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ABSTRACT 

Current missile guidance laws are generally based on one of several forms of 

proportional navigation (PN).   While PN laws are robust, analytically tractable, and 

computationally   simple,   they   are   only   optimal   in   a   narrow   operating   regime. 

Consequently, they may not optimize engagement range, time to intercept, or endgame 

kinetic energy. The advent of miniaturized high speed computers has made it possible to 

compute optimal trajectories for missiles using command mid-course guidance as well as 

autonomous onboard guidance. This thesis employs a simplified six degree of freedom 

(6DOF) flight model and a full aerodynamic 6DOF flight model to analyze the 

performance of both PN and optimal guidance laws in a realistic simulation environment 

which accounts for the effects of drag and control system time constants on the missile's 

performance.    Analysis of the missile's kinematic boundary is used as the basis of 

comparison.     This analysis is immediately recognizable to the warfighter as  an 

engagement envelope.    The guidance laws are tested against non-maneuvering and 

maneuvering aircraft targets and against a simulation of a cruise missile threat.   An 

application of the 6DOF model for a theater ballistic missile interceptor is presented. 
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EXECUTIVE SUMMARY 

A six degree of freedom (6DOF) computer simulation of the AIM-120 

AMRAAM has been developed to test the performance of various guidance laws using 

the kinematic boundary as a measure of effectiveness. Proportional navigation (PN) was 

used as the baseline for comparison. The effect of seeker noise on the PN law was 

studied. 

A velocity compensated PN law was tested against an angles only PN law and 

demonstrated that the velocity compensation will improve performance, but not to the 

level of the full PN law. 

A bang-bang law was tested as a continuation of earlier thesis work. This law 

performed poorly under the influence of drag, and would not be a candidate for use in a 

tactical missile. 

A modified PN law derived from differential games theory was tested that had 

lower performance than the PN law. 

An augmented PN law derived from optimal control theory was tested that had 

improved performance in the target's rear hemisphere and forward of 60 degrees relative 

to the nose of the target. This law did not improve the missile's performance against a 

cruise missile target. 

Preliminary work to extend the 6DOF simulation to include aerodynamic control 

of the missile was completed with the simulation capable of limited operation. More 

work needs to be accomplished to bring this model to full capability. 

xvii 



The 6D0F model was used to demonstrate the engagement of a theater ballistic 

missile by a RM-67 STANDARD II (ER) missile. The STANDARD intercepted the 

target at a range of 2.2 meters off the nose, well within lethal range of the interceptor 

warhead. 
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I.       INTRODUCTION 

The U.S. Navy's experience with Japanese kamikaze attacks in the closing months 

of the Second World War demonstrated the woeful inadequacy of anti-aircraft artillery 

(AAA) against a massed modern air threat. Even with radar-controlled guns and the 

massed firepower of dozens of ships, the kamikaze were able to inflict heavy damage on 

the fleet. 

The advent of jet aircraft following the war exacerbated the aerial threat to surface 

units and changed forever the character of air-to-air combat. It was believed that the high 

speed and maneuverability of jet aircraft signalled the end of the dogfight and a 

requirement to engage targets at beyond visual ranges (BVR). The solution to both of 

these problems was some sort of guided missile. 

There are a number of ways to guide a missile so that it hits a target. The three 

simplest guidance laws are beam rider, pursuit, and proportional navigation. Beam rider 

guidance is most useful for a surface-to-air missile (SAM) installation. The launcher 

must keep the target locked in a radar beam throughout the engagement while the missile 

steers along, or rides, the beam. This requirement ill suits beam riders for the dynamic 

environment of aerial combat. Pursuit guidance requires the missile to turn so that it 

continuously points at the target. The missile may use some characteristic of the target 

such as its infrared (TR) signature, semi-active radar from the launching platform, or 

onboard radar to determine the target's relative position. As the name implies, this 

guidance law is most effective when attacking from the rear hemisphere of the target, or 

when attacking a stationary target, and it performs poorly in the target's forward 

hemisphere. 

1 



Of the three basic guidance laws, proportional navigation (PN) is the most 

versatile, and therefore most frequently implemented. PN accelerates the missile laterally 

by an amount proportional to the angular rate of the line of sight from the missile to the 

target. PN or one of its various extensions or augmentations is the guidance law of 

choice in nearly all modern guided missiles. The reasons are simple. PN is: 

■ Cheap 
■ Robust 
■ Analytically tractable 
■ Successful 

Optimal control theory promises to improve the performance of missile guidance 

systems. Optimal guidance laws, while the subject of extensive research, have yet to play 

a significant role in practical applications. Since optimal laws require an estimate of the 

target's position, velocity, and acceleration (its state), they require computing horsepower 

that has only been available in miniaturized form since the late 1980's. The computing 

requirements of optimal laws, and the successful extensions of PN laws have kept the 

optimal laws out of the mainstream, but modern, agile, stealthy aircraft and cruise 

missiles, and the growing need for theater ballistic missile defense (TBMD), have 

increased the interest in optimal guidance laws. 

The remainder of Chapter I examines the historical background, our goals in 

pursuing this line of research, and its benefits. Chapter II establishes the theoretical 

background for the simulation environments and for the various guidance laws we 

examined. Chapter El describes our method of analysis using the kinematic boundary 

and our experimental procedures. Chapter IV presents experimental results and analysis. 

Chapter V presents our conclusions and suggestions for further research in this area. 



A.       HISTORICAL BACKGROUND 

During the early 1950's, the development of guided missiles was a major program 

for the U.S. military. SAM's developed during this era include the Army's Nike family 

and Hawk, and the Navy's Terrier, Tartar, Talos, and Standard. The primary air-to-air 

missiles (AAM) of the day were the Raytheon Sparrow, developed for the Navy, and the 

Hughes Aircraft Falcon, developed for the Air Force. Both of these systems were 

complex radar-guided missiles (Falcon had an IR variant) and suffered from many 

developmental problems that would be familiar to systems engineers today. 

While the engineers at Raytheon and Hughes were overcoming their technical 

challenges, a small team of scientists and engineers at the Naval Ordnance Test Station 

(NOTS) in China Lake, California, now the Naval Air Warfare Center Weapons Division 

(NAWCWPNS) began work on what would become one of the most successful AAM's in 

history. Sidewinder (AIM-9) began as an after work project on a non-existent and 

frequently purloined budget with no official standing [1]. In the view of the air power 

theorists of the day, the age of the dogfight was over, so why would there be a need for a 

short range dogfight missile? The Vietnam War would soon prove the theorists wrong 

and demonstrate the value of Sidewinder. 

Sidewinder was designed from the beginning to be simple, reliable, rugged, and, 

above all, inexpensive. The motor, warhead, and fins were adapted from a stock five 

inch High Performance Air Ground (HPAG) rocket. The fins were modified with a 

mechanical device called a "rolleron" which minimized the missile's roll rate without the 

need for additional electronics [1]. Most of the design effort went into the guidance and 



control section which was bolted on to the HPAG rocket as a unit, and incorporated 

several innovations, including: 

• Torque balance servo control fins which provided the commanded control 
forces at all altitudes without complex electronics 

• Single gyroscope seeker which integrated the IR sensor and directional gyro 
• IR aiming reticles which reduced the missile's tendency to guide on the sun or 

clouds 

The design was so simple that NOTS technicians would tell Air Force and 

Hughes personnel that the only test equipment they required was a flashlight and a 

Simpson meter [1]. While this may have been an exaggeration for psychological effect, it 

was not far from the truth. The first production Sidewinders cost the government $2,400 

and by the third year of production, the price was down to $1,400 per missile [1]. 

Today's advanced Sidewinders cost in the tens of thousands of dollars. Compare this to 

over $300,000 for an AIM-120 AMRAAM. Sidewinder was such a successful design 

that it was copied wholesale by the Soviet Union as the K-13 (NATO AA-2 Atoll), and 

used as the basis for the Israeli Python [2], [1]. 

Sidewinder's guidance law is a form of PN using only line of sight angular rate 

and a fixed navigation constant or gain. This guidance law is suitable for a dogfight 

missile with a range on the order of 5.5 km (18,000 ft.), but not for longer ranges. The 

general PN law incorporates the missile's closing velocity with the target in the 

computation of the gain and must be provided a measurement of the range rate. This is 

the realm of the radar-guided missile. 

The first radar-guided missiles in the U.S. inventory were the Air Force's Falcon 

(AIM-4) and the Navy's Sparrow (ATM-7). Both missiles used semi-active radar homing 



(SARH) seekers. The launch aircraft must illuminate the target throughout the 

engagement for these missiles to guide successfully. Doppler processing of the 

illuminator's return from the target aboard the missile provides an estimate of the closing 

velocity. The need to continuously illuminate the target means that the launch aircraft 

must continue to close with the target during the engagement. This creates an obvious 

problem if the target's weapons have similar ranges to those of the launch aircraft. 

Falcon enjoyed a long career, retiring in 1988. Sparrow is still in use today, and 

as NATO Sea Sparrow is the point defense missile system aboard many U.S. and NATO 

ships. 

During the 1960's, Hughes began development of the missile that eventually 

became the AIM-54 Phoenix. Phoenix includes a strapdown inertial measurement unit 

(IMU) that allows its autopilot to steer the missile on course with periodic updating from 

a SARH seeker. In the terminal phase, the missile switches to an onboard active pulse 

Doppler radar. Finally, the missile has a simple data link with the AWG-9 radar aboard 

the F-14 launch aircraft that allows the aircrew to command the missile to perform 

several functions. All of these improvements permit the F-14 to simultaneously guide six 

missiles to different targets up to 176 km (110 miles) away. 

Raytheon s AIM-120 Advanced Medium Air-to-Air Missile (AMRAAM) is the 

current generation of missile technology in the U.S. inventory. AMRAAM incorporates 

an IMU, a data link, and a pulse Doppler terminal seeker. Because its data link is more 

sophisticated than Phoenix, there is no need for a SARH seeker. In certain scenarios, 

AMRAAM is truly a "fire and forget" missile, using its IMU to fly to a point where the 



active seeker can take over. Generally, AMRAAM is launched with an initial intercept 

solution programmed into the autopilot by the aircraft radar and mission computer. Once 

fired, the data link can update the autopilot with target position while the launch aircraft 

turns away or engages other targets. Once the terminal guidance seeker is activated, the 

missile is completely autonomous. AMRAAM has substantial onboard computer 

processing available and can employ advanced signal processing algorithms and guidance 

laws. 

Proportional navigation can be shown to be an optimal solution under a set of 

limited conditions.  Chief among these limitations is the assumption that the target does 

not maneuver during the engagement.   This is clearly unrealistic, and there have been 

many extensions to the basic PN law to counter this limitation.  Optimal control theory 

makes it possible to account for target maneuvers in the guidance law.  This requires an 

estimate of at least the target's acceleration and in some cases the complete target state. 

A range of tracking filters including the Alpha-Beta-Gamma and Kaiman filters is 

available to provide these estimates.   Single chip microprocessors and digital signal 

processors have made it possible to implement these guidance laws in the limited volume 

of a missile's guidance section. Despite these developments and the potential advantages 

of optimal guidance laws, the practitioners have been slow to implement new designs. 

Some of this lag is due to the successful extension of the PN law, but much is due to the 

aversion of more experienced engineers for abandoning a technique that works in favor 

of techniques that have yet to prove themselves [3]. 

Modern agile aircraft like the MiG-29 and stealthy aircraft like the F-117 and F- 

22 may in some cases be able to defeat AAM's using PN laws. It is thought that optimal 
6 



and hybrid guidance laws may overcome the limitations of PN laws. Optimal laws may 

also increase the range at which cruise missiles can be engaged, and developments in 

differential games theory (a field of mathematical optimization) may help solve the TBM 

problem [4]. 

B.       GOALS AND BENEFITS 

The research presented in this thesis was motivated by three primary goals. First 

to create a set of 6DOF models for evaluating missile guidance laws, second to explore 

the use of the kinematic boundary as a measure of effectiveness (MOE) for evaluating the 

performance of the simulated missiles, particularly to compare optimal guidance laws 

with PN laws, and third to demonstrate an application of the models to a TBM 

interceptor. 

Much of the literature in the missile guidance field involves the use of two- 

dimensional simulations. While such models are fairly simple to set up and analyze, and 

are not as computationally intensive as 6DOF models, they have difficulty simulating the 

effects of drag and aerodynamic control forces on the missile. Our goal was to create a 

simplified 6DOF model for guidance law development and testing, and a full 

aerodynamic model that would simulate both the aerodynamic control forces and the drag 

forces acting on the missile. The modular design of the Simulink® models makes it 

possible to test not only guidance laws, but autopilots, thrust profiles, and the effect of 

noise anywhere in the system on performance. 

There are a number of ways to construct MOE's for the evaluation of a missile's 

performance. Controls engineers would compute a cost function based on the miss 

distance, control effort, and possibly time of intercept.  While the number produced by 



such a cost function is useful as a basis of comparison, to the layman it is simply a 

number. For the warfighter, the engagement envelope is of paramount importance. The 

kinematic boundary represents the maximum range at which the missile will achieve a hit 

when there is no noise in the system. It is a graphical representation of which guidance 

law has the best performance. If several points in the boundary are tested using noise, the 

mean effect of the noise can be calculated and its effect on the engagement envelope 

demonstrated. This information can then be used to determine if one guidance law is 

truly more effective than another. We have used the kinematic boundary as the MOE 

throughout the AAM simulations. 

The final goal of this research was to provide a missile simulator that could be 

used in other research conducted for Navy TENCAP (Tactical Exploitation of National 

Capabilities) in the TBMD field. 



II.     BACKGROUND 

A.       SIX DEGREE OF FREEDOM (6DOF) DYNAMICS 

Newton's laws for both translation and rotation describe the motion of a body in 

three-dimensional space. There are three axes for translation, x, y, and z, and three axes 

for rotation, longitudinal, lateral, and vertical, giving rise to displacement in roll, pitch, 

and yaw respectively. These are the six degrees of freedom. The coordinate frame for 

these dynamics is centered on the aircraft center of gravity (e.g.) and fixed to the airframe 

with the x-axis on the nose, y-axis on the right wing, and z-axis pointing down. It is 

called the aircraft-body centered or ABC frame. This is a rotating frame in inertial space 

and for objects in different ABC frames to interact; their motion must be transformed into 

an inertial frame. 

For short ranges (< 200 km) the North-East-Down, or NED, frame is suitable. 

This frame assumes a flat earth, and reasonable altitudes so that gravity is a constant. A 

NED has its x-axis pointing north, y-axis pointing east, and its z-axis pointing down 

toward the center of the earth. An aircraft headed north in level flight will have pitch roll 

and yaw angles of zero degrees. A z-axis which points down seems counter-intuitive at 

first, but makes sense when one considers that this allows right hand turns to have an 

increasing heading as seen on a compass. We will use the NED or flat earth 

approximation for the air-to-air engagement simulations. 

If the NED coordinate system were placed on the surface of the earth, it would 

become a rotating frame with the earth's angular velocity. For long ranges and ballistic 

missile work, one final translation to the earth-centered inertial or ECI frame is required. 

In this fixed frame the x-axis points at the vernal equinox or first point in Aries (which is 
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really in Pisces), the y-axis is 90 degrees to the east, and the z-axis extends through the 

North Pole. We will use the ECI frame for the TBM interceptor demonstration. Figure 

2.1 shows the relationships of the three coordinate frames. 

Vh 
ECI Coordinate Frame 

Note: (0,0,0) in NED is 
the tangency point of the 
NED plane and the Earth 

Figure 2.1.      Relationship of ABC, NED, and ECI Coordinate Frames. 

There are four vector equations which describe the dynamics of a body in three- 

dimensional space [5]. They are the force equation, the moment equation, the attitude 

equation, and the navigation equation. The equations shown below are for the flat earth 

approximation. The individual terms are defined in List of Symbols and Abbreviations. 
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(attitude) 

PNED = B>s (navigation) 

(2.1) 

The attitude equation can be computed using quaternions as shown here or using 

Euler angles. The Euler angle formulation involves a singularity in the rotation matrix 

(BB) when the missile passes through the vertical that does not occur in the quaternion 

formulation. Since the STANDARD missile is fired from a vertical attitude, the 

quaternion formulation will be used throughout. 

For the TBM interceptor demonstration, the round earth equations shown below 

in state space form are used. Note the addition of terms using QE, which is the cross 

product matrix accounting for the Earth's rotation and the B matrix instead of BB that 

rotates the ABC frame to NED coordinates, and then to ECI coordinates. Definitions of 

the individual terms are listed in the List of Symbols and Abbreviations. 
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(2.2) 

These equations assume constant mass and a fixed center of gravity. Simulation 

of a missile that burns fuel and has a shifting e.g. as a result involves the addition of 

terms to the force and moment equations. For simplicity we have assumed a constant 

mass missile. 
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The MatLab® functions FLATEARTHDYN.M and SIXDOFDYN.M implement 

these equations in the SimuLink® models described below. 

The equations of motion assume the motion takes place in a vacuum. As a result, 

there is no direct coupling between the force equation and the moment equation. A stable 

missile body with its e.g. forward of its center of pressure (c.p.) tends to act like a 

weather vane and align itself with the relative wind. In the simplified 6DOF model this is 

modeled by feeding back the angle of attack, which is the angle between the missile body 

and the velocity vector, and its derivative as a moment that steers the missile into the 

relative wind.    The specifics of this feedback will be outlined below.    The full 

aerodynamic model does not require this feedback as it generates the normal forces on 

the missile by generating a moment using control deflections and using the subsequent 

change in angle of attack to generate the forces. 

B.       MISSILE MODELING 

The simulation environments are capable of modeling any missile the researcher 

chooses to represent.   For this research, the AIM-120 AMRAAM, and RIM-67(ER) 

STANDARD II (SM-2) missiles were chosen.   These weapons represent today's front 

line U.S. Navy technology. 

The model dimensions have been simplified to comply with the supersonic 

aerodynamic models in Zarchan, and Blakelock, but are generally representative of the 

actual missiles [7], [8]. The performance specifications are also simplified and based on 

capabilities reported in the open source literature, and on engineering approximations. 

They are in no way intended to be representative of the actual capabilities of these 
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missiles. No official use U.S. Government or contractor proprietary documentation was 

used in the establishment of the model performance parameters. 

1.        Airframes 

AMRAAM is a conventional missile design with fixed stub wings mounted 

forward on the missile body and controllable tail fins mounted aft. There are four wings 

and four fins mounted at 90-degree intervals around the missile body. Figure 2.2 shows 

the overall plan view of the missile, and the MatLab® file MISSILEDATA.M establishes 

the model's dimensions as required by Zarchan. The definitions of the dimensions used 

in Zarchan's equations are shown in Figure 2.3 [7]. 

Missile Plan View AIM-120 AMRAAM 
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Figure 2.2.      AMRAAM and STANDARD models. Drawings to scale for comparison. 
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Figure 2.3.      Dimensions and forces on a tail-controlled missile. From [7]. 

For the computation of the moments of inertia, the missiles are modeled as thin 

rods for the y and z-axes, and cylinders about the x-axis. The thin rod model was chosen, 

because the fins are not major contributors to the moment of inertia about the axes 

normal to the longitudinal axis, and the missile is much longer than its diameter so the 

contribution of the radius for the cylindrical model is minimal. The cylindrical model 

was chosen for the longitudinal axis because there is no moment of inertia for an 

infinitely thin rod about the longitudinal axis. Since the missiles are symmetrical, there 

are no cross terms in the inertial matrices. 

The model for SM-2 is more complicated.   The extended range version of the 

missile is equipped with a large booster with controllable tail fins. Figure 2.4 shows the 
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SM-2(ER) model with the booster attached. Note that the wings and tail fins for the 

missile forward of the booster have been modeled as a single wing with a length equal to 

the wing plus tail fin and an area equal to wing plus tail fin. MISSEJEDATA4.M 

contains the dimensions for the missile in this configuration. 

1.5 

1 

0.5 
£2 
I    o 
E 

-0.5 

-1h 

-1.5 
0 

SM-2(ER) with booster attached 

O   Center of Gravity 
x    Hinge Line 
-*-   Effective Center of Pressure 

sm 
MMBmm !■•.-.■• O*' 

4 
meters 

B^ 

Figure 2.4.      SM-2(ER) model with booster attached. 

Once the booster stage falls away, the SM-2 looks like the second drawing in 

Figure 2.2. MISSILEDATA3.M contains the dimensions for the missile in this 

configuration. For comparison, line drawings of the actual missiles are shown in Figure 

2.5. 
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Figure 2.5.      AMRAAM and SM-2 (ER). 

2.        Propulsion 

Both AMRAAM and STANDARD use solid fuel rocket motors. The actual 

missiles use dual propellant grain motors that provide a relatively high value of thrust 

initially to accelerate the missile to speed quickly, and then a lower level of thrust to 

sustain speed throughout flight. For simplicity, the motors are modeled as single grain 

motors of intermediate thrust values. 

Solid fuel motors used in military missiles must have a Department of Defense 

(DoD) Hazard Classification of 1.1 or 1.3 for use aboard ship [9]. According to Sutton, 

typical fuels of this type have specific impulses in a range of 180-270 seconds [9]. The 

thrust F produced by a rocket motor is given by: [9] 

F = Ismgo (2.3) 

This equation assumes a constant propellant mass flow rate throughout the motor run. 

Assuming propellant mass fractions of 50 percent for AMRAAM and SM-2 

without its booster, and 80 percent for the SM-2 booster, with a six second burn time for 

AMRAAM and 10 seconds each for SM-2 and its booster yields the data shown in Table 

2.1.    The thrust values chosen for use in the simulations are within the range of 
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feasibility, and were chosen to accelerate the missiles to their maximum speed in a 

reasonable time. 

Missile Thrust Range (N) 
(180<IS<270) 

Simulation 
Thrust (N) 

AMRAAM 23,062 - 34,594 23,000 
STANDARD E 62,209-93,314 80,000 
SM-2 BOOSTER 137,655 - 206,482 180,000 

Table 2.1. Missile Thrust Values. 

3.        Aerodynamics 

a.        Simplified 6DOF Model 

The aerodynamics for the simplified 6DOF simulation are modeled as a 

feedback path from the missile state vector. The ABC velocities are used to compute the 

pitch and yaw angles of attack (a and ß) that are then differentiated and fed back as a 

proportional-differential (PD) controller to the torque input of the missile dynamics block 

(See Appendix B, Thesisl.mdl). This feedback loop models the missile's natural 

tendency to act like a weather vane when the lift and side forces change the velocity 

vector and hence the relative wind. The lift and side forces are generated by multiplying 

the guidance law command accelerations by the missile's mass. 

The angle of attack response of the missile to a step input is similar to a 

second order response with a damped oscillation. This is also similar to the response of 

the full aerodynamic model to a step input on the control fins. The feedback gains were 

chosen to give the missiles a settling time of approximately 2.5 seconds, or an 

approximate first order time constant of 0.5 seconds. 
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Drag is modeled with two components, parasitic drag, that due to the 

misssile's shape and cross section, and induced drag, that caused by the generation of lift 

and side (normal) forces. The drag force D along the velocity vector is computed using 

the following equation [10]. 

D = (Cd0+Cdi)p^SREF (2.4) 

Since the steady state angles of attack generated by this model are small, 

less than one degree, the small angle approximation has been used and the cosine of the 

angle of attack has been set to one for computing the component of drag along the x-axis 

of the missile. 

CM is computed using typical values provided in [6]. The data were faired 

to a polynomial curve using MatLab®, and the function DRAGTHESIS.M is used to 

compute the parasitic drag in the model. Figure 2.6 shows the variation of Cd0 with Mach • 

number. The upper curve is the result of the increased drag caused by turbulence around 

the missile's tail when the thrust plume is absent. 
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Figure 2.6.      Variation of parasitic drag coefficient with Mach number. 

Cdi is computed in two regimes, subsonic, and supersonic. Normally, C& 

is a function of angle of attack, but in this simplified model, the angle of attack values are 

not realistic, and therefore, a different approach is required. 

For subsonic flight, Cdi is computed as the applied normal force in g's 

times the maximum value of Cdo in subsonic flight. This crude approximation only 

affects the missile for very short periods of time as it is subsonic only at launch and 

perhaps at the very end of an engagement. 
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In supersonic flight, a more accurate approximation based on the normal 

forces is used. The normal force coefficient CN is computed using the following 

equation: 

C"=2Ä; (2-5) 

where FN is the applied normal force. Cdi is then computed using the following [10]. 

Cdi=~Vltm (2-6) 

Since there are normal forces on both the y and z-axes, Cdi is computed for 

each axis and the results are added to produce the value of Cdi used in Equation 2.4 

above. Figure 2.7 shows the parasitic and induced drag forces on the AMRAAM model 

for a missile in level flight executing a variety of turns at load factors up to 30 g's. 
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Drag Force Comparison (6000 meter altitude) 
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Figure 2.7.      Drag forces on the AMRAAM model for various load factors. 

b.        Full Aerodynamic Model 

The full aerodynamic model follows the development in Zarchan for 

generation of both the aerodynamic moments and forces. Moments are generated by the 

deflection of the appropriate control surfaces (rudder or elevator). The simulated missile 

flies in a vertical attitude with the elevator surface horizontal and the rudder surface 

vertical. AMRAAM flies in a "cross" configuration with the tail surfaces at 45 degree 

angles to the vertical for ease of loading and carriage aboard aircraft. Modeling this 

involves a more complicated autopilot and the change to a vertical attitude does not 
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materially affect the simulation. The aerodynamic moment T caused by a control surface 

deflection is given by: [7] 

T=C-PT§T <") 
CM is a function of the angle of attack and the control deflection and is 

given by: [7] 

C„=  2a(xcc-Xcm)+l^f!L(xca-XcrB) 

+ 8  SwCC (X    -X     )i?.S^a+Shy       Y   \ ^ößa      \ACG    ^cwJ+S—r- {XCG-XHL) 
P^REF Pi, 

(2.8) 

' REF 

Where ß is a normalized speed for supersonic travel given by: [7] 

ß = yJMach2-l 

The normal force FN on a body is given by: [7] 

(2.9) 

V2 
F

N -CNp — SREF (2.10) 

CN is again a function of the angle of attack and the control deflection and 

is given by: [7] 

CN =2a + ^^^ + 8-^L + s^^l (2.n) 
2       SREF ßSREF ßSREF 

The equations for CN and CM given above are valid for the supersonic 

regime. No such approximation based on missile dimensions exists for the subsonic 

regime. For subsonic speeds, the coefficients normally are determined empirically using 

wind tunnel or computed fluid dynamics data. Since these data were not available, CN 

and CM in the subsonic range are modeled as linear functions of the angle of attack and 
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control deflection [10]. Equations 2.7 and 2.10 are then used to generate the moments 

and forces. The values chosen for the coefficients are therefore arbitrary, but as with the 

drag model above, since the simulation spends very little time in the subsonic regime, the 

effects of this approximation will be minimal. 

The drag model is quite different from the simplified 6DOF model. 

Parasitic drag is computed in the same fashion as above. Subsonic induced drag is 

computed using Equation 2.6, because the model now explicitly calculates CN. 

Supersonic induced drag follows an approximation given in Anderson [10]. 

Q,=4— (2.12) 

Since the angles of attack are generally greater than one degree, the 

induced drag force due to each normal force is computed separately, and its component 

along the longitudinal axis of the missile is computed before being added to the other 

component. The parasitic drag force is multiplied by the cosines of both angles of attack 

to determine its longitudinal component. 

According to Stevens and Lewis, once the moments and forces have been 

determined, the 6DOF equations are solved in the following order [5]: 

• Force and moment equations 
• Attitude equation 
• Navigation equation 

4.        Guidance, Navigation, and Control 

a. Guidance 

Guidance laws are implemented as Matlab® functions which compute the 

command accelerations (nc) for both lateral and vertical guidance.   The inputs to the 
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guidance law are provided by the seeker head, which computes target range, range rate, 

azimuth, elevation, and angular rates from the actual target and missile state vectors. 

Measurement noise can then be added to any of the six output channels to study its effect 

on guidance law performance 

Guidance laws for the simplified 6DOF model must also generate the 

applied force on each axis for the computation of the drag forces. Simulink® generates 

"algebraic loop" errors when the forces are fed back from the input of the "Missile 

Dynamics" block (Figure B.l). Guidance laws for the full aerodynamic model do not 

require this additional output. 

Guidance laws requiring a tracking filter incorporate the filter's estimate of 

the target state and missile body frame accelerations as additional inputs. 

b.        Navigation 

The inertial measuring unit (BVIU), air data computer (ADC), 

accelerometers, and rate gyros provide navigation data to the missile simulation in the 

form of Euler angles, missile total velocity, acceleration, position, angles of attack, and 

body axis rotation rates. The MJ is mounted at the missile's e.g., thus simplifying the 

calculation of the accelerometer data. Although this research assumed a noise-free 

navigation system, noise sources could be added to any of the output channels to study 

the effect on performance. In particular, the effect of navigation system noise on the 

tracking filter could be studied. 

c. Control 

The simplified 6DOF model does not require an autopilot, since the 

guidance law command accelerations are directly converted into aerodynamic forces. For 
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the full aerodynamic model, it is necessary to convert the command accelerations into 

control deflection angles. For this purpose, an autopilot for tail-controlled missiles 

presented in Blakelock was adapted for use [8]. Blakelock's autopilot contains feedback 

loops for a missile which does not guide during boost, and to correct for accelerometers 

which are not at the e.g. These loops have been deleted in this model. 

C.       SIMULATION ENVIRONMENTS 

Two distinct simulation environments were developed for this research.   The 

simplified 6DOF model was designed initially for the purpose of developing and testing 

guidance laws prior to using them in the full aerodynamic model. Problems with the non- 

linearity of the full aerodynamic model delayed its completion, and as a result, most of 

the simulation results presented were obtained from the simplified 6DOF models. All 

simulations operate in continuous time using the Simulink® ode45 Dormand-Price 

differential equation solver. 

The 6DOF models, THESIS 1.MDL (Figure A.l) and THESIS 1FTLT (Figure 

A. 14) employ the flat earth approximation (Equation 2.1) for their missile dynamics, and 

are streamlined models providing only the minimum number of subsystems required to 

quickly test guidance law operation. 

All the air-to-air simulations use a point mass target simulation developed in [6]. 

The target dynamics are modeled with the following vector equation:[6] 
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The target's lateral accelerations are modeled as a turn rate, to, while the vertical 

acceleration is an input to the subsystem, az. 

The TBMD model, THESISTBM.MDL (Figure A.23) uses the spherical earth 

model (Equation 2.2) for its missile dynamics. The target model used in this simulation 

involves a six dimensional state vector to simulate the dynamics of a point mass ballistic 

missile with no drag as shown below. 
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The full aerodynamic model, THESIS3.MDL (Figure A.18) presented the greatest 

design challenge. In order to meet Stevens' and Lewis' requirement that the 6DOF 

equations be solved in the proper order, the flat earth dynamics block was completely 

redesigned (Figure A.21) The moments and forces on the missile are computed as 

outlined above, and then fed to the missile dynamics block as inputs. This should have 

resulted in a model that could be run in both open loop and closed loop operations. 
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Unfortunately, it was not possible to successfully close the loop with either the autopilot 

adapted from Blakelock, or any of several other autopilot designs. 

It was possible to control the missile laterally, and for short periods vertically in 

an open loop by using the control deflection angles as inputs. It is likely that the failure 

of the closed loop operations was due to the inherent non-linearity of the model, and 

possibly the order in which Simulink® solves the computations in the various Matlab® 

function blocks. It may be possible to code both the aerodynamics and missile dynamics 

blocks as one inline Matlab® function to overcome this failure. This model is presented 

here as a point of departure for future research. 

D.       GUIDANCE LAWS 

Five guidance laws were examined during this research, proportional navigation 

(PN), velocity compensated proportional navigation (VCPN), bang-bang, differential 

games (DG), and augmented proportional navigation (APN). The PN laws were used to 

establish baseline performance for comparison with the other guidance laws. The bang- 

bang and VCPN laws were examined as an extension of thesis work by Swee [11]. The 

DG and APN laws are derived in the optimal control literature and are the focus of using 

the kinematic boundary as measure of effectiveness [12], [13]. 

The geometry of a typical air-to-air missile engagement is shown in Figure 2.8. 

The object of the exercise is to steer the missile using only lateral accelerations in such a 

way that it hits the target. The steering commands should be optimal in some sense, 

minimizing miss distance at least, and possibly control effort (divert) or time to intercept. 
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Figure 2.8.      Typical missile engagement geometry. From [13]. 

1.        Proportional Navigation 

PN provides steering commands to the missile, which are proportional to the 

angular rate of the target's line of sight relative to a fixed reference.   The command 

acceleration nc is given by:[7] 

N'VC& 
«„ 

coscr, (2.15) 

The cosine term in the denominator corrects the acceleration from the line of sight to the 

missile's y-axis. 

PN with N'=3 has been shown to be optimal and guarantees a hit under the 

following conditions: [14] 

• non-maneuvering target (no drag) 
• missile speed greater than target speed 
• target remains in missile's forward hemisphere 
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If the value of N' is sufficiently large, PN will always intercept a maneuvering 

target under these conditions. Blakelock implements PN as a turn rate, but his 

recommended values for a navigation constant equate to values of N' between three and 

five [8]. Higher values produce little improvement in performance. One other 

shortcoming of PN is that it does not account for the effect of the missile's dynamics 

(time constant) on the navigation solution. 

2. Velocity Compensated Proportional Navigation 

VCPN is an attempt to extend the basic PN law and account for the effect of drag 

on the missile. By adding a compensation term related to the missile's deceleration and 

the line of sight angle, the effect of the drag on the line of sight rate can be reduced. The 

VCPN law is given by: [13] 

N'VC &     ■ 
nc = c- VM tan aL (2.16) 

C0S<7L 

In his thesis, Swee showed that if the range rate information VC is available to the 

missile, VCPN is no better than the basic PN law [11]. 

3. Bang-bang 

Bang-bang guidance is a modification of PN in which the missile applies its full 

acceleration in the direction of the rate of change of the line of sight.   The controls 

essentially "bang" on their stops whenever they are applied. This law would be useful in 

missiles that are controlled by thrusters that are not throttled and are either on or off. The 

bang-bang law is given by:[12] 

A sgn(Vr &) 
nc=A   & v c    ' (2.17) 

cos <JL 
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The bang-bang law use here is modified slightly because of the effects of drag. 

First, there is a dead band of 0.01 degrees per second in the line of sight rate before the 

guidance law takes effect, and second the acceleration at ranges greater than 5 km from 

the target is restricted to 5 g's. Inside 5 km, the acceleration is 30 g's. This was done to 

prevent the missile from expending all of its thrust overcoming the drag from 30 g turns 

immediately after launch. 

4.        Differential Games 

Bryson and Ho develop a guidance law based on differential games theory in 

which the pursuer (missile) seeks to minimize a cost function based on the miss distance 

and the control effort while the evader (target) seeks to maximize the cost function and 

thus survive. Both players are assumed to have perfect knowledge of the other's state. 

Under these conditions, the evader's optimal strategy is to match the pursuer turn for turn 

as shown here [12]. 

_ ce 
a<~~ap (2.18) 

cp 

The pursuer's optimal strategy is more complicated, but after assuming the 

pursuer can turn at a faster rate than the evader, that minimum miss distance is infinitely 

more important than minimum control effort, and linearizing about a nominal collision 

course, the resulting control law is: [12] 

3 
ra„ = 

^ 

Vc & (2.19) 

V       " J 

This is a variation of PN where the navigation constant can be varied statically at 

launch based on an estimate of the target's ability to maneuver, or dynamically with a 
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real-time estimate of the target's acceleration. Bryson and Ho say that cp and ce are 

constants related to the respective energies of the evader and pursuer, but closer analysis 

shows that they are also related to the ability to maneuver or available acceleration [12]. 

The control law implemented here uses a value of 30 g for cp and estimates ce from the 

output of the tracking filter. 

5.        Augmented Proportional Navigation 

This guidance law is drawn from Lin, Reference [13], and is a simplification of an 

optimal guidance law that accounts for both target maneuver and missile dynamics. The 

APN law used here does not account for missile dynamics. It uses a twelve-dimensional 

state vector with the target's relative position, relative inertial velocity, target inertial 

accelerations, and missile body frame accelerations. The tracking filter estimates the first 

three, and the body frame accelerations are provided by the accelerometers. The 

guidance law is given by the following vector equation:[13] 

n. 

f 

7r!73 f
Soh 

go 0 

Pr 

(2.20) 

The navigation constant A is computed for the full optimal guidance law as a 

function of ts„, and the weighting functions on the miss distance and control effort. When 

the product of the weighting functions approaches zero, the navigation constant is equal 

to three. We have chosen a value of five to be consistent with the baseline PN law. 

The position and velocity components of the state vector are relative to the missile 

and in inertial coordinates; therefore, they can be computed directly from the seeker 
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ranges and bearings.  The time to go, tg0, is computed from the seeker range and range 

rate estimates. 

Only the y- and z-components of the control are used. The x-component is 

ignored. Note that in this form, the missile accelerations are not used. A constant 

diagonal matrix is used in place of the "0" matrix to add the effect of the missile time 

constants in the full optimal guidance law. 

E.       TRACKING FILTER 

The tracking filter is based on an alpha-beta-gamma filter design by Bar-Shalom 

and Li [15]. This is a constant gain filter and therefore it is less computationally 

intensive than an adaptive filter like the Kaiman filter. Zarchan recommends the use of 

constant gain filters, in part because of computational load and also because of stability 

[7]. The DG and APN guidance laws require this tracking filter for their estimates of the 

target's acceleration 

The filter is implemented as a MatLab® function ABGFILTER.M. It is 

interesting to note the use of the global variable XLAST to preserve the state estimate 

from time step to time step. The values for the filter gain were chose by trial and error 

from nomograms in Reference [15] to give the filter an initial settling time of less than 

two seconds as these simulations are initially noise free, and the choice of gains is 

dependent on the characteristics of the noise. The filter is a discrete time filter with a 

sampling frequency of 10 Hz. This was accomplished by placing the filter block between 

two zero order hold blocks. A sample of the filter's estimate of target acceleration with a 

6 g turn three seconds prior to intercept is shown in Figure 2.9. 
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Figure 2.9.      oc-ß-y Filter Performance. 
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III.    GUIDANCE LAW TESTING 

A.       KINEMATIC BOUNDARY 

Kinematics is the branch of mechanics dealing with pure motion without 

reference to the masses or forces involved. For the purposes of this research, a missile's 

kinematic boundary is the locus of points representing the maximum range at which a 

target may be successfully engaged as a function of relative bearing from the target at the 

start of the engagement given a noise-free guidance and control system. To the pilot, this 

is the "firing envelope," a critically important piece of information as it determines not 

only the success of an engagement, but the tactics required to prosecute the target. We 

chose the kinematic boundary as our measure of effectiveness for this reason. To the 

warfighter, graphs of average miss distance or control effort may be meaningful if he is a 

controls engineer, but a comparison of two guidance laws showing one to have a 

significantly larger firing envelope is far more useful. Figure 3.1 below shows a generic 

kinematic boundary (a circle) and is representative of the plots used in Chapter IV. The 

azimuth angles represent the relative bearing of the shooter from the target at the start of 

the engagement. 

A successful engagement has a miss distance of less than 5 meters for these 

simulations. This figure is based on the warhead of the AMRAAM having a lethal radius 

of approximately 10 meters, and the size of a typical modern jet aircraft. Figure 3.2 

shows the relationship of the 5 meter radius to a MiG-29 fighter. Clearly, a warhead 

exploding within 5 meters of the MiG-29 will do substantial if not fatal damage to the 

aircraft. 
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The Matlab® program files KBOUTER2.M and KBFILTER.M generate the 

kinematic boundaries. The resolution in range is 10 meters, and in azimuth is 5 degrees. 

These values were chosen as a compromise between speed of execution and plot detail. 

At these resolutions, a kinematic boundary can be generated in 9-12 hours with a 

Pentium® m, 700 MHz processor. One-degree resolution requires 48-60 hours, and 1 

meter would take approximately 8-10 times longer. 

A Representative Kinematic Boundary 

90 

Target at 
center of plot 

180 

* 

Shooter firing 
\ 30 from boundary 

210 \ 
\ 

/ 
;'330 

y 

240 300 

270 

Figure 3.1.      Kinematic boundary. The shooter is on the boundary pointing at the target 
at the start of the engagement. 
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5 meter lethal radius 
around e.g. of MiG-29 

Figure 3.2.      Comparison of a 5 meter warhead lethal radius to a MiG-29 aircraft. 
MiG-29 drawing is from [2]. 

B.       TEST SCENARIOS 

Candidate guidance laws are tested in three engagement scenarios: 

• Non-maneuvering target, co-altitude at 6,000 meters 
• Non-maneuvering cruise missile target at 50 meters 
• Maneuvering target, co-altitude at 6,000 meters 
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The non-maneuvering target engagement is used as a baseline for comparison of 

performance. The engagement begins with target and shooter at 6,000 meters altitude, 

approximately 20,000 feet, and Mach 0.83. These values would be typical of an intruder 

making a high altitude ingress to a target, and a combat air patrol (CAP) on station. 

The cruise missile engagement is intended to demonstrate the interceptor's ability 

to engage a low-altitude non-maneuvering target like the Tomahawk missile. The 

AMRAAM is launched from the CAP station at the target, which is at 50 meters, 

approximately 150 feet. 

The maneuvering target engagement is the true test of missile performance.   In 

this scenario, the target initiates a 6 g turn or "jink" toward the missile three seconds prior 

to impact. This turn toward the missile is most advantageous to the target as it forces the 

missile to make a tighter turn and expend more energy to keep up with the target than a 

turn away.   The timing was chosen for two reasons.   First, given that the missile will 

activate its terminal radar between 5-7 seconds prior to impact, and the time required for 

the target's sensors to detect the radar, alert the pilot, and have the pilot take evasive 

action, the aircraft would be established in its maneuver about three seconds prior to 

impact. Secondly, the missile's settling time is modeled to be 2.5 seconds, so a maneuver 

at three seconds puts increased stress on the guidance law to keep up with the maneuver. 
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CANDIDATE GUIDANCE LAWS 

Table 3.1 shows how the guidance laws were tested. 

Guidance Law Non-maneuvering 
co-altitude 

Non-maneuvering 
cruise missile 

Maneuvering 
co-altitude 

PN, N'=3 X 
PN, N =5 X X X 
PN, N'=7 X X 

VCPN with Vc X 
VCPN no Vc X 
Bang-bang X 

DG X X 
APN X X X 

Table 3.1. Guidance Law Test Plan 

The VCPN and bang-bang laws were tested to confirm earlier work by Swee in 

his thesis [11]. 

D.       NOISE STUDY 

A study of the effect of seeker noise on missile performance was conducted using 

the PN (N'=5) guidance law. The study was run at the 135-degree azimuth test point with 

100 realizations. The standard deviations of the noise signals were as follows: 

•    Range 50 meters 
•    Closing velocity 2 meter/second 
•   Bearing 1 degree 
•    Bearing rate .01 degree/second 
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IV.    COMPARISON AND ANALYSIS 

A.       PROPORTIONAL NAVIGATION LAWS 

The PN guidance laws were tested to provide a baseline for comparison with the 

other guidance laws. Figure 4.1 shows the kinematic boundaries for the three PN laws 

against a non-maneuvering co-altitude target. Figure 4.2 shows the kinematic boundaries 

against the co-altitude, maneuvering target described above. Figures 4.3 and 4.4 are 

amplifications of the differences in performance of the three laws. 

The N'=3 guidance law is the poorest performer of the three. While N'=3 has 

been shown to be optimal for a non-maneuvering target, the effect of drag on the missile 

is similar to a target maneuver along the line of sight. The discontinuities or "divots" in 

the N'=3 boundary are caused by drag slowing the missile more rapidly on those attack 

azimuths than others resulting in the missile slowing below the target's speed and 

stopping the simulation. 

Clearly, the N-5 law is an improvement for both scenarios. There is a slight 

improvement between N'=5 and N'=l with a mean value of 315 meters for the non- 

maneuvering case, and 1,749 meters for the maneuvering case. The improvement from 

N'=3 to N'=5 has a mean value of 2,076 meters, non-maneuvering, and 7,555 meters 

maneuvering. Because of the relatively poor performance of the N'=3 law, N'=5 will be 

used as the comparison baseline for the other guidance laws. 

Figure 4.5 is a comparison of the performance of the N'=5 law against a co- 

altitude target and against a cruise missile target at 50 meters altitude. The omni- 

directional reduction in range is due mainly to increased drag as the missile descends into 

the heavier air at lower altitudes. 
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Figure 4.1. Kinematic boundary comparison of proportional navigation laws vs. non- 
maneuvering, co-altitude target at 6,000 meters and Mach 0.83. 
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Figure 4.2.      Kinematic boundary comparison of proportional navigation laws vs. 
maneuvering, co-altitude target at 6,000 meters and Mach 0.83. Target maneuver was a 6 

g turn toward the missile at tg0=3 seconds. 

43 



18000 

16000 

14000 

-£ 12000 
2 
E 10000 
a> 

|    8000 

^    6000 
CD 
O) 

2    4000 

2000 

0 

-2000 

Comparison of PN Performance vs. a Non-maneuvering Target 

*H»^ 

— N'=5 vs N'=3 
N'=7 vs N'=3 

- N'=7 vs N'=5 

Mean values 
N'=5 vs N'=3 2,076 m 
N'=7 vs N'=3 2,392 m 
N =7 vs N'=5 325 m 

20 40 60 80 100        120 
attack azimuth (degrees) 

140 160 180 

Figure 4.3.      PN law performance vs. non-maneuvering target. 
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Figure 4.4.      PN law performance vs. maneuvering target. 
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Figure 4.5.      Kinematic boundary comparison of PN vs. non-maneuvering and cruise 
missile targets. 
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B.        VELOCITY COMPENSATED PN LAWS 

The VCPN laws were tested as a continuation of Swee's thesis research [11].  A 

PN law with a fixed navigation constant, angles only, no Vc information, was tested 

against the non-maneuvering, co-altitude target. This simulates a guidance law like that 

used by Sidewinder. The gain was computed with N'=5 and a fixed closing velocity of 

750 meters per second. VCPN laws with and without Vc information are compared to 

this law, and to PN with N'=5. 

Figure 4.6 shows the kinematic boundaries for each of these laws. The VCPN 

law without Vc information is clearly an improvement over the angles only PN law, while 

the addition of Vc information to the VCPN law actually reduces the range. Since the 

incorporation of Vc information also includes the deceleration of the missile along the 

line of sight, the velocity compensation term adds nothing to the guidance law's 

performance. Neither of the VCPN laws performed as well as the full PN law. 
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Figure 4.6.      Kinematic boundary comparison of VCPN laws vs. a non-maneuvering, 
co-altitude target at 6,000 meters and Mach 0.83. 
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C.       BANG-BANG 

The bang-bang guidance law was also tested as a continuation of Swee's 

work.[ll] The bang-bang law is used throughout the engagement to determine the effect 

of drag on its performance. As seen in Figure 4.7, bang-bang is clearly outperformed by 

the baseline PN law. Because of the aerodynamic drag on the missile, the guidance law 

must expend more energy in the end game when the line of sight angular rates begin to 

increase. There is a synergistic effect: as the angular rate increases, the missile must turn 

harder, generating more drag, which causes the angular rate to increase. 

Note that the bang-bang law's performance is highly aspect dependent. The 

enhancement in the target's forward hemisphere is most noticeable. The effect could be 

useful in TBMD work where the goal is to place the interceptor ahead of the target. 

Further, for an exo-atmospheric interception, the effect of drag on the bang-bang law 

would be greatly reduced. 
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Figure 4.7.      Kinematic boundary comparison of the bang-bang law vs. a non 
maneuvering, co-altitude target at 6,000 meters and Mach 0.83. 
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D.       DIFFERENTIAL GAMES 

The differential games law was tested against both the non-maneuvering and 

maneuvering co-altitude targets. Figure 4.8 shows its performance against the non- 

maneuvering target, and Figure 4.9 against the maneuvering target. In both cases the 

performance showed no improvement over the baseline PN law. 

This law is a modification of PN with scheduling of the navigation constant based 

on the tracking filter's estimate of the target's total acceleration. It is clear that gain 

scheduling is not sufficient to increase the kinematic boundary of the PN law. 
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Figure 4.8.      Kinematic boundary comparison of the differential games law vs. a non- 
maneuvering, co-altitude target at 6,000 meters and Mach 0.83. 
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Figure 4.9.      Kinematic boundary comparison of the differential games law vs. 
maneuvering, co-altitude target at 6,000 meters and Mach 0.83. Target maneuver was a 6 

g turn toward the missile at tg0=3 seconds. 
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E.       AUGMENTED PROPORTIONAL NAVIGATION 

The APN law was tested against both the non-maneuvering and maneuvering, co- 

altitude targets. Against the non-maneuvering target, the APN law's performance is 

identical to the baseline PN law except for a small "divot" at 100 degrees. Figures 4.10 

shows the results against the maneuvering target. The jagged boundary is an artifact of 

the azimuthal resolution, and is smoothed out when the resolution is reduced to one 

degree. 

The APN law is clearly better in the target's rear hemisphere and forward of 60 

degrees relative to the nose. In the forward quarter from 90 degrees to 60 degrees there is 

a reduction in performance compared to the PN law. The mean improvement in the APN 

law is 4.45 km for all aspects, 1.24 km in the forward 120 degrees, and 8.48 km in the 

rear hemisphere. 

Figure 4.11 shows the results of APN against the cruise missile target. The 

kinematic boundary for the APN law is clearly smaller than PN law. Azimuth resolution 

was reduced to 10 degrees for this comparison to keep the APN simulation under 48 

hours in real time. 
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Figure 4.10.    Kinematic boundary comparison of APN vs. maneuvering, co-altitude 
target at 6,000 meters and Mach 0.83. Target maneuver was a 6 g turn toward the missile 

at tg0=3 seconds. 

54 



Kinematic Boundary Comparison 
APN and PN (N'=5) 

90 

180 

150000' 

210 

270 

PN 
APN 

Figure 4.11.    Kinematic boundary of APN and PN vs. cruise missile target. Azimuth 
resolution is 10 degrees. 
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F.        NOISE STUDY 

A study of the effects of noise on missile performance was conducted at the 135- 

degree azimuth test point. Using the range for the kinematic boundary of the baseline PN 

law, it was not possible to hit the target in 100 realizations. The test point was moved in 

approximately 2 km to 45,500 meters and another 100 realizations were generated. 

Figure 4.12 is a scatter plot of the x and y miss distances for the 100 realizations. Figure 

4.13 is the distribution of the Euclidean miss distances. 92 percent of the samples were 

within the required miss distance of 5 meters to be called hits. 
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Figure 4.12.    Scatter plot of x and y miss distances for a noisy seeker. 

56 



100 

90 

80 

70 

60 

50 

40 

Noise Study Miss Distance Histogram 
100 realizations 

92% probability of hit 

5 meter and less 
range bin 

50 100 150 200 
Miss Distance (m) 

250 300 

Figure 4.13.    Histogram of missile miss distances with a noisy seeker. 100 realizations. 
Probability of hit is 92%. 

57 



G.       TBMD DEMONSTRATION 

Figure 4.14 is a demonstration of the 6DOF model's ability to simulate a TBM 

interceptor. The target missile was launched from the equator on a northeasterly heading. 

The range of this missile is approximately 400 km. The interceptor was launched from a 

position 150 km north of the target launch site. The target's initial velocity vector, [vx vy 

vj in ECI coordinates, was [1200 10 1000]. The velocity profiles for the target and 

interceptor are shown in Figure 4.15. The interceptor was steered toward the target's 

apogee for the first 30 seconds of flight, and then followed the baseline PN law to an 

interception 2.2 meters ahead of the target. The plot is in ECI coordinates, the surface of 

the earth is approximately the bottom grid. North is to the right. 
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Figure 4.14.    TBMD engagement by RTM-67 SM-2 (ER). Miss distance at intercept 
was 2.2 meters. 
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Figure 4.15.    Interceptor and target velocity profiles for TBM demonstration. 
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V.      CONCLUSIONS AND FUTURE RESEARCH 

A.       CONCLUSIONS 

The kinematic boundary is  a natural,  intuitive method of comparing the 

performance of guidance laws. Its form is immediately recognizable to the warfighter, 

and provides exactly the information required to make an informed decision as to which 

guidance laws would be of operational value. 

The VCPN laws showed the expected improvement over the fixed gain PN law, 

and the VCPN law with range rate information did not perform as well as the VCPN law 

without range rate information. Neither law performed as well as the baseline PN law. 

The bang-bang law showed an unusual kinematic boundary with ranges in the target's 

forward hemisphere greatly extended over the rear hemisphere. The aspect dependence 

of this law and approximately 50 percent reduction in range throughout most of the 

envelope make this law a poor choice for guidance from launch to intercept. 

Under the conditions simulated here, an optimal control law, the augmented 

proportional navigation law, will perform better than a proportional navigation law 

r 
throughout most of the kinematic boundary. Overall, the APN law's kinematic boundary 

was 4.45 km better than the PN law, on average. In the forward 120 degrees, the average 

improvement was 1.24 km and in the rear hemisphere, it was 8.48 km. This represents a 

1.4 percent improvement over the PN law for head-on engagements, and a 25 percent 

improvement for rear hemisphere engagements. 

The 6DOF model has been demonstrated as a test platform for evaluating 

guidance laws for use in the TBMD arena. 
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B.        FUTURE RESEARCH 

This work suggests several lines of future research.   First, the guidance laws 

tested here should be tested with a noisy seeker to determine the effect of noise on their 

performance. Second, the full aerodynamic model designed here needs to be taken to the 

point where it is fully operational. Third, the TBM simulation could be used to study the 

effects of guidance law selection on the Navy's Linebacker^ TBMD capability.   Fourth, 

the models could be used for a comparison of the kinematic boundaries of other missiles 

systems, particularly those that are potentially hostile to look for possible tactical 

advantages.   Finally, the models could be used to test new guidance laws that will be 

developed future researchers. 
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APPENDIX A. SIMULINK® MODELS 
The block diagrams in this appendix represent the four models used in this 

research. Sub-blocks which are not changed from the simplified 6DOF model in later 

models are not included with those models. The four models begin on the following 

pages: 

• Simplified 6DOF 64 

• 6DOF with tracking filter 77 

• Full aerodynamic model 81 

• TBMD interceptor model 86 
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Figure A. 1.     Simplified 6DOF model without tracking filter. 
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Figure A.2.     Simplified 6D0F Aerodynamic Force Generator. 
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Figure A.4.     Flat Earth 6DOF missile dynamics. 
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Figure A. 14.   Simplified 6D0F model with filter. 

77 



CD 
CD 
to a. 

o 
% 
CM 

<0 
£ 

© 
E 
o 

g 

o o o 
Cvl 
Q. 
<B 

CO 
i 

to o 

I» 

Figure A. 15.   Accelerometer. 

78 



co 
m 

3 
SL 
E 
o 

CJ 
a 
<s a &. 
< 
«8 
=> 
S 

E 

o 
% 
CM 

(0 
E 

W 

0)   ©  3 
1    w 

I3§ 
Am 

1 TO 

< <-S< 

CM 

O 
O 
O 
CM 
ä a 

op 
in o 

a x: 
c 
a. 

Figure A. 16.   IMU with additional outputs for tracking filter. 

79 



in 
Q. 

dLlli I oX T3 
E 

03 

O 
% 
CM 
in 
S2 ro 

SI 

cs 

O 

S. 
to o 

o o o 
<N 

i 
CL 
CD 

CO 
iö 
o 

Figure A. 17.    oc-ß-y tracking filter. Function block is ABGFILTER.M. 

80 



Figure A. 18.   Full aerodynamic 6DOF model. 
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Figure A.21.   Full aero model 6DOF equations. Function blocks are EQNFORCE M 
EQNMOMENT.M, EQNQUAT.M, and EQNPOS .M 
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Figure A.23.   Simplified 6D0F TBMD interceptor simulation. 
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Figure A.24.   TBM thrust model. 
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APPENDIX B. MATLAB® CODE 

Filename Purpose 
abgfilter.m implements alpha-beta-gamma filter 
aeroforces.m aerodynamic forces for full aero model 
aeromoments.m aerodynamic moments for full aero model 
alphabeta.m angles of attack 
auxplots.m plots auxiliary data for one simulation run 
b2quat.m quaternions from a rotation matrix 
bangpt.m bang-bang control law for 6DOF model 
bryson.m DG control law 
cdO.m parasitic drag coefficient 
cdi.m induced drag coefficient 
edvmach polyfit for cdi 
chingfanlin APN guidance law 
draginduced induced drag force 
draginducedtbm induced drag force for TBM simulation 
dragthesis parasitic drag force 
dragthesistbm parasitic drag force for TBM simulation 
drawmissile missile plan view 
dynamic3d 3D target dynamics 
eqnforce force dynamics for full aero model 
eqnmoment moment dynamics for full aero model 
eqnposit navigation equation for full aero model 
eqnquat quaternion dynamics for full aero model 
flatearthdyn 6DOF dynamics for flat earth model 
formdrag computes form drag 
gravity spherical earth gravity for TBM target 
gravity2 spherical earth gravity for TBM interceptor 
kbfilter kinematic boundary for filtered laws 
kbouter2 kinematic boundary for unfiltered laws 
machvalt computes Mach 1 at altitude 
missiledata data for AMRAAM 
missiledata2 data for JERGER 
missiledata3 data for SM-2 MR 
missiledata4 data for SM-2 ER 
modelswitch switches models at staging in TBM simulation 
noisestudy noise study with 100 realizations 
propnav3d PN law for full aero model 
propnavpt PN law for 6DOF model 
propnavtbm PN law for TBM simulation 

Table B. 1.       Matlab® Source Code Listing. 
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Filename 
q2euler 
quat2b 
quaternion 
rhovalt 
sixdofdyn 
Spielberg 
tgo 
tgtset 
thebigstop 
thesis2plot 
thesisinit 
vcpropnavpt 

 Purpose  
computes euler angles from quaternions 
computes rotation matrix from quaternions 
computes quaternion from euler angles 
computes atmospheric density 
6DOF dynamics in ECI coordinates 
movie maker 
computes time to go 
initializes target for AAM simulations 
simulation stopper  
plots data for thesis 
initializes simulator 
VCPN law 

Table B. 1.      Matlab® Source Code Listing (continued) 
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function y=abgfilter(u) 
%ABGFILTER Implements an alpha-beta-gamma filter as 
% outlined in Bar-Shalom & Li "Estimation and 
%        Tracking" 
% see also 
% Copyright 1999-2 000 by Triple B Enterprises 

% I/****************************************************** ************** 
********* 

%// File:  abgfilter.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  19 July 2000 
%// Description:  Implements a 9-dimensional state vector 
%// alpha-beta-gamma tracking filter for use with 
%// missile guidance laws requiring tracking filters 
%// Note:  uses global XLAST to preserve state 
%// between iterations 
%// Inputs:  measurements (los,los_dot,R,R_dot), 
%// missile pos (x,y,z) 
%// Outputs:  9-dimensional estimate of target state 
%// [x,vx,ax,y,vy,ay,z,vz,az]' 
%// Process:  alpha-beta-gamma filter outlined in Bar-Shalom & Li 
%// Assumptions: 
%// Warnings:  may require up to 20 samples to stabilize from 
%// initialization 
%//******************************************************************** 
********* 
%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************************** 
********* 
% ****** define globals  ****** 
global m d L XCG XCPN XCPW XCPB XHL 
global ST SW SPLAN SREF FILTSAMP XLAST 

% ******  define constants  ****** 

% ******  define input vector  ****** 
losdot=u(l); 
phidot=u(2); 
los=u(3); 
phi=u(4); 
rdot=u(5); 
R=u(6); 
xm=u(7) 
ym=u(8) 
zm=u(9) 
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% ******  initialize variables  ****** 
% compute target cartesian coordinates 
xt=R*cos(los)+xm; 
yt=R*sin(los)+ym; 
zt=R*sin(phi)+zm; 

Z=[xt;yt;zt] ; 

% set noise parameters 
sigmav=l; 
sigmaw=l; 

lamda=sigmav*FILTSAMP'>2/sigmaw;- 

% set filter parameters from Bar-Shalom &.  Li 
falpha=.9 ; 
fbeta=.9; 
fgamma=.9; 

% filter matrices 
F=[l FILTSAMP FILTSAMPA2/2 zeros(1,6); 

0   1     FILTSAMP zeros(1,6); 
00         1 zeros(1,6); 
zeros(l,3) i FILTSAMP FILTSAMPA2/2 zeros(l,3); 
zeros(1,4) i     FILTSAMP  zeros(1,3)• 
zeros(1,5) i 
ZerOS.\]"'t\ 1   FILTSAMP FILTSAMPA2/2; 

FILTSAMP; zeros(1,7) 2 
zeros(1,8) 

H=[100000000; 
000100000; 
00000010 0] 

zeros(1,3); 
rSAM 
CSAM 
1]; 

% compute steady state gains 
W= [falpha; fbeta/FILTSAMP; f gamma/ (2*FILTSAMP/S2) ] ; 

% build gain matrix 
P=[W zeros(3, 2); 

zeros(3,l) W zeros(3,l); 
zeros(3,2)      w] ; 

% ************  functions  ************ 

% run filter 
xhat=F*XLAST; 
xhatl=xhat+P*(z-H*xhat); 

XLAST=xhatl; 

y=xhatl; 

%//end of file abgfilter.m 
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function y=aeroforces(u) 
%AEROFORCES Computes aerodynamic forces on a missile. 
% derived from Zarchan "Tactical and Strategic 
% Missile Guidance" and Anderson "Fundamentals 
% of Aerodynamics" 
% see also AEROMOMENTS 
% Copyright 1999-2000 by Triple B Enterprises 

%l/****************** ************************************************** 
********* 

%// File:  aeroforces.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  7 Sept 2000 
%// Description:  Computes aerodynamic forces for both subsonic 
%// and supersonic regimes on a symmetrical STT 
%// missile. 
%// Inputs:  missile state, control deflections, angles of attack 
%// and rates 
%// Outputs:  Body centered aerodynamic force components [Fx,Fy,Fz]' 
%// Process:  Brute force computation of equations from Zarchan and 
%// Anderson 
%// Assumptions: 
%// Warnings: 
^//******************************************************************** 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
m /******************************************************************** 
********* 
% ******  define globals  ****** 
global m d L XCG XCPN XCPW XCPB XHL 
global ST SW SPLAN SREF 

% ******  define constants  ****** 

% ******  define input vector  ****** 
states=u(l:13); 
delta_r=u(14); 
delta_e=u(15); 
thrust=u(16); 
m_alpha=u(17); 
m_beta=u(18); 
alphadot=u(19) ; 
betadot=u(20); 
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% ******  initialize variables  ****** 
V_m=sqrt(u(4)A2+u(5)"2+u(6)"2); 
Mach=V_m/machvalt (u (3) ) ,- 
M_BETA=sqrt (Mach^-l) ■ 
Q=rhovalt(u(3) ) *V_jnA2/2; 

% ************  functions  ************ 

% compute normal coefficients   
%        these equations developed in Zarchan 
if (Mach>1.05) 

C_Naz=2+3*SPLAN*m_alpha/(2*SREF)... 
+8*SW/(M_BETA*SREF)... 
+8*ST/(M_BETA*SREF); 

C_Ndz=8*ST/(M_BETA*SREF); 
C_Nz=C_Naz *m_alpha+C_Ndz *delta_e; 
C_Nby=2+3*SPLAN*m_beta/(2*SREF)... 

+8*SW/(M_BETA*SREF)... 
+8*ST/(M_BETA*SREF); 

C_Ndy=8*ST/(M_BETA*SREF) ; 
C_Ny=C_Nby*m_beta+C_Ndy*delta_r; 

%       these equations developed in Anderson 
else 

C_Nz=.5*m_alpha; 
C_Ny=.5 *m_beta; 

end 

% missile velocity 
% Mach number 
% Beta factor 
% dynamic pressure 

% compute drag  
CDO=cdO([states;thrust]); % drag 
CDI=cdi([C_Nz,C_Ny,m_alpha,m_beta,u(3),V_m]);   % coefficients 

drag=(CDI+CDO)*Q*SREF; 

%  compute forces 
F_x=0;%thrust-drag; 
F_y=C_Ny*Q*SREF; 
F_z=C_Nz*Q*SREF; 

y=[F_x;F_y;F_z] ; 

%//end of file aeroforces.m 
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function y=aeromoments(u) 
%AEROMOMENTS Computes aerodynamic moments on a missile. 
% derived from Zarchan "Tactical and Strategic 
% Missile Guidance" and Anderson "Fundamentals 
% of Aerodynamics" 
% see also AEROFORCES 
% Copyright 1999-2000 by Triple B Enterprises 

%//******************************************************************** 
********* 

%// File:  aeromoments.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  7 Sept 2000 
%// Description:  Computes aerodynamic moments for both subsonic 
%// and supersonic regimes on a symmetrical STT 
%// missile.  Note:  Moment about x-axis is 
%// negative feedback of roll rate to stop missile 
%// from rolling. 
%// Inputs:  missile state, control deflections, angles of attack 
%// and rates 
%// Outputs:  Body centered aerodynamic moments [Tx,Ty,Tz]' 
%// Process:  Brute force computation of equations from Zarchan and 
%// Anderson 
%// Assumptions: 
%// Warnings: 
a//******************************************************************** 

********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//      -Functions 
<£//******************************************************************** 
********* 
% ******  define globals  ****** 
global m d L XCG XCPN XCPW XCPB XHL 
global ST SK SPLAN SREF 

% ******  define constants  ****** 

% ******  define input vector  ****** 
states=u(1:13); 
delta_r=u(14) 
delta_e=u(15) 
m_alpha=u(16) 
m_beta=u(17) ; 
alphadot=u(18) ; 
betadot=u(19); 
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% ******  initialize variables ****** 
V_m=sqrt(u(4)^u(5r2+u(6r2); % missile velocity 
Mach=V_m/machvalt(u(3)); % Mach number 
M_BETA=sgrt(Mach-2-l); % Beta factQr 
Q=rhovalt(u(3))*V_m-2/2; % dynamic pressure 

% ************  functions  ************ 
% compute moment coefficients   
%     these equations developed in Zarchan 
if Mach>1.05 

C_My=2*(XCG-XCPN)/d... 
+3*SPLAN*m_alpha*(XCG-XCPB)/(2*SREF*d) 
+8*SW*(XCG-XCPW)/(M_BETA*SREF*d) 
+ 8*ST*(XCG-XHL)/(M_BETA*SREF*d) ; 

C_Mdy=8*ST*(XCG-XHL)/(M_BETA*SREF*d); 
C_Mz=2*(XCG-XCPN)/d... 

+3*SPLAN*m_beta*(XCG-XCPB)/(2*SREF*d) 
+8*SW*(XCG-XCPW)/(M_BETA*SREF*d)... 
+8*ST*(XCG-XHL)/(M_BETA*SREF*d); 

C_Mdz=8*ST*(XCG-XHL)/(M_BETA*SREF*d); 
%      these equations developed in Anderson 
else 

C_My=.5;  C_Mdy=.05; 
C_Mz=.5;  C_Mdz=.05; 

end 

T_x=-400*states(7); 
T_y=(C_My*m_alpha+C_Mdy*delta_e)*Q*SREF*d-800*alphadot• 
T_z=(-C_Mz*m_beta+C_Mdz*delta_r)*Q*SREF*d+800*betadot;' 

y=[T_x;T^/;T_z]; 

%//end of file aeromoments.m 

100 



function y=alphabeta(u) 
%ALPHABETA Computes angles of attack in both vertical 
% and horizontal planes 
%        see also 
%        Copyright 1999-2000 by Triple B Enterprises 

%//******************************************************************** 
********* 

%// File:  projX.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  31 July 2000 
%// Description:  Computes angles of attack using ATAN formulation 
%// in Bryson "Control of Spacecraft and Aircraft" 
%// Inputs:  missile state 
%// Outputs:  angles of attack [alpha,beta]' 
%// Process:  ATAN formulation of Bryson 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 

%// Order of elements 
%//        -Define globals 
%//        -Define constants 
%//        -Define elements of input vector 
%//        -Functions 
%//******************************************************************** 
********* 

% ******  define globals  ****** 

% ******  define constants  ****** 

% ******  define input vector  ****** 
v=[u(4);u(5);u(6)]; 
% ******  initialize variables  ****** 

^ ************  functions  ************ 

%  these equations developed in Bryson   
% using betal for sideslip angle to avoid problems with 
% built-in matlab fxn beta 

alpha=atan2(v(3) , sqrt (v(l) /v2+v(2) Ä2)) ; 
betal=atan2(v(2),v(1)); 

y= [ alpha; betal ] ,- 

%//end of file alphabeta.m 
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%//************************************************^^^^^^ 
********* 

%// File:  auxplots.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 

%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  13 April 2000 

%// Description:  Plots auxiliary variables from missile simulations 
%// Inputs:  none 
%// Outputs:  plots of auxiliary variables 
%// Process:  none 
%// Assumptions:  none 
%// Warnings:  none 
%//************************************************^^^^^^^ 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 

********* 

% ******  define globals  ****** 

% ******  define constants  ****** 

% ******  define input vector  ****** 

% ******  initialize variables  ****** 

% ************  functions  ************ 
figure(4) 
subplot(4,2,1) 
plot(t,AccelOut/9.8045) 
ylabel('AccelOut') 
subplot(4,2,2) 
plot(t,AlphaBeta) 
ylabel('AlphaBeta') 
subplot(4,2,3) 
plot(t,eulers*57.3) 
ylabel('eulers') 
subplot(4,2,4) 
plot(t,MissileV) 
ylabel('MissileV) 
subplot(4,2,5) 
plot(t,AccelError) 
ylabel('AccelError') 
subplot(4,2,6) 
plot(t,seeker) 
ylabel('seeker') 
subplot(4,2,7) 
plot(t,deltas) 
ylabel('deltas') 
%//end of file auxplots.m 
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function y=b2guat(B) 
%B2QUAT Computes quaternions from a rotation matrix 
%        B2QUAT(B) 
%       see also QUATERNION, BQÜÄT 
%       Copyright 1999-2000 by Triple B Enterprises 

%//******************************************************************** 
********* 
%// File:  b2quat.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  12 Dec 1999 
%// Description:  Computes quaternions from ABC rotation matrix 
%// using formulation of Kuiper "Quaternions and 
%// Rotation Sequences" 
%// Inputs:  rotation matrix B 
%// Outputs:  quaternion [q0,ql,q2,q3]' 
%// Process:  Kuiper pp. 166-167 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%/f************************************************.),******************* 
********* 

% ****** define globals  ****** 

% ****** define constants  ****** 

% ****** define input vector ****** 

% ****** initialize variables ****** 

% ************  functions ************ 
q_0=sqrt((1+B(1,1)+B(2,2)+B(3,3))/4) 
q_l=sqrt((1+B(1,1)-B(2,2)-B(3,3))/4) 
q_2=sqrt((l-B(l/l)+B(2,2)-B(3,3))/4) 
q_3=sqrt((1-B(1,1)-B(2,2)+B (3,3))/4) 

a=(B(2,3)-B(3/2))/4 
b=(B(3,l)-B(l,3))/4 
C=(B(l,2)-B(2,l))/4 
d=(B(l,2)+B(2,l))/4 
e=(B(2,3)+B(3,2))/4 
f=(B(l,3)+B(3,l))/4 
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if (a<0 & b<0 & c<0) 
Q_0=-C3_0; 

end 
if (a<0 & d<0 & f<0) 

Q_l=-q_l; 
end 
if (b<0 & d<0 & e<0) 

Q_2=-q_2; 
end 
if (c<0 & e<0 & f<0) 

q_3=-q_3; 
end 

y=[g_0;q_l;cL_2;q_3]; 

%//end of file b2quat.m 
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function y=bangpt(u) 
%BANGPT Computes bang-bang control law for simplified 
%      6D0F model 
%       see also PROPNAVPT, VCPROPNAVPT, BRYSON, CHINGFANLIN 
%      Copyright 1999-2000 by Triple B Enterprises 

%//******************************************************************** 
********* 
%// File:  BANGPT.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  6 Aug 2000 
%// Description:  Bang-bang control law for 6D0F flight model. 
%// Uses two values of bang depending on range to 
%// reduce problems with drag at start of engagement. 
%// -.005 rad/s dead band on los rate 
%// Inputs:  [seeker data,IMU data,timer] 
%// Outputs:  [command accelerations,applied forces] 
%// Process:  bang-bang control law 
%// Assumptions:  none 
%// Warnings:  none 
%//******************************************************************** 
********* 
%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 

********* 

% ******  define globals  ****** 
global m satflag 

% ******  define constants  ****** 
Nprime=5; 
Nprimez=5; 

% ******  define input vector  ****** 
thetadot=u(l); 
phidot=u(2); 
los=u(3); 
philos=u(4); 
R=u(6) ; 
Vc=-u(5); 
heading=u(7); 
Vm=u(8); 
Vmdot=u(9); 
phi=u(10); 
theta=u(ll); 
psi=u(12); 
time=u(13); 
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% ******  initialize variables  ****** 
% set max control force to 5 g (long range 
% & 20 g (end game) 
if (R>5000) 

Nbang=5*9.8045; 
else 

Nbang=20*9.8045; 
end 

% ************  functions  ************ 
% establish a dead band on theta dot 
if (abs(thetadot)>.01*pi/180) 

ny=Nbang*sign(Vc*thetadot); 
else 

ny=0; 
end 

nz=Nprimez*Vc*(phidot)-9.8045; 

% control force limiter 
if satflag 

if (abs(ny)>30*9.8045) 
ny=sign(ny)*30*9.8045; 

end 
if (abs(nz)>30*9.8045) 

nz=sign(nz)*30*9.8045; 
end 

end 

% compute ABC forces applied 
Fx=0; 
Fy=ny*m; 
Fz=nz*m; 

% output vector 
y=[ny;nz;Fx;Fy;Fz]; 

%//end of file BANGPT.m 
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function y=bryson(u) 
%BRYSON Computes optimal guidance law derived by Bryson & Ho 
%      with dragforce inputs for point mass simulation 
%       see also PROPNAVPT BANGPT CHINGFANLIN 
%      Copyright 1999-2000 by Triple B Enterprises 
%//******************************************************************** 
********* 

%// File:  bryson.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack' 5 
%// Compiler:  MatLab v5.3 
%// Date:  18 Sep 00 
%// Description:  Modified PN differential games guidance 
%// law from Bryson & Ho 
%// Inputs:  Seeker outputs, filter outputs, missile timer 
%//        accelerometer output 
%// Outputs:  command accelerations, y and z forces for drag model 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************************** 
********* 
% ******  define globals  ****** 
global m satflag 

% ******  define constants  ****** 
Nprime=3; 
Nprimez=3; 

% ******  define input vector  ****** 
thetadot=u(l); 
phidot=u(2); 
los=u(3); 
philos=u(4); 
R=u(6); 
Vc=-u(5); 
heading=u(7); 
Vm=u(8); 
Vmdot=u(9); 
phi=u(10); 
theta=u(ll); 
psi=u(12); 

m_state=u(13:21); 
time=u(22); 

accel_in=u(23:25); 
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% ******  initialize variables  ****** 

% ************  functions  ************ 
if time<2.0 

ny=Nprime*Vc*(thetadot)/cos(psi-los) ; 
nz=Nprimez*Vc*(phidot)/cos(theta-philos)-9.8045, 

else 
cp=30*9.8045; 

ce_lat=sqrt(m_state(3)'"2+m_state(6)"2); 

if (ce_lat==cp) 
ce_lat=29*9.8045; 

end 

ce_vert=abs(m_state(9)); 

if (ce_vert==cp) 
ce_vert=29*9.8045; 

end 

ny=3/(l-ce_lat/cp)*Vc*thetadot; 
nz=3/(l-ce_vert/cp)*Vc*phidot-9.8045; 

end 

if satflag 
if (abs(ny)>30*9.8045) 

ny=sign(ny)*30*9.8045; 
end 
if (abs(nz)>30*9.8045) 

nz=sign(nz)*30*9.8045; 
end 

end 

Fx=0; 
Fy=ny*m; 
Fz=nz*m; 

y=[ny;nz;Fx;Fy;Fz]; 

%//end of file bryson.m 
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function y=cdO(u); 
% CDO Computes induced drag coefficient 
% 
%       see also CDI 
%       Copyright 1999-2000 by Triple B Enterprises 

********* 

%// File:  cdO.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  9 May 00 
%// Description:  computes induced drag coefficient for full 
%// aero model 
%// Inputs:  state, boost status 
%// Outputs:  drag coeffient 
%// Process:  polynomial fit to data from Hutchins EC4330 notes 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//***************************************************i*******4tÄAA + *iAit 

********* 

% ******  define globals  ****** 

% ******  define constants  ****** 
NoBoost=[-0.0014    0.0299   -0.2110    0.6256]; 
Boost=[-0.0012    0.0243   -0.1521    0.4044]; 

% ******  define input vector  ****** 
v=sgrt(u(4)'-2+u(5)/N2+u(6)/v2) ; 
alt=u(3); 

boost=u(14); 

% ******  initialize variables  ****** 
mach=v/machvalt(alt); 

% ************  functions  ************ 
if (mach>100) 

mach=.83; 
end 
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% these curves approximated from "typical" data presented 
% in Stevens & Lewis and Hutchins 

% compute CdO 
if (boost & (mach<l)) 

y=.15; 
end 

if (-boost & (mach<l)) 
y=.25; 

end 

if ((mach>=l) & (boost~=0)) 
y=polyval(Boost,mach); 

end 

if ((mach>=l) & (boost==0)) 
y=polyval(NoBoost,mach) ; 

end 

if ((mach>5) & boost) 
y=.io; 

end 

if ((mach>6.4) & -boost) 
y=-132; 

end 

%//end of file cdO.m 
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function y=cdi(u) 
%CDI   Computes induced drag coefficient 
%       see also CDO 
%       Copyright 1999-2000 by Triple B Enterprises 
%//******************************************************************** 
********* 

%// File:  cdi.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  18 Apr 00 
%// Description:  computed induced drag coefficient for full 
%// aero model 
%// Inputs:  see below 
%// Outputs:  cdi 
%// Process:  Anderson 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 
%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************************** 
********* 
% ******  define globals  ****** 

% ******  define constants  ****** 

% ******  define input vector  ****** 
C_Nz=u(l); 
C_Ny=u(2); 
m_alpha=u(3); 
m_beta=u(4) ; 
alt=u(5); 
v=u(6); 
% ******  initialize variables  ****** 
Mach=v/machvalt(alt); 

% ************  functions  ************ 
%  these equations developed from Anderson   
if (Mach>1.0) 

M_BETA=sgrt(Mach~2-1); 
Cdi= (4*m_alpha^2/M_BETA+4*m_beta/v2/M_BETA) ; 

else 
Cdi=(C_Ny/v2+C_Nz/v2) /pi; 

end 

y=Cdi; 

%//end of file cdi.m 
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function y=cdvmach(mach,boost) 
%CDVMACH  Computes approximation of zero lift drag 
% coefficient vs. mach number 
%        CDVMACH(MACH,BOOST) 
%       see also MACHVALT 
%       Copyright 1999-2 000 by Triple B Enterprises 
%//*************************************************^^^^^^^ 
********* 

%// File:  cdvmach.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  17 Apr 00 
%// Description:  computes polynomial fit for cdO vs Mach number 
%// Inputs:  mach # and boost status 
%// Outputs:  cdO 
%// Process:  Fit on data from Hutchins EC4330 notes 
%// Assumptions: 
%// Warnings: 

********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//****************************************************^^^^^^ 
********* 
% ****** define globals  ****** 

% ******  define constants  ****** 
NoBoost=[-0.0014    0.0299   -0.2110    0.6256]; 
Boost=[-0.0012    0.0243   -0.1521    0.4044]; 

% ******  define input vector  ****** 

% ******  initialize variables  ****** 

% ************  functions  ************ 
if (boost & (mach<l)) 

y=.15; 
end 

if (-boost & (mach<l)) 
y=-25; 

end 

if ((mach>=l) & (boost~=0)) 
y=polyval(Boost,mach); 

end 

if ((mach>=l) & (boost==0)) 
y=polyval(NoBoost,mach); 

end 
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if ((mach>5) & boost) 
y=.io; 

end 

if ((mach>6.4) & -boost) 
y=.132; 

end 

%//end of file cdvmach.m 
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function y=chingfanlin(u) 

%CHINGFANLIN Computes optimal guidance law derived by Ching Fan Lin pg. 

% with dragforce inputs for point mass simulation 
%       see also EXACTPR0PNAV2 
%       Copyright 1999-2 000 by Triple B Enterprises 

********* 

%// File:  chingfanlin.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  15 Sep 00 

%// Description:  computes APN guidance law from Ching Fan Lin 
%// Inputs:  seeker output, filter output, accelerometer, 
%//        missile timer 
%// Outputs:  command accelerations, y and z forces for drag 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//*****************************************************^^^^^ 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//***************************************1Ir**####ik4#itltik^#ititiri^#itiiri<t]t#i|p# 
********* 

% ******  define globals  ****** 
global m satflag 
% ******  define constants  ****** 
Nprime=3; 
Nprimez=3; 

% ******  define input vector  ****** 
thetadot=u(l); 
phidot=u(2); 
10S=U(3); 
philos=u(4); 
R=U(6); 
Vc=-u(5); 
heading=u(7); 
Vm=u(8); 
Vmdot=u(9); 
phi=u(10); 
theta=u(ll); 
psi=u(12); 

tgt_state=u(13:21); 
time=u(22); 

accel_in=u(23:25); 
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% ******  initialize variables ****** 

% ************  functions  ************ 
if (Vc==0) 

tgo=le6; 
else 

tgo=R/Vc; 
end 
% compute relative state estimate 
xhat=[R*cos(los); 

R*sin(los); 
R*sin(philos); 
tgt_state(2)-Vm*cos(psi); 
tgt_state(5)-Vm*sin(psi); 
tgt_state(8)-Vm*sin(theta); 
tgt_state(3) 
tgt_state(6) 
tgt_state(9) 
accel_in(l); 
accel_in(2); 
accel_in(3)]; 

if time<2.0 
ny=Nprime*Vc*(thetadot)/cos(heading-los); 
nz=Nprimez*Vc*(phidot)-9.8045; 

else 
uc=(5/tgo/v2)*[eye(3) ,tgo*eye(3) , tgo/v2/2*eye (3) , zeros (3) ]*xhat; 
ny=uc(2); 
nz=uc(3)-9.8045; 

end 

if satflag 
if (abs(ny)>30*9.8045) 

ny=sign(ny)*30*9.8045; 
end 
if (abs(nz)>30*9.8045) 

nz=sign(nz)*30*9.8045; 
end 

end 

Fx=0; 
Fy=ny*m; 
Fz=nz*m; 

y=[ny;nz;Fx;Fy;Fz]; 

%//end of file chingfanlin.m 
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function y=draginduced(u) 
%DRAGINDUCED Computes  induced aerodynamic drag force 

%       see also 
%       Copyright 1999-2000 by Triple B Enterprises 
%//*****************************************^^^^^^^^4^ 
********* 

%// File:  draginduced.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  19 Sep 00 
%// Description:  computes induced drag for simplified 6DOF 
%// Inputs:  force output of guidance law, state 
%// Outputs:  drag force 
%// Process:  work backwards to CN from forces 
%// Assumptions: 
%// Warnings: 

********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//********************************************^^^^^^^^ 
********* 
% ******  define globals  ****** 
global SREF m 

% ******  define constants  ****** 
eAR=1-5; % elliptical eff & AR 

% ******  define input vector  ****** 
Fy=u(2); % y force  . 
Fz=u(3>'- % z force 
v2=u(7)-2+u(8)~2+u(9)-2; % missile  velocity 
alt=u(6); % missile alt 

% ******  initialize variables  ****** 
rho=rhovalt(abs(alt)); % atmospheric density 
mach=sgrt(v2)/machvalt(alt); Y 

Q=rho*v2/2; » ^    • ' % dynamic pressure 
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% ************  functions  ************ 
if (Q==0) 

Cny=0; 
Cnz=0; 

else 
Cny=Fy/(Q*SREF); % y normal coefficient 
Cnz=Fz/(Q*SREF); % z normal coefficient 

end 

Cdi=(Cny~2+CnzA2)/(pi*eAR); % induced drag coefficient 

if (mach<l) % subsonic drag equal to 
Cdi=.25*sqrt(Fy~2+FzA2)/(m*9.8045) ;  % max CdO*applied G force 

end 

y=Cdi*Q*SREF; % drag force 

%//end of file draginduced.m 

117 



function y=draginducedtbm(u) 
%DRAGINDUCEDTBM Computes  induced aerodynamic drag force 
x> 

%       see also 
%       Copyright 1999-2000 by Triple B Enterprises 
%//*******************************************^^^^^^^^^ 
********* 

%// File:  draginducedtbm.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  19 Sep 00 
%// Description:  computes induced drag for TBMD simulation 
%// Inputs:  force output of guidance law, state 
%// Outputs:  drag force 
%// Process:  work backwards to CN from forces, corrects for ECI 
%// Assumptions: 
%// Warnings: 

********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//*************************************************^^^^^^^ 
********* 
% ******  define globals  ****** 
global SREF m 

% ******  define constants  ****** 
eAR=1.5; % elliptical eff & AR 

% ******  define input vector  ****** 
*V=u(2); % y force 
Fz=u(3><- % z force 
v2=u(7)-2+u(8)-2+u(9)-2; % missile velocity 
alt=sqrt(u(l)-2+u(2)-2+u(3)-2)-6371e3;  % missile alt 

% ******  initialize variables  ****** 
rho=rhovalt(abs(alt)); % atmospheric density 
mach=sqrt(v2)/machvalt(alt); 
Q=rho*v2/2; % dynamic pressure 
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% ************  functions  ************ 
if (Q==0) 

Cny=0; 
Cnz=0; 

else 
Cny=Fy/(Q*SREF); % y normal coefficient 
Cnz=Fz/(Q*SREF); % z normal coefficient 

end 

Cdi=(Cny/s2+Cnz"2)/(pi*eAR) ; % induced drag coefficient 

if (mach<l) % subsonic drag equal to 
Cdi=.25*sqrt(Fy~2+FzA2)/(m*9.8045);  % max CdO*applied G force 

end 

y=Cdi*Q*SREF; % drag force 

%//end of file draginducedtbm.m 
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function y=dragthesis(u) 
%DRAGTHESIS Computes aerodynamic drag force 

%       see also 
%       Copyright 1999-2000 by Triple B Enterprises 
%//*****************************************^^^^^^^^^ 
********* 

%// File:  dragthesis.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  19 Sep 00 
%// Description:  computes parasitic drag after breaking apart 
%i I state vector 
%// Inputs:  state vector, boost status 
%// Outputs:  parasitic drag force 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//*****************************************^^^^^^^^^ 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//***************************************************^^^,t^ii^ 
********* 
% ******  define globals  ****** 
global SREF 

% ******  define constants  ****** 

% ******  define input vector ****** 
vel2=u(4)"2+u(5)A2+u(6)A2; 
alt=u(3); 

boost=u(14) ; 

% *****.  initialize variables  ****** 

% *******.♦».♦  functions  ************ 
y=formdrag(SREF,alt,vel2,boost) ; 

%//end of file dragthesis.m 
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%//******************************************************************** 
********* 
%// File:  drawmissile.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  31 May 00 
%// Description:  draws picture of current missile defined 
%// by missiledata#.dat 
%// Inputs: 
%// Outputs: 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 
%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************************** 
********* 
% ****** define globals ****** 

% ******  define constants  ****** 
mgrey=[.5 .5 .5]; 
dgrey=[.75 .75 .75]; 

% ******  define input vector ****■*■■*■ 

% ******  initialize variables  ****** 
nosex=[0 LN LN 0]; 
nosey=[0 d/2 -d/2 0]; 

bodyx=[LN L L LN LN]; 
bodyy=[d/2 d/2 -d/2 -d/2 d/2] ; 

wingx=[LN+XW LN+XW+CRW LN+XW+CRW LN+XW+CRW-CTW LN+XW LN+XW]; 
wingy=[d/2 d/2 d/2+WXT+HW d/2+WXT+HW d/2+WXT d/2]; 

tailx=[L-CRT L L L-CTT L-CRT L-CRT]; 
taily=[d/2 d/2 d/2+TXT+HT d/2+TXT+HT d/2+TXT d/2]; 

CPEFF=(XCPN*AN+XCPB*AB+XCPW*SW+XHL*ST)/(AN+AB+SW+ST); 

% compute time 
time=rem(now,1); 
hr=floor(time*24); 
mins = floor(rem(time*24,1)*60) ; 
timestr=[' '/num2str(hr),':',num2str(mins)]; 
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% ************  functions  ************ 
figure(10) 
elf 
hold on 
axis equal 
fill(nosex,nosey,'w') 
fill(bodyx,bodyy,mgrey) 
fill(wingx,wingy,dgrey) 
fill(wingx,-wingy,dgrey) 
fill(tailx,taily,dgrey) 
fill(tailx,-taily,dgrey) 
plot(XCG,0,'ko') 
plot(XHL,0,'r*') 
plot(CPEFF,0,'b*') 

ie^nf!iSentef °f Gravity'''Hinge Line','Effective Center of Pressure' 
title(['Missile Plan View     ',date,timestr]) 
xlabel('meters') 
ylabelf'meters') 
hold off 

%//end of file drawmissile, m 
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function y=dynamic3D(u) 
%DYNAMIC3D Computes motion dymanics for a 
%        body in three dimensions 
%       see also 
%       Copyright 1999-2 000 by Triple B Enterprises 
%//******************************************************************** 
********* 

%// File:  dynamic3d.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  16 Feb 00 
%// Description:  target motion dynamics 
%// Inputs:  target state, turn rate input 
%// Outputs:  derivative of target state 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%/Z**************************************************************^,^.^ 
********* 
% ****** define globals  ****** 

% ******  define constants  ****** 

% ******  define input vector ****** 
omega=u(l); 
x=u(2); 
xdot=u(3); 
y=u(4); 
ydot=u{5); 
z=u(6); 
zdot=u(7); 

% ******  initialize variables  ****** 

% ************  functions  ************ 
y=[xdot; 

-omega*ydot; 
ydot ; 
omega*xdot 
zdot ; 
0]; 

%//end of file dynamic3d.m 
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function y=eqnforce(u) 
%EQNFORCE Computes force dymanics for six degrees 
%        of freedom flat earth model 
%       see also 
%       Copyright 1999-2000 by Triple B Enterprises 

********* 

%// File:  eqnforce.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  10 May 00 
%// Description:  force dynamics for full aero model 
%// Inputs:  see below 
%// Outputs:  solution to force equation 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//********************************************^^^^^^^^ 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 

********* 
% ******  define globals  ****** 

% ******  define constants  ****** 

% ******  define input vector  ****** 
v_b=[u(l);u(2);u(3)]; 
F_B=[u(4);u(5);u(6)]; 
omega_b=[u(7);u(8);u(9)]; 
P=U(7);  Q=u(8);  R=U(9); 

q=[u(10);u(ll) ;u(12);u(13)]; 

magq=sqrt(q(l)"2+q(2)"2+g(3)"2+q(4)A2); 
q=q/magq; 

% the ever lovin' force of gravity 
% g=[u(14);u(15);u(16)]; 
% note we are not using an external gravity model here 

g=[0;0;9.8045]; 

% and lest we forget, mass 
m=u(17); 
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% ****** initialize variables ****** 

% ************  functions  ************ 
% some heavy duty number crunching 
% compute rotation matrices 
B=quat2b(q); 

OMEGA_B=[0 -R  Q; 
R  0 -P; 

-Q  P  0]; 

y=-l*OMEGA_B*v_b+B*g+(1/m)*F_B; 

%//end of file egnforce.m 

125 



function y=eqnmoment(u) 
%EQNMOMENT Computes moment dymanics for six degrees 
% of freedom flat earth model 
%       see also 
%       Copyright 1999-2000 by Triple B Enterprises 
%//*********************************************** ******^^^^^.t^ 
********* 

%// File:  eqnmoment.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  11 Sep 00 

%// Description:  computes moment dynamics for full aero model 
%// Inputs:  see below 
%// Outputs:  see below 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//*************************************************##t + ##i^#1,^^it#itik# + jb 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************^4^^^^ 
********* 

% ******  define globals  ****** 
% ******     define constants  ****** 
% ******  define input vector  ****** 
omega_b=[u(l);u(2);u(3)]; 
P=U(1);  Q=u(2);  R=U(3); 

% torques 
T_B=[u(4);u(5);u(6)]; 

% inertial matrix 
J=tu(7),0,0; 

0,u(8),0; 
0,0,u(9)]; 

% and lest we forget, mass 
m=u(10); 

% ******  initialize, variables  ****** 
% ************  functions  ************ 
% some heavy duty number crunching 
OMEGA_B=[0 -R  Q; 

R  0 -P; 
-Q  P  0]; 

y=-l*inv(J)*OMEGA_B*J*omega_b+inv(J)*T_B; 

%//end of file eqnmoment.m 
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function y=egnposit(u) 
%EQNPOSIT Computes NED dymanics for six degrees 
%        of freedom flat earth model 
%       see also 
%       Copyright 1999-2000 by Triple B Enterprises 
%//******************************************************************** 
********* 
%// File:  egnposit.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLabv5.3 
%// Date:  10 May 00 
%// Description:  navigation equation for full aero model 
%// Inputs:  see below 
%// Outputs:  inertial velocities 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 
%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************************** 
********* 
% ******  define globals  ****** 

% ******  define constants  ****** 

% ******  define input vector  ****** 
v_b=[u(l);u(2);u(3)]; 

q=[u(4);u(5);u(6);u(7)]; 

% ******  initialize variables  ****** 
magq=sgrt(q(l)"2+q(2)"2+q(3)~2+q(4)"2); 
q=q/magq; 

% ************  functions  ************ 
% compute rotation matrices 
B=quat2b(q); 

y=B'*v_b; 
%//end of file eqnposit.m 
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function y=eqnquat(u) 
%EQNQUAT Computes quaternion dymanics for six degrees 
%       of freedom flat earth model 
%      , see also 
%       Copyright 1999-2000 by Triple B Enterprises 

********* 

%// File:  eqnquat.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  13 Sep 00 
%// Description:  computes quaternion dynamics for full aero model 
%// Inputs:  see below 
%// Outputs:  q_dot 
%// Process: 
%// Assumptions: 
%// Warnings: 

********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 

********* 

% ******  define globals  ****** 
% ******  define constants  ****** 
% ******  define input vector  ****** 
q=[u(l);u(2);u(3);u(4)]; 

omega_b=[u(5);u(6);u(7)]■ 
P=U(5);  Q=U(6);  R=u(7); 

% ******  initialize variables  ****** 
magq=sqrt(q(l)"2+q(2)^2+q(3)"2+q(4)"2); 
q=q/magq; 

% ************  functions  ************ 
OMEGA_q=[0  P  Q  R; 

-P  0 -R Q 
-Q R  0 -P 
-R -Q  P  0]; 

q=-(1/2)*0MEGA_q*q; 

magq=sqrt(q(l)'v2+q(2) A2+q(3)"2+q(4) A2) ; 
if (magq~=0) 

y=q/magq; 
else 

y=[l;0;0;0]; 
end 

%//end of file eqnquat.m 
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function y=flatearthdyn(u) 
%FLATEARTHDYN Computes motion dymanics for six degrees 
% of freedom for a flat earth model 
%       see also 
%       Copyright 1999-2000 by Triple B Enterprises 

********* 
%// File:  flatearthdyn.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  1 Aug 00 
%// Description:  computes 6DOF dynamics for flat earth using 
%// quaternion formulation 
%// Inputs:  see below 
%// Outputs:  derivative of state vector 
%// Process:  Stevens & Lewis 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 
%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 

********* 
******    define globals  ****** *i 

% ******    define constants  ****** 

% ******  define input vector  ****** 
p=[u(l);u(2);u(3)]; 
V_b=[u(4);u(5);u(6)]; 
omega_b=[u(7);u(8);u(9)]; 
P=u(7);  Q=u(8);  R=u(9); 

q=[u(10);u(ll);u(12);u(13)] ; 

magq=sqrt(q(l) ,N2+q(2) A2+q(3) "2+q(4) ^2) ; 
q=q/magq; 

x=[p;v_b;omega_b;q]; 

% inertial matrix 
J=[u(14),0,0; 

0,u(15),0; 
0,0,u(16)]; 

% forces 
F_B=[u(17);u(18);u(19)']; 
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% torques 
T_B=[u(20);u(21);u(22)]; 

% the ever lovin' force of gravity 
% note we are not using an external gravity model here 

g=[0;0;9.8045] ; 

% and lest we forget, mass 
m=u(26); 

% ******  initialize variables  ****** 
% compute rotation matrices 
B=quat2b(q); 

OMEGA_B=[0 -R  Q; 
R  0 -P; 

-Q  P  0]; 

OMEGA_q=[0 P  Q R; 
-P 0 -R  Q; 
-Q R  0 -P; 
-R -Q P  0]; 

% ************ functions  ************ 
y=[   zeros(3),       B', 

zeros(3),    -OMEGA_B, 
zeros(3),     zeros(3), 
zeros(4,3),   zeros(4,3), 

y=y*x; 

y=y+[zeros(3,1); 
B*g+(l/m)*F_B; 
inv(J)*T_B; 
zeros(4,1) ] ; 

%//end of file flatearthdyn.m 

zeros(3),      zeros(3,4); 
zeros(3),      zeros(3,4); 

-l*inv(J)*OMEGA_B*J, zeros(3,4); 
zeros(4,3),   (-1/2)*0MEGA_q]■ 
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function y=formdrag(A,alt,vel2,boost) 
%FORMDRAG Computes form drag for a missile with frontal 
%       area A in a standard atmosphere 
%        FORMDRAG(A,ALT,VEL2,BOOST) 
%       uses MACHVALT,CDVMACH,RHOVALT 
%       see also 
%       Copyright 1999-2000 by Triple B Enterprises 
%//******************************************************************** 
********* 
%// File:  formdrag.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  9 May 00 
%// Description:  Computes form drag for a missile with frontal 
% area A in a standard atmosphere 
%// Inputs:  area, altitude, VA2, boost on/off 
%// Outputs:  parasitic drag force 
%// Process: 
%// Assumptions: 
%// Warnings: 

********* 
%// Order of elements 
%//     -Define globals 
%'//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************vti***A#AAAAi.1tJt 
********* 
% ******  define globals  ****** 

% ******  define constants  ****** 

% ******  define input vector  ****** 

% ******  initialize variables  ****** 
rho=rhovalt(alt); 
mach=(vel2)A(l/2)/machvalt(alt); 

% ************  functions  ************ 
if (mach>100) 

mach=.83; 
end 

Cd=cdvmach(mach,boost); 

y=rho*vel2*Cd*A/2; 

%//end of file formdrag.m 
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function y=gravity(u) 
%GRAVITY Computes simple gravity model for 6D0F model 
%       see also 
%       Copyright 1999-2000 by Triple B Enterprises 

********* 

%// File:  gravity.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  19 Sep 00 
%// Description:  computes spherical earth gravity for TBM 
%// target dynamics 
%// Inputs:  target state vector 
%// Outputs:  gravity vector 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//**************************^^ + ^^^^^^^^^^^^ 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 

********* 
3:  ****** define globals  ****** 

% ******  define constants  ****** 
GM_E=3.9860014el4;      % G*mass of earth 

****** define input vector  ****** 

% ******  initialize variables  ****** 
mag=sqrt(u(1)"2+u(3)^2+u{5)A2); 

% ****.»»*..,»  functions  ************ 
y=-(GM_E/mag-3)*[u(l);U(3);u(5)]; 

%//end of file gravity.m 
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function y=gravity2(u) 
%GRAVITY2 Computes simple gravity model for 6D0F model 
%       see also 
%       Copyright 1999-2000 by Triple B Enterprises 
%//******************************************************************** 
********* 

%// File:  gravity2.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  19 Sep 00 
%// Description:  computes spherical earth gravity model 
%// for interceptor 
%// Inputs:  missile state vector 
%// Outputs:  gravity vector 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************************** 
********* 
% ******  define globals  ****** 

% ****** define constants  ****** 
GM_E=3.9860014el4;      % G*mass of earth 

****** define input vector  ****** 

% ******  initialize variables  ****** 
mag=sgrt(u(l)/v2+u(2) A2+u(3)~2) ; 

% ************  functions  ************ 
y=-(GM_E/mag"3)*[u(l);u(2);u(3)]; 

%//end of file gravity2.m 
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%//************************************************^^^^^^^ 
********* 

%// File:  KBFILTER.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  7 Aug 00 

6DOFDeSCriPti°n:  Automatically computes a kinematic boundary using 
%// simulator with tracking filter. 
%// -Streamlined search loops 
%// -Status indicator 
%// -Saves most recent data to disk 
%// -Derived from KBOUTER 
%// Inputs: none 
%// Outputs:  one figure of kinematic boundary 
%// Process:  streamlined brute force search algorithm 
%// Assumptions:  none 
%// Warnings:  none 
%//********************************************^^^^^^^^ 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Initialize variables 
%//     -Functions 

********* 

% ******  define globals  ****** 

% ******  define constants  ****** 
thesisinit 
% set min engagement range (10000 m default) 
minrng=10000; 
% set heading increment 
degstep=5; 

% ******  define input vector  ****** 

% ******  initialize variables  ****** 

maxhit=[];   minhit=[]■ 
load current 
% set target altitude 
tgtalt=init(3); % default co-altitude 
% set target turn rate.  default=0 degrees/sec 
target_turn=0; 
% set target speed 
tgtmach=.83; % user sets Mach # 

tgtspd=tgtmach*machvalt(tgtalt);% machine computes speed 
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% ************  functions  ************ 
% start in tail chase step to head on by <degstep> 
% degree increments 
for heading=0:degstep:180 

tic 
plotcount=l;  runplot=[]; rangemax=0; 
heading % show heading counter 
tgthdg=heading*pi/18 0; 

% compute target speed components 
xspd=tgtspd*cos(tgthdg); 
yspd=tgtspd*sin(tgthdg); 

% first range loop step by 10 km 
for tgtrng=minrng:10000:150000 

disp(['*** ',num2str(tgtrng),' ***']) 
% set initial target state 
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0]; 
% initialize filter 

XLAST=[tgtinit(l);tgtinit(2);0;tgtinit(3);tgtinit(4);0;tgtinit(5);tgtin 
it(6);0]; 

% call simulation 
sim('thesislfilt') 

% analyze data from current run 
range=sqrt((MissileOut(:,1)-TgtOut(:,1)).A2+... 

(MissileOut(:,2)-TgtOut(:,3)).A2+... 
(MissileOut(:,3)-TgtOut(:, 5)).A2) ; 

% save run data 
runplot(plotcount,:)=[min(range),tgtrng]; 
% score run 
if (min(range)>5) 

break 
end 
plotcount=plotcount+l ; 

end 

idx=find(runplot(:,1)<=5); 
if(idx) 

rangemax=runplot(max(idx) , 2); 
end 
runplot=[]; 
plotcount=l; 
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% 1 km step size for max range.  Streamlining code 
tgtrng=rangemax+1000; 
disp(['*** ',num2str(tgtrng),' maxlk***']) 
% set initial target state 

tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0] ; 
% initialize filter 

?tt677o?rinit(i);tgtinit{2);o;tgtinit(3);tgtinit(4);o;tgtinit(5};tgtin 

% call simulation 
sim('thesislfilt') 

% analyze data from current run 
range=sqrt((MissileOut(:,1)-Tgt0ut(:,1)). A2+. 

(MissileOut (:, 2) -TgtOut ( :, 3) ) . *2 +'. . . 
(MissileOut(:,3)-TgtOut(:, 5)).A2) ; 

if (min(range)<=5) 
rangemax=tgtrng; 
tgtrng=tgtrng+4000; 
disp(['***   ',num2str(tgtrng),'   maxlk***']) 
%  set  initial  target  state 
tgtinit=[tgtmg;xspd;0;yspd;tgtalt;0] ,- 
%  initialize  filter 

s^riigtinit(i);tgtinit(2);°;^^ 11 ( b ) ; ü J ; 

% call simulation 
sim('thesislfilt') 

% analyze data from current run 
range=sgrt((MissileOut(:,1)-TgtOut(:,1)).*2+. 

(MissileOut(:,2)-TgtOut(:,3))."2+... 
(MissileOut(:,3)-TgtOut(:, 5)) . *2) ; 

if (min(range)<=5) 
rangemax=tgtrng; 

end 
end 
% main search loop 1km step size 
for tgtmg=rangemax+1000:1000: (rangemax+4000) 

disp(['*** ',num2str(tgtrng),' maxlk***']) 
% set initial target state 

tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0]; 
% initialize filter 

^^^^^^''^^^^'^''^^^^'•^^^^^'•^^^(SJ^gtin It ( b ) ; (J J ; 

% call simulation 
sim('thesislfilt') 
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% analyze data from current run 
range=sqrt((MissileOut(:,1)-TgtOut(:,1)).Ä2+... 

(MissileOut(:,2)-TgtOut(:,3)).A2+... 
(MissileOut(:,3)-TgtOut(:, 5)).A2) ; 

% save run data 
runplot(plotcount,:)=[min(range),tgtrng]; 
% score run 
if (min(range)>5) 

break 
end 

plotcount=plotcount+l; 
end 

idx=find(runplot(:,1)<=5); 
if(idx) 

rangemax=runplot(max(idx),2); 
end 
runplot=[]; 
plotcount=l; 

% 100 m step size for max range.  Streamlined code. 
tgtrng=rangemax+l0 0; 
disp(['*** ',num2str(tgtrng),' maxlOO***']) 
% set initial target state 
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0]; 
% initialize filter 

XLAST=[tgtinit(l);tgtinit(2);0;tgtinit(3);tgtinit(4);0;tgtinit(5);tgtin 
it(6);0]; 

% call simulation 
sim('thesislfilt') 

% analyze data from current run 
range=sqrt((MissileOut(:,1)-TgtOut(:,1)). A2+... 

(MissileOut(:,2)-TgtOut(:,3)).A2+... 
(MissileOut(:,3)-TgtOut(:,5)).A2); 

if (min(range)<=5) 
rangemax=tgtrng; 
tgtrng=tgtrng+400; 
disp(['*** ' ,num2str( tgtrng) , ' maxlOO***']) 
% set initial target state 
tgtinit=[tgtrng;xspd;0;yspd;tgtalt; 0]; 
% initialize filter 

XLAST=[tgtinit(1);tgtinit(2);0;tgtinit(3);tgtinit(4);0;tgtinit(5);tgtin 
it(6);0]; 

% call simulation 
sim('thesislfilt') 
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% analyze data from current run 
range=sqrt((MissileOut(:,1)-TgtOut(:,1)).~2 + 

(MissileOut(:,2)-TgtOut(:,3)) .~2+ . . . 
(MissileOut(:,3)-TgtOut(:,5))."2); 

if (min(range)<=5) 
rangemax=tgtrng; 

end 
end 

% main search loop 100 m 

for tgtrng=rangemax+100:100:(rangemax+400) 

disp(['*** ',num2str(tgtrng),' maxlOO***' ]) 
% set initial target state 

tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0]; 
% initialize filter 

xw?rmgtinit(i);tgtinitm 
11 ( fa ) ; U J ; 

% call simulation 
sim('thesislfilt') 

% analyze data from current run 
range=sqrt((MissileOut(:,1)-TgtOut(:,1)).-2+ 

(MissileOut(:,2)-TgtOut(:,3)).~2+... 
(MissileOut(:,3)-TgtOut(:,5)).~2) ; 

% save run data 

runplot(plotcount,:)=[min(range),tgtrng]; 
% score run 
if (min(range)>5) 

break 
end 

plotcount=plotcount+l; 
end 

idx=find(runplot(:,1)<=5); 
if(idx) 

rangemax=runplot(max(idx) , 2) ; 
end 
runplot=[] ; 
plotcount = l ; 
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% 10 m step size for max range.  Streamlined code 
tgtrng=rangemax+10; 
disp(['*** ',num2str(tgtrng),' maxlO***']) 
% set initial target state 
tgtinit=[tgtrng;xspd;0;yspd;tgtalt; 0] ; 
% initialize filter 

XLAST=[tgtinit(l);tgtinit(2);0;tgtinit(3);tgtinit(4);0;tgtinit(5);tgtin 
it(6);0]; 

% call simulation 
sim( 'thesislfilt') 

% analyze data from current run 
range=sgrt((MissileOut(:,1)-TgtOut(:,1))."2+... 

(MissileOut(:,2)-TgtOut( : , 3)) . A2+... 
(MissileOut(:,3)-TgtOut(:,5)).A2); 

if (min(range)<=5) 
rangemax=tgtrng; 
tgtrng=tgtrng+40; 
disp(['*** ',num2str(tgtrng),' maxlO***']) 
% set initial target state 
tgtinit=[tgtrng,-xspd;0;yspd;tgtalt;0] ; 
% initialize filter 

XLAST=[tgtinit(1);tgtinit(2);0;tgtinit(3);tgtinit(4);0;tgtinit(5) ;tgtin 
it(6.);0]; 

% call simulation 
sim('thesislfilt') 

% analyze data from current run 
range=sqrt((MissileOut(:,1)-TgtOut(:,1)) . "2+.. . 

(MissileOut(:,2)-TgtOut(: , 3)) .Ä2+ . . . 
(MissileOut(:,3)-TgtOut(:,5)).Ä2); 

if (min(range)<=5) 
rangemax=tgtrng; 

end 
end 

% main search loop 10 m.  Note, we are now computing the 
% full output vector for each run. 
for tgtrng=rangemax:10:(rangemax+40) 

disp(['*** ',num2str(tgtrng),' maxlO***']) 
% set initial target state 
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0]; 
% initialize filter 

XLAST= [ tgtinit (1) ; tgtinit (2) ; 0; tgtinit (3) ; tgtinit (4) ; 0; tgtinit (5) ; tgtin 
it(6);0]; 

% call simulation 
sim('thesislfilt') 
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% analyze data from current run 
range=sqrt((MissileOut(:,1)-TgtOut(:,1)) .A2+... 

(MissileOut(:,2)-TgtOut(:, 3)) . A2+... 
(MissileOut(:,3)-TgtOut(:,5)).~2); 
t=MissileOut(: ,14); 

index=find(range==min(range)); 
ip=t(index(1)); 

% compute cost function J=20*e(tf)"2+integ(u"2)/200 
% and missile divert 
u2=(omegaout(:,1).A2+omegaout(:,2).A2); 
integral=0; 
for ii=2:index 

integral=integral+(t(ii)-t(ii-l))*u2(ii-l)■ 
end 

J=20*min(range)A2+integral/l000; 

% save run data [miss dist,cost,divert,time,max range] 
runplottplotcount,:)=[min(range),J,integral,ip,tgtrng] 

if (min(range)>5) 
break 

end 

plotcount=plotcount+l,- 
end 

idx=find(runplot(:,1)<=5) ; 
if(idx) 

rangemax=runplot(max(idx), 5) ; 
end 

if (isempty(idx)) 
maxhit(heading+1,:)=[0,0,0,0,0]; 

else 

maxhit (heading+1, :) =runplot (max(idx) , .-) ■ 
end 

runplot=[]; 
plotcount=l; 

% save data to disk 
save current maxhit 
toe 

% note for some guidance laws, the down step here 
% must be 2 or more I 

minrng=10000*(floor(rangemax/10000)-l); 
if (minrng<=5000) 

minrng=10000; 
end 

end 
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% plot it for me baby 
rhol=maxhit(1:degstep:181, 5) ; 
rhol=[rhol;flipud(rhol)] ; 
theta=180:degstep:3 60; 
theta=pi/180*theta; 
theta=[theta,-l*fliplr(theta)] 
figure(5) 
polar(theta,rhol) 

%//end of file KBOUTER.m 
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%//*************************************************^^^^^^^ 
********* 

%// File:  KB0UTER2.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  7 Aug 00 
%/^Description:  Automatically computes a kinematic boundary using 

%// simulator. 
%// -Streamlined search loops 
%// -Status indicator 
%// -Saves most recent data to disk 
%// -Derived from KBOUTER 
%// Inputs: none 
%// Outputs:  one figure of kinematic boundary 
%// Process:  streamlined brute force search algorithm 
%// Assumptions:  none 
%// Warnings:  none 
%//*************************************************^^^^^^ 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Initialize variables 
%//     -Functions 
%//*******************************************^^^^^^^„^^^^ 
********* 

% ******  define globals  ****** 

% ******  define constants  ****** 
thesisinit 
% set target turn rate, default=0 
target_turn=0; 
% set min engagement range (10000 m default) 
minrng=10000; 
% set heading increment 
degstep=5; 

% ******  define input vector  ****** 

% ******  initialize variables  ****** 

maxhit=[];   minhit=[]■ 
load current 
% set target altitude 
tgtalt=50;%init(3); % default co-altitude 

% set target speed 
tgtmach=.83; % user sets Mach # 

tgtspd=tgtmach*machvalt(tgtalt);% machine computes speed 
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% ************  functions  ************ 
% start in tail chase step to head on by <degstep> 
% degree increments 
for heading=0:degstep:180 

tic 
plotcount=l;  runplot=[]; rangemax=0; 
heading % show heading counter 
tgthdg=heading*pi/180; 

% compute target speed components 
xspd=tgtspd*cos(tgthdg) ; 
yspd=tgtspd*sin(tgthdg) ; 

% first range loop step by 10 km 
for tgtrng=minrng:10000:150000 

disp(['*** ',num2str(tgtrng),' ***-]) 
% set initial target state 
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0]; 

% call simulation 
sim('Thesisl') 

% analyze data from current run 
range=sqrt((MissileOut(:,1)-Tgt0ut(:,1)).A2+... 

(MissileOut(:,2)-TgtOut(:,3)). *2+... 
(MissileOut(:,3)-TgtOut(:,5)).A2); 

% save run data 
runplot(plotcount,:)=[min(range),tgtrng]; 
% score run 
if (min(range)>5) 

break 
end 
plotcount=plotcount+l; 

end 

idx=find(runplot(:,1)<=5); 
if(idx) 

rangemax=runplot(max(idx),2); 
end 
runplot=[] ; 
plotcount=l; 

% 1 krr. step size for max range.  Streamlining code 
tgtrng=rangemax+1000; 
disp(['*** ' ,r.um2str(tgtrng) , ' maxlk***']) 
% set initial target state 
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0]; 

% call simulation 
sim('Thesisl') 
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% analyze data from current run 
range=sqrt((MissileOut(:,1)-Tgt0ut(:,1)).A2+. 

(MissileOut(:,2)-TgtOut(:,3))."2+... 
(MissileOut(:,3)-TgtOut(:,5) ) .~2 ) ; 

if (min(range)<=5) 
rangemax=tgtrng; 
tgtrng=tgtrng+4000; 
disp(['*** ',num2str(tgtrng),' maxlk***']) 
% set initial target state 
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0]; 

% call simulation 
sim('Thesisl') 

% analyze data from current run 
range=sqrt((MissileOut(:,1)-TgtOut(:,1)).A2+. 

(MissileOut(:,2)-TgtOut(:,3)) .A2+. . . 
(MissileOut(:,3)-TgtOut(:,5)). ~2) ; 

if (min(range)<=5) 
rangemax=tgtrng; 

end 
end 

% main search loop 1km step size 
for tgtrng=rangemax+1000:1000:(rangemax+4000) 

disp(['*** ',num2str(tgtrng) , ' maxlk***']) 
% set initial target state 
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0]; 

% call simulation 
sim('Thesisl') 

% analyze data from current run 
range=sqrt((MissileOut(:,1)-TgtOut(:,1)).A2+. 

(MissileOut(:,2)-TgtOut(:,3)).A2+... 
(MissileOut(:,3)-TgtOut(:,5)) .~2) ; 

% save run data 
runplot(plotcount,:)=[min(range),tgtrng]; 
% score run 
if (min(range)>5) 

break 
end 

plotcount=plotcount+l ; 
end 

idx=find(runplot(:,1)<=5); 
if(idx) 

rangemax=runplot(max(idx),2); 
end 
runplot=[]; 
plotcount=l; 
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% 100 m step size for max range.  Streamlined code. 
tgtrng=rangemax+100; 
disp(['*** ',num2str(tgtrng),' maxlOO***']) 
% set initial target state 
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0]; 

% call simulation 
sim('Thesisl') 

% analyze data from current run 
range=sqrt((MissileOut(:,1)-TgtOut(:,1)). A2+... 

(MissileOut(:,2)-TgtOut(:,3)).A2+. . . 
(MissileOut(:, 3)-TgtOut(:,5)).Ä2) ; 

if (min(range)<=5) 
rangemax=tgtrng; 
tgtrng=tgtrng+400; 
disp(['*** ',num2str(tgtrng),' maxlOO***']) 
% set initial target state 
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0]; 

% call simulation 
sim('Thesisl') 

% analyze data from current run 
range=sqrt((MissileOut(:,1)-TgtOut(:,1)). ~2+. 

(MissileOut(:,2)-TgtOut(:,3)).^2+... 
(MissileOut(:,3)-TgtOut(:,5))."2); 

if (min(range)<=5) 
rangemax=tgtrng; 

end 
end 

% main search loop 100 m 
for tgtrng=rangemax+100:100:(rangemax+400) 

disp(['*** ',num2str(tgtrng),' maxlOO***']) 
% set initial target state 
tgtinit= [tgtrng,-xspd; 0;yspd; tgtalt; 0] ; 

% call simulation 
sim('Thesisl') 

% analyze data from current run 
range=sgrt((MissileOut(:,1)-TgtOut(:,1)). A2+. 

(MissileOut(:,2)-TgtOut(:,3)).Ä2+... 
(MissileOut(:,3)-TgtOut(:, 5)).A2) ; 
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% save run data 
runplot(plotcount,:)=[min(range),tgtrng]; 
% score run 
if (min(range)>5) 

break 
end 

plotcount=plotcount + l ; 
end 

idx=find(runplot(:,1)<=5); 
if(idx) 

rangemax=runplot(max(idx),2); 
end 
runplot=[]; 
plotcount=l; 

% 10 m step size for max range.  Streamlined code 
tgtrng=rangemax+10; 
disp(['*** ',num2str(tgtrng),' maxlO***']) 
% set initial target state 

tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0]; 

% call simulation 
sim('Thesisl') 

% analyze data from current run 
range=sqrt((MissileOut(:,l)-TgtOut(:/l)).-2+ 

(MissileOut( : , 2 )-TgtOut( : ,3 ) ) ."2+. . 
(MissileOut(:,3)-TgtOut(:, 5)).-2) ; 

if (min(range)<=5) 
rangemax=tgtrng; 
tgtrng=tgtrng+40; 
disp(['*** ',num2str(tgtrng),' maxlO***']) 
% set initial target state 

tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0]; 

% call simulation 
sim('Thesisl') 

% analyze data from current run 
range=sqrt((MissileOut(:,1)-TgtOut(:,1)) -2+ 

(MissileOut(:,2)-TgtOut(:,3)).~2+. 
(MissileOut(:,3)-TgtOut(:,5)).A2); 

if (min(range)<=5) 
rangemax=tgtrng; 

end 
end 
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% main search loop 10 m.  Note, we are now computing the 
% full output vector for each run. 
for tgtrng=rangemax:10:(rangemax+40) 

disp(['*** ',num2str(tgtrng),' maxlO***']) 
% set initial target state 
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0]; 

% call simulation 
sim('Thesisl') 

% analyze data from current run 
range=sqrt((MissileOut(:,1)-Tgt0ut(:,1)).A2+... 

(MissileOut(:,2)-TgtOut(: , 3) ) . A2+... 
(MissileOut(:,3)-TgtOut(:,5)).A2); 
t=MissileOut(:,14); 

index=find(range==min(range)); 
ip=t (index(l) ) ,• 

% compute cost function J=20*e(tf)/v2+integ(uA2)/200 
% and missile divert 
u2=(omegaout(:,1).A2+omegaout(:,2).A2); 
integral=0; 
for ii=2:index 

integral=integral+(t(ii)-t(ii-l) )*u2(ii-l) ,- 
end 
J=20*min(range)A2+integral/1000; 

% save run data [miss dist,cost,divert,time,max range] 
runplot(plotcount,:)=[min(range),J,integral,ip,tgtrng]; 

if (min(range)>5) 
break 

end 

plotcount=plotcount+l; 
end 

idx=find(runplot(:,1)<=5); 
if(idx) 

rangemax=runplot(max(idx) , 5) ; 
end 

if (isempty(idx)) 
maxhit(heading+1,:)=[0,0,0,0,0]; 

else 
maxhit(heading+1,:)=runplot(max(idx),:); 

end 

runplot=[] ; 
plotcount=l; 
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% save data to disk 
save current maxhit 
toe 
% note for some guidance laws, the down step here 
% must be 2 or more I 
minrng=10000*(floor(rangemax/10000)-1) ; 
if (minrng<=5000) 

minrng=5000; 
end 

end 

% plot it for me baby 
rhol=maxhit(l:degstep:181,5); 
rhol=[rhol;flipud(rhol)]; 
theta=180:degstep:360; 
theta=pi/180*theta; 
theta=[theta,-l*fliplr(theta)] 
figure(5) 
polar(theta,rhol) 

%//end of file KBOUTER.m 
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function y=machvalt(alt) 
%MACHVALT  Computes linear approximation for a given 
% altitude in meters/sec based on standard ICAO 
% atmosphere 
%        MACHVALT(ALT) 
%       see also CDVMACH 
%       Copyright 1999-2000 by Triple B Enterprises 
%//******************************************************************** 
********* 

%// File:  machvalt.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  8 Jun 00 
%// Description:  computes linear approximation to Mach 1 for 
%// standard ICAO atmosphere 
%// Inputs:  altitude 
%// Outputs:  Mach 1 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 
%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************************** 
********* 
% ******  define globals  ****** 

% ****** define constants  ****** 
Machl=[-.0041 340.3] ; 
Mach2=295.1; 
Mach3=[.00067 281.7]; 

% ******  define input vector  ****** 

% ******  initialize variables  ****** 
alt=abs(alt); % account for NED coords 

% ************  functions  ************ 
if (alt<11000) 

y=polyval(Machl,alt); 
else 

if (alt>20000) 
y=polyval(Mach3,alt); 

else 
y=Mach2; 

end 
end 

%//end of file machvalt.m 
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%/Z******************************************^,^^ 
********* 

******************** 

>// File:  missiledata.m 
>// Name:  LCDR Robert D. Broadston 
■>//  MSEE/EE Thesis 
;// Operating Environment:  Windows NT 4.0 Service Pack 5 
■<//  Compiler:  MatLab v5.3 
;// Date:  17 May 00 
// Description:  missile data for AMRAAM 
// Inputs:  none 
// Outputs:  various 
// Process: 
// Assumptions: 
// Warnings: 

********************* 

% 

i?;//*******************************************,^^ 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//*************************************************^^^^^i^ 
********* 

% Establishes missile dimensions for use in computing 
% Aerodynamic forces and moments 
% Except where noted, all dimensions in MKS system 

% Missile Name:  PSEUDO AMRAAM 

% ******  define globals  ****** 
global m d L XCG XCPN XCPW XCPB XHL 
global ST SW SPLAN SREF 

% *****! 

m=156.8 
d=.1778 
L=3.657 
XCG=i.828 
LN=.6769; 
%  

XHL=3.454 
CRT=.4061 
CTT=.0676 
TXT=.0676 
HT=.2286; 

XW=1.134; 
CRW=.3554; 
CTW=0; 
WXT=0; 
HW=.1778; 

define constants  ****** 
  missile body dimensions   

% mass, may be time varying 
% diameter 
% length 
% initial e.g., may be time varying 

% length of nose cone 
  tailplane dimensions   

% hinge line arm 
% tail root chord 
% tail tip chord 
% tail extension 
% tail height 

  wing dimensions   

% wing to radome tangency point 
% wing root chord 

% wing tip chord 
% wing extension 
% wing height 
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% ****** define input vector ****** 

% ******  initialize variables  ****** 

% ************  functions  ************ 
%  centers of pressure   
XCPN=.67*LN; % nose CP 
XCPW=LN+XW+.7*CRW-.2*CTW; % wing CP 
AN=.67*LN*d; % plan area of nose 
AB=(L-LN)*d; % plan area of body 
XCPB=(.67*AN*LN+AB*(LN+.5*(L-LN)))/...  % body CP 

(AN+AB); 
% area computation  
SW=.5*HW*(CTW+CRW)+CRW*WXT;    % wing area 
ST=.5*HT*(CTT+CRT)+CRT*TXT;    % tail area 
SPLAN=(L-LN)*d+.67*L*d;       % body and nose plan area 
SREF=pi*d~2/4; % missile cross section 

%  compute the inertial matrix   
r=d/2; 
Jx=m*rA2/2; 
Jy=m* (LÄ2/12+rÄ2/4) +m* (L/2-XCG) "2; 
Jz=Jy; 

%//end of file missiledata.m 
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%//*****************************************************^,t,t4^iti^^^ 
********* 

%// File:  missiledata2.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  12 Apr 00 

%// Description:  missile data for Jerger missile from Zarchan 
%// Inputs:  none 
%// Outputs:  various 
%// Process: 
%// Assumptions: 
%// Warnings: 

********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******* ********************************************** ***vt**,lri,^^^.t 
********* 

% Establishes missile dimensions for use in computing 
% Aerodynamic forces and moments 
% Except where noted, all dimensions in MKS system 

% Missile Name:  JERGER 

% ******  define globals  ****** 
global m d L XCG XCPN XCPW XCPB XHL 
global ST SW SPLAN SREF 

% ******  define constants  ****** 
%  missile body dimensions   
m=454.5444; % mass, may be time varying 
d=.3048; % diameter 
L=6.096; % length 
XCG=3.048; % initial e.g., may be time varying 
LN=.9144; % length of nose cone 
%  tailplane dimensions   
XHL=5.9436; % hinge line arm 
CRT=.6096; % tail root chord 
CTT=.0; % tail tip chord 
TXT=.0; % tail extension 
HT=.6096; % tail height 
% wing dimensions  
XW=1.2192; % wing to radome tangency point 
CRW=1.8288; % wing root chord 
CTW=0<' % wing tip chord 
WXT=0; % wing extension 
HW=.6096; % Wing height 
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******  define input vector  ****** 

******  initialize variables  ****** 

% ************ functions  ************ 
%  centers of pressure   
XCPN=.67*LN; % nose CP 
XCPW=LN+XW+.7*CRW-.2*CTW; % wing CP 
AN=.67*LN*d; % plan area of nose 
AB=(L-LN)*d; % plan area of body 
XCPB=(.67*AN*LN+AB*(LN+.5*(L-LN)))/...  % body CP 

(AN+AB); 
%  area computation   
SW=.5*HW*(CTW+CRW)+CRW*WXT;    % wing area 
ST=.5*HT*(CTT+CRT)+CRT*TXT;    % tail area 
SPLAN=(L-LN)*d+.67*L*d;       % body and nose plan area 
SREF=pi*dA2/4; % missile cross section 

%  compute the inertial matrix 
r=d/2; 
Jx=m*r~2/2; 
Jy=m*{LA2/12+rA2/4) ; 
Jz=Jy; 

%//end of file missiledata2 .m 
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%//*************************************************^^^^^^^ 
********* 

%// File:  missiledata3.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  25 Aug 00 
%// Description:  computes missile data for SM-2 MR 
%// Inputs:  none 
%// Outputs:  various 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//*******************************************it***i,iti,ilicic^^ir^ic^irir^it 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//****************************************************#^^^^^ 
********* 

% Establishes missile dimensions for use in computing 
% Aerodynamic forces and moments 
% Except where noted, all dimensions in MKS system 

% Missile Name:  STANDARD RIM-67 MR 

% ******  define globals  ****** 
global m d L XCG XCPN XCPW XCPB XHL 
global ST SW SPLAN SREF 

% ******  define constants  ****** 
% missile body dimensions   
m=621; % mass, may be time varying 
d=.343; % diameter 
L=4.554; % length 
XCG=2.205; % initial e.g., may be time varying 
LN-.728; % length of nose cone 
% tailplane dimensions   
XHL=4.351; % hinge line arm 
CRT=.356; % tail root chord 
CTT=.127; % tau tip chord 
TXT=-0'" % tail extension 
HT=-.383; % tail height 
* wing dimensions   
XW=1-12; % wing to radome tangency point 
CRW=2.314; % Wing root chord 
CTW=1.93; % Wing tip chord 
WXT=0; % wing extension 
HW=-142'- % wing height 
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% ****** define input vector  ****** 

% ****** initialize variables ****** 

% ************  functions  ************ 
%  centers of pressure   
XCPN=.67*LN; % nose CP 
XCPW=LN+XW+.7*CRW-.2*CTW; % wing CP 
AN=.67*LN*d; % plan area of nose 
AB=(L-LN)*d; % plan area of body 
XCPB=(.67*AN*LN+AB*(LN+.5*(L-LN)))/...  % body CP 

(AN+AB) ; 
% area computation  
SW=.5*HW*(CTW+CRW)+CRW*WXT;    % wing area 
ST=.5*HT*(CTT+CRT)+CRT*TXT;    % tail area 
SPLAN=(L-LN)*d+.67*L*d;       % body and nose plan area 
SREF=pi*d/v2/4; % missile cross section 

% compute the inertial matrix 
r=d/2; 
Jx=m*r~2/2; 
Jy=m* (1^2/12+^2/4) ; 
Jz=Jy; 

%//end of file missiledata3.m 
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%//************************ 
********* 

*******************************************, 

%// 
%// 
%// 
%// 
%// 
%// 
%// 
%// 
%// 
%// 
%// 
%// 

File:  missiledata4.m 
Name:  LCDR Robert D. Broadston 
MSEE/EE Thesis 
Operating Environment:  Windows NT 4.0 Service Pack 5 
Compiler:  MatLab v5.3 
Date:  19 Sep 00 
Description:  computes missile data for SM-2 ER 
Inputs:  none 
Outputs:  none 
Process: 
Assumptions: 
Warnings: 

Jfc//***********************************************^,^ 

********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%/Z********************************************,^,^,.,^^^ 
********* 

% Establishes missile dimensions for use in computing 
% Aerodynamic forces and moments 
% Except where noted, all dimensions in MKS system 

% Missile Name:  STANDARD WITH BOOSTER 

% ******  define globals  ****** 
global m d L XCG XCPN XCPW XCPB XHL 
global ST SW SPLAN SREF 

***************** 

************* 

****** define constants  ****** 
%  
m=1680; 
d=.343; 
L=7.976; 
XCG=3.987; 
LN=.728; 
%  
XHL=7.6; 
CRT=.75; 
CTT=.3; 
TXT=.0; 
HT=.65; 
%  
XW=1.12; 
CRW=2.7; 
CTW=2.5; 
WXT=0; 
HW=.151; 

missile body dimensions   
% mass, may be time varying 
% diameter 

% length 
% initial e.g., may be time varying 

% length of nose cone 
tailplane dimensions   

% hinge line arm 
% tail root chord 

% tail tip chord 
% tail extension 
% tail height 

— wing dimensions   
% wing to radome tangency point 

% wing root chord 
% wing tip chord 

% wing extension 
% wing height 
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% ******  define input vector  ****** 

% ******  initialize variables  ****** 

% ************  functions  ************ 
%  centers of pressure   
XCPN=.67*LN; % nose CP 
XCPW=LN+XW+.7*CRW-.2*CTW; % wing CP 
AN=.67*LN*d; % plan area of nose 
AB=(L-LN)*d; % plan area of body 
XCPB=(.67*AN*LN+AB*(LN+.5*(L-LN)))/...  % body CP 

(AN+AB); 
% area computation  
SW=.5*HW*(CTW+CRW)+CRW*WXT;    % wing area 
ST=.5*HT*(CTT+CRT)+CRT*TXT;    % tail area 
SPLAN=(L-LN)*d+.67*L*d;       % body and nose plan area 
SREF=pi*d"2/4; % missile cross section 

%  compute the inertial matrix 
r=d/2; 
Jx=m*r~2/2; 
Jy=m*(L"2/12+rA2/4) ; 
Jz=Jy; 

%//end of file missiledata4.m 
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function y=modelswitch(u) 
%MODELSWITCH Switches missile models to simulate 
% staging for TBM interceptor demo 
% MODELSWITCH(T) 
% see also 
%       Copyright 1999-2000 by Triple B Enterprises 

********* 

%// File:  modelswitch.m 
%// Name:  LCDR Robert D. Broads ton 
%// MSEE/EE Thesis 

%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  19 Sep 2000 

%// Description:  Switches between interceptor with booster 
%// and without booster for TBM demo 
%// Inputs:  simulation time 
%// Outputs:  none 
%// Process:  none 
%// Assumptions: 
%// Warnings: 
%//******************************************^^^^^i^^^^ 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************„*^^^^^^^^^#^ 
********* 

% ****** define globals  ****** 

% ****** define constants  ****** 

% ****** define input vector  ****** 

% ****** initialize variables  ****** 

% ************  functions  ************ 
if (u>10.5) 

missiledata3; 
else 

missiledata4; 
end 

%// end of file modelswitch.m 
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%//********************************************************■************ 

********* 

%// File:  noisestudy.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  19 Sep 00 
%// Description:  performs noise study using modified AAM model 
%// thesisnoise.mdl 
%// Inputs: 
%// Outputs: 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 
%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************************** 
********* 
% ****** define globals ****** 

% ****** define constants ****** 

% ******  define input vector  ****** 

% ******  initialize variables  ****** 
% initialize simulation 
thesisinit 
% initialize variables 
holdränge=[]; 
holdpos=[]; 
% initialize target 
tgtinit=tgtset(42190,6000,45); 
tic 

159 



% ************  functions  ************ 
% 100 realizations 
for numloops=l:100 

disp(numloops) 
sim('thesisnoise') 
% analyze data from current run 
range=sqrt((MissileOut(:,1)-Tgt0ut(:,1)). ~2 + 

(MissileOut(:,2)-TgtOut(:, 3)) .~2+. '. . 
(MissileOut(:,3)-TgtOut(:,5)).~2); 

disp(min(range)) 
holdrange(numloops)=min(range); 
idx=find(range==min(range)); 
holdpos(numloops,:)=MissileOut(idx,1:3)-TgtOut(idx,1•2•5)• 

end '  ' 

missdistance=mean(holdrange) 
sigmadistance=std(holdrange) 

figure(5) 
plot3(holdpos(:,1),holdpos(:,2),holdpos(:,3), '*') 

%//end of file noisestudy. m 
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func t i on y=propnav3 D(u) 
%PR0PNAV3D Computes exact proportional navigation 
%        in three dimensions for full aero model 
%       see also EXACTPR0PNAV2 
%       Copyright 1999-2000 by Triple B Enterprises 
%//******************************************************************** 
********* 
%// File:  propnav3d.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  12 Sep 00 
%// Description:  3D prop nav law for full aero model 
%// Inputs:  seeker output 
%// Outputs:  command accelerations 
%// Process: 
%// Assumptions: 
%// Warnings: 

********* 
%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 

********* 
% ******  define globals  ****** 
global satflag 

% ******  define constants  ****** 
Nprime=5; 
Nprimez=5; 

% ******  define input vector  ****** 
thetadot=u(l); 
phidot=u(2); 
los=u(3); 
philos=u(4); 
R=u (6) ; 
Vc=-u(5); 
heading=u(7); 
Vm=u(8); 
Vmdot=u(9); 
phi=u(10); 
theta=u(ll); 
psi=u(12); 
time=u(13) ; 
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% ******  initialize variables  ****** 

% ************  functions  ************ 
ny=Nprime*Vc*(thetadot)/cos(psi-los); 
nz=Nprimez*Vc*(phidot)-9.8045; 

% control force limiter 
if satflag 

if (abs(ny)>30*9.8045) 
ny=sign(ny)*30*9.8045; 

end 
if (abs(nz)>30*9.8045) 

nz=sign(nz)*30*9.8045; 
end 

end 

y=[ny;nz]; 

%//end of file propnav3d.m 
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function y=propnavpt(u) 
%PROPNAVPT Computes exact proportional navigation 
%        with dragforce inputs for point mass simulation 
%       see also EXACTPR0PNAV2 
%       Copyright 1999-2000 by Triple B Enterprises 

%//******************************************************************** 
********* 
%// File:  PROPNAVPT.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  24 May 2000 
%// Description:  Proportional navigation guidance law for 6DOF 
%// flight model.  Computes applied forces for use 
%// by induced drag model.  Required to eliminate 
%// algebraic loops in the simulation 
%// Inputs:  [seeker data,IMU data,timer] 
%// Outputs:  [command accelerations,applied forces] 
%// Process:  proportional navigation law 
%// Assumptions:  none 
%// Warnings:  none 

********* 
%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************************** 
********* 
% ******  define globals  ****** 
global m satflag 

% ******  define constants  ****** 
Nprime=5; 
_Nprimez=5; 

% ******  define input vector  ****** 
thetadot=u(l); 
phidot=u(2) ,- 
los=u(3); 
philos=u(4) ,- 
R=u(6) ; 
Vc=-u(5); 
heading=u(7); 
Vm=u(8); 
Vmdot=u(9); 
phi=u(10); 
theta=u(ll) ,- 
psi=u(12);        v 

time=u(13); 
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% ******  initialize variables  ****** 

% ************  functions  ************ 
% classic PN guidance law 
ny=Nprime*Vc*(thetadot)/cos(psi-los) ; 
% vertical acceleration must account for gravity 
nz=Nprimez*Vc*(phidot)/cos(theta-philos)-9.8045; 

% control force limiter 
if satflag 

if (abs(ny)>30*9.8045) 
ny=sign(ny)*30*9.8045; 

end 
if (abs(nz)>30*9.8045) 

nz=sign(nz)*30*9.8045; 
end 

end 

% compute ABC forces applied 
Fx=0; 
Fy=ny*m; 
Fz=nz*m; 

% output vector 
y=[ny;nz;Fx;Fy;Fz]; 

%//end of file PROPNAVPT.m 
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func t i on y=propnavtbm(u) 
%PROPNAVTBM Computes exact proportional navigation 
%        with dragforce inputs for point mass simulation 
%       see also EXACTPR0PNAV2 
%       Copyright 1999-2000 by Triple B Enterprises 

%//******************************************************************** 
********* 
%// File:  PROPNAVTBM.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  24 May 2000 
%// Description:  Proportional navigation guidance law for 6DOF 
%// flight model.  Computes applied forces for use 
%// by induced drag model.  Required to eliminate 
%// algebraic loops in the simulation 
%// Inputs:  [seeker data,IMU data,timer] 
%// Outputs:  [command accelerations,applied forces] 
%// Process:  proportional navigation law 
%// Assumptions:  none 
%// Warnings:  none 
%//******************************************************************** 
********* 
%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************************** 
********* 
% ******  define globals  ****** 
global m satflag 

% ******  define constants  ****** 
Nprime=5; 
Nprimez=5; 

% ******  define input vector  ****** 
thetadot=u(l) ,- 
phidot=u(2); 
los=u(3); 
philos=u(4); 
R=u(6); 
Vc=-u(5); 
heading=u(7); 
Vm=u(8); 
Vmdot=u(9); 
phi=u(10); 
theta=u(ll) ,- 
psi=u(12); 
time=u{13); 
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% ******  initialize variables  ****** 

% ************  functions  ************ 
% classic PN guidance law 
ny=Nprime*Vc*(thetadot); 
% vertical acceleration 
nz=Nprimez*Vc*(phidot); 

% control force limiter 
if satflag 

if (abs(ny)>30*9.8045) 
ny=sign(ny)*30*9.8045; 

end 
if (abs(nz)>30*9.8045) 

nz=sign(nz)*30*9.8045; 
end 

end 

% compute ABC forces applied 
Fx=0; 
Fy=ny*m; 
Fz=nz*m; 

% output vector 
y=[ny;nz;Fx;Fy;Fz]; 

%//end of file propnavtbm.m 
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function y=q2euler(u) 
%Q2EULER Computes Euler angles from quaternions 
%       see also ALPHABETA 
%       Copyright 1999-2000 by Triple B Enterprises 
%//******************************************************************** 
********* 

%// File:  q2euler.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  6 Apr 00 
%// Description:  computes euler angles from quaternions 
%// Inputs:  quaternion 
%// Outputs:  euler angles 
%// Process:  Kuiper 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 
%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 

********* 
% ******  define globals  ****** 
% ******  define constants  ****** 
% ****** define input vector ****** 
q0=u(l) 
ql=u(2) 
q2=u(3) 
q3=u(4) 

% ******  initialize variables  ****** 
% ************  functions  ************ 
% convert quaternions to Euler angles 
mll=2*q0A2+2*ql^2-l; 
ml2=2*ql*q2+2*q0*q3 
ml3=2*ql*q3-2*q0*q2 
m23=2*q2*q3+2*q0*ql 
m33=2*q0A2+2*q3^2-l 

psi=atan2(ml2,mil); 
theta=asin(-ml3); 
% correct for singularity in pitch 
if (isreal(theta)) 

theta=theta; 
else 

theta=sign(-ml3)*pi/2; 
end 
phi=atan2(m23,m33); 
y= [phi,theta,psi]; 
%//end of file q2euler.m 
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function y=quat2b(y) 
%QUAT2B Computes rotation matrix from quaternions 
%       QUAT2B(Y) 
%       see also QUATERNION, B2QUAT 
%       Copyright 1999-2000 by Triple B Enterprises 
%//*****************************************^^^^^^^^^ 
********* 

%// File:  quat2b.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  8 Dec 99 
%// Description:  computes rotation matrix from quaternions 
%// Inputs:  quaternion 
%// Outputs:  rotation matrix B 
%// Process:  Kuiper 
%// Assumptions: 
%// Warnings: 
%//*****************************************^^^^^^^^^ 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//*****************************************^^^^^^^^^ 
********* 
% ******  define globals  ****** 

% ******  define constants  ****** 

% ******  define input vector  ****** 
q0=y(l) 
ql=y(2) 
q2=y(3) 
q3=y(4) 

% ******  initialize variables  ****** 

% ************  functions  ************ 

y=[q0-2+ql-2-q2-2-q3-2, 2*(ql*q2+q0*q3), 2*(ql*q3-q0*q2)• 
2*(ql*q2-q0*q3), q0-2-ql-2+q2~2-q3-2, 2*(q2*q3+q0*ql)• 
2*(ql*q3+q0*q2),     2*(q2*q3-q0*ql),   q0Ä2-ql-2-q2Ä2+q3-2]; 

%//end of file quat2b.m 
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function y=quaternion(phi,theta,psi) 
. %QUATERNION   Computes quaternions from Euler angles 

% QUATERNION(PHI,THETA,PSI) 
%       see also B2QÜAT 
%       Copyright 1999-2000 by Triple B Enterprises 
%//******************************************************************** 
********* 

%// File:  quaternion.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  8 Aug 00 
%// Description:  computes quaternion from euler angles 
%// Inputs:  euler angles 
%// Outputs:  quaternion 
%// Process:  Kuiper 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************************** 
********* 
% ******  define globals  ****** 

% ****** define constants  ****** 

% ******  define input vector  ****** 

% ******  initialize variables  ****** 
q0=cos(phi/2)*cos(theta/2)*cos(psi/2)+... 

sin(phi/2)*sin(theta/2)*sin(psi/2); 

ql=sin(phi/2)*cos(theta/2)*cos (psi/2) - . . . 
cos(phi/2)*sin(theta/2)*sin(psi/2); 

q2=cos(phi/2)*sin(theta/2)*cos(psi/2)+... 
sin(phi/2)*cos(theta/2)*sin(psi/2); 

q3=cos(phi/2)*cos(theta/2)*sin(psi/2)-... 
sin(phi/2)*sin(theta/2)*cos(psi/2); 

% ************  functions  ************ 
y=[q0;ql;q2;q3]; 

%//end of file quaternion.m 
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function y=rhovalt(alt) 
%RHOVALT Computes atmospheric density vs altitude 
%       for ICAO standard atmosphere 
%        RHOVALT(ALT) 
%        see also MACHVALT,CDVMACH 
%       Copyright 1999-2000 by Triple B Enterprises 
%//********************************************^^^^^i^^^ 
********* 

%// File:  rhovalt.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  8 Jun 00 
%// Description-  computes atmospheric density from ICAO standard 
%// atmosphere,  exponential model 
%// Inputs:   altitude 
%// Outputs:  rho 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//**************************************************^*^^^^^ 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//      -Functions 
%//**************************^^^^^^^^^^^^^^ 
********* 

% ******  define globals  ****** 

% ******  define constants  ****** 

% ******  define input vector  ****** 

% ******  initialize variables  ****** 
alt=abs(alt); % account for NED coord 

% ************  functions  ************ 
if alt>9144 

y=1.75228763*exp(-alt/6705.6) ; 
else 

y=1.22557*exp(-alt/9144); 
end 

%//end of file rhovalt.m 
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function y=sixdofdyn(u) 
%SIXDOFDYN Computes motion dymanics for six degrees 
%        of freedom 
%       see also FLATEARTHDYN 
%       Copyright 1999-2000 by Triple B Enterprises 
%//******************************************************************** 
********* 

%// File:  sixdofdyn.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  7 Apr 00 
%// Description:  computes 6DOF dynamics in ECI coordinates 
%// Inputs:  state vector 
%// Outputs:  derivative of state vector 
%// Process:  Stevens & Lewis 
%// Assumptions: 
%// Warnings: 
%/Z******************************************************************** 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//**************************************A**iAAJti + A^.AvtvtvtAiAjtAAVt^Ai^Avt1tit 

********* 

% ****** define globals  ****** 

% ******  define constants  ****** 
omega_x=7.292115e-5;     % earth rotation rate 
GM_E=3.9860014el4;      % G*mass of earth 
r_E=6.378164e6; % radius of earth 
f=1/298.257; % ellipsoidal squash factor 

% ******  define input vector  ****** 
p=[u(l);u(2);u(3)]; 
v_b=[u(4);u(5);u(6)]; 
omega_b=[u(7);u(8);u(9)]; 
P=u(7);  Q=u(8);  R=u(9); 

q=[u(10);u(ll);u(12);u(13)]; 
magq=norm(q,2) ; 
q=q/magq; 

x=[p;v_b;omega_b;q]; 

% inertial matrix 
J=[u(14),0,0; 

0,u(15),0; 
0,0^(16)]; 

% forces 
F_B=[u(17);u(18);u(19)]; 
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% torques 
T_B=[u(20);ru(21);u(22)]; 

% the ever lovin' force of gravity 
g_P=[u(23);u(24);u(25)]; 

% and lest we forget, mass 
m=u(26); 

% ******  initialize variables  ****** 

omega_E=[omega_x;0;0];      % earth rotational velocity vector 
OMEGA_E= [ 0, 0, 0; 0, 0, -omega_x; 0, omega_x, 0 ] ; 

% compute rotation matrices 
B=guat2b(q)• 

OMEGA_B=[0 -R  Q; 
R  0 -P; 

-Q  P  0]; 

OMEGA_q=[0 P Q R; 
-P 0 -R Q; 
-Q R 0 -P; 
-R -Q  P  0]; 

% ************  functions  ************ 

y=[OMEGA_E,       B', zeros(3),      zeros(3 4)- 
-B*OMEGA_E~2, -(OMEGA_B+B*OMEGA_E*B'),  zeros(3),      zeros(3 4)- 
Zer°S!^;,    zeros(3), -l*inv(j) *OMEGA_B*J, zeros(3,'4); 

y=y*x-° zeros(4,3), zeros(4/3),  -(1/2)*OMEGA_q]; 

y=y+[zeros(3,1)■ 
B*g_p+(l/m)*F_B; 
inv(J)*T_B; 
zeros(4,1) ] • 

%//end of file sixdofdyn.m 

172 



********* 
%// File:  Spielberg.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  20 Sep 00 
%// Description:  creates a movie of AAM simulation using 
%// thesism 
%// Inputs:  none 
%// Outputs:  none 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 
%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************************** 
********* 
% ******  define globals  ****** 

% ******  define constants  ****** 

% ******  define input vector  ****** 

% ******  initialize variables  ****** 
thesisinit 

% ************  functions  ************ 
figure(1) 
elf 
tgtinit=tgtset(40000,5000,135); 
target_turn=12; 

for timestep=l:44 
tmax=.25*(timestep+0) 
sim('thesism') 
l=length(MissileOut); 
% a little 3D action for the fans 
figure(1) 
elf 
view(-30,25) 
hold on 
axis([0 40000 0 8000 4500 6500]) 
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% plot commands 
plot3(MissileOut(:,1),MissileOut(:,2),-MissileOut(• 3) 

TgtOut(:,l)/TgtOut(:/3),-TgtOut(:/5))   

plot3(MissileOut(1,1),MissileOut(1,2),-MissileOut(1 3) '*' 
TgtOut(l,l),TgtOut(l,3),-TgtOut(l,5),'x')         

velx=[0 0]; vely=[7000 7000]; velz=[4500 1.5*MissileV(l)+4500]• 
plot3(velx,vely,velz,'r.-') 
ncyx=[0 0]; ncyy=[6500 6500]; ncyz=[4500 7*abs(omegaout(1,1))+4500]• 
plot3(ncyx,ncyy,ncyz,'g.-') 
nczx=[0 0]; nczy=[6000 6000]; nczz=[4500 7*abs(omegaout(1,2))+4500]• 
plot3(nczx,nczy,nczz,'b.-') 
i f (tmax==round(tmax)) 

plot3([MissileOut(1,1) TgtOut(1,1)],[MissileOut(1,2) 
TgtOut(l,3)]  

[-MissileOut(1,3) -TgtOut(1,5)],'k') 
end 

hold off 
grid on 

title(['Missile Engagement ',date],'FontSize' 18) 
text(35000,6000,6000,[num2str(tmax,'%2.2f') ' 

seconds'],'FontSize',18) 
text(0,7000,1.5*MissileV(l)+4500, [' ' 

num2str(MissileV(l),'%4.0f')],'FontSize',14) 
text(0,6500,7*abs(omegaout(l,l))+4500,[' ' 

num2str(omegaout(l,l)/9.8045,'%2.1f')],'FontSize',14) 
text(0,6000,7*abs(omegaout(1,2))+4500, [' 

num2str(omegaout(1,2)/9.8045,'%2.1f')],'FontSize',14) 

M(timestep)=getframe; 
end 
movie(M) 

%//end of file Spielberg.m 
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function y=tgo(u) 
%TGO   Computes time to go from Range and Range Rate 
%       see also 
%       Copyright 1999-2000 by Triple B Enterprises 
%//******************************************************************** 
********* 
%// File:  tgo.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  31 May 00 
%// Description:  computes tgo 
%// Inputs:  range, range rate 
%// Outputs:  tgo 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 
%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************************** 
********* 
% ****** define globals  ****** 

% ******  define constants  ****** 

% ******  define input vector  ****** 

% ******  initialize variables  ****** 

% ************  functions  ************ 
if (u{2)==0) 

y=100; 
else 

y=abs(u(l)/u(2)); 
end 

%//end of file tgo.m 
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function y=tgtset(Range,Alt,Hdg) 
%TGTSET Sets tgtinit variable for missile simulations 
% default tgt speed set at .83 Mach.  Enter altitude 
% as a positive number 
% TGTSET(RANGE,ALT,HDG) 
% see also QUATERNION, BQUAT 
% Copyright 1999-2 000 by Triple B Enterprises 

********* 

%// File:  tgtset.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  8 Jun 00 
%// Description:  initializes target state vector 
%// Inputs:  see above 
%// Outputs:  target state vector 
%// Process: 
%// Assumptions: 
%// Warnings: 

********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//***********************************************:t**#** + ^#jkjtl># + 4jkjtit]t#i 
********* 
% ******  define globals  ****** 

% ******  define constants  ****** 
tgtmach=.83; % user sets Mach # 

% ******  define input vector  ****** 

% ******  initialize variables  ****** 
tgtspd=tgtmach*machvalt(Alt);% machine computes speed 

% ************  functions  ************ 

y=[Range;cos(Hdg*pi/180)*tgtspd;0;sin(Hdg*pi/180)*tgtspd;-Alt;0]; 
% Note:  negative altitude is for NED coords 

%//end of file tgtset.m 
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function y=thebigstop(u) 
%THEBIGSTOP consolidated simulation stop function 
% 
%       see also 
%       Copyright 1999-2000 by Triple B Enterprises 
^/Z******************************************************************** 
********* 

%// File:  thebigstop.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  17 Sep 00 
%// Description:  stops simulation under variety of conditions 
%// Inputs:  see below 
%// Outputs:  stop flag 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************************** 
********* 
% ******  define globals  ****** 
global stopflag 

% ******  define constants  ****** 

% ******  define input vector  ****** 
R=u(l); 
Rdot=u(2); 
Vm=u(3); 
Vt=u(4); 
G=u(5) ; 
Ny=u(6); 
Nz=u(7); 
time=u(8); 

% ******  initialize variables  ****** 
stop=[]; 
y=o; 
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% ************  functions  ************ 
% check cases 
%if (G>700) 
%   y=lll; 
%   Stop='G Stop'; 
%end 

if ((time>2.0)&(Vm<Vt)) 
y=lll; 
StOp='V Stop'; 

end 

if ((time>2.0)&(Rdot>0)) 
y=lll; 
stop='Rdot stop'; 

end 

if (R<le-6) 
y=lll; 
Stop='R stop'; 

end 

if   ((Nz>30*9.8045)|(Ny>3 0*9.8045)) 
y=lll; 
stop='Cmd stopp- 

end 
if stopflag 

disp(stop) 
end 

%//end of file thebigstop. m 

178 



********* 
%// File:  thesis2plot.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date: 
%// Description:  Plots a variety of data for missile tracking 
%// simulations for use in thesis paper 
%// Inputs:  none 
%// Outputs:  purdy pitchers 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 
%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************************** 
********* 
% ****** define globals ****** 

% ******  define constants  ****** 

% ****** define input vector ****** 

% ******  initialize variables  ****** 
time=rem(now,1); 
hr=floor(time*24); 
mins=floor(rem(time*24,l)*60); 
timestr=[' ',num2str(hr),':',num2str(mins)]; 

% ************  functions  ************ 
% engagement geometry- 
figure (1) 
subplot(2,1,1) 
plot(TgtOut(:,l),Tgt0ut(:,3),':',MissileOut(:,1),MissileOut(:,2)) 
axis equal 
outtextl=['time: ',num2str(ip),' seconds']; 
outtext2=['range: ',num2str(min(range)),' meters']; 
text(300,4000,'Intercept at:') 
text(300,3500,outtextl) 
text(300,3000,outtext2) 

title('Engagement Geometry') 
xlabel('x (meters)') 
ylabel('y (meters)') 
legend('Target','Missile') 
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% missile to target distance 
range=sqrt((MissileOut(:,1)-TgtOut(:,1)). "2+. 

(MissileOut(:,2)-TgtOut(:,3)).-2+(MissileOut(:,3)-TgtOut(• 5)) -2) 
t=MissileOut(:,14); 
t_disc=0:FILTSAMP:max(t),• 
index=find(range==min(range)); 
ip=t(index(l)); 

subplot(2,1,2) 
plot(t,MissileV) 
title('Missile to Target Range') 
xlabel(['time (seconds) ',date,timestr]) 
ylabel('missile velocity (m/s)') 

% missile accelerations 
gforce=sqrt(AccelOut(:,1).A2+Accel0ut(: , 2)."2 

+Accel0ut(:,3).*2)./9.8045; 
figure(2) 
subplot(2,1,1) 
plot(t,gforce) 
title('Missile Accelerations') 

ylabel('Acceleration (g)') 
axis([0 round(max(t)) 0 50]) 
% compute cost function J=20*e(tf)A2+integ(u~2)/200 
u2=(omegaout(:,1).~2+omegaout(:,2).A2) ; 
integral=0; 
for ii=2:index 

integral=integral+(t(ii)-t(ii-l))*u2(ii-l); 
end 
J=20*min(range)A2+integral/1000; 
%endfor 
outtxt=['Missile divert:  ',num2str(integral)]; 
xlabel(outtxt) 
% guidance command 
subplot(2,1,2) 
plot(t,omegaout(:,1),t,omegaout(:, 2) , ' : ') 
title('Guidance law command output') 
outtxt=['Cost J: ',num2str(J),'   time (seconds)']; 
xlabel([outtxt,'      ',date,timestr]) 
ylabel('n_c (m/secA2)') 
axis([0 round(maxft)) -300 300]) 
legend('n_c y','n_c z') 

%//end of file thesis2plot.m 
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%//******************************************************************** 
********* 

%// File:  thesisinit.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  5 Sep 00 
%// Description:  This script file initializes thesis work 
%// missile simulation 
%// Inputs:  none 
%// Outputs:  none 
%// Process: 
%// Assumptions: 
%// Warnings: 
%//******************************************************************** 
********* 

%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************************** 
********* 

clear 
% ******  define globals  ****** 
global stopflag satflag XLAST FILTSAMP 

% ******  define constants  ****** 
% physical constants 
omega_x=7.292115e-5; % earth rotation rate 
GM_E=3.9860014el4; % G*mass of earth 
r_E=6.378164e6; % radius of earth 
f=1/298.257; % ellipsoidal squash factor 
omega_E=[omega_x;0;0]; % earth rotational velocity vector 

****** define input vector  ****** 

% ******  initialize variables  ****** 
% missile physical parameters 
MissileData; 
% drawmissile; 

% missile velocity vector 
vB=[270;0;0]; 

% initial missile position vector 
P=[0,0,-6000] ';       % note altitude is negative in NED coord 
t = 0; 

% compute Euler angles 
psi=0*pi/180; 
theta=0*pi/180; 
phi=0*pi/180; 
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% ************  functions  ************ 

q_0=quaternion(phi,theta,psi); 
CL_0=g_0/sqrt (q_0(1)-2+q_0 (2) -2+g_0 (3) -2+g_0 (4) "2) ; 

B=quat2b(q_0); 

P=0*pi/180 
Q=0*pi/180 
R=0*pi/180 

omega_B=[P;Q;R]■ 

% initial state vector 
ini t =[p;vB;omega_B;q_0]; 

% target initial state vector 
tgtinit=[25000; 

-250; 
0; 
250; 
-6000; 
0]; 

% set target turn rate, default=0 
% enable saturation of cmd accel 
% initialize filter 

tmax=200; 
target_turn=0; 
satflag=l; 
XLAST=[25000; 

-250; 
0; 
0; 
250; 
0; 
-6000; 
0; 
0]; 

FILTSAMP=.l;        % Set filter sample interval 

%//end of file thesisinit.m 
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function y=vcpropnavpt(u) 
%PROPNAVPT Computes exact proportional navigation 
% with dragforce inputs for point mass simulation 
%       see also EXACTPR0PNAV2 
%       Copyright 1999-2000 by Triple B Enterprises 

%//******************************************************************** 
********* 

%// File:  VCPROPNAVPT.m 
%// Name:  LCDR Robert D. Broadston 
%// MSEE/EE Thesis 
%// Operating Environment:  Windows NT 4.0 Service Pack 5 
%// Compiler:  MatLab v5.3 
%// Date:  24 May 2000 
%// Description:  Proportional navigation guidance law for 6DOF 
%// flight model.  Computes applied forces for use 
%// by induced drag model.  Required to eliminate 
%// algebraic loops in the simulation 
%// Inputs:  [seeker data,IMU data,timer] 
%// Outputs:  [command accelerations,applied forces] 
%// Process:  proportional navigation law 
%// Assumptions:  none 
%// Warnings:  none 
%//******************************************************************** 
********* 
%// Order of elements 
%//     -Define globals 
%//     -Define constants 
%//     -Define elements of input vector 
%//     -Functions 
%//******************************************************************** 
********* 
% ******  define globals  ****** 
global m satflag 

% ******  define constants  ****** 
Nprime=5; 
Nprimez=5; 

% ******  define input vector  ****** 
thetadot=u(1); 
phidot=u(2); 
los=u(3); 
philos=u(4); 
R=u(6); 
Vc=-u(5); 
heading=u(7); 
Vm=u(8); 
Vmdot=u(9); 
phi=u(10); 
theta=u(ll) ,- 
psi=u(12); 
time=u(13) ; 
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% ******  initialize variables  ****** 

% ************  functions  ************ 

ny=Nprime*750*(thetadot)/cos(psi-los)-Vmdot*tan(psi-los)• 
nz=Npnmez*750*(phidot)/cos(theta-philos)-Vmdot*tan(theta-los)-9.8045; 

% control force limiter 
if satflag 

if (abs(ny)>30*9.8045) 
ny=sign(ny)*30*9.8045; 

end 
if (abs(nz)>30*9.8045) 

nz=sign(nz)*30*9.8045; 
end 

end 

% compute ABC forces applied 
Fx=0; 
Fy=ny*m; 
Fz=nz*m; 

% output vector 
y=[ny;nz;Fx;Fy;Fz]; 

%//end of file PROPNAVPT. m 
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APPENDIX C. SIMULATION DATA 
This appendix contains the plots listed below for each guidance law.    The 

engagement geometry is the same for each guidance law, initial range; 20 km, attack 

azimuth 45 degrees, co-altitude; 6,000 meters, 6 g target maneuver at 3 seconds tg0. 

1. Plan view of engagement 

2. Missile velocity profile 

3. Missile accelerations and target acceleration estimates for filtered laws 

4. Guidance law command accelerations 

The guidance laws are: 

1. PNwithJV=5 

2. VCPN with constant gain 

3. Bang-bang 

4. Differential games 

5. APN with A=5 

6. Noisy seeker, PN with N'=5 

This appendix also contains plots from the full aerodynamic model running in an 

open loop with control surface deflections as the control input 
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A.       PN (N'=5) 
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B.       VCPN WITH CONSTANT GAIN 
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C.       BANG-BANG 
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D. DIFFERENTIAL GAMES 
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E. APN WITH A=S 
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NOISY SEEKER, PN (iV'=5) 
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FULL AERODYNAMIC MODEL 
Missile Altitude vs. Time 
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Vertical Acceleration Response 
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Missile 3D Position 
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Euler Angle Response 
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