
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

A METHOD OF INCREASING THE KINEMATIC
BOUNDARY OF AIR-TO-AIR MISSILES USING AN

OPTIMAL CONTROL APPROACH

by

Robert D. Broadston

September 2000

Thesis Advisor:
Second Reader:

Robert G. Hutchins
Hal A. Titus

Approved for public release; distribution is unlimited

2000120; 012

REPORT DOCUMENTATION PAGE Form Approved
0188

OMB No. 0704-

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 2000
3. REPORT TYPE AND DATES COVERED

Engineer's Thesis
4. TITLE AND SUBTITLE: Title (Mix case letters)

\ Method of Increasing the Kinematic Boundary of Air-to-Air Missiles Using an
Jptimal Controls Approach
6. AUTHOR(S) Broadston, Robert P.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

i. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVADLABDLITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRD3UTION CODE

13. ABSTRACT (maximum 200 words)
Current missile guidance laws are generally based on one of several forms of proportional navigation (PN).

While PN laws are robust, analytically tractable, and computationally simple, they are only optimal in a narrow
operating regime. Consequently, they may not optimize engagement range, time to intercept, or endgame kinetic
energy. The advent of miniaturized high speed computers has made it possible to compute optimal trajectories for
missiles using command mid-course guidance as well as autonomous onboard guidance. This thesis employs a
simplified six degree of freedom (6DOF) flight model and a full aerodynamic 6DOF flight model to analyze the
performance of both PN and optimal guidance laws in a realistic simulation environment which accounts for the
effects of drag and control system time constants on the missile's performance. Analysis of the missile's kinematic
boundary is used as the basis of comparison. A missile's kinematic boundary can be described as the maximum
theoretical range at which it can intercept a target assuming no noise in its sensors. This analysis is immediately
recognizable to the warfighter as an engagement envelope. The guidance laws are tested against non-maneuvering
and maneuvering aircraft targets and against a simulation of a cruise missile threat. An application of the 6DOF
model for a theater ballistic missile interceptor is presented.

14. SUBJECT TERMS Missile Guidance Laws, Proportional Navigation, Optimal Control,
Kinematic Boundary

15. NUMBER OF
PAGES „„^

226
16. PRICE CODE

17. SECURITY
CLASSDJTCATION OF
REPORT

Unclassified

18. SECURITY
CLASSD7ICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

n

Approved for public release; distribution is unlimited

A METHOD OF INCREASING THE KINEMATIC BOUNDARY OF AIR-TO-
AIR MISSILES USING AN OPTIMAL CONTROL APPROACH

Robert D. Broadston
Lieutenant Commander, United States Navy

B.S.E.E., United States Naval Academy, 1984

Submitted in partial fulfillment of the
requirements for the degree of

ELECTRICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL
September 2000

Author:

Approved by:
RobertTjTHutchins, Thesis Advisor

->v
Hal A. Titus, Second Reader

/ \

V
Jeffrey B/Kporr, Chairman

Department of Electrical and Computer Engineering

m

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

Current missile guidance laws are generally based on one of several forms of

proportional navigation (PN). While PN laws are robust, analytically tractable, and

computationally simple, they are only optimal in a narrow operating regime.

Consequently, they may not optimize engagement range, time to intercept, or endgame

kinetic energy. The advent of miniaturized high speed computers has made it possible to

compute optimal trajectories for missiles using command mid-course guidance as well as

autonomous onboard guidance. This thesis employs a simplified six degree of freedom

(6DOF) flight model and a full aerodynamic 6DOF flight model to analyze the

performance of both PN and optimal guidance laws in a realistic simulation environment

which accounts for the effects of drag and control system time constants on the missile's

performance. Analysis of the missile's kinematic boundary is used as the basis of

comparison. This analysis is immediately recognizable to the warfighter as an

engagement envelope. The guidance laws are tested against non-maneuvering and

maneuvering aircraft targets and against a simulation of a cruise missile threat. An

application of the 6DOF model for a theater ballistic missile interceptor is presented.

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. HISTORICAL BACKGROUND 3
B. GOALS AND BENEFITS 7

II. BACKGROUND 9
A. SIX DEGREE OF FREEDOM (6DOF) DYNAMICS 9
B. MISSILE MODELING 12

1. Airframes 13
2. Propulsion 16
3. Aerodynamics 17

a. Simplified 6DOF Model 17
b. Full Aerodynamic Model 21

4. Guidance, Navigation, and Control 23
a. Guidance 23
b. Navigation 24
c. Control . 24

C. SIMULATION ENVIRONMENTS 25
D. GUIDANCE LAWS 27

1. Proportional Navigation 28
2. Velocity Compensated Proportional Navigation 29
3. Bang-bang 29
4. Differential Games 30
5. Augmented Proportional Navigation 31

E. TRACKING FILTER 32

III. GUIDANCE LAW TESTING 35
A. KINEMATIC BOUNDARY 35
B. TEST SCENARIOS 37
C. CANDIDATE GUIDANCE LAWS 39
D. NOISE STUDY 39

IV. COMPARISON AND ANALYSIS 41
A. PROPORTIONAL NAVIGATION LAWS 41
B. VELOCITY COMPENSATED PN LAWS 46
C. BANG-BANG 48
D. DIFFERENTIAL GAMES 50
E. AUGMENTED PROPORTIONAL NAVIGATION 53
F. NOISE STUDY 56
G. TBMD DEMONSTRATION 58

V. CONCLUSIONS AND FUTURE RESEARCH 61
A. CONCLUSIONS 61
B. FUTURE RESEARCH 62

vii

APPENDIX A. SIMULINK® MODELS 63

APPENDIX B. MATLAB® CODE 93

APPENDIX C. SIMULATION DATA 1Sc
A. PN (N>=5) jgg
B. VCPN WITH CONSTANT GAIN ZZZ i87
C. BANG-BANG 188

D. DD7FERENTIAL GAMES 189
E. APN WITH A=S 190

F. NOISY SEEKER, PN (JV=5) ." 191

G. FULL AERODYNAMIC MODEL ZZ!Z~."Z." 192
LIST OF REFERENCES 199

INITIAL DISTRIBUTION LIST 201

vm

LIST OF FIGURES

Figure 2.1. Relationship of ABC, NED, and ECI Coordinate Frames 10
Figure 2.2. AMRAAM and STANDARD models. Drawings to scale

for comparison 13
Figure 2.3. Dimensions and forces on a tail-controlled missile. From [7] 14
Figure 2.4. SM-2(ER) model with booster attached 15
Figure 2.5. AMRAAM and SM-2 (ER) 16
Figure 2.6. Variation of parasitic drag coefficient with Mach number 19
Figure 2.7. Drag forces on the AMRAAM model for various load factors 21
Figure 2.8. Typical missile engagement geometry. From [13] 28
Figure 2.9. a-ß-y Filter Performance 33
Figure 3.1. Kinematic boundary. The shooter is on the boundary

pointing at the target at the start of the engagement 36
Figure 3.2. Comparison of a 5 meter warhead lethal radius to a MiG-29 aircraft.

MiG-29 drawing is from [2] 37
Figure 4.1. Kinematic boundary comparison of proportional navigation laws vs.

non-maneuvering, co-altitude target at 6,000 meters and Mach 0.83 42
Figure 4.2. Kinematic boundary comparison of proportional navigation laws vs.

maneuvering, co-altitude target at 6,000 meters and Mach 0.83.
Target maneuver was a 6 g turn toward the missile at tg0=3 seconds 43

Figure 4.3. PN law performance vs. non-maneuvering target 44
Figure 4.4. PN law performance vs. maneuvering target 44
Figure 4.5. Kinematic boundary comparison of PN vs. non-maneuvering and

cruise missile targets 45
Figure 4.6. Kinematic boundary comparison of VCPN laws vs. a

non-maneuvering, co-altitude target at 6,000 meters and Mach 0.83 47
Figure 4.7. Kinematic boundary comparison of the bang-bang law vs. a

non-maneuvering, co-altitude target at 6,000 meters and Mach 0.83 49
Figure 4.8. Kinematic boundary comparison of the differential games law vs. a

non-maneuvering, co-altitude target at 6,000 meters and Mach 0.83 51
Figure 4.9. Kinematic boundary comparison of the differential games law vs.

maneuvering, co-altitude target at 6,000 meters and Mach 0.83.
Target maneuver was a 6 g turn toward the missile at tg0=3 seconds 52

Figure 4.10. Kinematic boundary comparison of APN vs. maneuvering,
co-altitude target at 6,000 meters and Mach 0.83.
Target maneuver was a 6 g turn toward the missile at tg0=3 seconds 54

Figure 4.11. Kinematic boundary of APN and PN vs. cruise missile target.
Azimuth resolution is 10 degrees 55

Figure 4.12. Scatter plot of x and y miss distances for a noisy seeker 56
Figure 4.13. Histogram of missile miss distances with a noisy seeker.

100 realizations. Probability of hit is 92% 57
Figure 4.14. TBMD engagement by RM-67 SM-2 (ER).

Miss distance at intercept was 2.2 meters 59
Figure 4.15. Interceptor and target velocity profiles for TBM demonstration 59

IX

Figure A. 1.
Figure A.2.
Figure A.3.

Figure A.4.
Figure A. 5.

Figure A.6.
Figure A.7.

Figure A. 8.
Figure A.9.
Figure A. 10.
Figure A.ll.
Figure A. 12.
Figure A. 13.
Figure A. 14.
Figure A. 15.
Figure A. 16.
Figure A. 17.
Figure A. 18.
Figure A. 19.

Figure A.20.
Figure A.21.

Figure A.22.
Figure A.23.
Figure A.24.
Figure A.25.

Figure A.26.
Figure A.27.
Figure A.28.

Simplified 6DOF model without tracking filter 64
Simplified 6DOF Aerodynamic Force Generator 65
Simplified 6DOF Drag Model. Function blocks are
DRAGINDUCED.MandDRAGTHESIS.M 66
Flat Earth 6DOF missile dynamics 67
Internal missile dynamic model. SIXDOFDYN.M is
the function block gg
Aerodynamic moment feedback 69
Missile IMU and air data computer. Function blocks are
Q2EULER.M and ALPHABETA.M 70
Missile seeker model 71
Gimbal angles and rates 72
Range, range rate, and time-to-go. Function block is TGO.M 73
Target dynamics model. Function block is DYNAMIC3D.M 74
Target turn generator. Switch threshold is set to 3 seconds 75
Target and missile velocity computation 76
Simplified6DOFmodel with filter .77
Accelerometer _ 7g
IMU with additional outputs for tracking filter 79
cc-ß-y tracking filter. Function block is ABGFILTER.M 80
Full aerodynamic 6DOF model 81
Aerodynamic moment and force models. Function blocks are
ALPHABETA.M, AEROFORCES.M, and AEROMOMENTS.M 82
Full aero model autopilot 83
Full aero model 6DOF equations. Function blocks are EQNFORCE M
EQNMOMENT.M, EQNQUAT.M, andEQNPOS.M '. 84
Rate gyros 85

Simplified 6DOF TBMD interceptor simulation 86
TBM thrust model " 87
TBM target model. Function blocks are BALLISTDYN.M and
GRAVITY.M 88

TBM seeker model 89
TBM missile model switch. Function block is MODELSWITCH.M 90
TBM Missile Dynamics. Function block is GRAVITY2.M 91

LIST OF TABLES

Table 2.1. Missile Thrust Values 17
Table 3.1. Guidance Law Test Plan 39
Table B.l. Matlab® Source Code Listing 93
Table B.l. Matlab® Source Code Listing (continued) 94

XI

THIS PAGE INTENTIONALLY LEFT BLANK

Xll

LIST OF SYMBOLS AND ABBREVIATIONS

Constant

>

So

GM

Definition
angular velocity of the Earth

gravitational acceleration at Earth's surface

earth — mass gravitational constant

Value
7.292X10-15 —

sec

9.804 -^

3.986x10 14 mJ

CHAPTER II
Symbol
VB

coB

q

p

8o

J

Q.,

Q,

Q.

Definition

velocities (ABC frame)

angular velocities (ABC frame)

quaternions

position vector (NED or ECI frame)

NED gravity vector

applied forces (ABC frame)

applied moments (ABC frame)

inertial matrix

body rate cross product

earth rate cross product

quaternion cross product

Components

lvx vy vJr

[P Q Rf

[qO q\ ql ql\

[x y zf
[o o g0]

[Fx Fy FZY
k Ty Tz]
J ^

3

' y 'z-

0 0

yy

0

0

-R Q~
0 -P

P 0

XX

0
0

" 0

R

-Q

0 0 0

0 0 -co

0 cox 0

0 P Q

-P 0 -R

-Q R 0
-R -Q P

R

Q
-P

0

Xlll

Symbol

BE

JU,A

Bo

B

8(P)

m

C dO

P
V

s

M

REF

cN
e

AR

C

d

a

S

CN

y
A XXX

ax,ay,az

CO

Definition
CHAPTER II

Components

NED rotation matrix
g02+ql2-q22-q32

2(qlq2-q0q3)

2(qlq3+q0q2)

2(qlq2+q0q3)

J1-q\2+q22-qi

2(q2q3-q0ql)

2(qlq3-q0q2)

2(q2q3+q0ql)

q02-q\2-q22+q32

body latitude, longitude

NED - ECI rotation matrix

ABC - ECI rotation matrix

cos// -sin^sin/l sin//cos/l

0 cos Ä sin Ä

-sin A -cos ju sin Ä cos //cosÄ

BBBB

GM spherical earth gravity vector

specific impulse

propellant mass flow rate

parasitic (zero lift) drag coefficient

induced drag coefficient

atmospheric density based on ICAO standard atmosphere
missile absolute velocity

reference area (missile cross seaonal area)

normal force coefficient

wing efficiency relative to an elliptical planform
wing aspect ratio

aerodynamic moment coefficient

missile body diameter

angle of attack {a used for pitch, ß for yaw)

control surface deflection angle

aerodynamic force coefficient

missile dimensions see Figure 2.3 for definitions

inertial frame target velocities

inertial frame target accelerations

target turn rate

xiv

CHAPTER II
Symbol Definition Components

V V Y M ' * C missile and closing velocities. See Figure 2.7

o,oL,ö los angle, look angle, los rate. See Figure 2.7

nc guidance law command accceleration

N' navigation constant

A missile acceleration for bang-bang control

ae,ap evader and pursuer accelerations

Ce'Cp evader and pursuer energy constants

nx,ny,nz missile command accelerations

A navigation constant

ho time to go until intercept

h 3x3 identity matrix

0 3x3 zero matrix

Pr relative position vector [xr yr zrY

Vr relative velocity vector \yxr v r vzrf

/ly target inertia! acceleration vector [A^ AJ ATzf

AM missile body frame acceleration vector [AMx AM AMzf

XV

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

EXECUTIVE SUMMARY

A six degree of freedom (6DOF) computer simulation of the AIM-120

AMRAAM has been developed to test the performance of various guidance laws using

the kinematic boundary as a measure of effectiveness. Proportional navigation (PN) was

used as the baseline for comparison. The effect of seeker noise on the PN law was

studied.

A velocity compensated PN law was tested against an angles only PN law and

demonstrated that the velocity compensation will improve performance, but not to the

level of the full PN law.

A bang-bang law was tested as a continuation of earlier thesis work. This law

performed poorly under the influence of drag, and would not be a candidate for use in a

tactical missile.

A modified PN law derived from differential games theory was tested that had

lower performance than the PN law.

An augmented PN law derived from optimal control theory was tested that had

improved performance in the target's rear hemisphere and forward of 60 degrees relative

to the nose of the target. This law did not improve the missile's performance against a

cruise missile target.

Preliminary work to extend the 6DOF simulation to include aerodynamic control

of the missile was completed with the simulation capable of limited operation. More

work needs to be accomplished to bring this model to full capability.

xvii

The 6D0F model was used to demonstrate the engagement of a theater ballistic

missile by a RM-67 STANDARD II (ER) missile. The STANDARD intercepted the

target at a range of 2.2 meters off the nose, well within lethal range of the interceptor

warhead.

xvm

ACKNOWLEDGMENTS

The author wishes to thank Professors Robert G. Hutchins and Hal A. Titus for

their guidance and assistance during his research. He would also like to thank his sister

Mrs. Sharon Hall for her assistance in editing and formatting this thesis.

xix

THIS PAGE INTENTIONALLY LEFT BLANK

xx

I. INTRODUCTION

The U.S. Navy's experience with Japanese kamikaze attacks in the closing months

of the Second World War demonstrated the woeful inadequacy of anti-aircraft artillery

(AAA) against a massed modern air threat. Even with radar-controlled guns and the

massed firepower of dozens of ships, the kamikaze were able to inflict heavy damage on

the fleet.

The advent of jet aircraft following the war exacerbated the aerial threat to surface

units and changed forever the character of air-to-air combat. It was believed that the high

speed and maneuverability of jet aircraft signalled the end of the dogfight and a

requirement to engage targets at beyond visual ranges (BVR). The solution to both of

these problems was some sort of guided missile.

There are a number of ways to guide a missile so that it hits a target. The three

simplest guidance laws are beam rider, pursuit, and proportional navigation. Beam rider

guidance is most useful for a surface-to-air missile (SAM) installation. The launcher

must keep the target locked in a radar beam throughout the engagement while the missile

steers along, or rides, the beam. This requirement ill suits beam riders for the dynamic

environment of aerial combat. Pursuit guidance requires the missile to turn so that it

continuously points at the target. The missile may use some characteristic of the target

such as its infrared (TR) signature, semi-active radar from the launching platform, or

onboard radar to determine the target's relative position. As the name implies, this

guidance law is most effective when attacking from the rear hemisphere of the target, or

when attacking a stationary target, and it performs poorly in the target's forward

hemisphere.

1

Of the three basic guidance laws, proportional navigation (PN) is the most

versatile, and therefore most frequently implemented. PN accelerates the missile laterally

by an amount proportional to the angular rate of the line of sight from the missile to the

target. PN or one of its various extensions or augmentations is the guidance law of

choice in nearly all modern guided missiles. The reasons are simple. PN is:

■ Cheap
■ Robust
■ Analytically tractable
■ Successful

Optimal control theory promises to improve the performance of missile guidance

systems. Optimal guidance laws, while the subject of extensive research, have yet to play

a significant role in practical applications. Since optimal laws require an estimate of the

target's position, velocity, and acceleration (its state), they require computing horsepower

that has only been available in miniaturized form since the late 1980's. The computing

requirements of optimal laws, and the successful extensions of PN laws have kept the

optimal laws out of the mainstream, but modern, agile, stealthy aircraft and cruise

missiles, and the growing need for theater ballistic missile defense (TBMD), have

increased the interest in optimal guidance laws.

The remainder of Chapter I examines the historical background, our goals in

pursuing this line of research, and its benefits. Chapter II establishes the theoretical

background for the simulation environments and for the various guidance laws we

examined. Chapter El describes our method of analysis using the kinematic boundary

and our experimental procedures. Chapter IV presents experimental results and analysis.

Chapter V presents our conclusions and suggestions for further research in this area.

A. HISTORICAL BACKGROUND

During the early 1950's, the development of guided missiles was a major program

for the U.S. military. SAM's developed during this era include the Army's Nike family

and Hawk, and the Navy's Terrier, Tartar, Talos, and Standard. The primary air-to-air

missiles (AAM) of the day were the Raytheon Sparrow, developed for the Navy, and the

Hughes Aircraft Falcon, developed for the Air Force. Both of these systems were

complex radar-guided missiles (Falcon had an IR variant) and suffered from many

developmental problems that would be familiar to systems engineers today.

While the engineers at Raytheon and Hughes were overcoming their technical

challenges, a small team of scientists and engineers at the Naval Ordnance Test Station

(NOTS) in China Lake, California, now the Naval Air Warfare Center Weapons Division

(NAWCWPNS) began work on what would become one of the most successful AAM's in

history. Sidewinder (AIM-9) began as an after work project on a non-existent and

frequently purloined budget with no official standing [1]. In the view of the air power

theorists of the day, the age of the dogfight was over, so why would there be a need for a

short range dogfight missile? The Vietnam War would soon prove the theorists wrong

and demonstrate the value of Sidewinder.

Sidewinder was designed from the beginning to be simple, reliable, rugged, and,

above all, inexpensive. The motor, warhead, and fins were adapted from a stock five

inch High Performance Air Ground (HPAG) rocket. The fins were modified with a

mechanical device called a "rolleron" which minimized the missile's roll rate without the

need for additional electronics [1]. Most of the design effort went into the guidance and

control section which was bolted on to the HPAG rocket as a unit, and incorporated

several innovations, including:

• Torque balance servo control fins which provided the commanded control
forces at all altitudes without complex electronics

• Single gyroscope seeker which integrated the IR sensor and directional gyro
• IR aiming reticles which reduced the missile's tendency to guide on the sun or

clouds

The design was so simple that NOTS technicians would tell Air Force and

Hughes personnel that the only test equipment they required was a flashlight and a

Simpson meter [1]. While this may have been an exaggeration for psychological effect, it

was not far from the truth. The first production Sidewinders cost the government $2,400

and by the third year of production, the price was down to $1,400 per missile [1].

Today's advanced Sidewinders cost in the tens of thousands of dollars. Compare this to

over $300,000 for an AIM-120 AMRAAM. Sidewinder was such a successful design

that it was copied wholesale by the Soviet Union as the K-13 (NATO AA-2 Atoll), and

used as the basis for the Israeli Python [2], [1].

Sidewinder's guidance law is a form of PN using only line of sight angular rate

and a fixed navigation constant or gain. This guidance law is suitable for a dogfight

missile with a range on the order of 5.5 km (18,000 ft.), but not for longer ranges. The

general PN law incorporates the missile's closing velocity with the target in the

computation of the gain and must be provided a measurement of the range rate. This is

the realm of the radar-guided missile.

The first radar-guided missiles in the U.S. inventory were the Air Force's Falcon

(AIM-4) and the Navy's Sparrow (ATM-7). Both missiles used semi-active radar homing

(SARH) seekers. The launch aircraft must illuminate the target throughout the

engagement for these missiles to guide successfully. Doppler processing of the

illuminator's return from the target aboard the missile provides an estimate of the closing

velocity. The need to continuously illuminate the target means that the launch aircraft

must continue to close with the target during the engagement. This creates an obvious

problem if the target's weapons have similar ranges to those of the launch aircraft.

Falcon enjoyed a long career, retiring in 1988. Sparrow is still in use today, and

as NATO Sea Sparrow is the point defense missile system aboard many U.S. and NATO

ships.

During the 1960's, Hughes began development of the missile that eventually

became the AIM-54 Phoenix. Phoenix includes a strapdown inertial measurement unit

(IMU) that allows its autopilot to steer the missile on course with periodic updating from

a SARH seeker. In the terminal phase, the missile switches to an onboard active pulse

Doppler radar. Finally, the missile has a simple data link with the AWG-9 radar aboard

the F-14 launch aircraft that allows the aircrew to command the missile to perform

several functions. All of these improvements permit the F-14 to simultaneously guide six

missiles to different targets up to 176 km (110 miles) away.

Raytheon s AIM-120 Advanced Medium Air-to-Air Missile (AMRAAM) is the

current generation of missile technology in the U.S. inventory. AMRAAM incorporates

an IMU, a data link, and a pulse Doppler terminal seeker. Because its data link is more

sophisticated than Phoenix, there is no need for a SARH seeker. In certain scenarios,

AMRAAM is truly a "fire and forget" missile, using its IMU to fly to a point where the

active seeker can take over. Generally, AMRAAM is launched with an initial intercept

solution programmed into the autopilot by the aircraft radar and mission computer. Once

fired, the data link can update the autopilot with target position while the launch aircraft

turns away or engages other targets. Once the terminal guidance seeker is activated, the

missile is completely autonomous. AMRAAM has substantial onboard computer

processing available and can employ advanced signal processing algorithms and guidance

laws.

Proportional navigation can be shown to be an optimal solution under a set of

limited conditions. Chief among these limitations is the assumption that the target does

not maneuver during the engagement. This is clearly unrealistic, and there have been

many extensions to the basic PN law to counter this limitation. Optimal control theory

makes it possible to account for target maneuvers in the guidance law. This requires an

estimate of at least the target's acceleration and in some cases the complete target state.

A range of tracking filters including the Alpha-Beta-Gamma and Kaiman filters is

available to provide these estimates. Single chip microprocessors and digital signal

processors have made it possible to implement these guidance laws in the limited volume

of a missile's guidance section. Despite these developments and the potential advantages

of optimal guidance laws, the practitioners have been slow to implement new designs.

Some of this lag is due to the successful extension of the PN law, but much is due to the

aversion of more experienced engineers for abandoning a technique that works in favor

of techniques that have yet to prove themselves [3].

Modern agile aircraft like the MiG-29 and stealthy aircraft like the F-117 and F-

22 may in some cases be able to defeat AAM's using PN laws. It is thought that optimal
6

and hybrid guidance laws may overcome the limitations of PN laws. Optimal laws may

also increase the range at which cruise missiles can be engaged, and developments in

differential games theory (a field of mathematical optimization) may help solve the TBM

problem [4].

B. GOALS AND BENEFITS

The research presented in this thesis was motivated by three primary goals. First

to create a set of 6DOF models for evaluating missile guidance laws, second to explore

the use of the kinematic boundary as a measure of effectiveness (MOE) for evaluating the

performance of the simulated missiles, particularly to compare optimal guidance laws

with PN laws, and third to demonstrate an application of the models to a TBM

interceptor.

Much of the literature in the missile guidance field involves the use of two-

dimensional simulations. While such models are fairly simple to set up and analyze, and

are not as computationally intensive as 6DOF models, they have difficulty simulating the

effects of drag and aerodynamic control forces on the missile. Our goal was to create a

simplified 6DOF model for guidance law development and testing, and a full

aerodynamic model that would simulate both the aerodynamic control forces and the drag

forces acting on the missile. The modular design of the Simulink® models makes it

possible to test not only guidance laws, but autopilots, thrust profiles, and the effect of

noise anywhere in the system on performance.

There are a number of ways to construct MOE's for the evaluation of a missile's

performance. Controls engineers would compute a cost function based on the miss

distance, control effort, and possibly time of intercept. While the number produced by

such a cost function is useful as a basis of comparison, to the layman it is simply a

number. For the warfighter, the engagement envelope is of paramount importance. The

kinematic boundary represents the maximum range at which the missile will achieve a hit

when there is no noise in the system. It is a graphical representation of which guidance

law has the best performance. If several points in the boundary are tested using noise, the

mean effect of the noise can be calculated and its effect on the engagement envelope

demonstrated. This information can then be used to determine if one guidance law is

truly more effective than another. We have used the kinematic boundary as the MOE

throughout the AAM simulations.

The final goal of this research was to provide a missile simulator that could be

used in other research conducted for Navy TENCAP (Tactical Exploitation of National

Capabilities) in the TBMD field.

II. BACKGROUND

A. SIX DEGREE OF FREEDOM (6DOF) DYNAMICS

Newton's laws for both translation and rotation describe the motion of a body in

three-dimensional space. There are three axes for translation, x, y, and z, and three axes

for rotation, longitudinal, lateral, and vertical, giving rise to displacement in roll, pitch,

and yaw respectively. These are the six degrees of freedom. The coordinate frame for

these dynamics is centered on the aircraft center of gravity (e.g.) and fixed to the airframe

with the x-axis on the nose, y-axis on the right wing, and z-axis pointing down. It is

called the aircraft-body centered or ABC frame. This is a rotating frame in inertial space

and for objects in different ABC frames to interact; their motion must be transformed into

an inertial frame.

For short ranges (< 200 km) the North-East-Down, or NED, frame is suitable.

This frame assumes a flat earth, and reasonable altitudes so that gravity is a constant. A

NED has its x-axis pointing north, y-axis pointing east, and its z-axis pointing down

toward the center of the earth. An aircraft headed north in level flight will have pitch roll

and yaw angles of zero degrees. A z-axis which points down seems counter-intuitive at

first, but makes sense when one considers that this allows right hand turns to have an

increasing heading as seen on a compass. We will use the NED or flat earth

approximation for the air-to-air engagement simulations.

If the NED coordinate system were placed on the surface of the earth, it would

become a rotating frame with the earth's angular velocity. For long ranges and ballistic

missile work, one final translation to the earth-centered inertial or ECI frame is required.

In this fixed frame the x-axis points at the vernal equinox or first point in Aries (which is

9

really in Pisces), the y-axis is 90 degrees to the east, and the z-axis extends through the

North Pole. We will use the ECI frame for the TBM interceptor demonstration. Figure

2.1 shows the relationships of the three coordinate frames.

Vh
ECI Coordinate Frame

Note: (0,0,0) in NED is
the tangency point of the
NED plane and the Earth

Figure 2.1. Relationship of ABC, NED, and ECI Coordinate Frames.

There are four vector equations which describe the dynamics of a body in three-

dimensional space [5]. They are the force equation, the moment equation, the attitude

equation, and the navigation equation. The equations shown below are for the flat earth

approximation. The individual terms are defined in List of Symbols and Abbreviations.

10

V
B = -QBvB+BB g'o +

£ B

m
{force)

cbB = -J~1QBJcoB + J- 1 B (moment)

q = --& a
2 "

(attitude)

PNED = B>s (navigation)

(2.1)

The attitude equation can be computed using quaternions as shown here or using

Euler angles. The Euler angle formulation involves a singularity in the rotation matrix

(BB) when the missile passes through the vertical that does not occur in the quaternion

formulation. Since the STANDARD missile is fired from a vertical attitude, the

quaternion formulation will be used throughout.

For the TBM interceptor demonstration, the round earth equations shown below

in state space form are used. Note the addition of terms using QE, which is the cross

product matrix accounting for the Earth's rotation and the B matrix instead of BB that

rotates the ABC frame to NED coordinates, and then to ECI coordinates. Definitions of

the individual terms are listed in the List of Symbols and Abbreviations.

coB

QE BT 0

■BQ2
E -(QB+BQEB

T
) 0

0 0 -J-l£lDJ

0 0 0

0
P 0

0

0

2 ".

VB

0)B

+
Bg(p)

J'X
. <l. 0

(2.2)

These equations assume constant mass and a fixed center of gravity. Simulation

of a missile that burns fuel and has a shifting e.g. as a result involves the addition of

terms to the force and moment equations. For simplicity we have assumed a constant

mass missile.

11

The MatLab® functions FLATEARTHDYN.M and SIXDOFDYN.M implement

these equations in the SimuLink® models described below.

The equations of motion assume the motion takes place in a vacuum. As a result,

there is no direct coupling between the force equation and the moment equation. A stable

missile body with its e.g. forward of its center of pressure (c.p.) tends to act like a

weather vane and align itself with the relative wind. In the simplified 6DOF model this is

modeled by feeding back the angle of attack, which is the angle between the missile body

and the velocity vector, and its derivative as a moment that steers the missile into the

relative wind. The specifics of this feedback will be outlined below. The full

aerodynamic model does not require this feedback as it generates the normal forces on

the missile by generating a moment using control deflections and using the subsequent

change in angle of attack to generate the forces.

B. MISSILE MODELING

The simulation environments are capable of modeling any missile the researcher

chooses to represent. For this research, the AIM-120 AMRAAM, and RIM-67(ER)

STANDARD II (SM-2) missiles were chosen. These weapons represent today's front

line U.S. Navy technology.

The model dimensions have been simplified to comply with the supersonic

aerodynamic models in Zarchan, and Blakelock, but are generally representative of the

actual missiles [7], [8]. The performance specifications are also simplified and based on

capabilities reported in the open source literature, and on engineering approximations.

They are in no way intended to be representative of the actual capabilities of these

12

missiles. No official use U.S. Government or contractor proprietary documentation was

used in the establishment of the model performance parameters.

1. Airframes

AMRAAM is a conventional missile design with fixed stub wings mounted

forward on the missile body and controllable tail fins mounted aft. There are four wings

and four fins mounted at 90-degree intervals around the missile body. Figure 2.2 shows

the overall plan view of the missile, and the MatLab® file MISSILEDATA.M establishes

the model's dimensions as required by Zarchan. The definitions of the dimensions used

in Zarchan's equations are shown in Figure 2.3 [7].

Missile Plan View AIM-120 AMRAAM

0.6

0.4

0.2

-0.2

-0.4

-0.6

O *-■

2.5

Missile Plan View RIM-67 STANDARD Missile

0.6

0.4

0.2

2
i oh
E

-0.2 -

-0.4-

-0.6-

-

p
|/

C lIllilR
IJlllJplIjSäs ipHisfi mil

^Bl

i i

j \
O Center ol Grawty
x Hinge Line
•#• Center of Pressure

i i

N||

i i i i
2 . 2.5

meters

Figure 2.2. AMRAAM and STANDARD models. Drawings to scale for comparison.

13

NOSE

CG

CPB

CPW

HL

Figure 2.3. Dimensions and forces on a tail-controlled missile. From [7].

For the computation of the moments of inertia, the missiles are modeled as thin

rods for the y and z-axes, and cylinders about the x-axis. The thin rod model was chosen,

because the fins are not major contributors to the moment of inertia about the axes

normal to the longitudinal axis, and the missile is much longer than its diameter so the

contribution of the radius for the cylindrical model is minimal. The cylindrical model

was chosen for the longitudinal axis because there is no moment of inertia for an

infinitely thin rod about the longitudinal axis. Since the missiles are symmetrical, there

are no cross terms in the inertial matrices.

The model for SM-2 is more complicated. The extended range version of the

missile is equipped with a large booster with controllable tail fins. Figure 2.4 shows the

14.

SM-2(ER) model with the booster attached. Note that the wings and tail fins for the

missile forward of the booster have been modeled as a single wing with a length equal to

the wing plus tail fin and an area equal to wing plus tail fin. MISSEJEDATA4.M

contains the dimensions for the missile in this configuration.

1.5

1

0.5
£2
I o
E

-0.5

-1h

-1.5
0

SM-2(ER) with booster attached

O Center of Gravity
x Hinge Line
-*- Effective Center of Pressure

sm
MMBmm !■•.-.■• O*'

4
meters

B^

Figure 2.4. SM-2(ER) model with booster attached.

Once the booster stage falls away, the SM-2 looks like the second drawing in

Figure 2.2. MISSILEDATA3.M contains the dimensions for the missile in this

configuration. For comparison, line drawings of the actual missiles are shown in Figure

2.5.

15

AIM-120AMRAAM
^ß
"^

RIM-67 STANDARD
-41 A
"S.-I- ih_y"

^

Figure 2.5. AMRAAM and SM-2 (ER).

2. Propulsion

Both AMRAAM and STANDARD use solid fuel rocket motors. The actual

missiles use dual propellant grain motors that provide a relatively high value of thrust

initially to accelerate the missile to speed quickly, and then a lower level of thrust to

sustain speed throughout flight. For simplicity, the motors are modeled as single grain

motors of intermediate thrust values.

Solid fuel motors used in military missiles must have a Department of Defense

(DoD) Hazard Classification of 1.1 or 1.3 for use aboard ship [9]. According to Sutton,

typical fuels of this type have specific impulses in a range of 180-270 seconds [9]. The

thrust F produced by a rocket motor is given by: [9]

F = Ismgo (2.3)

This equation assumes a constant propellant mass flow rate throughout the motor run.

Assuming propellant mass fractions of 50 percent for AMRAAM and SM-2

without its booster, and 80 percent for the SM-2 booster, with a six second burn time for

AMRAAM and 10 seconds each for SM-2 and its booster yields the data shown in Table

2.1. The thrust values chosen for use in the simulations are within the range of

16

feasibility, and were chosen to accelerate the missiles to their maximum speed in a

reasonable time.

Missile Thrust Range (N)
(180<IS<270)

Simulation
Thrust (N)

AMRAAM 23,062 - 34,594 23,000
STANDARD E 62,209-93,314 80,000
SM-2 BOOSTER 137,655 - 206,482 180,000

Table 2.1. Missile Thrust Values.

3. Aerodynamics

a. Simplified 6DOF Model

The aerodynamics for the simplified 6DOF simulation are modeled as a

feedback path from the missile state vector. The ABC velocities are used to compute the

pitch and yaw angles of attack (a and ß) that are then differentiated and fed back as a

proportional-differential (PD) controller to the torque input of the missile dynamics block

(See Appendix B, Thesisl.mdl). This feedback loop models the missile's natural

tendency to act like a weather vane when the lift and side forces change the velocity

vector and hence the relative wind. The lift and side forces are generated by multiplying

the guidance law command accelerations by the missile's mass.

The angle of attack response of the missile to a step input is similar to a

second order response with a damped oscillation. This is also similar to the response of

the full aerodynamic model to a step input on the control fins. The feedback gains were

chosen to give the missiles a settling time of approximately 2.5 seconds, or an

approximate first order time constant of 0.5 seconds.

17

Drag is modeled with two components, parasitic drag, that due to the

misssile's shape and cross section, and induced drag, that caused by the generation of lift

and side (normal) forces. The drag force D along the velocity vector is computed using

the following equation [10].

D = (Cd0+Cdi)p^SREF (2.4)

Since the steady state angles of attack generated by this model are small,

less than one degree, the small angle approximation has been used and the cosine of the

angle of attack has been set to one for computing the component of drag along the x-axis

of the missile.

CM is computed using typical values provided in [6]. The data were faired

to a polynomial curve using MatLab®, and the function DRAGTHESIS.M is used to

compute the parasitic drag in the model. Figure 2.6 shows the variation of Cd0 with Mach •

number. The upper curve is the result of the increased drag caused by turbulence around

the missile's tail when the thrust plume is absent.

18

Parasitic Drag Coefficient (CHn) vs. Mach number do'

ü

0.5

0.45

0.4

0.35

0.3-

§0.25

0.2

0.15

0.1

0.05

0

Thrust off
Thrust on

0 3 4 5
Mach number

Figure 2.6. Variation of parasitic drag coefficient with Mach number.

Cdi is computed in two regimes, subsonic, and supersonic. Normally, C&

is a function of angle of attack, but in this simplified model, the angle of attack values are

not realistic, and therefore, a different approach is required.

For subsonic flight, Cdi is computed as the applied normal force in g's

times the maximum value of Cdo in subsonic flight. This crude approximation only

affects the missile for very short periods of time as it is subsonic only at launch and

perhaps at the very end of an engagement.

19

In supersonic flight, a more accurate approximation based on the normal

forces is used. The normal force coefficient CN is computed using the following

equation:

C"=2Ä; (2-5)

where FN is the applied normal force. Cdi is then computed using the following [10].

Cdi=~Vltm (2-6)

Since there are normal forces on both the y and z-axes, Cdi is computed for

each axis and the results are added to produce the value of Cdi used in Equation 2.4

above. Figure 2.7 shows the parasitic and induced drag forces on the AMRAAM model

for a missile in level flight executing a variety of turns at load factors up to 30 g's.

20

Drag Force Comparison (6000 meter altitude)

0 100 200 300 400 500 600 700 800 900 1000
Velocity (m/sec)

Figure 2.7. Drag forces on the AMRAAM model for various load factors.

b. Full Aerodynamic Model

The full aerodynamic model follows the development in Zarchan for

generation of both the aerodynamic moments and forces. Moments are generated by the

deflection of the appropriate control surfaces (rudder or elevator). The simulated missile

flies in a vertical attitude with the elevator surface horizontal and the rudder surface

vertical. AMRAAM flies in a "cross" configuration with the tail surfaces at 45 degree

angles to the vertical for ease of loading and carriage aboard aircraft. Modeling this

involves a more complicated autopilot and the change to a vertical attitude does not

21

materially affect the simulation. The aerodynamic moment T caused by a control surface

deflection is given by: [7]

T=C-PT§T <")
CM is a function of the angle of attack and the control deflection and is

given by: [7]

C„= 2a(xcc-Xcm)+l^f!L(xca-XcrB)

+ 8 SwCC (X -X)i?.S^a+Shy Y \ ^ößa \ACG ^cwJ+S—r- {XCG-XHL)
P^REF Pi,

(2.8)

' REF

Where ß is a normalized speed for supersonic travel given by: [7]

ß = yJMach2-l

The normal force FN on a body is given by: [7]

(2.9)

V2
F

N -CNp — SREF (2.10)

CN is again a function of the angle of attack and the control deflection and

is given by: [7]

CN =2a + ^^^ + 8-^L + s^^l (2.n)
2 SREF ßSREF ßSREF

The equations for CN and CM given above are valid for the supersonic

regime. No such approximation based on missile dimensions exists for the subsonic

regime. For subsonic speeds, the coefficients normally are determined empirically using

wind tunnel or computed fluid dynamics data. Since these data were not available, CN

and CM in the subsonic range are modeled as linear functions of the angle of attack and

22

control deflection [10]. Equations 2.7 and 2.10 are then used to generate the moments

and forces. The values chosen for the coefficients are therefore arbitrary, but as with the

drag model above, since the simulation spends very little time in the subsonic regime, the

effects of this approximation will be minimal.

The drag model is quite different from the simplified 6DOF model.

Parasitic drag is computed in the same fashion as above. Subsonic induced drag is

computed using Equation 2.6, because the model now explicitly calculates CN.

Supersonic induced drag follows an approximation given in Anderson [10].

Q,=4— (2.12)

Since the angles of attack are generally greater than one degree, the

induced drag force due to each normal force is computed separately, and its component

along the longitudinal axis of the missile is computed before being added to the other

component. The parasitic drag force is multiplied by the cosines of both angles of attack

to determine its longitudinal component.

According to Stevens and Lewis, once the moments and forces have been

determined, the 6DOF equations are solved in the following order [5]:

• Force and moment equations
• Attitude equation
• Navigation equation

4. Guidance, Navigation, and Control

a. Guidance

Guidance laws are implemented as Matlab® functions which compute the

command accelerations (nc) for both lateral and vertical guidance. The inputs to the

23

guidance law are provided by the seeker head, which computes target range, range rate,

azimuth, elevation, and angular rates from the actual target and missile state vectors.

Measurement noise can then be added to any of the six output channels to study its effect

on guidance law performance

Guidance laws for the simplified 6DOF model must also generate the

applied force on each axis for the computation of the drag forces. Simulink® generates

"algebraic loop" errors when the forces are fed back from the input of the "Missile

Dynamics" block (Figure B.l). Guidance laws for the full aerodynamic model do not

require this additional output.

Guidance laws requiring a tracking filter incorporate the filter's estimate of

the target state and missile body frame accelerations as additional inputs.

b. Navigation

The inertial measuring unit (BVIU), air data computer (ADC),

accelerometers, and rate gyros provide navigation data to the missile simulation in the

form of Euler angles, missile total velocity, acceleration, position, angles of attack, and

body axis rotation rates. The MJ is mounted at the missile's e.g., thus simplifying the

calculation of the accelerometer data. Although this research assumed a noise-free

navigation system, noise sources could be added to any of the output channels to study

the effect on performance. In particular, the effect of navigation system noise on the

tracking filter could be studied.

c. Control

The simplified 6DOF model does not require an autopilot, since the

guidance law command accelerations are directly converted into aerodynamic forces. For

24

the full aerodynamic model, it is necessary to convert the command accelerations into

control deflection angles. For this purpose, an autopilot for tail-controlled missiles

presented in Blakelock was adapted for use [8]. Blakelock's autopilot contains feedback

loops for a missile which does not guide during boost, and to correct for accelerometers

which are not at the e.g. These loops have been deleted in this model.

C. SIMULATION ENVIRONMENTS

Two distinct simulation environments were developed for this research. The

simplified 6DOF model was designed initially for the purpose of developing and testing

guidance laws prior to using them in the full aerodynamic model. Problems with the non-

linearity of the full aerodynamic model delayed its completion, and as a result, most of

the simulation results presented were obtained from the simplified 6DOF models. All

simulations operate in continuous time using the Simulink® ode45 Dormand-Price

differential equation solver.

The 6DOF models, THESIS 1.MDL (Figure A.l) and THESIS 1FTLT (Figure

A. 14) employ the flat earth approximation (Equation 2.1) for their missile dynamics, and

are streamlined models providing only the minimum number of subsystems required to

quickly test guidance law operation.

All the air-to-air simulations use a point mass target simulation developed in [6].

The target dynamics are modeled with the following vector equation:[6]

25

[0 1 0

0 0 0

0 0 0

0 57 0

0 0 0

0 0 0

0 0 0'

-m 0 0

1 0 0

0 0 0

0 0 1

0 0 0

X "0"
V

X
0

y
+

0

0

z 0

-Vz_ ßz-

(2.13)

The target's lateral accelerations are modeled as a turn rate, to, while the vertical

acceleration is an input to the subsystem, az.

The TBMD model, THESISTBM.MDL (Figure A.23) uses the spherical earth

model (Equation 2.2) for its missile dynamics. The target model used in this simulation

involves a six dimensional state vector to simulate the dynamics of a point mass ballistic

missile with no drag as shown below.

0 10 0 0 0"

0 0 0 0 0 0

0 0 0 10 0

000000i;+nina^ (214)

0 0 0 0 0 1

0 0 0 0 0 0

x =

X "0 0 0"
Vx 1 0 0

ar
y

+
0 0 0

a„
vy 0 1 0 y

Z 0 0 0 L z J

k. 0 0 1_

The full aerodynamic model, THESIS3.MDL (Figure A.18) presented the greatest

design challenge. In order to meet Stevens' and Lewis' requirement that the 6DOF

equations be solved in the proper order, the flat earth dynamics block was completely

redesigned (Figure A.21) The moments and forces on the missile are computed as

outlined above, and then fed to the missile dynamics block as inputs. This should have

resulted in a model that could be run in both open loop and closed loop operations.

26

Unfortunately, it was not possible to successfully close the loop with either the autopilot

adapted from Blakelock, or any of several other autopilot designs.

It was possible to control the missile laterally, and for short periods vertically in

an open loop by using the control deflection angles as inputs. It is likely that the failure

of the closed loop operations was due to the inherent non-linearity of the model, and

possibly the order in which Simulink® solves the computations in the various Matlab®

function blocks. It may be possible to code both the aerodynamics and missile dynamics

blocks as one inline Matlab® function to overcome this failure. This model is presented

here as a point of departure for future research.

D. GUIDANCE LAWS

Five guidance laws were examined during this research, proportional navigation

(PN), velocity compensated proportional navigation (VCPN), bang-bang, differential

games (DG), and augmented proportional navigation (APN). The PN laws were used to

establish baseline performance for comparison with the other guidance laws. The bang-

bang and VCPN laws were examined as an extension of thesis work by Swee [11]. The

DG and APN laws are derived in the optimal control literature and are the focus of using

the kinematic boundary as measure of effectiveness [12], [13].

The geometry of a typical air-to-air missile engagement is shown in Figure 2.8.

The object of the exercise is to steer the missile using only lateral accelerations in such a

way that it hits the target. The steering commands should be optimal in some sense,

minimizing miss distance at least, and possibly control effort (divert) or time to intercept.

27

Target velocity VT,

Lead ongn o,

Figure 2.8. Typical missile engagement geometry. From [13].

1. Proportional Navigation

PN provides steering commands to the missile, which are proportional to the

angular rate of the target's line of sight relative to a fixed reference. The command

acceleration nc is given by:[7]

N'VC&
«„

coscr, (2.15)

The cosine term in the denominator corrects the acceleration from the line of sight to the

missile's y-axis.

PN with N'=3 has been shown to be optimal and guarantees a hit under the

following conditions: [14]

• non-maneuvering target (no drag)
• missile speed greater than target speed
• target remains in missile's forward hemisphere

28

If the value of N' is sufficiently large, PN will always intercept a maneuvering

target under these conditions. Blakelock implements PN as a turn rate, but his

recommended values for a navigation constant equate to values of N' between three and

five [8]. Higher values produce little improvement in performance. One other

shortcoming of PN is that it does not account for the effect of the missile's dynamics

(time constant) on the navigation solution.

2. Velocity Compensated Proportional Navigation

VCPN is an attempt to extend the basic PN law and account for the effect of drag

on the missile. By adding a compensation term related to the missile's deceleration and

the line of sight angle, the effect of the drag on the line of sight rate can be reduced. The

VCPN law is given by: [13]

N'VC & ■
nc = c- VM tan aL (2.16)

C0S<7L

In his thesis, Swee showed that if the range rate information VC is available to the

missile, VCPN is no better than the basic PN law [11].

3. Bang-bang

Bang-bang guidance is a modification of PN in which the missile applies its full

acceleration in the direction of the rate of change of the line of sight. The controls

essentially "bang" on their stops whenever they are applied. This law would be useful in

missiles that are controlled by thrusters that are not throttled and are either on or off. The

bang-bang law is given by:[12]

A sgn(Vr &)
nc=A & v c ' (2.17)

cos <JL

29

The bang-bang law use here is modified slightly because of the effects of drag.

First, there is a dead band of 0.01 degrees per second in the line of sight rate before the

guidance law takes effect, and second the acceleration at ranges greater than 5 km from

the target is restricted to 5 g's. Inside 5 km, the acceleration is 30 g's. This was done to

prevent the missile from expending all of its thrust overcoming the drag from 30 g turns

immediately after launch.

4. Differential Games

Bryson and Ho develop a guidance law based on differential games theory in

which the pursuer (missile) seeks to minimize a cost function based on the miss distance

and the control effort while the evader (target) seeks to maximize the cost function and

thus survive. Both players are assumed to have perfect knowledge of the other's state.

Under these conditions, the evader's optimal strategy is to match the pursuer turn for turn

as shown here [12].

_ ce
a<~~ap (2.18)

cp

The pursuer's optimal strategy is more complicated, but after assuming the

pursuer can turn at a faster rate than the evader, that minimum miss distance is infinitely

more important than minimum control effort, and linearizing about a nominal collision

course, the resulting control law is: [12]

3
ra„ =

^

Vc & (2.19)

V " J

This is a variation of PN where the navigation constant can be varied statically at

launch based on an estimate of the target's ability to maneuver, or dynamically with a

30

real-time estimate of the target's acceleration. Bryson and Ho say that cp and ce are

constants related to the respective energies of the evader and pursuer, but closer analysis

shows that they are also related to the ability to maneuver or available acceleration [12].

The control law implemented here uses a value of 30 g for cp and estimates ce from the

output of the tracking filter.

5. Augmented Proportional Navigation

This guidance law is drawn from Lin, Reference [13], and is a simplification of an

optimal guidance law that accounts for both target maneuver and missile dynamics. The

APN law used here does not account for missile dynamics. It uses a twelve-dimensional

state vector with the target's relative position, relative inertial velocity, target inertial

accelerations, and missile body frame accelerations. The tracking filter estimates the first

three, and the body frame accelerations are provided by the accelerometers. The

guidance law is given by the following vector equation:[13]

n.

f

7r!73 f
Soh

go 0

Pr

(2.20)

The navigation constant A is computed for the full optimal guidance law as a

function of ts„, and the weighting functions on the miss distance and control effort. When

the product of the weighting functions approaches zero, the navigation constant is equal

to three. We have chosen a value of five to be consistent with the baseline PN law.

The position and velocity components of the state vector are relative to the missile

and in inertial coordinates; therefore, they can be computed directly from the seeker

31

ranges and bearings. The time to go, tg0, is computed from the seeker range and range

rate estimates.

Only the y- and z-components of the control are used. The x-component is

ignored. Note that in this form, the missile accelerations are not used. A constant

diagonal matrix is used in place of the "0" matrix to add the effect of the missile time

constants in the full optimal guidance law.

E. TRACKING FILTER

The tracking filter is based on an alpha-beta-gamma filter design by Bar-Shalom

and Li [15]. This is a constant gain filter and therefore it is less computationally

intensive than an adaptive filter like the Kaiman filter. Zarchan recommends the use of

constant gain filters, in part because of computational load and also because of stability

[7]. The DG and APN guidance laws require this tracking filter for their estimates of the

target's acceleration

The filter is implemented as a MatLab® function ABGFILTER.M. It is

interesting to note the use of the global variable XLAST to preserve the state estimate

from time step to time step. The values for the filter gain were chose by trial and error

from nomograms in Reference [15] to give the filter an initial settling time of less than

two seconds as these simulations are initially noise free, and the choice of gains is

dependent on the characteristics of the noise. The filter is a discrete time filter with a

sampling frequency of 10 Hz. This was accomplished by placing the filter block between

two zero order hold blocks. A sample of the filter's estimate of target acceleration with a

6 g turn three seconds prior to intercept is shown in Figure 2.9.

32

20
Estimate of Target Total Acceleration by a-ß^y Filter

18

16-

14

S12
c g
]B 10

o
8 8 <o

6

4

2-

Initial estimates
stable at approx
2 seconds

Target turn starts
at 11.2 seconds

Filter estimate
stable by
12.5 seconds

6 7 8 9
time (sec)

10 11 12 13 14 15

Figure 2.9. oc-ß-y Filter Performance.

33

THIS PAGE INTENTIONALLY LEFT BLANK

34

III. GUIDANCE LAW TESTING

A. KINEMATIC BOUNDARY

Kinematics is the branch of mechanics dealing with pure motion without

reference to the masses or forces involved. For the purposes of this research, a missile's

kinematic boundary is the locus of points representing the maximum range at which a

target may be successfully engaged as a function of relative bearing from the target at the

start of the engagement given a noise-free guidance and control system. To the pilot, this

is the "firing envelope," a critically important piece of information as it determines not

only the success of an engagement, but the tactics required to prosecute the target. We

chose the kinematic boundary as our measure of effectiveness for this reason. To the

warfighter, graphs of average miss distance or control effort may be meaningful if he is a

controls engineer, but a comparison of two guidance laws showing one to have a

significantly larger firing envelope is far more useful. Figure 3.1 below shows a generic

kinematic boundary (a circle) and is representative of the plots used in Chapter IV. The

azimuth angles represent the relative bearing of the shooter from the target at the start of

the engagement.

A successful engagement has a miss distance of less than 5 meters for these

simulations. This figure is based on the warhead of the AMRAAM having a lethal radius

of approximately 10 meters, and the size of a typical modern jet aircraft. Figure 3.2

shows the relationship of the 5 meter radius to a MiG-29 fighter. Clearly, a warhead

exploding within 5 meters of the MiG-29 will do substantial if not fatal damage to the

aircraft.

35

The Matlab® program files KBOUTER2.M and KBFILTER.M generate the

kinematic boundaries. The resolution in range is 10 meters, and in azimuth is 5 degrees.

These values were chosen as a compromise between speed of execution and plot detail.

At these resolutions, a kinematic boundary can be generated in 9-12 hours with a

Pentium® m, 700 MHz processor. One-degree resolution requires 48-60 hours, and 1

meter would take approximately 8-10 times longer.

A Representative Kinematic Boundary

90

Target at
center of plot

180

*

Shooter firing
\ 30 from boundary

210 \
\

/
;'330

y

240 300

270

Figure 3.1. Kinematic boundary. The shooter is on the boundary pointing at the target
at the start of the engagement.

36

5 meter lethal radius
around e.g. of MiG-29

Figure 3.2. Comparison of a 5 meter warhead lethal radius to a MiG-29 aircraft.
MiG-29 drawing is from [2].

B. TEST SCENARIOS

Candidate guidance laws are tested in three engagement scenarios:

• Non-maneuvering target, co-altitude at 6,000 meters
• Non-maneuvering cruise missile target at 50 meters
• Maneuvering target, co-altitude at 6,000 meters

37

The non-maneuvering target engagement is used as a baseline for comparison of

performance. The engagement begins with target and shooter at 6,000 meters altitude,

approximately 20,000 feet, and Mach 0.83. These values would be typical of an intruder

making a high altitude ingress to a target, and a combat air patrol (CAP) on station.

The cruise missile engagement is intended to demonstrate the interceptor's ability

to engage a low-altitude non-maneuvering target like the Tomahawk missile. The

AMRAAM is launched from the CAP station at the target, which is at 50 meters,

approximately 150 feet.

The maneuvering target engagement is the true test of missile performance. In

this scenario, the target initiates a 6 g turn or "jink" toward the missile three seconds prior

to impact. This turn toward the missile is most advantageous to the target as it forces the

missile to make a tighter turn and expend more energy to keep up with the target than a

turn away. The timing was chosen for two reasons. First, given that the missile will

activate its terminal radar between 5-7 seconds prior to impact, and the time required for

the target's sensors to detect the radar, alert the pilot, and have the pilot take evasive

action, the aircraft would be established in its maneuver about three seconds prior to

impact. Secondly, the missile's settling time is modeled to be 2.5 seconds, so a maneuver

at three seconds puts increased stress on the guidance law to keep up with the maneuver.

38

CANDIDATE GUIDANCE LAWS

Table 3.1 shows how the guidance laws were tested.

Guidance Law Non-maneuvering
co-altitude

Non-maneuvering
cruise missile

Maneuvering
co-altitude

PN, N'=3 X
PN, N =5 X X X
PN, N'=7 X X

VCPN with Vc X
VCPN no Vc X
Bang-bang X

DG X X
APN X X X

Table 3.1. Guidance Law Test Plan

The VCPN and bang-bang laws were tested to confirm earlier work by Swee in

his thesis [11].

D. NOISE STUDY

A study of the effect of seeker noise on missile performance was conducted using

the PN (N'=5) guidance law. The study was run at the 135-degree azimuth test point with

100 realizations. The standard deviations of the noise signals were as follows:

• Range 50 meters
• Closing velocity 2 meter/second
• Bearing 1 degree
• Bearing rate .01 degree/second

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

IV. COMPARISON AND ANALYSIS

A. PROPORTIONAL NAVIGATION LAWS

The PN guidance laws were tested to provide a baseline for comparison with the

other guidance laws. Figure 4.1 shows the kinematic boundaries for the three PN laws

against a non-maneuvering co-altitude target. Figure 4.2 shows the kinematic boundaries

against the co-altitude, maneuvering target described above. Figures 4.3 and 4.4 are

amplifications of the differences in performance of the three laws.

The N'=3 guidance law is the poorest performer of the three. While N'=3 has

been shown to be optimal for a non-maneuvering target, the effect of drag on the missile

is similar to a target maneuver along the line of sight. The discontinuities or "divots" in

the N'=3 boundary are caused by drag slowing the missile more rapidly on those attack

azimuths than others resulting in the missile slowing below the target's speed and

stopping the simulation.

Clearly, the N-5 law is an improvement for both scenarios. There is a slight

improvement between N'=5 and N'=l with a mean value of 315 meters for the non-

maneuvering case, and 1,749 meters for the maneuvering case. The improvement from

N'=3 to N'=5 has a mean value of 2,076 meters, non-maneuvering, and 7,555 meters

maneuvering. Because of the relatively poor performance of the N'=3 law, N'=5 will be

used as the comparison baseline for the other guidance laws.

Figure 4.5 is a comparison of the performance of the N'=5 law against a co-

altitude target and against a cruise missile target at 50 meters altitude. The omni-

directional reduction in range is due mainly to increased drag as the missile descends into

the heavier air at lower altitudes.
41

co in r^
n ii ii

ZZ2

1-

o
i^

Figure 4.1. Kinematic boundary comparison of proportional navigation laws vs. non-
maneuvering, co-altitude target at 6,000 meters and Mach 0.83.

42

<D
O) o r^ 10

CM 1-
O) c
© >

Figure 4.2. Kinematic boundary comparison of proportional navigation laws vs.
maneuvering, co-altitude target at 6,000 meters and Mach 0.83. Target maneuver was a 6

g turn toward the missile at tg0=3 seconds.

43

18000

16000

14000

-£ 12000
2
E 10000
a>

| 8000

^ 6000
CD
O)

2 4000

2000

0

-2000

Comparison of PN Performance vs. a Non-maneuvering Target

*H»^

— N'=5 vs N'=3
N'=7 vs N'=3

- N'=7 vs N'=5

Mean values
N'=5 vs N'=3 2,076 m
N'=7 vs N'=3 2,392 m
N =7 vs N'=5 325 m

20 40 60 80 100 120
attack azimuth (degrees)

140 160 180

Figure 4.3. PN law performance vs. non-maneuvering target.

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

x io4 Comparison of PN Performance vs. a Maneuvering Target

0

 N' =5 vs N' =3
N' =7 vs N' =5

 N" =7 vs N' =5

Mean values
N'=5 vs N'=3 7,555 m
N'=7 vs N'=3 9,305 m
N'=7vsN'=5 1,749 m

40 60 80 100 120
attack azimuth (degree)

140 160 180

Figure 4.4. PN law performance vs. maneuvering target.

44

Kinematic Boundary Comparison
PN (N'=5) vs Non-maneuvering and Cruise Missile Targets

90

Cruise Missile
Non-maneuvering

270

330

Figure 4.5. Kinematic boundary comparison of PN vs. non-maneuvering and cruise
missile targets.

45

B. VELOCITY COMPENSATED PN LAWS

The VCPN laws were tested as a continuation of Swee's thesis research [11]. A

PN law with a fixed navigation constant, angles only, no Vc information, was tested

against the non-maneuvering, co-altitude target. This simulates a guidance law like that

used by Sidewinder. The gain was computed with N'=5 and a fixed closing velocity of

750 meters per second. VCPN laws with and without Vc information are compared to

this law, and to PN with N'=5.

Figure 4.6 shows the kinematic boundaries for each of these laws. The VCPN

law without Vc information is clearly an improvement over the angles only PN law, while

the addition of Vc information to the VCPN law actually reduces the range. Since the

incorporation of Vc information also includes the deceleration of the missile along the

line of sight, the velocity compensation term adds nothing to the guidance law's

performance. Neither of the VCPN laws performed as well as the full PN law.

46

c
c.ü>
ro> jz

2?
1!
7 Szz

•~CL 0.
ZÜ o 7

i ;
Q.

1 { =

.52 >
(0 ö

ig
Uz

roo c •o> a

■B-o
CO fU

I!
Z

o
CM

4)

I-

3

C

o
Z

Figure 4.6. Kinematic boundary comparison of VCPN laws vs. a non-maneuvering,
co-altitude target at 6,000 meters and Mach 0.83.

47

C. BANG-BANG

The bang-bang guidance law was also tested as a continuation of Swee's

work.[ll] The bang-bang law is used throughout the engagement to determine the effect

of drag on its performance. As seen in Figure 4.7, bang-bang is clearly outperformed by

the baseline PN law. Because of the aerodynamic drag on the missile, the guidance law

must expend more energy in the end game when the line of sight angular rates begin to

increase. There is a synergistic effect: as the angular rate increases, the missile must turn

harder, generating more drag, which causes the angular rate to increase.

Note that the bang-bang law's performance is highly aspect dependent. The

enhancement in the target's forward hemisphere is most noticeable. The effect could be

useful in TBMD work where the goal is to place the interceptor ahead of the target.

Further, for an exo-atmospheric interception, the effect of drag on the bang-bang law

would be greatly reduced.

48

CO If

"?z
C -7

XI CL

O

09
E*
a
h-
as
c
£ >
a)
c
10
E ■
c
o z

o
to

Figure 4.7. Kinematic boundary comparison of the bang-bang law vs. a non
maneuvering, co-altitude target at 6,000 meters and Mach 0.83.

49

D. DIFFERENTIAL GAMES

The differential games law was tested against both the non-maneuvering and

maneuvering co-altitude targets. Figure 4.8 shows its performance against the non-

maneuvering target, and Figure 4.9 against the maneuvering target. In both cases the

performance showed no improvement over the baseline PN law.

This law is a modification of PN with scheduling of the navigation constant based

on the tracking filter's estimate of the target's total acceleration. It is clear that gain

scheduling is not sufficient to increase the kinematic boundary of the PN law.

50

E?
tö
t-

£
t c
o
2

Figure 4.8. Kinematic boundary comparison of the differential games law vs. a non-
maneuvering, co-altitude target at 6,000 meters and Mach 0.83.

51

CO

o
N.

3

c
(0

o
oo

Figure 4.9. Kinematic boundary comparison of the differential games law vs.
maneuvering, co-altitude target at 6,000 meters and Mach 0.83. Target maneuver was a 6

g turn toward the missile at tg0=3 seconds.

52

E. AUGMENTED PROPORTIONAL NAVIGATION

The APN law was tested against both the non-maneuvering and maneuvering, co-

altitude targets. Against the non-maneuvering target, the APN law's performance is

identical to the baseline PN law except for a small "divot" at 100 degrees. Figures 4.10

shows the results against the maneuvering target. The jagged boundary is an artifact of

the azimuthal resolution, and is smoothed out when the resolution is reduced to one

degree.

The APN law is clearly better in the target's rear hemisphere and forward of 60

degrees relative to the nose. In the forward quarter from 90 degrees to 60 degrees there is

a reduction in performance compared to the PN law. The mean improvement in the APN

law is 4.45 km for all aspects, 1.24 km in the forward 120 degrees, and 8.48 km in the

rear hemisphere.

Figure 4.11 shows the results of APN against the cruise missile target. The

kinematic boundary for the APN law is clearly smaller than PN law. Azimuth resolution

was reduced to 10 degrees for this comparison to keep the APN simulation under 48

hours in real time.

53

c
o
2

Q.JI
£2

>.Q-

o «?
CD »

S><

Figure 4.10. Kinematic boundary comparison of APN vs. maneuvering, co-altitude
target at 6,000 meters and Mach 0.83. Target maneuver was a 6 g turn toward the missile

at tg0=3 seconds.

54

Kinematic Boundary Comparison
APN and PN (N'=5)

90

180

150000'

210

270

PN
APN

Figure 4.11. Kinematic boundary of APN and PN vs. cruise missile target. Azimuth
resolution is 10 degrees.

55

F. NOISE STUDY

A study of the effects of noise on missile performance was conducted at the 135-

degree azimuth test point. Using the range for the kinematic boundary of the baseline PN

law, it was not possible to hit the target in 100 realizations. The test point was moved in

approximately 2 km to 45,500 meters and another 100 realizations were generated.

Figure 4.12 is a scatter plot of the x and y miss distances for the 100 realizations. Figure

4.13 is the distribution of the Euclidean miss distances. 92 percent of the samples were

within the required miss distance of 5 meters to be called hits.

Noise Study Scatter Plot
Y vs. Xmiss distances

-400 -300 -200 -100 0

x 10"3 Magnification around (0,0)

100

-0.005 0.005
meters

0.01 0.015 0.02

Figure 4.12. Scatter plot of x and y miss distances for a noisy seeker.

56

100

90

80

70

60

50

40

Noise Study Miss Distance Histogram
100 realizations

92% probability of hit

5 meter and less
range bin

50 100 150 200
Miss Distance (m)

250 300

Figure 4.13. Histogram of missile miss distances with a noisy seeker. 100 realizations.
Probability of hit is 92%.

57

G. TBMD DEMONSTRATION

Figure 4.14 is a demonstration of the 6DOF model's ability to simulate a TBM

interceptor. The target missile was launched from the equator on a northeasterly heading.

The range of this missile is approximately 400 km. The interceptor was launched from a

position 150 km north of the target launch site. The target's initial velocity vector, [vx vy

vj in ECI coordinates, was [1200 10 1000]. The velocity profiles for the target and

interceptor are shown in Figure 4.15. The interceptor was steered toward the target's

apogee for the first 30 seconds of flight, and then followed the baseline PN law to an

interception 2.2 meters ahead of the target. The plot is in ECI coordinates, the surface of

the earth is approximately the bottom grid. North is to the right.

58

x 10
Missile Engagement 22-Sep-2000 12:40

6.46-

6.44.

6.42

Ü
LU 6.4-

6.38-

6.36-
2

ECIY 1
x10

-——- r

i
,

_ j-

i

- *■ ~ j
_ - -H -

1 ./
""" !

----" V -
- - - - - -

 Interceptor
— Target

ECIZ
x 10

Figure 4.14. TBMD engagement by RTM-67 SM-2 (ER). Miss distance at intercept
was 2.2 meters.

1600

1400

1200-

1000

Missile and Target Velocity Profiles

Sustainer cutout interceptor
— target

CO

E.
>< 800

CD > 600

400

200

Booster staging at
10-11 seconds

SM-2 (ER)

0 10 20 30 40 50 60
time (seconds)

70 80 90

Figure 4.15. Interceptor and target velocity profiles for TBM demonstration.

59

THIS PAGE INTENTIONALLY LEFT BLANK

60

V. CONCLUSIONS AND FUTURE RESEARCH

A. CONCLUSIONS

The kinematic boundary is a natural, intuitive method of comparing the

performance of guidance laws. Its form is immediately recognizable to the warfighter,

and provides exactly the information required to make an informed decision as to which

guidance laws would be of operational value.

The VCPN laws showed the expected improvement over the fixed gain PN law,

and the VCPN law with range rate information did not perform as well as the VCPN law

without range rate information. Neither law performed as well as the baseline PN law.

The bang-bang law showed an unusual kinematic boundary with ranges in the target's

forward hemisphere greatly extended over the rear hemisphere. The aspect dependence

of this law and approximately 50 percent reduction in range throughout most of the

envelope make this law a poor choice for guidance from launch to intercept.

Under the conditions simulated here, an optimal control law, the augmented

proportional navigation law, will perform better than a proportional navigation law

r
throughout most of the kinematic boundary. Overall, the APN law's kinematic boundary

was 4.45 km better than the PN law, on average. In the forward 120 degrees, the average

improvement was 1.24 km and in the rear hemisphere, it was 8.48 km. This represents a

1.4 percent improvement over the PN law for head-on engagements, and a 25 percent

improvement for rear hemisphere engagements.

The 6DOF model has been demonstrated as a test platform for evaluating

guidance laws for use in the TBMD arena.

61

B. FUTURE RESEARCH

This work suggests several lines of future research. First, the guidance laws

tested here should be tested with a noisy seeker to determine the effect of noise on their

performance. Second, the full aerodynamic model designed here needs to be taken to the

point where it is fully operational. Third, the TBM simulation could be used to study the

effects of guidance law selection on the Navy's Linebacker^ TBMD capability. Fourth,

the models could be used for a comparison of the kinematic boundaries of other missiles

systems, particularly those that are potentially hostile to look for possible tactical

advantages. Finally, the models could be used to test new guidance laws that will be

developed future researchers.

62

APPENDIX A. SIMULINK® MODELS
The block diagrams in this appendix represent the four models used in this

research. Sub-blocks which are not changed from the simplified 6DOF model in later

models are not included with those models. The four models begin on the following

pages:

• Simplified 6DOF 64

• 6DOF with tracking filter 77

• Full aerodynamic model 81

• TBMD interceptor model 86

63

in

T—

is s
"5 3

§§
ipe S u '55 ^3 Q.

^ T 0 T7 C-
2 2 <S

5 5

™ * 5
g <5 "
6

ll 4°1 p

E

4 1- j " T £

j i i !
« *> » ;j i

F
i—

86J
1 s 1

-J v
 * X

~ *' 8
ts £ E

'S j — s
r? < &

" 6

1
3? a

W

s *
ö S
1 1
J: 5

s 1 1 I S

5 «o

73

£
(0
o>

j i. t
o " 1 — O j s £

i =

A s^
i2

B | «
1

i
1

E
r 5

SI
1

4^P
h 1 1
i

55
w §
«eg

JZ n *~
*- 3

Ü

3 Ü
O g

£ on
w —

in

JO
i 1 fc o f <o
i; | ;

es i K E.

If :
' £ !
1 2*

E «

c.

i'~ :

>a Ä
| <r ir t

*
1
j e»

: j Q

1
co J

«! ! 1 CO

1 T » 1
i | X.

.c: o

o
o

■f. J w- ■ i
I 1 CM

: CD c \ ™
E £

oS
a.

■ < .9- o | *
II) 1 £ 2 ffl o

a . i-n "" "■■ <5 f i a (D 1

£ £

Q. ♦ 4_

j

Figure A. 1. Simplified 6DOF model without tracking filter.

64

a ro
a

i_ eu
o p
« o

O

2
c
0)
O
a
u
o
U.

E
(B
C >.

■D
s
O <.

09

©"-
c o
ffl «-
O £
m O
© «<

,° © LL JK
... ©
.a ©

C TJ >» c
o TJ «
o
O 2f 2 E

< o
■DÜ
® «
x=*

11 o (0 o

—1

CM

i

1 r
t . ,.
=> 3
O O
m <D ra o>
a> <u
F E „L

o O N

■o
E

o
%
CM
in
J3
<a •** TO
E

CO
CO

Ö
CM

O o a
<?
Q.
<D

CO

•4 o
■D
<0

Figure A.2. Simplified 6D0F Aerodynamic Force Generator.

65

o
■o
o
S
«-<
sz
U)

a
o
S E

H OO
O

U.

(0

a
E

«>
O

a) (0
o o
o
en o
to s

o
1-

a
■a
a
E
a

«
a
x:

EC ra
to
Q.

£

o

cv
tn
.o
_co
IS
E

o
CM

o o o
CNi
Q.
a>

°? -4- o
T3

Figure A. 3. Simplified 6D0F Drag Model. Function blocks are DRAGINDUCED M
and DRAGTHESIS.M.

66

05
CD
«I
Q.

/">

re c >>
D

as

c
• 2
« I £
>.-! W
Qa8T3

Q > ° ffloi
tw o
«cO

■o
E
•f

'co
0) x:
H

|
CM
«3
.Q

'S
E

CO
Ö
CM

O o o
CSJ
Q.
<u

CO
I

o
T3
9i

Figure A.4. Flat Earth 6DOF missile dynamics.

67

\J > w

o r > ^_
c o
CD to °
«3 o X

CD
C)
CO a

ID
T!
0
E
u.
O
a
CO

t

m
u.
15
JJ
E
to
c >.
Q

»
CD

f-

■I CO

m c CO
Ü

E
CD

<°
ft*
< S c
2u_ "a

i L

CD
CM

I
CM
to
XI
CO

i k i k i A A L.

ro CO n CO] "55

n im
z4-

ca f £f i

V. IT 0

>' L-'r
> V.

•j]

to
CO

ö
CM

o o o
CM
a.

op
■4- o

c
Q.

Figure A.5. Internal missile dynamic model. SIXDOFDYN.M is the function block.

68

SB

to
Q.

CM CM

Ai CM

t i 5
3

CM ■a

A
04

CM

CQ c
<C°
H^ < =
2» LL

^>£>

o
c
c
ce
>

•= «
03 w

2«
= •1 8E

Q
Q.

■a
E

o

CM
in
x>
JO
15
E

CO

■o

« u.

£ o
£
JO
tt>
a

to
o
CM

O
O o
CM
a. a)
m
■4
o
■o
S
c
a.

Figure A.6. Aerodynamic moment feedback.

69

CD

/-\

3 a
£
o
ü
2 re a
<

S

«
£
t-

•D
E

o J
in n TO

Figure A.7.

o

o o o
OJ
a.

C0

Q.

Missile IMU and air data computer. Function blocks are Q2EULER M
and ALPHABETA.M.

70

a>

CL

E

o
%
CM

n jo *-*
OS

E

0> m
m

CO
CO
o
OJ

o o o
OJ

I
Q.
a>
W

i

o

to a s:
H

Figure A.8. Missile seeker model.

71

SS
01
CO c

<u

>

a
c <

m
a
tn

a) 1 \ .£
A>\ «»

1 n
m c 03 <°
< 3

!
m
'S ilL A

^u- JC

O)

1 r
CD c
<f o

<- 3

o
1

J=

Su. Q.

1
1 r a> r

> >
to >

5
3 5 •o 3 >

f) Q
•o

T3

Q

1» r V 1 r

•D

o
%
Cvl

«s

E

co

ö
CM

o o o
CVJ

ö.
03

cp
■*■ o
•o

Figure A.9. Gimbal angles and rates.

72

a
01
es
D.

m
K
a
a
c
en
K
"JS
o

J*
<D a

2?
_«
to «
»-

T3
E

•*—
a
m
a>

JZ
H
2£
O

CM
in
XI
to

CO
Ö
CM

o o o
c\i
a
CO

■a
B c
a.

Figure A. 10. Range, range rate, and time-to-go. Function block is TGO.M.

73

Q.

<r- I 1»

a
■u
o

01

a
t
is

I-

o o
to u

0)
3 >
£ a>

a» « (0
o> o to u c s re
OS 0 c

o
3 «0 o B5

1- ffl E
CO a

■a
E
eg
CO
a>

H

lO
TO

CO

o o o
CM

I a.
CD

op
4- o

Figure A. 11. Target dynamics model. Function block is DYNAMIC3D.M.

74

T—

T-

a>
O) ra
a.

i

"S"? — ra 2 <azz.si
cnJI SP • fe"C£ ™ »J:
tr *- "*""■ © O <U _c /~\ •£

Ti
m

e
m

an
ue

v
by

 s
w

itc
!

L

TO

E
10

"to x:

r< o x:
H ^.
o

- W

_t i L f.
Oi

"O <n
c X!

•S! O JO
Si." o p>a> <- ro b at ffi E o
lu . M

o CO

* R
at

e

et
s

th
e

ia
ns

 p
e

i,
se

t t
o ii

| (lit! C
3

E -gs3
cA ^ o = g
~il 1 OS x> a, <=
o'N- ro .2 TO o

i
i

o>l 1 +»» •C ^- H
■~_/ 1- c

j c 3
k.
3 | •-. -' «
E> «o
ra «3
fc «3
o

: "Ö ©
O o

1 5 o

© ÖL a> 0}

I °?
j fc C\l

£ •a
a m

i o
JZ

- c
t- Q.

Figure A. 12. Target turn generator. Switch threshold is set to 3 secon ds.

7 5

IB

o
%
CN
in n
nj

£

W

I I
I !
>

o
t

CO
CO
Ö
C\i

o o o
CN
D.

c/3

t-

■D
0)

Figure A.13. Target and missile velocity computation.

76

Figure A. 14. Simplified 6D0F model with filter.

77

CD
CD
to a.

o
%
CM

<0
£

©
E
o

g

o o o
Cvl
Q.
<B

CO
i

to o

I»

Figure A. 15. Accelerometer.

78

co
m

3
SL
E
o

CJ
a
<s a &.
<
«8
=>
S

E

o
%
CM

(0
E

W

0) © 3
1 w

I3§
Am

1 TO

< <-S<

CM

O
O
O
CM
ä a

op
in o

a x:
c
a.

Figure A. 16. IMU with additional outputs for tracking filter.

79

in
Q.

dLlli I oX T3
E

03

O
%
CM
in
S2 ro

SI

cs

O

S.
to o

o o o
<N

i
CL
CD

CO
iö
o

Figure A. 17. oc-ß-y tracking filter. Function block is ABGFILTER.M.

80

Figure A. 18. Full aerodynamic 6DOF model.

81

a>

010*0!

o

■
•5
a

T3
E
<i
M

I

I

to
co

o o o

<D

3
a.

Figure A. 19. Aerodynamic moment and force models. Function blocks are
ALPHABETA.M, AEROFORCES.M, and AEROMOMENTS.M.

82

a.
o
3

«
to
03

<0

CD
<0
Q.

O
£

CM
to
x>

ra
E

CO

o o o
<N
Q.
0)
w

Q.

Figure A.20. Full aero model autopilot.

83

Figure A.21. Full aero model 6DOF equations. Function blocks are EQNFORCE M
EQNMOMENT.M, EQNQUAT.M, and EQNPOS .M

84

o
(0

C5

'co
CO

|
CM m
to

CO
co

o
>1

O

(S

o
o
o
CM

t a.
a>

CO

0 & _c
a.

Figure A.22. Rate gyros.

85

Figure A.23. Simplified 6D0F TBMD interceptor simulation.

86

o
O)
(B

0) •a
o

3

fc
£ m

«

■o
S

tv
ID a m
"co
E

C«5
O

o o o
CM

a.
<B

CO

73

Figure A.24. TBM thrust model.

87

<a
o

•D

EG
H w

o

t s m
i-
.2
0)
0)

^r

o O

re ©
3 ■D >
F O a>

fe *J

tn TO
© © OT o O!
c (8

T3 H C
o

3 Ü « o
a»

4-i

.2 c
a»
£

DO Q

S X

CD

5|
Su-

w

a.
CO

o J
CM
m
n
as

p
od

o o o
CM
Q.
a>
co

Figure A.25. TBM target model. Function blocks are BALLISTDYN.M and
GRAVITY.M.

88

o
je a a
m
S
m
£
to a

o
en
CO a.

■D
E

l- »
to
03
x:

o
%
CM
in
JD ra
to
£

CO
o

o o o
CM i a.
<u

CO

Figure A. 26. TBM seeker model.

89

03

D.

JC o x: <D
CO c o = <° g

«3

B
lo

ck
 to

 s
w

it
st

ac
ke

d
m

is
s

ec
on

d
st

ag
e

5iZ ■o o

I i
£ c to
fiB-C

/
1 to

HE Fu
nc

t
fa

et
we

an

■D
E
5
CO

H
.12
k.

CN
in
X!
CD

Ü

1
to
'S
■c o
S
S m
t- _»
to
eg

m
o
CO

o o o
OJ
a. o

173

T3
0)

Figure A.27. TBM missile model switch. Function block is MODELSWITCH. M.

90

CO
IB a

°i ",

SIN «*> I
e.—I—e,—I—c, L

fTfff

"c
co .2

Hi *° a E

Li. (0 C
O c w

Q So

*:<» O
« £ O

"J OS
■a *• ft

Z E
IS* s
ü: P

■o
E
S
m

H
L. o

CN
in
J3
JS
IS
E

E
CB
C >>
Q
a
»

E
m
H
»

o
m

o o o
C\J

Q.
<U

CO

Figure A.28. TBM Missile Dynamics. Function block is GRAVTTY2.M.

91

THIS PAGE INTENTIONALLY LEFT BLANK

92

APPENDIX B. MATLAB® CODE

Filename Purpose
abgfilter.m implements alpha-beta-gamma filter
aeroforces.m aerodynamic forces for full aero model
aeromoments.m aerodynamic moments for full aero model
alphabeta.m angles of attack
auxplots.m plots auxiliary data for one simulation run
b2quat.m quaternions from a rotation matrix
bangpt.m bang-bang control law for 6DOF model
bryson.m DG control law
cdO.m parasitic drag coefficient
cdi.m induced drag coefficient
edvmach polyfit for cdi
chingfanlin APN guidance law
draginduced induced drag force
draginducedtbm induced drag force for TBM simulation
dragthesis parasitic drag force
dragthesistbm parasitic drag force for TBM simulation
drawmissile missile plan view
dynamic3d 3D target dynamics
eqnforce force dynamics for full aero model
eqnmoment moment dynamics for full aero model
eqnposit navigation equation for full aero model
eqnquat quaternion dynamics for full aero model
flatearthdyn 6DOF dynamics for flat earth model
formdrag computes form drag
gravity spherical earth gravity for TBM target
gravity2 spherical earth gravity for TBM interceptor
kbfilter kinematic boundary for filtered laws
kbouter2 kinematic boundary for unfiltered laws
machvalt computes Mach 1 at altitude
missiledata data for AMRAAM
missiledata2 data for JERGER
missiledata3 data for SM-2 MR
missiledata4 data for SM-2 ER
modelswitch switches models at staging in TBM simulation
noisestudy noise study with 100 realizations
propnav3d PN law for full aero model
propnavpt PN law for 6DOF model
propnavtbm PN law for TBM simulation

Table B. 1. Matlab® Source Code Listing.

93

Filename
q2euler
quat2b
quaternion
rhovalt
sixdofdyn
Spielberg
tgo
tgtset
thebigstop
thesis2plot
thesisinit
vcpropnavpt

 Purpose
computes euler angles from quaternions
computes rotation matrix from quaternions
computes quaternion from euler angles
computes atmospheric density
6DOF dynamics in ECI coordinates
movie maker
computes time to go
initializes target for AAM simulations
simulation stopper
plots data for thesis
initializes simulator
VCPN law

Table B. 1. Matlab® Source Code Listing (continued)

94

function y=abgfilter(u)
%ABGFILTER Implements an alpha-beta-gamma filter as
% outlined in Bar-Shalom & Li "Estimation and
% Tracking"
% see also
% Copyright 1999-2 000 by Triple B Enterprises

% I/** **************

%// File: abgfilter.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 19 July 2000
%// Description: Implements a 9-dimensional state vector
%// alpha-beta-gamma tracking filter for use with
%// missile guidance laws requiring tracking filters
%// Note: uses global XLAST to preserve state
%// between iterations
%// Inputs: measurements (los,los_dot,R,R_dot),
%// missile pos (x,y,z)
%// Outputs: 9-dimensional estimate of target state
%// [x,vx,ax,y,vy,ay,z,vz,az]'
%// Process: alpha-beta-gamma filter outlined in Bar-Shalom & Li
%// Assumptions:
%// Warnings: may require up to 20 samples to stabilize from
%// initialization
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**

% ****** define globals ******
global m d L XCG XCPN XCPW XCPB XHL
global ST SW SPLAN SREF FILTSAMP XLAST

% ****** define constants ******

% ****** define input vector ******
losdot=u(l);
phidot=u(2);
los=u(3);
phi=u(4);
rdot=u(5);
R=u(6);
xm=u(7)
ym=u(8)
zm=u(9)

95

% ****** initialize variables ******
% compute target cartesian coordinates
xt=R*cos(los)+xm;
yt=R*sin(los)+ym;
zt=R*sin(phi)+zm;

Z=[xt;yt;zt] ;

% set noise parameters
sigmav=l;
sigmaw=l;

lamda=sigmav*FILTSAMP'>2/sigmaw;-

% set filter parameters from Bar-Shalom &. Li
falpha=.9 ;
fbeta=.9;
fgamma=.9;

% filter matrices
F=[l FILTSAMP FILTSAMPA2/2 zeros(1,6);

0 1 FILTSAMP zeros(1,6);
00 1 zeros(1,6);
zeros(l,3) i FILTSAMP FILTSAMPA2/2 zeros(l,3);
zeros(1,4) i FILTSAMP zeros(1,3)•
zeros(1,5) i
ZerOS.\]"'t\ 1 FILTSAMP FILTSAMPA2/2;

FILTSAMP; zeros(1,7) 2
zeros(1,8)

H=[100000000;
000100000;
00000010 0]

zeros(1,3);
rSAM
CSAM
1];

% compute steady state gains
W= [falpha; fbeta/FILTSAMP; f gamma/ (2*FILTSAMP/S2)] ;

% build gain matrix
P=[W zeros(3, 2);

zeros(3,l) W zeros(3,l);
zeros(3,2) w] ;

% ************ functions ************

% run filter
xhat=F*XLAST;
xhatl=xhat+P*(z-H*xhat);

XLAST=xhatl;

y=xhatl;

%//end of file abgfilter.m

96

function y=aeroforces(u)
%AEROFORCES Computes aerodynamic forces on a missile.
% derived from Zarchan "Tactical and Strategic
% Missile Guidance" and Anderson "Fundamentals
% of Aerodynamics"
% see also AEROMOMENTS
% Copyright 1999-2000 by Triple B Enterprises

%l/****************** **

%// File: aeroforces.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 7 Sept 2000
%// Description: Computes aerodynamic forces for both subsonic
%// and supersonic regimes on a symmetrical STT
%// missile.
%// Inputs: missile state, control deflections, angles of attack
%// and rates
%// Outputs: Body centered aerodynamic force components [Fx,Fy,Fz]'
%// Process: Brute force computation of equations from Zarchan and
%// Anderson
%// Assumptions:
%// Warnings:
^//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
m /**

% ****** define globals ******
global m d L XCG XCPN XCPW XCPB XHL
global ST SW SPLAN SREF

% ****** define constants ******

% ****** define input vector ******
states=u(l:13);
delta_r=u(14);
delta_e=u(15);
thrust=u(16);
m_alpha=u(17);
m_beta=u(18);
alphadot=u(19) ;
betadot=u(20);

97

% ****** initialize variables ******
V_m=sqrt(u(4)A2+u(5)"2+u(6)"2);
Mach=V_m/machvalt (u (3)) ,-
M_BETA=sqrt (Mach^-l) ■
Q=rhovalt(u(3)) *V_jnA2/2;

% ************ functions ************

% compute normal coefficients
% these equations developed in Zarchan
if (Mach>1.05)

C_Naz=2+3*SPLAN*m_alpha/(2*SREF)...
+8*SW/(M_BETA*SREF)...
+8*ST/(M_BETA*SREF);

C_Ndz=8*ST/(M_BETA*SREF);
C_Nz=C_Naz *m_alpha+C_Ndz *delta_e;
C_Nby=2+3*SPLAN*m_beta/(2*SREF)...

+8*SW/(M_BETA*SREF)...
+8*ST/(M_BETA*SREF);

C_Ndy=8*ST/(M_BETA*SREF) ;
C_Ny=C_Nby*m_beta+C_Ndy*delta_r;

% these equations developed in Anderson
else

C_Nz=.5*m_alpha;
C_Ny=.5 *m_beta;

end

% missile velocity
% Mach number
% Beta factor
% dynamic pressure

% compute drag
CDO=cdO([states;thrust]); % drag
CDI=cdi([C_Nz,C_Ny,m_alpha,m_beta,u(3),V_m]); % coefficients

drag=(CDI+CDO)*Q*SREF;

% compute forces
F_x=0;%thrust-drag;
F_y=C_Ny*Q*SREF;
F_z=C_Nz*Q*SREF;

y=[F_x;F_y;F_z] ;

%//end of file aeroforces.m

98

function y=aeromoments(u)
%AEROMOMENTS Computes aerodynamic moments on a missile.
% derived from Zarchan "Tactical and Strategic
% Missile Guidance" and Anderson "Fundamentals
% of Aerodynamics"
% see also AEROFORCES
% Copyright 1999-2000 by Triple B Enterprises

%//**

%// File: aeromoments.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 7 Sept 2000
%// Description: Computes aerodynamic moments for both subsonic
%// and supersonic regimes on a symmetrical STT
%// missile. Note: Moment about x-axis is
%// negative feedback of roll rate to stop missile
%// from rolling.
%// Inputs: missile state, control deflections, angles of attack
%// and rates
%// Outputs: Body centered aerodynamic moments [Tx,Ty,Tz]'
%// Process: Brute force computation of equations from Zarchan and
%// Anderson
%// Assumptions:
%// Warnings:
a//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
<£//**

% ****** define globals ******
global m d L XCG XCPN XCPW XCPB XHL
global ST SK SPLAN SREF

% ****** define constants ******

% ****** define input vector ******
states=u(1:13);
delta_r=u(14)
delta_e=u(15)
m_alpha=u(16)
m_beta=u(17) ;
alphadot=u(18) ;
betadot=u(19);

99

% ****** initialize variables ******
V_m=sqrt(u(4)^u(5r2+u(6r2); % missile velocity
Mach=V_m/machvalt(u(3)); % Mach number
M_BETA=sgrt(Mach-2-l); % Beta factQr
Q=rhovalt(u(3))*V_m-2/2; % dynamic pressure

% ************ functions ************
% compute moment coefficients
% these equations developed in Zarchan
if Mach>1.05

C_My=2*(XCG-XCPN)/d...
+3*SPLAN*m_alpha*(XCG-XCPB)/(2*SREF*d)
+8*SW*(XCG-XCPW)/(M_BETA*SREF*d)
+ 8*ST*(XCG-XHL)/(M_BETA*SREF*d) ;

C_Mdy=8*ST*(XCG-XHL)/(M_BETA*SREF*d);
C_Mz=2*(XCG-XCPN)/d...

+3*SPLAN*m_beta*(XCG-XCPB)/(2*SREF*d)
+8*SW*(XCG-XCPW)/(M_BETA*SREF*d)...
+8*ST*(XCG-XHL)/(M_BETA*SREF*d);

C_Mdz=8*ST*(XCG-XHL)/(M_BETA*SREF*d);
% these equations developed in Anderson
else

C_My=.5; C_Mdy=.05;
C_Mz=.5; C_Mdz=.05;

end

T_x=-400*states(7);
T_y=(C_My*m_alpha+C_Mdy*delta_e)*Q*SREF*d-800*alphadot•
T_z=(-C_Mz*m_beta+C_Mdz*delta_r)*Q*SREF*d+800*betadot;'

y=[T_x;T^/;T_z];

%//end of file aeromoments.m

100

function y=alphabeta(u)
%ALPHABETA Computes angles of attack in both vertical
% and horizontal planes
% see also
% Copyright 1999-2000 by Triple B Enterprises

%//**

%// File: projX.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 31 July 2000
%// Description: Computes angles of attack using ATAN formulation
%// in Bryson "Control of Spacecraft and Aircraft"
%// Inputs: missile state
%// Outputs: angles of attack [alpha,beta]'
%// Process: ATAN formulation of Bryson
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**

% ****** define globals ******

% ****** define constants ******

% ****** define input vector ******
v=[u(4);u(5);u(6)];
% ****** initialize variables ******

^ ************ functions ************

% these equations developed in Bryson
% using betal for sideslip angle to avoid problems with
% built-in matlab fxn beta

alpha=atan2(v(3) , sqrt (v(l) /v2+v(2) Ä2)) ;
betal=atan2(v(2),v(1));

y= [alpha; betal] ,-

%//end of file alphabeta.m

101

%//**^^^^^^

%// File: auxplots.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 13 April 2000

%// Description: Plots auxiliary variables from missile simulations
%// Inputs: none
%// Outputs: plots of auxiliary variables
%// Process: none
%// Assumptions: none
%// Warnings: none
%//**^^^^^^^

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions

% ****** define globals ******

% ****** define constants ******

% ****** define input vector ******

% ****** initialize variables ******

% ************ functions ************
figure(4)
subplot(4,2,1)
plot(t,AccelOut/9.8045)
ylabel('AccelOut')
subplot(4,2,2)
plot(t,AlphaBeta)
ylabel('AlphaBeta')
subplot(4,2,3)
plot(t,eulers*57.3)
ylabel('eulers')
subplot(4,2,4)
plot(t,MissileV)
ylabel('MissileV)
subplot(4,2,5)
plot(t,AccelError)
ylabel('AccelError')
subplot(4,2,6)
plot(t,seeker)
ylabel('seeker')
subplot(4,2,7)
plot(t,deltas)
ylabel('deltas')
%//end of file auxplots.m

102

function y=b2guat(B)
%B2QUAT Computes quaternions from a rotation matrix
% B2QUAT(B)
% see also QUATERNION, BQÜÄT
% Copyright 1999-2000 by Triple B Enterprises

%//**

%// File: b2quat.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 12 Dec 1999
%// Description: Computes quaternions from ABC rotation matrix
%// using formulation of Kuiper "Quaternions and
%// Rotation Sequences"
%// Inputs: rotation matrix B
%// Outputs: quaternion [q0,ql,q2,q3]'
%// Process: Kuiper pp. 166-167
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%/f**.),*******************

% ****** define globals ******

% ****** define constants ******

% ****** define input vector ******

% ****** initialize variables ******

% ************ functions ************
q_0=sqrt((1+B(1,1)+B(2,2)+B(3,3))/4)
q_l=sqrt((1+B(1,1)-B(2,2)-B(3,3))/4)
q_2=sqrt((l-B(l/l)+B(2,2)-B(3,3))/4)
q_3=sqrt((1-B(1,1)-B(2,2)+B (3,3))/4)

a=(B(2,3)-B(3/2))/4
b=(B(3,l)-B(l,3))/4
C=(B(l,2)-B(2,l))/4
d=(B(l,2)+B(2,l))/4
e=(B(2,3)+B(3,2))/4
f=(B(l,3)+B(3,l))/4

103

if (a<0 & b<0 & c<0)
Q_0=-C3_0;

end
if (a<0 & d<0 & f<0)

Q_l=-q_l;
end
if (b<0 & d<0 & e<0)

Q_2=-q_2;
end
if (c<0 & e<0 & f<0)

q_3=-q_3;
end

y=[g_0;q_l;cL_2;q_3];

%//end of file b2quat.m

104

function y=bangpt(u)
%BANGPT Computes bang-bang control law for simplified
% 6D0F model
% see also PROPNAVPT, VCPROPNAVPT, BRYSON, CHINGFANLIN
% Copyright 1999-2000 by Triple B Enterprises

%//**

%// File: BANGPT.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 6 Aug 2000
%// Description: Bang-bang control law for 6D0F flight model.
%// Uses two values of bang depending on range to
%// reduce problems with drag at start of engagement.
%// -.005 rad/s dead band on los rate
%// Inputs: [seeker data,IMU data,timer]
%// Outputs: [command accelerations,applied forces]
%// Process: bang-bang control law
%// Assumptions: none
%// Warnings: none
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions

% ****** define globals ******
global m satflag

% ****** define constants ******
Nprime=5;
Nprimez=5;

% ****** define input vector ******
thetadot=u(l);
phidot=u(2);
los=u(3);
philos=u(4);
R=u(6) ;
Vc=-u(5);
heading=u(7);
Vm=u(8);
Vmdot=u(9);
phi=u(10);
theta=u(ll);
psi=u(12);
time=u(13);

105

% ****** initialize variables ******
% set max control force to 5 g (long range
% & 20 g (end game)
if (R>5000)

Nbang=5*9.8045;
else

Nbang=20*9.8045;
end

% ************ functions ************
% establish a dead band on theta dot
if (abs(thetadot)>.01*pi/180)

ny=Nbang*sign(Vc*thetadot);
else

ny=0;
end

nz=Nprimez*Vc*(phidot)-9.8045;

% control force limiter
if satflag

if (abs(ny)>30*9.8045)
ny=sign(ny)*30*9.8045;

end
if (abs(nz)>30*9.8045)

nz=sign(nz)*30*9.8045;
end

end

% compute ABC forces applied
Fx=0;
Fy=ny*m;
Fz=nz*m;

% output vector
y=[ny;nz;Fx;Fy;Fz];

%//end of file BANGPT.m

106

function y=bryson(u)
%BRYSON Computes optimal guidance law derived by Bryson & Ho
% with dragforce inputs for point mass simulation
% see also PROPNAVPT BANGPT CHINGFANLIN
% Copyright 1999-2000 by Triple B Enterprises
%//**

%// File: bryson.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack' 5
%// Compiler: MatLab v5.3
%// Date: 18 Sep 00
%// Description: Modified PN differential games guidance
%// law from Bryson & Ho
%// Inputs: Seeker outputs, filter outputs, missile timer
%// accelerometer output
%// Outputs: command accelerations, y and z forces for drag model
%// Process:
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**

% ****** define globals ******
global m satflag

% ****** define constants ******
Nprime=3;
Nprimez=3;

% ****** define input vector ******
thetadot=u(l);
phidot=u(2);
los=u(3);
philos=u(4);
R=u(6);
Vc=-u(5);
heading=u(7);
Vm=u(8);
Vmdot=u(9);
phi=u(10);
theta=u(ll);
psi=u(12);

m_state=u(13:21);
time=u(22);

accel_in=u(23:25);

107

% ****** initialize variables ******

% ************ functions ************
if time<2.0

ny=Nprime*Vc*(thetadot)/cos(psi-los) ;
nz=Nprimez*Vc*(phidot)/cos(theta-philos)-9.8045,

else
cp=30*9.8045;

ce_lat=sqrt(m_state(3)'"2+m_state(6)"2);

if (ce_lat==cp)
ce_lat=29*9.8045;

end

ce_vert=abs(m_state(9));

if (ce_vert==cp)
ce_vert=29*9.8045;

end

ny=3/(l-ce_lat/cp)*Vc*thetadot;
nz=3/(l-ce_vert/cp)*Vc*phidot-9.8045;

end

if satflag
if (abs(ny)>30*9.8045)

ny=sign(ny)*30*9.8045;
end
if (abs(nz)>30*9.8045)

nz=sign(nz)*30*9.8045;
end

end

Fx=0;
Fy=ny*m;
Fz=nz*m;

y=[ny;nz;Fx;Fy;Fz];

%//end of file bryson.m

108

function y=cdO(u);
% CDO Computes induced drag coefficient
%
% see also CDI
% Copyright 1999-2000 by Triple B Enterprises

%// File: cdO.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 9 May 00
%// Description: computes induced drag coefficient for full
%// aero model
%// Inputs: state, boost status
%// Outputs: drag coeffient
%// Process: polynomial fit to data from Hutchins EC4330 notes
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//***i*******4tÄAA + *iAit

% ****** define globals ******

% ****** define constants ******
NoBoost=[-0.0014 0.0299 -0.2110 0.6256];
Boost=[-0.0012 0.0243 -0.1521 0.4044];

% ****** define input vector ******
v=sgrt(u(4)'-2+u(5)/N2+u(6)/v2) ;
alt=u(3);

boost=u(14);

% ****** initialize variables ******
mach=v/machvalt(alt);

% ************ functions ************
if (mach>100)

mach=.83;
end

109

% these curves approximated from "typical" data presented
% in Stevens & Lewis and Hutchins

% compute CdO
if (boost & (mach<l))

y=.15;
end

if (-boost & (mach<l))
y=.25;

end

if ((mach>=l) & (boost~=0))
y=polyval(Boost,mach);

end

if ((mach>=l) & (boost==0))
y=polyval(NoBoost,mach) ;

end

if ((mach>5) & boost)
y=.io;

end

if ((mach>6.4) & -boost)
y=-132;

end

%//end of file cdO.m

110

function y=cdi(u)
%CDI Computes induced drag coefficient
% see also CDO
% Copyright 1999-2000 by Triple B Enterprises
%//**

%// File: cdi.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 18 Apr 00
%// Description: computed induced drag coefficient for full
%// aero model
%// Inputs: see below
%// Outputs: cdi
%// Process: Anderson
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**

% ****** define globals ******

% ****** define constants ******

% ****** define input vector ******
C_Nz=u(l);
C_Ny=u(2);
m_alpha=u(3);
m_beta=u(4) ;
alt=u(5);
v=u(6);
% ****** initialize variables ******
Mach=v/machvalt(alt);

% ************ functions ************
% these equations developed from Anderson
if (Mach>1.0)

M_BETA=sgrt(Mach~2-1);
Cdi= (4*m_alpha^2/M_BETA+4*m_beta/v2/M_BETA) ;

else
Cdi=(C_Ny/v2+C_Nz/v2) /pi;

end

y=Cdi;

%//end of file cdi.m

111

function y=cdvmach(mach,boost)
%CDVMACH Computes approximation of zero lift drag
% coefficient vs. mach number
% CDVMACH(MACH,BOOST)
% see also MACHVALT
% Copyright 1999-2 000 by Triple B Enterprises
%//***^^^^^^^

%// File: cdvmach.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 17 Apr 00
%// Description: computes polynomial fit for cdO vs Mach number
%// Inputs: mach # and boost status
%// Outputs: cdO
%// Process: Fit on data from Hutchins EC4330 notes
%// Assumptions:
%// Warnings:

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**^^^^^^

% ****** define globals ******

% ****** define constants ******
NoBoost=[-0.0014 0.0299 -0.2110 0.6256];
Boost=[-0.0012 0.0243 -0.1521 0.4044];

% ****** define input vector ******

% ****** initialize variables ******

% ************ functions ************
if (boost & (mach<l))

y=.15;
end

if (-boost & (mach<l))
y=-25;

end

if ((mach>=l) & (boost~=0))
y=polyval(Boost,mach);

end

if ((mach>=l) & (boost==0))
y=polyval(NoBoost,mach);

end

112

if ((mach>5) & boost)
y=.io;

end

if ((mach>6.4) & -boost)
y=.132;

end

%//end of file cdvmach.m

113

function y=chingfanlin(u)

%CHINGFANLIN Computes optimal guidance law derived by Ching Fan Lin pg.

% with dragforce inputs for point mass simulation
% see also EXACTPR0PNAV2
% Copyright 1999-2 000 by Triple B Enterprises

%// File: chingfanlin.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 15 Sep 00

%// Description: computes APN guidance law from Ching Fan Lin
%// Inputs: seeker output, filter output, accelerometer,
%// missile timer
%// Outputs: command accelerations, y and z forces for drag
%// Process:
%// Assumptions:
%// Warnings:
%//***^^^^^

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//***************************************1Ir**####ik4#itltik^#ititiri^#itiiri<t]t#i|p#

% ****** define globals ******
global m satflag
% ****** define constants ******
Nprime=3;
Nprimez=3;

% ****** define input vector ******
thetadot=u(l);
phidot=u(2);
10S=U(3);
philos=u(4);
R=U(6);
Vc=-u(5);
heading=u(7);
Vm=u(8);
Vmdot=u(9);
phi=u(10);
theta=u(ll);
psi=u(12);

tgt_state=u(13:21);
time=u(22);

accel_in=u(23:25);

114

% ****** initialize variables ******

% ************ functions ************
if (Vc==0)

tgo=le6;
else

tgo=R/Vc;
end
% compute relative state estimate
xhat=[R*cos(los);

R*sin(los);
R*sin(philos);
tgt_state(2)-Vm*cos(psi);
tgt_state(5)-Vm*sin(psi);
tgt_state(8)-Vm*sin(theta);
tgt_state(3)
tgt_state(6)
tgt_state(9)
accel_in(l);
accel_in(2);
accel_in(3)];

if time<2.0
ny=Nprime*Vc*(thetadot)/cos(heading-los);
nz=Nprimez*Vc*(phidot)-9.8045;

else
uc=(5/tgo/v2)*[eye(3) ,tgo*eye(3) , tgo/v2/2*eye (3) , zeros (3)]*xhat;
ny=uc(2);
nz=uc(3)-9.8045;

end

if satflag
if (abs(ny)>30*9.8045)

ny=sign(ny)*30*9.8045;
end
if (abs(nz)>30*9.8045)

nz=sign(nz)*30*9.8045;
end

end

Fx=0;
Fy=ny*m;
Fz=nz*m;

y=[ny;nz;Fx;Fy;Fz];

%//end of file chingfanlin.m

115

function y=draginduced(u)
%DRAGINDUCED Computes induced aerodynamic drag force

% see also
% Copyright 1999-2000 by Triple B Enterprises
%//***^^^^^^^^4^

%// File: draginduced.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 19 Sep 00
%// Description: computes induced drag for simplified 6DOF
%// Inputs: force output of guidance law, state
%// Outputs: drag force
%// Process: work backwards to CN from forces
%// Assumptions:
%// Warnings:

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**^^^^^^^^

% ****** define globals ******
global SREF m

% ****** define constants ******
eAR=1-5; % elliptical eff & AR

% ****** define input vector ******
Fy=u(2); % y force .
Fz=u(3>'- % z force
v2=u(7)-2+u(8)~2+u(9)-2; % missile velocity
alt=u(6); % missile alt

% ****** initialize variables ******
rho=rhovalt(abs(alt)); % atmospheric density
mach=sgrt(v2)/machvalt(alt); Y

Q=rho*v2/2; » ^ • ' % dynamic pressure

116

% ************ functions ************
if (Q==0)

Cny=0;
Cnz=0;

else
Cny=Fy/(Q*SREF); % y normal coefficient
Cnz=Fz/(Q*SREF); % z normal coefficient

end

Cdi=(Cny~2+CnzA2)/(pi*eAR); % induced drag coefficient

if (mach<l) % subsonic drag equal to
Cdi=.25*sqrt(Fy~2+FzA2)/(m*9.8045) ; % max CdO*applied G force

end

y=Cdi*Q*SREF; % drag force

%//end of file draginduced.m

117

function y=draginducedtbm(u)
%DRAGINDUCEDTBM Computes induced aerodynamic drag force
x>

% see also
% Copyright 1999-2000 by Triple B Enterprises
%//***^^^^^^^^^

%// File: draginducedtbm.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 19 Sep 00
%// Description: computes induced drag for TBMD simulation
%// Inputs: force output of guidance law, state
%// Outputs: drag force
%// Process: work backwards to CN from forces, corrects for ECI
%// Assumptions:
%// Warnings:

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//***^^^^^^^

% ****** define globals ******
global SREF m

% ****** define constants ******
eAR=1.5; % elliptical eff & AR

% ****** define input vector ******
*V=u(2); % y force
Fz=u(3><- % z force
v2=u(7)-2+u(8)-2+u(9)-2; % missile velocity
alt=sqrt(u(l)-2+u(2)-2+u(3)-2)-6371e3; % missile alt

% ****** initialize variables ******
rho=rhovalt(abs(alt)); % atmospheric density
mach=sqrt(v2)/machvalt(alt);
Q=rho*v2/2; % dynamic pressure

118

% ************ functions ************
if (Q==0)

Cny=0;
Cnz=0;

else
Cny=Fy/(Q*SREF); % y normal coefficient
Cnz=Fz/(Q*SREF); % z normal coefficient

end

Cdi=(Cny/s2+Cnz"2)/(pi*eAR) ; % induced drag coefficient

if (mach<l) % subsonic drag equal to
Cdi=.25*sqrt(Fy~2+FzA2)/(m*9.8045); % max CdO*applied G force

end

y=Cdi*Q*SREF; % drag force

%//end of file draginducedtbm.m

119

function y=dragthesis(u)
%DRAGTHESIS Computes aerodynamic drag force

% see also
% Copyright 1999-2000 by Triple B Enterprises
%//***^^^^^^^^^

%// File: dragthesis.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 19 Sep 00
%// Description: computes parasitic drag after breaking apart
%i I state vector
%// Inputs: state vector, boost status
%// Outputs: parasitic drag force
%// Process:
%// Assumptions:
%// Warnings:
%//***^^^^^^^^^

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//***^^^,t^ii^

% ****** define globals ******
global SREF

% ****** define constants ******

% ****** define input vector ******
vel2=u(4)"2+u(5)A2+u(6)A2;
alt=u(3);

boost=u(14) ;

% *****. initialize variables ******

% *******.♦».♦ functions ************
y=formdrag(SREF,alt,vel2,boost) ;

%//end of file dragthesis.m

120

%//**

%// File: drawmissile.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 31 May 00
%// Description: draws picture of current missile defined
%// by missiledata#.dat
%// Inputs:
%// Outputs:
%// Process:
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**

% ****** define globals ******

% ****** define constants ******
mgrey=[.5 .5 .5];
dgrey=[.75 .75 .75];

% ****** define input vector ****■*■■*■

% ****** initialize variables ******
nosex=[0 LN LN 0];
nosey=[0 d/2 -d/2 0];

bodyx=[LN L L LN LN];
bodyy=[d/2 d/2 -d/2 -d/2 d/2] ;

wingx=[LN+XW LN+XW+CRW LN+XW+CRW LN+XW+CRW-CTW LN+XW LN+XW];
wingy=[d/2 d/2 d/2+WXT+HW d/2+WXT+HW d/2+WXT d/2];

tailx=[L-CRT L L L-CTT L-CRT L-CRT];
taily=[d/2 d/2 d/2+TXT+HT d/2+TXT+HT d/2+TXT d/2];

CPEFF=(XCPN*AN+XCPB*AB+XCPW*SW+XHL*ST)/(AN+AB+SW+ST);

% compute time
time=rem(now,1);
hr=floor(time*24);
mins = floor(rem(time*24,1)*60) ;
timestr=[' '/num2str(hr),':',num2str(mins)];

121

% ************ functions ************
figure(10)
elf
hold on
axis equal
fill(nosex,nosey,'w')
fill(bodyx,bodyy,mgrey)
fill(wingx,wingy,dgrey)
fill(wingx,-wingy,dgrey)
fill(tailx,taily,dgrey)
fill(tailx,-taily,dgrey)
plot(XCG,0,'ko')
plot(XHL,0,'r*')
plot(CPEFF,0,'b*')

ie^nf!iSentef °f Gravity'''Hinge Line','Effective Center of Pressure'
title(['Missile Plan View ',date,timestr])
xlabel('meters')
ylabelf'meters')
hold off

%//end of file drawmissile, m

122

function y=dynamic3D(u)
%DYNAMIC3D Computes motion dymanics for a
% body in three dimensions
% see also
% Copyright 1999-2 000 by Triple B Enterprises
%//**

%// File: dynamic3d.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 16 Feb 00
%// Description: target motion dynamics
%// Inputs: target state, turn rate input
%// Outputs: derivative of target state
%// Process:
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%/Z**^,^.^

% ****** define globals ******

% ****** define constants ******

% ****** define input vector ******
omega=u(l);
x=u(2);
xdot=u(3);
y=u(4);
ydot=u{5);
z=u(6);
zdot=u(7);

% ****** initialize variables ******

% ************ functions ************
y=[xdot;

-omega*ydot;
ydot ;
omega*xdot
zdot ;
0];

%//end of file dynamic3d.m

123

function y=eqnforce(u)
%EQNFORCE Computes force dymanics for six degrees
% of freedom flat earth model
% see also
% Copyright 1999-2000 by Triple B Enterprises

%// File: eqnforce.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 10 May 00
%// Description: force dynamics for full aero model
%// Inputs: see below
%// Outputs: solution to force equation
%// Process:
%// Assumptions:
%// Warnings:
%//**^^^^^^^^

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions

% ****** define globals ******

% ****** define constants ******

% ****** define input vector ******
v_b=[u(l);u(2);u(3)];
F_B=[u(4);u(5);u(6)];
omega_b=[u(7);u(8);u(9)];
P=U(7); Q=u(8); R=U(9);

q=[u(10);u(ll) ;u(12);u(13)];

magq=sqrt(q(l)"2+q(2)"2+g(3)"2+q(4)A2);
q=q/magq;

% the ever lovin' force of gravity
% g=[u(14);u(15);u(16)];
% note we are not using an external gravity model here

g=[0;0;9.8045];

% and lest we forget, mass
m=u(17);

124

% ****** initialize variables ******

% ************ functions ************
% some heavy duty number crunching
% compute rotation matrices
B=quat2b(q);

OMEGA_B=[0 -R Q;
R 0 -P;

-Q P 0];

y=-l*OMEGA_B*v_b+B*g+(1/m)*F_B;

%//end of file egnforce.m

125

function y=eqnmoment(u)
%EQNMOMENT Computes moment dymanics for six degrees
% of freedom flat earth model
% see also
% Copyright 1999-2000 by Triple B Enterprises
%//*** ******^^^^^.t^

%// File: eqnmoment.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 11 Sep 00

%// Description: computes moment dynamics for full aero model
%// Inputs: see below
%// Outputs: see below
%// Process:
%// Assumptions:
%// Warnings:
%//***##t + ##i^#1,^^it#itik# + jb

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**^4^^^^

% ****** define globals ******
% ****** define constants ******
% ****** define input vector ******
omega_b=[u(l);u(2);u(3)];
P=U(1); Q=u(2); R=U(3);

% torques
T_B=[u(4);u(5);u(6)];

% inertial matrix
J=tu(7),0,0;

0,u(8),0;
0,0,u(9)];

% and lest we forget, mass
m=u(10);

% ****** initialize, variables ******
% ************ functions ************
% some heavy duty number crunching
OMEGA_B=[0 -R Q;

R 0 -P;
-Q P 0];

y=-l*inv(J)*OMEGA_B*J*omega_b+inv(J)*T_B;

%//end of file eqnmoment.m

126

function y=egnposit(u)
%EQNPOSIT Computes NED dymanics for six degrees
% of freedom flat earth model
% see also
% Copyright 1999-2000 by Triple B Enterprises
%//**

%// File: egnposit.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLabv5.3
%// Date: 10 May 00
%// Description: navigation equation for full aero model
%// Inputs: see below
%// Outputs: inertial velocities
%// Process:
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**

% ****** define globals ******

% ****** define constants ******

% ****** define input vector ******
v_b=[u(l);u(2);u(3)];

q=[u(4);u(5);u(6);u(7)];

% ****** initialize variables ******
magq=sgrt(q(l)"2+q(2)"2+q(3)~2+q(4)"2);
q=q/magq;

% ************ functions ************
% compute rotation matrices
B=quat2b(q);

y=B'*v_b;
%//end of file eqnposit.m

127

function y=eqnquat(u)
%EQNQUAT Computes quaternion dymanics for six degrees
% of freedom flat earth model
% , see also
% Copyright 1999-2000 by Triple B Enterprises

%// File: eqnquat.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 13 Sep 00
%// Description: computes quaternion dynamics for full aero model
%// Inputs: see below
%// Outputs: q_dot
%// Process:
%// Assumptions:
%// Warnings:

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions

% ****** define globals ******
% ****** define constants ******
% ****** define input vector ******
q=[u(l);u(2);u(3);u(4)];

omega_b=[u(5);u(6);u(7)]■
P=U(5); Q=U(6); R=u(7);

% ****** initialize variables ******
magq=sqrt(q(l)"2+q(2)^2+q(3)"2+q(4)"2);
q=q/magq;

% ************ functions ************
OMEGA_q=[0 P Q R;

-P 0 -R Q
-Q R 0 -P
-R -Q P 0];

q=-(1/2)*0MEGA_q*q;

magq=sqrt(q(l)'v2+q(2) A2+q(3)"2+q(4) A2) ;
if (magq~=0)

y=q/magq;
else

y=[l;0;0;0];
end

%//end of file eqnquat.m

128

function y=flatearthdyn(u)
%FLATEARTHDYN Computes motion dymanics for six degrees
% of freedom for a flat earth model
% see also
% Copyright 1999-2000 by Triple B Enterprises

%// File: flatearthdyn.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 1 Aug 00
%// Description: computes 6DOF dynamics for flat earth using
%// quaternion formulation
%// Inputs: see below
%// Outputs: derivative of state vector
%// Process: Stevens & Lewis
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions

****** define globals ****** *i

% ****** define constants ******

% ****** define input vector ******
p=[u(l);u(2);u(3)];
V_b=[u(4);u(5);u(6)];
omega_b=[u(7);u(8);u(9)];
P=u(7); Q=u(8); R=u(9);

q=[u(10);u(ll);u(12);u(13)] ;

magq=sqrt(q(l) ,N2+q(2) A2+q(3) "2+q(4) ^2) ;
q=q/magq;

x=[p;v_b;omega_b;q];

% inertial matrix
J=[u(14),0,0;

0,u(15),0;
0,0,u(16)];

% forces
F_B=[u(17);u(18);u(19)'];

129

% torques
T_B=[u(20);u(21);u(22)];

% the ever lovin' force of gravity
% note we are not using an external gravity model here

g=[0;0;9.8045] ;

% and lest we forget, mass
m=u(26);

% ****** initialize variables ******
% compute rotation matrices
B=quat2b(q);

OMEGA_B=[0 -R Q;
R 0 -P;

-Q P 0];

OMEGA_q=[0 P Q R;
-P 0 -R Q;
-Q R 0 -P;
-R -Q P 0];

% ************ functions ************
y=[zeros(3), B',

zeros(3), -OMEGA_B,
zeros(3), zeros(3),
zeros(4,3), zeros(4,3),

y=y*x;

y=y+[zeros(3,1);
B*g+(l/m)*F_B;
inv(J)*T_B;
zeros(4,1)] ;

%//end of file flatearthdyn.m

zeros(3), zeros(3,4);
zeros(3), zeros(3,4);

-l*inv(J)*OMEGA_B*J, zeros(3,4);
zeros(4,3), (-1/2)*0MEGA_q]■

130

function y=formdrag(A,alt,vel2,boost)
%FORMDRAG Computes form drag for a missile with frontal
% area A in a standard atmosphere
% FORMDRAG(A,ALT,VEL2,BOOST)
% uses MACHVALT,CDVMACH,RHOVALT
% see also
% Copyright 1999-2000 by Triple B Enterprises
%//**

%// File: formdrag.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 9 May 00
%// Description: Computes form drag for a missile with frontal
% area A in a standard atmosphere
%// Inputs: area, altitude, VA2, boost on/off
%// Outputs: parasitic drag force
%// Process:
%// Assumptions:
%// Warnings:

%// Order of elements
%// -Define globals
%'// -Define constants
%// -Define elements of input vector
%// -Functions
%//**vti***A#AAAAi.1tJt

% ****** define globals ******

% ****** define constants ******

% ****** define input vector ******

% ****** initialize variables ******
rho=rhovalt(alt);
mach=(vel2)A(l/2)/machvalt(alt);

% ************ functions ************
if (mach>100)

mach=.83;
end

Cd=cdvmach(mach,boost);

y=rho*vel2*Cd*A/2;

%//end of file formdrag.m

131

function y=gravity(u)
%GRAVITY Computes simple gravity model for 6D0F model
% see also
% Copyright 1999-2000 by Triple B Enterprises

%// File: gravity.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 19 Sep 00
%// Description: computes spherical earth gravity for TBM
%// target dynamics
%// Inputs: target state vector
%// Outputs: gravity vector
%// Process:
%// Assumptions:
%// Warnings:
%//**************************^^ + ^^^^^^^^^^^^

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions

3: ****** define globals ******

% ****** define constants ******
GM_E=3.9860014el4; % G*mass of earth

****** define input vector ******

% ****** initialize variables ******
mag=sqrt(u(1)"2+u(3)^2+u{5)A2);

% ****.»»*..,» functions ************
y=-(GM_E/mag-3)*[u(l);U(3);u(5)];

%//end of file gravity.m

132

function y=gravity2(u)
%GRAVITY2 Computes simple gravity model for 6D0F model
% see also
% Copyright 1999-2000 by Triple B Enterprises
%//**

%// File: gravity2.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 19 Sep 00
%// Description: computes spherical earth gravity model
%// for interceptor
%// Inputs: missile state vector
%// Outputs: gravity vector
%// Process:
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**

% ****** define globals ******

% ****** define constants ******
GM_E=3.9860014el4; % G*mass of earth

****** define input vector ******

% ****** initialize variables ******
mag=sgrt(u(l)/v2+u(2) A2+u(3)~2) ;

% ************ functions ************
y=-(GM_E/mag"3)*[u(l);u(2);u(3)];

%//end of file gravity2.m

133

%//**^^^^^^^

%// File: KBFILTER.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 7 Aug 00

6DOFDeSCriPti°n: Automatically computes a kinematic boundary using
%// simulator with tracking filter.
%// -Streamlined search loops
%// -Status indicator
%// -Saves most recent data to disk
%// -Derived from KBOUTER
%// Inputs: none
%// Outputs: one figure of kinematic boundary
%// Process: streamlined brute force search algorithm
%// Assumptions: none
%// Warnings: none
%//**^^^^^^^^

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Initialize variables
%// -Functions

% ****** define globals ******

% ****** define constants ******
thesisinit
% set min engagement range (10000 m default)
minrng=10000;
% set heading increment
degstep=5;

% ****** define input vector ******

% ****** initialize variables ******

maxhit=[]; minhit=[]■
load current
% set target altitude
tgtalt=init(3); % default co-altitude
% set target turn rate. default=0 degrees/sec
target_turn=0;
% set target speed
tgtmach=.83; % user sets Mach #

tgtspd=tgtmach*machvalt(tgtalt);% machine computes speed

134

% ************ functions ************
% start in tail chase step to head on by <degstep>
% degree increments
for heading=0:degstep:180

tic
plotcount=l; runplot=[]; rangemax=0;
heading % show heading counter
tgthdg=heading*pi/18 0;

% compute target speed components
xspd=tgtspd*cos(tgthdg);
yspd=tgtspd*sin(tgthdg);

% first range loop step by 10 km
for tgtrng=minrng:10000:150000

disp(['*** ',num2str(tgtrng),' ***'])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];
% initialize filter

XLAST=[tgtinit(l);tgtinit(2);0;tgtinit(3);tgtinit(4);0;tgtinit(5);tgtin
it(6);0];

% call simulation
sim('thesislfilt')

% analyze data from current run
range=sqrt((MissileOut(:,1)-TgtOut(:,1)).A2+...

(MissileOut(:,2)-TgtOut(:,3)).A2+...
(MissileOut(:,3)-TgtOut(:, 5)).A2) ;

% save run data
runplot(plotcount,:)=[min(range),tgtrng];
% score run
if (min(range)>5)

break
end
plotcount=plotcount+l ;

end

idx=find(runplot(:,1)<=5);
if(idx)

rangemax=runplot(max(idx) , 2);
end
runplot=[];
plotcount=l;

135

% 1 km step size for max range. Streamlining code
tgtrng=rangemax+1000;
disp(['*** ',num2str(tgtrng),' maxlk***'])
% set initial target state

tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0] ;
% initialize filter

?tt677o?rinit(i);tgtinit{2);o;tgtinit(3);tgtinit(4);o;tgtinit(5};tgtin

% call simulation
sim('thesislfilt')

% analyze data from current run
range=sqrt((MissileOut(:,1)-Tgt0ut(:,1)). A2+.

(MissileOut (:, 2) -TgtOut (:, 3)) . *2 +'. . .
(MissileOut(:,3)-TgtOut(:, 5)).A2) ;

if (min(range)<=5)
rangemax=tgtrng;
tgtrng=tgtrng+4000;
disp(['*** ',num2str(tgtrng),' maxlk***'])
% set initial target state
tgtinit=[tgtmg;xspd;0;yspd;tgtalt;0] ,-
% initialize filter

s^riigtinit(i);tgtinit(2);°;^^ 11 (b) ; ü J ;

% call simulation
sim('thesislfilt')

% analyze data from current run
range=sgrt((MissileOut(:,1)-TgtOut(:,1)).*2+.

(MissileOut(:,2)-TgtOut(:,3))."2+...
(MissileOut(:,3)-TgtOut(:, 5)) . *2) ;

if (min(range)<=5)
rangemax=tgtrng;

end
end
% main search loop 1km step size
for tgtmg=rangemax+1000:1000: (rangemax+4000)

disp(['*** ',num2str(tgtrng),' maxlk***'])
% set initial target state

tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];
% initialize filter

^^^^^^''^^^^'^''^^^^'•^^^^^'•^^^(SJ^gtin It (b) ; (J J ;

% call simulation
sim('thesislfilt')

136

% analyze data from current run
range=sqrt((MissileOut(:,1)-TgtOut(:,1)).Ä2+...

(MissileOut(:,2)-TgtOut(:,3)).A2+...
(MissileOut(:,3)-TgtOut(:, 5)).A2) ;

% save run data
runplot(plotcount,:)=[min(range),tgtrng];
% score run
if (min(range)>5)

break
end

plotcount=plotcount+l;
end

idx=find(runplot(:,1)<=5);
if(idx)

rangemax=runplot(max(idx),2);
end
runplot=[];
plotcount=l;

% 100 m step size for max range. Streamlined code.
tgtrng=rangemax+l0 0;
disp(['*** ',num2str(tgtrng),' maxlOO***'])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];
% initialize filter

XLAST=[tgtinit(l);tgtinit(2);0;tgtinit(3);tgtinit(4);0;tgtinit(5);tgtin
it(6);0];

% call simulation
sim('thesislfilt')

% analyze data from current run
range=sqrt((MissileOut(:,1)-TgtOut(:,1)). A2+...

(MissileOut(:,2)-TgtOut(:,3)).A2+...
(MissileOut(:,3)-TgtOut(:,5)).A2);

if (min(range)<=5)
rangemax=tgtrng;
tgtrng=tgtrng+400;
disp(['*** ' ,num2str(tgtrng) , ' maxlOO***'])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt; 0];
% initialize filter

XLAST=[tgtinit(1);tgtinit(2);0;tgtinit(3);tgtinit(4);0;tgtinit(5);tgtin
it(6);0];

% call simulation
sim('thesislfilt')

137

% analyze data from current run
range=sqrt((MissileOut(:,1)-TgtOut(:,1)).~2 +

(MissileOut(:,2)-TgtOut(:,3)) .~2+ . . .
(MissileOut(:,3)-TgtOut(:,5))."2);

if (min(range)<=5)
rangemax=tgtrng;

end
end

% main search loop 100 m

for tgtrng=rangemax+100:100:(rangemax+400)

disp(['*** ',num2str(tgtrng),' maxlOO***'])
% set initial target state

tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];
% initialize filter

xw?rmgtinit(i);tgtinitm
11 (fa) ; U J ;

% call simulation
sim('thesislfilt')

% analyze data from current run
range=sqrt((MissileOut(:,1)-TgtOut(:,1)).-2+

(MissileOut(:,2)-TgtOut(:,3)).~2+...
(MissileOut(:,3)-TgtOut(:,5)).~2) ;

% save run data

runplot(plotcount,:)=[min(range),tgtrng];
% score run
if (min(range)>5)

break
end

plotcount=plotcount+l;
end

idx=find(runplot(:,1)<=5);
if(idx)

rangemax=runplot(max(idx) , 2) ;
end
runplot=[] ;
plotcount = l ;

138

% 10 m step size for max range. Streamlined code
tgtrng=rangemax+10;
disp(['*** ',num2str(tgtrng),' maxlO***'])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt; 0] ;
% initialize filter

XLAST=[tgtinit(l);tgtinit(2);0;tgtinit(3);tgtinit(4);0;tgtinit(5);tgtin
it(6);0];

% call simulation
sim('thesislfilt')

% analyze data from current run
range=sgrt((MissileOut(:,1)-TgtOut(:,1))."2+...

(MissileOut(:,2)-TgtOut(: , 3)) . A2+...
(MissileOut(:,3)-TgtOut(:,5)).A2);

if (min(range)<=5)
rangemax=tgtrng;
tgtrng=tgtrng+40;
disp(['*** ',num2str(tgtrng),' maxlO***'])
% set initial target state
tgtinit=[tgtrng,-xspd;0;yspd;tgtalt;0] ;
% initialize filter

XLAST=[tgtinit(1);tgtinit(2);0;tgtinit(3);tgtinit(4);0;tgtinit(5) ;tgtin
it(6.);0];

% call simulation
sim('thesislfilt')

% analyze data from current run
range=sqrt((MissileOut(:,1)-TgtOut(:,1)) . "2+.. .

(MissileOut(:,2)-TgtOut(: , 3)) .Ä2+ . . .
(MissileOut(:,3)-TgtOut(:,5)).Ä2);

if (min(range)<=5)
rangemax=tgtrng;

end
end

% main search loop 10 m. Note, we are now computing the
% full output vector for each run.
for tgtrng=rangemax:10:(rangemax+40)

disp(['*** ',num2str(tgtrng),' maxlO***'])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];
% initialize filter

XLAST= [tgtinit (1) ; tgtinit (2) ; 0; tgtinit (3) ; tgtinit (4) ; 0; tgtinit (5) ; tgtin
it(6);0];

% call simulation
sim('thesislfilt')

139

% analyze data from current run
range=sqrt((MissileOut(:,1)-TgtOut(:,1)) .A2+...

(MissileOut(:,2)-TgtOut(:, 3)) . A2+...
(MissileOut(:,3)-TgtOut(:,5)).~2);
t=MissileOut(: ,14);

index=find(range==min(range));
ip=t(index(1));

% compute cost function J=20*e(tf)"2+integ(u"2)/200
% and missile divert
u2=(omegaout(:,1).A2+omegaout(:,2).A2);
integral=0;
for ii=2:index

integral=integral+(t(ii)-t(ii-l))*u2(ii-l)■
end

J=20*min(range)A2+integral/l000;

% save run data [miss dist,cost,divert,time,max range]
runplottplotcount,:)=[min(range),J,integral,ip,tgtrng]

if (min(range)>5)
break

end

plotcount=plotcount+l,-
end

idx=find(runplot(:,1)<=5) ;
if(idx)

rangemax=runplot(max(idx), 5) ;
end

if (isempty(idx))
maxhit(heading+1,:)=[0,0,0,0,0];

else

maxhit (heading+1, :) =runplot (max(idx) , .-) ■
end

runplot=[];
plotcount=l;

% save data to disk
save current maxhit
toe

% note for some guidance laws, the down step here
% must be 2 or more I

minrng=10000*(floor(rangemax/10000)-l);
if (minrng<=5000)

minrng=10000;
end

end

140

% plot it for me baby
rhol=maxhit(1:degstep:181, 5) ;
rhol=[rhol;flipud(rhol)] ;
theta=180:degstep:3 60;
theta=pi/180*theta;
theta=[theta,-l*fliplr(theta)]
figure(5)
polar(theta,rhol)

%//end of file KBOUTER.m

141

%//***^^^^^^^

%// File: KB0UTER2.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 7 Aug 00
%/^Description: Automatically computes a kinematic boundary using

%// simulator.
%// -Streamlined search loops
%// -Status indicator
%// -Saves most recent data to disk
%// -Derived from KBOUTER
%// Inputs: none
%// Outputs: one figure of kinematic boundary
%// Process: streamlined brute force search algorithm
%// Assumptions: none
%// Warnings: none
%//***^^^^^^

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Initialize variables
%// -Functions
%//***^^^^^^^„^^^^

% ****** define globals ******

% ****** define constants ******
thesisinit
% set target turn rate, default=0
target_turn=0;
% set min engagement range (10000 m default)
minrng=10000;
% set heading increment
degstep=5;

% ****** define input vector ******

% ****** initialize variables ******

maxhit=[]; minhit=[]■
load current
% set target altitude
tgtalt=50;%init(3); % default co-altitude

% set target speed
tgtmach=.83; % user sets Mach #

tgtspd=tgtmach*machvalt(tgtalt);% machine computes speed

142

% ************ functions ************
% start in tail chase step to head on by <degstep>
% degree increments
for heading=0:degstep:180

tic
plotcount=l; runplot=[]; rangemax=0;
heading % show heading counter
tgthdg=heading*pi/180;

% compute target speed components
xspd=tgtspd*cos(tgthdg) ;
yspd=tgtspd*sin(tgthdg) ;

% first range loop step by 10 km
for tgtrng=minrng:10000:150000

disp(['*** ',num2str(tgtrng),' ***-])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];

% call simulation
sim('Thesisl')

% analyze data from current run
range=sqrt((MissileOut(:,1)-Tgt0ut(:,1)).A2+...

(MissileOut(:,2)-TgtOut(:,3)). *2+...
(MissileOut(:,3)-TgtOut(:,5)).A2);

% save run data
runplot(plotcount,:)=[min(range),tgtrng];
% score run
if (min(range)>5)

break
end
plotcount=plotcount+l;

end

idx=find(runplot(:,1)<=5);
if(idx)

rangemax=runplot(max(idx),2);
end
runplot=[] ;
plotcount=l;

% 1 krr. step size for max range. Streamlining code
tgtrng=rangemax+1000;
disp(['*** ' ,r.um2str(tgtrng) , ' maxlk***'])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];

% call simulation
sim('Thesisl')

143

% analyze data from current run
range=sqrt((MissileOut(:,1)-Tgt0ut(:,1)).A2+.

(MissileOut(:,2)-TgtOut(:,3))."2+...
(MissileOut(:,3)-TgtOut(:,5)) .~2) ;

if (min(range)<=5)
rangemax=tgtrng;
tgtrng=tgtrng+4000;
disp(['*** ',num2str(tgtrng),' maxlk***'])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];

% call simulation
sim('Thesisl')

% analyze data from current run
range=sqrt((MissileOut(:,1)-TgtOut(:,1)).A2+.

(MissileOut(:,2)-TgtOut(:,3)) .A2+. . .
(MissileOut(:,3)-TgtOut(:,5)). ~2) ;

if (min(range)<=5)
rangemax=tgtrng;

end
end

% main search loop 1km step size
for tgtrng=rangemax+1000:1000:(rangemax+4000)

disp(['*** ',num2str(tgtrng) , ' maxlk***'])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];

% call simulation
sim('Thesisl')

% analyze data from current run
range=sqrt((MissileOut(:,1)-TgtOut(:,1)).A2+.

(MissileOut(:,2)-TgtOut(:,3)).A2+...
(MissileOut(:,3)-TgtOut(:,5)) .~2) ;

% save run data
runplot(plotcount,:)=[min(range),tgtrng];
% score run
if (min(range)>5)

break
end

plotcount=plotcount+l ;
end

idx=find(runplot(:,1)<=5);
if(idx)

rangemax=runplot(max(idx),2);
end
runplot=[];
plotcount=l;

144

% 100 m step size for max range. Streamlined code.
tgtrng=rangemax+100;
disp(['*** ',num2str(tgtrng),' maxlOO***'])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];

% call simulation
sim('Thesisl')

% analyze data from current run
range=sqrt((MissileOut(:,1)-TgtOut(:,1)). A2+...

(MissileOut(:,2)-TgtOut(:,3)).A2+. . .
(MissileOut(:, 3)-TgtOut(:,5)).Ä2) ;

if (min(range)<=5)
rangemax=tgtrng;
tgtrng=tgtrng+400;
disp(['*** ',num2str(tgtrng),' maxlOO***'])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];

% call simulation
sim('Thesisl')

% analyze data from current run
range=sqrt((MissileOut(:,1)-TgtOut(:,1)). ~2+.

(MissileOut(:,2)-TgtOut(:,3)).^2+...
(MissileOut(:,3)-TgtOut(:,5))."2);

if (min(range)<=5)
rangemax=tgtrng;

end
end

% main search loop 100 m
for tgtrng=rangemax+100:100:(rangemax+400)

disp(['*** ',num2str(tgtrng),' maxlOO***'])
% set initial target state
tgtinit= [tgtrng,-xspd; 0;yspd; tgtalt; 0] ;

% call simulation
sim('Thesisl')

% analyze data from current run
range=sgrt((MissileOut(:,1)-TgtOut(:,1)). A2+.

(MissileOut(:,2)-TgtOut(:,3)).Ä2+...
(MissileOut(:,3)-TgtOut(:, 5)).A2) ;

145

% save run data
runplot(plotcount,:)=[min(range),tgtrng];
% score run
if (min(range)>5)

break
end

plotcount=plotcount + l ;
end

idx=find(runplot(:,1)<=5);
if(idx)

rangemax=runplot(max(idx),2);
end
runplot=[];
plotcount=l;

% 10 m step size for max range. Streamlined code
tgtrng=rangemax+10;
disp(['*** ',num2str(tgtrng),' maxlO***'])
% set initial target state

tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];

% call simulation
sim('Thesisl')

% analyze data from current run
range=sqrt((MissileOut(:,l)-TgtOut(:/l)).-2+

(MissileOut(: , 2)-TgtOut(: ,3)) ."2+. .
(MissileOut(:,3)-TgtOut(:, 5)).-2) ;

if (min(range)<=5)
rangemax=tgtrng;
tgtrng=tgtrng+40;
disp(['*** ',num2str(tgtrng),' maxlO***'])
% set initial target state

tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];

% call simulation
sim('Thesisl')

% analyze data from current run
range=sqrt((MissileOut(:,1)-TgtOut(:,1)) -2+

(MissileOut(:,2)-TgtOut(:,3)).~2+.
(MissileOut(:,3)-TgtOut(:,5)).A2);

if (min(range)<=5)
rangemax=tgtrng;

end
end

146

% main search loop 10 m. Note, we are now computing the
% full output vector for each run.
for tgtrng=rangemax:10:(rangemax+40)

disp(['*** ',num2str(tgtrng),' maxlO***'])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];

% call simulation
sim('Thesisl')

% analyze data from current run
range=sqrt((MissileOut(:,1)-Tgt0ut(:,1)).A2+...

(MissileOut(:,2)-TgtOut(: , 3)) . A2+...
(MissileOut(:,3)-TgtOut(:,5)).A2);
t=MissileOut(:,14);

index=find(range==min(range));
ip=t (index(l)) ,•

% compute cost function J=20*e(tf)/v2+integ(uA2)/200
% and missile divert
u2=(omegaout(:,1).A2+omegaout(:,2).A2);
integral=0;
for ii=2:index

integral=integral+(t(ii)-t(ii-l))*u2(ii-l) ,-
end
J=20*min(range)A2+integral/1000;

% save run data [miss dist,cost,divert,time,max range]
runplot(plotcount,:)=[min(range),J,integral,ip,tgtrng];

if (min(range)>5)
break

end

plotcount=plotcount+l;
end

idx=find(runplot(:,1)<=5);
if(idx)

rangemax=runplot(max(idx) , 5) ;
end

if (isempty(idx))
maxhit(heading+1,:)=[0,0,0,0,0];

else
maxhit(heading+1,:)=runplot(max(idx),:);

end

runplot=[] ;
plotcount=l;

147

% save data to disk
save current maxhit
toe
% note for some guidance laws, the down step here
% must be 2 or more I
minrng=10000*(floor(rangemax/10000)-1) ;
if (minrng<=5000)

minrng=5000;
end

end

% plot it for me baby
rhol=maxhit(l:degstep:181,5);
rhol=[rhol;flipud(rhol)];
theta=180:degstep:360;
theta=pi/180*theta;
theta=[theta,-l*fliplr(theta)]
figure(5)
polar(theta,rhol)

%//end of file KBOUTER.m

148

function y=machvalt(alt)
%MACHVALT Computes linear approximation for a given
% altitude in meters/sec based on standard ICAO
% atmosphere
% MACHVALT(ALT)
% see also CDVMACH
% Copyright 1999-2000 by Triple B Enterprises
%//**

%// File: machvalt.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 8 Jun 00
%// Description: computes linear approximation to Mach 1 for
%// standard ICAO atmosphere
%// Inputs: altitude
%// Outputs: Mach 1
%// Process:
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**

% ****** define globals ******

% ****** define constants ******
Machl=[-.0041 340.3] ;
Mach2=295.1;
Mach3=[.00067 281.7];

% ****** define input vector ******

% ****** initialize variables ******
alt=abs(alt); % account for NED coords

% ************ functions ************
if (alt<11000)

y=polyval(Machl,alt);
else

if (alt>20000)
y=polyval(Mach3,alt);

else
y=Mach2;

end
end

%//end of file machvalt.m

149

%/Z**^,^^

>// File: missiledata.m
>// Name: LCDR Robert D. Broadston
■>// MSEE/EE Thesis
;// Operating Environment: Windows NT 4.0 Service Pack 5
■<// Compiler: MatLab v5.3
;// Date: 17 May 00
// Description: missile data for AMRAAM
// Inputs: none
// Outputs: various
// Process:
// Assumptions:
// Warnings:

%

i?;//***,^^

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//***^^^^^i^

% Establishes missile dimensions for use in computing
% Aerodynamic forces and moments
% Except where noted, all dimensions in MKS system

% Missile Name: PSEUDO AMRAAM

% ****** define globals ******
global m d L XCG XCPN XCPW XCPB XHL
global ST SW SPLAN SREF

% *****!

m=156.8
d=.1778
L=3.657
XCG=i.828
LN=.6769;
%

XHL=3.454
CRT=.4061
CTT=.0676
TXT=.0676
HT=.2286;

XW=1.134;
CRW=.3554;
CTW=0;
WXT=0;
HW=.1778;

define constants ******
 missile body dimensions

% mass, may be time varying
% diameter
% length
% initial e.g., may be time varying

% length of nose cone
 tailplane dimensions

% hinge line arm
% tail root chord
% tail tip chord
% tail extension
% tail height

 wing dimensions

% wing to radome tangency point
% wing root chord

% wing tip chord
% wing extension
% wing height

150

% ****** define input vector ******

% ****** initialize variables ******

% ************ functions ************
% centers of pressure
XCPN=.67*LN; % nose CP
XCPW=LN+XW+.7*CRW-.2*CTW; % wing CP
AN=.67*LN*d; % plan area of nose
AB=(L-LN)*d; % plan area of body
XCPB=(.67*AN*LN+AB*(LN+.5*(L-LN)))/... % body CP

(AN+AB);
% area computation
SW=.5*HW*(CTW+CRW)+CRW*WXT; % wing area
ST=.5*HT*(CTT+CRT)+CRT*TXT; % tail area
SPLAN=(L-LN)*d+.67*L*d; % body and nose plan area
SREF=pi*d~2/4; % missile cross section

% compute the inertial matrix
r=d/2;
Jx=m*rA2/2;
Jy=m* (LÄ2/12+rÄ2/4) +m* (L/2-XCG) "2;
Jz=Jy;

%//end of file missiledata.m

151

%//***^,t,t4^iti^^^

%// File: missiledata2.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 12 Apr 00

%// Description: missile data for Jerger missile from Zarchan
%// Inputs: none
%// Outputs: various
%// Process:
%// Assumptions:
%// Warnings:

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//******* ** ***vt**,lri,^^^.t

% Establishes missile dimensions for use in computing
% Aerodynamic forces and moments
% Except where noted, all dimensions in MKS system

% Missile Name: JERGER

% ****** define globals ******
global m d L XCG XCPN XCPW XCPB XHL
global ST SW SPLAN SREF

% ****** define constants ******
% missile body dimensions
m=454.5444; % mass, may be time varying
d=.3048; % diameter
L=6.096; % length
XCG=3.048; % initial e.g., may be time varying
LN=.9144; % length of nose cone
% tailplane dimensions
XHL=5.9436; % hinge line arm
CRT=.6096; % tail root chord
CTT=.0; % tail tip chord
TXT=.0; % tail extension
HT=.6096; % tail height
% wing dimensions
XW=1.2192; % wing to radome tangency point
CRW=1.8288; % wing root chord
CTW=0<' % wing tip chord
WXT=0; % wing extension
HW=.6096; % Wing height

152

****** define input vector ******

****** initialize variables ******

% ************ functions ************
% centers of pressure
XCPN=.67*LN; % nose CP
XCPW=LN+XW+.7*CRW-.2*CTW; % wing CP
AN=.67*LN*d; % plan area of nose
AB=(L-LN)*d; % plan area of body
XCPB=(.67*AN*LN+AB*(LN+.5*(L-LN)))/... % body CP

(AN+AB);
% area computation
SW=.5*HW*(CTW+CRW)+CRW*WXT; % wing area
ST=.5*HT*(CTT+CRT)+CRT*TXT; % tail area
SPLAN=(L-LN)*d+.67*L*d; % body and nose plan area
SREF=pi*dA2/4; % missile cross section

% compute the inertial matrix
r=d/2;
Jx=m*r~2/2;
Jy=m*{LA2/12+rA2/4) ;
Jz=Jy;

%//end of file missiledata2 .m

153

%//***^^^^^^^

%// File: missiledata3.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 25 Aug 00
%// Description: computes missile data for SM-2 MR
%// Inputs: none
%// Outputs: various
%// Process:
%// Assumptions:
%// Warnings:
%//***it***i,iti,ilicic^^ir^ic^irir^it

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**#^^^^^

% Establishes missile dimensions for use in computing
% Aerodynamic forces and moments
% Except where noted, all dimensions in MKS system

% Missile Name: STANDARD RIM-67 MR

% ****** define globals ******
global m d L XCG XCPN XCPW XCPB XHL
global ST SW SPLAN SREF

% ****** define constants ******
% missile body dimensions
m=621; % mass, may be time varying
d=.343; % diameter
L=4.554; % length
XCG=2.205; % initial e.g., may be time varying
LN-.728; % length of nose cone
% tailplane dimensions
XHL=4.351; % hinge line arm
CRT=.356; % tail root chord
CTT=.127; % tau tip chord
TXT=-0'" % tail extension
HT=-.383; % tail height
* wing dimensions
XW=1-12; % wing to radome tangency point
CRW=2.314; % Wing root chord
CTW=1.93; % Wing tip chord
WXT=0; % wing extension
HW=-142'- % wing height

154

% ****** define input vector ******

% ****** initialize variables ******

% ************ functions ************
% centers of pressure
XCPN=.67*LN; % nose CP
XCPW=LN+XW+.7*CRW-.2*CTW; % wing CP
AN=.67*LN*d; % plan area of nose
AB=(L-LN)*d; % plan area of body
XCPB=(.67*AN*LN+AB*(LN+.5*(L-LN)))/... % body CP

(AN+AB) ;
% area computation
SW=.5*HW*(CTW+CRW)+CRW*WXT; % wing area
ST=.5*HT*(CTT+CRT)+CRT*TXT; % tail area
SPLAN=(L-LN)*d+.67*L*d; % body and nose plan area
SREF=pi*d/v2/4; % missile cross section

% compute the inertial matrix
r=d/2;
Jx=m*r~2/2;
Jy=m* (1^2/12+^2/4) ;
Jz=Jy;

%//end of file missiledata3.m

155

%//************************

***,

%//
%//
%//
%//
%//
%//
%//
%//
%//
%//
%//
%//

File: missiledata4.m
Name: LCDR Robert D. Broadston
MSEE/EE Thesis
Operating Environment: Windows NT 4.0 Service Pack 5
Compiler: MatLab v5.3
Date: 19 Sep 00
Description: computes missile data for SM-2 ER
Inputs: none
Outputs: none
Process:
Assumptions:
Warnings:

Jfc//***^,^

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%/Z**,^,^,.,^^^

% Establishes missile dimensions for use in computing
% Aerodynamic forces and moments
% Except where noted, all dimensions in MKS system

% Missile Name: STANDARD WITH BOOSTER

% ****** define globals ******
global m d L XCG XCPN XCPW XCPB XHL
global ST SW SPLAN SREF

****** define constants ******
%
m=1680;
d=.343;
L=7.976;
XCG=3.987;
LN=.728;
%
XHL=7.6;
CRT=.75;
CTT=.3;
TXT=.0;
HT=.65;
%
XW=1.12;
CRW=2.7;
CTW=2.5;
WXT=0;
HW=.151;

missile body dimensions
% mass, may be time varying
% diameter

% length
% initial e.g., may be time varying

% length of nose cone
tailplane dimensions

% hinge line arm
% tail root chord

% tail tip chord
% tail extension
% tail height

— wing dimensions
% wing to radome tangency point

% wing root chord
% wing tip chord

% wing extension
% wing height

156

% ****** define input vector ******

% ****** initialize variables ******

% ************ functions ************
% centers of pressure
XCPN=.67*LN; % nose CP
XCPW=LN+XW+.7*CRW-.2*CTW; % wing CP
AN=.67*LN*d; % plan area of nose
AB=(L-LN)*d; % plan area of body
XCPB=(.67*AN*LN+AB*(LN+.5*(L-LN)))/... % body CP

(AN+AB);
% area computation
SW=.5*HW*(CTW+CRW)+CRW*WXT; % wing area
ST=.5*HT*(CTT+CRT)+CRT*TXT; % tail area
SPLAN=(L-LN)*d+.67*L*d; % body and nose plan area
SREF=pi*d"2/4; % missile cross section

% compute the inertial matrix
r=d/2;
Jx=m*r~2/2;
Jy=m*(L"2/12+rA2/4) ;
Jz=Jy;

%//end of file missiledata4.m

157

function y=modelswitch(u)
%MODELSWITCH Switches missile models to simulate
% staging for TBM interceptor demo
% MODELSWITCH(T)
% see also
% Copyright 1999-2000 by Triple B Enterprises

%// File: modelswitch.m
%// Name: LCDR Robert D. Broads ton
%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 19 Sep 2000

%// Description: Switches between interceptor with booster
%// and without booster for TBM demo
%// Inputs: simulation time
%// Outputs: none
%// Process: none
%// Assumptions:
%// Warnings:
%//**^^^^^i^^^^

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**„*^^^^^^^^^#^

% ****** define globals ******

% ****** define constants ******

% ****** define input vector ******

% ****** initialize variables ******

% ************ functions ************
if (u>10.5)

missiledata3;
else

missiledata4;
end

%// end of file modelswitch.m

158

%//**■************

%// File: noisestudy.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 19 Sep 00
%// Description: performs noise study using modified AAM model
%// thesisnoise.mdl
%// Inputs:
%// Outputs:
%// Process:
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**

% ****** define globals ******

% ****** define constants ******

% ****** define input vector ******

% ****** initialize variables ******
% initialize simulation
thesisinit
% initialize variables
holdränge=[];
holdpos=[];
% initialize target
tgtinit=tgtset(42190,6000,45);
tic

159

% ************ functions ************
% 100 realizations
for numloops=l:100

disp(numloops)
sim('thesisnoise')
% analyze data from current run
range=sqrt((MissileOut(:,1)-Tgt0ut(:,1)). ~2 +

(MissileOut(:,2)-TgtOut(:, 3)) .~2+. '. .
(MissileOut(:,3)-TgtOut(:,5)).~2);

disp(min(range))
holdrange(numloops)=min(range);
idx=find(range==min(range));
holdpos(numloops,:)=MissileOut(idx,1:3)-TgtOut(idx,1•2•5)•

end ' '

missdistance=mean(holdrange)
sigmadistance=std(holdrange)

figure(5)
plot3(holdpos(:,1),holdpos(:,2),holdpos(:,3), '*')

%//end of file noisestudy. m

160

func t i on y=propnav3 D(u)
%PR0PNAV3D Computes exact proportional navigation
% in three dimensions for full aero model
% see also EXACTPR0PNAV2
% Copyright 1999-2000 by Triple B Enterprises
%//**

%// File: propnav3d.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 12 Sep 00
%// Description: 3D prop nav law for full aero model
%// Inputs: seeker output
%// Outputs: command accelerations
%// Process:
%// Assumptions:
%// Warnings:

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions

% ****** define globals ******
global satflag

% ****** define constants ******
Nprime=5;
Nprimez=5;

% ****** define input vector ******
thetadot=u(l);
phidot=u(2);
los=u(3);
philos=u(4);
R=u (6) ;
Vc=-u(5);
heading=u(7);
Vm=u(8);
Vmdot=u(9);
phi=u(10);
theta=u(ll);
psi=u(12);
time=u(13) ;

161

% ****** initialize variables ******

% ************ functions ************
ny=Nprime*Vc*(thetadot)/cos(psi-los);
nz=Nprimez*Vc*(phidot)-9.8045;

% control force limiter
if satflag

if (abs(ny)>30*9.8045)
ny=sign(ny)*30*9.8045;

end
if (abs(nz)>30*9.8045)

nz=sign(nz)*30*9.8045;
end

end

y=[ny;nz];

%//end of file propnav3d.m

162

function y=propnavpt(u)
%PROPNAVPT Computes exact proportional navigation
% with dragforce inputs for point mass simulation
% see also EXACTPR0PNAV2
% Copyright 1999-2000 by Triple B Enterprises

%//**

%// File: PROPNAVPT.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 24 May 2000
%// Description: Proportional navigation guidance law for 6DOF
%// flight model. Computes applied forces for use
%// by induced drag model. Required to eliminate
%// algebraic loops in the simulation
%// Inputs: [seeker data,IMU data,timer]
%// Outputs: [command accelerations,applied forces]
%// Process: proportional navigation law
%// Assumptions: none
%// Warnings: none

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**

% ****** define globals ******
global m satflag

% ****** define constants ******
Nprime=5;
_Nprimez=5;

% ****** define input vector ******
thetadot=u(l);
phidot=u(2) ,-
los=u(3);
philos=u(4) ,-
R=u(6) ;
Vc=-u(5);
heading=u(7);
Vm=u(8);
Vmdot=u(9);
phi=u(10);
theta=u(ll) ,-
psi=u(12); v

time=u(13);

163

% ****** initialize variables ******

% ************ functions ************
% classic PN guidance law
ny=Nprime*Vc*(thetadot)/cos(psi-los) ;
% vertical acceleration must account for gravity
nz=Nprimez*Vc*(phidot)/cos(theta-philos)-9.8045;

% control force limiter
if satflag

if (abs(ny)>30*9.8045)
ny=sign(ny)*30*9.8045;

end
if (abs(nz)>30*9.8045)

nz=sign(nz)*30*9.8045;
end

end

% compute ABC forces applied
Fx=0;
Fy=ny*m;
Fz=nz*m;

% output vector
y=[ny;nz;Fx;Fy;Fz];

%//end of file PROPNAVPT.m

164

func t i on y=propnavtbm(u)
%PROPNAVTBM Computes exact proportional navigation
% with dragforce inputs for point mass simulation
% see also EXACTPR0PNAV2
% Copyright 1999-2000 by Triple B Enterprises

%//**

%// File: PROPNAVTBM.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 24 May 2000
%// Description: Proportional navigation guidance law for 6DOF
%// flight model. Computes applied forces for use
%// by induced drag model. Required to eliminate
%// algebraic loops in the simulation
%// Inputs: [seeker data,IMU data,timer]
%// Outputs: [command accelerations,applied forces]
%// Process: proportional navigation law
%// Assumptions: none
%// Warnings: none
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**

% ****** define globals ******
global m satflag

% ****** define constants ******
Nprime=5;
Nprimez=5;

% ****** define input vector ******
thetadot=u(l) ,-
phidot=u(2);
los=u(3);
philos=u(4);
R=u(6);
Vc=-u(5);
heading=u(7);
Vm=u(8);
Vmdot=u(9);
phi=u(10);
theta=u(ll) ,-
psi=u(12);
time=u{13);

165

% ****** initialize variables ******

% ************ functions ************
% classic PN guidance law
ny=Nprime*Vc*(thetadot);
% vertical acceleration
nz=Nprimez*Vc*(phidot);

% control force limiter
if satflag

if (abs(ny)>30*9.8045)
ny=sign(ny)*30*9.8045;

end
if (abs(nz)>30*9.8045)

nz=sign(nz)*30*9.8045;
end

end

% compute ABC forces applied
Fx=0;
Fy=ny*m;
Fz=nz*m;

% output vector
y=[ny;nz;Fx;Fy;Fz];

%//end of file propnavtbm.m

166

function y=q2euler(u)
%Q2EULER Computes Euler angles from quaternions
% see also ALPHABETA
% Copyright 1999-2000 by Triple B Enterprises
%//**

%// File: q2euler.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 6 Apr 00
%// Description: computes euler angles from quaternions
%// Inputs: quaternion
%// Outputs: euler angles
%// Process: Kuiper
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions

% ****** define globals ******
% ****** define constants ******
% ****** define input vector ******
q0=u(l)
ql=u(2)
q2=u(3)
q3=u(4)

% ****** initialize variables ******
% ************ functions ************
% convert quaternions to Euler angles
mll=2*q0A2+2*ql^2-l;
ml2=2*ql*q2+2*q0*q3
ml3=2*ql*q3-2*q0*q2
m23=2*q2*q3+2*q0*ql
m33=2*q0A2+2*q3^2-l

psi=atan2(ml2,mil);
theta=asin(-ml3);
% correct for singularity in pitch
if (isreal(theta))

theta=theta;
else

theta=sign(-ml3)*pi/2;
end
phi=atan2(m23,m33);
y= [phi,theta,psi];
%//end of file q2euler.m

167

function y=quat2b(y)
%QUAT2B Computes rotation matrix from quaternions
% QUAT2B(Y)
% see also QUATERNION, B2QUAT
% Copyright 1999-2000 by Triple B Enterprises
%//***^^^^^^^^^

%// File: quat2b.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 8 Dec 99
%// Description: computes rotation matrix from quaternions
%// Inputs: quaternion
%// Outputs: rotation matrix B
%// Process: Kuiper
%// Assumptions:
%// Warnings:
%//***^^^^^^^^^

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//***^^^^^^^^^

% ****** define globals ******

% ****** define constants ******

% ****** define input vector ******
q0=y(l)
ql=y(2)
q2=y(3)
q3=y(4)

% ****** initialize variables ******

% ************ functions ************

y=[q0-2+ql-2-q2-2-q3-2, 2*(ql*q2+q0*q3), 2*(ql*q3-q0*q2)•
2*(ql*q2-q0*q3), q0-2-ql-2+q2~2-q3-2, 2*(q2*q3+q0*ql)•
2*(ql*q3+q0*q2), 2*(q2*q3-q0*ql), q0Ä2-ql-2-q2Ä2+q3-2];

%//end of file quat2b.m

168

function y=quaternion(phi,theta,psi)
. %QUATERNION Computes quaternions from Euler angles

% QUATERNION(PHI,THETA,PSI)
% see also B2QÜAT
% Copyright 1999-2000 by Triple B Enterprises
%//**

%// File: quaternion.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 8 Aug 00
%// Description: computes quaternion from euler angles
%// Inputs: euler angles
%// Outputs: quaternion
%// Process: Kuiper
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**

% ****** define globals ******

% ****** define constants ******

% ****** define input vector ******

% ****** initialize variables ******
q0=cos(phi/2)*cos(theta/2)*cos(psi/2)+...

sin(phi/2)*sin(theta/2)*sin(psi/2);

ql=sin(phi/2)*cos(theta/2)*cos (psi/2) - . . .
cos(phi/2)*sin(theta/2)*sin(psi/2);

q2=cos(phi/2)*sin(theta/2)*cos(psi/2)+...
sin(phi/2)*cos(theta/2)*sin(psi/2);

q3=cos(phi/2)*cos(theta/2)*sin(psi/2)-...
sin(phi/2)*sin(theta/2)*cos(psi/2);

% ************ functions ************
y=[q0;ql;q2;q3];

%//end of file quaternion.m

169

function y=rhovalt(alt)
%RHOVALT Computes atmospheric density vs altitude
% for ICAO standard atmosphere
% RHOVALT(ALT)
% see also MACHVALT,CDVMACH
% Copyright 1999-2000 by Triple B Enterprises
%//**^^^^^i^^^

%// File: rhovalt.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 8 Jun 00
%// Description- computes atmospheric density from ICAO standard
%// atmosphere, exponential model
%// Inputs: altitude
%// Outputs: rho
%// Process:
%// Assumptions:
%// Warnings:
%//**^*^^^^^

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**************************^^^^^^^^^^^^^^

% ****** define globals ******

% ****** define constants ******

% ****** define input vector ******

% ****** initialize variables ******
alt=abs(alt); % account for NED coord

% ************ functions ************
if alt>9144

y=1.75228763*exp(-alt/6705.6) ;
else

y=1.22557*exp(-alt/9144);
end

%//end of file rhovalt.m

170

function y=sixdofdyn(u)
%SIXDOFDYN Computes motion dymanics for six degrees
% of freedom
% see also FLATEARTHDYN
% Copyright 1999-2000 by Triple B Enterprises
%//**

%// File: sixdofdyn.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 7 Apr 00
%// Description: computes 6DOF dynamics in ECI coordinates
%// Inputs: state vector
%// Outputs: derivative of state vector
%// Process: Stevens & Lewis
%// Assumptions:
%// Warnings:
%/Z**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**************************************A**iAAJti + A^.AvtvtvtAiAjtAAVt^Ai^Avt1tit

% ****** define globals ******

% ****** define constants ******
omega_x=7.292115e-5; % earth rotation rate
GM_E=3.9860014el4; % G*mass of earth
r_E=6.378164e6; % radius of earth
f=1/298.257; % ellipsoidal squash factor

% ****** define input vector ******
p=[u(l);u(2);u(3)];
v_b=[u(4);u(5);u(6)];
omega_b=[u(7);u(8);u(9)];
P=u(7); Q=u(8); R=u(9);

q=[u(10);u(ll);u(12);u(13)];
magq=norm(q,2) ;
q=q/magq;

x=[p;v_b;omega_b;q];

% inertial matrix
J=[u(14),0,0;

0,u(15),0;
0,0^(16)];

% forces
F_B=[u(17);u(18);u(19)];

171

% torques
T_B=[u(20);ru(21);u(22)];

% the ever lovin' force of gravity
g_P=[u(23);u(24);u(25)];

% and lest we forget, mass
m=u(26);

% ****** initialize variables ******

omega_E=[omega_x;0;0]; % earth rotational velocity vector
OMEGA_E= [0, 0, 0; 0, 0, -omega_x; 0, omega_x, 0] ;

% compute rotation matrices
B=guat2b(q)•

OMEGA_B=[0 -R Q;
R 0 -P;

-Q P 0];

OMEGA_q=[0 P Q R;
-P 0 -R Q;
-Q R 0 -P;
-R -Q P 0];

% ************ functions ************

y=[OMEGA_E, B', zeros(3), zeros(3 4)-
-B*OMEGA_E~2, -(OMEGA_B+B*OMEGA_E*B'), zeros(3), zeros(3 4)-
Zer°S!^;, zeros(3), -l*inv(j) *OMEGA_B*J, zeros(3,'4);

y=y*x-° zeros(4,3), zeros(4/3), -(1/2)*OMEGA_q];

y=y+[zeros(3,1)■
B*g_p+(l/m)*F_B;
inv(J)*T_B;
zeros(4,1)] •

%//end of file sixdofdyn.m

172

%// File: Spielberg.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 20 Sep 00
%// Description: creates a movie of AAM simulation using
%// thesism
%// Inputs: none
%// Outputs: none
%// Process:
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**

% ****** define globals ******

% ****** define constants ******

% ****** define input vector ******

% ****** initialize variables ******
thesisinit

% ************ functions ************
figure(1)
elf
tgtinit=tgtset(40000,5000,135);
target_turn=12;

for timestep=l:44
tmax=.25*(timestep+0)
sim('thesism')
l=length(MissileOut);
% a little 3D action for the fans
figure(1)
elf
view(-30,25)
hold on
axis([0 40000 0 8000 4500 6500])

173

% plot commands
plot3(MissileOut(:,1),MissileOut(:,2),-MissileOut(• 3)

TgtOut(:,l)/TgtOut(:/3),-TgtOut(:/5))

plot3(MissileOut(1,1),MissileOut(1,2),-MissileOut(1 3) '*'
TgtOut(l,l),TgtOut(l,3),-TgtOut(l,5),'x')

velx=[0 0]; vely=[7000 7000]; velz=[4500 1.5*MissileV(l)+4500]•
plot3(velx,vely,velz,'r.-')
ncyx=[0 0]; ncyy=[6500 6500]; ncyz=[4500 7*abs(omegaout(1,1))+4500]•
plot3(ncyx,ncyy,ncyz,'g.-')
nczx=[0 0]; nczy=[6000 6000]; nczz=[4500 7*abs(omegaout(1,2))+4500]•
plot3(nczx,nczy,nczz,'b.-')
i f (tmax==round(tmax))

plot3([MissileOut(1,1) TgtOut(1,1)],[MissileOut(1,2)
TgtOut(l,3)]

[-MissileOut(1,3) -TgtOut(1,5)],'k')
end

hold off
grid on

title(['Missile Engagement ',date],'FontSize' 18)
text(35000,6000,6000,[num2str(tmax,'%2.2f') '

seconds'],'FontSize',18)
text(0,7000,1.5*MissileV(l)+4500, [' '

num2str(MissileV(l),'%4.0f')],'FontSize',14)
text(0,6500,7*abs(omegaout(l,l))+4500,[' '

num2str(omegaout(l,l)/9.8045,'%2.1f')],'FontSize',14)
text(0,6000,7*abs(omegaout(1,2))+4500, ['

num2str(omegaout(1,2)/9.8045,'%2.1f')],'FontSize',14)

M(timestep)=getframe;
end
movie(M)

%//end of file Spielberg.m

174

function y=tgo(u)
%TGO Computes time to go from Range and Range Rate
% see also
% Copyright 1999-2000 by Triple B Enterprises
%//**

%// File: tgo.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 31 May 00
%// Description: computes tgo
%// Inputs: range, range rate
%// Outputs: tgo
%// Process:
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**

% ****** define globals ******

% ****** define constants ******

% ****** define input vector ******

% ****** initialize variables ******

% ************ functions ************
if (u{2)==0)

y=100;
else

y=abs(u(l)/u(2));
end

%//end of file tgo.m

175

function y=tgtset(Range,Alt,Hdg)
%TGTSET Sets tgtinit variable for missile simulations
% default tgt speed set at .83 Mach. Enter altitude
% as a positive number
% TGTSET(RANGE,ALT,HDG)
% see also QUATERNION, BQUAT
% Copyright 1999-2 000 by Triple B Enterprises

%// File: tgtset.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 8 Jun 00
%// Description: initializes target state vector
%// Inputs: see above
%// Outputs: target state vector
%// Process:
%// Assumptions:
%// Warnings:

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//***:t**#** + ^#jkjtl># + 4jkjtit]t#i

% ****** define globals ******

% ****** define constants ******
tgtmach=.83; % user sets Mach #

% ****** define input vector ******

% ****** initialize variables ******
tgtspd=tgtmach*machvalt(Alt);% machine computes speed

% ************ functions ************

y=[Range;cos(Hdg*pi/180)*tgtspd;0;sin(Hdg*pi/180)*tgtspd;-Alt;0];
% Note: negative altitude is for NED coords

%//end of file tgtset.m

176

function y=thebigstop(u)
%THEBIGSTOP consolidated simulation stop function
%
% see also
% Copyright 1999-2000 by Triple B Enterprises
^/Z**

%// File: thebigstop.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 17 Sep 00
%// Description: stops simulation under variety of conditions
%// Inputs: see below
%// Outputs: stop flag
%// Process:
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**

% ****** define globals ******
global stopflag

% ****** define constants ******

% ****** define input vector ******
R=u(l);
Rdot=u(2);
Vm=u(3);
Vt=u(4);
G=u(5) ;
Ny=u(6);
Nz=u(7);
time=u(8);

% ****** initialize variables ******
stop=[];
y=o;

177

% ************ functions ************
% check cases
%if (G>700)
% y=lll;
% Stop='G Stop';
%end

if ((time>2.0)&(Vm<Vt))
y=lll;
StOp='V Stop';

end

if ((time>2.0)&(Rdot>0))
y=lll;
stop='Rdot stop';

end

if (R<le-6)
y=lll;
Stop='R stop';

end

if ((Nz>30*9.8045)|(Ny>3 0*9.8045))
y=lll;
stop='Cmd stopp-

end
if stopflag

disp(stop)
end

%//end of file thebigstop. m

178

%// File: thesis2plot.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date:
%// Description: Plots a variety of data for missile tracking
%// simulations for use in thesis paper
%// Inputs: none
%// Outputs: purdy pitchers
%// Process:
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**

% ****** define globals ******

% ****** define constants ******

% ****** define input vector ******

% ****** initialize variables ******
time=rem(now,1);
hr=floor(time*24);
mins=floor(rem(time*24,l)*60);
timestr=[' ',num2str(hr),':',num2str(mins)];

% ************ functions ************
% engagement geometry-
figure (1)
subplot(2,1,1)
plot(TgtOut(:,l),Tgt0ut(:,3),':',MissileOut(:,1),MissileOut(:,2))
axis equal
outtextl=['time: ',num2str(ip),' seconds'];
outtext2=['range: ',num2str(min(range)),' meters'];
text(300,4000,'Intercept at:')
text(300,3500,outtextl)
text(300,3000,outtext2)

title('Engagement Geometry')
xlabel('x (meters)')
ylabel('y (meters)')
legend('Target','Missile')

179

% missile to target distance
range=sqrt((MissileOut(:,1)-TgtOut(:,1)). "2+.

(MissileOut(:,2)-TgtOut(:,3)).-2+(MissileOut(:,3)-TgtOut(• 5)) -2)
t=MissileOut(:,14);
t_disc=0:FILTSAMP:max(t),•
index=find(range==min(range));
ip=t(index(l));

subplot(2,1,2)
plot(t,MissileV)
title('Missile to Target Range')
xlabel(['time (seconds) ',date,timestr])
ylabel('missile velocity (m/s)')

% missile accelerations
gforce=sqrt(AccelOut(:,1).A2+Accel0ut(: , 2)."2

+Accel0ut(:,3).*2)./9.8045;
figure(2)
subplot(2,1,1)
plot(t,gforce)
title('Missile Accelerations')

ylabel('Acceleration (g)')
axis([0 round(max(t)) 0 50])
% compute cost function J=20*e(tf)A2+integ(u~2)/200
u2=(omegaout(:,1).~2+omegaout(:,2).A2) ;
integral=0;
for ii=2:index

integral=integral+(t(ii)-t(ii-l))*u2(ii-l);
end
J=20*min(range)A2+integral/1000;
%endfor
outtxt=['Missile divert: ',num2str(integral)];
xlabel(outtxt)
% guidance command
subplot(2,1,2)
plot(t,omegaout(:,1),t,omegaout(:, 2) , ' : ')
title('Guidance law command output')
outtxt=['Cost J: ',num2str(J),' time (seconds)'];
xlabel([outtxt,' ',date,timestr])
ylabel('n_c (m/secA2)')
axis([0 round(maxft)) -300 300])
legend('n_c y','n_c z')

%//end of file thesis2plot.m

180

%//**

%// File: thesisinit.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 5 Sep 00
%// Description: This script file initializes thesis work
%// missile simulation
%// Inputs: none
%// Outputs: none
%// Process:
%// Assumptions:
%// Warnings:
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**

clear
% ****** define globals ******
global stopflag satflag XLAST FILTSAMP

% ****** define constants ******
% physical constants
omega_x=7.292115e-5; % earth rotation rate
GM_E=3.9860014el4; % G*mass of earth
r_E=6.378164e6; % radius of earth
f=1/298.257; % ellipsoidal squash factor
omega_E=[omega_x;0;0]; % earth rotational velocity vector

****** define input vector ******

% ****** initialize variables ******
% missile physical parameters
MissileData;
% drawmissile;

% missile velocity vector
vB=[270;0;0];

% initial missile position vector
P=[0,0,-6000] '; % note altitude is negative in NED coord
t = 0;

% compute Euler angles
psi=0*pi/180;
theta=0*pi/180;
phi=0*pi/180;

181

% ************ functions ************

q_0=quaternion(phi,theta,psi);
CL_0=g_0/sqrt (q_0(1)-2+q_0 (2) -2+g_0 (3) -2+g_0 (4) "2) ;

B=quat2b(q_0);

P=0*pi/180
Q=0*pi/180
R=0*pi/180

omega_B=[P;Q;R]■

% initial state vector
ini t =[p;vB;omega_B;q_0];

% target initial state vector
tgtinit=[25000;

-250;
0;
250;
-6000;
0];

% set target turn rate, default=0
% enable saturation of cmd accel
% initialize filter

tmax=200;
target_turn=0;
satflag=l;
XLAST=[25000;

-250;
0;
0;
250;
0;
-6000;
0;
0];

FILTSAMP=.l; % Set filter sample interval

%//end of file thesisinit.m

182

function y=vcpropnavpt(u)
%PROPNAVPT Computes exact proportional navigation
% with dragforce inputs for point mass simulation
% see also EXACTPR0PNAV2
% Copyright 1999-2000 by Triple B Enterprises

%//**

%// File: VCPROPNAVPT.m
%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3
%// Date: 24 May 2000
%// Description: Proportional navigation guidance law for 6DOF
%// flight model. Computes applied forces for use
%// by induced drag model. Required to eliminate
%// algebraic loops in the simulation
%// Inputs: [seeker data,IMU data,timer]
%// Outputs: [command accelerations,applied forces]
%// Process: proportional navigation law
%// Assumptions: none
%// Warnings: none
%//**

%// Order of elements
%// -Define globals
%// -Define constants
%// -Define elements of input vector
%// -Functions
%//**

% ****** define globals ******
global m satflag

% ****** define constants ******
Nprime=5;
Nprimez=5;

% ****** define input vector ******
thetadot=u(1);
phidot=u(2);
los=u(3);
philos=u(4);
R=u(6);
Vc=-u(5);
heading=u(7);
Vm=u(8);
Vmdot=u(9);
phi=u(10);
theta=u(ll) ,-
psi=u(12);
time=u(13) ;

183

% ****** initialize variables ******

% ************ functions ************

ny=Nprime*750*(thetadot)/cos(psi-los)-Vmdot*tan(psi-los)•
nz=Npnmez*750*(phidot)/cos(theta-philos)-Vmdot*tan(theta-los)-9.8045;

% control force limiter
if satflag

if (abs(ny)>30*9.8045)
ny=sign(ny)*30*9.8045;

end
if (abs(nz)>30*9.8045)

nz=sign(nz)*30*9.8045;
end

end

% compute ABC forces applied
Fx=0;
Fy=ny*m;
Fz=nz*m;

% output vector
y=[ny;nz;Fx;Fy;Fz];

%//end of file PROPNAVPT. m

184

APPENDIX C. SIMULATION DATA
This appendix contains the plots listed below for each guidance law. The

engagement geometry is the same for each guidance law, initial range; 20 km, attack

azimuth 45 degrees, co-altitude; 6,000 meters, 6 g target maneuver at 3 seconds tg0.

1. Plan view of engagement

2. Missile velocity profile

3. Missile accelerations and target acceleration estimates for filtered laws

4. Guidance law command accelerations

The guidance laws are:

1. PNwithJV=5

2. VCPN with constant gain

3. Bang-bang

4. Differential games

5. APN with A=5

6. Noisy seeker, PN with N'=5

This appendix also contains plots from the full aerodynamic model running in an

open loop with control surface deflections as the control input

185

A. PN (N'=5)

Engagement Geometry

4000

2 2000 a>
•♦—
a>
E
^ 0

Intercept at:
time: 19.9261 seconds
range: 0.020938 meters

-2000

1200

4 6 8 10 12 14 16
time (seconds) 23-Sep-2000 20:57

Target
Missile

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 i
... . * (meters) 4
Missile Velocity Profile x 10

18 20

Missile Accelerations

300

200

<<£ 100

I °
co-100

-200 I-

-300

Missile divert: 42237.4547
Guidance law command output

n
cy

nc2

4 6 8 10 12 14 16 18
Cost J: 42.9847 time (seconds) 22-Sep-2000 14:5

186

B. VCPN WITH CONSTANT GAIN

Engagement Geometry

4000

£2 2000
2 c5
E
r. o

-Intercept at:
time: 19.9261 seconds
range: 0.020938 meters

-2000

— Target
— Missile

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
x (meters)

Missile Velocity Profile x104

o
 o

o

 o

(s/w
)

i I

>>
1 800 ' / ^V

<u _„
> 600 \
<D

% 400 _
E

i i i i i i i t I

4 6 8 10 12 14 16 18 20
time (seconds) 23-Sep-2000 20:57

Missile Accelerations

300

200

CM
O 100
CÜ
CO n
t-

o -100 c

-200

-300

Missile divert: 140458.4564
Guidance law command output

18 20

i t i i 1 "I i ' 1

-
ncz

■f

i
| ^_ ,_

i 1 1 1] 1 1 i
2 4 6 8 10 12 14 16 18

Cost J: 140.4672 time (seconds) 23-Sep-2000 20:57
20

187

C. BANG-BANG

Engagement Geometry

4000 (- Intercept at:

_ 3000

ffi 2000
1»
E. 1000

=* 0

-1000

1000

- cept _..
time: 25.6159 seconds
range: 800.3047 meters

N

Note: Target is out of range in this
engagement

0.2 0.4 0.6 0.8 1
... .x (meters)
Missile Velocity Profile

5 10 15 20 25
time (seconds) 23-Sep-2000 22:4

Target
Missile

1.2 1.4 1.6 1.8

x 10

30

Missile Accelerations

u
CD
CO

_o-100

Missile divert: 37895.059
Guidance law command output

5 10 15 20 25
Cost J: 12809789.2283 time (seconds) 23-Sep-2000 22:4

188

D. DIFFERENTIAL GAMES

50

2
03
E

Engagement Geometry

4000

3000

2000

- Intercept at:
time: 18.4429 seconds

-range: 0.019465 meters
,.--"

S

\ 1000

0

1000

 .—■—~~"'

— Target
Missile

 1 1 1 i i t '

1200

0.2 0.4 0.6 0.8 1 1.2 1.4

Missile velocity Profile

1.6 1.8

4 6 8
time (seconds)

10 12 14 16
23-Sep-2000 22:14

x10

18 20

Missile Accelerations
50

S40

o 30
2
-2 20 0)
o
Ü
< 10

300

200

100

0

_o-100

-200

-300

I I

I
I
!>
1

1 ' i i i

 missile
— filter estimate

of target acceleration

-

/ __——^

-

"
\

I r-

^

10 12 14
„ Missile divert: 16962.0541
Guidance law command output

16 18

I I I I 1 1 1— 1

- — n
cy -

. ncz .

F " " " ■ " - - - - ■^;s__ - - =

^^

 . . 1 I I i i r r \

2 4 6 8 10 12 14 16
Cost J: 16.9696 time (seconds) 23-Sep-2000 22:14

18

189

E. APN WITH A=S

Engagement Geometry

4000

_ 3000
CO

i i 1 ,__

- Intercept at:
time: 18.5362 seconds

-range: 0.17307 meters

i i -j—

-

5 2000
CD

6 1000

* 0

 1 r , ,

] \
Target
Missile

-1000

1200 r

0 0.2 0.4 0.6 0.8

Missile

1 1.2 1.4

velocity Profile

1.6 1.8 2

x 104

"5?
1 1000

1 i i f

•5 800 -
o
CO
> 600-
C0 .

« 400-
£ -

200 L . 1 i , ,
i i ,

0 2 4 6 8
time (seconds)

10 12 14
23-Sep-2000 22:2

16
>4

18 20

ni40
i

1

P 30 »
CO)i

f 20
u -^ '
o .
< 10 i

300

200

"^ 100
CD

l °
co-100

-200-

-300

Missile Accelerations

missile
filter estimate
of target acceleration

6 8 10 12 14
Missile divert: 14495.2194

Cauiaance law command output

-JV*~~ ^riiff
16 18

n
cy

ncz

4 6 8 10 12 14 16 18
Cost J: 15.0943 time (seconds) 23-Sep-2000 22:24

190

NOISY SEEKER, PN (iV'=5)

Engagement Geometry

4000

_ 3000
£2
S 2000

E. 1000

*• 0

-1000

-Intercept at:
time: 18.8598 seconds

-range: 0.24939 meters l^-
-

•—- -—-"""" Target
- Missile

i

i i > i , > ' ,
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

(m
/s

)

o

fo

o

o

o

o

x (meters)
Missile velocity Profile x104

/ ~ -

ss
ile

 v
el

oc
ity

o

o

 o

/ -

E
?nn 1 ■ - .iiiii

4 6 8 10 12 14 16
time (seconds) 25-Sep-2000 8:28

18 20

Missile Accelerations
50

;40

.2 30
2
| 20
o
< 10r

300

200

~7 100

i °
co-100

-200

-300

6 8 10 12 14 16 18
„ Missile divert: 18654.4617
Guidance law command output

-ncy
ncz

T„^tfi</VtyJ>tr^/r\>/yvW .,,.,,

^V*

2 4 6 8 10 12 14 16
Cost J: 19.8984 time (seconds) 25-Sep-2000 8:28

18

191

FULL AERODYNAMIC MODEL
Missile Altitude vs. Time

2.25 degree up elevator, 1000 m/s initial velocity
6800

6600

6400

■§ 6200

6000

5800

5600

Missile operating in open loop
control with steady state input
on elevator deflection angle

4 5 6
time (sec)

-1

CO
CD
a>

<
O
<

-3

Angle of Attack Response
2.25 degree up elevator, 1000 m/s initial velocity

Missile operating in open loop
control with steady state input
on elevator deflection angle

2 3 4 5 6
time (sec)

10

192

Vertical Acceleration Response
2.25 degree up elevator, 1000 m/s initial velocity

4 5 6
time (sec)

100r-

80-

60-

40-

to
2 20-
D>
CD

73

_CD
D5
C
CO

o
"Q.

-20

-40

-60-

-80

-100-

Pitch Angle Response
2.25 degree up elevator, 1000 m/s initial velocity

/ \

Missile operating in open loop
control with steady state input
on elevator deflection angle

3 4 5 6
time (sec)

10

193

1000

800

600

I 400

Missile Trajectory
0.1 degree rudder deflection, 1000 m/s initial velocity

Vertical force constant 1 g up
Zero torque on lateral axis

200

-200
200 400 600 800 1000 1200 1400 1600 1800

meters

0.3 r

0.25-

0.2-

en
CD

g 0.1
<

0.05-

-0.05'

Angle of Attack Response
0.1 degree left rudder, 1000 m/s initial velocity

Vertical force constant 1 g up
Zero torque on lateral axis

4 5 6
time (sec)

10

194

3

o 1

■§ 0
o
s

Lateral Acceleration Response
0.1 degree left rudder, 1000 m/s initial velocity

-1

-2

-3

Vertical force constant 1 g up
Zero torque on lateral axis

3 4 5 6
time (sec)

8 9 10

200

150

100

S 50

8>
D)
CD

s 0

I -50

-100

-150

-200

Yaw Angle (Heading) Response
0.1 degree left rudder, 1000 m/s initial velocity

~T T"

A/yVv

Note, constant
turn rate /

23456789 10
time (sec)

195

Missile 3D Position
5 second run, 2.25 deg up elevator, 0.1 deg left rudder

6200^--

6100

,„ 6000
2?
S
E 5900

58CXK.--

5700
1500

meters -500 0

3000

Angle of Attack Response
2.25 deg up elevator, 0.1 deg left rudder

0.5 1 1.5 2 2.5 3
time (sec)

3.5 4.5

196

Euler Angle Response

0.5 1.5 2 2.5 3
time (sec)

3.5 4.5

197

THIS PAGE INTENTIONALLY LEFT BLANK

198

LIST OF REFERENCES

[1] Westram, Ron, Sidewinder, Creative Missile Development at China Lake, Naval
Institute Press, Annapolis, MD, 1999.

[2] Belyakov, R.A. and MarmainJ, MiG, Fifty Years of Secret Aircraft Design,
Naval Institute Press, Annapolis, MD, 1994.

[3] Ridgely, D. Brett, and McFarland, Michael B., "Tailoring Theory to Practice in
Tactical Missile Control," IEEE Controls Magazine, December 1999.

[4] Proctor, Paul, "Math Outwits ICBM's?," Aviation Week, September 11, 2000.

[5] Stevens, Brian L., and Lewis, Frank L., Aircraft Control and Simulation, John
Wiley & Sons, Newark, NJ, 1992.

[6] Hutchins, R.G., class notes EC-4330, Navigation, Missile and Avionics Systems,
Naval Postgraduate School, Monterey, CA, 1999.

[7] Zarchan, Paul, Tactical and Strategic Missile Guidance, Third Edition, American
Institute of Aeronautics and Astronautics, Inc., Washington, DC, 1997.

[8] Blakelock, John H., Automatic Control of Aircraft and Missiles, Second Edition,
John Wiley & Sons, Newark, NJ, 1991.

[9] Sutton, George P., Rocket Propulsion Elements, An Introduction to the
Engineering of Rockets, Sixth Edition, John Wiley & Sons, Newark, NJ, 1992.

[10] Anderson, John D., Fundamentals of Aerodynamics, Second Edition, McGraw-
Hill, Inc., Los Angeles, CA, 1991.

[11] Swee, John CS., Missile Terminal Guidance And Control Against Evasive
Targets, Master's Thesis, Naval Postgraduate School, Monterey, CA, March 2000.

199

[12] Bryson, Arthur R, and Ho, Yu-Chi, Applied Optimal Control, Optimization,
Estimation, and Control, Revised Printing, Hemisphere Publishing Corporation
New York, NY, 1975.

[13] Lin, Ching-Fan, Modern Navigation, Guidance, and Control Processing, Volume
II, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1991.

[14] Song, Seong-Ho, and Ha, In-Joong, "A Lyapunov-Like Approach to Performance
Analysis of 3-Dimensional Pure PNG Laws," IEEE Transactions on Aerospace
and Electronic Systems, vol. 30, no. 1, January 1994.

[15] Bar-Shalom, Yaakov, and Li, Xiao-Rong, Estimation and Tracking: Principles,
Techniques, and Software, YBS, Storrs, MA, 1998.

200

INITIAL DISTRIBUTION LIST

Defense Technical Information Center...
8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93940-5121

Professor Robert G. Hutchins, Code EC/Hu
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93940-5121

Professor Harold A. Titus, Code EC/Ts
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93940-5121

Lieutenant Commander Robert D. Broadston.
Operations Department
U.S.S. Carl Vinson (CVN-70)
FPO AP 96629-2840

201

