
Carnegie Mellon
Software Engineering Institute

Active Reviews for
Intermediate Designs

Paul C. Clements

August 2000

Architecture Tradeoff Analysis

Unlimited distribution subject to the copyright.

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Technical Note
CMU/SEI-2000-TN-009

20001107 030

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of "Don't ask, don't tell, don't pursue" excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are
available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Active Reviews for
Intermediate Designs

Paul C. Clements

August 2000

Architecture Tradeoff Analysis

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2000-TN-009

DTIC Q-rALTTT IHB230I5ÜD ■

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2000 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Contents

1 Introduction 1
1.1 Active Design Reviews 2
1.2 Scenario-Based Design Review Techniques 3

2 ARID: An ADR/ATAM Hybrid 5
2.1 ARID Participants 5
2.2 ARID Steps 6

3 Observations 10
3.1 Method Comparison 10
3.2 Overall Results 11
3.3 Participants'Reactions 11
3.4 Duration 11
3.5 Possible Improvements 11
3.6 Observations 12

4 Conclusions and Next Steps 13

5 Acknowledgements 14

CMU/SEI-2000-TN-009

CMU/SEI-2000-TN-009

List of Tables

Table 1: Conventional vs. Active Design Review
Questions/Instructions 3

Table 2: Steps of the ATAM 4

CMU/SEI-2000-TN-009

jv CMU/SEI-2000-TN-009

Abstract

This paper introduces a technical review approach that is a blend of a stakeholder-centric,
scenario-based, architecture evaluation method such as the Architecture Tradeoff Analysis
MethodSM (ATAMSM) [Kazman 00], and an active design review (ADR) of design
specifications [Parnas 85]. There is a need for a technical review of a design finer-grained
than an architecture, but not yet completely documented. Such a review exposes the design to
its user community of application programmers, and allows early feedback on the overall
approach, before the design is institutionalized in a detailed specification. This paper
describes a recently piloted software design review technique that we call Active Review for
Intermediate Designs (ARE)). A hybrid of ADRs and scenario-based methods such as the
ATAM, ARID fills a niche in the spectrum of technical design techniques between
architecture at one end, and design specification documents at the other.

SM Architecture Tradeoff Analysis Method and ATAM are service marks of Carnegie Mellon
University.

CMU/SEI-2000-TN-009

vj CMU/SEI-2000-TN-009

1 Introduction

As part of ongoing customer work, members of the SEI's Product Line Systems Program
were recently asked to conduct a technical review of a design of a portion of a software
system. This "portion" provided a cohesive, user-invocable service but did not correspond to
any simple subset of the architecture: it spanned two of the architecture's layers, and included
parts of several different work assignments.

It is said that when one's tool is a hammer, every problem looks like a nail. In cases like this
one, our hammer tends to be the Architecture Tradeoff Analysis Method (ATAM), a robust
and comprehensive method for evaluating a software architecture in the context of the
quality-attribute goals that the architecture must meet [Kazman 00]. But the object of this
review was not an architecture, and our hammer began looking suspiciously like a
sledgehammer.

The designer who asked for our help wanted two things:

• First, he wanted to know if the design was tenable. That is, he wanted to know if writers
of applications that use it could do so effectively. Did it provide the necessary services?
Did it provide those services in a usable manner? Was the design conceptually coherent?
Would the services impose too high a performance penalty?

• Second, he wanted to unveil the design to the community of software writers who needed
it to do their jobs. Assuming that the basic design was sound, he wanted the design
review to serve as the debut of the design to its consumers. In short, he wanted the
participants to be trained, and he wanted their buy-in.

The design was not yet well documented. The invocable programs constituting the services
were designed, meaning that they had been named, their parameters' types had been listed,
and a rough statement of their semantics had been sketched. But the details that would have
been provided by complete documentation were missing, such as:

• exceptions that might be raised by each program

• what would happen if the programs were called in illegal states

• how to declare variables of some of the types

• how programs in different processes, or on different processors, communicated and
shared data with each other

CMU/SEI-2000-TN-009

We recognized that reviewing a design in its prerelease stages provides valuable early insight
into the design's viability, and would allow for timely discovery of errors, inconsistencies, or
inadequacies. Further, we recognized that most projects go through this preliminary stage for
each and every one of their major components or subsystems. And yet none of the design

review techniques in our repertoire seemed appropriate.

We began to attack the problem by considering two approaches: active design reviews, and

scenario-based design review techniques.

1.1 Active Design Reviews
Active design reviews are an effective technique for ensuring quality, detailed designs in
software [Parnas 85]. The method relies on actively engaging the reviewers by assigning
them review tasks that are carefully structured to avoid asking yes/no questions. Such
questions can undermine a review if a reviewer gives a carelessly considered answer. Rather,
an active design review asks the reviewer to utilize the design in a series of exercises that test

actual, not merely feigned, understanding.

For example, a conventional design review often begins with the chosen multitude of
reviewers receiving stacks of read-ahead documentation, which they may or may not
examine. The masses are then assembled in a central location on the appointed day. There is a
presentation of the design being analyzed, and the design leader then opens the floor for
discussion. A somewhat less benign review technique is to follow a checklist that asks
reviewers to make sure that the design meets certain standards. But both of these are
susceptible to reviewer boredom: even with the best of intentions, reviewers often find it
easier to give designers the answer they desire, rather than the right one. And a high-pressure

group setting will compel some reviewers to say nothing at all.

The following table illustrates some of the differences that one might observe between an

active design review and a conventional review.

CMU/SEI-2000-TN-009

Table 1: Conventional vs. Active Design Review Questions/Instructions

Conventional Design Review Questions

Are exceptions defined for every program?

Are the right exceptions defined for every
program?

Are the data types defined?

Are the programs sufficient?

Is the performance of each program
adequately specified?

Active Design Review Instructions

Write down the exceptions that can occur
for every program.

Write down the range or set of legal values
of each parameter. Write down the states
under which it is illegal to invoke the
program.

For each data type, write down

• an expression for a literal value of that
data type;

• a declaration statement to declare a
variable for that type;

• the greatest and least values in the range
of that data type.

Write a short pseudo-code program that uses
the design to accomplish {some defined
task}.

For each program, write down its maximum
execution time and list the shared resources
that it may consume.

ADRs are primarily used to evaluate detailed designs of coherent units of software, such as
modules or components. The questions tend to address (a) quality and completeness of the
documentation; and (b) sufficiency, fitness, and suitability of the services provided by the
design. The reviewers are chosen to represent consumers of both the design and the
documentation that they must read to utilize it.

1.2 Scenario-Based Design Review Techniques

Scenarios are narrative descriptions of interactions of stakeholders with a system of interest.
Scenarios have proven to be valuable in the evaluation of system and software designs,
particular in the evaluation of software architectures [Abowd 96]. Exemplary of the scenario-
based architecture evaluation methods, the Architecture Tradeoff Analysis Method is a
proven evaluation method for software architectures, which are in some sense at the high end
of the software design spectrum. Like ADRs, the ATAM also relies on the presence of
consumers of the design, which it refers to as stakeholders. Stakeholders may be customers,
users, testers, maintainers, performance engineers—anyone who has a vested interest in the
sufficiency and fitness of the architecture. The ATAM proceeds by having the architect, and
then the stakeholders, articulate the business drivers and then the specific quality and
behavioral requirements that are incumbent upon the architecture. They do this by building a
utility tree to describe the space of qualities of interest, and articulating each of the qualities
by stating scenarios. A maintainer might describe a modification that may one day be needed,
the performance engineer may give a benchmark that the architecture must satisfy, and so

CMU/SEI-2000-TN-009

forth. In the ATAM, the architecture is then analyzed by comparing the required qualities to
known properties of approaches used in the architecture, and by using the scenarios as criteria
against which to "test" (via analysis or thought experiment) how well the architecture fares.

Table 2 shows the steps of the ATAM.

Table 2: Steps of the ATAM

ATAM Steps Description

Present the ATAM Evaluation team leader presents a method overview to the participants.

Present business drivers Client or representative of system whose architecture is being
evaluated presents the business drivers underlying the architecture.

Present architecture Architect makes presentation.

Identify architectural
approaches

Evaluation team catalogs architectural approaches used, as basis for
subsequent analysis

Generate quality attribute
utility tree

Participants build utility tree to identify quality attributes (and the
scenarios that express them) of interest. Evaluation team facilitates.

Analyze architectural
approaches

Evaluation team and architect perform analysis based on qualities
desired and approaches used.

Brainstorm and prioritize
scenarios

The architecture's stakeholders adopt an additional set of scenarios
expressing architectural requirements. Evaluation team facilitates.

Analyze architectural
approaches

Evaluation team and architect perform analysis based on these new
scenarios.

Present results Evaluation team leader makes presentation of analysis results, lists
identified risks, sensitivity points, and tradeoffs in the architecture.

CMU/SEI-2000-TN-009

2 ARID: An ADR/ATAM Hybrid

Active Design Reviews and the ATAM both bring useful features to bear on the problem of

evaluating preliminary designs.

In an active design review, stakeholders receive detailed documentation and then complete
exercise questionnaires on their own. But in the case of our design problem, there was no
detailed documentation. Further, while ADRs eschew central meetings to achieve a higher-
fidelity review result, one of our goals was to achieve group buy-in, and individual work

would not accomplish that.

On the other hand, the ATAM is geared to evaluating a whole architecture, and not a portion
of it. Further, the quality of interest in our case was limited to usability. Business drivers,
utility trees, and elicitation and analysis of architectural approaches were all obviated.

Clearly something else was needed. We were adamant about not falling back on the standard
technique of gathering the stakeholders in a room, presenting the design, and asking "What
do you think?" And we recognized that ADRs and the ATAM both had strong qualities that
could be brought to bear on this problem. An ADR requires active reviewer participation,
which we thought would be ideal on two fronts. First, ADRs assure high-fidelity responses on
the part of the reviewers: they can't simply sit there and say nothing. Second, active
participation would, we hoped, increase the likelihood of group buy-in. From the ATAM, we
embraced the idea of stakeholder-generated scenarios that would form the basis of the
exercise. Rather than having the designers tell the services' consumers what usability meant,
the consumers would tell the designers, thus setting the stage themselves for what it meant to
pass the review. That, we reasoned, would also help with buy-in: if the reviewers set the
conditions for the test, and the design passed the test, then surely that would signal that the

design was usable.

Thus was born Active Reviews for Intermediate Designs, or ARID. By combining the best of
active design reviews and scenario-based architecture evaluation methods such as the ATAM,
ARID fills a niche in the spectrum of design review techniques.

2.1 ARID Participants

An ARID exercise requires three groups of participants:

• The ARE) review team. Three roles must be filled. The facilitator will work with the
lead designer to prepare for the review meeting, and then run the meeting itself. The
scribe will capture the reviewers' inputs and results during the review meeting. And one

CMU/SEI-2000-TN-009

or more questioners are responsible for helping elicit and craft scenarios during the
meeting. Optionally, a process observer can record where the exercise encountered
difficulties and make suggestions for improvement to the method.

• The lead designer for the design being reviewed. This person is the spokesperson for the
design, responsible for presenting it during the review, and the person to whom the result
of the ARID will flow.

• Reviewers. Reviewers are drawn from the community of stakeholders for the design,
people who have a vested interest in its adequacy and usability. They are the software
engineers who will be expected to use the design and are the best people to judge its
quality. So we merge the concept of ADR reviewers and ATAM stakeholders. As with the
ATAM, we aim for approximately a dozen stakeholders, but this can vary depending on
the size of the user community.

2.2 ARID Steps

An ARID exercise progresses across two phases that comprise nine steps. The fable below

summarizes:

Phase 1: Pre-meeting

Phase 2: Review

meeting

Step 1: Identify reviewers

Step 2: Prepare design presentation

Step 3: Prepare seed scenarios

Step 4: Prepare for the review meeting

Step 5: Present ARID method

Step 6: Present design

Step 7: Brainstorm and prioritize scenarios

Step 8: Perform review

Step 9: Present conclusions

Phase One of ARID is carried out as a meeting between the lead designer and the review
facilitator. This meeting, in our case, lasted about a day. In this meeting, the following steps

occur:

CMU/SEI-2000-TN-009

1. Identify reviewers. The lead designer and facilitator work together to identify the set of
people who should be present at the review.

2. Prepare design presentation. The designer prepares a briefing explaining the design. In
the case of our pilot application of ARID, this consisted of a two-hour viewgraph
presentation that explained the services available, and then presented six examples in
which the services were used together to solve different problems. The goal is to present
the design in sufficient detail so that a knowledgeable audience member could use the
design. Here, during Phase One, the designer should give a dry run of the presentation to
the review facilitator, which is helpful for several reasons. First, it lets the facilitator see
the design, and ask a set of "first order" questions that the reviewers would probably
ask, thus helping the designer prepare. Second, it helps identify areas where the
presentation could be improved. Third, it helps set the pace for the presentation itself,
ensuring that the two-hour slot was not overrun. And fourth, it gives the designer
practice in presenting the material to a critical audience.

3. Prepare seed scenarios. The designer and the review facilitator prepare a set of seed
scenarios. Like the seed scenarios in the ATAM, these are designed to illustrate the
concept of a scenario to the reviewers, who have an opportunity to see a sample set. The
scenarios may or may not be used in the actual evaluation; the reviewers are free to
adopt them or reject them in favor of others they brainstorm.

4. Prepare for the review meeting. Copies of the presentation, seed scenarios, and review
agenda are produced for distribution to the reviewers during the main review meeting.
The meeting is scheduled, reviewers are invited, and steps are taken to assure the
presence of a quorum of reviewers at the meeting.

During Phase Two, the reviewers are assembled and the review meeting commences.

5. Present ARID method. The review facilitator spends 30 minutes explaining the steps of
ARID to the participants.

6. Present design. The lead designer presents the two-hour overview presentation and
walks through the examples. During this time, a ground rule is that no questions
concerning implementation or rationale are allowed, nor are suggestions about alternate
designs. The goal is to see if the design is usable, not to find out why things were done a
certain way, or to learn about the implementation secrets behind the interfaces.
Questions of factual clarification are allowed and encouraged. The facilitator enforces
this rule during the presentation.

During this time, the scribe captures each question, or each instance where the designer
indicated that some sort of resource (usually a kind of documentation) was on its way
but not yet available. The resulting list is summarized to show potential issues that the
designer should address before the design could be considered complete and ready for
production. In our case, the list of issues was captured on a whiteboard for all to see, and
the facilitator made sure that all reviewers understood each issue and agreed with its
wording before the presentation continued.

CMU/SEI-2000-TN-009

7. Brainstorm and prioritize scenarios. Just as in the ATAM, participants suggest
scenarios for using the design to solve problems they expect to face. During
brainstorming, all scenarios are deemed fair game. The seed scenarios are put into the
pool with all the others. After a rich set of scenarios is gathered—in our case it was 20—
a winnowing process occurs. Reviewers might suggest that two scenarios are versions of
the same scenario, or that one subsumes another and should be merged. In our case, we
eliminated five scenarios in this manner. After the pool of scenarios is winnowed, voting
occurs. Each reviewer is allowed a vote total equal to 30% of the number of scenarios.
They can allocate their votes to any scenario or scenarios they wish. The scenarios
receiving the most votes will then be used to "test" the design for usability. After voting
is complete, it is important to make the point that the reviewers have just defined what it
means for the design to be usable: If it performs well under the adopted scenarios, then it
must be agreed that the design has passed the review. Buy-in has begun.

8. Perform review. Beginning with the scenario that received the most votes, the
facilitator asks the reviewers to jointly craft code (or pseudo-code) that uses the design
services to solve the problem posed by the scenario. Reviewers make extensive use of
the examples that were handed out as part of the designer's presentation. In our pilot
case, the design was of a "virtual input/output" service suite whose purpose was to
insulate application software from changes when, for example, a platform changed i/o
channels or wiring harnesses or an application was ported to a different processor in the
(distributed) system. The first scenario was this: "We move from a platform that uses
two measured inputs to derive a third input, to a platform that includes a sensor to
measure that third input directly." Code statements, captured by the scribe on a flipchart
at the front of the room, were gathered that used the services to implement the first case.
The group then captured what would have to change when the new platform was
adopted. This first scenario, being the most popular (and thus, we hope, most important)
was also among the most complex to solve; it took the group about three hours to finish
it.

During this time, a ground rule is that the designer is not allowed to help or give hints. In
our exercise, the designer was tasked with "flying" the UML model on a direct-display
projector, so that when participants had questions about a particular program's interface
or interactions, he could quickly take us to the specification where the question could be
answered.

If, however, the group became stuck or began to go off in the wrong direction (which the
designer indicated to the facilitator by pre-arranged signal), then the facilitator could
stop the proceedings and ask the designer to get the group moving again by providing
whatever information was deemed necessary. However, each time this happened, the
facilitator asked the scribe to record as an issue where and why the group stalled, as this
would indicate an area where the design (or the materials handed out to represent it)
were insufficient to allow a non-expert to proceed. Any discrepancies uncovered during
the review are also recorded as issues.

This step continues until one of the following is achieved:

a. The time allotted for the review has ended.

b. The highest-priority scenarios have been exercised. Often the voting scheme
produces a set of scenarios at the high end with several votes each, and a set of

CMU/SEI-2000-TN-009

scenarios at the low end, with one or zero votes each. When the former set is
completed, it is usually safe to declare the review complete.

c. The group feels satisfied that a conclusion has been reached. Either the design is
usable, which is indicated by the group quickly understanding how each subsequent
scenario would be carried out as a straightforward variation on either the designer's
examples or previously exercised scenarios, or the design is deemed unusable,
which is indicated by the group finding some show-stopping deficiency. (In our
case, the former occurred.)

9. Present conclusions. At the end, the list of issues is recounted, the participants are
polled for their opinions regarding the efficacy of the review exercise, and they are
thanked profusely for their participation.

CMU/SEI-2000-TN-009

3 Observations

Although we are only reporting on a single application of the approach, we will boldly hazard
some informed speculation about its results.

3.1 Method Comparison

In comparing ARID to its conceptual ancestors, we focus on the following aspects:

ATAM ADR ARID

Artifact Architecture Architectural and/or Conceptual design

examined design documentation approach, with embryonic
documentation

Who Architect, Experts in the design Lead designer,

participates stakeholders realm, consistency and
completeness checkers

stakeholders

Basic Elicit drivers and Construct review Present design, elicit

approach qualities, build questionnaires, assign desired uses, have
utility tree, catalog reviewers tasks, reviewers as a group use
approaches, perform analyze their results to the design.
approach-based evaluate quality
analysis.

Outputs Identified risks, Errors, gaps, and Issues and problems
sensitivity points, inconsistencies preventing successful
and tradeoff points usage

Approximate 3 full days of 1-2 days of reviewer 1 day pre-meeting plus 1

duration meetings, over work, 1 full day of day review meeting

approx. 2 weeks, reviewer de-briefing
plus unstructured
work and
communication
between the
meetings

10 CMU/SEI-2000-TN-009

3.2 Overall Results

We gathered a list of about two dozen issues, which confidentiality prevents us from sharing
in detail. Only a few were about discrepancies in the design. Most of the remaining ones were
process-oriented issues about using the design. These were technically outside the scope of
the design's usability, but they were captured anyway. This served two purposes. First, it
enabled the person who raised the issue to feel that he was heard, at which point we could
move on. Second, it was believed that the organization at large would have to deal with those
process issues eventually, and it provided the designer with a list of items that could be

passed on as appropriate.

3.3 Participants' Reactions

A poll of the reviewers revealed that they were generally quite happy with the exercise. There
was some initial concern that they might object to spending more than a day group-writing
code, but in fact they seemed to enjoy the challenge of problem solving. By and large, they
felt that the exercise was a good use of their time. Our "client," the software architect, was
very pleased and felt that the exercise fully satisfied his goals of training, buy-in, and design

review.

3.4 Duration

The all-hands part of the exercise consumed a day and a half. Twelve reviewers were present,
plus the lead designer and two review team members (the facilitator and the scribe).

3.5 Possible Improvements

There were two major areas where we might have done better.

• By starting with the highest-priority scenario (the one receiving the most votes) we
almost guaranteed that we would start with the most complicated one. In our case,
working on this scenario took hours, and by the afternoon of the first day there was a
glazed look in the participants' eyes. It might be better to start with a simpler scenario to
keep people's energy high. With luck, the complex scenario might then be seen as a
variant of a scenario that was handled previously, and can then be easily dispatched.

• Our scribe used a felt-tip pen and a flipchart to record the programming language
statements dictated by the group. The group felt that a computer tied to a direct-display
projector would have been better, because almost-alike statements could have been
copied, pasted, and modified rather than written all over again. This would have saved
time and reduced the tediousness of the exercise. Further, error corrections could be made
much more cleanly.

• During the brainstorming step and the group-coding exercise, it is possible for a few
participants to dominate the discussion and proceedings, while other reviewers sit idly by.
This is not possible in a pure ADR, and is a weakness of ARID by comparison. It is
incumbent upon the facilitator to make sure that all of the reviewers are engaged, even to

CMU/SEI-2000-TN-009 11

the point of shutting down the process and asking a quiet reviewer to name the next
statement or propose the next scenario.

3.6 Observations

We can make the following observations about our experience with the ARID process:

• In the case of our pilot example, the designer was the chief software architect for the
system at large. Our first experience showed that having architectural knowledge of the
overall system was invaluable to have at hand, even if that knowledge is not embodied in
the designer of the portion being reviewed. Questions came up about parts of the
architecture that were not fully developed, and the reviewers needed answers in order to
solve a problem at hand. In each case, the architect was able to help them make a
reasonable assumption about the missing parts so that they could make progress. Even if
the architect is not the lead designer of the portion being reviewed, the architect's
presence is probably crucial to a smooth review.

• As in all reviews, the quality and expertise of the reviewers will determine the fidelity of
the review results.

• There is a risk that design documentation that is promised will not be delivered. After all,
the design has passed the review, and application programmers are using it to build
products—so what's the point? That is dangerous software engineering, or perhaps more
precisely, it is not software engineering at all but something less. The devil is often in the
details, after all, and solving necessary details may sometimes precipitate changes in
what was thought to be a stable design, even after the design is in the hands of the
masses. That risk should be recognized and addressed by the organization conducting this
kind of review.

12 CMU/SEI-2000-TN-009

4 Conclusions and Next Steps

The organization that sponsored the first ARID pilot has indicated that several more will
likely occur because the organization is turning out its overall software architecture a portion
at a time. This organization previously used both ADRs and the ATAM during the
development of this architecture, and overall reaction to ARID has been positive. It was felt
that ARID explored the design in more detail than did an ATAM, which is constrained by a
need to allow time to focus on broad architectural issues and qualities other than the usability
of a single part of the design. And ADRs, while poised to be the eventual litmus test for the
promised documentation, were clearly not applicable in whole to the needs of this situation,
which is certainly not unique in software development.

CMU/SEI-2000-TN-009 13

5 Acknowledgements

Our thanks go to Len Denbraber of Caterpillar, Inc., who helped conceive of the notion of a
review somewhere between an ATAM and an ADR, and who was the client for the first ARE)
exercise. Lee clearly and effectively communicated the need, and pointed out why neither an
ADR nor an ATAM seemed appropriate for the task at hand. ARE) was born with his
statement of need, and matured with his in-process and after-action suggestions. Thanks also
go to Mark Klein and Rick Kazman, creative forces behind the ATAM, for their helpful

comments and suggestions before we piloted this hybrid technique. Bob Krut did a yeoman
job as ARE) scribe, and suggested improvements. And thanks to Linda Northrop, director of

the Product Line Systems Program at the SEI, for encouraging the trial and prodding this

writeup.

14 CMU/SEI-2000-TN-009

References

[Abowd 96] Abowd, G; Bass, L.; Clements, P.; Kazman, R.; Northrop, L.; and Zaremski,
A. Recommended Best Industrial Practice for Software Architecture
Evaluation, (CMU/SEI-96-TR-025). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University. Available WWW <URL:
http://www.sei.cmu.edu/publications/documents/96.reports/96.tr.025.html>

1996.

[Kazman 00] Kazman, R.; Klein, M.; and Clements, P. ATAM: Method for Architecture
Evaluation, (CMU/SEI-2000-TR-004). Pittsburgh, PA: Carnegie Mellon
University. Available WWW <URL: http://www.sei.cmu.edu/publications/
documents/00.reports/00tr004.html>2000.

[Parnas 85] Parnas, D. and Weiss, D. "Active Design Reviews: Principles and Practice."
Proceedings, Eighth International Conference on Software Engineering,

1985: 132-136.

CMU/SEI-2000-TN-009 15

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway Suite 1204 Arlington VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE \3. REPORT TYPE AND DATES COVERED

August 2000
4. TITLE AND SUBTITLE

Active Reviews for Intermediate Designs

6. AUTHOR(S)

Paul C. Clements

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731 -2116

Final
FUNDING NUMBERS

C —F19628-00-C-0003

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2000-TN-009

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12.B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This paper introduces a technical review approach that is a blend of a stakeholder-centric, scenario-
based, architecture evaluation method such as the Architecture Tradeoff Analysis MethodSM (ATAMSM),
and an active design review (ADR) of design specifications. There is a need for a technical review of a
design that is finer-grained than an architecture, but not yet completely documented. Such a review
exposes the design to its user community of application programmers, and allows for early feedback
on the overall approach, before the design is institutionalized in a detailed specification. This paper
describes a recently piloted software design review technique that we call Active Review for
Intermediate Designs (ARID). A hybrid of ADRs and the ATAM, ARID fills a niche in the spectrum of
technical design techniques between architecture at one end, and design specification documents at
the other.

14. SUBJECT TERMS

active design review, Active Review for Intermediate Designs, ADR,
architecture evaluation method, Architecture Tradeoff Analysis
Method, ARID, ATAM, design specification, software architecture,
software design, software documentation, technical review

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY
CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

20 pp.

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

