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ABSTRACT

Current missile guidance laws are generally based on one of several forms of
proportional navigation (PN). While PN laws are robust, analytically tractable, and
computationally simple, they are only optimal in a narrow operating regime.
Consequently, they may not optimize engagement range, time to intercept, or endgame
~ kinetic energy. The advent of miniaturized high speed computers has made it possible to
compute optimal trajectories for missiles using command mid-course guidance as well as
‘autonomous onboard guidance. This thesis employs a simplified six degree of freedom
(6DOF) flight model and a full aerodynamic 6DOF flight model to analyze the
performance of both PN and optimal guidance laws in a realistic simulation environment
which accounts for the effects of drag and control system time constants on the missile’s
performance. Analysis of the missile’s kinematic boundary is used as the basis of
comparison. This analysis is immediately recognizable to the warfighter as an
engagement envelope. Thf: guidance laws are tested against non-maneuvering and
maneuvering aircraft targets and against a simulation of a cruise missile threat. An

application of the 6DOF model for a theater ballistic missile interceptor is presented.
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EXECUTIVE SUMMARY

A six degree of freedom (6DOF) computer simulation of the AIM-120
AMRAAM has been developed to test the performance of various guidance laws using
the kinematic boundary as a measure of effectiveness. Proportional navigation (PN) was

used as the baseline for comparison. The effect of seeker noise on the PN law was
studied.

A velocity compensated PN law was tested against an angles only PN law and
demonstrated that the velocity compensation will improve performance, but not to the
level of the full PN law.

A bang-bang law was tested as a continuation of earlier thesis work. This law
performed poorly under the influence of drag, and would not be a candidate for use in a
tactical missile.

A modified PN law derived from differential games theory was tested that had
lower performance than the PN law.

An augmented PN law derived from optimal control theory was tested that had

improved performance in the target’s rear hemisphere and forward of 60 degrees relative

to the nose of the target. This law did not improve the missile’s performance against a

cruise missile target.

Preliminary work to extend the 6DOF simulation to include aerodynamic control
of the missile was completed with the simulation capable of limited operation. More

work needs to be accomplished to bring this model to full capability.

Xvii




The 6DOF model was used to demonstrate the engagement of a theater ballistic
missile by a RIM-67 STANDARD II (ER) missile. The STANDARD intercepted the

target at a range of 2.2 meters off the nose, well within Iethal range of the interceptor

warhead.
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L. INTRODUCTION

The U.S. Navy’s e;(peﬂence with Japanese kamikaze attacks in the closing months
of the Second World War demonstrated the woeful inadequacy of anti-aircraft artillery
(AAA) against a massed modern air threat. Even with radar-controlled guns and the
massed{ firepower of dozens of ships, the kamikaze were able to inflict heavy damage on
the fleet. |

The advent of jet aircraft following the war exacerbated the aerial threat to surface
units and changed forever the character of air-to-air combat. It was believed that the high
speed and maneuverability of jet aircraft signalled the end of the dogfight and a
requirement to engage targets at beyond visual ranges (BVR). The solution to both of
these problems was some sort of gﬁided missile.

There are a number of ways to guide a missile so that it hits a target. The three
'simplest guidance laws are beam rider, pursuit, and proportional navigation. Beam rider
guidance is most useful for a surface-to-air missile (SAM) installation. The launcher
must keep the target locked in a radar beam throughout the engagement while the missile
steers along, or rides, the beam. This requirement ill suits beam riders for the dynamic
environment of aerial combat. Pursuit guidance requires the missile to turn so that it
continuously points at the target. The missile may use some characteristic of the target
such as its infrared (IR) signature, semi-active radar from the launching platform, or
onboard radar to determine the target’s relative position. As the name implies, this
guidance law is most effective when attacking from the rear hemisphere of the target, or

when attacking a stationary target, and it performs poorly in the target’s forward

hemisphere.




Of the three basic guidance laws, proportional navigation (PN) is the most
versatile, and therefore most frequently implemented. PN accelerates the missile laterally
by an amount proportional to the angular rate of the line of si ght from the missile to the
target. PN or one of its various extensions or augmentations is the guidance law of
choice in nearly all modern guided missjles. The reasons are simple. PN is:

®*  Cheap

® Robust

* Analytically tractable

= Successful

Optimal control theory promises to improve the performance of missile guidance
systems. Optimal guidance laws, while the subject of extensive research, have yet to play
a significant role in practical applications. Since optimal laws require an estimate of the
target’s position, velocity, and acceleration (its state), they require computing horsepower
that has only been available in miniaturized form since the late 1980%. The computing
requirements of optimal laws, and the successful extensions of PN laws have kept the
optimal laws out of the mainstream, but modern, agile, stealthy aircraft and cruise
missiles, and the growing need for theater ballistic missile defense (TBMD), have
increased the interest in optimal guidance laws.

The remainder of Chapter I examines the historical background, our goals in
pursuing this line of research, and its benefits. Chapter II establishes the theoretical
backgrouhd for the simulation environments and for the various guidance laws we

examined. Chapter III describes our method of analysis using the kinematic boundary

and our experimental procedures. Chapter IV presents experimental results and analysis.

Chapter V presents our conclusions and suggestions for further research in this area.




A. HISTORICAL BACKGROUND
During the early 1950, the development of guided missiles was a major program

for the U.S. military. SAM’s developed durin.g this era include the Army’s Nike family
and Hawk, and the Navy’s Terrier, Tartar, Talos, and Stapdard. The primary air-to-air
missiles (AAM) of the day were the Raytheon Sparrow, developed for the Navy, and the
Hughes Aircraft Falcon, developed for the Air Force. Both of these systems were
complex radar-guided missiles (Falcon had an IR variant) and suffered from many

developmental problems that would be familiar to systems engineers today.

While the engineers at Raytheon and Hughes were overcoming their technical
challenges, a small team of scientists and engineers at the Naval Ordnance Test Station
(NOTS) in China Lake, California, now the Naval Air Warfare Center Weapong Division
(NAWCWPNS) began work on what would become one of the most successful AAM’s in
history. Sidewinder (AIM-9) began as an after work project on a non-existent and
frequently purloined budget with no official standing [1]. In the view of the air power
theorists of the day, the age of the dogfight was over, so why would there be a need for a
short range dogfight missile? The Vietnam War would soon prove the theorists wrong

and demonstrate the value of Sidewinder.

Sidewinder was designed from the beginning to be simple, reliable, rugged, and,
above all, inexpensive. The motor, warhead, and fins were adapted from a stock five
inch “High Performance Air Ground (HPAG) rocket. The fins were modified with a
mechanical device called a "rolleron"” which minimized the missile’s roll rate without the

need for additional electronics [1]. Most of the design effort went into the guidance and




control section which was bolted on to the HPAG rocket as a unit, and incorporated
several innovations, including:
® Torque balance servo control fins which provided the commanded control
forces at all altitudes without complex electronics
* Single gyroscope seeker which integrated the IR sensor and directional gyro

IR aiming reticles which reduced the missile’s tendency to guide on the sun or
clouds

The design was so simple that NOTS technicians woﬁld tell Air Force and
Hughes personnel that the only test equipment they required was a flashlight and a
Simpson meter [1]. While this may have been an exaggeration for psychological effect, it
was not far from the truth. The first production Sidewinders cost the government $2,400
and by the third year of production, the price was down to $1,400 per missile [1].
Today’s advanced Sidewinders cost in the tens of thousands of dollars. Compare this to
over $300,000 for an AIM-120 AMRAAM. Sidewinder was such a successful design
that it was copied Wholesale by the Soviet Union as the K-13 (NATO AA-2 Atoll), and

used as the basis for the Israeli Python [2], [1]."

Sidewinder’s guidance law is a form of PN using only line of sight angular rate
and a fixed navigation constant or gain. This guidance law is suitable for a dogfight
missile with a range on the order of 5.5 km (18,000 ft.), but not for longer rainges. The
general PN law incorporates the missile’s closing velocity with the target in the
computation of the gain and must be provided a measurement of the range rate. This is

the realm of the radar-guided missile.

The first radar-guided missiles in the U.S. inventory were the Air Force’s Falcon

(AIM-4) and the Navy’s Sparrow (AIM-7). Both missiles used semi-active radar homing

4




(SARH) seekers. The launch aircraft must illuminate the target throughout the
engagement for these missiles to guide successfully. Doppler processing of the
illuminator’s return from the target aboard the missile provides an estimate of the closing
velocity. The need to continuously illuminate the target means that the launch aircraft
must continue to close with the target during the engagement. This creates an obvious

problem if the target’s weapons have similar ranges to those of the launch aircraft.

Falcon enjoyed a long career, retiring in 1988. Sparrow is still in use today, and

as NATO Sea Sparrow is the point defense missile system aboard many U.S. and NATO
ships.

During the 1960%, Hughes began development of the missile that eventually
became the AIM-54 Phoenix. Phoenix includes a strapdown inertial measurement unit
(IMU) that allows its autopilot to steer the missile on course with periodic updating from
a SARH seeker. In the terminal phase, the missile switches to an onboard active pulse
Doppler radar. Finally, the missile has a simple data link with the AWG-9 radar aboard
the F-14 launch aircraft that allows the aircrew to command the missile to perform
several functions. All of these improvements permit the F-14 to simultaneously guide six

missiles to different targets up to 176 km (110 miles) away.

Ravtheon’s AIM-120 Advanced Medium Air-to-Air Missile (AMRAAM) is the
current generation of missile technology in the U.S. inventory. AMRAAM incorporates
an IMU, a data link, and a pulse Doppler terminal seeker. Because its data link is more
sophisticated than Phoenix, there is no need for a SARH seeker. In certain scenarios,

AMRAAM is truly a "fire and forget" missile, using its IMU to fly to a point where the




active seeker can take over. Generally, AMRAAM is launched with an initial intercept
solution programmed into the autopilot by the aircraft radar and mission computer. Once
fired, the data link can update the autopilot with target position while the launch aircraft
turns away or engages other targets. Once the terminal guidance seeker is activated, the
missile is completely autonomous.‘ AMRAAM has substantial onboard computer
processing available and can employ advanced si gnal processing algorithms and guidance

laws.

Proportional navigation can be shown to be an optimal solution under a set of
limited conditions. Chief among these limitations is the assumption that the target does
not maneuver during the engagement. This is clearly unrealistic, and there have been
many extensions to the basic PN law to counter this limitation. Optimal control theory
makes it possible to account for target maneuvers in the guidance law. This requires an
estimate of at least the target’s acceleration and in some cases the complete target state.
A range of tracking filters including the Alpha-Beta-Gamma and Kalman filters is
available to provide these estimates. Single chip microprocessors and digital signal
processors have made it possible to implement these guidance laws in the limited volume
of a missile’s guidance section. Despite these developments and the potential advantages
of optimal guidance laws, the practitioners have been slow to implement new designs.
Some of this lag is due to the successful extension of the PN law, but much is due to the
aversion of more experienced engineers for abandoning a technique that works in favor

of techniques that have yet to prove themselves [3].

Modemn agile aircraft like the MiG-29 and stealthy aircraft like the F-117 and F-

22 may in some cases be able to defeat AAM’s using PN laws. It is thought that optimal
6




and hybrid guidance laws may overcome the limitations of PN laws. Optimal laws may
also increase_the range at which cruise missiles can be engaged, and developments in
differential games theory (a field of mathematical optimization) may help solve the TBM
problem [4].

B. GOALS AND BENEFITS
The research presented in this thesis was motivated by three primary goals. First

to create a set of 6DOF models for evaluating missile guidance laws, second to explore
the use of the kinematic boundary as a measure of effectiveness (MOE) for evaluating the
performance of the simulated missiles, particularly to compare optimal guidance laws

with PN laws, and third to demonstrate an application of the models to a TBM

interceptor.

Much of the literature in the missile guidance field involves the use of two-
dimensional simulations. While such models are fairly simple to set up and analyze, and
are not as computationally intensive as 6DOF models, they have difficulty simulating the
effects of drag and aerodynamic control forces on the missile. Our goal was to create a
simplified 6DOF model for guidance law development and testing, and a full
aerodynamic model that would simulate both the aerodynamic control forces and the drag
forces acting on the missile. The modular design of the Simulink® models makes it
possible to test not only guidance laws, but autopilots, thrust profiles, and the effect of

noise anywhere in the system on performance.

There are a number of ways to construct MOE's for the evaluation of a missile's
performance. Controls engineers would compute a cost function based on the miss

distance, control effort, and possibly time of intercept. While the number produced by
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such a cost function is useful as a basis of comparison, to the layman it is simply a
number. For the warfighter, the engagement envelope is of paramount importance. The
kinematic boundary represents the maximum range at which the missile will achieve a hit
when there is no noise in the system. It is a graphical representation of which guidance
law has the best performance. If several points in the boundary are tested using noise, the
mean effect of the noise can be calculated and its effect: on the engagement envelope
demonstrated. This information can then be used to determine if one guidance law is
truly more effective than another. We have used the kinematic boundary as the MOE

throughout the AAM simulations.

The final goal of this research was to provide a missile simulator that could be
used in other research conducted for Navy TENCAP (Tactical Exploitation of National

Capabilities) in the TBMD field.




II. BACKGROUND

A. SIX DEGREE OF FREEDOM (6DOF) DYNAMICS
Newton’s laws for both translation and rotation describe the motion of a body in

three-dimensional space. There are three axes for translation, X, y, and z, and three axes
for rotation, longitudinal, lateral, and vertical, giving rise to displacement in roll, pitch,
and yaw respectively. These are the six degrees of freedom. The coordinate frame for
these dynamics is centered on the aircraft center of gravity (c.g.) and fixed to the airframe
with the x-axis on the nose, y-axis on the right wing, and z-axis pointing down. It is
called the aircraft-body centeréd or ABC frame. This is a rotating frame in inertial space

and for objects in different ABC frames to interact; their motion must be transformed into

an inertial frame.

For short ranges (< 200 km) the North-East-Down, or NED, frame is suitable.
This frame assumes a flat earth, and reasonable altitudes so that gravity is a constant. A
NED has its x-axis pointing north, y-axis pointing east, and its z-axis pointing down
toward the center of the earth. An aircraft headed north in level flight will have pitch roll
and yaw angles of zero degrees. A z-axis which points down seems counter-intuitive at
first, but makes sense when one considers that this allows right hand turns to have an
increasing heading as seen on a compass. We will use the NED or flat earth

approximation for the air-to-air engagement simulations.

If the NED coordinate system were placed on the surface of the earth, it would
become a rotating frame with the earth’s angular velocity. For long ranges and ballistic
missile work, one final translation to the earth-centered inertial or ECI frame is required.

In this fixed frame the x-axis points at the vernal equinox or first point in Aries (which is
9




really in Pisces), the y-axis is 90 degrees to the east, and the z-axis extends through the
North Pole. We will use the ECI frame for the TBM interceptor demonstration. Figure

2.1 shows the relationships of the three coordinate frames.

Z
ECI Coordinate Frame
Note: (0,0,0) in NED is
%—: the tangency point of the
[ Notth NED plane and the Earth
ABC Coordipate Frame
Py /
| A
; ! by’
| ! / East \
: 1 {
! z \
: /
:NED Coordinate Frame
]
1
! e
: o
< | -
~ )
S ) -
x \\"—”‘—
y

Figure 2.1. Relationship of ABC, NED, and ECI Coordinate Frames.

There are four vector equations which describe the dynamics of a body in three-
dimensional space [5]. They are the force equation, the moment equation, the attitude
€quation, and the navigation equation. The equations shown below are for the flat earth

approximation. The individual terms are defined in List of Symbols and Abbreviations.

10




1}B
(1)3
q

Pep

F
=—Q,v; +Bygq +—
m
=-J"Q, Jw, +J7'T,
1
=—§Qqq

T
=Byvy

(force)
(moment)

(attitude)

(navigation)

2.1)

The attitude equation can be computed using quaternions as shown here or using

Euler angles. The Euler angle formulation involves a singularity in the rotation matrix

(Bp) when the missile passes through the vertical that does not occur in the quaternion

formulation. = Since the STANDARD missile is fired from a vertical attitude, the

quaternion formulation will be used throughout.

For the TBM interceptor demonstration, the round earth equations shown below

in state space form are used. Note the addition of terms using £2g, which is the cross

product matrix accounting for the Earth’s rotation and the B matrix instead of Bp that

rotates the ABC frame to NED coordinates, and then to ECI coordinates. Definitions of

the individual terms are listed in the List of Symbols and Abbreviations.
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These equations assume constant mass and a fixed center of gravity. Simulation

of a missile that burns fuel and has a shifting c.g. as a result involves the addition of

terms to the force and moment equations. For simplicity we have assumed a constant

mass missile.
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The MatLab® functions FLATEARTHDYN.M and SIXDOFDYN.M implement

these equations in the SimuLink® models described below.

The equations of motion assume the motion takes place in a vacuum. As a result,
there' is no direct coupling between the force equation and the moment equation. A stable
missile body with its c.g. forward of its center of pressure (c.p.) tends to act like a |
weather vane and align itself with the relative wind. In the simplified 6DOF model this is
modeled by feeding back the angle of attack, which is the angle between the missile body
and the velocity vector, and its derivative as a moment that steers the missile into the
relative wind. The specifics of this feedback will be outlined below. The full
aerodynamic model does not require this feedback as it generates the normal forces on
the missile by generating a moment using control deflections and using the subsequent
change in angle of attack to generate the forces.

B. MISSILE MODELING

The simulation environments are capable of modeling any missile the researcher
chooses to represent. For this research, the AIM-120 AMRAAM, and RIM-67(ER)
STANDARD II (SM-2) missiles were chosen. These weapons represent today’s front

line U.S. Navy technology.

The model dimensions have been simplified to comply with the supersonic
aerodynamic models in Zarchan, and Blakelock, but are generally representative of the
actual missiles [7], [8]. The performance specifications are also simplified and based on
capabilities reported in the open source literature, and on engineering approximations.

They are in no way intended to be representative of the actual capabilities of these
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missiles. No official use U.S. Government or contractor proprietary documentation was
used in the establishment of the model performance parameters.

1. Airframes

AMRAAM is a conventional missile design with fixed stub wings mounted
forward on the missile body and controllable tail fins mounted aft. There are four wings
and four fins mounted at 90-degree intervals around the missile body. Figure 2.2 shows
the overall plan view of the missile, and the MatLab® file MISSILEDATA.M establishes
the model’s dimensions as required by Zarchan. The definitions of the dimensions used

in Zarchan’s equations are shown in Figure 2.3 [7].

Missile Plan View AIM-120 AMRAAM

0.6L

meters

0.4

0.6

0.5 i 1.5 2 25 3 35 4 45

Missile Plan View RIM-67 STANDARD Missile

meters

0.4+ O Center of Gravity
x  Hinge Line
0.6 |_% Centerof Pressure

I I ! 1 I L I I L
0 0.5 1 1.5 2, 25 3 35 4 4.5

Figure 2.2.  AMRAAM and STANDARD models. Drawings to scale for comparison.
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Figure 2.3.  Dimensions and forces on a tail-controlled missile. From [7].

For the computation of the moments of inertia, the missiles are modeled as thin
rods for the y and z-axes, and cylinders about the x-axis. The thin rod model was chosen,
because the fins are not major contributors to the moment of inertia about the axes
normal to the longitudinal axis, and the missile is much longer than its diameter so the
contribution of the radius for the cylindrical model is minimal. The cylindrical mbdel
wés chosen for the longitudinal axis because there is no moment of inertia for an
infinitely thin rod about the longitudinal axis. Since the missiles are symmetrical, there
are no cross terms in the inertial matrices.

The model for SM-2 is more complicated. The extended range version of the

missile is equipped with a large booster with controllable tail fins. Figure 2.4 shows the
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SM-2(ER) model with the booster attached. Note that the wings and tail fins for the
missile forward of the booster have been modeled as a single wing with a length equal to
the wing plus tail fin and an area equal to wing plus tail fin. MISSILEDATA4.M

contains the dimensions for the missile in this configuration.

SM-2(ER) with booster attached

15
O Center of Gravity
1F | x Hinge Line
0.5 % Effective Center of Pressure

meters

Figure 24.  SM-2(ER) model with booster attached.

Once the booster stage falls away, the SM-2 looks like the second drawing in
Figure 2.2. MISSILEDATA3.M contains the dimensions for the missile in this

configuration. For comparison, line drawings of the actual missiles are shown in Figure

2.5.
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Figure 2.5.  AMRAAM and SM-2 (ER).

2. Propulsion

Both AMRAAM and STANDARD use solid fuel rocket motors. The actual
missiles use dual propellant grain motors that provide a relatively high value of thrust
initially to accelerate thé missile to speed quickly, and then a lower level of thrust to
sustain speed throughout flight. For simplicity, the motors are modeled as single grain
motors of intermediate thrust values.

Solid fuel motors used in military missiles must have a Department of Defense
(DoD) Hazard Classification of 1.1 or 1.3 for use aboard ship [9]. According to Sutton,
typical fuels of this type have specific impulses in a range of 180-270 seconds [9]. The
thrust F produced by a rocket motor is given by:[9]

F=I,mg, (2.3)
This equation assumes a constant propellant mass flow rate throughout the motor run.

Assuming propellant mass fractions .of 50 percent for AMRAAM and SM-2
without its booster, and 80 percent for the SM-2 booster, with a six second burn time for
AMRAAM and 10 seconds each for SM-2 and its booster yields the data shown in Table

2.1. The thrust values chosen for use in the simulations are within the range of
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feasibility, and were chosen to accelerate the missiles to their maximum speed in a

reasonable time.

Missile Thrust Range (N) [ Simulation
(180<J5<270) Thrust (N)

AMRAAM 23,062 — 34,594 23,000
STANDARD II 62,209 — 93,314 80,000
SM-2 BOOSTER | 137,655 — 206,482 180,000

Table 2.1. Missile Thrust Values.

3. Aerodynamics

a. Simplified 6DOF Model

The aerodynamics for the simplified 6DOF simulation are modeled as a
feedback path from the missile state vector. The ABC velocities are used to compute the
pitch and yaw angles of attack (o and ) that are then differentiated and fed back as a
proportional-differential (PD) controller to the torque input of the missile dynamics block
(See Appendix B, Thesisl.mdl). This feedback loop models the missile's natural
tendency to act like a weather vane when the lift and side forces change the velocity
vector and hence the relative wind. The lift and side forces are generated by multiplying
the guidance law command accelerations by the missile's mass.

The angle of attack response of the missile to a step input is similar to a
second order response with a damped oscillation. This is also similar to the response of
the full aerodynamic model to a step input on the control fins. The feedback gains were
chosen to give the missiles a settling time of approximately 2.5 secdnds, or an

approximate first order time constant of 0.5 seconds.
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Drag is modeled with two components, parasitic drag, that due to the
misssile’s shape and cross section, and induced drag, that caused by the generation of lift
and side (normal) forces. The drag force D along the velocity vector is computed using

the following equation [10].

V 2
D= (Cdo +Cy ),0 _2—S REF (24)

Since the steady state angles of attack generated by this model are small,
less than one degree, the small angle approximation has been used and the cosine of the
angle of attack has been set to one for computing the component of drag along the x-axis
of the missile.

Cuao is computed using typical values provided in [6]. The data were faired
to a polynomial curve using MatLab®, apd the function DRAGTHESIS.M is used to
compute the parasitic drag in the model. Figure 2.6 shows the variation of Cz with Mach
number. The upper curve is the result of the increased drag caused by turbulence around

the missile's tail when the thrust plume is absent.
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Parasitic Drag Coefficient (Cdo) vs. Mach number
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Figure 2.6.  Variation of parasitic drag coefficient with Mach number.

Cai 1s computed in two regimes, subsonic, and supersonic. Normally, Cy
is a function of angle of attack, but in this simplified model, the angle of attack values are
not realistic, and therefore, a different approach is required.

For subsonic flight, Cy is computed as the applied normal force in g’
times the maximum value of Cdo in subsonic flight. This crude approximation only
affects fhe missile for very short periods of time as it is subsonic only at launch and

perhaps at the very end of an engagement.
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In supersonic flight, a more accurate approximation based on the normal
forces is used. The normal force coefficient Cy is computed using the following
equation:

F
Cy = 2—V%—- (2.5)
PVS e

where Fy is the applied normal force. Cj; is then computed using the following [10].

CZ
C, =—2>2_— (2.6)
7 e(AR)
Since there are normal forces on both the y and z-axes, Cy is computed for
each axis and the results are added to produce the value of Cyi used in Equation 2.4

above. Figure 2.7 shows the parasitic and induced drag forces on the AMRAAM model

for a missile in level flight executing a variety of turns at load factors up to 30 g’s.
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Drag Force Comparison (6000 meter altitude)
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Figure 2.7.  Drag forces on the AMRAAM model for various load factors.

b. Full Aerodynamic Model

The full aerodynamic model follows the development in Zarchan for
generation of both the aerodynamic moments and forces. Moments are generated by the
deflection of the appropriate control surfaces (rudder or elevator). The simulated missile
flies in a vertical attitude with the elevator surface horizontal and the rudder surface
vertical. AMRAAM flies in a "cross" configuration with the tail surfaces at 45 degree
angles to the vertical for ease of loading and carriage aboard aircraft. Modeling this

involves a more complicated autopilot and the change to a vertical attitude does not
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materially affect the simulation. The aerodynamic moment 7 caused by a control surface
deflection is given by:[7]

2
T=C, pKZ——S ez 2.7)

Cy is a function of the angle of attack and the control deflection and is

given by:[7]
38, a2
Cy = 2a(XCG_XCPN)+5 ;MN (XCG_XCPB)
REF
5, 5, (@+6) @8
+8—~ (XCG_XCPW)+8 L (XCG’XHL)

REF REF

Where  is a normalized speed for supersonic travel given by:[7]

B =+ Mach? -1 2.9)

The normal force Fy on a body is given by:[7]

VZ
Fy =Cyp—Su (2.10)

Cy is again a function of the angle of attack and the control deflection and
is given by:[7]

2
S
CN=2a+§S”ANa +g2w% +8S7(a+5)

SREF ﬂSREF ﬂ SREF

2.11)

The equations for Cy and C) given above are valid for the supersonic
regime. No such approximation based on missile dimensions exists for the subsonic
regime. For subsonic speeds, the coefficients normally are determined empirically using
wind tunnel or computed fluid dynamics data. Since these data were not available, Cy

and Cy in the subsonic range are modeled as linear functions of the angle of attack and
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control deflection [10]. Equations 2.7 and 2.10 are then used to generate the moments
and forces. The values chosen for the coefficients are therefore arbitrary, but as with the
drag model above, since the simulation spends very little time in the subsonic regime, the
effects of this approximation will be minimal.

The drag model is quite different from the simplified 6DOF model.
Parasitic drag is computed in the same fashion as above. Subsonic induced drag is
computed using Equation 2.6, because the model now explicitly calculates Cy.

Supersonic induced drag follows an approximation given in Anderson [10].

a2
C,=4— (2.12)
B

Since the angles of attack are generally greater than one degree, the
induced drag force due to each normal force is computed separately, and its component
along the longitudinal axis of the missile is computed before being added to the other |
component. The parasitic drag force is multiplied by the cosines of both angles of attack
to determine its longitudinal component.

According to Stevens and Lewis, once the moments and forces have been
determined, the 6DOF equations are solved in the following order [5]: J

e Force and moment equations
Attitude equation
Navigation equation

4. Guidance, Navigation, and Control
a. Guidance

Guidance laws are implemented as Matlab® functions which compute the

command accelerations (nc) for both lateral and vertical guidance. The inputs to the
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guidance law are provided by the seeker head, which computes target range, range rate,
azimuth, elevation, and angular rates from the actual target and missile state vectors.
Measurement noise can then be added to any of the six output channels to study its effect
on guidance law performance

Guidance laws for the simplified 6DOF model must also generate the
applied force on each axis for the computation of the drag forces. Simulink® generates
"algebraic loop" errors when the forces are fed back from the input of the "Missile
Dynamics" block (Figure B.1). Guidance laws for the full aerodynamic model do not
require this additional output.

Guidance laws requiring a tracking filter incorporate the filter's estimate of
the target state and missile body frame accelerations as additional inputs.

b. Navigation

The inertial measuring unit (IMU), air data computer (ADC),
accelerometers, and rate gyros provide navigation data to the missile simulation in the
form of Euler angles, missile total velocity, acceleration, position, angles of attack, and
body axis rotation rates. The IMU is mounted at the missile's C.g., thus simplifying the
calculation of the accelerometer data. Although this research assumed a noise-free
navigation system, noise sources could be added to any of the output channels to study
the effect on performance. In particular, the effect of navigation system noise on the
tracidng filter could be studied.

c. Control

The simplified 6DOF model dées not require an autopilot, since the
guidance law command accelerations are directly converted into aerodynamic forces. For
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the full aerodynamic model, it is necessary to convert the command accelerations into
control deflection angles. For this purpose, an autopilot for tail-controlled missiles
presented in Blakelock was adapted for use [8]. Blakelock’s autopilot contains feedback
loop‘s for a missile which does not guide during boost, and to correct for accelerometers

which are not at the c.g. These loops have been deleted in this model.

C. SIMULATION ENVIRONMENTS
Two distinct simulation environments were developed for this research. The

simplified 6DOF model was designed initially for the purpose of developing and testing
guidance laws prior to using them in the full aerodynamic model. Problems with the non-
linearity of the full aerodynamic model delayed its completion, and as a result, most of
the simulation results presented were obtained from the simplified 6DOF models. All

simulations operate in continuous time using the Simulink® ode45 Dormand-Price
differential equation solver.
The 6DOF models, THESISI.MDL (Figure A.1) and THESISIFILT (Figure

A.14) employ the flat earth approximation (Equation 2.1) for their missile dynamics, and

are streamlined models providing only the minimum number of subsystems required to

quickly test guidance law operation.

All the air-to-air simulations use a point mass target simulation developed in [6].

The target dynamics are modeled with the following vector equation:[6]
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The target’s lateral accelerations are modeled as a turn rate, ®, while the vertical

acceleration is an input to the subsystem, a,.

The TBMD model, THESISTBM.MDL (Figure A.23) uses the spherical earth
model (Equation 2.2) for its missile dynamics. The target model used in this simulation
involves a six dimensional state vector to simulate the dynamics of a point mass ballistic

missile with no drag as shown below.

01 000 0fx][o 0 0]
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The full aerodynamic model, THESIS3.MDL (Figure A.18) presented the greatest
design challenge. In order to meet Stevens’ and Lewis’ requirement that the 6DOF
equations be solved in the proper order, the flat earth dynamics block was completely
redesigned (Figure A.21) The moments and forces on the missile are computed as
outlined above, and then fed to the missile dynamics block as inputs. This should have

resulted in a model that could be run in both open loop and closed loop operations.

26




Unfortunately, it was not possible to successfully close the loop with either the autopilot

adapted from Blakelock, or any of several other autopilot designs.

It was possible td control the missile laterally, and for short periods vertically in
an open loop by using the control deflection angles as inputs. It is likely that the failure
of the closed loop operations was due to the inherent non-linearity of the model, and
possibly the order in which Simulink® solves the computatidns in the various Matlab®
function blocks. It may be possible to code both the aerodynamics and missile dynamics
blocks as one inline Matlab® function to overcome this failure. This model is presented
here as a point of departure for future research.

D. GUIDANCE LAWS
Five guidance laws were examined during this research, proportional navigation

(PN), velocity compensated proportional navigation (VCPN), bang-bang, differential
games (DG), and augmented proportional navigation (APN). The PN laws were used to
establish baseline performance for comparison with the other guidance laws. The bang-
bang and VCPN laws were examined as an extension of thesis work by Swee [11]. The
DG and APN laws are derived in the optimal control literature and are the focus of using

the kinematic boundary as measure of effectiveness [12], [13].

The geometry of a typical air-to-air missile engagement is shown in Figure 2.8.
The object of the exercise is to steer the missile using only lateral accelerations in such a
way that it hits the target. The steering commands should be optimal in some sense,

minimizing miss distance at least, and possibly control effort (divert) or time to intercept.
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Figure 2.8.  Typical missile engagement geometry. From [13].

1. Proportional Navigation

PN provides steering commands to the missile, which are proportional to the
angular rate of the target’s line of sight relative to a fixed reference. The command
acceleration 7, is given by:[7]

/7 .
_ N'V.o
coso,

n (2.15)

The cosine term in the denominator corrects the acceleration from the line of sight to the
missile’s y-axis.
PN with N’=3 has been shown to be optimal and guarantees a hit under the
following conditions:[14]
non-maneuvering target (no drag)

* missile speed greater than target speed
e target remains in missile’s forward hemisphere
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If the value of N’ is sufficiently large, PN will always intercept a maneuvering
target under these conditions. Blakelock implements PN as a turn rate, but his
recommended values for a navigation constant equate to values of N’ between three and
five [8]. Higher values produce little improvement in performance. One other
shortcoming of PN is that it does not account for the effect of the missile’s dynamics
(time constant) on the navigation solution.

2. Velocity Compensated Proportional Navigation

VCPN is an attempt to extend the basic PN law and account for the effect of drag
on the missile. By adding a compensation term related to the missile’s deceleration and
the line of sight angle, the effect of the drag on the line of sight rate can be reduced. The
VCPN law is given by:[13]

N'V.6

coso,

-V, tano, (2.16)

n,=

In his thesis, Swee showed that if the range rate information VC is available to the
missile, VCPN is no better than the basic PN law [11].

3. Bang-bang

Bang-bang guidance is a modification éf PN in which the missile applies its full
acceleration in the direction of the rate of change of the line of sight. The controls
essentially "bang" on their stops whenever they are applied. This law would be useful in
missiles that are controlled by thrusters that are not throttled and are either on or off. The
baﬁg-bang law is given by:[12]

sea(veo) @17

n.=A
Coso,
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The bang-bang law use here is modified slightly because of the effects of drag.
First, there is a dead band of 0.01 degrees per second in the line of sight rate before the
guidance law takes effect, and second the acceleration at ranges greater than 5 km from
the target is restricted to 5 g’s. Inside 5 km, the acceleration is 30 g’s. This was done to
prevent the missile from expending all of its thrust overcoming the drag from 30 g tumns
immediately after launch.

4. Differential Games

Bryson and Ho develop a guidance law based on differential games theory in
which the pursuer (missile) seeks to minimize a cost function based on the miss distance
and the control effort while the evader (target) seeks to maximize the cost function and
thus survive. Both players are assumed to have perfect knowledge of the other’s state.
Under these conditions, the evader’s optimal strategy is to match the pursuer turn for turn

as shown here [12].

a =—tg4 (2.18)

The pursuers optimal strategy is more complicated, but after assuming the
pursuer can turn at a faster rate than the evader, that minimum miss distance is infinitely
more important than minimum control effort, and linearizing about a nominal collision
course, the resulting control law is:[12]

n=r>__v s (2.19)

c
j P
CP
This is a variation of PN where the navigation constant can be varied statically at

launch based on an estimate of the target’s ability to maneuver, or dynamically with a
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real-time estimate of the target’s acceleration. Bryson and Ho say‘ >that ¢p and ¢, are
constants related to the respective energies of thé evader and pursuer, but closer analysis
shows that they are also related to the ability to maneuver or available acceleration [12].
The control law implemented here uses a value of 30 g for ¢, and estimates ¢, from the
output of the tracking filter.
| 5. Augmented Proportional Navigation

‘This guidance law is drawn from Lin, Reference [13], and is a simplification of an
optimal guidance law that accounts for both target maneuver and missile dynamics. The
APN law used here does not account for missile dynamics. It uses a twelvé-dimensional
state vector with the target’s relative position, relative inertial velocity, target inertial
accelerations, and missile body frame accelcrationé. The tracking filter estimates Fhe first
three, and the body frame accelerations are provided by the accelerometers. The

guidance law is given by the following vector equation:[13]

p,
IIX A 2‘2 ’
n |=|—11. ¢t. I, =21. 0| "’ 2.20
A\ 13,, 3 go *3 2 3 AT ( )
n: )

AM

The navigation constant A is computed for the full optimal guidance law as a
function of r,,. and the weighting functions on the miss distance and control effort. When
the product of the weighting functions approaches zero, the navigation constant is equal
to three. We have chosen a value of five to be consistent with the baseline PN law.

The position and velocity components of the state vector are relative to the missile

and in inertial coordinates; therefore, they can be computed directly from the seeker
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ranges and bearings. The time to go, ,,, is computed from the seeker range and range
rate estimates.

Only the y- and z-components of the control are used. The X-component is
ignored. Note that in this form, the missile accelerations are not used. A constant
diagonal matrix is used in place of the "0" matrix to add the effect of the missile time

constants in the full optimal guidance law.

E. TRACKING FILTER
The tracking filter is based on an alpha-beta-gamma filter design by Bar-Shalom

and Li [15]. This is a constant gain filter and therefore it is less computationally
intensive than an adaptive filter like the Kalman filter. Zarchan recommends the use of
constant gain filters, in part because of computational load and also because of stability
[7]. The DG and APN guidance laws require this tracking filter for their estimates of the

target’s acceleration

The filter is implemented as a MatLab® function ABGFILTER.M. It is
interesting to note the use of the global variable XLAST to preserve the state estimate
from time step to time step. The values for the filter gain were chose by trial and error
from nomograms in Reference [15] to give the filter an initial settling time of less than
two seconds as these simulations are initially noise free, and the choice of gains is
dependent on the characteristics of the noise. The filter is a discrete time filter with a
sampling frequency of 10 Hz. This was accomplished by placing the filter block between
two zero order hold blocks. A sample of the filter's estimate of target acceleration with a
6 g turn three seconds prior to intercept is shown in Figure 2.9.
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III. GUIDANCE LAW TESTING

A. KINEMATIC BOUNDARY
Kinematics is the branch of mechanics dealing with pure motion -without

reference to the masses or forces’involved. For the purposes of this research, a missile’s
kinematic boundary is the locus of points representing the maximum range at which a
target may be successfully engaged as a function of relative bearing from the target at the
start of the engagement given a noise-free guidance and control system. To the pilot, this
is the "firing envelope,” a critically important piéce of information as it determines not
only the success of an engagement, but the tactics required to prosecute the target. We
chose the kinematic boundary as our measure of effectiveness for this reason. To the
warfighter, graphs of average miss distahce or control effort may be meaningful if he is a
controls engineer, but a comparison of two guidance laws showing one to have a
significantly larger firing envelope is far more useful. Figure 3.1 below shows a generic
kinematic boundary (a circle) and is represenfative of the plots used in Chapter IV. The
azimuth angles represent the relative bearing of the shooter from the target at the start of

the engagement.

A successful engagement has a miss distance of less than 5 meters for these
simulations. This figure is based on the warhead of the AMRAAM having a lethal radius
of approximately 10 meters, and the size of a typical modem jet aircraft. Figure 3.2
shows the relationship of the 5 meter radius to a MiG-29 fighter. Clearly, a warhead
exploding within 5 meters of the MiG-29 will do substantial if not fatal damage to the

(

aircraft.
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The Matlab® program files KBOUTER2.M and KBFILTER.M generate the
kinematic boundaries. The resolution in range is 10 meters, and in azimuth is 5 degrees.
These values were chosen as a compromise between speed of execution and plot detail.
At these resolutions, a kinematic boundary can be generated in 9-12 hours with a
Pentium® III, 700 MHz processor. One-degree resolution requires 48-60 hours, and 1

meter would take approximately 8-10 times longer.

A Representative Kinematic Boundary

90 150000

Target at 12? - ' \\‘\(\33 k

center of plot / 100009"" \

: \ Shooter firing
150 a \\ 30 from boundary

Figure 3.1.  Kinematic boundary. The shooter is on the boundary pointing at the target
at the start of the engagement.
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5 meter lethal radius
around c.g. of MiG-29

Figure 3.2.  Comparison of a 5 meter warhead lethal radius to a MiG-29 aircraft.
MiG-29 drawing is from [2].

TEST SCENARIOS

Candidate guidance laws are tested in three engagement scenarios:
Non-maneuvering target, co-altitude at 6,000 meters

¢ Non-maneuvering cruise missile target at 50 meters
Maneuvering target, co-altitude at 6,000 meters
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The non-maneuvering target engagement is used as a baseline for comparison of
performance. The engagement begins with target and shooter at 6,000 meters altitude,
approximately 20,000 feet, and Mach 0.83. These values would be typical of an intruder

making a high altitude ingress to a target, and a combat air patrol (CAP) on station.

The cruise missile engagement is intended to demonstrate the interceptor’s ability
to engage a low-altitude non-maneuvering target like the Tomahawk missile. The
AMRAAM is launched from the CAP station at the target, which is at 50 meters,

approximately 150 feet.

The maneuvering target engagement is the true test of missile performance. In
this scenario, the target initiates a 6 g turn or "jink" toward the missile three seconds prior
to impact. This turn toward the missile is most advantageous to the target as it forces the
missile to make a tighter turn and expend more energy to keep up with the target than a
turn away. The timing was chosen for two reasons. First, given that the missile will
activate its terminal radar between 5-7 seconds prior to impact, and the time required for
the target’s sensors to detect the radar, alert the pilot, and have the pilot take evasive
action, the aircraft would be established in its maneuver about fhree seconds prior to
impact. Secondly. the missile’s settling time is modeled to be 2.5 seconds, so a maneuver

at three seconds puts increased stress on the guidance law to keep up with the maneuver.
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C. CANDIDATE GUIDANCE LAWS

Table 3.1 shows how the guidance laws were tested.

Guidance Law Non-maneuvering Non-maneuvering Maneuvering
co-altitude cruise missile co-altitude

PN, N=3 X
PN, N= X X X
PN, N=7 X X
VCPN with Ve X
VCPN no Ve X

Bang-bang X
DG X X
APN X X X

Table 3.1. Guidance Law Test Plan

The VCPN and bang-bang laws were tested to confirm earlier work by Swee in

his thesis [11].

D. NOISE STUDY

A study of the effect of seeker noise on missile performance was conducted using

the PN (N'=5) guidance law. The study was run at the 135-degree azimuth test point with

100 realizations. The standard deviations of the noise signals were as follows:

Range

Closing velocity
Bearing
Bearing rate

50 meters

2 meter/second

1 degree

.01 degree/second
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IV. COMPARISON AND ANALYSIS

A. PROPORTIONAL NAVIGATION LAWS

The PN guidance laws were tested to provide a baseline for comparison with the
other guidance laws. Figure 4.1 shows the kinematic boundaries for the three PN laws
against a non-maneuvering co-altitude target. Figure 4.2 shows the kinematic boundaries
against the co-altitude, maneuvering target described above. Figures 4.3 and 4.4 are

amplifications of the differences in performance of the three laws.

The N=3 guidance law is the poorest performer of the three. While N’=3 has
been shown to be optimal for a non-maneuvering target, the effect of drag on the missile
is similar to a target maneuver along the line of sight. The discontinuities or "divots" in
the N'=3 boundary are caused by drag slowing the miésile more rapidly on those attack
azimuths than others resulting in the missile slowing below the target’s speed and

stopping the simulation.

Clearly, the N'=5 law is an improvement for both scenarios. There is a slight
improvement between N=5 and N=7 with a mean value of 315 meters for the non-
maneuvering case, and 1,749 meters for the maneuvering case. The improvement from

=3 to N=5 has a mean value of 2,076 meters, non-maneuvering, and 7,555 meters
maneuvering. Because of the relatively poor performance of the N=3 law, N’=5 will be

used as the comparison baseline for the other guidance laws.

Figure 4.5 is a comparison of the performance of the N’=5 law against a co-
altitude target and against a cruise missile target at 50 meters altitude. The omni-
directional reduction in range is due mainly to increased drag as the missile descends into

the heavier air at lower altitudes.
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Kinematic Boundary Comparison
PN (N'=5) vs Non-maneuwering and Cruise Missile Targets
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150000 //

Figure 4.5.  Kinematic boundary comparison of PN vs. non-maneuvering and cruise
missile targets.
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B. | VELOCITY COMPENSATED PN LAWS
The VCPN laws were tested as a continuation of Swee’s thesis research [11]. A

PN law with a fixed navigation constant, angles only, no V¢ information, was tested
against the non-maneuvering, co-altitude target. This simulates a guidance law like that
used by Sidewinder. The gain was computed with N'=5 and a fixed closing velocity of
750 meters per second. VCPN laws with and without Vc information are compared to

this law, and to PN with N’=5.

Figure 4.6 shows the kinematic boundaries for each of these laws. The VCPN
law without V¢ information is clearly an improvement over the angles only PN law, while
the addition of V¢ information to the VCPN law actually reduces the range. Since the
incorporation of V¢ information also includes the deceleration of the missile along the
line of sight, the velocity compensation term adds nothing to the guidance law’s

performance. Neither of the VCPN laws performed as well as the full PN law.
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C. BANG-BANG

The bang-bang guidance law was also tested as a continuation of Swee’s
work.[11] The bang-bang law is used throughout the engagement to determine the effect
of drag on its performance. As seen in Figure 47 bang-bang is clearly outperformed by
the baseline PN law. Because of the aerodynamic drag on the missile, the guidance law
must expend more energy in the end game when the line of sight angular rates begin to
increase. There is a synergistic effect: as the angular rate increases, the missile must turn

harder, generating more drag, which causes the angular rate to increase.

Note that the bang-bang law’s performance is highly aspect dependent. The
enhancement in the target’s forward hemisphere is most noticeable. The effect could be
useful in TBMD work where the goal is to place the interceptor ahead of the target.
Further, for an exo-atmospheric interception, the effect of drag on the bang-bang law

would be greatly reduced.
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D. DIFFERENTIAL GAMES

The differential games law was tested against both the non-maneuvering and
maneuvering co-altitude targets. Figure 4.8 shows its performance against the non-
maneuvering target, and Figure 4.9 against the maneuvering target. In both cases the

performance showed no improvement over the baseline PN law.

This law is a modification of PN with scheduling of the navigation constant based
on the tracking filter’s estimate of the target’s total acceleration. It is clear that gain

scheduling is not sufficient to increase the kinematic boundary of the PN law.
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Figure 4.8.  Kinematic boundary comparison of the differential games law vs. a non-
maneuvering, co-altitude target at 6,000 meters and Mach 0.83.
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Figure 4.9.  Kinematic boundary comparison of the differential games law vs.
maneuvering, co-altitude target at 6,000 meters and Mach 0.83. Target maneuver was a 6
g turn toward the missile at tgo=3 seconds.
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E. AUGMENTED PROPORTIONAL NAVIGATION

The APN law was tested against both the non-maneuvering and maneuvering, co-
altitude targets. Against the non-maneuvering target, the APN law’ performance is
identical to the baseline PN law except for a small "divot" at 100 degrees. Figures 4.10
shows the results against the maneuvering target. The jagged boundary is an artifact of

the azimuthal resolution, and is smoothed out when the resolution is reduced to one
degree.

The APN law is clearly better in the target’s rear hemisphere and forward of 60
degrees relative to the nose. In the forward quarter from 90 degrees to 60 degrees there is

a reduction in performance compared to the PN law. The mean improvement in the APN

law is 4.45 km for all aspects, 1.24 km in the forward 120 degrees, and 8.48 km in the

rear hemisphere.

Figure 4.11 shows the results of APN against the cruise missile target. The
kinematic boundary for the APN law is clearly smaller than PN law. Azimuth resolution

was reduced to 10 degrees for this comparison to keep the APN simulation under 48

hours in real time.
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Figure 4.10. Kinematic boundary comparison of APN vs. maneuvering, co-altitude
target at 6,000 meters and Mach 0.83. Target maneuver was a 6 g turn toward the missile
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Figure 4.11.

Kinematic Boundary Comparison
APN and PN (N'=5)

90

Kinematic boundary of APN and PN vs. cruise missile target. Azimuth

resolution is 10 degrees.

55

— PN
were APN




F. NOISE STUDY

A study of the effects of noise on missile performance was conducted at the 135-
degree azimuth test point. Using the range for the kinematic boundary of the baseline PN
law, it was not possible to hit the target in 100 realizations. The test point was moved in
approximately 2 km to 45,500 meters and another 100 realizations were generated.
Figure 4.12 is a scatter plot of the x and y miss distances for the 100 realizations. Figure
4.13 is the distribution of the Euclidean miss distances. 92 percent of the samples were
within the required miss distance of 5 meters to be called hits.

Noise Study Scatter Plot
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Figure 4.12.  Scatter plot of x and y miss distances for a noisy seeker.
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Figure 4.13. Histogram of missile miss distances with a noisy seeker. 100 realizations.
Probability of hit is 92%.
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G. TBMD DEMONSTRATION
Figure 4.14 is a demonstration of the 6DOF model’s ability to simulate a TBM

interceptor. The target missile was launched from the €quator on a northeasterly heading.
The range of this missile is approximately 400 km. The interceptor was launched from a
position 150 km north of the target launch site. The target’s initial velocity vector, [vy vy
v;] in ECI coordinates, was [1200 10 1000]. The velocity profiles for the target and
interceptor are shown in Figure 4.15. The interceptor was steered toward the target’s
apogee for the first 30 seconds of flight, and then followed the baseline PN law to an
interception 2.2 meters ahead of the target. The plot is in ECI coordinates, the surface of

the earth is approximately the bottom grid. North is to the ri ght.
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Figure 4.15. Interceptor and target velocity profiles for TBM demonstration.
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V.  CONCLUSIONS AND FUTURE RESEARCH

A. CONCLUSIONS
The kinematic boundary is a natural, intuitive method of comparing the

performance of guidance laws. Its form is immediately recognizable to the warfighter,
and provides exactly the information required to make an informed decision as to which

guidance laws would be of operational value.

The VCPN laws showed the expected improvement over the fixed gain PN law,
and the VCPN law with range rate information did not perform as well as the VCPN law
without range rate information. Neither law performed as well as the baseline PN law.
The bang-bang law showed an unusual kinematic boundary with ranges in the target’s
forward hemisphere greatly extended over the rear hemisphere. The aspect dependence
of this law and approximately 50 percent reduction in range throughout most of the

envelope make this law a poor choice for guidance from launch to intercept.

Under the conditions simulated here, an optimal control law, the augmented
proportional navigation law, will perform better than a proportional navigation law
throughout most of t/he kinematic boundary. Overall, the APN law’s kinematic boundary
was 4.45 km better than the PN law, on average. In the forward 120 degrees, the average
improvement was 1.24 km and in the rear hemisphere, it was 8.48 km. This represents a
1.4 percent improvement over the PN law for head-on engagements, and a 25 percent

improvement for rear hemisphere engagements.

The 6DOF model has been demonstrated as a test platform for evaluating

guidance laws for use in the TBMD arena.
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B. FUTURE RESEARCH
This work suggests several lines of future research. First, the guidance laws

tested here should be tested with a noisy seeker to determine the effect of noise on their
performance. Second, the full aerodynamic model designed here needs to be taken to the
point where it is fully operational. Third, the TBM simulation could be used to study the
effects of guidance law selection on the Navy’s Linebacker' TBMD capability. Fourth,
the models could be used for a comparison of the kinematic boundaries of other missiles
systems, particularly those that are potentially hostile to look for possible tactical
advantages. Finally, the models could be used to test new guidance laws that will be

developed future researchers.
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APPENDIX A. SIMULINK® MODELS

The block diagrams in this appendix represent the four models used in this
research. Sub-blocks which are not changed from the simplified 6DOF model in later

models are not included with those models. The four models begin on the following

pages:
e Simplified 6DOF.........cccocrvervrinrcrrreieene 64
e 6DOF with tracking filter..........ccocceevevennene. 77
e Full aerodynamic model...........cccccevrenrnnn.e 81
e TBMD interceptor model.........ccceccerrrueenennne. 86
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Missile IMU and air data computer. Function blocks are Q2EULER.M
and ALPHABETA M.
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Figure A.12. Target turn generator. Switch threshold is set to 3 seconds.
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Figure A.16. IMU with additional outputs for tracking filter.
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Full aerodyn

Figure A.18.
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Figure A.19. Aerodynamic moment and force models. Function blocks are

ALPHABETA.M, AEROFORCES.M, and AEROMOMENTS.M.
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Figure A.20. Full aero model autopilot.
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Figure A.23. Simplified 6DOF TBMD interceptor simulation.
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Figure A.24. TBM thrust model.
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Figure A.25. TBM target model. Function blocks are BALLISTDYN.M and
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GRAVITY.M.
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Figure A.27. TBM missile model switch. Function block is MODELSWITCH.M.
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Figure A.28. TBM Missile Dynamics. Function block is GRAVITY2.M.
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Filename

APPENDIX B. MATLAB® CODE

Purpose

abgfilter.m

implements alpha-beta-gamma filter

aeroforces.m

aerodynamic forces for full aero model

aeromoments.m

aerodynamic moments for full aero model

alphabeta.m angles of attack

auxplots.m plots auxiliary data for one simulation run
b2quat.m quaternions from a rotation matrix
bangpt.m bang-bang control law for 6DOF model
bryson.m DG control law

cd0.m parasitic drag coefficient

cdi.m induced drag coefficient

cdvmach polyfit for cdi

chingfanlin APN guidance law

draginduced induced drag force

draginducedtbm induced drag force for TBM simulation
dragthesis parasitic drag force

dragthesistbm parasitic drag force for TBM simulation
drawmissile missile plan view

dynamic3d 3D target dynamics

eqnforce force dynamics for full aero model
eqnmoment moment dynamics for full aero model
eqnposit navigation equation for full aero model
eqnquat quaternion dynamics for full aero model
flatearthdyn 6DOF dynamics for flat earth model
formdrag computes form drag

gravity spherical earth gravity for TBM target
gravity2 spherical earth gravity for TBM interceptor
kbfilter kinematic boundary for filtered laws
kbouter2 kinematic boundary for unfiltered laws
machvalt computes Mach 1 at altitude
missiledata data for AMRAAM

missiledata2 data for JERGER

missiledata3 data for SM-2 MR

missiledata4 data for SM-2 ER

modelswitch switches models at staging in TBM simulation
noisestudy noise study with 100 realizations
propnav3d PN law for full aero model

propnavpt PN law for 6DOF model

propnavtbm PN law for TBM simulation

Table B.1. Matlab® Source Code Listing.
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Filename Purpose
2euler computes euler angles from quaternions
uat2b computes rotation matrix from quaternions
uaternion computes quaternion from euler angles
rhovalt computes atmospheric density
sixdofdyn 6DOF dynamics in ECI coordinates
spielberg movie maker
tgo computes time to go
tgtset initializes target for AAM simulations
thebigstop simulation stopper
thesis2plot plots data for thesis
thesisinit initializes simulator
vcpropnavpt VCPN law

Table B.1.

Matlab® Source Code Listing (continued)
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function y=abgfilter (u)
$ABGFILTER Implements an alpha-beta-gamma filter as

% outlined in Bar-Shalom & Li "Estimation and
% Tracking"”
% see also
% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************
*hkhkkkkkk*k

%$// File: abgfilter.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5

%$// Compiler: MatLab v5.3

%// Date: 19 July 2000
%// Description: Implements a 9-dimensional state vector

%// alpha-beta-gamma tracking filter for use with
$// missile guidance laws requiring tracking filters
s// Note: wuses global XLAST to preserve state

$// between iterations

%// Inputs: measurements (los,los_dot,R,R_dot),

&// missile pos (x,y,2z)

%// Outputs: 9-dimensional estimate of target state

%/ / [x,vx,ax,y,vy,ay,z,vz,az]’

%// Process: alpha-beta-gamma filter outlined in Bar-Shalom & Li

%// Assumptions:
%// Warnings: may require up to 20 samples to stabilize from

%// initialization
%//**********‘k***‘k***’k**********‘k****’k******‘k*’k‘k'k’k**‘k******************

J ok kok ok kkkKk

%$// Order of elements

%// -Define globals

%// -Define constants

%// ~-Define elements of input vector
%// -Functions

%//*******'k********************************************?\'***************
*kkkkkkkk
§ ***x**x  define globals *****x

global m d L XCG XCPN XCPW XCPB XHL
global ST SW SPLAN SREF FILTSAMP XLAST

§ *****x*x  define constants rxxkkx

g **xx%%x  define input vector *x*xk*x
losdot=u(l);

phidot=u(2);

los=u(3);

phi=u(4);

rdot=u(5);

R=u(6);

xm=u(7) ;

ym=u(8) ;

zm=u(9);
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§ ****xx initialize variableg ****x*
% compute target cartesian coordinates
Xt=R*cos(los)+xm;
yt=R*sin(los) +ym;
zt=R*sin{(phi)+zm;

z=[xt;yt;zt];

% set noise parameters
sigmav=1;

sigmaw=1;
lamda=sigmav*FILTSAMP“2/sigmaw;

% set filter parameters from Bar-Shalom & Li

falpha=.9;
fbeta=.9;
fgamma=.9;

% filter matrices
F=[1 FILTSAMP FILTSAMP"~2/2 zeros(1l,6);

0 1 FILTSAMP zeros(1l,6);
0 0 1 zeros(1,6);
zeros(1,3) 1 FILTSAMP FILTSAMP~2/2 zeros(1,3);
zeros(1,4) 1 FILTSAMP zeros(1,3);
zeros(1l,5) 1 zeros(1,3);
zeros(l,6) 1 FILTSAMP FILTSAMP"2/2;
zeros(1,7) 1 FILTSAMP;
zeros (1, 8) 11;

H=[1 0 0000 O0 0 0;
00010000 0;
00000010 0];

% compute steady state gains
W=[falpha;fbeta/FILTSAMP;fgamma/(2*FILTSAMP“2)];

% build gain matrix

P=[W zeros(3,2);
zeros(3,1) W zeros(3,1);
zeros(3,2) W] ;

% *kkkkkokkkkk ok functiOns ok k ok ok ok ok ok ok ok k%

% run filter
Xhat=F*XLAST;
xhatl=xhat+P*(z-H*xhat);
XLAST=xhatl;

y=xhatl;

%//end of file abgfilter.m
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function y=aeroforces(u)
$AEROFORCES Computes aerodynamic forces on a missile. .

0 0P 0P dP of

derived from Zarchan "Tactical and Strategic
Missile Guidance" and Anderson "Fundamentals -
of Aerodynamics"

see also AEROMOMENTS

Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************

% %k Kk ok kk ok k ok

%7/
%//
%//
%//
%//
%//
&7/
%//
%//
%//
%//
%//
%//
%//
%//
%//

File: aeroforces.m
Name: LCDR Robert D. Broadston
MSEE/EE Thesis )
Operating Environment: Windows NT 4.0 Service Pack 5
Compiler: MatLab v5.3
Date: 7 Sept 2000
Description: Computes aerodynamic forces for both subsonic
and supersonic regimes on a symmetrical STT
missile. )
Inputs: missile state, control deflections, angles of attack
and rates
Outputs: Body centered aerodynamic force components [Fx,Fy,Fz]’
Process: Brute force computation of equations from Zarchan and
Anderson
Assumptions:
Warnings:

%//********************************************************************

%k K %ok ok ok k%

%//
%//
%//
%//
%//

Order of elements
-Define globals
-Define constants
-Define elements of input vector
-Functions

%//'k*******************************************************************

dkokkkkkk*k

g ***x¥%*%* define globals ~*¥*¥**x*
global m d L XCG XCPN XCPW XCPB XHL
global ST SW SPLAN SREF

$ ****x*x*x  define constantsg Frrxxx

§ **x***xx  define input vector | kix¥xkx
states=u(l1:13);

delta_r=u(l4);

delta_e=u(l5);

thrust=u(16) ;

m_alpha=u(l7);

m_beta=u(l8);

alphadot=u(19);

betadot=u(20) ;
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§ ***xxx  initialize variables *rx%*%

V_m=sqrt (u(4) "2+u(5)"2+u(6)~2); % missile velocity
Mach=V_m/machvalt (u(3)); % Mach number
M_BETA=sqgrt (Mach”2-1) ; % Beta factor
O=rhovalt(u(3))*v_m"*2/2; % dynamic pressure

% % %k ok k kk k ok ok ok ok ok functions % %k ke ok Kk e kok k%

Fommm e compute normal coefficients ---—-e--eeo______
Frmmm— - these equations developed in Zarchan —----—-—--w———
if (Mach>1.05)
C_Naz=2+3*SPLAN*m_alpha/(2*SREF)...
+8*SW/ (M_BETA*SREF) . ..
+8*ST/ (M_BETA*SREF) ;
C_Ndz=8*ST/(M_BETA*SREF);
C_Nz=C_Naz*m_alpha+C_Ndz*delta_e;
C_be=2+3*SPLAN*m_beta/(2*SREF)...
+8*SW/ (M_BETA*SREF) . ..
+8*ST/(M_BETA*SREF);
C_Ndy=8*ST/ (M_BETA*SREF) ;
C_Ny=C_be*m_beta+C_Ndy*delta_r;
Fommm——— these equations developed in Anderson ----—-—c-e—-e—o
else
C_Nz=.5*m_alpha;
C_Ny=.5*m_beta;

end

g — e compute drag - -—--—-—-—=—-ce_____

CDO=cd0 ([states; thrust]) ; % drag
CDI=cdi([C_Nz,C_Ny,m_alpha,m_beta,u(3),V_m]); % coefficients

drag= (CDI+CD0) *Q*SREF;

Fomm e compute forces -~-——--eceo_____
F_x=0;%thrust-drag;

F_y=C_Ny*Q*SREF;

F_z=C_Nz*Q*SREF;

y={F_xX:F_y;F_z];

%//end of file aeroforces.m
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function y=aeromoments (u)

$AEROMOMENTS Computes aerodynamic moments on a missile.
derived from Zarchan "Tactical and Strategic
Missile Guidance" and Anderson "Fundamentals
of Aerodynamics"

see also AEROFORCES

Copyright 1999-2000 by Triple B Enterprises

P P P 0P of

%//**'k*****************************************************************
%* Kk Kk Kk Kk ok k k%

%$// File: aeromoments.m

%$// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%$// Operating Environment: Windows NT 4.0 Service Pack 5

%$// Compiler: MatLab v5.3

%$// Date: 7 Sept 2000
%$// Description: Computes aerodynamic moments for both subsonic

%// and supersonic regimes on a symmetrical STT
%// missile. Note: Moment about x-axis is

%// negative feedback of roll rate to stop missile
%// from rolling.

%$// Inputs: missile state, control deflections, angles of attack
%// and rates

%// Outputs: Body centered aerodynamic moments [Tx,Ty,Tz]’

%$// Process: Brute force computation of equations from Zarchan and
%// Anderson

%$// Assumptions:

%// Warnings:

%//*'k******-k************‘k***'k*-k*'k***'k*******‘k***'k****k*k***********'k*****
* kkk Kk kkokk

$// Order of elements

%// -Define globals
%// -Define constants
%// -Define elements of input vector

%// -Functions
%//*****i***sk**********************************************************

* ok k hk Kk k kN

g **xx** define globals **x****
global m d L XCG XCPN XCPW XCPB XHL
global ST SW SPLAN SREF

§ *****»  define constants (FExEFFE*

g ****»*»*» define input vector ***x*x*x%
states=u(Z:13);

delta_r=u(ld);

delta_e=u(l5);

m_alpha=u(l6};

m_beta=u(i7);

alphadot=u(l8);

betadot=u(19);
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§ ***%%%x  jnitialize variables
V;m=sqrt(u(4)A2+u(5)“2+u(6)“2);
Mach=V_m/machvalt (u(3));
M_BETA=sqgrt (Mach”2-1) ;
Q=rhovalt (u(3))*vV_m*2/2;

* %k ok k%
% missile velocity
% Mach number
% Beta factor
% dynamic pressure

% Fokokok ok kokkok ok ok ok functions kodok ook gk ok ok ok ok ok

Fomm e compute moment coefficients —--=-—eeeoo L ____
F—m——— - these equations developed in Zarchan

if Mach>1.05
C_My=2* (XCG-XCPN) /4. ..

+3*SPLAN*m_a1pha*(XCG-XCPB)/(Z*SREF*d)...

+8*SW*(XCG—XCPW)/(M_BETA*SREF*d)...
+8*ST*(XCG—XHL)/(M_BETA*SREF*d);
C_Mdy=8*ST*(XCG-XHL)/(M_BETA*SREF*d);

C_Mz=2*(XCG-XCPN) /d. ..

+3*SPLAN*m_beta*(XCG—XCPB)/(Z*SREF*d)...
+8*SW*(XCG—XCPW)/(M_BETA*SREF*d)...
+8*ST*(XCG—XHL)/(M_BETA*SREF*d);
C_Mdz=8*ST*(XCG—XHL)/(M_BETA*SREF*d);
Fommm these equations developed in Anderson

else
C_My=.5; C_Mdy=.05;
C_ Mz=.5; C_Mdz=.05;
end

T_x=-400*states(7);

T_y=(C_My*m_alpha+C_Mdy*delta_e)*Q*SREF*d—SOO*alphadot;
T_z=(—C_Mz*m_beta+C_Mdz*delta_r)*Q*SREF*d+800*betadot;

y={T_x;T_y;T z];

%//end of file aeromoments.m
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function y=alphabeta(u)
$ALPHABETA Computes angles of attack in both vertical

% and horizontal planes
% see also
% Copyright 1999-2000 by Triple B Enterprises

%//*******************************************************.*************
* %k k Kk kkkkk

$// File: projX.m

%$// Name: LCDR Robert D. Broadston

%$// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5

%$// Compiler: MatLab v5.3

%$// Date: 31 July 2000

%// Description: Computes angles of attack using ATAN formulation
%// in Bryson "Control of Spacecraft and Aircraft”
%$// Inputs: missile state

%// Outputs: angles of attack [alpha,beta]’

%// Process: ATAN formulation of Bryson

%// Assumptions:

%$// Warnings:

EYNARRE AR A ER R E R R R LA AR e e R
% J d Kk %k K ok ok '

$// Order of elements

%// -Define globals

%/ / -Define constants

%// -Define elements of input vector
s// -Functions

%//***********************************'k*****‘k‘k**‘k****‘k*****************
F* ok Kk k ok ok ok ok ok

§ ***x*x*x  define globals ****%*

g *****x*  define constants rxxkkk

g ***x*x*x*x  define input vector KF¥x¥F¥*
v=[u(4);u(5);u(6)];

$ **x**%*  initialize variables xx**xxx

% hkkkkkkkkkkk*k functions * %k ok k ok ok ok ok ok k% Kk
Fommmm these equations developed in Bryson -------
% using betal for sideslip angle to avoid problems with
$ built-in matlab fxn beta

alpha=atan2 (v(3),sqrt(v(1l)"2+v(2)*2));
betal=atan2(v(2),v(1l));

yv=[alpha;betal];

%$//end of file alphabeta.m
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%//********************************************************************
*kok ok ok ok ok kK

%// File: auxplots.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5§

%// Compiler: MatLab v5.3

%// Date: 13 April 2000

%// Description: Plots auxiliary variables from missile simulations
%// Inputs: none

%// Outputs: plots of auxiliary variables

%// Process: none

%// Assumptions: none

%// Warnings: none
%//********************************************************************

*kk ok kk ok ok ok

%// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// -Functions

%//*************************************‘k******************************

kkk ok kk ok koK

g ***x%*x  dJofine globals **%*xx
% *¥*xxx  define constants *x**%x*
§ ****%xx  define input vector Fx**%x

§ *x*x%kx  dnjtialize variables kxkkxx

% dok ok ok k ok ok k ok ok ok ok functhnS * ook kok ok ok ok ok ok ok K

figure(4)
subplot(4,2,1)
plot(t,AccelOut/9.8045)
ylabel (‘AccelOut’)
subplot(4,2,2)

plot (t,AlphaBeta)
ylabel (‘AlphaBeta’)
subplot (4,2, 3)
plot(t,eulers*57.3)
ylabel (‘eulers’)
subplot(4,2,4)
plot(t,MissileV)
ylabel ('MissileV’)
subplot(4,2,5)
plot(t,AccelError)
ylabel (‘AccelError’)
subplot(4,2,6)
plot(t, seeker)
vlabel (’seeker’)
subplot (4,2, 7)
plot(t,deltas)
vlabel (‘deltas’)
%//end of file auxplots.m
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function y=b2quat (B)
¥B2QUAT Computes quaternions from a rotation matrix

%
%
%

B2QUAT (B)
see also QUATERNION, BQUAT
Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************

%//
%//
%//
%//
%//
%//
%//
%//
%7/
%//
%//
%//
%//
%//

%//
%//
%//
%//
%//

% ok ok ok k Kk k%

File: b2quat.m

Name: LCDR Robert D. Broadston

MSEE/EE Thesis

Operating Environment: Windows NT 4.0 Service Pack 5

Compiler: MatLab v5.3

Date: 12 Dec 1999

Description: Computes quaternions from ABC rotation matrix
using formulation of Kuiper "Quaternions and
Rotation Sequences"

Inputs: rotation matrix B

Outputs: quaternion [q0,ql,q2,qg3]’

Process: Kuiper pp. 166-167

Assumptions:

Warnings:

%//********************************************************************

* %k %k %k ok ok ok ok k

Order of elements
-Define globals
-Define constants
-Define elements of input vector
~Functions

%//********************************************************************
* Kk Kk ok kk ok k%
& *x**xx*  define globals ***%xx

§ **x*xx*x  define constants **x**xx
g ***x*x%  define input vector *x*x*x
% **x*xx*x  initialize variables ***xx*x

% %k odk Kk kok Kk ok ok k ok ok funCtlonS kkkkkokokkkkkx

q 0=
q_l=
g 2=
q_3=

sgrt ((1+B(1,1)+B(2,2)+B(3,3))/4);
sqrt((1+B(1,1)-B(2,2)-B(3,3))/4);
sqrt ((1-B(1,1)+B(2,2)-B(3,3))/4);
sqrt ((1-B(1,1)-B(2,2)+B(3,3))/4);

a=(B(2,3)-B(3,2))/4;
b=(B(3,1)-B(1,3))/4;
c=(B(1,2)-B(2,1))/4;
d=(B(1,2)+B(2,1))/4;
e=(B(2,3)+B(3,2))/4;
f=(B(1,3)+B(3,1))/4;
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if (a<0 & b<0 & c<0)
q _0=-q _0;

end

if (a<0 & d<0 & f£<0)
g l=-q 1;

end

if (b<0 & d<0 & e<0)
q 2=-q_2;

end

if (c<0 & e<0 & f£<0)
q_3=-q_3;

end

y={q 0;q 1;q9 2;q 37];

%//end of file b2quat.m
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function y=bangpt (u)
¥BANGPT Computes bang-bang control law for simplified

% 6DOF model
% see also PROPNAVPT, VCPROPNAVPT, BRYSON, CHINGFANLIN
% Copyright 1999-2000 by Triple B Enterprises

%//************************************************************3‘\-*******
%k k ok Kk k ok kK

%$// File: BANGPT.m

%// Name: LCDR Robert D. Broadston

%$// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5

%// Compiler: MatLab v5.3

%// Date: 6 Aug 2000
%// Description: Bang-bang control law for 6DOF flight model.

%// Uses two values of bang depending on range to
%// reduce problems with drag at start of engagement.
%// -.005 rad/s dead band on los rate

%// Inputs: [seeker data,IMU data,timer]

%// Outputs: [command accelerations,applied forces]
%// Process: bang-bang control law

$// Assumptions: none

%// Warnings: none
%//********************************************************************

% %k %k ok k ok Kk ok Kk

%// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// ~-Functions

%//********************************************************************

* Kk Kk ok ok Kk k ok Kk
$ ****x* define globals **x*x**
global m satflag

g ****** define constants *Fxxxx*
Nprime=5;
Nprimez=5;

& ****»*  define input vector *xxx*xx
thetadot=u(l);

phidot=u(2);

los=u(3);

philos=u(4);

R=u(6) ;

Ve=-u(5); . :
heading=u(7);

Vm=u(8) ;

Vmdot=u(9) ;

phi=u(10);

theta=u(ll);

psi=u(l2);

time=u(13);
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% ***x*%  jnitialize variables ****xx
% set max control force to 5 g (long range
% & 20 g (end game)

if (R>5000)
Nbang=5*9.8045;
else
Nbang=20*9.8045;
end

% %k Kk Kk k k koK ok Kok functions Ihhkkkkkhhkhkkhk

% establish a dead band on theta dot
if (abs (thetadot)>.01*pi/180)
ny=Nbang*sign(Vc*thetadot) ;
else
ny=0;
end

nz=Nprimez*Vc* (phidot)-9.8045;

% control force limiter
if satflag
if (abs(ny)>30%9.8045)
ny=sign(ny) *30%9.8045;
end
if (abs(nz)>30%9.8045)
nz=sign(nz)*30%*9.8045;
end
end

% compute ABC forces applied
Fx=0;

Fy=ny*m;

Fz=nz*m;

% output vector
y=[ny;nz;Fx;Fy;Fz];

%//end of file BANGPT.m
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function y=bryson(u)
$BRYSON Computes optimal guidance law derived by Bryson & Ho

% with dragforce inputs for point mass simulation
% see also PROPNAVPT BANGPT CHINGFANLIN
% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************
* %k %k k ok ok kK%

%// File: Dbryson.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5

%$// Compiler: MatLab v5.3

%// Date: 18 Sep 00
%// Description: Modified PN differential games guidance

%// law from Bryson & Ho
%// Inputs: Seeker outputs, filter outputs, missile timer
%// accelerometer output

%// Outputs: command accelerations, y and z forces for drag model
%// Process:
%// Assumptions:

%// Warnings:
%//********************************************************************

*hkkkokkkkk

%// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input wvector
%// -Functions

%//********************************************************************

khk ok hkkkkhkk
g **x%xxx  define globals *****x
global m satflag

g ***x**%* Joefine constants Frxx**
Nprime=3;
Nprimez=3;

g *x****  define input vector x*¥x*x
thetadot=u(l);
phidot=u(2);
los=u(3);
philos=u(4);
R=u(6);
Vec=-u(5);
heading=u(7);
Vm=u(8) ;
Vmdot=u(9) ;
phi=u(10);
theta=u(11);
psi=u(l2);

m_state=u(l1l3:21);
time=u(22);

accel_in=u(23:25);
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% ****%x%x  initialize variables *rxxx%*

% k Kk ko ok ok ok ok ok ok ok k functlons k kok ok ok ok ok ok ok ok ok ok

if time<2.0
ny=Nprime*Vc* (thetadot) /cos (psi-los); )
nz=Nprimez*Vc*(phidot)/cos(theta—philos)—9.8045;
else
cp=30%9.8045;
ce_lat=sqrt(m_state(3)A2+m_state(6)“2);

if (ce_lat==cp)
ce_lat=29*9.8045;
end

ce_vert=abs (m_state(9));

if (ce_vert==cp)
ce_vert=29*9.8045;
end :

ny=3/(l-ce_lat/cp) *Vc*thetadot;
nz=3/(l-ce_vert/cp) *Vc*phidot-9.8045;
end

if satflag
if (abs(ny)>30%9.8045)
ny=sign(ny) *30*9.8045;
end
if (abs(nz)>30%9.8045)
nz=sign(nz) *30%*9.8045;
end
end

Fx=0;
Fy=ny*m;
Fz=nz*m;

y=[ny;nz;Fx;Fy;Fz);

%//end of file bryson.m
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function y=cdo0(u);
% CDO Computes induced drag coefficient

%
% see also CDI
% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************
kkkkhkkkkk

%// File: c¢d0.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%$// Operating Environment: Windows NT 4.0 Service Pack 5

%// Compiler: MatLab v5.3

%// Date: 9 May 00

%// Description: computes induced drag coefficient for full
%// ’ aero model

%// Inputs: state, boost status

%// Outputs: drag coeffient

%// Process: polynomial fit to data from Hutchins EC4330 notes
%// Assumptions:

%// Warnings:

%//********************************************************************
dhkkkkkKkkx

$// Oxrder of‘elements

%// -Define globals

$// ~-Define constants

%// -Define elements of input wvector
%// -Functions

%//*************************************************************‘k******

%* %k %k % Kk ok Kk ok
§ **xxxx  define globals *****x*

§ **x*** define constants **x**xx*
NoBoost=[-0.0014 0.0299 -0.2110 0.6256];
Boost=[-0.0012 0.0243 -0.1521 0.40447;

g ***x*x%x  define input vector xxxxx
v=sqrt (u(4)*2+u(5)"2+u(6)"2);
alt=u(3);

boost=u(14) ;

% ****%%x  initialize variables k**x*x
mach=v/machvalt (alt);

% khkhkhkhkkkkhkkhkx*k functlons khkhkhkhkhkkhkhkxkk

if (mach>100)
mach=.83;
end
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% these curves approximated from "typical" data presented
% in Stevens & Lewis and Hutchins

% compute CdAO0

if (boost & (mach<l))
y=.15;

end

if (~boost & (mach<l))
y=.25;
end

if ((mach>=1) & (boost~=0))
y=polyval (Boost,mach) ;
end

if ((mach>=1l) & (boost==0))
y=polyval (NoBoost,mach) ;
end

if ((mach>5) & boost)
y=.10;
end

if ((mach>6.4) & ~boost)
v=.132;
end

%//end of file cd0.m
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function y=cdi (u)

$CDI Computes induced drag coefficient
% see also CDO
% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************
* %k %k k% ok k k Kk

%$// File: cdi.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%$// Compiler: MatLab v5.3

%$// Date: 18 Apr 00

%// Description: computed induced drag coefficient for full
%/ / aero model

%// Inputs: see below

%// Outputs: cdi

%// Process: Anderson

%// Assumptions:

%// Warnings:

%//********************************************************************
%k ok ok ok Kk ok ok kk

%// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
s// -Functions

%//********************************************************************
% % Kk %k ¥k ok ok Kk
§ *x*xx%x% define globals *¥**%x*

§ **xxx*  dJdefine constants | rExxxx

% ***xx* define input vector *****x
C_Nz=u(l);

C_Ny=u(2);

m_alpha=u(3);

m_beta=u(4);

alt=u(5);

v=u(6); .

g ***xxx%  injtialize variables *xx*¥%x
Mach=v/machvalt (alt);

% dhkhkkhkhkkkhkkkxk functions * Kk ok kkkkkkokkk
R these equations developed from Anderson ----—---
if (Mach>1.0)

M_BETA=sqrt (Mach”2-1);

Cdi=(4*m_alpha~2/M _BETA+4*m_beta”2/M_BETA) ;

else

Cdi=(C_Ny"2+C_Nz"2) /pi;
end :
y=Cdi;

$//end of file cdi.m
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function y=cdvmach (mach, boost)
%$CDVMACH Computes approximation of zero 1ift drag

% coefficient vs. mach number

% CDVMACH (MACH, BOOST)

% see also MACHVALT

% Copyright 1999-2000 by Triple B Enterprises

%//*********************'k***************‘k******************************

Kk kk ok kkk kK

%// File: cdvmach.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3

%// Date: 17 Apr 00

%// Description: computes polynomial fit for cd0 vs Mach number
%// Inputs: mach # and boost status

%// Outputs: cdo

%// Process: Fit on data from Hutchins EC4330 notes

%// Assumptions:

%// Warnings:
%//***********************************‘k********************************

dok Kk Kk ok Kk ok ok Kk

%// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// -Functions

%//**'k*****************************************************************
%ok ok kkokkokk

% x*x*x*  define globals ***x#x

% ****xx  define constants *xxxxx
NoBoost=[-0.0014 0.0299 -0.2110 0.6256];
Boost=[-0.0012 0.0243 -0.1521 0.40447;

§ x**x*x%xx define input vector ***%%%

% **¥xxx  initialize variables t#%*%%

% ko ok ok ok ok k ok ok ok kK functions %ok ok ok ok ok odok ok ok ok ok
if (boost & (mach<l))

y=.15;
end

if (~boost & (mach<l))
y=.25;
end

if ((mach>=1) & (boost~=0))
y=polyval (Boost,mach) ;
end

if ((mach>=1) & (boost==0))
y=polyval (NoBoost,mach) ;
end
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if ((mach>5) & boost)
y=.10;
end

if ({mach>6.4) & ~boost)
yv=.132;

end

%//end of file cdvmach.m
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function y=chingfanlin (u)
¥CHINGFANLIN Computes optimal guidance law derived by Ching Fan Lin pg.
475

% with dragforce inputs for point mass simulation
% see also EXACTPROPNAV2
% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************

khkkkkkkokk

%// File: chingfanlin.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment : Wirnidows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3

%// Date: 15 Sep 00

%// Description: computes APN guidance law from Ching Fan Lin
%// Inputs: seeker output, filter output, accelerometer,
%// missile timer

%// Outputs: command accelerations, y and z forces for drag
%// Process:

%// Assumptions:

%// Warnings:

%//********************************************************************

*kkkkkkhkkk

%// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// -Functions

%//********************************************************************
* Kk ok ok ok ok ok ok Kk

§ *****x%x  define globals *****x%
global m satflag

% ***x%%%  define constants Frrxxx*
Nprime=3;

Nprimez=3;

§ ***x%x  define input vector ***%%«*
thetadot=u(l);
phidot=u(2);
los=u(3);
philos=u(4);
R=u(6);
Ve=-u(5) ;
heading=u(7);
Vm=u(8) ;
vmdot=u(9) ;
phi=u(10);
theta=u(1ll);
psi=u(l2);

tgt_state=u(13:21);
time=u(22);

accel_in=u(23:25);
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g ***%x%x%x  injtialize variables k¥ xkkx

% L E R AR SRR E R X X4 functions % %k Kk KoK Kk ok ok k ok ok Kk
if (Ve==0)
tgo=1leb6;
else
tgo=R/Vc;
end
% compute relative state estimate
xhat=[R*cos (los);
R*sin(los);
R*sin(philos);
tgt_state(2)-Vm*cos (psi);
tgt_state(5)-Vm*sin(psi);
tgt_state(8)-Vm*sin (theta);
tgt_state(3);
tgt_state(6);
tgt_state(9);
accel_in(1);
accel_in(2);
accel_in(3)];

if time<2.0
ny=Nprime*Vc* (thetadot)/cos (heading-los) ;
nz=Nprimez*Vc* (phidot)-9.8045;
else
uc=(5/tgo”2) *[eye(3), tgo*eye(3),tgo”2/2*eye(3),zeros(3) ] *xhat;
ny=uc(2);
nz=uc(3)-9.8045;

end

if satflag
if (abs(ny)>30*9.8045)
ny=sign(ny)*30*9.8045;
end
if (abs(nz)>30*9.8045)
nz=sign(nz) *30%*9,8045;
end
end

Fx=0;
Fy=ny*m;
Fz=nz*m;

yv=[ny;nz;Fx;Fy;Fz];

%$//end of file chingfanlin.m
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function y=draginduced (u)
$DRAGINDUCED Computes induced aerodynamic drag force

%
% see also
% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************

J ok kK ok Kk ok ok ok

%// File: draginduced.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment:: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3

%// Date: 19 Sep 00 '

%// Description: computes induced drag for simplified 6DOF
%// Inputs: force output of guidance law, state

%// Outputs: drag force

%// Process: work backwards to CN from forces

%// Assumptions:

%// Warnings:
%//********************************************************************

J %k %k %k ok k kK

%// Order of elements

$// -Define globals

%// -Define constants

%// -Define elements of input vector
%// -Functions

%//****************‘k***************************************************
k kK ok ok ok ok ok Kk

% *x*%x%x  define globals  *xx%*x
global SREF m

% *x*%*x define constants *x*x%x*
eAR=1.5; . % elliptical eff & AR

& *x¥xxxx  define input vector *xxxxx

Fy=u(2) ; % y force

Fz=u(3); % z force
v2=u(7)"2+u(8) ~2+u(9) ~2; % missile velocity
alt=u(6); % missile alt

% ****xx%x  initialize variables ***xxx

rho=rhovalt (abs (alt)) ; % atmospheric density

mach=sqrt (v2) /machvalt (alt) ;

Q=rho*v2/2; % dynamic pressure
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% khkkkhkkhkkhkkkkxk funCthl’lS hhkkkhkkkhkhkkkk

if (Q==0)
Cny=0;
Cnz=0;
else
Cny=Fy/ (Q*SREF) ;
Cnz=Fz/ (Q*SREF) ;
end

Cdi=(Cny~2+Cnz"2)/(pi*elAR);
if (mach<l)

Cdi=.25*sqrt (Fy"2+Fz"2)/(m*9.8045) ;
end

y=Cdi*Q*SREF;

%//end of file draginduced.m

% y normal coefficient
$ z normal coefficient

% induced drag coefficient
% subsonic drag equal to

% max CdO0*applied G force

% drag force
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function y=draginducedtbm(u)
$DRAGINDUCEDTBM Computes induced aerodynamic drag force
%

% see also

% Copyright 1999-2000 by Triple B Enterprises

%//****************************i‘***************************************

dok Kok ok ok kkok

%// File: draginducedtbm.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3

%// Date: 19 Sep 00

%// Description: computes induced drag for TBMD simulation
%// Inputs: force output of guidance law, state

%// Outputs: drag force

%// Process: work backwards to CN from forces, corrects for ECI
%// Assumptions:

%// Warnings:
%//********************************************************************

Fok kK ok k kok ok

%// Order of elements

%// -Define globals

s// -Define constants

%// -Define elements of input vector
%// ~-Functions

%//********************************************************************
% %k kok ok ok ok ok oKk

% *x**kxx  define globals *xx%x»

global SREF m

§ ***%xx  define constants *xxx%*

eAR=1.5; % elliptical eff & AR
& **x*x**x%*  define input vector ***%*x

Fy=u(2); % y force

Fz=u(3); % z force
v2=u(7)"24+u(8) "2+u(9)~2; % missile velocity

alt=sqrt(u(1)A2+u(2)A2+u(3)A2)—637le3; % missile alt

& ****x%x  ipnitialize variableg <xxxx+*

rho=rhovalt (abs (alt)); % atmospheric density

mach=sqrt (v2) /machvalt (alt) ;

Q=rho*v2/2; % dynamic pressure
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% dhkhkkkkhkhkkhihx functions dhkhkhkhkkkkkkkk

if (Q==0)
Cny=0;
Cnz=0;
else
Cny=Fy/ (Q*SREF) ;
Cnz=Fz/ (Q*SREF) ;
end

Cdi=(Cny”2+Cnz~2)/ (pi*eaR);
if (mach<l)

Cdi=.25*sgrt (Fy"2+Fz"2)/ (m*9.8045) ;
end

y=Cdi*Q*SREF;

$//end of file draginducedtbm.m

% v normal coefficient
% z normal coefficient

% induced drag coefficient
% subsonic drag egqual to

% max Cd0*applied G force

$ drag force
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function y=dragthesis (u)
$DRAGTHESIS Computes aerodynamic drag force

%
%
%

see also
Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************

dk ok ok kk Kk ok ok

¥//
%//
%//
&//
%//
%//
%//
%//
%//
%//
%//
%//
%//

File: dragthesis.m

Name: LCDR Robert D. Broadston

MSEE/EE Thesis

Operating Environment: Windows NT 4.0 Service Pack 5

Compiler: MatLab v5.3

Date: 19 Sep 00

Description: computes parasitic drag after breaking apart
state vector

Inputs: state vector, boost status

Outputs: parasitic drag force

Process:

Assumptions:

Warnings:

%//********************************************************************

*kkkkkk ok ok

%//
%//
%//
&%//
%//

Order of elements
-Define globals
-Define constants
-Define elements of input vector
-Functions

%//**-k*************************************************************'k***

* ok Kk ok vk ok ok

% *****x  define globals ****xx
global SREF

% *****x  define constants *xxxxx

& ***xxxx  define input vector *xxx#x*
vel2=u(4)2+u(5)"2+u(6)"2;

alt=

u(3);

boost=u(14);

& *****=x  initialize variables *****x

% Tk ok kk K kXXX K K functions dhkkokkkok ok ok ok ok ok

y=formdrag(SREF,alt,vel2,boost);

%//end of file dragthesis.m
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%//********************************************************************
k% ok ok k ok k kK

%// File: drawmissile.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3

%// Date: 31 May 00

%// Description: draws picture of current missile defined
%// by missiledata#.dat

%$// Inputs: '

$// Outputs:

%// Process:

%$// Assumptions:

%$// Warnings:

%//****‘k***************************************************************
*k Kk kkkkkk

$// Order of elements

%// -Define globals

%// -Define constants

&// -Define elements of input vector
%// -Functions

%//********************************************************************

%k kk ok k ok kK
g **x**%xx  define globals **x*x*xx*

§ ****x**  define constants *xxx*x*
mgrey=[{.5 .5 .5};
dgrey=[.75 .75 .75];

g ****x%xx  define input vector | hx¥¥xx

§ **%*x*x%*  jnitialize variables | x¥x¥xxx%
nosex=[0 LN LN 0];
nosey=[{0 4/2 -d/2 0];

bodyx=[LN L L LN LNJ;
" bodyy=[d/2 d&/2 -d/2 -d/2 4/2];

wingx=[LN+XW LN+XW+CRW LN+XW+CRW LN+XW+CRW-CTW LN+XW LN+XW];
wingy=[{d/2 d/2 4/2+WXT+HW d/2+WXT+HW 4/2+WXT d4/2];

tailx=[L-CRT L L L-CTT L-CRT L-CRT];
taily=[d/2 d/2 d/2+TXT+HT d/2+TXT+HT d4/2+TXT d4/2];

CPEFF= (XCPN*AN+XCPB*AB+XCPW*SW+XHL*ST) / (AN+AB+SW+ST) ;

% compute time

time=rem(now, 1) ;

hr=floor(time*24);
mins=floor(rem(time*24,1)*60) ;

timestr=[’ ‘,num2str(hr),’:’,num2str (mins)];
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% dhkdkkkokkhkkhkx functions kkdkokkkdhkhk ko

figure(10)
clf

hold on

axis equal

fill (nosex,nosey, ‘w’)

fill(bodyx,bodyy,mgrey)

fill(wingx,wingy,dgrey)

fill(wingx,—wingy,dgrey)

fill(tailx,taily,dgrey)

fill(tailx,—taily,dgrey)

plot (XCG, 0, 'ko")

pPlot (XHL, 0, 'r*")

Plot (CPEFF, 0, 'b*’)

legend(’Center of Gravity’, ‘Hinge Line’, 'Effective Center of Pressure’)
title(['Missile Plan View ’,date, timestr])

xlabel (‘meters’)

vlabel (‘meters’)

hold off

%//end of file drawmissile.m
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function y=dynamic3D (u)
¥DYNAMIC3D Computes motion dymanics for a

%

%

%

%//
* % %
%//
%//
%//
%//
%//
87/
%//
%//
%//
%//
%//
%//
%//
%* % %
%//
&//
%//
%//
&//
&//

* % %

& *
% *

% *
ome

body in three dimensions
see also
Copyright 1999-2000 by Triple B Enterprises

********************************************************************
ke hkkk %k Kk

File: dynamic3d.m

Name: LCDR Robert D. Broadston

MSEE/EE Thesis

Operating Environment: Windows NT 4.0 Service Pack 5
Compiler: MatLab v5.3 :

Date: 16 Feb 00

Description: target motion dynamics

Inputs: target state, turn rate input

Outputs: derivative of target state

Process:

Assumptions:

Warnings:
********************************************************************

* ok ok kk Kk
Order of elements
~-Define globals
-Define constants
-Define elements of input vector

~Functions
********************************************************************

* d Kk Kk ok %k
*xx%*  define globals *****%*

***x*x%  define constants | FE¥xkkx

*x%x%x  define input vector | x¥¥¥xx
ga=u(l);

x=u(2);

xdo

t=u(3);

y=u(4);

ydo

t=u(5);

z=u(6);

zdo
%*

% *
v=I

&//

t=u(7);
*x*%%  initialize variables k**xx**

khkhkhkhkhkhkhkkkhk functlons * K Kk ok ok ok kok ok ok ok K

xdot;
-omega*ydot;
ydot;
omega*xdot
zdot;

0];

end of file dynamic3d.m
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function y=eqnforce (u)
$EQNFORCE Computes force dymanics for six degrees

% of freedom flat earth model
% see also
% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************

d ok ok ok ok ok ok ok k

%// File: egqnforce.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment : Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3

%// Date: 10 May 00

%// Description: force dynamics for full aero model
%// Inputs: see below

%// Outputs: solution to force equation

%// Process:

%// Assumptions:

%// Warnings:
%//********************************************************************

% %k ok ok Kk ook kK

%// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// ~Functions

%//********************************************************************

* ok kok ok kok ok Kk
§ *xx*%x  define globals ****#**

% ******x  define constants **x%%x%

§ ****%* define input vector **xx*x
v_b=[u(l);u(2);u(3)];
F_B=[u(4);u(5);u(6)];
omega_b=[u(7);u(8);u(9)];

P=u(7); Q=u(8); R=u(9);

@=[u(10);u(1l);u(12);u(13)];

magq=sqrt(q(l)“2+q(2)“2+q(3)“2+q(4)A2);
q=qg/magq;

% the ever lovin’ force of gravity

% g=[u(ld4);u(l5);u(16)};
% note we are not using an external gravity model here

g=[0;0;9.8045];

% and lest we forget, mass
m=u(l7);
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§ ******  injitialize variables F¥x¥xxx

*hkkkkkkkkkkk functions *kk ok ok kokkkk kK
some heavy duty number crunching
compute rotation matrices

B=quat2b(qg);

oP 0P of

OMEGA_B=[0 -R Q;
R 0 -P;
-Q P 0];

y=-1*OMEGA_B*v_b+B*g+(1l/m) *F_B;

%$//end of file egnforce.m
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function y=egqnmoment (u)
$EQNMOMENT Computes moment dymanics for six degrees

% of freedom flat earth model
% see also
% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************

dkkkkk ok koK

%// File: eqnmoment.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3 :

%// Date: 11 Sep 00

%// Description: computes moment dynamics for full aero model
%// Inputs: see below

%// Outputs: see below

%// Process:

%// Assumptions:

%// Warnings:
%//********************************************************************

dok ok k ok ok ok oKk ok

%// Order of elements

%// -Define globals

%// -Define constants

$// -Define elements of input vector
%// -Functions

%//********************************************************************
Fokkk ok ok kkk

§ ***%xx  define globals **xx*%

% ***xxx  Jefine constants *x**xkx*

§ **x*%%*  define input vector ****%x

omega_b=[u(l);u(2);u(3)];

P=u(1l); Q=u(2); R=u(3);

% torques
T_B=[u(4);u(5);u(6)];

% inertial matrix

J=[u(7),0,0;
0,u(8),0;
0,0,u(9)];

% and lest we forget, mass
m=u(l10) ;

§ ****x%%  initialize variablesg **xx*#
% *kk ok ok ok ok ok ok ok Kk Kk functions khkkhkhkkhkkrhkk K

% some heavy duty number crunching
OMEGA_B=[0 -R 0Q;

R 0 -p;

-Q P 0];
y=-l*inv(J)*OMEGA_B*J*omega_b+inv(J)*T_B;
%//end of file eqnmoment.m
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function y=egnposit (u)
$EQNPOSIT Computes NED dymanics for six degrees

% of freedom flat earth model
% see also
% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************
khkkhkkhkkk*k

%// File: egnposit.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
$// Compiler: MatLab v5.3

%$// Date: 10 May 00

%$// Description: navigation equation for full aero model
$// Inputs: see below

%$// Outputs: inertial velocities

%// Process:

%$// Assumptions:

%// Warnings:

%//********************************************************************
* %k Kk % ok ok k kK

%$// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// -Functions

%//*’k'k***’k*'k'k***********’k***‘k******************************************
kkhkkkkkkk%k
g *xx%x%x*% define globals **x**xxx*

§ **x*x%* define constants rxxx*xx

§ **xx%%*x  define input vector *rx¥xxx
v_b=[u(l);u(2);u(3)1;

a=[u(4);u(5);u(é);u(7)l;

$ ****x*x%  jpnitialize variables rrxxxx
magg=sqgrt (g (1) "2+q(2) *2+q(3) "2+q(4)~2);
q=q/magq;

% * %k Kk k k ok ok ok okok kK functions k kok ok kok ok ok kokkk
% compute rotation matrices
B=quat2b(q) ;

yv=B’*v_b;
$//end of file egnposit.m
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function y=eqnquat (u)
$EQNQUAT Computes quaternion dymanics for six degrees

% of freedom flat earth model
% . see also
% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************
*Fhhkkk*kkk

%// File: egnquat.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5

%// Compiler: MatLab v5.3

%// Date: 13 Sep 00

%// Description: computes quaternion dynamics for full aero model
%// Inputs: see below

%// Outputs: g _dot

%// Process:

%// Assumptions:

%// Warnings:
%//********************************************************************

*k kk ok ok kK ok

%// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// -Functions

%//*******‘k******‘k*****************************************************
* %k k %k ok k% Kk Kk

§ *x*xx*x+x  define globalg *****x

% **x**x  define constants *x**x%

& **x*x*%x  define input vector Hrx*%x

a={u(l);u(2);u(3);ul4)];

omega_b={[u(5);u(6);u(7)];
P=u(5); Q=u(6); R=u(7);

% *****%x  initialize variables *rx*%x
magg=sqgrt (g(1l) *2+q(2)*2+q(3) *2+q(4)"2);
d=g/magq;

% k Kk kok ok Kk ok ok Kk ok kK fUnCtions *hkkkkkokdkokok kK

OMEGA_g=(0 P Q R;

-P 0 -R Q;
-Q R 0 -P;
-R -Q P 0];

g=-(1/2) *OMEGA_q*q;
magg=sqrt (q(l) *2+q(2) *2+g(3) *2+q(4)~2);
if (magg~=0)
y=q/magq;
else
y=[1;0;0;0];
end

%//end of file egnquat.m
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function y=flatearthdyn (u)
¥FLATEARTHDYN Computes motion dymanics for six degrees

% of freedom for a flat earth model
% see also
E Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************
k Kk ok kkk Kk kk

%// File: flatearthdyn.m

%// Name: LCDR Robert D. Broadston

%$// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5

%$// Compiler: MatLab v5.3

%// Date: 1 Aug 00 4
%// Description: computes 6DOF dynamics for flat earth using

%// quaternion formulation
%$// Inputs: see below

%// Outputs: derivative of state vector
%// Process: Stevens & Lewis

%// Assumptions:

%// Warnings:

%//********************************************************************
*kkkKh Kk kKK
%$// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// -Functions

%//********************************************************************
%k Kk ok k k kK K .
g **xx*xx  define globals *****xx

$ *****x*x define constants rr¥x%xxx

g ****xxx  define input vector ***xx%*
p=[u(l);u(2);u(3)]1;
v_b={u(4);u(5);u(6)];
omega_b=[u(7);u(8);u(9)];

P=u(7); Q=u(8): R=u(9);

g={u(l10);u(ll);u(l2);u(il)];

magq=sqrt (a(l) "2+q(2) *2+q(3) *2+g(4)"2);
g=q/magq;

X=[p;v_b;omega_b;q];
$ inertial matrix
J=[u(14),0,0;

0,u(15),0;
0,0,u(l6)];

% forces )
F_B=[u(17);u(18);u(l9)];
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% torques
T_B=[u(20);u(21);u(22)];

% the ever lovin’ force of gravity
% note we are not using an external gravity model here

g=[0;0;9.80457];

% and lest we forget, mass
m=u(26) ;

& *¥*kxx  initialize variablesg xxxx*
% compute rotation matrices

B=quat2b(q) ;
OMEGA_B=[0 -R Q;
R 0 -p;
-Q P 0];
OMEGA_g=[0 P Q R;
-P 0 -R Q;
- R 0 -p;
-R -Q P 0];

% k kk ok ok ok ok ok ok ok ok ok fUnctiOns kk Kk ok ok ko k ok ok kR

yv=] zeros(3), B/, zeros(3), zeros(3,4);
zeros (3), -OMEGA_B, zeros(3), zeros(3,4);
zeros(3), zeros(3), -1*inv(J) *OMEGA_B*J, zeros(3,4);
zeros (4, 3), zeros(4,3), zeros(4,3), (-1/2) *OMEGA_q] ;
Y=y *x;

y=y+[zeros(3,1);
B*g+(1/m) *F_B;
inv(J) *T_B;
zeros(4,1)];

%//end of file flatearthdyn.m
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function y=formdrag(aA,alt,vel2,boost)
$FORMDRAG Computes form drag for a missile with frontal

% area A in a standard atmosphere

% FORMDRAG (A, ALT,VEL2, BOOST)

% uses MACHVALT, CDVMACH, RHOVALT

% see also

% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************
khkkhkhkhkhkkk

%$// File: formdrag.m

%// Name: LCDR Robert D. Broadston

%$// MSEE/EE Thesis :

%// Operating Environment: Windows NT 4.0 Service Pack 5

%// Compiler: MatLab v5.3

%$// Date: 9 May 00

%// Description: Computes form drag for a missile with frontal
% area A in a standard atmosphere

%// Inputs: area, altitude, V~2, boost on/off

%// Outputs: parasitic drag force

%// Process:

%$// Assumptions:

$// Warnings:

%//********************************************************************
*hkkkkkkxkx
%$// Order of elements

%// ~Define globals

%/ / -Define constants

$// -Define elements of input vector
%// -Functions

%//********************************************************************

* Kk Kk k ok kkkk
g *xxxx*  define globals *****x*

§ ***%xx% define constants FFxx*x

g *xx*xx*% define input vector **xxxx
§ ***xx** jinjtialize variables Fxxkx*
rho=rhovalt (alt);

mach=(vel2)”(1/2) /machvalt(alt);

% %k % ode de ok Kk k Kk ok ok ok ok functions Kk Kk ok k Kk Kk kok ok ok kK

if (mach>100)

mach=.83;
end
Cd=cdvmach (mach, boost) ;

y=rho*vel2*Cd*a/2;

%//end of file formdrag.m
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function y=gravity(u)

$GRAVITY Computes simple gravity model for 6DOF model
% see also

% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************
%k ok %k kok ok k k%

%// File: gravity.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3

%// Date: 19 Sep 00

%// Description: computes spherical earth gravity for TBM
%// target dynamics

%// Inputs: target state vector

%// Outputs: gravity vector

%// Process:

%// Assumptions:

%// Warnings:

%//********************************************************************

%k Kk ok ok ok ok kK

%// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// ~-Functions

%//*****s\-**************************************************************

Kkok ok ok ok ok kok ok

% *x**xx  define globalg *****x*

% **x**x*  define constants *x*x%x*
GM_E=3.9860014el4; % G*mass of earth

& *****»  define input vector ***xxx

§ *****+  initialize variables **xxx=
mag=sqgrt (u(l)"2+u(3)*2+u(5)"2);

% LR R A B AR N R RIS functions *hkokkokokkkok kK

Y=-(GM_E/mag"3)*[u(l);u(3);u(s5)];

%//end of file gravity.m
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function y=gravity2(u)

¥GRAVITY2 Computes simple gravity model for 6DOF model
% see also :

$ Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************
% %k Kk Kk Kk Kk k Kk ok

%// File: gravity2.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%$// Compiler: MatLab v5.3

%// Date: 19 Sep 00

%// Description: computes spherical earth gravity model
%// for interceptor

$// Inputs: missile state vector

%// Outputs: gravity vector

%// Process:

%// Assumptions:

%// Warnings:

%//********************************************************************
% %k Kk kok ok kk ok

%$// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// -Functions

%//********************************************************************
khkkhkhkkkkk
§ *xx*x**  define globals *****x

g ***x*xx define constants *¥*xxx
GM_E=3.9860014el4; % G*mass of earth

g *****xx  define input vector *x*xx*xx

% *****%x jnitialize variables *****x
mag=sqgrt (u(l)"2+u(2)*2+u(3)"2);

% * Kk ok ok ok dokokk ok kK functions khkhkkkhkhhkhkhkkk

y=-(GM_E/mag”3)*[u(l);u(2);u(3)];

%//end of file gravity2.m
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%//********************************************************************

% % %k %k Kk Kk k% Kk

%// File: XBFILTER.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5

%// Compiler: MatLab v5.3

%// Date: 7 Aug 00

%// Description: Automatically computes a kinematic boundary using
6DOF

%// simulator with tracking filter.
%// ~Streamlined search loops

%// -Status indicator

%// -Saves most recent data to disk
%// -Derived from KBOUTER

%// Inputs: none

%// Outputs: one figure of kinematic boundary

%// Process: streamlined brute force search algorithm
%// Assumptions: none

%// Warnings: none
%//************************************‘k*******************************

kkkk ok ok ok k%

%// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
&// -Initialize variables

%// -Functions

%//********************************************************************

%k ok ok ok kok ok ok

% x*x*xx  define globals  *x%x%%

% *xxx*%x  define constants **xx%*
thesisinit

% set min engagement range (10000 m default)
minrng=10000;

% set heading increment

degstep=5;

% **x*xx%x  define input vector ****+*x
% ***%x%x  jinitialize variableg wx**%x

maxhit=[]; minhit=[];

load current

% set target altitude

tgtalt=init(3); % default co-altitude

% set target turn rate. default=0 degrees/sec
target_turn=0;

% set target speed

tgtmach=.83; % user sets Mach #
tgtspd:tgtmach*machvalt(tgtalt);% machine computes speed
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% *hkhkkxhkkdkkhkxx functions Thkikkhkhkhhkkhkk*k

% start in tail chase step to head on by <degstep>
% degree increments

for heading=0:degstep:180

tic
plotcount=1; runplot=[]; rangemax=0;
heading . % show heading counter

tgthdg=heading*pi/180;

% compute target speed components
xspd=tgtspd*cos (tgthdg) ;
yspd=tgtspd*sin(tgthdg) ;

% first range loop step by 10 km

for tgtrng=minrng:10000:150000
disp([’*** ’ , num2str(tgtrng),’ ***71)
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];
% initialize filter

XLAST=[tgtinit (1);tgtinit(2);0;tgtinit (3);tgtinit(4);0;tgtinit(5);tgtin
it(6);0]; '

% call simulation
sim(’thesislfilt’)

% analyze data from current run

range=sqrt ((MissileOut (:,1)-TgtOut(:,1))."2+...
(MissileOut(:,2)-TgtOut(:,3)).%2+...
(MissileOQOut(:,3)-TgtOut(:,5))."2);

% save run data

runplot (plotcount, : ) =[min (range) , tgtrng];

$ score run

if (min(range)>5)
break

end

plotcount=plotcount+1;

end

idx=find(runplot(:,1)<=5);
if (idx)
rangemax=runplot (max(idx),2);
end
runplot=[];
plotcount=1;
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% 1 km step size for max range. Streamlining code
tgtrng=rangemax+1000;

disp(["*** ",num2str(tgtrng), ’ maxlk**x’])

% set initial target state
tgtinit=[tgtrng;xspd;O;yspd;tgtalt;O];

% initialize filter

XLAST=[tgtinit(l);tgtinit(2);0;tgtinit(3);tgtinit(4);O;tgtinit(S);tgtin
it(6);0];

% call simulation
sim(‘thesislfilt’)

% analyze data from current run
range=sqrt((MissileOut(:,l)—TgtOut(:,l)).A2+...
(MissileOut(:,Z)—TgtOut(:,3)).“2+...
(MissileOut(:,3)—TgtOut(:,5)).A2);
if (min(range)<=5)
rangemax=tgtrng;
tgtrng=tgtrng+4000;
disp ([ *** " num2str(tgtrng),’ maxlk***’])
% set initial target state
tgtinit=[tgtrng;xspd;O;yspd;tgtalt;O];
% initialize filter

XLAST=[tgtinit(l);tgtinit(2);O;tgtinit(3);tgtinit(4);O;tgtinit(S);tgtin
it(6);01;

% call simulation
sim(’thesisl1filt’)

% analyze data from current run
range=sqrt((MissileOut(:,l)—TgtOut(:,1)).“2+...
(MissileOut(:,2)-TgtOut(:,3)).A2+...
(MissileOut(:,3)—Tgt0ut(:,5)).A2);
if (min(range)<=5)
rangemax=tgtrng;
end
end
% main search loop 1lkm step size
for tgtrng=rangemax+1000:lOOO:(rangemax+4000)

disp ([’ *** ‘,num2str (tgtrng), ‘ maxlk***s7)
% set initial target state
tgtinit=[tgtrng;xspd;O;yspd;tgtalt;O];

% initialize filter

XLAST=[tgtinit(l);tgtinit(2);O;tgtinit(3);tgtinit(4);O;tgtinit(S);tgtin
it(6);071;

% call simulation
sim(‘thesisl1filt’)
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% analyze data from current run

range=sqgrt ((MissileOut(:,1)-TgtOut(:,1))."2+...
(MissileQut(:,2)-TgtOut(:,3))."2+...
(MissileOut(:,3)-TgtOut(:,5))."2);

$ save run data
runplot (plotcount, :)=[min(range), tgtrng] ;
$ score run
if (min(range)>5)
break
end

plotcount=plotcount+1;
end

idx=find(runplot(:,1)<=5);

if (idx)
rangemax=runplot (max (idx),2);

end

runplot=[];

plotcount=1;

% 100 m step size for max range. Streamlined code.
tgtrng=rangemax+100;
disp([’*** ’,num2str(tgtrng),’ maxl00***’])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd; tgtalt;0];
$ initialize filter

XLAST={tgtinit (1) ;tgtinit(2);0;tgtinit(3);tgtinit(4);0;tgtinit(5);tgtin
it(6);01];

$ call simulation
sim(’thesislfilt”’)

% analyze data from current run

range=sqrt( (MissileOut(:,1)-TgtOut(:,1)).”2+...
(MissileOut(:,2)-TgtOut(:,3))."2+...
(MissileQut(:,3)-TgtOut(:,5))."2);

if (min(range)<=5)
rangemax=tgtrng;
tgtrng=tgtrng+400;
disp([’'*** ' ,num2str(tgtrng),’ maxlQ0***’])
$ set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];
% initialize filter

XLAST=[tgtinit (1) ;tgtinit(2);0;tgtinit(3);tgtinit(4);0;tgtinit(5);tgtin
it(6);01;

$ call simulation
sim(’thesislfilt’)
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% analyze data from current run

range=sqrt((MissileOut(:,1)—TgtOut(:,l)).“2+...
(MissileOut (:,2)-TgtOut(:,3))."2+. ..
(MissileOut(:,3)—Tgt0ut(:,5)).A2);

if (min(range)<=5)
rangemax=tgtrng;

end

end

% main search loop 100 m
for tgtrng=rangemax+100:100:(rangemax+400)

disp([/*** ",num2str(tgtrng), ’ max100***7])
% set initial target state
tgtinit=[tgtrng;xspd;O;yspd;tgtalt;O];

% initialize filter

XLASTz[tgtinit(l);tgtinit(2);O;tgtinit(3);tgtinit(4);O;tgtinit(S);tgtin
it(6);0];

% call simulation
sim(’thesislfilt”)

% analyze data from current run

range=sqrt((MissileOut(:,l)—TgtOut(:,1)).A2+...
(MissileOut(:,Z)—TgtOut(:,B)).A2+...
(MissileOut(:,3)—Tgt0ut(:,5)).A2);

% save run data
runplot(plotcount,:)=[min(range),tgtrng];
% score run
if (min(range)>5)

break
end

plotcount=plotcount+1;
end

idx=find(runplot(:,1)<=5);
if (idx)
rangemax=runplot (max(idx),2);
end
runplot={]:;
plotcouncz=1;
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% 10 m step size for max range. Streamlined code
tgtrng=rangemax+10;

disp([’*** ’,num2str(tgtrng),’ maxl0***’])

% set initial target state
tgtinit=[tgtrng;xspd;0;yspd; tgtalt;0];

% initialize filter

XLAST=[tgtinit (1) ;tgtinit(2);0;tgtinit(3);tgtinit(4);0;tgtinit(5);tgtin
it(6);0]1;

$ call simulation
sim(‘thesislfilt’)

$ analyze data from current run

range=sqgrt( (MissileOut(:,1)-TgtOut(:,1))."2+...
(MissileOut (:,2)-TgtOut(:,3)) . 2+...
(MissileOut(:,3)-TgtOut(:,5))."2);

if (min(range)<=5)
rangemax=tgtrng;
tgtrng=tgtrng+40;
disp([’*** ', num2str(tgtrng),’ maxl0***/])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];
% initialize filter '

XLAST=[tgtinit (1) ;tgtinit(2);0;tgtinit(3);tgtinit(4);0;tgtinit(5);tgtin
it(6);0];

% call simulation
sim(’thesislfilt’)

% analyze data from current run

range=sqgrt((MissileOut (:,1) -TgtOut(:,1))."2+...
(MissileOut(:,2)-TgtOut(:,3)) . 2+...
(MissileOut(:,3)-TgtOut(:,5))."2);

if (min(range)<=5)
rangemax=tgtrng;

end

end

% main search loop 10 m. Note, we are now computing the
% full output vector for each run.
for tgtrng=rangemax:10: (rangemax+40)

disp([’*** /,num2str(tgtrng),’ maxl0***’])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd; tgtalt;0];

$ initialize filter

XLAST=[tgtinit (1) ;tgtinit(2);0;tgtinit(3);tgtinit(4);0;tgtinit(5);tgtin
it(6);01; . '

% call simulation
sim(’thesis1filt’)
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% analyze data from current run

range=sqrt((MissileOut(:,l)—TgtOut(:,l)).A2+...
(MissileOut(:,2)-TgtOut (:,3)).~2+...
(MissileOut(:,3)—TgtOut(:,5)).“2);
t=MissileOut(:,14);

index=find(range==min(range));

ip=t(index (1)) ;

% compute cost function J=20*e(tf)~2+integ(u~2) /200

% and missile divert

u2=(omegaout(:,l).A2+omegaout(:,2).A2);

integral=0;

for ii=2:index
integral:integral+(t(ii)-t(ii—l))*u2(ii—l);

end

J=20*min(range)“2+integral/1000;

% save run data [miss dist,cost,divert, time, max range]
runplot(plotcount,:)=[min(range),J,integral,ip,tgtrng];

if (min(range)>5)
break
end

plotcount=plotcount+1;
end

idx=find(runplot(:,l)<=5);
if(idx)

rangemax=runplot (max(idx),5);
end

if (isempty(idx))
maxhit (heading+1,:)=[0,0,0,0,0];
else
maxhit(heading+l,:)=runplot(max(idx),:);
end

runplot=[];
plotcount=1;

% save data to disk
save current maxhit
toc
% note for some guidance laws, the down step here
% must be 2 or more----—-——-—______ |
minrng=10000*(floor(rangemax/lOOOO)-1);
if (minrng<=5000)
minrng=10000;
end

end
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$ plot it for me baby
rhol=maxhit (l:degstep:181,5);
rhol=[rhol;flipud(rhol)];
theta=180:degstep:360;
theta=pi/180*theta;
theta=[theta,~1*fliplr(theta)]’;
figure(5)

polar (theta,rhol)

%//end of file KBOUTER.m
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%//********************************************************************

kkok ok k ok k ok ok

$// File: KBOUTER2.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5

%// Compiler: MatLab v5.3

%// Date: 7 aAug 00

%// Description: Automatically computes a kinematic boundary using
6DOF

%// simulator.

%// ~Streamlined search loops

%// -Status indicator

%// -Saves most recent data to disk
%// -Derived from KBOUTER

%// Inputs: none

%// Outputs: one figure of kinematic boundary

%// Process: streamlined brute force search algorithm
%// Assumptions: none

%// Warnings: none
%//********************************************************************

dkkhkkkkKhk

%// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// -Initialize variables

%// -Functions

%//********************************************************************

kkkhkhkkhk k%

% ****x%  define globals *x*x**

$ *¥*¥*¥%%  define constants F*rExxx
thesisinit

% set target turn rate, default=0
target_turn=0;

% set min engagement range (10000 m default)
minrng=10000;

% set heading increment

degstep=5;

% *x**k*x%x  dJofine input vector **xxx%

% *x*x%%  initialize variables ***%%%

maxhit=[]; minhit=[];

load current

% set target altitude

tgtalt=50;%init (3); % default co-altitude
% set target speed

tgtmach=.83; % user sets Mach #
tgtspdztgtmach*machvalt(tgtalt);% machine computes speed
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% dkhkkdkhkhkkkk kK functions * %k ok hkk ok ok kkohk

% start in tail chase step to head on by <degstep>
% degree increments

for heading=0:degstep:180

tic
plotcount=1; runplot=[]; rangemax=0;
heading % show heading counter

tgthdg=heading*pi/180;

% compute target speed components
xspd=tgtspd*cos (tgthdg) ;
yspd=tgtspd*sin (tgthdg);

% first range loop step by 10 km

for tgtrng=minrng:10000:150000
disp([’*** ', num2str(tgtrng),’ ***'])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;01;

$ call simulation
sim(’'Thesisl’)

% analyze data from current run

range=sqgrt((MissileOQut (:,1)-TgtOut(:,1))."2+.
(MissileOQut(:,2)-TgtOut(:,3)).”%2+...
(MissileOut(:,3)-TgtOut(:,5))."2);

% save run data

runplot (plotcount, :)=[min(range), tgtrngi;

$ score run

if (min(range)>5)
break

end

plotcount=plotcount+l;

end

idx=find(runplot(:,1)<=5);
if(idx)

rangemax=runplot (max(idx),2);
end
runplot=_};
plotcount=1;

% 1 km step size for max range. Streamlining code
tgtrng=rangemax+1000;

disp([‘'*** ’,rnum2str(tgtrng),’ maxlk***’])

% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];

$ call simulation
sim(’'Thesisl’)
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% analyze data from current run

range=sqrt ( (MissileOut(:,1)-TgtOut(:,1))."2+...
(MissileOut(:,2)—Tgt0ut(:,3)).A2+...
(MissileOut(:,3)—TgtOut(:,5)).A2);

if (min(range)<=5)
rangemax=tgtrng;
tgtrng=tgtrng+4000;
disp([**x* ‘,num2str(tgtrng), ’ maxlk***‘])
% set initial target state
tgtinit=[tgtrng;xspd;O;yspd;tgtalt;O];

% call simulation
sim(’Thesisl’)

% analyze data from current run

range=sqrt((MissileOut(:,1)-TgtOut(:,1))."2+...

(MissileOut (:,2)-TgtOut (:,3))."2+. ..
(MissileOut(:,3)-TgtOut(:,S)).“2);
if (min(range)<=5)
rangemax=tgtrng;
end
end

% main search loop lkm step size
for tgtrng=rangemax+1000:1000:(rangemax+4000)

disp(["*** ’ num2str(tgtrng),’ maxlk**+*’])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];

% call simulation
sim(’Thesisl’)

% analyze data from current run

range=sqrt((MissileOut(:,l)-TgtOut(:,l)).“2+...

(MissileOut(:,2)-TgtOut(:,3))."2+. ..
(MissileOut(:,3)—Tgt0ut(:,5)).“2);

% save run data
runplot(plotcount,:)=[min(range),tgtrng];
% score run
if (min(range)>5)

break
end

plotcount=plotcount+1;
end

idx=find (runplot(:,1)<=5);

if (idx)
rangemax=runplot (max (idx),2);

end

runplot=[];

"plotcount=1;
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% 100 m step size for max range. Streamlined code.
tgtrng=rangemax+100;

disp([’*** ’,num2str(tgtrng),’ maxl00***’])

% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];

% call simulation
sim('Thesisl’)

% analyze data from current run

range=sqgrt ({MissileOut(:,1)-TgtOut(:,1)).%2+...
(MissileOut(:,2)-TgtOut(:,3))."2+...
(MissileOut (:,3)-TgtOut(:,5))."2);

if (min(range)<=5)
rangemax=tgtrng;
tgtrng=tgtrng+400;
disp([‘*** /,num2str(tgtrng),’ maxl00***’])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd; tgtalt;0];

$ call simulation
sim(’Thesisl’)

$ analyze data from current run

range=sqgrt((MissileQut(:,1)-TgtOut(:,1)) . "2+...
(MissileOut(:,2)-TgtOut(:,3)).%2+...
(MissileOut(:,3)-TgtOut(:,5))."2);

if (min(range)<=5)
rangemax=tgtrng;

end

end

$ main search loop 100 m
for tgtrng=rangemax+100:100: (rangemax+400)

disp([’*** ‘, num2str(tgtrng),’ maxl00***’])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd;tgtalt;0];

$ call simulation
sim(’Thesisl”’)

% analyze data from current run

range=sqrt ( (MissileOut (:,1)-TgtOut(:,1)) . 2+...
(MissileQut(:,2)-TgtOut(:,3)) . " 2+...
(MissileOut(:,3)-TgtOut(:,5))."2);
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% save run data
runplot(plotcount,:)=[min(range),tgtrng];
% score run
if (min(range)>5)

break
end

plotcount=plotcount+1;
end

idx=find(runplot(:,1)<=5);

if (idx)
rangemax=runplot (max (idx),2) ;

end

runplot=[];

plotcount=1;

% 10 m step size for max range. Streamlined code
tgtrng=rangemax+10;

disp ([ *** ".num2str(tgtrng), ’ maxlQ***’7)

% set initial target state
tgtinit=[tgtrng;xspd;O;yspd;tgtalt;O];

% call simulation
sim(‘Thesisl’)

% analyze data from current run
range=sqrt((MissileOut(:,l)—TgtOut(:,l)).“2+...
(MissileOut(:,2)—Tgt0ut(:,3)).A2+...
(MissileOut(:,3)—Tgt0ut(:,5)).AZ);
if (min(range)<=5)
rangemax=tgtrng;
tgtrng=tgtrng+40;
disp([/*** ‘,num2str (tgtrng), ’ maxl0***7)
% set initial target state
tgtinit=[tgtrng;xspd;O;yspd;tgtalt;O];

% call simulation
sim(’Thesisl’)

% analyze data from current run

range:sqrt((MissileOut(:,l)—TgtOut(:,l)).“2+...
(MissileOut(:,2)-Tgt0ut(:,3)).“2+...
(MissileOut(:,3)—TgtOut(:,5)).A2);

if (min(range)<=5)
rangemax=tgtrng;

end

end
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% main search loop 10 m. Note, we are now computing the
% full output vector for each run.
for tgtrng=rangemax:10: (rangemax+40)

disp([’*** ,num2str(tgtrng),’ maxl0***’])
% set initial target state
tgtinit=[tgtrng;xspd;0;yspd; tgtalt;0];

% call simulation
sim(‘Thesisl’)

% analyze data from current run

range=sqgrt((MissileOut(:,1)-TgtOut(:,1))."2+...
(MissileOut(:,2)-TgtOut(:,3)) ."2+...
(MissileOQut(:,3)-TgtOut(:,5))."2);
t=MissileOut(:,14);

index=find(range==min (range)) ;

ip=t (index (1)) ;

% compute cost function J=20*e(tf)"2+integ(u~2)/200

% and missile divert )

u2=(omegaout(:,1) . 2+omegaout(:,2).72);

integral=0;

for ii=2:index
integral=integral+(t(ii)-t(ii-1))*u2(ii-1);

end

J=20*min(range) *2+integral/1000;

% save run data [miss dist,cost,divert, time,max range]
runplot (plotcount, : ) =[min(range) ,J, integral, ip, tgtrng];

if (min(range)>5)
break
end

plotcount=plotcount+1;
end

idx=find(runplot(:,1)<=5);
if (idx)

rangemax=runplot (max(idx),5);
end

if (isempty(idx))

maxhit (heading+1,:)=[0,0,0,0,0];
else

maxhit (heading+l, :)=runplot (max(idx), :);
end
runplot=[];

plotcount=1;
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% save data to disk
save current maxhit
toc
% note for some guidance laws, the down step here
% must be 2 or more------—-—-—oo_____ ]
minrng=10000*(floor(rangemax/lOOOO)—1);
if (minrng<=5000)
minrng=5000;
end

end

% plot it for me baby
rhol=maxhit (1:degstep:181,5);
rhol=[rhol;f1ipud(rhol)];
theta=180:degstep:360;
theta=pi/180*theta;
theta=[theta,—l*fliplr(theta)]’;
figure(s)

polar(theta, rhol)

%//end of file KBOUTER.m
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function y=machvalt (alt)
$MACHVALT Computes linear approximation for a given

% altitude in meters/sec based on standard ICAQO
% atmosphere

% MACHVALT (ALT)

$ see also CDVMACH

% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************
* % %k %k %k %k % %k %

%// File: machvalt.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5

%// Compiler: MatLab v5.3

%// Date: 8 Jun 00
%// Description: computes linear approximation to Mach 1 for

%// standard ICAO atmosphere
%$// Inputs: altitude

%$// Outputs: Mach 1

%// Process:

%// Assumptions:

%$// Warnings:
%//********************************************************************

dkkkkkkkkx
$// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// ~-Functions

%//********************************************************************
% % Kk Kk %k ok %k Kk Kk
§ *x*%x%  define globals ****x%

g **¥x*x+  define constants *xxkxx
Machl=[-.0041 340.3};

Mach2=295.1;

Mach3=[.00067 281.7];

§ ****%%  define input vector ***x**

g ****x*%  njtialize variableg <xxxxx*
alt=abs(alt); % account for NED coords

% hk ok ok hkkkhkkhkkhkk functions dok ok k ok kkhkkkkk
if (alt<11000)
y=polyval (Machl,alt);
else
if (alt>20000)
y=polyval (Mach3,alt);
else
y=Mach2;
end
end

%//end of file machvalt.m
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%//********************************************************************

%k ok ok Kk kok ok K

%// File: missiledata.m
%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3

%// Date: 17 May 00

%// Description: missile data for AMRAAM
%// Inputs: none

%// Outputs: ' various

%// Process:

%// Assumptions:

%// Warnings:
%//*******7\'******************************************************'k*****

kkkkkkkk Kk

%// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// -Functions

%//********************************************************************
khk ok ok k ok k kK
% Establishes missile dimensions for use in computing

% Aerodynamic forces and moments
% Except where noted, all dimensions in MKS system

% Missile Name: PSEUDO AMRAAM

& *x**x+  define globals ***xx*x
global m d L XCG XCPN XCPW XCPB XHL
global ST SW SPLAN SREF

% **¥***+  define constants xrxksx

F-mmmm - missile body dimensions -—-—-—--—-cc—eemm o ____
m=156.8; % mass, may be time varying
d=.1778; % diameter
L=3.657; % length
XCG=1.8288; % initial c.g., may be time varying
LN=.6769; % length of nose cone
R tailplane dimensions —--—==———-em o _______
XHL=3.454; % hinge line arm
CRT=.4061; % tail root chord
CTT=.0676; % tail tip chord
TXT=.0676; % tail extension
HT=.2286; % tail height
g e mmm e wing dimensions ----——-———— o ______________
XW=1.134; % wing to radome tangency point
CRW=.3554; % wing root chord
CTW=0; % wing tip chord
WXT=0; % wing extension
HW=.1778; % wing height
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% *x*x%% define input vector Frxxxx

% ***x*x  jnitialize variables *Fxxxx*

% *hkhkhkkhkhkhkkkk f-unctions *hkkkhkhkkkkkk

centers of pressure

XCPN=.67*LN;
XCPW=LN+XW+ .7*CRW-.2*CTW;

AN=,67*LN*d;

AB=(L-LN) *d;
XCPB=(.67*AN*LN+AB* (LN+.5* (L-ILN))) /...

(AN+AB) ;
R e e e area computation
SW=.5*HW* (CTW+CRW) +CRW*WXT; % wing
ST=.5*HT* (CTT+CRT) +CRT*TXT; $ tail

SPLAN= (L-LN) *d+.67*L*d;
SREF=pi*d~2/4;

r=d/2;

JIJx=m*r~2/2;

Jy=m* (L"2/12+xr"2/4) +m* (L/2-XCG) *2;
Jz=Jy;

$//end of file missiledata.m

*

area
area

% body and nose
% missile cross
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%//***************************************************‘k****************

kkk ok kkkhkk

%// File: missiledata2.m

%// Name: LCDR Robert D. Broadston
%// MSEE/EE Thesis

%// Operating Environment:
%// Compiler: MatLab v5.3
%// Date: 12 Apr 00

%// Description: missile data for Jerger missile from Zarchan
%// Inputs: none

%// Outputs: various

%// Process:

%// Assumptions:

%// Warnings:
%//********************************************************************

Windows NT 4.0 Service Pack 5

% ook ok ok Kk ok kok

%// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// -Functions

%//********************************************************************

% Kk Kk Kk k k ok Kk

% Establishes missile dimensions for use in computing
% Aerodynamic forces and moments
% Except where noted, all dimensions in MKS system

% Missile Name:

% * Kk kK ok ok

define globals

JERGER

%k kok ok ok Kk

global m d L XCG XCPN XCPW XCPB XHL
global ST SW SPLAN SREF

% * %k Kk ok %k ok

define constants

* k% ok k %k

Fom - missile body dimensions -—----—eeommm o __
m=454.5444; % mass, may be time varying
d=.3048; % diameter

1L=6.096; % length

XCG=3.048; % initial c.g., may be time varying
LN=.9144; % length of nose cone

Fom e tailplane dimensions -—--—-—-——mmo_____________
XHL=5.9436; % hinge line arm

CRT=.6096; % tail root chord

CTT=.0; % tail tip chord

TXT=.0; % tail extension

HT=.6096; % tail height

B mmmmm e - wing dimensions -—------—— o _____________
XW=1.2192; % wing to radome tangency point
CRW=1.8288; % wing root chord

CTw=0; % wing tip chord

WXT=0; % wing extension

HW=.6096; % wing height
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% ******x  define input vector

% *x*x*%  initialize variables

% *kkkkkdhkkkkkk functions
centers of pressure
XCPN=.67*LN;
XCPW=LN+XW+.7*CRW-.2*CTW;
AN=.67*LN*d;

AB=(L-LN) *d;

XCPB=(.67*AN*LN+AB* (LN+.5* (L-LN))) /.

(AN+AB) ;
area computation
SW=.5*HW* (CTW+CRW) +CRW*WXT;
ST=.5*HT* (CTT+CRT) +CRT*TXT;
SPLAN= (L-LN) *d+.67*L*d;
SREF=pi*d~2/4;

r=4/2;

JIx=m*r~2/2;

Jy=m* (L~2/12+r"2/4) ;
Jz=Jy;

%//end of file missiledata2.m

$ wing
$ tail area

% body and nose
% missile cross

* %k ok kok K
* % Kk k kK

% %k ok kok ok ok Kk k ok k ok

Ccp
area of nose
area of body

.. % body CP

area

plan area
section
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%//********************************************************************

hkkkkokdkokk

%// File:
%// Name:

missiledata3.m
LCDR Robert D. Broadston

%// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5

%// Compiler:
25 Aug 00

%$// Date:

MatLab v5.3

%// Description: computes missile data for SM-2 MR

%// Inputs:
%// Outputs:
%// Process:

none

various

%// Assumptions:

%// Warnings:

%//********************************************************************

Kk odok ok ok ok ok ok

%// Order of elements

%// -Define globals

%// -Define constants

$// -Define elements of input vector
%// -Functions

%//**************************************************************‘k*****

%k ke okok ok ok ok ok ok

% Establishes missile dimensions for use in computing
% Aerodynamic forces and moments
% Except where noted, all dimensions in MKS system

% Missile Name: STANDARD RIM-67 MR

% * ok k k k Kk

define globals *x*xx%x

global m d L XCG XCPN XCPW XCPB XHL
global ST SW SPLAN SREF

% * % Kk %k Kk Kk

XCG=2.205;
LN=.728;

XHL=4.351;
CRT=.356;
CTT=.127;
TXT=.0;
HT=.383;

XW=1.12;
CRW=2.314;
CTW=1.93;
WXT=0;
HW=.142;

define constants *x**xx

missile body dimensions —=—-—=—-——-—-—com o ___
% mass, may be time varying
% diameter
% length
% initial c.g., may be time varying
% length of nose cone
tailplane dimensions —-———-e—meo o _______
% hinge line arm
% tail root chord
% tail tip chord
% tail extension
% tail height

-~-- wing dimensions ------e-—oe______________

% wing to radome tangency point
% wing root chord
% wing tip chord
% wing extension
% wing height
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% **x**x*% define input vector

% ****x** injtialize variables

% * % Kk Kk ok ok k k% ok ok Kk functions
centers of pressure
XCPN=.67*LN;
XCPW=LN+XW+.7*CRW-.2*CTW;
AN=.67*LN*d;

AB=(L-LN) *d;

XCPB=(.67*AN*LN+AB* (LN+.5* (L-LN) ) ) /.

(AN+AB) ;
area computation
SW=.5*HW* (CTW+CRW) +CRW*WXT;
ST=.5*HT* (CTT+CRT) +CRT*TXT;
SPLAN= (L-LN) *d+.67*L*d;
SREF=pi*d"2/4;

Fomm—mm e compute the inertial matrix
r=d/2;

JX=m*r"2/2;

Jy=m* (L"2/12+xr"2/4) ;

Jz=Jy;

%$//end of file missiledata3.m

%* %k k% %k

* Kk ok ok kk

*hkkkkkhkkkkk

Ccp

area of nose
area of body
Cp

% wing area
$ tail area
% body and nose
% missile cross

plan area
section
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%//********************************************************************

%k kK ok ok ok Kk ok

%// File: missiledatad.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3

%// Date: 19 Sep 00

%// Description: computes missile data for SM-2 ER
%// Inputs: none

%// Outputs: none

%// Process:

%// Assumptions:

%// Warnings:
%//********************************************************************

kkok ok ok Kk ok ok k

%// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// -Functions

%//********************************************************************
* ok ok ok kK ok %k
% Establishes missile dimensions for use in computing

% Aerodynamic forces and moments
% Except where noted, all dimensions in MKS system

% Missile Name: STANDARD WITH BOOSTER
F *¥x*x%%  define globalg  rx*xxx*
global m d L XCG XCPN XCPW XCPB XHL
global ST SW SPLAN SREF

§ ****+x  dJefine constants Grrxxs*

Fmmm e missile body dimensions -—---—--eceoom o ______
m=1680; % mass, may be time varying

=.343; % diameter
L=7.976; % length
XCG=3.987; % initial c.g., may be time varying
LN=.728; % length of nose cone

Fmm e tailplane dimensions --—---————________________
XHL=7.6; % hinge line arm
CRT=.75; % tail root chord
CTT=.3; % tail tip chord
TXT=.0; % tail extension
HT=.65; % tail height

B wing dimensions ----—-————________________
XW=1.12; % wing to radome tangency point
CRW=2.7; % wing root chord
CTW=2.5; % wing tip chord
WXT=0; % wing extension
HW=.151; % wing height
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g *x*xxx define input vector

§ ****** injitialize variables

% khkhkhkhkkkhkkdk functions
centers of pressure
XCPN=.67*LN;
XCPW=LN+XW+.7*CRW-.2*CTW;
AN=.67*LN*d;

AB=(L~-LN) *d;

XCPB=(.67*AN*LN+AB* (LN+.5* (L-LN))) /.

(AN+AB) ;
area computation
SW=.5*HW* (CTW+CRW) +CRW*WXT;
ST=.5*HT* (CTT+CRT) +CRT*TXT;
SPLAN= (L-LN) *d+.67*L*d;
SREF=pi*d~2/4;

r=d/2;

JxX=m*r"2/2;

Jy=m* (L"2/12+xr"2/4) ;
Jz=Jy;

$//end of file missiledatad.m

*k ok ok ok Kk

* k% ok kK

*kkkkkkkhkkkkk

cp
area of nose
area of body
Cp

$ wing area
$ tail area
% body and nose
% missile cross

plan area
section
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function y=modelswitch (u)

$MODELSWITCH Switches missile models to simulate
staging for TBM interceptor demo
MODELSWITCH (T)
see also

Copyright 1999-2000 by Triple B Enterprises

P o0 0P op

%//**********'k*********************************************************
*dhkhkkhkkk kK

%// File: modelswitch.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment : Windows NT 4.0 Service Pack 5§
%// Compiler: MatLab v5.3

%// Date: 19 Sep 2000

%// Description: Switches between interceptor with booster
%// and without booster for TBM demo

%// Inputs: simulation time

%// Outputs: none

%// Process: none

%// Assumptions:

%// Warnings:
%//********************************************************************

* Kk k ok Kk ok ok kk

%// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// -Functions

%//********************************************************************

dok ok ok ok ok ok ok Kk

§ **x*%xx  Jefine globals  ***%xx
& ***xxx  define constants H*x**%x
§ x**x*%xx  Jafine input vector **xxx*x*

§ x**k**x%  initialize variables ****xx

% d ok ok ok ok ok ok ok ok ok ok ok functions k% ok ok ok ok ok Kk kk %k K
if (u>10.5)
missiledata3;
else
missiledatad;
end

%// end of file modelswitch.m
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%//*******************************************‘*************************
%k Kk k k ok k ok Kk

%// File: noisestudy.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5

%$// Compiler: MatLab v5.3

%// Date: 19 Sep 00

%// Description: performs noise study using modified AAM model
%// thesisnoise.mdl

%// Inputs:

%$// Outputs:

%// Process:

%// Assumptions:

%// Warnings:

%//********************************************************************
* Kk dekkkkk Kk

%$// Order of elements

&// -Define globals

%// -Define constants

%// -Define elements of input vector
%// ~Functions

%//********************************************************************
dhkhkkkkkkk
% *xxxx*x  define globals ****%x

§ ***x%* define constants Fxkx¥x*
g *¥*x*x*x  define input vector *x¥*%*x

g ***xx** initialize variables *xx¥x¥%
$ initialize simulation

thesisinit

% initialize variables

holdrange=1[];

holdpos=[];

$ initialize target
tgtinit=tgtset(42190,6000,45);

tic
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% Fhkhkkhkhkhkxkkhrh functlons Fhkkkokkkkokkkx

% 100 realizations
for numloops=1:100
disp (numloops)
sim(’thesisnoise’)
% analyze data from current run
range=sqrt((MissileOut(:,l)—TgtOut(:,l)).A2+...
(MissileOut(:,Z)-TgtOut(:,3)).”2+...
(MissileOut(:,3)-Tgt0ut(:,5)).A2);
disp(min(range))
holdrange(numloops)=min(range);
idx=find(range==min(range));
holdpos(numloops,:)=MissileOut(idx,l:3)—TgtOut(idx,l:2:5);
end
missdistance=mean(holdrange)
sigmadistance=std(holdrange)

figure (5)
plot3(holdpos(:,l),holdpos(:,2),holdpos(:,3),'*’)

%//end of file noisestudy.m
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function y=propnav3D(u)
%PROPNAV3D Computes exact proportional navigation

$ in three dimensions for full aero model
$ see also EXACTPROPNAV2
% Copyright 1999-2000 by Triple B Enterprises

%//************************************************************if*******
khkhkkkkhkkk%k

%// File: propnav3d.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%$// Compiler: MatLab v5.3

%// Date: 12 Sep 00

%// Description: 3D prop nav law for full aero model

%// Inputs: seeker output

%// Outputs: command accelerations

%$// Process:

%// Assumptions:

%// Warnings:

%//********************************************************************
khkkhkkkkkk

%$// Order of elements

%// -Define globals

%// -Define constants

%// ~-Define elements of input vector
%// -Functions

%//********************************************************************

%k kkhk ok k kK
g *xxx*x*  define globals ***¥%x%
global satflag

§ ****x**x  define constants F¥¥x%xxx
Nprime=5;
Nprimez=5;

g **x¥xx define input vector Fxx*xx%
thetadot=u(l);
phidot=u(2);
los=u(3);
philos=u(4);
R=u(6);
Ve=-u(5);
heading=u(7);
Vm=u(8) ;
vmdot=u(9) ;
phi=u(10);
theta=u(ll);
psi=u(l2);
time=u(13);
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§ xx****  initialize variables ****%=*

% dhkkkkdkhkhkkkk funCtlonS Kk kk ok k ok ok khkokk

ny=Nprime*Vc*(thetadot)/cos(psi—los);
nz=Nprimez*Vc* (phidot)-9.8045;

% control force limiter
if satflag
if (abs(ny)>30*9.8045)
ny=sign(ny)*30*9.8045;
end
if (abs(nz)>30*9.8045)
nz=sign(nz)*30*9.8045;
end
end

y=I[ny;nz];

%//end of file propnav3d.m
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function y=propnavpt (u)
%¥PROPNAVPT Computes exact proportional navigation

% with dragforce inputs for point mass simulation
% see also EXACTPROPNAV2
% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************
* %k k %k Kk ok k% Kk

%// File: PROPNAVPT.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5

%$// Compiler: MatLab v5.3

%$// Date: 24 May 2000
%// Description: Proportional navigation guidance law for 6DOF

%// flight model. Computes applied forces for use
%// by induced drag model. Required to eliminate
%// algebraic loops in the simulation

%$// Inputs: [seeker data,IMU data, timer]

%// Outputs: [command accelerations,applied forces]
%// Process: proportional navigation law

%$// Assumptions: none .

$// Warnings: none
%//********************************************************************

* J Kk ok k% ok k%

%$// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
$// -Functions

%//********************************************************************
%k ok ok kk ok kK

§ ****xx  define globals ***xxx

global m satflag

g *¥*¥**x* define constants rx*F*%
Nprime=5;
ijrimez=S;

§ *x**%x%x  define input vector xxxx*%
thetadot=u(l);
phidot=u(2);
los=u(3);
philos=u(4) ;

R=u(6) ;

Ve=-u(5);
heading=u(7);
Vm=u(8) ;
Vmdot=u(9);
phi=u(10);
theta=u(1l1l);
psi=u(l2); \
time=u(13);
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% **xxx%  initialize variables  x%%%%*

% khkhkkkkohkdhkowk koK functions dkkk ok ok ok ok okok ok ok

% classic PN guidance law
ny=Nprime*Vc*(thetadot)/cos(psi—los);

% vertical acceleration must account for gravity
nz=Nprimez*Vc*(phidot)/cos(theta—philos)—9.8045;

% control force limiter
if satflag
if (abs(ny)>30%9.8045)
ny=sign(ny)*30%9.8045;
end
if (abs(nz)>30%*9.8045)
nz=sign(nz)*30*9.8045;
end
end

% compute ABC forces applied
Fx=0;

Fy=ny*m;

Fz=nz*m;

% output vector
y=[ny;nz;Fx;Fy;Fz];

%//end of file PROPNAVPT.m
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function y=propnavtbm(u)
$PROPNAVTBM Computes exact proportional navigation

% with dragforce inputs for point mass simulation
% see also EXACTPROPNAV2
% Copyright 1999-2000 by Triple B Enterprises

%//*******‘k************************************************************
%,k kk Kk k Kk Kk ok

%// File: PROPNAVTBM.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis :

%$// Operating Environment: Windows NT 4.0 Service Pack 5

%// Compiler: MatLab v5.3

%$// Date: 24 May 2000
%// Description: Proportional navigation guidance law for 6DOF

$// flight model. Computes applied forces for use
%// by induced drag model. Required to eliminate
&// algebraic loops in the simulation

%// Inputs: [seeker data,IMU data,timer]

%// Outputs: [command accelerations,applied forces]

%// Process: proportional navigation law
%// Assumptions: none

%$// Warnings: none
%//********************************************************************

% %ok Kk Kk ok ok ok Kk

%$// Order of elements

%// -Define globals

$// -Define constants

%// -Define elements of input vector
%// -Functions

%//********************************************************************
khkkkkkhkk*k )

% **x*x*%x define globals *****xx%

global m satflag

§ *****x*x define constants *¥x¥%xx
Nprime=5;
Nprimez=5;

% **x*x%xx  define input vector *x¥**x
thetadot=u(l);
phidot=u(2);
los=u(3);
philos=u(4);
R=u(6);
Ve=-u(5);
heading=u(7);
Vm=u(8) ;
Vmdot=u(9) ;
phi=u(10);
theta=u(ll);
psi=u(l2);
time=u(1l3);
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% *x**x*  ipitiglize variables *<x*%xx*

% kkkkkkkkkkhok functions ok ok ok ok ok ko ok k% ok

% classic PN guidance law
ny=Nprime*Vc* (thetadot) ;
% vertical acceleration
nz=Nprimez*Vc* (phidot) ;

% control force limiter
if satflag
if (abs(ny)>30%9.8045)
ny=sign(ny) *30%*9.8045;
end
if (abs(nz)>30%9.8045)
nz=sign(nz) *30*9.8045;
end
end

% compute ABC forces applied
Fx=0;

Fy=ny*m;

Fz=nz*m;

% output vector
y=[ny;nz;Fx;Fy;Fz];

%//end of file propnavtbm.m
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function y=g2euler (u)

%Q2EULER Computes Euler angles from quaternions

% see also ALPHABETA

% Copyright 1999-2000 by Triple B Enterprises

%//***********************************************************‘*********
* Kk k% k% k% Kk

%$// File: g2euler.m

%// Name: LCDR Robert D. Broadston

$// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%$// Compiler: MatLab v5.3

%$// Date: 6 Apr 00

%// Description: computes euler angles from quaternions
%// Inputs: quaternion

%// Outputs: euler angles

%// Process: Kuiper

$// Assumptions:

%$// Warnings:

%//********************************************************************
*khkkkkkkkk

%$// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// -Functions

%//********************************************************************

khkkkhkhkkkkk

g **x**x  dJdefine globals **xx*%

§ **xx*+x*x define constants ***x**x%*

g ****%x  define input vector *xxxxx
gO=u(l);

gl=u(2);

q2=u(3);

a3=u(4);

§ *¥x*%%  jpitialize variables xx¥xxx
% % odkede ok ok kohkhk ok kkk functions k Kk ok k ok kok ok ok ok ok Kk
% convert quaternions to Euler angles
mll=2*g0"2+2*gl"2-1;
ml2=2*ql*g2+2*qg0*q3;
ml3=2*ql*g3-2*q0*q2;
m23=2*q2*qg3+2*q0*qgl;
m33=2*%g0"2+2*g3"2-1;

psi=atan2(ml2,mll);
theta=asin(-ml3);
% correct for singularity in pitch
if (isreal (theta))
theta=theta;
else
theta=sign(-ml3) *pi/2;
end
phi=atan2 (m23,m33);
y=[phi, theta,psi];
%//end of file g2euler.m
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function y=quat2b(y)
FQUAT2B Computes rotation matrix from quaternions

% QUAT2B(Y)
% see also QUATERNION, B2QUAT
% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************
* ok k ok ok ok k ok ok

%// File: quat2b.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3

%// Date: 8 Dec 99

%// Description: computes rotation matrix from quaternions
%// Inputs: quaternion

%// Outputs: rotation matrix B

%// Process: Kuiper

%// Assumptions:

%// Warnings:

%//************************************************************‘k*******

% kk ok ok Kk ok kK

%// Order of elements

%// -Define globals

%// -Define constants

$// -Define elements of input vector
%// ~Functions

%//*************************************************‘k******************

dok ok ok ok ok k ok Kk

% *x**x*x  define globals ****xx
§ **xxx%x  define constants *rxxx«

g ****%%  define input vector ***xx%
q0=y(1);
al=y(2);
q2=y(3);
g3=y(4);

¥ *xxx*+x  initialize variableg *****=*

% kkkhkkkhkkkhkkx funCtlonS k kok ok ok ok ok ok kok ok ok

y=[q072+ql1"2-g2°2-q3°2, 2*(ql*q2+q0*qg3), 2* (gl*q3-q0*q2) ;
2* (gl*g2-qg0*qg3), q072-gl 2+g2°2-g312, 2% (g2*g3+g0*ql) ;
2*(qgl*g3+g0*q2), 2* (g2*qg3-g0*ql), q0"2-gql”r2-g2°2+g3.2];

%//end of file quat2b.m
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function y=quaternion (phi, theta,psi)
$QUATERNION Computes quaternions from Euler angles

% QUATERNION (PHI, THETA, PSI)
% see also B2QUAT ‘
% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************
*hkkkkkhkhkk

%// File: quaternion.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3

%// Date: 8 Aug 00

%// Description: computes quaternion from euler angles
%// Inputs: euler angles

%// Outputs: quaternion

%// Process: Kuiper

%// Assumptions:

%// Warnings:

%//*******************************************************************;k
%* ok Kk Kk Kk Kk ok kK

%// Order of elements

%// -Define globals

%// -Define constants

&// ~Define elements of input vector
%// -Functions

%//********************************************************************
* ok ok ok ok ok ok ok k

§ *xx**x  define globals *x***x

g *x*x*x*%%x  define constants | rx***x*

% ***x**x  define input vector ****xx

% x**x*%x  ipnitialize variables xrxxxx*
g0=cos (phi/2) *cos(theta/2) *cos (psi/2)+...

sin(phi/2)*sin(theta/2) *sin(psi/2);

gl=sin(phi/2)*cos(theta/2) *cos (psi/2)-...
cos(phi/2)*sin(theta/2) *sin(psi/2);

g2=cos(phi/2)*sin(theta/2)*cos(psi/2)+...
sin(phi/2) *cos(theta/2) *sin(psi/2);

g3=cos(phi/2) *cos (theta/2) *sin(psi/2)-...
sin(phi/2) *sin(theta/2) *cos (psi/2) ;

% %k Kk ok ok ok ok ok ok ok k% functions %k ok ok k ok ok ok ok ok ok k

y=[q0;ql;q2;q3];

%$//end of file quaternion.m
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function y=rhovalt (alt)
%RHOVALT Computes atmospheric density vs altitude

% for ICAO standard atmosphere

% RHOVALT (ALT)

% see also MACHVALT, CDVMACH

% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************

ok ok ok ok ok ok k ok

%// File: rhovalt.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3

%// Date: 8 Jun 00

%// Description: computes atmospheric density from ICAO standard
%// atmosphere. exponential model

%// Inputs: altitude

%// Outputs: rho

%// Process:

%// Assumptions:

%// Warnings:
%//********************************************************************

Fookok ok ok ok ok Kk Kk

%// Order of elements

%// -Define globals

%/ / -Define constants

%// -Define elements of input vector
%// -Functions

%//***-k****************************************************************

%k ok ok ok ok ok ok dok
§ *x*xx%  define globals ***x*x

& ***x*x*  define constants ***x%x
§ ***%x%+x define input vector ***%xx

% *xxxxx  initialize variableg tw%%%x
alt=abs(alt); % account for NED coord

% khkkkkkkkkkkhx functions kv ok ok ok ok ok kR

if alt>9144
y=1.75228763*exp(—alt/6705.6);
else
y=1.22557*exp (-alt/9144) ;
end

%//end of file rhovalt.m
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function y=sixdofdyn (u)
¥SIXDOFDYN Computes motion dymanics for six degrees

% of freedom
% see also FLATEARTHDYN
% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************
*kkkhkkkkxk

%$// File: sixdofdyn.m

%// Name: LCDR Robert D. Broadston

%$// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5

%// Compiler: MatLab v5.3

%$// Date: 7 Apr 00
%// Description: computes 6DOF dynamics in ECI coordinates

%// Inputs: state vector

%// Outputs: derivative of state vector
%// Process: Stevens & Lewis

%// Assumptions:

%// Warnings:

%//********************************************************************
dok ok Kk kok ok ko

%$// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// -Functions

%//***‘k***********************************‘k****************************
* k ok k ok kkkk

§ ***x*x%%  define globals *****x

§ *****xx  define constants *xx*x%%

omega_x=7.292115e-5; % earth rotation rate
GM_E=3.9860014e14; % G*mass of earth
r_E=6.378164e6; % radius of earth
£=1/298.257; % ellipsoidal squash factor

% ***xxx  define input vector F¥x¥x*x
p=[u(l);u(2);u(3)];
v_b=[u(4);u(5);u(6)]:
omega_b=[u(7);u(8);u(9)1];

P=u(7); OQ=u(8); R=u(9);

g=[u(10);u(ll);u(l2);u(13)1;
magg=norm(qg,2) ;
g=qg/magq;

x=[p;v_b;omega_b;ql;

% inertial matrix

J={u(14),0,0;
0,u(15),0;
0,0,u(l6)];

% forces
F_B=[u(17);u(18);u(19)1;
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% torques
T_B=[u(20);u(21);u(22)];

% the ever lovin’ force of gravity
g_p=[u(23);u(24);u(25)];

% and lest we forget, mass
m=u(26) ;

& ***%%%  initialize variables ***%%*
omega_E=[omega_x;0;0]; % earth rotational velocity vector
OMEGA_E=[0,0,0;0,0,—omega_x;o,omega_x,O];

% compute rotation matrices
B=quat2b(q) ;

OMEGA_B=[0 -R 0Q;

R 0 -p;

-0 P 0];
OMEGA_g=[0 P Q R;

-P 0 -R Q;

-Q R 0 -p;

-R -Q P 0];

% JFok ok k ok ok ok ok ok ok koK functions %k kok ok ok ok ok ok kK ok

y=[OMEGA_E, B, zeros(3), zeros(3,4);
-B*OMEGA_E"2, —(OMEGA_B+B*OMEGA_E*B'), zeros (3), zeros(3,4) ;
zeros(3), zeros(3), =1*inv(J) *OMEGA_B*J, zeros(3,4);
zeros(4,3), zeros(4,3), zeros(4,3), -(1/2)*CMEGA_q] ;
Y=y*x;

y=y+[zeros(3,1);
B*g_p+(1/m) *F_B;
inv(J)*T_B;
zeros(4,1)];

%//end of file sixdofdyn.m
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%//********************************************************************
Kk kkkkkkk

%// File: spielberg.m

%$// Name: LCDR Robert D. Broadston

%$// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5

%// Compiler: MatLab v5.3

%$// Date: 20 Sep 00
%// Description: creates a movie of AAM simulation using

%// thesism
%// Inputs: none

%// Outputs: none

%// Process:

%// Assumptions:

%// Warnings:
%//********************************************************************

*hkkkhkkkkk

%$// Order of elements

%// -Define globals

%// -Define constants

$// -Define elements of input vector
%// -Functions

%//********************************************************************

d ok Kk kkkkok %k

§ *x**x%x  define globals **xx*x*
g ******x  define constants *Fx*x¥xxx
g ***x*x*x*x  define input vector xxxkx*

§ **x*x*x  jnitialize variables <**x*x*
thesisinit

% hdedek ok k ok Nk kok ok functions khkhkkkhkdkhkdkk

figure(l)

clf

tgtinit=tgtset (40000,5000,135);
target_turn=12;

for timestep=1:44
tmax=.25*(timestep+0)
sim{(‘'thesism’)
l=length(MissileOut);
% a little 3D action for the fans
figure(l)
clf
view(-30,25)
hold on
axis ([0 40000 0 8000 4500 6500])
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% plot commands
plotB(MissileOut(:,l),MissileOut(:,Z),—MissileOut(:,3),...
TgtOut(:,l),TgtOut(:,3),—TgtOut(:,S))

plot3(MissileOut(1,l),MissileOut(l,Z),—MissileOut(1,3),'*’,...
TgtOut(1l,1),TgtOut (1,3),-Tgtout (1,5), 'x’)

velx=[0 0]; vely=[7000 7000]; velz=[4500 1.5*MissileV(1)+4500];
plot3(velx,vely,velz,’r.—’)
ncyx=[{0 0]; ncyy=[6500 6500] ; ncyz=[4500 7*abs(omegaout(l,l))+4500];
plot3(ncyx,ncyy,ncyz,’g.—’)
nczx=[0 0]; nczy=[6000 6000]; nczz=[4500 7*abs (omegaout (1,2))+4500] ;
plot3(nczx,nczy,nczz,’b.—’)
if (tmax==round(tmax))
plot3([MissileOut (1, 1) TgtOut (1,1)], [MissileOut(1,2)
TgtOut(1,3)]1,...
[-MissileOut (1, 3) -TgtOut(1,5)], ‘k’)
end

hold off
grid on

title([‘Missile Engagement ‘,date], ‘FontSize’,18)
text(35000,6000,6000,[num2str(tmax,’%2.2f’) ’
seconds’], ‘FontSize’,18)
text(0,7000,1.5*MissileV(l)+4500,[’ ‘
num2str(MissileV(l),'%4.0f’)],’FontSize’,l4)
text(0,6500,7*abs(omegaout(l,l))+4500,[’ ‘
numZStr(omegaout(l,l)/9.8045,’%2.1f’)],’FontSize’,l4)
text(0,6000,7*abs(omegaout(l,2))+4500,[’ !
num2str(omegaout(l,2)/9.8045,’%2.lf’)],’Fontsize',l4)

M(timestep) =getframe;
end
movie (M)

%//end of file spielberg.m
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function y=tgo(u)

$TGO Computes time to go from Range and Range Rate
% see also
$ Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************
ok kkkkk Kk Kk

%// File: tgo.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3

%// Date: 31 May 00

%// Description: computes tgo

%// Inputs: range, range rate

%// Outputs: tgo

%$// Process:

%$// Assumptions:

%$// Warnings:
%//********************************************************************

*khkkhkkkkkk

%$// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// -Functions

%//********************************************************************
* %k ok k ok ok ok kKk
§ ****x*  define globals ***x%*

g *x**%xx  define constants ***%%xx%
g ****x* define input vector Fx***xx
§ *x**xx jnjtialize variables ****xx

% d %k %k ok kok ok Kk Kk ok ok k functions kkkkkkkhkhkKhk

if (u(2)==0)
v=100;
else
y=abs(u(l)/u(2));
end

%$//end of file tgo.m
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function y=tgtset (Range, Alt, Hdg)
$TGTSET Sets tgtinit variable for missile simulations

% default tgt speed set at .83 Mach. Enter altitude
% as a positive number

% TGTSET (RANGE, ALT, HDG)

% see also QUATERNION, BQUAT

% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************

* %k k% k ok ok k%

%// File: tgtset.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3

%// Date: 8 Jun 00

%// Description: initializes target state vector
%// Inputs: see above

%// Outputs: target state vector

%// Process:

%// Assumptions:

%// Warnings:
%//********************************************************************

% % ok ok % ok Kk

%// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// -Functions

%//*******************‘k******‘k‘k****************************************
Kk kokk k ok ok Kk

% ****xx  define globals ‘****xx

% **x**x  define constants *x****
tgtmach=.83; % user sets Mach #

§ **xxx»  define input vector *x**%x

§ ****x*  initialize variables **x%x%
tgtspd=tgtmach*machvalt (Alt) ;% machine computes speed

% LSRR R R E R S SR functions kok ok ok ok ok ok ok ok ok ok ok
yz[Range;cos(Hdg*pi/lSO)*tgtspd;0;sin(Hdg*pi/l80)*tgtspd;—Alt;O];
% Note: negative altitude is for NED coords

%//end of file tgtset.m
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function y=thebigstop (u)
¥THEBIGSTOP consolidated simulation stop function

%
% see also
% Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************
* Kk kK k ok k ok k

%// File: thebigstop.m

%// Name: LCDR Robert D. Broadston

%$// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5

%// Compiler: MatLab v5.3 :

%// Date: 17 Sep 00

%// Description: stops simulation under variety of conditions
%// Inputs: see below

%// Outputs: stop flag

%$// Process:

%$// Assumptions:

$// Warnings:
%//********************************************************************

d ok ok kokkkk Kk

$// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// ~Functions

%//********************************************************************
* Kk ok ok ok ok kk%k

& ****%%  define globals **x*x%x

global stopflag

g *x*x%xx*  define constants ***x*%

§ **x%*xx  define input vector *****x
R=u(l);

Rdot=u(2);

Vm=u(3);

vVe=u(4);

G=u(5);

Ny=u(6) ;

Nz=u(7);

time=u(8) ;

§ ***x*%*x  initialize variables | *¥xxx*%
stop={1;
y=0;
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% kI khkhkkkkkk*k funCtlonS

% check cases
$if (G>700)

% y=111;
% stop='G stop’;
%end

if ((time>2.0) & (Vm<Vt))
y=111;
stop='V stop’;

end

if ((time>2.0)& (Rdot>0))
y=111;
stop='Rdot stop’;
end

if (R<le-6)
y=111;
stop='R stop’;
end

dhkhkkhkkkkkdthr

if ((Nz>30%9.8045) | (Ny>30%9.8045))

y=111;
stop='Cmd stop’;
end
if stopflag
disp(stop)
end

%//end of file thebigstop.m
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%//********************************************************************
%k kkk Kk k k%

%// File: thesis2plot.m

%// Name: LCDR Robert D. Broadston

%$// MSEE/EE Thesis
%// Operating Environment: Windows NT 4.0 Service Pack 5

%// Compiler: MatLab v5.3

%// Date:
%// Description: Plots a variety of data for missile tracking
%// simulations for use in thesis paper

%$// Inputs: none

%// Outputs: purdy pitchers
%// Process:

%// Assumptions:

%// Warnings:
%//********************************************************************

% %k %k %k %k k k% Kk

%$// Order of elements

%// -Define globals

%// -Define constants

$// -Define elements of input vector
%// -Functions

%//******************************************'k*************************
ddkhkhkokkkk
g *¥***%x  define globals **xx**

g ***x¥**  dJdefine constants **x*x%x
g *xx**x*x  define input vector *xxxx*

g ****x%%  nitialize variables rxxxk%*
time=rem(now, 1) ;

hr=floor(time*24);

mins=floor (rem(time*24,1) *60) ;

timestr=[’ ‘,num2str(hr),’:’,num2str(mins)];

% *hkkkkkkhkkkkhk functions % gk Kok ok ok ok ok ok Kk

% engagement geometry

figure (1)

subplot(2,1,1)

plot (TgtOut(:,1),TgtOut(:,3), :’,MissileOut(:,1),MissileOut(:,2))
axis equal

outtextl=['time: ’,num2str(ip),’ seconds’];

outtext2=[‘range: ‘',num2str(min(range)),’ meters’];
text(300,4000, 'Intercept at:’)

text (300,3500, outtextl)

text (300,3000,cuttext2)

title(’Engagement Geometry’)
xlabel(’x (meters)’)

vlabel (‘y (meters) ')

legend (‘Target’, ‘Missile’)
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% missile to target distance

range=sqrt((MissileOut(:,l)—TgtOut(:,l)).A2+...
(MissileOut(:,2)—TgtOut(:,3)).“2+(Missile0ut(:,3)—Tgt0ut(:,5)).A2);

t=MissileOQut(:,14);

t_disc=0:FILTSAMP:max(t) ;

index=find(range==min(range));

ip=t(index(1));

subplot(2,1,2)

plot(t,MissileV)

title(’Missile to Target Range’)

xlabel([’'time (seconds) ‘,date, timestr])
vlabel (‘missile velocity (m/s) ')

% missile accelerations

gforce=sqrt(AccelOut(:,l).“2+Acce10ut(:,2).“2
+AccelOut(:,3).72)./9.8045;

figure(2)

subplot(2,1,1)

plot(t,gforce)

title(’Missile Accelerations’)

vlabel (‘Acceleration (g) ")

axis ([0 round(max(t)) 0 50])

% compute cost function J=20%e (tf)“2+integ(u~2) /200

u2=(omegaout(:,l).A2+omegaout(:,2).A2);

integral=0;

for ii=2:index
integralzintegral+(t(ii)—t(ii—l))*u2(ii—l);

end
J=2O*min(range)A2+integral/1000;

%endfor

outtxt=['Missile divert: ", num2str (integral)];

xlabel (outtxt)
% guidance command
subplot(2,1,2)

plot(t,omegaout(:,l),t,omegaout(:,2),’:’)
title(’Guidance law command output’)

outtxt={’Cost J: ’,num2str(J), * time (seconds)’];
xlabel ([outtxt, ’ " ,date, timestr])

vlabel(‘n_c (m/sec”2)’)

axis ([0 round(max(t)) -300 3001])

legend(‘n_c y’,'n_c z’)

%//end of file thesis2plot.m
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%//***************************************‘k****************************
*kkkkkkhkk

%// File: thesisinit.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3

%// Date: 5 Sep 00

%// Description: This script file initializes thesis work
$// missile simulation

%$// Inputs: none

%// Outputs: none

%// Process:

%// Assumptions:

%// Warnings:
%//********************************************************************

*kkkkkkk*k

%// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
%// -Functions

%//********************************************************************
%k ok kkkkkk

clear

g **x*%%x  define globals **x**xx*

global stopflag satflag XLAST FILTSAMP

g *x***xx  define constants FExxx¥x

% physical constants

omega_x=7.292115e-5; % earth rotation rate
GM_E=3.9860014el14; % G*mass of earth

r E=6.378164e6; % radius of earth

£=1/298.257; % ellipsoidal squash factor
omega_E=[omega_x;0;0]; % earth rotational velocity vector

% ****x%*x define input vector *x¥x%%

g *xx%%*x  initialize variables kxxkxx
% missile physical parameters
MissileData;

$ drawmissile;

% missile velocity vector
vB=[270;0;01;

% initial missile position vector
p=[0,0,-6000]"; % note altitude is negative in NED coord

t=‘0 ;

% compute Euler angles
psi=0*pi/180;
theta=0*pi/180;
phi=0*pi/180;
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% dhkkdkkdkokk kK functions hok ok kok ok ok ok ok kkk

q_O=quaternion (phi, theta,psi);
q_0=q_0/sqrt(q_0(l)A2+q“0(2)“2+q_0(3)”2+q_0(4)A2);

B=quat2b(qg_0);

P=0*pi/180;
Q=0*pi/180;
R=0*pi/180;

omega_B=[P;Q;R];

% initial state vector
initz[p;vB;omega_B;q_O];

% target initial state vector
tgtinit=[25000;
-250;
0;
250;
-6000;
01;

tmax=200;

target_turn=0; % set target turn rate, default=0
satflag=1; % enable saturation of cmd accel

XLAST=[25000; % initialize filter
-250;
0;
0;
250;
0;
-6000;
0;
01;
FILTSAMP=.1; % set filter sample interval

%//end of file thesisinit.m
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function y=vcpropnavpt (u)
$PROPNAVPT Computes exact proportional navigation

$ with dragforce inputs for point mass simulation
% see also EXACTPROPNAV2 '
% , Copyright 1999-2000 by Triple B Enterprises

%//********************************************************************

* % Kk k %k % Kk Kk

%// File: VCPROPNAVPT.m

%// Name: LCDR Robert D. Broadston

%// MSEE/EE Thesis

%// Operating Environment: Windows NT 4.0 Service Pack 5
%// Compiler: MatLab v5.3

%// Date: 24 May 2000
%// Description: Proportional navigation guidance law for 6DOF

%// flight model. Computes applied forces for use
%// by induced drag model. Required to eliminate
$// algebraic loops in the simulation

%// Inputs: [seeker data,IMU data, timer]

%// Outputs: [command accelerations,applied forces]
%// Process: proportional navigation law

%$// Assumptions: none

%// Warnings: none
%//********************************************************************

*hkkkkkkkk

%$// Order of elements

%// -Define globals

%// -Define constants

%// -Define elements of input vector
$// -Functions

%//********************************************************************

*hkkkkhkkkk
§ ****x%x  define globals ****xx
global m satflag

& *x**x* define constants *****x%*
Nprime=5;
Nprimez=5;

g **x*x*x%  define input vector *xxx*x
thetadot=u(l);
phidot=u(2);
los=u(3);
philos=u(4);
R=u(6);
Vec=-u(5);
heading=u(7);
Vm=u(8) ;
Vmdot=u(9);
phi=u(10);
theta=u(1ll);
psi=u(l2);
time=u(13);

183




% ****%x%  injtialize variables ***%*=*

% %ok ok k ok ok Kk kk ok ok ok functiOns dok ok ok ok Kok ok ok ok kK

ny=Nprime*750*(thetadot)/cos(psi—los)—deot*tan(psi—los);
nz=Nprimez*750*(phidot)/cos(theta—philos)—deot*tan(theta-los)—9.8045;

% control force limiter
if satflag
if (abs(ny)>30%9.8045)
ny=sign(ny) *30*9.8045;
end
if (abs(nz)>30%*9.8045)
nz=sign(nz)*30*9.8045;
end
end

% compute ABC forces applied
Fx=0;

Fy=ny*m;

Fz=nz*m;

% output vector
y=[ny:;nz;Fx;Fy;Fz];

%//end of file PROPNAVPT.m
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APPENDIX C. SIMULATION DATA

This appendix contains the plots listed below for each guidance law. The
engagement geometry is the same for each guidance law, initial range; 20 km, attack

azimuth 45 degrees, co-altitude; 6;000 meters, 6 g target maneuver at 3 seconds .
1. Plan view of engagement
2. Missile velocity profile
3. Missile accelerations and target acceleration estimates for filtered laws
4. Guidance law command accelerations
The guidance laws are:
1. PN with N'=5
2. VCPN with constant gain
3. Bang-bang
4. Differential games
5. APN with A=5
6. Noisy seeker, PN with N'=5

This appendix also contains plots from the full aerodynamic model running in an

open loop with control surface deflections as the control input
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B. VCPN WITH CONSTANT GAIN
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BANG-BANG
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D.

DIFFERENTIAL GAMES
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E. APN WITH A=5
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F.

NOISY SEEKER, PN (N’=5)
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G. FULL AERODYNAMIC MODEL
Missile Altitude vs. Time
2.25 degree up elevator, 1000 m/s initial welocity
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acceleration (g)
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Vertical Acceleration Response
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Missile Trajectory
0.1 degree rudder deflection, 1000 m/s initial velocity
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heading (degrees)

Lateral Acceleration Response
0.1 degree left rudder, 1000 m/s initial velocity
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Missile 3D Position
5 second run, 2.25 deg up elevator, 0.1 deg left rudder
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Euler Angle Response
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