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I. Introduction 

The development of the NRL Atmospheric Variational Data Assimilation System (NAVDAS) began in 1996. At 
that time, both the regional and global atmospheric data assimilation requirements of Fleet Numerical Meteoro- 
logical and Oceanographic Center (FNMOC) were met with versions of a multivariate optimal interpolation 
algorithm (MVOI), originally developed in the mid-1980s (Barker, 1992; Goerss and Phoebus, 1992). The NRL 
MVOI algorithm was based on the most powerful formulation of the problem available at that time, that of 
Andrew Lorenc (1981) at theEuropean Centre for Medium Range Forecasting (ECMWF). In particular, the 
NRL MVOI used a box or volume formulation that permitted a few hundred observations located in the same 
region to be processed simultaneously, thus minimizing (but not eliminating) data selection. Moreover, the 
forecast error covariance was (in conception, but not in execution) reasonably general, permitting the geo- 
strophic and nondivergence constraints to be imposed weakly, if desired. 

However, in the years since the implementation of the NRL MVOI system, great strides had been made in 
atmospheric data assimilation-both in the academic world and in other operational centers. Firstly, the OI algo- 
rithm had been generalized to the three- dimensional variational (3DVAR) algorithm. Like the OI algorithm, this 
was a static three-dimensional algorithm in which all the observations over a particular time window were 
processed simultaneously (as if they were all valid at exactly the same time) and the time evolution was entirely 
handled by the evolution of the forecast (or background) field. Compared to the OI algorithm, the 3DVAR 
algorithm had several advantages: 

(1) A global solution was obtained—there was no data selection 

(2) Many observation types that are difficult to handle properly with the OI algorithm could be handled 
properly in 3DVAR. An example was the direct assimilation of radiances from polar-orbiting sound- 
ers. 

(3) More powerful and realistic formulations of the error covariances (required in generating the 
analysis weights) were possible. 

3DVAR algorithms were deployed operationally (for the global problem) at the National Centers for Environ- 
mental Prediction (NCEP) in 1992 (in a rudimentary form) and in more mature form at ECMWF in 1995. After 
1995, they became operational at the Data Assimilation Office (DAO) at the NASA/Goddard Space Flight 
Center, at the Canadian Meteorological Center (CMC) in Montreal, and at Meteo France. The general properties 
of 3DVAR algorithms are covered in Section 2. 

Beyond the 3DVAR algorithms, there were several classes of four-dimensional algorithms, in which the analysis 
weights (as well as the background fields) could evolve (either implicitly, as in the case of the four-dimensional 
variational (4DVAR) algorithm, or explicitly, as in the case of the Extended Kaiman Filter (EKF)). These formu- 
lations permitted flow-dependent analysis weights, with more complicated relationships between variables than 
the simple linear relationships of geostrophy or nondivergence. The observations could be inserted at the correct 
times, without binning over a time interval. However, these algorithms were much more complex and computer- 
intensive than the three-dimensional algorithms. 
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I. Introduction 

An assessment of the NRL/FNMOC data assimilation situation led to the following strategy: 

(1) The first priority was the development of a competitive, state-of-the art 3DVAR system. Consider- 
ing that the leading centers were some years ahead of NRL in this respect, existent NRL expertise 
and software would have to be exploited heavily. The resulting 3DVAR system would have to be 
implementable for the global, regional, and shipboard problem with a common code. The 3DVAR 
code was not to be thought of as a mere way station on the way to a four-dimensional algorithm-it 
had to stand on its own merits. The implementation of features that permitted limited four-dimen- 
sional capability was not precluded and has, in fact, been pursued. 

(2) Four-dimensional data assimilation was relegated to a slower track. There were two reasons for 
this decision. First, it was felt that the work on four-dimensional algorithms at other institutions 
was too immature to warrant substantial investment in a particular four-dimensional algorithm. 
Second, it was felt that there were neither the human resources, nor sufficient commitment of 
computer resources to tackle the problem at NRL on a compressed timetable. However, it was felt 
that a relatively modest research program (of 6.1 type) would be a useful long-term strategy. To 
this end, a four-dimensional algorithm called the cycling representer algorithm was developed and 
applied to simple data assimilation problems. The present text does not discuss any of this work. 
However, we note that this algorithm is a logical extension of the NAVDAS algorithm described 
here (see Xu and Daley, 2000). 

The first step in formulating a 3DVAR strategy was to examine work in the field and visit existing 3VAR 
programs at other institutions. Thus, in September 1995, Roger Daley, Ed Barker, and Nancy Baker visited 
NCEP to examine the spectral statistical interpolation (SSI) code of David Parrish and John Derber (1992) and 
the Data Assimilation Office (DAO) at NASA/Goddard to examine the Physical Space Assimilation System 
(PSAS) of Steve Cohn et al. (1998). 

Work then began using one- (x) and two-dimensional horizontal (x,y) univariate assimilation systems to select 
the most promising 3DVAR algorithm (Section 2) and find the most appropriate descent method for the selected 
3DVAR algorithm (Section 3). This emphasis on simpler models was found to be very valuable in that it allowed 
a considerable amount of experience to be gained quickly. These simple model techniques were later extended to 
the generation of multivariate horizontal (x,y) and cross-section (x,z) 3DVAR codes. This philosophical ap- 
proach to the solution of practical data assimilation problems was similar to that of Daley (1985) and Daley, 
Wergen and Cats (1986) at ECMWF. Sections 2 and 3, which cover most of this material, serve as a useful 
pedagogical introduction to the 3DVAR algorithm. 

This experimentation led to the decision in March, 1996 to construct an observation space 3DVAR system using 
pre-conditioned conjugate gradient descent. This was to be a completely new system. In particular, the data 
handling and model interfaces were to be rewritten in a much more general way, so that the potential power of 
the 3DVAR algorithm was not lost because of unnecessary compromises or approximations that had been made 
in the older NRL MVOI system. This work was eventually to lead to NAVDAS, although the acronym was not 
devised until 1999. 

The bulk of the coding was done by the two authors, with a very clear division of labor. The work was divided 
into three parts. 

(1) Data ingest, quality control, processing the background fields, generation of the observation error 
statistics, production of the linearized forward operators (Section 5) and formation of the innova- 
tion vectors (Section 7) was the responsibility of Edward Barker. 
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(2) Sorting of the innovations into prisms (Section 3), specification of the background error covari- 
ance (Section 4), the descent algorithm (Section 3), the postmultiplier (Section 3), use of the linear- 
ized forward operators (Section 5), production of the correction vectors, the buddy check algo- 
rithm (Section 9) and parallel implementation (Appendix C) using MPI (Message Passing Inter- 
face) was the responsibility of Roger Daley. 

(3) Interpolation of the correction field to the model surfaces, mean sea level pressure, and other 
subterrain problems; production of statistics for both the Naval Operational Global Atmospheric 
Prediction System (NOGAPS) and the Coupled Ocean/Atmosphere Mesoscale Prediction System 
(COAMPS) models (Section 8); and controlling the forecast/analysis cycle was the responsibility 
of Edward Barker. 

Other NRL scientists made invaluable contributions to the project. Quality control software for AMD AR and 
cloud-drift and water vapor winds observations was written and tested by Patricia Pauley. The one-dimensional 
variational retrieval of TOVS radiances, together with bias correction, quality control, and production of the 
linearized forward operators was done by Nancy Baker. Steve Swadley produced a Web-based graphical data 
monitoring system for NAVDAS. An Australian visitor (Peter Steinle) constructed the isentropic version of 
NAVDAS. 

A (non-nested) COAMPS cycle was successfully tested in the spring of 1999 for the CALJET experiment (Cali- 
fornia coast). Responsibility for the COAMPS cycle, particularly the development of the nested version, was 
assumed by Keith Sashegyi. The NOGAPS cycle was first tested successfully in December 1999 and responsi- 
bility for its implementation was assumed by Jim Goerss. 
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2. General Theory 

This section covers the derivation of the 3DVAR algorithm, the analysis grid space, observation space forms of 
the algorithm, and various properties of the algorithm. Experiments are performed with simplified versions of 
three alternate solution schemes, ending with the choice of a particular algorithm. 

2.1 Derivation of the 3DVAR algorithm 

This derivation follows Daley (1991, section 13.1) and uses the increasingly common notation displayed in 
Daley (1997). The main text in this area is Tarantola (1987) and other useful sources are Lorenc (1986), Heckley 
et al. (1992), Parrish and Derber (1992), Courtier et al. (1997), and Cohn et al. (1998). At some time (t) define xb 

and x as column vectors of forecast (background or prior) and analyzed values on some regular analysis grid 
r., where 1 < I < I. Define x to be the vector of length I of true values of the variables at the same gridpoints. 
(Note that spectral coefficients could be used instead of gridpoint values). Then, define the background error 
vector as eb = xb - x. We assume that the background error is unbiased but may be correlated. Thus, <eb> = 0 and 
<eb(eb)

T> = Pb is the Ixl square, symmetric positive-definite background error covariance matrix. (Angle brack- 
ets indicated expected value, superscript "T" indicates matrix transpose, and positive-definiteness implies that 
all the eigenvalues of Pbare real and positive.) 

Define y as a column vector of length L of observations. L is generally different than I, and the variables of x 
may be different than the variables of y. Thus, x might be winds and temperatures, while y might be radiances in 
different channels from some remote sensing device and/or radar reflectivity. Define H as a forward operator 
from the analysis/background grid variables xa, xb to the observed variables y. For example, if x is temperature 
and y is radiance, then H would be the radiative transfer equation (perhaps nonlinear). Then, y = H(x) + e , 
where e is the error in the observation. This error has two sources, the instrument error and the error in the 
forward model. In cases where x and y refer to the same variables, but the spatial location of y is not a gridpoint, 
then the operator H is simply an interpolation operator and the error in the forward model is simply the error of 
representativeness. We assume that er is unbiased <e > = 0 but may be spatially correlated with the LxL square, 
symmetric positive-definite observation error covariance matrix R = <er(er)

T> . 

Assuming that the background and observation errors are distributed normally, then it can be shown (see Daley 
1991, section 2.2) that the most probable (i.e., maximum likelihood estimate) analysis state vector xa is obtained 
by minimizing the scalar cost function J with respect to xa, where 

J = 0.5[y - H(xa)fR '[y - H(xa)] + 0.5[xb - xa]
TPb-'[xh - x ], (2.1) 

(Note that we have also assumed that the observation and background errors are not mutually correlated). 

Differentiation of the scalar J with respect to the vector xa produces a vector VJ, which is known as the gradient 
of J with respect to xa, 

VJ = WR-TH^) - y] + Pb'[xa - xb]. (2.2) 

The matrix H is the Jacobian matrix corresponding to the (possibly) nonlinear forward operator H. (If H is 
linear, then H and H are the same). If H is nonlinear, as when H is the radiative transfer equation, then H is 
defined as H = 3H(x) /dx evaluated at x = xa. Thus, the Jacobian matrix is a matrix whose elements consist of 
partial derivatives of H with respect to x. Of course, we do not know xa when we attempt to evaluate H, so we are 
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forced to use the background xb to evaluate it. Thus, if we assume that xbis not too far from xa, then we can 
expand H(x ) in the first two terms of a Taylor series around x = xb, 

H(xa) = H(xb + [xa - xb]) = H(xb) + H[xa - xb], (2.3) 

where this time, H is evaluated at x = xb. Inserting this expression into Eq. (1) and differentiating with respect to 
xa yields Eq.(2.2). 

For some purposes, it is useful to take the second derivative of J with respect to xa. The second derivative of a 
scalar with respect to a vector yields an Ixl matrix known as the Hessian matrix and corresponds to a measure of 
the curvature. Thus, differentiating the gradient in Eq. (2.2) with respect to xa (and ignoring small terms due to 
the nonlinearity of H) yields the Hessian matrix V2J = IFR-'H + Pb

4. We note that if the extremum of J is to be 
a minimum, then the Hessian should be positive-definite. This should be the case if R and Pb are positive- 
definite. 

At the minimum of J,VJ = 0 (and the Hessian is positive-definite). Setting VJ = 0 in Eq. (2.2) yields (after adding 
and subtracting HTR_1H[xa - xb]), 

[HTR H + Pb-'][xa - xb] = IFR [y - H(xa) + H[xa - xb]]. (2.4) 

Application of the approximation (2.3) gives, 

xa- xb = [IFR H + Pb ] IFR [y - H(xb)]. (2.5) 

We refer to y - H(xb) as the innovation vector (in observation space). xa - xb is referred to as the correction 
vector, and y - H(xa) is the residual vector. 

We refer to Eq. (2.5) as the information or analysis space form of the solution. If A is an error covariance matrix 
and IA is some norm of A, then as A decreases the error decreases but || A1 | increases. When the error is 
small, the information content is large, thus we refer to A1 as an information matrix. (Note there are other 
definitions of information, but this is the nomenclature used here). Thus, as the error covariances R and Pb 

appear in Eq. (2.5) in inverse form, we refer to Eq. (2.5) as the information form. 

Another useful form of Eq. (2.5), we refer to as the error or observation space form. This form can be obtained 
from (2.5) by application of the Sherman-Morrison-Woodbury formula, 

xa - xb = PbIF[HPbir + R]-'[y - H(xb)]. (2.6) 

The error or observation space form is closely related to the optimal interpolation (OI) algorithm. OI does not 
explicitly include the forward model. However, suppose the observed variables y and the grid variables x are the 
same variables and the forward model is simply spatial interpolation. Then, H is linear (H = H), and we can 
approximate HPbH

T by the forecast error covariance directly between the observation locations, and PbIF 
directly by the forecast error covariance between observation locations and grid locations. H(xb) is simply the 
background interpolated to the observation locations. In practice, of course, additional assumptions are made in 
deriving operational OI algorithms-such as allowing only a limited number of observations to influence each 
gridpoint. The advantages of (2.5) or (2.6) over operational OI algorithms are: 

(1) all observations influence the analysis at every gridpoint; and 

(2) more general forward models can be used, and thus observations that are not related directly to 
analyzed variables can be more easily assimilated. 
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2. General Theory 

Before proceeding, we note that either (2.5) or (2.6) can be written in the form, 

xa-xb = K[y-H(xb)], (2.7) 

where K is an IxL rectangular weight or gain matrix. It is straightforward to show that if the analysis error vector 
is defined as e = x - x and the analysis error covariance as Pa = <ea(ea)

T> , then the analysis error covariance for 
any choice of weights K is 

P = [I - KH]Pb[I - KH]T + KRKT, (2.8) 

where I is the identity matrix. If the weights are optimal (i.e., minimize the cost function J), then they will be 
given by Eq. (2.5) or (2.6), that is K = [IFR H + PJ HTR ' = PbH

T[HPbH
T + R]-'. Inserting these values into 

Eq. (2.7) yields the analysis error covariance under optimal conditions 

P=[I-KH]Pb (2.9) 

that can also be written 

P-^WR-'H + P-1. (2.10) an 

Note the resemblance between the inverse of the analysis error covariance and the Hessian matrix. It is simple to 
see from Eq. (2.10) that since R and Pb (and their inverses) are positive-definite, the information content of the 
analysis must be greater than the information content in either the background or the observations. 

2.2 Three Forms of the 3DVAR Algorithm 

We now discuss three forms of the 3DVAR algorithm. Most operational 3DVAR algorithms can be described by 
one of these forms. Two of these are information or analysis space algorithms (Methods A and B) and the third 
(Method C) is an error or observation space algorithm. 

2.2.1 Method A (Analysis Grid/Physical Space) 

Let us write Eq. (2.5) in the form 

xa-xh = QA"'HT"1[y-H(xh)]' (2-n) 

where QA = [FFR'H + Pb
_1] is the Hessian matrix of J and the optimal analysis error covariance. In essence, the 

minimization of J is equivalent to the inversion of QA (actually the solution of the linear problem involving the 
matrix QA). This form has advantages and disadvantages. The principal work done in implementing this algo- 
rithm is the solution of this large linear problem. This linear problem involves an Ixl matrix and the solution is 
performed in the physical space of the analysis gridpoints. For a global model, I might be very large 0(1 OMO7). 
However, the size of the problem does not depend on the number of observations. Obviously, this method is 
advantageous when there are many observations and few gridpoints. Another, related advantage occurs because 
information is additive, while error is not. This is illustrated using a scalar version of Eq. (2.11). Suppose we 
have a background xb with error variance eb

2 and two observations^ with error variance E,2 and x2 with error 
variance e2

2. Assume that the observations are not correlated either with each other or the background, and that 
the forward model is simply equal to one. Then, if we use observation x, only, the appropriate form of Eq. (2.11) 
is 

xa= xb + {e,-2(x, - xb)}/{e,-2 + eb~2}, (2.12a) 

NAVDAS Source Book 



whereas, if both x; and x2 are used, Eq. (2.11) becomes 

xa = xb + {8r
2(Xl - xb) + e2-

2(x2 - xb)} / {e,-2 + e2~2 + eb"2}. (2.12b) 

Adding more observations (as in Eq. 2.12b) means that in the denominator, we are simply adding information 
(inverse of error). This property is particularly attractive for adding new (nongeophysical) observation types. 

This additive property of Method A has another advantage. Suppose we wished to impose a constraint on the 
cost function J (Eq. (2.1)). That is, we require that the analysis satisfy some constraint g(xa) = 0, which could 
represent geostrophy, the linear balance equation, no generation of fast gravity modes, etc. If the constraint were 
to be applied exactly, it would be a strong constraint, and if applied approximately, it would be a weak con- 
straint. It is relatively easy to add such a constraint to (2.1). If the constraint is weak, then we add a term ß"'g(xa) 
to (2.1). As ß decreases, the constraint is applied more strongly. For strong constraints, we use the method of 
Lagrange multipliers and introduce a new cost function Jj = J + A.g(xa), where X is the undetermined Lagrange 
multiplier. 

Now if the constraints are strong and linear, then there are philosophical objections to imposing them in this 
way. That is, if the analysis is to reflect such a constraint, then presumably it should be reflected in the back- 
ground error statistics in Pb. If the background error statistics already reflect this constraint, then nothing is to be 
gained by adding it. On the other hand, if the background error statistics do not reflect this constraint, then the 
external imposition of the constraint is inconsistent with the background error statistics. 

The four-dimensional extension of this algorithm is the strong constraint 4DVAR algorithm. 

This method was used by Derber and Rosati (1989) and extended by Passi et al. (1993) for ocean data assimila- 
tion. Solution is obtained by a preconditioned conjugate gradient method (see Section 3). Although we discuss 
preconditioning in more detail in Section 3, we note that if we wish to solve Ap = r for p and there is a matrix 
A* that is reasonably similar to A and for which we easily solve A*p = r, then A* can be used as a preconditioner 
for A. The availability of simple and reasonably accurate preconditioners makes the solution of equations like 
(2.11) much simpler. In the case of Eq. (2.11), a good choice of preconditioner is the matrix Pb

_1, which is an 
approximation to QA, and its inverse Pb is known. 

More recently a variant of this method has been applied to the atmospheric mesoscale assimilation problem 
(Derber et al., 1996). Gaussian correlations are horizontally separable and multiplication by a univariate Gaussian 
background error covariance matrix on a separable grid can be simulated exactly by the application of recursive 
digital filters in each of the two horizontal directions. This is, of course, very efficient. Extension to the multi- 
variate case is more difficult, and the operational solution has been to add weak geostrophic or other constraints 
while keeping the background error covariances univariate. However, it is clearly inconsistent to specify that the 
background error have no multivariate correlations while permitting the resulting correction fields to be corre- 
lated. 

2.2.2 Method B (Analysis Grid/Semi-modal Space) 

Method B is a variant of Method A, which is sometimes referred to as the spectral or semi-modal method. The 
analysis is still performed in the analysis grid space, but it uses a spectral (modal) decomposition and spectral 
transforms. Define Eb as the Ixl matrix of eigenvectors of the background error covariance Pb. Define Ab as the 
diagonal Ixl matrix of the corresponding (positive, real) eigenvalues. Then, because Pb is symmetric, positive- 
definite, we have 
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2. General Theory 

Substitution of (2.13) into (2.11) yields 

xa - xb = EbAb"
2Qb-

1Ah
l/2Eb

THTR-'[y - H(xb)], (2.14) 

where Qb = I + Lb
1/2Eb

THTR-1HEbLb
1'2. 

Note that Qb is symmetric. Method B has most of the advantages of Method A-observations are easily added, 
constraints can be imposed, etc. The difficulty with the information form (2.5) is that it involves manipulation of 
the (generally) huge background error covariance matrix Pb. Method B attempts to deal with this problem by 
manipulating the diagonal matrix Ab instead of the full matrix Pb. Method B cannot be used for an arbitrary 
background error covariance matrix, because determining the full eigenstructure of an arbitrary Pb matrix would 
be extremely costly. What is actually done is to use a very simple background error covariance, in which a 
representation like (2.13) can be defined using known spectral functions such as spherical harmonics or Hough 
functions. For example, for the univariate case on the sphere, if the background error covariance is assumed to be 
isotropic and homogeneous, then a form like (2.13) is possible for a triangularly truncated spherical harmonic 
expansion. The multivariate case can be handled by using a Hough function expansion (Heckley et al., 1992), or 
by application of the linear balance equation (Parrish and Derber, 1992, or Daley, 1996). In this case, the matri- 
ces Eb and Eb

T are simply spectral transform matrices, which are widely used in global spectral models. Note that 
while the horizontal is handled spectrally, the vertical is still handled in physical space, hence the term "semi- 
modal." 

Method B is used operationally (with spherical harmonics or Hough functions) at NCEP, ECMWF, CMC, and 
Meteo France. It has the primary disadvantage of Method A in that, for the most part, the specification of the 
background error covariance (which is absolutely crucial) is in some ways less sophisticated than in OI. 

2.2.3 Method C (Observation/Physical Space) 

Method C uses the error form (2.6) and can be written 

xa - xb = PbITQt  [y - H(xh)], with Qc = HPbH
T + R. (2.15) 

We can also obtain this algorithm by minimum variance estimation. It bears some similarity to the OI algorithm. 

In this algorithm, the solution to the linear problem involving Qc is performed in the space of the observations. 
This LxL space may be smaller than the Ixl space required in Method A. The technique has been used at DAO 
(NASA/Goddard) where it is referred to as PSAS (Physical Space Assimilation System) (see Cohn et al.,1998). 
While the acronym is snappy, it is a bit of a misnomer; Method C is really an observation space assimilation 
system, although performed entirely in physical space. It is fairly obvious that the cost of the algorithm increases 
as the number of observations increase. For situations in which there are few observations (which is quite likely 
to occur in many Navy applications), this aspect of the algorithm might be quite attractive. 

The four-dimensional extension of this algorithm is the Kaiman filter or the representer algorithm. 

Method C does not have the nice additive properties of Methods A and B. This makes it more difficult to add 
constraints, particularly strong constraints. However, weak constraints can be added simply by treating the con- 
straints as extra observations and augmenting the observation vector and observation error covariance matrices. 

There is also a semi-modal variant of Method C, which is discussed in Section 4.4. In this variant, the horizontal 
operations are handled in physical space as before while the vertical operations are handled in a decomposed 
eigenvector space. This variant is very important for the formulation of NAVDAS, but we do not discuss it 
further until Chapter 4. 
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It should be noted that all three 3DVAR algorithms are equivalent in principle (see Courtier, 1997). Where they 
will differ is in the approximations required to make them tractable, and these differing approximations will lead 
to differing analyses. All of these algorithms involve solving large linear problems, by iterative or descent 
methods. Thus, we next examine the condition numbers of the matrices QA, QB, and Qc . 

2.3 Condition Numbers for the Three Methods 

Solving these large linear problems by iteration is expensive, and it is clearly desirable that they converge in as 
few iterations as possible. The convergence rate will depend largely on the condition numbers of these matrices. 
The larger the condition number, the slower the rate of convergence. There are several ways to define condition 
number, but we define it as the ratio of the maximum and minimum eigenvalues (assuming they are all non- 
negative). Thus, if the eigenvalues are all similar, convergence will be quick, but if some of the eigenvalues are 
very small, there will be problems. We first examine a case where the condition numbers can be obtained ana- 
lytically. Assume that (1) forecast and observed variables are the same, (2) the observation network coincides 
with the analysis grid, and (3) R and Pb commute, that is RPb = PbR. Under these conditions, H = I and the 
eigenvectors (but not necessarily the eigenvalues) of R and Pb are the same. We can then write, R = EA ET and 
Pb = EAbE

T, where E is the common eigenvector matrix and A and Ab are the diagonal matrices of eigenvalues 
of R and Pb respectively. Substitution into the definition of the Q matrices (Eqs. (2.11), (2.14), and (2.15)) gives 

QA = EtA,"1 + A->]ET, QB = E[I + AbAr-']E
T, Qc = E[Ab + A ]ET. (2.16) 

Denote individual eigenvalues of Pb and R as \ and \ respectively, and denote the maximum and minimum 
eigenvalues of Pb as ?ib

max and A,b
min. Denote the condition number of QA as cAand define it as the largest eigen- 

value of QA divided by the smallest. Similarly define cB and cc. We consider two scenarios-uncorrelated obser- 
vation error and correlated observation error. 

Scenario 1 - uncorrelated observation error (white noise) Xr = constant 

cA = \™*[\™ + Xj/X^iX™ + \), cB = cc = [\max + \]/[\min + Xr]. (2.17) 

To explore these condition numbers, let us consider four limiting cases: 

(1) uncorrelated background error (A,b
max = Xb

min)     cA = cB = cc = 1. 

(2) red background error (A,™*» \» A,b
min)     cA = \ I X™» 1,   cB = cc = \max l\»\. 

(3) accurate background (\» Ab
max)     cA = A,b

max /\min, cB = cc = 1. 

(4) accurate observations (\™a» X)     cA = 1, cB = cc = ^b
max /\min. 

Thus, for uncorrelated observation error, we may conclude that for all three methods, the condition number 
increases as the background error becomes redder (increasing correlation length). For Method A, the condition 
number increases as the background becomes more accurate, with the converse being true for Methods B and C. 

Scenario 2 - correlated observation error (same spectrum as forecast error) Xr = Xb. 

cA = cc= \»/\~,  cB= 1. (2.18) 
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2. General Theory 

Clearly, the effect of correlated observation error is to increase the condition number for Methods A and C, but 
to decrease it for Method B. 

The assumptions used in deriving (2.16-18) are very restricted, so we will now discuss a more realistic scenario. 
Consider the univariate two-dimensional case with an observation network in which the observations are ran- 
domly located. We will assume that both the background error and observation error correlations take the form 
of a second order autoregressive function (SOAR), but that the error variances and the correlation lengths are 
different. 

Background error covariance: eh
2[l + s/Lb]exp(-s/Lb), 

Observation error covariance: £2[1 + s/L]exp(-s/L), 

(2.19) 

(2.20) 

Uncorrelated observation error is the limit as L-> 0. s is the absolute distance between any two observation 
locations or any two gridpoint. The forward operator H is bilinear interpolation. The grid was 9x9 equally 
spaced, and there are 81 (randomly spaced) observations. The domain is doubly periodic -n < x,y < n. As 
before, we define the condition number as the ratio of the maximum and minimum eigenvalues of the Q matri- 
ces, determined numerically using standard eigenvector decomposition software. We compare the condition 
numbers obtained with this random network, with the condition numbers determined analytically (from 
Eqs. (2.16)-(2.18)) for a coincident network/grid under the same experimental conditions. 

We consider four cases. 

Casel.   8 =eb=l,L=0,Lb=l/3 

X = \,kmax = 3.9,hmin = 0.n 

weakly correlated background error 
uncorrelated observation error 

Analytic Random Observation Network 

c. = 3.7 c„ = 3.9 cr = 3.9 
ABC 

cA = 5.5 c„ = 6.1 c,, = 6.1 
ABC 

Case 2:   e = eb = 1, L = 0, Lb = 1 

A, = 1,1 ™» = 22.3, ?ih
min = 0.016 

strongly correlated background error 
uncorrelated observation error 

Analytic Random Observation Network 

c  =62c, = 23 c  =23 
ABC 

r  = 87 c„ = 25 cf. = 25 
A B C 

Case 3:   e = 0.1, eb, Lr, Lb as in Case 1 

X = 0.01, V™ = 3.96, kmin = °-27 

Analytic 

accurate, uncorrelated observations 
weakly correlated background error 

Random Observation Network 

c= 1.03 c- = 14.2 cr= 14.2 
ABC 

c  = 212 c, =511 c  =511 
A B C 
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Case 4: same as Case 1, except with varying number of (random) observations 

10 observations 81 observations 300 observations 

cA=12cB = 2.2cc=1.6      cA=5.5,cB = 6.1cc = 6.1    cA = 5.5 cB = 18.8 cc = 58 

Note that for Case 4 the domain remained constant, so it was actually the observation density that increased. 
Another experiment (not shown here) considered the case when the number of observations was held constant, 
but the number of gridpoints was allowed to vary. In this case, cA increased strongly as the number of gridpoints 
was increased; cc was essentially invariant. 

From these analytical and experimental results, it is possible to draw several conclusions. 

The experimental results with a random network are qualitatively consistent with the analytic results. In all 
cases, however, the condition numbers from the more realistic networks were higher. All methods have increas- 
ing condition number as the background error correlation length increases-this effect appears to be most marked 
for Method A. 

For Methods B and C, condition number becomes large for accurate observations, while for Method A, it be- 
comes large for an accurate background. Correlated observation error increases the condition number for Meth- 
ods A and C and decreases it for Method B. 

For Method C, condition number is sensitive to the observation density but not to the grid resolution, while for 
Method A, the reverse is true. 

2.4 The Way Forward (the NAVDAS Algorithm) 

Methods A and B were the earliest (first generation) 3DVAR algorithms and have been used successfully by 
NCEP, ECMWF, and others. Method C is a later algorithm; although a variant has already been implemented at 
NASA/Goddard by Cohn et al. (1998). 

Our investigations have shown that all methods have advantages and disadvantages. However, a choice had to 
be made. The choice was Method C, and the choice was made for the following reasons: 

(1) The primary drawback of Method A, and to a lesser extent Method B, is that cruder approximations 
must be made to the background error statistics than in 01. For Method C, the background error 
statistics could, in principle, be more sophisticated than in 01. 

(2) Naval data assimilation problems are more likely to suffer from a scarcity of observations than 
from an overabundance. Since Method C is an observation-based algorithm, it is more suitable for 
this environment. 

(3) Of all the methods, Method C is most like OI. As we see in the next section, an implementation of 
Method C that uses a preconditioned conjugate-gradient descent algorithm, in which the 
preconditioner requires the observations to be sorted into observation volumes, has some similari- 
ties to the volume technique already used in the NRL MVOI algorithm. In fact, some of the NRL 
MVOI software can be adapted to NAVDAS purposes. 

(4) Method B has been successfully implemented for the global problem at NCEP, but NCEP uses a 
completely different algorithm for the regional problem. On the other hand, an algorithm based on 
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2. General Theory 

Method C has little dependence on the forecast model or the analysis grid and could use essentially 
the same code for both shipboard and global problems. This would imply a much more easily 
maintainable code, which is a major advantage for a small group. 
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3. Descent Algorithms 

This section discusses the descent algorithm used in the NAVDAS algorithm. We start with three sections of a 
pedagogical nature, which explore some of the general properties of descent algorithms and also explain the 
reasons for choosing a preconditioned conjugate gradient descent procedure. The remainder of the section dis- 
cusses various aspects of the implemented descent algorithm. Appendix E provides additional relevant material. 

3.1 General Concepts 

There is a large literature on descent algorithms, but the standard text is Gill et al. (1982). The treatment in the 
present paper is very elementary. 

Consider the very simple cost function 

J = u2/a2 + v2/b2, (3.1) 

where "u" and "v" are variables and "a" and "b" are (known) constants. In more general cases, u and v would be 
functions of the spatial and/or temporal coordinates of the problem. In this instance, however, u and v are simply 
scalars. The lines of constant J are ellipses in the (u,v) plane, with major and minor axes a and b. Define unit 
vectors i in the u direction and j in the v direction. Then, the gradient operator in the (u,v) plane can be written 

VJ = (8J/3u)i + (3J/3v)j. (3.2) 

VJ, in this case, is a vector of length 2, with components 3J/3u = 2u/a2 and 3J/3v = 2v/b2. The change in J caused 
by varying u and v is 8J = VJ • 6TJ, where U = ui + vj and 8U = 8ui + 8vj . 

Consider the point U0 = (u0,v0). If we make a small change in u0 and v0 (5u0,5v0), then the change in J is given by 

8J0 = V0J • 8U0 = 2u/a2 8u0 + 2v/b2 8v0. (3.3) 

The goal is to minimize J. In fact, it is trivial in this case; the minimum value of J occurs at u = v = 0 and is equal 
to zero. VJ points to larger values of J, and -VJ points to smaller values of J. Clearly, if we start from (u0, vQ) and 
proceed in the direction of -VJ , we will be reducing the value of the cost function J. 

Now, suppose we wish to find the minimum of J by iteration, starting at (u0, v0). We seek a next iterate (up v,) 
that has a smaller value of J than does (u:, v,). If we proceed in the direction of -VJ, the difficulty lies in 
determining how far to proceed in that direction. Obviously, if we go too far in the direction -VJ, J will start to 
increase again, and if we don't go far enough, J will not be reduced very much. The idea is to find the optimal 
distance (referred to as the step-length) to proceed in the direction -VJ. There are several ways to do this, but the 
general idea is to proceed along -VJ until J reaches a minimum (in that direction). 

We now have the ingredients to describe the simplest descent method, the method of steepest descent. In this 
procedure, we start at some starting point (0), calculate the local gradient at that point, proceed in the direction of 
the negative of that gradient until a minimum is reached in that direction. At this point (1), the value of the cost 
function should be less than it was at point (0). At point (1), we calculate the local gradient and proceed as 
before. We keep on repeating the procedure until the gradient becomes vanishingly small or the cost function 
does not diminish any further. The procedure is illustrated in Fig. 3.1 (after Walsh, 1975). The steepest descent 
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3. Descent Algorithms 

procedure always proceeds down the local gradient. It takes many iterations to converge to the minimum, be- 
cause the local gradient is generally not pointing toward the actual minimum of the cost function. 

Figure 3.1 
Schematic showing the iteration path for the 
method of steepest descent 

Before proceeding, we make a few general statements about cost functions. Cost functions that are quadratic 
(such as the simple example above) have only one minima and lead to linear problems. Consider a slightly more 
complicated example, J = u2 + v2 + (au + bv - c)2, a, b, and c known positive constants. Then, dJ /3u = 2[(1 + a2) 
u + abv - ac] and e>J/3v = 2[(1 + b2)v + abu - be]. The minimum is found by setting the two components of the 
gradient vector equal to zero. This is equivalent to solving the 2x2 matrix equation, 

+ a 

ab 

ab 

\+b2 

ac 

be 

For quadratic cost functions, there is always an equivalent matrix form. 

Examination of Fig. 3.1 suggests that, for an elliptic cost function, the local gradient rarely points at the mini- 
mum, and this means the method of steepest descent usually takes many iterations to converge. In fact, in Fig. 
3.1, if we draw a line between x0 and the minimum, the steepest descent path keeps crossing back and forth 
across this line. Ironically, proceeding down the fastest local direction is usually a very slow way to get to the 
minimum. Suppose the cost function in Fig. 3.1 were circular instead of elliptic, then the negative of the gradient 
would always point at the minimum. Obviously, we could reach convergence very quickly in this case. Is it 
possible to modify the cost function so that it becomes circular? Consider again the cost function of (3.1). 
Suppose we introduce new variables x = u/a and y = v/b, then J = x2 + y2. On the (x,y) plane, J is circular, and 
-VJ points directly at the minimum. The minimum is still at u = v = 0 or x = y = 0, but now -VJ points directly 
at the minimum. Let us examine this transformation from the point of view of the condition number. The equiva- 
lent matrix form for cost function (3.1) is 

0 

0 

b-1 

The eigenvalues of this matrix are a2 and b2. Let us suppose that the cost function (3.1) is highly elliptic, say, 
b2 » a2. Now make the substitution x = u/a, y = v/b as above. This time, both eigenvalues are equal to 1. The 
condition number (ratio of the eigenvalues) for the transformed problem is now 1, while the condition number of 
the original problem (3.2) was b2/a2» 1. Thus, a transformation that makes the cost function more circular also 
improves the condition number. 
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This type of transformation is referred to as preconditioning. In essence, one multiplies the matrix to be inverted 
by its approximate inverse to create a new matrix, which is as close to the identity matrix as possible. (This was 
trivial for cost function (3.1)). A simple preconditioning matrix might consist of the inverse of the diagonal 
elements of the matrix to be inverted. However, one can determine much better (but more complex) preconditioners 
than that. If Ax = b, and S = A1, then SAx = Sb and SA has a lower condition number than A. 

There is another way to achieve the same result. Suppose, instead of proceeding down the direction of steepest 
descent (-VJ), one were to define a new descent direction -0VJ. 8 is a matrix that multiplies the vector VJ to 
produce a new vector (and a different direction). If 8 were the identity matrix; then the descent direction would 
be the steepest descent. Now define 8 in the following way: 9"1 = V2 J, which is the Hessian matrix defined after 
(2.3). The descent direction - [V2 J ]-1 VJ has a remarkable property for quadratic cost functions-it converges to 
the minimum in a single iteration. This type of descent is known as a Newton descent because it bears some 
resemblance to Newton's method in root finding. This method works very well for small problems, where the 
Hessian can be found. For large problems, the Hessian may be difficult to obtain or too large to store (it may be 
a huge matrix). However, there are quasi-Newton methods that attempt to circumvent these problems. 

3.2 Formulation of Four Descent Algorithms for Observation Space Algorithms 

We now consider four descent algorithms for application to Method C. That is, we wish to solve the problem 

xa - xb = PblT [HPbH
T + R ]-' [y - H(xb)]. (3.4) 

We can break this problem into two steps, 

3.2.1 Solve the system 

[HPbH
T + R]z = d, (3.5) 

where the vector d = y -H(x ) and the vector z is to be determined. 

3.2.2 Post-multiplication step 

x-x=PhIFz. (3.6) 
abb 

Note that in (3.5), we merely wish to solve the linear system, not invert the matrix. It is easy to show that the 
vector z that solves (3.5) also minimizes 

I(z) = 0.5zT[HPblT + R]z-zTd. (3.7) 

The gradient of (3.7) is VI = [HPblF + R ]z - d, which at zero yields (3.5). 

The major problem is (3.5), solving the linear system Az = d, where A = [HPbH
T + R]. Let us define a general 

descent algorithm or iterative procedure as 

z, 
k+l = \+ «IA- <3-8> 

where k is the iteration number, zk is the kth iterate, ak (scalar) is the step-length at the kth iterate, and pkis a 
vector defining some search direction. We can write pk = 8kVRI, whereVkI is the gradient of the cost function 
(3.7) at the kth iterate, and qk is a matrix that multiplies the gradient vector, so that the actual search direction pk 
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may be different than the steepest descent direction VkI. Let us define the kth residual 

rk = d-Azk = VkI. (3.9) 

Then, it can be shown that to minimize I along the direction pk with respect to ak, the step-length should be 
chosen as 

«k = PkV/Pk
TApk. (3.10) 

3.2.3 The method of steepest descent 

In this algorithm, the search occurs along the gradient direction VkI. Our first estimate is z() = 0, and thus r() = d. 
Then, fork>0, pk = rk, followed by 

(\ = pk
T,v,/p1c\=r

kA-,/lv,\' 
*k=

z
k-. + akPk = zk-i + akrk-i. <3-n) 

h = r
k-, - aA • 

This process is continued until we are satisfied that the residual rk = VkI, for some k, has become sufficiently 
small. 

3.2.4 The quasi-Newton (BFGS) algorithm 

This algorithm attempts to construct increasingly more accurate approximations to the Hessian. The algorithm 
used here is the Broyden, Fletcher, Goldfarb, Shanno (BFGS) algorithm, which is discussed in Tarantola (1987) 
and is not described further here. 

3.2.5 The standard conjugate gradient algorithm 

As noted earlier, the steepest descent algorithm does not converge very quickly. One way of accelerating conver- 
gence is to make sure that we always travel in a direction perpendicular to the direction already traveled. Follow- 
ing Golub and van Loan (1990), the conjugate gradient algorithm has this property. As before, at k = 0, we set z() 

= 0, and thus r0 = d. Then, for k = 1, p, = r„. 

For k >1, define the scalar ßk = rk ,Trk, / rk ,
Trk, and pk = rk, + ßkpk, 

For all k > 0, we then proceed as follows: 

qk
=Apk> 

<\= Pk
Tr

k-/Pk\ = rk-.
TlVi' P.X'as Pk

TPk-i = °' <3-12) 
\ = \A + akpk> 
r

k = rk.. - aA 

3.2.6 The preconditioned conjugate gradient algorithm 

As noted earlier, the purpose of preconditioning is to lower the condition number of the matrix by using an 
approximate (but easily calculated) inverse. Suppose A* is an approximation to A, and we can solve A*s = f for 
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the unknown vector s given the vector f fairly easily. Then the preconditioned conjugate gradient algorithm 
works as follows. As before, at k = 0, set z0 = 0 and rQ = d. Then for all k > 0, solve 

A*sk = rkforsk. 
Ifk=l,p1 = s0, 

If k > 1 ßk= rkA\.Ki\.2and Pk= sk-i + ßA-i. 

Then, the remainder of the algorithm is similar to standard conjugate gradient, 

qk
=APk> 

\ = \A + akPk- 
rk = rk-! - «A 

(3.13) 

The important question here is to define a suitable preconditioning matrix A*. Cohn et al (1998) have considered 
the solution of problems such as (3.5) using the preconditioned conjugate gradient descent (3.13). The 
preconditioners A* that they examined were block diagonal approximations to A, obtained by dividing the 
observations up into subgroups and considering only the interactions between members of the subgroup. This 
idea is really ideal for an implementation of Method C, because the NRL MVOI scheme already divides the 
observations into volumes and does a separate inversion for each volume. 

The procedure would work as follows. The horizontal (latitude/longitude) domain is divided into triangles on 
the sphere (or any subdomain), which in three dimensions are actually prisms. These triangles (prisms) are large 
where the observation density is low; and small where the observation density is high. The observations are 
sorted so that there are approximately the same number of observations (perhaps a few hundred) in each obser- 
vation prism. This is illustrated in Fig. 3.2. All observations in a radiosonde ascent or a vertical sounding would 
be placed in the same volume. 

Figure 3.2 
Division of the globe into triangular 
observation prisms 
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We then consider an approximation to A = HPbH
T + R, which ignores all correlations between observation 

locations that are not in the same observation prism. That is, all interprism correlations are ignored. This ap- 
proximate matrix A* will then be block-diagonal, as opposed to the original (essentially full) matrix A. This is 
illustrated in Fig. 3.3, which shows the full matrix A on the top and two different block-diagonal preconditioner 
matrices A* on the bottom. At this time, we consider only the use of a single preconditioner matrix, leaving the 
discussion of the second preconditioning matrix until section 3.5. Consider finding s, satisfying A*s = f with A* 
containing N diagonal blocks A,*...AN *. Break up s into subvectors s,.. .sN and f into subvectors f, fN. Then, 

solving A*s = f is equivalent to solving An*sn = f , 1 < n < N. (3.14) 

The solution of these smaller problems can be found by direct 
perhaps by iteration using a standard conjugate gradient method. 

FULL MATRIX 

A = HPJi   +R 

PRE-OONDITIONER MATRIX 
(BLOCK DIAGONAL) 

SECOND PRECONDITIONER 
MATRIX 

(BLOCK DIAGONAL) 

Figure 3.3 
Schematic showing the full matrix A and two pre-conditioners 

methods such as Cholesky decomposition or 
Finally, the vector s is constructed by piecing 
together the vectors s,.. .sN. In the limit where 
N = L (the number of observations), the di- 
agonal blocks of A* would be of dimension 
one, and the preconditioning operation would 
consist of dividing by the diagonal elements 
of A. At the other limit N = 1 and A* = A, 
which does not get us anywhere. A reason- 
able choice might be N = L"2, which would 
give L1'2 volumes, each containing V2 ob- 
servations. In any case, the observations 
should be divided up so that there are no vol- 
umes that contain substantially more obser- 
vations than any other volume. If such a vol- 
ume exists, it should be divided into two 
smaller volumes. 

It might be noted that there are two major 
operations in the preconditioned conjugate 
gradient algorithm (3.14)-the matrix multi- 
plication qk = Apk and solving A*sk = rk. The 
matrix multiplication is 0(L2) operations and 
is expensive. The solve using the block di- 
agonal preconditioner should be somewhat 
cheaper because it (crudely) involves solv- 
ing L"2 linear problems of dimension L"2. The 
remaining operations are either inner prod- 
ucts of vectors or multiplication of vectors 
by scalars, which are very inexpensive. 

3.3 One- and Two-Dimensional Univariate Experiments with the Four Descent Algorithms 

All of the above descent algorithms were candidates for application to Eq. (3.5). It was decided that existing 
commercially available descent codes would not be used, but that the descent algorithm would be coded by the 
developers. This meant that there had to be some rational basis for making a choice. This led to the following 
series of one and two-dimensional experiments in which all four of the above algorithms were applied. 
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3.3.1 One-dimensional experiments-choosing the most rapid descent 

In this case, 25 gridpoints and 25 observation stations were collocated with the gridpoints on a periodic domain 
-71 < x < K. Thus, the forward operator H was the identity matrix. There was one variable, the geopotential 
field. It was assumed that the observation errors were not correlated. The background error correlation model 
was second-order autoregressive (SOAR) (see Eq.(2.20)). 

The descent algorithms are designed to solve the linear problems (3.5); they are not designed to produce the 
analysis weight or gain matrix (2.7). However, for small problems like this one, it is possible to use any descent 
algorithm to produce the gain matrix using a simple trick. That is, for each observation station in turn, set that 
observation value equal to 1 and all the other observation values equal to 0. One run of the descent algorithm will 
then produce one column of the gain matrix K. The procedure is then repeated for each of the L observation 
locations. Obviously, this is very expensive if L is large. However, possession of the gain matrix allows us to 
calculate the analysis error covariance, using (2.8). We can do this at each iteration step until convergence, when 
the analysis error covariance will be given by (2.9). At all steps of the iterative procedure before convergence, 
trace(Pa) will always be larger than the converged value. 

In the first experiment, the background error correlation length was Lb = n/12, the background and observation 
errors were eb = 1.0 and £. = 0.1. This case corresponds to very accurate observations. The condition number of 
the matrix HI^IF + R was 38. Figure 3.4 shows the rms analysis error on the grid (square root of trace(Pa)) as 
a function of iteration number (abscissa) for three descent algorithms-steepest descent (dash-dot), standard con- 
jugate gradient (solid), and BFGS (dashed). Consistent with Fig. 3.1, the steepest descent converges slowly and 
seems to oscillate around the solution. 

Figure 3.5 shows the analysis error spectrum (obtained from Pa by pre- and post-multiplication by Fourier 
matrices) at iteration 3, for the steepest descent (dash-dot) and standard conjugate gradient algorithms (solid) for 
the case illustrated in Fig. 3.4. The abscissa is spatial wavenumber, and the ordinate is the square root of the 
spectral analysis error variance. The steepest descent seems to converge very slowly in the long waves, perhaps 
a consequence of using the local gradient to define the descent direction. 

one dimensional  univariate error spectrum 
1     i     i     i     i     i     i     i     r 

j i i i i i i i L 
1 3 5        7        9      11       13      15      17      19 

iteration 

Figure 3.4 
Rms analysis grid error (trace Pa) for 3 descent 
algorithms 

"i 1 1 1 r 

Figure 3.5 
Analysis error spectra for steepest descent and 
standard conjugate gradient 
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Figure 3.6 is in the same format as Fig. 3.4 and compares the standard conjugate gradient (solid) vs the precon- 
ditioned conjugate gradient (dash-dot). The preconditioner was defined by dividing the domain into five equal 
intervals, each with five observations. The preconditioned algorithm converges significantly more quickly. Note 
the much lower analysis error on the first iteration because of the use of the approximate inverse. 

Figure 3.7 shows the rms analysis error as a function of x between -n and K at iteration 2 for the standard 
conjugate gradient (solid) and preconditioned conjugate gradient (dash-dot). It can be seen that, although the 
preconditioned conjugate gradient is converging more rapidly, it is not converging evenly. In fact, the minimums 
of the error (most rapidly converging locations) are located in the center of each observation interval and the 
maximums occur on the interval boundaries. 

Finally, Fig. 3.8 shows the rms analysis error as a function of iteration number in the same format as Fig. 3.4 for 
the BFGS (dash-dot) and preconditioned conjugate gradient (solid). In this case, er and eb are as in Fig. 3.4 but 
L = 71/1.2, a background error correlation length that is 10 times as large. In this case, the condition number is 
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Figure 3.6 
Rms analysis grid error - the effect of pre- 
conditioning 
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Figure 3.7 
Spatial analysis error distribution at iteration 2 

one  dimensional  univariate 

Figure 3.8 
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much larger (2215), which might be expected from the discussion in section 2.3. Comparisons with Figs. 3.4 and 
3.6 show that both descent algorithms converge more slowly for this higher condition number problem, but the 
preconditioned conjugate gradient is considerably faster. Note that the asymptotic analysis error level in this 
case is very small, but positive. 

3.3.2 Two-dimensional experiments-the question of convergence 

We will now consider a slightly more realistic two-dimensional, randomly located network. The problem re- 
mains univariate, and we again consider spatially uncorrelated observation error with error er. The background 
error correlation is modelled with a SOAR model, as before, with error eb and correlation length Lb. The grid is 
9x9 periodic -n < x,y < n, and there are 81 random observations. The forward model H is a Fourier interpola- 
tor. 

In these two-dimensional experiments, we are going to examine the question of convergence-when can we 
consider the descent to have converged? We define three diagnostic techniques; two of them can only be used in 
simple situations and one with more general application. 

(1) Examine trace (P ) as in the one dimensional experiments. In general, this is difficult because we 
do not calculate the weight matrix. However, see Section 10.1. 

(2) Compare the analysis with the solution obtained by direct inversion of the HPbH
T + R matrix. 

This is obviously impractical for large L. 

(3) Calculate | VJ |, the norm of the gradient vector as a function of iteration number. 

Since the gradient at any iteration is actually the residual (3.9), which is available at every iteration of the four 
descent algorithms considered above, the norm of the gradient can be calculated easily for any problem. These 
experiments were performed for all four descent algorithms, but the only results shown here are for the precon- 
ditioned conjugate gradient algorithm (3.13). 

We consider the case eb = 1.0, £. = 0.1 , and Lb = Jt/2.4. The condition number is 2506. We first attempt precon- 
ditioned conjugate gradient descent with nine observation volumes. These observation volumes happen to be 
rectangles rather than the triangles shown in Fig. 3.1, but this is not particularly significant for these simple 

experiments. Figure 3.9 shows the square root of trace (Pa)- 
solid curve as in Fig. 3.4 (see (1) above), for this two-dimen- 
sional random network case as a function of iteration number 
(abscissa). The straight dash-dot line at 0.2 is the asymptotic 
value of the rms analysis error obtained by direct solution. (The 
problem is small enough for the matrix inverse to be obtained 
by direct methods). 

Figure 3.9 
Rms analysis error (trace Pa) - conjugate gradient 
descent for 2D case 
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3. Descent Algorithms 

We also compared iterative solutions with the solution obtained by direct methods (see (2) above). Thus, we 
generated 10 innovation vectors d (3.5) using a random number generator, and determined the corresponding 
correction vector x - xu from these vectors using a direct solution as control. We then calculated estimated ab <^ 
correction vectors at each step of the iterative process (for each of the descent algorithms) and calculated the rms 
difference on the grid between the control and descent correction vectors. Figure 3.10 is example of the precon- 
ditioned conjugate gradient algorithm. What is plotted is the logarithm (to the base 10) of the rms difference 
(ordinate) as a function of iteration number, for each of the 10 correction vectors. A decrease of 1 in the 
log(difference) implies that the difference field has decreased by a factor of 10. It can be seen that the scatter 
between the different realizations at any given iteration is close to a factor of 10. Comparing Figs. 3.9 and 3.10 
indicates that convergence has been reached at about 30 iterations, or when the difference field has decreased by 
about three orders of magnitude. 

Criteria for determining convergence cannot be practically based on the diagnostics of Figs. 3.9 and 3.10. A 
practical measure, however, can be based on estimating the norm of the gradient (see (3) above). Thus, the 
gradient of the cost function (actually the residual) is estimated at each iteration step. The gradient is a vector of 
length L, and the norm is simply defined as the square root of the sum of the elements of the gradient. Figure 3.11 
shows the logarithm (base 10) of the norm of the gradient, for the same 10 innovation vectors as in Fig. 3.10, as 
a function of iteration number for the preconditioned conjugate gradient algorithm. Again, the spread between 
realizations is about an order of magnitude. Convergence is reached (about iteration 30), after the norm of the 
gradient has decreased by two orders of magnitude. 

Other experiments (not shown) with steepest descent and the BFGS algorithm show much less rapid conver- 
gence for this example. 

We might conclude that reduction of the norm of the gradient by two orders of magnitude is sufficient conver- 
gence. In practice, two orders of magnitude reduction in the norm of the gradient is more than sufficient for 
practical problems. In fact, one order of magnitude reduction in the norm of the gradient is usually sufficient for 
the whole algorithm ((3.5)-(3.6)). This is because the higher iterations are required primarily for convergence of 
the smaller spatial scales. However, the post-multiplication by PbH

T is a spatially smoothing operation when the 
background error covariance is derived from a red spectrum (as it usually is). Thus, the extra iterations in the 
solver required to resolve the smaller spatial scales usually do not have much effect on the final correction vector 
xa - xb because of the smoothing effect of the post-multiplier. 

two  dimensional  univariate two dimensional   univariate 

£ -2.0 'S -2.0 

0        5      10      15      20      25      30      35      40      45 

iteration  number 

Figure 3.10 
Comparison between direct solution and conjugate 
gradient descent 

0        5      10      15      20      25      30      35      40      45 

iteration   number 

Figure 3.11 
log 11 Vjll for 10 realizations 

NAVDAS Source Book 



3.4 Solving the Block-Diagonal Problems for the Conjugate Gradient Descent 

The preconditioned conjugate gradient descent equation (3.13) involves solving a number of smaller matrix 
problems of the form (3.14). That is, we have to solve N problems of the form An*s = f, where An* is always 
symmetric and positive-definite. As noted earlier, we solve these problems in one of two ways-a standard conju- 
gate gradient descent (3.12) or by Cholesky decomposition. The standard conjugate gradient approach has al- 
ready been explained, but it is worthwhile dicussing an efficient implementation of the Cholesky decomposition 
algorithm. 

Cholesky decomposition works by rewriting the matrix An* = LnLn
T, where Ln is a unique lower triangular 

matrix (Golub and Van Loan, 1996). Suppose An* is of order Kn. Then, it can be shown that obtaining the 
Cholesky matrix L is an order Kn

3 operation. However, once the Cholesky matrix has been obtained, then the 
problem (3.14) can be rewritten as Lnrn = fn and Ln

Tsn = rn. Thus, if fn is known, we can obtain sn by solving two 
triangular problems, each of which takes order Kn

2 operations. Thus, we can calculate and store the Cholesky 
matrix Ln for each of the N diagonal blocks immediately after calculation of the elements of An*. There are only 
K (K +l)/2 nonzero elements of Ln, as opposed to Kn

2 locations for An* itself. Moreover, during the iterative 
loop in (3.13), we only have to perform the Kn

2 operation to solve for s at each iteration and do not have to 
perform the Kn

3 operation generating the Cholesky matrices Ln. 

3.5 A Convergence Accelerator Based on a Re-sorting of the Observations (the Dual Choleski 
Algorithm) 

The preconditioning strategy for the conjugate gradient algorithm discussed hitherto is very similar to that 
previously developed by Cohn et al (1998). However, we have developed two algorithms for accelerating the 
convergence of the conjugate gradient descent by modifying the preconditioning strategy. The first algorithm 
involves a re-sorting of the observations, while the second algorithm is much more complex and is discussed in 
Appendix E. The re-sorting algorithm is discussed in this section and has been implemented in both serial and 
parallel versions. 

Figure 3.2 shows schematically how the observations are sorted into (volumes) triangular prisms; in Fig. 3.3 
(lower left panel) shows the block-diagonal preconditioner matrix. Consider one of the points in Fig. 3.2 where 
several triangles intersect. In the vicinity of such a point, many observations may lie whose background error is 
highly correlated because they are close to each other. These high correlations would be reflected by elements of 
the A matrix of (3.13). However, in the preconditioner matrix A*, all correlations are equal to zero except for 
correlations between observations in the same volume (triangular prism). Clearly, in the vicinity of one of these 
points, there would be many large correlations that would be ignored by the preconditioner A*, and this would 
mean that the preconditioner may not be as efficient as we would like. 

Suppose however, we re-sorted the observations into a different set of triangular prisms, and this time the central 
points of the triangles were located at the intersection points of Fig. 3.2. This may or may not always be geo- 
metrically possible, we just choose the second set of volumes so that (as much as possible) they contain different 
sets of observations than the original set of volumes. We then calculate only the block-diagonal elements of A 
corresponding to this new sort (we do not have to calculate the corresponding off-diagonal block of A, because 
we do not need them). We refer to this new preconditioner as a*, with diagonal blocks 0Cn*. The diagonal blocks 
will, of course, be of different size than in A*. The second preconditioner is shown schematically in the right- 
hand lower panel of Fig. 3.3. 

Now we solve two preconditioning problems, A*s = f for s as before, and a second problems a*a = <|> for Cf. Here 
<|> is simply an appropriately reshuffled version of f. We then simply take the simple average of the two vectors 
s and G. This combined preconditioner includes many interactions between observations that were excluded 
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3. Descent Algorithms 

from the simple preconditioner. Figure 3.2 (lower panel) suggests that many additional matrix elements of A 
would now be included in the preconditioner. In principle, one could have 3, 4, or more preconditioners of this 
sort, but these additional complications may be counterproductive. 

The algorithm was first tested on one-dimensional univariate problems with randomly scattered observations. 
For these problems, the observations were sorted into equal intervals in the first preconditioner, and these inter- 
vals were shifted by one-half interval for the second preconditioner. We can define a simple sorting efficiency in 
this case. For the nth observation, define the number of observations in the same interval in the first preconditioner 
as I (n). Now define I2(n) as the number of observations that were in the same interval as observation n in the first 
preconditioner, but that are also in the same interval as observation n in the second preconditioner. Define the 
ratio I2(n)/I,(n) for all n, and its average over n as the sorting efficiency. For the one-dimensional case with equal 
intervals and the second preconditioner shifted by half an interval, the sorting efficiency would be 0.5. In this 
simple example, the use of two preconditioners sped up the descent by a factor of 2. 

The algorithm was also tested on two-dimensional univariate examples with randomly scattered observations. If 
the observations were sorted into squares of equal spatial size, then the second preconditioner can be obtained by 
shifting the squares one-half interval in each direction and re-sorting into the new squares. This gives a sorting 
efficiency of 0.25. If equilateral triangles are used instead of squares, and the second preconditioner shifts the 
triangles appropriately, the optimum sorting efficiency is also 0.25. In this case also, the use of the second 
preconditioner sped up the descent by a factor of 2. 

This algorithm was also tested on a full three-dimensional set of observations, including direct assimilation of 
radiances (Section 5.3). This problem is considerably more difficult because the observation density is variable; 
there are many types of observations, and we have to keep all observations in the same profile or sounding 
together. Although the problem is three dimensional, the sorting is two dimensional, so we would like to achieve 
a sorting efficiency for the second preconditioner that is not too much larger than 0.25. However, the second 
preconditioner also has to be as good a preconditioner as the first preconditioner; there is no point combining a 
bad preconditioner with a good one. 

Figure 3.12 is an example of iterating with two preconditioners. The observation set consisted of 5210 observa- 
tions (radiosonde, SSM/I windspeeds, SSM/I total precipitable waters, and TOVS radiances in 20 channels). The 
second preconditioner was created by rerunning the sorter algorithm with slightly different parameters. The 
sorting efficiency, by the measure above, turned out to be 0.49, 
which is perhaps a little larger than desired. Figure 3.12 is in the 
same format as Fig. 3.11. The solid curve shows log10 VJ ) 
for the original preconditioner and the dash-dot curve for the 
dual preconditioners as a function of iteration number. The de- 
scent rate is similar at first, but then the dual preconditioner de- 
scends much more rapidly. Note the change in curvature in the 
solid curve after about eight iterations. The same thing can also 
be seen in Fig. 3.11, indicating that with a single preconditioner, 
neglected large correlations in the sing 

'vj 
e preconditioner cause 
has decreased by only the descent rate to slow down after 

about one order of magnitude. There is some overhead connected 
with the algorithm, in particular, the calculation and (more im- 
portantly), the storage of the Choleski decomposition triangular 
matrices for the second preconditioner. The use of the extra 
Choleski matrices during the descent has only a tiny negative 
effect on computational efficiency. 
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3.6 Comparison between NAVDAS and a Simulated Volume OI Algorithm 

The NRL MVOI and NAVDAS algorithms are both observation space algorithms. There are many differences 
between the way these two algorithms are applied, but we concentrate here on the difference between the global 
solution of NAVDAS and the local volume solution of MVOI. As discussed earlier, the preconditioner used in 
OI bears some resemblance to the volume procedure of OI. Thus, it is possible to modify the NAVDAS algo- 
rithm so that it simulates the solution obtained by volume OI. 

The following procedure produces a simulated OI correction field. We use only the preconditioner (Section 3.4) 
to solve the system (Eq. (3.5)). Then, in the post-multiplication step (Eq. (3.6)), we only allow each block of 
analysis gridpoints (Section 3.7) to be affected by observations that are less than that 2000 km away. This means 
that there may be discontinuities in the correction field at the junctions between the analysis blocks. Note that 
this simulation does not simulate the overlap between analysis volumes that occur in the actual NRL MVOI 
implementation. This means that the simulation probably is not as good as an actual OI algorithm. 

Figure 3.13 a shows a comparison between NAVDAS and volume OI simulated in this manner. The experiment 
was run over the globe, using all the radiosondes (temperatures, winds, moisture on all mandatory and signifi- 
cant levels). There were about 62,000 observations. We show the resulting 250 hPa geopotential correction field 
(m) on a global 1-degree grid. In the NAVDAS run (panel a), there were eight iterations using two preconditioners. 
The simulated volume OI run (panel b) was constructed as above. 

Looking first at the southern hemisphere, we see that the two solutions are similar, because what little data there 
is, is widely separated. The solution obtained by the preconditioner is not affected by other data that are too far 
away to have any influence. In the northern hemisphere, particularly over land where data density is high, the 
situation is very different. The two solutions differ substantially; in panel (b), the analysis volume boundaries are 
easily visible. Generally speaking, the wind correction fields of NAVDAS and simulated OI are much closer to 
each other; the wind observations converge more quickly in the 3DVAR solver because the effective horizontal 
correlation length for winds is much shorter than for the geopotential. 
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3.7 Defining the Analysis Grid Volumes 

As described in Sections 3.2.6 and 3.4, the preconditioner is defined by sorting the observations into prisms. A 
similar procedure is applied to the analysis gridpoints for the calculation of the correction fields by the post- 
multiplier (Eq. (3.6)). Thus the analysis gridpoints are broken into rectangular blocks. All correction field vari- 
ables and vertical levels would be in this block. Then the interactions are calculated between each of the analysis 
gridpoints in the block and the observations in each of the observation prisms. (We may exclude interactions 
between observation prisms and analysis volumes that are too widely separated.) 

While this break-up of the analysis grid into grid volumes is not as important to the algorithm as the break-up of 
the observations into prisms, it is very useful in parallel implementations of the post-multiplier (see 
Appendix C). 

3.8 Scaling 

For the multivariate problem where there is a mix of variables with different units, it is desirable that the equa- 
tions be scaled. This helps improve the convergence of the descent algorithms. Scaling for Method C has some 
similarity to the normalization process used in the MVOI algorithm. Before describing the scaling, we slightly 
modify Eq. (3.4) for Method C. Suppose that the forward interpolation operator H is the product of a horizontal 
spatial interpolation operator H„ from the grid to the observation location and a forward operator H that trans- 
forms from the analyzed/forecast variable to the observed variable (the radiative transfer equation, for example). 
That is, we redefine H so that P,,!!7 is now written PbHJHT, and HPbH

T is now written as HH,PhH,THT. We now 
make the same approximation that is used in MVOI, that is, we write 

PhHJ = Pb«r/ob and H,PbHJ = Pb 
ob/ob (3.15) 
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where Pb
gr/ob is the background error covariance between grid and observation locations and Pb

ob/ob is the back- 
ground error covariance between observation locations. This approximation is very good as long as the grid 
resolution is adequate, which it generally is. Now, let us write 

p^gr/objT = [Sb]1/2Cbsrtob[Sb
ob]1/2 IT, 

HPbOb/obHT = H p^ob] inqohtobrS*] 1/2 JJT (3 16) 

Sh = diagCHP^IF) , 

where Sb = diag(Pb), Sb
ob = diag(Pb

ob/ob), and Cb
gr/ob and Cb

ob/ob are the correlations that correspond to the covari- 
ances Pb

8r/ob and Pb
ob/ob respectively. Then, we rewrite Eq. (3.4), using Eqs. (3.15)-(3.16) as 

xa - xb = Sb
1/2Cb^

b[Sb
ob]1/2irSh-1/2 [Ch

ob/Ob + S^RS;"2]"1 Sh"1/2[y - H(xb<*)], (3.17) 

where C ob/ob = Sh
1/2H[Sb

ob]1/2Cb
cb/ob[Sb

ob]1/2HTSh
1/2, xb

ob is the background spatially interpolated to the observation 
location, and the operator H transforms from grid variable to observation variable but does not perform spatial 
interpolation. Equation (3.17) amounts to the scaling of the innovations by the rms background error (in H 
space) and post-multiplication of the correction vector by the rms background error at the grid locations. Equa- 
tion (3.17) is now essentially nondimensional. We can think of Sh

1/2H[Sb
ob]1/2 as a scaled forward operator. In the 

special case where observation and grid variables are the same, then H = I (the identity matrix), Ch
ob/ob = C, 

Sh = Sb
ob, and Eq. (3.17) becomes 

xa -xb = Sb
1/2Cb^

b[Cb
ob/ob + [Sb

ob]-1/2R[Sb
ob]-1'2]-1 [Sb°b]-1/2[y  xb°b]. (3.18) 

3.9 High-density Single-level Observations - Clustering within Prisms 

NAVDAS is an observation space algorithm. Thus, it tends to be computationally efficient when the observation 
density is lower than the grid density and less efficient when the observation density exceeds the grid density. 
High observation density in the vertical (such as in a radiosonde) can be handled very efficiently using the 
background vertical eigenvector decomposition to be discussed in Section 4.3.3. What we wish to discuss here 
is the case of high horizontal density observations, particularly single-level observations such as conventional 
surface observations, aircraft observations, cloud drift winds, and SSM/I windspeed and total precipitable water 
observations. The vertical eigenvector decomposition (of Section 4.3) is not efficient for these observations. We 
can and do use super-obbing or thinning techniques on these types of observations. We also have the following 
clustering algorithm. 

Re-write Eq. (3.4) in unsealed form using the forward operators H and Ht of Section 3.8 as 

xa - xb = PbH/HT[HH,PbHJHT + R]-'[y - H(Htxb)]. (3.19) 

Here, Ht is the horizontal interpolation operator and H denotes any other forward operations. As described in 
Section 3.8, we generally make the approximation (3.15). This is the standard MVOI approximation in which 
the covariances are calculated directly at the observation locations rather than first using the horizontal interpo- 
lation operator HJ to interpolate to the analysis grid. This is generally a good and efficient approximation. 
However, when the local horizontal observation density is greater than the horizontal grid density, this approxi- 
mation becomes inefficient. Thus, for a given observation type (or group of related observation types), for a 
given variable type (temperature, wind, etc.) and for a given vertical interval; when there is more than one 
observation within a horizontal grid square, the MVOI approximation above is no longer efficient. Thus, within 
an observation prism, when the local observation density becomes sufficiently high, it may be more efficient to 
explicitly include the interpolation operator Ht in Eq. (3.19). In this special case, we have the rather desirable 
situation where NAVDAS might become more efficient as well as being truer to the algorithm (3.19). 
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In practice, we define each set of observations within a prism that share the same observation type (or group of 
observation types), variable type and vertical level (or interval) as an observation cluster. If this observation 
cluster has fewer observation locations than gridpoints that it would project onto (using the Ht operator), then 
we treat all the observations in it conventionally (as in Section 3.8). However, if there are more observation 
locations in the cluster than gridpoints to be projected onto, then we actually use the operators H, and H,T as in 
Eq. (3.19). This means that NAVDAS becomes increasingly a grid-based algorithm as the horizontal observa- 
tion density increases. 

In principle, one should use the analysis grid and the horizontal interpolation operator that is actually used in 
interpolating the background field to the observation locations. In the case of the NOGAPS and CO AMPS data 
assimilation systems, this would imply two different grids and at present non local cubic spline interpolators. 
This approach would have several difficulties. First, it would make NAVDAS considerably more analysis-grid- 
dependent than before, reducing flexibility and portability. Secondly, the cubic spline interpolators are non local, 
which means that each observation is projected over the entire domain, clearly undesirable in a spatially local 
algorithm like NAVDAS. 

Consequently, we adopted the following modified approach. Firstly, we define a prism grid that has the same 
local resolution as the analysis grid, and the locations of whose gridpoints are simple to determine. Secondly, the 
forward interpolation operator H, used in the above clustering procedure was chosen to be linear and local—a 
four-point interpolator between the observation location and the four surrounding gridpoints. The four weights 
were calculated from the Great Circle distances between the observation locations and the four gridpoints. 

When the local observation density of the cluster exceeds the local grid density, then the clustering algorithm 
above comes into play. The local grid density is fixed, which means that the cost of the NAVDAS algorithm 
would remain essentially constant as the local observation density increased. Furthermore, if we are prepared to 
accept a possible small decline in the quality of NAVDAS analyses, then by modestly decreasing the grid reso- 
lution, NAVDAS will run considerably more efficiently when there are large numbers of single level observa- 
tions of the types described above. 
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4. Background Error Covariances 

Specification of the background error covariances is very important in NAVDAS as it is in the NRL MVOI 
algorithm. The formulation of the background error covariances in MVOI was reasonably powerful, being based 
on Lorenc (1981), Lonnberg and Hollingsworth (1986), and Daley (1991). However, not all the power was 
exploited in MVOI. In NAVDAS, new features have been added to produce a very general formulation of the 
background error covariance. 

From Eq. (3.16), we separate the background error covariances into the background error variance Sb and corre- 
lation matrix Cb. We discuss separately the specification of the background error correlations and variances, 
starting with the variances. 

4.1 Background Error Variances 

Specification of the background error variances Sb is very straightforward. In Section 3.8, the variances Sb are 
actually diagonal matrices and we treat them that way in the derivations to follow. However, in practice, we carry 
only the diagonal components. These variances are permitted to vary by latitude, longitude, vertically, and (of 
course) by variable. The geopotential and temperature variances are specified to be in exact hydrostatic balance. 
The wind and geopotential background error variances are approximately geostrophically related in the extratropics, 
but are independent in the tropics. The background error variances are not required to be invariant within obser- 
vation or grid volumes. 

If O is the geopotential and T is the temperature, the <OT> and <TT> covariances must be related to the <00> 
covariances hydrostatically. Since this is a temperature-based system, not a geopotential-based analysis system 
(see Section 5.2), we generally specify the <TT> variance and demand that the <<&<]>> variance be related hydro- 
statically by integrating the hydrostatic relation up from the surface. This is necessary to ensure that the covari- 
ances (not the correlations) are related hydrostatically. In the vertical, this rule has been carefully adhered to. 

There is a similar problem in the horizontal with respect to the geostrophic relation of wind/wind and wind/ 
geopotential covariances to the <00> covariances. This requires that the <00> covariance be differentiated 
analytically or discretely once or twice. In MVOI (and most implementations of 01), it has been considered 
adequate to differentiate (analytically) the <0<t>> correlation. This procedure is correct if the geopotential error 
variances are horizontally invariate, but ignores an extra term if they are not. That is, there is a term involving the 
horizontal derivatives of the background error variances that is nonzero when the background error geopotential 
error is horizontally variable. 

However, this extra term will be small as long as the horizontal variation of the background error variance is on 
horizontal scales that are large compared with the specified horizontal scales of the background error correla- 
tion. Thus, we only permit the background error variances to vary horizontally on scales that are large compared 
to the characteristic horizontal scales of the background error correlation. 

In general, the background error variances are assumed to be the product of a dimensional constant, a 
nondimensional 0(1) horizontal function, and a nondimensional 0(1) vertical function. This vertical function 
indicates the variation of the background error variance with respect to the vertical coordinate. For future refer- 
ence, we denote the vertical background error variance for streamfunction, wind, geopotential, and temperature 
as Sv, Sv, S$, and ST, respectively. 
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4. Background Error Covariances 

4.2 Background Error Correlations 

Specification of the background error correlations is much more complex, and its importance cannot be overes- 
timated. All correlations are written as the product of a horizontal and vertical correlation. Thus, if we define 
horizontal coordinates X (longitude) and 0 (latitude) and vertical coordinate z (which could stand for pressure, 
potential temperature, or other vertical variable), then the background error correlation between points 1 and 2 
can be written 

cb(Ä,1,ei,z1,>.2>e2,z2) = c^z.^L^z,,^)) cb
h(s12,a12,Lb

h(X1,ei,X2,e2)), (4.1) 

where cb
v is the vertical correlation and cb

h is the horizontal correlation between points 1 and 2. s12 is the great- 
circle distance, and ot,2 is the angle between the two points. 

Lb
v is a vertical correlation scale (which may be a vertically variable), and Lb

h is a horizontal correlation scale 
(which could be horizontally variable). There could be other parameters in addition to the horizontal and vertical 
correlation lengths. The form (4.1) is horizontally separable. A nonseparable generalization can be created by 
making Lb

v a function of the horizontal variables, or Lb
h a function of the vertical variables (see Section 4.7). If 

cb
h depends on s12 but not a12, and Lb

h is spatially invariant, then cb
h is said to be isotropic. Anisotropy can be 

introduced by allowing Lb
h to vary horizontally, or by permitting dependence on a12. 

The horizontal background error correlations are considered in Section 4.6. We first consider the background 
vertical error correlations in detail. They constitute the most important and original components of the back- 
ground error formulation. 

4.3 Vertical Background Error Correlations — Separable Formulation 

We pay considerable attention to formulation of the vertical background error correlation because of some 
evident shortcomings in the NRL MVOI formulation. 

4.3.1 Problems with MVOI 

Examination of the background error vertical structure functions of the MVOI revealed two fairly basic prob- 
lems. Denote 0,T as geopotential and temperature, respectively, and the vertical coordinate z will be log(pressure). 

(1) The hydrostatic relationship used to calculate <<DT> , <TO> and <TT> correlations from «M>> 
correlations produced anomalies at the lowest levels. 

(2) The background error vertical structure used for the <<M>> correlation used a correlation func- 
tion, which was not twice differentiable. This meant that the <TT> correlation had some unfortu- 
nate properties. 

The <03>> correlation function used in the NRL MVOI (see Lonnberg and Hollingsworth, 1986) was 

c/(z,z ) = exp[-(|z -z |/Lh
v)16], 

b v   n'   m7 ^Lv|n        m|        b/J' 

where z = log (P ) and Lu
v is the background error vertical correlation scale. This function has a continuous first 

derivative, but not a continuous second one. This was not a serious problem for the <TT> correlation at the 
relatively low vertical resolution used in the NRL MVOI, but it would cause problems in the much higher 
vertical resolution used in NAVDAS. 
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4.3.2 The NAVDAS streamfunction/streamfunction correlation models 

In the NAVDAS vertical background error correlation formulation, the starting point is the streamfunction/ 
streamfunction <V|A|/> correlation. We define a vertical index 1 < n < Nv, where Nv is the number of vertical 
levels. Generally speaking, Nv will be a reasonably large number (30-100) so that the vertical resolution is 
adequate. Thus, when using any vertical correlation, a vertical location will always be denoted in terms of the 
integer index n. All we require in defining the vertical correlation between any two observations or grid points is 
the location of these points in whatever vertical coordinate we are using. Thus, the use of a vertical index to 
define vertical locations makes it easy to use different vertical coordinate systems such as pressure or isentropic. 

At this point, we assume that the vertical coordinate system is pressure. For pressure coordinates, we assume 
that the vertical levels for the correlation functions are arbitrarily (but sometimes equally) spaced in log pressure 
from some bottom level (Pbot) to some top level (Pto). We use a simple algorithm that will take the pressure 
location of any observation or grid point and convert it into the vertical index. 

The vertical structure of the <\|A|/> correlation is specified with a simple model such as the SOAR or Gaussian. 
The model must be twice differentiable. We assume that the background error vertical correlation scale is verti- 
cally dependent. That is, we define L(P) to be the local vertical correlation length scale as a function of pressure 
P. (We have dropped the understood subscript b and superscript v). We also define z = loge(p) and L(z). Now 
define 

p -i 

y = -\ [L(P )P ]  dP = j[L(z )]Xdz . (4.2) 
Pbot o 

Then, for two levels n and m, we can define the <\|A|/> correlation as follows: 

(l)SOAR cnm= (l + |Ay|)exp(-|Ay|), 

(2) Gaussian     c    = exp[-(Ay)2], 
(4.3) 

where Ay = I Ll(z)dz. Note that if L is independent of P, then Ay = [zn-zm]/L.In practice, the integrals 

are quadratures. This formulation, using integrals, tends to yield positive definite correlations and covariances, 
even when L varies rapidly with pressure. 

Finally define C    as the <\|A|/> correlation, whose elements are given by Eq.(4.3). 

4.3.3 The vertical eigenvector decomposition 

We first define a diagonal NvxNv matrix D, all of whose elements are positive. We then define the eigenvector 
decomposition 

DC   D=ED   ET, (4.4) 

where E is the NvxNv eigenvector matrix and D is the diagonal matrix of (positive) eigenvalues. Let us define 
E = D_1E, which are not strictly eigenvectors unless D is the identity matrix. Then, C    = ED   ET. 

We first consider the separable formulation. In the separable formulation, D is the identity matrix. In this case, 
E really is the eigenvector matrix of C . Figure 4.1 illustrates the first three (gravest) eigenmodes of (4.4) for 
the separable case as a function of 50 pressure levels (equally spaced in log(P) between 1070 and 50 hPa) using 
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4. Background Error Covariances 

the SOAR model. The vertical scale L = Lb
v is pressure-invariant in this case. The gravest mode (largest eigen- 

value in D ) is the solid curve, the second mode is the dash-dot, and the third mode is the dashed curve. Note 
that the first mode has a minimum at the upper and lower boundaries. The structures of these modes would 
change if the vertical scale L varied with pressure and/or the pressure levels were unequally spaced in pressure. 
However, the general pattern of the largest vertical scales being associated with the largest eigenvalues would 
remain true. 

For the nonseparable case to be considered in section (4.7.2), we may wish to choose a more general form of D. 
For example, if the (diagonal) elements of D increase monotonically with decreasing pressure, then the leading 
(most grave) eigenvectors will have their maximum amplitude near the top of the atmosphere. This is illustrated 
by Fig. 4.2 (in the same format as Fig. 4.1). Everything is the same in Fig. 4.2 as in Fig. 4.1 except that the 
elements of D increase linearly in log(pressure), from a value of 1.0 at 1000 hPa to 4.0 at 50 hPa. Not shown are 
the eigenvalues, which are also different from those corresponding to Fig. 4.1. Comparison of Figs. 4.1 and 
4.2 shows that for the gravest modes the maximum amplitudes tend to be shifted to lower pressure, as 
expected. This will turn out to be a useful property when we consider nonseparable correlations in Section (4.7). 

Note that even for the nonseparable case, C will remain independent of D unless onlya subset of the eigen- 
vectors are used (Section 5.3). Other covariances derived from Cyy may also depend on D if horizontal param- 
eters such as the geostrophic coupling parameter (Section 4.3.7) or the horizontal correlation length (Section 
4.7.3) are allowed to vary with the vertical eigenmodes. 

The streamfunction/streamfunction error covariance would be Sv
1/2CwSv"2. 

The 3 gravest vertical  eigenvectors The  3 gravest vertical  eigenvec tors 
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Figure 4.1 
The three gravest vertical eigenvectors of C(pq> 

Figure 4.2 
Same as (4.1) except for general D 

4.3.4 Wind/wind correlations 

We denote the velocity potential/velocity potential correlation as Cu and the velocity potential/streamfunction 
correlations as C = C .We define these correlations as in Eq. (4.4), with the same eigenvectors, but we retain 
the generality of using different eigenvalues. Thus, we write Cxx = EDxxE

T and Cvx = Cxv = ED^E7 using the 
matrices E and ET defined in (4.4). Here D   and D   are diagonal matrices, all of whose elements are positive. 

In the separable formulation D = D and D =0, but in the nonseparable formulation (Section 4.7), they may 
differ. Since D   = D    in the separable formulation, the rotational wind/rotational wind and divergent wind/ 
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divergent wind correlations have the same vertical structure, and we can define the vertical wind/wind correla- 
tions as 

C   =ED   ET. (4.5) 
vv \|/y 

The vertical background wind and streamfunction error variances are the same Sv = S , but this formulation must 
be modified for the nonseparable formulation (Section 4.7). 

4.3.5 Geopotential/geopotential correlations 

We define C,,,^ (the geopotential/geopotential correlation) in a way that is slightly more general than necessary 
for the separable formulation. We define a diagonal NvxNv matrix DM with nth (diagonal) element d^" equal to 

c^wv+c-^V' (4-6) 

where b^" is the spectrum of the vertical background geopotential error at the equator. It may be different than 
d n. (|) is latitude and 8((])) is a positive function, which in the general case is 1 at the poles and drops to zero at 
the equator. In the special case where either 8((b) = 1 everywhere or bw" = dw

n for all n, then d^" = dw
n for all 

n. We define B^ as the diagonal matrix whose elements are b^". Then the (0(1)) nondimensional) NvxNv 

diagonal geopotential background error variance matrix S^ is given by 

S0 = 5(0)S01 + (1-5(0))S0, (4.7) 

with S01 = diagtS^ED^E7 Sv
,/2) = S¥> S02 = diag[Sv

1/2EBwETSv
,/2]. The «DC» vertical correlation is given by 

C = S "m S 1/2E D_ ET S m S^'2, where D^ is the diagonal matrix whose elements are the d ° defined in 
(4.6). 

S0
1/2S m is the identity matrix in the separable formulation, but in the more general nonseparable case, its 

elements may differ from 1 and vary as a function of latitude. E is defined in Eq. (4.4). We note that the scaled 
form of Eqs. (3.17) and (3.18) can be derived using either S^ or S^ without changing the result, because the 
scaling (like the preconditioning) is simply a means of improving the conditioning of the problem and does not 
affect the final result. We have found it more straightforward to scale with S^ = S01 rather than S0 because the 
latter is latitudinally dependent. 

4.3.6 Temperature/temperature and geopotential/temperature correlations 

The correlations involving the temperature (strictly speaking, the virtual temperature) are constructed by first 
building a hydrostatic matrix relating the temperature and geopotential. This is a simple finite-difference formu- 
lation of 

3<P/3log(P) = -RT/g , where R,g are the gas and gravitational constants. (4.8) 

The hydrostatic relation is applied as a strong constraint. We refer to the NyxNv hydrostatic matrix as H. Then if 
C^ is the <00> correlation and S,,, is the vertical background error geopotential variance defined in Eq. (4.7), 
then the <3>T>, <TO>, and <TT> correlations are given by 

COT = CWS.'«B7 ST-"2, CTO = <V, C^ = ST-'«H S/^S^H ^'\ (4.9) 

where ST = 8(0)ST1 + (1-8(0))ST2 is the diagonal matrix of background temperature error variances, 
Sp = diagtHS^ED^S/2 HT], ST2 = diagfHS^EB^E^H/], which are used to ensure that the 
diagonal elements of C^ are equal to 1. 
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4. Background Error Covariances 

The anomaly that occurred at the Earth's surface in the MVOI vertical correlations (Section 4.3.1) has been 
avoided in this formulation. The temperatures are calculated hydrostatically for the layers above each geopotential 
level and are assumed to be at intermediate levels, which are determined (for the pressure case), by averaging the 
Exner function (below 200 hPa) and the logarithm (above 200 hPa) of the two adjacent geopotential levels. (This 
means we still use an integer vertical temperature index; it just corresponds to different (pressure) values than 
for the geopotential or winds). A fictitious temperature layer is added above the top pressure level so that H is 
square N xN This procedure produces more reasonable <TT>, <OT>, and <TO> correlations than occurred in 
MVOI. 

Substituting from (4.7) into (4.9) gives 

CTT = S-HS;«ED0OETSv-H/ST-- 

CtKr = S-inS 1DEDj;TS ,/2HTS-"2, and C    = C* 
OT $ V OO Y s      T      ' TO <PT 

(4.10) 

Figure 4.3 shows the <TT> correlation for a case (separable formulation) in which the vertical scale L =Lb
v 

varies in the vertical. This figure contains 32 vertical levels unequally spaced in log(P) between 1070 and 10 
hPa. The contour intervals are 0.1 and values between -0.1 and 0.1 are "white." The maximum value along the 
main diagonal is 1. Figure 4.3, shows that the vertical correlation length is a minimum at the surface, increasing 
to a maximum about 600 hPa and a second minimum at about 200 hPa, and then increases up to 10 hPa. 

background temperature error correlation As we did for the <00> correlation, we scale with ST, rather 
than ST, in (3.17 or 3.18) because the latter is latitudinally de- 
pendent. 

4.3.7 The wind)'geopotential and wind/temperature 
correlations 

a>    100   - Under separable conditions, we assume that the geopotential and 
velocity potential are not correlated, that is, C^ = Cx0 = 0. We 
then define the geopotential/wind vertical background error cor- 
relations as 

C   =Sffl
1/2S '«ED^andC   = 

Ov <t> Vf Ov v<P 
. p     T (4.11) 

300 100 30 

pressure  in  hPa 
where D^ is an N xN diagonal matrix whose nth element is 

cpv " " " 

Figure 4.3 
<TT> correlation - variable vertical scale 

d0v
n. We define d0v

n under separable conditions as 

d   " =u nd   n, (4.12) 

where JLL 
n = 1 if completely geostrophically coupled and zero if univariate. Note that |Xv

n is always non-negative. 
The Cv0and Cv0 correlations all involve coupling between wind and mass fields. Lorenc (1981) introduced a 
geostrophic coupling parameter ^t, that varied with latitude, varying between 1 at high latitudes and 0 (no cou- 
pling) in the tropics. We specify that nv

n can vary with the vertical eigenmodes of background error correlation. 
In particular, following the ideas of normal mode initialization (Daley, 1991, chapters 9-10), we might specify 
that the gravest vertical modes (deep modes) are strongly geostrophically coupled and the shallow modes (small 
eigenvalues, many zero crossings) are weakly geostrophically coupled. We do not consider here the horizontal 
variation of the geostrophic coupling parameter; this is discussed in Section 4.6. 

The wind/temperature correlations are defined by operating on (4.11) with the hydrostatic operator 

CT = S-1/2H S"2^ and C _ = CT 
T. 

Tv T s    O Ov vT Tv 
(4.13) 
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and C  in the separable case, that S 1/2 H S 1/2E are not usually Note that although E are the eigenvectors of C 
the eigenvectors of CTT . (They may not be orthogonal.) However, we refer to ST"1/2H S^1'2 E and S^S^E as 
modified eigenvectors appropriate for the temperature and geopotential, respectively. 

geopotential/wind background error correlation 

Figure 4.4 is plotted in the same format as Fig. 4.3, the <<J>v> correlation for a case in which |0.v
n = 1 for the 

gravest vertical mode and then falls off gradually to zero for the shallowest modes. The correlation model is 
SOAR, and the vertical correlation length and pressure levels are exactly as in Fig. 4.3. The maximum correla- 
tion is less than 1, as noted, and the correlation is broader than 
for the corresponding <0<D> correlation (not shown). The ef- 
fective vertical scale for the geostrophic coupling scale has in- 
creased (because the shallower vertical modes are only weakly 
coupled). 

Under nonseparable conditions, Eqs. (4.11)-(4.13) may contain 
extra terms. If it were assumed that the divergent and rotational 
winds were correlated, then this would also imply that the diver- 
gent wind was correlated with the geopotential and tempera- 
ture. 

4.3.8 Univariate correlations (moisture and ozone) 

We also have provision for other vertical background error 
correlations that are not multivariately correlated. At this time, 
moisture and ozone are the only such variables that have been 
considered. 

300 100 

pressure in  hPa 

Figure 4.4 
«Pv> correlation - vertical geostrophic coupling 

For moisture, we assume that the basic moisture variable is 
s = log (q), where q is the specific humidity. Thus, if the errors in s are normally distributed, then the errors in q 
obey a lognormal distribution, which is reasonable for atmospheric constituents such as moisture. Additive 
errors in s are multiplicative errors in q. Then, if we define background values qb = exp(sb), and differences A q 
= q - qb and A s = s - sb, then to first order A q = qb A s. Thus, we assume that the background error covariance 
for moisture is defined in terms of A s. 

For moisture, vertical correlation Css adopts the same basic functional form (SOAR or Gaussian) as the <i|/\|/> 
correlation. However, the pressure levels for this correlation are the intermediate pressure levels used in the 
<TT> correlation, rather than the geopotential/wind pressure levels. The vertical correlation lengths Ln, may 
well be different than those used for geopotential, temperature, and wind, giving rise to both different eigenvec- 
tors and different eigenvalues. The vertical background error variance Ss must be specified. 

Although there is provision for ozone in the code, the vertical correlation has not yet been modified beyond 
using the same formulation as for the streamfunction correlations. 

4.4 Projection onto the Vertical Eigenvectors of the Background Error Correlation 

The formulation (4.4)-(4.13) offers distinct computational advantages and also facilitates the inclusion of a 
forward operator H in the direct assimilation of radiances. We now discuss a procedure that is useful in two 
aspects of the calculation. Equations (3.5)-(3.6) break the algorithm into two steps, a solver (3.5) and a post- 
multiplication (3.6). 
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4. Background Error Covariances 

4.4.1 Matrix/vector operations in the solver and post-multiplier 

All of the solvers (steepest descent (3.11), standard conjugate gradient (3.12), and preconditioned conjugate 
gradient (3.13)) contain an equation of the formqk = Apkthat is a matrix/vector multiplication involving the 
covariances or correlations between every observation. When the observed and analyzed/forecast variables are 
the same, the form of the matrix A in this algorithm is given by Eq. (3.18), viz. A = C°b/ob + [S°b ]"1/2 R[S£b ]"'/2. 
We can then write qk = Cb

ch/obpk + [Sb
(,b]"'/2R[Sb

oh]~1/2pk In the solvers, it is this operation (which is the order of the 
square of the number of observations) that must be performed every iteration and that takes up the largest portion 
of the solver computation time. We concern ourselves here with the background error covariance and concen- 
trate on the operation Cb

obtohpk. 

As noted above, a similar matrix/vector operation occurs in the post-multiplication step (3.6). In Eq. (3.18), this 
would involve multiplication by the matrix Cj;r/ob, which is a background error correlation matrix of order the 
number of observations by the number of grid points. Since the number of grid points may well exceed the 
number of observations, this matrix/vector operation is also very expensive, even if it is done only once. 

4.4.2 Vertical eigenvector decomposition for profiles (separable examples) 

Both of these operations are matrix/vector operations 

q = Cr, (4.14) 

where C is a background error correlation matrix and q,r are vectors. The following method is used to make 
these expensive operations much less computer-intensive. 

We first begin with a simple separable, univariate example. Suppose that r is a vertical profile of length M with 
horizontal location (^,,0,) and vertical locations z,"1, 1 < m < M, and q is a second vertical profile of length K 
with horizontal location (k2,Q2) and vertical locations z,\ 1 < k < K. Then, the background error correlation 
between any two locations (m,k) in these profiles is (following the notation in (4.1)), 

(:„(>., ei,z1»>,X2,e2,z2
k) = cb

h(s12,a12) c;(z,m,z2
k), (4.15) 

where s12 and a12 are the great-circle distance and angle between the two profiles. Now define C to be the MxK 
forecast error correlation matrix with elements given by (4.15), and consider the matrix/vector operation (4.14). 
Following (4.4), suppose there are Nv eigenvalues and eigenvectors of the forecast error correlation and define 
E, as the MxNv eigenvector matrix corresponding to profile (1) and E2 as the KxNv eigenvector matrix for 
profile (2). Define D as the diagonal NvxNv matrix of the vertical eigenvalues of the forecast error correlation. 
Then, we can write (4.14) as q = cb(s12,a12) EpE^ r since cb(s12,a12) is independent of the vertical coordinate. 
Now define D]2 = cb

h(s12,cc12) Dv as a diagonal NxNv matrix so that each (diagonal) element is a function of the 
horizontal locations of the two profiles and the vertical mode number. Then, we re-write (4.14) as 

q = E2D12E,Tr. (4.16) 

Note that while we refer to the matrices E, and E2 as eigenvector matrices, we use this term rather loosely. In 
Eqs. (4.4)-(4.13) they are not always eigenvectors, especially for nonseparable formulations. However, this does 
not really matter because we do not intend to take any advantage of the orthogonality properties of the eigenvec- 
tor matrices. The only property that is of interest to us is that the background error correlations can be written as 
the product of a diagonal matrix, with premultiplication by a rectangular matrix and post-multiplication by its 
transpose. 

1 NAVDAS Source Book 



Now, the representation of (4.16) in itself does not get us very far. But now consider a slightly bigger problem. 
Suppose that the vector r = [r r2]

T is a vector of length Mj+M2 consisting of the observation profile vector r, of 
length Mj at horizontal location (A,1

1,01
1) and observation profile vector r2 of length M2 at horizontal location 

(?i2
1,02

1). Similarly, define q = [qv q2]
T as another vector of length K,+K2 consisting of the observation profile 

vector ql of length K; at horizontal location (l,2^2), and observation profile vector q2 of length K2 at horizontal 
location (X,2

2,G2
2). Then, consider the matrix/vector multiply problem in this case. Matrix C in (4.14) in this case 

is now an (Mj+M^Kj+K,,) forecast error correlation matrix, and following (4.16) we can write (4.14) as 

tfl" \E] 
0" \»n A2] IX O" V 

°2_ 0 E2\ D2l D22_ 0 ET
2\ /2_ 

(4.17) 

Now the D matrix consists of four diagonal blocks, while the two E matrices are block-diagonal. All horizontal 
correlations are contained in the diagonal D matrix. We can represent (4.17) as a sequence of three operations. 

(1) Multiply the vector rt by the matrix E,T and the vector r2 by the matrix E2
T. This operation does 

not involve interactions between the two profiles and will produce a new vector of length 2xNy. 
This operation takes the real space vertical profiles and projects them into vertical eigenvector 
space. 

(2) Multiply the vector resulting from operation (1) by the diagonal matrices DU,D12,D21,D22 to pro- 
duce another vector of length 2xNv. This operation is where all the interactions between the two 
profiles occur, but the matrix/vector multiplications are all performed with diagonal matrices. 

(3) Multiply the two vectors of length Nv resulting from operation (2) by Ej and E2 respectively to 
produce the vectors q, of length M and q2 of length K. This operation also does not involve 
interactions between the two profiles and is essentially the back transformation from eigenvector 
to real space. 

4.4.3 Operation count for real space and eigenvector methods 

Now we consider an operation count for the full problem. Suppose the number of eigenvectors and the number 
of elements in each profile is the same and is equal to N. Suppose instead of two profiles there are J profiles. 
Typically J might be several hundred or thousand and N might of order 50 to 100. Then, if the problem (4.14) is 
done totally in real space, the operation count is (NxJ)2. For the eigenvector decomposition (4.17), the first step 
requires JxN2 operations, the second NxJ2,and the third step JxN2, for a total of 2JxN2 + NxJ2 operations. Under 
realistic conditions N « J, and the cost of the second step dominates the first and third step, and total operation 
cost for the eigenvector decomposition method is approximately NxJ2 operations, or a factor of 1/N fewer 
operations than the real space method. This factor of N, which is order 30 to 100, is not negligible in either 
storage or execution time and is definitely worth pursuing. 

4.4.4 The effect of single level observations 

Now all observations are not profiles-what about single-level observations? Suppose r and q are vectors of 
single-level observations of length I. If we consider the interactions between I single-level observations and J 
profiles (of length N), then the traditional real space approach takes IxNxJ operations, while the eigenvector 
approach takes JxN2 + IxNxJ + IxN operations. For N « J and N« I, the real space and eigenvector ap- 
proaches have essentially the same operation count for single-level/profile interactions. 

Now consider the interactions between I single-level observations only. Using the traditional real space ap- 
proach, the operation count is I2, while for the eigenvector approach it can easily be shown that the operation 
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count is 2IxN + Nxl2. For N «I, the eigenvector approach is N times as expensive as the real space approach 
when considering single-level/single level interactions. This obviously is not good. 

4.4.5 A solution for the single-level observation problem for solver and post-multiplier 

From the above operation count, it is clearly not desirable to project each single-level observation onto Nv 

vertical eigenvectors. Consequently, any code must be modified to handle single-level operations separately. We 
separately discuss the matrix/ vector operation that occurs in the solver and the post-multiplication. Consider 
first the solver problem. Here, we have to perform an operation (4.14) in which the both the vectors r and q 
consist of mixtures of profiles and single-level observations. Thus there will be four types of interactions: 

(1) r and q are both profiles - this is the case considered in (4.17) 

(2) r and q are both single-level - this is done entirely in real space 

(3) r is a profile, q is single-level - in this case r is projected into eigenvector space using a multiplica- 
tion by ET (first step of (4.17)). The second step (multiplication by D matrices in (4.17)) is the same 
except that the elements of D are modified. Thus, the nvth element of D has been multiplied by 
e(n ,z), which is the element of E corresponding to the nvth eigenvalue at the location of the single- 
level observation in q. The final step (multiplication by E in (4.17)) is then not necessary. 

(4) r is a single-level, q is a profile - this is like (3), except in reverse. 

If the observations are properly sorted into profiles and single-level observations, these four cases can all be 
reduced to matrix/vector operations in an orderly fashion. 

For the post-multiplication, the procedure is slightly simpler. In this case, the vector r in (4.14) would consist of 
a mixture of profiles and single-level observations, but the vector q would consist only of profiles. This is 
because the output from an analysis scheme is always a vertical column of corrections at each horizontal loca- 
tion of the analysis grid. In this case, only operations of type (1) and (4) are required. 

4.4.6 Operator form 

In Eqs. (4.16)-(4.17), the transformation from vertical eigenvector space to real space E and the transform from 
real space to eigenvector space ET (and the necessary modifications to take care of the single-level case) are 
written as matrices. In preparation for the implementation of the forward operator H, these operations are actu- 
ally coded as operators. Thus, if we have an operation such as (4.16) to perform, viz, q = EDET r, where r and q 
are vectors, E and ET are block-diagonal eigenvector transformation matrices as in (4.17), and D consists of 
diagonal blocks as in (4.17), the actual operation would take the form 

q = E(f),f = Dg,g = ET(r), (4.18) 

where E and ET are operators and g, fare intermediate vectors. In these operators, the single-level case is explic- 
itly accounted for. 

4.4.7 Application of vertical eigenvector decomposition to the pre-conditioner 

Vertical eigenvector decomposition can also be applied to the preconditioner of (3.13), that is, 

A*s = r , where A* = Cb
ob/oh + [S^*]-1 RIS^]-' is the preconditioner matrix. (4.19) 
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In this case, we must solve for sk given rk separately for each observation volume. This problem may be solved 
(1) directly, by Cholesky decomposition, or (2) iteratively, by using the standard conjugate gradient algorithm 
(3.12). If we use the eigenvector decomposition, we can, in principle, apply either method. 

The method that we have actually implemented is method (1), the Cholesky decomposition. To implement the 
eigenvector transform in this algorithm is straightforward. The calculation of [S^RtSJ1 is unchanged; it is 
only the calculation of Cb

ob/ob in (4.19) that has to be changed. In this case, we must use the E and ET operators of 
(4.18) to generate a matrix. This can be done by defining a vector r in (4.18), which is zero for all elements 
except the jth element, which is set equal to 1. Then, application of the ET operator, multiplication by the D 
matrix, and application of the E operator (as in (4.18)), will produce a vector that is actually the jth column of the 
Cb

ob/ob matrix. We can exploit the fact that the matrix Cb
ob/ob (for the preconditioner) is always symmetric. 

4.4.8 Inclusion of the forward operator 

We defer this discussion until the subject of direct assimilation of radiances is introduced in Section 5. 

4.4.9 Modification for nonseparable background error correlations 

Section 4.4.2 considered separable background error covariances, as in Eq. (4.15). However, certain types of 
nonseparability can be accommodated within this formulation. We define dv

n, d]2
n as the nth elements of the 

NvxNv diagonal matrices Dv and D12 respectively (4.16). For the separable formulation, 

d12«=cb
h(s12,a12)dv

n- (4-2°) 

For a nonseparable formulation that can be accommodated in this framework, we define a horizontal correlation 
cb

h(s12,oc12,n) that is vertically mode-dependent. Then, d12
n = cb

h(s12,a12,n)dv
n. In this case, all the features of the 

eigenvector decomposition discussed in this section are still relevant. Of course, it is more expensive when the 
horizontal correlation varies by vertical mode number (as it would be if the horizontal correlations varied by 
pressure) because the horizontal correlation operator has to be called more frequently. We discuss nonseparable 
background error covariances in greater detail in Section 4.7. 

4.5 Changing the Vertical Metric (Isentropic Coordinates) 

Equation (4.3) gives several models for the vertical structure of the background error correlation at two levels, m 
and n, with local vertical correlation lengths Lm and Ln. These models are given in terms of |Az|, where z = P is 
the pressure. 

It is not necessary that z = P; in fact, another attractive possibility is z = 6, where 0 is a potential temperature. 
That is, we apply the models (4.3) based on the differences in potential temperature rather than the differences in 
pressure between the two levels. (We could also alter the values of Lb

v at the levels). Now 8 = T(P/P0)
R/Cp, where 

T is the temperature, P the pressure, PQ the pressure at 1000 mb , R the gas constant, and Cp the specific heat at 
constant pressure. Everything except the temperature will always be known. Because it is the background error 
correlation that we wish to model, it is perfectly legitimate to determine the temperature (and therefore the 
potential temperature) at any desired location from the background field itself. That is, z = 6b, the background 
potential temperature. It is important to note that this procedure does not require a transformation to isentropic 
coordinates and there are none of the well-known problems caused by the intersection of the isentropes with the 
Earth's surface. 

If we assume an isotropic horizontal background error correlation model and assume z = 9b, then we are implic- 
itly assuming that the background error correlations are isotropic along isentropic surfaces. Whether this is a 
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better or worse assumption than assuming the correlations are isotropic on pressure surfaces is not known. 
However, the assumption of isotropy on an isentropic surface does make the forecast error correlations consid- 
erably more flow-dependent. This can be seen in Figs. 7 and 8 of Benjamin (1989), which developed an optimal 
interpolation scheme in isentropic coordinates for initializing an isentropic forecast model. 

Figures 4.5 and 4.6 illustrate the effect of setting z = 0b. Each panel is a two-dimensional map (abscissa is 
horizontal distance; ordinate is equally spaced in pressure). The isentropic fields 9bare plotted on each panel as 
line contours (every 5° K). The tropopause and stratosphere are visible at the top of each panel, an area of neutral 
stability at the lower right, and a frontal structure running diagonally from the lower left-hand corner. On each of 
the nine panels of the two figures, shaded contours mark the height/height «DO>, temperature/temperature 
<TT>, wind/wind <vv> correlations and all the cross correlations for a point located in the front, just below the 
tropopause. Figure 4.5 defines the vertical coordinate in Eq. (4.1) as z = P and Fig. 4.6 is for z = 0b. From the 
<TT> correlations, it is clear that along-front points are much more highly correlated than across-front points, 
and statically neutral points are much more highly correlated than statically stable points. Not shown is the jet 
core (it sits slightly to the left of center of the <0<J» correlation), but examination of the correlations indicates 
quite different behavior on one side of the jet than the other. Essentially, correlations drop off rapidly when they 
have to cross-isentropic contours. At the lower left of each panel is a marine boundary layer; at the lower right is 
an almost unstable continental air mass. Because isentropic contours lie between, it is likely that observations in 
the marine boundary layer would not influence the analysis over the continents and vice versa. The z = 0b system 
is also able to "see" the tropopause and the different stratification in the stratosphere. 

hon'/.nntal  distance hoi 17ont,11  clisl,iiu'f 

Figure 4.5 
x/P cross-section of 9 correlations - pressure as 
vertical coordinate 

Figure 4.6 
Same as Figure 4.5, except for 9 as vertical 
coordinate 

There are four further notes concerning this transformation. 

(1) z = 0b requires monotonicity; if the background is statically unstable, it is corrected to be neutral. 
This was, in fact, done in Fig. 4.6; 

(2) the value of the transformation z = 0b, depends on the accuracy of 0b. If the background field is not 
very accurate, then z = P is likely to be a more useful form; 

(3) while it may be useful to define the correlations along 0 surfaces, it would seem desirable that the 
variances be defined on pressure surfaces; and 
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(4) this transformation is more likely to be useful for regional problems, because, in the global prob- 
lem, certain isentropes that are present in the tropics may be missing in the polar regions, and vice 
versa. 

This transformation was coded for NAVDAS and tested over North America in the CO AMPS system by Peter 
Steinle of the Bureau of Meteorology Research Center, Melbourne, Australia. 

4.6 Horizontal Background Error Correlations 

By and large, the horizontal background error correlations are much less radically changed from the NRL MVOI 
system than are the vertical background error correlations. The NRL MVOI formulation is essentially based on 
Lonnberg and Hollingsworth (1986) and Daley (1991), as is the present NAVDAS formulation. However, some 
generalizations are introduced here: horizontal scales, which vary with horizontal position; geostrophic cou- 
pling parameters, which are horizontally scale-dependent; and background error correlations, in which the hori- 
zontal and vertical representations are nonseparable. We begin the discussion with the univariate case. 

4.6.1 The univariate case 

The horizontal univariate correlation between a location with longitude and latitude (^n,6n) and a second loca- 
tion with longitude and latitude (k ,0 ) is of the form 

ch
h(?i ,6 ,X ,9 ) = ch

h(s   ,Lh   ), (4.21) b v   n'   n'   m'   m/ b v nm'     nm-" v ' 

where snm is the great-circle distance between the two points and Lh
nm = (Ln

hLm
h)1/2. Here, Ln

h and Lm
h are the 

horizontal correlation lengths at the two horizontal locations. If Ln
h = Lm

h, then a correlation of the form (4.21) 
will be isotropic. If the correlation lengths vary horizontally, then the correlation (4.21) will be anisotropic. 

It is important to note that allowing Lh to vary horizontally has implications for the multivariate case somewhat 
similar to the horizontal variation of the background error variance discussed earlier. That is, if we want to 
calculate the wind/wind and wind/geopotential covariances from the geopotential/geopotential covariances us- 
ing the geostrophic relation, we will create an extra term involving the horizontal derivatives of the variation of 
Lh. These extra terms will remain small as long as the horizontal variation of Lh is on scales that are large 
compared to Lh itself. 

4.6.2 Horizontal correlation models 

At present, we can use the following horizontal correlation models: 

(1) SOAR       cb
h(snm,L>nm) = (1 + sJL"J exp(-snm/L"nm) 

(2) Gaussian     cb
h(snm,Lh

nm) = exp[-(snm/Lh
nm)2]. (4.22) 

(3) Compact spline (Gaspari and Cohn, 1999). This is a function of compact support that goes identi- 
cally to zero (with its first two derivatives) at some finite distance (2c). It is positive definite and 
twice differentiable. Define c = (10/3)1/2 andr = s  /(cL  ). Then, 

c,h(s   ,L   ) = ah(r) = -rV4 + rV2 + 5r78-5r73 + 1, 0<   r<   1, 
b v  nm'    nm' b v ' ' — — 

= rV12-rV2 + 5rV8 + 5rV3 -5r + 4-2/3r,        1 <   r   < 2, 

=  0. r   > 2. 

NAVDAS Source Book 



4. Background Error Covariances 

These models are not guaranteed to yield positive-definite matrices when Lh is horizontally variable. In practice, 
however, if Lh varies on scales larger than Lh itself, there do not seem to be problems. The great-circle distance 
is calculated by a procedure similar to but more efficient than that used in NRL MVOI. This procedure is 
discussed in more detail in Appendix A. The radial correlations for the SOAR and compact spline formulations 
are displayed in Figs. Al and A2. 

The Schur product 

The Schur or Hadamard product of two matrices A and B having the same dimensions is the matrix C of the 
same dimensions with c. = a., b... It can be shown that the Schur product of two covariances is also a covariance. 

IJ V     'J 

In particular, if A and B are both positive definite, then the Schur product of the two matrices is also positive 
definite. As described in Gaspari and Cohn (1999), this gives the possibility of taking the Schur product of any 
covariance with another covariance constructed from a function of compact support. Thus, we could Schur 
multiply a SOAR covariance matrix with a compact spline covariance to yield a new covariance that was SOAR- 
like, and yet went to zero smoothly at some finite distance. This Schur product covariance is useful when we 
wish to ignore correlations between observations that are widely separated. (This is preferable to ignoring small 
but nonzero correlations). 

4.6.3 An example ofanisotropy 

There is good evidence that the horizontal length scale Lh is larger in the tropics than in the extratropics, and this 
type of variation can be easily introduced. 

We now discuss another example of anisotropy. The NRL mesoscale model COAMPS is often run on a triply 
nested grid, with maximum resolution at the innermost grid. One way to provide analyses for this system is to 
provide three separate analyses-one for each grid. Since the resolvable scales are finer in the innermost grid, it 
seems reasonable to suppose that the horizontal correlation length Lh might be smaller for this grid than for the 
coarser outer grids. This sort of variation can be easily accommodated with three separate analyses. However, 
with NAVDAS and horizontally variable L\ the same result can be achieved with a single analysis in which the 
horizontal correlation length varies smoothly across the interfaces, even though the analysis grid length jumps 
discontinuously. (Strictly speaking, there would be a single solve (Eq. 3.5), but a separate post-multiply (Eq. 3.6) 
for each of the nests.) geopotential correlation 

Figures 4.7 and 4.8 demonstrate this capability in a univariate 
(geopotential) analysis of geopotential observations on a two- 
dimensional grid. The grid is 40x40 (equally-spaced, not varying 
discontinuously, as would be the case with a COAMPS analysis). 
There are 1600 observations randomly scattered within the 
domain, and each observation is generated with a random num- 
ber generator. Lh is constant around the boundaries of the domain 
and decreases by a factor of 4 smoothly toward the center. The 
correlation function is of the SOAR form (4.22) and is plotted for 
a point near the upper left-hand corner of the domain in Fig. 4.7. 
The contour interval is 0.1, and all values less than 0.1 are "white." 
It can be seen that the correlation is stretched toward the outside 
of the domain and is shrunk toward the inside, as one would 
expect using the prescribed variation of the correlation length Lh. 
(It might be noted that here Lh varies on scales that are not large 
compared to Lh itself, in violation of the warning in Section (4.6.1), 
but this is only intended to be a demonstration). 

x gridpoint 

Figure 4.7 
«t><t» correlation for variable horizontal scale 
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Figure 4.8 shows two resulting geopotential correction fields. In panel (a), the horizontal scale is invariant; in 
panel (b), it decreases toward the center of the domain as noted above. The contour interval is 2.0, and all values 
between -2 and +2 are "white." At the domain boundaries, the horizontal scale is the same for the two plots. 
Consequently, near the boundaries, the two panels are very similar, resolving only large-scale features. Toward 
the center of the domain, panel (b) shows much more small-scale detail, as would be expected. In fact, the 
correction field in the center of panel (b) is very similar to that obtained in the case where a constant horizontal 
scale Lh is set equal to the minimum value used in constructing Fig. 4.8(b). 

The univariate formulation (4.22) is used for all variables except geopotentials, winds, and temperatures, which 
are related multivariately. 

geopotential correction field geopotential correction field 

j Pv i lYi i JmW r r 
10 20 30 

x gridpoint 

Figure 4.8a 
O correlation for invariant horizontal scale 

j L ,%\&^,)jM*r*ü.-,'<^,-J;hdziil.JB 
10 20 30 

x gridpoint 

Figure 4.8b 
Effect of variable horizontal scale 

4.6.4 The multivariate case 

The formulation of the multivariate horizontal background error correlation basically follows Daley (1991, 
Chapter 5), as does the NRL MVOI. Consequently, we discuss this aspect (important as it is) relatively briefly. 
Because the horizontal correlation length Lh depends on location, it is convenient to introduce a nondimensional 
scaled distance. Thus, 

c,h(s   ,Lh   ) = c„h(r   ), where r   = s   /Lh   . h ^  nm»      nm' h v nnr" nm nm        nm 
(4.23) 

The multivariate correlations must be formulated on the sphere. This introduces some complication over formu- 
lation in Cartesian geometry and is discussed at some length in Appendix B. Figure B2 shows (for the case of no 
correlations with the divergent wind) the nine correlations involving the geopotential and the two wind compo- 
nents. We now discuss the wind/wind correlations. 

4.6.5 The wind/wind correlations 

We discuss first the separable case in which the divergent wind is not correlated with the rotational wind. This 
case is discussed in detail in Daley (1991, Section 5.2). The representation requires the calculation of the deriva- 
tives 1/r dcb

h Mr and d2cb
h /dr2, the angles between the two locations ocnm and aB, and a parameter v that is a 

measure of the divergence permitted in the wind correlations. The parameter v = 0 is strictly nondivergent, and 
normally v is set to a value such as 0.05 or 0.10, which produces correction vectors that may be weakly diver- 
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gent, v is assumed to be set to a global value. For the wind/wind correlations, there are actually two horizontal 
correlations-a streamfunction/ streamfunction correlation (cw

h) and a velocity potential/velocity potential cor- 
relation (c h). We assume that these two correlations have the same horizontal correlation length, although this 
is not strictly necessary. The horizontal wind/wind correlations are derived from these two univariate correla- 
tions using Eqs. (5.2.23)-(5.2.32) of Daley, 1991). 

The calculation of the angles ocnm and amn is considerably more complex in NAVDAS than in NRL MVOI. In 
NRL MVOI, the analysis is always done in a local grid because correlations between locations that are widely 
separated are ignored. In NAVDAS, correlations between locations up to 6000 km apart are considered. This 
means that wind/wind correlations must be done properly in spherical geometry, and the rather delicate situa- 
tions around the poles must be properly accounted for. This subject is discussed in considerable detail in Appen- 
dix B. 

The nonseparable case contains extra terms because the divergent wind may be correlated with the rotational 
wind. This case is discussed in Daley (1985) and the appropriate spherical form of the equations are also given 
in Appendix B. 

4.6.6 Geopotential/wind correlations 

We first discuss the separable case where the divergent wind is not correlated with the mass field. The formula- 
tion of geopotential/wind correlations follows Daley (1991, Section 5.3). This representation requires calcula- 
tion of the derivative dcb

h/dr, the angles ocnm and amn as above, and a parameter \i. that specifies the strength of the 
geostrophic coupling. Calculation of the derivatives and angles is as above. 

It has already been indicated (Section 4.3.7) that the geostrophic coupling may be vertical mode dependent. It is 
much more important that the geostrophic coupling be latitudinally dependent. Ignoring vertical modal varia- 
tions, \x = 1 is completely geostrophically coupled in the Northern Hemisphere, and \x = -1 is completely geo- 
strophically coupled in the Southern Hemisphere. Generally, (a is set to a number between 0.9 and 1.0 in the 
northern extratropics, falling to zero at the equator, and then decreasing to a value between -0.9 and -1.0 in the 
southern extratropics. In the NAVDAS code, it is technically possible to have correlations between points in 
different hemispheres, for example points at 20°N and 20°S may have nonzero correlations and nonzero values 
of m. This situation is handled as follows: Suppose we wish to find the correlation for a wind at point n, with a 
geopotential at some other point m. Define [ln and (im as the values of the coupling parameter at the two points. 
If (J. and \l are both positive, the coupling parameter would be (|j.jj.n)"

2; if both are negative, it would be - 
(|am|0,n)

1/2; otherwise, it would be zero. 

In an earlier section, we showed how |X can also vary in the vertical. That is n is close to 1 (or -1 depending on the 
hemisphere) for grave vertical modes, but |J. becomes closer and closer to zero for the shallow vertical modes. In 
other words, it is only the deep vertical modes that are highly geostrophically coupled. It is possible to make the 
same argument in the horizontal, that is that the geostrophic coupling should be a maximum at large horizontal 
scales and the smaller horizontal scales (below meso a, say) should be increasingly uncoupled, because geostrophy 
is not relevant on those scales. This geostrophic decoupling at smaller spatial scales would be particularly rel- 
evant for the inner mesh of COAMPS. A simple procedure for geostrophic decoupling at smaller horizontal 
scales is discussed in Appendix F. 

In the nonseparable case, there may be correlations between the mass field and the divergent wind field. This 
case is discussed in Daley (1985), and the appropriate spherical form of the equations is given in Appendix B. 
This completes our discussion of the horizontal background error correlations; we now consider the combined 
horizontal/vertical correlations in a nonseparable formulation. 
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4.7 Nonseparable Background Error Correlations 

Equation (4.1) describes a vertically/horizontally separable background error correlation in which the character- 
istic vertical scale is, at most, vertically dependent and the horizontal scales are, at most, horizontally dependent. 
A nonseparable generalization of (4.1) is written as 

c^e,,^,^) = c;(Zl,z2,L/) cb
h(s12,oc12,Lb

h), (4.24) 

where Lb
v = Lb

v(z1,z2,^1,^2,ei,02) and Lb
h = Lb

h(A,1,A,2,ei,92,z1,z2). We now discuss briefly three possibilities for 
nonseparability. 

4.7.1 Horizontal variation of the vertical correlations 

Bouttier et al. (1997) provides some evidence that the background error correlations have a smaller vertical scale 
(whiter spectrum) in the tropics than in the extratropics. This sort of latitudinal variation of the vertical correla- 
tions can be accommodated within the present formulation. While latitudinal variation of the vertical eigenvec- 
tors E (4.4) is not out of the question, a more straightforward idea is to keep the E invariant and allow the 
eigenvalues to vary latitudinally. This idea can be illustrated most simply by considering the <<E>0> correlation 
since the more general notation has already been introduced in Eq. (4.6). Thus, we suppose that the tropical 
vertical geopotential background error correlation is given by b^", which differs from dw

n. There is one draw- 
back to this assumption. That is, given the eigenvectors E defined in (4.4), the only diagonal matrix D^ that will 
give a correlation C0O, whose main diagonal elements are all equal to 1, is any linear combination of Dw and the 
identity matrix, whose trace is equal to Nv. Such a formulation is very limiting (allowing only relative adjustment 
between the diagonal and all the off-diagonal elements simultaneously). To allow more general formulations, we 
have adopted the form (4.6), but it requires the multiplication of S0

1/2Sv"
2 in (4.7) to produce a proper correlation 

(all main diagonal elements equal to 1). This multiplication can potentially produce very noisy correlations if 
S "1/2S 1/2 is very different from the identity matrix. Consequently, the spectra b0<„n and d0(J)

n in (4.6) should not 
differ markedly. (As noted in Sections 4.3.5 and 4.3.6, the actual scaling of equations (3.17) and (3.18) is per- 
formed by S^ for the geopotential and by ST1 for the temperature.) 

<TT>  background error correlation 

Figure 4.9 is an example of a vertical <TT> correlation con- 
structed from Eqs. (4.6), (4.7), and (4.9) using the above ideas. 
The abscissa is latitude from north pole to south pole and the 
ordinate is pressure. There are 32 vertical levels unequally-spaced 
in log(P) between 1070 hPa and 50 hPa. 8(<|>) in (4.6) is 1 at the 
poles and falls symmetrically to 0 at the equator. We have cho- 
sen a SOAR formulation with the tropical spectrum b^ having a 
whiter spectrum than the extratropical spectrum b . The con- 
tour interval is 0.1, and values between -0.1 and +0.1 are white. 
The correlations at each latitude are with respect to the 300 hPa 
level. This figure can be loosely compared with Fig. 26 of Bouttier 
et al. (1997), bearing in mind that the pressure levels, correlation 
models, and vertical presentation are different. In Fig. 4.9, the 
tropical vertical correlations are tighter than at high latitudes, as 
evident in Bouttier et al. (1997). 

4.7.2 Vertical variation of horizontal length scales 

Figure 4.9 
<TT> correlation with 300 mb as a function 
of latitude 

There are distinct advantages to a nonseparable formulation. For example, the ECMWF 3DVAR background 
error correlations are formulated in wave-space in the horizontal and discretely in the vertical. This permits a 
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different vertical length scale for each horizontal wave. In particular, the vertical length scale is permitted to be 
shorter for the smaller scale horizontal waves-sort of a three-dimensional isotropy. Consider the wind and 
geopotential in this formulation and assume the geostrophic constraint is strictly applied. Now, the effective 
horizontal scale of the winds is always shorter than for the geopotential because of the horizontal derivatives 
implied by the geostrophic relation. Now through a nonseparable formulation, the shorter horizontal scales of 
the wind field are associated with the shorter vertical scales, whereas for the geopotential, the horizontal scales 
are longer and therefore the vertical scales are also longer. This results in a wind correlation (which already has 
a shorter horizontal correlation length than the geopotential) also having a shorter vertical scale. This is a distinct 
advantage because the vertical decorrelation length for winds really is shorter than for the geopotential. The 
same effect tends to produce shorter horizontal correlation lengths for the temperatures than for the geopotentials, 
which is also desirable. A desirable side effect is that individual observations at one level affect only the large 
horizontal scales of the analysis at distant levels. The well-known increase with height of the horizontal correla- 
tion scales (see Lonnberg and Hollingsworth, 1986) can also be accommodated within this formulation. The 
observation space algorithm used by NRL and NASA Goddard can also accommodate some nonseparability of 
this type, although it is less straightforward. At NASA Goddard, the vertical correlations are formulated in real 
space, which certainly permits the vertical variation of the horizontal correlation length-a very important fea- 
ture. However, it is not easy to see how the other nonseparable features of the ECMWF formulation could be 
achieved with their formulation. 

Section (4.4.9) discussed how the horizontal correlations could be made vertically mode dependent. In particu- 
lar, we can permit the horizontal correlation length to vary as a function of the vertical mode number. In (4.12), 
we have described how the geostrophic coupling parameter is a maximum at large vertical scales and decreases 
for smaller vertical scales. This is already a form of nonseparability for the multivariate problem. In the same 
way, we can vary the horizontal length scale Lb

h as a function of vertical mode number. 

This requires a few modifications to the theory of Section 4.3. Thus define dw
n as the nth element of the NvxNv 

diagonal matrix D defined in Eq. (4.4). Now define the Nv.xNv diagonal matrix Dvv with elements dvv
n. Define 

L ° as the nominal background error horizontal length scale and Lh
n as the background error horizontal length 

scale for the nth vertical mode. Then, we define the elements of the wind/wind error correlation in vertical 
eigenspace as 

d n = d   "(WW)2- (4-25) vv yy   v    h       h y 

We define the vertical variation of the background wind error variance as 

S =diag[S  'ED ETS,"2]. (4.26) 
V C5L      y vv y        J 

Then, the wind/wind correlation is given by 

C   = S "1/2S "2ED ETS ,/2S -1'2. (4.27) 
vv v \|/ vv y        v 

Under separable conditions, Lh
n = Lh°, 1 < n < Nv, and consequently Dvv = Dw and Sv = S^ and (4.27) collapses 

to (4.5). 

One other modification is required, that is, Eq.(4.12) is replaced by 

d  " = und   nLh°fL". (4.28) 
0v "v     \|A|/       h        h N 

Figure 4.10 (in the same format as Figs. 4.5 and 4.6) plots an example of nonseparability achieved by varying Lb
h 

as a function of vertical mode number. Thus, Lb
h is a maximum for the gravest vertical mode and monotonically 

decreases for the higher vertical modes. Each panel shows a two-dimensional (pressure/horizontal distance) plot 
of a various correlations with a given point. Figure 4.10(a) is for a separable correlation and Fig. 4.10(b) is for 
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nonseparable correlations. All of the correlations are strictly hydrostatically and geostrophically coupled. Note 
that the horizontal scale of the <TT> correlation and the vertical scale of the <vv> correlation are shortened in 
the nonseparable formulation, e.g., these correlations are more three-dimensionally isotropic. A desirable side 
effect of this nonseparable form is that observations tend to affect only the larger horizontal scales of the analysis 
at distant levels (because the deep vertical modes have large horizontal scales). 

A disadvantage of the nonseparable correlations of Fig. 4.10(b) is that the effective horizontal correlation length 
is the same at all levels. Thus, the rather important advantage of increasing the horizontal correlation scale for 
decreasing pressure has not been achieved with this nonseparable formulation. However, all is not lost; there is 
still one other set of free parameters to vary. Figure 4.10(b) was produced by using the <v|np> vertical correlation 
of (4.4), with ß equal to the identity matrix. Suppose instead, that we permit the elements of the diagonal matrix 
f) to increase with height (decrease with pressure). Figure 4.11 illustrates this effect on the horizontal correla- 
tion length Lb

h. In this example, there were 40 vertical levels, unequally spaced in log(pressure) from 1070 to 1 
hPa. The elements of g increased from 1.0 at 1070 hPa to 3.0 at 100 hPa and then remained constant above 100 
hPa. The horizontal correlation length decreased for the higher vertical modes. Although the horizontal length 
scale is specified as a function of vertical mode number, an effective horizontal length scale can be plotted as a 
function of pressure. This is what is plotted in Fig. 4.11. The solid curve is the effective horizontal scale for the 
geopotential and winds, and the dash-dot curve is the corresponding scale for the temperature. As discussed 
above, the horizontal temperature scale is expected to be shorter in the nonseparable formulation. In this formu- 
lation, the horizontal length scale for the geopotential and winds increases slowly with decreasing pressure in the 
troposphere and then increases much more rapidly in the lower stratosphere. 
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Figure 4.10a 
x/P cross-sections of 9 correlations - separable 
formulation 

Figure 4.10b 
Same as Figure 4.10a, except for non-separable 
formulation 

As noted earlier, this nonseparable formulation means the Sv and Sy may not be the same. An example of this is 
shown in Fig. 4.12, corresponding to the same case as Fig. 4.11. We then calculate S$, ST, and Svand normalize 
them by their value at the bottom(at 1070 hPa). The solid line is S^, the dashed-dot line is ST, and the dashed line 
is S . In the separable case, the normalized geopotential and wind error variances would be the same (solid and 
dashed lines would overlay). This shows that because of the increase in horizontal length scale with decreasing 
pressure (Fig. 4.11), the wind error variance increases less rapidly than the geopotential error variance. Note the 
wind error maximum near the tropopause (300 hPa). 

The principal disadvantage of all nonseparable formulations is that they are inherently more costly in the calcu- 
lation of the correlations (although not necessarily in their subsequent use). Thus, in this nonseparable formula- 
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4. Background Error Covariances 
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Figure 4.11 
Background error horizontal correlation length 
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Figure 4.12 
Background error horizontal correlation length 

tion, it would be necessary to calculate all horizontal correlations for each vertical mode, rather than calculating 
them once for all vertical modes as in the separable formulation. However, even though the horizontal correla- 
tions are different from each vertical mode, the great-circle distance and angles (see Appendix A) remain invari- 
ant. In practice, there are ways to make the computational penalty for a nonseparable formulation quite light-less 
than a factor of 2 in cost. 

4.7.3 Correlation with the divergent wind 

It is possible to include correlations with the divergent wind in a separable formulation and indeed (as shown in 
Section 4.3.4) we already include C correlations with the same vertical structure as the Cw correlations. How- 
ever, this is not appropriate when the divergent wind is correlated with the geopotential and rotational winds. 
These correlations are known to be small, but nonzero, particularly near the Earth's surface. In particular, there 
is convergence into low-pressure regions and divergence from high-pressure regions. As shown in Appendix B, 
this results in a clockwise rotation of all the correlations in the Northern Hemisphere and an anti-clockwise 
rotation in the Southern Hemisphere. The rotations are maximized at the Earth's surface. 

If there is to be differential rotation of the correlations with decreasing pressure, this requires a nonseparable 
formulation of the C and C0 correlations. We illustrate the C correlation, but the C0x correlation is handled 
in a similar fashion. We define the velocity potential/streamfunction correlation as in Section 4.3.4, that is, 

C   =ED  ET, 
vx vx 

(4.29) 

where D is diagonal with positive elements. The vertical eigenvalues of the <V|A]/> correlation tend to decrease 
for the shallower modes. Moreover, if we use the form of the matrix ß illustrated in Fig. 4.2, then the deep 
vertical modes of C will have their maximum amplitude in the stratosphere, and most of the contributions near 
the Earth's surface will come from the shallow modes. Then, we define a much whiter spectrum (i.e., falls off 
much less rapidly for increasing mode number) for D than for D . This results in much shallower vertical 
correlations for the <y%> correlations than for the <\|A|/> correlations. But it will also have another effect. For 
the deep modes, the <y%> correlations will be completely dominated by the <\|/\|/> correlations. For the shallow 
modes, however, the <\|A|/> and <VX> correlations will be much more similar in magnitude. Since the deep 
modes are maximimized in the stratosphere and the shallow modes near the Earth's surface, the effect of includ- 
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ing the <\\f%> correlations is maximized at the Earth's surface and decreases with decreasing pressure. As illus- 
trated in Appendix B, this results in a maximum rotation of the correlations near the ground, with virtually no 
rotation at high level. (The rotation is clockwise in the Northern Hemisphere and anti-clockwise in the Southern 
Hemisphere). 

4.8 Projection of the Correction Field on Background Vertical Eigenvectors 

Section (4.4) described the method for projecting onto the vertical eigenvectors of the background error correla- 
tion for use in matrix/vector operations in the solver and the post multiplication. Let us now consider the post 
multiplication step (3.6) more closely. The input to the post multiplier is in observation space, and the output is 
in analysis grid space. Note that the output consists entirely of profiles for each variable at each horizontal grid 
point. Following Section (4.4), the post multiplication step can be written in the form (4.16). There is a sequence 
of three operations: 

(1) the ET operation-a projection for all observations (profiles, soundings and single level observa- 
tions) into vertical eigenvector space; 

(2) the D operation-a matrix vector/multiplication entirely in vertical eigenvector space to produce 
vertical eigenvalue projections of the correction field for each variable at each analysis grid point; 
and 

(3) the E operation-a transformation for each variable at each horizontal grid point from vertical eigen- 
vector space to real space. 

At the end of step (2), we have, essentially, a vertical spectral form of the correction field at each analysis grid 
point. There is some advantage to terminating the post-multiplier at the end of step (2) rather than immediately 
proceeding to step (3). In particular, by storing the output from the 3DVAR algorithm as vertical spectral ampli- 
tudes for each variable at each analysis grid point, we retain an enormous flexibility in transforming the correc- 
tion fields to any vertical coordinate at any specified levels. Thus, we could perform the final transformation 
(step 3) to real space as the first operation of a model initialization (COAMPS or NOGAPS) in whatever vertical 
coordinate system (sigma surfaces, for example) with the field of vertically decomposed corrections. The output 
on constant pressure surface (for display purposes) could be produced with the same field. 

Following the procedure of Section (4.4) precisely will produce Nv eigenvector amplitudes for each variable and 
each horizontal grid point. If Nv is relatively large, it may well be that we can produce sufficiently accurate 
correction fields by only calculating and storing the amplitudes of the projection on Mv < Nv of the gravest 
vertical modes. That is, we could use this device to vertically filter the correction fields, thus making consider- 
able savings in both storage and computation. Thus, if Mv = Nv/2, the post-multiplication step would be half as 
costly. The choice of My would be made experimentally. 
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5. Instruments — Observation Errors and Forward Models 

This section discusses properties of the instruments used to obtain the observations. We are not concerned here 
with the reading, sorting, or quality control of the data, but rather the instrument characteristics that must be 
accounted for in correctly determining the observation and background error covariances. For each instrument, 
we will discuss its observation error characteristics, followed by a discussion of the forward model for the 
instrument (if there is one). 

5.1 Vertical Profiles, Vertical Soundings, and Single-Level Observations 

In Section 4 (Eqs. (4.14)-(4.20)), we discussed the projection of vertical profiles onto the eigenvectors of the 
background error correlation matrix. We also demonstrated for the solver (Eq. (3.5)) that this projection was 
inefficient for single-level observations (surface observations, cloud track winds, etc.), and consequently such 
observations were handled in real space. Now the projection into eigenvector space can, in principle, be used for 
any type of vertical profile information, including in situ observations (radiosondes, in particular) or remotely 
sensed information (satellite radiances, total precipitable water, etc.). We refer to in situ observations, in which 
the variable measured is the same as one of the analyzed variables, as profiles. We refer to remotely sensed 
information in which the variable measured is not an analysis variable as soundings. We treat soundings and 
profiles slightly differently. 

For both sounding and profile, we project into eigenvector space. However, for profiles we assume that the 
observations project onto all the vertical modes; for soundings we project onto a subset of the gravest vertical 
modes. Thus, suppose that there are Nv vertical modes, and Nv

s < Nv is a subset of modes with the largest 
eigenvalues (corresponding to the gravest vertical scales of the background error correlation, see Fig. 4.4). Then, 
we would project vertical soundings onto only the Nv

s gravest modes. Following Section 4.4.2, the implication 
of this assumption is that in calculating background error correlations between two soundings, or a sounding and 
a profile, the calculation would involve only the first Nv

5 elements of the D matrices of Section 4.4.2 instead of 
all N elements. Thus we would define D as the Nv

sxNv
s diagonal matrix consisting of the Nv

s largest eigenval- 
ues. We would similarly define the corresponding reduced NyxNv

s eigenvector matrix E. Similarly, interactions 
between single-level observations and soundings would involve only the first Ny

s vertical eigenfunctions. Thus, 
for modes n < Nv

s, we would project both soundings and profiles; for Nv
s < n < Nv, we would project only 

profiles. 

Justification for this procedure is based on the fact that sounding and profiles are fundamentally different. A 
profile (radiosonde, say) has high vertical resolution, but may be incomplete (i.e., it does not always sample the 
whole atmosphere). A sounding, on the other hand, always samples the whole atmosphere (we would reject it if 
most of the channels were missing) using broad, overlapping weighting functions that have a very low vertical 
resolution. In effect (as we demonstrate in Appendix G) a sounder only "sees" the gravest vertical modes (i.e., 
has only a few degrees of freedom). Thus, for example, TOVS has about five pieces of temperature information, 
a hyperspectral sounder like AIRS has 10-20, and a total precipitable water measurement has only 1. Thus, it is 
clearly advantageous to project information of this sort only onto the gravest modes of the background error 
correlation. 

We treat temperature or moisture profiles derived from outside agencies (such as the National Environmental 
Satellite, Data, and Information Service, NESDIS) as profiles. For NRL 1DVAR (one-dimensional variational) 
retrievals, the correction vector for the 1DVAR retrieval becomes part of the innovation vector for 3DVAR. 
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Since we know that the correction vector for the 1DVAR retrieval contains very few degrees of freedom, we can 
treat 1DVAR retrievals as soundings in which the forward operator H is the identity matrix. Direct assimilation 
of radiances, which we treat as soundings, will actually require the use of a nontrivial forward operator (see 
Section 5.3) 

5.2 Radiosondes and Pibals 

Radiosondes provide vertical profiles of temperature, height, and horizontal wind components. Pibals provide 
only winds. Temperatures are measured at significant levels, but both temperatures and heights are also provided 
at the (lower vertical resolution) mandatory levels. In the NRL MVOI code, the radiosonde mass observations 
were provided in the form of geopotential observations at the mandatory levels (1000, 850, 700 hPa, etc.). The 
geopotential observation errors were assumed to be vertically uncorrelated. The NAVDAS code is not tied in 
any way to the mandatory levels, and it is possible to analyze radiosonde temperature observations from the 
significant levels. This has two advantages: 

(1) using the significant levels gives higher vertical resolution; and 

(2) while the radiosonde temperature observation errors are vertically uncorrelated (or perhaps weakly 
correlated), the geopotential observation errors are strongly correlated. 

5.2.1 Vertical correlation of radiosonde geopotential errors 

This correlation of the geopotential errors is caused by the fact that the actual radiosonde mass observations are 
temperature and the geopotential observations are obtained by vertical integration of the hydrostatic equation. 
This can be demonstrated as follows. Consider vertically 
uncorrelated temperature observation error. Figure 5.1 (solid 
curve) shows the temperature error correlation <TT> for an 
atmosphere with 100 vertical levels spaced equally in 
log(pressure) between 1070 and 50 hPa with the middle level 
(50). The temperature error correlation is a spike, as specified. 

The geopotential observation error correlation can be obtained 
from the temperature error correlation by integrating the 
hydrostatic equation, which in integral form is written, 

radiosonde  <TT>  and  <ZZ>  error correlations 

<D(P) = O 

i- 

TdlnP, 

where P is pressure, R is the gas constant, Ps is the pressure at 
the surface, and T is the temperature. This form is straightfor- 
wardly discretized to produce an NxN triangular matrix, where 
N is the number of levels in the discrete representation. 

0.4 0.6 

correlation 

Figure 5.1 
Radiosonde observation error correlations - <TT> 
and «I><1» 

rc-l 

O =0 +R y.T [IILP   , -InP ]. n s ~*     mL m-1 mJ (5.1) 
m=\ 

Pre-multiplication of the diagonal temperature error covariance by the hydrostatic matrix and post-multiplica- 
tion by its transpose produces the radiosonde geopotential observation error covariance matrix (dash-dot curve 
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5. Instruments — Observation Errors and Forward Models 

in Fig. 5.1). It can be seen that the geopotential error is highly vertically correlated, with a greater correlation 
above than below. Note the different curvature above, rather than beneath. This is the signature of a hydrostatic 
integration and is visible in the radiosonde observation geoptential error correlations plotted by Lonnberg and 
Hollingsworth (1986, Fig. 3). 

Radiosonde observational geoptential error correlations can be included in the NAVDAS formulation, and will 
obviously make more optimal use of the geoptential observations than if this correlation is neglected. There is a 
problem, however. If we attempt to assimilate a vertical column of radiosonde geopotential observations, we 
find that there is a significant difference in the condition number of the HPbH

T+ R matrix, depending on whether 
or not we assume the radiosonde geopotential error is spatially correlated. Consider a radiosonde ascent with 24 
geopotential observations. If the observation error correlation is ignored, then the condition number is 10.5. If 
the observation error correlation is included, then the condition number is 1161.3. If 24 (uncorrelated) tempera- 
ture observations are used instead, then the condition number is 3.25. As noted earlier, correlated observation 
error increases the condition number for the present observation space implementation of the 3DVAR algorithm. 
Thus, radiosonde temperature observations at the significant levels are likely to provide more usable informa- 
tion. 

Thus, for both radiosondes and pibals the observed variables are wind, temperature, and moisture (logc(q)) for 
all significant and mandatory levels. (The geopotential at the surface is also known and used.) It might be noted 
that some observations that are coded as pibals are actually the significant levels winds from a radiosonde 
ascent. The winds from these fictitious pibals are, of course, combined with the relevant radiosonde mandatory 
level winds before the quality control stage. 

Figure 5.2 illustrates the differences between assimilating winds and geopotentials at mandatory levels only 
with assimilating winds and temperatures at all mandatory and significant levels. Both panels show the 250 hPa 
temperature correction field (in degrees K, contoured at 0.5 degree) for a global analysis for January 14, 1998 at 
0000 GMT, produced from radiosonde and pibal observations only. Panel (a) is for 63,600 mandatory and sig- 
nificant level T,u,v observations; panel (b) is for 24,800 mandatory Z,u,v observations. Height observation 
errors were assumed to be vertically uncorrelated in panel (b). The differences are not insignificant, but it is not 
obvious which would give the superior analysis. 
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Figure 5.2a 
Correction fields due to radiosonde (mandatory plus significant levels) 
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Figure 5.2b 
Same as 5.2a, except for mandatory only 

5.3 Nadir Temperature Sounders (TOVS) — Linearized Form 

The NAVDAS algorithm has three options for assimilating TOVS temperature and moisture information: 

(1) Assimilate retrieved temperatures and moistures from outside agencies such as NESDIS 

(2) Assimilate retrieved temperatures and moistures using NRL 1DVAR off-line retrievals 

(3) Assimilate TOVS radiances directly into the 3DVAR algorithm. 

We discuss each option in turn. 

5.3.1 Assimilation of NESDIS retrievals 

In this case, observations are treated exactly as if they were radiosonde data, except that the specified observa- 
tion errors may be different. 

5.3.2 Assimilation of NRL 1DVAR retrievals 

Nancy Baker (NRL Monterey) has developed a 1DVAR retrieval for TOVS that takes brightness temperatures 
and converts them into retrieved temperatures (and moistures) by using Eq. (6.2). The background temperature 
(and moisture) fields for these NRL retrievals are the same as for the NAVDAS algorithm described in Section 
(5.3.3). 

The 1DVAR algorithm is an off-line counterpart of the 3DVAR algorithm to be described in Section (5.3.3). It 
can be used in its own right, with the retrieved temperatures and moistures ingested into the 3DVAR codes 
exactly as if they were radiosonde observations (but with different specified observation errors). The correction 
vector from the NRL 1DVAR retrievals will become an innovation vector for the 3DVAR procedure. 
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As shown in Appendix G, the TOVS instrument contains only large vertical information. This means that the 
correction field from the NRL retrieval will contain only large vertical scale temperature increments. Since this 
innovation vector contains only the largest vertical scales of the temperature (or moisture), we can represent this 
field with only Nv

s < Nv vertical background error eigenvectors. (This would not necessarily be true for exter- 
nally produced retrievals (see Section 5.3.1), which use different background fields). We would treat NRL 1DVAR 
retrievals as if they were soundings, projecting them on only the Ny

s gravest vertical modes. 

The main objection to using the NRL 1DVAR retrievals is that they use the same background field as the 
3DVAR system. Therefore, the 1DVAR retrieval error (which is the observation error for the 3DVAR algorithm) 
is, in fact, correlated with the background error. This correlation is probably quite large and difficult to account 
for in the 3DVAR algorithm. 

Even if we decide to directly assimilate the TOVS radiances (as in Section 5.3.3), we still perform the off-line 
1DVAR retrieval of temperature and winds. There are several reasons for this. 

(1) It is an important step in the quality control of radiances, both to reject bad radiances and to correct 
the inherent biases in each channel. 

(2) It is simpler to perform a nonlinear minimization in 1DVAR than in 3DVAR, so for inherently 
nonlinear radiative transfer models, we can use the 1DVAR retrieval to obtain a better state esti- 
mate than the background field. 

(3) While we still assimilate the radiances in the 3DVAR procedure with respect to the original (fore- 
cast) background field, we can use the 1 DVAR-derived state estimate to linearize the nonlinear 
forward model H(x) to produce the associated tangent linear operator H. 

5.3.3 Direct assimilation of TOVS radiances 

Section 5.1 discussed the projection of sounding information onto a subset of the gravest (Nv
s < Nv) vertical 

eigenmodes of the background error correlation matrix. We now illustrate how this is done with the TOVS 
instrument. This instrument measures radiances in about 20 microwave and IR channels. For the moment, we 
restrict ourselves to a single vertical column, that is the one-dimensional case. Denote the number of channels as 
N , and define some vertical column of temperatures (actually virtual temperatures) T at N discrete pressure 
levels. Then H(T) is defined as the (possibly nonlinear) radiative transfer operator, which produces radiances (or 
brightness temperatures) in N, channels from the temperature column (T). Define the background and analyzed 
(retrieved) temperature vectors Tb and Ta at the same Nv pressure levels. Then, define H = 3H(T)/3T evaluated 
at T = Tb as the NvxN, Jacobean matrix or tangent linear matrix, or defined as in Section 5.3.2 using the off-line 
NRL 1DVAR retrieval Note that this last procedure uses the same radiance observations twice, but only to 
linearize the radiative transfer operator. Then define R as the N.XN. radiance observation error matrix (usually, 
but not necessarily diagonal) and y as the vector of length N. radiances. Define CTT as the background tempera- 
ture error correlation (NvxNv) (Eq. (4.10)) and ST as the diagonal background error variance matrix (NyxNv). 
Then, we can define the temperature correction field using the scaled form (3.17), 

T - Tb = ST
1/2CTTST

1/2HT [HST
1/2CTTST

1/2HT + R]-'[y - H(T„)]. (5.2) 

We also define (as in 3.17) Sh = diag[HST
1/2CTTST"

2HT] as a diagonal N.xN background radiance error variance 
matrix. From Eq. (4.10), we can define Cn as 

CTT = ST-"2H Sv"2EDETSv"
2Hs

TST-|/2, (5.3) 
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where Hs is the NvxNv hydrostatic matrix to determine temperatures from geopotentials, S^ is the NvxNv matrix 
of vertical background error variances specified after Eq. (4.5), and E and D are the NyxNv matrices (D diagonal) 
of vertical background error eigenvectors and eigenvalues. Now, following the discussion in Section 5.1, sup- 
pose only N s < Nv vertical background error eigenvectors are to be used. We then define D to be a Nv

sxNv
s 

reduced diagonal matrix consisting of the Nv
s largest eigenvalues of D, and E to be a NxNv

s rectangular matrix 
consisting of the eigenvectors E corresponding to the Nv

s largest eigenvalues. 

Now define the N xN s matrix, 

H = S "I/2HH S 1/2E . (5.4)   h s   y    — x       ' 

For TOVS, Nc < 20 and Nv
s < 10, so the matrix H is relatively small. Substitution of (5.4) into (5.2) gives 

T - Tb = H S^EDITtlffiir + S^RS^l-'S^ty - H(T„)]. (5.5) 

In Eq. (5.5), the nadir sounder radiance observations have been vertically projected onto a subset of the back- 
ground error vertical eigenvectors. We can thus apply all of Section 4.4 to this case. Suppose we consider the 
case with many soundings, not just a single sounding. Then, we would be using a conjugate gradient descent 
method that would involve large matrix/vector multiplications ((3.13) and (4.14)-(4.20)). The difference would 
be that equations such as (4.14) involving two soundings (instead of two profiles) would be written as 
q = H2D12H,Tr , while interactions between a sounding and a profile would become q = H2D12EjTr or 
q = E2D12H,Tr. Note that in both cases, the diagonal matrix D]2 contains, in addition to the vertical eigenvalues, 
all the horizontal background and multivariate (wind/geopotential) correlation information. Thus, as in (4.17), 
matrix multiplications by H, E, If, or ET are all performed on individual soundings or profiles; they do not 
involve interactions between different soundings or profiles. The additional complication with soundings that 
did not exist with profiles; is that E or E are universal matrices, whereas H may be different for every sounding. 

We now discuss three technical issues with this algorithm. The first issue is that it has been assumed here that the 
pressure levels of the H matrix are the same as those of the CTT and E matrices. This may not, in general, be true. 
To handle the more general situation, where these pressure levels are not the same, define the interpolation 
matrix G that interpolates any quantity from the Nv levels of the background temperature Tb to the levels re- 
quired by the forward radiative transfer equation (H). Then, in this case, we simply replace (5.4) by 

H = S -/2HGH S 1/2E. (5.6) 

The second issue is that the radiative transfer equation requires temperatures at much greater altitudes than are 
generally available in the background field T . Suppose that there are Nv temperatures in a vertical column of the 
background field, with a minimum (top) pressure Pto. Suppose also that the radiative transfer equation requires 
an additional Nt temperature Tad at pressure levels from Ptop to some much lower pressure (higher top) Prad. Then, 
the total temperature vector required for the radiative transfer equation is [Tb

T Trad
T]T. Now, split the H operator 

into two parts-Hrad which goes from the highest background temperature level to the top of the atmosphere (Prad 

< P < Pto), and Hb which is for pressure levels greater than P . Similarly, divide H into H ad and Hb. Then, 
simply replace H in (5.4) by 1^ and the innovation [y - H(Tb)] in (5.5) with the new innovation [y - Hrad(Trad) - 
Hb(Tb)]. Trad is assumed to be specified externally from climatology or a previous off-line 1DVAR retrieval. 
Thus, Had(Trad) is, in effect, the simulated radiance from the top of the background field to the top of the atmo- 
sphere, and y - Hrad(Trad) is already known before the 3DVAR algorithm begins. This formulation is equivalent 
to specifying that the prespecified Trad (Prad < P < P  ) is perfect. 

The third issue concerns the diagonal scaling matrix Sh (introduced after Eq. (5.2)). As noted after Eq. (3.17), 
scaling is introduced in the descent algorithm to ensure that all the elements of the HPbFF + R matrix are 
dimensionless and O(l), which improves the condition number. This becomes increasingly important as new 
types of background and observed variables are introduced. The important difference between Sh and other 
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scaling matrices, such as Sv, ST and S0 introduced in Section 4, is that Sh depends not only the background error 
specification, but also on the instrument characteristics. This makes it somewhat more awkward to calculate. 

We now illustrate calculations made using these ideas for a single vertical column. We can assess the accuracy of 
given retrieval without using any radiance observations, simply by estimating the analysis (retrieval) error using 
Eq. (2.8). Thus, given an radiative transfer operator H and its Jacobean H, the radiance observation error cova- 
riance R, and the background temperature error correlation CTTand variance Sv (from which we can calculate 
the background error covariance Pb in (2.8)), we can calculate the retrieval error covariance Pa. Consider the 
diagonal elements of Pa (i.e., the retrieval error variances) and normalize by the diagonal elements of the back- 
ground error covariance Pb-that is, calculate diag(Pa)/diag(Pb), and then take the square root of each element. 
Each of these elements will be between 0 and 1; 0 indicates a retrieval with no error and 1 indicates a retrieval 
that is no more accurate than the background temperature. Table 5.1 is an example of such a calculation. The 
retrieval had 18 radiance channels and 40 pressure levels from 1000 hPa to 0.1 hPa. The first column gives the 
normalized retrieval errors for the standard case, with the background error available from 1000 hPa to 0 mb and 
all 40 eigenvectors used. We regard this as the optimal case for the given specification of H, R, C.rT, and Sv and 
it would also satisfy (2.9). We show only selected pressure levels. 

Table 5.1 — Retrieval Error as a Function of Pressure 

Pressure Level 
Retrieval Error Normalized By Background Error (RMS) 

Optimal Case Suboptimal (7 Modes, 1 hPa Top) 

0.1 hPa 0.9723 1.0000             1.0000 

1.0 hPa 0.8044 0.8538             0.8359 

10.0 hPa 0.6607 0.6871             0.6871 

50.0 hPa 0.7843 0.7981              0.7980 

100.0 hPa 0.7797 0.7838             0.7838 

200.0 hPa 0.6599 0.6700              0.6714 

500.0 hPa 0.7920 0.8044             0.8043 

700.0 hPa 0.7359 0.7411             0.7433 

850.0 hPa 0.9125 0.9277              0.9244 

1000.0 hPa 0.9875 0.9956             0.9920 

It can be seen that the observed radiances have the most effect at 200 hPa and again at 10 hPa, with very little 
effect at the top of the atmosphere or at very low levels. This is a consequence of the structure of the H operator 
(not shown) and reflects the spectroscopic properties of the various channels of the instrument. 

Now consider a suboptimal case (but still normalized by the diag(Pb) from the optimal case). In this case (shown 
in the second column), there are only the seven gravest vertical background error eigenvectors, and the top 
background error level is 1 hPa. It can be seen that in all cases, the retrieval error is higher (but only slightly 
higher) despite having a lower top and only seven (instead of 40) vertical modes. The third column is described 
in Appendix G. 

A word of warning is appropriate here. In Table 5.1, all the 18 radiance channels have been assumed to be 
available. If a number of the channels are missing, then of course, the relative errors in the optimal case (first 
column) would be higher. More importantly, the suboptimal case (second column) may deteriorate even more 
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quickly. That is, because the background error eigenvectors sample the whole atmosphere, and if a portion of the 
atmosphere is not sampled by the instrument at all, then we have a situation more like an incomplete radiosonde 
profile, which would require all of the vertical eigenvectors to resolve properly. 

Figure 5.3 shows an example of the background temperature error covariance in the vertical (degrees Kelvin)2 

for the optimal case, with pressure decreasing logarithmically from 1000 hPa to 0.1 hPa going from left to right 
on the abscissa and from bottom to top on the ordinate. It can be seen (as specified) that both the background 
temperature error variance and vertical scale increase from 1000 hPa to 0.1 hPa. (The contour intervals indicated 
in the small square boxes have been multiplied by 10). Covariances whose magnitudes are less than 0.8 (degrees 
Kelvin)2 are colored as "white". Figure 5.4 is in the same format as Fig. 5.3; we show the background tempera- 
ture error covariance for the suboptimal case (top at 1.0 hPa, seven vertical modes). The effect of the model top 
is evident in the background error, and the projection on only seven modes of the 40 results in broadening of the 
covariance. As Table 5.1 shows, however, this drastically different background temperature correlation seems to 
have very little effect on retrievals with the TOVS instrument. Why this should be so is explored in Appendix G. 
In case of excessive concern about the radically changed nature of the background error temperature covariance 
in Fig. 5.4, it should be remembered that this is the effective covariance used for the TOVS sounders. For 
radiosondes, all the eigenvectors are included so the effective covariance would appear more like Fig. 5.3 (at 
least below 1 hPa). 

background temperature error covariance 

100 10 

pressure in hPa 

Figure 5.3 
Specified <TT> background error covariance from 
1000 to 0.1 mb 

background temperature error covariance 

■n— i i  • " r 

100 10 

pressure in hPa 

Figure 5.4 
Same as Figure 5.3, except for 7 modes and top at 
1.0 mb 

Figure 5.5 shows an actual example of a global correction field derived from TOVS radiances alone using the 
above procedure. The correction field is for the 250 hPa temperature (degrees Kelvin, with contour interval 0.5 
degrees) on a 1 degree global grid. There were 19 channels (approximately 1700 soundings, or approximately 
32000 radiance observations). There was a separate H matrix for each sounding, based on linearization about 
the background temperature at the location of the sounding. The background error covariance had 39 pressure 
levels to 1 hPa. In panel (a), the 10 gravest vertical modes of the background error correlation were used. In 
panel (b), all 39 vertical vertical modes were used. Consistent with the results of Table 5.1, the two panels are 
generally quite similar, indicating that most of the information in the correction field is in the 10 gravest modes. 
However, this is not always the case, as can be seen by examination of the correction fields over Europe (upper 
left hand corners). For such soundings, it may be necessary to use all Nv eigenvectors, rather than Nv

s eigenvec- 
tors as in most of the soundings. 
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TEMPERATURE AT    250.0  MBS 

BON 

-o.s-  
0 i5i 120E 

CORRECTION FOR 19980114-00 10  vert modes 

Figure 5.5a 
Temperature correction from TOYS sounder (10 modes) 

TEMPERATURE AT    250.0  MBS 

BON 

60S 

0 BÜ ?3>E T5Ö 120W 

CORRECTION FOR  1998011400 : 39_vert_modes 

Figure 5.5b 
Same as Figure 5.5a, except all 39 modes 

To use this algorithm, the radiance innovations must be projected onto the vertical background error eigenvec- 
tors and then back to radiance space during every iteration of the conjugate gradient descent. These transforma- 
tions are performed using the precomputed H matrices (Eqs. (5.4) or (5.6)), which are different for every sound- 
ing. These H matrices are NxNv

s that are perhaps 100 to 200 elements, which is not prohibitive from a storage 
point of view for 1000-5000 soundings. The transformation themselves are also not costly because they do not 
involve interactions between soundings. Thus, this algorithm appears to be practical and efficient, and experi- 
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ments with 2000 to 5000 soundings over the globe have confirmed this. It should be noted that this section has 
considered a linearized forward model; the full nonlinear operator is discussed in Section 6. 

However, temperature sounders (called hyperspectral sounders) that may have more than 1000 channels are now 
in the development stage. Such a sounder could easily overwhelm any observation space assimilation system, 
even with the algorithm described above. For such hyperspectral sounders, this algorithm has to be taken a step 
further; this development is described in Appendix G. 

5.4 Surface Observations 

Conventional surface observations (land surface and shipboard) include measurements of wind, temperature, 
humidity, and pressure. These are all treated in a straightforward fashion using the station pressure. Pressure 
innovations are converted to geopotential innovations. 

Mean sea level pressure (msl) is handled somewhat differently. Over land it is a fictitious variable, but it is still 
very important to forecasters, and the sea level pressure observations should fit the "observations" of msl pres- 
sure as accurately as possible. Thus, the sea level pressure analysis is part of the interface between the NAVDAS 
code and the model (NOGAPS or COAMPS) code. A background field of mean sea level pressure is obtained by 
extrapolation procedures from the NAVDAS analysis in the atmosphere (i.e., above terrain). Mean sea level 
innovations are then calculated at observation locations by differencing the mean sea level "observations" and 
the background field. These innovations are then analyzed using a two-dimensional univariate version of the 
NAVDAS code. This code performs a universal solve by pre-conditioned conjugate gradient descent, divides the 
innovations into prisms, and runs on distributed memory machines. 

5.5 SSM/I Windspeeds (Linearized Form) 

The SSM/I instrument indirectly measures surface windspeed. We assume that the windspeed retrieval algo- 
rithms produce a reasonable windspeed estimate and attempt to directly assimilate these windspeeds. This means 
that we do not make any explicit attempt to assign a direction to the SSM/I windspeed observation. 

Windspeed is treated as a single-level quantity with a nontrivial forward operator. If w is the windspeed, then 

w = H(u,v) = (u2 + v2)1'2, (5.7) 

where u and v are the wind components in some coordinate system. Define v as the vector of length 2 with 
components u and v. The forward operator H is nonlinear in this case. If we linearize this operator around the 
background wind vb with components ub and vb, then the appropriate tangent linear operator H is the 1x2 matrix 

H = [5H/8ub   5H/5vb] = [ub/(ub
2+vb

2)"2   vb/(ub
2+vb

2)1/2]. (5.8) 

It is easy to show that HHF = 1 and Hvb
T = H(ub,vb) = (ub

2 + vb
2)1/2. Thus, for the wind speed operator, the 

nonlinear operator H and the linearized (around the background) operator H have the same effect when applied 
to the background wind. 

Now if we consider the background error covariance for the u and v fields at a fixed location, then we know that 
they are not correlated (even though u and v background errors may be correlated for two separate locations). 
Thus, the covariance for collocated u and v background errors is given by 

C   = 
<   o 
n       „2 (5.9) 

NAVDAS Source Book 



5. Instruments — Observation Errors and Forward Models 

where £2 is the background error variance (which is the same) for each of the u and v wind components. Then, 
the background windspeed error variance £2 is given by 

£2=HCvvIF=£2. (5.10) 

Thus, in the notation of Eq. (3.17), we would define Cb
oh"* as the 2x2 identity matrix, [Sb"T2 as the 2x2 diagonal 

matrix with diagonal elements £v, and Sh
1/2 as the single number £~'. Equations (5.7)-(5.10) contain all the 

elements necessary for the (linearized) assimilation of windspeeds. 

Now let us examine a simple case where we have a single windspeed observation wr and a single (collocated) 
background wind vector vb with components ub and vb. Then, we apply (2.6) to this simple problem, yielding 
3DVAR analyzed wind components u and v , 

vb + (e;+£r
2r 

'<    0 

0    el 
IT[wr-H(ub,vh)] , 

=     (K +<)-'(< +e>r(V + V>-,ßK (5-11) 

using (5.7)-(5.10) and £2 is the specified SSM/I windspeed error variance. It is easy to see from (5.11) that the 
analyzed wind direction tan^'(ua/va) is equal to the background wind direction tan-'(ub/vb). From (5.11), the 
analyzed windspeed is given by 

H(ua,va) = (ua
2 + va

2r-= (£
2 +£2)-,(£2(ub

2+vbT
2 + wr£

2) (5.12) 

using Eq. (5.8). Thus, the analyzed windspeed is a linear combination of the SSM/I windspeed observation and 
the background windspeed. Equations (5.11) and (5.12) are not valid when there are many SSM/I observations, 
except in the special case when the background error correlation scale Lh = 0, in which case, the SSM/I observa- 
tions do not influence each other. 

Equations (5.7)-(5.10) provide the framework for the direct assimilation of SSM/I windspeeds. Three additional 
points must be made: First, background error wind components ub and vb are required at every SSM/I windspeed 
location that we desire to assimilate. Second, when (ub

2 + vb
2) is very small, the tangent linear model is not 

defined, and we cannot use an SSM/I windspeed observation at that point. Third, Eq. (5.7) is nonlinear, and the 
optimal solution can only be obtained by iterating the 3DVAR algorithm. This can be done by modifying the 
innovation and performing an outer iteration (see Section 6.1). 

5.6 SSM/I Total Precipitable Water 

The retrieval of moisture from SSM/I total precipitable water measurements has been studied by Phalipou and 
Gerard (1996). As for the SSM/I windspeed, we assume that the total precipitable water in a vertical column has 
been adequately obtained by outside retrieval from the SSM/I instrument. We then attempt to directly assimilate 
the total precipitable water observations to analyze our moisture variable s = logcq, where q is the specific 
humidity (see Section 4.3). We treat the total precipitable water as a sounding, following the discussion in 
Section 5.3.3. In other words, since the total precipitable water is a vertical integral, we treat it as if it were a 
single channel sounding. Define m = q/(l - q) = es/(l - es) as the water vapor mixing ratio and W as the total 
column precipitable water. Then, 

.t ' s 

W = g-x\mdP =g-]jes/(\-es)dP (5.13) 

1] NAVDAS Source Book 



where g is the gravitational constant and Ps is the surface pressure. In discrete form, we can write (5.13) as 

W « g-iy£mn[Pn+i ~ Pn] = S"'Js^S j[\ ~ CXP(Sn )]~\Pn + l - P„]  = H(s), (5.14) 
«=1 

where N is the number of vertical levels, m and q are defined at the intermediate levels as described in Section 
v n ■MI 

(4.3), and s is the vector of length Nv of log specific humidities sn. H is the forward operator relating W to s. 
Equation (5.14) is nonlinear in s and q. 

Now let us construct the linear tangent operator H. Suppose that the background-specific humidity is given by qb 

with Nv elements qb
n; and the corresponding background log specific humidities are denoted sb with elements sb

n. 
Then we can linearize (5.14) about this background-specific humidity profile by noting that increments in the 
mixing ratio are (to first order) Amn = Aqn/(1 - qb

n)2 and in specific humidity Aqn = qb
n Asn. Then, 

AW = g-l^q"b[l-q;l2[Pn+l-Pn] Asn = HAs, (5.15) 

where H is the 1 xNv matrix with elements defined in (5.15), AW is the total precipitable water increment, and As 
is a vector of length Ny of increments of the log specific humidity. In (5.15), qb

n, Pn, etc. are all known. 1 - q and 
(1 - q)2 are very close to 1. However, to use (5.15), we are required to have available, whenever needed, com- 
plete vertical profiles of the background-specific humidity qb

n, 1 <n <Ny for every single SSM/I total precipi- 
table water observation. It would seem to be an unnecessarily large storage burden to carry around a complete 
background profile of background-specific humidity for every SSM/I perceptible water observation. Unfortu- 
nately, this is a price we pay for using s, rather than q as our humidity variable. However, there is a way around 
this problem. 

AW = Wr - Wb, where Wr is the observed SSM/I precipitable water and Wb = H(sb) following (5.13) is the 
background precipitable water. Then, replace (5.15) with 

AW/Wb = H4As, (5.16) 

where IT is the lxN matrix with elements 

n=\ 

The elements of H, (5.16), unlike the elements of H (5.15), are normalized and nondimensional. The elements of 
H would vary substantially between pole and equator, while the elements of H, would have a much smaller 
horizontal variation. We therefore assume (for the present) that the elements (5.17) are horizontally invariant. 

Following Sections (3.7) and (5.3.3), we use the scaled form of the 3DVAR equation (3.17). Thus, we now 
define the (normalized) background precipitable water error (a scalar) ew

2 = HjSs
1/2Cs Ss

1/2Ht
T, where Ss is the 

NvxNv diagonal matrix of background log specific humidity error variances and Css is the symmetric NyxNv 

background log specific humidity error correlation matrix defined in Section 4.3. In the notation of Section 3.7 
and Eq. (3.17) in particular, we associate Cb

ob/ob with Css, Sb
ob with Ss, and Sh with ew

2. Then, following Section 
(5.3) and Eq. (5.4) in particular, we define H as 

H = Sh
,/2H,(s^b)I/2E - e^H.S^E, (5.18) 
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where E is the NvxNv
s matrix of eigenvectors of Css corresponding to the Nv

s largest eigenvalues, and H  is a 
lxN s matrix that, from the assumption following (5.17), is independent of horizontal location. 

For a one-dimensional retrieval, the counterpart (for SSM/I precipitable water) to Eq. (5.5) is 

s.-sb=Sl,2EMÜ:[!rar + e;,Rwe;,r,e;,[Wr-Wb]/Wb, (5.19) 

where D is a diagonal Nv
sxNv matrix consisting of the Nv

s largest eigenvalues of Css, Rw is the SSM/I precipi- 
table water observation error variance, Wr is the observed precipitable water, and Wb = H(sb) is the background 
precipitable water defined above. 

Extension from one dimension to three dimensions follows exactly as in Section (5.3), but note that H is a 1 xNv 

universal matrix for this instrument. 

Table 5.2 shows one dimensional specific humidity correction fields retrieved from a total precipitable water 
measurement using this algorithm. The normalized precipitable water innovation (5.16) is 0.1. Following (5.19), 
the log specific humidity correction field is retrieved. For display purposes, this correction field is then con- 
verted into a specific humidity correction field (gm/kgm) by multiplying by the standard atmosphere specific 
humidity vertical profile. There are 32 pressure levels from 1070-10 hPa and thus 32 vertical modes of the 
background error correlation. We show the specific humidity correction using all 32 modes, seven modes (as in 
Section 5.3), and two modes. 

As would be expected (see also Phalipou and Gerard, 1996), the specific humidity correction decreases with 
height. Also, not surprisingly since precipitable water is a vertical integral, it does not take very many modes of 
the background error correlation matrix to represent the specific humidity correction field. Seven modes is more 
than enough, but two modes clearly has systematic errors at high levels and near the ground. 

Figure 5.6 illustrates the analysis of a single SSM/I total precipitable water observation. Temperature, back- 
ground, and analyzed dew point are plotted as a function of pressure on a skew/logp diagram. In this case, the 
observed and background precipitable water were 46 and 30.9 mm, respectively. The vertical correlation length 
(Eq. (4.3)) was 0.35, and the observation and background error for the total precipitable water were the 
same. In this example, three vertical modes of the background error correlation were used. The 

Table 5.2 — Specific Humidi ty Correction 

Pressure Level Optimal Case (32 Modes) Seven Modes Two Modes 

50         hPa 0.0000 0.0000 -0.0001 

200       hPa 0.0001 0.0001 0.0002 

300       hPa 0.0036 0.0036 0.0057 

500       hPa 0.0277 0.0278 0.0368 

700       hPa 0.0916 0.0915 0.0984 

850       hPa 0.1266 0.1265 0.1197 

950       hPa 0.1505 0.1506 0.1408 

1000     hPa 0.1808 0.1813 0.1657 
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analyzed total precipitable water came out to be 38.8 mm, which 
lies between the observed and background values, as would be 
expected. Figure 5.6 shows that the total precipitable water 
innovation increment is spread out in the vertical, with the maxi- 
mum effect in the lower troposphere. The result of Fig. 5.6, with 
three vertical modes used, is indistinguishable from a result using 
all 32 vertical modes. 

5.7 Cloud Drift and Water Vapor Winds 

Cloud drift winds are can be determined from geostationary satel- 
lites using automatic tracking of cloud filaments. Distance vectors 
over short time periods are converted into wind vectors reasonably 
accurately. The chief problem is in determining the height of the 
clouds, and therefore assigning accurate heights (pressures) to the 
cloud drift winds. The pressures can be assigned incorrecdy to groups 
of cloud drift wind vectors in the same vicinity, thus giving rise to 
the possibility of horizontally correlated observation errors. 

ssmi 
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Figure S.6 
Temperature, background, and analyzed dew 
point from SSM/I total precipitable water 

Such cloud drift wind observations are treated conventionally by the NAVDAS system. The observations are 
thinned to minimize horizontal correlations, and the observation errors assigned are fairly large. 

Water vapor winds are a more recent innovation. They are obtained by tracking features in several water vapor 
channels on geostationary satellites, and then converting into wind vectors in a procedure similar to those used 
for cloud track winds. Since the radiance in the water vapor channels comes from a deep layer rather than a 
point, these winds actually represent a vertically integrated quantity (with a weight function given by the vertical 
response of the instrument). In principle, one could determine a forward operator H (as in Section 5.3) appropri- 
ate for these channels and assimilate these channel radiance vectors directly. 

Unfortunately, we do not have the resources to attempt the direct assimilation of these radiance vectors at this 
time. Consequently, we assimilate the derived wind vectors, using the provided height assignments. Thinning is 
also used for these observations. 

5.8 Pilot Reports and AMDAR Observations 

Conventional pilot reports that occur along standard aircraft tracks are used in a conventional fashion. 

AMDAR (aircraft meteorological data reporting) observations taken on wide-bodied aircraft and then up-linked 
to satellites are an important new source of information. Where available, they are given higher weight and 
precedence over conventional aircraft reports. There are many sources of error in these observations, and they 
must be carefully quality controlled. Patricia Pauley has devoted an enormous amount of time identifying the 
various kinds of error and, in some cases, correcting them (Pauley and Stephens, 1998). 

We divide AMDAR observations into three categories: ascents, level flight, and descents. We treat level flight 
information in much the same manner as aircraft reports. Descents are not used much except in the absence of 
other information. Ascents are treated as vertical profiles. For lower resolution analyses such as those for NOGAPS, 
we may ascribe a single latitude and longitude to the whole ascent and treat it much like a radiosonde-using 
vertical eigenvector decomposition, which has a huge computational advantage, as in Section (4.4). For higher 
resolution analyses such as those for CO AMPS, we retain the option of treating each observation of the ascent as 

NAVDAS Source Book 



5. Instruments — Observation Errors and Forward Models 

a single observation with its correct latitude and longitude. This is more expensive, but more accurate, and 
expense is not such an important consideration for regional analyses. 

Over a 6-hour period, a number of AMDAR ascents may occur from the same airport. It would be foolish to 
include all the ascents, so we choose the best ascent based on: minimum deviation from vertical; time proximity; 
passes all the quality control checks; previous history of the particular aircraft; etc. 

5.9 Scatterometer Winds 

Scatterometers, such as ERS-1 and QUICKSCAT can estimate windspeed and direction at the ocean surface by 
measuring the radar return from surface capillary waves. The wind directions are ambiguous, however, with up 
to four possible wind directions. The retrieval algorithm itself can rank these directions in order of decreasing 
likelihood. However, the background 10-m wind can also be used to pick the most likely direction (Stoffeln and 
Anderson, 1997). It is important to use a background wind that is at the appropriate time and for the right model 
(NOGAPSorCOAMPS). 

Choosing the wind direction as the one closest to the background is a good choice most of the time, but it is not 
always the best choice. ECMWF has used a filtering procedure called PRESCAT, which will occasionally sug- 
gest that the direction closest to the background wind direction is less optimal than one of the other three choices. 

In NAVDAS at this time, the wind direction is chosen purely on the basis of being closest to the background 
wind direction. However, Appendix H describes an iterative preprocessing procedure based on minimizing the 
Jmjn diagnostic of Section (9.1). This procedure usually picks the direction closest to the background wind direc- 
tion as most likely, but consistency between the innovations and specified background and observation error 
statistics occasionally picks one of the other three directions. 
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6. Nonlinear Instrument (Forward) Operators 

Section 5 introduced several forward operators that were actually nonlinear, even though only their linearized 
forms were discussed at that point. Such operators are the radiative transfer operators used in TOVS retrievals 
(Sections 5.3 and Appendix G) and the wind speed operator (Section 5.5). We now consider how nonlinear 
forward operators can be accounted for. 

Using the notation of Section 2, consider a sequence of state estimate vectors x0 , x,, x2,... x( and a nonlinear 
forward operator H(x). Now define a linearized operator (linearized about the state estimate x) given by 

H. = 8H(x)/5x at x = x. (6.1) 

The observation and background vectors are y and xb, the observation and background error covariances are R 
and Pb. Then, the nonlinear extension to Eq. (2.6) can be written (following Tarantola (1987, p. 244)) as 

x x + PhH 
i b    l 

[H.PbH.T + R]-1 [y - H(x) + H.x. - RxJ. (6.2) 

Equation (6.2) defines an iterative procedure that begins with an initial guess x0. this is usually chosen to be xb 

but does not have to be. The iterative process then continues until x. and x+1 are very similar, in which case the 
procedure is said to converge. Convergence cannot be guaranteed. Moreover, this is a nonlinear, not a linear, 
procedure, and there is no guarantee that a convergent solution is necessarily unique. In other words, the cost 
function may have many minima, and the minimum that is found may depend on the choice xQ. Behavior of this 
sort can be expected as the operator H(x) becomes increasingly nonlinear. 

What has been done in Eq. (6.2) is to put the whole 3DVAR procedure described in Sections 2 and 3 inside a 
loop. We refer to the iteration (6.2) as the outer iteration. This name is to distinguish it from the inner iteration, 
which is the iteration performed by descent algorithms such as conjugate gradient (described in Section 3.2) to 
perform the matrix solve HPbH.T + R at each of the outer iterative steps. 

It is very straightforward mechanically to take the linearized NAVDAS algorithm described in Section 3 and put 
it in an outer loop to attempt to obtain a nonlinear solution. This procedure will inevitably be more costly than a 
linearized solution, and it may not be any better. If only a small proportion of the observations are nonlinear, the 
outer iteration process can be substantially sped up. This is discussed in the next section. 

6.1 Practical Implementation in the NAVDAS Algorithm 

We can avoid a complete outer iteration around both equations ((3.5) and (3.6)). After we have obtained z from 
Eq. (3.5), we operate on it in such a way as to obtain a vector of corrections at the observation locations that are 
connected with any nonlinear operators, except in the analyzed variables (u,v,T, etc.). To see this, consider Eq. 
(3.17) and re-write as 

b 
cb     [Sb ]   H 3 (6.3) 

-1/2 -i-l < -1/2 r where z= Sh
1/1C7°D +Sh

1/2RS,    ]"'S,    [y ■H«b)]. 
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These operations produce a correction field xa - xb, which is for the analyzed variables (u,v,T etc) but at the 
analysis grid points. What we want are the corrections in the analyzed variables, but at the observation locations. 

At the end of a linear solve, we have a vector z that is in observation space. Now define the background error 
correlation c°b/ob, which is defined at the observation locations, but for the analyzed variables. Similarly, 
define Sb

b as the corresponding error variances of the analyzed variables at the observation locations. Then we 
can define a correction vector at the observation locations as 

[x, - xb ]ob = [S°b ]'m Cb
b/ob[S"" YmHTz. (6.4) 

Then, since we already have available the background value defined at the observation location, it is straightfor- 
ward to get the new analyzed value at the observation location. This can then be used to recalculate the tangent 
linear model, and we can proceed to the next nonlinear iterate. 

Since the observation space is much smaller than the observation space, and moreover, the number of observa- 
tions that have a nonlinear forward operator is even smaller, it is clearly much more efficient to use (6.4) than to 
use (6.3) followed by an interpolation from grid point to observation locations. In fact application of (6.4) is 
about as costly as one multiplication by the matrix A in the conjugate gradient operator (3.12). 

We now start with a very simple (but nonetheless relevant) nonlinear forward operator-the wind speed operator. 

6.2 SSM/I Wind speed (Nonlinear) 

Let us begin the discussion of this operator by reconsidering the simple problem introduced in Section 5.5, 
namely, producing analyzed wind components ua and vb from a single observed wind speed wr and background 
wind components ub and vb. As in Section 5.5, we define the observed wind speed error variance as £2 and the 
background wind component error as £2 ■ Then, the cost function appropriate for this situation is given by 

J = 0.5 {e;2 (wr - H(ua,va))
2 + e;

2 (ub - ua)
2 + £;

2 (vb - va)
2}, (6.5) 

where H(u,v) = (u2 + v2)"2. Taking the gradient dJ/dua yields 

5J/8ua = - e;2 (ub - ua) - e;
2 (wr (ua

2 + va
2)-"2 - 1) ua, (6.6) 

with a similar equation for 8J/8va. Setting 8J/8ua = 8J/8va = 0 (and some manipulation) yields the estimates ua 

and v that minimize the nonlinear functional (6.5), viz., 
a 

ua = yub, va = yvb, where y = (e2 + e2)"'(£r
2 + £v

2 wr(ub
2 + vb

2)-"2). (6.7) 

Equation (6.7), which was obtained for a nonlinear minimization, is exactly the same as Eq. (5.11), which arose 
from the linearized case. From this result, we can see that the analysis estimate for this simple one observation 
case is the same whether obtained linearly or nonlinearly. In other words, for this case the nonlinear iteration 
procedure (6.2) would converge in a single (outer) iteration. The resulting analyzed wind speed would be a 
linear combination of the observed and background wind fields (5.12) and the analyzed wind direction would be 
taken from the background. In the special case where the wind speed observation was perfect, the analyzed and 
observed wind speeds would be the same. 

Now, in practice, we have many SSM/I wind speed and also other forms of wind data such as surface and upper 
air wind component observations and surface scatterometer data. It seems reasonable to suppose, that in the 
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presence of other observations, we might be able to obtain better estimates of the wind direction than that given 
by the background field. We pose this question in a very simple context and then perform an experiment to 
answer it. Consider the two-dimensional horizontal assimilation problem and suppose we have available only 
SSM/I wind speed observations. We know from (6.5)-(6.7) that if we consider each wind speed observation 
separately, we cannot analyze the wind direction any more accurately than the background wind. The question 
is, if we analyze all the wind speed observations together, can we produce a wind direction analysis that is more 
accurate than that obtained from the background field alone. In other words, can we extract wind direction 
information from a large number of wind speed observations? 

To examine this question, we performed the following experiment. We created an (x,y) grid with 15 grid points 
in each direction. We assumed that at each analysis grid point we had a background u and v wind component. At 
each grid point, we also had a wind speed w estimate. Thus, the observation location and analysis grid points 
coincided. We assumed that the wind speed observations were perfect, er

2 = 0 at each observation point (except 
in Table 6.3). This meant that we did not have to worry whether or not the wind speed observational errors were 
horizontally correlated. We would therefore expect that the wind speed analyses would also be perfect (and this 
was verified). 

We first created a "true" wind field - u and v wind components at every grid point. These fields were created with 
a gaussian random number generator and contained both rotational and divergent wind components. 

The background error covariance and the background field were constructed as follows. The background wind 
error was assumed to be nondivergent and to have a characteristic horizontal scale Lh. The background error 
covariance Pb was consistent with this assumption. The background field itself was constructed by adding a 
perturbation that was consistent with Pb to the "true" wind field. In other words, the background error was 
nondivergent, random red noise (with characteristic scale Lh). The background field itself was not nondivergent, 
because the "truth" was not nondivergent. 

Define v as the true wind speed averaged over the domain and gy as the rms background wind error. Then, 
define a = g / v as the ratio of the rms background vector wind error to the true wind speed. As a approaches 
0, the problem becomes increasingly linear, and when a = 1, the problem is very nonlinear. We now examine the 
wind direction error as a function of the two parameters a (measuring the nonlinearity) and Lh (measuring the 
horizontal scale of the background error). 

We choose two values of a, a = 0.1 and a = 1.0. We first consider the case Lh = 0, which should yield the same 
results as Equations (6.5)-(6.7). For each case, the results from an ensemble of 10 members were averaged (each 
ensemble member had different random numbers). The nonlinear analysis used (6.2) with 10 iterations, and the 
linear case used a single iteration. The wind speed observations were assumed to be perfect. 

To put these numbers in perspective, it has been estimated (Phalipou, 1996) that the ECMWF background wind 
direction error is about 20 degrees. A wind direction error of 90 degrees indicates no information. In calculating 
the wind direction error, we ignored all grid points where the true wind speed was very small and the wind 
direction indeterminate. 

We can see from Table 6.1 that even for the large background error case (a = 1.0), there is some (not much) 
information in the background field. However, neither linear nor nonlinear iteration are able to improve on the 
background estimate. When Lh = 0, the background error is spatially uncorrelated, the nondivergence constraint 
has no meaning, and the results are exactly as predicted from equations (6.5)-(6.7). 

As Lh is increased, the nondivergence constraint in the background error comes into play, and the observations 
start to interact with each other. Table 6.2 shows the results with Lh = 3Ax, where Ax is the grid length (same in 
both directions). As in Table 6.1, the wind speed observations are perfect. 
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6. Nonlinear Instrument (Forward) Operators 

It can be seen that in this case, both the linear and nonlinear algorithms manage to produce smaller wind direc- 
tion errors than the background. The differences between linear and nonlinear results are small when the back- 
ground error is small, but the nonlinear result is relatively much more accurate when the background error is 
large. 

Table 6.2 has been derived assuming perfect wind speed observations. We would expect some deterioration 
when the observed wind speeds are in error. Assume that the observed wind speed error is equal to 0.5 £v , that 
is, the observed wind speed error is smaller than the background wind error, but it is not negligible. However, we 
assume that the observation wind speed errors are not spatially correlated. Table 6.3 shows the results for this 
case when Lh = 3Ax, as in Table 6.2. 

Table 6.1 —Wind Direction Error (degrees) - l_h=0 

Background Analysis (linear) Analysis (nonlinear) 

a = 0.1 

a=1.0 

8.4 

57.6 

8.4 

57.6 

8.4 

57.6 

Table 6.2 —Wind Direction Error (degrees] - Lh=3Ax 

Background Analysis (linear) Analysis (nonlinear) 

a = 0.1 

a=1.0 

8.7 

60.8 

4.9 

54.3 

4.5 

43.7 

Table 6.3 —Wind Direction Error (degrees' - Lh=3Ax 

Background Analysis (linear) Analysis (nonlinear) 

a = 0.1 

a =1.0 

8.7 

60.8 

5.9 

54.9 

5.8 

52.6 

Our conclusion is that some wind direction information can be extracted from SSM/I wind speed observations 
(even if imperfect) when the background error is nondivergent and red and the background error statistics are 
correct. 

To complete this section, we compare the results of Table 6.2 with an ad hoc, traditional method of assimilating 
SSM/I wind speed observations. In this procedure, the wind speed observations are turned into wind component 
pseudo-observations by taking wind directions from the background field. This is very straightforward. The 
most obvious difficulty is in determining a suitable observation error covariance matrix R. Because the wind 
direction of these pseudo-observations comes from the background field, the observation error is both spatially 
correlated and correlated with the background error. Traditionally, both these correlations are ignored and R is 
assumed to be diagonal. Note that this is a linear, not a nonlinear assimilation. 
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Since this is an ad hoc method, we also make an ad hoc assumption about R, namely, that R = ß g2 I, where I is 
the identity matrix, g2 is the domain-averaged rms background wind error defined above, and ß is a constant. 
Normal values for ß would lie in the 0.1 to 1.0. range. Table 6.4 shows the results of an experiment with ß = 0.5 
for the same case shown in Table 6.2, namely, perfect wind speed observations and Lh = 3Ax. 

Table 6.4 shows that the analysis wind direction error (even with perfect wind speed observations) shows no 
improvement over the background wind direction error. In fact, when the background wind direction is reason- 
ably accurate (a = 0.1), the analyzed wind direction may even be worse. The same general conclusion is true for 
all settings of ß. 

Table 6.4 —Wind Direction Error (degrees) - 1=3Ax 

Background Analysis (linear) 

a = 0.1 

a = 0.1 

8.7 

60.8 

11.1 

54.9 

Comparison of Tables 6.2 and 6.4 shows that direct assimilation of wind speeds may be able to improve the 
background estimate of wind direction, but the assimilation of wind component pseudo-observations (even 
when the observed wind speeds are perfect) gives no new wind direction information (at best). 

This algorithm was implemented in the NAVDAS code using Eq. (6.4). It was tested in the global problem using 
real SSM/I observations and in the presence and absence of other observations. 
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7. Input Processing — Background and Observation Ingest 
and Quality Control 

OBSERVATION - BACKGROUND 

The data flow for NAVDAS has been designed to work in any of the expected environments required by the 
Navy. The backbone of the system is the innovation vector file, which carries all of the information needed for 
analysis and display of the observations. The routines that read the observations and background fields from the 
database are isolated from the rest of the code so that adapting NAVDAS to any computer environment requires 
only applying the appropriate interface software. The multiple interfaces are indicated by several versions of the 
observation and field reading routines in the data-flow diagram, Fig. 7.1. 

Once the fields and observations are read, the innova- 
tion, which is observation minus (forward interpolated) 
background (Section 2.5), is computed using a cubic 
spline interpolator in the horizontal, a linear interpola- 
tor as a function of pressure in the vertical, and the 
Lagrange interpolator in time using three time levels of 
background fields. The backgrounds used are defined 
on pressure coordinates. The function of pressure used 
in the vertical interpolation can be one of several choices 
to be selected by the user, including In p, pK, and pa, 
where K = 2/5, and a = 0.2051. These choices are accu- 
rate for isothermal, isentropic, or standard atmosphere 
conditions, respectively. 

The data quality control routines are rule-based and 
derived from experience with the various types of ob- 
servations. One can learn the errors that typically occur 
in various data sets by studying the observations and 
understanding how the measurement is taken. For ex- 
ample, data entry, transmission, and instrument calibra- 
tion problems cause recurring errors in radiosonde data 
that can be detected with software. Position reporting 
and stuck instruments cause aircraft and ship errors that 
are detectable, and data distribution centers cause er- 
rors in duplication and time labeling. 

Quality Control 
RAOB Complex, AIRCRAFT, SAT WINDS, SURFACE 

TOVS 1DVAR + QC 

OBSERVATION MERGE 

3DVAR + QC 

COAMPS/NOGAPS 

Figure 7.1 
NAVDAS data flow diagram 

The rawinsonde checks are made using the complex method of Collins and Gandin (1992), which does a gross, 
hydrostatic, and baseline check along with vertical and horizontal checks using the optimal method described by 
Lorenc (1981). Duplicates are removed prior to performing these checks. The baseline check ensures that the 
base of the sounding is consistent with the station's elevation and reported surface pressure. This code also 
attempts to unscramble entries made in data entry by transposing digits and then rerunning the checks to deter- 
mine whether the quality scores improve. The final step in this process removes the biases caused by radiation 
contamination of the temperature sensor. 
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The aircraft data are exposed to a wide variety of position consistency checks, along with checks for stuck clocks 
and instruments, see Pauley and Stephens (1998). 

The satellite radiance data are subjected to a wide variety of tests to ensure that the forward model is capable of 
handling the conditions of observation. Examples of data rejection include clouds in the path of view, hot desert 
surfaces, snow and ice on the ground, and fields of view that cannot be classified as either land or sea, i.e., the 
instrument is seeing a combination of both land and water, see Baker (1999). 

Checks are also planned for the satellite-derived winds to determine errors around mountains, zones of high 
vertical wind shear, and along coasts where the sea breezes may cause unrepresentative errors. 

To take advantage of multiprocessors available on the workstations, separate programs are run for each data 
type. After the preprocessing is complete, a program is called to merge the innovation vector files for the various 
data types into a single file, and then to edit out the rejected data from the assimilation run. This routine can also 
withhold observations from the run for testing purposes. 

Finally, the innovation vector is compressed and stored for post processing operations such as computing back- 
ground error statistics, locating malfunctioning platforms and instruments, and measuring the success of the data 
assimilation algorithm. 

Data preparation software described in this section runs on specialized data handling workstations and the re- 
sulting innovation vectors are ported to the massively parallel computers that run the analysis and models. On 
workstations, the processing runs sufficiently fast to be rerun after each data cut. 

Likewise, when running NAVDAS at regional centers or at remote sites, central-site support will be required in 
the form of boundary conditions for the regional model. In addition, the global innovation vector file can be 
supplied to ensure that the remote analysis contains all of the information available at central site, plus any data 
collected locally. Besides ensuring consistency in the data used at both sites, this will enable the remote site to 
use observations outside the regional model's grid since the global model's background information will already 
be contained in the innovation vector file. 

In summary, the front-end processor prepares the innovation vector along with all the other information needed 
by the analysis and display software, including quality control checks, observation location, and various other 
associated information needed for processing. Table 7.1 lists the makeup of the innovation vector. The header for 
this file defines all of the parameters required for specification of grid parameters and transformations using the 
utility routines, plus it gives the source for the background fields. The file is formatted in simple ASCII so that 
any editor can be used to look at the observations directly. A data-monitoring module is being built to display the 
innovation vector and associated information using a web browser. This will enable customers to view the data 
that has gone into the data assimilation, and to quickly detect problems related to library update errors, instru- 
ment malfunction, and data transmission. This approach will improve productivity of the data users and provide 
more information to a wider audience, thereby improving the quality of the final product. 

NAVDAS Source Book 



7. Input Processing — Background and Observation Ingest and Quality Control 

Table 7.1 — Makeup of the Innovation Vector 

Observation Measured value in mks units 

Background Forecast background in mks units 

Backgroundtemperature Background temperature at observation location, 
needed to compute isentropic surface 

Observation error Observation error in mks units 

Latitude Observation location 

Longitude Observation location 

Pressure Observation location 

Variable type e.g., wind, temperature, pressure height, logarithm of 
specific humidity, or brightness temperature 

Instrument type e.g., rawinsonde, MDCRS, AIREP, SATDAT, TOVS 

Number of values in profile e.g., for rawinsonde, 145 means the next 144 entries 
belong to the same instrument with the same latitude 
and longitude 

Quality control check An unique integer for each check made 

Time from analysis time e.g., 3600 means observation taken 3600 s prior to 
analysis time 

Platform identifier e.g., 72468 -9 -9aRTD02 for rawinsonde gives station 
number, instrument type, and level type 

Database identifier 

Et cetera 

T_RAOB3455 would mean data was pulled from tfile 
at line 3455. This designation will be modified to suit 
DBMS in use and is needed to set quality control 
designators in the DBMS. 

This varies; in some cases it is the precorrected value, 
and in the case of SSMI winds, it is the v-component 
of the background wind, while the u-component of the 
background field is stored in the background location. 
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8. Output Processing — Interface with COAMPS and NOGAPS 

As described in Section 4.8, the analysis corrections are stored while they are still projected onto the vertical 
eigenvectors of the background error correlation. The interface to the model involves transforming these analy- 
ses onto the pressures defined on the model grid. Handling the corrections this way saves storage space of the 
analysis while retaining its accuracy. Transforming corrections onto the model's grid is nonlinear because updat- 
ing temperature and specific humidity also changes the pressures at the grid points; therefore, an iterative method 
is used to transform the corrections onto the updated pressure values. 

8.1 COAMPS Interface 

To explain the steps required to update COAMPS, we introduce its hydrostatic equation (see Hodur, 1997). The 
vertical coordinate uses a sigma-z system defined as 

^top 

z-z sfc 

y^wp ■s/c 

(8.1) 

to specify heights. The mass variables are carried in potential temperature 0, specific humidity qv, and the Exner 

function of pressure K = 
KPOO J 

. Each variable is partitioned into a mean state, ( ), and departure from this 

mean, ( ). Presently, thevmean state potential temperature is derived from the standard atmosphere, and the 
mean Exner function is computed using the hydrostatic relationship 

dn 

do       c e 
p    V 

(8.2) 

where c is the specific heat at constant pressure for the atmosphere, 0v is the virtual potential temperature 
0(1 + 0.608gv), g is the acceleration due to gravity, and 

^top do 

^" ^-top       ^"sfc 

Simplifying the equation for vertical motion (Eq. (4) of Hodur, 1997) by assuming a hydrostatic balance gives 

c6G~ = e(C +0.608a p v z do   \ e v 
(8.3) 

which is the equation needed to compute n' from 0' an qv. 

In the COAMPS version of NRL MVOI, the output was pressure height corrections that were interpolated to the 
model's coordinates and used to compute temperature. In NAVDAS, temperature is analyzed, with geopotential 
being computed from the temperatures using the hydrostatic equation (Section 4.3.6). 
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8. Output Processing — Interface with COAMPS and NOGAPS 

The update procedure is to first transform the temperature, specific humidity, and geopotential onto the back- 
ground defined by the pressure at each grid point. Then these values are used to compute surface pressure 
corrections using the following form of the hydrostatic equation: 

M Ä(exP(^r)- 1}. (8.4) 

where the tilde designates background values, and AOs is the geopotential height analysis correction defined at 
the background surface pressure ps. The surface temperature^, is estimated using 0'at the model's lowest mass 
level, which is one half-grid interval from the surface and 0 defined at the surface. Equation (8.4) does not 
require a precise definition fv because errors in surface temperature of around 10°C produce errors in pressure 
correction that are less than 0.1 hPa. 

After surface pressure is updated, it is used as the reference level in the integration of Eq. (8.3) to compute 
updated values of ^'from 0'and qv. This new value Tr'is then used to compute pressure on the model coordinates 
so that the entire update procedure can be repeated in an iterative fachion. The updates reach their asymptotic 
value after only two iterations. 

What has just been described is an update system that ties the model to the analysis of temperature and surface 
pressure. This means that the largest errors in the mass variables will occur at the model's top. At issue is the 
model's vertical coordinate, which is in height, but it is more susceptible to truncation error than the pressure 
coordinate system used in NAVDAS. 

Model  resolution  effect on  update 

In a series of experiments using varying vertical resolution and 
a hypothetical 1 °C temperature correction at all levels, Eq. (8.3) 
was integrated downward to compute hydrostatically consis- 
tent corrections to surface pressure. Figure 8.1 shows the sur- 
face pressure corrections for each grid, along with the asymp- 
totic value determined using 4,000 levels. In these tests, all grids 
were evenly spaced, with the model top set at 17,000 m, which 
is about 80 hPa on the standard atmosphere. The errors are about 
10% for a 10-level model and 5% for 30 levels. The vertical 
location of this truncation error depends on where the reference 
level is set. In these experiments, the reference level was set at 
the model's top so that the truncation error would be at the bot- 
tom. In our updating procedure, the reference level is set at the 
surface. A similar set of experiments using the hydrostatic equa- 
tion of Section 4.3.6 to compute geopotential at the model's top 
reached asymptotic values after only 20 levels. 

8.2 NOGAPS Interface 

30       40       50       60       70       80       90     100 

Number  grid   points   in  vertical 

Figure 8.1 
Accuracy of COAMPS hydrostatic equation as a func- 
tion of number of levels compared to a 4,000 level 
model, which represents the asymptotic solution 

The interface for NOGAPS is simpler than the COAMPS interface because NOGAPS uses the sigma coordinate 
system (see Hogan and Rosmond, 1991) so that the vertical coordinate can be easily determined in terms of 
pressure. For interpolation, the pressure on the model's sigma surfaces is determined from the updated surface 
pressure using (8.4). Prior to addition of the analysis corrections, however, the background values are interpo- 
lated to the updated coordinate system using a cubic spline fit of the variables. This is done in place of the 
iteration step used in the COAMPS interface. 
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For NOGAPS, the current version of NAVDAS generates the analysis corrections projected onto the vertical 
eigenvectors of the background error correlation on a 1 -degree spherical grid. NAVDAS will eventually analyze 
on the gaussian model grid directly, but for now the 1-degree fields are interpolated horizontally prior to trans- 
forming them onto the updated pressure coordinates. 

Prior to the forecast integration, NOGAPS initializes the corrections with a normal mode method described in 
Hogan and Rosmond (1991). 
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9. Internal Diagnostics 

This section has two purposes. The first is to describe some internal diagnostics that are calculated while we are 
determining the corrections from the innovations. These diagnostics can be useful in tuning the background and 
observation error statistics and in examining the properties of the assimilation algorithm. The second purpose is 
to describe the "buddy check" or consistency test, which is used to determine whether any of the observations 
are inconsistent with their neighbors. The buddy check involves interactions between observations and is per- 
formed in the middle of the iteration procedure of Section 3.2.6. 

9.1 The Jmin Diagnostic 

Following Section 2, define L as the number of observations, Pb as the background error covariance, R as the 
observation error covariance, H as the linearized forward operator, and [y - H(xb)] as the innovation vector. 
Then, define J . as the scalar 

J in = [y - H(xh)]WHT + R]"'[y - H(x„)]. (9.1) 

Then, if the observation and background errors are normally distributed, it can be shown (Bryson and Ho, 1975; 
Menard et al., 1999), that the conditional mean of Jmin is equal to the number of observations L. Thus, if we have 
specified Pb and R in a manner consistent with the actual innovations (in a statistical sense), then Jmin/L should be 
equal to 1. If Jmin/L < 1, then perhaps the specified observation or background error variances are too large. 
Alternatively, if J . /L > 1, then the specified observation or background error variances are too small, or alterna- 
tively, the innovation vector may contain observations which are erroneous. Equation (9.1) can also be written 

J    = dTz, (9.2) 

where d and z are given in Eq. (3.5). Both z and d are available and can be used in a straight scalar product to 
calculate J . . 

J . is the cost function 
min 

J = [y-hx.]TR-I[y-Hx,] + [x.-xb]
TPb-,[x,-xb] 

(see Eq. (2.1)) at the minimum. That is, when 

xa=xb+K[y-Hxb]withK = PbH
T[HPbH

T+Rr1. 

This can be seen by noting that 

xa -xb =K[y-Hxb] and y-Hxa = [I-HK][y-Hxb], 

and substituting in, giving 

J = [y-Hxb]
T[(I-HK)TR-1(I-HK) + KTPb"1K][y-Hxb] 
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But, 

I - HK = R[HPbH
T + R]-\ and KT^K = [HPbH

T + R]-1HP„Hr[HPliH
r + R]1, 

that gives 

J = [y - HxjW.EP + R]-'[y - HxJ = Jmn 

from Eq. (9.1). 

The Jmin diagnostic, which costs nothing to compute, allows us to estimate the value of the cost function (2.1) 
while remaining in observation space. It also serves as the basis for our innovation and buddy checks in Section 
9.3. Appendix I illustrates practical use of this diagnostic. 

9.2 The Synthetic Residual Vector 

In the estimation literature, [y - H(xb)] is known as the innovation. But [y - H(xa)], where xa is the analysis 
vector, is known as the residual vector. This can be calculated at the end of the algorithm described in Section 
3.2.2, that is, following the post-multiplication. However, it is also possible to obtain a very good estimate of the 
residual immediately after the completion of the iteration process of Section 3.2.1 from the vector z of Eq. (3.5). 
This synthetic or approximate residual vector is then very useful in assessing the fit of the analysis to specific 
observations or observation systems. The synthetic residual can be derived as follows. Define xa,xb as the vectors 
of length I of the analyzed and background values on the analysis grid. Define y as the vector of observation of 
length L and H, Pb, and R as the linearized forward model and the background and observation error covari- 
ances, respectively. Then, from Eqs. (3.5)-(3.6), we have 

xa = x„ + A x, where A x = P^HP,!!1 + R]"'[y - H(xb)]. (9.3) 

Operate on (9.3) using the forward operator H. H(xa) = H(xb + A x) = H(xb) + H A x to first order using Eq. (2.3). 
Thus, 

ya * H(xb) + HPbIF[HPbIF + R]-'[y - H(xb)], (9.4) 

where ya = H(xa) is the vector of length L of analyzed values at the observation locations and of the same variable 
as the observation. Thus if y were a vector of radiances, then so would be the vector ya. Then, subtract both sides 
of (9.4) from the observation vector y and reorganize, noting that HPbH

T[HPbH
T + R]1 = I - R[HPbH

T + R]-\ 
where I is the identity matrix. The result is 

y - y,« R[HPbIF + R]-'[y - H(xb)] * Rz, (9.5) 

where z is defined in Eq. (3.5). 

Now the true residual is obtained by horizontally interpolating the analysis vector xa to the observation locations 
and then using the nonlinear forward operator H to obtain H(xa) in observation space and then subtracting from 
the observations. Equation (9.5) is an approximation to the true residual because it does not explicitly invoke the 
horizontal interpolation operator (H„ in Eq. (3.15)). Experiments indicate that (9.5) is a good approximation to 
the true residual, but its magnitude is usually an underestimate. 

If we subtract (9.5) from the observation vector y, we obtain ya, which is an estimate of the analysis in observa- 
tion space. 
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9. Internal Diagnostics 

Figures 9.1 and 9.2 illustrate the three observation vectors y (the actual observations), yb = H^) (the back- 
ground field projected into observation space), and ya (the analysis projected into observation space and ob- 
tained from Eq. (9.5)). This is done for an analysis of eastern North America performed with the NAVDAS 
system and shows a particular radiosonde (Cape Kennedy, Florida). Plotted are both the temperatures (solid) and 
dewpoints (dashed). Figure 9.1 uses only mandatory level data, and Fig. 9.2 uses the significant levels as well. 
The effect of using the significant level data is particularly noticeable in the dewpoint. The actual observations 
y are shown with open blue circles, the background values (in observation space) are black solid triangles, and 
the analyzed values (in observation space) are open red circles. 
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Figure 9.1 
Illustration of synthetic residuals (mandatory 
levels only) 
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Figure 9.2 
Same as Figure 9.1, except includes significant level 
data 

9.3 The Buddy Check Algorithm 

The buddy check or consistency test is a form of quality control that must be done in the heart of the assimilation 
algorithm. This is because the buddy check should check every observation against every other observation to 
see if the observation is consistent with the other observations. To do this requires a detailed knowledge of the 
specified background and observation error covariances, which is available only in the middle of the algorithm. 

In the buddy check, we devise a metric that involves other observations and the background and observation 
error statistics. We then test each observation against this metric and decide whether or not to reject the observa- 
tion at this point. Another way of looking at the buddy check is that it is a procedure to determine whether the 
innovations are likely or unlikely with respect to the specified innovation error statistics. Once the decision is 
made, it necessary to intervene in the assimilation process to ensure that the rejected observation has no effect on 
the analysis. 

Before beginning our discussion of the buddy check, we first discuss a preliminary step-the innovation check. 

9.3.1 The Innovation Check 

We can divide the observations into three categories, acceptable, marginal, and clearly unacceptable. Clearly 
unacceptable observations will have been largely eliminated during the quality control process. However, in 
case any clearly unacceptable observations remain, we first perform a check on the magnitude of the innova- 
tions. We do this for the following reasons. 
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The buddy check is the last defense of the assimilation algorithm against bad observations. Its real purpose is to 
decide whether marginal observations are acceptable or unacceptable. However, if clearly unacceptable obser- 
vations are introduced into the buddy check, then the buddy check decisions may be corrupted by these clearly 
unacceptable observations. Thus, as we protect the assimilation algorithm by performing a buddy check, we 
protect the buddy check by first removing any remaining clearly unacceptable observations by performing the 
innovation check. This is done in the following straightforward way, which is essentially cost-free. 

If L is the number of observations, define the LxL symmetric positive definite matrix 

A = HPbIT + R, (9.6) 

where H, Pb and R are defined as in Section 9.1. Define the innovation vector d = y - H(xb) of length L, where 
y is the observation vector, xb is the background vector, and H is the forward operator. Denote A = diag(A) and 
define d = A~1/2d as the normalized innovation. Thus, the elements of d will consist of the elements of d, each 
individually normalized by the square root of the main diagonal elements of the matrix HPbIF + R. (In practice, 
we use the scaled forms of Eq. (3.17), rather than the unsealed form (3.5), but this is a straightforward modifica- 
tion, and we do not dwell on it.) 

The elements of the normalized innovation d (over many realizations) should be distributed in a normal distri- 
bution with a standard deviation equal to 1 if the background and observation error covariances Pb and R have 
been properly specified. We assume this to be the case. Then, for large L, we would expect the elements d^, 1 - 
t ^ L of the vector d to be distributed more or less normally, with 31 % of the values |d^ | being greater than 1, 
4.5% being greater than 2, 0.26% being greater than 3, etc. Thus, if any element de is larger than some given 
tolerance, 4 say, we would conclude that it was so unlikely that we could safely discard that observation. Of 
course, we know that Pb and R are never perfectly specified, so that it would be better to work with a higher 
tolerance than a lower one. 

This procedure is used to remove any clearly unacceptable observations, and we are now ready to make deci- 
sions on the acceptability of the marginal observations using the buddy check. 

9.3.2 The Metric 

Most optimal interpolation schemes (including the NRL MVOI algorithm) used a buddy check procedure devel- 
oped by Lorenc (1981). This procedure detects suspect observations and then performs mini-analyses with the 
suspect observation missing, and differences the suspect observation with the analysis (at the observation loca- 
tion) using all other observations, except that observation. If this distance is too large, then the suspect observa- 
tion is assumed to be inconsistent with other observations and is rejected. 

The procedure developed here is quite different. In particular, the metric adopted will judge each observation 
against the entire observation set, not just nearby observations. Observations will not be removed and tested; this 
is obviously impossible when all observations are tested at the same time. The metric of choice in this case is 
defined as follows. For, the LxL matrix A defined in Eq. (9.6) and the innovation vector d defined in Section 
9.3.1, define a new vector of length L, 

d* = A-1/2d. (9.7) 

We see that d* is something like the vector d defined in the innovation check, except that we use the whole 
matrix A instead of its diagonal elements, and each element of d* is related to all the elements of d. Note that in 
the special case where the background and observation error covariances are completely uncorrelated, then 
d* = d • A_1/2is defined because A is a symmetric, positive definite real matrix. Define E as the LxL matrix of 
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eigenvectors of A, and D as the LxL diagonal matrix of corresponding eigenvalues. Since A is symmetric posi- 
tive definite, we have EET = I, and all elements of D are positive. Then, we can write 

A = EDET, Am = ED'2ET and A"1'2 = ED 1/2ET. 

We note that [d*]Td* = J . from Eq. (9.2) and should therefore equal L. 

(9.8) 

At this point, let us leave aside questions about the practicality of calculating d*. Let us instead, concentrate on 
the question of whether or not d* can be used for making buddy check decisions. Suppose that we have calcu- 
lated (the absolute value) of an element of the normalized innovation (see Section 9.3.1), that is, d, , and found 
it to be equal to 3. This observation is marginal when examined in isolation. Now suppose that we calculate the 
same element of the vector d*, that is, Id* I. This calculation involves all of the observations. Then, we postulate 
that if \d)\ < d(, then the buddy check indicates that the marginal observation is more likely than is indicated by 
the innovation check. That is, the marginal observation is supported by surrounding observations; and we would 
be more likely to accept this observation than we might have been if we had only done the innovation check. 

Conversely, if \d( > df ; then we would be less likely to accept the observation. At this point, we have not yet 
shown whether the vector d* can be used successfully in this fashion. To do so, we consider a very simple 
example. 

This example is a simple three-observation problem, similar to the two-observation problem considered by 
Daley (1991, p. 128). The problem is in two dimensions, and the three observations are placed at the corners of 
an equilateral triangle. We consider a scaled form of the equations and consider the formation of the A matrix for 
this problem. We assume that the observation errors are uncorrelated, and the background error correlation 
between each of the three points is given by p. We denote the observation error variances divided by the back- 
ground error variance as eo

2 for each observation. Then, the A matrix for this problem is 

p 
p 

p 
l + e.2 

P 

P 

l + e.2 

(9.9) 

lim A and A = Q. Then, define a vector of length 3vof innovations d, and the corresponding normalized vectors d 
and d*. In the limit as p approaches zero, d* = d. There are three elements of the d vector, namely, di,d2,di 

and three elements of the d* vector d\,d*2 ,d\ . We consider three cases; in each of the three cases, we vary p and 

In the first case, we set d{-d2=d3- 3.0. Thus we consider all three observations to be marginal. Then, if the 
correlation p, were close to 1, i.e., highly correlated, then the innovations, although large, are self-consistent and 
a good buddy check should accept them. Let us see what actually happens in this case. Table 9.1 plots the values 
of d* for this case for p = 0.8 and -0.4 and eo

2 = 2.0 and 0.1. We note that when p = 0, then d* = dx = 3.0. 

Consider first the situation when eo
2 = 0.1 (observations specified to be accurate). Then, when p = 0.8 (highly 

correlated background error), </*= 1.9, which is less than ^=3.0 and therefore more likely, as we would hope. 
Note that in this situation, there is a three-way symmetry between the three observations, so that d, -d2=d3, 
Thus, in this case, the correlations are large; the normalized innovations are similar; and the buddy check indi- 
cates that these observations, although marginal, are much more likely than does the innovation check. Clearly, 
the buddy check is doing the right thing in this situation. 

Now, consider the situation when eo
2 = 0.1 and p = -0.4. Then, d\ = d*2 = d\ = 5.8, which is much more unlikely 

than indicated by the innovation check. This also is what we would expect. For example, if two wind innovations 
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Table 9.1 —Case I 

d\ = d2 = d^ = 3.0 

p = -0.4 p = 0.8 

k*i 
eo2 = 2.0 3.5 2.4 

eo2 = 0.1 5.8 1.9 

were large and in the same direction but the correlation was negative (implying the two wind innovation should 
be in opposite directions), then clearly one or both of the winds would fail the buddy check. This is what happens 
in this situation. 

Finally, setting 8 2 = 2.0 (observations specified to be inaccurate) gives the same direction of change as the 
accurate observation case, but shows much less sensitivity to the correlation p, which is what would be expected 
for inaccurate observations. 

In the next case, we set dx - 3.0,d2 = d3 = 1.0. That is, observations 2 and 3 are acceptable and observation 1 
is marginal, as indicated by the innovation check. If the background error correlation p were large and positive, 
then we would suspect that observation 3 is inconsistent with observations 2 and 3 and that </* would be larger 
than d, . The results are plotted in Table 9.2. 

Table 9.2 — Case 2 

^ = 3.0,^2 = 4 = 1-0 

p = -0.4 p = 0.8 

W\ 
eo2 = 2.0 3.2 2.9 

eo2 = 0.1 4.3 3.6 

In this case, note that there is no three-way symmetry, so Table 9.2 is valid only for observation 1. From Table 
9.2, it is clear that d\ > dx for accurate observations and highly correlated background error, as suspected above, 
and therefore the buddy check would more likely reject observation 1 under these conditions. Moreover, from 
Table 9.2, the rejection of observation 1 by the buddy check is also more likely when p = -0.4, which is also not 
surprising. As in case 1, the effects are weaker when the specified observation error is larger. 

In case 3, we specify dx = 3.0,d2 =d3=-1.0, that is, observations 2 and 3 are self-consistent, but completely 
inconsistent with observation 1. We might expect that observation 1 would be considered less likely for p = 0.8 
and more likely for p= -0.4. This turns out to be the case, as can be seen from Table 9.3. 

These three cases suggest that the metric (9.7) does indeed increase/decrease with respect to the innovation 
metric for a suspect observation when that observation is inconsistent/consistent with other observations, as 
determined from the specified error statistics. 

Now before proceeding to test the metric (9.7) under more realistic conditions, we first develop a straightfor- 
ward approximation to this metric. Consider the innovation vector d and the vector z = A_1d . We note, from 
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Table 9.3 — Case 3 

^,=3.0,^2 = ^3=1.0 

p = -0.4 p = 0.8 

k*i 
eo2 = 2.0 2.9 3.4 

eo2 = 0.1 2.9 5.3 

Eq. (9.1), that Jmin = dTz. Note that each term of the scalar product [d*]Td* is positive because of its quadratic 
nature. However, while dTz is positive, each individual term of the scalar product is not necessarily positive. 

We approximate \d*\ by \d"\ = ^\zfldf\. (9.10) 

We note that the approximation (9.10) is exact under two conditions: 

(1) when the background error is spatially uncorrelated, and 

(2) when the innovation vector z is proportional to a single eigenvector of A. 

The approximate metric (9.10) was tested using the simple 3-observation test of Eq. (9.9). For Case 1 (Table 
9.1), the approximation is perfect, because the innovation vector is proportional to one of the eigenvectors of A. 
Table 9.4 shows Case 2, except here using the approximation (9.10). The results can be compared directly with 
Table 9.2. 

Table 9.4 — Case 2 (approximate metric) 

Jj = 3.0, <f2 = <i3 = 1.0 

p = -0.4 p = 0.8 

Irf.'l 
eo2 = 2.0 3.2 2.9 

eo2 = 0.1 4.6 4.1 

Clearly, the approximation (9.10) is not perfect and becomes less accurate as the specified observation error 
decreases. However, comparing Tables 9.2 and 9.4, one would probably make the same buddy check decisions 
using either the exact (9.7) or the approximate (9.10) metric. Remember, approximation (9.10) would only be 
used in the buddy check, not in the analysis itself. 

A number of experiments (not shown) were performed with AMD AR profiles to see if this buddy check proce- 
dure could detect innovations that were inconsistent with the specified background and observation statistics. 
The results of these experiments were consistent with Tables 9.1 - 9.4. That is, when individual innovations were 
inconsistent with nearby innovations, the buddy check algorithm was able to detect such inconsistencies. 

We now proceed to a more realistic situation. At the moment, we are not aware of any technique for easily 
calculating the exact metric (9.7) for matrices as large as will be encountered in global data assimilation. This 
leaves essentially two choices. 
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1. Apply the exact metric (9.7) to the block pre-conditioner matrix (3.13). This is a block diagonal 
matrix, and it is feasible (albeit more expensive than one would like) to perform the eigenvector 
decomposition of (9.8) on each diagonal block in turn. However, only the observations in the same 
(nonoverlapping) block would participate in the buddy check. This might work well for observa- 
tions in the centers of the observation prism, but would not work so well for observations on the 
edge. 

2. Apply the approximate metric (9.10) after a few iterations of the descent algorithm (3.13). Al- 
though the metric is approximate, all the observations take part in the buddy check for any given 
observation. 

These two strategies were tested in the following way. We considered a set of observations over eastern North 
America and the western Atlantic. This consisted of 5509 radiosonde and SSM/I wind speeds and total precipi- 
table water. There were 50 observation prisms. First, we calculated the exact (9.7) and approximate (9.10) 
metrics for each of the diagonal blocks, corresponding to the 50 observation prisms. 

We calculated Id A, \d*A, and \d"\ for each observation and then two measures, 

Mi = L-^[\d*t\-dtf andM2=    Zr'X[|<|-|<|]2 . (9.11) 

In the calculation of Mj and M2, only observations in which either |<^| or \de | exceed 3 were used, that is, we 
were only interested in marginal observations. Ml is a measure of the distance between the innovation check and 
the buddy check using the exact metric (9.7). It should be a number of 0(1). M2 is a measure of the distance 
between the buddy check using the exact metric (9.7) and the approximate metric (9.10). If the approximate 
metric (9.10) is to be of any value, then M2 should be smaller than Mr The results of the above experiment over 
eastern North America were 

M,= 1.334, M2 = 0.350. 

This result suggests that the exact metric has the potential to change the likelihood of any marginal observation 
by more than one standard deviation (in either direction). Second, the approximate metric (9.10) gives a result 
that is surprisingly close to the exact metric (9.7). 

We then tested the approximate metric (9.10) given by the preconditioner against the same metric calculated at 
different iterations of the descent algorithm. (Calculating the exact metric (9.7) under the same experimental 
conditions was out of the question). The purpose of this test was to determine how the inclusion of all the 
observations in the buddy check (which becomes increasingly the case as the descent algorithm proceeds) com- 
pares with including only the observations in the same observation prism (as when using the preconditioner 
only). Consequently, we first calculated \d" | for each observation during the preconditioner as before, and calcu- 
lated the same approximate metric \d"(j)\, for each iteration number j. We then constructed a third measure, 

M3
J = JL 2J\d( (/)[    \dt |] ^ and evaiuated jt at each i iteration. 

M 3 = 0.389, M3
6 = 0.644, and M3

20 = 0.646. This result indicates that the approximate metric (and almost 
certainly the exact metric, although it could not be verified) change substantially as all the observations are 
included. 
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The conclusion was that it would be better to apply the approximate metric (9.10) after a few iterations, rather 
than the exact metric (9.7) during the preconditioner. This is, in fact, how the buddy check metric is calculated. 

9.3.3 The Decision 

Having decided how to measure the consistency of any observation with respect to other observations, the next 
step is to decide what to do about that particular observation-reject or retain? Let us review the information we 
have available to help us make our decision for the /th observation, 

(1) d( the normalized innovation magnitude, 

(2) \d° the buddy check magnitude using the approximate metric, 

(3) from a normal distribution, the expected number of observations that would exceed a given toler- 
ance (1,2,3,4,...), 

(4) the actual numbers of observations that exceed that tolerance for both the innovation and buddy 
checks, 

(5) previous quality control flags raised in the off-line quality control. 

At this time, the decision process is very simple. We simply reject any observations, whose buddy check magni- 
tude \d*\ exceeds a certain tolerance (4, say). 

Now the metric and decisions in the buddy check are predicated on the fact that the observation and background 
error statistics are good. What if they are not? Suppose the Jmin /L value (Eq. (9.1)) is greater than 1. Then, the 
calculated values of \d*\ would be larger than they should be, and we might spuriously reject good observations. 

The buddy check is more susceptible to bad error statistics than the analysis algorithm itself. Suppose the Jmin /L 
value came out to be 2. Then, it would be a simple matter to multiply all the background and observation error 
variances by 2 to make the J . /L values come out equal to 1. From Eqs. (3.4) and (3.5), this change in back- 

J m,n • l   i 
ground and observation error statistics would have no effect on the analysis (although from Eq. (2.10) it would 
increase the expected analysis error variance by a factor of 2). However, this change would completely change 
the buddy check decisions, with the tolerance (in real space) being effectively multiplied by J2 ■ 

Thus, it is important to tune the error statistics first and make sure the Jmin /L for each area and each observation 
system is close to 1. (Note however, that the innovation and buddy check are not independent of this process, 
because it will have to be decided which observations take place in the J    /L calculation.) 

9.3.4 Modifying the Decision Process for Extreme Events 

Another problem with the buddy check decision (and also the innovation check decision) is that the error statis- 
tics are produced by averaging time series of innovations and reflect average, rather than extreme, conditions in 
each part of the domain. It could happen that where large, rapid changes are taking place in the atmosphere (such 
as a frontal passage), that the background error is considerably larger than normal. In this case, the possibility 
exists that the buddy or innovation checks would spuriously reject good (and very important) observations. 

NAVDAS Source Book 



We have adopted two procedures to deal with this problem. 

(1) We first calculate the normalized buddy check or innovation check magnitude for every observa- 
tion in an observation prism. We then calculate the average value for the prism. We use the mode 
rather than the mean because it is less sensitive to outliers. If this value is much larger than 1, then 
we can assume that for this prism, there is a serious discrepancy between the observations and 
backgrounds. This is a critical situation, and we do not wish to spuriously reject a number of 
observations in this prism. Consequently, we increase the tolerances for this prism. 

(2) The second method is based on Onogi (1998). In Onogi's procedure, one uses diagnostic informa- 
tion (time tendencies or spatial gradients) of the background field to signal that there is an extreme 
event in the background field and therefore the normal background error statistics are probably 
invalid. Then, one would change the tolerances appropriately. This method has one drawback com- 
pared to (1). That is, if the background field is extremely inaccurate, then the decisions to increase 
the tolerances could be completely wrong. 

We use a combination of (1) and (2). 

9.3.5 The Action 

In principle, the action is very straightforward. If we have the elements of the main diagonal blocks of HPbIF + 
R (i.e. the preconditioner), we simply have to add a large constant - c - to each of the main diagonal elements of 
this block that have been rejected by the buddy check or innovation check. This then modifies the matrix HPbIF 
+ R in such a way as to effectively prevent the rejected observation from affecting the analysis. 

However, a problem arises with the buddy check (because it is performed after the descent has begun) if the 
block diagonal matrices of the preconditioner have already been Choleski decomposed, so that only the lower 
triangular matrices are available, and the original block diagonal matrices have been lost (for storage reasons). 
Following Section 3.4, consider the nth diagonal block, containing K observations. Then, the matrix An = [HPbIF 
+ R]n = LLT, where the subscript n on the Choleski matrices is to be understood. As noted, K observations are in 
this prism, and we suppose the jth observation has been rejected by the buddy check. Then define the KxK 
matrix D, which is zero everywhere, except the jth main diagonal element d.. = c. (If more than one rejected 
observation is in the prism, then other main diagonal elements will be augmented by the constant c in this way). 

The most straightforward procedure 

The nth diagonal block matrix, after buddy check rejection of the jth element, will be LLT + D.. If we only have 
available L and we require a new lower triangular matrix L* that reflects the rejection of the jth observation, then 
we must first calculate LLT, which is an 0(K3) operation and add the element d}j = c, which is trivial. We must 
then take this new KxK symmetric matrix and Choleski decompose it again to produce the new lower triangular 
matrix L*. This last operation is also 0(K3). This whole procedure is rather more expensive than one would like, 
although certainly not a "show stopper." 

A much more efficient procedure 

There is however, a much more efficient, if slightly convoluted way of achieving exactly the same result. We 
first consider the case with a single rejected observation, the jth. Define a vector d of length K, with elements dk, 
1 < k < K, in which all elements are equal to zero except d. = c. Also define a vector a., of length K, with 
elements a., 1 < k < K, which is obtained from d. by 
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a = [LT]-' L-' d.. (9.12) 

This operation is 0(K2). Then, define the KxK matrix 

"1 fll 0" 

Sj = 1 

0 aK 
1 

(9.13) 

Then, it can easily be shown that 

LLT + D. = LLTS. 
J s 

(9.14) 

Note that LTS. or S L are not triangular matrices, but that if x is some arbitrary vector of length K, the following 
operations are equivalent: 

[LLT + D.]x = LLT S. x, and [LLT + D^1 x = S.-'tLT'L-'x. 

Note that the operations S x and S."' x are each trivial and O(K). 

9.15) 

If more than one rejected observation is in an observation prism, the procedure is only slightly more compli- 
cated. We just illustrate the case with two rejected observations j and j2, and cases with higher number of 
rejections can be inferred. Thus, we define, the vectors dj and dJ2 as in (9.12) corresponding to these two 
rejected observations. Then define the corresponding vectors OC-h and Ct-h by 

a.h = [LT]->L-' d^ and ah = S71 [I/j-'L"1 dj;, 

where Sj   is obtained from OC-Sx following (9.12), and we can similarly obtain SJ2 from OC. 

(9.16) 

Then, the multiplicative and inversion operations shown in (9.15) for a single rejected observation become the 
two operations, 

LLTSj Sj x and S, S71 [L^L-'x. 
Jl       J2 Jz       J] 

This procedure can be extended to any number of rejected observations. 

(9.17) 

Suppose J rejected observations are in the prism. Then operations such as those in (9.12) and (9.16) are one-time 
operations, done only at the time of rejection. These operations are 0(JK2). The remaining operations, such as 
those of (9.15) or (9.17), are performed during every subsequent descent iteration. These operations are O(JK). 
Now we have assumed all along that there will not be many rejections at the buddy check stage and therefore J 
« K. This means that these operations are all relatively negligible compared to the 0(K3) operations of the 
straightforward method above. A modest amount of extra storage is required for the a vectors. 

Proceeding with the descent 

One other issue still must be faced. We have modified the matrix A = HPJH7 + R using either the (explicit) 
straightforward method or the faster (implicit) method of equations (9.12)-(9.17). We refer to this buddy check- 
modified matrix as A + D; D is the matrix that is zero everywhere except for any observation j, which has been 
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tagged by the buddy check, where the element d. = c, as above. Referring to the preconditioned conjugate 
gradient equation (3.13), this (explicitly or implicitly) modified matrix is now no longer consistent with the 
vectors zk, pk, rk, etc., which have been evolving during the descent. One has choices here too. One of them is to 
restart the descent (k = 0) using the new matrix A + D. Then, the total cost of the descent would be the number of 
steps used before application of the buddy check plus whatever number of iterations it takes to reach the speci- 
fied convergence after restarting the descent algorithm. Now, if we wish to involve as many observations as 
possible in each buddy check decision, we should not do the buddy check too early in the decision process. (We 
probably should not wait until the descent has converged, either.) 

There is a second possibility, however. That is, after performing the buddy check and (explicitly or implicitly) 
modifying the A matrix, we can continue the descent after suitably modifying the vectors zk, pk, rk, etc. of Eq. 
(3.13). The simplest way to do this is as follows. Do not change zk, but calculate a new residual vector *\ as 

rL = d-[A + D]zk=rk-Dzk. (9.18) 

Then, set ß^ = 0 and continue with the descent. 

9.4 The NAVDAS Adjoint Operator 

One of the most effective techniques in determining where to take observation are the adjoint and singular vector 
targeting techniques developed at NRL by Ron Gelaro, Rolf Langland, Greg Rohaly, and Caroline Reynolds. In 
such applications, the adjoint of the model is used together with some measure J of the forecast error to deter- 
mine the sensitivity of the forecast to the analysis. This sensitivity is expressed in the form of a gradient 3J / 3xa, 
where x is the analysis vector. As shown by Baker and Daley (2000), this procedure can be extended to calculate 
the sensitivity of the forecast to the observations (9J / dy, where y is the observation vector) and the back- 
ground field (3J / 3xb, where xb is the background). From Baker and Daley (2000), we have 

9J / dy = KT aj / 9xa, where K = PbIT[HPbH
T + R] ', (9.19) 

and Pb, R, and H are as defined in Section 3.2. K is the Kaiman gain or weight matrix, and its transpose or adjoint 
KT is given by 

KT = [HPbH
T + R]  HPb. (9.20) 

In other words, given an analysis sensitivity vector, we first operate with the transpose or adjoint of the post- 
multiplier (Eq. (3.6)) and then apply the solver (Eq. (3.5)). The solver is symmetric or self-adjoint and therefore 
operates the same way in the forward and adjoint directions. The only difference between the forward and 
adjoint codes is in the post-multiplier. A small complication is the vertical eigenvector decomposition used in the 
post-multiplier. Consider a single vertical column of the analysis sensitivity vector r (denoted 1) and a single 
observation profile q (denoted 2). Then, following Eq. (4.16), we can write the adjoint post-multiplication op- 
eration as follows, 

q = HPbr = E2D12E,Tr, (9.21) 

where Ep E2 are eigenvector matrices, and D12 is diagonal and a function of the horizontal (background error) 
correlations between the two vectors and the vertical mode number. We note that (9.21) is the transpose of the 
forward post-multiplier operation (viz, EjD12E2

T). D12 is symmetric and therefore the same in both forward and 
adjoint directions. The other operators (Er E2, and their transposes) already exist in the forward code, so it is just 
a question of applying them in a different order in the adjoint code. 
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It is relatively simple to code the adjoint NAVDAS code from the forward NAVDAS code. The adjoint code 
would have to be updated as new forward operators or other modifications are added to the forward code. The 
adjoint code has the same properties with respect to multiprocessing as the forward code. 
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10.  Estimating the Analysis Error Covariance 

A valuable output from a data assimilation system is an estimate of the analysis error covariance matrix; it can 
be used for many purposes. In some cases, it may be sufficient to obtain the diagonal component of this matrix, 
that is, the analysis error variance. In principle, both are straightforward to compute, using Eq. (2.10), which can 
also be re-written in a form more suitable for observation space systems as 

P=Pb-PbIT[HPbH
T + R]1HPb, (10.1) 

where Pa,Pb are the Ixl analysis and background error covariance matrices, R is the KxK observation error 
matrix, and H is the Kxl linearized forward operator. Here, K is the number of observations, and I is the number 
of analysis grid points (as in Section 2.) 

Equations (2.10) or (10.1) estimate the analysis error covariance exactly if the background and observation error 
covariances are known perfectly. Otherwise, (2.10) and (10.1) will, in general, underestimate the true analysis 
error variance. This is, unfortunately, the usual situation. 

Even though Eq. (10.1) produces only an estimate of the true analysis error covariance, it is, in general, too 
expensive to use. In fact, to calculate the second right-hand side term of (2.10) takes 2K2I operations, which is 
enormously more costly than computing the analysis estimate itself. All operations in (2.10) are matrix/matrix 
operations, rather than the matrix/vector operations of the analysis estimate itself. 

Thus, we seek some way to approximate (10.1), in particular the second right-hand side term of the equation, 
which is both accurate and computationally feasible. Because Eq.10) itself produces an underestimate of the 
analysis error variance, we select conservative methods, that is, methods whose analysis error variances exceed 
the values that would be produced by (10.1). 

We consider two such methods, a local estimation method based on the preconditioners developed in Section 3 
and a global method based on finding the largest eigenvectors of the background error covariance. We then 
apply both approximations to a simple one-dimensional univariate problem, and finally apply one of the meth- 
ods to the full NAVDAS algorithm. 

10.1 A Local Estimate of the Analysis Error Covariance 

This method of estimating the analysis error covariance is based on the block diagonal preconditioner described 
in Section 3.2.5 and the Choleski decomposition of the diagonal blocks described in Section 3.4 We assume 
there are N diagonal blocks, and that there are Kn innovations for the nth diagonal block. We denote [HPbH

T + 
R] as the K xK symmetric diagonal block matrix used in the pre-conditioner. We can use Choleski decompo- 
sition to write this matrix as 

[HPHT+R] =LLT, (10.2) 

where L is a K xK lower triangular matrix. n n n o 

Now obtain the centroid (6n,A-n) of the nth observation prism (containing Kn observations and associated with the 
nth diagonal block). This is done using the methods of Appendix A. We examine the latitudes and longitudes of 
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each of the I analysis grid points, and for each of these grid points find the closest observation prism centroid (as 
measured by the great-circle distance). Then for the nth observation prism, there will be In such grid points and 

N 

VI = I. Now define the I xK matrix [PhH
T] , whose elements are the elements of the P.HT matrix that 

involve interactions between the Kn observations and the In grid points. Now, define 

G =[PhH
T] L-\ (10.3) 

n       L    b        Jn      n    ' v ' 

which is an I xK matrix. n        n 

Approximate the matrix, PbH
T[HPbH

T+ R]_,HPb by 

G G T = [PhH
T] L -1 [L T]-' [HP.] , for 1 <n <N. (10.4) 

n     n Lb        JnnLnJl bJn ' —       — *■ 

We have used the fact that [P^H1] T = [HPJ . G G T is an I xl symmetric matrix and there are N such blocks. L    b n b n        n     n n      n    -' 

Thus, we have produced a block diagonal approximation to the second right-hand side term of Eq. (2.1). The last 
step is to produce the corresponding N Inxln diagonal blocks of Pb. Following (10.1), subtraction produces an 
estimate of the N Ixln diagonal blocks of Pa. Approximation (10.4) is inherently conservative, because for any 
analysis grid point, only a subset of the observations are used in determining the analysis error variance. 

It is desirable to calculate (10.4) using, as much as possible, the pre-existing code of the analysis algorithm itself. 
To do this, we simply define Gn as a sequence of operators. Introduce 1 < k < Kn vectors ek of length Kn, each 
of which consists of all zero elements except the kth element, which is set equal to 1. Then calculate 

Lek=fk,   gk = [PblF]nfk,l<k<K, (10.5) 

where f is an intermediate vector of length Kn and gk is a vector of length In. Then, it is easy to see that 

**n 

GGn
T=Xg*g*r, 0°-6) 

k = \ 

which can easily be calculated using a running sum. The formulation (10.5-6) essentially turns the matrix/ 
matrix operation of Eq. (10.4) into a sequence of matrix/vector operations, for which all the necessary operators 
already exist in the 3dvar code itself. 

Warning: it is absolutely critical to ensure that each analysis grid point is associated with one and only one 
observation prism. If this rule is violated there is the possibility that at a given horizontal location, it may be 
assumed that the background error is zero in calculating Ln, but not in calculating [PbH

T]n, which is inconsis- 
tent. In Section 10.3, we show an example of what can happen if this rule is violated. 

A variant on the above scheme is to replace (10.2) with an eigenvector decomposition following Eq. (9.8). That 
is, write 

[HPbH^R]n = EDEn
T, (10-7) 

where E is a K xKn matrix of eigenvectors and Dn is a diagonal KxKn matrix of (positive) eigenvalues. Follow- 
ing Eq. (9.8), we can replace Eq. (10.3) by 

G =[PhH
T] ED""2, (10.8) 

nLbJnnn' 
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noting that EnEn
T is the identity matrix. Now, it is more costly to obtain the complete eigenstructure in this way. 

Equation (10.8) is useful only if many of the eigenvalues and eigenvectors of (10.7) make no contribution to Gn. 
For example, if only the Kn I j gravest eigenvectors of (10.7) were important in calculating (10.8), then the sum 
in (10.6) would be only over Knl j, rather than Kn, clearly a computational advantage as j increases. This idea 
was suggested and tested by Riishojgaard (2000). We found the errors caused by this approximation to be 
acceptable for Kn 12 but unacceptable for Kn 14. This approximation is conservative, which is attractive. 

Finally, let us consider some of the computational implications of the local approximation algorithm. The ele- 
ments of the matrices Ln and [PbH

T]n have to calculated only once for each n; they do not have to be recalculated 
during each pass through the k loop of Eqs. (10.5)-(10.6). Since In is usually much greater than Kn, the bulk of the 
calculation is done in the operation gk = [PbH

T]n fk of (10.5). Note also that this algorithm is embarrassingly 
parallel; there is no communication between processors except at the very end of the algorithm when all the 
analysis error variances have to be collected. The only impediment to complete scalability would be improperly 
balanced loads on each processor. For optimality, the processor loads may have to be balanced differently than 
they are in the NAVDAS algorithm itself. (We found that a self-scheduling algorithm works very well for this 
problem.) The calculation is accelerated by the use of a reduced number of vertical eigenmodes (see Section 4.8) 
and also by the use of the Riishojgaard (2000) procedure, discussed above. 

We now consider a quite different algorithm for estimating the analysis error covariance. 

10.2 A Global Estimate of the Analysis Error Covariance 

Fisher and Courtier (1995) discuss various methods for obtaining analysis error covariance estimates based on 
low rank approximations to (10.1). Thus, if there are I grid points, define the Iyxlv symmetric matrix F and the 
Ivxl matrix E. Then, we would approximate (10.1) by 

P «P„-EFET. (10.9) ab 

Equation (10.9) is said to be a low rank approximation to (10.1) if Iy « I. For analysis space algorithms, such 
low rank approximations can be obtained as a by-product of the descent algorithm. This is because there is a 
connection between the Hessian matrix and the analysis error covariance (see equation 2.10). Moreover, there is 
also a connection between each iteration of a conjugate gradient descent and the leading eigenvectors found by 
a Lancos algorithm. This makes low rank approximations particularly attractive for analysis space methods, 
because the estimates of the analysis error covariance are essentially free. Even though I could be greater than 
107, Iv would normally be less than 100. Such an approximation is global (whole domain) rather than local as are 
the approximations of Section (10.1). Low rank approximations of this type are inherently conservative. 

We now introduce a global approximation to (10.1) in the spirit of the estimates of Fisher and Courtier (1995) 
but from a different perspective. It seems more difficult to introduce global approximations into an observation 
space system, but the following procedure is possible, in principle at least. In an analysis procedure, the greatest 
effect of the observations occurs in those modes of the background error covariance that have the largest error 
and that also project strongly onto the observation network. The idea then, is to find the reduction of error due to 
the observations in the I gravest modes of the background error covariance Pb and ignore the reduction of error 
in the remaining modes. To do this, we return to Eq. (2.10), which we rewrite here as 

Pa-i = Pb-i + HTR-JH. (10.10) 

Assume that Pb is expanded in its eigenvalues and eigenvectors, 

Pb = EbDbEbT, (10.11) 
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where Db is an Ixl diagonal matrix of (positive) eigenvalues and Eb is an Ixl matrix of the corresponding eigen- 
vectors. Also define the Ixl symmetric matrix G as 

G-' = EJWR-'HE,,. (10.12) 

Then, we can re-write (10.10) as 

p-' = Pb-'-EbG-'Eb
T- (10-13) 

By analogy with the pair of equations (10.1) and (10.10), it is easy to see that equation (10.13), can be rewritten 
as 

P = Pb- PbEJVPbEb + G]-'E/Pb = Pb - EbDb[Db + G]-'DbEb\ (10.14) 

using (10.11) and remembering that EbEb
T is the identity matrix. 

Now let us consider only the Iv gravest modes of Pb and define the Iyxlv diagonal matrix D^ and the correspond- 
ing Ixlv eigenvector matrix E^. Then, define the Ivxlv matrix G following Eq. (10.12), that is, 

-1       ¥7TTTTTI-1 

We can then approximate Eq. (10.1) by 

G^ = EbH'R   HEb (10.15) 

P„-E„FbEb
T, (10.16) 

where Fb =Db[Db +G]~ Db isasymmetricIyxIvmatrix.Equation(10.16)isnowinthesameformas(10.10), 
provided" I <<~lTs_a low rank approximation to (10.1). In any case, if Iv is O(100), then the manipulation, 
inversion, etc., of matrices D^5G,F^is not costly. If this scheme were to be used in practice ,one would first 
have to obtain the first Iv gravest eigenmodes of Pb , perhaps by a Lancos procedure, and then apply (10.15 and 
10.16). 

The question surrounding all low rank approximations such as (10.9) is, how many modes do you need to get a 
good approximation to the analysis error covariance Pa? If I = 107, how much of the reduction of the error by the 
observation system can you characterize with only 100 of the gravest modes? That, of course, depends on the 
actual rank of PbH

T[HPbH
T + R]''HPb which may well be considerably less than I, but may still be a good bit 

greater than I. Some feeling for this can be gained by examination of Fig. 5 from Fisher and Courtier (1995). 
Their results for the ECMWF global system with 24 and 52 vectors indicate that the global approximation for 
estimating the analysis error covariance does not "see" isolated observations, nor is it "aware" of much of the 
transient observation system (satellite observations in particular). This is unfortunate because, of course, an 
analysis error estimate for the fixed network is inherently time invariant and not all that valuable. 

We now show some simple experimental results with the two analysis error estimation procedures. 

10.3 Experiments with a One-Dimensional Univariate System 

Fisher and Courtier (1995) tested a number of their global analysis error approximation algorithms on a simple 
one-dimensional univariate problem. We also performed experiments with the algorithms of Sections 10.1 and 
10.2 on a very similar problem. The problem was to define the analysis error variance for wind observations on 
a one-dimensional periodic domain. Thus, we defined a periodic domain -p < x < p, with 1=151 grid points. 
The background error correlation is of Guassian form appropriate for nondivergent wind/wind correlations and 
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is shown in Fig. 10.1. Scattered irregularly on the grid (in the same sort of distribution as shown in Fig. 1 of 
Fisher and Courtier, 1995) were K = 91 observations. These observations were intended to mimic wind observa- 
tions, and the observation error was assumed to be spatially uncorrelated. 

The background error variance varied spatially in 
the same manner as in Fisher and Courtier (1995). 
The spatial distribution of its square root (in m/s) 
is indicated as the solid line in Fig. 10.2(a). Con- 
siderable spatial variation of the background error 
variance can be seen. The corresponding spectral 
distribution of the background error variance is 
obtained by using the background error variance 
of Fig. 10.2.(a), the correlation of Fig. 10.1, and 
pre- and post-multiplication by the Fourier matri- 
ces as in Section 3.3.1. The result is shown as the 
solid line in Fig. 10.2(b) as a function of Fourier 
wavenumber. The maximum background error vari- 
ance is at a nonzero wavenumber, as would be ex- 
pected for a wind/wind correlation (see Daley, 1991, 
Chapter 5). The observation error variance was 
specified to be constant for every observation and 
was defined to be the domain average of the back- 
ground error variance shown by the solid curve of 
Fig. 10.2(a). 

prescribed  <wind/wind >  correlation  function 

0.8   - 

0.6   - 

0.4   - 

0.2   - 

-0.2   - 

Figure 10.1 
One dimensional <wind / wind> correlation The true analysis error covariance was calculated 

using Eq. (10.1). The spatial distribution of the 
square root of the analysis error variance is shown 
by the dash-dot line of Fig 10.2(a); it has more spatial variation than the background error variance. It is evident 
from Fig. 10.2(a) that there are several areas where the analysis error variance is only slightly less than the 
background error variance, indicating very low local observation density. The dash-dot line of Fig. 10.2(b) 

analysis  error variance  for  local  approximation 
"i—i—i—i     i     i     i     i     r 

J L J I I I I L 
-1.0-0.8-0.6-0.+ -0.2   0.0    0.2    0.4    0.6    0.8 

x/pi 

Figure 10.2a 
Background and analysis error variance for local 
approximation 

error  spectra  for local  approximation 

11 16 21 

wavenumber 

Figure 10.2b 
Spectra corresponding to (a) 
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shows the corresponding spectrum of the analysis error variance. It is always less than the background error 
variance, and the greatest reduction in error due to the assimilation of the observations is about wavenumber 6, 
where the background error variance is the greatest. This is consistent with the remarks at the beginning of 
Section 10.2. 

We now examine the local estimate of the analysis error variance obtained by applying Eqs. (10.5)-(10.6). The 
91 observations were divided into nine observation boxes, each of which contained 9 or 10 observations. The 
number of observations was approximately equal in each observation box, although the proportion of the do- 
main covered by each box differed because of the variable observation density. The number of observation 
boxes was approximately equal to the square root of the number of observations, consistent with the full NAVDAS 
algorithm itself. The resulting analysis error variance due to the local approximation is shown in Fig. 10.2(a) by 
the dashed line. The approximation is conservative in that the approximate analysis error variance always ex- 
ceeds the result from the full equation (10.1). It can also be seen that the approximation ((10.5)-( 10.6)) is rougher, 
which is a manifestation of the observation box boundaries. The corresponding spectrum is indicated by the 
dashed line of Fig. 10.2(b). The local approximation overestimates the analysis error at very large scales (be- 
cause it does not account for correlations at large distances) and at small scales (because of discontinuities at 
observation box boundaries). On the whole, however, the local approximation gives quite encouraging results 
for this problem. 

Figure 10.3 (in the same format as Fig 10.2) shows the results with the global approximation of Section 10.2. In 
this case, the eigenvectors of the background error covariance were the discrete Fourier modes. Thus, panel (a) 
shows the spatial distribution of the background error variance (solid curve), true analysis error variance (dash- 
dot curve), and approximate analysis error variance (dashed curve). The same convention is used in the spectra 
shown in panel (b). For the global approximation, we assumed that Iv = 6, which is much less than the number of 
grid points, I = 151. Figure 10.3(a) shows that this procedure provides a smooth, large-scale, conservative, but 
not very good approximation to the true analysis error variance. The spectra of Fig. 10.3b) show that the global 
method provides a very good approximation for the scales near wavenumber 6, where the background error 
variance is a maximum. The approximation is very poor at other scales, where the approximate analysis error 
variance reverts to the background error variance. 

analysis  error variance  for  global  approximation 
error  spectra  for global  approximation 

"i—i—i     i     i     i     i     r 

j i i L J L 
-1.0-0.8-0.6-0.4-0.2    0.0    0.2    0.4    0.6    0.8 

x/pi 

Figure 10.3a 
Background and analysis error variance for global 
approximation 
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Spe ctra corresponding to (a) 
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The results shown in Fig. 10.3 are consistent with the set of algorithms tested by Fisher and Courtier (1995). 
However, Fisher and Courtier (1995) tested larger values of Iv = 10 and Iv =35, which, of course, produced much 
better results than our use of Iv = 6. However, consider the real situation. There one might expect O(107) grid 
points and perhaps Iv < 200. Thus, in the one-dimensional experiments of Fisher and Courtier with I < 300, K < 
200, one suspects that the use of Iv = 35, is likely to lead to wildly optimistic results. 

Experiments were performed with both local and global algorithms in which the background error correlation 
length and the observation error variance were varied. The problem of assimilating geopotential was also exam- 
ined. The conclusions from these experiments (all in accord with intuition) are as follows. 

1. As the observation accuracy is increased, the local approximation improves and the global ap- 
proximation gets worse. 

2. As the background error horizontal correlation length increases, the global approximation improves 
and the local approximation gets worse. 

3. The local approximation does a better job with winds than geopotentials, and the reverse is true for 
the global approximation. 

In Fig. 10.4 (in the same format as Fig. 10.2(a)), we show 
the analysis error variance (dashed curve) for a misapplica- 
tion of the local approximation. Refer to the warning after 
Eq. (10.6). In this experiment, we used the local approxima- 
tion (10.2) for the inversion of the matrix HPbH

T+ R ma- 
trix, but used the full PJH1 and HPb matrices in (10.1) for 
the right and left post-multiplication. This would seem to be 
a more accurate approximation than using the local approxi- 
mation for the post-multiplication, as in equations (10.5-6). 
However, this approximation is inconsistent, resulting in the 
catastrophic results of Fig. 10.4. Thus, it is very unwise to 
ignore the warning of Section 10.1. 

Based on the results of this section and the relative difficul- 
ties of implementing either of the algorithms of Sections 10.1 
and 10.2, we decided to implement the local approximation 
of Section 10.1 in the NAVDAS code. 

10.4 Practical Implementation of the Local 
Approximation 

analysis  error for inconsistent local  approximation 

Figure 10.4 
Effect of inconsistency in local approximation 

It turned out to be very straightforward to implement the local approximation because it is firmly based on the 
observation prism structure that already exists. All the covariances, observation characteristics, vertical eigen- 
vector decomposition, etc., were available. What was required was code to associate each grid point with a 
particular observation prism. Minor modification was required in the post-multiplication, so that the elements of 
the background error covariance did not have to be recalculated. The loop over observation prisms that is used in 
the NAVDAS code to calculate the Choleski matrices Ln for 1 < n < N became the central loop of the code and 
was extended right to the end of the program. This meant that there were no communications between processors 
until the very end of the programs, resulting in almost complete parallelism. 
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The NAVDAS analysis has no seams between observations prisms because it uses a global solve. However, an 
analysis error estimate based on a local approximation does have "seams," and they will almost certainly be 
visible. That is the price of a tractable algorithm. 

Figure 10.5 shows the results of a global calculation of analysis error variance using the local approximation. We 
show the estimate of the error reduction due to the observation network, that is, the estimate of the term 
PbH

T[HPbH
T+ R]"1HPb of Eq. (2.1) derived using the approximation ((10.5)-(10.6). (It is easier to see the effect 

of observations in this term than by plotting the analysis error covariance itself.) We show only the square root 
of the variance (i.e., the diagonal of the matrix) for the 250 hPa temperature field (in degrees Kelvin, with a 

TEMPERATURE  AT     250.0   MBS 

0 B6E 120E ISO 12ÖW 

ERROR   REDUCTION   FOR 1998011400   :   radiosondes 

Figure 10.5a 
Error reduction due to radiosondes 

sow 

TEMPERATURE  AT     250.0   MBS 

" 0 6ÖE 120E 1*0 12ÖW 

ERROR   REDUCTION   FOR   1998011400   :  TOVS   radiances 
6ÖW 

Figure 10.5b 
Error reduction due to TOVS radiances 
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contour interval of 0.5 degrees). The results are plotted on a one-degree grid. This figure can be compared 
(roughly) with Fig. 5 of Fisher and Courtier (1995), which shows the same error reduction (in the geopotential) 
using their global approximation with 52 vectors. In Figure 10.5a, the observation set consists of 62,000 manda- 
tory and significant level radiosonde observations of u,v,T, and in panel (b) of 32,000 TOVS radiance observa- 
tions in 20 channels. Panel (b) shows four satellite passes; in panel (a), the preponderance of radiosondes over 
Northern Hemisphere land is obvious. Error reduction in the tropics is small because the background error is 
assumed to be relatively small there anyway. Both panels show some evidence of the "seams" between the 
observation prisms, but it is not too severe. 

This algorithm has been implemented in the NAVDAS code and is run routinely. 
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Appendix A 

Calculating Great Circle Distance and Radial Derivatives 

The Great Circle distance between a point with latitude and longitude (0j, Xl) and a second point ( 02, X2) can 
be written 

s = a cos_1[sin 9, sin 02 + cos 6j cos 02 cos(k2 - X{)], (Al) 

where "a" is the radius of the Earth. This is a very slow algorithm; it requires five trigonometric evaluations plus 
an evaluation of the arcosine (which is very slow). 

This can be made more efficient, as follows. Write the expression as 

s = a cos~'[x] , with x = a,a2 + bjb2 + CjC2, and a, = sin(0j), a2 = sin(02), (A2) 

bj = cos(01)cos(A,1), b2 = cos(02)cos(X2), c, = cos(01)sin(?i1), c2 = cos(v02)sin(A,2). 

Note that &x , b,, and c, are only functions of the first location; similarly, a2, b2, c2 are only functions of the 
second location—these constants can thus be precalculated for each location without reference to the other 
location. The constants can then be combined using three multiplies into x. 

Calculating Great Circle Distance with a Look-up Table 

x varies between zero and one, with x = 1 corresponding to zero Great Circle distance and x = 0 corresponding 
to the maximum Great Circle distance. Examination of the functional form of the arcosine function (see Abramovitz 
and Stegun (1960, p. 80) indicates that its derivative is singular at x =1, i.e., there is great sensitivity for small 
Great Circle distances. However, the transformation to the arcsine function transfers the sensitivity to large 
values of Great Circle distance, that is, sin_1[(l - x2)1'2] is well-behaved for x near 1. Since correlation functions 
are large at small Great Circle distances and small at large Great Circle distances, it is better to have the sensitiv- 
ity at large s (small x). A table look-up can then be safely applied to the arcsine function. 

Calculating Radial Derivatives 

Three radial derivatives are required in the calculation of the multivariate correlations. 

If f(s) is the correlation function, then we require df/ds in the calculation of the <Zu>, <Zv> correlations and 
s"1 df/ds and d2f/ds2 in the calculation of the <uu>, <vv>, and <vu> correlations. All three radial derivatives are 
well-behaved at s = 0 (for normal correlation functions). 

In the NRL MVOI code, df/ds and d2f/ds2 are calculated first, and s_1 df/ds is later calculated when required. 
Special code had to be written to take care of the problem of small s. In the NAVDAS code, this problem is 
circumvented by first calculating s_1 df/ds and d2f/ds2, which are both well-behaved at s = 0. Then, when df/ds is 
required, it can simply be obtained by multiplying s_1 df/ds by s, which is straightforward. 
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Another change from the NRL MVOI code is that s is first normalized by the horizontal correlation length Lh, 
before calculating f(s) and the radial derivatives. 

Two horizontal correlation functions are illustrated in Figures Al and A2 (see Section 4.6.2). Figure Al shows 
the SOAR function, and Fig. A2, shows the compact spline function. In each panel, the abscissa shows normal- 
ized Great Circle distance(s) and the ordinate-correlation. The solid curve is the correlation function f(s), the 
dash-dot curve is df/ds, and the dashed curve is d2f/ds2. The compact spline bears some resemblance to the 
Gaussian correlation function. 
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Finding the Centroid of an Observation Prism or Analysis Gridbox on the Sphere 

For the global case, observation prisms or analysis gridboxes that are more than a certain maximum distance 
apart (many thousands of kilometers) are not allowed to interact, because the background correlations are van- 
ishingly small at these distances. In order to perform this calculation, we must be able to find approximately, the 
centroid of each analysis grid box and observation prism. While this is simple to do on a limited (x,y) domain, 
we wish to be able to perform this calculation both for a limited domain and on a sphere, all with one code. This 
obliges us to perform this calculation using latitude 6 and longitude X. The following is a simple method for 
performing this calculation, which takes advantage of Eqs. (Al) and (A2). 

Suppose there are K points (9k,A.k) in some observation prism or analysis grid box. We wish to find the centroid 
(ec,A,c). Denote s(0c,Ä,c,6k,\) as the Great Circle distance between points "k" and "c" and define it following Eqs. 
(ACl)'and(A2), 

cos[a's(6c,A,c,ök,^k)] = xk = s^sinG, + bkcos9cos\. + ckcos9.sinÄ,c, (A3) 

where ak = sin0k, bk = cos0kcos?ik, and ck = cos0ksin^k. 

The centroid of the analysis grid box or observation prism can be obtained by minimizing 
K 

K~l 2i,s(®c'^c'^k'^k) with respect to 0c and X. However, note that as the Great Circle distance gets smaller, xk 
*=i 
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in Eq. (A3) gets larger. Thus, an alternate and more straightforward procedure for deriving an approximate 
centroid can be derived by maximizing, 

K 

K~l^xk = Asin9c + ßcos9ccosXc + Ccos9csinA,C; (A4) 

K K K 

with respect to 0c and A,c. Here, A = Ä"1 ]£ sin 9A, B - K~l^cosQk cosA.A, and C = ^_1^cos9t sinA,^. 

This will yield a good estimate of the centroid as long as | 9^. - 9C | and | Xk - Kc | are small for all k. That means 
the observation prisms or analysis grid boxes are not too large. Differentiating (A4) with respect to Gc and \ 
respectively, and setting the results to zero, yields 

Acos0 = sin0 [BcosX,c + Csin^J   and  Bcos9.sin?ic = Ccos9.cosA.c. (A5) 

From (A5), we can determine four extrema, 

(1) \ = tan-^C/B], 0c = tan-'[A/(Bcos\ + CsinX)], (A6) 
(2) \ + 180°, -0c (antipodal point), 
(3) 0^ = 90° (North Pole), 
(4) 0^ = -90° (South Pole). 

In general, extremum (1) is the absolute maximum, although it might coincide with extremum (3) or (4) for 
points scattered around the poles. 

Experiments using (A6) seem to give a good centroid, provided the points are not too widely scattered. 

The Most Accurate Great Circle Formula 

A more accurate expression than Eq. (Al) is the so-called haversine formula, 

s = 2 a sin"1 [sin2 ((92 - 9,) / 2) + cos(92)cos(9,) sin2 ((K2 - A,,) / 2). (A7) 

Equation (A7) is particularly accurate for small s. From the point of view of efficiency, (A7) is about as efficient 
as (Al). It is possible to create a form of (A7) that is similar to (A2) and almost as efficient. Unfortunately, it has 
about the same accuracy as (Al) and (A2) and is not as accurate as (A7). Consequently, we use (A7) only if 
accuracy is very important. 

Independence of the NAVDAS System from the Analysis Grid 

The horizontal locations of both the observations and the analysis gridpoints are defined entirely in terms of their 
latitudes and longitude, not with respect to the analysis grid. They can be processed in any order, and all sorting 
into observation prisms or analysis volumes requires only latitude/longitude information. This generality is 
possible because of the operations described in this Appendix. 

This generality permits an enormous flexibility in the form of the analysis grid. For example, it is possible to 
perform the analysis on three (or more) nested grids simultaneously. One could provide a simultaneous analysis 
for three (or more) unconnected COAMPS areas at the same time (and have each of them multiply nested). 
Whether or not this would be a good idea is not clear, but the capability is there. 
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Appendix B 

Calculating Wind/Wind and Wind/Geopotential Correlations in Spherical Coordinates 
(Including Correlations with the Divergent Wind) 

In the NRL MVOI analysis, the correlation models use a polar stereographic projection for winds in the volumes 
over the poles, and a spherical north and east projection elsewhere. This does not work in a 3DVAR algorithm 
because the correlations are needed between all observations, not just within volumes, so a single correlation 
model is needed. Two different approaches were found that work over the globe in physical space, one devel- 
oped by NASA Goddard (Cohn et al, 1998), and the other by ECMWF (1994). 

Case 1 - No Mass/Divergent Wind and Rotational Wind/Divergent Wind Correlations 

The NASA approach relates the wind correlations to the streamfunction correlation model using latitude 0 and 
longitude X as the independent variables. The correlation model is a function of the Great Circle distance be- 
tween two locations, which in turn is a function of 8 and X. The winds are described in terms of the gradient of 
the streamfunction, and derivatives are determined using the chain rule on the Great Circle distance formula. 
The final formulas are functions of the Great Circle distance, resulting in many complicated trigonometric 
functions. Computationally, these functions are very expensive. 

The ECMWF method uses vectors in a Cartesian coordinate system to relate the vector connecting two locations 
to local north and east coordinates. Their method is similar to the one described in Daley (1991), except the local 
coordinate is not the same at the two locations. In Daley (1991), the correlations on a tangential plane in polar 
coordinates are derived from expressions of correlation on a sphere, whereas the ECMWF derivation starts in 
polar coordinates to derive the relationships in spherical coordinates. 

We have chosen the ECMWF system since it is an extension of the method in use in the MVOI and can be 
computed from correlations computed on a tangential polar plane. In this coordinate system, the correlation 
models for stream function and velocity potential are functions of the Great Circle distance between the two 
locations in question. From Daley (1991), the equations relating the longitudinal / and transverse t  compo- 
nents of the wind correlations cn and cu are 

1 d d 2 

c"(r)=-;^-^c-' (B1) 

c>> = -f^w-7^„. <B2) 

c„(r) = c„(r) = 0, (B3) 

_d_ _        _d_ 
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where the correlation between <|) and % is assumed to be 0 for this derivation. These equations are derived in 
Daley (1991). 

To introduce the coordinate system needed to represent the correlations on the Earth's surface in spherical 
coordinates, consider the two locations written with respect to a Cartesian coordinate system: 

m = r [cos(Am) cos(0m )i + sin(Am) cos(9ffl) J + sin(9m )k] 

n = r[cos(X„ )cos(9„ )i + sin(?i„ )cos(9„ )j + sin(9„)£]. 

The angle a between m and n is computed from m ■ n, where 

r ■ cos(ct) = r[cos( A,,) cos(9m) cos(A„) cos(9„) + sin(Xra) cos(9m) sin(Xn) cos(9„) + sin(9m) sin(9„)] 

so that the Great Circle distance is 

smn=ra. 

The vector between the points is 

r  I = fh-n- mn 

r{[cos(Affl)cos(9m) - cos(A„)cos(9n)]r + [sin(Xm)cos(9m) - sin(Xn)cos(9„)]7 + [sin(9m) - sin(9„)]^}. 

The local north direction for location in can be derived from this equation assuming constant X along an infini- 
tesimal increment in 8, or 

Nm=- C0SiK) sin(em ¥ ~ MK) sin(9m) J + cos(9m )k. 

Likewise, the local east direction is 

Em=-sinXj + cos(Qm)]. 

Projecting the vector between m and n onto the local north and east directions gives 

The angle ß between r  I and N is 

rJ-E (B5) 
sin (ß> 

(rJ-N) +(rJ-E) 

There are two conditions for which this formulation becomes singular: over the poles, and when the Great Circle 
distance goes to zero. To avoid these singularities, the locations are incrementally adjusted to make the compu- 
tations well behaved. 
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The relationship between the longitudinal and transverse components of the north and east components of wind 
as shown in Fig. B1 are 

vN = vj + vj = v • sin(ß) + v • cos(ß), 

uE - u,l -uj = w • sin(ß)/ - u • cos(ß)? • 

(B6) 

V u,  ^^ 

ß ^       ^ 

u 

Figure BI 
Relationship of the north and east components of 
the wind to their corresponding longitudinal and 
transverse components.The angle ß is the angle 
between local north and the vector connecting 
two locations defining the correlation separation. 

Between two points ffa and fl, the wind correlations are related as follows: 

< umN ■ unN > = < uj ■ uj > sin(ßm)sin(ß„)+ < uj ■ uj > cos(ß,„)cos(ß„). 

Normalizing with the background error variances and using the definitions for c„ and c„ gives 

< umu„ >/Pu = c„ sin(ß„,)sin(ß„) + c„ cos(ß„,)cos(ß„). 

Similarly, 

< vmv„ >/P; = c„ cos(ß,„)cos(ß„) + c„ sin(ß,„)sin(ß„), 

<umvn >/PuPv =c;/sin(ß,„)cos(ß„)-c„cos(ßm)sin(ß„), 

< vmu„ >/PuPv = c,,cos(ßJsin(ßJ-c,,sin(ß„,)cos(ß„), 

<^A>/^,=-SrC0S(ßJ' 

<<Lvfl>/^=+<Vin(ßfl), 

(B7) 
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These covariance models can be converted to any grid projection. First, wind conversion coefficients are deter- 
mined from 

'  ' km = U\,m
lg +U2,mJg> 

l-Nm=Vlmig+V2.mJg> 

for location in with similar relations for location n. Using the carat to designate winds projected to the particu- 
lar analysis grid we wish to convert to, the conversion equations evaluated at in are 

ü   —u,   u   + tt,   v (B8) m 1,m   m 2, mm v       / 

m l,»i   m 2,m   m 

Using these equations to define the covariance relations gives 

< ",A >     =     < UmU„ > Ml,mMl,„ + < UmVn > UX,mU2,n + < VmUn > U2,mUX,n + < VmVn > U2,mU2,n f 

< umvn >   =   < umun > ulmvln +<umv„> uXnvln + < vmun > u2mvin + < vmv„ > u2mv2n; 

< vmun >   =   < umun > vlmuln +<umvn> vhmu2n + < vmun > v2muln + < vmvn > v2mu2n ^ 

< vjn >   =   < umun > vlmvln+ < umvn > vlmv2n+ < vmun > v2mvln+ < vmvn > v2 mv2n> 

<i"»> = <<Pm
Un>UX,n+<<Pm

Vn>U2,n, 

<tVn> = <fau„>Vhn+<tVn>
V2,n, 

<vJn>     =     <uJn>V^m+<vJn>V2m^ 

<ujn>   =   <ujn>uxm+<vjn>u2m (B9) 

These conversion equations were applied to the spherical covariances to produce the corresponding correlation 
plots shown in Fig. B2. In the actual analysis, the data are kept in spherical coordinates for all of the grids until 
the analysis is complete, and then are converted to the grid desired. This saves making the conversion to the 
covariances during the expensive iterative solution. The correlations computed using these formulas are given in 
Fig. B2. Note that the lines of symmetry in the spherical formulation may be curved. 

Case 2 - Inclusion of Correlations with the Divergent Wind 

Equations (B 1)-(B9) assume that the divergent part of the wind is not correlated with either the mass field or the 
rotational wind field (see Eq. B4). To accommodate inflow into low-pressure regions and outflow from high- 
pressure regions in the planetary boundary layer, it is necessary to relax this constraint. The following derivation 
follows Daley (1985). We assume that the <i|/%> and <<I>x> correlations are isotropic and thus 

,,  i3        ,,   a2        J ,,   a 
cm = c%v and c^ = c^. Define Yl(r) = -—c„, y2(r) = -^c^, and %(r) - — c^. 
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Figure B2 
The 3DVAR correlation models plotted in a Lambert 
Conformal Projection using the SOAR model (4.22) 
with L. ' = 0.96, |X = 1.0, and v = 0 

Then, 

cft(r) = c„(r) = Y,(r)-Y2(/-),and c9f(r) = -cf9(r) = n(r). (BIO) 

We can write the additional contributions to Eqs. (B7) as follows: 

(umu„)/ Pi = 2[Yl sin(ßm)cos(ß„) - y2 cos(ß,„)sin(ß„)], 

(vmv„)/ P* = -2[y, sin(ß„)cos(ß,„) - y2 cos(ß„)sin(ß„,)], 

("«v,) / PA = cft [sin(ßB) sin(ß„) - cos(ß„, )cos(ß„)], 

(v^J/^^^WßJsinfßJ-cosCßJcosfß,)]. 

(^A)/«=-^sin(ß„), (Bll) 

K,vn)/^=-^cos(ß„), 

(vmOn)/^.A. = 7lCOS(ß„). 

As discussed in Daley (1985), the general effect of these extra terms is to cause a rotation of all wind/wind and 
wind/mass correlations. The rotation is clockwise in the Northern Hemisphere and anticlockwise in the Southern 
Hemisphere. There is also an increase in the amplitude of the <uv> and <vu> correlations. 

Section 4.7.3 demonstrated how a nonseparable formulation of the background error correlation can produce a 
maximum correlation with the divergent wind near the Earth's surface. This will have the effect of producing a 
maximum rotation of the correlations near the ground, with the rotation diminishing with increasing altitude. 

Figure B3 illustrates the effect of correlations with the divergent wind. This is the <vv> correlation (v being the 
northward wind component). This correlation is at 1000 hPa at 45 degrees north using the SOAR correlation. It 

20 NAVDAS Source Book 



can generally be compared with the upper right panel of Fig. B2. Note, however, that Fig. B 3 is on a latitude/ 
longitude projection, whereas Fig. B2 is a Lambert conformal projection to a different scale. The clockwise 
rotation of the correlation is clearly evident in Fig. B3. 

Figure B3 
<w> correlation at 1000 mb at 45°N 
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Appendix C 

Constructing Code for Parallel Processors 

An efficient method for implementing the pre-conditioned conjugate gradient solution (3.13) of the analysis 
algorithm (3.5)-(3.6) on parallel processors has been discussed by Lyster et al (1997). The MPI (message pass- 
ing interface) instructions are used. The basic idea is quite simple. Suppose there are N observations and M 
analysis gridpoints. Then in Eqs. (3.5-3.6) there are basically two very expensive operations. 

In the solver (Eq. (3.5)) (solved using the conjugate gradient algorithm (3.13)), the most expensive operation is 
the matrix vector multiplication (denoted qk = Apk in Eq. (3.13)). This operation requires 0(N2)operations for 
each iteration of the descent. In addition, the NxN matrix A must be constructed, which again requires 0(N2) 
operations, although this operation may only have to be performed once if there is sufficient storage. In general, 
we only store the diagonal blocks of this matrix, but we recalculate the off-diagonal blocks at every iteration. 

The second important operation is the post-multiplication (Eq. (3.6)), which is a one-time matrix/vector multi- 
plication with MN operations. The MN matrix elements must also be calculated and used once. 

All other operations (including the preconditioner) are O(N) or O(M). In general, M > N, so that the O(MN) 
operation of the post-multiplier will be more expensive than a single application of the 0(N2) operation in the 
solver. However, given that the solver may take many iterations, both operations can be considered to be roughly 
equally expensive. (For example, if M = ION and it takes 10 iterations of the solver.) In the limit as M,N become 
very large, the algorithm will be completely dominated by the O(MN) and 0(N2) operations discussed above. 

For a machine with J processors, the key to a scalable implementation is to divide the O(MN) and 0(N2) opera- 
tions equally between the processors. To keep communications between processors to a minimum, the second 
principle is to ensure that matrix elements are calculated, stored, and used on each processor; they are never 
passed between processors. At most, elements of vectors may be passed between processors. 

Since matrices may have N2 or MN elements and vectors only M or N elements, this obviously reduces the size 
and number of messages that must be passed between processors. Thus, a rough operation count for a parallel 
version of this algorithm on a J processor machine is 

Number of operations * 1,N + 1,M + m,N2/J + m,MN/J + c,(J2)N + c,(J2)M, (Cl) 

where 1, and L, indicate O(N) or O(M) operations that are performed on all processors. m: and m: are operations 
involving matrix construction and matrix/vector multiplication, which are divided equally among processors. 
c,(J2) and c,(J2) indicate elements of vectors that must be communicated between processors. (Generally speak- 
ing, communication increases as the square of the number of processors). Note in the limit as M,N become much 
larger than J, the algorithm is dominated by the m, and m, terms and is thus asymptotically scalable. When M,N 
are smaller, the 1, and 1, terms become relatively more important. Communication costs can be expensive, cost- 
ing perhaps 100 times as much to communicate one number between processors as it does to calculate the 
number within a processor. Thus, depending on the machine, communication could be relatively costly if M,N 
are too small. 
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For global problems, we might expect M = 107, N = 105, and J < 103, so Eq. (Cl) suggests that this algorithm 
should be scalable, even on machines with very costly communications. For regional problems run on smaller 
machines, M = 106, N = 104, J < 20, but we might expect more efficient communication (shared memory), and 
scalability is also possible (and has been already demonstrated to some extent) 

We now describe the present implementation in more detail. 

Implementation 

In this implementation, the following three considerations are very important. 

(1) The serial and parallel versions should be almost identical. This requires that all MPI instructions 
be confined to a very small number of subroutines (< 10). Thus, most of the code is unaware of 
whether it is being executed serially or in parallel. 

(2) The MPI instruction set should be very small. 

(3) The code should be modified from a logical serial flow only if there is an enormous amount to be 
gained computationally by modifying the code in a nonintuitive way for parallel execution. 

Thus, the present implementation is a very basic MPI installation. There are four assumptions. 

(1) On every processor there is a complete copy of the innovation vector and all ancillary information, 
such as observation locations, observation errors, relevant background information, etc. However, 
see (4) below. 

(2) The elements of the HPbH
T + R matrix are distributed across the processors, but are calculated at 

every iteration step except for the (symmetric) diagonal blocks, which are calculated only once and 
then stored on the appropriate processor. The amount of calculation required is less than in a purely 
physical space implementation. 

(3) The symmetry of the HPbEF + R matrix is completely exploited in both the block diagonal matri- 
ces and the off-diagonal blocks. This halves the expense required in calculating the elements of this 
matrix. There is also an option to not exploit the matrix symmetry in the off-diagonal blocks. 

(4) Vertical eigenvector decomposition (Sections 4.4.1 and 5.3) is spread across processors. In particu- 
lar, for instruments such as TOVS (Section 5.3), information required for the construction and 
multiplication of the H and H^ matrices would have to be stored only on the processor that 
processed that particular sounding. 

The Solver 

The solver (3.13) is implemented as follows. The innovation vector and relevant observation information (three- 
dimensional locations, error information, etc.) is assumed to be available on all processors. It has already been 
sorted into triangular prisms (Fig. 3.2). The calculation of the elements of the HPbIF + R matrix is divided 
equally among the processors. This is done by first assigning a different subset of the observation prisms to each 
processor, and then calculating the interactions between the observations in that subset of prisms with all the 
observations at every iteration, (as noted above, the diagonal blocks (self-interactions) are only calculated once 
and stored). The idea is to have roughly the same number of interactions (i.e., matrix elements) on each proces- 
sor. 
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Originally, we attempted to load balance the processors for the solver calculation by estimating the amount of 
work in the calculation and then distributing this work across the processors using a load-balancing routine. This 
did not work very well because the solver is entirely in observation space, and it is very difficult to estimate the 
load a priori. We decided to switch to a self-scheduling algorithm, which uses the master processor to control the 
process while the slaves do all the work. Thus, one processor is sacrificed, which does not matter when there are 
many processors. In this algorithm, load balancing is dynamically controlled and works much more effectively. 
It also adjusts automatically to changes in the background error covariance calculation and adjustments in the 
load. 

The descent algorithm (3.13) can be run in parallel, except for the following messages that must be passed 
between processors once per iteration. First, we must calculate and pass the scalars o^, ßk, etc. between each 
processor. More costly, once we have calculated the subvectors of the vector pk on each processor, we must pass 
this information (after vertical eigenvector decomposition (see (4) above) to all of the other processors, so that 
each processor has available a complete vector of (vertically decomposed) pk before beginning the computation 
qk = Apk. There is one additional communication (the vertically decomposed form) of the vector qk between 
processors. 

After the solver has finished, (the vertically decomposed form) of the vector z in Eq. (3.5) must also be commu- 
nicated between processors. 

The Second Preconditioner 

There are some complications for the implementation of the second preconditioner (discussed in Section 3.5) for 
parallel implementations. This second preconditioner is based on a re-sorting of the observations. There is an 
inherent conflict between the operations of re-sorting the observations and splitting the load (i.e., the observa- 
tions) among processors. In fact, the operations of load splitting and re-sorting do not commute. Although there 
is a complete set of observations on every processor, many of the necessary fields (particularly the H and H^ 
Jacobian matrices for directly assimilated observations) are not available on every processor. There are two 
ways to tackle this problem in a parallel environment. 

The first way is to re-sort the entire observation set and then split this re-sorted set of observations among 
processors. This will mean that the observations from the original sort that are to be treated on a given processor 
will not necessarily correspond to the observations from the second sort that are to be treated on that processor. 
The same goes for the elements of the H and H^ matrices for direct assimilation instruments (see assumption 
(4) above). This would imply a large amount of extra message passing. This procedure seems undesirable. 

The second way is to load split the observations (i.e., load) among each processor used in the original sort. Then, 
the observations are re-sorted on each processor. This means the same set of observations will be treated on each 
processor for both the first and second preconditioners. However, a re-sorting will not be effective if all the 
prisms on a given processor are widely separated, because most of the correlations (apart from those internal to 
the original prisms) will be very small, and a re-sorting would tend to produce basically the same prism structure 
as in the original sort. According to Section 3.5, this re-sort will not be beneficial. What is required is that the 
prisms on a given processor be from the same local neighborhood (i.e., clustered together), so that a preconditioner 
based on the second sort will include many large correlations, which were not included in the original 
preconditioner. This provides an extra condition on the solver load balancer, as noted above. It should be noted 
that re-sorting on processors becomes increasingly ineffective as the number of processors approaches the num- 
ber of prisms. It also means that when the second preconditioner is used, the results (unless the descent is iterated 
to machine precision) will vary slightly, depending on the number of processor specified. 
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Post-multiplication 

This operation is very easy to run in a parallel fashion. Each processor is assumed to have a copy of the vector z 
in Eq. (3.6). The analysis volumes are then parcelled out among the processors in such a way that the number of 
matrix elements (interactions) in the Pjff matrix is roughly the same for each processor. A load-balancing 
algorithm is used here to parcel out the work evenly among processors. 

This part of the algorithm runs completely in parallel, with the load divided up as described above. No messages 
have to be passed until the post-multiplication is completed. At that time, the elements of the correction vector 
xa - xb (actually the projection of the correction vector on the vertical eigenvectors) are scattered across the 
processors and must be reassembled for output and postprocessing. 

Granularity 

An important issue on many machines is fitting operations into the cache on each processor for greater speed. In 
many MPI codes, this is controlled by the granularity, which is a measure of the size of blocks, of executable 
code (large blocks-coarse grain; small blocks-fine grain). Granularity is controlled in the solver and in the post- 
multiplier by specifying the maximum number of observations in each prism (in the observation sorter, which is 
run before the 3DVAR code itself). Specifying this number to be small gives a greater chance of the innermost 
loops running in cache. 
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Appendix D 

A Brief Guide to the NAVDAS Code 

This appendix contains subroutine references to the text. Subroutine name and relevant document sections are 
indicated in bold or italics. The main routine is discussed first; subroutines are listed in alphabetical order for 
each section. 

A. Background and observation ingest, formation of innovations, quality control, thinning, and 
sorting. 

Not listed here. 

B. NAVDAS - From innovation vector to vertical eigenvector projections of correction vectors 

navdas_driver - sets up dimensions, work space, sets parameters. 

Calls navdas and navdas_aer 

navdas - reads in observations, sorts into observation prisms, rotates winds. Calls n3dvar. Gathers vertically 
decomposed correction fields onto a single processor, rotates wind correction, processes residual vector. Writes 
out vertically decomposed correction field to disk. 

n3dvar - this routine contains the solver and post-multiplication 

Input is the sorted, quality-controlled innovation vector, with one entry for each observation. This vector is 
accompanied by parallel vectors that contain ancillary information such as three-dimensional location of the 
observation, specified observation error, type of instrument, type of variable, plus some information on the 
background field necessary for either direct assimilation purposes for nonstandard instruments (Section 5.1) or 
for transformation to isentropic coordinates (Section 4.5) 

Output is a vector of vertically decomposed corrections (analysis increments) for each analysis grid point and 
each analysis variable (geopotential, temperature, wind components, moisture). The number of retained vertical 
modes nveigout is less than or equal to the number of levels levcor. (Section 4.8) 

anal_sort - this routine sorts the analysis gridpoints into volumes. All that is needed is the latitudes and longi- 
tudes of each of the girdpoints (in any order). Thus, it will work for any arbitrary analysis grid (global, regional 
nested, even nonconnected subsets). The actual sorting is done by the routine global_sort. (Section 3.8) 

Input - lists of latitudes and longitudes for each gridpoint 
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Output - volumes containing neighbouring grid points. 

Calls - global_sort, reshufflei, imov 

Called by - n3dvar 

buddy_decision - performs the buddy check decision on the observations. (Section 9.3.3) Called from genince 
after iteration number iterationjtmddy. This routine calculates the buddy check metric for each observation, 
rejects offending observations that violate the criteria, and sets a flag num_reject for each rejected observation. 

Input - innovation vector xiv_ob and correction vector cob 

Output - the rejection flag vector num_reject is modified 

Called from - genince 

buddy_action - performs the buddy check action on the observations. (Section 9.3.5) Called from genince after 
iteration number iterationjbuddy. It follows a call to buddy_decision. 

Input - main diagonal blocks of Hß^lF + R matrix. 

Output - main diagonal blocks of the HPbH
T + R matrix are not changed, but the jth column of the S. matrix of 

Section 9.3.5 is produced for each buddy-check-rejected observation. 

Calls - triangularsort, buddymult, spotrs, fill 

Called from - genince 

buddymult - used for matrix multiplication (idir = +1) and solving the linear system 

(idir = -1) using the S. matrices of Section 9.3.5. This is done to avoid the expensive operation of recalculating 
the Choleski matrices of the main diagonal blocks after rejecting observations in the buddy check. 

Input - vector of length of the number of observations in the prism. 

Output - vector of the same length and stored in the same location, depends on the sign of idir 

Called from - choleski, buddy_action, matrix_mult 

central_point - used to determine the horizontal centroid of a grid box or an innovation/observation prism. This 
is required to determine if two observation prisms or an observation prism and an analysis box are too distant to 
interact, (i.e. with Great Circle distances greater than obdismx or andismx). Algorithm is discussed in 
Appendix A. 

NAVDAS Source Book 



Appendix D 

Input - latitude locations rlat and longitude locations rlon for the npoint observation or grid locations 

Output - centroid location rcenlat, rcenlon 

Called - from n3dvar once for each observation prism and analysis grid box 

choleski - performs the solution of the block diagonal problems in the pre-conditioner for each diagonal block 
on a given processor. The lower triangular Choleski matrices have already been calculated and stored. 

Input - the array w contains the lower triangular matrices, and rml contains the input vector, bcolumn contains 
information required to correct for observations that have been rejected by the buddy check 

Output - the solution vector zml 

Calls - workjen, triangularsort, mov, spotrs, buddymult, vchlsk, chslv 

Called by - genince 

coupscl - the horizontal length scale Lh and the geostrophic coupling parameter m of the background error 
correlation are allowed to vary horizontally. (Section 4.6) In calculating the correlations between two observa- 
tion locations or an observation location and an analysis grid location for these two variables, we take the 
product of the square roots of the horizontal length scale or coupling parameter at each of the two locations. The 
case where the coupling parameter changes sign across the equator must be handled. 

Input - information on horizontal length scales and coupling parameters. 

Output - elfvect - a vector of reciprocal square roots of horizontal length scales and xmuvect - a vector of 
square roots of the coupling coefficient. 

Called - by n3dvar for each observation/innovation prism and each analysis grid volume 

diagjblock - calculates a diagonal block for the preconditioner of background error correlations. Adds in the 
observation error covariance. Then, does a Choleski decomposition to produce a lower triangular matrix. (Sec- 
tion 3.4) 

Input - sets of information about each observation in the prism (locations, coupling parameter, vertical informa- 
tion, appropriate Jacobian matrices for directly assimilated variables, etc. 

Output - a square matrix of background error correlations 

Calls - workjen, horiz_cor, fcovar_spe 

Called by - n3dvar 
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eigLmatrix_mult - does matrix vector multiplication in vertical eigenvector space of the background error 
correlation between all the observation prisms. Matrix symmetry is accounted for. NOTE: this routine calls MPI 
routines. The load balancing is performed by a self-scheduling algorithm. 

Input - vector in eigenvector space, many fields required to calculate the correlations 

Output - another vector in eigenvector space 

Calls - horiz_cor, workjen, mov, fcovarjspe , matvece, transjmatvece, mpi_vector_sum, MPIJSEND , 
MPI_RECV 

Called by - matrix_mult, nonlinear_ob 

fcovar_spe - subroutine to calculate the matrix of background error correlations between observation locations 
for use in the solver. (Section 3.2.1) The calculation is done in vertical eigenvector space and involves seven 
types of interactions between profiles, soundings and single level observations for deep and shallow vertical 
modes. (Sections 4.4 and 5.1) This calculation is done for each pair of observation prisms that are separated 
horizontally by less than obdismx 

Input - for each of the two observation/innovation prisms, complete information on observation locations, 
variables, local horizontal correlation lengths, geostrophic coupling parameters, etc. is required. 

Output - seven matrices ematl, emat2, smat, sematl, semat2 , esmatl, esmat2. 

Calls - none 

Called by - diagjblock and eig_matrix_mult 

forevar - calculates for a prism of observation/innovations, the square root of the background error variance 
rmsvar at those observation/innovation location. This routine handles only the standard observations. (Section 
4.1) 

Input - for nelem observation/innovation locations the vertical index nz_ob and variable type jvartype_ob. 
Also vertical variations of each background error rms variances vertforvar for numvar variables (except where 
they are handled by forevar_direct) 

Output - nelem values of rmsvar (except where they are to be handled by forevar_direct) 

Called - for each observation/innovation prism from n3dvar 

forevar_direct - similar to forevar but for direct assimilated nonstandard observations where we must calculate 
Sh

1/2 of Eq. (3.17) in Section 3.8. (See also Sections 5.3 and Appendix G.) Searches all nelem observation 
locations in an observation/instrument prism but only acts on directly assimilated observations, which are indi- 
cated by instrument type insty_ob. 
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Input - nelem values of jvartype_ob (variable type), insty_ob, plus specific information required for each type 
of directly assimilated observation, plus vertical variations of background error rms variances vertforvar for 
numvar variables. 

Output - nelem values of rmsvar (except where they are handled by forevar) 

Called - from n3dvar for each innovation/observation prism immediately following rmsvar 

gcirc_sp - produces Geat Circle values (Appendix A) and angles (Appendix B) from latitude and longitudes of 
two horizontal locations. This routine can only be run after some precalculations. Handles nm points 

Input - various quantities that have been previously calculated for each of the two locations separately 

Output - nm Great Circle distances s_nm and cosines and sines cos_nm and sin_nm 

Calls - asin, sqrt, amin2 

Called from -from horiz_cor and post_multiply 

genince - this routine performs the solve (Sections 3.2.1 and 3.2.6). For multiprocessor applications, it runs 
across processors and contains some message passing in internal subroutines 

Input - blocks - both diagonal and off-diagonal of HPbIF + R matrix plus innovation vector xiv_ob. 

Output - cob vector (z in Eq. (3.5)) 

Calls - mov, fill, triangularsort, spotrs, vchlsk, chlsk, mpi_obvect_bcast, buddycheck, mpi_obvect_bcast, 
matrix_mult, scalar_vector 

Called from - n3dvar 

geograph_var_set - sets up latitude/longitude array of factors to multiply the rms background error variance. 
This array is a function of season and GMT time of day and is used as input to the function geograph_var 

Input - GMT time of day and month 

Output - an array horiz 

Called by - n3dvar 

global_sort - this routine takes a sequence of latitude/longitude locations corresponding to observations and 
sorts them into observation prisms. The observations can be located anywhere on the sphere, and the routine 
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works independently of any grid. It is primarily use in the pre-processing, but is called in n3dvar if a second 
preconditioner is required (using the observation re-sorting method of Section 3.5). 

Input - vectors of latitudes (rlat_ob) and longitudes (rlon_ob) for each of num_ob observations. Also requires 
information on whether observations are in a vertical column (profiles or soundings) and how many observa- 
tions are to be permitted in a prism. 

Output - a vector nbox_ob that gives the prism number for each observation 

Called by - re_sort, latlon_sequencer 

horcor_sl, horcor_s2, horcor_pml, horcor_pm2 - calculates horizontal background error correlations. (Sec- 
tions 4.6, 4.7, Appendix B) horcor_sl is for the nondivergent calculations in the solver, horcor_s2 is for the 
divergent calculations in the solver, horcor_pml is for the nondivergent calculations in the post-multiplier, and 
horcor_pm2 is for the divergent calculations in the post-multiplier. 

Input - Great Circle distances s_nm, correlations and radial derivatives f,fp,fpp, and angle information sin_nm, 
cos_nm for nm locations and numvar variables in their interaction with another location. There is also informa- 
tion about local horizontal correlation scale and geostrophic coupling. 

Output - hcor(nm,numvar) which contains the <ZZ> , <Zu> , <Zv>, <uu>, etc. horizontal correlations 

horcor_sl and horcor_s2 are called by horiz_cor, while horcor_pml and horcor_pm2 are called by horizon- 
tal 

horiz_cor - calculates all horizontal correlations used in solver. It is called prior to fcovar_spe and provides a 
complete two-dimensional array. It has some similarities with horizontal, but it includes the Great Circle calcu- 
lation and produces a two-dimensional rather than a one-dimensional output array. 

Input - two sets of observation locations and ancillairy information such as geostrophic coupling parameters, 
horizontal length scales, etc. 

Output - two-dimensional array of horizontal correlations between the two sets of observations. 

Calls - gcirc_sp, hormod and horcor_spl 

Called by - diag_block, eig_matrix_mult 

horizontal - performs horizontal interactions in calculating background error correlation matrix elements in 
post-multiplier. (Section 4.6) Can do either direct calculation or table look-up 

Input - values of Great Circle distance, radial derivatives, angles, local horizontal correlation scales, geoostrophic 
coupling, etc. between a single location and mumtot other locations. 

Output - mumtot values of horizontal correlations 
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Calls - fill, hormod , horcor_sp 

Called by - post_multiply 

hormod - computes the values of various specified horizontal covariance models and their first and second 
radial derivatives. (Section 4.6.2) 

Input - nm normalized (by horizontal length scale Lh) values of Great Circle distance s 

Output - nm values of the correlation function f, and associated first and second radial derivatives fp and fpp. 

Called by - horizontal 

latlon_sequencer - sort the observations into observation prisms 

Input - unsorted observation innovations and auxilliary observation information 

Output - sorted innovations and auxiliary information, plus pointers marking the beginning and end of each 
observation prism. 

Calls - global_sort, mov, reshuffler, reshufflei, reshufflechlO, reshufflecfl6 

leftop_analob - this routine takes vertically decomposed corrections defined at observation locations and pro- 
duces real space corrections in the analyzed variables (u,v,T etc.) at the observation locations. It is used in the 
outer iteration of the solver for observations with a nonlinear forward operator such as SSM/I windspeed. It is a 
modified version of the routine leftoperator. (Section 6.1) 

Input - vertically decomposed corrections ecob 

Output - real space corrections at the observation locations and in the appropriate analyzed variables 

Called by - nonlinear_ob 

leftoperator - opposite of rightoperator. E operation in Eq. (4.16) or H operator in Section 5.3 for direct 
assimilation of nonstandard observations. 

Input - vectors ecobl for deep modes, ecob2 for shallow modes, and ecobsing for single level observations of 
vertically projected observation/innovations 

Output - vector xiv_ob in physical space 

Calls - sdot 
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Called from - ebediag and matrix_mult 

loadbalance_an - routine required to balance the load across multiprocessors for the post-multiplier (Section 
3.2.2) when more than one processor is used. It does not contain any MPI calls. (Appendix C) 

Input - information about the observation prisms and the analysis grid volumes 

Output - a re-ordering of analysis grid volumes 

Called from - n3dvar at the beginning of the post-multiplication step 

matrix_mult - performs a complete matrix vector multiplication of the form z = [HPbH
T+R]x. The background 

error correlations use vertical eigenvector decomposition, and observation error correlation is calculated di- 
rectly. 

Input - the vector x (called "pv" in the code). All the information required to calculate the background and 
observation error correlations. 

Output - the z vector (called "qvc" in the code) 

Calls - rightoperator, leftoperator, mpi_obvect_bcast, fill, triangularsort, mov, strmv, multmv, workjen, 
eig_matrix_mult 

Called from - genince 

matvece - does matrix multiplication Apk in solver (Eq. (3.13)) for preconditioned conjugate gradient algorithm 
for off-diagonal blocks. This calculation is done in vertical eigenvector space except for single-level/single- 
level interactions. (Section 4.4.2) 

Input - vectors exiv_obl for deep modes, exiv_ob2 for shallow modes, and exiv_obsing for single-level obser- 
vations for an observation/innovation prism; also seven matrices ematl, emat2, smat, esmatl, esmat2, sematl, 
semat2 for the interactions between two observation/innovation prisms. 

Output - vectors ecobl for deep modes, ecob2 for shallow modes, and ecobsing for single-level observations 
for the second observation prism. 

Calls - multmv 

Called by - ebediag, eig_matrix_mult 

non!inear_ob - subroutine called at the end of a nonlinear iteration to calculate new values of the analyzed 
variables (u,v,T etc) at the observation locations. These are to be used in recalculating the TLMs for directly 
assimilated variables. This routineis similar to matrix_mult, except that the input is in vertical eigenvector 
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space and the output is in real space, but for the analyzed rather than the observed variables. At this time the only 
nonlinear operator is SSM/I windspeed. (Section 6.2) 

Input - ecob, which is the vertically decomposed version of cob, after convergence of the linear solver. 

Output - correction values at observation locations for appropriate analysis variables. For example, for SSM/I 
windspeed, it would be (u,v) corrections at the same location. 

Calls - leftop_anal, workjen, eig_matrix_mult 

Called by - n3dvar 

obcovar - calculates observation error covariance (normalized by background error variances), that is, 
Sh

1/2RSh
1/2 in Eq. (3.17) of Section 3.8. This term is then added to the background error correlation Ch"Woh in 

Eq. (3.17). This is only performed for diagonal blocks. 

Input - The nelem by nelem matrix xmblok (Ch
ob/ob) and vector obnorm (Sh"

2) of length nelem plus the 
diagonal observation error matrix err_ob 

Output - xmblok - a diagonal block of Ch"b/ob + R 

Called by - diagjblock 

post_multiply - performs the post multiplication. (Section 3.2.2) Both the assembling of the matrix elements of 
a single block of the PbH

T matrix (for a single observation prism and a single analysis grid volume) and the 
multiplication by the appropriate elements of the z vector of Eq. (3.6) are included in this routine. The actual 
matrix is never completely formed and the algorithm takes more of an operator approach. This operation is 
performed for analysis grid boxes and observation prisms that are separated by a Great Circle distance, which is 
less than andismx. 

Input is three vectors ecobl and ecob2, corresponding to profile/sounding observations, and ecobsing, corre- 
sponding to single-level observations, that have been previously vertically projected. Also information regard- 
ing the positions and characteristics of both the analysis grid volume and the elements of the observation prism 
vector. This operation is done for each analysis grid box and observation prism that are not separated by a Great 
Circle distance of more than andismx 

Output is a vector of corrections outvect for the numjb analysis grid points and numvar variables for the 
nveigout gravest vertical eigenvectors. 

Calls - gcir_sp, horizontal, multmv 

Called from - n3dvar 

precipwattlm - this routine is the actual TLM for generating precipitable water from log(specific humidity). 
(Section 5.7) 
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Input - log(specific) humidity profile vector, standard atmosphere specific humidty qzero, vector of pressures 
prescor. 

Output - precipitable water pwlin 

Called by - ssmi_pw_eigen 

re_sort - subroutine for re-sorting the observations for use in creating a second preconditioner for the descent 
algorithm. (Section 3.5) 

Input - vectors of latitudes and longitudes for the observations 

Output - for each of the observations in the re-sort, its location in the original sort 

Calls - global_sort, mov, reshuffle! 

Called by - n3dvar 

rightoperator - goes from physical space to vertical eigenvector space. ET operator in Eq. (4.16) in Section 
4.4.2 or the H^ operator in Section 5.3 for direct assimilation of nonstandard observations. It is never called 
across processors, only within a processor. 

Input - vector xiv_ob of innovations in physical space 

output - vectors ewobl for deep modes and ewob2 for shallow modes in vertical eigenvector space, ewobsing 
for single-level observations remains in physical space. 

Calls - fill 

Called by - n3dvar, ebediag, matrix_mult 

shuffle_choleski - this routine is called just before and just after the call to choleski when the second preconditioner 
(Section 3.5) is being applied. In the forward direction (idir = +1), it re-sorts the input vector, and in the reverse 
direction (idir=-l) it re-sorts the output from the choleski operation. 

Input - vector to be re-sorted 

Output - the re-sorted vector 

Calls - mov 

Called by - genince 
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ssmi_pw_eigen - calculates the (universal) TLM for the SSM/I precipitable water for assimilating normalized 
precipitable water into the variable used in the assimilation - log(specific humidity) and projecting onto the 
background error vertical eigenvectors. (Section 5.6) 

Input - the vertical eigenvector matrix forevect and eigenvalue unieval, background error variance forvarcon, 
and standard atmosphere specific humidty profile qzero 

Output - pweig the TLM and forvar_ssmi_pw the background (normalized) precipitable water. 

Calls - the precipitable water TLM precipwattlm 

Called from - n3dvar 

ssmi_windspeed - this routine produces the TLM field for the SSM/I windspeed. (Section 5.5) This version can 
also handle the nonlinear iteration. (Section 6.2). Thus, the first (linear) iteration differs from the rest. 

Input - Two background wind components for each SSM/I winspeed observation. 

Output - the 2x1 TLM matrix for each SSM/I windspeed observation 

Called from - n3dvar 

storebalance_ob - this routine distributes the diagonal blocks of the HPJHT + R matrix among the processors in 
an equitable way. It does this while trying to maintain, as much as possible, adjacent observation prisms on the 
same processor (to improve the effectiveness of the second preconditioner). Note - this storage allocation is not 
a load balancer for the matrix/vector multiply in the solver (which uses a self-scheduling algorithm and does not 
require an a priori load balancing calculation). (Appendix C) 

Input - sizes of the observation prisms 

Output - array indexproc that allocates the prisms to each processor 

Called by - n3dvar 

tablook - subroutine to create table look-ups of horizontal correlation models (Section 4.6.2) and the arcsine 
required in the calculation of Great Circle distance. (Appendix A) 

Input - number of tables numtab, number of values in each table lookup, and the choice of correlation model 
icormod 

Output - lookup by numtab tabulated values 

Called - near the beginning of n3dvar 
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trans_matvece - like matvece except for the transpose of the matrix. Called only if matrix symmetry is to be 
exploited. 

Input/Output - similar to matvece 

Calls - transp, multmv 

Called by - eig_matrix_mult 

tovs_eigen - routine that is called for every TOVS sounding to produce the H matrix of Section 5.3.3. It also 
produces the background error variance in temperature brightness space (Sh

1/2 in Section 5.3.3). 

Input - the jacobian matrix H that is different for every sounding vertical background eigenvector matrix forevectt. 

Output - the matrix tovs_eig that is the number of channels nchannel by the number of eigenvalues nveigsound. 
It also produces a vector forvarjovs of length nchannel of background brightness temperature rms error vari- 
ances. 

Calls - press_interp 

Called by - n3dvar 

verticalconst - calculates the vertical variation of various universal quantities - the pressure at temperature/ 
moisture levels prestq, the vertical variation of the background error variance for each variable vertforvar, the 
vertical variation of background error correlation vertical scales for each variable vscale and the standard atmo- 
sphere specific humidity qzero. 

Input - pressure level prescor at levcor levels of the geopotential and wind correlations. 

Output - prestq, vertforvar, vscale, and qzero at levcor levels 

Called at the beginning of n3dvar (before vforcove) 

vertintegral - routine to calculate vertical geopotential background error variance from specified vertical tem- 
perature background error variance using the hydrostatic relation. 

Input - vectors of pressure and temperature error variances 

Output - vector of geopotential error variances 

Calls - hydroth 

Called by - verticalconst 
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verteigset - this routine is called once for each observation/innovation prism. It is a basic set-up routine for the 
vertical eigenvector decomposition. (Section 4.4) Information such as horizontal location and variable type is 
required in the operators leftoperator and rightoperator, which go back and forth between physical and eigen- 
vector space. This routine takes nelem standard latitude (rlat_ob) and longitude (rlon_ob) observation loca- 
tions and variable types (jvartype_ob) and reorders them for the eigenvector decomposition into elat_ob, elon_ob, 
and jevartype_ob, respectively. It also calculates maps for the re-ordering nmapprof, nmapsound, and nmapsing 
(corresponding to profiles, sounder, or single-level observations) of the innovations themselves, although the 
innovations are not reordered in this routine. 

Input - jvartype_ob, rlat_ob, rIon_ob 

Output - jevartype_ob, elat_ob, elon_ob, nmapprof, nmapsound, nmapsing 

Called from - 3dvar once for each innovation/observation prism 

vforcove - calculates the vertical background error correlation matrices forvcor for multivariate variables and 
forvcorunivar for univariate variables, the corresponding vertical eigenvector matrices evect and transpose 
evectt, the eigenvalue matices foreval for the multivarate correlations and eigenvalue vectors univeval for the 
univariate correlations. (Section 4.3) 

Input - levcor pressure levels prescor and prestq, background error variances for the wind winderr, back- 
ground error vertical scales vscale. 

Output - evect, evectt, foreval, univeval, forvcor, forvcorunivar plus temperature temperr and geopotential 
heiterr background error variances. All vectors are length levcor, and matrices evect, evectt, forvcor, and 
forvcorunivar are levcor by levcor. 

Calls - eigen, hydrot and utitilities vertcor_rspace, transp, mult3, fill, and mov 

Called - near the beginning of n3dvar, but after verticalconst 

vindex - calculates the vertical index of any observation/innovation based on its pressure (prescor for heights/ 
winds and prestq for temperature/moisture). (Section 4.3.2) 

Input - num observation pressures p_ob , vectors of length levcor of correlation pressure levels prescor and 
prestq 

Output - num indices nzindex 

Called by - n3dvar for each observation/innovation prism. 

C. Interface with COAMPS and NOGAPS. 

Not discussed here 
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D. Utilities 

add_field - adds two fields together 

bctdgl,bctdg2,bctdxl - Gaussian elimination called in bicube 

bicinit - called in bicube 

bicube - bicubic spline interpolator 

caljmin - calculates the Jmin diagnostief Section 9.1) 

chslv - FORTRAN version of second part of Cholesky decomposition - back substitution. 

chlen - fills file with sequential integers 

delta - function used to calculate the weight function of Eq. (4.6) 

dotproduct - performs a dot product across processors and transmits the result to all processors. 

eigen - calculates eigenvectors and eigenvalues of a symmetric real matrix 

fill - fills field with a constant 

gcircd - function that calculates Great Circle distance between any two points 

geograph_var - function calculates the background error variance at any latitude, longitude point 

grid - to calculate latitude, longitude, Coriolis force, etc., from grid locations 

ghost_ob - provides ghost observations (with large observation errors) that are necessary for low observation 
counts 

hydrot - produces a vertical temperature or thickness vector from a vector of geopotentials 

hydroth - produces a geopotential vector from a temperature of thickness vector by integrating up from the 
surface. 

ifill - integer fill 

ij211 - calculates latitude, longitude at specified points on a grid 

ijjl - same as ij211 

imov - integer move 

multmv - does matrix vector multiply using either BLAS or FORTRAN 

mult3 - multiplies together two conformable rectangular matrices 

mov - moves one array into another 
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outmtx - prints a (small) matrix 

press_interp - creates matrix that interpolates from one set of pressure levels to another 

print_structure - outputs vertical, latitudinal, or vertical/latitudinal cross-sections of various variances and 
scales connected with background error covariance by calling the actual routines used in the assimilation algo- 
rithm (coupscl and forevar) 

reshuffle!-, reshufflei, reshufflechlO, reshufflechlö - reshuffles a (real, integer, clO, or cl6) field following a 
call to global_sort (the global sorter routine) 

scalar_vector - performs operation r = a*s + b*t, where a,b are scalars and r,s,t are vectors of the same length. 

scale_add - adds a constant to a field 

scale_field - multiplies a field by constant 

stancg - does a standard conjugate gradient solve (Section 3.2.5) 

triangularsort - converts symmetric matrix into upper triangle or vice versa 

trianglemult - multiplies two triangular matrices together (undoes a Cholesky decomposition) 

transp - transposes a rectangular matrix 

tune_const - sets up constants for background error covariances 

vchlsk - FORTRAN version of first routine of Choleski decomposition, that is, the triangular decomposition 

vertcor_rspace - calculates real space form of vertical background eigenvectors from their eigenvectors and 
eigenvalues 

xlfil - puts transpose of lower triangle into upper triangle - called from vchlsk 

windrotate_grid - rotates grid windfields from grid orientation to spherical orientation and vice versa 

windrotate_ob - same as windrotate_grid, except for innovations 

workjen - compares available work space with space required and sends a message and terminates execution if 
insufficient space is available 

E. BLAS (Basic Linear Algebra System) subroutines 

sdot - scalar dot product 

sgemm - matrix/matrix multiply 

sgemv - matrix/vector multiply 

spotrf - first part of Cholesky decomposition (triangular decomposition) 
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spotrs - second part of Cholesky decomposition (back substitution) 

strmv - multiplication of a vector by a lower or upper triangular matrix 

strsv - solution of a lower or upper triangular system of equations 

F. MPI routines and subroutines containing MPI calls 

In addition to the following routines, the routines eig_matrix_mult and anal_err discussed above also contain 
MPI calls. 

mpi_begend - subroutine called at the beginning and end of n3dvar to initiate and end MPI action 

Input - processor number myid number of processors numprocs. Indicator itype whether beginning or end 

Output - none 

Calls - MPIJNIT, MPI_COMM_RANK, MPI_COMM_SIZE, MPI_FINALIZE 

Called at beginning and end of driver program for n3dvar 

mpi_obvect_bcast - transfers portions of a vector from each processor to all the other processors in order to 
assemble a complete copy of the vector on all processors. This vector may or may not have been previously 
vertically decomposed. Note - this routine is the most rudimentary way of performing this operation and could 
be done much more elegantly using more advanced MPI constructions. 

Input - information about slave and master processors, identity of observation/innovation prisms located in 
each processor, and vector of values to be transferred 

Output - each processor will have a complete copy of the innovation/observation vector 

Calls - mov, MPI_SEND, MPI_RECV, MPI_BCAST 

Called from - once during each iteration of the solver - genince, once just prior to the post-multiplication - 
n3dvar 

mpi_obvect_bcastjnt - exactly the same as mpi_obvect_bcast except for vectors of integers 

Called - during the buddy check inside the solver genince just once 

mpLcorrection - subroutine called at the end of n3dvar to transfer portions of the (vertically projected) correc- 
tion vector from each of the slave processors to the master processor 

Input - details of analysis grid, a portion of the (vertically projected) correction field stored in correction_eigen 
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Output - complete grid (numvar variables, numjb analysis volumes, nveigout vertical modes) of the correc- 
tion field stored in correction_eigen 

Calls - MPI_SEND, MPI_RECV 

Called - at the end of n3dvar 

mpi_timer - timer for MPI runs 

Input - none 

Output - time elapsed since last call 

Calls - MPLWTIME, MPI_BARRIER 

Called - when desired 

mpi_vector_sum - adds vectors (of the same length) from each processor together and distributes the resulting 
sum vector to each of the processors. If the vector length is 1, this routine performs a scalar product across 
processors. It is called four times (per iteration) in the preconditioned conjugate gradient algorithm (with length 
1) to perform scalar products. It is also called once per iteration (if the matrix symmetry is to be exploited) with 
a vector length, which is the order of the number of observations. (Appendix C and Section 3.2.6) 

Input - vector a on each processor and vector length 

Output - vector a (the summed vector) on each processor 

Calls - MPI_ALLREDUCE 

Called by - genince 

mpMoadcalc - subroutine called in load-balancing precalculation to pass timings between processors 

Input - small vectors or timings for each processor 

Output - vectors of timings known on all processors 

Calls - MPI_SEND, MPI_RECV, MPI_BCAST 

Called by - n3dvar 
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G. Adjoint routines 

These routines are used in calculating the adjoint of the 3DVAR code. (Section 9.4) 

adjoint_correction - this is the adjoint of the subroutine correction. This subroutine takes grid point represen- 
tations of the analysis sensitivity vector, normalizes them using the background error variances and vertically 
decomposes them using the eigenvectors of the background error correlation but still remaining on the horizon- 
tal analysis grid. 

Input - vectors of analysis grid point values for each of the output variables 

Output - a vector of vertically decomposed variables on horizontal gridpoints 

Calls - outputvindex and forevar 

Called by - adjoint_threed 

adjoint_n3dvar - this is the adjoint of the subroutine n3dvar. It is the reverse of 3dvar. Its input is vertically 
decomposed analysis sensitivity vectors at analysis grid points. It then runs these through the adjoint of the post- 
multiplier, that is, adjoint_post_multiply, which produces vertically decomposed sensitivity vectors in obser- 
vation space. After operation by leftoperator, these sensitivity vectors are in real observations space. It remains 
to operate on this vector with the solver genince (which is symmetric and self-adjoint) producing an observation 
sensitivity vector. 

Input - a vector of vertically decomposed analysis sensitivity values on the horizontal analysis grid. 

Output - the observation sensitivity vector 

Calls - the same routines as n3dvar, except adjoint_post_multiply instead of post-multiply 

Called by - adjoint_threed 

adjoint_post_multiply - this is the adjoint of post_multiply. It takes a vertically decomposed analysis sensitiv- 
ity vector and projects it into vertically decomposed observation space. 

Input - a vertically decomposed analysis sensitivity vector (adjoint_eigen_grid) and many arrays required to 
calculate the background error correlation 

Output - a vertically decomposed vector in observation space (ecobl, ecob2, ecobsing) 

Calls - same subroutines as post_multiply 

Called by - adjoint_n3dvar 
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H. Analysis error subroutines 

These routines are used in estimating the analysis error variance, following Section 10. 

As noted in Section 10, this code is embarrassingly parallel. However, load balancing is quite difficult because it 
is very hard to estimate loads a priori. The solution adopted is a "self-scheduling" MPI algorithm that dynami- 
cally distributes the loads. The price paid is that one processor is used only for accounting and storing results. 

navdas_aerr - the equivalent of navdas for this problem. Called by navdas_driver. Calls anal_err 

anal_err - this is the equivalent of n3dvar for this problem. The input and most of the first part of the processing 
(up to the construction of the Choleski matrix) is the same as n3dvar. After that, we remain in the same loop over 
the diagonal blocks until the end of the subroutine. It is at this point that the additional code is added. Note: this 
routine contains some MPI calls. 

Input - vectors with all the innovation information. The innovations themselves are not used, but all the rest of 
the information related to the innovations is used. 

Output - a vector of analysis error gridpoint values stored in analysis_error 

Calls - many of the same routines as n3dvar (not genince, though). Also calls correction_anal, backvar, and 
grid_assign 

backvar - calculates background error variances at gridpoint locations 

Input - information on grid 

Output - values of background error variances for numvar variables at each analysis gridpoint. 

Calls - outputvindex, forevar 

Called by - anal_err 

correction_anal - transforms from vertical eigenvector space (nveigout modes) to vertical grid space (lm lev- 
els). This is essentially a matrix multiplication, but since it is used many times with the same matrix, but many 
right-hand-side vectors, the elements of the matrix are only calculated the first time through and stored in the 
matrix vert. 

Input - analysis grid information, vertical interpolation information. Vertical eigenvector coefficients. 

Output - information in vertical grid space that has not been multiplied (denormalized) by background error 
variances. In this way it differs from correction_eigen. 

Calls - outputvindex 

Called by - anal_err 
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grid_assign - routine that for each analysis gridpoint determines the closest analysis prism (as indicated by the 
Great Circle distance to the prism centroid). Thus, each analysis grid point is associated with a particular obser- 
vation prism. It also produces arrays ja_pos, ia_pos for each prism that contain the true j,i locations for the 
points associated with that prism. 

Input - locations of the prism centroids (rcenlat, rcenlon) and latitude and longitude of each of the analysis grid 
points 

Output - vectors ia_pos, ja_pos for each prism that contain true locations 

Calls - gcircd 

Called by - anal_err 

/. Two-dimensional univaiiate analysis system 

This code is a version of the 3DVAR code designed for the two-dimensional (horizontal) univariate analysis of 
variables such as the mean sea level pressure. It is essentially a stripped-down version of the 3DVAR code, but 
uses the same sort of observation prism sorting, preconditioned conjugate gradient descent, and the same con- 
ventions regarding the input innovation stream. It uses a subset of the subroutines of the 3DVAR code plus the 
following modified versions of 3DVAR routines. 

n2dvar_univ - modified version of n3dvar 

block_2duniv - modified version of diag_block 

genince_2duni - modified version of genince 

matrix_mult_2duni - modified version of matrix_mult 

/. Ensemble/singular vector hybrid form ofNAVDAS 

This is a version of NAVDAS that calculates the background error covariances as a linear combination of the 
standard statistical covariances with a second error covariance obtained by direct projection onto singular vec- 
tors or ensemble members. Most routines are in the standard NAVDAS code, but there are a few special routines. 

n3dvar_ens - modified version of n3dvar 

emat_ens - this routine has no counterpart in n3dvar and calculates a matrix that relates the observation space 
to the singular vector space. It may include the effect of the forward instrument operator (if there is one). It is 
used in both the solver and the post-multiplier. 

genince_ens - modified version of genince 

matrix mult ens - modified version of matrix mult 
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ssmi_pw_ens - modified version of ssmi_pw_eig 

tovs_eigen_ens - modified version of tovs_eigen 

K. De-aliasing scatterometer wind vector observations 

This code performs de-aliasing of scatterometer wind observations following the ideas of Appendix H. Most of 
the subroutines come from the 3DVAR code, but there are two special subroutines. 

de_alias - contains most of the special code of Appendix H and calls bIock_2dmult 

block_2dmuIt - version of diag_block appropriate for the two-dimensional bivariate (wind) case. 

L. Two-dimensional multivariate analysis system 

This code is a two-dimensional version of NAVDAS that is designed to handle any multivariate problem, for 
example, the analysis of surface wind. It uses most of the NAVDAS codes, except for the following. 

n2dvar_multvar - modified version of n3dvar 

post_multiply_2dmv - modified version of post_multiply 
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A Second Convergence Accelerator—The Triangular Plate Approximation 

Section 3.5 introduced a convergence accelerator based on a re-sorting of the observations. We now consider 
another possible improvement to the basic preconditioner discussed earlier. As noted in Section 2, the condition 
number for Method C tends to increase as the background error correlation length or the observation density 
increases. In either case, the matrix Qc becomes less diagonally dominant, and any descent algorithm will 
converge less rapidly than it would under more favorable conditions. We discuss here the development of a 
different preconditioner than the one described in Eq. (3.14). In developing a preconditioner, compromises must 
always be made. A preconditioner that is very similar to the original matrix will converge in a very few itera- 
tions, but each iteration step may be very expensive. On the other hand, a simple preconditioner (such as the 
diagonal elements of the matrix), is cheap, but it may take nearly as many iterations as the standard conjugate 
gradient. The block diagonal approach described in Eq, (3.14) is an effective compromise. The question is, 
though, can a reasonably inexpensive preconditioner be designed that converges even more rapidly. 

The block diagonal preconditioner of (3.14) is a local type approximation and does not work well when the 
spatial scale of the observation volume is small compared to the background error correlation scale. This hap- 
pens, either when the background error correlation scale is very large or the observation density is high. It would 
be nice if a preconditioner could be designed that was global, rather than local, because, in principle, it should 
converge more quickly in these situations. We now describe such a global preconditioner. The new preconditioner 
A* has to lead to an inexpensive linear solve (when compared to the matrix vector multiplication by the original 
matrix A in Eq. (3.13)). 

We perform the linear solve for the new A* by using a standard conjugate gradient descent (3.12). In effect, there 
is an outer iterative loop (3.13) for A and an inner iterative loop (3.12) for A*. Clearly, any inner iteration (3.12) 
must be very inexpensive compared to the cost of an outer iteration (3.13). By far the major cost in (3.12) is the 
matrix vector multiplication (qk = A*pk) for this application. So, if the new preconditioner is to be successful, 
this operation must be very cheap. The essence of this new preconditioner, then, is a very inexpensive multipli- 
cation of the form q = A*p, where A* is an approximation to A. If there are L observations, then a full matrix 
vector multiplication would take L2 operations; the approximation we shall describe is O(L) operations. 

The idea is as follows. The domain has already been divided into M triangular volumes, where M is approxi- 
mately L1/2. Within each volume are K , 1 ^ m ^ M observations. Let us consider the two-dimensional univariate 
case. Denote (x.n,y.n) and (x m,ym) as the spatial locations of the ith element of the nth volume and jth element of 
the mth volume respectively. The diagonal blocks (n = m) of the matrix A* are the diagonal blocks of A (as in the 
preconditioner described in Eq. (3.14)). What we describe here are the elements of the off-diagonal blocks 
(n?t m) of A*. For simplicity, let us assume that the observation error may be correlated within observation 
volumes, but not between volumes, so the off-diagonal blocks of A* contain only background error covariances 
or correlations. Then, any element of the matrix A* for which n ^ m can be written p; 

nm = p(x.n,yi
n,xm,ym), which 

can represent either a correlation or a covariance. Then, the ith element of the nth volume of the vector q can be 
written 

Km 

iin=X X punm p/1' (E1> 
m=\     j=\ 
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where p.m is the jth element of the mth volume. Now consider the two triangular volumes m and n as illustrated 
in Fig. El. The vertices of the triangles are denoted,(x,n,y,n), (x2

n,y2
n), (x3

n,y,n) and (x,m,yi
m), (x2

m,y2
m), (x3

m,y3
m), 

and their midpoints are 

xn* = [x,n + x2
n + x3

n]/3, yn* = [y,n + y2
n + y3"]/3 and similarly for xm* and ym* . (E2) 

Then, define Axn = x.n - x *, Ay m = y m - ym*, etc., as the distances from the midpoints in each triangle. Then, 
approximate p..nm by the 9-term approximation 

p.™ = am" + bJAx," + cm"Ax; + dm»Ay.-+ ejtty."1 + fm"Ax,"AXj
m + g^AxMy^ 

h nAy.nAx m + i "Ay nAy m. 
m      J \ j m      J l      J j 

(E3) 

Figure EI 
m    m        Labeling used for the data partition triangles (prisms) 

The a n, etc., are coefficients to be specified shortly. Now, define three operations: 

Km Km Km 

d) «m = E PA ßm= X AW and ym= X Aw- (E4) 

7=1 7=1 7 = 1 

(2) r.n = X  [a a n + ß c n + Y e n] , 
m = l 

s," =X  [cxmbm
n + ßm

f
m

n + Ymgm
n]' 

n=i 

M 

t"  = Yu  [a d n + ß h n + Y i "] -^—     L    m   m "m   m 'm m J 

m = \ 

(E5) 

(E6) (3) qn = r.n + Ax.ns.n + Ay.ntn. 

For each observation volume (m), Eq. (E4) performs three sums over all the observations in the volume. This 
operation involves no interactions between volumes. 
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The second operation (E5) performs only operations between observation volumes. The final operation (E6), for 
each observation volume performs operations on all the observations within that volume. 

Let us perform a rough operation count. Note that the am
n, etc., do not depend on the vector p. They depend only 

on the observation locations and the covariances (or correlations) and thus are independent of the iteration 
number. Consequently, we can precalculate them and store them. Now, for L observations there are L2 operations 
for the complete matrix vector multiply q = Ap. There are M volumes, and let us suppose there are K observa- 
tions in each volume, giving the total number of observations as L = KM. Then, the number of operations for 
(E4) is 3KM, for (E5) it is 9M2, and for (E6) it is 3KM. If M = K = L1/2, then the total number of operations = 15L. 
Thus, this algorithm does an (approximate) matrix vector multiply in O(L) operations, as opposed to 0(L2) 
operations for its full counterpart. 

Before proceeding, we must show how to calculate am
n, etc. These are obtained by demanding that the correla- 

tion (E3) be exact at the vertices of the triangles. Thus, for example, we would specify that 

p]2„m = &m„ + bm„AX]n + CmnAx2m + d^Ayn  + ^n^m + f^n^m + g^Ax^Ay^ + 

h^Ayj-AXj"1 + i^Ay^Ay^, (E7) 

be exact for all (n,m) at each of the triangle vertices. This gives nine values (pn, p21, p13, p21, p22, p23, p31, p32, and 
p33) for each (n,m). The nine equations of the form (E7) can be inverted for each (n,m) to relate am

n, bm
n, etc., to 

the p13
nm, p22

nm, etc. Thus, 

am
n = [pu

nm + p12
nm + p13

nm + p21
nm + p22

nm + p23
nm + p31

nm + p32
nm + p33

nm] / 9. (E8) 

To derive the remaining coefficients, define 

Snm _ n   nm   ■   n   nm   ■   n    nm      C nm _ n    nm   i   n    nm   ■   n    nm      C nm _ ,->    nm   i   n    nm   ■   n    nm 
1      — Pll      +Pl2      +Pl3     '     ä2      -P21       +H22      +H23     '     ö3      ~ P31      + ^32      + ^33     ' 

Rnm_n   nm   .   n    nm   ■   n    nm      D  nm _ n     nm   ■   n    nm  ,   n    nm      D  nm _ n    nm  .   n    nm   ■   ,-,    nm 
1      ~ Pll      + P21      + P31     '     K2      - Pl2       + P22      + P32     '     K3      - Pl3      + P23      + P33     • 

Then define 

5n = 3[(Ay3
n - Ay2

n)(Ax2
n - Ax,n) - (Ay2

n - Ay,n)(Ax3" - Ax2
n)], 

8m = 3[(Ay3
m - Ay2

m)(Ax2
m - AXjm) - (Ay2

m - Ay,m)(Ax3
m - Ax2

m)]. 

This gives 

bm
n = [(Ay3

n - Ay2
n)(S2"m - S ™) - (Ay2

n - Ayi")(S3
nm - S2°m)] / 8n, (E9) 

cm
n = [(Ay3

m - Ay2
m)(R2

nm - R,nm) - (Ay2
m - Ay1

m)(R3
nra - R2

nm)] / 8m, (E10) 

dm
n = [(Ax2

n- Ax1
n)(S3

nm- S2
nm) - (Ax3

n - Ax2
n)(S2

nra - S,™)] / 5n, (Ell) 

em
n = [(Ax2

m- Ax1
m)(R3

nm - R2
nm) - (Ax3

m - Ax2
m)(R2

nra - R™)] / 8m. (El 2) 

The remaining coefficients can be determined by back substitution of Eqs. (E8)-(E12) into (E3) evaluated at the 
vertices and they are not given here. 

The approximation (E7), which is applied for m *n, essentially replaces the smooth correlation function with a 
series of triangular plates. These plates are exact at the vertices and continuous to zeroth order where two plates 
come together. (They are not continuous where a plate with m ^n, butts up against a plate where m = n). Clearly, 
the approximation is best when the spatial scale of the plates is small compared to the background error correla- 
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tion scale. Thus, the approximation improves as M/K = M2/L becomes larger. However, we note from the opera- 
tion count that the count for Eq. (E5), i.e., 9M2, also increases in this case. Thus, when the approximation 
becomes more accurate, it also becomes more expensive (an unfortunately all too common occurrence). 

The extension to the two-dimensional multivariate case is straightforward. If there are three variables-geopotential 
O and horizontal wind components (u,v), whose background error is coupled multivariately through a geo- 
strophic relationship, then there are nine covariances to consider-<00>, <Ou>, <G>v>, <uO>, <uu>, <uv>, 
<vO>, <vu>, and <vv>. Thus, we have to calculate and store the am

n, bm
n for all nine of the multivariate correla- 

tions. Operation (E4) is replaced by nine sums (over shorter vectors), and (E6) is replaced by three equations 
(one for each of F,u,v). However, the operation count for (E4) and (E6) does not change (assuming the total 
number of observations L, the number of volumes M, and number of observations within each volume do not 
change). The operation count for (E5) does change, however, and becomes 81M2. Thus, the total operation count 
for the two-dimensional multivariate case is 

Table EI — Reduction of the Norm of the 
Gradient/Iteration — Block-Diagonal Algorithm 

Correlation Length (L ) 
(km)            b O Observations Wind Observations Mixed Observations 

100 

200 

400 

800 

0.687 

0.813 

0.894 

0.919 

0.337 

0.609 

0.764 

0.851 

0.584 

0.779 

0.867 

0.904 

3KM + 81M2 + 3KM. (E13) 

We note that the coefficient in front of the operation (E5) is increasing, but for M = K = L"2, this algorithm is still 
an O(L) matrix vector multiply. It might be noted that all the operations (E4)-(E6) are themselves matrix vector 
multiplies, so fast linear algebra operators (BLAS) can be used. 

We now show some results based on two-dimensional univariate and multivariate analysis for the application of 
this algorithm. The algorithm is applied over a domain that covers the western half of North America. There are 
1600 observations (winds, geopotential, or both), and the domain is divided into 64 triangular observation vol- 
umes. The observation error is uncorrelated, and the observation error is equal to the background error. The 
background error correlation function is SOAR (Eq. (2.19)) with correlation length Lb. We consider four cases- 
Lb = 100, 200, 400, and 800 km. We consider first the block diagonal preconditioner of (3.14) and measure the 
converge of the descent algorithm by calculating the reduction in the norm of the gradient at each iteration step 
(k) 

Table E2 — Speed-Up Using the Triangular Plate Algorithm 

Correlation Length (L ) 
(km)           b O Observations Wind Observations Mixed Observations 

100 

200 

400 

800 

1.02 

2.24 

3.35 

4.22 

<1.00 

<1.00 

1.12 

2.43 

<1.00 

1.94 

2.24 

3.06 
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c
k=|   VkJ   |/|   Vk.,J   |, (E14) 

for each value of k and then averaging over k. We plot below the results for geopotential observations, wind 
observations, and mixed observations. 

The lower the number; the faster the convergence. As expected, convergence improves when correlation length 
decreases. Wind convergence is faster than geopotential convergence because it involves the second derivatives 
of the correlation functions and the effective correlation length is shorter. The multivariate convergence is some- 
where between the geopotential and wind cases. 

Now we consider the new preconditioner (El-El2). The standard conjugate gradient (inner loop) for the solu- 
tion of A*p = q, takes five iterations, where A* is defined by (E3). The overhead/iteration in this case (five inner 
iterations each involving a matrix vector multiply with operation count given by (El 3)) is negligible because the 
number of observations (L = 1600) is sufficiently large. If c is the average reduction in the norm of the gradient 
for each iteration of Eqs. (3.13)-(3.14) and c* is the same thing for the new algorithm, then we define the speed- 
up as logec* / logec. Thus, if c = 0.70 and c* = 0.49, the speed-up would be 2. The speed-ups in the same format 
as above are 

In general, one can see that where the block-diagonal preconditioner converges rapidly (small Lb), the new 
preconditioner does not improve the convergence. Where the block diagonal method does not converge rapidly 
(large Lb), the new method may substantially improve the convergence rate. This result tends to improve as the 
observation density increases. For example, with 3000 mixed observations on a domain of one-fourth the area 
(i.e., roughly eight times the observation density) and Lb = 400 km, the speed-up was 5.8. 

The extension to the three-dimensional case can be done by producing sums like (E3) at each vertical level. 
Thus, if there were 10 vertical levels, the operation count for (El 3) would increase to 3KM + 810M2 + 3KM. The 
size of the coefficient in the middle term is becoming quite large, but the overhead can always be hidden if L is 
sufficiently large. Thus, this algorithm is likely to become more and more useful as the number of observations 
become very large, a desirable property when using Method C. 
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Horizontal Scale Variation of the Geostrophic Coupling 

Section (4.3.7) showed how \i can vary in the vertical. That is, \i. is close to 1 (or -1, depending on the hemi- 
sphere) for grave vertical modes, but \l becomes closer and closer to zero for the shallow vertical modes. In other 
words, it is only the deep vertical modes that are highly geostrophically coupled. It is possible to make the same 
argument in the horizontal, i.e., that the geostrophic coupling should be a maximum at large horizontal scales, 
and the smaller horizontal scales (below meso a, say) should be increasingly uncoupled, because geostrophy is 
not relevent on those scales. This geostrophic decoupling at smaller spatial scales would be particularly relevent 
for the inner mesh of COAMPS. 

A simple procedure for geostrophic decoupling at smaller horizontal scales can be developed as follows: Con- 
sider the <Ou> correlation, given by Eq. (5.3.15) of Daley, 1991) but with the current notation 

c*u = ^ Lh sin(a) dcWds' <F1> 

where a is the angle between the two points, c^ is the <<D<t>> correlation, s is the Great Circle distance, and we 
have dropped the "n,m" notation. Let us suppose that c^ uses the SOAR model (4.22). Then, we have 
dc^/ds = -(Lh)-2 s exp(-s/Lh). The Hankel transform pair of c^ (see Daley, 1991, Section 3.3) is 

cjs) =]gw(k)J0 (ks)kdk and g^ (*) = J c^(s)JQ (ks)sds, (F2) 
0 0 

where k is the wavenumber, JQ is the Bessel function of the first kind of integer order zero, and g^k) is the 
Hankel transform of c00. Using (F2), we write 

dc^ I ds = -jg^,(k)Jl(ks)k2dk (F3) 
o 

where J,(ks) is the Bessel function of the first kind of integer order 1. Let us now suppose that the coupling 
parameter m is a function of wavenumber k, so that we can write 

c<to = -Lh sin(oc)J\i(k)g<M)(k)J\(ks)k2 dk > (F4) 

o 

If |0.(k) is independent of k, then (F4) becomes identical to (Fl). Now for the SOAR model, g00(k) is given by Eq. 
(3.3.27) of Daley (1991) and is equal to 

g00(k) = 3(Lh)2/(l+(Lh)2k2f2. (F5) 

Hankel transforms for other common correlation models are given in Daley (1991) and if such transforms are 
unknown, g0(t(k) can be obtained from the second equation of (F2) using numerical quadrature. 
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It is now evident that a spectrally varying geostrophic coupling can be obtained using Eq. (F4) simply by speci- 
fying |x(k). For any but the most trivial choice of (J.(k), this integral will have to be done by numerical quadrature. 
(Note that this integral can be done in advance and stored as a table look-up as a function of Great Circle distance 
s and horizontal scale Lh). 

Scale-dependent geostrophic coupling is illustrated in Figs. Fl and F2. Figure Fl plots the spectrum (solid) of 
the SOAR derivative function, that is, k2g0<J)(k). This is for Lh = 100 km. The dash-dot curve plots ^(k^g^flc), 
after choosing |j.(k) so that the smaller spatial scales are smoothly filtered. One can also think of the solid curve 
as representing the case when |i(k) = 1 for all k. Figure F2 plots the function c^ for the case when a = 90°. The 
solid curve corresponds to the solid curve in Fig. Fl and is the geopotential / wind correlation when all scales are 
completely geostrophically coupled. The dash-dot curve of Fig. F2 corresponds to the dash-dot curve of Fig. Fl 
and only the larger scales are geostrophically coupled. Comparison of the two curves indicates an overall reduc- 
tion in correlation except at large separations and a general shift to larger scales. 

It might be noted that Hankel transforms are appropriate for infinite f-planes, but less so for the sphere, where an 
ordinary Legendre polynomial expansion would be more appropriate. This technique is straightforward to apply, 
and means that geostrophic coupling can be both (slowly) horizontally varying and horizontally scale depen- 
dent. 
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Appendix G 

Hyperspectral Sounders (Linearized Form) 

Vertical temperature sounders that have many channels (1000 or more) may soon be operational. An example of 
such a sounder is the NASA AIRS instrument. The high spectral resolution is intended to provide higher vertical 
spatial resolution in the retrievals. Now if these sounders actually can resolve features with small vertical scales 
and the retrieval is essentially independent of any specified background field, then we would be perfectly justi- 
fied in assimilating these retrieved temperatures and moistures. However, bitter experience with previous sound- 
ers should make us skeptical of claims made for such instruments. In other words, it may still be necessary to 
directly assimilate radiances from these advanced sounders. 

The nadir temperature-sounding algorithm developed in Section (5.3) would be very inefficient in this instance. 
There are two reasons for this. Firstly, it is necessary to calculate and store the NxNv

s rectangular matrix for each 
sounding. If N, is 0(1000), this is clearly not very viable. However, there is a more significant problem involving 
the preconditioner for the conjugate-gradient descent. As noted in Section (4.4), we must generate the Ch

oW"b 

correlation in the case of the preconditioner. The linear equation solve by Choleski decomposition for the 
preconditioner is actually done in the space of the observations (i.e., radiance space for nadir sounders), not in 
vertical eigenvector space. While this operation applies only to the diagonal blocks, it could become prohibitive 
for sounders with a large number of channels. We have already shown that only a small number of vertical 
eigenmodes of the background error correlation are adequate to represent the O(20) channels of the TOVS 
instrument. Perhaps, for hyperspectral sounders, it might be possible to solve the whole problem in vertical 
eigenvector space, instead of going back and forth between radiance and eigenvector space for every iteration of 
the conjugate gradient algorithm. Note that the following discussion (as in Section 5.3) is limited to the linear 
case; the nonlinear problem is discussed in Section 6. 

To explore this idea further, it is instructive to introduce a second eigenvector problem. 

This problem has recently been examined by Joiner and da Silva (1998), and the following results generally 
confirm theirs. Following the notation of Eqs. (5.2)-(5.6), consider the N,xN. radiance error covariance matrix R 
and the N xN. Jacobian matrix H of a given instrument (with H obtained by linearization about some vertical 
temperature profile). Form the NxNv symmetric matrix IFR'H. Now consider Eq. (2.10) and pre- and post- 
multiply it by Pb

1/2, giving 

P -mP P -m = [I + P '/2HTR HP '2]', (Gl) 
hah ** h h      J b ab 

where P is the retrieval error covariance. Pb"
2 can be obtained from the background error covariance Pb by 

finding the eigenvectors and eigenvalues of Pb; taking the square root of the eigenvalues (which is always pos- 
sible for positive-definite matrices, see Eq. (9.8)); and then appropriately re-assembling the eigenvectors and 
square-rooted eigenvalues. We see that Pb

1/2PaPb"
2 is the retrieval error covariance normalized by the back- 

ground error covariance. To simplify the discussion, let us assume that the background error covariance is of the 
simple diagonal form Pb = £b

2I, although in practice (Section 4.3) we use a vertical background temperature error 
covariance, which is considerably more sophisticated. For this simple background error covariance, the eigen- 
vectors of Pb

1/2PaPb"
2 are the same as the eigenvectors of IFR 'H. Denote the nth eigenvalues of Pb

1/2PaPb"
2 and 

IFR 'H as A/1 and Xt", respectively. Then, 

A."= 1/[1 +eh
2A.n]. (G2) a L h       r   J 
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Rodgers (1998) defines the signal-to-noise ratio (SNR) of the nth retrieved mode as 

t(i-V)/V]1/2 = eb[V],/2- (°3) 

The information in the nth mode, following Rodgers (1998) and Shannon and Weaver (1949), is 

-0.5 log2(V) = 0.5 log2( 1 + eb
2V). (G4) 

The total information is obtained by summing over all the eigenvalues. Another useful quantity is the total 
number of independent degrees of freedom, which is given by 

X  [1-V]=X £b
2\«/[l+zb

2\al (G5) 

eigenvectors eigenvectors 

S      10 

3 

We illustrate these concepts by constructing the eigenstructure of the matrix IFR 4H for a particular vertical 
column with R and H appropriate for the TOVS instument. Figure Gl shows the nine eigenvectors with the 
largest eigenvalues for this instrument (40 eigenvectors in all). On this figure is indicated the eigenvector and 
corresponding eigenvalue in three panels (a, b, and c). It can be seen that the gravest vertical modes (least zero 
crossings) have the largest eigenvalues. Moreover, the eigenvalues decrease very rapidly for eigenvectors with 
many zero crossings. From Eq. (G3), we can see that the gravest vertical modes have the most favorable SNR 
and the "shallow" modes have an extremely unfavorable SNR. This figure illustrates the well-known fact (at 
least in the data assimi- 
lation community) that 
the TOVS instrument 
could not possibly "see" 
the tropopause, marine 
boundary layer, inver- 
sions, or other tempera- 
ture phenomena that 
vary rapidly with alti- 
tude. Shallow features 
of this kind, which 
appear in externally 
derived TOVS retriev- 
als, are, of course, 
artifacts of whatever has 
been specified as back- 
ground information. 

We can estimate the real 
number of degrees of 
freedom in the TOVS 
instrument by using 
Eq. (G5) from the eigen- 
values shown in Fig. Gl. 
If the background were 
specified to be climatol- 
ogy, we might expect the 
background temperature 
error eb to be, say, 
10 degrees Kelvin, 
while for a background 
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Appendix G   

derived from a 6-hour forecast, eb might be 2.5 degrees Kelvin. Using (G5) and these choices of eb, the number 
of degrees of freedom is 5.2 for a climatological background and 3.0 for a forecast background. Thus, for data 
assimilation purposes where a reasonably good background is available, there isn't very much useful informa- 
tion in a TOVS retrieval. 

Compare also Fig. Gl with Fig. 4.1, which shows the three gravest vertical modes of the background 
streamfunction/streamfunction background error correlation (which is similar to the geopotential/geopotential 
correlation). If these two figures are compared qualitatively, it can be seen that the gravest vertical modes (which 
have the largest error) of the background geopotential correlation bear some resemblance to the gravest vertical 
modes (which contain the most information) of the instrument information matrix. Or to put it another way, the 
instrument is able to observe only the large vertical scales, but fortunately, the background has maximum error 
in those scales. This happy coincidence explains why we are able to assimilate the TOVS radiances with so few 
vertical modes of the background error correlation. 

Joiner and da Silva (1998) also found that there was little information except in the gravest vertical modes for 
nadir temperature sounders. Their suggested solution for the direct assimilation of hyperspectral radiance ob- 
servations was to project the radiance innovations onto the eigenvectors of HTR 'H. Although this approach has 
some advantages (to be discussed later) and was tested by us, we have not followed this approach here. In 
Sections 4.4 and 5.3, a methodology has been developed based on an expansion in the eigenvectors of the 
background error correlation, and we intend to apply this same idea to hyperspectral sounders. To see how this 
might be done first requires the derivation of a matrix identity. 

Suppose A and B are square, symmetric positive-definite matrices that are not necessarily of the same order, and 
Q is a rectangular matrix whose two dimensions conform with those of A and B. Then, it can be shown, using the 
Sherman-Morrison-Woodbury formula that 

AQT[QAQT + B] ' = [A-1 + QTB Q] QTB ' 

= [A-1 + C ] QTB ' = A[A + C]  CQTB ', (G6) 

where C ' = QTB Q. 

Now define R = [ffS^R-'S^H]-1. Application of (G6) to (5.5) yields 

T -T = HS 1/2ED[D + R]-1RHTSh"2R-1[y-H(T.)]. (G7) 
b 

The matrix R' is similar to the instrument temperature information matrix IFR'H, except that it is also involves 
the projection on the eigenvectors of the background error correlation. Note the form of (G7), Sh"

2R"' [y - H(Tb)] 
are slightly processed radiance innovations. However, after this radiance space vector has been multiplied by 
HT; the resulting vector is in vertical background error eigenvector space, and the calculation remains in the 
eigenvector space until the final multiplication by H Sv

1/2E to grid space. In other words, once we go to 
vertical eigenvector space, we need never return to the thousands of radiance channels and we never need HT 

again. We can stay in vertical eigenvector space right though the conjugate gradient descent; we do not have to 
go back and forth between radiance and eigenvector space during every iteration. 

Instead of carrying around the N.xNy
s matrix H , we must carry around the Nv

sxNv
s matrix R, but this is a much 

smaller matrix as N » Ny
s. The big question is, can we obtain R when it involves the inversion of the admit- 

tedly small, but possibly singular matrix R"1 = H7Sh
1/2R-'Sh"

2H. We should not be surprised if R' is close to 
singular (contains very small eigenvalues), because we have already shown that the related matrix of FFR'H is 
essentially singular (due to the extremely poor SNR from the instrument for the the very shallow vertical struc- 
tures). 
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R is generally diagonal, so there should be no problem obtaining R1. However, as noted above, we cannot take 
it for granted that R1 can be safely inverted. However, R_1 is of small dimension (10 say), and there is no 
difficulty in finding its complete eigenstructure (for every sounding). If there is a very small eigenvalue of R.-1 

(large eigenvalue of R), we can eliminate it and obtain R in the space that does not contain this troublesome 
eigenvector. 

The third column of Table 5.1 shows the results for a case with seven vertical modes and a top at 1 mb. The 
results in the 2nd column were obtained by using Eq. (5.5) and those in the 3rd column by using Eq. (G7). That is, 
the D + R matrix in (G7) was 7x7, as opposed to 18x18 in (5.5). It can be seen that the results in the 2nd and 3rd 

columns are very close to each other. 

We complete this discussion, by comparing eigenvector projection in the eigenspace of HFR'H, that is, the 
Joiner and da Silva (1998) idea, and eigenvector projection in the vertical background error correlation space, as 
discussed here. Projecting onto the eigenstructure of IFR'H undoubtedly requires the fewest vertical modes to 
represent the radiance information. Such a procedure essentially diagonalizes the observation error covariance, 
rather than the background error covariance that has been stressed here. Despite the disadvantage of being a less 
efficient method of representing the radiance information, projection on the eigenmodes of the background error 
correlation has two distinct advantages. Firstly, the eigenvectors are universal (even though the eigenvalues may 
not be), instead of being different for every sounding, as they would be if the modes of HTR_1H were used. 
Secondly, and more importantly, in the conjugate gradient descent, the observation error covariance only ap- 
pears in the diagonal blocks, it does not appear in the off-diagonal blocks. From the point of view of overall 
operational efficiency, it is much more beneficial to vertically diagonalize the off-diagonal blocks because there 
are so many of them. 
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Appendix H 

De-aliasing Scatterometer Winds Using the Jmin Diagnostic 

Section 5.9 noted that scatterometer winds can have up to four ambiguous wind directions. Choosing the right 
direction is very important. One has two choices, an off-line preprocessing algorithm such as the ECMWF 
PRESCAT routine, or allowing the assimilation algorithm to choose the best direction itself (Stofelen and Anderson, 
1997). This latter goal cannot be achieved by minimizing the L2 (i.e., quadratic) norm because the cost function 
has only one minimum and will generally choose a direction that lies between the possible choices. One has to 
have a cost function for the scatterometer that is nonquadratic and therefore has many minima, and hope that the 
background is sufficiently accurate and there are enough other observations to force the analysis system into the 
right basin of the cost function. 

We have opted for the preprocessing route. This is consistent with the present NRL MVOI procedure, which 
chooses a "best" direction as that which is closest to the background 10-m wind direction at the appropriate time 
and for the appropriate model (NOGAPS or COAMPS). What we desire to do here is develop an iterative 
procedure in which we choose the direction closest to the background wind direction for the first iteration. We 
would then calculate a diagnostic that, depending on its value, may or may not imply that one of the other 
possible wind directions is more likely. We would then change the wind directions where indicated, recalculate 
the diagnostic, and continue iterating until there is no change in the diagnostic. 

As noted above, there are normally four ambiguous wind directions. Two of them are relatively close together, 
and the other two are about 180 degrees different from the first two directions. The windspeeds are usually 
different for each of the choices. Sometimes, this degenerates into two or three choices. 

The idea works as follows. At the first iterate, we choose the solution closest to the background wind direction. 
We assume we have available the specified wind observation and background error covariances appropriate for 
the scatterometer observations. Suppose there are L scatterometer wind vector observations, each of which has 
up to four choices. Denote these vectors of length 2L as [u\ v1], [u2, v2],[u\ v3], and [u4, v4], with elements [uf\ 
v '], [u 2, v 2], [u3, v/], [u 4, v4], 1 < £ < L, respectively. For convenience, we assume that the solution with 
direction closest to the background wind direction is [u1, v1]. In degenerate cases, some elements of the vectors 
will be the same. We define the vector length 2L of background winds as [ub, vb] with elements [uf

b, v,b]. 

Now consider the Jmin diagnostic (9.1), that is, 

Jmin = [y - H(xb)]
T[HPbH

T + R]"'[y - H(x„)]. (HI) 

At the first iterate, let us define y as the vector of length 2L that is equal to [u1, v1 ]. The forward operator is trivial 
in this case and we can define the 2Lx2L matrix HPbIT = Pb

ob/ob as in Eq. (3.15). Then define xb = [u„, vb] as the 
background wind field at the observation locations and Jmin can be rewritten as 

Jmin = [y - xb]T[Pb
oh/ob + R]"'[y - xb]. (H2) 

Following Eq. (3.5), we also define the innovation d = [y - xb] and z = Ad, where A = [P^+R]"1 is the 2Lx2L 
inverse matrix. 
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The central idea of the algorithm is that we test all four solutions for the scatterometer observations to see if they 
can reduce the value of J^, below that given in (H2). If any choice reduces the value of Jmin, then it is considered 
more likely than the original choice of the closest direction to the background wind direction. 

Consider the ^th scatterometer wind observation and the innovation using the first wind direction (that is, the 
direction closest to the background wind direction). Then, this particular innovation is [uf

l - u(
b, v(

l- \e
b]. Now 

consider the second direction for the /th location, that is, [u2, v^2]. Then define 

Jmin(£,2) = [d/fAd/, (H3) 

d2 is the vector of length 2L whose elements are the same as those of d, except for the li\\ element, where 
[u/ - u(

h, v/ - v/>] is replaced by [u/ - uf
b, \2 - v,b]. Then, if Jmin( £ ,2) < Jmin, then the direction [u2 , v/] is 

more likely than [u/, v,1]. Repeat with [ag\ v/] and [ue
4, vf

4] to find the best of the four observations. Note, 
at this point, we are only finding the change in Jmin caused by cycling through the four observations at 
the ^th observation location while leaving the other observations unchanged. 

We proceed in this way through all L observation locations, changing each in turn and finding which of the four 
solutions produces the minimum value of Jmin. At the end of this process, we expect that most of the observations 
will still be the first observation, i.e. [u/, v/], but for a few locations one of the other four observations will have 
been chosen. This is the end of the second iteration and we recalcuate Jminfrom (H2) using this new choice of 
observations. We would expect that J . calculated at the end of the second iteration would be smaller than that 

■T nun 

calculated at the end of the first iteration, indicating that we have reduced the minimum of the cost function, and 
therefore this second choice of observed wind directions is closer to the true directions. We then repeat the whole 
process until there is no further reduction in Jmin between iterations. 

We would use Eq. (H2) to calculate Jmin at the end of each iteration, but there is a much more efficient way to 
calculate 1^(1,2), ^„(£,3), or Jm.n(£,4)"than Eq. (H3). We illustrate for the observation [u2, v/]. Define d2 = 
d + Ad2, where Ad2 = 0 everywhere except the ^th element, which is equal to [u2 - u/, v2 - v/]. Then, 
Eq. (H3) can be rewritten as 

3Ji£,2) = [d + A df
2]TA[d+ A d2] = dTAd + [ A d/]T Ad + dTA A d/ + [ A d/]TA A d2.        (H4) 

The first term of (H4) is equal to Jmin, which is known, and the second two terms are equal because of the 
symmetry of A. We can then write (H4) as 

J . (£,2) = J    + 2[ A d?]Tz + [ A d/]TA A d2 (H5) 

The second term of (H5) includes z, which is known, but there are only two multiplications because A d2 is 
mostly zeroes. The last term in (H5) can be-written as 

[ A d/]TA A df
2 = ["* ~ ui    y2t ~ v' ] 

mi vu ||     2       1 
tin tic       II   Wfl Wfl 

UV VV    I]        2 1 a,     a,     v, - v, 
(H6) 

a(
m, a™, etc., are the appropriate elements of A. Equation (H6) is simply multiplication with a 2x2 matrix. In 

order to calculate imin(£,2) using (H4), we need the inverse A = [Pb+R]"', which limits us to handling 0(500) 
scatterometer wind vectors simultaneously. 

Before proceeding to illustrate this technique, we briefly discuss why reducing Jmin in (HI) or (H2) is likely to 
lead to a better choice of scatterometer wind observations than the vector [u, v,]. First, we note that since [u, vj 
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Appendix H 

is, for each element, the closest observation to the background vector [ub vb], then the choice [u, v,] minimizes 
[y_xjT[-y_xj jt a]so minimiZes [y-xb]TF[y-xb], where F is any diagonal matrix, all of whose elements are real 
and positive. In particular, [u, vj minimizes 

r
min = [y-xhlT diag[Pb

oWob + R]-1 [y-xb]. (H7) 

But, (H7) does not account for any background error correlation. Since we have assumed that the background 
error is spatially and multivariately correlated, minimization of (H7) is not the best that can be done, and thus [u, 
v ] is not necessarily the optimal choice of scatterometer wind observation vector. If the background error cova- 
riance is correctly specified, then minimization of (HI) or (H2) should yield a better choice of scatterometer 
wind observations. 

This can be illustrated in another way. The largest eigenvalues of the background error covariance correspond to 
the large-scale nondivergent modes, while the smallest eigenvalues correspond to the small-scale divergent 
modes. But the background error covariance appears as an inverse in (H2). This means that J minin (H2) will be 
large if there are large-amplitude, small-scale divergent components of the innovation vector. But, divergent 
small-scale flows are precisely what one would expect when a few observations were assigned inconsistent 
directions. Thus, any procedure that reduces J mjn is likely to suppress undesirable small-scale divergent circula- 
tions caused by incorrect direction assignments. 

We now illustrate the technique using a known "true" 10-m windfield, as in Section 6.2. The "true" windfield 
was generated using a gaussian random number generator and contained both rotational and divergent compo- 
nents. The background windfield error was assumed to be nondivergent, as in Section 6.2, and to have a charac- 
teristic horizontal scale Lh. The background error covariance Pb was consistent with this assumption. The back- 
ground windfield was obtained by adding the background wind error to the "truth." As in Section 6.2, this 
implied the background wind itself contained both divergent and rotational components. Following Section 6.2, 
we defined v' as the true domain averaged windspeed, e~ as the rms background wind error, and a = e~ lv\. 

In order to simulate a satellite swath, we defined a rectangular domain with nine grid points in the x (cross-track) 
direction and 41 grid points in the y (along-track) direction. A y = Ax. The observations were assumed to be the 
grid points, and thus there were 369 pseudo-scatterometer wind observation locations. We set a = 0.3, which 
meant that the average direction error in the background windfield was 25.4 degrees. (There were, of course, 
subtantial errors in the background windspeed as well). Lh = 3 A x. For each experiment, there were ten realiza- 
tions and the results shown are the average for these realizations. 

Four wind observations were generated at each observation location. The first was the "true" windspeed and 
direction. The second observation had a wind direction that was randomly perturbed from the true wind direc- 
tion. Its windspeed was also perturbed randomly. The third wind direction was 180 degrees out of phase with the 
first, and the fourth wind direction was 180 degrees out of phase with the second. The third and fourth observa- 
tion also had differently perturbed windspeeds. The specified observation error variance was consistent with 
these observation errors. 

At the beginning of the first iteration, at each location, we chose the wind vector whose direction was closest to 
the background wind direction. Since we knew the "truth," we could calculate the percentage of incorrect choices. 
This was 13.8 %, which seems reasonable, given a background wind direction error of 25 degrees and four 
possible choices for each observaton location. At this point, we calculate Jmin and then proceed on the procedure 
of Eqs. (H3)-(H6). Table HI shows the results of this experiment for four iterations. 

In Table HI, the J . values have been normalized by the value at iteration 1. The minimum of the cost function 
' min J 

has been reduced substantially, and we can detect most of the incorrect choices that were made at iteration 1. 
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Iteration Number Percentage Incorrect ^min 

1 13.8 1.00 

2 5.1 0.65 

3 3.8 0.63 

4 3.5 0.62 

Table H2 —Two Aliased Directions 

We performed a second experiment experiment Table HI — Four Aliased Directions 
in which there were only two choices for each 
wind location—the "truth," and another wind 
vector that was 180 degrees out of phase with 
the truth and with a different windspeed. We 
would expect that picking the initial choice as 
being closest to the background wind direction 
would be the correct choice more often in this 
case. The results are shown in Table H2. 

Here again, the algorithm is effective in deter- 
mining the incorrect initial assignments. It is also 
clear from Tables HI and H2 that calculating 
J . and watching it decrease with iteration num- min c 

ber does indeed correspond to an increasing 
number of correct assignments. 

The algorithm apparently works, because it uses 
the specified background error covariance to 
indicate if any wind direction assignments are 
inconsistent with neighboring observations. Clearly, if the background error is very large and there are many 
initial erroneous assignments, the algorithm will be less able to pick out erroneous assignments. 

We complete this section by testing the algorithm on real scatterometer observations and real NOGAPS 1000 
hPa background wind fields. We generalized the background error covariances for this demonstration, including 
the correlations with the divergent wind discussed in Section 4.7.3. In this test, there were two ambiguous wind 
vectors at each observation point. At the first iteration, we chose the wind vector that was closest to the back- 
ground, as before. In Table H3, we show the result for 200 wind observation pairs. This time, of course, we have 
no "truth" with which to compare our results. We show the cost function Jmin and the percentage of observations 
that have changed after the first iteration. 

Table H3 — Real Scatterometer Observations 
While we have no way of knowing whether or 
not we have made a better choice for the 
scatterometer observations, we have clearly been 
able to reduce the cost function by choosing some 
different wind vectors. 

Iteration Number Percentage Incorrect min 

1 

2 

2.1 

0.2 

1.00 

0.81 

Iteration Number 
Percentage Changed 

From Initial ^min 

1 

2 

3 

0 

8.1 

9.8 

1.00 

0.73 

0.63 
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Appendix I 

Principles of 7min Analysis 

The only way that any model communicates with the atmosphere is through the innovations. It is important to 
monitor actual innovations in order to find out whether they correspond to what we have assumed in the genera- 
tion of observation and background error statistics. Innovations are in observation space, and it is not easy, in 
general, to compare innovations across platforms. Ideally, one would like to normalize the innovations in some 
way, so that every innovation or group of innovations could be directly compared. The 7min diagnostic described 
in Section 9.1 provides a useful procedure for normalizing the innovations. When innovations in a particular 
region or for a given platform are very different than what has been assumed, then it should be possible to detect 
biased platforms and/or mis-specification of the background or observation error statistics. It is a technique that 
is particularly valuable for tuning the background and observation error covariances of NAVDAS, since we are 
trying to avoid using the ad hoc NMC Method. Following Eq. (9.1), we define 

Jmin =[y-H(xh)]r [HPbH
T + RTl[y-H(xb)]. (ID 

We then divide 7min by the number of observations, and this number should be close to 1.0 If 7min < 1.0, either 
the observation orbackground error are specified too large, if 7min> 1.0, then the observation and/or background 
error are specified too small. In the remainder of this appendix, we will assume that Jmin has been divided by the 
number of observations, so that it is an O(l), dimensionless number. 

We intend to use this diagnostic by collecting many innovations from a long assimilation cycle, and then use 
these results to learn something about the correctness of our observation and background error specification or 
about biased platforms. 

The following are the basic principles of the technique. 

(1) J . should be calculated over many time intervals and needs several million observations in order 
toTeduce sampling errors for small horizontal and/or vertical regions. Do not make any inferences 
unless there are several hundred observations for any given stratification (see (2) below). 

(2) Have the capability to stratify results by region, pressure, instrument type, variable, channel (for 
sounders), or other discriminators. 

(3) The key assumption is that observation error is assumed to vary by instrument, channel, pressure, 
or variable, but not horizontally. Background error is assumed to vary horizontally, vertically, by 
variable, but not (of course) by instrument. 

(4) The J in diagnostic only indicates that either the observation or background error variances or 
both arespecified to be too large or too small. That is why assumption (3) may be useful in separat- 
ing the two. However, note that very large values of 7min may indicate that an instrument (or 
channel) has a serious problem (bias, perhaps) that should be addressed. 

(5) Key on two regions - global and North America. Augment the 7min statistics with North American 
radiosonde innovation statistics (if available). Information from the observation monitoring sys- 
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tern or collocation statistics may also be used. The 7min diagnostic is most useful when it confirms 
other information. 

(6) Make sure that all information has been quality controlled. Do not use innovations that have been 
rejected by the innovation or buddy check. However, note that buddy check and innovation check 
decisions do depend on the specified background and observation error statistics. 

(7) Address observation error first. This is done by looking at global diagnostics (as functions of chan- 
nel, pressure, and variable) for each instrument separately. Depending on how well the globe is 
sampled by that instrument, it may be possible to assume that globally the background error is 
about right (even if it is incorrect regionally) and thus any discrepancies that show up in this 7min 

calculation are due to problems with the observation error specification. For example, if examina- 
tion of all the TOVS globally indicated that 7min (global, TOVS, channel) = 3.00, then the observa- 
tion error for channel 9 is probably set too low, or that there was a problem with that channel. 

(8) Next, address horizontal variations of background error variance over land. This is done primarily 
with radiosondes. We do not stratify by pressure, only by variable. We would assume that the 
radisonde observation errors were okay in general, and then compare the 7min diagnostic over each 
of the continental areas with that from North America. (We assume that North America is basically 
okay, J . (NorthAmerica) ~ 1.00). Then, we would calculate 7min for temperature and winds. As 
an example, suppose we found 7min (NorthAmerica,temperature) > 7min (Asia,temperature) 7min 

and 7min (NorthAmerica,winds)> 7min (Asia,winds), we might conclude that the background error 
variance specified for Asia might be too large (although, by how much, we do not know). 

(9) Now address horizontal variations of background error variance over sea. Again, we are looking 
for bulk numbers and do not stratify by pressure or channel. Over the ocean we have two instru- 
ments that provide profile observations, water vapor/ cloud drift winds and TOVS temperatures. 
We determine 7min for both instruments for the global case—7min (global,TOVS) and 
J . (global,SATWINDS). We then calculate 7min for each instrument for each of the oceanic 
areas. For example, suppose 7mjn (IndianOcean,TOVS) > 7min (global,TOVS) and similarly for 
SATWINDS, then we might suspect that the background error variance in the Indian Ocean was 
specified too low. 

(10) Vertical structures are best obtained from North American innovation statistics. Failing those, 
information on the vertical structure can be obtained from 7min calculations. For example, consider 
the NorthAmerica radiosondes. Suppose at 850hPa, 7min (NorthAmerica,radiosondes,850 hPa, 
temperatures) > 1.0 and 7min (NorthAmerica,radiosondes,850hPa,winds) > 1.0. Assuming both 
wind and temperature observation errors were correctly specified, we might conclude that both 
wind and temperature background errors were specified too low. In other instances, the wind and 
temperature 7min values might be mutually inconsistent, with one being greater than 1.0 and the 
other being less than 1.0. This is, of course, possible. It should be noted that for the same value of 
geopotential background error variance, the temperature variance will increase/decrease with 
decreasing/increasing vertical length scale and the wind variance will increase/decrease with 
decreasing/increasing horizontal length scale. Thus, we may be able to learn something about 
the specification of the vertical and horizontal length scales. This is clearly more delicate. 

NAVDAS Source Book 



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave BlanK) 2. REPORT DATE 

August 2000 

3. REPORT TYPE AND DATES COVERED 

Final 

4. TITLE AND SUBTITLE 

NAVDAS Source Book 2000 

5.    FUNDING NUMBERS 

Program Element No. 

0601153N 

Project No. BE-33-03-45 6. AUTHOR(S) 

Roger Daley and Edward Barker 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Research Laboratory 

Marine Meteorology Division 

Monterey, CA 93943-5502 

8.   PERFORMING ORGANIZATION 
REPORT NUMBER 

NRL/PU/7530-00-418 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Naval Research Laboratory 

Washington, DC 20375-5320 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

NAVDAS (NRL Atmospheric Variational Data Assimilation System) is a three-dimensional variational data assimilation suite for 
generating atmospheric state estimates to satisfy a variety of Navy needs. These needs range from global initial conditions for Navy 
global prediction models to environmental input to forward-deployed shipboard tactical decision aids. In common with many other 
Navy applications, the NAVDAS system has been designed to be robust, flexible, and portable. In particular, it can perform central 
site global assimilation on massively parallel machines as well as local data assimilation on workstations with the same code. 
NAVDAS is an observation space algorithm. The preconditioned conjugate gradient method is used as the descent algorithm to 
minimize the three-dimensional cost function. The number of iterations required to reach convergence is minimized through the use 
of dual block diagonal preconditioners with Choleski decomposition. Vertical eigenvector decomposition of the background error 
covariance matrix leads to great generality in formulating nonseparable error covariances as well as enormous efficiencies in han- 
dling vertical profile and sounding observations. Forward operators are formulated and used for the direct assimilation of TOVS 
radiances and SSM/I windspeeds and total precipitable water. NAVDAS also contains a complete diagnostic suite that includes 
complete observation trackability, Web-based observation monitoring, x2 monitoring of innovations, the adjoint of the assimilation 

system, and analysis error estimation. 

14. SUBJECT TERMS 

NAVDAS Source Book 

15. NUMBER OF PAGES 

155 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

SAR 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std 239-18 
298-102 

NAVDAS Source Book 



Editor 

 Maureen Long   
Naval Research Laboratory 

Technical Information Division 

Publication Design and Layout 

 Jan D. Morrow   
Naval Research Laboratory 

Technical Information Division 

Reviewed and Approved 
NRL/PU/7530-0-418 

August 2000 

Philip E. Merilees 
Superintendent, 

Marine Meteorology Division 


