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Abstract 

This thesis develops a method for estimating the normal mode decomposition of 
broadband signals and uses it to analyze data from the Acoustic Thermometry of 
Ocean Climate (ATOC) experiment. Normal modes are the eigenfunctions of the 
ocean waveguide, derived from the frequency-domain wave equation. They are useful 
in underwater acoustics, particularly matched field processing and tomography, be- 
cause the lowest modes provide an efficient description of the most energetic arrivals 
at long ranges. Extracting source or environmental information from the mode sig- 
nals depends on understanding the effects of internal waves on coherence and the 
validity of adiabatic approximation. While much theoretical research has been done 
on long-range propagation of modes in deep water, there have been few opportunities 
to compare theoretical predictions with experimental measurements. 

The first contribution of this thesis is a short-time Fourier framework for es- 
timating broadband signals propagating in the lowest modes of the ocean wave- 
guide. Since previous research has focused primarily on narrowband sources, this 
work concentrates on broadband processing issues. Specifically, it addresses the fun- 
damental issue of frequency resolution required for mode estimation, analyzes the 
performance characteristics of two modal beamforming algorithms and explores the 
time/frequency tradeoffs inherent in STFT mode processing. 

The second contribution of this research is a detailed analysis of the low-mode 
arrivals at megameter ranges using five months of data from the ATOC vertical line 
array at Hawaii (3515 km range). Short-time Fourier processing of these receptions 
revealed that each low mode contains a series of arrivals, rather than the single dis- 
persive arrival that would characterize adiabatic propagation. Average coherence 
times of the mode signals are on the order of 6-8 minutes. The multipath structure 
changes significantly between receptions at 4-hour intervals, indicating that stochas- 



tic methods are required for mode tomography at megameter ranges. A statistical 
analysis found that modes do retain travel-time information at megameter ranges, 
e.g., the centroids show the expected dispersion characteristics of a deep water chan- 
nel. The centroids show statistically significant trends in mode arrival time over the 
period of the experiment. 
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Chapter 1 

Introduction 

Normal modes provide a convenient description of low-frequency sound in the deep 

ocean. Their strong connection to the propagation environment makes them useful 

in a variety of applications, including source localization and acoustic tomography. 

Currently, there is much interest in using modes to analyze broadband receptions 

at megameter ranges for the purpose of studying ocean variability on basin-scales. 

At these ranges, the effects of internal waves on mode coherence are not known. 

This thesis develops a signal processing framework for estimating modal time series 

and uses it for analyzing data from the Acoustic Thermometry of Ocean Climate 

experiment. From a signal processing perspective, the key issue to consider is the 

broadband nature of the signals; specifically, any approach must accommodate vari- 

ations in the mode characteristics across the bandwidth of the source. In examining 

the data, the focus is on understanding the fluctuations of mode arrivals and char- 

acterizing the complicated multipath structure. 

The rest of this chapter introduces the research questions addressed by this thesis. 

As a starting point, the following section motivates the use of the modal description in 

the context of long-range acoustics and discusses open questions about megameter 

propagation. The second section highlights some of the signal processing issues 

surrounding the broadband mode estimation problem.   Section 1.3 describes the 

14 
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Figure 1-1: Deep ocean waveguide. The left panel shows a typical deep water sound 
speed profile. The right panel illustrates how refractive effects permit propagation 
over extremely long ranges. 

opportunities presented by the recent ATOC experiment. Finally, Section 1.4 states 

the specific research objectives and outlines the remainder of the thesis. 

1.1    Use of Modes in Long-Range Acoustics 

The deep ocean is an efficient channel because it traps low-frequency acoustic signals, 

enabling them to be detected thousands of kilometers from their source. Figure 1-1 

shows how the refractive effects of the underwater waveguide allows propagation to 

such long ranges. Acoustically, the deep ocean is characterized by a sound speed 

profile with a minimum, between 800 and 1200 meters depth, known as the sound 

channel axis. Sound waves bend towards regions of lower velocity, thus the minimum 

creates a duct. As the figure depicts, a sound wave leaving the source on a downward 

trajectory bends back towards the axis. Once it passes through the minimum on an 

upward path, it bends away from the surface. Purely refracted paths, such as the 

one shown, do not scatter energy at boundary interactions. Since absorption losses 

for low frequencies (on the order of 100 Hz) are minimal, the signals can propagate 
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Figure 1-2: Broadband reception on 40-element VLA located 3515 km from source 

over extremely long distances in the channel. 

Fig. 1-2 illustrates some general features of pulse propagation to megameter 

ranges. The plot shows the pulse-compressed and sequence-averaged time series 

recorded by a 40-element vertical line array (VLA) located 3515 km from a broad- 

band source. Inter-element spacing is 35 m, and the array is approximately centered 

on the sound channel axis. This figure reveals an important characteristic of propa- 

gation in the underwater sound channel, namely the time-spread of the arrivals due 

to the fact that they take many different paths between source and receiver. The 

early arrivals traverse deep-diving ray paths that are associated with higher group ve- 

locities because they sample the water away from the sound speed minimum. Signals 

that propagate almost horizontally, along the sound channel axis, arrive last and are 

often more energetic. In general, the multipath arrival structure can be represented 

in terms of the vertical eigenfunctions, or normal modes, of the underwater wave- 

guide. Modal dispersion accounts for the time-spread of the signal at long ranges. In 

deep water, the high modes travel faster than the low modes, thus the high modes 

are associated with the early-arriving energy in Fig. 1-2. The planewave-type arrivals 

visible in the early parts of the reception (up until « 2373 seconds) are the result 

of constructive interference of groups of these higher order modes.  Planewaves are 
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not evident in the last 2.5 seconds of the reception, associated with the low mode 

arrivals. 

As solutions to the frequency-dependent wave equation, the modes provide many- 

useful insights about sound propagation. Each mode essentially samples a different 

part of the water column: the low modes are concentrated around the axis, whereas 

the higher modes have greater vertical extents. Since the modes depend strongly 

on the environment, they can be used as observables for matched field processing 

or tomography applications. The key to matched field or tomographic inversions 

is the ability to associate an arrival with a particular path or section of the water 

column. In range-invariant environments, this problem is trivial because the modes 

propagate independently without exchanging energy, i.e., an arrival in mode 1 is 

known to have traversed the entire path in mode 1. For a realistic ocean environment, 

however, inhomogeneities cause coupling of energy among the modes, which makes 

the problem much more difficult. Understanding the mechanisms and effects of mode 

coupling is crucial to using these signals in any type of application. 

At long ranges, internal waves are thought to be the primary source of coupling. 

Vertical displacements of water associated with internal waves cause fluctuations of 

the temperature, thus changes in the sound speed, at a fixed depth. The horizontal 

variability of these sound speed fluctuations, in turn, can cause an exchange of en- 

ergy among the modes as they propagate. The effects of these fluctuations on the 

planewave-type arrivals are fairly well-understood - these arrivals are amenable to 

analysis via geometrical optics approximation. Significantly less is known about the 

axial mode arrivals since there is no comparable theory. The late-arriving modes 

tend to describe the most energetic, trapped signals and thus are useful in detect- 

ing/estimating weak sources at long range. To develop an understanding of how these 

low modes propagate through internal wave fields and to test some of the limited 

theoretical results, it is necessary to study them experimentally. 

17 



1.2    Broadband Mode Estimation at Megameter 

Ranges 

Measuring the mode arrival structure at long ranges presents an interesting signal 

processing problem. Unlike the planewave arrivals, axial mode arrivals generally 

overlap in time, and must be estimated via spatial processing. Since the modes are 

an orthonormal basis in depth, in principle they can be separated using vertical line 

arrays spanning the entire water column. In practice, the degree of orthogonality 

of the modeshapes, as sampled by a practical array, determines how well the modes 

can be resolved. 

A key issue in this thesis is the use of broadband signals. The modes are inher- 

ently frequency-dependent, since they are derived from the frequency-domain wave 

equation. Previous work on mode estimation has primarily focused on situation- 

s where a narrowband approximation is valid, i.e., either the source is CW or the 

mode functions are approximately constant across the band of the source. A few 

researchers have implemented broadband mode processors using an FFT for the fre- 

quency decomposition, but they have not discussed the frequency resolution required 

for this approach. What is needed is a general framework for broadband mode esti- 

mation that will allow a careful analysis of performance in terms of mode resolution 

and time/frequency resolution. 

A recent experiment provides an opportunity to develop methods of mode pro- 

cessing and to apply them to studying the coherence of mode arrivals at megameter 

ranges. 

18 
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Figure 1-3: ATOC source and receivers 

1.3    Acoustic Thermometry of Ocean Climate 

Experiment 

The purpose of the Acoustic Thermometry of Ocean Climate (ATOC) experiment 

is to study long-range propagation of sound and to investigate acoustic methods 

for monitoring ocean climate variability. The intent is to demonstrate that travel- 

time tomography can be used to measure ocean temperature over ranges of 3,000 to 

10,000 km. The ATOC network consists of a broadband source off the California 

coast, two vertical line arrays, and a number of bottom-mounted horizontal arrays. 

This thesis focuses on analyzing data from the two VLA's, which were designed to 

spatially resolve the lowest 10 modes at each location. Figure 1-3 shows the location 

of source and receivers considered in this thesis. The path lengths to the receivers 

at Hawaii and Kiritimati (Christmas Island) are 3515 km and 5171 km, respectively. 
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These arrays were deployed in November 1995 and recovered in September of 1996. 

The bottom-mounted source (934 m) on Pioneer Seamount transmitted pulses at 

a center frequency of 75 Hz. Each transmission consists of 40 periods of a pseudo- 

random sequence, phase modulated onto a 75 Hz carrier. The receiver averages every 

4-periods internally. Over the duration of the experiment, transmissions are sent 

every 4 hours during periods established by the ATOC Marine Mammal Research 

Program. 

ATOC presents the first opportunity to study mode arrivals at megameter ranges. 

The next section outlines the objectives of this thesis. 

1.4    Thesis Objectives 

The first objective of this research is to define a framework for broadband mode 

estimation. Since the modeshapes are frequency-dependent and the mode spectral 

coefficients are time-dependent, mode estimation involves a combination of temporal 

and spatial filtering. Most previous work has focused primarily on the narrowband 

mode estimation problem, and has not addressed issues unique to broadband signals. 

The second objective is to analyze the low-order mode arrivals in the ATOC data. 

This is really the first opportunity of its kind. Specifically, this research hopes to 

characterize the complicated mode arrival structure and explore the effects of internal 

waves on mode coherence. 

The organization of the thesis is as follows. Chapter 2 reviews background about 

normal mode representations and motivates several specific questions about long- 

range mode propagation. It clearly formulates the broadband mode estimation 

problem and proposes and approach for exploring the scientific/signal processing 

research topics using the ATOC data. Following that, Chapter 3 presents a frame- 

work for broadband mode processing, based on short-time Fourier techniques. The 

fourth chapter presents an analysis of the ATOC data set for the Hawaii array, 
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compares these results to simulations, and identifies several useful statistics of the 

mode arrivals. Finally, Chapter 5 summarizes the thesis contributions and indicates 

directions for future research. 
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Chapter 2 

Background 

As indicated in Chapter 1, normal modes are of interest in applications such as 

tomography and thermometry because the lowest modes provide a convenient de- 

scription of the energetic late arrivals at megameter ranges. This chapter lays the 

groundwork for the rest of the thesis by motivating specific questions about long- 

range mode propagation, clearly formulating the broadband mode estimation prob- 

lem, and proposing an approach for exploring these research topics using data from 

the ATOC vertical arrays. The material is divided into four parts. Section 2.1 re- 

views the salient characteristics of the normal mode representation and outlines some 

of the open questions concerning mode propagation through range-dependent and 

random environments. In the course of describing relevant features of the modal 

basis set, this section also introduces a range-dependent ocean environment, which 

is used for many of the examples in later chapters. Given this mathematical back- 

ground and experimental motivation, Section 2.2 poses the mode estimation problem 

for vertical arrays and highlights important design considerations. In particular, the 

discussion emphasizes the broadband character of the problem since most prior work 

has focused on using modes to analyze narrowband signals. The third section reviews 

previous work on mode estimation in order to place the current research in context. 

Finally, Section 2.4 outlines the proposed approach, which is based on short-time 
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Fourier analysis techniques, and describes the areas addressed by the rest of the 

thesis. 

2.1    Broadband Normal Mode Representation 

Normal mode representations are useful in describing the acoustic pressure field in 

a variety of underwater environments. Several standard textbooks develop acoustic 

mode theory in detail [3, 4, 5]. The following discussion reviews the basic concepts, 

focusing primarily on modal representations for broadband signals in deep ocean 

environments such as those encountered in ATOC. This section is split into two 

parts: the first describes the use of the modes as a "local" basis set for the pressure 

field; the second discusses mode propagation in a variety of environments. 

2.1.1     "Local" Orthonormal Basis 

Normal modes are the eigenfunctions of the ocean waveguide, which are derived 

from the frequency domain wave equation (Helmholtz equation). At each frequency, 

a mode is characterized by its wavenumber km and its modeshape <f>m. For a given 

environment, defined by the sound speed profile and boundary conditions, the modes 

satisfy a second-order eigenvalue equation, e.g., in cylindrical coordinates (assuming 

constant density): 

<P<f>m(ry, Q) + ^ ^ n) _ ^ n)j ^ ^ n) = o_ ^ ^ ^ n 
c{r, z)' 

(2.1) 

In Eq. 2.1, Q is the temporal frequency, c(r,z) is the sound speed as a function 

of range r and depth z, and k(r,z,Cl) is the medium wavenumber. The modal 

wavenumber (km) determines propagation characteristics, such as phase and group 

speeds, and the modeshape determines the spatial distribution of pressure due to 
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each mode. These shapes are orthogonal functions, scaled such that 

- <ßm(to,z)<f>n(n,z)dz = 6(m-n), (2.2) 

where p is the density of water. 

Since the modes are an orthonormal basis for narrowband signals, the pressure 

field at coordinates (r, z) can be represented as the weighted sum 

p{r, z,Q,) = Y, Om(r, ty<f>m(r, z, fi) (2.3) 
m 

where am is the frequency-dependent coefficient for mode m. In general, the sum 

in Eq. 2.3 is infinite, although in most realistic environments only a finite number 

of modes contribute significantly to the field. The remaining "leaky" modes have 

complex wavenumbers and suffer exponential losses as they propagate, thus their 

contributions are negligible in the far-field of the source. This thesis focuses on long- 

range propagation scenarios where it is reasonable to represent the pressure field 

with a finite set of modes. 

Time- and frequency-domain representations of the pressure are related via Fouri- 

er synthesis, i.e., the time series for a receiver at range r and depth z is 

iKr.z,*) = ^Jj(r,z,n)eJnt<m = i-jf feo^fi^r,*,«)) e^dü.    (2.4) 

Similarly, the inverse Fourier transform of the frequency-dependent mode coefficient 

am(Q) in Eq. 2.3 defines the time series associated with mode m at range r: 

<Xm{r, t) = l^f °m(r, Sl)emdtt. (2.5) 

Limits of integration in the above equations are determined by the source bandwidth 

and the frequency range over which the relevant modes are propagating. 

The following example illustrates some of the essential characteristics of the nor- 
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Sound speed profile at Hawaii 
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Figure 2-1: Sound speed at the ATOC Hawaii array (20.2°N, -154.0°E). The solid 
line is the profile obtained using temperature and salinity from the Levitus database 
for the winter season. The dashed line corresponds to the profile computed from a 
CTD measurement taken at the time of array deployment (mid-November 1995). 

mal modes using the environment at the ATOC Hawaii array. Figure 2-1 shows 

the sound speed profile for this location, computed from Levitus climatological da- 

ta [6, 7]. For reference, the plot also includes the profile derived from environmental 

measurements taken during the array deployment. Figure 2-2 shows the first 10 

modeshapes at 75 Hz for both of these environments.1 Note that each mode samples 

a different part of the waveguide: the lowest modes are concentrated around the 

sound channel axis, while the higher order modes cover greater extents of the water 

column. The modes of these two environments are qualitatively similar, however the 

shapes do reflect the differences in sound speed (up to 1 m/s near the channel axis). 

Since the medium wavenumber depends on frequency as well as sound speed, 

the modes are functions of frequency, in general. To demonstrate this, Figure 2- 

3 compares the modeshapes at 60 and 90 Hz for the Levitus environment.   The 

unless otherwise noted, mode functions are calculated using Baggeroer's Prüfer code [8]. 
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SSP Environmental dependence of modeshapes: Levitus vs. measured 
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Figure 2-2: Comparison of Levitus environment and measured environment at Hawai- 
i. The left panel shows a closeup of the sound speed profiles around the channel axis. 
The right panel shows the modeshapes for the first 10 modes at 75 Hz in each envi- 
ronment. 

frequency range on the plot corresponds to the approximate bandwidth of the ATOC 

source. Over this 30 Hz interval, mode 1 varies slightly, whereas mode 10 changes 

quite significantly. In general, the environment and the source bandwidth determine 

the extent of modal frequency dependence. As this example clearly shows, modal 

frequency variations are an important factor to consider in the ATOC experiment. 

The formulation in Equations 2.1-2.5 emphasizes that the modes are an orthonor- 

mal basis for a particular environment, defined by c(r,z). Based on their spatial 

distributions, the lowest modes (eigenfunctions) can provide a compact description 

of acoustic energy concentrated around the sound channel axis. Beyond being useful 

as a "local" basis set, the modes are interesting because they are strongly connected 

with the propagation of signals in the ocean waveguide. The following section dis- 

cusses how modes propagate in a variety of different environments and raises some 

questions about long-range sound transmissions. 
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Modeshapes at Hawaii (Levitus profile) 
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Mode number 

Figure 2-3: Modeshapes for the first 10 modes of the Hawaii-Levitus environment at 
60 Hz and 90 Hz. The plot shows the upper 2500 meters of the 5250 meter waveguide. 

2.1.2    Mode Propagation 

From a simple input/output viewpoint, the underwater channel transforms the mode 

signals excited by the source into a modal time series at the receiver. Assuming a 

finite number of propagating modes, a concise frequency-domain description of this 

system is 

a[r,ß] = T[ß]a[0,fi] (2.6) 

where a[0, ft] is a vector of mode amplitudes at the source (r = 0) and a[r, Ü] 

represents the corresponding vector at the receiver. For a point source, the modes 

are excited at levels proportional to the source spectrum SSTC and the amplitude of 

the modeshape at the source depth zs i.e., 

t[o, n] = snc[to]<l>m{r = o,z8,n) 

P(ZS) 
(2.7) 
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In Eq. 2.6, T[fi] is a square matrix that defines the transformation of the spectral 

amplitudes, according to how the modes propagate in the channel. There are two 

broad classes of propagation environments to consider: range-independent and range- 

dependent. 

Range-Independent Environments 

Given a fixed sound speed profile and bottom depth, the modeshapes and wavenum- 

bers are independent of range. In this case, the modes propagate without exchanging 

energy, i.e., T is a diagonal matrix:2 

TM[fi] = 
PJ*/4 

gj«mr 

(2.8) 

In this type of waveguide, each mode is a standing wave in depth that propagates 

outward from the source with a group velocity equal to dü/dkm. In general, group 

velocity varies with mode number and frequency, meaning that the channel is dis- 

persive. For a deep water environment, the low modes travel slowest, since they 

represent energy trapped around the sound speed minimum; higher modes travel 

faster. In a deep channel, modal group velocity typically decreases with frequency. 

Range-Dependent Environments 

For realistic ocean waveguides, the environment is a function of range, or more gen- 

erally, a function of range and azimuth. When the medium is inhomogeneous due to 

variations in sound speed and/or bathymetry, the modes no longer propagate inde- 

pendently. Instead there is coupling of energy among the modes, meaning that the T 

matrix has non-zero off-diagonal terms. A range-dependent waveguide can be mod- 

2Eq. 2.8 assumes the receiver is in the farfield of the source.   See [4, 5] for a discussion of 
range-invariant waveguides. 
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eled using a cascade of range-independent segments. In this type of model, boundary 

conditions at the segment interfaces determine the mode coupling coefficients. 

Since the coupled-mode approach leads to a computationally-intensive implemen- 

tation, it is useful to consider a simplification. The adiabatic approximation assumes 

the range dependence is weak and neglects the coupling terms, reducing T to a di- 

agonal matrix. Under this assumption, each propagating mode adapts with range 

(changes shape and wavenumber), but does not transfer energy into the other modes. 

For an adiabatic model the range-averaged wavenumber, 

—        1  fr 

km = - J   km(r')dr', (2.9) 

determines the phase and group speeds for mode m, thus the adiabatic propagation 

matrix, TAD, is simply TRI with km replaced by km. Obviously the validity of the 

adiabatic assumption is related to the nature of the inhomogeneities in the medium. 

Desaubies has analyzed this problem in detail, concluding that the approximation's 

accuracy depends strongly on frequency, mode number, range and the acoustic quan- 

tity of interest, e.g., intensity, phase travel time [9, 10]. 

In long-range experiments, there are several types of inhomogeneities that may 

cause mode coupling. Consider the environment along the geodesic connecting ATOC 

source at Pioneer Seamount to the receiving array at Hawaii, shown in Fig. 2-4. The 

plot shows how the Levitus (winter) sound speed profiles change over the 3515 km 

path. Variability is concentrated in the upper 500 m of the water column and is a 

relatively mild function of range. The figure also displays the bathymetry for this 

section of the ocean. In a deep water environment, changes in the bottom are unlikely 

to affect the axial modes since they do not interact with the waveguide boundaries. 

For these modes, the most significant feature of this path is the rapid dropoff in 

the vicinity of Pioneer Seamount. The bottom-mounted source (935.5 m) does not 

directly excite the lowest modes. Instead they are excited by energy that couples 

from the higher order modes as the sound propagates downslope. Chapter 4 explores 
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Figure 2-4: ATOC environment: geodesic path between source at Pioneer Seamount 
(off California) and the receiving array near Hawaii. The left panel is the average 
sound speed profile over the path, computed using 235 sections (« 15 km apart). The 
right panel shows the differences between the mean profile and the Levitus (winter) 
profile for each of the sections. Depth of the ocean bottom, shown in black, is taken 
from bathymetric surveys of Pioneer Seamount [1] and the ETOPO-5 topography 
database [2]. 

the issue of bathymetric coupling and its implications for the mode arrivals measured 

in ATOC. 

As indicated in Chapter 1, internal waves are expected to be the primary source 

of mode coupling in long-range propagation experiments. In the deep ocean, in- 

ternal wave variability is typically modeled using the empirical Garrett-Munk spec- 

trum [11, 12]. Figure 2-5 shows one realization of sound speed perturbations due 

to internal wave fluctuations, computed using the method of Colosi and Brown [13]. 

The calculation assumes the internal waves are 1/2 Garrett-Munk strength. Note 

that the variability is greatest in upper part of water column. 

Before reviewing what is known about mode propagation through random internal 

wave fields, it is useful to consider two simulation examples. The first shows how 

broadband signals propagate through the slowly-range-varying Levitus environment. 

As a comparison, the second example illustrates the effects of internal waves by 

adding the sound speed perturbations of Fig. 2-5 to the background environment. 
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Figure 2-5: Sound speed perturbations due to internal waves at 1/2 Garrett-Munk 
strength 

For simplicity, both simulations use an axial (rather than bottom-mounted) source 

and ignore the seamount. 

To develop some general intuition about propagation in the unperturbed Levitus 

environment, consider the adiabatic group velocities. Figure Figure 2-6 shows the ve- 

locities for the first 40 modes, derived from the average wavenumbers for the 3515 km 

path. On the plot, the bottom line on the plot corresponds to mode 1 and the top 

line corresponds to mode 40. Group velocity decreases with frequency and increases 

as a function of mode number, as is typical in a deep water channel. Figure 2-7 shows 

the predicted spread of mode arrival times at 3515 km range, assuming a bandlimited 

source spectrum between 60 and 90 Hz and adiabatic propagation. As expected from 

the group velocity curves, the high modes arrive first and exhibit the most dispersion, 

while the low modes arrive last and are less spread. Mode 1 is undispersed since its 

group speed is approximately constant with respect to frequency. 

Figure 2-8 shows the results of a broadband parabolic equation (PE) simulation 

through the Levitus background environment. The top plot is the pressure time series 

at the Hawaii array location, calculated using the RAM PE code [14].3   Individual 

Simulations are explained in more detail in Chapter 4. 
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Figure 2-6:  Range-averaged group velocities for the first 40 modes of the CA-HI 
Levitus environment 
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Figure 2-7: Adiabatic predictions of mode time spread due to dispersion 
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Figure 2-8: PE simulation through Levitus environment. The top panel is the re- 
ceived pressure on a 40-element VLA; the bottom panel shows the corresponding 
arrival time series in the first 10 modes 
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Figure 2-9: PE simulation through Levitus environment plus internal waves 
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mode arrivals are evident in the pressure field, e.g., modes 5, 3, 1. Below the pressure 

plot is the modal time series obtained by projecting the PE field onto the functions at 

the receiver. The modes are obviously arriving in order from highest to lowest. The 

constructive interference of the higher modes result in the planewave (ray) arrivals 

in the early part of the reception.4 Each of the low modes appears to have a single 

dominant peak, which arrives at the predicted adiabatic arrival time. This implies 

that that the range variations in the sound speed do not result in mode coupling. 

Dispersion characteristics of the waveguide are evident. 

In contrast, Fig. 2-9 shows the analogous results of the PE simulation for the 

Levitus environment plus internal waves. The picture is quite different. Individual 

modes are no longer visible in the pressure time series. From the mode time series, it 

appears that instead of a single, dispersive arrival in each mode, there are multiple 

arrivals. This "modal multipath" creates the complicated interference patterns seen 

in the pressure waveforms. Comparing these two examples to the ATOC reception 

shown in Fig. 1-2 of Chapter 1 reveals that the experimental measurement more 

closely resembles the internal wave simulation. 

From a theoretical standpoint, the effects of internal waves on long-range sound 

propagation are not fully understood. Most previous work has focused on the ray 

arrivals because they are amenable to analysis via the geometric optics approxima- 

tion. The monograph by Flatte et al. summarizes the path integral theory that 

predicts the fluctuations and coherence of resolved rays [17]. No corresponding the- 

ory exists for predicting the behavior of the mode arrivals. The following discussion 

reviews important results regarding mode propagation through internal waves (but 

does not attempt a comprehensive overview of work in this area). 

In two seminal papers, Dozier and Tappert derive statistics for the modal in- 

tensities of narrowband signals propagating in a random ocean [18, 19]. Based on 

theoretical work and a set of numerical simulations, they conclude that scattering 

4 A number of references explore the ray-mode analogy in detail, e.g., [15, 16, 3]. 
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eventually results in an equipartition of energy among the modes. To make the 

problem tractable, the authors rely on a number of key assumptions, which may not 

be valid in real ocean environments. Notably they assume that the acoustic modes 

are mutually incoherent (phase-random) and that there is no loss of energy into the 

bottom. Regarding the first assumption, Nechaev has shown that partial coherence 

of the modes can prevent the equipartition of energy predicted by Dozier and Tap- 

pert [20, 21]. Nechaev's analytical results indicate that decorrelation of neighboring 

modes can occur more slowly than the randomization of the overall field and that 

scattered modal energy can form a stable interference structure. 

A series of papers in the Russian literature have investigated the degradation of 

mode coherence by internal waves and the resulting implications for various sig- 

nal processing methods, e.g., matched filtering [22], horizontal array beamform- 

ing [23, 24], and vertical array beamforming [25]. Recently, Sazontov has developed 

an approximate analytic method for computing the modal cross-coherences and using 

them to calculate the mutual coherence function for the total field [26]. Gorodet- 

skaya et al. provide an excellent introduction to this technique, applying it to a 

study of horizontal and vertical array gain limitations due to internal wave fluctu- 

ations [27]. At present, it is not known how well the approximate expressions for 

coherence agree with experimental data. 

Prior to ATOC, there have been very few opportunities to observe the axial 

arrivals at megameter ranges. Researchers have relied heavily on numerical simula- 

tions to test theories about the late-arriving mode energy. In one of the first looks at 

experimental data, Colosi et al. compare pressure measurements from the 1000 km 

SLICE89 experiment to broadband PE simulations [28]. Their results show that the 

broadening of the transmission finale in the data is attributable to internal waves. 

This smearing in depth of the final axial arrivals is due to an exchange of energy a- 

mong the modes. Colosi and Flatte explore the subject of mode coupling via internal 

waves using PE simulations designed to model certain aspects of the ATOC experi- 
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ment [29]. They show that mode propagation through these random fields is strongly 

non-adiabatic and quantify the travel-time bias/spread and intensity fluctuations for 

the modes. According to Colosi et a/.'s recent review article, internal-wave-induced 

mode coupling, while definitely an issue at 75 Hz, may be significantly reduced at 

lower frequencies, e.g., 28 Hz [30]. 

Internal waves can obviously limit the effectiveness of tomographic inversions or 

MFP applications since it hampers the ability to associate an arrival with a particular 

path through the ocean. As indicated by this overview, there is much left to learn 

about broadband mode propagation through internal wave fields. Characterizing 

the mode arrival structure is a prerequisite to using the modes in tomography or 

source localization. The ATOC experiment is the first to have mode-resolving arrays 

deployed to measure axial modes at megameter ranges over a period of months. The 

following section describes some specific questions that this thesis proposes to explore 

using the ATOC receptions. 

Questions About Long-Range Mode Propagation 

This thesis seeks to address the following questions concerning long-range mode 

propagation.   By answering these questions we hope to gain insight into how to 

identify appropriate observables for tomography and other applications. 

First, a general question about axial arrivals at megameter ranges: 

• How to characterize the mode arrival structure? 

- is each mode dominated by a single, dispersive arrival? 

- is there multipath? 

- are the dispersion characteristics of the channel evident? 

• How do the mode signals vary with time? 

The next question requires a different approach than previous researchers have 

taken, namely it requires short-time frequency decompositions. 
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• Can the characteristics of individual multipaths within a mode be measured? 

How do they compare with the ray arrivals? 

- temporal coherence? 

- frequency coherence? resolvable multipath? 

- fluctuation statistics 

• How does the downslope propagation/bottom interaction near the source affect 

the initial mode excitations. In turn, how does that affect the receptions at 

megameter ranges? 

For an experiment like ATOC where there are many questions about the forward 

propagation, it is crucial to design a mode estimator that doesn't assume any a 

priori knowledge of the arrival structure and to thoroughly analyze the estimator's 

behavior. The following section defines the broadband mode estimation problem and 

identifies the various factors that determine mode resolution. 

2.2    Broadband Mode Estimation Problem 

In general, the low order modes are not temporally resolvable [31], meaning that 

they are not directly observable in the time series from a single hydrophone. In- 

stead, vertical arrays can be used to separate the mode signals based on their spatial 

characteristics. This approach relies heavily on the orthogonality of the sampled 

modes. 

Using Eq. 2.3, the noisy pressure field at frequency SI, sampled by an TV-element 

vertical array, may be written: 

p{r,zuQ) 

p(r,zN,Q.) 

(ßi(r,zx,ü)    •••   <j>M{r,zuti) 

4>i(r,zN,Ü)   •••   <f>M(r,zN,ty 

ai(r,fi) 

aM(r,tt) 

+ 
n(zi,Q) 

n(zN,Q.) 

(2.10) 
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or in vector notation: 

p[r, fi] = *[r, fi]a[r, fi] + n[fi]. (2.11) 

<& is the matrix of sampled modeshapes, a is the vector of mode amplitudes, and n 

is the vector of observation noise. Eq. 2.10 assumes that the signal consists of M 

propagating modes. In the case of a broadband source, the array actually measures 

a vector time series, i.e., from Eq. 2.4, 

*(r, *) = / p[r, ü]ejmdü = I ($[r, fi]a[r, fi] + n[fi]) e>™da (2.12) 
•/St «/ii 

This thesis considers the problem of estimating the mode signals (i.e., a[fl]) from 

noisy measurements of the pressure field. A number of important signal processing is- 

sues arise in designing broadband mode estimators. The rest of this section discusses 

these issues in detail, using the ATOC experiment as the motivating example. 

Modal frequency dependence is the most important issue to consider in broadband 

mode estimation. As Fig. 2-3 demonstrates, modeshapes can vary significantly across 

a 30 Hz source band. Clearly, spatial processing must be done on a set of subbands 

to avoid mismatch problems. Since a combination of temporal and spatial filtering 

is required, there are time/frequency tradeoffs to make. Good time resolution is 

desirable for resolving the individual multipaths within a mode. The allowable widths 

of the subbands is determined by the environment, i.e., the modeshape variations. 

On a band-by-band basis, mode estimation reduces to a classic linear inverse 

problem, discussed in many areas of the literature, e.g., estimation theory [32], geo- 

physical inverse theory [33]. In the narrowband mode estimation problem, the key 

issue to consider is the degrees of freedom of the sampled modeshape matrix. This de- 

termines how well the processor can resolve a mode and reject noise. From the point 

of view of estimating one mode, there are two types of noise to consider. The first 

component consists of signals propagating in the other modes - this is structured in- 

terference and may be correlated with this signal. The second is measurement noise 
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that uncorrelated with the signal, e.g., shipping noise, sensor noise. Note that in 

terms of interference rejection, we assume that some time windowing can be done to 

limit the number of modes contained in the measurement, i.e., the ray arrivals (high 

order modes) can be ignored by time-gating. 

In addition to time/frequency tradeoffs and degrees of freedom concerns, two 

other issues arise in implementing mode estimators for realistic experiments. The 

first concerns arrays that are not perfectly vertical. This can be modeled by using 

a complex modeshape matrix - the phase terms represent the timing corrections 

required for each mode. In planewave beamforming, this is known as the array 

transit time problem. It is important to quantify the limitations it places on the 

processor for modes. Usually, reliable mooring motion estimates are available, so the 

problem is one of correcting for known delays. 

A second practical concern relates to the dependence of the mode on the local 

environment at the array. Mode environmental dependence is the key to using them 

in tomography or matched field processing, but can be a hindrance when the receiver 

environment is not exactly known. Uncertainty in our knowledge of *[ß] affects 

ability to resolve the mode signals accurately. Consider the measured and archival 

profiles shown in Fig. 2-2. In this case, the archival profile does not adequately 

represent the modes of the measured environment. In ATOC the problem is that 

we only have two measurements of the environment: one at deployment and one at 

recovery. The time lapse between those two is approximately 9 months. It is expected 

that mesoscale effects and seasonal changes affect the profile over the course of the 

experiment, so that there may be mismatch between the modes of the measured 

profile and the true profile. It is important to quantify the effects of mismatch on 

mode processing. 

In summary, there are a number of important design considerations in broadband 

mode estimation. The following section reviews relevant literature on mode filter- 

ing techniques and their application to tomography, focusing in particular on how 
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researchers have approached the design issues outlined above. 

2.3    Previous Work 

Most previous research has focused on experimental settings where a narrowband 

assumption is valid, meaning that either the source is continuous wave (CW) or 

the variations in the mode functions across the source band are negligible. In that 

context, Ferris and Ingenito describe the first use of vertical arrays for studying 

mode propagation in a real ocean environment [34, 35]. Their experiment consists 

of transmitting gated sinusoidal pulses in a shallow water channel to receivers at 

ranges on the order of 10 km from the source. They examine the mode structure of 

the arriving signals using both a temporal filtering method, which takes advantage of 

the differences in modal group velocities, and a spatial filtering method, which relies 

on the the orthogonality of the sampled modeshapes. For the latter, the authors use 

a filter matched to the modeshapes at the center frequency of the transmitted pulse. 

It is easy to show that the matched filter (sometimes called the sampled modeshapes 

filter) is the optimal linear mode filter for detecting/estimating any single mode 

in a background of spatially white noise [32]. The main problem with this filter 

is that it typically has poor interference rejection capabilities because it requires 

the orthogonality of the modes to separate them. While the modes are orthogonal 

functions over the continuous aperture, the modeshapes, as sampled by the array, 

may not be. 

A solution to the problem of modal crosstalk is to use a least squares approach 

to solve the mode estimation problem. Tindle et al. are the first to introduce this 

method in the context of the underwater acoustics [36]. In this case, the mode filter 

is the pseudo-inverse of the sampled modeshape matrix. The primary advantage of 

this filter is that the weight vector for a particular mode has nulls in the directions 

of the other modes included in the estimate. Tindle et al.  do note the connection 
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of least squares mode estimation and beamforming, but do not explore this idea in 

detail. 

Polcari explores some of the tradeoffs of single beam vs. multiple beam mode 

filters in his study of mode coherence in the Arctic Ocean [37]. In addition to 

the least squares formulation, he considers a maximum likelihood method that uses 

estimates of the spatial covariance matrix (requiring that the signal be stationary 

over sufficiently long intervals). Polcari also discusses how to choose the number of 

modes to include in multiple mode estimators. 

The pseudo-inverse filter is now a standard in the acoustic community, as indi- 

cated by its use in a number of matched mode processing applications [38, 39, 40]. 

The difficulty with this LS approach is that the pseudo-inverse may be poorly- 

conditioned. This is a common problem in inverse theory [33]. A number of authors 

have considered it specifically in the context of mode processing. Yang suggests using 

rank-reduced singular value decompositions to solve for the mode amplitudes [41]. 

Voronovich et al. review a number of standard approaches to solving this prob- 

lem, but do not offer specific recommendations about which to use [42]. Buck et 

al. present a unified framework for the narrowband mode estimation problem [43] 

and use it to analyze the performance of several common mode filters. In particular, 

they discuss the sampled modeshapes filter and the pseudo-inverse filter in terms of 

tradeoffs in interference rejection and noise rejection. They develop a maximum a 

posteriori mode filter which gracefully transitions between these two extremes. Note 

that the MAP approach uses knowledge of the signal and noise covariance matri- 

ces; estimating these quantities typically requires some assumptions about signal 

stationarity. 

There are numerous examples of narrowband mode processing being applied to 

experimental data. In the context of long-range propagation, there are two ex- 

periments of note: the Heard Island Feasibility Test (HIFT) and the Trans-Arctic 

Propagation (TAP) experiment.  Baggeroer et al.  discuss the use of least squares 
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modal filtering in the context of HIFT, which used a narrowband source operating 

at 57 Hz and transmitted across a 17,000 km path to a vertical array[44]. The failure 

of a large number of hydrophones made the modal estimation for HIFT significantly 

more difficult. Sperry considers this problem in detail and implements a damped 

least squares filter in order to perform the inversion [45]. He discusses in some detail 

how to choose the number of modes to include in the estimate based on how well 

the array samples the water column. The recent TAP experiment examined mode 

arrivals at megameter ranges in the Arctic [46]. Both CW and maximal-length se- 

quences were used. Narrowband processing could be used for the latter because the 

modes did not vary significantly across the frequency band of the source (centered 

at 19.6 Hz). 

In cases where modal frequency variations are non-negligible, researchers have 

generally approached the problem by using an FFT to separate the signal into fre- 

quency bins, doing mode processing for each bin, and obtaining a time series via 

inverse FFT. In one shallow water experiment, Chen and Lu use bandpass filters 

to facilitate mode processing for an explosive source [47]. They process the data in 

bands where the modeshapes may be assumed constant, but do not offer criteria for 

choosing the width or center frequencies of these bands. Numerous authors, including 

Romm [48], Yang [49], Casey [50] and Chiu et al. [51], have implemented broadband 

mode estimators using FFT's. Since they compute a single transform for each receiv- 

er's time series, their method does not provide a frequency vs. time decomposition 

of the modal structure. None of these researchers have discussed how the frequency 

resolution imposed by the length of the FFT affects the estimates. Sutton et al. have 

suggested using a combination of time-windowing and Fourier transform-based mode 

filtering to resolve modes using a sparse array [52]. Their article does not present the 

details of time windowing or explore the implications of window length on estimator 

resolution. Heaney has used a time-windowing approach as well for an analysis of 

the ATOC Engineering test data [53, 54]. His windows for the FFT are on the order 
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of 3-4 seconds long, meaning that he is not able to look at the behavior of individual 

multipaths in the Fourier decomposition. Heaney uses mode filtering as a part of 

matched field inversions for source location and internal wave strength. He does not 

study the mode arrival structure in great detail. 

Another issue that needs to be considered in broadband mode estimation is en- 

vironmental mismatch. While mismatch problems in general have been thoroughly 

investigated in the context of matched field processing applications (see [55] for an 

overview), there has been little attention focused on modal mismatch due to changes 

in the sound speed profile. Tolstoy considers the effects of sound speed mismatch 

on matched field localization using a normal mode model, but does not discuss the 

effects on the individual mode coefficients [56]. 

Although Munk and Wunsch first suggested using modes for tomography in 

1979 [57] and expanded upon the theory in 1983 [16], most experimental applica- 

tions of tomography have been based on ray theory. A ray is the result of the 

coherent interference of a set of higher order modes. The rays form a stable arrival 

structure that is well-suited to analysis via planewave beamforming techniques. See 

the recent book by Munk et al. for more information [15]. By comparison the mode 

tomography literature is somewhat limited. The following paragraphs summarize 

the relevant publications. 

Romm's Ph.D. thesis investigates using modal group velocity perturbations in to- 

mographic inversions for sound speed profile [48]. He uses basic linear inverse theory 

to derive the relationship between mode group speeds and sound speed. Simulations 

for a Greenland Sea environment are used to illustrate the usefulness of mode to- 

mography. Romm briefly discusses the required acoustic signal processing, but his 

mode filtering techniques are quite limited and poorly explained. 

Shang has developed a full-wave method for ocean acoustic tomography using 

adiabatic normal mode theory and low frequency sources [58]. He describes how 

to invert for the sound speed profile by using modal phase difference perturbations 
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for CW sources and modal travel time perturbations for broadband sources. Shang 

assumes that these perturbations can be measured using array processing algorithms 

or by using temporal separation to localize the pulse arrivals based on the time series 

from a single hydrophone. He does not comment on how well the modes must be 

resolved in order for the tomographic inversion to be successful. The paper includes 

a simulation which demonstrates the feasibility of the inversion but does not involve 

any acoustic array processing. 

In a recent set of papers, Shang and Wang have applied matched mode processing 

techniques to the tomographic inversion of an El Nino profile [59, 60]. They base 

their simulation on measured sound speed profiles from an actual El Niiio event, 

but the travel time perturbations used in the example are theoretical values. This 

research largely ignores the practical issues involved in estimating the mode arrival 

times. The authors do indicate a way to compute the resolution of the time delay 

estimate. Their measure of resolution comes from computing the Cramer-Rao bound 

for the problem. It is unclear whether this bound can be achieved, with a practical 

system operating in a range-dependent ocean environment. 

The paper by Sutton et al. is the only experiment to date where mode time delays 

have been incorporated into a tomographic inverse [52]. They used a broadband 

source with center frequency of 250 Hz and transmitted across a 106 km path in 

the Greenland Sea. The vertical receiving array was sparse, consisting of only 6 

elements. The authors use a least squares method along with some time-windowing 

to determine the mode waveforms. 

Based on this review, there is much to be done yet on broadband mode estimation. 

Specifically, none of the broadband mode processing schemes proposed thus far have 

addressed the fundamental question of what frequency resolution is required for 

accurate mode estimation. One purpose of this thesis is to develop and analyze a 

general framework for broadband mode processing. 
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Figure 2-10: Proposed short-time Fourier mode processing framework 

2.4    Approach 

From the overview of previous work, it is clear that no one has quantified the 

time/frequency resolution attainable in mode estimation. To address these issues, 

this thesis proposes to develop the short-time Fourier mode processing framework 

shown in Fig. 2-10. The basic idea is to separate the pressure signals into a set of 

subbands using a filterbank and then do mode processing in each subband. The out- 

put is a time series of mode amplitudes (time-varying spectra) that can be used to 

examine the frequency-dependent structure in the signals, e.g., to quantify dispersion 

or look for frequency-selective fading. 

This method has several advantages. First, it allows us to examine the multi- 

ple arrivals within a single mode individually, rather than combining them by using 

a large FFT for the required frequency decomposition. This permits looking for 

frequency-coherent arrivals within the multipath arrival pattern and studying the 

fluctuation characteristics of a single arrival within in a mode rather than just s- 

tudying the fluctuations of the entire mode signal. Note that the bandpass filtering 

effectively limits the number of modes that are present at each time step; this is a 
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generalization of the time-windowing approach proposed by others. Finally, it is im- 

portant to note that all the previously-described methods fit within this framework. 

The following chapter develops the short-time Fourier mode processing framework 

and explores the temporal and spatial resolution tradeoffs. It also discusses some 

implementation issues related to non-vertical arrays and environmental uncertainty. 

Chapter 4 applies the short-time Fourier techniques to the ATOC data set. 
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Chapter 3 

Short-time Fourier Mode 

Processing 

As Chapter 2 demonstrates, modal variations across frequency often require that 

spatial processing be done on a set of sub-bands to avoid modeshape mismatch 

problems. The purpose of this chapter is to present a framework for broadband 

mode estimation and to explore the time/frequency resolution tradeoffs inherent in 

the processing of transient mode signals. From a signal processing perspective, the 

short-time Fourier transform (STFT) is a natural way to approach the frequency de- 

composition required in mode estimation. The STFT provides a general framework 

for analyzing the time- and frequency-domain properties of modal beamforming al- 

gorithms. A significant advantage to this approach is that all the broadband mode 

processing methods described in the previous chapter (Section 2.3) fit conveniently 

within the basic STFT structure. 

The discussion of short-time Fourier mode processing is organized as follows. 

Section 3.1 gives an overview of short-time Fourier mode processing and indicates 

some of the important design tradeoffs. Following that, Section 3.2 derives equa- 

tions for the processor and analyzes performance using the ATOC experiment as a 

design example. Section 3.3 demonstrates STFT-based mode processing for a simple 
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adiabatic propagation environment. Analysis of the adiabatic case provides useful 

insights about the short-time estimates. Building on that example, Section 3.4 de- 

rives the mooring corrections required for tilted arrays. Section 3.5 briefly discusses 

the impact of environmental uncertainty on the STFT mode processor. Finally, 

Section 3.6 summarizes the key results of this chapter. 

3.1    Overview of the STFT Framework 

The STFT is a standard signal processing technique for examining the characteristics 

of transient or time-varying signals. Short-time Fourier analysis consists of comput- 

ing discrete Fourier transforms for a sequence of finite-length data segments. There 

are two equally-valid interpretations of the resulting time-dependent spectrum: 1) 

as the output of a filterbank, or 2) as the output of a windowed FFT operation. 

Short-time Fourier synthesis is the process of reconstructing a signal from its time- 

varying spectral components. Allen and Rabiner [61] and Nawab and Quatieri [62] 

provide an excellent general introduction to the STFT; other authors concentrate on 

specific applications. For example, Rabiner and Schäfer [63] discuss the short-time 

Fourier method in the context of speech processing, and Johnson and Dudgeon [64] 

describe how it applies to planewave beamforming. In the latter case, the STFT 

provides a convenient framework for separating a multichannel signal into subbands 

prior to spatial filtering. Similarly, the short-time Fourier transform is a useful way 

to formulate the frequency decomposition required in broadband mode estimation. 

In STFT-based mode analysis, the processor separates the received pressure into 

a set of subbands and computes mode estimates for each subband. Figure 3-1 illus- 

trates these steps and introduces some notation. The input to the filterbank is \l>[/], 

a sampled vector time series from an N-element receiving array. As shown, the filter- 

ing operation consists of complex demodulation followed by lowpass filtering; this is 

equivalent to bandpass filtering followed by demodulation. The result of the STFT 
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'        ' p(1)m 

Figure 3-1: Block diagram of STFT-based mode processor 

analysis step is an TV-point complex vector time series of pressures for each band: 

p{k)[l], where k denotes the band (bin) number and I is the time index. Using a set 

of narrowband modal beamformers, the processor computes the time-varying mode 

coefficients from the filtered pressures in each band. The M-point vector §Sk)[l] is 

the estimated short-time Fourier transform of the first M modes in the bin centered 

around ojk. 

Within the STFT framework, the length of the lowpass filter, HLP[u], determines 

the time and frequency resolution of the estimates. In the context of mode process- 

ing, there are important filter length tradeoffs to consider. Long filters (equivalent 

to taking large FFT's) have good frequency resolution, implying small operating 

bandwidths for the spatial filter W[wfc]. The disadvantage of long filters is that they 

smear the arrivals in time. Short filters provide much better temporal resolution, 

but they have wider passbands, meaning that the processor may be more sensitive 

to the frequency-dependent variations of the modeshapes. 
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3.2    Mode Processing With Vertical Arrays 

As outlined above, the short-time Fourier approach to mode processing is conceptu- 

ally simple: separate the signal into subbands and estimate the mode signals in each 

subband using a narrowband spatial filter. This section describes the implementa- 

tion of the STFT framework for a perfectly vertical array (i.e., no tilt) in a known 

environment. A subsequent section discusses the corrections that are necessary for 

tilted arrays (3.4). 

3.2.1    Broadband Processor Derivation 

The purpose of deriving equations for the STFT processor is to facilitate a broadband 

performance analysis in terms of the time/frequency tradeoffs and other criteria 

established in Section 2.2. This derivation uses discrete-time (DT) representations, 

where I is the time index and ui is the DT frequency variable. To simplify notation, 

the mode parameters (shapes and wavenumbers) are written as functions of u; more 

precisely, they are functions of the corresponding analog frequency fl = u ■ fs, where 

fs is the sample frequency. 

Analogous to Eq. 2.12, the sampled time series of received pressures at a vertical 

array can be written using a discrete Fourier transform (DFT) representation, i.e., 

the /-point DFT: 

1 9-7T7 

*M = J£P[^
W "i = ^      i = 0,..., 7-1. (3.1) 

i 

To avoid complications, I must be large enough to represent the entire reception 

(including high order mode arrivals) and the subsequent filtering operations without 

time aliasing. For convenience, the following derivation assumes that the DFT length 

corresponds to the number of time samples recorded for each reception. 

The first step in processing is complex demodulation, shown in Fig. 3-1 as mul- 

tiplication by e~^kl.   After an appropriate change of variables, the demodulated 
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pressure in the kth bin can be written 

*demod[J] = j £ PN + Wi]^'. (3.2) 
i 

Note that Equation 3.2 assumes that the demodulation time reference is the first 

sample of the reception {1 = 0). Choosing a different reference point simply in- 

troduces an additional complex exponential term. The demodulation reference is 

important because the phase of the short-time Fourier mode estimates depends on 

it. 

Following demodulation the processor lowpass-filters each bin, resulting in 

p(fc)[/] = jE#LPMPhfc +Wi]e*"'. (3.3) 
i 

Based on the development in Chapter 2, the received pressure at a particular fre- 

quency consists of a finite sum of modes plus noise, i.e., 

p[w] = *[w]a[w] + n[w]. (3.4) 

* represents the matrix of sampled modeshapes at the receiver, a is the vector of 

frequency-dependent mode amplitudes, and n is the noise vector. 

Substituting this representation for the received pressure into Eq. 3.3 yields 

P(fc)M = jEffLpN*k + Wi]a[wt +0;^' + y£^Lp[wi]n[wt +ui]e''Ui'.  (3.5) 

In the above equation, the first summation is the filtered signal component of the 

pressure field; the second summation is the filtered noise component. Assuming that 

the modeshapes are approximately constant over the bandwidth of the lowpass filter: 

#[wfc+Wi]«*[a;fc], (3.6) 
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then the measured pressure in the kih band becomes 

pW[i] = $HaW[i] + nW[l] (3.7) 

where 

a«m - 1 
M = J £ ^Lp[wi]a[o;fc + c^e**', (3.8) 

1 
n(fc) W = j E ^LphJnK + Wi]e**' (3.9) 

i 

are the bandpass-filtered (and demodulated) modal signal and noise components, 

respectively. In this type of mode filtering, the goal is to estimate the time-varying 

mode coefficients aSk^[l] from the noisy pressure measurements p^[l] for each bin. 

3.2.2    Narrowband Mode Filters 

Essentially, the STFT approach reduces the broadband mode estimation problem 

to a set of narrowband problems where the measurement takes the form of Eq. 3.7. 

Based on that equation, narrowband mode filtering is equivalent to determining the 

parameters of a linear model. This type of estimation problem is quite common, and 

there are a number of available techniques for solving it, e.g., least squares methods 

or Wiener filtering. Selection of a particular approach strongly depends on what is 

known or can be reasonably assumed about the signal and noise characteristics. The 

following paragraph states the assumptions this thesis makes in designing a bank of 

narrowband mode processors for the ATOC data. 

The filtered pressures are complex envelopes, resulting from the demodulation 

of real bandpass signals. Both the mode signals, a^[/], and the noise, n(fe)[/], are 

complex time series. This thesis assumes that the noise is a zero-mean vector random 

process, independent of the mode signals. Unlike the noise, very little is assumed 

about the modal time series. Since the purpose of this research is to study the low 
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mode arrivals at megameter ranges, it is important to avoid biasing those results by 

assuming a particular temporal or spatial structure for these signals. Specifically, 

this means that the processor developed below does not rely on adiabatic predictions 

of travel time or dispersion characteristics to estimate the modes. Furthermore, 

this thesis does not consider time- or data-adaptive processing methods that require 

temporal and/or spatial statistics. Such statistics are not available a priori and 

cannot be reliably estimated from the data until more is known about the underlying 

signals, e.g., their stationarity, etc.. Although adaptive algorithms are beyond the 

scope of this work, they are reasonable extensions to explore once more is known 

about long-range mode propagation. 

Since time-adaption is not an option for the ATOC data, it makes sense to esti- 

mate the modes independently at each time step and to use the same mode filter for 

all time steps. This thesis focuses on estimates of the form 

ä(fc)[/] = W,V*)[/] (3.10) 

where Wf is an M x N matrix containing the time-invariant mode filter for the 

kth band. Equation 3.10 assumes that the estimated mode coefficients are linear 

combinations of the received pressures. This assumption is not very restrictive since 

linear filters represent a large subclass of solutions. Most narrowband acoustic mode 

filtering algorithms described in the literature (see Section 2.3) can be written in 

this form. For the purpose of designing the spatial filter, Wk, this thesis assumes 

that the matrix of sampled modeshapes at the receiver (3>) is known exactly. This is 

equivalent to assuming that accurate measurements of the sound speed profile at the 

receiver are available. Section 3.5 examines the impact of violating this assumption. 

In designing the spatial processing for the low-modes, this thesis considers two 

standard narrowband mode filters: the matched (sampled modeshapes) filter and 

the pseudo-inverse (least squares) filter. There are a number of ways to derive these 

filters. This chapter approaches the problem from an array processing standpoint, 
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which emphasizes some of the implicit assumptions being made about the underlying 

spatial structure. The derivations below provide a complimentary perspective to the 

estimation theory approach to mode filtering that is commonly used in the literature 

(see [43] for a summary). 

An important concept in these derivations is the array gain, which represents 

the improvement in the signal-to-noise ratio (SNR) due to processing. It is typically 

defined as the ratio of the SNR at the output of a beamformer to the SNR at a 

single sensor. Since the signal and noise characteristics often vary across an array, 

the input SNR is taken to be the arithmetic average of the single-phone SNR's:1 

SNRin = I £ (■fPO-O., (3.n) 
rJ £ri (noise power) n ' 

Note that in the case of modal beamforming, the signal levels vary from one sensor 

to another because the modeshapes are functions of depth. 

White noise gain represents the gain of the processor when the noise is spatially 

white. For the mode processing problem, the white noise gain in mode m is defined 

as 
|wH<f>   I2 G-=NJ;X ■ <3'i2> 

where wm is the weight vector (filter) for the mth mode. Application of the Schwartz 

inequality shows that the maximum value of the white noise gain is N, the number 

of sensors in the array. Even if the noise isn't spatially white, the white noise gain 

provides a useful measure of the sensitivity of the processor, as discussed by Cox et 

al [65]. 

Matched (Sampled Modeshapes) Filter 

The matched filter (MF) results from choosing the weight vector for mode m which 

maximizes white noise gain while maintaining a unit gain in the desired mode. Max- 

lrThe geometric average is used in some applications. 
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imizing white noise gain subject to a unity gain constraint is mathematically equiv- 

alent to minimizing the squared length of the weight vector subject to the same gain 

constraint, thus the optimization problem becomes 

minw£wm    subject to    w^0m = 1. 

Standard optimization techniques yield the following solution: 

WH _      1      ,H 

or in terms of the weight matrix for M modes 

(3.13) 

(3.14) 

WH 
0f0! 

0M0M 

EH (3.15) 

where E is the sampled modeshape matrix containing the first M modes, i.e., the 

first M columns of <f>. Matched filters are commonly used in detection/estimation 

problems and their behavior is well-understood. It is clear from equations 3.12 and 

3.14 that the matched filter achieves the maximum possible white noise gain for 

an array of a given length N. Although this filter is optimal in the sense that it 

maximizes Gw, it does not explicitly prevent the signal in one mode from leaking 

into another. Instead, it must rely on the orthogonality of the modes to separate 

them. It is important to note that while the modeshapes are orthogonal functions of 

the continuous variable z, the sampled modeshape vectors are not guaranteed to have 

this property. The degree of orthogonality of the sampled modeshapes determines 

the crosstalk rejection capabilities of the matched filter. 
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Pseudo-inverse (Least Squares) Filter 

The pseudo-inverse (PI) filter results from trying to constrain mode leakage by plac- 

ing nulls in the modal beampattern at the locations of a set of interfering modes. 

In this case, the optimization problem consists of maximizing the white noise gain 

(minimizing the weight vector length) subject to multiple constraints, i.e., 

minw^wm     subject to (3.16) 
w*0B#m = O   \<n<M. 

It is useful to rewrite the problem 

min w^wm subject to    w^E = c£=   [0   • • •   0       ^       0   • • •   0]    (3 17) 
mth position 

where E contains the first M columns of the sampled modeshape matrix and c is 

an M-point column vector with a one in the mth position and zeros everywhere 

else. Equation 3.17 can be solved using standard optimization methods involving 

LaGrange multipliers. Assuming that the matrix E has rank M, the weight vector 

for the mth mode is 

w£ = c£(EHE)-1EH. (3.18) 

Equation 3.18 corresponds to one row of the pseudo-inverse of the the sampled mode- 

shapes matrix containing the first M modes, thus WH is simply 

WH = (E
H
E)    E

H
. (3.19) 

Provided that the matrix E, which contains a subset of the sampled modeshapes, 

has rank M, the M — 1 null constraints are met exactly. If E has rank less than 

M, a minimum norm solution of the constraint equation is required. The minimum 

norm solution involves the generalized inverse of E (typically written in terms of the 

singular value decomposition). 
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Another way to derive the pseudo-inverse mode filter is to solve a least squares 

problem, i. e., to estimate for a by minimizing the quantity |p-Ea|2. This approach is 

the most common in the underwater acoustics literature. The advantage to viewing 

mode filtering as a constrained beamforming problem is that the desired spatial 

characteristics must be explicitly stated and that white noise gain provides a useful 

measure of the price paid for nulls in the spatial response. White noise gain of the 

PI filter for the rath mode is 

From this expression, it is clear that the white noise gain of the PI filter is intimately 

connected with the conditioning of the pseudo-inverse. The term second term is 

bounded by the squared singular values of the E matrix: 

2       s- 2 

°min ~ c^XEHE)-^ - <7max (3'21) 

where amin and amax are the minimum and maximum singular values of E, respec- 

tively. The white noise gain of the PI filter less than or equal to that of the matched 

filter (which achieves the maximum possible Gw). 

Conditioning problems are well known in both least squares problems and in adap- 

tive filtering. Menke discusses methods of dealing with poorly-conditioned pseudo- 

inverses in the context of inverse theory [33]. Cox provides a nice discussion of 

robustness issues in the context of adaptive beamforming [65]. There are many ways 

of dealing with this problem. Cox provides some time-adaptive approaches (which 

are not appropriate for the ATOC data due to the transient nature of the signals). 

Non-adaptive solutions to conditioning problems typically involving deleting small 

singular values from the inverse, or added a small weight to the diagonal terms of EHE 

before inverting it in order to stabilize the inversion. Both these methods bias the 

results and should be used with care (especially when not much is known/understood 
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about the arrival structure). 

Thus far, this section has derived equations for the STFT processor, showing how 

it reduces the broadband mode estimation problem to a set of narrowband problems. 

Two approaches to narrowband filtering have been discussed. The following subsec- 

tions explore narrowband and broadband performance issues, using a design example 

based on the ATOC experiment. 

ATOC Design Example 

Numerical results presented below use the Levitus environment for the California- 

Hawaii path, described in Chapter 2. Note that although the archival sound speed 

differs from the measured profile at the array (see Fig. 2-1), these differences do 

not affect the basic conclusions regarding the number of modes that can be reliably 

estimated, the allowable bandwidth, etc. The array in the example corresponds to the 

ATOC VLA configuration: 40 elements, with a spacing of 35 m, spanning the water 

column between 330 m and 1695 m. For reference, Fig. 3-2 shows the hydrophone 

locations relative to the first 20 modes at 75 Hz for the Hawaii-Levitus environment. 

75 Hz is the center frequency for the ATOC source, which has approximately a 30 Hz 

bandwidth (from 60-90 Hz). The sample rate for the experiment is 300 Hz. 

3.2.3    Narrowband Performance Analysis 

The main purpose of this section is to compare the matched filter and the pseudo- 

inverse narrowband beamformers, focusing primarily on the tradeoffs in noise and 

interference rejection. Beampatterns provide a useful measure of the crosstalk rejec- 

tion capabilities of a spatial processor. In the context of modal beamforming, the 

beampattern is defined as 201og10(W
H$), where W is the multidimensional mode 

filter and $ is the matrix of sampled modeshapes. The mth row of the beampattern 

matrix corresponds to the projection of the modes into the estimate for mode m. 

For the matched filter, the beampattern corresponds to a normalized version of 
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Figure 3-2: Modeshapes (75 Hz) and receiver locations (+'s) for the design example 

the sampled modeshape correlation matrix, <&H<I>. Figure 3-3 shows MF beampattern 

for the first 40 modes, using the ATOC array at Hawaii. This beamformer has 

excellent crosstalk rejection for the lowest modes, up until approximately mode 8. 

Above that, the modeshapes sampled by the array are obviously correlated. As 

a result, energy from one mode will leak into its neighbors. Performance of this 

beamformer degrades significantly for modes above 10; this is not surprising since 

the array is designed to sample the first 10 modes. 

Figure 3-4 shows the beampatterns for three different pseudo-inverse filters, de- 

signed for 10 modes, 15 modes, and 20 modes, respectively. Note that the Fig. 3-4(c) 

has a different dB scale than figures 3-4(a) and 3-4(b). By design, the PI filter 

guarantees nulls for a specified set of modes, thus the beampatterns have a diagonal 

structure. It is important to remember that while the PI filter guarantees a fixed set 

of nulls, it does nothing to prevent higher order modes not included in the pseudo- 

inverse from leaking into the lower order modes. The beampatterns show how the 

higher order modes (up to 40) not included in the pseudo-inverse alias into the lower 
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win-rcvr-prof Matched Filter Beampattern 75.00 Hz 

Figure 3-3: MF Beampattern (75 Hz) for the 40-element ATOC VLA in the Hawaii- 
Levitus environment 

modes. 

The price paid for the nulls in the PI beampattern is a loss in white noise gain. 

Figure 3-5 shows the white noise gain as a function of mode number for the 10-, 

15-, and 20-mode filters. The dotted line shows the maximum white noise gain, 

101og10(iV), which is achieved by the matched filter. For the 10-mode PI filter, the 

white noise gain is equivalent to the matched filter results. The 15- and 20-mode 

PI filters show the loss in white noise gain associated with poor conditioning of the 

pseudo-inverse. For the 20-mode filter, the white noise gain is negative for some 

modes meaning that the noise will be significantly amplified compared to the signal. 

The amount of crosstalk is also governed by the conditioning of the pseudoinverse, 

i.e., crosstalk increases as the conditioning degrades. This is important because, 

while it may be possible to assume that the time-windowing imposed by the lowpass 

filter operation in the STFT processor eliminates the highest modes (earliest ray 

arrivals), the potential for internal-wave-induced mode scattering means that there 
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Figure 3-4: Comparison of pseudo-inverse filter beampatterns (75 Hz) for the ATOC 
array in the Hawaii-Levitus environment 

61 



20 
75 Hz 

()' ■ ■ 'ID ■ ■ '(D ■■ ■ ta — ~9\- "& ■■■CM'^g'' ■ O' " Q  

10 

r-10 

O-20 

-30 

-40 

-50 

win-rcvr-prof 

"* 

~a—□- 

+ 

.... MF 
-e- Pl- 10 modes 
-D- Pl- 15 modes 
■+■ Pl- 20 modes 

•-K. 
--t-.-H.--K 

10 12 
Mode number 

14 16 18 20 

Figure 3-5: White noise gain at 75 Hz for the ATOC array in the Hawaii-Levitus 
environment 

may be a large number of modes within the time window spanned by the temporal 

filter. As Fig 3-4(c) shows, the crosstalk from higher order modes dominates the 

estimate for the 20-mode filter, as a result of poor matrix conditioning. Figure 3-6 

is a plot of the maximum crosstalk as a function of the number of modes considered. 

The x-value represents the highest mode considered and the y-value represents the 

peak crosstalk into that set of modes. For example, the leftmost point on the plot 

represents how much crosstalk there is into mode 1 from all the other modes up 

to mode 40. This plot illustrates how using the PI strategy of placing nulls at 

neighboring modes in order to eliminate crosstalk is a losing game when there are a 

large number of modes propagating in the waveguide. As the number of constraints 

increases, so does the length of the weight vector, meaning that modes still not 

included in the estimate are amplified even more. 

It is interesting to note that the degradation in conditioning of the pseudo-inverse 

exhibited in the 20-mode filter is not significant enough for a matrix inversion pro- 

gram (such as the one used by Matlab) to give a warning about conditioning. From 
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a numerical perspective, the inverse can still be computed without errors, but from 

an array processing perspective, performance is significantly degraded. If there were 

no noise in the reception, then the mode estimates could be computed effectively, 

even with this type of poorly conditioned pseudo-inverse. Obviously, assuming the 

absence of noise is unrealistic for any experiment. There are ways of mitigating 

conditioning problems, but only at the expense of biasing the estimates. 

This section has shown how modeshape orthogonality affects the matched filter 

results, how the PI filter null placement strategy can eliminate some of the crosstalk 

problems but at the expense of robustness. It has been shown that noise and crosstalk 

from higher order modes both increase as the pseudo-inverse becomes ill-conditioned. 

Based on the numerical examples, it is clear that the PI filter for 10 modes gives noise 

gain results equal to that of the matched filter while providing the added benefit of 

eliminating the crosstalk among modes 8 through 10 which is present in the matched 

filter. In terms of the ATOC experiment, the PI-10 filter is a reasonable choice 

for the best narrowband performance. The following section explores broadband 

performance issues. 
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3.2.4    Broadband Performance Analysis 

In designing a short-time Fourier mode processor, it is crucial to have a measure 

of how well a narrowband mode filter designed for frequency u performs on the 

modes at a neighboring frequency, u ± ACJ. Essentially, the operating bandwidth 

determines the required frequency resolution of the lowpass filter, which in turn 

defines the temporal resolution of the STFT processor. This section explores these 

broadband performance issues. First, it examines the frequency response of both the 

MF and PI mode filters, using the ATOC design example. Based on these results, it 

is possible to select an appropriate lowpass filter/data window for the STFT. Using 

that selection, we discuss the time resolution of the STFT processor for the ATOC 

example. Finally, this section considers the noise response as a function of frequency. 

This is important because it gives a measure of the conditioning of the mode filter 

across the source band (allows us to explore how the conditioning of the mode filter 

is affected by the changes in the modeshapes across frequency). 

Frequency Resolution 

Consider the signal component of the mode estimate (combining equations 3.10 

and 3.5): 

*(fc)[l] = W? (j £ Hu>[u>i]*[u>k + wi]a[wfc + u^1) (3.22) 

Based on this equation, the frequency response of the STFT processor is primarily 

governed by the matrix W^$[uk + uii], which represents the frequency-dependent 

beampattern of the mode filter Wk. Figures 3-7 and 3-8 show plots of these beam- 

patterns for the matched filter and the pseudo-inverse filter. Both filters are designed 

using the Hawaii-Levitus environment modeshapes at 75 Hz; the PI.filter is designed 

for 10 modes. Results are shown for the 30 Hz (±15 Hz) band around the center 

frequency. In these figures, each subplot corresponds to the beampattern for a single 

mode.  The solid line represents the response in the desired mode and the dashed 
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Figure 3-7: Frequency response of the matched filter. Solid lines indicate the response 
in the desired mode; dashed lines indicate crosstalk from neighboring modes (up to 
10). 
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Figure 3-8: Frequency response of the PI filter designed for 10 modes. Solid lines 
indicate the response in the desired mode; dashed lines indicate crosstalk from neigh- 
boring modes (up to 10). 
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lines represent the crosstalk from neighboring modes (from 1 to 10) into the desired 

mode. 

First consider the matched filter results for mode 1. The beamformer has a flat 

response for this mode across the 30 Hz band. There are nulls in the direction of the 

other modes at the center frequency, but crosstalk increases sharply as u deviates 

from the design frequency (75 Hz in this case). Plots for the higher modes indicate 

that frequency mismatch can significantly affect the gain in the desired mode as 

well as the crosstalk rejection, e.g., the gain in mode 10 is down by 10 dB at 60 

Hz. As expected from the narrowband analysis, Fig. 3-7 also shows that the MF 

beamformer does not prevent crosstalk at the center frequency in modes 8 through 

10. The beampatterns for the PI mode filter in Fig. 3-8 show similar behavior. Each 

filter is constrained at 75 Hz to have unity gain in the desired mode and nulls at the 

other modes, but these constraints are not guaranteed to be maintained for other 

frequencies. 

Both the MF and PI beampatterns indicate that crosstalk rejection is more signif- 

icantly affected by frequency mismatch than is the gain in the desired mode. Further 

insight into this observation is obtained by considering a perturbation theory analysis 

of the modeshapes as a function of frequency. Appendix A discusses the application 

of perturbation theory to the mode eigenvalue problem in general and presents the 

frequency perturbation analysis upon which the results below depend. The basic 

idea is that the modeshape at frequency u + Au can be represented as the sum of 

the modeshape at frequency u plus first- and second-order correction terms: 

tf> + Ao;] « 0>] + (^) *gg) + (^)2 *gg) (3.23) 

where # is the matrix of sampled modeshapes at frequency u and g£> and gj£) are 

column vectors containing the first- and second-order perturbation coefficients. As 

Eq. 3.23 indicates, the correction terms are written in terms of the modes themselves, 

since they form a complete orthonormal basis. In general, the perturbation of mode 
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m due to a change in frequency is well-represented by a small set of mode ra's nearest 

neighbors, thus only a few coefficients in the g vectors are important. 

Using the perturbation expansion, first consider the response in the desired mode 

i.e., 

*£*> + Au] * w£0>] + (^) w«$gW + (^)2 w5*gg> (3.24) 

where the dependence of the weight vector on u has been suppressed. Assuming that 

the weight vector effectively passes only the desired mode at the center frequency (a 

reasonable assumption for a well-conditioned PI filter), then this expression reduces 

to 

w>m[- + Ac] « 1 + (^) Ä + (^)2& (3.25) 

where g$m and g^ represent the amount of 0m contained in the first- and second- 

order perturbations of <j>m. As derived in Appendix A, g$m is equal to 0, and g$m 

is negative. Thus the loss in the gain of the desired mode is a second-order effect. 

Similarly, looking at the crosstalk factor shows that 

2 

w» ^ + Au,] « 0 + (^) 9<ü + (^)  ,» (3.26) 

In this case, g^ is not generally equal to zero, thus the crosstalk terms go as —. 

Perturbation theory results can be used to obtain approximate bandwidths for 

mode filters. In practice, it is often just as easy to plot the response and choose the 

bandwidth based on that rather than an approximation. Figure 3-9 is a closeup of 

the frequency response of the 10-mode PI filter. From this figure, it is clear that the 

crosstalk stays 20 dB down for frequencies within 2.5 Hz of the center frequency. This 

seems like a reasonable 3 dB bandwidth to choose for the lowpass filter. Based on 

the perturbation theory analysis, the crosstalk sidelobes increase at a rate of 20 dB 

per decade, thus it is useful to select a lowpass filter whose sidelobes fall off faster 
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Figure 3-9: Frequency response of the PI filter for mode 10 (designed using 10 modes) 

than 20 dB per decade. 

Although Hup can be any filter with a lowpass characteristic, short-time Fourier 

analysis typically employs the same set of windows that is used in spectral esti- 

mation [66]. Harris provides an extensive list of window functions in his classic 

paper [67]. As argued above, the ATOC data requires a filter with approximately a 

5 Hz (±2.5 Hz) bandwidth with sidelobes that fall off at a rate greater than 20 d- 

B per decade. Consider the Hanning window, which has sidelobes that fall off at 

60 dB per decade (in terms of the power metric, 201og10 |#LP|). Figure 3-10 shows 

the impulse and frequency responses for Hanning windows of three different lengths, 

60 points, 120 points, and 240 points, assuming the ATOC sample rate of 300 Hz. 

From this plot it appears that an 0.4 second (120-pt) Hanning window gives the 

desired bandwidth and sidelobe characteristics. It provides adequate suppression of 

mode crosstalk for modes up to 10. This choice of filter defines the time resolution 

of the processor. The following section discusses the temporal response of the STFT 

processor. 
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Figure 3-10: Time and frequency responses for three Hanning windows, assuming a 
300 Hz sample rate. Amplitude differences among the impulse responses are a result 
of constraining the response to be equal to 1 at 0 Hz. 

Time Resolution 

To understand the time resolution of the bandpass-filtered mode estimates, it is use- 

ful to determine the minimum separation between two arrivals such that they are 

resolvable as individual peaks at the output of the filter. For simplicity, suppose the 

input signal consists of two equal-amplitude impulses, then the output is the sum 

of two filter impulse responses. Figure 3-11 depicts the result of this superposition 

for two different assumptions about the spacing of the impulses. A reasonable cri- 

terion for resolving the arrivals is that the response at the midpoint between them 

is smaller than the response at the peak locations. This is true provided that the 

input separation is greater than the "3 dB timewidth" of the window, i.e., the width 

between the points where the window amplitude is equal to 1/2 of its peak. For a 

Hanning window, the 3 dB timewidth is equal to L/(2fs) where L is the number 

of points and fs is the sampling frequency. This definition of temporal resolution is 

obviously oversimplified, in particular because the effects of noise have been ignored. 
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(a) Unresolvable (b) Resolvable 

Figure 3-11: Simple illustration of time resolution imposed by the lowpass filter 

Nevertheless, it is useful as an approximate measure of the temporal smearing intro- 

duced by the lowpass filter. The taper of the 0.4 second (120 point) Hanning window 

is such that it is not possible to resolve arrivals spaced more closely than 0.2 seconds. 

In addition to smearing the signals in time, the lowpass-filtering operation also 

introduces a delay. The group delay of the filterbank specifies the time adjustment 

required to accurately relate the bandpass-filtered mode estimates to the received 

pressure time series. Provided that the filters have approximately constant delay 

across the passband, the correction involves a simple shift of the time axis. For- 

tunately, many of the standard analysis windows (including the Hanning window) 

qualify as generalized linear phase systems2. Such systems are known to have a con- 

stant group delay, which is equal to (^=i) fs (where L is the filter length). All of 

the STFT estimates discussed in this thesis implicitly incorporate the filter delay 

correction. 

Noise Response 

A previous section has shown that the pseudo-inverse filter designed for 10 modes 

is well-conditioned and achieves nearly the optimal white noise gain. Since the 

modeshapes are functions of frequency, it is important to examine how the noise 

Specifically, these windows are real and symmetric: h[l] = h[L-l-l], 0<1<L-1. Oppenheim 
and Schäfer discuss the properties of generalized linear phase systems in detail [68]. 
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Figure 3-12: White noise gain as a function of frequency for the matched filter and 
three different pseudo-inverse filters (for 10 modes, 12 modes, and 15 modes). 

characteristics vary over the source band. Figure 3-12 shows the white noise gain for 

modes 1 and 10, plotted over the 30 Hz interval corresponding to the ATOC source. 

The plots have 4 curves: one for the matched filter and three for different realizations 

of the pseudo-inverse filter which are designed for 10 modes, 12 modes, and 15 modes, 

respectively. Mode 1 is clearly unaffected by frequency, but conditioning problems 

are clearly evident for mode 10 PI filters. It is useful to compare these results with the 

plot of the modeshapes at 60 and 90 Hz, shown in Fig. 2-3 of Chapter 2. The changes 

in mode 1 with respect to frequency are negligible and that results in constant white 

noise gain across the band. Mode 10, on the other hand, changes significantly. At the 

lower frequencies the modeshape covers a greater extent of the water column than 

it does at the higher frequencies. As a result the array does not sample the mode as 

well, therefore the pseudo-inverse is more poorly conditioned. Based on these results, 

the 10-mode PI filter still appears to be reasonable choice for the ATOC data since 

its noise response does not change significantly across the source band. 
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Conclusions of the ATOC Design Example 

Based on the numerical results presented above, the pseudo-inverse filter for 10 modes 

provides the best possible combination of noise gain and interference rejection. This 

filter has a bandwidth of approximately 5 Hz (±2.5 Hz). An 0.4 second Hanning 

window has the desired bandwidth, and has the additional advantage of sidelobes 

that fall off faster than the crosstalk increases. These are the default parameters for 

the STFT processor designed for the ATOC data. Using this design, the next section 

applies STFT techniques to analyze a simple propagation example. 

3.3    Adiabatic Example 

The purpose of this section is to illustrate important characteristics of the STFT 

processor using an adiabatic propagation example. The discussion of this example 

consists of two parts. First, Section 3.3.1 shows the received pressure and corre- 

sponding mode estimates for adiabatic propagation through the California-Hawaii 

Levitus environment. Following that, Section 3.3.2 derives analytic expressions for 

these estimates to verify the numerical results and to provide more intuition about 

this type of mode processing. 

3.3.1    Processing Results 

Table 3.1 summarizes the parameters for the adiabatic simulation. The environment 

contains a broadband point source at 700 m depth, located 3515.2 km away from a 

40-element receiving array (35 meter spacing). In this example, the source transmits 

a single windowed-sinusoidal pulse with approximately 30 Hz bandwidth, at a center 

frequency of 75 Hz. The time series for the receivers is synthesized using the first 

40 modes. Figure 3-13 shows the received pressure as a function of time and depth 

for the adiabatic simulation. For this case, the modes are dispersed enough (at 

3515.2 km range) that it is possible to identify individual modes in the pressure time 
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2374.5 2375.5 

Figure 3-13: STFT example: processing of adiabatic propagation data. Top plot is 
the received pressure on a 40-element array as a function of time and depth. The 
bottom plots show the frequency-stacked outputs for modes 1 and 5, respectively. 

Source depth: 700 m 
center frequency: 75 Hz 
pulse: triangular-windowed sinusoid 
pulse duration: .11 sees (« 30 Hz bandwidth) 

Receiver range: 3515.2 km 
no. of receivers: 40 
element spacing: 35 m 
span: 330 m - 1695 m 
sample rate: 300 Hz 

Modes number synthesized at receiver: 40 

Table 3.1:  Simulation parameters for the California-Hawaii adiabatic propagation 
example 
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series, e.g., mode 1 is the strong final arrival, and mode 5 is associated with the five 

strong peaks lined up right after 2374.5 seconds. 

Mode estimates were calculated from this pressure time series using a 10-mode 

PI filter and the 0.4 second Hanning window filter described in the previous section. 

Note that "critical sampling" for this Hanning window requires computing bins every 

2.5 Hz. Critical sampling refers to the bin-spacing required in theory to be able to 

resynthesize a time series from the STFT decomposition. For this example the STFT 

processor used a bin-spacing of 1.25 Hz; the additional samples improve the look of 

the plots, but do not improve the frequency resolution. The bottom two plots in 

Fig. 3-13 show the frequency-stacked outputs for modes 1 and 5. There are several 

interesting features to note. First, in this example these modes are actually evident in 

the pressure time series. The dispersion characteristics of the two modes are evident 

in the plots. Mode 1 is effectively undispersed, i.e., all it arrives at the same time 

in all frequency bins. Mode 5 is clearly somewhat dispersed since the signal at lower 

frequencies arrives before the signal at higher frequencies. 

Figure 3-14 shows the results of STFT processing for the first 10 modes. The 

significantly lower signal levels for modes 4, 6, and 9 are the result of low excitation 

of the mode by the source due to the low amplitude of these modeshapes at the 

source depth. Modes 9 and 10 contain some energy arriving before their adiabatic 

arrival times; this is due to crosstalk from higher order modes not nulled out by the 

10-mode PI filter. As noted above, the dispersion characteristics of the modes are 

evident in these plots. Note that because of the temporal smearing caused by the 

filter, the dispersion has to be on the order of 0.2 seconds before it will be evident 

in the STFT output. 

3.3.2    Analysis 

The starting point for the analysis of the adiabatic example is the filtered pressure 

time series (Eq. 3.5). Assuming that the signal consists of only the mth mode and 
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that there is no additive noise, the received pressure on the nth hydrophone in the 

kth band is 

Pn   [l] = J J2 HLp[ui]<l>m[Zn,Wk + ^i]am[üJk + LO^1. (3.27) 
i 

As discussed previously, the lowpass filter has a generalized linear phase, meaning 

that its frequency response is of the form: 

#LPM = H[w)e?u^ = H[u]ej^"M (3 2g) 

where H[u] is a real and even function of w, L is the number of points in the 

filter, and tH represents the delay (in seconds) associated with filter, i.e. tH = k=±. 

For simplicity, this derivation assumes that the lowpass filter is designed to prevent 

significant spatial mismatch, thus <f>m[uk + 1^] » <f>m[u] for all ut passed by the filter. 

Using that assumption and substituting in the generalized linear phase representation 

of the lowpass filter yields 

P{n][I] = KW,wfc] (y) £H[ui]am[ujk + wje"^^M^»ii. (3.29) 
i 

The adiabatic model presented in Chapter 2 gives an expression for the frequency- 

dependent mode amplitude am.   Based on equations 2.6 and 2.7, this amplitude 

is 

.   r/i1_gsrc[o#m[r = 0,2:s,a;]       e^V^Mr am[uj\ _ 1   . .    gMW4   . 3-30 

, ££i . y/teknWr tir^Tce 
source excitation 

channel 

In Eq. 3.30, the first term represents the excitation of mode m by a point source 

located at the range origin and the depth zs. The second term represents the effects 

of the channel on the signal propagating in mode m. In this term, km is the adiabatic 
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(range-averaged) wavenumber, which is a function of frequency.3 The final term 

represents the phase shift required to time-advance the signal so that the /-term 

Fourier expansion corresponds to a reception starting at time t0 seconds instead of 

0 seconds. Before substituting the expression for am into Eq. 3.29, it is convenient 

to define the following spectral amplitude for mode m: 

AmHr] = M^t^MM. (3.3i) 
p[zs]yj8irkm[uj]r 

For simplicity, assume that the source is zerophase and that its magnitude varies 

slowly with respect to u.4 Since the modeshape and wavenumber are also smooth 

functions of u, the amplitude Am is slowly-varying function of frequency. Provided 

that the lowpass filter is sufficiently narrowband, the term ^4m[wfc + Wj], required by 

Eq. 3.29, is approximately equal to Am[u;fc]. With these assumptions, the pressure 

time series may be written 

pW[l] = Am[uk,rn}e^4<t>m[zn,uk} Q) ^ff[Wi]e-i(*™'---*o/-)(-*+^)e-M(t/r/.)eJ^/ 

(3.32) 

where rn is the range to the nth hydrophone. 

The next step in the analysis requires a model for the variations of the modal 

wavenumber with frequency. Since the range-averaged wavenumber is not an analytic 

function in general, it is necessary to use a Taylor series for km.   Expanding the 

3The use of an overbar (km) to indicate the range-averaged wavenumber has been dropped to 
simplify notation. 

4 This is equivalent to assuming either that the source transmits a symmetric pulse or that 
the receiver uses pulse compression (a temporal matched filter applied to the time series on each 
hydrophone). In the latter case Ssrc represents the Fourier transform of an autocorrelation function, 
which is symmetric. To be more precise, the source has a generalized linear phase representation 
(to account for time shifts of the pulse). There is no loss of generality in assuming zerophase since 
any linear phase term can easily be incorporated into the e^ut°^' term in Eq. 3.30. 
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Figure 3-15: Difference in range-averaged wavenumber and 3-term Taylor series ap- 
proximation for the CA-HI Levitus environment. Note that the phase differences are 
scaled by the range (3515 km) of the ATOC experiment and normalized by ir. 

wavenumber around the frequency Qc (continuous-time) yields 

km[fi]«km[Oc]+(fi-Qc) 
dkr, 

* *c Spm 
dtt n=n< 

+>-^2^ 
+ . (3.33) 

n=nc 

The terms spm, sgm, and dm represent the phase slowness, group slowness, and dis- 

persion coefficient, respectively, for mode m. Qc is defined to be the center frequency 

of the source, e.g., fc = 75 Hz for the ATOC experiment. Figure 3-15 illustrates 

the accuracy of this approximation for the CA-HI Levitus environment. The plot 

shows the differences, scaled by range, in the actual wavenumber for the path and 

the 3-term Taylor series approximation. As the figure shows, phase errors due to 

the approximation are less than 7r/4 for the 20 Hz band (65-85 Hz) for the first 10 

modes. Differences increase substantially outside of that band, especially for the 

higher order modes. 
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Using the Taylor series expansion, the second-order approximation to the kmr 

term in Eq. 3.32 is (after converting to DT frequency) 

km[ujk + Ui)r « u)cspmrfs + (Awfc + Ui)sgmrfs + -(Auk + Ui)2dmrf2 (3.34) 

where 

Awjt = wk - uc. (3.35) 

Note that spmr is the phase delay (seconds) and sgmr is the group delay (seconds) 

associated with propagation through the channel. Substituting Eq. 3.34 into Eq. 3.32 

and taking the terms not involving U{ outside the summation 

pW[l] = Ame^<l>m[zn,Uk] (y) £H[ui}e-^+t»-t°V>»<e-^e^1 (3.36) 

where Bm is a phase shift: 

7T 1 
Bm[uk, r„] = - - uc(spmrn - t0)fs - Aujk(sgmrn - t0)fs - -(Aujk)

2dmrnf
2,   (3.37) 

tm corresponds to the arrival time (in seconds) of the mth mode at frequency cjk: 

tm[u)k, rn] = sgmrn + Aukdmrnfs, (3.38) 

and ß is a dispersion factor: 

ß[rn] = dmrnfl (3.39) 

Equation 3.36 looks complicated, but has a rather simple interpretation. Ame?Bm is a 

complex scale factor and <j)m is the spatial weighting associated with the modeshape. 

The summation represents the inverse Fourier transform of a pulse: 

VbeW   =    (j)E   ^N   ß-X^-W^ß-^eMi (3.40) 
'   pulse shape       pulse location       distortion 
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~   h[l-{tm + tH-t0)fa] = h[l-lm] (3.41) 

The first factor in the sum determines the pulse shape, the second term determines its 

location, and the third produces a distortion of the pulse shape (due to the dispersion 

of mode m). Since the passband of the filter is assumed to be very narrow,5 the 

distortion of the pulse shape is minimal. Neglecting the dispersion factor (e~jß^), 

the pulse is simply a shifted version of the impulse response of the filter. In other 

words, the pulse looks like the window associated with the short-time transform, as 

is indicated in the approximate expression in Eq. 3.41. It is important to note that it 

is only the effect of dispersion on the pulse shape that is being neglected here. Modal 

dispersion also determines the phase of a mode arrival across the frequency bins of 

the STFT, and in general, the dispersion term in Eq. 3.37 cannot be neglected. 

Substituting Eq. 3.41 into Eq. 3.36 yields 

p£fc)M = <Pm[zn}Am[rn}eJB^h [I - lm[rn}}. (3.42) 

where the dependence of <f>m, Am, Bm, and lm on uk is implicit and the dependence on 

the receiver coordinates (rn, zn) has been emphasized. Recall that spatial processing 

consists of computing a weighted sum of the pressure over N sensors, i.e., 

N 

I 
n=l 

4fc)M = £^nKfc)M (3.43) 

where wm[zn] is the nth component of the weight vector for mode m. Substituting 

Eq. 3.42 into Eq. 3.43 results in an approximate expression for the estimated time 

series for mode m. The resulting equation illustrates what happens for both vertical 

and non-vertical array geometries. 

First, consider the case of a vertical array, where rn = r for all n. Most of the 

5Note that if the narrowband assumption for H[wi) is violated, spatial crosstalk, rather than 
phase distortion, is likely to be the dominant source of errors. 
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Figure 3-16: Magnitude and phase across frequency at the peak arrival time in the 
75 Hz bin for modes 1 and 5 of the adiabatic example 

terms can be pulled outside the sum, therefore 

N 

€&[l] = Ame^B-h[l - lm) £ wl[zn)4>m[zn} (3.44) 
n=l 

The summation is equal to one because of the unity gain constraint imposed on the 

weight vector. From Eq. 3.44, the mode m signal in the kth band is a pulse centered 

around sample lm. Converting from samples to seconds, mode m arrives at time 

t = tm + tH (assuming the source emits a pulse at t = 0). The amplitude and phase 

(Am and Bm, respectively) do not vary over the extent of the arrival, i.e., they are 

not functions of /. Amplitude, phase and arrival time do depend on the frequency 

uik as indicated by equations 3.31,  3.37, and 3.38. 

Consider taking a slice of the STFT estimate across frequency at the peak arrival 

time. This gives a measure of the amplitude Am and the phase Bm. Figure 3-16 

shows the frequency slices taken at the peak arrival times for modes 1 and 5 of the 

adiabatic example. The amplitude reflects the spectrum of the source (the triangular- 
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windowed sinusoid). For mode 5, the amplitude is also affected by the fact that the 

peak arrivals in the bins do not line up exactly (due to dispersion within mode 5). 

The latter effect is minimal. 

Note that the phase of the arrival across frequency bins has a linear term associ- 

ated with its arrival time relative to the start of the reception. This is expected since 

a delay in the time domain corresponds to a phase shift of the Fourier transform. 

For the results shown in Fig. 3-16(b) this trend has been removed. In theory, the 

linear component can be completely removed, given knowledge of the arrival time 

relative to the start of the processing interval. In practice, a small linear component 

may remain due to the fact that the picked peak may not correspond to the exact 

arrival time of the pulse (can be off due to noise, etc.). 

As long as dispersive spreading within mode m is not greater than the window 

width, the amount of dispersion can be measured using a frequency slice taken at 

a constant time. If the dispersive spreading is larger than the window width (0.4 

seconds in this case), then it would be necessary to look along a slanted line in 

time-frequency space. For the adiabatic modes of the California-Hawaii Levitus 

environment, the maximum dispersive spreading up to mode 10 is approximately 0.4 

seconds. 

How do the adiabatic results generalize? It is worth pointing out that even in 

non-adiabatic cases, we can still associate a magnitude, phase, and time with an 

arrival. In the general case, the effective wavenumber would be a weighted average 

of the wavenumbers of the modes that the signal has traversed the path in. Removal 

of the linear term in the phase is still possible because that simply requires knowledge 

of the arrival time of the pulse. In this way, it may be possible to get insight about 

the dispersion characteristics of a particular multipath arrival. 
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3.4    Mooring Corrections 

The previous discussion has assumed a perfectly vertical array for the pressure mea- 

surements, i.e, all sensors located at the same range from the source. This section 

relaxes that assumption and considers the practical problem of compensating for 

array tilt. Since STFT processing involves a joint time/frequency representation of 

the signals, the mooring corrections involve both a phase and a time adjustment. 

For the purposes of this chapter, it is assumed that accurate location information is 

available for all sensors. This is a reasonable assumption in many experiments like 

ATOC. 

Building upon the derivation in the previous section, assume that the array is not 

vertical. In cylindrical coordinates, this means that the distance to the nth sensor 

is rn = r - Arn, where r is a reference distance. In this case the mode estimate 

becomes (from Eq. 3.43): 

«8PM = £ Mr - Arn]e^B--AB^h[l - (lm - A/m)] (^[zn]«£m[zn])        (3.45) 
71 = 1 

where ABm and Alm depend on Arn: 

ABm = -ucspmfs + AuksgTnArnfs + - (Aojk)
2dmArnf

2
s, (3.46) 

Alm = (sgm + Aukdm) fsArn. (3.47) 

In reducing this equation, first consider the amplitude Am, given by Eq. 3.31. Pro- 

vided that r is large compared to Arn, the amplitude is unaffected by the fact that 

the array is not vertical. This is certainly true in ATOC where r is on the order 

of megameters and Arn on the order of 100 meters. The phase shift and time shift 

terms, ABm and Alm are much more significant. Note that the phase shift ABm is 

simply the second order approximation to kmArn. Using this information, Eq. 3.45 
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becomes 

N 

ä^[l] = Ame^ £ h[l - (lm - Mm)}wl[zSm[zn}ejk-^. (3.48) 
n-l 

From this equation, it is clear that the array tilt results in a phase shift and a time 

shift shift of the pulse associated with each sensor. In general, compensation for both 

of these effects is required for proper interpretation of the STFT mode estimates. 

Based on Eq. 3.48, the way to implement the phase adjustment is to design the 

mode filters for complex modeshapes, i.e., 

<f>m = 

<f>m(Zn)ejkmri 

<f>m{Zn)ejkmT2 

<f>m{Zn)ejk™r» 

(3.49) 

Using complex modeshapes is the standard way to incorporate the phase compen- 

sation into the MF, PI, or other mode filter designs. Note that the derivations 

presented in Section 3.2.1 are equally-valid for the case of complex modeshapes. 

The corrections for the time shift due to array tilt are easily implemented by 

adding the appropriate delay to the lowpass-filtering operation. It is useful to con- 

sider whether the time-corrections need to be done on a mode-by-mode basis or not. 

The dominant term in the time shift, lm is sgmArn (the dispersion being a 2nd order 

effect). Figure 3-17 shows the difference in the delay term associated with mode m 

and the delay term associated with mode 1, i.e., tm - ti as a function of the change 

in range Arn. The group slownesses used for this calculation are those associated 

with the range-averaged Levitus wavenumbers. The differences are less than 3 mil- 

liseconds up to differential ranges of 10 km. For most vertical array geometries, the 

maximum value of Arn, will be much less than the maximum value shown here. The 

maximum Arn for the ATOC experiment is less than 300 m. Clearly, for that con- 
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Figure 3-17: Difference in delay 

figuration, the difference due to mode number is negligible. Making the assumption 

that the time shift is mode-independent simplifies the processing, since it means that 

the filterbank will be identical for all modes. 

3.5    Impact of Environmental Uncertainty 

The purpose of this section is to briefly address the issue of environmental uncertainty 

in the context of broadband mode processing, specifically in terms of the ATOC 

experiment. The modeshapes used in designing the mode filters depend on the local 

environment at the receiving array. For the ATOC experiment, there were only two 

measurements of that environment: one when the array was deployed in November 

of 1995 and one when the array was recovered in August of 1996. Figure 3-18 shows 

the sound speed profiles associated with these two environmental measurements. 

The differences in these two measured profiles are slight, compared to the difference 

between the measured profiles and their archival counterparts (see the comparison of 

Levitus and measured in Chapter 2. Still, these differences do affect the mode shapes 
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Figure 3-18: Comparison of deployment and recovery sound speed profiles 

and wavenumbers, which means they affect the performance of the spatial filter in 

two ways: in the spatial beampattern and in the mooring corrections. Figure 3-19 

shows the modeshapes at 75 Hz for the two different profiles. First consider how 

mismatch affects the beampattern. Figure 3-20 shows the effective PI beampattern 

when the mode filters are designed using the deployment-profile modes, but the true 

underlying modes of the signal correspond to those for the recovery profile. Figure 3- 

21 shows similar results for the matched filter case. As both of these beampatterns 

illustrate, mismatch produces nearest-neighbor coupling of energy. In the worst case, 

neighboring modes are only about 10 dB down (in power) from the peak in the desired 

mode. While there are slight differences in the mismatched beampatterns for the PI 

and MF designs, the magnitude of the coupling is the same for both. 

In addition to altering the beampattern, mismatch may also affect the mooring 

corrections. For ATOC, the maximum difference in the wavenumbers at 75 Hz be- 

tween the deployment and recovery profiles is approximately 2* 10~5, thus the phase 

errors involved in correcting for a maximum Arn of 300 m are negligible. 

Since only 2 measurements of the receiver environment are available for the ATOC 
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Figure 3-19: Comparison of deployment and recovery modeshapes at 75 Hz 

experiment, it is hard to characterize the maximum possible mismatch (the pro- 

files during when the receptions occurred could be very different from either of the 

measurements). The archival profiles are offset from both the measured profiles 

by enough that they are not useful for estimating the profile in between the two 

measurements. Accurate characterization of the local environment is obviously an 

important issue in mode estimation. It is possible to envision schemes for mitigating 

the impact of this mismatch, but they require more information and are beyond the 

scope of this thesis. 

3.6    Summary 

This chapter has presented a short-time Fourier framework for broadband mode 

processing. The narrowband mode filters that are a part of the STFT structure were 

derived using a different approach than the standard one in the acoustics literature. 

This approach made the connection of mode processing to optimal beamforming. 
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Pseudo-inverse Filter Beampattern: 10 modes 75.00 Hz 

10 

9 

8 

■a 
5   6 

#5 
O 

4 

3 

2 

1 

H 

1 
:ll_ 

I 
lÜ ->v:^^H 

-- ! 

10 15 
Input Mode 

20 25 

-15 

-20 

-25 

-30 

-35 

-40 

Figure 3-20: Beampattern for the mismatch case: PI filter designed with deployment 
profile modeshapes; recovery profile modes are the input 
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Figure 3-21: Beampattern for the mismatch case: matched filter designed with de- 
ployment profile modeshapes; recovery profile modes are the input 

89 



A thorough performance analysis of the system has explored both narrowband and 

broadband issues. Based on this analysis, the STFT processor parameters for the 

ATOC data were chosen. 
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Chapter 4 

STFT Mode Analysis of ATOC 

Receptions 

As stated in Chapter 1, the motivation for developing a framework for broadband 

mode estimation is to study the mode arrivals at megameter ranges. This chapter 

presents an analysis of the ATOC receptions on the Hawaii VLA, using the short-time 

Fourier techniques described in the previous chapter. Processing of the ATOC data 

reveals a complicated multipath arrival pattern for the first 10 modes at 3515 km 

range. This chapter investigates the frequency characteristics of the measured ar- 

rival structure, compares experimental estimates to simulation results, and identifies 

several useful statistics for characterizing the low-mode signals. 

The outline of this chapter is as follows. Section 4.1 begins by introducing the 

ATOC data set, focusing on the receptions at Hawaii considered in this thesis. Fol- 

lowing that, Section 4.2 describes a set of PE simulations used for comparison pur- 

poses. Section 4.3 provides the first look at the time-varying mode spectra for the 

ATOC receptions and compares the experimental results to the STFT estimates for 

simulated receptions. Next, Section 4.4 addresses the issue of temporal variability by 

comparing ATOC data with simulated receptions, and computing average coherence 

as a function of time. Section 4.5 examines some statistics of the mode estimates 
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obtained by averaging over multiple transmissions. Finally, Section 4.6 summarizes 

major conclusions of this chapter. 

4.1    ATOC Data Set 

As described in Chapter 1, the ATOC experiment involved a bottom-mounted source 

at Pioneer Seamount (off California) broadcasting to two vertical arrays and a set 

of bottom-mounted receivers in the Northeastern Pacific. The source transmitted 

phase-encoded pseudo-random sequences at a center frequency of 75 Hz, with a 

3 dB bandwidth of 37.5 Hz. Each transmission consisted of 44 repetitions of the 

27.28 second pseudo-random sequence, corresponding to a transmission length of 

approximately 20 minutes. The source and the two VLA's were deployed in the fall 

of 1995, and regular transmissions began in December ofthat year. Over the course 

of the experiment, the source transmitted signals every four hours during periods set 

by the Marine Mammal Research Program associated with ATOC. 

This thesis considers only the data recorded on the Hawaii VLA, which was 

located at a range of 3515.2 km from the source. Figure 4-1 shows the schedule of 

reception times for this array from December 28, 1995 (yearday 362) to May 23, 

1996 (yearday 509).1 Although the array was not recovered until August 1996 the 

deepest 20 hydrophones failed sometime after day 509. Since mode processing is 

much more difficult with only the shallow half of the array (due to poor sampling of 

the modeshapes), this study is limited to 188 receptions recorded on the full array. 

For each transmission, the 40-element array recorded 10 four-period averages 

(over 18.2 minutes) of the pseudo-random sequence received on each hydrophone.2 

Subsequently, the time series for each sensor was demodulated and matched-filtered 

^his plot only shows the times of 188 "good" receptions. There were 229 transmissions between 
yeardays 362-509, but 41 of these have been ignored due to incomplete or corrupted data. 

2 Although the source transmitted 44 periods of the M-sequence, the array only recorded 40 pe- 
riods. The start-time for recording was chosen so that sampling began approximately two periods 
after the start of the reception [69]. 
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Figure 4-1: ATOC transmission schedule through yearday 509. Crosses mark the 
time of each good reception; receptions with bad channels have been eliminated from 
the data set. The line of numbers below the crosses indicates how the receptions are 
divided into 13 subgroups for post-processing. 

to achieve pulse compression. For the purposes of all the numerical results presented 

in this thesis, the received pressure time series consists of these matched-filtered 

demodulates. 

During the experiment, the position of the VLA was tracked using a long-baseline 

acoustic navigation system consisting of four transponders deployed on the bottom 

and several interrogator hydrophones on the array. Navigation data was recorded 

immediately before and after each reception. This thesis relies on the mooring motion 

calculations done by the group at Scripps. Array positions for each of the 10 four- 

period averages were determined by interpolating between the beginning and ending 

locations of the array. 

Before analyzing the mode arrivals in the ATOC receptions, it is useful to have 

estimates of the input noise levels. The intent is to provide some approximate noise 

statistics for use in setting thresholds for plotting and peak detection, rather than 
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to undertake a thorough analysis of the noise at the ATOC arrays. Since no sepa- 

rate noise measurements were made for the ATOC experiment, noise levels must be 

estimated from the receptions themselves. The approach taken here is to use two 

"noise-only" segments of the 27.28 second received time series to calculate statistic- 

s. For the Hawaii array, at least 7 seconds at the beginning of the reception and 

4 seconds at the end of the reception do not appear to contain any strong signal 

components. These two sections of data are used in the noise analysis. 

Figure 4-2 shows estimated noise spectra on two hydrophones for the first recep- 

tion on yearday 363 (one of the 4-period averages). These estimates were computed 
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Figure 4-2: Estimated noise spectra for hydrophones 10 and 30. The solid line 
is computed using the noise-only section prior to the signal arrival; dashed line is 
computed using the noise-only section after the signal arrivals. 

using the modified periodogram method of Welch [70, 66]. The data window used in 

the processing is an 0.4 second Hanning window, thus the frequency resolution of the 

noise estimates is comparable to that of the STFT mode processor (approximately 

±2.5 Hz bandwidth). Window overlap is 50%, resulting in 30 and 24 segments for 

the periodogram averages of the first and second noise-only sections, respectively. As 

the figure shows, noise power estimates for the first and second sections (beginning 

and end of the received time series, respectively) are consistent. Noise is obviously 

a function of frequency, with the levels at 90 Hz being down from those at 60 Hz by 
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Figure 4-3:   Estimated spatial covariance in the 75 Hz bin; calculated from 300 
snapshots. Units are dB, referenced to peak value. 

approximately 6 dB. 

Based on Fig. 4-2, the noise levels on hydrophone numbers 10 and 30 are com- 

parable. To get a better idea about the spatial characteristics of the noise, consider 

the spatial covariance matrix shown in Fig. 4-3. This covariance matrix is calculated 

for the 75 Hz bin of the same reception. The beginning (30 segments) were used 

and the results were averaged over the 10 periods (4-period averages) recorded by 

the receiver. The covariance is dominated by the diagonal terms, with some nearest 

neighbor correlation, but no other obvious structure. 

The results shown in Figures 4-2 and 4-3 are representative of the results for 

other receptions and support the conclusion that the noise field is approximately 

spatially white. Since the results for the first noise-only section are similar to the 

second section, it is reasonable to average those results together. In addition, the 

noise estimates can be averaged over hydrophones (assuming spatially white) and 

over the 10 4-period averages in order to obtain a single average noise spectrum 

for each reception.   No frequency-averaging has been done.   Figure 4-4 shows how 
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these averaged noise statistics vary over the course of the experiment. For reference, 
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Figure 4-4: Input noise levels at 60, 75, and 90 Hz as a function of reception number. 

the peak signal power in each reception {i.e., the maximum pressure received on a 

single hydrophone) is also shown. Note that the noise varies significantly enough 

from reception to reception that it is important to set plotting/detection thresholds 

individually for each. 

Assuming a spatially white model for the input noise, it is easy to compute the 

noise levels at the output of each bin of the STFT mode processor. If the gain of 

the lowpass filter for the STFT is set to give unit power throughput, the noise power 

at the output of the filterbank is identical to the spectral estimates described above. 

Since the noise is assumed to be spatially white, the noise power in the estimate of 

mode m is simply the estimated noise level for that frequency bin times the squared 

length of the weight vector for that mode, i.e., w^^w^a;*]. 

In the numerical results presented in this chapter, the plotting thresholds are set 

on a reception-by-reception basis as follows. For plots of the received pressure time 

series, the 0 dB power level corresponds to the estimated noise floor associated with 
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the 75 Hz bin. In the modal time series, the 0 dB level corresponds to the noise level 

in mode 1 at 75 Hz for that reception. 

4.2    Simulated Data Set 

For comparison purposes, a simulated data set has been generated using the parabolic 

equation code RAM [14]. The simulations are designed to model propagation along 

the Pioneer-Hawaii path. Background sound speed profiles for the simulation en- 

vironment are the Levitus-winter profiles along the geodesic path between Pioneer 

Seamount and the Hawaii array, shown in Chapter 2. The bathymetry for the sim- 

ulations corresponds to actual bathymetry along the path with the exception of one 

simplification: the steep downslope near the source has been eliminated. The source 

is at 939.5 meters depth (the depth of the seamount where the source is located); 

bottom depth at the source range is 3317 m. Section 4.3.3 illustrates the effects of 

adding the seamount back into the simulations, and indicates that source bathymetry 

may affect the spread of the final arrivals. 

The simulated data set consists of multiple realizations of the received time series 

on a 40-element array with sensors located at the nominal ATOC VLA depths. In 

addition to one time series for the Levitus background environment, there are 15 

time series which include sound speed perturbations due to internal waves. Real- 

izations of the internal wave (IW) field were generated using the method of Colosi 

and Brown [13]. A 1/2 Garrett-Munk strength was used for all simulations, in ac- 

cordance with the earlier findings of Colosi. Ten of the 15 IW simulations are for 

independent realizations of the internal wave field. The other 5 are for successive 

time steps associated with one of the independent realizations. 

The PE code generates solutions of the frequency-dependent wave equation. 

Broadband simulations therefore require Fourier synthesis of the PE results to pro- 

duce a time series. The frequency-spacing used for the PE calculations determines 
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the time interval that can be represented without aliasing. For the ATOC environ- 

ment, the time spread of all the arrivals (ray-like and mode-like) is on the order of 

10-20 seconds, implying a required frequency spacing of 0.1-0.05 Hz. Since the low 

mode arrivals are the signals of primary interest in this thesis, a simplification is 

possible, which permits a wider frequency spacing (thus a significant computational 

savings). In these simulations the pressure field is calculated for each frequency and 

projected onto the modes of the receiver environment. Then, only a subset of those 

modes are used to synthesize the time series. Empirical results indicate that, for this 

frequency range, 45 modes are fully contained within an 8 second interval; 25 modes 

are contained within a 4 second window. Thus, a frequency spacing of 0.125 Hz or 

0.25 Hz is permitted provided that the time series is synthesized with only 45 or 

25 modes, respectively. Note that 4-second simulations are more than adequate for 

examining the behavior of the first 10 modes. 

The simulations do not contain any additive noise components. In order to use 

a dB scaling for the plots that is consistent with the real data, it is assumed that 

there is a noise floor 12 dB below the peak in the pressure field. This level was 

chosen based on the average peak-to-noise ratio in Figure 4-4. Simulated pressure 

time series are scaled so that this assumed noise floor is at 0 dB; mode time series 

are scaled with respect to the assumed noise floor for the mode 1 estimate. 

4.3    Modal Time Series: Experiment vs. 

Simulation 

This section examines the mode estimates for one ATOC reception and compares 

them to estimates for two simulated receptions. One simulation is for the Levitus 

background environment; the other is for the background environment plus sound 

speed perturbations due to internal waves. The purpose of this section is to high- 

light important features of the short-time mode spectra and to illustrate qualitative 
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agreement between the ATOC data and the simulation that includes internal wave 

effects. 

4.3.1    ATOC Reception 

Figure 4-5 is a plot of a demodulated pressure time series (one 4-period average) 

recorded on the Hawaii array in late December 1995. For reference, the pressure time 

series for the simulations discussed later are displayed below the ATOC reception 

(Figures 4-6 and 4-7). In the ATOC reception, the early-arriving planewaves (or 

ray arrivals) are rather weak. Unlike the adiabatic examples considered in previous 

chapters, there are no immediately identifiable modes contained in the late-arriving 

energy. 

The mode estimates for this reception are calculated using short-time Fourier 

techniques developed in Chapter 3. Recall that the STFT processor designed for the 

ATOC data uses an 0.4 second Hanning window and a 10-mode pseudo-inverse spatial 

filter. Note that for the plots in this chapter, the STFT estimates are computed for 

the 60-90 Hz band, with a bin spacing of 1.25 Hz. The latter is chosen for plotting 

purposes only; the critical frequency spacing required by the choice of window is 

2.5 Hz. 

Figure 4-8 shows the frequency-stacked plots for the first 10 modes of this ATOC 

reception. There are a number of observations to make about these results. First, 

each mode consists of multiple arrivals, spread over 2-3 seconds. This is a stark 

contrast to the single, dispersive arrivals that characterized the adiabatic propagation 

example discussed in the last chapter. Also, recall that in the adiabatic case, the 

modes arrive in descending order and the highest modes are temporally separable 

from the lowest modes. For this ATOC reception, there is no obvious ordering of the 

arrivals and the spread of the signals is such that the first ten modes overlap in time. 

The third point to consider concerns a common feature of multipath channels: 

frequency-selective fading. This type of fading occurs when two signals with different 
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Figure 4-5: ATOC Reception 
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Figure 4-6: PE simulation without internal waves 
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Figure 4-7: PE simulation with internal waves at 1/2 Garrett-Munk strength 
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Figure 4-8: Frequency-stacked mode estimates for the ATOC reception in Fig. 4-5. 
Color scale is in dB. 
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phase characteristics arrive at the same time. The spectrum for the superposition 

of these signals may contain amplitude fades due to destructive interference. If the 

individual arrivals are temporally-resolvable using a short-time transform, then the 

characteristics for each path can be measured. In this case, the magnitude across 

frequency should not contain deep fades. 

The STFT processor used on the ATOC data can begin to temporally resolve 

signals at a separation of 0.2 seconds (see discussion on page 69). Note that since 

bins with 2.5 Hz spacing are slightly correlated (due to the overlap of the bandpass 

filters associated with the STFT), signals must show coherence over bandwidths 

of greater than 5 Hz before it is clear that the coherence is due to the underlying 

arrival and not an artifact of processing. Although the plots in Fig. 4-8 indicate 

the presence of faded arrivals, they also contain some arrivals that extend over 5- 

10 Hz bandwidths. This suggests that the STFT processor may be resolving some 

individual multipaths. 

4.3.2    Simulated Receptions 

The previous section reviewed important characteristics of the mode arrival structure 

estimated from ATOC data. For comparison, this section considers two of the simu- 

lated receptions (described in Section 4.2). The first is for propagation through the 

Levitus background environment; the second includes internal-wave-induced sound 

speed perturbations. 

Figure 4-6 shows the received time series for propagation through the background 

environment. Note that individual mode arrivals are evident in the pressure field e.g., 

mode 2 is the strongest final arrival located at 2375 seconds. (Mode 1 is not strongly 

excited by a source located at 939.5 m depth.) Figure 4-9 displays the short-time 

Fourier mode estimates for the first 10 modes, indicating that these modes arrive 

in descending order. The solid black line on each of the frequency-stacked plots 

represents the adiabatic arrival times. Agreement between the adiabatic predictions 
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and the PE simulation without internal waves is quite good. While this does not 

prove that propagation through the Levitus background environment is adiabatic, it 

does demonstrate that, in the absence of internal waves, each of the first 10 modes 

is dominated by a single dispersive arrival. 

In contrast to the background simulation, the results for the internal wave simu- 

lation show more complicated mode arrival patterns. Figure 4-7 is the pressure time 

series for the internal wave simulation, and Figure 4-10 displays the corresponding 

mode estimates. Similar to the ATOC data, the estimates for the perturbed envi- 

ronment contain multiple arrivals in each mode. Some of these arrivals also exhibit 

frequency-selective fading, and others appear to be coherent over bands on the order 

of 10 Hz. 

To permit a comparison between experiment and simulation, Figure 4-11 shows 

the estimated spectra for modes 1 and 10 for the ATOC reception and the two sim- 

ulated receptions. For reference, adiabatic travel time predictions for the California- 

Hawaii path are shown at the bottom. There is qualitative similarity between the 

mode estimates for the ATOC reception and the PE simulation containing internal 

waves, i.e., both contain multipath arrivals and show evidence of frequency-selective 

fading. Although mode 10 starts arriving before mode 1 in both the ATOC data 

and the internal wave simulation, there is significant overlap of these two modes in 

time. This is in contrast to the background simulation and the adiabatic case where 

those two modes are temporally separated. Note that the ATOC data does show 

significantly more time-spread than the simulation. 

The most striking disagreement between the PE simulations and the real data 

is that the simulations have a sharp cutoff around 2375 seconds (obvious in both 

the pressure time series and the mode estimates), but there is no discernible cutoff 

in the ATOC receptions. In the ATOC data, high energy arrivals occur before 

2375.5 seconds, but the signal trails off with a series of lower energy peaks after that. 

Heaney has associated this "afterglow" in the arrival pattern with bottom interaction 

103 



Mode 1 Mode 2 

2373 2374       2375 
Mode 3 

2376 

2373 2374  2375 
Mode 5 

2376 

2373 2374  2375 
Mode 7 

2376 

2373 2374  2375 
Mode 9 

2376 

2373 2374  2375 
Time (seconds) 

2376 

2373 2374  2375 
Mode 4 

2376 

2373 2374  2375 
Mode 6 

2376 

2373 2374  2375 
Mode 8 

2376 

2373 2374  2375 
Mode 10 

2376 

2373 2374  2375 
Time (seconds) 

2376 

Figure 4-9: Frequency-stacked mode estimates for the PE simulation without internal 
waves in Fig. 4-6. Black lines in each subplot are the predicted arrival times based 
on adiabatic dispersion curves. 
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Figure 4-10: Frequency-stacked mode estimates for the PE simulation with internal 
waves in Fig. 4-7 
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Figure 4-11: Comparison of ATOC data, PE simulations, and adiabatic predictions 
for modes 1 and 10. 
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near the source [53].   The next section considers the downslope propagation issue 

briefly. 

4.3.3    Downslope Propagation Example 

Although a thorough analysis of the downslope propagation problem is beyond the 

scope of this thesis, it is useful to consider one example which illustrates the effects 

of the slope on the initial excitation of the modes. 

Figure 4-12 shows the actual bathymetry (dash-dot line) measured during source 

deployment, along with several approximations. The dotted line represents the bot- 

tom depths used in the simulations described in Section 4.2. Those ignore the slope 

entirely. As indicated by the figure, the seamount has very steep sides; at its steepest, 

the slope off Pioneer is approximately 20 degrees. 

Near-source bathymetry for Pioneer to Hawaii path 

20 25 30 
Range (km) 

Figure 4-12: Bathymetry near the ATOC source at Pioneer Seamount 

First consider a PE simulation with the actual sloping bottom near the source. 

The PE code does not handle shear waves, but a reasonable approximation (ignoring 

interface waves) for a solid bottom is to use a fluid bottom with a compressional 

speed equal to that of the shear parameters in the actual bottom [4]. For the ATOC 

source site, the bottom is basalt which has a shear speed of 2500 m/s, a density 

of 2.7 g/cm3, and an attenuation of 0.1 dB per wavelength. These are the bottom 
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parameters used in all of the simulations. Figure 4-13 compares the received pressure 

time series for the actual slope environment (top plot) and the no slope environment 

(bottom plot). These two simulations include the same internal wave perturbations. 

The plots are scaled to the peak pressure over the two receptions.   Note that the 

Received pressure 
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2374.5 2375 2375.5 

levwin o1 O.sim 

2372.5 2373.5 2374 
Time (seconds) 

2374.5 2375.5 

Figure 4-13: Comparison of propagation through the environment that includes the 
actual sloping bottom near the source (top plot) and the environment without the 
slope (bottom plot) 

presence of a slope changes the final arrivals and adds approximately 1 second of 

additional, lower amplitude arrivals. Figure 4-14 illustrates the effects of the slope 

on the mode 1 and mode 10 estimates. Additional arrivals are added to both modes 

after 2375 seconds. There is also a strong arrival added in mode 10, before the cutoff. 

Although mode 1 does not appear to be as strongly affected as mode 10 in this case, 

it is unclear whether that would be true for other realizations of the internal wave 

field. 

To get insights into what is happening near the source, consider a plot of the 

time series for the first 80 modes at a distance of 50 km from the array. Figure 4-15 
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Figure 4-14: Comparison of arrivals in modes 1 and 10 for the sloping bottom (top 
plots) and the zero-slope approximation (bottom plots) 

shows these results for the actual slope and for the 3 approximations to that slope 

in order to illustrate how steep the slope has to be to produce this effect. These 

are broadband time series computed by projecting onto the modes at 50 km at each 

frequency and then synthesizing a time series for each mode. The top plot shows the 

results for a simulation with the actual source bathymetry. In most of the modes 

below 60, the energy is concentrated in two pulses that are spaced approximately 

one second apart. This is in contrast to the no slope case, shown in the bottom 

plot, which contains only one dominant pulse in each mode. The two middle plots 

indicate how the second pulse fades out as the slope is decreased. The presence 

of the seamount clearly changes the mode excitation, but more work is needed to 

verify the actual mode scattering mechanisms down the slope that produce this 

effect. Heaney attributes the afterglow to a bottom bounce near the source [53]. 

It seems likely that the second pulse in the mode excitation is due to that bottom 
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Figure 4-15: Comparison of the time series for the first 80 modes at 50 km range 
from the Pioneer Seamount source. Top plot is for the actual slope. Middle two plots 
are for the 8.5 degree and 4.3 degree approximations, respectively. The bottom plot 
corresponds to the no slope case. 
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bounce. Although more research is clearly required in this area, these simulation 

results indicate that the ATOC measurements may represent the response of the 

ocean channel to a superposition of two temporally-separated pulses rather than the 

response to a single pulse. 

This section (4.3) has examined mode estimates for a single ATOC reception and 

compared them to results for a simulation through internal waves at 1/2 Garrett- 

Munk strength. The ATOC results and the simulation agree qualitatively, with 

both indicating that the mode signals at megameter ranges contain multiple, faded 

arrivals rather than the single dispersive arrivals that characterize adiabatic propaga- 

tion. Although the similarities between experiment and simulation are encouraging, 

the ATOC data does show significantly more time-spread. The most striking dis- 

agreement between the simulated time series and the measured data is the sharp 

cutoff in the simulation, which was shown to be a consequence of ignoring the source 

bathymetry. 

4.4    Temporal Variability 

The purpose of this section is to consider the temporal variability of the mode arrivals. 

In previous work, Tang and Tappert obtained measurements of the temporal coher- 

ence of pulses propagating through internal waves in a shallow (200 m deep) water 

environment at ranges of 20 km. They considered the coherence times of pulses 

and did not address the issue of modes specifically. For deep water environments, 

Colosi et al. [71] (citing the work of Flatte and Stoughton [72]) indicate that acoustic 

coherence times are on the order of tens of minutes, whereas the coherence times for 

internal waves are on the order of hours. In analyzing data from the ATOC Engi- 

neering Test (range=3250 km), Worcester et al. used 12.7 minute coherent averages 

for the ray arrivals, since the SNR did not increase for longer averaging times. For 

that same data set, Colosi et al. concluded that time fluctuations in the wavefronts 

111 



show no coherence at 2 hour lag times. Note that in the works cited above, the focus 

was primarily on analyzing the ray arrivals, rather than the late-arriving modes. The 

rest of this section considers the temporal variations of the mode arrivals in ATOC. 

Recall that for each source transmission, the ATOC VLA recorded 10 four-period 

averages of the 27.28 second pseudo-random sequence. The results discussed in 

Section 4.3.1 were computed using the first 4-period average of reception 363004024 

at the Hawaii array. Figure 4-16 compares mode estimates for the first 4-period 

average and the last 4-period average for that reception. The top plots are the 

estimated spectra for modes 1 and 10 of the first average in the transmission and the 

bottom plots correspond to the last average. Note that the time difference between 

the end of the first reception and the start of the tenth is approximately 14.5 minutes. 

The plot clearly demonstrates that the mode signals change significantly over that 

time interval: some arrivals drop out entirely, and new arrivals emerge. 
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Figure 4-16: Comparison of modes 1 and 10 for the first (top plots) and last (bottom 
plots) periods of a source transmission 

For comparison, consider the results of PE simulations that take into account 
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Figure 4-17: Comparison of modes 1 and 10 for realizations of a time-varying internal 
wave environment. The lag time between the top and bottom plots is 16 minutes. 

time variations of the internal wave field. Using Colosi and Brown's approach, a 

realization of the time-varying internal wave field was generated for a nominal time 

t0, and for t0+16 minutes. Fig. 4-17 shows the estimates for modes 1 and 10 that 

result from these simulations. These plots demonstrate fade-ins and fade-outs that 

are similar to those seen in the ATOC data. 

Based on the single realizations of the ATOC data and the simulated data shown 

above, the low order mode arrivals fluctuate over time intervals on the order of min- 

utes. The following approach was used to obtain a measure of the average coherence 

time for each mode. First, correlation coefficients were computed at a set of 10 lags 

for the received signals in a particular mode, corresponding to the 10 four-period 

averages. Note that the time interval used for these calculations was 2373 seconds 

to 2376 seconds, where the mode arrivals are concentrated. These correlation coef- 

ficients were then averaged over 96 ATOC receptions (from yearday 363 to yearday 

435).  The results are shown in Figure 4-18.  The left plot in the figure shows the 
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Figure 4-18: Temporal coherence as a function of frequency for mode 1 (left plot) 
and as a function of mode number for the 75 Hz bin (right plot). These results were 
obtained by averaging across 96 receptions (yeardays 363-435). 

temporal coherence of mode 1 for three different frequencies. There does appear 

to be some mild frequency dependence, with mode 1 in the 65 Hz bin being more 

correlated than the same mode at 85 Hz. For mode 1, correlation decreases to a level 

of 0.5 between 6 and 8 minutes. The right plot in the figure shows coherence as a 

function of mode number for the 75 Hz bin. Based on these results, temporal coher- 

ence is not a function of mode number, which is not surprising given the amount of 

mode coupling. 

The above calculations provide a measure of the coherence time of the whole 

signal in a particular mode, i.e., all the multipath arrivals. An interesting question 

to ask is whether some peaks are more stable than others across the 18.2 minute 

transmission interval. Figure 4-19 illustrates how mode signals in the 75 Hz bin vary 

over the 18.2 minutes. The plots are stacks of the received signals in mode 1 (top) and 

mode 10 (bottom) at successive 1.82 minute lags. Some of the peaks are consistent 

across the full transmission interval, while others fade out suddenly, e.g., the mode 1 

arrival at 2375 seconds that drops out around 12 minutes. Again, it is interesting to 

compare these results to PE simulations involving time-varying internal wave fields. 

For these results, the internal wave sound speed perturbations were computed at 
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4-minute intervals between 0 and 20 minutes. Figure 4-20 shows the resulting stacks 

for modes 1 and 6 for the 75 Hz bin. This data confirms that the PE simulations 

with internal waves at 1/2 Garrett Munk strength result in qualitatively similar time 

variations of the modes. 
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Figure 4-19: Variability of modes 1 and 10 across a single transmission (18.2 minutes) 
in the 75 Hz bin 

This section has shown that the mode arrival structure varies considerably over 

intervals on the order of 20 minutes. The following section considers four hour 

intervals and asks whether averaging over multiple transmissions can be used to 

obtain insight into mode behavior. 

4.5    Mode Statistics 

On days that the ATOC source was on there were transmissions at 4-hour intervals. 

Given the large amount of variability in the mode signals over a 20-minute period, it 

is expected that the transmissions at four-hour intervals will sample very different re- 
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Figure 4-20: Variability of modes 1 and 6 for the simulated data in the 75 Hz bin, 
calculated at 4 minute intervals. 

alizations of the internal wave field. Such behavior can be seen in Figure 4-21, which 

shows the short-time spectra for mode 1 (the first 4-period average) for three consec- 

utive transmissions. Clearly, the mode arrival structure is significantly different at 

4-hour lags. Although all arrivals for all three receptions shown are approximately 

centered around 2375 seconds, and there is some consistency in the weaker peaks 

(e.g., the faded arrival around 2376 seconds), the strong arrivals do not occur in the 

same places for each reception, and overall the interference pattern is quite different. 

To get an idea of how the peak arrivals are distributed as a function of time, 

consider the histograms shown in Figure 4-22. These plots were compiled from the 

first 96 good receptions recorded on yeardays 363 through 436, using a detection 

threshold of 12 dB above the estimated noise level for each mode. These results 

confirm that there is not a dominant arrival time in each mode; rather, the peaks 

are distributed between 2373 seconds and 2376 seconds for all of the modes. Note 
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Figure 4-21: Mode 1 in ATOC receptions at 4-hour intervals 

that the distribution of the higher modes (e.g., mode 10) is skewed towards the early 

part of the 3-second interval while the low modes are concentrated towards the latter 

part of the interval. This is consistent with the deep water dispersion, where higher 

modes arrive first. 

Given the amount of variability in the arrival structure, does averaging over 

multiple transmissions reveal consistent features in the mode signals? To answer 

this question, it is useful to consider several statistics: leading edge, falling edge, and 

centroid. Note that the leading and falling edges are (respectively) the first and last 

time indices where the complex envelope of the mode estimate exceeds a threshold. 
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Figure 4-22: Histogram of peak arrivals in the 75 Hz bin. Threshold for peak detec- 
tion was set at 12 dB above the noise floor. These results were computed from the 
first 96 good receptions (yeardays 363 to 436). 
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The centroid is defined to be the center of mass of the portion of the complex envelope 

that is higher than the threshold value. For all of the results presented below, the 

threshold was set at 12 dB above the noise floor in each mode. In order to examine 

how these statistics vary as a function of time over the course of the experiment, the 

ATOC receptions were divided into 13 groups as indicated in Fig. 4-1. 

Figure 4-23 shows the leading edge, falling edge, and centroid in the 75 Hz bin for 

the first group of receptions. This group consists of 20 receptions, each containing 

10 four-period averages. The data is plotted so that each whole number on the x- 

axis represents the start of a set of 4-period averages. As this figure indicates, the 
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Figure 4-23: Leading edge, falling edge, and centroid in the 75 Hz bin for the first 
20 ATOC receptions, each consisting of 10 four-period averages. 

three statistics of interest can fluctuate significantly over one source transmission 

(18.2 minutes) as arrivals fade in and out. 

Figure 4-24 shows the results of averaging over all the receptions in the first 

group (a total of 2003) to obtain the leading and falling edges as a function of 

frequency for the first 10 modes. For reference, the figure also includes the average 

leading and falling edges for the mode estimates of 10 simulated receptions.  The 

3 Note that the average may contain less than 200 points since there are a few receptions where 
no part of the estimate exceeds the detection threshold. 
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Figure 4-24: Comparison of average leading and falling edges for the first group of 
ATOC receptions and the simulated data set 
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error bars on these plots (and all subsequent ones) represent the estimated RMS 

error, i.e., the sample standard deviation divided by the square root of the number 

of samples included in the average. The ATOC statistics reveal several significant 

features. First, the average spread between leading and falling edges is on the order of 

1.5 seconds. Second, the high modes have earlier arrival times, while low modes have 

later arrival times, as would be expected in a deep water channel. Although there is 

some crossover between neighboring modes, the leading and falling edges show that 

there are statistically significant differences in arrival time among the modes, e.g., 

compare modes 1 and 10. Finally, note that the plot indicates that the signals at the 

center frequency (75 Hz) are more spread than those at either end of the band. This 

effect may be partially due to the fact that the same detection threshold is used for 

all frequency bins, while the source spectrum rolls off as a function of frequency. 

Since the simulated data is averaged over only ten receptions, the resulting curves 

in Fig. 4-24 are not as smooth as the ATOC data and the error bars are larger. 

Nevertheless, the simulated data is comparable to the real data in two important 

respects: the leading edges show similar behavior (as a function of frequency) to the 

ATOC data, and the arrival times are also comparable. Unlike the falling edges in 

the ATOC data, however, the falling edges in the simulated data are much more 

concentrated. This sudden cutoff has been noted previously and is likely the result 

of the lack of modeling of the downslope propagation in the simulation. 

Now consider the average centroid statistics as a function of frequency. Figure 4- 

25 compares the average centroid locations for the first group of ATOC receptions 

with the average centroids for the simulated receptions. Predicted adiabatic travel 

times are included for reference. The experimental data centroid data shows the 

modes arriving in descending order (though there is some crossover among nearest- 

neighbors). For the highest modes, there is a slight trend across frequency: the higher 

frequencies arrive later, as would be expected in deep water. The simulated data show 

good agreement:  the centroids extend over approximately the same time interval 
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ATOC data: average centroids for group 1 
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Figure 4-25: Comparison of average centroid locations for the first group of ATOC 
receptions, the simulated receptions, and adiabatic predictions 
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(« 0.8 seconds), and there is again a slight trend of increasing arrival time with 

increasing frequency in the higher modes. This supports the idea that 1/2 Garrett- 

Munk strength is appropriate. The key difference between the ATOC data and the 

simulated data in Figure 4-25 is a shift in the mean arrival times: the centroids 

for the first group of ATOC data occur approximately 0.2 seconds later than the 

centroids of the simulated receptions. Comparing the ATOC and simulated data 

to the predicted adiabatic arrival times, one key difference is evident: the interval 

over which the arrival times are spread is much longer in the adiabatic case. This is 

expected because mode scattering accounts for the concentration in the ATOC and 

simulated data. 

Figures 4-26 and 4-27 show the centroids as a function of frequency for the 13 

groups of receptions defined in Figure 4-1. These receptions were taken over a period 

of approximately 5 months, between the end of December of 1995 and May of 1996. 

The centroids in each of the groups show similar behavior as a function of frequency, 

but there is clearly a drift in the arrival times from one set of receptions to the 

next. The drift in arrival times is more obvious in the plot of Figure 4-28, which 

shows the average centroids of first 10 modes at 75 Hz as a function of yearday. 

Note that the minimum travel time for all of the modes occurs around yearday 427, 

which corresponds to the beginning of March, 1996. The trend of decreasing mode 

arrival time from the start of the experiment until March and increasing afterwards 

agrees with the trend observed in the ray arrivals for the Hawaii VLA [73]. The 

difference in the arrival times between the first group of receptions (yearday 363) 

and the sixth group of receptions (yearday 427) is between 0.3 and 0.5 seconds for 

the first 10 modes. A T-test confirms that these time differences are statistically 

significant (using a significance level of 0.01). Based on the 1998 Science article by 

the ATOC Consortium [73], the ray arrivals exhibit somewhat smaller time shifts on 

the order of 0.25 seconds over that same period. The Science article notes that the 

trend observed at the Hawaii array is not in agreement with the expected seasonal 
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Figure 4-26: Average centroids as a function of frequency for the first 7 groups of 
ATOC receptions. Legend is identical to that shown in Fig. 4-25. See Fig. 4-1 for a 
definition of the groups. 
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Figure 4-27: Average centroids as a function of frequency for groups 8-13 of the 
ATOC receptions. Legend is identical to that shown in Fig. 4-25. See Fig. 4-1 for a 
definition of the groups. 
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Figure 4-28: Average centroids in the 75 Hz bin for modes 1-10 as a function of 
yearday 

trend (which would have shown increasing travel times in winter and decreasing in 

the summer) and postulates that this is due to a subsurface warming near the receiver 

that offsets the winter surface cooling layer near the source. 

The trend in arrival times as a function of yearday is apparent in the falling 

edges of the modes, but is not as evident in the leading edge statistic. Figure 4-29 

illustrates this point using mode 1 in the 75 Hz bin as an example. These curves 

are representative of the results for other low modes. Note that the falling edge 

shows a decrease in arrival time from January to March that correlates well with the 

centroid data. The maximum shift in the mean falling edge time is also 0.45 seconds. 

While the leading edge data show a significant decrease in arrival time for the set of 

receptions around yearday 427, there is no obvious downward trend in the first five 

groups of receptions as there is in the centroid and falling edge statistics. 

It is important to consider the errors associated with these statistics. For the 

centroids and falling edges, Figure 4-30 shows the average (over the 13 groups of 
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Figure 4-29: Average leading and falling edges for mode 1 in the 75 Hz bin as a 
function of yearday 

127 



receptions) RMS error at 75 Hz for the first 10 modes. The average RMS error 

for the centroids is between 20-27 milliseconds, with a slight trend of increasing 

error with mode number. Error for the falling edge statistics tends to be larger 

(29-34 milliseconds) and does not exhibit a mode-dependent trend.  Note that the 

RMS error averaged over 13 groups of ATOC receptions 75 Hz 

0.035 

5 6 
Mode number 

Figure 4-30: Average of the RMS error over 13 groups of receptions as a function of 
mode number. Results are shown for the centroids and the falling edges of the 75 Hz 
bin. 

order of magnitude of these errors is comparable to the measured fluctuations of the 

identifiable ray arrivals (11-19 ms) and the pulse termination (22 ms) [71]. 

4.6    Summary 

This chapter has provided the first detailed look at the low-mode signals in the 

ATOC receptions at Hawaii. While much work remains to be done, some impor- 

tant conclusions about the nature of the low-mode arrivals can be drawn from this 

analysis. 

The first observation is that modes 1-10 at 3515 km range contain multiple 

arrivals, rather than the single, dispersive arrivals that are associated with adia- 

batic propagation.   This has important implications for matched field processing 
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and tomography because the problem of associating a signal with a particular path 

through the ocean becomes difficult. 

Second, many of the arrivals in the data show frequency-selective fading due to the 

destructive interference of overlapping multipaths. There is evidence of frequency- 

coherent arrivals in the ATOC receptions, suggesting that the STFT processor may 

be resolving some individual paths. More work is necessary to parameterize the 

frequency-selectivity of the channel and to determine how often coherent arrivals 

can be expected. 

Third, the modal multipath structure exhibits significant temporal variability. 

Average coherence times4 for the modes are on the order of 6-8 minutes, which is 

less than the 18 minute source transmission time. Coherence appears to be a mild 

function of frequency, but not a function of mode number for the first 10 modes. 

Some arrivals are temporally stable over a 20-minute reception, but are not usually 

detectable in the next reception, four hours later. The results of this chapter indicate 

that each transmission at 4-hour intervals essentially samples a different realization 

of the internal wave field. 

Fourth, despite the complexity of the mode arrival structure, averaging over 

source transmissions at successive 4-hour intervals reveals some of the expected 

dispersion characteristics of a deep water channel. An analysis of three statistics 

(leading edge, falling edge, and centroid) suggests that the modes retain some travel 

time information at megameter ranges. The results of this chapter indicate that 

there were statistically significant changes in the centroid and falling edge arrival 

times over the 5 months of data analyzed for the Hawaii VLA. On average5, the 

mode arrival times decrease by 0.4 seconds between December and March, and then 

increase by 0.2 seconds between March and May. The RMS errors in these centroid 

measurements are 20-30 ms on average, on the same order as fluctuations of ray 

i.e., the time at which the correlation coefficient is approximately 0.5 
Averaging over the modes in the 75 Hz bin 
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arrivals and pulse termination observed by other researchers. 

Comparisons of the ATOC receptions to PE simulations through internal wave 

fields at 1/2 Garrett-Munk strength support these conclusions. Both the nature of 

the frequency-selective fading and the time variations of the modes in the simulat- 

ed data qualitatively agree with the experimental data. Furthermore, the centroid 

statistics demonstrate, in a more quantitative way, that the simulations using 1/2 

GM levels are in agreement with the data. This is an important conclusion because 

studies of the ray-like arrivals indicate internal wave strengths on the order of 1/2 

GM. 

One major discrepancy between the simulations and the ATOC data is that the 

simulations contain a sharp axial cutoff, whereas the ATOC data does not. This is 

likely the consequence of ignoring the bottom interaction near the Pioneer Seamount 

source, but more analysis is needed to verify the exact coupling mechanisms that 

are producing the complicated excitation pattern in the low modes. In addition, 

future work should include computing the mode estimates for more realizations of 

the internal wave field so that temporal statistics for the simulations can be compared 

to the measured coherence times from ATOC. These should incorporate the effects 

of the sloping bottom near the source. 
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Chapter 5 

Conclusions and Future Directions 

This dissertation has developed methods of estimating the modal content of broad- 

band receptions and used those methods to analyze low-mode arrivals for the Acous- 

tic Thermometry of Ocean Climate experiment. This chapter will summarize the 

key contributions of the work and indicate directions for future research. 

The first contribution of this thesis is a general framework for broadband mode 

processing. Most previous work has focused on narrowband mode estimation, but 

recent experiments such as ATOC require wider bandwidths. This thesis has de- 

veloped a mode processor based on the short-time Fourier transform and addressed 

the fundamental issue of the frequency resolution required for broadband mode es- 

timation. A key advantage of the STFT approach is that it allows study of the the 

frequency characteristics of individual arrivals (within the temporal resolution limits 

of the processor). 

Chapter 3 explored the time- and frequency-domain characteristics of two deter- 

ministic modal beamforming algorithms: the matched filter and the pseudo-inverse 

filter. A detailed performance analysis using the ATOC array configuration showed 

that it is possible to estimate the first 10 modes using a pseudo-inverse spatial fil- 

ter, and a frequency bin spacing of 2.5 Hz. The latter specification implies that the 

temporal resolution of the processor is on the order of 0.2 seconds (depending on the 
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type of temporal filter used). 

The second major contribution of this work is an investigation of the low-mode 

arrivals in the ATOC Hawaii data set. In experiments like ATOC, understanding 

the axial mode arrivals is crucial because they are the most energetic signals at long 

ranges. The analysis presented in this thesis is the first detailed look at variability of 

the mode signals on short time and frequency scales. In particular, STFT processing 

of the Hawaii VLA receptions has identified several important features of the mode 

signals at 3515 km range. First, each low mode contains series of arrivals, rather 

than the single dispersive arrival that would characterize adiabatic propagation. This 

multipath structure exhibits both frequency-selective fading and significant temporal 

variability. Average coherence times are on the order of 6-8 minutes, which are 

somewhat less than the tens of minutes predicted by Flatte and Stoughton [72] 

and the 12.7 minute averaging times used by Worcester et al. [74] for the ATOC 

Engineering Test experiment. (Note that since some peak arrivals in the STFT 

estimates are coherent over the full 18.2 minute transmission, future experiments 

should include longer transmission times in order to measure the actual duration 

of these stable peaks.) 'Given this high degree of variability, it is not surprising 

that receptions at 4-hour intervals show significant differences. Each one of the 

transmissions effectively measures a different realization of the internal wave field. 

These results indicate that stochastic methods will be required for tomography and 

matched field applications that use the mode signals. 

The mode statistics used in this thesis were computed by averaging over groups 

of receptions at 4-hour intervals. The leading edge, falling edge, and centroid of the 

mode arrivals reveal some of the expected dispersion characteristics of a deep wa- 

ter channel, indicating that the modes retain travel time information at megameter 

ranges. Both the mode centroids and the falling edges showed statistically significant 

changes in mean arrival time over the 5 months of data that were analyzed: decreas- 

ing arrival times from December to March followed by increasing travel times from 
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March to May. The observed trends agree with results for the ray arrivals over the 

same period of time. As noted in the Science article by the ATOC Consortium, these 

trends do not follow the seasonal trends in the surface layer and are likely related to 

a subsurface warming near the Hawaii array [73]. The RMS errors on the centroid 

and falling edge statistics are on the order of 20-30 ms and 30-35 ms, respectively. 

PE simulations of the propagation through internal waves at 1/2 Garrett-Munk 

strength model the experimental data in important respects. Since 1/2 GM has 

proved useful in explaining some of the internal wave effects associated with the ray 

arrivals, this is a useful consistency check. The primary discrepancy between the 

simulations and the ATOC receptions is that the simulations show a sharp axial cut- 

off, whereas the experimental data does not. This thesis indicated that bathymetric 

coupling near the Pioneer Seamount source complicates the mode excitation pattern 

and may be responsible for the difference between simulated and experimental data. 

In terms of future research, this thesis has laid a foundation for a stochastic chan- 

nel model that is useful for modal tomography and other applications. In pursuing 

this ultimate goal, the rich set of data provided by the ATOC experiment merits 

further study. The short-time Fourier framework developed here could be extended 

to include methods for generating a time series from the time-varying spectral esti- 

mates of each mode. Fourier synthesis provides a useful method of examining which 

arrivals add coherently across frequency bands. Note that the key to implementing 

the synthesis step in mode processing is the dispersion correction. As indicated in 

Chapter 3, phase shifts across frequency due to dispersion are significant at mega- 

meter ranges. Since scattering may produce multiple arrivals in a single mode, each 

with its own phase characteristics, the correction will have to be done by "steering" 

over a set of possible corrections. 

Once the methods for synthesizing modal time series have been developed, s- 

tatistics of the broadband, frequency-coherent mode arrivals in the ATOC data can 

be measured.   Time-of-arrival, temporal coherence, and intensity fluctuations are 
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especially of interest since comparable statistics exist for the ray arrivals. The re- 

lationship of rays and modes propagating through random internal wave fields is 

currently an important topic of research. 

In addition to extending the STFT framework and continuing the analysis of 

the Hawaii data set, this thesis suggests several other intriguing topics for future 

research. First, the problem of modal beamforming in uncertain environments has 

been raised, but not solved, by this thesis. Based on the degree of mismatch between 

the modes for the environments measured at deployment and recovery of the ATOC 

arrays (described in Chapter 2), it is strongly recommended that future experiments 

include regular sampling of the environment at the array. Measurements of the local 

temperature profile, in particular, would reduce the uncertainty in the sound speed 

profile, thereby reducing the potential for significant modeshape mismatch. 

Second, an in-depth theoretical analysis of the modal mismatch problem should 

be undertaken. Such a study could provide useful insights about the robustness of 

mode filters and set guidelines for the required temporal and spatial sampling of the 

environment. One approach to this problem would be to use a simple dynamical 

model for the mesoscale sound speed fluctuations and relate them to fluctuations 

in the modes using linear perturbation theory. From there it should be possible to 

compute performance bounds for mode estimators under a variety of conditions and 

to explore possible strategies for mitigating the effects of environmental uncertainty. 

This is a relatively open problem, although there is a large body of related work in 

the matched field processing literature. 

Third, a study of the excitation of the axial modes by a bottom-mounted source 

located on a steep slope is important. The obvious starting point for this research 

is to model the propagation down the slope using a code, such as range-dependent 

OASES, that accounts for the elastic properties of the bottom. In addition to inves- 

tigating the forward propagation problem, the receptions on the ATOC VLA's from 

a related experiment known as the Alternate Source Test (AST) should be analyzed. 
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This experiment used a source suspended from a ship; thus, it excited the low modes 

directly. A comparison of the AST data with the ATOC data might provide useful 

insights into the effects of the bathymetric coupling on the arrival patterns. Once 

the excitation pattern of the low modes is known, an interesting question to ask is 

whether some of the effects of the bottom interaction can be removed via deconvo- 

lution techniques. Although this is likely to be a difficult problem, a solution might 

provide researchers with a simpler signal for use in studying internal wave effects 

and/or temperature changes. 
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Appendix A 

Acoustic Mode Perturbations 

As discussed in Ch. 2, underwater acoustic normal modes satisfy a second-order 

eigenvalue equation: 

d?        Ü2 

+ 
ßz2     c2(z)_ <fim(z,ty = k2

m(n)<f>m{z,n). (A.i) 

Equation A.I assumes unit density (p(z) = 1, Vz), which is reasonable for the water- 

borne modes. These modes form a complete set of orthogonal basis functions and 

are normalized such that 

J       (t>m{tt,z)<j)n{Q,,z)dz = 8{in-n), (A.2) 

again assuming unit density. The purpose of this chapter is to investigate how the 

mode wavenumbers and shapes are affected by changes in Ü, using linear perturbation 

theory. The discussion begins with a brief review of perturbation theory. Following 

that, the solution to the problem of frequency perturbations is straightforward. 

Linear perturbation theory provides a method of solving for the eigenvalues and 
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eigenfunctions of a perturbed problem, i.e., 

A + eAi + e2A2 + ■ ■ ■] <L = jlmK (A.3) 

in terms of the solutions to an unperturbed problem 

A(f>m = ßm(f>m- (A.4) 

where the boundary conditions are the same for both problems. The intent of this 

section is to review standard results found in a number of references, e.g., [75, 76], 

rather than to provide a rigorous derivation. See the book by Rellich for a thorough 

mathematical treatment of the problem [77]. For the purposes of this discussion, the 

operator A has distinct eigenvalues and its eigenvectors form a complete orthonormal 

(CON) set. Let the abbreviation (x, y) represent the inner product: 

{x,y)= /       x(z)y(z)dz (A.5) 
J 0 

where x and y represent arbitrary functions of z. The following results rely on the 

standard assumption that the operator A is self-adjoint, i.e., {Ax,y) = (x,Ay). 

Assuming that Ä may be written in terms of a power series in a small parameter 

e, perturbation theory seeks solutions to Eq. A.3 of the form 

(A.6) 

Substituting A.6 into Eq. A.3 and equating terms of order e yields:1 

A<j$ + Al(f>m = fjtntW + ^Um (A.7) 

xThe e° terms represent the unperturbed problem. 
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Taking the inner product of both sides with (f>m and solving gives the first-order 

corrections to the eigenvalues: 

ßm   = (A^m,<t>m)- (A.8) 

Since the modes of the unperturbed problem form a CON set, the eigenfunction 

corrections can be written in terms of the modal basis set, i.e., 

(A.9) 
k=\ 

where g^ is the coefficient representing the contribution of the kth. mode to the first- 

order perturbation of the mth mode. Substituting Eq. A.9 into Eq. A.3 and taking 

the inner product with (j>k (k ^ m) gives the perturbation expansion coefficients: 

{Ai<f>m, (j>k) 

o(1) - < 9km — \ 
ßm — ßk 

k / m 

k = m 

The second-order corrections can be obtained in a similar manner. 

(A.10) 

ßm   = Y2 9km9mk(ßk ~ ßm) + (A2K, 4>m) (A.11) 

and 

where 

9k <22 = 

€} = EÄ, 
jt=i 

ßm       ßk   _ k 

~n ^\9km) 

J29km(ßm ~ ßk) - ß^gim + (^2</>m, <Pk) k ^ m 

k = m 

(A.12) 

.     (A.13) 
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Consider how the mode parameters vary when the desired frequency is equal to 

ü = u) + Au). In this case, the perturbed eigenvalue problem becomes 

f_ LÜ2 

dz2     c2(z) , U \   CO   )    , 
<t>m = Ki^m- (A.14) 

Using the following definitions, this problem fits the standard form discussed above: 

Aw 
ÜJ 

A, 

A2 

=   2 
u 

S2(z))' 
iü 

c2(zY 
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