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ABSTRACT 

In this investigation, a method for the finite rotation and large deformation analysis of plates is 
presented. The method, which is based on the absolute nodal coordinate formulation, leads to an 
isoparametric plate element capable of representing exact rigid body motion. In this method, 
continuity conditions on all the displacement gradients are imposed. Therefore, non-smoothness of 
the plate mid-surface at the nodal points is avoided. Unlike other existing finite element 
formulations that lead to a highly nonlinear inertial forces for three-dimensional elements, the 
proposed formulation leads to a constant mass matrix, and as a result, the centrifugal and Coriolis 
forces are identically equal to zero. Furthermore, the method relaxes some of the assumptions used 
in the classical and Mindlin plate theories. By using a general continuum mechanics approach, a 
relatively simple expression for the elastic forces is obtained. By developing such an isoparametric 
plate element, the development of three-dimensional shell elements becomes straightforward. 
Numerical results are presented in order to demonstrate the use of the proposed method in the large 
rotating and deformation analysis of plates. 



1. INTRODUCTION 

Finite element formulations, including incremental methods [1, 2, 10] and large rotation vector 

formulations [15, 16] are widely and successfully used in the analysis of structural systems. The 

applications of these formulations to the analysis of large deformation of multibody systems have 

been a subject of interest in many investigations. The incremental methods lead to a linearization of 

the rigid body kinematic equations when conventional finite elements are used. In order to 

overcome this problem, several large rotation vector formulations were recently proposed. In these 

formulations, finite rotation parameters are used as nodal coordinates. Continuity conditions are 

imposed on the nodal displacements and the rotation parameters at the element interfaces. The 

concerns with regard to the use of the large rotation vector formulations in the analysis of flexible 

multibody systems can be summarized as follows: 

1. Imposing continuity on the finite rotations at the nodal points does not guarantee the continuity 

of the displacement gradients at these points. As a result, the centerline or the mid-surface of the 

element is not smooth. The obtained solution eventually leads to errors in the calculations of the 

elastic forces and stresses at the nodal points. This is one of the reasons that most solutions for 

the large rotation vector formulations are based on incremental procedures and require an 

elaborate updating scheme for the finite rotation parameters. 

2. The interpolation of finite rotations should be carefully handled, particularly in three- 

dimensional applications. For example, linear interpolation for Euler parameters does not imply 

linear interpolation for Euler angles [6] or Rodrigues parameters. Different sets of orientation 

parameters are related by highly nonlinear equations [13]. This fact explains the need to use an 

accurate updating scheme for the finite rotation parameters in large rotation vector formulations 

in order to obtain reasonable solutions. In fact, in many of the currently used updating schemes, 



an incremental procedure is used by which the finite rotation parameters are incrementally 

updated to allow exploiting the features of infinitesimal rotations. 

3. Most finite element large rotation vector formulations cannot be used to develop a more general 

beam and plate theory. In the excellent work of Simo [15], a coordinate system is attached to the 

element cross section. The equations of motion of the cross section, treated as rigid, are 

developed in terms of a set of generalized coordinates. These generalized coordinates that 

include finite rotation parameters and depend on the spatial coordinates of the elements are then 

interpolated using polynomials. By using this procedure, it becomes difficult to relax the 

assumption of the rigidity of the cross section of the element. This assumption is used in the 

classical beam and plate theories as well as many of Timoshenko beam [5] and Mindlin plate [8] 

models. 

4. The finite element large rotation vector formulations (as a consequence of 3) do not lead to a 

constant mass matrix in the case of three-dimensional applications, and as a result, the 

centrifugal and Coriolis forces are not equal to zero. 

Most of these fundamental concerns can be adequately addresses using the absolute nodal 

coordinate formulation. It is a simple, non-incremental procedure that leads to a constant mass 

matrix in two- and three-dimensional analysis. It leads to smooth centerline and mid-surface of the 

elements and ensures the continuity of the rotations of the cross section as well as the displacement 

gradients at the nodal points. It can also be used to systematically relax some of the assumptions 

used in Euler-Bernoulli, Timoshenko beam and Mindlin plate models. Furthermore, the absolute 

nodal coordinate formulation does not require the interpolation of finite rotations and leads to exact 

modeling of the rigid body dynamics. 



One of the features of the non-incremental absolute nodal coordinate formulation is that a 

global coordinate system is used for the definition of the nodal coordinates. In this case no 

coordinate transformation is required. The nodal coordinates and the element global shape function 

are used to define the location and deformation of material points on the finite element. It is, 

therefore, required that the global shape function must be able to describe the rigid body motion as 

well as the deformation of the finite element. Another important feature of the formulation is that 

global slopes instead of angles are used to define the configuration of the finite element. The use of 

the infinitesimal rotations in the classical finite element formulation, as previously pointed out, 

leads to linearization of the rigid body kinematic equations, and as a consequence the description of 

rigid body displacements may not be exact [12]. When global slopes are employed in the absolute 

nodal coordinate formulation, beam and plate elements become isoparametric while in the classical 

finite element formulation such elements are considered non-isoparametric. 

The objective of this study is to develop a new finite plate element based on the absolute 

nodal coordinate formulation. In this investigation, a more general plate element is developed by 

relaxing some of the assumptions of the classical and Mindlin plate theories [17]. The mass matrix 

of the more general plate element remains constant, and therefore, the centrifugal and Coriolis 

forces are equal to zero. By using a continuum mechanics approach and nonlinear strain- 

displacement relationships, a general expression for the elastic forces that takes into account the 

effect of shear deformation is obtained. Results are presented in this study in order to demonstrate 

the generality of the new plate model. 

2.        DISPLACEMENT FIELD 

The choice of the type and form of the interpolation functions plays an important role in developing 

a new type of finite elements. In this study, interpolation polynomial functions are selected because 



they are easy to integrate and differentiate. The more complex deformation modes within one 

element can be achieved by increasing the order of polynomials that define the displacement field 

of the plate. The use of higher order elements leads to a substantial decrease in the number of 

elements required to develop a discretized structure model. In the absolute nodal coordinate 

formulation, the displacement field must include the rigid body modes as well as the plate 

deformation modes. The following polynomials are assumed to define the displacement field of the 

plate element used in this investigation: 

r = 

2 2 2 2 
ÜQ + axx + a2y + CI3Z + a4xy + a5xz + a6yz + a7x  + a^y  + a9x y + ax0xy 

2 2 2 2 
b0 +bxx + b2y + b2z + b4xy + b5xz + b6yz + b7x  + b$y  + b9x y + b{ 0xy 

2 2 2 2 
c0 + cxx + c2y + c3z + c4xy + c5xz + c6yz + c7x  + c8y  + Cc,x y + c^xy 

3 3 3 3 
+ anxyz + anx +auy +aux y + aX5xy 

+ bnxyz + bl2x  +b^y +b^x y + bl5xy 
3 3 3 3 

+ cx xxyz + Cj2x  +cl3y + cx4x y + q5xy 

(1) 

where r is the global position vector of an arbitrary point P on the plate, x, y and z are the spatial 

coordinates of the plate element coordinates and a,-, b-, and c, are polynomial coefficients that depend 

on time in the case of dynamic problems. The spatial coordinate z is assumed to be in a direction 

perpendicular to the mid-surface of the plate in the undeformed state, while the spatial coordinates x 

and>> are measured in the mid-surface plane. The displacement field in the Eq. 1 is expressed in the 

global coordinate system and therefore the order of the three polynomials are the same. It can be 

demonstrated using Eq. 1 that the assumed displacement field couples the rigid body motion and the 

plate deformation. Furthermore, the shear, twist, and rotary inertia effects of the plate are taken into 

consideration. In Eq. 1, the displacement field depends linearly on the coordinate z since it is 

assumed that the plate thickness is small compared to the other two dimensions. 



3. NODAL COORDINATES AND SHAPE FUNCTIONS 

The assumed displacement field of Eq. 1 includes 48 unknown polynomial coefficients, which 

means that the same number of nodal coordinates is required. Figure 1 shows the element used in 

this investigation which has nodes A, B, C and D. In Fig. 1, a, b, and t are the length, width and 

thickness of the plate element, respectively. In the model developed in this investigation, 12 

coordinates are used for each node. The coordinates e,- of a nodey can be chosen as follows: 

T    OTj     OTj     OTj J 
J dx    dy     dz 

(2) 

where the vector r,- defines the global position vector of node7 and the three vectors 
dx ' dy 

and 

Si- 
deline the global displacement gradients of node j. Nodal coordinates of one element can then 

be given by the vector e: 

e = 
T     T     T     T 

e,l   eB  eC   eD (3) 

The polynomial coefficients (a,, b-, and a) can be replaced by the nodal degrees of freedom [11], and 

the global position vector r can be rewritten as follows: 

r = Se   , (4) 

where S is the matrix of the global shape function. The matrix S can be written as: 



S = [S,I   S21   S3I   SJ.   S5l   S6I   57I   SgI   59I   510I 

5,,!   5,2I   5,3!   S^I   515I   iS16IJ 
(5) 

where I is a 3 x 3 identity matrix and 

Sl=-{{-\)(?1-l)[2?7
2-71 + 2Z2-{-\),S2=-a^-l)2{T]-l) 

S^-bTifo-tfÜ-l) , S4=tfö-l){r,-l), S5={TJ-1)4 27/   -?7-3^ + 2^     , 

56 =-af(Z-l)(?j-\), S7 =bfr(T,-l)2, 58 =-^(7-1), 

59--^(l-3^-3/7 + 272+2^2l,51o=^
27(^-l),511 =677^(7-1) 

512 =/^,513 =7(^-1)^   -£-37 + 27 J,514=a^7(#-1)2 

515=-/37 (^-0(7-0, 516=-/77^-l). 

In the preceding equation, <; = „v/a, rj = y/b and C, - -It, 

4.        RIGID BODY MOTION 

If the plate element undergoes an arbitrary rigid body motion, the vectors of nodal coordinates (Eqs. 

2 and 3) can be expressed as follows [13]: 

*A = Rx   Rv   R-   Au   A2]   A3l   An   A22   A32   Al3   A23   A33 

Rx+Ana  Ry+A2xa  R. + A3xa  Au   A2l   A3X   An   A22   A32   Al3   A23   A33 



Rx + Ana + Al2b Ry+A2\a + A22b R. + A3la + A32b 

-\T 
Al   A2\   A3i  Al2  A22   A32  Au  A23   ^33 

(6) 

eo = Rx+Anb Ry+A22b Rz+A32b An  A2l  A3l  Au  A22  A32  Au  A23  A33 

where Atj is the ij th element of the 3x3 rotation matrix, RK Ry and Rz are components of the 

position vector that defines the global translation of node A of the plate. If rotations are defined in 

terms of three Euler angles cj>, 6 and y/, the rotation matrix takes the form: 

A = 

cos^cos^-cos<9sin^sin^   -sin^cos^-costfsin^cos^/     sin#sin^ 

cos^sin^ + cosöcos^sin^   -sin^sin^ + cos#cos^cos^   -sin#cos^ 

sin 0 sin y/ sin 0 cos y/ cos9 

(7) 

Substituting the expressions of nodal coordinates (Eq. 6) into Eq. 4 that defines the global position 

vector at an arbitrary point gives: 

r = Se = 

Rx + x(cos \j/ cos (j) -cos<9sin^sin^)-;y(sin^cos^ + cos#sin^cos^) + zsin 0sin <j> 

Ry + x(cos i/sin </) + cos 9 cos ^sin y/) + v(cos 6 cos <f> cos yj - sin iy sin </>) - -sin 0 cos <f> 

R: + xsm9smy/ + ysmOcosy/ + zcos# 

(8) 

which demonstrates that an arbitrary rigid body motion can be described using the shape function 

introduced in Eq. 5. It is clear from the analysis presented in this section that the spatial coordinates 

x andy represent orthogonal parameterization of the mid plane of the plate in the case of rigid body 

dr dv 
motion. This is not the case when the plate deforms since in this case — and — do not remain 

dx dy 

orthogonal. 



5.        PLATE DEFORMATION 

By using global slopes instead of the rotations, no assumptions are made on the magnitude of the 

rotations within the element. This allows complex shapes to be represented using a small number of 

elements. As an example, Fig. 2 shows deformed shapes of the plate when one element based on the 

shape function of Eq. 5 is used. The deformation in Fig. 2a is obtained by using the following 

numerical values of the nodal coordinates: 

e = [0.3  0.3 -0.2  1  0 1  0 0.5  1 1  1  1  1  0 0 1  0 1  0 1  -1  0 0  1 

0.7 0.7  -0.2  1  0 -1  0 1  -1  0 0  1  0 1  0 1 0 -1 0 1  1  1  1  if  . 

The deformation in Fig. 2b is obtained by using the following numerical values of the nodal 

coordinates: 

e = [0.3  0 0  1  0  1 0 1  0 1  1  1 0.7 0 0 1  0 1 0 1  0 0  1  1 

11010101000101010101011  \]T   . 

The results presented in Fig. 2 demonstrate that very large deformation and rotation within the plate 

can be obtained using one element. This important isoparametric property is very crucial in 

developing efficient shell elements. 

In the case of rigid body motion —, — and — are three orthogonal unit vectors. This is 
dx    dy dz 

no longer the case when the plates deforms. Figure 3 shows the norms of these three vectors at 

points of coordinates  (<%,T],£)= (£, 0.5, 0) for the deformed plate shown in Fig. 2b. The dot 

,        3r  ör    9r  3r      , <3r  or , .,„.,„ , . .    . .   _ 
products , and are shown in the Fig. 4. The results presented in this tigure 

dx  dy    dy   dz dx   dz 



show that the three vectors —-, — and — are, in general, no longer orthogonal vectors when the 
ox   dy oz 

plate deforms. 

The results presented in Figs. 3 and 4 show that the vectors —, — and — do not remain 
dx   dy dz 

orthogonal unit vectors as the plate deforms. The coefficients of the first fundamental form of 

surfaces can be used to shed light on the configuration of the mid surface as the plate deforms. For 

the mid surface, z = 0 and the first fundamental form in this case is defined as [7]: 

/ = drz=Q ■ Jr.=0 = E{dxf + IFdxdy + G(dyf , (9) 

where E, F and G are the coefficients of the first fundamental form defined as: 

rdrY  (dr 

dx \UXJ;=0 v3xy;=0 

F = 
rorV fa-\ 

vÖXy_.=0 

or 
G = 

dr ^ 

dyj^Kdyj^ 
(10) 

The coefficients E and G measure the deviation of — and — from unit vectors. The coefficient F 
dx dy 

dr dr 
measures the deviation of — and — from orthogonality. Figure 5 shows these three coefficients 

ox dy 

for the plate shown in Fig. 2b for the spatial coordinates (^,77,4") = (£, 0.5, O). 

6.       PLATE INERTIA 

In the absolute nodal coordinate formulation, the mass matrix of the plate element can be obtained 

using the following expression for the kinetic energy: 

T = -\prrrdV , (H) 



where p is the mass density of the plate, Vis the volume and r is the absolute velocity vector. The 

absolute velocity vector is linear in the nodal velocities and can be obtained by differentiating Eq. 4 

with respect to time as follows: 

r = Se  . (12) 

Substituting Eq. 12 into the expression of the kinetic energy gives: 

r = -erMe   , (13) 

where M is the mass matrix given explicitly in the appendix. This mass matrix is constant since it 

only depends on the inertia properties and dimensions of the plate. As pointed out in previous 

studies, the mass matrix obtained using the absolute nodal coordinate formulation accounts for the 

effects rotary inertia and plate twist [9]. As a result of having a constant mass matrix, the centrifugal 

and Coriolis inertia forces are equal to zero. Having a constant mass matrix allows also the 

development of an efficient algorithms for solving the nonlinear equations of motion of multibody 

systems [14, 18]. 

7. ELASTIC FORCES 

The use of a global coordinate system for the definitions of the nodal coordinates leads to a simple 

expression for the inertia forces and a non-linear expression for the elastic forces. Two different 

methods can be used when the elastic forces are derived [13]. In one method, a local element 

coordinate system that is used for the description of the element deformation is introduced. Another 

method, which is used in this study, is based on a continuum mechanics approach that does not 

require the use of a local element coordinate system. The latter approach leads to significant 

simplification in the vector of elastic forces as is previously shown [3]. Furthermore, by employing 

10 



a continuum mechanics approach all elastic nonlinearities are taken into consideration since 

nonlinear strain-displacement relationships must be used. 

The elastic forces of the plate element can be derived by using the virtual work or the 

following expression of the strain energy: 

U = -\eT
aEemdV *■*  j    m        m (14) 

where E is the matrix of elastic coefficients, and sm is the strain tensor. The strain tensor can be 

obtained by employing the Cauchy-Green formula [4] as follows: 

1 
8„4(jrJ-l)    . (15) 

where I is a 3 x 3 identity matrix, and J is the matrix of the displacement gradients. Using Eq. 4 the 

displacement gradients can be written in the following form: 

J = 
or 
dx 

dS, 9Si 9Si 
—Le —Le —Le 
dx dy       dz 

dS~> öST dSj 
—-e —-e —-e 
dx dy       dz 

5S, öS 3 dS-i 

dx dy       dz 

^i.te S[ye Si_e 

S2.ve S2ve S2re 

S3,e S3ve  S3re 

(16) 

where S, is the /th row of the shape function matrix. The elastic forces of the plate Q* can be 

obtained by differentiating the strain energy once with respect to the nodal coordinates, that is 

de 
(17) 



It can be shown that the shape function (of Eq. 5) leads to zero elastic forces under an arbitrary rigid 

body displacement. The vector of the elastic forces can also be expressed as a product of a nonlinear 

stiffness matrix K and the vector of nodal coordinates e as follows: 

Q*=Ke (18) 

It can be shown that the stiffness matrix of the plate element can be written as follows: 

K = K,+K2+K,+K4+K5+K6 (19) 

where 

K, =- \b2 x[erb1e-l) + (/t + 2//)(e b2e-l ) + A(e b3e-l 

rbT
2e-\) {Abx+{A + 2/j)b2 + Ab3)dV 

K2 =- jb[ /l(e b2e-l) + (/l + 2//)(e b3e-l) + /t(e b^-1 + 

T   T 
e b3e-l \(Ab2+(A + 2ju)b3 + Ab;)dV   , 

K3 = - Jb[" ä(eTb2e-1J + {A + 2//)(e b,e-1] + A(e^e-1 

T   T 
e bje-1   (Ab2+(A + 2fi)bl+Ab3)dV   , 

\ T        T T     T 1 T        T T     T 
K4 = -/i [b4  e b4e + e b4e b4 dV, K5 = -ju \b5  e b5e + e b5e b5 dV, 

A     J A     J 

1 nr «T* T        T 

K6 =T/" K-e b6e+e b6eb6^, 
4   v 

12 



where /^and X are Lame's constant, and 

T T T T T T 
bl = S3;tSlz + S3yS2z + S3zS3z > b2 = SLC

S
1JC + Sl>-S2.x + SlzS3;t > 

T T T T T T 
b3 = S2xSl>- + S2.yS2y + S2zS3>>> b4 = S1.T

S
1^ + SlyS2>> + SlzS3y > 

T T T T T T b5 =Si.rSlz +S1>;S2r +S1_S3:r, b6 -S2_TS,. +S2yS2z + S2,S3, 

8.        IMPLExMENTATION AND NUMERICAL RESULTS 

The use of the new plate element developed in this study is demonstrated in this section by studying 

the behavior of two simple pendulums. Using the developments presented in the preceding sections, 

the equations of motion of the finite element can be written in a matrix form as follows [13]: 

Me + Ke = Q   , (20) 

where Qe is the vector of the generalized external nodal forces. Using the definition of the elastic 

forces, the preceding equation can be written as: 

Me = Q  , (21) 

where the force vector Q is given by 

Q = Q,-Q* (22) 

Since the mass matrix is constant the equation of motion can be efficiently solved for the 

accelerations using the following equation: 

13 



e = MQ        . (23) 

The pendulum plate models in this investigation are shown in Fig. 6. One plate model has 

one element, while the other model has three elements. In the two models, the plate is connected to 

the ground using a spherical joint. Therefore, each model has three rigid body rotational degrees of 

freedom. The two pendulums are assumed to vibrate under the effect of gravity. The length, width 

and thickness of the first plate are 0.3 m, 0.3 m, and 0.01 m, respectively. The material of the plate 

is assumed to be isotropic and its Young's modulus is 1.0-105 N/m2, Poisson's ration is 0.3 and 

mass density is 7810 kg/mJ. Figure 7 shows the motion simulation of the first pendulum and Fig. 8 

shows the global coordinates of point ///(Fig. 6) versus time. As shown in the Fig. 7, one element is 

capable of representing large deformation and rotation of the flexible plate under the effect of 

gravity. 

The second pendulum model has a rectangular plate that has length, width and thickness of 

0.3 m, 0.6 m, and 0.01 m, respectively. The material properties of the plate in this model are 

assumed to be the same as the properties used in the first model. Figure 9 shows the simulation of 

the plate motion under the effect of gravity. Figure 10 shows the global coordinates of point H (Fig. 

6) of the pendulum versus time. The components of the vectors —, — and — along line /(Fig. 6) 
dx   dy dz 

on the mid surface of the plate at time 1.1 s are shown in Figs. 11, 12 and 13. The results presented 

in these figures demonstrate that the global displacement gradients at the nodal points are 

continuous. 

9. SUMMARY AND CONCLUSIONS 

In this investigation, a new plate element developed using the non-incremental absolute nodal 

coordinate formulation is presented. The general plate model developed in this investigation can 

14 



describe rigid body motion, finite rotations and an arbitrary large deformation. Continuity of all 

displacement gradients at the element nodal points are ensured, thereby, ensuring the smoothness of 

the mid-surface of the plate structures at the element nodes. While the plate element developed in 

this study relaxes some of the assumptions of the conventional and Mindlin plate theories, the mass 

matrix remains constant when the plate undergoes finite rotations and experiences large 

deformation. It is demonstrated in this investigation that complex deformation shapes can be 

modeled using small number of elements. By using global slopes instead of rotations, no 

assumptions are made with regard to the magnitude of the rotations or the deformation within the 

element. A continuum mechanics approach is used to obtain the plate elastic forces. Nonlinear 

strain -displacement relationship are used in formulating the elastic forces and as a result the 

formulation presented in this paper accounts for all geometric nonlinearities. The plate element 

developed in this study is of the isoparametric type and can be used to develop efficient shell 

formulations. 



APPENDIX 

The mass matrix M in Eq. 13 is defined as follows: 

M = ab 

symm.   M bb 

The submatrises Maa, Mab and M&, can be written as: 

M„ laa - 
1727 T 461 , T 461 ,nr   11 urtl       613  T 137 , , 199  ,„¥ 19 , ~   ' 

———ml  -—— bml  —-—pbO.l   — pbQ\      ml bml  pbO.l —pbOl 
12600       25200          12600^ ~*     90^    -        12600 12600 12600^ ~z 360^ ~y 

-Lb2ml    —pb2Q2l   —pb2Ol    -^-bml -—b2ml —pb2Ql -pb2Q\ 
315             200^   ^     60^   -"      12600 420 300^   ^z 90^      ' 

—pbl.,l     —pbll   -^-pbQ.l —-pb2Q\ —pb2IJ —pbll 
105^   -       30^   "     12600^ *: 300^   *' 210^     " 60^   " 

-pb'IJ     ^-pbOvl -—pb2Q\ —pbll -pbll 
9y   "       360^ "y 90y   *y        60^   •" \iH   w 

1727    r 461   ,   T 461     , „ T 11   , „ ¥  ml bml  pbO\ —pbO\ 
12600 25200 12600^ ~ 90^ ~y 

±-b2ml —Lpb20\ -—pb2Il 
315 200^   — 60^     " 

symm. —pbl.\ —pblJL 
105r    " 30' 

-pblj 9H   >y 

Mab 
197      i 29  L   i 29     ,„. 1     ,„, 613     f 199   ,    ¥ 137     ,„T 19     , „ , ———ml bml pbO.l —pbOl       ml      bml pbO.l —pbOl 

12600 6300 3150^ - 45F ~y 12600 25200 6300^ ~ 360^ ~' 
-^-bml —-b2ml —-pb2OJ —pb2Ql -^-bml —b2ml —-pb2Q,l —pb2Ol 
6300 840 450^   ~" 180^      - 25200 630 300^   ^" 120^   ~' 
29 pbO.l —X-pb2QA -J-pbIJ —pblj —pbO.l —pb20\ -~pb2IJ -pblj 

3150r   —" 450^    *" 280r    = 90^    '"' 6300r  ~" 300^    —' 140^     = 45 

\-_pbOvl -—pb2Q\ -i-pbl.\ -pblj —pbOJ —pb2Ql --pblj - 
45^ ~* 180^      ■          90^   •- 36^   " 360^ ~" \2QH      ■          A5H    " 1! 

613     r 199   ,    . 137    ,„, 19    ,„ . 197     , 29  ,    ,         29     , ^, 1 £_ml -JZZ-bml -HLpbO.l —pbOl -^—ml —bml -J^-pbQl -pbOl 
12600             25200 6300^ - 360F ~y 12600 6300 3150^ ^; 45^ ~' 

-T%^bml     ^-b2ml -^pb20\ -—pb2QJ -—bml -—b2ml —pb2Q\ ~—pb2Il 
25200             630 300^   — 120^      ■        6300 840 450^   ^ 180^     '" 

137    ,„w        1      ,,„, 1     ,,rr 1    7rl 29     ,^, 1     ,,^T 1     ,TI         1 
-pbQ.l   -J-ptf-Q}   —-pb2L\      —pblj     -±LpbQ\  —pb2OA     —pbl_\       —pbl.l 
^ *■       300^   ^2        140^     -        45^   ■■■       3150^ *'    450^   —       280^   - 90^   '- 

rnpbQyl    ~^pb2QJ     -±pblj        1-pbIJ       \-pbO\    ^pb2l\     ~pblrl        ±pblj 
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"1727    T       461   ,   T -ml bml 
25200 

—b2ml 
315 

12600 

symm. 

~™-pbQ,l    l-±pbQl 
12600^ ^      90^    ■ 

Ws^1     'To**1*1 

\pbIJ 

613 
ml 

137 
12600" 

bml 
12600 

137   u   I 1   ,2    x —-— bml bml 
12600 420 
199 pbQjL  -±-npb2Q\ 

12600 

360^    ■ 
1727    T 

126ÖÖWl 

300' 

461 
25200 

bml    - 

12600^ ^2 360^    • 

3>2äI ->^ 

60"""•""        \%P   " 

-^-pbQJ    UpbQJL 
12600^ **      9V      ■ 

J_ 
210 

1 

pb2IJ 

-b2ml 
31D 

J_oz>2ai -PA
2
/i 

200^   ^r 60^     •" 

—pblj -—pbll 
105^   - 30^   '■ 

where I is a 3x3 identity matrix, m is the element mass and p is the mass density of the element and 

Qv =-at2,   Q7=-a2t,   Iw=-at3,  I,. =-a3t. Iv- =-a2t2. y     2 *■    2 -v-v    3 "    3 -^    4 
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A      X 

Fig. 1. The four node plate element. 

(a) (b) 

Fig. 2. Examples of plate deformations. 
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First pendulum 

Second pendulum 

Fig. 6. Pendulum models. 
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t=0.7 s 

t=0.1 s 

Fig. 7. Motion simulation of the first plate model. 
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Fig. 8. Global coordinates of point Hof the first pendulum. 
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t=0.1 s 

t=0.6s 

Fig. 9. Configurations of the second plate model. 
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Fig. 10. Global coordinates of the free end (point H) of the second pendulum. 
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