battlefield [J1,J3]. They cause time- and frequency-selective inter-symbol interference (ISI) which has been traditionally modeled via random (Rayleigh or Rician) channels; however, by establishing links with existing physical channel measurements, we have shown that deterministic Fourier bases expansions are well motivated for modeling rapidly fading mobile communication channels when multipath propagation caused by a few dominant reflectors gives rise to (Doppler induced) linearly varying path delays. Our algorithms estimate Doppler frequencies blindly using cyclic statistics and determine the channel orders relying upon rank properties of a received data matrix [J3]. By complementing channel (or Doppler) diversity with temporal, or, spatial diversity (available with oversampling or multiple antennas), we have derived
blind estimators of TV channels along with direct equalizers under with minimal (persistence-of-excitation) assumptions on the input and the bases [J3,J4]. Two deterministic blind equalization algorithms have been derived: one determines the channels first and then the equalizers, whereas the other estimates the equalizers directly. The equalizers are time-invariant, multivariate, zero-forcing, and lend themselves to optimally weighted and adaptive extensions [J4]. We have also proved that exploitation of the input's whiteness reduces the amount of spatio/temporal diversity (only two sensors) needed to identify blindly TV channels and mitigate their effects using minimum mean-square error equalizers [C1]. Sensitivity to order and model mismatch have been studied briefly [J4].

Research tasks to be accomplished (03/99 - 2,0001)

Future work on the algorithmic tasks of our proposal will focus on:

- performance analysis of the channel estimators especially when model perturbations due to synchronization effects and Doppler frequency drifts are present;
- development of online fully-adaptive algorithms for estimating both the bases frequencies as well as the equalizer coefficients;
- performance evaluation in terms of error probability for the zero-forcing equalizers and simulation-based comparisons with the mean-square error equalizers;
- exploitation of input redundancy in the form of time-varying precoding filterbanks, for estimating TV channels with antenna arrays (without oversampling or deployment of multiple antennas preliminary results reported in [C2-C4] are very encouraging);

More than 60% of our future research efforts will concentrate on the experimental tasks described in the original time-table of our proposal (revised and updated below):

<table>
<thead>
<tr>
<th>March 99</th>
<th>Oct. 99</th>
<th>May 00</th>
<th>May 01</th>
</tr>
</thead>
<tbody>
<tr>
<td>development of fully adaptive algorithms, performance analysis and extensive simulations</td>
<td>--------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>testbed integration and preliminary testing</td>
<td>--------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Real data evaluation</td>
<td>--------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>development of algorithms relying on transmit- and receive-diversity</td>
<td>--------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Algorithm implementation data and testbed experiments</td>
<td>--------------</td>
<td>--------</td>
<td></td>
</tr>
</tbody>
</table>
Journal papers

Publications in ConferenceProceedings

