
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

INTEROPERABILITY AND SECURITY SUPPORT FOR
HETEROGENEOUS COTS/GOTS/LEGACY
COMPONENT-BASED ARCHITECTURE

by

Tarn M. Tran
James 0. Allen

September 2 000

Thesis Advisor:
Thesis Co-Advisor:

Luqi
Mantak Shing

Approved for public release; distribution is unlimited.

Reproduced From
Best Available Copy 20001031 066

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 2 000

REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
Interoperability and security support for
heterogeneous COTS/GOTS/Legacy component-based
architecture
6. AUTHOR(S)
Tran, Tarn M. and Allen, James 0,

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release, distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT

There is a need for Commercial-off-the-shelf (COTS),
Government-off-the-shelf (GOTS) and legacy components to
interoperate in a secure distributed computing environment in
order to facilitate the development of evolving applications.

This thesis researches existing open standards solutions to the
distributed component integration problem and proposes an
application framework that supports application wrappers and a
uniform security policy external to the components. This
application framework adopts an Object Request Broker (ORB)
standard based on Microsoft Distributed Component Object Model
(DCOM). Application wrapper architectures are used to make
components conform to the ORB standard. The application
framework is shown to operate in a common network architecture.

A portion of the Naval Integrated Tactical Environmental System
I (NITES I) is used as a case study to demonstrate the utility
of this distributed component integration methodology (DCIM).

14. SUBJECT TERMS
COTS, GOTS, Application Wrapper, Security Model, Network
Architecture, Component Interface, Open Standards

15. NUMBER OF
PAGES

207

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is
unlimited

INTEROPERABILITY AND SECURITY SUPPORT FOR HETEROGENEOUS
COTS/GOTS/LEGACY COMPONENT-BASED ARCHITECTURE

Tarn M. Tran
B.S., San Diego State University, 1996

James 0. Allen
B.A., University of California Los Angeles, 1970

Submitted in partial fulfillment of the
Requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

Authors

Approved by

NAVAL POSTGRADUATE SCHOOL
September 2000

\

Tarn M. Tran

>utA P. ruh*/

Luqi, Thesis Advisor

Softwa
i, Chairman
gineering Curriculum

c*
Dan-'Boger, Chairman/

Department of Computer Science

in

ABSTRACT

There is a need for Commercial-off-the-shelf (COTS) ,

Government-off-the-shelf (GOTS) and legacy components to

interoperate in a secure distributed computing environment

in order to facilitate the development of evolving

applications.

This thesis researches existing open standards

solutions to the distributed component integration problem

and proposes an application framework that supports

application wrappers and a uniform security policy external

to the components. This application framework adopts an

Object Request Broker (ORB) standard based on Microsoft

Distributed Component Object Model (DCOM). Application

wrapper architectures are used to make components conform to

the ORB standard. The application framework is shown to

operate in a common network architecture.

A portion of the Naval Integrated Tactical

Environmental System I (NITES I) is used as a case study to

demonstrate the utility of this distributed component

integration methodology (DCIM).

v

TABLE OF CONTENTS

I. INTRODUCTION .- 1

II. EXISTING SOLUTIONS TO THE INTEROPERABILITY PROBLEM 5

A. GENERIC SECURITY SERVICE APPLICATION PROGRAM INTERFACE (GSS-API) 5
B. KERBEROS 5
C. A SECURE EUROPEAN SYSTEM FOR APPLICATIONS IN A MULTI -VENDOR ENVIRONMENT

(SESAME) 7
D. DISTRIBUTED COMPUTING ENVIRONMENT (DCE) 7
E. KRYPTOKNIGHT 8
F. WINDOWS NT SECURITY MODEL 8

2 . Local User Logon Process 9
2. Securi ty Reference Moni tor 9
3. Audi t Securi ty Subsystem 11

G. DCOM 12
H. JAVA 14
I. CORBA 15
J. SECURE SOCKETS LAYER (SSL) 16
K. SECURE HYPERTEXT TRANSFER PROTOCOL (S-HTTP) 16
L. IP SECURITY (IPSEC) 16

III. GENERIC WRAPPER FOR SYSTEM COMPONENTS 19

A. REQUIREMENTS OF THE GENERIC WRAPPER FOR SYSTEM COMPONENTS 19
2. General Description 19
2. Environment 21

B. SPECIFICATION OF THE GENERIC WRAPPER FOR SYSTEM COMPONENTS 22
2 . XML Standard . . . 23

a) Security 24
b) Namespaces 25
c) Document Type Definitions (DTDs) 25
d) Document Object Model (DOM) 25
e) XML Specification 25

2. COTS Application exposes API 26
3. Standard file naming and directory conventions for component
determination 28
4. Command line input support for COTS COMPONENTS Invocation.... 29

IV. ARCHITECTURAL DESIGN PATTERN 31

A. ARCHITECTURAL DESIGN 31
B. NITES IMPLEMENTATION 32

1. Using Architectural Design Pattern 32
2. Thin Client Technology 33
3. Push Technology 33

C. NETWORK ARCHITECTURE 35
2 . Intranet Securi ty 37
2. Internet Security 37
3. Dial -in Securi ty 37

V. CASE STUDY 39

A. CASE STUDY OVERVIEW 39
2 . App 39
2. App Wrapper 39
3. System Moni tor 40
4. System Controller 40
5. Storage Directory 40
6. Application (IMGEDT) 40
7. Glue Component 40
8. Database 40

B. PRODUCE PRODUCTS TO DIRECTORY: IMAGE EDITOR (IMGEDT) 43
C. DISPLAY PRODUCTS: CONTINUOUS BRIEF 46

2. Continuous Brief Initialization 47
2. Continuous Brief Update 50
3. User Interface 53

Vll

4. Brief Interfaces '53
a) Image Interface 53
b) Images Interface ■ - 54
c) Show Interface 54

D. DCOM DEPLOYMENT INSTRUCTIONS 55

VT . CONCLUSIONS 59

A. DCOM SOLUTION 59
B. ARCHITECTURAL DESIGN 59
C . WRAPPERS 60
D. SECURITY 61
E. IMGNT 61
F. FUTURE TRENDS 61

LIST OF REFERENCES 63

BIBLIOGRAPHY 65

APPENDIX A. 6SS-API VERSION 2 FUNCTION CALLS 67

APPENDIX B. SESAME CRYPTOGRAPHIC SUPPORT FACILITY (CSF) APIS 69

INITIALIZATION APIS 69
RANDOM NUMBER GENERATION API 73
SET-UP AND CONFIGURATION 74

APPENDIX C. SESAME ARCHITECTURE 77

A. PROTOCOL NOTATIONS 77
B. USER SPONSOR FUNCTIONS 78
C. AUTHENTICATION PRIVILEGE ATTRIBUTE CLIENT (APA) 7 8
D. APPLICATION CLIENT 78

1. Authentication Server (AS) Functions 78
E. PRIVILEGE ATTRIBUTE SERVER (PAS) FUNCTIONS 79
F. KEY DISTRIBUTION SERVER (KDS) 79
G. PRIVILEGE ACCOUNT CERTIFICATE (PAC) VALIDATION FACILITY (PVF) FUNCTIONS... 79
H. PUBLIC KEY MANAGEMENT (PKM) FUNCTIONS 80

APPENDIX D. SKELETON VB CODE FOR DESIGN PATTERN 81

A. MONITOR COMPONENT 81
1. Modules 81

a. Module 1 81
2. Classes 81

a. Monitor 81
b. Monitor Connector 82

B. CONTROLLER COMPONENT 83
2. Modules 83

a. Module 1 83
2. Classes 83

a. Controller 83
b. Controller Connector 84

C. GLUE COMPONENT 85
2 . Classes 85

a. Glue ,..85
D. APPLICATION WRAPPER COMPONENT 85

2 . Forms 85

APPENDIX E. XML VOCABULARIES 87

APPENDIX F. SYSTEMS REQUIREMENTS SPECIFICATION 93

1. SCOPE 95

1.1 INTRODUCTION 95
1.2 PURPOSE 95
1.3 BACKGROUND 96

Vlll

1.4 REFERENCES 97

2 . GENERAL DESCRIPTION - 98

2 .1 ARCHITECTURE GOALS 98
INTEROPERABILITY 98
ADOPTED FRAMEWORK TECHNOLOGY 99
SECURITY 100
NETWORK SECURITY 102
NETWORK COMMUNICATIONS 103
DEVELOPMENT LANGUAGE 103
2 .2 ASSUMPTIONS AND DEPENDENCIES 103

3 . TARGET ARCHITECTURE FUNCTIONS 105

SECURITY 105
GRAPHICAL USER INTERFACE (GUI) 106
EXTERNAL SYSTEM INTERFACES 106
MIDDLEWARE TECHNOLOGY 106

4 . ARCHITECTURE ATTRIBUTES 108

4.1 PERFORMANCE REQUIREMENTS 108
4.2 RELIABILITY REQUIREMENTS 108
4.3 DESIGN CONSTRAINTS 109

APPENDIX G. SYSTEM DESIGN SPECIFICATION Ill

1. SYSTEM ARCHITECTURE 112

1.1 SYSTEM ARCHITECTURE DIAGRAM 112
1.2 INTER-TASK COMMUNICATION 117
MONITOR/ CONTROLLER 117
CONTROLLER/ GLUE COMPONENT 118
CBWRAPPER/CONTROLLER 118
CBWRAPPER/GLUE COMPONENT 118

2 . SUBSYSTEM DESCRIPTION 119

MONITOR 119
CONTROLLER 119
GLUE COMPONENT . 119
CBWRAPPER 119
INITIALIZATION GUI 120
CONFIGURATION GUI 121
NAMING CONVENTION 121
THIN CLIENT TECHNOLOGY 122
PUSH TECHNOLOGY 122

Figure 3 - Wrapper & Glue Code Object Diagram 123
OMF 124

Table 1-11. OMF Attributes for the TAF Element 147

APPENDIX H. VISUAL BASIC IMPLEMENTATION 159

1. Configuration GUI (CBcfg) 159
2. Application Wrapper (CBWrapper) 166
3. Object Components (Continuous Brief) 2 75

a) Global Variable Declarations 179
b) Timer 180
c) Controller 181
d) Controller Connector 185
e) Monitor 186
f) Monitor Connector 192
g) Glue 193

INITIAL DISTRIBUTION LIST 195

IX

X

ACKNOWLEGEMENT

The authors wishes to thank
Dr. Valdis Berzins and Dr. Mantak Shing

for their guidance in this project.

XI

I. INTRODUCTION

There is a need for Commercial-off-the-shelf (COTS) ,

Government-off-the-shelf (GOTS) and legacy components to

inter-operate in a secure distributed computing environment

in order to facilitate the development of evolving

applications.

This thesis researches existing open standards

solutions to the distributed component integration problem

and proposes an application framework that supports

application wrappers and a uniform security policy external

to the components. This application framework adopts an

Object Request Broker (ORB) standard based on Microsoft

Distributed Component Object Model (DCOM). Application

wrapper architectures are used to make components conform to

the ORB standard. The application framework is shown to

operate in a common network architecture.

A portion of the Naval Integrated Tactical

Environmental System I (NITES I) is used as a case study to

demonstrate the utility of this distributed component

integration methodology (DCIM). The System Requirement

Specification (SRS), System Design Specification (SDS) and

Visual Basic Implementation, found in the appendices, are

the results of a collaborative effort with graduate students

Karen Gee and Thomas Nguyen.

Unified Modeling Language (UML) methodology is used "in

the formal specification of the system.

The Joint C4ISR Battle Center (JBC) Study considered

several approaches to solving the interoperability problem,

including wrappers, messaging, data mediators, data

replicators, data translators, and ORBs, and evaluated each

approach using the following criteria: performance,

reliability, speed to field, cost, extendibility, COTS

support, security and standards. The empirical scores for

each criterion of each approach are plotted on a Kiviat

graph. The JBC Study, published at the Naval Post Graduate

School in 1999, recommends a solution in the context of

ORBs, but with caveats. Re-evaluation is needed, as new

products are available. Background and training of

personnel is an important consideration in selecting a

solution. [Ref. 1] This thesis also recommends the ORB

approach and focuses on Microsoft Distributed Component

Object Model (DCOM) with emphasis on setting security policy

external to the component. Legacy applications are made DCOM

compliant by wrapping the application within a DCOM

component. Custom applications wrappers need to be

designed, which is consistent with the findings of the JBC

study.

This thesis is organized into the following chapters:

Chapter II researches existing solutions to the

distributed component integration problem.

Chapter III proposes a methodology that can be

used to transform desktop legacy applications into

distributed web based applications.

Chapter IV presents a design pattern application

framework encompassing security and wrappers that

is applied to the case study.

Chapter V discusses the portion of the NITES

system used as case study to validate the

usefulness of the proposed methodology.

Chapter VI presents the lessons learned and

conclusions from the case study.

THIS PAGE IS INTENTIONALLY LEFT BLANK

II. EXISTING SOLUTIONS TO THE INTEROPERABILITY PROBLEM

A. GENERIC SECURITY SERVICE APPLICATION PROGRAM INTERFACE
(GSS-API)

GSS-API is emerging as an Internet standard for

securing applications. GSS-API is embedded in Common Object

Request Broker Architecture (CORBA), Kerberos, Distributed

Computing Environment/Remote Procedure Call (DCE/RPC),

Sequence Packet Exchange (SPX), KryptoKnight, and SOCKS

[Ref. 2] . GSS-API is popular because it is an interface

specification that is independent of implementation

mechanism, independent of placement, and independent of

communication protocol. The interface specification is a

product of the IETF Common Authentication Technology Working

Group. Version 2 of GSS-API has 37 function calls broken

down into 4 categories: Credential Management, context-

level, per-message and support.

GSS-API assumes the application establishes a

connection to a service, messages are transferred to and

from the service, and the service will not request another

external service on behalf of the user.[Ref. 2]

B. KERBEROS

Kerberos was developed in the 1980's at MIT to provide

additional security for the Athena system. The primary

goals were to provide single logon to a network of

application servers and protect authentication from

masquerading attacks. Kerberos is an implementation

mechanism for GSS-API. Kerberos assumes the client, network

and server cannot be trusted and that a third party key

distribution center (KDC) is needed to store secret keys.

The KDC is composed of two logical entities, the

authentication server (AS) and the ticket-granting server

(TGS) . The AS is responsible for authenticating the user

and providing the user a ticket to access the TGS. The user

sends its identity, server and nonce. A nonce is a randomly

generated one-time value that is used to counter a replay

attack. The AS responds with a session key, server and

nonce encrypted using the user's secret key and a ticket

encrypted with the server's secret key. The TGS is

responsible for granting the user a ticket to access the

requested server for a limited period of time. The user

sends to the server an authenticator encrypted with the

session key and the ticket obtained from TGS. The server

decrypts the ticket to obtain the session key which in turn

is used to decrypt the authenticator. Typically the

authenticator has a timestamp that must be within 5 minutes

of the current time. To provide mutual authentication the

server returns the authenticator encrypted with the session

key. Strong authentication is achieved because secret keys

were never passed in the clear. [Ref. 3]

Kerberos has several weaknesses. The user's secret key

is stored in the host's memory during AS exchange. Kerberos

is vulnerable to password guessing attacks. Registering each

service with the KDC does not scale. Applications must be

modified to take advantage of Kerberos.

C. A SECURE EUROPEAN SYSTEM FOR APPLICATIONS IN A MÜLTI-
VENDOR ENVIRONMENT (SESAME)

Sesame is the European substitute for Kerberos. Sesame

implements all the specified security services. Sesame

architecture can be divided into 4 major entities: client,

security server, application server and support components.

GSS-API calls need to be added to the client and application

server entities in places where messages are being sent and

received. The C source code for Sesame V4 for Redhat Linux

V5 is available at www.cosic.east.kuleuven.ac.be/sesame.

There is a project underway to convert Sesame to Java in

order to improve portability.[Ref. 2]

D. DISTRIBUTED COMPUTING ENVIRONMENT (DCE)

The Open Systems Foundation (OSF) specification for DCE

includes facilities for security, directory services, time

services, threads and remote procedure calls.

DCE 1.2 is compatible with Kerberos V5 so single logon

and mutual authentication services are available. DCE uses

Access Control Lists (ACLs) for authorization. Role based

authorization is not available. Like Kerberos, DCE/RPC uses

a session key to provide secure communication services

between the client and server. A rich set of APIs,

including GSS-API is available to the programmer. These

APIs provide data confidentiality and integrity

services.[Ref. 2]

The DCE web site is www.camb.opengroup.orq/tech/dce.

E. KRYPTOKNIGHT

KryptoKnight has been under development at IBM' since

1992. Kerberos influenced the design of this system.

Similar security services include single logon per user,

mutual authentication, key distribution and data integrity

and confidentiality. Role based authorization is not

provided. The 2-party, 3-party and inter-domain protocols

are designed to minimize network usage and computer

processing.[Ref. 2]

The KryptoKnight web page is www, zurich. ibm. com/~sti/cr-

kk/extern/krvptokniaht

F. WINDOWS NT SECURITY MODEL

The goal of any multitasking and networked operating

system security is to ensure that system resources such as

memory, files, devices and CPUs cannot be accessed without

authorization.

The NT security model has three major components: the

logon process, the security reference monitor, and other

security subsystems.

8

1. Local User Logon Process

Each user has an account on a local machine that is

managed by administrators using the Security Accounts

Manager (SAM) . In a NT server environment, each user

may also have a domain account. The Primary Domain

Controller (PDC) and the Backup Domain Controller (BDC)

are responsible for authenticating the user. Once

authenticated, the user has access to any machine on

the network that allows access to domain users. The

trusted domain relationship is one-way and not

transitive.

Each user may be assigned to one or more groups. If

the number of users exceeds the number of groups,

assigning users to groups and privileges and

permissions to groups reduces the administrator's task

of managing security policy.

2. Security Reference Monitor

The reference monitor is responsible for authorizing

access to any NT object and audit generation. The

reference monitor accesses all NT objects consistently

and uniformly. User mode processes pass an object

handle to system services operating in kernel mode.

There are 23 NT object types: adapter, controller,

desktop, device, directory, driver, event, eventPair,

file, IOCompletion, key, mutant, port, process,

profile, section, semaphore, symbolicLink, thread,

timer, token, type, and windowStation. Each object

type has a set of attributes that are common to all

object types and a set of attributes specific to the

object type. The object manager uses the common

attributes to provide the following services: close,

duplicate, query object, query security, set security,

wait for single object, wait for multiple objects.

Each NT object has a security descriptor attribute

which defines the permissions, auditing and ownership

of an object. The corresponding structures are named

Discretionary Access Control List (DACL), System Access

Control List (SACL), and Owner Security Ids (OwnerSID).

Each entry in the list is named an Access Control Entry

(ACE) . The owner controls a DACL ACE. The security

administrator controls a SACL ACE. An ACE can contain a

collection of access rights that may be generic,

standard or specific. Generic access rights are read,

write, execute and all (read, write, execute). Generic

access rights can be mapped to standard access rights

that are delete access, read access to security

descriptor, read, write, execute, synchronize, write

DAC, write Owner, required, and all.

In summary a user access token includes a Security ID

(SID), a list of privileges and a list of group SIDs.

An object security descriptor includes an owner SID,

DACL, and SACL.[Ref. 4]

10

3. Audit Security Subsystem

The following table describes the types of events that

can be audited in Windows NT.[Ref. 5]

Type of
event

Description

Logon and
Logoff

A user logged on or off or made a network
connection.

File and
Object
Access

A user opened a directory or a file that is
set for auditing in File Manager, or a user
sent a print job to a printer that is set
for auditing in Print Manager.

Use of User
Rights

A user used a user right (except those
rights related to logon and logoff).

User and
Group
Management

A user account or group was created,
changed, or deleted. A user account was
renamed, disabled, or enabled; or a
password was set or changed.

Security
Policy
Changes

A change was made to the User Rights,
Audit, or Trust Relationships policies.

Restart,
Shutdown,
and System

A user restarted or shut down the computer,
or an event has occurred that affects
system security or the security log.

Process
Tracking

These events provided detailed tracking
information for things like program
activation, some forms of handle
duplication, indirect object accesses, and
process exit.

Table 1.1 Windows NT Event Types for Audit

The Event Viewer utility formats and displays audit

event records.

11

Audit event records include header information that is

present in all event records. The following list

describes this common information.

• The time the event was generated.

• The SID of the subject that caused the event to be

generated. If possible, Event Viewer translates

this SID to an account name for display. The SID

is the impersonation ID if the subject is

impersonating a client, or the primary ID if the

subject is not impersonating.

• The name of the system component or module that

submitted the event. For security audits this is

always Security.

• The module-specific ID of the specific event.

• The event type, either Success Audit or Failure

Audit.

• The event category, used to group related events

such as logon audits, object access audits, and

policy change audits.[Ref. 5]

6. DCOM

Figure 1.1 shows the overall DCOM architecture. The

client uses an interface, represented by a lollipop, to

access a service provided by a remote component. Using DCE

RPC and common security providers makes DCOM available on

12

other platforms including Apple Macintosh, Sun Solaris,

Linux, AIX, and MVS.

COM
run-time

V J
Security
Provider

DCE RPC

Protocol Stack

COM
run-time

^ , L

n *G- Component

Security
Provider DCE RPC

Protocol Stack

Figure 1.1. Overall DCOM Architecture [Ref. 5]

DCOM can provide security services for COTS components

externally by using the DCOM configuration tool or by

embedding security API calls within components. The primary

DCOM security services fall into three categories: access,

launch and call. Access security checks for privilege to

connect to a running object. Launch security checks for

privilege to create an object. Call security checks for

privilege to access a component interface.

Each client has a security context that encapsulates

security services. Security features, such as mutual

authentication, can be selected just by setting a property

value.

13

DCOM can impersonate the client on a server machine "to

allow nested client-server architecture. Impersonation can

also be used to control access to individual properties and

methods of components.

DCOM is layered on Object Remote Procedure Call (ORPC)

which is an extension of DCE RPC. These services are

accessible through the WIN32 Security Support Provider

Interface (SSPI). DCOM can also accommodate multiple third

party security providers.

DCOM uses Windows NT NTLM, Kerberos V5 or Distributed

Password Authentication (DPA) authentication protocols.

DCOM uses SSL/PCT protocols to provide integrity and

confidentiality services for communication connections.

DCOM uses the Windows Registry and the ACL facilities

of the Windows NT operating system. DCOM is also available

on Macintosh and UNIX platforms.[Ref. 4]

H. JAVA

Java 1.1 applets run in a virtual machine on a host

machine. The assumption is that all applets are un-trusted

unless accompanied by a digital signature. The virtual

machine protects the host from un-trusted applets utilizing

the "sandbox" approach. This means the capabilities of Java

applications that are potentially harmful to the host are

restricted in applets. For example, an applet may not

access the host file system.

14

The java.lang.SecurityManager class implements the

applet security restrictions. A security policy is created

by instantiating and registering a security manager object.

A potentially harmful operation causes an exception that is

handled by a security manager method.

I. CORBA

The Common Object Services specification (CORBASec)

describes security related tasks and requirements needed for

CORBA.

A CORBA ORB, ORBacus, from Object Oriented Concept Inc.

has been used to implement some specified security services.

ORBacus currently provides the Security Level 1

functionality of CORBASec. Security Level 1 provides

security services for applications that are unaware of

security including mutual authentication, confidentiality

and integrity.

The messages exchanged are encapsulated in the Secure

Inter-ORB Protocol (SECIOP) message format. SECIOP provides

a standard for maintaining security and interoperability

between ORBs. Each end maintains its state following the

rules of the SECIOP Context Management finite state machine.

The security functionality underneath is that of

Kerberos V5 and is accessed through a Java binding of the

GSS-API.

15

J. SECURE SOCKETS LAYER (SSL)

SSL is positioned between the TCP/IP application and

connections layers enabling multiple services such as

Telnet, HTTP and FTP to establish secure connections without

modification to the services. SSL utilizes RSA

Public/Private key architecture. The server identity is

validated to the client by x.509 digital certificates.

Optionally the client identity can also be validated to the

server. The server has access to an LDAP compliant key

directory server.[Ref. 6]

K. SECURE HYPERTEXT TRANSFER PROTOCOL (S-HTTP)

S-HTTP permits parties to negotiate symmetric or

asymmetric keys, key management technique, message formats,

and cryptographic strength. S-HTTP allows for multiple trust

models to be negotiated between client and server. Security

features are specific to the HTTP protocol.[Ref. 3]

L. IP SECURITY (IPSEC)

IPSec provides for secure transfer of IP packets across

an untrusted network. IPSec resides at the network layer of

the OSI model. IPSec is transparent to protocols at higher

layers in the OSI model. IPSec is an open standard for

encryption on an IP network.

Two one-way security associations (SA) between hosts or

gateways store security parameters (Source IP, cryptographic

algorithm, cryptographic keys, user or gateway name, data

16

sensitivity level, transport layer protocol, source and

destination ports). Unique SA key includes security

parameter index (SPI), IP destination, and security

protocol, either Association Header (AH) or Encapsulated

Security Payload (ESP). With ESP, the enclosed

packet(tunneling) is encrypted, so original source and

destination addresses could be unregistered.[Ref. 7]

17

THIS PAGE IS INTENTIONALLY LEFT BLANK

18

III. GENERIC WRAPPER FOR SYSTEM COMPONENTS

A. REQUIREMENTS OF THE GENERIC WRAPPER FOR SYSTEM
COMPONENTS

1. General Description

The security services designed for commercial

applications often focus on data integrity while

military applications focus on data confidentiality.

In order for COTS components to operate in a military

environment, the commercial security services must be

carefully selected to achieve military security

requirements. The next section contains a list of

security services applicable to the military

environment that are also available in various

combinations within commercial products. A methodology

shall be developed to transform classes of legacy

modules into reusable components using the wrapper

architecture.

Components shall pass messages transparently across

language, operating systems and network boundaries.

A common set of security services across operating

systems will simplify implementation of a security

policy.

The following security services shall be available to

the customer:

• Single logon for users

19

• Mutual authentication

• Auditing

• Key distribution

• Role based Access Control

• Data confidentiality

• Data integrity

• Data availability

• Non-repudiation

The single logon for users means the user needs to

identify him once per session. It is the

responsibility of the security services to protect and

distributed the authentication information of a user.

Mutual authentication ensures proper identification of

the user to the system and the system to the user.

Auditing means significant security events are recorded

for later analysis. Significant security events shall

include login, logout, password change, and access

validation.

Key distribution provides a secure transport mechanism

for encryption keys.

Role based access control assigns roles to users and

privileges to roles, thereby simplifying access control

if the number of roles is less than the number of

users.

20

Data confidentiality means data is disclosed according

to a policy.

Data integrity means the recipient gets the intended

data.

Data availability means the user has access to the data

when needed.

Non-repudiation means the sender of a message cannot

later deny he sent the message.

2. Environment

The classes of projects targeted by this thesis

typically operate in an environment with the following

conditions:

• Components pass messages synchronously or

asynchronously.

• Components may have real-time constraints.

• A hierarchy of interacting COTS, GOTS and

custom components may be assembled to form an

application.

• Implementation will be dependent on the

security services of the host operating

systems.

• Security policies need to evolve and policy

implementations need to be manageable in a

distributed computing environment.

21

• Some components may be in binary executable

form where compile or link is not possible.

Other components may be re-linked but not

recompiled. Other components may not be re-

linked but substitution of dynamic load

libraries (DLL) is possible. Other components

may be modified at the source code level and

recompiled.

• The security services will not be exported

outside of the United States.

• Attacks can come from inside or outside an

organization.

• This security system must be adaptable to

counter new kinds of security attacks.

• The target systems will operate at a single

level of security at no higher than the

discretionary access control level (C2).

B. SPECIFICATION OF THE GENERIC WRAPPER FOR SYSTEM
COMPONENTS

Wrappers that need to exchange self-describing content

over a network can use XML. Utilization of XML within

wrappers makes data transport mechanism independent of

language or operating system. Following is a description of

the XML standard.

22

1. XML Standard

XML is an emerging standard for transferring data among

distributed components in web applications. Industry

has been quick to agree on XML vocabularies. NITES has

developed a nationally recognized vocabulary for

meteorological data. See Appendix E for XML

meteorological vocabulary and sources for other

vocabularies.

XML offers the following desirable features:

• XML describes data that can be specified in a

lexical tree structure. Unlike directed graphs,

trees can be efficiently traversed.

• XML and HTML share the same level in the WEB

architecture. Both can use the secure HTML

mechanism and the digital signature mechanism.

• XML specification is the product of the World Wide

Web Consortium (W3C) and is recognized as a

standard for distribution of data over the

Internet.

• All content is encoded in the specified Unicode

character set. There is no need to wrap vendor

specific data formats.

• Industry specific XML vocabularies make content

available to any compliant application.

23

• XML vocabularies are extensible without affecting

earlier versions.

Any DoD joint application should consider

evolving to XML. Some common steps to gradually

incorporate XML into an existing project include:

• Categorize the types on information the system

handles. Examples are personnel, weather,

tactical, and logistics.

• Search for existing XML standards in categories.

• If there are no XML standards within a category,

organize a standards committee, and produce an

industry wide standard.

• Develop components to transform existing messages,

records, etc. into XML entities. A one-time

transformation is usually preferable to repeated

run-time transformations.

• Use existing tools to provide additional

transformations such as record set to XML.

• Use security zones of the browser to implement

security policy. Use XML parser imbedded in

browser to extract information for presentation.

a) Security

The security zone features have been extended in

Internet Explorer 5 (IE5) to provide security services

24

for the embedded XML parser. The zones include local,

Internet, local intranet, trusted site, and restricted

site in order of trustworthiness. The originating zone

may access a zone that is equal or less

trustworthy.[Ref. 5]

b) Namespaces

XML namespace specification developed by World Wide Web

Consortium (W3C) is implemented on IE5. This allows

developers to define unique element names using a

registered qualifier.

c) Document Type Definitions (DTDs)

DTDs utilize XML to describe rules to validate an XML

document. DTDs are an optional section of the XML

document.

d) Document Object Model (DOM)

The DOM provides a standard way to programmatically

construct and traverse any XML document. The XML

document is composed of objects with attributes and

methods. DOM can be applied to the task of transforming

an ActiveX Data Object (ADO) record set into an XML

document. Interfaces are defined for the DOM and all

XML objects.

e) XML Specification

The XML specification is on the Web at URL

www.w3.org/xml. Production rules are in the Extended

25

•

•

Backus-Naur Format (EBNF). An annotated version is at

Web site www.xml.com/xml/pub/axml/axmlintro.html.

The design goals for XML are:

XML shall be straightforwardly usable over the

Internet.

XML shall support a wide variety of applications.

XML shall be compatible with SGML.

• It shall be easy to write programs which process

XML documents.

• The number of optional features in XML is to be

kept to the absolute minimum, ideally zero.

• XML documents should be human-legible and

reasonably clear.

• The XML design should be prepared quickly.

• The design of XML shall be formal and concise.

• XML documents shall be easy to create.

• Terseness in XML markup is of minimal importance.

[Ref. 8]

2. COTS Application exposes API

DCOM and CORBA use an Interface Definition Language

(IDL) to name and describe an interface containing

public attributes, methods and events. There is a

many-to-many relationship between interfaces and

26

components. A component may implement one or more

interfaces. The interface serves as a contract between

the component developer and user.

How do you ensure each interface has a unique name when

many independent activities are creating interfaces?

One solution is to use a routine that will always

generate a different name each time it is called. DCOM

uses this solution to generate unique class and

interface names. Once an interface has been assigned a

name it will never change. There is no way to modify

an interface and use its original name. This

guarantees that all legacy code will never need to be

changed because an interface has been modified.

DCOM interfaces are language and platform independent.

For example, a component written in Visual Basic and

running on a Windows NT platform can use a component

written in C++ and running on a Unix platform.

DCOM and CORBA require each component to implement the

Unknown interface. From this interface, all interfaces

implemented by the component can be dynamically

discovered.

Dynamic discovery and use of an interface is known as

late binding. Use of a priori knowledge of implemented

interfaces is known as early binding. DCOM and CORBA

both support early and late binding. There is a

performance penalty for using late binding.

27

Microsoft Visual Basic hides many interface details.

The development environment generates the IDL from the

class implementation. The unique IDL name is

automatically generated. The clause "with events" will

enable receipt of events. The Unknown interface is

automatically generated.

Microsoft Word, Excel and Powerpoint are examples of

COTS components that expose an API. In the case study

the Powerpoint API is used by the application wrapper.

3. Standard file naming and directory conventions for
component determination

On Windows NT there is a many-to-one relationship

between a file type and an application. For example,

the file type PPT is associated with the PowerPoint

application.

NITES imagery applications generate TIF, GIF, and MIF

file types. PowerPoint is capable of processing the

above file types.

Middleware wrappers can take advantage of standard file

naming conventions " and directory conventions to

integrate components. For example, if a COTS

application periodically generates an imagery file to a

known directory, middleware can poll the directory for

new files with a file type of interest and pass the

file to a consumer of the file type.

28

4. Command line input support for COTS COMPONENTS
Invocation

UNIX and DOS have popularized starting an application

and passing switches and parameters on a command line.

This same mechanism can be used from within a program

to start another program. A wrapper can use this

mechanism to integrate independent COTS applications.

A chaining model is used when the calling program

terminates after execution. An asynchronous model is

used when the calling and called programs operate in

parallel. A synchronous model is used when the calling

program waits for completion of the called program.

29

Process A Process B Process A Process B

Chainning model

w

4
Event
handler ^

Asynchronous model

Process A Process B

Wait
fe

^

Synchronous model

Figure 3.1. Wrapper calling models

30

IV. ARCHITECTURAL DESIGN PATTERN'

A. ARCHITECTURAL DESIGN

The architectural design pattern represented in Figure

4.1 is common to many IT systems including NITES and USCG

National Distress Response System Modernization Program

(NDRSMP).

Application ,4 Controll er 4 Monitor
Wrapper ^ ^

i L

1 r
Glue

COTS
Application

i

r
ODBC

Compliant
Database

Figure 4.1. Architectural Design Pattern

The realization of this architecture on a network of

Windows NT machines running DCOM, IIS, Internet Explorer and

optionally a UNIX relational database server machine,

satisfies the requirements of the previous section.

In NITES, the object is a TIF file containing a

satellite image. In NDRSMP, the object is a WAV file

31

containing a voice segment. The Monitor component is

responsible for detecting the presence of a new object. The

controller component is responsible for coordinating

multiple concurrent asynchronous activities. The glue

component is responsible for storing and retrieving objects

from a ODBC compliant relational database. The Application

Wrapper is responsible for making the object available to a

COTS viewer application.

B. NITES IMPLEMENTATION

1. Using Architectural Design Pattern

A Windows NT DCOM solution in Visual Basic (VB) was

used in NITES to implement the architectural design

pattern. See Appendix D for the skeleton VB code. The

launch, access and permission security features were

set external to each component using DCOMCNFG utility.

The DCOMCNFG utility was also used to set the location

of each component and user account assigned to the

component. The automation data types were used to make

marshaling and un-marshaling of data transparent to

each component. Migration from a desktop

application to an Internet Explorer 5 (IE) was

performed to reduce maintenance. Client components can

be maintained on the server and automatically

downloaded to the client. Migration is accomplished by

32

converting the project type from standard executable to

an ActiveX control using Microsoft Visual Studio.

The key to generic wrapper design is to use standard

objects. Standard objects include widely used file

extensions such as Tagged Image File Format (TIFF) and

WAV, XML meta data, and record sets. There are COTS

plug-in viewers for each of the above standard object

types.

2. Thin Client Technology

The web based application wrapper is implemented using

modern thin client technology. When a user opens a HTTP

page from a browser, the wrapper is then automatically

downloaded and installed on the client machine. Once

the wrapper is up and running, all images needed for

creating the brief are dynamically downloaded from the

server using the OpenURL method. OpenURL uses the

current open HTTP connection to transfer image files.

The continuous brief is created on the client machine

using the PowerPoint APIs. The PowerPoint is used to

display the brief.

3. Push Technology

The advantage of using push technology is that the

client does not need to poll the server periodically

for new data. The server notifies its clients (wrapper)

when new data (images) arrive. The wrapper receives the

notification and compares the image type with the type

33

being showed. If the image types match, the wrapper

downloads a new set of images from the server and

updates the brief.

34

C. NETWORK ARCHITECTURE

Figure 4.2 depicts network architecture similar to many

systems including NITES. The network is composed of an

intranet divided into four sub-nets, a router connecting the

four sub-nets and providing a connection to the internet

service provider, and a dial-in access server. Two sub-nets

separate the traffic of two user groups. Security and packet

wrapper options within this network architecture are

characterized. The components in the architectural design

pattern are typically deployed on the web server and user

computers.

35

Subnets Router

Admin

Users

i i I i

To Remote
Access

Web Server DNS Server Mail Server

Dial-in

O- I I

Figure 4.2. Network Architecture

36

1. Intranet Security

A hierarchical network architecture formed with routers

offers traffic isolation and additional security.

Using ACLs and IP filters on the router Ethernet

interfaces can control traffic flow across subnets.

Some routers, including the popular Cisco router, are

capable of protecting against IP spoofing.

2. Internet Security-

Standard security mechanisms are available at different

layers of the OSI Network Model. Point-to-point

tunneling protocol (PPTP), Layer 2 tunneling protocol

(L2TP), Frame Relay, and Asynchronous transfer mode

(ATM) are available at the Data link layer. IP

security (IPSec) and Generic routing encapsulation

(GRE) are available at the Network layer. S0CKSv5, SSL

and TLS are available at the session layer.

3. Dial-in Security-

Some authentication schemes, such as password

authentication protocol (PAP), transfer passwords in

the clear and are vulnerable to snooping. Stronger

authentication schemes are available.

The dial-in access server is a convenient place to host

authentication schemes for mobile users. Remote

Authentication Dial-in User Service (RADIUS) is a draft

standard that covers protocols for a centralized access

37

server. RADIUS allows for one-time token authentication

schemes.

Windows NT provides Challenge Handshake Authentication

Protocol (CHAP). Client and server share a common

secret key. A unique session key is negotiated without

transferring the secret key in the clear. A unique

session key limits the usefulness of replay attacks to

the current session.

38

V. CASE STUDY

A. CASE STUDY OVERVIEW

A subset of the operational NITES system was chosen for

the case study. This subset is representative of the issues

involved in the integration of COTS software components

where only the executables are available.

The case study covers the wrapper and security aspects

of component integration.

The wrapper transforms COTS applications into a

COM/DCOM component enabling interfaces with infrastructure

components as shown in Figure 5.2.

1. App

The App is the COTS application that provides the APIs

used by the App Wrapper to integrate with other

components.

2. App Wrapper

The App Wrapper is the software code developed to add,

modify, and hide functionality from COTS, GOTS or

legacy software components to align them with the

overall system requirements and architecture. In the

design, wrapper and glue code technology is being

implemented to enable the COTS applications to adhere

to the existing NITES architecture.

39

3. System Monitor

The Monitor component is responsible for detecting the

presence of a new object.

4. System Controller

The controller component is responsible for

coordinating multiple concurrent asynchronous

activities. The controller runs on the application

server. It serves two functions within the system,

handling notifications from the monitor and the glue

component.

5. Storage Directory

The Storage Directory is a target directory that is

accessed by the IMGEDT application and the Glue

component. This is the location for the data

temporarily stored before being updated to, or

retrieved from the database.

6. Application (IMGEDT)

IMGEDT is a COTS application that generates the

satellite images.

7. Glue Component

The glue component is responsible for storing and

retrieving objects from an ODBC compliant relational

database.

8. Database

The Database is an OBDC compliant relational database

that is available for storing and retrieving data.

40

App

I
App Wrapper

App n

m
App Wrapper n

rte-JL
«<T HTTP (IIS), DCOM (ActiveX control)

register

notify

/ notify
rlegister /

System
Controller

retrieve

System
Monitor

initiate

initiate

notify

poll \L
Storage

Directory

/^
retrieve/store store

 /L
Glue Component Application

(IMGEDT)

OBDC

data
Store data/

Recruest for data

Database

Figure 5.2 Component Integration DCOM Wrappers

41

Component security is based on external DCOM security

features. External DCOM security provides the following

advantages over internal DCOM security:

• Source code, object code or DLLs are not required.

External security can be used when only

executables are available.

• Since security policy is not embedded within

components, components may be reused in security

environments.

• Security policy can be implemented without writing

any code or understanding component internals.

The case study focuses on two COTS applications within

the operational NITES system. The first application, called

image editor, produces a product. The second application,

called continuous brief, presents a product. The image

editor creates a file in a known directory. The file

extension identifies the file type. The file is saved in a

central relational database. This conforms to a design

philosophy of NITES that each application interfaces with

the database and not with each other.

The continuous brief loops through a set of the latest

weather satellite images. The satellite images are extracted

from the database. Continuous brief parameters include the

42

number of images, viewing duration of each image, and image

viewing dimensions.

Each application fits the three-tiered architecture of

presentation, logic, and database. The presentation and

logic tiers run on a PC with Windows NT. The database tier

runs on Sun Solaris. COM/DCOM is used to interface logic

components on the PC. ADO/ODBC is used to interface to the

relational database.

The Extensible Markup Language (XML) is used to wrap

the data products in the relational database.

B. PRODUCE PRODUCTS TO DIRECTORY: IMAGE EDITOR (IMGEDT)

IMGEDT is a legacy NITES application that will be used

to demonstrate the effectiveness of the design pattern

produce products to directory. It is assumed only the

executable is available, dynamic link library (DLL)

substitution is not an option, and driver chaining will not

be used.

IMGEDT is a Windows NT desktop application with no

network or database connectivity. IMGEDT is capable of

opening an image file, editing an image file and saving an

image file to the local directory system.

The user signs on locally using id and password. The

user has system privileges and object permissions to execute

IMGEDT, read an image file and store an image file to a

43

directory. Windows NT provides authentication and access

control services.

Figure 5.3 shows the product producer sequence diagram.

It is the responsibility of the System Monitor to poll the

IMGEDT target directory for new or updated image files. It

is assumed the IMGEDT target directory is located on a

shared drive within an intranet and that the shared drive is

accessible to the System Monitor. When a file is detected,

the System Monitor initiates the sequence to store the image

on a remote relational database.

44

System Monitor System Controller Application Storage Directory Glue Component Database

Notifies controller if there's ne v object

 ►

Saves obiect to directory

I ►
Polls directory for new obiect

Requests for storing object to database

Makes the connectu m

 ►
Retrieves object from directory

Stores object to database

I H
Terminates the connection

 ►

Figure 5.3 Store object into Database

Following is a detailed explanation of each step in the

sequence diagram.

1. The application saves an object to the storage

directory.

2. Concurrent to step 1, the system monitor

periodically polls the storage directory for a new

or updated object.

45

3. Access to the object is allowed only if the system

monitor has read permission.

4. The system monitor notifies the system controller

if there is new object.

5. The glue component establishes a remote connection

to the relational database.

6. The glue component updates the database.

7. The relational database commits the object to the

database after the command is successfully

processed.

8. The glue component terminates the remote

connection to the relational database.

C. DISPLAY PRODUCTS: CONTINUOUS BRIEF

The goals of the continuous brief case study are:

1. Prove that the presented wrapper and security

architecture is feasible in the context of an

existing system.

2. Measure performance impact due to security and

wrappers.

3. Formalize the case study into a pattern for future

projects.

The continuous brief is composed of the following objects:

1. Web Browser

2. PowerPoint as an ActiveX Document embedded within

a browser.

46

3. PowerPoint Application wrapper that utilizes

PowerPoint API.

4. Control that coordinates activities within the

system

5. Communications that provide inter-component

messaging facilities.

6. Database that provides storage and retrieval of

row sets using SQL.

7. IMGNT application that interfaces with the

database for storing and retrieving images.

1. Continuous Brief Initialization

Figure 5.4 shows the sequence of actions performed by

cooperating objects to initialize the continuous brief.

47

ADD

Wrapper
System

Controller
System
Monitor

Reaisters with

Storage
Directory

Glue
Component

Requests for objects

Database

Makes the connection

 ►

Retrieves obiect from database

 ►
Saves obiect to directory

Terminates the connection

Notifies controller when done retrieving objects

Retrieves objects

Creates Presentation

I
Figure 5.4. Continuous Brief Initialization Sequence Diagram

48

Following is a description of the diagram:

1. User registers to the web server. User

authentication scheme will depend on user role and

user location.

2. If user is authenticated, the web server sends the

Initialization GUI home page containing parameters

to be filled in.

3. The user fills in the number of images starting

from the most current, the display duration of

each image in seconds and the height and width of

the display area. Default values are 24 images, 0

second duration, and display area equal to the

screen size.

4. The web Server initiates the application wrapper

and passes input parameters.

5. The application wrapper registers interest in new

satellite images with the controller. The

controller will notify all registered application

wrappers when a new satellite image has been

stored into the database.

6. The application wrapper requests the latest

requested number of images from the database.

49

7. The glue component transforms the request into an

asynchronous database query.

8. The database returns the requested images in a

tif, jpeg or mif file format. The time the

satellite image was photographed is part of the

file name.

9. The glue component saves the requested images to

the storage directory.

10. The application wrapper downloads the images via

the current HTTP connection.

11. The application wrapper uses the PPT API to

generate and show a continuous brief.

2. Continuous Brief Update

Figure 5.5 shows the sequence of actions performed by

cooperating objects to update the continuous brief.

50

ADD
Wrapper

System
Controller

Notifies con Toiler if there's new object

System
Monitor

Storage
Directory

Application Glue
Component

Saves obiect to directory

k
Polls directory for new obiect

 ►

Requests for storing object to database

Database

Makes the connection

 ►

Stores obiect to database

I H
Terminates the connection

Notifies controller when done storing object to database

Requests for objects

Stores obiect to directory

Makes the connection

I H
Retrieves obiect from database

 ►

Terminates the connection

Notifies controller when done retrieving objects

Notifies obiecf s readv

<
Retrieves objects

Updates Presentation

Figure 5.5 Continuous Brief Update Sequence Diagram

51

It is assumed that the App wrapper is embedded in the

browser on the client machine. Following is a

description of the diagram:

1. The Application saves new object to the storage

directory.

2. The system monitor notifies system controller

there is new object.

3. Controller forwards request to Glue component.

4. Glue component marshals request for database query

and sends request using ODBC protocol.

5. Database processes request and stores the new

object.

6. Glue component notifies controller that a new

object has been inserted into the database.

7. System controller requests Glue component for

objects.

8. Glue component initiates retrieval of objects from

database.

9. Glue component notifies system controller when

retrieval is completed.

10. Controller notifies registered App wrappers that

new objects are available.

11. App wrapper updates presentation with new objects.

The Observer Pattern, as described in Design Patterns,

also classifies this type of application. The subject

is the satellite image section of the database and the

52

observer is the application wrapper. The loose

coupling between the database and the wrapper allows

multiple wrappers to receive notification of a new

satellite image.

3. User Interface

Before the brief is started, the user is prompted for

the following parameters:

• The type of brief. Default is visual.

• Number of images in brief (1-99). Default 24

• Duration of each image (0-20 seconds). Default

0.

• Image display dimensions (height and width in

twips). Default is window size.

These parameters initialize the brief via the brief

interfaces. Buttons are used to start and stop the

brief. A reset button restores input parameters to

default values.

4. Brief Interfaces

a) Image Interface

The image interface is mapped to the PowerPoint shape

object interface. Each image in the brief share the

following properties:

SetWidth (twips width);

53

Sets the width of the display area in twips

for the image.

SetHeight (twips height);

Sets the height of the display area in twips

for the image.

Each image is sized to fit the display area.

b) Images Interface

The images interface is mapped to the PowerPoint slides

object interface. The interface manages the images in

the brief.

SetNumberOfImages (integer nlmages);

Sets the number of images in the brief.

Addlmage (picture image);

Adds the given image to the end of the brief.

The images should be added in time sequence

from the oldest to the newest.

c) Show Interface

The show interface is mapped to the PowerPoint show

object interface. The interface manages the sequential

display of each image in the brief.

SetlmageDuration (integer seconds);

Sets the number of seconds that each slide is

diplayed.

54

StartShow ();

Display images from first to last and repeat

image sequence until show is stopped.

StopShow ();

Stop continuous brief.

D. DCOM DEPLOYMENT INSTRUCTIONS

The Visual Basic development environment provides tools

to create a deployment package for ActiveX Exe remote

servers. The remote server check box inside the

project/properties/component section needs to be checked.

Making the project using Files/Make creates an executable

file (EXE), assigns a globally unique class ids and

interfaces ids, and registers the component on the local

machine. To avoid creation of new global identifiers each

time the component is made, set the version compatibility to

binary compatibility using the projects/properties/component

pane. New global identifiers are only necessary when the

interface definition changes. The package and deployment

wizard steps you through the process of creating a

deployment package. Since the target machine does not

usually contain a development environment, the Visual Basic

run time environment must be included in the deployment

package. If the remote server component creates other

components, the Visual Basic Reference file (VBR) and Type

55

Library (TLB) must also be included in the deployment

package.

Transfer the deployment package to the target machine

and execute the setup application. Setup will register the

component in the registry, copy dependent files to the

appropriate system directory and update the programs folder.

Run DCOMCNFG on the server machine. The DCOM server check

box needs to be checked in order for the DCOM server to run.

Find the application name from the list of applications, and

select properties. The location is local machine. The

security setting controls user roles that have privileges to

launch, attach or change ownership of the remote server.

The identification section is used to enter the user account

and user password that will be used to launch the component.

The protocol section is used to list the protocols to use in

priority sequence.

Run DCONCNFG on the client machine. The DCOM server

check box needs to be checked in order for the DCOM server

to run. Find the server application name from the list of

applications, and select properties. The location is the

name of the remote server machine. The security setting

controls user roles that have privileges to launch, attach

or change ownership of the client component. The

identification section is used to enter the user account and

user password that will be used to launch the component.

56

The protocol section is used to list the protocols to use in

priority sequence.

The client is now ready to launch or attach to the

remote server component. There is no need to manually start

the server component. When the client creates a new the

server component, the server component is launched on the

remote machine.

Use the internet package option of the Package and

Deployment Wizard to deploy an ActiveX control to the Web

Server. This creates a CAB file containing the control and

its dependencies. The CAB file is compressed to reduce

download time. During the initial download, the ActiveX

control is saved and registered on the client. Subsequent

references to the control are resolved locally.

57

THIS PAGE IS INTENTIONALLY LEFT BLANK

VI. CONCLUSIONS

The following conclusions are based on application of

the distributed component integration methodology (DCIM) to

the case study.

A. DCOM SOLUTION

DCOM is a natural choice for this implementation. The

host machine is a PC running Windows NT and DCOM is bundled

with the OS. There is familiarity with DCOM from prior

projects. Visual Basic development environment hides low-

level plumbing from the developer. Security policy can be

defined external to the component implementation. The

existing design pattern template fit the design of the

continuous brief application.

DCOM proved to be a quick and efficient way to

implement a robust continuous brief application. Components

were tested in the VB debug environment. Then executables

were tested on a single machine. Finally, the system was

distributed to the Web server machine. No source code

changes were made to execute in these three configurations.

B. ARCHITECTURAL DESIGN

The architectural design with accompanying VB

application framework skeleton code proved to simplify

implementation. The details of object creation, push

technology, client registration for service, event

59

processing, browser based components, asynchronous object

execution, and polling were provided by the framework.

The framework was extended to poll a directory, make

asynchronous database queries, add arguments to events, wrap

PowerPoint and add a user interface. The developer is able

to focus on the application without being distracted by

plumbing details.

C. WRAPPERS

Three types of wrappers were used in the implementation

of the continuous brief: file type in directory, object, and

COTS API. The monitor component of the architectural design

was extended to periodically check for a new satellite image

file in a directory specified by the configuration utility.

The object wrapper used the file name structure to extract

image time, type and location. The PowerPoint API was used

show the continuous brief. Even though the show could have

been easily implemented using a Java applet, PowerPoint

could simplify future extensions such as image cropping and

image titling.

To eliminate the need for PowerPoint on each client,

the show could have been generated on the server and sent to

the client for viewing. Microsoft provides a web based

PowerPoint viewer free of charge.

60

D. SECURITY

The external security features of DCOM proved to

simplify implementation of security policy; however Windows

NT Service Pack 5 does not expose DCE encryption to external

DCOM security. Single user logon, user privileges based on

role and discretionary access control were available.

E. IMGNT

Administrative problems precluded the use of ImgNT to

retrieve selected images from a database and store in a

directory. The system had not been installed on an

unclassified system, Visual Basic was not available, and

ImgNT patches had not been made. It is assumed that ImgNT

had already stored requested images to a directory.

F. FUTURE TRENDS

The value of the results of this thesis is time

sensitive. Research on this thesis began in April 1999.

Since that time Microsoft has released Windows 2000, SPAWAR

has unveiled a public key infrastructure for e-mail, SPAWAR

has a draft security policy, a network centric architecture

has been deployed to the USS Coronado, CORBA has a wider

selection of commercial ORBs, new standards for wireless

communications have been developed, Linux is gaining support

from many communities, security measures are receiving

higher priority and many other innovations.

61

The distributed component integration methodology

described in the thesis will remain in the mainstream for

the foreseeable future. Independently designed components

will need custom integration using some form of wrapper.

Network administrators will require implementation of

security policy using tools external to the application.

62

LIST OF REFERENCES

[1] Berzins V., Luqi, Schultes B. JBC Report, Naval Post
Graduate School, 1999

[2] Ashley,P., Practical Intranet Security, Kluwer Academic
Publishers, 1999

[3] Summers Rita C, Secure Computing^ McGraw-Hill, 1997

[4] Grimes, R., Professional DCOM Programming, WROX, 1997

[5] Microsoft Corporation, Entire Collection, MSDN Library,
1996

[6] Krause M.,Handbook of Information Security Management,
Auerbach, 1999

[7] Phaltankar K. , Implementing Secure Intranets and
Extranets, Artech House, 2000

[8] Moultis N., Kirk C., XML Black Book, Coriolis Technology-
Press, 1999

[9] Szyperski, Clemens, Component Software, Addison-Wesley,
1998

63

THIS PAGE IS INTENTIONALLY LEFT BLANK

64

BIBLIOGRAPHY

Berzins and Lugi, Software Engineering with Abstractions,
Addison-Wesley, 1991

Douglas B., Real-Time UML, Addison-Wesley, 1998

Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns
CD, Addison-Wesley, 1995

http://www.esat.kuleuven.ac.be/cosic/sesame3 2.html

65

THIS PAGE IS INTENTIONALLY LEFT BLANK

66

APPENDIX A. GSS-API VERSION 2 FUNCTION "CALLS

CREDENTIAL MANAGEMENT

GSS_Acquire_cred

GS S_Inquire_cred

GSS Release cred

acquire credentials for use.

display information about

credentials.

release credentials after use.

CONTEXT-LEVEL CALLS

GSS_Init_sec_context

GSS_Accept_sec_context

GSS_Delete_sec_context

GSS_Process_context_token

GSS Context time

initiate outbound security

context.

accept inbound security

context

flush context.

process received control

token on context.

indicate validity time

remaining in context.

PER-MESSAGE CALLS

GSS GetMIC

GSS_VerifyMIC

apply signature, receive as

token separate from message.

validate signature token along

67

GSS_Wrap

GSS_Unwrap

with message.

sign, optionally encrypt and

encapsulate.

decapsulate, decrypt if

needed, validate signature.

SUPPORT CALLS

GSS_Display_status

GS S_Compare_name

GSS_Disp1ay_name

GSS_Import_name

GSS_Release_name

GSS_Release_buffer

GSS Release oid set

translate status codes to

printable form.

compare two names for equality

translate name to printable

form.

convert printable name to

normalized form.

free storage of normalized-

form name.

free storage of printable name

free storage of OID set object

68

APPENDIX B. SESAME CRYPTOGRAPHIC SUPPORT FACILITY (CSF) APIS

INITIALIZATION APIS

csf_get_qos()

Returns the list of allowed pairs of algorithms with

associated key length, for a given quality of service,

within a given CSF domain such as "quality of service". The

first algorithm and key length pair represent the default.

A quality of service is

• A service (integrity or confidentiality),

• A strength (weak, medium or strong),

• A class of algorithms (symmetric or asymmetric)

csf_begin()

Starts CSF up for a given algorithm. This API is used

to initialize internal data for a software algorithm, or to

set-up a hardware device.

csf_end()

Turns off CSF for a given algorithm. This API is used

to free internal data for a software algorithm, or to shut

down a hardware device.

Key generation APIs

A key handle is generated by these APIs.

csf_gen_asym_key_pair()

69

Generates an asymmetric key pair with the key length,

key data and the reversible cryptographic algorithm as

parameters.

csf_gen_sym_key()

Generates a symmetric key with the key length, key data

and the reversible cryptographic algorithm as parameters.

csf_derive_secret_key()

This API is used to derive a secret key of a given key

length from a string or a basic key, using an irreversible

encryption algorithm and a seed.

Key handling

csf_init_key()

Initializes the key to be used by the CSF module. An

indication on the way the key is stored (hardware, software,

smart card ...), on the way the key is used (encryption,

decryption, signature key or a key to check a signature) and

the key itself or a reference of that key is given in input.

It returns an opaque key handle to be used by subsequent

calls to CSF APIs.

csf_release_key()

Releases an opaque key handle.

csf_read_key_info()

Allows to retrieve a key or a key reference from a key

handle.

csf_get_key_data()

70

Allows to retrieve key data (key usage and optionally

key validity time, initial vector) from a key handle.

Crypto context APIs

csf_init_context()

Initializes a crypto context from a CSF key handle and

a pair of algorithms (reversible or irreversible) and

associated key length. This context contains elements

(hardware or software) to be used in data protection

operations. It returns an opaque context handle to be used

by subsequent data protection CSF APIs.

If the crypto context already exists, it is modified

according to the input parameters.

csf_create_owf_context()

Creates a CSF context, only usable for an irreversible

encryption algorithm which does not use any key, such as MD4

or MD5. No key handle is needed to use this interface.

csf_release_context()

Releases an opaque CSF context handle.

csf_duplicate_context()

Duplicates an existing crypto context. A new context

handle is generated. The new context can then be modified by

a call to csf_init_context().

csf_retrieve_key_from_context()

Returns the key handle attached to a crypto context.

csf_query_context()

71

Returns the pair of algorithms (irreversible " +

reversible) with associated key length and the quality of

service attached to a crypto context.

Data protection APIs

csf_encrypt ()

Generates an encrypted text from a clear text and a

crypto context (including a key, a reversible algorithm and

optionaly initial vectors).

csf_decrypt()

Generates a clear text from an encrypted text using a

crypto context (including a key and a reversible algorithm).

csf_generate_check_value()

Generates a signature from a clear text using a crypto

context (including a key (private or secret), an

irreversible algorithm and a reversible one).

csf_verify_check_value()

Checks the signature of a clear text using a crypto

context (including a key (public or secret), an irreversible

algorithm and a reversible one).

csf_owf()

Generates an irreversibly encrypted text from a clear

text using a crypto context (including an irreversible

algorithm).

Import/export APIs

csf_extract_key()

72

Packs the key and all data relative to the key (key

usage, key validity) into an exportable format. This package

has to be sent to the remote machine. csf_restore_key() has

then to be called on this machine to restore the key

information.

csf_restore_key()

Creates a key handle from a package obtained by an

earlier call to csf_extract_key(), usually on another

machine.

csf_extract_context()

Packs the key and all data relative to the crypto

context (key usage, key validity, pair of algorithms) into

an exportable format. This package has to be sent to the

remote machine. csf_restore_context() has then to be called

on this machine to restore the context information.

csf_restore_context()

Creates a key handle from a package obtained by an

earlier call to csf_extract_key(), usually on another

machine.

RANDOM NUMBER GENERATION API

csf_gen_rand_num ()

Generates a random number of a given length.

Free routines

free_key_info()

Free a key (A key_info_t structure).

free_key_data()

73

Free key data (a key_data_t structure).

free_algo_id ()

Free an algorithm (an algo_identifier_t structure).

free_algo_id_pair()

Free a pair of algorithms (an algo_id_pair_t

structure).

free_algo_id_pair_list ()

Free a list of algorithms (an algo_id_pair_list_t

structure).

free_algo_list_except_one()

Free a list of algorithms, except one pair in the list.

SET-UP AND CONFIGURATION

Set-up and configuration of the CSF module is done by a

control program called csfcp.

The CSF administrator is the only person authorized to

run this program.

csfcp is be used to:

• Configure the quality of service, within the local

domain. A list of allowed pairs of algorithm

identifiers (irreversible or reversible) is to be

associated to each qos.

• Configure the quality of service which is to be

used to communicate between two CSF domains. A

subset of the local qos configuration can be

chosen and then sent to the second domain.

74

• Set-up all the algorithms available under CSF. For

all available algorithms, the choice between

hardware and software is made, for key storage and

algorithm implementation.

75

THIS PAGE IS INTENTIONALLY LEFT BLANK

76

APPENDIX C. SESAME ARCHITECTURE

A. PROTOCOL NOTATIONS

A Authentication Server

P Privilege Attribute Server

U User Sponsor

R User

X Client Application

Y Server Application

Z Server Application accesses by delegate

V PAC validation facility of application server Y

W PAC validation facility of application server Z

KM Long term key shared between A and B

k^ Session key shared between A and B

PKA Public key of A

PKA
_1 Private key of A

ReQPrivR Requested privileges by user R sealed by k^

CertiX.509 certificate for the public key Pk±

RLx Requested lifetime for x

T , T Start and end time s' e

ri Nonce generated by i

n± Message sequence number

h() Hash function

KeyPK..^ = ENC (PK,) (kjk, T., Te, data)

77

KeyPK._k = ENC(PKk) (k.k, Ts, T., data)

AuthSK^ = ENC(kiS) (j, t., data)

AuthPK,.. = SIGN(Pki"
1) (j, t£, KeyPK^)

B. USER SPONSOR FUNCTIONS

• Sends an authenticator SIGN(PKR'"1) (A, tR, Key(PK^_A) to the

Authentication Server.

• Decrypts the incoming key package from AS using the

user's private key.

• Sends a request for a PAC to the privilege attribute

server. The request contains the requested lifetime of

the PAC, TGT, session key authenticator ENC (k„_,) (P, t„,

data).

C. AUTHENTICATION PRIVILEGE ATTRIBUTE CLIENT (APA)

The APA is developed by a programmer using the GSS-API.

The User Sponsor uses this API to communicate with the

authentication server and privilege attribute server to

obtain authentication and credentials. See Appendix A for a

description of GSS-API.

D. APPLICATION CLIENT

Every application client needs to be modified to

include GSS-API.

1. Authentication Server (AS) Functions

Checks the X.509 certificate for the public key of user

(Cert,) .

78

Verifies the authenticates portions of CertR

Returns an authentication which includes the Primary

Principal Identifier (PPID) as part of the ticket

granting ticket (TGT), and an authenticator containing

the public key of the privilege attribute server (PAS)

TGTR = ENC(KAP)(R, U, Ts, Te, k^)

PACR = SIGNfPK/
1) (user role attributes, PPIDR, PVR/

DTQR, data)

E. PRIVILEGE ATTRIBUTE SERVER (PAS) FUNCTIONS

Supplies PAC as specified in ECMA 219 Security in Open

Systems, 2na edition, March 1996. European Computer

Manufactures Association

F. KEY DISTRIBUTION SERVER (KDS)

• For the intra-domain case use Kerberos V5 model.

• For the inter-domain case use X.509 certificates.

6. PRIVILEGE ACCOUNT CERTIFICATE (PAC) VALIDATION FACILITY
(PVF) FUNCTIONS

• Validate PAC

• Key Management

Support Components

• Audit

• Record security relevant events using appropriate

identities.

79

H. PUBLIC KEY MANAGEMENT (PKM) FUNCTIONS

• Manage public and private keys using PGP solution

• Establish symmetric keys between parties i and j

using public-key standard X.509.

i sends a session key to j encrypted with j's public

key. i sends an authenticator using its private key. J"

authenticates the message signature by applying i's public

key and comparing the message with the message signature.

The session key is now available to both parties.

80

APPENDIX D. SKELETON VB CODE FOR DESIGN PATTERN

A. MONITOR COMPONENT

1. Modules

a. Module 1

Option Explicit
Public gMonitor As Monitor
Public glngUseCount As Long

2. Classes

Reference to monitor
Global reference count

a. Monitor

Option Explicit

Private mFormForTimer As FormForTimer
Private WithEvents mTimerForMonitor As Timer

Public Enum Enumeration
enuml = 1
enum2 = 2
enum3 = 3

End Enum

' Event that passes all automation data types supported by
' proxy and stub
Event MonitorActivity(_

bool As Boolean, _
chr As Byte, _
sfloat As Single, _
dfloat As Double, _
sint As Integer, _
lint As Long, _
enuml23 As Enumeration, _
str As String, _
money As Currency, _
datetime As Date)

Private Sub Class_Initialize() ' Start Monitor Timer

' Create instance of form
Set mFormForTimer = New FormForTimer
Load mFormForTimer

81

' Connect timers' events to associated event procedures
' in Monitor
Set mTimerForMonitor = mFormForTimer.TimerForMonitor

End Sub

Private Sub Class_Terminate() ' Terminate Monitor
Set mTimerForMonitor = Nothing
Unload mFormForTimer
Set mFormForTimer = Nothing

End Sub

Private Sub mTimerForMonitor_Timer() • Process Timer
Event

Dim bool As Boolean
Dim chr As Byte
Dim sfloat As Single
Dim dfloat As Double
Dim sint As Integer
Dim lint As Long
Dim enuml23 As Enumeration
Dim str As String
Dim money As Currency
Dim datetime As Date

'<insert monitor task>

' Signal clients that monitor has detected activity
RaiseEvent MonitorActivity(bool, _

chr, _
sfloat, _
dfloat, _
sint, _
lint, _
enuml23, _
str, _
money, _
datetime)

End Sub

b. Monitor Connector

Option Explicit

Public Property Get Monitor() As Monitor ' Get reference to
x monitor

82

Set Monitor = gMonitor
End Property

Private Sub Class_Initialize() ' Create Monitor and
* reference count

If gMonitor Is Nothing Then
Set gMonitor = New Monitor

End If
glngUseCount = glngUseCount + 1

End Sub

Private Sub Class_Terminate() ' Terminate Monitor when
' reference count = 0

glngUseCount = glngUseCount - 1
If glngUseCount = 0 Then

Set gMonitor = Nothing
End If

End Sub

B. CONTROLLER COMPONENT

1. Modules

a. Module 1

Option Explicit
Public gController As Controller
Public glngUseCount As Long

2. Classes

a. Controller

Option Explicit

Event ControllerEvent() '

Public WithEvents mglue As Glue '

Reference to controller
Global reference count

Sent to AppWrapper(s)

WithEvents causes glue to
' run asynchronously

Private WithEvents mMonitor As Monitor ' Get Monitor events

' Multiple connections to single monitor
Private mMonitorConnector As MonitorConnector

Private Sub Class_Initialize() Connect to Monitor

Set mMonitorConnector = New MonitorConnector
Set mMonitor = mMonitorConnector.Monitor

End Sub

83

' Receive event from Monitor'
Private Sub mMonitor_MonitorActivity(_

bool As Boolean, _
chr As Byte, _
sfloat As Single, _
dfloat As Double, _
sint As Integer, _
lint As Long, _
enuml23 As Enumeration, _
str As String, _
money As Currency, _
datetime As Date)

Set mglue = New Glue
Call mglue.StartGlue

asynchronously
End Sub

' Glue runs

Private Sub mglue_glueDone
component is done

' Asynchronous glue

Set mglue = Nothing
RaiseEvent ControllerEvent
End Sub

b. Controller Connector

Option Explicit

Public Property Get Controller() As Controller
Set Controller = gController

End Property

Private Sub Class_Initialize() ' Initialize Controller
' and reference count

If gController Is Nothing Then
Set gController = New Controller

End If
glngUseCount = glngUseCount + 1

End Sub

Private Sub Class_Terminate() ' Terminate controller when
reference count = 0

glngUseCount = glngUseCount - 1
If glngUseCount = 0 Then

Set gController = Nothing
End If

End Sub

84

C. GLUE COMPONENT

1. Classes

a. Glue

Option Explicit

Event GlueDone() ' Sent when glue task done

Public Sub StartGlueO ' Start glue task
' <Insert glue task here>
RaiseEvent GlueDone

End Sub

D. APPLICATION WRAPPER COMPONENT

1. Forms

Option Explicit

Private WithEvents mController As Controller
Private mControllerConnector As ControllerConnector

Private Sub Form_Load() ' Connect to controller
Set mControllerConnector = New ControllerConnector
Set mController = mControllerConnector.Controller

End Sub

' Receive Controller event
Private Sub mController_ControllerEvent()

Textl.Text = "Received Controller Notification"
' <insert interface with COTS application>

End Sub

85

THIS PAGE IS INTENTIONALLY LEFT BLANK

86

APPENDIX E. XML VOCABULARIES -

The following list contains sources for some existing

XML vocabularies:

Mathematical Markup Language (MathML) can be found at

URL www.w3.org/Math

Web Interface Definition Language (WIDL) can be found

at URL www.webmeth.ods .com/technology/widl description.html

The Nites I Meteorological Vocabulary Observation Markup

Format(OMF):

<!— <!DOCTYPE OMF SYSTEM "OMF.dtd" [—>
<!-- Weather Observation Definition Format DTD -->
<!-- This is the OMF XML DTD. It can be referred to using
the
formal public identifier
-//METNET//OMF 1.0//EN
For description, see OMF.html
$Id: 0MF.dtd,v 3.8 1999/10/25 18:18:31 oleg Exp oleg $
-->

-- Weather Observation Definition Format -->
-- Basic attributes -->
ENTITY % TStamp-type "NMTOKEN">
ENTITY % TRange-type "CDATA">
ENTITY % TStamp "TStamp %TStamp-type; #REQUIRED">
ENTITY % TRange "TRange %TRange-type; #REQUIRED">
ENTITY % LatLon "LatLon CDATA #REQUIRED">
ENTITY % LatLons "LatLons CDATA #REQUIRED">
ENTITY % BBox-REQD "BBox CDATA #REQUIRED">
ENTITY % BBox-OPT "BBox CDATA #IMPLIED">
ENTITY % Bid "Bid NMTOKEN #REQUIRED">
ENTITY % SName "SName CDATA #REQUIRED">
ENTITY % Elev "Elev NMTOKEN #IMPLIED">
-- Basic elements -->
ELEMENT VALID (#PCDATA)>
ATTLIST VALID %TRange;>
-- A collection of weather observation reports -->
ELEMENT Reports (METAR | SPECI | UAR | BTSC | SYN)*:
ATTLIST Reports %TStamp;>

87

<!-- Common report attributes -->
<!ENTITY % ReportAttrs
"%TStamp; %LatLon; %BId; %SName; %Elev;
Vis NMTOKEN #IMPLIED
Ceiling NMTOKEN #IMPLIED
">

<!— METAR and SPECI reports -->
<!ELEMENT METAR (#PCDATA)>
<!ATTLIST METAR %ReportAttrs;>
<!ELEMENT SPECI (#PCDATA)>

<!ATTLIST SPECI %ReportAttrs;>
<!-- A collection of weather hazard advisories -->
<!ELEMENT Advisories (SIGMET | AIRMET | WW)* >
<!ATTLIST Advisories %TStamp;>
<!— A SIGMET advisory —>
<!ELEMENT SIGMET (VALID, AFFECTING?, EXTENT, BODY) >
<!ATTLIST SIGMET
class (CONVECTIVE| HOTEL I INDIA| UNIFORM| VICTOR| WHISKEY)
#REQUIRED
id NMTOKEN #REQUIRED
%TStamp;
%BBox-OPT;
>
<!ELEMENT AFFECTING (#PCDATA)>
<!ELEMENT EXTENT (#PCDATA)>
<!ATTLIST EXTENT
Shape (AREA| LINE| POINT) #REQUIRED
%LatLons;
>
<!ELEMENT BODY (#PCDATA)>
<!-- A collection of weather forecasts -->
<!ELEMENT Forecasts (TAF)* >
<!ATTLIST Forecasts %TStamp;>
<!-- A Terminal Aerodrome Forecast -->
<!ELEMENT TAF (VALID, PERIOD+) >
<!ATTLIST TAF
%TStamp; %LatLon; %BId; %SName;
>
<!ELEMENT PERIOD (PREVAILING, VAR*)>
<!ATTLIST PERIOD
%TRange;
Title NMTOKEN #IMPLIED
>
<!ELEMENT PREVAILING (#PCDATA)>
<!ELEMENT VAR (#PCDATA)>
<!ATTLIST VAR
%TRange;
Title CDATA #REQUIRED
>

<!-- Rawinsonde and Pibal Observation reports -->

88

<!ELEMENT UAR (UAPART+, UAID*, UACODE*, UALEVELS) >
<!ATTLIST UAR
%TStamp; %LatLon; %BId; %SName; %Elev;
>
<!ELEMENT UAPART (#PCDATA)>
<!ATTLIST UAPART
id NMTOKEN #REQUIRED
>
<!ENTITY % UARef "Ref NMTOKEN #REQUIRED">
<!ELEMENT UAID (#PCDATA)>
<!ATTLIST UAID %UARef; >
<!ELEMENT UACODE (#PCDATA)>
<!ATTLIST UACODE %UARef; >
<!ELEMENT UALEVELS (UALEVEL)* >
<!ELEMENT UALEVEL (#PCDATA)>
<!ATTLIST UALEVEL
%UARef;
P NMTOKEN #REQUIRED
H NMTOKEN #IMPLIED
T NMTOKEN #IMPLIED
DP NMTOKEN #IMPLIED
Wind CDATA #IMPLIED
>
<!— Bathythermal, Salinity and Ocean Currents Observations
-->
<!ELEMENT BTSC (BTID, BTCODE?, BTLEVELS) >
<!ATTLIST BTSC
%TStamp; %LatLon; %BId; %SName;
Title (JJYY | KKXX | NNXX) #REQUIRED
Depth NMTOKEN #IMPLIED
>
<!ELEMENT BTID (#PCDATA)>
<!ATTLIST BTID
DZ (7|8) #IMPLIED
Rec NMTOKEN #IMPLIED
WS (0|1 | 2
Curr-s (2

3) #IMPLIED
3|4) #IMPLIED

Curr-d NMTOKEN #IMPLIED
AV-T (0|1
AV-Sal (0

3) #IMPLIED
2|3) #IMPLIED

AV-Curr (Ö|1|2|3) #IMPLIED
Sal (1|2|3) #IMPLIED
>
<!ELEMENT BTCODE (#PCDATA)>
<!ELEMENT BTLEVELS (BTAIR?,
<!ELEMENT BTAIR (#PCDATA)>
<!ATTLIST BTAIR
T NMTOKEN #IMPLIED ■
Wind CDATA #IMPLIED
>
<!ELEMENT BTLEVEL (#PCDATA)>

(BTLEVEL)*)>

89

<!ATTLIST BTLEVEL
D NMTOKEN #REQUIRED
T NMTOKEN #IMPLIED
S NMTOKEN #IMPLIED
Curr CDATA #IMPLIED
>
<!-- Surface Synoptic Reports from land and sea stations -->
<!ELEMENT SYN (SYID, SYCODE?, SYG?, SYSEA?) >
<!ATTLIST SYN
%TStamp; %LatLon; %BId; %SName; %Elev;
Title (AAXX BBXX | ZZYY) #REQUIRED
SType (AUTO MANN) "MANN"
>
<!ELEMENT SYID (#PCDATA)>
<!ATTLIST SYID
WS (0|1|3|4) #IMPLIED
>
<!ELEMENT SYCODE (#PCDATA)>
<!ELEMENT SYG (#PCDATA)>
<!ATTLIST SYG
T NMTOKEN #IMPLIED
TD NMTOKEN #IMPLIED
Hum NMTOKEN #IMPLIED
Tmm CDATA #IMPLIED
P NMTOKEN #IMPLIED
PO NMTOKEN #IMPLIED
Pd NMTOKENS #IMPLIED
Vis NMTOKEN #IMPLIED
Ceiling NMTOKEN #IMPLIED
Wind CDATA #IMPLIED
WX CDATA #IMPLIED
Prec CDATA #IMPLIED
Clouds CDATA #IMPLIED
>
<!ELEMENT SYSEA (#PCDATA)>
<!ATTLIST SYSEA
T NMTOKEN #IMPLIED
Wave CDATA #IMPLIED
SDir CDATA #IMPLIED
>
<!-- Plain-text WMO Meteorological messages -->
<!ELEMENT Messages (MSG)* >
<!ATTLIST Messages %TStamp;>
< I ELEMENT MSG ANY >
<!ATTLIST MSG
id NMTOKEN #REQUIRED
Type NMTOKEN #IMPLIED
%TStamp;
%SName;
%BBox-OPT;
BBB CDATA #IMPLIED

90

Descr CDATA #IMPLIED
>
<!]> >

91

THIS PAGE IS INTENTIONALLY LEFT BLANK

92

APPENDIX F. SYSTEMS REQUIREMENTS SPECIFICATION

93

SOFTWARE REQUIREMENTS SPECIFICATION

FOR AN

ARCHITECTURAL FRAMEWORK

OF

DOD COTS/LEGACY SYSTEM

94

1. SCOPE

1.1 INTRODUCTION

The trend towards using Commercial Off-The-Shelf (COTS)

software within Department of Defense (DoD) has become the

accepted way to build systems. Twenty years ago, almost all

DoD software-intensive systems were built by awarding large

multimillion-dollar contracts to defense contractors to

build these systems from scratch. In the 90's, with a

constantly dwindling budget, the focus has shifted to

building software-intensive systems by integrating COTS

software components.

Building software systems from COTS components is quite

different. The black box nature of the COTS software

components along with the uncontrollable evolution process

requires a different architectural approach in developing

systems with COTS.

1.2 PURPOSE

The purpose of this requirements specification is to

analyze and document the requirements in developing an

architectural framework for COTS/Legacy systems within the

DoD. To focus the requirements of the architectural

framework, a DoD Meteorological and Oceanographic (METOC)

system, the Naval Integrated Tactical Environmental System I

95

(NITES I), which is very representative of today's DoD

COTS/Legacy systems, will be used.

1.3 BACKGROUND

The NITES I project is a Space and Naval Warfare

(SPAWAR) sponsored project within DoD. Like most other

projects within DoD, the NITES I project is being developed

in an environment that emphasizes the use of personal

computers and COTS components.

NITES I acquires and assimilates various METOC data for

use by US Navy and Marine Corps forecasters. The purpose of

NITES I is to provide the METOC community (Users) with the

tools necessary to support the warfighter (Customers).

The NITES I is the primary METOC data fusion platform and

principal METOC analysis workstation, intended to be

operated on both a classified and unclassified network

environment by METOC personnel. This system receives,

processes, stores and disseminates METOC data and provides

analysis tools to render products for application to

military and tactical operations. NITES I data and

information/products are stored in a unified METOC database

on the C4ISR network and available to local and remote

planners and warfighters.

96

1.4 REFERENCES

Performance Specification (PS) for the Tactical

Environmental Support System / Next Century TESS(NC)

(AN/UMK-3) (NITES version I and II)

Security Guidelines for Space and Naval Warfare Systems

Command (SPAWAR) Program Software Developers (DRAFT),

October 1999.

Horizontal Integration: Windows NT Developer's Guidelines

(DRAFT), Version 0.1.

97

2. GENERAL DESCRIPTION

2.1 ARCHITECTURE GOALS

Integration

COTS/GOTS/legacy components are usually created as

standalone products. When these components are targeted for

integration into a system, the architecture shall provide

seamless integration of these COTS/GOTS/legacy components.

The architecture shall support middleware approaches to bind

data, information and COTS/GOTS/legacy components.

Because evolution and upgrade of COTS/GOTS components

are outside the control of the system integrators, the

architecture of the COTS/GOTS/legacy system shall have an

adaptable component configuration to reduce the effort of

testing and reintegration when upgrades or new COTS/GOTS

packages are introduced to the system.

INTEROPERABILITY

COTS/GOTS and legacy systems reside on multiple

platforms. This architecture shall address distributed,

heterogeneous systems consisting of both UNIX and PC-based

platforms.

In order to achieve and maintain information superiority on

the battlefield, the architectural framework for DoD

98

COTS/GOTS/legacy systems shall have the capability to share,

receive and transmit on heterogeneous networks and hardware

devices.

The exchange of data between two systems shall be in

such a way that interpretation of the data is precisely the

same. The data displayed on two different systems shall

remain consistent. The architectural framework shall

include standard application program interfaces (APIs).

APIs specify a complete interface between the application

software and the platform across which all services are

provided. A rigorous definition of the interface results in

application portability provided the platform supports the

API as specified, and the application uses the specified

API. The API definitions shall include the syntax and

semantics of the programmatic interface as well as the

necessary protocol and data structure definitions.

ADOPTED FRAMEWORK TECHNOLOGY

Java/C++, web technologies, open systems, application

program interfaces, common operating environment, object and

component technology, commercial products and standards are

all important to the COTS/GOTS/legacy system architecture.

99

The COTS/GOTS/legacy system shall adopt the Interface

Definition Language (IDL) as the language for expressing the

syntax of the framework services.

The COTS/GOTS/legacy system architecture shall be

expressed as UML class and package diagrams, with detailed

component descriptions using IDL with English narrative to

provide semantics.

SECURITY

DoD tactical systems are normally classified to some

security level. In building this architectural framework,

the architecture shall address the DoD Trusted Computer

System Evaluation Criteria (TCSEC) to at least the C2

security level.

The architecture shall include discretionary access

control (DAC).

Only single level classification systems shall be

supported in this architecture (i.e. no multi-level security

(MLS).

Assembled components shall not require modification to

add security services.

The security mechanisms shall be protected from

unauthorized access.

The following security services shall be available to

the component assembler:

100

1. Single login for users

The single login for users means the user needs to

identify himself once per session. It is the

responsibility of the security services to protect

and distribute the authentication information of a

user.

2 . Mutual authentication

Mutual authentication ensures proper identification

of the user to the system and the system to the

user.

3 . Auditing

Auditing means significant security events are

recorded for later analysis. Significant security

events shall include logon and logoff, security

policy changes, user and group management, and

access to specified objects.

4. Secure key distribution

Key distribution provides a secure transport

mechanism for encryption keys.

5. Role based Access Control

Role based access control assigns roles to users and

privileges to roles, thereby simplifying access

control if the number of roles is less than the

number of users.

101

6. Data confidentiality

Data confidentiality means data is disclosed

according to a policy.

7. Data integrity

Data integrity means the recipient gets the intended

data.

8. Non-repudiation and authenticity

Non-repudiation means the sender of a message can

not later deny he sent the message.

NETWORK SECURITY

The trend in DoD is for networked systems vice

standalone monolithic systems and because most systems have

some level of classification, this architecture shall

address network security.

The architectural framework shall support a secure

network.

The architectural framework shall support the network

security mechanisms specific to the target architecture,

including firewalls, routers, encryption, and proxy

services.

102

NETWORK COMMUNICATIONS

The architectural framework shall support different

network protocols (i.e. TCP/IP) and topologies dependent on

the target architecture.

The application layer shall be able to execute a

variety of data management commands without having knowledge

of the data location, database, file type, operating system,

network protocol, or platform location.

DEVELOPMENT LANGUAGE

The architectural framework shall support any

development language that is supported by the legacy system

as well as any development language that supports platform

independence for newly developed code in the target

architecture.

2.2 ASSUMPTIONS AND DEPENDENCIES

Assumption 1: Legacy systems are monolithic and not

modifiable.

Assumption 2: Legacy systems have some existing mechanism

for interaction.

Assumption 3: There are varying degrees of COTS. To be

considered COTS, the component cannot be modified.

Assumption 4: Reliability, performance, safety and security

must be weighed in the target architecture.

103

Assumption 5: Multilevel security systems are beyond the

scope of this effort.

104

3 . TARGET ARCHITECTURE FUNCTIONS -

DATABASE

COTS software applications which handle data tend to

have their own mechanism and structure for the storage of

the data internal to the COTS application. When the target

architecture includes a master database to store its data,

the architectural framework shall support the target

architecture's central storage of data. The architecture

shall support remote access to the database.

SECURITY

The target architecture shall support Discretionary

Access Control (DAC).

Access to information controlled by an application

shall be based on an access control list (ACL) of a

parameter that can be used to distinguish between authorized

and non-authorized entities. Entities include users,

devices, and other applications.

The target architecture shall support non-repudiation.

a. The data recipient shall be assured of the

originator's identify.

b. The data originator shall be provided with proof of

delivery.

105

c. The algorithm used to digitally sign data entries

and receipts shall be either the Digital Signature

Standard (DSS) FIPS 186 or RSA (1024 bit).

d. The original transmitted data signed by the sender

and the requested receipt signed by the recipient

shall be time-stamped by a trusted third party.

GRAPHICAL USER INTERFACE (GUI)

The target architecture shall include a GUI style

guide. If a GUI style guide does not exist for the target

architecture, UNIX platforms shall adhere to the MOTIF

standard and X-Windows standard, and PC platforms shall

adhere to the Windows NT standard.

EXTERNAL SYSTEM INTERFACES

Because the target architecture exists in a network

environment where it shares data with other external

systems, the external system interfaces where information is

exchanged shall be well defined to support interoperability.

MIDDLEWARE TECHNOLOGY

The COTS/GOTS/legacy architecture shall support new

component integration technologies (i.e. COM/DCOM) to broker

between components that by themselves normally do not

communicate to form an integrated system.

106

The target architecture shall support wrappers to

enable COTS/GOTS applications to interface with each other.

The wrappers shall support the METOC data (listed in Table 6

of reference 1) and its various formats within NITES. The

architecture shall ensure when an application updates a set

of data, the update is consistently made throughout the rest

of the database.

107

4. ARCHITECTURE ATTRIBUTES

4.1 PERFORMANCE REQUIREMENTS

The performance requirements for the target system are

contained in Table 6B of the NITES Performance

Specification. In addition to those performance

requirements, the following requirements shall also be

addressed in the target architecture.

The architecture shall optimize the database access

over a network.

The architecture shall allow concurrent access of the

database to multiple users.

The component technology shall not degrade the system

performance by more than 10% of the target system's current

performance requirements. Refer to Table 6B of the NITES

Performance Specification.

4.2 RELIABILITY REQUIREMENTS

The target architecture shall use standard fault-

tolerant technologies (i.e. Replication to maintain the

reliability and availability requirements of DoD systems.)

While the data traverses throughout various applications, to

different platforms, through the network and to/from

108

database, it must remain consistent and not suffer any

degradation.

4.3 DESIGN CONSTRAINTS

Because many existing legacy systems reside on UNIX

platforms and the DoD has made a commitment to move towards

a PC architecture, the architectural framework shall support

both UNIX and PC platforms with the goal of moving towards a

pure PC architecture. It is not required that all

COTS/GOTS/legacy system components be executable on both

platforms but the data must be able to be shared by

components on different platforms.

Newly developed DoD systems must use COTS products to

the greatest extent possible.

As most COTS/GOTS applications are designed to be

standalone, these applications will usually have their own

way of retrieving and storing data. When these applications

are integrated into a system, the internals of the

application of how it retrieves and stores data will not be

modified.

There are varying degrees of COTS products. Depending

on whether the COTS product is an opaque or a black box will

drive the wrapper design and implementation.

109

THIS PAGE IS INTENTIONALLY LEFT BLANK

110

APPENDIX G. SYSTEM DESIGN SPECIFICATION

111

1. SYSTEM ARCHITECTURE

1.1 SYSTEM ARCHITECTURE DIAGRAM

The Naval Integrated Tactical Environmental System

(NITES) software runs in a distributed, heterogeneous

environment on standard commercial-off-the-shelf (COTS)

personal computers (PCs) and TAC-4 UNIX computers.

The NITES architecture consists of a central database

residing on a UNIX computer, which is shared amongst the

various NITES components (most of which reside on PCs with

the exception of the tactical applications which reside on a

TAC-4 UNIX computer) as depicted in figure 1. In this

topology, there is no direct interaction between the

components. All interactions are through the central

database. This topology allows ease of integration of COTS

components as it minimizes the integration effort since each

component only has one interconnection.

112

Forecaster
Applications

Network
Communications

Serial
Communications

Tactical
Applications

Briefing
Utility

Figure 1 - NITES Architecture Diagram

Forecaster applications (COTS/GOTS) - Manipulate METOC

data to easily plot, analyze, display on a common

geographical reference.

Serial Communications (Legacy code) - Handles the

ingest and dissemination of METOC data through existing

legacy communication channels.

Briefing (COTS) - Briefing utility used to brief

tactical commanders, flight operators the environmental

conditions that they will be operating in.

Tactical applications (Legacy code and newly developed

code) - Tactical applications take in METOC data to predict

the affects of the environmental conditions on the

environment, tactical equipment, etc.

113

Database (GOTS) - The database is the central

repository for all METOC data.

Network communications (GOTS) - Handles the ingest and

dissemination of METOC data through SIPRNET.

The deployment diagram, as depicted in figure 2,

consists of a NITES Server, a NITES Database Server, and

NITES workstations with a communications package, an

applications package, a database package, a system

controller package, a security package and a briefer package

residing on multiple hardware platforms.

114

M

NITES Database
Server

NITES Server

lljlfSi! Database

8Ä1IIS

pillS
Security
Pkg.

i§MM0ß$m

Display-
Monitor

Security
Pkg.

COMMS

System.
Controller

Applicat

Display Mouse
Monitor

NITES Workstation

Display-
Monitor

Mouse

a.. 4

Figure 2 - Deployment Diagram

115

In the NITES architecture, all interactions are through

the NITES database. However, in the initial delivery of the

NITES software, this architecture was violated since none of

the COTS applications were able to communicate with the

NITES database to retrieve and/or store data and products.

A prototype of a portion of the NITES system will be

developed to demonstrate the NITES architecture where a COTS

application can communicate with the NITES database to

retrieve and store data and products. A system controller

package and the security package are newly developed for the

NITES. The COTS applications packages and the briefer

package will be modified to use wrapper and glue technology

to enable it to communicate with the database package.

These packages will be designed and developed to move the

system in the direction of conforming to the existing

architecture.

This prototype will use an object request broker (ORB)

to marshal events/notifications in a distributed

environment. Because this prototype is being developed

under the Windows NT environment, and DCOM is freely

available with Windows NT, we have chosen to use DCOM as our

ORB.

DCOM components can communicate three ways: within the

same process, out of process and between network nodes. The

component internals do not need to be changed regardless of

116

the deployment decision. The DCOMCNFG and dynamic link

library (DLL) packaging are used to implement the deployment

decision.

Deployment flexibility affords alternative performance

solutions in a distributed network environment. For

example, the Monitor component could be deployed on a

different network node than the Controller component to

reduce CPU load. This solution assumes the sampling rate is

higher than the notification rate.

1.2 INTER-TASK COMMUNICATION

The tasks on the NITES will be implemented to run

asynchronously. Communications are broken down between the

following tasks:

• Monitor/Controller

• Controller/Glue Component

• CBWrapper/Glue Component

• CBWrapper/Controller

The Application Wrapper is responsible for making the

object available to a COTS viewer application.

MONITOR/CONTROLLER

Slides for the briefing package are generated by the

operator using an external COTS/GOTS application. As each

of these slides is generated, it is saved to a directory by

117

the COTS/GOTS application. The system monitor polls the

directory and when a file is found, notifies the controller.

CONTROLLER/GLUE COMPONENT

When the controller receives notification from the

monitor that a new file exists, the controller will create

an instance of the glue component.

CBWRAPPER/CONTROLLER

CBWrapper registers interest in new products with the

controller.

When the controller is notified by the glue component

that a file is successfully stored in the database, it will

broadcast the information to all the wrappers running on

client workstations. It is the responsibility of the

CBWrapper to ignore image types not appropriate for the

current brief. This assumes there is at least one wrapper

running.

CBWRAPPER/GLUE COMPONENT

The CBWrapper requests an image product from the glue

code, which will use the existing database APIs to connect

to the database, retrieves the product and returns it to the

CBWrapper. The request mechanism is used to initialize and

update the brief.

118

2. SUBSYSTEM DESCRIPTION

The object diagram and sequence diagram depicts objects

required to design the update of a briefing package and the

scenario of updating a briefing package in figures 3 and 4

respectively.

MONITOR

The Monitor component is responsible for detecting the

presence of a new object.

CONTROLLER

The controller component is responsible for

coordinating multiple concurrent asynchronous activities.

The controller runs on the application server. It serves

two functions within the system, handling notifications from

the monitor and the glue component.

GLUE COMPONENT

The glue component is responsible for storing and

retrieving objects from an ODBC compliant relational

database.

CBWRAPPER

Wrappers are software code developed to add, modify,

and hide functionality from COTS, GOTS or legacy software

119

components to align them with the overall system

requirements and architecture. In the design, wrapper and

glue code technology is being implemented to enable the COTS

applications to adhere to the existing NITES architecture.

The briefing package consists of Microsoft PowerPoint,

a COTS application package. The PowerPoint application

contains APIs, which can be used by CBWrapper to create the

added functionality of automatically creating and updating

the briefing package in the background.

The PPT APIs used for the wrapper interface include:

Presentations.Add

SIides.Add

SlideShowTransition

SlideShowSetting

Shapes.AddPicture

Shapes.PictureFormat

INITIALIZATION GUI

The Initialization GUI is used to initialize each

component with the number of images, starting from the most

current; the image type; the display duration of each image

in seconds; and the height and width of the display area.

Default values are 24 images, 0 second duration, and display

area equal to the workstation's screen size.

120

CONFIGURATION GUI

The Configuration GUI defines the set of image types

available for the brief. Associated with each image type is

the working directory containing the current set of brief

images and a web server virtual directory corresponding to

the working directory. The CBWrapper uses the configuration

file to initialize the image type options available to the

briefer. The monitor uses the configuration file to build a

list of directories to poll.

The Configuration GUI is not restricted to the image

types settings. It can be used for defining various sets of

key values. For instance, we can use this Configuration GUI

to define the key set values for network configuration, or

application's initial default settings. This provides the

extensibility for future development of applications.

NAMING CONVENTION

The filename associated with each image type consists

of the fields represented the created date and time, the

file format (i.e., gif, jpeg, etc.), and other information

for a particular image (i.e., the channel, the location,

etc.)

The filename begins with the date and time, followed by

other information. For instance, a file named

"20000523.1331.gms5.IR.MODEL_OVERLAY.500HT.NOGAPS" indicates

that the file was created on May 23, 2000, at 13:31. The

121

CBWrapper uses the date and time embedded in the filename "

for updating the continuous brief.

The other information of the filename is used by the

Glue component for storing and retrieving images to and from

the database.

THIN CLIENT TECHNOLOGY

CBWrapper is implemented using modern thin client

technology. When a user opens a HTTP page from a browser,

the CBWrapper is then automatically downloaded and installed

on the client machine. Once the CBWrapper is up and running,

all images needed for creating the brief are dynamically

downloaded from the server using the OpenURL method.

OpenURL uses the current open HTTP connection to transfer

image files. The continuous brief is created on the client

machine using the PowerPoint APIs. The PowerPoint is used to

display the brief.

PUSH TECHNOLOGY

The advantage of using this technique is that the

client needs not to poll the server periodically for new

data. The server notifies its clients (CBWrapper) when new

data (images) arrive. The CBWrapper receives the

notification and compares the image type with the type being

showed. If the image types match, the CBWrapper downloads a

new set of images from the server and updates the brief.

Application (n) Application (1)

T r
displays connects connects displays

I 1 I I
HTTP (IIS), DCOM (ActiveX control)

Wrapper (1)

"▼:
notifies

Requests
Data

Provides
Data

wrapper (n)

 W
notifies

Controller
poll

Directory
(storage)

notifies notifies

Glue component

OBDC
retrieves

Returns
data

stores

commits

Database

Figure 3 - Wrapper & Glue Code Object Diagram

123

OMF

Sharing different formatted data requires a common

representation of data to interpret, send, and receive any

data, any format, anywhere. Within NITES, meteorological

and oceanographic observations, and certain types of

bulletins (SIGMETS, JOTS warnings, and Tropical Cyclone

Warnings, for example) are received and transmitted in an

Extensible Markup Language (XML)-based format called Weather

Observation Markup Format (OMF). OMF preserves the original

text of each observation or bulletin, and also includes

information decoded from the observation/bulletin and other

metadata concerning the message.

OMF solves the data interoperability problem by

providing self-describing tags along with the data so that

the receiving applications can consistently interpret the

data correctly. These self-describing tags are detailed in

the Document Type Definition (DTD). When drafting the NITES

data into OMF, three things must be agreed on: which tags

will be allowed, how tagged elements may nest within one

another and how they should be processed. The first two, the

language's vocabulary and structure, are codified in the

DTD.

OMF is an application of XML, and by its virtue, an

application of SGML. SGML is used extensively within DoD for

documenting of various types of information (military

124

Standards, procurement materials, service manuals). OMF

brings weather observations into the same fold. Thus, the

design goals of OMF are:

• Mark up (annotate) raw observation reports with

additional description and derived, computed

quantities.

• The raw report data must not be modified in any

way, and should be conveniently extractable (by

simply stripping all the tags away).

• OMF must be concise. While providing useful

annotations to a client, OMF markup should not

impose undue overhead on communication channels.

• It should be possible to extend the markup with

additional annotations, without affecting

applications that do not use this information.

The OMF contains the following elements:

• Reports - defines a group of weather observation

reports

• METAR for a single METAR report

• SPECI for a single SPECI report

• UAR for a combined Rawinsonde and Pibal

Observation report

• BTSC for ocean profile data (temperature,

salinity, current)

125

• SYN for a surface synoptic report from a land or

sea station

• Advisories - defines a collection of weather

hazard warnings

• SIGMET - SIGnificant METeorological Information

• Forecasts - defines a set of weather forecasts

• TAF - Terminal Aerodrome Forecasts

• Messages - defines a set of plain-text bulletins.

The following sections define the major elements along

with the minor elements that are relevant to them. In each

section, XML DTD declarations are provided for precise

definition of elements and attributes. The collection of

XML DTD declarations found in this specification can be

arbitrarily extended to add new elements and attributes for

new enhancements. Some of the element attributes are

common. For compactness, they are defined in the following

table.

126

Table 1-1. Basic Attributes of an Observation in OMF

Attribute Brief
Description

Format Description

TStamp Time Stamp unsigned UTC time in seconds
integer since the Epoch,

00:00:00 Jan 1, 1970
UTC. This is the
value returned by a
POSIX function
time(2).
Example:
Tstamp='937507702'

TRange Time a string of Timestamps are in
Interval form seconds since the

"aaa, bbb", Epoch, 00:00:00 Jan
where aaa and 1, 1970 UTC. These
bbb are the values
are unsigned returned
integer by a POSIX function
numbers time(2).
specifying
the beginning Example:
and Trange='937832400,
the end 937915200'
timestamps
of the
interval.

127

LatLon Specificati A string of a The latitude and.
on of a form longitude,
Point on "aaa.bbb, respectively, of a
the globe ccc.ddd", point on the globe,

where in whole and
aaa.bbb and fractional degrees.
ccc.ddd are The
signed numbers are positive
floating for Northern
point latitudes and Eastern
numbers 1ongi tudes, and

negative for Southern
latitudes and
Western longitudes.

The range of the
numbers is [-90.0,
90.0] for latitudes,
(-180.0, 180.0] for
longitudes.

Example:
LatLon='32.433, -
99.850'

LatLons Specificati a string of a A sequence of pairs
on of a form of numbers,
Sequence of "latl, lonl, each pair giving the
Points on lat2, lon2, latitude and
the latn, lonn" longitude of a single
Globe where each point in the

pair sequence, in whole
(latl, lonl, and fractional
etc.) degrees.
are signed
floating See the LatLon
point numbers attribute above for

more details.

Example:
LatLons='3 8.42 0, -
111.125, 36.286, -
111.492, 36.307, -
112.630, 37.700, -
113.223, 38.420, -
111.125' 1

128

Table 1-1. Basic Attributes of an Observation in OMF

Attribute Brief
Description

Format Description

BBox Bounding A string of Specification of the
box, a form bounding box for
which tells "lat-N, lon- an area of interest.
the w, Here lat-N is
latitudal lat-S, lon- the latitude of the
and the E", Northern-most
longitudal where the point of the area,
spans of lats lat-S is the
an area of and Ions are latitude of the
the signed Southern-most point,
globe floating- lon-W is the

point longitude of the
numbers, in Western-most point of
degrees the area, and

lon-E is the Eastern-
most longitude.

It is required that
lat-N >= lat-S.
The left-Ion (lon-W)
may however
be greater than the
right-Ion (lon-E).
For example, a range
of longitudes [-
170,170] specifies
the entire world but
Indonesia. On the
other end, the range
[170, -170] includes
Indonesia only. By
the same token, [-
10,10] pertains to a
21-degree longitude
strip along the
Greenwich meridian,
while [10,-10]
specifies the whole
globe except for that
strip.

Example:
Bbox='60.0, -120.0,
20.0, -100.0'

Bid Station Unsigned WMO Block Station ID,
identificat integer or other

129

ion group

SName Call sign
and full
name of an
observing
station

A string of
the form
"ccccc,
name",
where ccccc
are
the call
letters of
the
station
(ICAO
station
id: 4 or 5
upper-case
letters, may-
be omitted),
name is an
arbitrary-
string
describing
the station

identifier for buoy
or ship
The observing
stations ICAO,
aircraft, or ship
call sign, plus a
plain-text station
name (e.g. "KMRY,
Monterey CA Airport"

Example:
Sname ='KYNL, YUMA
(MCAS) '

Elev Elevation A non-
negative
integer, or
omitted if
unknown.

Station elevation
relative to sea
level, in meters.
This attribute may
specify a surface
elevation of an
observation station,
or an upper-air
elevation for an
upper-air report.

Example:
Elev='16'

130

Table 1-2. OMF Attributes for METAR and SPECI Reports

Attribute Brief
Description

Format Description Req'd
7

TStamp Time Stamp < See Table 1-1-- Yes

LatLon Station
latitude
and
longitude

< see Table 1-1— Yes

Bid Station
Identificat
ion Group

Unsigned
integer

WMO Block
Station ID

Yes

SName Call sign
and full
name of an
observing
station

< see Table 1-1 — Yes

Elev Station
elevation

< see Table 1-1 —
 >

No

Vis Visibility a number of
meters,
omitted, or a
special token
" INF"

Horizontal
visibility in
meters

No

Ceiling Ceiling a number of
feet,
omitted, or a
special token
" INF"

Ceiling in
feet

No

131

Table 1-3. OMF Attributes for the SYN Element

Attribute Brief
Description

Format Description Req'
d?

TStamp Time Stamp < see Table 1-1 Yes

LatLon Station
latitude
and
longitude

<* Qca e Table 1-1 Yes ^ Oc

132

Bid WMO Block
Station
Number

String For a buoy or other
observation
platform, this
id is a combination
of a
WMO region number,
subarea number (per
WMO Code Table
0161),
and the buoy type
and serial number.
This information is
reported in Section
0 of a synoptic
report.

If Section 0
contains a call
sign rather than a
numerical id (as
typical with FM 13
SHIP reports), the
Bid attribute is
computed as
itoa(1000009 + he)
% 2^30, where he is
a numerical
representation of
the call letters
considered as a
number in radix 3 6
notation. For
example, "0000"
hashes
to 0, and "ZZZZ"
hashes to
1,679,615. Note
this formula makes
the Bid attribute a
unique numeric
identifier for the
station.

Yes

SName Call sign
and full
name of an
observing
station

-See Table 1-1---
 >

Yes

Elev Station
elevation

-See Table 1-1 No
 >

133

Title Report
title

String Title defining
type of_ report:
AAXX (FM-12),
BBXX (FM-13),
or ZZYY (FM-18)

Yes

Stype Station
type

String Type of
station:
automated
(AUTO) or
manned (MANN);
defaults to
MANN

No

134

Table 1-4. OMF Attributes for the SYG Element

Attribute Brief
Description

Format Description Req'
d?

T Air
Temperature

positive,
zero, or
negative
number

Air temperature in
degrees
Celsius

No

TD Dew point
Temperature

positive,
zero, or
negative
number

Dew point
temperature in
degrees
Celsius

No

Hum Relative
humidity-

non-negative
number

Relative humidity
in per cent

No

Tmm Extreme
temperature
s
over the
last
24 hours

a string of a
form
"mmmm, MMMM"
or
omitted

Minimum and
maximum
temperatures
(degrees Celsius)
over the last 24
hours

No

P Station
pressure

positive
number

Atmospheric
pressure at
station
level, in
hectoPascals

No

PO Sea level
pressure

positive
number

Atmospheric
pressure at
station,
reduced to sea
level, in hPa

No

Pd Pressure
Tendency

String of
form
"dddd", or
omitted

Pressure tendency
during the 3
hours preceding
the observation

No

Vis Visibility
Number of
meters,
omitted, or
a special
token "INF"

Horizontal
visibility in
meters

Horizontal
visibility in
meters

No

Ceiling Ceiling Number of
feet,
omitted, or a
special token
" INF"

Ceiling in feet No

Wind Wind speed
and
direction

String of
form
"nnn, mm" or
omitted

nnn is a true
direction from
which the wind is
blowing, in
degrees, or VAR if

No

135

" the wind is
variable^ or all
directions or
unknown or waves
confused,
direction
indeterminate."
This is an integer
number within
[0,360), with 0
meaning the wind
is blowing from
true North, 270
stands for the
wind blowing from
due West.
Normally this
number has a
precision of 10
degrees.

mm is the wind
speed in meters
per second.

Table 1-4. OMF Attributes for the SYG Element (Cont.)

Attribute Brief
Description

Format Description Req'
d?

Wx Past and String of See WMO-3 06, Code No
present four tables 4677 and
Weather digits, 4561 for the
conditions "NOSIG", or meaning of the four
and omitted digits. This
phenomena attribute is coded

as "NOSIG" if there
is no significant
phenomenon to
report. The
attribute is
omitted if not
observed or data is
not available (see
ix indicator, Code
table 1860) .

136

Prec Precipitati
on amount

String of
form
"nnn, hh"
or "" or
omitted

nnn is the amount
of precipitation
which has fallen
during the period
preceding the time
of observation. The
precipitation
amount is a non-
negative decimal
number, in mm. hh
is the duration of
the period in which
the reported
precipitation
occurred, in whole
hours. This
attribute is
encoded as "" if no
precipitation was
observed. The
attribute is
omitted if unknown
or not available
(see iR indicator,
Code table 1819).
Sea stations
typically never
report
precipitation.

No

Clouds Amounts and
types of
cloud
cover

String of
five
symbols
"tplmh"
or omitted

The first digit is
the total cloud
cover in octas
(Code table 27 00) .
The second digit is
the cloud cover of
the lowest clouds,
in octas. The other
three symbols are
types of low,
middle, and high
clouds, resp. See
WMO-306 Code tables
for more details.

No

Sea surface
temperature

Positxve,
zero, or
negative
number

Sea surface
temperature in
degrees Celsius

No

Wave Sea wave
period
and height

String of
form
"pp, hh" or

pp is the period of
wind waves

No

137

omitted in seconds, hh is
the height _of wind
waves, in meters.
If a report carries
both estimated and
measured wind
wave data, the
instrumented
information is
preferred.

Table 1-4. OMF Attributes for the SYG Element (Cont.)

Attribute

SDir

Brief
Description
Ship's
course and
speed

Format

String of
form
"nnn, mm" or
omitted.

Description Req
'd?

nnn is a true
direction of
resultant
displacement of
the
ship during the
three hours
preceding the time
o f obs ervat i on.
The number is in
degrees, or VAR if
"variable, or
all directions or
unknown or
waves confused,
direction
indeterminate."
This is an integer
number within
[0,360), with 0
meaning the ship
has moved towards
the true North;
270 means the ship
has moved to the
West. Normally
this number has a
precision of 45
degrees.

No

138

mm is the average
speed made
good during the
three hours
preceding the time
of observation, in
meters per second.

139

Table 1-6. OMF Attributes for the UALEVEL Element

Attribute Brief
Description

Format Description Req'
d?

Ref Reference String - Reference to the Yes
to "TTAA", part of the
sounding "TTBB", etc. sounding from
Part which the level

data were derived
P Pressure positive

number
Atmospheric
pressure at
sounding level, in
hectoPascals

Yes

H Geopotentia Non-negative Geopotential No
1 number height of the
height of

geopotential
meters, or
'SURF' for
surface,
'TROP' for
tropopause,
'MAXW'
for level of
maximum
winds,
'MAXWTOP'
for maximum
wind
level at the
top of the
sounding, or
omitted

reported level, or
a special
height indicator

T Air positive, Air temperature in No
Temperature zero, or

negative
number

degrees
Celsius at the
reported level

DP Dew point positive, Dew point No
temperature zero, or

negative
number

temperature in
degrees Celsius at
the reported
level

Wind Wind speed String of nnn is a true No
and form "nnn, direction from
direction mm" or "nnn,

mm
bbb" or "nnn,
mm
,aaa" or
"nnn, mm

which the wind is
blowing, in
degrees, or VAR if
" the wind is
variable, or all
directions or

140

bbb, aaa" or
omitted

unknown or waves
confused«,
direction
indeterminate."
This is
an integer number
within [0,360),
with 0 meaning the
wind is blowing
from true North,
270 stands for the
wind blowing from
due West. Normally
this number has a
precision of 10
degrees.

mm is the wind
speed in meters
per second.

If specified, bbb
stands for the
absolute value of
the vector
difference between
the wind at
a given level, and
the wind 1
km below that
level, in meters
per second. The
number aaa if
given is the
absolute value of
the vector
difference between
the wind at a
given level, and
the wind 1 km
above that level,
in meters per
second.

141

Table 1-7. OMF Attributes for the BTSC Element

Attribute Brief
Description

Format Description Req
'd?

TStamp Time Stamp Yes ■^ bee ia.D-Le J. ±
 >

LatLon Latitude Yes *< oee iaDie x x
and >
Longitude
of
observation

Bid Station positive For a buoy or other Yes
identifier integer observation
group platform, this ID is a

combination of a
WMO region number,
subarea
number (per WMO-306
Code Table
0161), and the buoy
type and serial
number. This
information is
reported
in Section 4 of a BTSC
report.
If Section 4 contains
a call sign rather
than a numerical id,
the Bid attribute
is computed as
itoa(1000009 +
he), where he is a
numerical
representation of the
call letters
considered as a number
in radix 3 6
notation. For example,
"0000" hashes to 0,
and "ZZZZ" hashes to
1,679,615. Note this
formula makes the Bid
attribute a unique
numeric identifier for
the station.

SName Call sign string Ship's call sign, if
reported

Yes

Title Report type string "JJYY" - FM 63 X Ext.
BATHY report

Yes

142

"KKXX" - FM 64 IX
TESAC report_
"NNXX" - FM 62 TRACKOB
report

Depth Water depth positive
number

Total water depth at
point of
observation

No

143

Table 1-8. OMF Attributes for the BTID Element

Attribute Brief
Description

Format Description Reg
'd?

DZ Indicator "7" or "8" Indicator for method No
for or of digitization
digitizatio omitted used in the report (ki
n field). See

WMO-3 06 Code Table
2262.
Required for BATHY
and TESAC
reports

Rec Instrument 5-digit Code for expendable No
type code code bathythermograph

(XBT) instrument
type and fall rate
(WMO-3 06 Code
Table 1770)

WS Wind speed " 0", " 1", Indicator for units No
units code HO" » *2 "

or omitted
of wind speed and
type of
instrumentation (iU
field). See
WMO-3 06, Code Table
1853.

Curr-s Method of n O " » *3 ii Indicator for the No
current " 4", or method of current
speed omitted measurement Us field) .
measurement See WMO-306

Code Table 22 66.
Curr-d Indicators 3-digit Indicators for the No

for the numerical method of
method of code subsurface current
subsurface measurement
Current U6k4k3 codes) . See
measurement WMO-3 06, Code Tables

2267, 2265, and 2264.
AV-T Averaging " 0", " 1" , Code for the No

period for M O " ii *!3 » averaging period for
sea or omitted sea temperature UT
temperature (if no

sea
temperatur
e
data are

code). See WMO-306,
Code Table 2 604

reported)
AV-SAL Averaging " 0 ", " 1", Code for the No

period for n o " " *3 H averaging period for
salinity. or omitted sea salinity Us code).

144

(if no See WMO-3 06, Code
salinity Table 2604 _
data are
reported)

AB-Curr Averaging " 0", " 1", Code for the No
period for ii o " " *2 » averaging period for
surface or omitted surface current
Current (if no direction and speed
direction current Uccode). See WMO-306,
and speed data

are
reported)

Code
Table 2604

Sal Method of II 1 II II O » Code for the method No
salinity/de "3", or of salinity/depth
pth omitted measurement (k2 code) .
measurement (if no

salinity
data are
reported)

See WMO- 3 06, Code
Table 2263.

145

Table 1-9. OMF Attributes for the BTAIR Element

Attribute

Wind

Brief
Description
Air
temperature

Wind vector

Format

Positive,
zero,
or negative
number, or
omitted
String of
form
"nnn,mm",
or
omitted

Descrxption

Air temperature just
above the sea
surface, in degrees
Celsius.

Here nnn is a true
direction from which
the wind is blowing,
in degrees, or VAR if
" the wind is
variable, or all
directions or unknown
or waves confused,
direction
indeterminate." This
is an integer number
within [0,360), with
0 meaning the wind is
blowing from the true
North;, 27 0 means the
wind is blowing from
the West. Normally
this number has a
precision of 10
degrees.
mm is the wind speed
in meters per
second.

Req
'd?
No

No

Table 1-10. OMF Attributes for the BTLEVEL Element

Attribute Brief
Description
Depth

Water
temperature

Salinity

Format

Non-
negative
number
Positive,
zero, or
negative
number, or
omitted
Positive
number, or
omitted

Description

Depth of the level in
meters.

Water temperature at
the reported
level.

Salinity at the
reported level, in
parts per thousand,

Req
'd?
Yes

No

No

146

c Current
vector
String of
form

"nnn,mm",
or
omitted

nnn is the true
direction toward
which the sea current
is moving, in
degrees, or VAR if
"the current is
variable, or all
directions or
unknown, direction
indeterminate." This
is an integer number
within [0,360), with
0 meaning the current
flows toward true
North; 270 means the
current is flowing
toward the West.
Normally this number
has a precision of 10
degrees.
mm is the speed of
current in meters
per second.

No

Table 1-11. OMF Attributes for the TAF Element

Attribute Brief
Description

Format Description Req'
d?

TStamp Time Stamp < See Table 1-1
->

Yes

LatLon Latitude
and
Longitude
of
observation

See Table 1-1
->

Yes

Bid Block
Station ID

positive
integer

WMO Block Station ID
of the reporting
station

Yes

SName Call sign string Ship's call sign, if
reported

Yes

Table 1-12. OMF Attributes for the SIGMET Element

Attribute Brief
Description

Format Description Req'
d?

class SIGMET type "CONVECTIVE
tl

/

Identifier for the
type of SIGMET

Yes

147

id

TStamp

BBox

Identifier
for a
particular
advisory
Time Stamp

Bounding
box
for
advisory-
area

"HOTEL",
"INDIA",
"UNIFORM",
"VICTOR",
"WHISKEY"
String

message

Identifier for the
advisory; value
depends on the
advisory class.
See Table 1-1

->

See Table 1-1
->

Yes

Yes

Yes

Table 1-13. OMF Attributes for the EXTENT Element

Attribute

Shape

LatLons

Brief
Description
Type of
area
specificati
on
List of
latitudes
and
Longitudes
defining
the area

Format

"AREA",
"LINE",
"POINT"

Positive,
zero, or
Negative
numbers in
lat/lon
pairs

Descrxption

Type of area shape
specified

Req'
d?

Yes

Control points
(vertices) for a
polygon/poly1ine
representing the
affected area

Yes

148

Table 1-14. OMF Attributes for the MSG Element

Attribute Brief
Description

Format Description Reg
'd?

id Message A NMTOKEN, Designator for the Yes
identifier a

four-to-
six-
character
string
of a form
T1T2A1A2Ü

message type
and subtype (T1T2),
area (A1A2) ,
and sequence code
(ii) of the message,
as described in WMO-
386.

Type Message 2-letter Designator for the Yes
type string

(T1T2)
message type
and subtype (T1T2) as
specified in
WMO-386, Tables A and
Bl through B6

TStamp Time Stamp < See Table 1-1
-->

Yes

SName Originating
station
name

String String containing the
identification
of the station that
originated the
message (normally its
ICAO call
sign)

Yes

BBB Annotation 3-character So-called "BBB No
group string groups" from the

abbreviated message
line. They
indicate that the
message has been
delayed, corrected or
amended. A
BBB group can also be
used for
segmentation. See the
WMO-386
for more detail.

Descr Description String Keywords and other
information
describing the
message.

No

BBox Bounding
box

< See Table 1-1
-->

No

149

Table 1-15 Layer Parameter Codes

layer Description Example
adiabatic-cond Adiabatic

condensation level
(parcel lifted from
surface)

(layer adiabatic-
cond)

atm-top Level of the top of
the
atmosphere

(layer atm-top)

cloud-base Cloud base level (layer cloud-base)
cloud-top Cloud top level (layer cloud-top)
conv-cld-base Level of bases of

convective
clouds

(layer conv-cld-
base)

conv-cld-top Level of tops of
convective
clouds

(layer conv-cld-top)

entire-atm Entire atmosphere (layer entire-atm)
entire-ocean Entire ocean (layer entire-ocean)
height Height above ground

(meters)
(layer height 150 0)

height-between Layer between two
heights above ground
in hundreds meters
(followed by top and
bottom level values)

(layer height-
be twe en 50
30)
for layer between
5000 and 3000
meters above ground

height-between-ft Layer between two
heights above ground,
in feet (followed by
top and bottom level
values)

(layer height-
be tween-f t
15000 10000)

height-ft Height above ground
(feet)

(layer height-ft 50)

high-cId-base Level of high cloud
bases

(layer high-cld-
base)

high-cld-top Level of high cloud
tops

(layer high-cld-top)

hybrid Hybrid level
(followed by level
number)

(layer hybrid 1)

hybrid-between Layer between two
hybrid levels
(followed by top and
bottom level numbers)

(layer hybrid 2 1)

isobar Level of an isobaric
surface
(followed by the

(layer isobar 50 0)

150

isobar value
of the surface in
hectoPascals (hPa)
(1000, 975, 950,
925,900,850,800,750,7
00,65
0,600,550,500,450,400
,350,3
00,250,200, 150,100,
70, 50,
30, 20,10)

isobar-between Layer between two
isobaric surfaces
(followed by top and
bottom isobar values
in kPa, separated by
a space)

(layer isobar-
be tween 50
100) for layer
between 500 and 1000
hPa

isobar-between-mp Layer between two
isobaric
surfaces, mixed
precision
(followed by pressure
of top in kPa and
1100 minus pressure
of bottom in hPa)

(layer isobar-
be tween-mp
50 100) for layer
between 500 and 1000
hPa

151

Table 1-15 Layer Parameter Codes (Cont.)

Layer
isobar-between-xp

Description

isotherm-0

land-depth

land-depth-between

land-height-cm

land-isobar

land-isobar-
between

low-cld-base

low-cld-top

max-wind
mid-cld-base

mid-cld-top

msl
msl-height

Layer between two
isobaric surfaces,
extra precision
(followed by top and
bottom isobar values
expressed as 1100
hPa-isobar level,
separated by a space)
Level of the zero-
degree (Celsius)
isotherm (or freezing
level)

Example
(layer isobar-
be tween 600
100) for layer
between 500 and
1000 hPa

[layer isotherm-0)

Depth below land
surface in
centimeters
Layer between two
depths in
ground (followed by
the depth of the top
of the layer and the
depth of the bottom
of the layer
centimeters)
Height level above
ground
(high precision)
(followed by
height in
centimeters)

(layer land-depth
5.0)

(layer land-depth-
between
0 30) for layer
from ground surface
to 3 0 cm depth

(layer land-height-
cm 50)

Pressure above ground
level in hPa
Layer between two
isobars abive levels
(followed by top and
bottom isobaric
levels in hPa)
Level of low cloud
bases
Level of low cloud
tops
Level of maximum wind
Level of middle cloud
bases
Level of middle cloud
tops
Mean sea level

(layer land-isobar
500)
(layer land-isobar-
be tween
500 1000)

(layer low-cld-
base)
[layer low-cld-top)

[layer max-wind)
(layer mid-cld-
base)
(layer mid-cld-top)

Height above mean sea
(layer msl)
(layer msl-height

152

level 50)
(in meters) _

ms1-height-between Layer between two (layer msl-height-
heights above mean be twe en
sea level in hundreds 10 5) for layer
of meters (followed between 1000 and
by top and bottom 500 meters above
height values) ground

ms1-height-ft Height above mean sea (layer msl-height-
level ft 5000)
(in feet)

sea-bottom Bottom of the ocean (layer sea-bottom)
sea-depth Depth below the sea (layer sea-depth

surface 50)
(meters)

sigma Sigma level in (layer sigma 9950)
1/10000 for sigma

level .995
s i gma-be tween Layer between two (layer sigma-

sigma surfaces between 99.5
(followed by top and 100.0) for layer
bottom sigma values between .995 and
expressed in 1/100, 1.0
separated by a space)

153

Table 1-15 Layer Parameter Codes (Cont.)

Layer Description Example
sigma-between-xp Layer between two

sigma levels
(followed by top and
bottom sigma values
expressed as 1.1-
sigma)

(layer sigma-
between-xp
.105 .100) for layer
between .995 and 1.0

surface Earth's surface (layer surface)
theta Isentropic (theta)

level (followed by
potential temperature
in degrees K)

(layer theta 3 00)

theta-between Layer between two
isentropic surfaces
(followed by top and
bottom values
expressed as 475-
theta in degrees K)

(layer theta-between
150
200)

tropopause Level of tropopause
(top of troposphere)

(layer tropopause)

154

PowerPoint API Function Description Table

Method Description Example
Application Represents the

entire Microsoft
PowerPoint
application.

MyPath =
Application.Path

ActivePresentati
on

Returns a
Presentation
object that
represents the
presentation open
in the active
window. (Read-
only)

Application
.ActivePresentation.Save
As MyPath

Presentations Returns a
Presentation
object that
represents the
presentation in
which the
specified document
window or slide
show window was
created. (Read-
only)

firstPresSlides =
Windows(1).Presentation.
Slides.Count

Windows(2) .Presentation.
PageSetup _

.FirstSlideNumber =
firstPresSlides + 1

Presentations .Ad
d

Creates a
presentation.
Returns a
Presentation
object that
represents the new
presentation.

This example creates a
presentation, adds a
slide to it, and then
saves the presentation.
With Presentations.Add

.Slides.Add 1,
ppLayoutTitle

.SaveAs "Sample"
End With

Slides A collection of
all the Slide
objects in the
specified
presentation.

Use the Slides property
to return a Slides
collection:
ActivePresentation.Slide
s.Add 2, ppLayoutBlank

155

Slides.Add

Shapes

Creates a new
slide and adds it
to the collection
of slides in the
specified
presentation.
Returns a Slide
object that
represents the new
slide.

Shapes.AddPictur
e

A collection of
all the Shape
objects on the
specified slide.
Each Shape object
represents an
object in the
drawing layer,
such as an
AutoShape,
freeform, OLE
object, or
picture.
Creates a picture
from an existing
file. Returns a
Shape object that
represents the new
picture.

This example adds a
blank slide_at the end
of the active
presentation.
With
ActivePresentation.Slide
s

.Add .Count + 1,
ppLayoutBlank
End With
Use the Shapes property
to return the Shapes
collection. The
following example
selects all the shapes
on myDocument.
Set myDocument =
ActivePresentation.Slide
s(l)
myDocument.Shapes.Select
All

Set myDocument =
ActivePresentation.Slide
s(l)

myDocument.Shapes.AddPic
ture "c:\microsoft
officeV* & _

"clipart\music.bmp",
True, True, 100, 100,
70, 70

156

Shapes.PictureFo Contains Set myDocument =
rmat properties and ActivePresentation.Slide

methods that apply s(l)
to pictures and With
OLE objects. The myDocument.Shapes(1).Pic
LinkFormat object tureFormat
contains .Brightness = 0.3
properties and .Contrast = 0.7
methods that apply- .ColorType =
to linked OLE msoPictureGrayScale
objects only. The .CropBottom = 18
OLEFormat object End With
contains
properties and
methods that apply
to OLE objects
whether or not
they're 1inked.

SlideShowTransit Contains With
ion information about ActivePresentation.Slide

how the specified s(l).SlideShowTransition
slide advances .Speed =
during a slide ppTransitionSpeedFast
show.

End With

SlideShowSetting Represents the With
slide show setup ActivePresentation.Slide
for a ShowSettings
presentation. .RangeType =

ppShowSlideRange
End With

157

THIS PAGE IS INTENTIONALLY LEFT BLANK

158

APPENDIX H. VISUAL BASIC IMPLEMENTATION

1. Configuration GUI (CBcfg)

VERSION 5.00
Begin VB.Form CBform

BackColor =
Caption =
ClientHeight =
ClientLeft =
ClientTop =
ClientWidth
LinkTopic =
ScaleHeight =
ScaleWidth
StartUpPosition =
Begin VB.TextBox

Height
Left
Tablndex
Tag
Top
Width

End
Begin VB.TextBox TypeText

&H80000004&
"CBcfg"
9195
60
345
8490
" Forml"
9195
8490
3 'Windows

VirtualDirText
375
1080
3

7320
6375

Default

Height = 375
Left = 1080
Tablndex = 1
Top = 5160
Width = 6375

End
Begin VB.CommandButton Delete

Caption = "Delete"
Enabled = 0
BeginProperty Font

Name =
Size =
Charset =
Weight =
Underline =
Italic =
Strikethrough =

EndProperty
Height = 375
Left = 4440
Tablndex = 6
Top = 8160
Width = 1335

End
Begin VB.CommandButton Add

Caption = "Set'
Enabled = 0
BeginProperty Font

Name = "MS Sans
Size = 9.75
Charset = 0

'False

"MS Sans
9.75
0
700
0
0
0

Serif"

'False
'False
'False

False

Serif"

159

Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height = 375
Left = 6120
Tablndex = 7
Top = 8160
Width = 1335

End
Begin VB.CommandButton Cancel

Caption = "Cancel it
BeginProperty Font

Name "MS Sans Serif"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height = 375
Left = 2760
Tablndex = 5
Top = 8160
Width = 1335

End
Begin VB.CommandButton OK

Caption = "OK"
BeginProperty Font

Name "MS Sans Serif"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height = 375
Left = 1080
Tablndex = 4
Top = 8160
Width = 1335

End
Begin VB.TextBox Locat ionText

Height = 375
Left = 1080
Tablndex = 2
Tag = It O H

Top = 6240
Width = 6375

End
Begin VB.ListBox dataList

Height = 3570
Left = 1080
Tablndex = 0
Top = 720

160

Width = 6375
End
Begin VB.Label Label2

Caption = "Virtual directory (optional):"
BeginProperty Font

Name "MS Sans Serif"
Size 9.75
Charset 0
Weight 700
Underline 0 •False
Italic 0 'False
S t r i ke through 0 'False

EndProperty
Height = 255
Left . = 1080
Tablndex = 11
ToolTipText = "A virtual directory associated

with the key used by the Web server."
Top = 6840
Width = 2775

End
Begin VB.Label Label4

Caption = "Key:"
BeginProperty Font

Name "MS Sans Serif"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height = 255
Left = 1080
Tablndex = 10
ToolTipText = "An image type or any other

variable name."
Top = 4680
Width = 615

End
Begin VB.Label Label3

Caption = "Directory:"
BeginProperty Font

Name "MS Sans Serif"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 ■False

EndProperty
Height = 255
Left = 1080
Tablndex = 9
ToolTipText = "An actual directory associated

with the key."
Top = 5760
Width = 1095

161

End
Begin VB.Label Label1

Caption = "Current configuration:"
BeginProperty Font

Name = "MS Sans Serif"
Size = 9.75
Charset = 0
Weight = 700
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

EndProperty
Height = 255
Left = 1080
Tablndex = 8
ToolTipText = "The current setting for

Continuous Brief application."
Top = 240
Width = 2295

End
End
Attribute VB_Name = "CBform"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

File: CBform.frm
Date Author Histor
5/31/2000 Tarn Tran Created.

CBcfg is an utility application that provides a
Graphical User Interface (GUI) for setting the image
type and its location. This application supports the
configuration of CBWrapper.

,!,.**.*.******

String variables that hold the locations where to find
the configuation file (cbdata.cfg), and the temporary
directory for this application during run time.

***,;.,!,.*.,,.*

Private cfgfile As String
Private cfgtmp As String
**^#Vk.,(r.(r.Ji.,t,t.k,t

Unload the CBcfg form when the Cancel button is clicked.

Private Sub Cancel_Click()
Unload Me

End Sub
■ *************** **

162

' Display information for each record selected from the
' current configuration list box.
i

Private Sub dataList_Click()
Dim listStr As String
Dim typeStr As String
Dim locationStr As String
Dim virtualStr As String

listStr = dataList.Text
Call linelnfo(listStr, typeStr, locationStr,

virtualStr)
' Display the key name in the Key text box.
TypeText.Text = typeStr
' Display the directory associated with the key in the
' Directory text box.
LocationText.Text = locationStr
' Display the virtual directory associated with the key
' in the Virtual Directory text box
VirtualDirText.Text = virtualStr
Add.Enabled = False
Delete.Enabled = True

End Sub
**

Tasks done when deleting an item from the list.
First, copy all lines from the cfgfile to the cfgtmp
file except the line that's being deleted. Then copy
back to the cfgfile from the cfgtmp.

**
Private Sub Delete_Click()

Open cfgfile For Input As #1
Open cfgtmp For Output As #2
Do While Not E0F(1)

Line Input #1, inputStr
If Not (InStr(l, inputStr, TypeText.Text & "=",

vbTextCompare) > 0) Then
Print #2, inputStr

End If
Loop
Close #1
Close #2
' Copy the cfgtmp to the cfgfile
Open cfgtmp For Input As #1
Open cfgfile For Output As #2
Do While Not EOF(l)

Line Input #1, inputStr
Print #2, inputStr

Loop
Close #1
Close #2
Call updateList

End Sub
i**

i

' Tasks done when the application is load.

163

This requires two system environment variables set,
which are CB_HOME, where the cbdata.cfg is located, and
CB_TMP, where the temporary file is created.

**
Private Sub Form_Load()

cfgfile = Environ("CB_HOME") &. " \cbdata. cfg"
cfgtmp = Environ ("TEMP") &. " \cbdata_. tmp"
Call updateList

End Sub
**

Activate the Add button if new value is enterred from
the Image type box.

**
Private Sub KeyText_Change()

Add.Enabled = True
End Sub

** ************

Save the changes (if any), and close the CBcfg form
when the OK button is clicked

**
Private Sub OK_Click()

If (Add.Enabled) Then
Call Add_Click

End If
Unload Me

End Sub
**

The linelnfo subroutine parses a line input from the
configuration file (cbdata.cfg). It separates information
of the key, the directory, and the virtual directory
from the line string input.
Parameters:

in:
searchStr - the string is being parsed,

in/out:
K - a variable that holds the key string
D - a variable that holds the directory string
V - a variable that holds the virtual directory

string

**
Private Sub linelnfo(searchStr As String, K As String, D As
String, V As String)

istart = 1
istop = 0
istop = InStr(istart, searchStr, "=", vbTextCompare)
' Get the key string
K = Mid(searchStr, istart, istop - 1)
istart = istop + 1
istop = InStr(istart, searchStr, "|", vbTextCompare)

' Get the directory string

164

If istop > istart Then
D = Mid(searchStr, istart, istop - istart)
istart = istop + 1
'Get the location string
V = Mid(searchStr, istart)

Else
D = Mid(searchStr, istart)
V =

End If
End Sub
**

Tasks done when adding an item to the list. First, check
if there is any line from cfgfile that has the same key-
value as the added item. Then update it with the new
value. Otherwise, add a new line (item) to the cfgfile.

**

Private Sub Add_Click()
Add.Enabled = False
Open cfgfile For Input As #1
Open cfgtmp For Output As #2

' Check for whether or not the image type exists.
Do While Not E0F(1)

Line Input #1, inputStr
If Not (InStr(l, inputStr, TypeText.Text & "=",

vbTextCompare) > 0) Then
' Write to a temporary file
Print #2, inputStr

End If
Loop
If (StrCompC", VirtualDirText.Text, vbTextCompare) =

0) Then
Print #2, TypeText.Text & "=" & LocationText.Text

Else
Print #2, TypeText.Text & "=" & LocationText.Text &

"|" & VirtualDirText.Text
End If
Close #1
Close #2

' Copy the cfgtmp to the cfgfile
Open cfgtmp For Input As #1
Open cfgfile For Output As #2
Do While Not EOF(l)

Line Input #1, inputStr
Print #2, inputStr

Loop
Close #1
Close #2
Call updateList

End Sub
**

Activate the Add button if new value is enterred from
the Key text box.

**
Private Sub TypeText_Change()

165

Add.Enabled = True
End Sub
**

Activate the Add button if new value is enterred from
the Directory text box.

**

Private Sub locationText_Change()
Add.Enabled = True

End Sub
**

Refresh the GUI after adding or deleting an item from
the list.

**
Private Sub updateList()

Dim intFile As Integer
dataList.Clear

intFile = FreeFileO
Open cfgfile For Input As #intFile
Do While Not EOF(intFile) ' Check for end of file.

Line Input MntFile, inputStr ■ Read line of data.
dataList.Addltem inputStr

Loop
Close #intFile
TypeText.Text = ""
LocationText.Text = ""
VirtualDirText.Text - "
Add.Enabled = False
Delete.Enabled = False

End Sub
**

Activate the Add button if new value is enterred from
the Virtual Directory text box.

^i***,^,^

Private Sub VirtualDirText_Change()
Add.Enabled = True

End Sub

2. Application Wrapper (CBWrapper)

VERSION 5.00
Object = "{48E59290-9880-llCF-9754-00AA00C00908}#1.0#0"

"MSINET.OCX"
Begin VB.UserControl Webinterface

BackColor
ClientHeight
ClientLeft
ClientTop
ClientWidth
ScaleHeight
ScaleWidth

&H80000001&
5475
0
0
8430
5475
8430

Begin InetCtlsObjects.Inet Inetl

166

Left = 120
Top = 120
_ExtentX = 1005
_ExtentY = 1005
_Version = 393216

End
Begin VB.TextBox ImagesText

BeginProperty Font
Name "Arial"
Size 9.75
Charset 0
Weight 700
Under1ine 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height = 375
Left = 5880
Tablndex = 7
Text = "24"
Top = 1680
Width = 735

End
Begin VB.TextBox HeightText

BeginProperty Font
Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height = 375
Left = 5880
Tablndex = 6
Text = "540"
Top = 2520
Width = 735

End
Begin VB.TextBox WidthText

BeginProperty Font
Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height = 375
Left = 5880
Tablndex = 5
Text = "720"
Top = 3360
Width = 735

End
Begin VB.TextBox DurationText

167

BeginProperty Font
Name = "Arial"
Size = 9.75
Charset = 0
Weight = 700
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

EndProperty
Height = 375
Left = 5880
Tablndex = 4
Text = "0"
Top = 4200
Width = 735

End
Begin VB.CommandButton Start

Caption = "Start"
BeginProperty Font

Name = "Arial"
Size = 9.75
Charset = 0
Weight = 7 00
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

EndProperty
Height =
Left
Tablndex =
Top
Width

End
Begin VB.CommandButton

Caption =
BeginProperty Font

Name
Size
Charset
Weight = 700
Underline = 0
Italic = 0
Strikethrough = 0

EndProperty
Height = 495
Left = 720
Tablndex = 2
Top = 4080
Width = 1215

End
Begin VB.ComboBox ImageType

BeginProperty Font
Name = "Arial"
Size = 9.75
Charset = 0
Weight = 700
Underline = 0 'False
Italic = 0 'False

0
0

495
720
3
2400
1215

Default
"Default"

"Arial"
9.75
0

'False
'False
1 False

168

Strikethrough 0 'False
EndProperty
Height = 360
Left = 720
Tablndex = 1
Text = "Select an image type"
Top = 1680
Width = 2895

End
Begin VB.CommandButton Stop

BackColor = &H00C0C0C0&
Caption = "Stop"
BeginProperty Font

Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough = 0 'False

EndProperty
Height = 495
Left = 720
MaskColor = &H80000004&
Tablndex = 0
Top = 3240
Width = 1215

End
Begin VB.Label images

BackColor = &H80000001&
Caption = "Images:"
BeginProperty Font

Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
ForeColor = &H8000000E&
Height = 255
Left = 4800
Tablndex = 14
Top = 1680
Width = 855

End
Begin VB.Label Label1

BackColor = &H80000001&
Caption = "Height:"
BeginProperty Font

Name "Arial"
Size = 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

169

EndProperty
ForeColor = &H8000000E&
Height = 255
Left 4800
Tablndex = 13
Top = 2520
Width 735

End
Begin VB.Label Label2

BackColor = &H80000001&
Caption = "Width:"
BeginProperty Font

Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
ForeColor = &H8000000E&
Height = 255
Left 4800
Tablndex = 12
Top 3360
Width 735

End
Begin VB.Label Label3

BackColor = &H80000001&
Caption = "Duration:"
BeginProperty Font

Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 -False
Italic 0 'False
Strikethrough 0 'False

EndProperty
ForeColor = &H8000000E&
Height = 255
Left 4800
Tablndex = 11
Top = 4200
Width 855

End
Begin VB.Label Label4

BackColor = &H80000001&
Caption = "Second(s)"
BeginProperty Font

Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty

170

ForeColor =
Height
Left
Tablndex =
Top =
Width

End
Begin VB.Label Label5

Alignment =
BackColor =
Caption =
BeginProperty Font

Name
Size
Charset
Weight
Underline
Italic
Strikethrough

EndProperty
ForeColor =
Height
Left
Tablndex =
Top =
Width

End
Begin VB.Label type

BackColor =
Caption =
BeginProperty Font

Name
Size
Charset
Weight
Underline
Italic
S t r i ke through

EndProperty
ForeColor =
Height
Left
Tablndex =
Top =
Width

End

&H8000000E&
255
6840
10
4200
975

2 'Center
&H80000001&
"CONTINUOUS BRIEF'

"MS
18
0
700
0
0
0

Sans Serif"

'False
'False
'False

&H8000000E&
495
2280
9
360
3975

&H80000001&
"Image type:

"Arial"
9.75
0
700
0
0
0

False
False
'False

&H8000000E&
255
720
8
1200
1215

End
Attribute
Attribute
Attribute
Attribute
Attribute

VB_Name = "Webinterface"
VB_GlobalNameSpace = False
VB_Creatable = True
VB_PredeclaredId = False
VB_Exposed = True

■##

'# File: Webinterface.ctl
'# Date Author History
'# 5/31/2000 Tarn Tran Created.
■##

Option Explicit

171

API.

brief

The Continuous Brief wrapper (CBWrapper) is "an ActiveX
Control that represents the Graphical User Interface
(GUI) via the Web browser (Internet Explorer). It allows
an user to select the type of images that he/she wants
to view. Also, it allows the user to set the number of
images, the size, and the duration for the display.

Private mControllerConnector As ControllerConnector
Private mMonitor As Monitor
Private mMonitorConnector As MonitorConnector
Private WithEvents mController As Controller
Attribute mController.VB_VarHelpID = -1

' Get reference to Application object from the PowerPoint

Public myPPT As PowerPoint.Application
Public AppRunning As Boolean
Private BriefStarted As Boolean
Private downloadFolder As String
Private cfgFolder As String
Private ServerURL As String

Reset the Continuous Brief GUI to its default values.
Set slide show to fullscreen size.
Set number of images to 24
Set duration of the slide show to 0.

**
Private Sub Default_Click()

ImageType.Text = "Select an image type"
ImagesText.Text = "24"
HeightText.Text = "540"
WidthText.Text = "72 0"
DurationText.Text = "0"

End Sub

**

Update the brief.
Use the GetlmageDir method from the Controller object
to get the location of the files.
Use the Controller_UpdateBrief method to update the

**

Private Sub Start_Click()
Dim imageloc As String
BriefStarted - True
Call mController_UpdateBrief(ImageType.Text)

End Sub

>**

Stop the slide show.

172

Terminate the background running PowerPoint application.
Free up the un-used object.
Reset the AppRunning flag to false.

**

Private Sub Stop_Click()
If AppRunning Then

myPPT.ActivePresentation.Close
myPPT.Quit
Set myPPT = Nothing
AppRunning = False
BriefStarted = False

End If
End Sub

i**

' Initialize references to the Monitor and Controller
objects.

Private Sub UserControl_Initialize()

Set mControllerConnector = New ControllerConnector
Set mController = mControllerConnector.Controller
Set mMonitorConnector = New MonitorConnector
Set mMonitor = mMonitorConnector.Monitor
AppRunning = False
BriefStarted = False

1 Add image types to the drop-box in the Continuous
Brief GUI

Dim intFile As Integer ' FreeFile variable
Dim inputStr As String
Dim cfgFile As String
Dim typeStr As String
Dim locationStr As String
Dim virtualDirStr As String
Dim tmpFolderStr As String
Dim tmpFileStr As String
Dim downloadFileStr As String

' Set values for the URL, download folder, and a
temporary filename

' %%%%%%%%%%%%%%%%%%%%%%
' Change config here:
ServerURL = "ht tp://tampc.spawar.navy.mi1/"
' %%%%%%%%%%%%%%%%%%%%%%
cfgFile = "cbdata.cfg"
downloadFolder = Environ("TEMP") & "\cbdownload"
cfgFolder = downloadFolder & "\cbdata"
tmpFileStr = cfgFolder & "\" & cfgFile

1 Download the "cbdata.cfg" file
downloadFileStr = ServerURL & "/" & cfgFile

' Create a temporary directory for downloading data
Call createFolder(downloadFolder)

173

Call createFolder(cfgFolder)
Call downloadFile(downloadFileStr, tmpFileStr)

intFile = FreeFileO
Open tmpFileStr For Input As #intFile
Do While Not EOF(intFile)

Line Input #intFile, inputStr
Call linelnfo(inputStr, typeStr, locationStr,

virtualDirStr)
ImageType.Addltem typeStr

Loop
Close #intFile

End Sub

**

Receive Controller event to do the update for the brief.
Parameters:

in: DataType - the data (images) type
in: imageDir - the directory where to find the

images.

**

Private Sub mController_UpdateBrief(DataType As String)

' Check for the right type of data that the CBWrapper
is showing.

If (StrComp(ImageType.Text, DataType,. vbTextCompare) =
0) And BriefStarted Then

Dim virtualDir As String
Dim fileListName As String
Dim tmpFileStr As String
Dim tmpURLStr As String
Call mController.Getlmagelnfo(ImageType.Text,

ImagesText.Text, _
virtualDir,

fileListName)
' Local variables declarations
Dim myArray() As String
Dim myPres As Presentation
Dim fs, f, fc, fl, i, j, K
Dim s As Slide
Dim LeftVal As Long
Dim TopVal As Long
Dim imageW As Long
Dim imageH As Long
Dim ImgFile As String
Dim intFile As Integer
Dim inputStr As String

' Download the list of image filenames from server
tmpURLStr = ServerURL & virtualDir &

"/CB_listfile/" & fileListName
tmpFileStr = cfgFolder & "\" & fileListName
Call downloadFile(tmpURLStr, tmpFileStr)

' Download image files from server
intFile = FreeFileO

174

inputStr

object.

Open tmpFileStr For Input As #intFile
Do While Not EOF(intFile)

Line Input #intFile, inputStr
tmpURLStr = ServerURL & virtualDir & "/" &

tmpFileStr = downloadFolder & "\" & inputStr
Call downloadFile(tmpURLStr, tmpFileStr)

Loop
Close #intFile

1 Get reference to the PowerPoint Application

On Error Resume Next
Set myPPT = GetObject(, "PowerPoint.application")
If Err.Number <> 0 Then

Set myPPT =
CreateObject("PowerPoint.application")

End If

' Set the AppRunning flag so that it will be
1 checked when the STOP button is clicked.
AppRunning = True

' Stop the current running slide show (if any)
If myPPT.Presentations.Count <> 0 Then

myPPT.ActivePresentation.Close
End If

' Create new presentation with the new update data
Set myPres = myPPT.Presentations.Add(True)

file system

images,

fc.Count

' Create a FileSystemObject for manipulating the

Set fs = CreateObject("Scripting.FileSystemObject")
Set f = fs.GetFolder(downloadFolder)
Set fc = f.Files
i = 1
K = 1

' Store all filenames from the image directory
1 to an array for sorting purpose.
ReDim myArrayd To fc.Count)
For Each fl In fc

myArray(i) = fl.Name
i = i + 1

Next
' Sort the array.
Call mMonitor.dhBubbleSort(myArray)

' Calculate the positions and dimensions for the

Call GetDimensions(LeftVal, TopVal, imageW, imageH)

' Add the images to the PowerPoint presentation.
For j = (fc.Count - ImagesText.Text + 1) To

ImgFile = downloadFolder & "\" & myArray(j)
myPres.Slides.Add K, ppLayoutBlank

175

myPres.Slides.Item(K).Shapes.AddPicture
ImgFile, True, True, _

LeftVal, TopVal, imageW, imageH
K = K + 1

Next
'Free up the FileSystemObject when done
Set fs = Nothing
Set f = Nothing
Set fc = Nothing

show
1 Configure the slide show properties and run the

For Each s In myPPT.ActivePresentation.Slides
With s.SlideShowTransition

.AdvanceOnTime = True

.AdvanceTime = DurationText.Text
End With

Next

With myPPT.ActivePresentation.SlideShowSettings
.StartingSlide = 1
.EndingSlide = ImagesText.Text
.AdvanceMode = ppSlideShowUseSlideTimings
.LoopUhtilStopped = True
.Run

End With

' Delete the images when done creating the brief
For i = 1 To fc.Count

If fs.FileExists(downloadFolder & "\" & myArray(i))

fs.DeleteFile(downloadFolder & "\" &
Then

Set f
myArray(i), True)

End If
Next
End If

End Sub

**

The GetDimensions subroutine calculates the positions
(Left, Top), and the dimensions (Height, Width)
for the images.
Parameters:

in/out: L - the Left value
T - the Top value
W - the Width value
H - the Height value

*** ***********

Private Sub GetDimensions(L As Long, T As Long, W As Long,
H As Long)

' Local variables declarations
Dim DeltaX As Long
Dim DeltaY As Long

176

DeltaX = myPPT.ActivePresentation.PageSetup.SlideWidth
- WidthText.Text

DeltaY = myPPT.ActivePresentation.PageSetup.SlideHeight
- HeightText.Text

If DeltaX <= 0 Then
L = 0

Else
L = DeltaX / 2

End If
If DeltaY <= 0 Then

T = 0
Else

T = DeltaY / 2
End If
W = WidthText.Text
H = HeightText.Text
If W > 720 Then W = 72 0
If H > 540 Then H = 540

End Sub
**

The linelnfo subroutine parses a line input from the
configuration file (cbdata.cfg). It separates information
of the key, the directory, and the virtual directory
from the line string input.
Parameters:

in:
searchStr - the string is being parsed,

in/out:
K - a variable that holds the key string
D - a variable that holds the directory string
V - a variable that holds the virtual directory

string

**
Private Sub linelnfo(searchStr As String, K As String, D As

String, V As String)
Dim istart As Integer
Dim istop As Integer
istart = 1
istop = 0
istop = InStr(istart, searchStr, "=", vbTextCompare)
' Get the key string
K = Mid(searchStr, istart, istop - 1)
istart = istop + 1
istop = InStr(istart, searchStr, "|", vbTextCompare)
' Get the directory string
If istop > istart Then

D = Mid(searchStr, istart, istop - istart)
istart = istop + 1
'Get the location string
V = Mid(searchStr, istart)

Else
D = Mid(searchStr, istart)
V = ""

End If
End Sub
i**

177

The downloadFile subroutine uses the OpenURL method to
download a file from the current open connection using
HTTP protocol.
Parameters:

in:
URLStr - the URL for download the file from.
saveFile - the filename for storing the

downloaded file on the client machine.

Private Sub downloadFile(URLStr As String, saveFile As

String)
Dim bData() As Byte ' Data variable
Dim intFile As Integer ' FreeFile variable
intFile = FreeFile() ' Set intFile to an unused

file.

' The result of the OpenURL method goes into the Byte
' array, and the Byte array is then saved to disk.
bData() = Inetl.OpenURL(URLStr, icByteArray)
Open saveFile For Binary Access Write As #intFile
Put tintFile, , bDataO
Close #intFile

End Sub

■

' Creating a folder on client machine.
' Parameter:

in: path - a qualify name of the folder being
created.

Private Sub createFolder(path As String)
Dim fs, f
Set fs = CreateObject("Scripting.FileSystemObject")
If Not fs.FolderExists(path) Then

Set f = fs.createFolder(path)
End If
Set fs = Nothing
Set f = Nothing

End Sub

i

' Deleting a folder on a client machine.
' Parameter:

in: path - a qualify name of the folder being
deleted.

Private Sub deleteFolder(path As String)
Dim fs, f
Set fs = CreateObject("Scripting.FileSystemObject")
If fs.FolderExists(path) Then

fs.deleteFolder path, True
End If
Set fs = Nothing

End Sub

178

1

' Clean up all temporary folder created when exiting.

Private Sub UserControl_Terminate()
1 Delete the download folder
deleteFolder downloadFolder

End sub

3. Object Components (Continuous Brief)

a) Global Variable Declarations

Attribute VB_Name = "GlobalDeclarations"
■###

'# File: GlobalDeclarations.bas
1# Date Author History
'# 5/31/2000 Tarn Tran Created.
■###

Option Explicit
i***

** *

' The cfglnfo type is a record that stores the
information

' that read from the cvdata.cfg file (i.e., Key,
Directory,

' Virtual Directory, and the stamped date, which is
the last

1 time the data is checked.)

* **
Public Type cfglnfo

key As String
path As String
vir_path As String
stampdate As Date

End Type

**
* * *

'Global variables used by the ControllerConnector

Public gController As Controller ' Reference to
controller object

Public gControllerUseCount As Long ' Global reference
count

179

* * *

' Global variables used by the MonitorConnector

* * *

Public gMonitor As Monitor 'Reference to
monitor object

Public gMonitorUseCount As Long ' Global reference
count

* * *
i

' Global variables used by the Monitor and Controller
objects.

Public gCfgArrayO As cfglnfo
b) Timer

VERSION 5.0 0
Begin VB.Form Timing

Caption - "Forml"
ClientHeight = 3195
ClientLeft = 60
ClientTop = 345
ClientWidth = 4680
LinkTopic = "Forml"
ScaleHeight = 3195
ScaleWidth = 4680
StartUpPosition = 3 'Windows Default
Begin VB.Timer Clock

Left = 2160
Top = 12 00

End
End
Attribute VB_Name = "Timing"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

'# File: Timing.frm
'# Date Author History
'# 5/31/2000 Tarn Tran Created.

**

** *

' Set the clock interval to 5 second.
' The Monitor component uses this timer event to poll

the
' storage directory for new data (images).

180

1***

*

Private Sub Form_Load()
Clock.Interval = 5000

End Sub

c) Controller

VERSION 1.0 CLASS
BEGIN
MultiUse = -1 'True
Persistable = 0 'NotPersistable
DataBindingBehavior = 0 'vbNone
DataSourceBehavior = 0 'vbNone
MTSTransactionMode = 0 'NotAnMTSObject

END
Attribute VBJNJame = "Controller"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True

'# File: Controller.els
'# Date Author History
'# 5/31/2000 Tarn Tran Created.

Option Explicit

to

i***

' The Controller component uses this UpdateBrief event

' notify the Continuous Brief wrapper (CBWrapper) for
' updating the brief.
' Event's parameters:
' imageType: the type of images
' imageLoc: the location where to find the

images.

the

the

The Glue component will raise the event to notify

Controller when it's done with storing data.

The Monitor component will raise the event to notify

' Controller when the new data come in.
' WithEvents causes the component(s) which raise the

event(s)
' to run asynchronously.
' MonitorConnector component allows multiple

connections to
' single Monitor object.

181

I** * * ^

* * *

Event UpdateBrief(imageType As String)

Public WithEvents mGlue As Glue
Attribute mGlue.VB_VarHelpID = -1
Private WithEvents mMonitor As Monitor ' Get Monitor

events
Attribute mMonitor.VB_VarHelpID = -1
Private mMonitorConnector As MonitorConnector

**
* * *

' Connect to the Monitor component
i

* * *

Private Sub Class_Initialize()

Set mMonitorConnector = Mew MonitorConnector
Set mMonitor = mMonitorConnector.Monitor

End Sub

>***
* * *

' Receive the notification from the Monitor component
' The Controller passes the information to the Glue

component
' for storing data to the database.
' Event's paramenter:

DataType: the data (images) type

'***
* * *

Private Sub mMonitor_NewData(DataType As String)
Set mGlue = Mew Glue
Call mGlue.StoreData(DataType)

End Sub

** **************
* * *

i

' Receive the notification from the Glue component
that

' Asynchronous glue component is done.
' The Controller notifies the CBWrapper(s) and passes

the
' information for the wrapper(s) to update the

brief(s).
' Event's paramenter:

DataType: the data (images) type
■

'*** ******
* * *

Private Sub mGlue_GlueDone(DataType As String)

182

Set mGlue = Nothing ' Free the Glue object

' Notify the CBWrapper for updating the brief
RaiseEvent UpdateBrief(DataType)

End Sub

' Get all the image's filenames, which is being
requested

' from the CBWrapper, and make the makeFileList
function

' call to store the filenames to the CB_DATA.LST file.
' Parameters:

in:
' ImagelD - the image type
' fileCounts - the number of images

requested.

associated
t

i

i

filename,
r

filenames.

virtualDir - the virtural directory

with the images' directory,
in/out:

fileListName - a variable that holds the

which contains the list of images'

■ ***

* * *

Public Sub Getlmagelnfo(ImagelD As String, fileCounts
As Integer, _

virtualDir As String,
fileListName As String)

Dim i As Integer
For i = 1 To UBound(gCfgArray)

If (StrComp(ImagelD, gCfgArray(i).key,
vbTextCompare) = 0) Then

virtualDir = gCfgArray(i).vir_path
fileListName = "CB_DATA.LST"
Call makeFileList(fileCounts,

gCfgArray(i).path, fileListName)
End If

Next
End Sub
i***

■

' Write all filenames from a specified directory to a
file.

' This subroutine is called by Getlmagelnfo()
' Parameters:

in:
' fileCounts - number of files is being

read.
' path - a specified directory for getting

the filenames.

183

filename - the file used for storing the
filenames.

* * *

Private Sub makeFileList(fileCounts As Integer, path
As String, _

filename As
String)

Dim fs, f, fc, fl, i, j, a
Dim myCount As Integer
Dim listfileStr As String
Dim myArray() As String

' Create a FileSystemObject for manipulating the
file system.

Set fs =
CreateObj ect("Scripting.FileSystemObj ect")

Set f = fs.GetFolder(path)
Set fc = f.Files
myCount = fc.Count
i = 1

' Store the name of the files to an array for
sorting purpose

ReDim myArray(1 To myCount)
For Each fl In fc

myArray(i) = fl.Name
i = i + 1

Next

' Sort the array
Call mMonitor.dhBubbleSort(myArray)
listfileStr = path & "\- & "CB_listfile"
createFolder listfileStr
Set a = fs.CreateTextFile(listfileStr & "\" &

filename, True)
For j = (myCount - fileCounts + 1) To myCount

a.WriteLine (myArray(j))
Next
a.Close
' Free up the objects, which are no longer be

used.
Set fs = Nothing
Set f = Nothing
Set fc = Nothing
Set a = Nothing

End Sub
**

* * *

' This createFolder is used for creating a specified
folder.

' Parameter:
in: path - the qualified name of the folder

being created.

184

I***

* * *

Private Sub createFolder(path As String)
Dim fs, f
Set fs =

CreateObject("Scripting.FileSystemObject")
If Not fs.FolderExists(path) Then

Set f = fs.createFolder(path)
End If
Set fs = Nothing
Set f = Nothing

End Sub
d) Controller Connector

VERSION 1.0 CLASS
BEGIN
MultiUse = -1 'True
Persistable = 0 'NotPersistable
DataBindingBehavior = 0 'vbNone
DataSourceBehavior = 0 'vbNone
MTSTransactionMode = 0 'NotAnMTSObject

END
Attribute VB_Name = "ControllerConnector"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True

1# File: ControllerConnector.els
1# Date Author History
1# 5/31/2000 Tarn Tran Created.

Option Explicit

1 This property allows other components to get
reference

' to the Controller object.

Public Property Get Controller() As Controller
Set Controller = gController

End Property

1 Initilize Controller and reference count.
■

** *

Private Sub Class_Initialize()

185

If gController Is Nothing Then
Set gController = New Controller

End If
gControllerUseCount = gControllerUseCount + 1

End Sub

'*************•******•*****•**************************

' Terminate controller when reference count = 0
i

**
* * *

Private Sub Class_Terminate()
gControllerUseCount = gControllerUseCount - 1
If gControllerUseCount = 0 Then

'Set gList = Nothing
Set gController = Nothing

End If
End Sub

e) Monitor

VERSION 1.0 CLASS
BEGIN
MultiUse = -1 'True
Persistable = 0 'NotPersistable
DataBindingBehavior = 0 'vbNone
DataSourceBehavior = 0 'vbNone
MTSTransactionMode = 0 'NotAnMTSObject

END
Attribute VB_Name = "Monitor"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True

■###

'# File: Monitor.els
'# Date Author History
'# 5/31/2000 Tarn Tran Created
■###^###

Option Explicit
**

* **

' The VISStamDate, IRStampDate, and VAPORStampDate
variables

' store the created date of the latest stored data.
i

' WithEvents causes the component(s) which raise the
event(s)

' to run asynchronously.
' Event's parameter:

DataType: the data (images) type

' The Monitor component will raise the event to notifv
the *

Controller when the new data come in.

186

I***1**

Private VTSStampDate As Date
Private IRStampDate As Date
Private VAPORStampDate As Date

Private mTiming As Timing
Private WithEvents mClock As Timer
Attribute mClock.VB_VarHelpID = -1

Event NewData(DataType As String)

' The tasks done when a new Monitor object is created.
i

Private Sub Class_Initialize()

' Start Monitor Timer and create instance of form
Set mTiming = New Timing
Load mTiming

' Connect timers' events to associated event
procedures in Monitor

Set mClock = mTiming.Clock

' Get the config information from the
configuration file

Call GetConfig
End Sub

i***

** *

' The tasks done when the Monitor object is
terminated,

t

* **

Private Sub Class_Terminate() ' Terminate Monitor

' Free up the timer object.
Set mClock = Nothing

' Unload and free up the form.
Unload mTiming
Set mTiming = Nothing

End Sub

>***

i

' Process Timer Event.
' This timer event causes the Monitor to poll the

storage
' directories for new data.

187

' The Monitor will raise the event(s) if it found a
new data.

'***
* * *

Private Sub mClockJTimer()
Dim i As Integer
For i = 1 To UBound(gCfgArray)

If IsNewFile(gCfgArray(i).path, i) Then
RaiseEvent NewData(gCfgArray(i).key)

End If
Next

End Sub

'*** ******

or
' The IsNewFile function is used to determine whether

' not a new data exists.
' Paramenters:

in: StrDir - the directory where to check for
' new data.

in: StampDate - the created date of the latest
data from the previous

checked.
' Return:

TRUE if there's new data, and FALSE otherwise.
i

'***
* * *

Private Function IsNewFile(StrDir As String,
arraylndex As Integer) As Boolean

' Local variables declarations.
Dim fs, f, fc, fl, i
Dim myStamp As Date
Dim myArray() As String

' Create a FileSystemObject for manipulating the
file system.

Set fs =
CreateObj ect("Scripting.FileSystemObject")

Set f = fs.GetFolder(StrDir)
Set fc = f.Files
i = 1

' Store the name of the files to an array for
sorting purpose

ReDim myArray(1 To fc.Count)
For Each fl In fc

myArray(i) = fl.Name
i = i + 1

Next

' Sort the array
Call dhBubbleSort(myArray)

188

' Check for new file based on the file's created
date.

myStamp = f s .GetFile (StrDir &. "\" &
myArray(fc.Count)).DateCreated

If (DateDiff("s", gCfgArray(arraylndex).stampdate,
myStamp) <> 0) Then

gCfgArray(arraylndex).stampdate = myStamp
IsNewFile = True

Else
IsNewFile = False

End If

used.
' Free up the objects, which are no longer be

Set fs = Nothing
Set f = Nothing
Set fc = Nothing

End Function

Standard bubblesort.
DON'T USE THIS unless you know the data is already
almost sorted! It's incredibly slow for
randomly sorted data.

There are many variants on this algorithm.
There may even be better ones than this.
But it's not even going to win any
speed prizes for random sorts.

From "Visual Basic Language Developer's Handbook"
by Ken Getz and Mike Gilbert
Copyright 2000; Sybex, Inc. All rights reserved.

In:
varltems:

Array of items to be sorted.
Out:
Varltems will be sorted.

Public Sub dhBubbleSort(varltems As Variant)

Dim blnSorted As Boolean
Dim lngl As Long
Dim IngJ As Long
Dim lnglterns As Long
Dim varTemp As Variant
Dim IngLBound As Long

lngltems = UBound(varltems)
IngLBound = LBound(varltems)

' Set lngl one lower than the lower bound,
lngl = IngLBound - 1
Do While (lngl < lngltems) And Not blnSorted

blnSorted = True

189

lngl = lngl + 1
For IngJ = IngLBound To lngltems_ - lngl

If varltems(IngJ) > varltems(IngJ + 1)
Then

varTemp = varltems(IngJ)
varltems(IngJ) = varltems(IngJ + 1)
varltems(IngJ + 1) = varTemp
blnSorted = False

End If
Next IngJ

Loop
End Sub

' The linelnfo subroutine parses a line input from the
' configuration file (cbdata.cfg). It separates

information
' of the key, the directory, and the virtual directory
' from the line string input.
1 Parameters:

in:
searchStr - the string is being parsed,

in/out:
K - a variable that holds the key string
D - a variable that holds the directory

string
V - a variable that holds the virtual

directory string
i

■***+*^

** *

Private Sub linelnfo(searchStr As String, K As String,
D As String, V As String)

Dim istart As Integer
Dim istop As Integer

istart = 1
istop = 0
istop = InStr(istart, searchStr, "=",

vbTextCompare)
' Get the key string
K = Mid(searchStr, istart, istop - 1)
istart = istop + 1
istop = InStr(istart, searchStr, "I",

vbTextCompare)
' Get the directory string
If istop > istart Then

p = Mid(searchStr, istart, istop - istart)
istart = istop + 1
'Get the location string
V = Mid(searchStr, istart)

Else
D = Mid(searchStr, istart)
V = ""

End If
End Sub

190

I***

' The GetDateArraylndex function returns an index of
the

' dateArray, where the specified image type (ID) is
stored,

i

i***

Public Function GetArrayIndex(key As String) As
Integer

Dim tmplnfo As cfglnfo
Dim bFound As Boolean
Dim i As Integer
bFound = False
i = 1
Do While Not bFound

tmplnfo = gCfgArray(i)
If (StrComp(tmplnfo.key, key) = 0) Then

GetArrayIndex = i
bFound = True

End If
i = i + 1

Loop
End Function

' The GetConfig subroutine reads information stored in
' the configuration file, and adds them to the link

list.
■

** *

Private Sub GetConfig()

Dim cfgpath As String
Dim inputStr As String
Dim keyStr As String
Dim dirStr As String
Dim virDirStr As String
Dim intFile As Integer
Dim tmplnfo As cfglnfo

' Initialize the size the gCfgArray
ReDim gCfgArray(0)

1 Get the path for the configuration file
cfgpath = Environ("CB_HOMEn) & "\cbdata.cfg"

' Store the configured info to the array
intFile = FreeFileO
Open cfgpath For Input As #intFile
Do While Not EOF(intFile)

Line Input #intFile, inputStr
Call linelnfo(inputStr, keyStr, dirStr,

virDirStr)
With tmplnfo

191

.key = keyStr

.path = dirStr

.vir_path = virDirStr

.stampdate = -1 ' initialize the date
to before Dec. 30, 1899

End With
ReDim Preserve gCfgArray(UBound(gCfgArray) +

1)
gCfgArray(UBound(gCfgArray)) = tmplnfo

Loop
Close MntFile

End Sub
f) Monitor Connector

VERSION 1.0 CLASS
BEGIN
MultiUse = -1 'True
Persistable = 0 'NotPersistable
DataBindingBehavior = 0 "vbNone
DataSourceBehavior = 0 'vbNone
MTSTransactionMode = 0 'NotAnMTSObject

END
Attribute VB_Name = "MonitorConnector"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True

* * *

'# File: MonitorConnector.els
'# Date Author History
'# 5/31/2000 Tarn Tran Created.

Option Explicit

This property allows other components to get
reference

' to the Monitor object.

** *

Public Property Get Monitor() As Monitor
Set Monitor = gMonitor

End Property

' Initialize Monitor and reference count.

Private Sub Class_Initialize()
If gMonitor Is Nothing Then

192

' Creates a new link list for holding the
configuration info.

Set gMonitor = New Monitor
End If
gMonitorUseCount = gMonitorUseCount + 1

End Sub
t***

' Terminate Monitor when reference count = 0

i***

Private Sub Class_Terminate()
gMonitorUseCount = gMonitorUseCount - 1
If gMonitorUseCount = 0 Then

Set gMonitor = Nothing
End If

End Sub
g) Glue

VERSION 1.0 CLASS
BEGIN

MultiUse = -1 'True
Persistable = 0 'NotPersistable
DataBindingBehavior = 0 'vbNone
DataSourceBehavior = 0 'vbNone
MTSTransactionMode = 0 'NotAnMTSObject

END
Attribute VB_Name = "Glue"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True

'# File: Glue.els
'# Date Author History
' # 5/31/2000 Tarn Tran Created.

Option Explicit
i***

The Glue component uses this event to notify the
Controller when done with its task.
Event's parameter:

DataType: the data (images) type.

Event GlueDone(DataType As String)

i***

193

' Notify the Controller when done storing data.

* * *

Public Sub StoreData(DataType As String) ' Start glue
task

' <Insert glue task here>
1

RaiseEvent GlueDone(DataType)
End Sub

194

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 Dyer Road
Monterey, California 93943-5101

Chairman, Code CS
Naval Postgraduate School
Monterey, California 93943-5118

Dr. Luqi, CS/Lq
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5118

Dr. Valdis Berzins, CS/Be
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5118

Dr. Mantak Shing, CS/Sh
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5118

Tarn M. Tran
SPAWAR SYS CEN, San Diego
53140 Systems St.
San Diego, CA 92152-7555

James 0. Allen
SPAWAR SYS CEN, San Diego
53140 Systems St.
San Diego, CA 92152-7555

195

