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PREFACE 

The author was employed at the Air Force Flight Test Center (AFFTC), Edwards AFB, 
California, from 1968 through 1993 as an aircraft performance flight test engineer. This 
document began, but was not finished, prior to his retirement in 1993. He endeavored to 
complete the document on his own and this text is the final result of that. He received a lot of 
help from the reviewers, which he mentions below—they each made suggestions that 
improved the text vastly. 

The intent of this text is that it should provide a highly useful reference source for aircraft 
performance flight test engineers. It certainly should not be the only source of information. 
The bibliography contains just a few of the sources that the author has found most useful. 
Much of the material covered in this handbook can be found in slightly different forms in the 
bibliographies listed in the Bibliography section. Even though the Flight Test Engineering 
Handbook (listed in the Bibliography Section) was originally written in the 1950s and 
updated slightly in the 1960s, it still contains much useful information. The author utilized 
Everett Dunlap's Theory of the Measurement and Standardization of In-Flight Performance 
of Aircraft extensively as a reference source during his years at Edwards AFB. Also, the 
USAF Test Pilot School's (TPS) Aircraft Performance manual was a valuable source, as well 
as the knowledge the author gained while a student at the USAF TPS. 

The emphasis here is on performance testing as conducted at Edwards AFB; therefore, 
low budget or light aircraft testing is not covered extensively. Very little is said about 
instrumentation, except that it is needed and should be as accurate as reasonably possible. 
The thrust discussion is kept to a minimum. A number of other possible topics are discussed 
lightly, if not at all. Items not necessarily complete are: 

1. airspeed calibration in ground effect, 

2. test planning, 

3. test conduct, 

4. how to fly the maneuvers, 

5. use of parameter identification, 

6. report writing, and 

7. eg accelerometer system. 

This handbook is pieced together from writing the author has done going back as far as 
1975. Much of it is from individual performance office memos which were written to 
stand-alone; therefore, you will see quite a bit of duplication. The same equation appears in 
several places—the author tried to have the major derivation of the equation appear only 
once. For those of you who are familiar with the author's style, you know he is big on theory 
and equations. Although it appears that there are a lot of intermediate steps in the derivations, 
the extra steps are appropriate to show where all the constants come from. 
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Early versions of this text had three primary reviewers: Messrs. Mac McElroy, Ron Hart, 
and Frank Brown. Mr. McElroy looked at some early versions of this handbook. Messrs. Hart 
and Brown reviewed both the draft and final versions of this handbook. Mr. Bill Fish 
suggested adding the discussion of the ratio method of standardization and reviewed the 
thrust section. Mr. Allan Webb also reviewed the thrust section. Mr. Alan Lawless of the 
National TPS and Mr. John Hicks from NASA, Dryden Right Research Center, provided 
significant comments that were implemented into the text. In addition, Mr. Richard Colgren 
of Lockheed-Martin Skunk Works and Captain Timothy Jorris of the AFFTC provided 
excellent suggestions that were incorporated. 

There were many individual engineers at Edwards AFB that the author would like to 
acknowledge in this handbook. Although the list is long, they deserve mentioning. They are: 

1. Mr. Jim Pape (who never found out the author did not know the difference between 
an aileron and an elevator when he first started working at Edwards AFB). 

2. Mr. Willie Allen for teaching the author almost everything he knows about dynamic 
performance and flight path accelerometers. Mr. Allen invented the "cloverleaf' airspeed 
calibration method, which is discussed in this handbook. 

3. Mr. Milton Porter for teaching the author the mathematics that he applied to the 
cloverleaf method in a mathematics class at the USAF TPS. 

4. Mr. Randy Simpson of the Naval Air Test Center (now called the Naval Air Weapons 
Center). The author worked several months with Mr. Simpson on developing dynamic 
performance methods in the early 1970s. 

5. Mr. Dave Richardson, while reviewing a very early version of this text, pointed out 
that the AFFTC and NASA were using dynamic performance methods on the lifting body 
research projects years before those of us in the conventional aircraft business. 

6. Mr. Jim Olhausen of General Dynamics on the YF-16 and F-16A, who in the middle 
1970s taught the author about using inertial navigation systems (INSs) for performance. As a 
result of Mr. Olhausen's work, the INS became the primary source of flight path acceleration 
data on almost every large project at the AFFTC. 

7. Mr. Al DeAnda for teaching the author about calibrating airspeed. 

8. Mr. Bill Fish for tutoring the author in propulsion (though propulsion is discussed 
lightly in this handbook). 

9. Mr. Bob Lee - The author worked with Mr. Lee for a short period of time in the early 
1970s studying parameter identification. 

10. Messrs. Clen Hendrickson, Lyle Schofield, Jim Cooper, Ken Rawlings, Mac 
McElroy, Ron Hart, Charlie Johnson, Pete Adolph, Don Johnson, Frank Brown and many 
others for helping the author learn about test techniques and other aspects of flight test. 

Finally, the author would like to give sincere thanks to Mr. Frank Brown, his successor at ■■ 
Edwards AFB, for all his help in the preparation of this handbook. In addition, Ms. Virginia ^^ 
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O'Brien of Computer Sciences Corporation for the technical editing and final format of this 
handbook. 

This will not be the final version of this handbook. The AFFTC would appreciate any 
suggestions for additional material, clarification of existing material, or any technical errors you 
may find. A form to submit proposed changes and/or improvements is included in the back of 
this handbook, or if needed, contact either Frank Brown or the author via e-mail with any 
comments. Following are addresses and e-mail for each of them. 

Frank Brown 
412TWYTSFT 
195 E. Popson Ave 
Edwards, AFB, CA 93524-6841 
Frank.Brown@edwards.af.mil 

Wayne Olson 
3003 NE 3rd Ave, #222 
Camas, WA 98607-2340 
Wayneoperf@home.com 
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1.0 OVERVIEW 

1.1 Introduction 

Aircraft performance flight testing is different things to different people. It involves ground 
tests such as calibrating instruments, weighing the aircraft, and static thrust runs. Taxi tests are 
performed prior to first takeoff. Then, there is the collection of data during all phases of flight. 
The phases of flight include takeoff, acceleration to climb speed, climb, acceleration, cruise, 
deceleration, descent, and landing. During flight, the aircraft will also maneuver in sustained, 
accelerating or decelerating turns. Specialized maneuvers called dynamic maneuvers are used 
to efficiently collect aircraft lift and drag data. Aircraft airspeed, altitude, and temperature 
measurement systems will be calibrated in flight. All data collected will be reduced to enable 
analysis of specific maneuvers such as cruise and to verify and update aircraft mathematical 
models for lift, drag, thrust, and fuel flow. Simulation and curve fitting may be utilized during 
the data analysis process. 

1.2 Primary Instrumentation Parameters 

In a performance evaluation, there can be hundreds of instrumentation measurements. 
However, only a few can be considered primary. We will make a list as follows: 

Total pressure. A measurement of the total pressure (in typical units of pounds per square 
foot) experienced by the aircraft. For flight test aircraft, this is often from a nose boom. 

Ambient (or static) pressure. An attempt to measure the atmospheric ambient pressure (in 
same units as total pressure). This is subject to errors called position errors. The terminology is 
due to the fact that there is some 'position' on the surface of the aircraft where the ambient 
pressure error is zero or minimal. The bad news is that for any given static source location, the 
position error varies with speed, altitude, and attitude. 

Total temperature. A temperature probe is used to measure the total temperature of the air. 

From measured total pressure, ambient pressure and total temperature we can calculate the 
true airspeed of the aircraft. True airspeed is the physical speed of the aircraft with respect to 
the moving air mass. From total and ambient pressure then we compute the indicated airspeed. 
Indicated airspeed is a measure of the differential pressure. Differential pressure is simply total 
pressure minus ambient pressure. Since we have position error in the ambient pressure, we will 
apply corrections to ambient pressure to be able to go from indicated airspeed to the corrected 
values for calibrated and true airspeed. 

Aircraft gross weight. This is not a single measurement, but a calculation usually based 
upon a set of fuel tank quantity measurements in flight. The fuel tank quantity weights are 
simply added to a known empty weight of the aircraft. The empty weight will be computed for 
each flight based upon the particular configuration for that flight. The aircraft will also be 
weighed at various times during the program to verify the calculations. 

Longitudinal flight path acceleration. We will compute the longitudinal acceleration of the 
aircraft parallel to the flight path. The flight path is determined by the true airspeed vector. On 
most aircraft programs,  we use inertial  navigation system (INS) data to compute the 



longitudinal acceleration. The airspeed-altitude method or GPS are also used. By dividing 
longitudinal acceleration by the acceleration of gravity, we get the longitudinal load factor. 
Then, multiply the longitudinal load factor by the gross weight to obtain the excess thrust. If 
there is one fundamental equation of aircraft performance, it would be the following: 

Drag = Net Thrust - Excess Thrust 

where: 

Drag = the net aerodynamic resistance parallel to the velocity vector. 

Normal acceleration: The acceleration perpendicular to the flight path is the normal 
acceleration. Divide normal acceleration by gravity to obtain normal load factor. Lift is the 
net aerodynamic force perpendicular to the velocity vector. If we ignore the small component 
of thrust perpendicular to the velocity vector, then we get a second fundamental formula. 
However, keep in mind this one is only approximately correct, while the first one is exact. 

Lift = (Normal Load Factor) x Weight 

Thrust. The propulsive force provided by the engine. In this handbook, we will discuss 
only turbine engines. However, most of the equations of motion in this handbook are 
applicable to aircraft with other types of propulsion. Thrust is produced during the process of 
air accelerating through the engine. The air entering the inlet is nearly brought to a stop and 
then accelerated through various turbine stages. The combustion process dramatically increases 
the temperature of the air and the air (plus the fuel) exits the tail pipe at a much higher 
velocity. This change in momentum and a pressure difference between the inlet and exit are the 
primary factors that produce thrust. Thrust is computed from a variety of measured engine and 
atmospheric parameters. 

1.3 Ground Tests 

Instrumentation calibration. The installation and calibration of all aircraft instruments 
should occur prior to flight. Much of the instrumentation can be checked after it is installed in 
the aircraft. The output of the total and ambient pressure probes can be ground-tested using 
precision pressure monitors. 

Aircraft weight and eg. The aircraft should be weighed with zero fuel and with various 
amounts of fuel to check the numbers provided by the contractor. The center of gravity (eg) 
can be determined in a weight facility where separate scales are available for the main and 
nose gear. 

Static thrust. The installed thrust of the engines can be measured directly on the ground on 
a static thrust stand. The principle of a thrust stand is quite simple. The aircraft sits on a pad 
and is connected by cables to a load cell that measures load (thrust) directly in pounds of force. 
By operating the engine at various throttle settings, a comparison of thrust at zero speed over a 
range of power settings can be made with predictions. 

Taxi tests. While taxiing on the ground, the aircraft is tested. Taxi means simply to move 
the aircraft under its own power on the ground without achieving flight. The first taxi tests 



would be accomplished in the lowest power setting called idle. The idle taxi tests, combined 
with the static thrust data, will quantify idle thrust at low speeds. Taxi tests at higher throttle 
settings and approaching lift-off speeds will give an early indication of thrust and drag on the 
ground. The final test, prior to first takeoff, will be to rotate the aircraft to lift-off attitude. 

1.4 Flight Maneuvers 

Takeoff tests are performed to determine the distance required to lift-off and to clear an 
obstacle. In USAF testing, the obstacle clearance height is 50 feet, while in civilian testing, the 
height is 35 feet for heavy aircraft and 50 feet for light aircraft. Lift-off is usually defined as 
when lift first becomes greater than weight. For multi-engine aircraft, engine-out testing is also 
performed wherein one engine's power is reduced to idle to simulate an engine failure during 
takeoff. 

Climb tests are flown to determine time, distance, and fuel used to climb to a cruise 
altitude. In addition, rate of climb versus altitude is determined. 

Cruise testing is conducted to evaluate aircraft range. The aircraft is flown in stabilized 
flight over a range of speed and altitude conditions in order to determine the best speed and 
altitude to achieve maximum range. However, with modern analysis methods, the optimum 
range conditions are usually determined through analysis of drag and thrust/fuel flow models, 
which are verified and updated using cruise and other data. 

Acceleration tests are conducted during level 1-g flight at fixed throttle settings. These 
tests are used in conjunction with climb tests to determine the optimum climb profiles. They 
are also used to update thrust and fuel flow models for fixed throttle settings over a range of 
altitudes and ambient temperature conditions. Excess thrust (thrust minus drag) is measured 
versus speed at various altitudes. 

Turning performance is conducted to both determine ability of the aircraft to turn and to 
assist in generating aircraft lift and drag models at higher lift and angle-of-attack values than 
what are obtainable in 1-g flight. 

Deceleration and descent tests are conducted to determine ability of the aircraft to 
decelerate and the fuel used in descent maneuvers. In addition, this data can be used to assist in 
generating aircraft thrust/fuel flow and drag models. 

Landing tests are used to measure the distance to land starting from clearing an obstacle (as 
in the takeoff test). Braking tests performed during the landings or as separate tests, will 
evaluate stopping performance as well as the ability of the brakes to withstand the high 
temperatures associated with maximum performance braking. 

1.5 Data Analysis 

Thrust. Engine thrust is evaluated at fixed throttle settings. For military aircraft, these 
settings are usually designated IDLE, MIL (military) and MAX (maximum). Idle is the 
minimum throttle setting, MIL is the maximum throttle setting without the use of afterburner, 
and MAX is the Maximum throttle setting with the use of afterburner. Thrust at these fixed 
throttle positions is primarily a function of flight conditions (speed, altitude, and temperature). 



A secondary function is angle of attack (angle between the aircraft body x-axis and the ^^ 
airspeed vector). Thrust is not measured directly, but rather computed from flight conditions |B 
and engine parameter measurements. The engine parameters needed usually include pressure, 
temperature, and rpm (revolutions per minute). Thrust is then computed using an engine 
manufacturer-provided computer program as modified by the airframe contractor to include 
installation effects. This is designated an in-flight thrust deck. A second computer program is 
usually provided—a prediction deck, which will predict thrust without knowing any engine 
parameters (just flight conditions and throttle setting). The flight test data analyst will compare 
the in-flight thrust deck data to the prediction deck data. Then, analysis will be performed to 
attempt to 'model' this data. 

Fuel flow. Engine fuel flow will be measured, modeled, and plotted versus thrust and as a 
function of flight conditions. Fuel flow data will be obtained both during the fixed throttle 
maneuvers (climb, accel, and turn) and during cruise testing. Fixed throttle refers to a specified 
throttle position like MIL, MAX or IDLE. 

Lift. Lift in the form of a nondimensional lift coefficient will be determined and modeled 
versus angle of attack and Mach number. 

Drag. Drag will be computed from thrust and excess thrust and modeled versus lift in 
nondimensional coefficient form. 



• 
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2.0 AXIS SYSTEMS AND EQUATIONS OF MOTION 

2.1 Flight Path Axis 

The true airspeed vector defines the flight path (or wind) axis. The inertial velocity vector 
defines the inertial flight path axis. In this text, when the singular axis is used, we are usually 
referring to the longitudinal or x component of the wind axis system. The component of 
aerodynamic force parallel to the flight path axis is defined as drag. Lift is the component of 
aerodynamic force perpendicular to the drag (or flight path) axis. The component of aircraft 
acceleration parallel to the flight path is the longitudinal acceleration (Ax). The longitudinal 

load factor (Nx) is simply the Ax divided by the acceleration of gravity (g). In conventional 
aircraft performance, g is assumed a constant at the reference gravity and given the value of 

32.174 ft/sec2 (foot per second squared). The symbol g0 will be used to denote the reference 

gravity. The effect of assuming a constant g is dealt with in the gravity section. 

To derive the equations of motion we could start with the following energy relationship: 

E = KE + PE (2.1) 

where: 

E    = total energy (foot-pounds), 
KE = kinetic energy (foot-pounds), and 
PE = potential energy (foot-pounds). 

Then, assuming zero wind: 

KE = 0.5-(Wj/^\vt
2 (2.2) 

W,=m-g0 (2.3) 

PE = WrH (2.4) 

where: 

m = aircraft mass (slugs), [(pounds force)(seconds)2/(foot)], 
Wt = aircraft gross weight (pounds), 
H = geopotential altitude (feet), and 
Vt = true airspeed (feet/sec). 

Note: It is assumed that tapeline (or geometric) altitude (h) and geopotential altitudes (H) 
are identical. The small difference of these two altitude parameters is discussed in the altitude 
section. 



Adding the potential and kinetic energy relationships (2.2) and (2.4) and dividing by Wt 

yields the following: 

E/Wl = ™ + ™ = H + 
W,     W. 

V 
V-8o) 

(2.5) 

The energy per unit weight (ElW,) is called energy altitude (or energy height) (HE). 

"'=H+V«.) (2.6) 

Taking the derivative with respect to time (and ignoring wind) yields: 

dHE  dt = dH/dt + (V) 'dv/^ 
Ydt 

JJ 

(2.7) 

The derivative of HE with respect to time is called specific excess power and given the 

symbology of Ps. The  Cambridge Air and Space Dictionary (Reference 2.1) gives the 
following definition of specific excess power: "Thrust power available to an aircraft in excess 
of that required to fly at a particular constant height and speed, thus being usable for climbing, 
accelerating or turning." 

Equation 2.7 then becomes: 

P=HP=H + 
So ft) (2.8) 

Dividing by Vt yields: 

^,=(^EA;)=(^)+(^/«O) (2.9) 

Envision an accelerometer aligned perfectly with the longitudinal flight path axis and 
calibrated in units of g. The accelerometer would be sensitive to both aircraft change in 
velocity (dVt I dt) and a component of gravity ([dH I dt)lVt). Equation (2.9) then becomes: 

Nx=H/V,+Vt/g0 (2.10) 

In performance analysis, the axis system of interest is the flight path axis and not the body 
or earth axis, so the subscript f (f for flight path) is usually deleted on the flight path axis load 
factors. That is, we use Nx rather than Nx or even Nx (subscript w is for wind axis). Other 

references may use other symbologies. 



2.2 Body Axis 

The aircraft axis system (Figure 2.1) is called the body axis system. The X-axis is defined 
through the center of the fuselage with positive being forward. The Y-axis is positive out the 
right wing and the Z-axis is positive down. The X-Y-Z body axis system is an orthogonal axis 
system usually originating at the center of mass of the aircraft. 

Vertical 

X-Body Axis 

True airspeed vector 

Z-Body Axis 

Figure 2.1 Aircraft Axis System 

If the acceleration of the vehicle in the body axis is known, then the flight path acceleration 
can be computed by transforming first through the angle of attack and then through the sideslip 
angle. The relationships for a and ß as a function of the body axis true airspeed components 

are as follows: 

a = tm-1(VjVbx) 

ß = sml(vby/Vt) 

(2.11) 

(2.12) 

vt = J{vbx
2+Vby

2+Vbz
2) (2.13) 

where: 

Vbx = body axis x component of the true airspeed, 

Vby = body axis y component of the true airspeed, 

Vbz = body axis z component of the true airspeed, and 

Vt = true airspeed. 



2.3 True AOA and Sideslip Definitions 

The following illustration, shows angle of attack ([AOA] or a) and angle of sideslip 
([AOSS] or ß) in relation to the body axis velocities. The following is the equivalent 
symbology for Figure 2.2. 

a. ^,=^- 

b. V   =V Vcg        Vby 

c. w =v yYcg       Vbz 

Y body axis 

X body axis 

Tan(a^.) = (WcB/UcB) 
Sin(ßtu,) = (Vqj/Vhl.) 

Z body axis 
Uc8 = V1Iu.Cos(ß)Cos(a) ^ v*« 
Vca = V^.Sin(ß) 
Wea = V»ueCos(ß)Sin(a) 

Note: Positive directions are shown. 

Figure 2.2 Angle of Attack and Sideslip Definitions 

AOA (a) is the angle between the X-body axis and the projection of the true airspeed 
vector (V, -cos/J) on the X-Z body axis plane. AOSS (ß) is the angle between the velocity 
vector and the X-Z body plane. 

In three dimensions, the a transformation matrix from the body axis to the flight path axis 
is as follows: 

[a]-. 

cos a    0   sin a 

0       1      0 

-since   0   cosa 

(2.14) 

In three dimensions, the ß transformation matrix from the body axis to the flight path axis 
is as follows: 



lß]= 

cos ß     sin ß    0 

-sin/J   cos/S   0 

0 0       1 

(2.15) 

The transformation of the acceleration from the body axis to the flight path axis is as 
follows (a subscript f [for flight path] will be dropped for the flight path axis): 

(2.16) 

Multiplying the equation 2.16 for the longitudinal load factor in the flight path axis yields 
equation 2.17. 

4 cos/? sinjß    0 cos a    0   sin a A, 
A ■ = —sin jß cosß   0 0       1      0 X 
K 0 0       1 -sina   0   cosce K 

Ax = cos ß-cosa- Abx + sin ß • \ + cos ß • sin a • Abz (2.17) 

The vast majority of performance maneuvers produce very low sideslip and lateral 
acceleration such that equation 2.17 may be approximated by equation 2.18 assuming zero 
sideslip. 

Ax = cosa- Abx + sin a ■ \z 

In matrix shorthand, equation 2.16 is as follows: 

{A}=[ß]-[a]{Ab} 

where: 

(2.18) 

(2.19) 

K>*,A = three components of flight path accelerations, and 

Abx, Aby, Abz    = three components of body axis accelerations. 

Usually, analysis is performed using the flight path axis load factors, as shown in equation 
2.20 through 2.22, rather than the above flight path accelerations. 

Nz—Az/g0 

(2.20) 

(2.21) 

(2.22) 

Note the sign change on the Z component. 

The topic of axis transformations is dealt with in more detail in the accelerometer section. 
There, we will deal with inertial axis (north, east, down), flight path axis, and with rate 



corrections to accelerations and velocities in the body axis. Transformations are made to the 
body axis where the rate corrections are applied. 

2.4 In-FIight Forces 

Figure 2.3 illustrates the X and Z forces acting on an aircraft in flight. Figures 2.3 and 2.4 
illustrate the basic forces and angles of a typical aircraft in flight. It is, however, simplified in 
that all forces are acting through a single point. This is called the point mass model. Most 
conventional aircraft simulations utilize this simplification. A more complex model would 
distribute the lift and drag forces between the wing and tail. The tail may be a part of the wing 
as in an aircraft like the French Mirage. What we might otherwise call the trailing edge flap of 
the wing provides the pitching moment that a tail usually would. 

Vertical 

Body Axis 
D 

Horizontal 

Figure 2.3 In-Flight Forces 

The flight path axis is defined by the true airspeed (Vt) vector. 

a. D - drag acting parallel to the flight path; 

b. L - lift acting perpendicular to the flight path; 

c. a - angle of attack - angle between x-body axis and the flight path axis; 

d. y - flight path angle - angle between horizontal and the flight path; 

e. 0 - pitch attitude - angle between horizontal and x-body axis (not shown above); 

f. Fg - gross thrust - acting through the engine axis; 

g. Fe - net propulsive drag - acting through the flight path axis; and 

h.   it - thrust incidence angle (not shown) - angle above the x-body axis through which 
the gross thrust acts; often equals zero. 

10 
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Figure 2.4 Axis System Angle Diagram 

Summing forces in the longitudinal or X-flight path axis: 

where: 

F   = excess thrust. 

%xFx=m-Ax=  -i-  .(Nx-g0) = Nx-Wt=Fex 

\8° J 
(2.23) 

Fex=[F-cos{a + it)-Fe]-D (2.24) 

Some airframe manufacturers will define a as the angle between the flight path axis and 
the wing axis. However, most will define a as the angle between the flight path axis and the 
x-body axis, which is the definition used in this handbook. 

The true airspeed velocity vector and the inertial (or ground) speed vector will, in general, 
be in a different direction and a different magnitude. The vector relationship between true 
airspeed and groundspeed is simply airspeed equals groundspeed plus windspeed. However, 
this is a three dimensional relationship that we can represent in vector notation as follows: 

v=v+v„ (2.25) 

11 



where: 

Vt = true airspeed vector, 

Vg = ground speed vector, and 

Vw = wind speed vector. 

Wind direction, by meteorological convention, is the direction from which the wind is 
blowing. For instance, let's say you are flying due north, with zero sideslip, at 500 knots. 
Heading is the direction the aircraft is pointing. Assume there is a 100 knot wind at 0 degrees. 
That would mean the wind is 100 knots blowing from due north. Or in this case, a pure 
headwind of 100 knots. If you have a 100-knot headwind and a 500-knot true airspeed then the 
groundspeed is 400 knots. Airspeed equals groundspeed plus wind (plus is italicized to place 
emphasis). There is, in the aero community, some controversy as to the sign convention. This 
author considers plus to be the 'correct' sign. However, if one uses a negative sign and is 
consistant with definitions, the results will come out the same. 

Summing forces in the normal or Z-flight path axis: 

Y^Fz=m.Az=  -i-  iNt-g0) = Nt-W, (2.26) 
\8° J 

Nz-W,=L + Fg- sin(a + /,) (2.27) 

where: 

Nz = normal load factor, and 
L = lift. 

The propulsive drag (Fe) is only in the longitudinal flight path axis so that its contribution 
normal to the flight path is zero. 

SECTION 2.0 REFERENCE 

2.1     Walker, P.M.B., ed. 1995. Cambridge Air and Space Dictionary. Cambridge University Press. 

• 

• 
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3.0 ALTITUDE 

3.1 Introduction - Altitude 

There are several forms of altitude of interest in aircraft performance. For this text, 
generally, all units will be in feet. The first altitude is geometric (or tapeline) altitude (h). 
Geometric altitude is the physical, linear altitude measured from mean sea level. Mean sea 
level is defined (from Britannica™) as the height of the sea surface averaged over all stages of 
the tide over a long period of time. The length of a foot of geometric altitude does not vary as a 
function of temperature or gravity variation with altitude. In the early days of flight, the 
technology was not available to measure altitude onboard an aircraft. However, they could 
measure the outside ambient pressure. A standard atmosphere was defined which allowed the 
computation of an altitude that was proportional to the ambient pressure. That altitude is the 
pressure altitude, which we will denote with the symbology Hc, where c stands for calibrated. 

In order to derive a relationship between pressure and pressure altitude, it became necessary to 
define another altitude called geopotential altitude (H). The length of geopotential altitude 
foot varies with increasing altitude proportional to the change in gravity with altitude. The 
gravity model that has been used to define the geopotential altitude is a simplified model based 
upon reference gravity at sea level (g0 = 32.174 ft/sec2) and gravity varying with altitude as 
per the inverse square gravity relationship. 

For the standard atmosphere model, Hc and H are identical by definition. This requires 
that sea level pressure is exactly the standard atmosphere value and that temperature is 
precisely standard day at all altitudes (not just at the altitude being considered). As will be 
shown later, the difference between h and H at 50,000 feet is less than 200 feet, but this 
difference grows in proportion the square of altitude from the center of earth, where the radius 
of the earth is over 20 million feet. Finally, an altitude commonly used to compute piston- 
powered light aircraft performance is density altitude (Hd). Density altitude is useful for light 
aircraft primarily because engine performance is generally proportional more to density than to 
pressure for internal combustion engines. Density altitude is proportional to atmospheric 
density, just as pressure altitude is proportional to atmospheric pressure. Density altitude and 
pressure altitude is the same on a standard day at the altitude being considered. In this case, it 
is not required that temperatures be standard at all altitudes as was the case for H and Hc being 

identical. 

3.2 Hydrostatic Equation 

We will derive the relationship between atmospheric pressure and altitude. Envision a 
cubic element of air with unit horizontal dimensions (dx and dy ) and a height equal to dh. 
The pressure on the bottom of the element is P. The pressure on the top of the element is 
P + dP. The equation for static equilibrium of the element of air is as follows (the unit 
dimension into the page (dy) is not shown in Figure 3.1): 

W = p- g-dx-dy-dz=weighto{ the element of air (3.1) 
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P + dP 

T 
a 

W / 
dh 

^ ' yr 

i k 

■^ ax w 

P 

Figure 3.1 Element of Air 

(P + dP) = P-p-g-dx-dydz = P-p-g-dh 

Since dx and dy are of unit length, and the height (dz) is equal to dh, 

dP = -pgdh 

where: 

P  = pressure, 
p  = density, 
g   = acceleration of gravity, 
h   = height, and 
dh = height increment. 

Using the inverse square gravity law: 

(3.2) 

(3.3) 

g = 8o (r0+h) 
(3.4) 
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where: 

r0   = reference radius of the earth (20,855,553 ft), 

= 6,356,772 meters, 
g0 = reference gravity (32.17405 ft/sec2), and 

= 9.80665 m/sec2 (exactly by international agreement). 

Introducing the ideal gas equation of state: 

P = p-R-T 

Solving for p in 3.5: 

P=py (R.T) 

(3.5) 

(3.6) 

where: 

T  = ambient temperature, and 
R = gas constant = 3,089.8136 ft2/(sec2°K). 

Value for R is converted from metric units using the 1976 U.S. Standard Atmosphere. 
Substituting 3.4 and 3.6 into 3.3: 

dP = - 
RT yr0+h 

dh 

dP/P = -(g0/Ry(l/T){r0/(r0+h)]2-dh 

(3.7) 

(3.8) 

It is not a simple matter to integrate the above equation exactly. The concept of a 
geopotential altitude was introduced to allow for the integration. 

3.3 Geopotential Altitude 

Geopotential altitude is developed from equation 3.9. 

gdh = g0-dH (3.9) 

where: 

g     = gravity at altitude h, 
h     = tapeline (or geometric) altitude, and 
H     = geopotential altitude. 
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A tapeline foot is the same physical length independent of height while a geopotential foot ^^ 
expands with increasing altitude linearly with the corresponding decrease in gravity. ■■ 

dH = 

Substituting 3.10 into 3.3 and using 3.6: 

dP = -pg0dH-- 

\8° J 
dh (3.10) 

g0-dH (3.11) 

dPIP = (-gjR)-(dHIT) (3.12) 

The above formula can be integrated if T either is a constant or is linearly varying with 
geopotential altitude (H). This means you can look up the integration formula in a table of 
integrals. A standard atmosphere model has been defined which contains only constant or 
linear temperature segments. The first standard atmosphere, defined by the French in 1919, 
contained just one segment. The constants in that segment are still the same today (as of 1976). 
This standard atmosphere purports to represent an average temperature model of the earth's 
atmosphere throughout the world and during the various seasons. 

3.4 1976 U.S. Standard Atmosphere 

The 1976 U.S. Standard Atmosphere model is (as of the writing of this handbook) the 
accepted temperature and pressure profile model in the United States. The profile is presented 
in Tables 3.1 and 3.2. The region up to about 17 kilometers (56,000 feet) is known as the 
troposphere. Quoting from Britannica™ Online: "troposphere - a term derived from the Greek 
words tropos, 'turning' and sphaira, 'ball'." The temperature decreases rapidly with altitude in 
this region. The rising warm air meets the sinking cold air and the air tends to "turn over" like 
a "ball" - hence the term troposphere. One would pause between layers, hence, the transition 
to the next layer is called the tropopause. To about 50 kilometers (164,000 feet), the 
temperature rises slowly in a region called the stratosphere. Altitudes higher than 50 kilometers 
are above the region of conventional aircraft performance, so we will not discuss those. 
However, the temperatures for the model atmosphere are included in Tables 3.1 and 3.2 to a 
geometric altitude of 86 kilometers. 

3.5 Temperature and Pressure Ratio 

We will define temperature ratio (0) and pressure ratio (5). These are, respectively, the 
ratio of ambient temperature to standard temperature at sea level and the ratio of ambient 
pressure to standard pressure at sea level. The formulas are as follows: 

T T 
0 =— =  (3.13) 

TSL    288.15 
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*.-£-. 
lSL 2116.22 

(3.14) 

where: 

T = units of degrees K, and 
P = units of pounds/foot2. 

Table 3.1 
1976 U.S. STANDARD ATMOSPHERE 

Geopotential 
Height 

(m) 

Geopotential 
Height 

(ft) 

Temperature 
Gradient 

(°K/l,000ft) 
Temperature 

(°K) 
Pressure 
(lbs/ft2) 

0 0 -1.9812 288.15 2,116.216600 
11,000 36,089 0.0000 216.65 472.680500 
20,000 65,617 0.3048 216.65 114.345400 
32,000 104,987 0.8534 228.65 18.128900 
47,000 154,199 0.0000 270.65 2.3163200 
51,000 167,323 -0.8534 270.65 1.3980500 
71,000 232,940 -0.6096 214.65 0.0826320 
84,852 278,386 N/A 186.95 0.0077983        | 

Notes: 1. The temperature gradient and base temperature in the first segment of the standard 
atmosphere has remained unchanged since the 1925 U.S. Standard Atmosphere. 

2. The standard atmosphere is defined in metric units. The exact conversion factor from 
meters to feet is to divide meters by 0.3048. 

3. The highest altitude in the table is an even 86,000 meters geometric (tapeline) altitude. 

Table 3.2 
STANDARD ATMOSPHERE PRESSURE AND TEMPERATURE 

P     Geopotential 
Altitude (H) 

(ft) 
0.00 

Ambient 
Pressure (P) 

(lbs/ft2) 
Pressure 

Ratio (<5) 

Ambient 
Temperature (T) 

(°K) 
Temperature 
Ratio(0) 

2116.220 1.00000 288.15 1.0000 
5,000.00 1760.800 0.83200 278.24 0.9656 
10,000.00 1455.330 0.68770 268.34 0.9312 
15,000.00 1194.270 0.56430 258.43 0.8969 
20,000.00 972.490 0.45950 248.53 0.8625 
25,000.00 785.310 0.37110 238.62 0.8281 
30,000.00 628.430 0.29700 228.71 0.7937 
35,000.00 497.950 0.23530 218.81 0.7594 
36,089.24 472.680 0.22340 216.65 0.7519 
40,000.00 373.300 0.17640 216.65 0.7519 
45,000.00 308.010 0.14550 216.65 0.7519 
50,000.00 242.210 0.11450 216.65 0.7519 
55,000.00 190.470 0.09001 216.65 0.7519 
60,000.00 149.780 0.07078 216.65 0.7519 

1        65,000.00 117.780 0.05566 216.65 0.7519         1 
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Table 3.2 (Concluded) 
STANDARD ATMOSPHERE PRESSURE AND TEMPERATURE 

1      Geopotential 
Altitude (H) 

(ft) 

Ambient 
Pressure (P) 

(lbs/ft2) 
Pressure 

Ratio (S) 

Ambient 
Temperature (T) 

(°K) 
Temperature 

Ratio (0) 
65,616.80 114.350 0.05403 216.65 0.7519 
70,000.00 92.684 0.04380 217.99 0.7565 
75,000.00 73.054 0.03452 219.51 0.7618 
80,000.00 57.674 0.02725 221.03 0.7671 
85,000.00 45.608 0.02155 222.56 0.7724 
90,000.00 36.123 0.01707 224.08 0.7777 
95,000.00 28.656 0.01354 225.61 0.7820 
100,000.00 22.768 0.01076 227.13 0.7882         | 

The numbers in Tables 3.1 and 3.2 represent the model atmosphere. On any given day, 
there will be variation from that model (refer to Appendix A for what the average variation is 
for data taken above Edwards AFB). 

3.6 Pressure Altitude 

3.6.1 Case 1: Constant Temperature 

T = Tn 

Substituting 3.15 into the relationship 3.12: 

dP/P = {-g0/R)-{dH/T0) 

(3.15) 

(3.16) 

We will integrate using a table of integrals and relationships for natural logarithms. Since 
g0, R and T0 are each constant: 

I — = ln(P)-ln(P0) = j  p 

Solving for P in 3.17: 

-go jdH = 
( \ 

So 

(*-To) 
\H-H0) (3.17) 

P = Po-e 
-%T0) "ft"-"»)} 

(3.18) 

Solving for H: 

H=H0- '(^o), 
£o 

■In [P, (3.19) 
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For the segment of the atmosphere from 11,000 meters (36,089 feet) to 20,000 meters 
(65,617 feet): 

a.    T0 = 216.65 °K (-69.7 °F or -56.5 °C), 

b. P0 = 472.68 pounds/ft2 atH = H0, and 

c. H0 = 36,089.24 feet (11,000 m). 

3.6.2 Case 2: Linearly Varying Temperature 

Assume a temperature that varies linearly with altitude as follows: 

T = T0 + a-(H-H0) 

where: 

T0    = base temperature, 

H0   = base geopotential altitude, and 

a     = temperature gradient (deg K/foot). 

Substituting, again, into the relationship (3.12) dPIP = (-g0/R)-(dH IT): 

dPIP 
[R.(T0 + a-[H-H0])] 

■dH 

Integrating from a table of integrals: 

dx 1 
J; • In (a + bx) 

(a + b-x)    b 

Then using the relationship ln(«) - ln(v) = ln(« / v) 

In 
%LJ* {R.a)\ 

•In 
(T0 + a(H-H0)j 

Solving for P: 

P = Pn 1 + 
7(R- .,] 

Or solving for H : 

(3.20) 

(3.21) 

(3.22) 

(3.23) 
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H = H0 + 
\        /So 

-1 (3.24) 

For the first segment of the standard atmosphere (zero to 11,000 meters; zero to 36,089.24 
feet), substituting constants (from the international standard atmosphere) [for English units]: 

- a./ (1.9812/1000) 

288.15 
6.8755856£-6 (round to 6.87559£-6) (3.25) 

_<?0/ 32.17405 
(R-a)    [3089.8136-(1.9812/1000)] 

= 5.255876 (round to 5.2559)       (3.26) 

'/p = (l-6.87559E-6-//): 5.2559 
(3.27) 

Solving for H 

H = 

i- r. 
\(l/5.2559) ' 

<o; 

(6.875595-6) 
(3.28) 

Equation 3.26 is the definition of pressure altitude for altitudes from zero to 36,089 feet 
(zero to 11,000 meters). 

Using the pressure ratio (5) as defined in equation 3.14. 

1 SL 
(3.29) 

where: 

PSL = standard sea level pressure = 101,325 pascals (exactly, by international agreement). 

The unit pascal has been defined as a newton of force per square meter. A newton has units 
of (kg m/sec2). One newton is equal to 0.2248195 pounds force. 

In various English units: 

PSL = 2,116.2166 pounds/ft2 (usually rounded to 2,116.22); 

= 760 mm Hg; 

= 1,013.25 millibar (mb); and 

= 29.92 in. Hg 
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Substituting 3.29 into 3.28: 

f1_s (1/5.2559)1 

Hc=i= =L (3.30) c    (6.87559^-6) 

The above is for zero to 36,089 feet pressure altitude. 

The symbol Hc is used for pressure altitude to distinguish it from the geopotential altitude 

(H). Pressure altitude and geopotential altitudes are only identical for the model atmosphere. 

Similarly: 

<5 = (l-6.87559£-6-//c)
52559 (3.31) 

For the temperature ratio (0), using equation 3.20 and substituting constants (from the 
international standard atmosphere): 

T T 1 9812 
0= — = —-* t^l±.H =l-6.S1559E-6-H (3.32) 

288.15    288.15    1,000 

The second segment of the standard atmosphere (11,000 to 20,000 meters) (36,089 to 
65,617 feet) is a constant temperature (T=-56.5 degrees C) segment. The standard atmosphere 
is defined in metric units. English units require the conversion factor of 0.3048 meters per foot. 
For instance, the 11,000-meter point is 36,089.24 feet. 

For the altitude segment between 36,089 feet and 65,617 feet: 

32 17405 
g0/(ÄT0) = 7   r = 4.806343^-5 (3.33) 50 °     (3089.8136-216.65) 

RTn Y     =20,805.84 

Computing <5  for H =36,089.24 feet using the S  formula for the first segment of the 
atmosphere (equation 3.31): 

5 = 0.22336 • eH«06343E-5K//c-36089.24)} ^^ 

For the temperature ratio (0), using equation 3.20 and substituting constants (from the 
international standard atmosphere): 

T T 1 9812 
6= = 9 : #=l-6.87559£-6-tf (3.35) 

288.15    288.15     1,000 
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The equations for any segment of the 1976 U.S. Standard Atmosphere can be derived by 
simply applying the above equations since all segments of the standard atmosphere are either 
constant temperature or linearly varying temperature versus pressure altitude. 

The standard atmosphere pressure ratio versus pressure altitude is nearly a straight-line 
logarithmic function as can be seen in Figure 3.2. 

Log(delta) versus Pressure Altitude [K Feet] 

Ü ■* 

(A 

n    -2 r 
n 

3s 

S -4 ■ 
-1 

-6- 

100 150 200 

Pressure Altitude (ft*1,000) 

300 

Figure 3.2 Logarithmic Variation of Pressure Ratio 

The logarithm in Figure 3.2 is base 10. As can be seen, at each 50K point the atmospheric 
pressure decreases by a factor of l/10th. For instance at 50K the pressure ratio is 0.1145, at 
100K it is 0.01076, at 150K it is 0.00010946, etc. As discussed earlier, all the segments of the 
standard atmosphere are either constant temperature or linearly varying with altitude. Figure 
3.3 illustrates the linear temperature segments. 

• 
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Standard Atmosphere Temperature 

0 - 

Standard Temperature (deg K) 

Figure 3.3 Standard Atmosphere Temperature 

3.7 Geopotential Altitude (H) versus Geometric Altitude (h) 

Using the inverse square gravity law and the definition of H: 

8 = 8o 
ro 

(r0+h) 

g-dh = g0-dH 

Substituting 3.36 into 3.37 and solving for dH : 

dH 
ro 

(r»+h) 

■dh 

(3.36) 

(3.37) 

(3.38) 

Integrating gives the relationship between H and h (or tapeline). From a table of integrals: 

dx 1 I (a + bxf       b(a + bx) 

In our case, a — r0, b = l and x = h. 

Factoring out the r0   term in the numerator: 
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dh 

o{r0 + h) 
i = ro 

1        1 
■+- 

(r0 + h)    r0 

(3.39) 

Multiply the first term in square brackets by  y   and the second term by O-o + A), 
(rQ+h)- 

m 

H = r0~- 
(r0+h) 

(r0+h)-r0    (r0+h)-rQ 

% + ■ (3.40) 

By factoring terms, we get: 

H = 
ro 

(r-o+h) 
■h [r0= 20,895,669 feet] (3.41) 

At 50,000 feet tapeline altitude (the upper limit of most conventional aircraft performance 
testing), H computes to be 49,881 feet, for a difference of only 119 feet, or 0.24 percent. 

3.8 Geopotential versus Pressure Altitude - Nonstandard Day 

A standard temperature may exist at a given altitude on a test day but there would never be 
a standard atmosphere at all altitudes except in computer models. 

Using the basic dP/P relationship (3.16): 

dP/P = -(g0/R)- (dHc ITSTD) standard day 

dP/P = -(g0/R)-(dH IT) test day 

(3.42) 

(3.43) 

There can be a significant difference between having a standard atmosphere and achieving 
standard temperature at a given altitude. The pressure levels at a given pressure altitude are by 
definition the same whatever the temperature. Therefore, we could equate the right sides of 
equations 3.39 and 3.40. 

dHcITSTD=dHIT (3.44) 

where: 

T=T. test day ' 

dH = rp I     dll C 

\/   *STD 
(3.45) 

Since dh = dH (i.e., A tapeline = A geopotential): 
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Or in a climb, for instance: 

dh = ■dUr (3.46) 
lSTD 

h = 
lSTD 

■ Hc = rate of climb (3.47) 

Sample calculation: 

Assume a climb through 30,000 feet with dHcldt= 1,000 ft/min = rate of change of 
pressure altitude. Then, presume a test day temperature that is 10.0 degrees C hotter than 
standard day. Standard day temperature at 30,000 feet is 228.7 degrees Kelvin (K). 

Inserting these values into 3.45: 

h = 
(228.7 + 10.0 

228.7 •1,000 = 1,043.7 (3.48) 

The physical rate of climb (the derivative of tapeline altitude) is 4.4 percent higher than the 
rate of change of pressure altitude for being 10 degrees C hotter than standard day. Average 
temperatures for the Air Force Flight Test Center (AFFTC) at altitudes from 10,000 feet every 
10,000 feet to 50,000 feet can be found in Appendix A. As can be seen, it is not uncommon to 
be off standard day by 10 degrees C or more. 

3.9 Effect of Wind Gradient 

Average windspeed and direction data for the AFFTC, as a function of altitude for each 
month, can be found in Appendix A. This is average data for a time span of over 30 years. To 
illustrate the effect of wind on climb performance we will take data from January at pressure 
altitudes of 13,801 feet (600 mb [millibar]) and 23,574 feet (400 mb). Standard sea level 
pressure in millibars is 1013.25. We will conduct calculations for a climb speed of 280 knots 
calibrated airspeed (Vc). This is typical for F-16 and large transport aircraft. Table 3.3 
contains the average meteorological data and computed variables. 

Table 3.3 
EDWARDS AVERAGE WEATHER DATA FOR JANUARY 

Pressure 
Altitude 

(ft) 

Geometric 
Altitude 

(ft) 

Standard 
Temperature 

(degK) 

Delta 
Temperature 

(degK) 

Ambient 
Temperature 

(degK) 
Windspeed   j 

(kts) 
13,801 14,065 260.8 3.2 264.0 28.7 

|       23,574 23,937 241.4 1.0 242.4 43.5        | 
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Now, we wish to compute the change in energy altitude for climbing directly into the wind 
(headwind) and with the wind (tailwind). The inertial energy altitude, as derived in the first 
section, is as follows: 

Ht (3.49) 

Table 3.4 shows the values of groundspeed and energy altitude for a headwind, tailwind, 
and zero wind. In each case, the calibrated airspeed is the same at 280 knots. 

Table 3.4 
ENERGY ALTITUDE EFFECT OF WIND GRADIENT 

Altitude 
(h) 

(ft) 

Airspeed 

(V,) 
(kts) 

Headwind 

(kts) 

Tailwind 

(kts) 

No Wind 

(HE) 
(ft) 

Headwind 
(HE) 

(ft) 

Tailwind 

(HE) 

(ft) 
14,065 343.4 314.7 372.1 19,285 18,449 20,194 
23,937 396.5 353.0 440.0 30,897 29,453 32,507 

Calculating the delta energy altitudes: 

a. Zero Wind AHE = 30,897-19,285 = 11,612 feet, 

b. Headwind AHE = 29,453-18,449 = 11,004 feet, and 

c. Tailwind AHE = 32,507-20,194= 12,312 feet. 

Comparing these numbers, on an average day over Edwards AFB in January, the change in 
energy altitude is 1,308 feet greater flying with a tailwind than flying into a headwind. This is 
over the geometric altitude range of 14,065 to 23,937 feet. This is 11.9 percent compared to the 
headwind number or 6.0 percent compared to zero wind. In making this comparison we have 
ignored the flight path angle. The airspeed vector is inclined with respect to the horizontal by 
the flight path angle while the winds are in the horizontal plane. 

When climb performance is measured using the altimeter (pressure altitude) large errors 
could be induced due to wind gradients. This is why opposite heading climb data are obtained 
("sawtooth climbs"). The wind gradient effect can now be accounted for using GPS or INS 
data. 

3.10 Density Altitude 

Density altitude is nothing more than an altitude on a test day that produces an equivalent 
density on a standard day. The density altitude parameter has been used primarily for 
reciprocating engines, whose power output is generally proportional to air density (i.e., density 
altitude). Since the reciprocating engine is generally flown at altitudes below 11 km 
(kilometer); the pressure and temperature ratio equations for the first segment of the 
atmosphere are appropriate. The relations (equations 3.31 and 3.32) were derived above in the 
altitude portion of this section. 
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5.2559 
<5=(l-6.87559£-6-//c) 

0 = (l-6.87559E-6-tfc) 

The first formula (<5 ) is valid for standard or any nonstandard day. That is, pressure ratio is 
a function of pressure altitude only and vice versa. On the other hand, the temperature ratio 
(9) formula is valid only for standard temperatures. 

We can compute density ratio (a) for a standard day, by taking the ratio of the above 
formulas. 

\5.2559 
8    (l-6.87559E-6-tfc) .    ,„„«rtT,   , TT v 

o = — = ±— ^—- = (l-6.87559£-6-tfc) 
6        (l-6.87559£-6-#c)       v ; 

4.2559 (3.50) 

The above a  formula is valid only for standard day. However, one could define the 
density altitude (Hd)as being directly proportional to density as defined by equation 3.50. 

cr = (l-6.87559E-6-#,)' 
4.2559 

Let's give an example. We are at 10,000 feet pressure altitude at 100 degrees F. The 
pressure ratio is: 

S =(l-6.87559£-6-10,000)52559 =0.6877 

On a standard day, the temperature would have been: 

0 = (l-6.87559£'-6-10,000) = 0.9312 

T = 288.15-0 = 288.15-0.9312 = 268.3 = (268.3-273.15)-1.8 + 32 = 23.3°F 

The standard day o is: 

Solving for Hd 

a.2*n.. 0.7384 
0.9312 

Hd = 
\-a [1/4.2559]' 

6.87559£-6 

[1/4.2559]' 

6.87559£-6 
(3.51) 

For the test day temperature of 100 degrees F: 
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(459.67 + 100) 
e=± ^ = 1.0790 

518.67 

The a for the test day would be: 

Then, computing Hd we get: 

• 

8    0.6877    n ,„„,, 
a= — = = 0.6373 

0    1.0790 

Htl = 
f 0.6877 

sl/4.2559 

1.0790 
/6.87559£-6 (3.52) 

Hd =14,607 feet versus 10,000 feet for Hc (pressure altitude). 

Equation 3.52 shows the density (or a ) at 100 degrees F at 10,000 feet pressure altitude is 
the same as at 14,607 feet pressure altitude on a standard day for that altitude. To check on our 
calculations, calculate the standard density ratio for 14,607 feet as follows: 

a. 8 =(l-6.87559£-6-14,607)52559 =0.5733, 

b. 6 = (1 - 6.87559E -6 14,607) = 0.8996, and 

8     0.5733    n „„„ c. cr= —= = 0.6373. 
0    0.8996 

It checks! The density ratio for 100 degrees F at 10,000 feet pressure altitude is identical to 
the density ratio at a density altitude of 14,607 feet. 

3.11 Pressure Altitude Error Due to Ambient Pressure Measurement Error 

At Edwards AFB, the field elevation (geometric height) of the main runway (22/04) is 
2,300 feet. With standard atmospheric conditions, the pressure altitude would also be 2,300 
feet. That requires more than just being at standard temperature. As we have derived, pressure 
altitude is only a function of ambient pressure and is independent of ambient temperature. 
Using the standard atmosphere model formulas, we can compute what a 1-foot change in 
altitude will produce in ambient pressure. Table 3.5 shows the resultant pressure error for a 1- 
foot error in pressure altitude. 
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Table 3.5 
PRESSURE ERROR VERSUS ALTITUDE ERROR 

He  
(ft) 

8 P 
(psf) 

AP 
(psf) 

P 
(in.Hg) 

AP 
(in.Hg) 

P 
(millibar) 

AP       1 
(millibar) 

0.0 1.00000 2116.22 -0.076 29.921 -0.0011 1,013.250 -0.037 
2,300 0.91963 1946.15 -0.071 27.516 -0.0010 931.820 L   -0.034 
10,000 0.68770 1455.33 -0.056 20.577 -0.0008 696.820 -0.027 
20,000 0.45954 972.49 -0.041 13.750 -0.0006 465.630 -0.020 
30,000 0.29695 628.43 -0.029 8.885 -0.0004 300.890 -0.014 
40,000 0.18509 391.68 -0.019 5.538 -0.0003 187.540 -0.009 
50,000 0.11446 242.21 -0.012 3.425 -0.0002 115.972 -0.006 

Note: Th( i pressure errors are carried to one extra digit than the pressure magnitude. 

Data recording system resolution is a limitation for any parameter, but let us use pressure 
altitude as an illustration. Looking at the inches of mercury column, one can see that better 
than 1/1000th of an inch of mercury accuracy would be required to achieve 1-foot accuracy in 
pressure altitude. It turns out that such accuracy level instrumentation is available. There are 
two other limiting factors on altitude accuracy. First, is the number of digits recorded in the 
data stream. The data recording is an 8, 10, 12, 14, or 16 "bit" system. An 8-bit system breaks 
full scale into 28 (or 256) parts. If full scale were 30 in. Hg, then the resolution of ambient 
pressure would be 30/256=0.117 in. Hg. At sea level, this would be an altitude error of 
0.117 in. Hg/(0.0011 in. Hg/ft)=107 feet. Clearly, this is unacceptable for performance testing. 
For higher bit resolution the following numbers are computed: 

a.    2iU = 1,024 AP = 30/1,024= 0.029 in. Hg   AHC =0.029/0.0011=26 feet 

,12 b. X1 = 4,096  AP = 30/4,096= 0.0073 in. Hg AHC =0.0073/0.0011=6.6 feet 

c. 214    =16,384 AP= 30/16,384= 0.0018 in.Hg AHC =0.0018/0.0011= 1.6 feet 

d.    210  = 65,536 AP = 30/65,536= 0.0005 in. Hg AHC = 0.0005/0.0011= 0.5 feet 

Therefore, it appears that at least at sea level, a 14-bit system will get us to our goal of 1-foot 
accuracy. However, let us see what happens at 50,000 feet. We have the same value for 
214=16,384: 

a.    AP =30/16384=0.0018 AHC =0.0018/0.0002=9,0 ft 

Therefore, our error due to recording system resolution is substantially larger at the higher 
altitudes. However, a 9-foot error at 50,000 feet is considered acceptable. The AFFTC pacer 
aircraft use a 16-bit system. The second limiting factor on altitude accuracy is the 'position error,' 
discussed in the air data calibration section. 
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4.0 AIRSPEED 

4.1 Introduction - Airspeed 

Aircraft speed can be expressed in several forms. For this text, generally, the units will be 
in either knots (nautical miles per hour) or feet per second, except for Mach number (M ), 
which is dimensionless. Groundspeed (V ) is the physical speed relative to the ground and is 

usually expressed as a vector relationship with north, east, and down components. This is due 
to obtaining groundspeed from INS (inertial navigation system) or GPS (global positioning 
system) data sources. True airspeed {Vt) is the physical speed of the aircraft with respect to the 

moving air mass. This is usually a scalar quantity, though components of true airspeed can be 
computed using axis transformations using INS velocities and angles and windspeeds. 
Windspeed (VH,) is the speed of the air mass (wind) with respect to the ground. This is also a 

vector quantity with north, east and down components. The Mach number (M ) is the ratio of 
true airspeed to the local speed of sound. Mach numbers less than 1 are referred to as subsonic 
and those greater than 1 are supersonic. The speed of sound is a function of the square root of 
the ambient temperature. Calibrated airspeed (Vc) is the speed displayed on a typical cockpit 

airspeed indicator. It is a function of only one parameter—differential (or impact) pressure. 
Impact pressure is the difference between total and ambient pressure. The c (calibrated) has 
two meanings. The first is that calibrated airspeed is 'calibrated' to sea level in the sense that it 
will be exactly equal to true airspeed at sea level, standard day, but only at that condition. The 
second is calibrated versus indicated. A pneumatic instrument (physically driven from pressure 
inputs) displays an 'indicated' value. The value has instrument and position errors. The 
instrument errors are errors due to the instrument itself. Position errors are those due to the 
location of pressure probes. There may be some ideal location to place probes where the errors 
are zero. However, in the real world, there is no such position so there will always be position 
errors of some magnitude. Once instrument and position error corrections are applied, the 
indicated airspeed becomes calibrated airspeed. 

In aircraft equipped with an ADC (air data computer), those corrections are usually already 
applied in the ADC so that the displayed airspeed is calibrated airspeed. Calibrated airspeed, as 
mentioned above, is a function only of the impact pressure. That pressure is also designated 
compressible dynamic pressure. A measure of airspeed that is a function of incompressible 
dynamic pressure is called equivalent airspeed (Ve). Structural analysis is often in terms of 
incompressible dynamic pressure, so that equivalent airspeed is a useful speed for structural 
testing. At sea level, standard day, calibrated airspeed and equivalent airspeed are equal (or 
equivalent), but only at that condition. 

4.2 Speed of Sound 

The speed of sound is computed by the following formula: 

a = yl(y-R-T) (4.1) 
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where: 

a     = speed of sound (ft/sec), 
Y     =1.40 (ratio of specific heats), and 
R     - 3,089.8136 ft2/(sec2 °K) (from the 1976 U.S. Standard Atmosphere). 

For a sea level standard day, T = 288.15 °K. Then, 

a = ^/[l.40-3089.8136-288.15] (4.2) 

= 1,116.4505 ft/sec (usually rounded to 1116.45) 

= 661.4788 knots (usually rounded to 661.48) 

For the speed of sound at temperatures other than standard sea level, 

a/   A^^l 
7aSL 

(4.3) 

Then, define 6 as the ratio of test day temperature to standard day temperature at sea level. 

a = aSL-yfO (4.4) 

4.3 History of the Measurement of the Speed of Sound 

From Britannica™ On-line, the speed of sound in air was first measured by the French 
scientist Pierre Gassendi in the 1600s at 478.4 meters per second. He "measured the time 
difference between spotting the flash of a gun and hearing its report over a long distance." 
Very clever! In the 1650s, two Italians (Giovanni Borelli and Vincenzo Viviani) obtained a 
much more accurate value of 350 meters per second. The first precise value was obtained at the 
Academy of Sciences in Paris in 1738 at 332 meters per second. Britannica™ reports a value of 
331.45 meters per second was obtained in 1942, which was amended to 331.29 meters per 
second in 1986. These values were at 0 degrees C. 

In 1942, NACA (National Advisory Committee for Aeronautics) published Report No. 1235. 
In that report, they specified the speed of sound at sea level standard day as 1116.89 feet/second. 
Converting the NACA number to meters per second and to 0 degrees C: 

273 15 
a.    a = 1116.89-0.3048-J — =331.45 meters/second 

V 288.15 

In 1962 and again in 1976, the ICAO (International Civil Aviation Organization) agreed 
upon constants for use in a standard atmosphere. The speed of sound is not directly defined, 
but could be computed from the other constants. The speed of sound at sea level in English and 
metric units is as follows: 

a.    aSL =1116.4505 ft/sec = 340.2941 m/sec 
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4.4 The Nautical Mile 

The nautical mile (nm) has been set, by international agreement, to exactly 1,852 meters. 
The conversion factor from feet to meters is also an exact number—0.3048 meters per foot. 
Therefore, we can compute the number of feet per nautical mile. 

a.    AM/ =1,852/0.3048 = 6,076.1155 feet 

Since a knot is 1 nm per hour, the conversion from knots to feet per second is as follows: 

„     .    .        6,076.115 NM     Hour 
a-    feet/sec = = 1.6878 knots 

Hour 3,600 sec 

An early definition of a nautical mile was an even 6,080 feet. It is called the British 
nautical mile. With that definition, the conversion factor becomes: 

.     .   t.        6,0S0.NM      Hour a-    feet/sec = = 1.6889 knots 
Hour      3,600 sec 

One would see the above conversion factor in textbooks published prior to the U.S. 
standard atmosphere of 1959, which had many of the same constants as the 1962 and 1976 
atmospheres. Using the 1942 speed of sound and the early knots to feet per second conversion 
one gets: 

a. aa=l,116.89/1.6889 = 661.31knots 

With the modern (as of this writing) values: 

b. aSL =1,116.45/1.6878 = 661.48 knots 

4.5 True Airspeed 

True airspeed (Vt) is the physical speed of the vehicle relative to the moving air mass. The 

true airspeed is a vector quantity. The relationship between true airspeed and the speed with 
respect to the ground (V ) is: 

Vt = Vg + Vw = true airspeed vector (4.5) 

where: 

Vw = windspeed vector. 

4.6 Mach Number 

Mach number (M ) is defined as the ratio of true airspeed to the local speed of sound. 

M=V'/a <4-6> 
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We could compute Mach number from Pitot-static theory with the simple expression for 

differential pressure (qc) versus total pressure detected by a Pitot tube (Pt ) and ambient 

pressure (P). The prime on the total pressure is to denote a measurement behind a normal 
shock (for M >1). For M <1, the free stream total pressure (Pt) and the measured total 

pressure (Ps ) are identical. Differential pressure is also compressible dynamic pressure and 

often designated impact pressure. 

qc = P, -P 

Or dividing both sides by P : 

qc/ -P,/ -1 yp - /p   l 

Using Bernoulli's Equation for M < 1 

1c, 1 + (r-i)/ 
[r/fr-O] 

■AT 

And the Rayleigh Supersonic Pitot Equation for M > 1: 

Icy {Y+y2 

LV 

[r/fr-O] 
M' (r+i) 

[i/(r-i)] 

(l-y + 2-y-M2)1 [i/(r-0] 

(4.8) 

(4.9) 

(4.10) 

Substituting / =1.40 for M <1: 

qyp = (1 + 0.2- M2)   -1 

Solving for M in equation 4.11: 

M 5-- 9c/ +1 

\[l/3.5] 

-1 

(4.11) 

(4.12) 

For M > 1: 

n2.5 

qc/p = (l.2-M2f5 ■ 2.4 

(-0.4 +2.8-M2) 
•-1 (4.13) 
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Multiply by 1= (2.50/2.50)25 and collect terms. Multiply the first term {(1.2-M2)35} by 

2.50    and divide the second term in the { } brackets by the same 2.502 5 factor. 

^ = (l.235-2.525-M(235))- 
2.4 2.5 

(-0.4-2.5 + 2.8-2.5-M2)25 
-1 (4.14) 

• 

:1.23'5-2.5"-2.425< 
M1 

(7-M2-lf 
1.2" • 2.5" ■ 2.4" = 166.9215801 (round to 166.9216) 

^/ = 166.9216- M\ 
(7-M2-l)25 

-1 

(4.15) 

(4.16) 

Note that one produces the identical value for qc IP when M = 1.0 is inserted into either 
the subsonic (equation 4.11) or supersonic (equation 4.16) formula. For example: 

a-    ?c'4^.0=0.892929 

Solving for M in the supersonic formula (4.16), first add 1 to both sides, then multiply 

both sides by the term (l-M2 -i\   . 

(qc/£ + l\(l-M2-lf5 = 166.9216M' 

/ 2 \2 5 

Then, divide both sides by (7 • M J   . 

7P
+I]

- 
7-M2-l 

1-M2 

2.5 (166.9216-M7) 
=   (725)-M[225]   =1 

287560 -M' 

Finally, solve for M from the M on the right side. 

M = 0.881285- (4.17) 

As can be seen, M appears on both sides of the equation. One method to approach the 
supersonic M calculation in a computer algorithm is first determine if M is indeed greater 
than 1.0 by calculating M from the subsonic equation (4.12). If M is greater than 1.0 at that 
point, then use the value of M  from the subsonic equation as the initial condition in the 
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supersonic equation. Then perform a simple iteration until M converges to a value - usually in 
just a few iterations. 

4.7 Total and Ambient Temperature 

A total temperature probe is used to measure total temperature (7^). Assuming this probe is 
in the freestream with no heat loss (adiabatic), then the relationship between total temperature 
and ambient temperature (T) is as follows: 

T=T- 
2 

M' ■ T-(l + 0.2-M2) (4.18) 

4.8 Calibrated Airspeed 

Historically, airspeed indicators were constructed with a single pressure input being the 
differential pressure (qc ). The gauge is "calibrated" to read true airspeed at sea level standard 
pressure and temperature. The subsonic and supersonic Mach number equations are used with 
the simple substitutions of (Vc I aSL) for M and PSL forP . However, the condition for which 
the equations are used is no longer subsonic (M <1) or supersonic (M >1) but rather 
calibrated airspeed being less or greater than the speed of sound (aSL ), standard day, sea level 
(661.48 knots). 

¥orVc<aSL: 

qC/ 
1 SL 

1 + 0.2- yC/ 

-i3.5 

-1 (4.19) 

VC=aSL\   P- 
r    /      V1/35) 

(4.20) 

ForVc>a SL- 

q/   _166.9216-(Vc/qSL)
7    i 

/P   ~ r o     *i2-5 /rsL     h.(VJa„)2-l\ 
(4.21) 

Solving for Vc and noting that the formula is similar in form to the M equation, we will 
leave out intermediate steps. 
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Vc =aSL- 0.881285- qVn  +1  • 
1 SL 

2.5 

(4.22) 
• 

Notice the differences between equations 4.22 and 4.17. We will leave it to the reader to 
make that comparison. 

Note that Vc occurs on both sides of equation 4.22. The solution is simply to use the 
subsonic formula to obtain a first iteration, then successively iterate on the above equation. It 
will converge in just a few steps. It should be emphasized that the supersonic formula is 
Vc > aSL and not M > 1. 

Figure 4.1 illustrates the difference of true airspeed versus calibrated airspeed. In summary, 
the true airspeed is the physical speed of the aircraft with respect to the moving air mass, while 
the calibrated air speed is directly proportional to compressible dynamic pressure. The two 
measures of airspeed are identical at sea level, standard day. 

2,000 

True Airspeed (standard day) versus Calibrated Airspeed 

100 200 300 400 500 

Calibrated Airspeed (kts) 

600 700 800 

Note: At 50,000 feet, calibrated airspeed is about V2 of true airspeed. 

Figure 4.1 True Airspeed versus Calibrated Airspeed 
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4.9 Equivalent Airspeed 

Equivalent airspeed is defined from the incompressible dynamic pressure formula. 

q=0.5-p-Vl
2=0.5-p0-Ve

2 (4.23) 

PO = PSL>V- 

V2=o-V2 

ve = 4a-v, 

'SL 

(4.24) 

(4.25) 

(4.26) 

For the performance engineer, there is no practical reason to use equivalent airspeed for 
anything. However, structural analysis is often performed in terms of equivalent airspeed 
(since it is a direct function of the incompressible dynamic pressure), so the performance 
engineer needs to be able to convert Ve to parameters that are more useful. Besides equation 
4.26, another useful equation is derived. Since Mach number is 

M = 
[aSL-4e) 

(4.27) 

And a = <% , then 
/1> 

Ve=^-V
t=[^l%){aSL^)-M 

M 
V 

(aSL-4s) 
(4.28) 

Therefore, the equation 4.28 is a handy conversion between Ve and M..  Notice that it is not a 
function of temperature. 

4.10 Mach Number from True Airspeed and Total Temperature 

If one has an accurate direct measure of Vt, then M can be computed with the additional 

measurement of total temperature (Tt). The direct Vt measure could come from laser 
velocimetry. For example: 

Vi = asL ■ 

■\ 

288.15 
M (4.29) 
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M = 
(v,->/288.15) 

(661.48-Vr) 
(4.30) 

Recalling the total temperature equation 4.18, Tt = 7 • f 1 + 0.2 • M2) and solving for T : 

(1 + 0.2-M2) 
(4.31) 

Then, one would iterate between the M and T equations (4.30 and 4.31). An initial estimate of 
standard day might be chosen for the initial value of T for the iteration. 

In this case, M is a function of ambient temperature (T). This is due to the way we have 
chosen to compute M using a measurement of Vt. At the time of this writing, the technology to 

directly measure true airspeed was not generally available so one must rely on computing M 
from total (Pt) and ambient (P) pressure measurements. 

4.11 Airspeed Error Due to Error in Total Pressure 

An error analysis was presented at the end of the altitude section. That error analysis 
showed the effect of an error in ambient pressure on pressure altitude. A similar analysis can 
be performed for an error in total pressure and its effect on the calculation of true airspeed. 
Figure 4.2 shows that effect for an error of 0.001 in. Hg in the total pressure measurement. 

Effect of 0.001 In-Hg Error in Total Pressure 

200     400     600     800    1000 

True Airspeed (kts) 

1200 1400 1600 1800 

Figure 4.2 True Airspeed Error for 0.001 in. Hg Error 
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We have summarized the functional relationships derived in the altitude and airspeed 

sections as functions of three basic measurements: total pressure (P,), ambient (or static) 

pressure (P ), and total temperature (Tt). 

a. Hc = f{P) pressure altitude, 

b. Vc =f(qc) calibrated airspeed, 

c. qc-Pt-P compressible dynamic pressure, 

d. M=f(Pt,P) Mach number. Note that Mach number is obtained without a 

measurement of temperature, 

e. T - f{Tt,M) ambient temperature, and 

f. Vt= f(M,T) true airspeed. 
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5.0 LIFT AND DRAG 

5.1 Introduction 

The aerodynamic force axis system used for aircraft performance is defined by the true 
airspeed vector. Assuming zero sideslip angle (ß), the force parallel to true airspeed (V,) is 

the repulsive force drag (£>). Octave Chanute in his 1897 book, Progress in Flying Machines 
(Reference 5.1), uses the terminology resistance for what we now refer to as drag. The force 
perpendicular to the true airspeed vector is the lift (L) force. 

5.2 Definition of Lift and Drag Coefficient Relationships 

Lift and drag are referenced to incompressible dynamic pressure and a reference area so 
that the coefficients are nondimensional. In aircraft applications, the area is a reference wing 
area. The constants in the following equations are derived from the 1976 U.S. Standard 
Atmosphere (which are the same as in the 1962 U.S. Standard Atmosphere below 65,000 feet). 
The lift and drag coefficients are defined as follows: 

CD=D/(q-S) drag coefficient (5.1) 

CL=L/(q-S) lift coefficient (5.2) 

where: 

D = drag (pounds), 
L = lift (pounds), 
q = incompressible dynamic pressure (pounds/feet2), and 
S = reference wing area (feet2). 

Defining q : 

q =0.5- p-V2 =0.7 -P-M2 (5.3) 

To show how the above equivalence is developed, we use formulas we previously derived. 

a-   P=P/(R.TY 

b. Vt = Jy-R-T-M , and 

c. q =0.5-p-V,2 =0.5-—^— (yR-T)-M =0.5-1.4-M =0J-P-M2. 
(R-Ty ' 

Figure 5.1 illustrates the difference between the compressible (qc) and incompressible 
(q)dynamic pressure. 
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Ratio of Compressible to Incompressible Dynamic Pressure 

1.8  -. 

1.0  -   
1.0 1.5 

Mach Number 

Figure 5.1 Ratio of Compressible to Incompressible Dynamic Pressure 

More convenient forms for CD and CL are as follows: 

P = S • 2116.2166 (usually rounded to 2116.22) (pounds per ft2) 
q =0.7• 2116.22-5 -M2 = 1481.3516-5 -M2 

CD = 0.00067506 • D/(S -M2-S) 

(The constant is usually rounded to 0.000675) 

A drag coefficient of 0.0001 is defined as one drag count. 

CL = 0.00067506 • L/(8 -M2-S) 

5.3 The Drag Polar and Lift Curve 

(5.4) 

(5.5) 

(5.6) 

The drag polar and lift curve are usually presented as a function of lift coefficient and 
Mach number as follows: 

a. CD= f(CL,M) drag polar, and 

b. a = f(CL,M) lift curve. 

This is typically for a reference logitudinal center of gravity and Reynolds number or altitude. 
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5.4 Reynolds Number 

Reynolds number is defined as follows: 

(5.7) 

where: 

RN = Reynolds number, 
/      = characteristic length (feet) (/ is usually the MAC [mean aerodynamic chord]), and 
fi     = viscosity (slugs/[feet sec]). 

To compute viscosity, we used Sutherland's Law, which is a relationship for fi in terms of 
ambient temperature. We define an index that is a ratio of Reynolds number to the Reynolds 
number at standard day, sea level at a given Mach number. 

RNI = 
(r+no) 
398.15 

'8_ 
(5.8) 

(Note that if one were to insert standard day, sea level 
values into the RNI equation you would get 1.00.) 

where: 

RNI = Reynolds number index. Then, 

RN = (l.l0lE + 6)-M-l-RNI (5.9) 

For a characteristic length (/) of 1.0, Table 5.1 gives a sense of the magnitude of RN . The 
numbers used are for standard day. 

Table 5.1 
REYNOLDS NUMBER VARIATION WITH MACH NUMBER AND ALTITUDE 

Mach 
Number 

Altitude 

(ft) S 
T 

(degK) e RNI 
RN/l 
(lOVft) 

Vc 

(knots) 
0.10 0.0 1.0000 288.15 1.0000 1.0000 0.7101 66.10 
0.20 0.0 1.0000 288.15 1.0000 1.0000 1.4202 132.30 
0.60 0.0 1.0000 288.15 1.0000 1.0000 4.2606 396.90 
1.00 0.0 1.0000 288.15 1.0000 1.0000 7.1010 661.48 
1.20 0.0 1.0000 288.15 1.0000 1.0000 8.5212 793.80 
0.60 30,000.0 0.2970 228.71 0.7937 0.4010 1.7985 223.00 
1.00 30,000.0 0.2970 228.71 0.7937 0.4010 2.8474 390.00 
1.60 30,000.0 0.2970 228.71 0.7397 0.4010 4.5559 643.00 
0.60 60,000.0 0.0708 216.65 0.7519 0.1027 0.4377 110.00 
1.00 60,000.0 0.0708 216.65 0.7519 0.1027 0.7294 196.60 
1.60 60,000.0 0.0708 216.65 0.7519 0.1027 1.1671 [ 340.90 
2.00 60,000.0 0.0708 216.65 0.7519 0.1027 1.4588 430.00 
3.00 60,000.0 0.0708 216.65 0.7519 0.1027 2.1882 626.90 

• 

• 
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The drag coefficient due to skin friction is typically as much as 70 percent of minimum 
drag coefficient and is a significant factor in the corrections to the drag polar. It is typical that 
the Reynolds number correction is on the order of 1 drag count (0.0001 CD) per 2,000 feet of 
pressure altitude. This is also a function of temperature, which cannot be ignored. For 10 
degrees K off standard day, typically, a 1-drag count effect can be encountered. 

5.5 Skin Friction Drag Relationships 

The following empirical flat plate relationships were developed by Ludwig Prandtl and 
others. In Incompressible Aerodynamics (Reference 5.2), equation 5.10 is a turbulent skin 
friction drag formula attributed to Schlichting. 

C, -       °-455„8 (5.10) 

Effect of Mach number: 

Cfcompres,ble = Cf -(1 + 0.144.M2)"0-65 (5.11) 

All of the sample problems in this text used equations 5.10 and 5.11. 

C   -C wet 

v s J 
(5.12) 

An earlier friction drag equation is one developed by Prandtl and is shown in equation 5.13. 

A laminar flow empirical formula was developed by Blasius and shown in equation 5.14. 

A transition formula between laminar and turbulent is attributed to Prandtl and Gebers and 
shown in 5.15. 

OOT^UOO 
f    ZfRN      RN 

Equations 5.10 and 5.13 through 5.15 are plotted versus the logarithm to the base 10 of 
Reynolds number in Figure 5.2. 
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Empirical Skin Friction Drag Relationships 

0.008 

0.007' 
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6.0 6.5 
Log 10 (Reynolds Number) 

Figure 5.2 Skin Friction Drag Relationships 

5.6 Idealized Drag Due to Lift Theories 

The following idealized theoretical drag due to lift models can be found in numerous 
aeronautical engineering textbooks listed in the Bibliography. One of the best handbooks (in 
the author's opinion) titled, "Wing Theory" (Reference 5.3), was written by a pioneer in the 
wing theory field, R.T. Jones. 

a.    Subsonic M «1 

(1) Elliptic Wing Theory 

Q = 
2-TC 

AR 

■a 
C 

C   =     L 
L    Jt-AR 

Transonic M ~ 1 

(1) Slender Body Theory 

C,=--AR-a    CD =^^- 
2 °L    n-AR 

Supersonic M > 1 

(5.16) 

(5.17) 
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(1) Thin Wing Theory 

C1=1±£L    CDL=a.CL=^-CL< (5.18) 

All of the above are idealized and are presented only for general trends. One idealization 
made is symmetry (i.e., wing is uncambered and at zero incidence angle.) 

5.7 Air Force Flight Test Center Drag Model Formulation 

The following equations are drag model formulations that have been proven at the AFFTC 
to quite adequately curve fit actual flight test data. For a given Mach number and RN : 

CD-CDmin+Kl{CL-CLn,D)
2 + K2-(CL-CLbf (5.19) 

where: 

£2 = 0 when CL<CLb. 

The £1 term in the drag polar model above is the pure parabola portion. The K2 term is 
zero below a 'break' CL and therefore, contributes nothing to the model until the lift 
coefficient exceeds this break lift coefficient. The break lift coefficient could be thought of as 
the point where flow separation begins and the drag model becomes nonlinear. 

5.8 The Terminology 'Drag Polar' 

The terminology 'drag polar' was first used by Eiffel. That historical note is found in 
Introduction to Flight, Third Edition (Reference 5.4), by John D. Anderson. However, a 
second source, lists Otto Lilienthal as the 'inventor' of the drag polar (a.k.a., a polar plot or a 
polar diagram). The term 'polar' is a reference to polar coordinates. A given point on a 
Cartesian (x-y) plot can be defined by a radius and an angle. Figure 5.3 shows two drag models 
plotted. The first drag model is a pure parabola. This is the same model used in the sample 
performance model section of this handbook for M = 0.8 . The second drag model represents 
that parabolic model plus a deviation from the pure parabola. 
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Drag Pplar 
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Figure 5.3 Drag Polar 

A second-order parabola reasonably represents drag polar data only up to the point where 
flow separation begins. A second parabola that adds to the first after the start of flow 
separation has been quite successful in curve fitting AFFTC drag model formulations. The 
equation for this specific parabolic model is equation 5.20 and the equation for the nonlinear 
model is equation 5.21 (modified by 5.22). 

CD =0.02 + 0.132 -(Q-0.06)2 

CD = 0.02 + 0.132 ■ (Q-0.06)2+ 0.2642 -(CL- 0.60 )2 

(Q - 0.60) = 0 for Q< 0.60 

(5.20) 

(5.21) 

(5.22) 

We can plot the ratio of lift to drag, which is the same as the ratio of lift coefficient to drag 
coefficient. 

1/ =CL/ (5.23) 

Figure 5.4 presents this lift-to-drag versus lift coefficient for both the linear and the 
nonlinear model. This model is a rough approximation to an actual F-16A drag polar at 
M = 0.8 . As Figures 5.3 and 5.4 show, the drag grows substantially after the lift coefficient 
increases beyond 0.6. 
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L/D versus Lift Coefficient 

o.o 0.2 0.3 0.4 0.5 0.6 

Lift Coefficient (CL) 

Figure 5.4 Lift-to-Drag Ratio versus Lift Coefficient 

Very roughly, maximum thrust stabilized turns occur around 0.8 lift coefficient. The 
aircraft has an angle-of-attack limiter, which corresponds to a lift coefficient of around 1.5. At 
this limit lift coefficient, this model has the following values for drag coefficient: 

a. CL =1.50, and 

b. CD =0.5077. 

These are reasonable values. Let's do a sample calculation. Assume an airplane gross 
weight of 20,000 pounds, a pressure altitude of 30,000 feet, and a Mach number of 0.80. 
Ignore the thrust component in lift and drag coefficient. The F-16A reference wing area is 300 
ft2. The pressure ratio (<5 ) at 30,000 feet is 0.297. Solving for lift and drag from equations 5.5 
and 5.6: 

C,-8M2-S    1.5-0.297-0.82-300. 

D 

0.000675 0.000675 

Cn-8MZ-S    0.5077 ■ 0.297-0.82-300. 

= 126,720. 

0.000675 0.000675 
= 42,890. 

(5.24) 

(5.25) 

For our 20,000-pound aircraft (ignoring thrust component), the normal load factor can be 
calculated as follows: 
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L = N -W =126,720.-» JV =126'720' =6.34 g's 
z    ' z     20,000. 6 

Let's say that someone told us that the aircraft could sustain 4.5 g's in maximum 
afterburner at these conditions. Since thrust equals drag in a sustained (or thrust-limited) turn, 
we can calculate the drag by first calculating the lift coefficient. 

„     0.000675-N,-W,    0.000675-4.5-20,000.    , ^ ,,. n,s C, = :—=—'- = : = 1.07 (5.26) 1 SM2S 0.297-0.82-300. 

From the drag polar equation (5.21), the drag coefficient comes to 0.2130. Solving for drag 
(which is equal to net thrust): 

D_Cg-g-M2-5_0.2l30-0.297-0.82-300._l7991 

0.000675 0.000675 

At the maximum lift point, the excess thrust is: 

Fex = Fn-D = 17,994.-42,890. = -24,895. (5.28) 

That would be a longitudinal load factor of greater than a -1 g. The deceleration rate in 
knots per second comes to: 

„     ^895, ;/yy 
x     20,000. /V,    /go 

Assuming all the negative excess thrust is in deceleration (constant altitude slow down 
turn): 

-1.25 -32.174 (V  2) 
V = \/sec / = _23 8 /knots/   \ (5.30) 

' fft/    /   ~\ '   \      /sec/ 
1.6878 sec, 

knot 

SECTION 5.0 REFERENCES 

5.1 Chanute, Octave. 1897. Progress in Flying Machines, The American Engineer and Railroad 
Journal. 

5.2 Twaites, Bryan, ed. 1960. Incompressible Aerodynamics: An Account of the Steady Flow of 
Incompressible Fluid past Aerofoils, Winds, and other Bodies. Dover Publications. 

5.3 Jones, Robert R. 1990. Wing Theory. Princeton University Press. 

5.4 Anderson, John D. 1989. Introduction to Flight, Third Edition. New York, New York: 
McGraw-Hill, Inc. 

48 



6.0 THRUST 

6.1 Introduction 

We will leave it to numerous other documents to discuss in detail the overall topic of 
propulsion. In this text, we are concerned just with the measurement of thrust. We will discuss 
turbine engines and propeller-driven piston engines. The term measurement is a misnomer, 
since in-flight thrust is a calculation based upon a number of separate measurements. Only on 
the ground, either in an engine cell or during a static thrust run, do we actually measure thrust 
using load cells. We will start by giving the basic principles of turbine engine thrust. 

Figure 6.1 represents a turbojet engine. Other turbine engine types include low- and 
high-bypass ratio turbofans. A turbofan engine has two separate turbine sections: a high 
pressure section which drives the compressor, and a low pressure section which drives the fan. 
The air flowing through the fan, referred to as bypass airflow, can be mixed with the core 
airflow following the turbine, or it can be exhausted separately. Bypass ratio is the ratio of 
bypass to core airflow. In addition, an afterburner (additional fuel added after the turbine 
section) may be added for additional takeoff or maneuvering thrust. Engines that are more 
exotic include ramjet types, as well as variable cycle engines, where the bypass ratio varies 
with flight conditions and/or power level. 

Air enters the engine at the face of the diffuser (Figure 6.1), the inlet. The usual station 
designation for the engine face is station two. The numerical designation of the exit plane 
varies with the engine complexity, so we will simply use a subscript-e (e for exit). 

b 

diffuser comhustor   nozzle 
compressor        turbine 

Figure 6.1 Turbine Engine Schematic 

Vt0 =Vt= true airspeed (ft/sec) 

Pt =f]rPt   (lbs/ft2) total (average) pressure at station 2 (6.1) 

where: 

7]r = inlet recovery factor (addressed in more detail later), and 

Pt  = free stream total (average) pressure (lbs/ft2). 
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\3.5 

Plo = P • (l + 0.2 ■ M2)   (pounds/ft2) (6.2) 

where: 

P = ambient pressure (lbs/ft2). 

Note: All of the velocities and pressures are integrated average values. 

6.2 The Thrust Equation 

The basic thrust equation is gross thrust minus ram drag. The gross thrust, in layman's 
terms, is thrust out the back. Ram drag is the result of slowing the air from free stream to near 
zero speed at the inlet plus pressure times area. 

Fn=Fs~Fr (6.3) 

F
s=(Wa+Wf)-Ve+Pe.Ae (6.4) 

where: 

Wa = airflow rate (lbs/sec) through the engine, 

Wf = fuel flow (lbs/sec), 

Ve = exit velocity (ft/sec) (average), 

Pe = pressure (average) across exit plane (lbs/ft2), and 

Ae = cross sectional area of the exit nozzle (ft2). 

For turbofan engines an additional pressure times area term must be added to equation 6.4 
when the fan thrust is exhausted separately. 

Fr'W.-V.+P^A, (6.5) 

Previously defined was the fuel flow (Wf), however, now we will think of it in units of 

pounds per second to be consistent with the airflow rate. Note that the total mass flow into the 
engine is airflow, while exiting the engine mass flow is airflow plus fuel flow. A more precise 
engine thrust computation would take into account various bleed airs that extract air off the 
engine for cooling and other purposes. 

The engine manufacturer will often provide an engine in-flight thrust deck—a computer 
program with numerous inputs and outputs on engine performance and operating 
characteristics. The terminology deck is left over from when this computer program was a 
stack of punched computer cards. 
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6.3 In-Flight Thrust Deck 

The engine manufacturer-provided in-flight thrust deck would vary in complexity. For the 
complex augmented turbofans on the F-15 and F-16 engines, built by Pratt and Whitney and 
General Electric, the decks are many thousands of lines of computer code plus extensive data 
table lookups. These computer programs are developed using proprietary prediction methods 
supplemented by engine test cell data. For the performance engineer, the deck is a black box 
with numerous instrumentation measurement inputs. The inputs fall into two categories: 

a. Flight conditions: Mach Number (M ), pressure altitude (Hc), and ambient 

temperature (T). 

b. Engine parameters: fuel flow, pressure, temperature, and fan and compressor rpm. The 
engine rpm's are the rotation rates of the rotating components. A turbojet engine may have just 
a single rpm. A turbofan engine will have more than one turbine section, rotating at different 
speeds. The airframe manufacturer will add options to the deck to account for installation 
effects such as inlet spillage drag, airflow bleeds, and scrubbing drag. 

6.4 Status Deck 

The status deck, or prediction deck, predicts the performance (or status) of the engine 
usually with flight conditions and throttle position (or power lever angle). In addition, fuel 
flow or rotor speed may be input. This deck may contain many of the same components as the 
thrust deck. The status deck will predict the pressure, temperature, rpm, and fuel flow that are 
inputs to the thrust deck. Most importantly, the status deck also predicts thrust, and in the case 
where fuel flow is not input, also fuel flow. In addition, in some cases the status deck could 
have rpm and fuel flow as inputs and then would become an in-flight thrust deck. 

6.5 Inlet Recovery Factor 

The inlet recovery factor (7)r < 1.0) is the total pressure loss factor at the engine inlet face. 

Gross thrust will be degraded directly proportional to the reduction of rjr below its maximum 
value of 1.0 (100-percent recovery). The terminology recovery refers to how much of the free 
stream total pressure the engine inlet is able to recover. At subsonic conditions (M < 1.0), the 
?7r is typically quite close to 1.0. The recovery factor can be computed using the total pressure 
formula below. By measuring the total pressure in the inlet, then we can compute the recovery 
factor. The total pressure varies significantly over the face of the inlet. This pressure variation 
is called distortion. Computing an average total pressure requires several pressure 
measurements performed all across the inlet. This poses two problems. First, we would disturb 
the flow in the inlet. This violates the most fundamental rule of instrumentation—do not affect 
what you are measuring by the act of measuring it. The second problem is components of these 
inlet rakes may break off in the inlet, causing engine damage or failure. At supersonic speeds, 
the inlet recovery factor becomes less than 1.0 due to shock waves in the inlet. In a normal 
shock inlet, this recovery factor is about what one would see across an ideal normal shock. The 
formula for that is the same as for the normal shock relationship for total pressure 
measurement in a nose boom. From the Rayleigh supersonic Pitot equation: 

51 



R =166.9216- M\ 
(7-M2-l)25 

(6.6) 

The free stream total pressure is just the subsonic formula. 

Ph =P-[l + 0.2-M2]35 

Then, the recovery factor is the ratio of these two: 

(6.7) 

(6.8) 

Figure 6.2 is a plot of this relationship. 
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Figure 6.2 Normal Shock Recovery Factor 

The significance of Figure 6.2 is that for Mach numbers above approximately 1.6, the 
pressure losses become quite large (greater than 10 percent). The F-16 has a normal shock inlet 
and at speeds above 1.6; the actual inlet recovery is modeled quite accurately by the normal 
shock equation. The F-15, in contrast, has a series of inlet ramps, which turn the flow through 
oblique shocks as shown in Figure 6.3. 
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Figure 6.3 F-15 Inlet Schematic 

The net effect of this oblique shock inlet is that at Mach number = 2.0, the inlet recovery 
factor is about 0.92 versus only 0.72 for the normal shock inlet. The downside is the increased 
complexity of the inlet producing an increase in aircraft weight. At subsonic speeds, the 
recovery factor of the F-15 oblique shock inlet is slightly less than that for the F-16. This is 
probably due to the losses in turning the flow. 

6.6 Thrust Runs 

Checks of installed net thrust can be performed at zero speed using a thrust stand. A thrust 
stand may be as simple as a cable with a load cell. The thrust stand gives the only direct 
measurement of installed thrust. In contrast, in-flight thrust is a computation based upon a 
large number of measurements and a computer model of the engine to predict or estimate the 
thrust. From the measured thrust stand values, one can compare to values of thrust from both 
the in-flight thrust and status decks. This test most certainly should be performed on all 
performance test programs. 

The most significant test points would be the fixed throttle points (IDLE, MIL and MAX 
or whatever your fixed throttle points are called). The importance of these points is that the 
direct comparison to both the in-flight and status decks is possible. Intermediate throttle 
position data points are of less value, since the throttle positions are not distinct and repeatable. 
The suggestion, since thrust stand time is costly, is to concentrate on getting a number of fixed 
throttle data points and ignore the intermediate points. A good test procedure might be to start 
the tests in the early morning when it is relatively cold. Get a few data points for the three 
fixed power points. For instance, start the engine(s), collect data at IDLE, then go to MIL, then 
to MAX, back to MIL, back to IDLE, and repeat at least once. Collect continuous data to 
observe stabilization times. However, it should not be necessary to collect the excessive 
amounts of data (10+ minutes at one condition would be considered excessive) that some 
propulsion analysts may desire. Going up and then back down in throttle determines if there is 
any thrust hysteresis (get a different value if increasing throttle versus decreasing throttle). 

After collecting that data in early morning, proceed to shut the aircraft engines down and 
wait. Refuel if necessary. After the temperature increases some by late morning, repeat the 
whole procedure. Finally, do the process a third time in the afternoon. This will give you a 
range of ambient temperatures. During the summer at Edwards AFB, that range of temperature 
could be as much as 50 degrees F (see Appendix C for average surface temperatures). In 1 day 
of testing, you should get IDLE, MIL and MAX data at three temperatures. 
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6.7 Thrust Dynamics 

In an engine test cell, the engine manufacturer will perform throttle transients. This data 
can be used to develop a thrust dynamics model for use with a takeoff simulation. The typical 
aircraft is unable to stabilize at the start of a takeoff with maximum thrust. Therefore, a throttle 
transient is necessary to initiate the takeoff. Figure 6.4 is an example of some actual throttle 
transient data taken on the AFFTC thrust stand. 
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Figure 6.4 Thrust Dynamics from an Air Force Flight Test Center Thrust Stand 

The thrust stand at the time this data was taken (late 1980s) had a 1 sample per second 
sample rate. In addition, it is unknown how much of the lag is due to lag in the 
instrumentation. However, using this thrust stand lag data allowed us to match the actual time 
to liftoff data very accurately. As an example, for this aircraft, the time to lift-off at one 
particular condition was 41.5 seconds using the simulation. For the same simulation, but 
assuming 100 percent thrust at time zero, the time to lift-off was computed to be 39.1 seconds 
(or over 5 percent). The change in distance to lift-off, for the same lift-off speed, was less than 
1 percent. To clarify, the effect of the engine lag occurs in the early portion of the takeoff 
ground roll, affecting time to takeoff much more than distance to liftoff. This becomes 
significant when considering minimum interval takeoffs, for instance. 

6.8 Propeller Thrust 

In the examples, it was assumed that thrust was derived from a jet engine. We do not wish 
to assume that is always the case. The equations of motion are just as applicable to an aircraft 
powered by an engine that drives a propeller. The common unit of output power of an engine is 
horsepower. In the English system, 1 horsepower was defined by James Watt in the 1700s to 
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equal 33,000 foot-pounds of work per minute. In aircraft applications, we will usually divide 
by 60 to get 550 foot-pounds of work per second. As with jet engines, an engine 'rating' will 
usually not include friction losses and transmission losses to the propeller. We start with an 
indicated horsepower (IHP), which is some fraction (up to maximum power of 100 percent) 
of the rating. Then, reduce that by a factor to account for losses to the propeller (A). This 
factor can be 10 percent or more. That produces the shaft horsepower or brake horsepower 
(BHP). 

BHP = X(IHP) (6.9) 

Then, there is the fact that the propeller cannot possibly convert 100 percent of the brake 
horsepower to propulsive force. That factor is the propeller efficiency (t]). The result is thrust 
horsepower (THP). 

THP = 7] (BHP) (6.10) 

Each propeller manufacturer will usually provide propeller efficiency charts from which 
one can estimate r\ as a function of propeller rpm, pitch, and flight conditions. If such charts 
are not available, one can perhaps find similar charts for similar propellers. If all else fails, 
assume a value like 0.80 as a starting point in developing a propulsion model from flight test. 

From the definition of horsepower, the equation for thrust horsepower in terms of thrust 
and true airspeed is as follows: 

F -V 
THP = -s—'- (where V, has units of feet/sec) (6.11) 

550 

F =55°™P (6.12) 

Obviously, equation 6.12 cannot be used at zero speed. For takeoff performance, the static 
thrust could be measured on a thrust stand. Then at speeds around lift-off, equation 6.13 could 
be used. A thrust model might be just a linear interpolation of the thrust stand value and the 
lift-off value versus speed. The AFFTC thrust stand is grossly underutilized for this purpose. 

6.8.1 The Reciprocating Engine at Altitude 

For the internal combustion engine, the power output for any given engine speed varies 
with air density (for nonsupercharged engines). Using the density ratio (<J) as the density 
parameter, the thrust horsepower equation as a function of altitude becomes: 

THP = 77- (a BHP) (6.13) 

Richard Von Mises in Theory of Flight suggests that some experimental data indicates that 
the a factor would have an exponent (n) greater than 1. One particular set of data gave a 
value of 1.29. Then, for that particular set of data, equation 6.13 becomes equation 6.14. 
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THP = t](on ■BHP) = T]-(<T
1
-
79
 BHP) (6.14) 

For instance, for an engine at 20,000 feet pressure altitude on a standard day: 

a. 5=0.4595, 

b. 0-0.8625, 

c. a = 5/a= 0.5328, 
/ ö 

d. o-129 =0.4438, and 

_.1.29 / 
e. o y = 0.833. 

Hence, the altitude degradation factor for this engine is 16.7 percent greater than what 
would be predicted by a straight density ratio factor. 
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7.0 FLIGHT PATH ACCELERATIONS 

7.1 Airspeed-Altitude Method 

The classical method of determining the aircraft flight path acceleration is to differentiate 
airspeed and altitude using the energy altitude relationship, as developed in the axis systems 
and equations of motion section, with a temperature correction to the pressure altitude. 

HE=H + 
V 

(2-So) 
(7.1) 

HE ~HC T \ L STD J 

+ 
\8° ) 

■V=R (7.2) 

P 
x    V, 

(7.3) 

where: 

H 
V, 

So 
Nx 

P. 

= energy altitude (feet), 
= geopotential altitude (feet), 
= true airspeed (feet/sec), 

= acceleration of gravity (32.174 feet/sec2), 

= longitudinal load factor in the flight path (or wind) axis, and 

= specific excess power (feet/sec). 

Note: In this handbook, Nx and Nz are the symbology used to denote flight path axis 
longitudinal and normal load factor, respectively. One can find other sources that use 
symbology of Nx and Nz   (w for wind) or Nx   and Nz (f for flight path). In addition, 

many textbooks (including those listed in the Bibliography) will use simply N for flight path 
normal load factor. 

Now, we can compute the excess thrust (Fex). Excess thrust is the amount of the net thrust 
that is more than the amount needed to achieve equilibrium between net thrust and the drag of 
the aircraft. 

F„ = N-W, (7.4) 

Even if you had zero errors in measured airspeed and altitude, the airspeed-altitude method 
would have a weakness. That weakness is the presence of winds. You desire to determine the 
actual physical acceleration of the aircraft. By taking derivatives of airspeed, you will 
invariably have some derivative of wind included. Hence, it becomes desirable to obtain the 
aircraft flight path acceleration by some means other than derivatives of true airspeed and 
pressure altitude. The GPS yields an alternative method. 
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7.2 GPS Method 

A GPS unit will typically provide groundspeed (V^), track angle (cg), and altitude (h). 

The groundspeed is the horizontal component of the GPS speed. The parameter h is the GPS 
vertical velocity. One could simply use the same equations as for the airspeed-altitude method. 
One catch is the track angle is not the same as the aircraft heading angle (y/), due again to the 
wind. If one had the additional parameter of heading angle (and assuming zero sideslip) 
available, then a flight path groundspeed (V^) could be computed as follows: 

Vtf=Vg-cos(<r,-vO (7.5) 

However, the above speed is the horizontal component of flight path inertial speed so a 
transformation is required. 

Then, just simply insert the appropriate GPS-derived accelerations into the airspeed-altitude 
equations. 

An alternative to using a heading angle, which may not be an available parameter on some 
projects, is to perform a cloverleaf maneuver prior to the test maneuver to derive the winds. 
The cloverleaf maneuver is described in the airspeed calibration section. This would be 
appropriate for constant altitude maneuvers such as accels and turns. Once the two components 
of wind (north and east) are determined, one can compute the groundspeed in the wind axis. 
The formula is as follows: 

V* 

7.3 Accelerometer Methods 

J(VsN+VwN)
2+(VgE+VwEf (7.7) 

There are three different accelerometer methods used to measure flight path acceleration. 
These use either the body axis accelerometer (BAA), the flight path accelerometer (FPA), or 
an INS. The BAA uses a set of accelerometers placed somewhere within the body of the 
aircraft. Ideally, the accelerometers should be at the center of gravity (eg) of the aircraft. 
Nevertheless, practically, the BAA is usually in an instrumentation bay away from the eg. The 
accelerometers are then subjected to body axis rates and corrections need to be made to 
subtract out rate effects. At the time of this writing, the INS has been the primary 
accelerometer method used at the AFFTC. NASA Dryden Right Research Center, however, 
uses the BAA method as its primary method. 

7.4 Flight Path Accelerometer Method 

The FPA consists of a two-axis accelerometer that is aligned with an angle-of-attack vane. 
The angle-of-attack vane is connected to a nose boom. The longitudinal axis yields the local 
longitudinal acceleration and the normal axis the local normal acceleration. Corrections need to 
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be made to the accelerations for not being at the eg (rate effects) and for being connected to an 
angle-of-attack vane that is not indicating the true angle of attack. 

The flight path accelerometer correction equations (ignoring roll and yaw terms) are as 
follows: 

Nx = Nx, ■ cos(Aa) - NZj ■ sin(Aa) + 1^ / g0 ■ [q2 ■ cos(a,) - q ■ sin(a,)] (7.8) 

Nz =NZi -cos(Aa) + NXi •sin(Aa) + Zv/g0-[^2-sin(a,)-4-cos(a/)] (7.9) 

a, = a, + A« + Aa, bb (7.10) 

a i = measured angle of attack 

Aa = Aaq + Aau + Aalag (7.11) 

Aa = tan -i U-q 
ty-Ly-q-smia,)) 

pitch rate correction (7.12) 

Aau = upwash correction 

Aabb = boom bending correction 

(7.13) 

(7.14) 

Aalag = lag correction (7.15) 

where: 

q   = pitch rate, 
Ly = distance from accelerometer to aircraft eg (positive with the accelerometer forward 

of the aircraft eg), 
Vt  = true airspeed, 

Nx, = indicated longitudinal load factor, and 

Nz_ = indicated normal load factor. 

Figure 7.1 represents an FPA unit (designated an NBIU [Nose Boom Instrumentation 
Unit]) developed at the AFFTC in the late 1960s. 
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Figure 7.1 Air Force Flight Test Center Nose Boom Instrumentation Unit 

This unit is installed on the AFFTC F-15B Pacer (at the time of this writing). Similar units 
are still being used for flight test in the late 1990s. 

7.5 Accelerometer Noise 

When we use an accelerometer to measure flight path accelerations, we must deal with the 
noise in that data. No matter where one locates an accelerometer in the aircraft, it will be 
subject to substantial quantities of noise. The noise is from structural vibration at relatively 
high frequencies and lower frequency flight dynamic oscillations. Figure 7.2 is an example of 
some actual data from the first flight of the B-1A in the late 1970s. The data point was a 
stabilized cruise point. Figures 7.2 and 7.3 represents indicated longitudinal load factor (Nxi) 
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and normal load factor (Nzi). The accelerometers were located in an AFFTC NBIU. The data 
were sampled at 64 samples per second. The analog output of the accelerometers was filtered. 
This filter was a 4-pole 30 Hz (cycles per second), low-pass Butterworth filter. It is called low 
pass because it passes low frequencies. The 30 Hz is the cutoff frequency of the filter. In this 
case, the cutoff frequency was too high. On the B-1A, the lowest longitudinal vibration modes 
were less than 10 Hz. This meant that our performance data had a substantial amount of 
longitudinal vibration data in it. After the plots is a discussion of the characteristics of this 
filter. 

B-1A First Flight Data: Flightpath Accelerometer: Indicated Nz 
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Figure 7.2 Longitudinal Load Factor - Unfiltered Data 

The mean and standard deviation (sigma) of Nxi are as follows for 58 data points. 

a. Mean = 0.00831 

b. Sigma = 0.01682 
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B-1A First Flight Data: Flightpath Accelerometer: Indicated Nx 
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Figure 7.3 Normal Load Factor - Unfiltered Data 

The mean and standard deviation for the Nzi is as follows for the same 58 time slices: 

a. Mean =1.0047 

b. Sigma = 0.2257 

Ignoring pitch rate terms, the transformation equation for true flight path longitudinal load 
factor (TV ) is as follows: 

Nx = Nxi • cos Acc - Nzi ■ sin Aa (7.16) 

where: 

Aa = upwash angle. 

If Nx was zero for this stabilized cruise point, then the above equation can be used to 
solve for upwash. 

Aa = tan ' N. 
'N„ 

(7.17) 

For this one data sample, the Aa computes to be: 

Aa = tan"1 (00083X.0047) = 0A1 deg 

• 
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The attenuation of a filter is expressed in terms of decibel (dB). The definition of decibel is 
as follows: 

dB = -20 -log 10 (7.18) 

where: 

E0    = output, and 

Ei    = input. 

By definition, the cutoff frequency is at a dB - 3.0, which is an output over input of 0.708 
or an attenuation of almost 30 percent. Figure 7.4 shows the attenuation for a four-pole 
Butterworth filter. 
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Figure 7.4 Four-Pole Butterworth Filter Attenuation Characteristics 

At the time, the solution to the noise problem with B-l A flight path accelerometer data was 
to change to filters with a much lower cutoff frequency. The problem with that solution was 
that a filter with a low cutoff frequency also introduced substantial phase (time) lag. For this 
filter, Figure 7.5 represents the time lag function versus the frequency ratio. The time delay is 
defined in terms of a parameter called the group time delay (tdgroup). The actual time delay 

(At) is determined as follows: 

Ar = 
V 

dgroup (7.19) 
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where: 

fc is the cutoff frequency in Hz. 

Four-Pole Butterworth Low-Pass Filter Group Time Delay 
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Figure 7.5 Four-Pole Butterworth Filter Group Time Delay 

At maneuver frequencies less than 0.1 times the cutoff frequency, the group time delay is 
2.60 seconds. A filter with a cutoff frequency of 2.0 was selected to avoid the very low 
frequency first-body bending modes of this very flexible aircraft. Since no dynamic 
performance maneuvers were performed on the B-l A, this was not deemed a problem. 

The actual time delays for the 30 and 2.0 Hz filters compute to the following using the 
above equation. 

a. Ar = 0.014 sec for fc = 30 Hz 

b. At = 0.207 sec for fc = 2.0 Hz 

A time lag of 0.2 second can be a source of significant errors for highly dynamic 
maneuvers such as the roller coaster. To avoid a time shift error in accelerometer data, it would 
be more desirable to digitally filter the data. To illustrate this, theiV^. was digitally filtered 
with two different methods. A span of 21 data points was chosen which would include the 
midpoint and 10 points on each side of the midvalue. The first was a moving second-order 
polynomial curve fit. The second was a moving average. These are shown in Figure 7.6. 
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Figure 7.6 Longitudinal Load Factor - Filtered Data 

Figure 7.7 plots the moving second-order polynomial fit points. A third-order polynomial 
curve fit of the time history is also shown. 
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Table 7.1 summarizes the mean values and 1-sigma deviations from the mean for the 
different sets of data. 

Table 7.1 
SUMMARY OF STATISTICS FOR LONGITUDINAL LOAD FACTOR 

Mean 
1-Sigma 

Original 
Data 

0.00831 
0.01682 

Moving 
Average 
0.00853 
0.00115 

Second-Order 
Polynomial Moving 

0.00848 
0.00233 

Secong-Order Moving 
Minus Third-Order Fit 

0 
0.00140 

The average value of each of the three methods was identical to three digits (1 milli-g). The 
two digital filtering methods reduced the standard deviation by about a factor of 10. Although 
(for this data set) the simple moving average produced the greatest reduction in standard 
deviation, it is preferable to use the moving second-order polynomial fit. That is because for 
any maneuver where variation in acceleration is not linear, the parabola will match the 
variation more accurately. 

7.6 Inertial Measurement Method 

The INS method involves transforming the earth axis inertial parameters of the INS into 
the aircraft wind (or flight path) axis. Typically, the INS outputs will be velocities and 
accelerations in the north, east, and down direction and a set of angles called Euler angles. The 
Euler angles are pitch, roll, and true heading. The mathematics below will take you through the 
process to compute winds. Once the winds are known, then the transformations into the wind 
axis are performed. 

Define: 

a. 6 = pitch attitude, 

b. 0 = roll attitude, 

c. y/ = true heading angle, 

d. a = angle of attack, and 

e. ß = sideslip angle. 

7.7 Calculating Alpha, Beta and True Airspeed 

The following matrices are used to transform the true airspeed from the flight path axis 
(Vt) to the earth axis (VtN,VtE, and VlD). The transformation must be performed in the exact 

order of ß,a,</),6,y/. 

Heading (rotate about the z axis [or yaw]) (transform through y/) 

• 
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w= 
cost//   -sini/A   0 

sini/A     cosi/f    0 

0 0        1 

Pitch (rotate about y-axis) (transform through 6) 

[0] = 

cos0     0   sin0 

0        1      0 

-sinö   0   cos0 

Roll (rotate about x-axis) (transform through (j>) 

M= 
10 0 

0   cos0   -sin0 

0   sin0     cos0 

Angle of attack (transform through a) 

[a] 

cosa   0   -sina 

0      1       0 

sina   0    cosa 

Sideslip angle (transform through ß) 

[ß] = 

cos)3   -sin)3   0 

sin ß     cos ß    0 

0 0        1 

(7.20) 

(7.21) 

(7.22) 

(7.23) 

(7.24) 

The matrix summary form of the transformation from the flight path axis true airspeed to 
the true airspeed in the earth axis (N , E, D) is as follows: 

ygN + *wN ) 

= [v]-[e].[i>].[a]-[ß]. (7.25) 

From equation 7.25 we can solve for the winds. 
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v. wN 

wE 

v. wD 

= M-[*]-MM[/>] 
X v VgN 

0 .—. 
VgE\ 

0 K\ 
(7.26) 

The equation above is the general matrix formula. During a typical wind calibration, we 
will assume the vertical wind (VwD ), the sideslip angle (ß), and the bank angle (</») are equal to 
zero. Equation 7.26 represents three equations with at least five unknowns. The five unknowns 
are the three components of wind (VwN,VwE and VwD) and a and ß. 

Then the a calculation reduces to the following: 

a = 6-y 

y = sin = flight path angle 

(7.27) 

(7.28) 

h = -VgD = rate of climb (7.29) 

We now wish to perform the reverse transformation; that is, to transform the components 
of true airspeed in the earth axis to the flight path. To transform the components, reverse the 
order of the matrix multiplication and take the transpose of each individual matrix. In this case, 
the transpose is the same as the inverse. To take the transpose of these unique matrices reverse 

all the off-diagonal terms and keep all the diagonal terms the same. For instance, the [ßj 

matrix derives from equation 7.24 as follows: 

[ßf = 
cos/3   -sin/3   0 

sin ß     cos ß    0 

0 0        1 

-\T       r cos ß     sin ß    0 

•sinß   cos/?   0 

0 0       1 

(7.30) 

The matrix formula is as follows: 

[ßf {af {Of-[Of .[y,]T ■ 
\v,N] \v,] 
vIE 

. —. 0 

kJ 0 
(7.31) 

We can calculate all the velocities in the equation 7.31 using the winds determined during 
the wind calibration (equation 7.26) as follows: 

V   =V   +V (7.32) 

ylE        r gE ~ rwE (7.33) 
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V  -V   +v vtD        ygD~ywD (7.34) 

v, = j(vtN
2+v1E

2+v1D
2) (7.35) 

The airspeed components in the body axis (x,y,z) are calculated in the following matrix 
manner: 

V, bx 

MT-[e]T-M- 
vtN 

v, tE 

'tD 

(7.36) 

Next, transform the body axis to the flight path axis through angle of attack and sideslip 
angle as follows: 

[0]r-MT 

Expanding the alpha and beta transpose matrices and writing them out: 

v vbx v'l 
yby 

■=< 0 

K\ 0 

cos ß     sin ß    0 

-sin/J   cosj3   0 

0 0       1 

cosa    0   sin a 

0        1       0 

-sina   0   cosa 

X] V(l 
•• V»y 

.=. 0 

K\ 0 

(7.37) 

(7.38) 

cos ß- cos a    sin/3     cos ß- sin a 

-sinß-cosa   cos)3   -sin/3-sina 

-sin a 0 cosa 

M V(l 
•• yby 

■- • 0 

K\ 0 

(7.39) 

Multiplying out the above matrix yields three equations from which we will derive 
formulas for a and ß. When complete, these formulas should be the same as presented 
earlier. In the axis systems and equations of motion section, the angles were derived by 
geometry without the following matrix mathematics: 

cos ß-cosa- Vbx + sin ß • Vby + cos ß • sin a • Vbz = Vt (7.40) 

-sinjß-cosa-V^+cos^-y^-sin^-sina-V^ =0 (7.41) 

-sina-V^+cosa-V^ =0 

Equation 7.42 yields a formula for angle of attack. 

(7.42) 
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sina/cosa = tana= bz/ 
'bx 

a = tan -i 

Inserting the result for Vbx from equation 7.44 into equation 7.40: 

(7.43) 

(7.44) 

V, 
cos a 

K- bx~     ■ 'bz sin a 

0 cos a T/      .   0 xr          0 sin" a T7 cos ß —: Vbz +sin ß-V, + cos/3 —: V,„ = V, 
sin a sin a 'bz ~ 'l (7.45) 

Collecting terms and using the trigonometric identity sin2 a + cos2 a = 1: 

cos/? 
v: bz 

sin« 
+ sinj8-VL =Vf (746) 

Now, we will use equations 7.41 and 7.42 to substitute for the term in the square brackets. 
Replace Vbx in 7.41 using 7.42. 

.   0 cos a I7           „ T7      .   _ sin'a ¥7 -sin/J—; Vfc + cos/3-V;-sin/J—: Vh. =0 
sin a bz 

-sin/3 
(cos2 a + sin2 a) 

■V,. 
sin a 

VL 
sina 

bz 

sin a 

+ cosj3-V.  =0 

cos/3 
sin )S 

■V, by 

Finally, substituting equation 7.47 into equation 7.46: 

a cos/3 T7      sin2/? 
cos ß —7T- VbV + —7T • VL = V. sin /}     y     sin ß 

/siny3_K' 

by ~ "l 

ß = sin" fK. 

(7.47) 

(748) 

Compare equations 7.44 and 7.48 to equations 2.11 and 2.12. 

We now wish to perform the reverse transformation; that is, to transform the components 
of true airspeed in the Earth axis to the flight path. To transform the components, reverse the 
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order of the matrix multiplication and take the transpose of each individual matrix. The matrix 
formula is as follows: 

[ßf [af-[of-[of-[W]T 

r
tN 

V'l 
v* - zr - 0 

kJ 0 

(7.49) 

We can readily solve for the true airspeed components from the above. 

The airspeed components in the body axis {x,y,z) are calculated in the following matrix 
manner: 

V,. bx 

v> by 

V,. bz 

=[*rw-MT 
v. IN 

V. IE 

V. tD 

(7.50) 

• 

From true airspeed and the body axis true airspeed components, angle of attack and 
sideslip are computed using equations 7.44 and 7.48. The a and ß are required in order to 
transform the earth axis accelerations to the flight path axis. 

7.8 Flight Path Accelerations 

To compute the accelerations in the flight path requires first computing the accelerations in 
the N, E, and D axis. Even when the accelerations are available as a direct output of an INS, it 
is desirable to compute the accelerations by taking numerical derivatives of the inertial 
velocities. This is because the accelerations are sensing the high frequency vibrations of the 
aircraft and are usually quite noisy. The typical INS updates at 50 samples per second. If one 
simply samples the velocity data at no more than about 5 samples per second and then takes a 
derivative, the noise will be dramatically reduced. The acceleration formulas are as follows: 

AN(t) 

AM) 

AD(t) = 

VeN(t + At)-VeN(t-At) gNy 

2-At 

_VsE(t + At)-VgE(t -At) 

2-At 

VgD(t + At)-VgD(t- At) 

2-At 
So 

(7.51) 

(7.52) 

(7.53) 

The velocities in the equations 7.51 through 7.53 are the inertial (or ground) speeds, not the 
airspeeds. We are computing inertial accelerations in the N, E, and D axis. However, we will 
later transform these into the wind axis. They are still inertial accelerations, but the 
components in our wind axis system. Note that the down (or z) component involves 
subtracting out a gravity term. Since the vertical component of acceleration is down, we are 
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actually adding in a gravity term. For instance, at 5 samples per second, the At would be 
0.20 seconds. 

The transformation matrix formulation for accelerations is identical to that for velocities 
and is given below. However, we will put the flight path accelerations on the left side of the 
equation. 

V 

V =[flM«rMWW A, (7.54) 

\N*\ 
A*f/go 

N, 
.=. A>f/So 

kJ -VSo. 

In performance, we normally work with load factors (acceleration over g) rather than the 
accelerations. In addition, in conventional performance the standard sea level value of g (g0= 

32.174 feet/sec2) is usually used. There is also a sign change on the normal load factor to 
account for the positive normal load factor convention. 

(7.55) 

Finally, note thaty designation is dropped for the flight path axis load factors. 

7.9 Accelerometer Rate Corrections 

The following corrections to accelerometers are presented without derivation. Assume we 
have rate gyros, which give us roll rate, pitch rate, and yaw rate in the body axis. Define these 
as follows: 

a. p = roll rate (rotation about x- axis) (+ right wing down); 

b. q = pitch rate (rotation about y - axis) (+ pitch up); and 

c. r = yaw rate (rotation about z - axis) (+ nose right). 

Assume that the accelerometers are at distances lx, I and lz from the eg of the aircraft. 

The x distance (lx) is positive forward, y distance (ly) is positive out the right wing, and the z 

distance (/z) is positive down. If the noncorrected body axis accelerations are designated with 
a sub- i designation, then the matrix correction equations are as follows: 

• 

• 
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A* Acbi 

Ayb 
• — - A*, ■ + 

kJ k \ 

(q2 + r2)     (r-p-q)   ~(q + p-r) 

-{r + p-q)    (p2 + r2)     (p~q-r) 

-(q-r-p)   {p + q-r)    -(q2 + p2) 

(7.56) 

Note: A sign change when computing normal load factor. 

a-    #*=■ 
A. zb/ 

So 

This author prefers to rate correct the velocities, then take numerical derivatives to 
compute accelerations. Then, one would not rate correct the resultant accelerations. 

7.10 Velocity Rate Corrections 

Rate corrections to the body axis velocities in the matrix format are presented in equation 
7.57. These will have been accomplished by axis transformations through y/, 0 and (j), in that 
order. Again, the i designation will be noncorrected velocities. 

(7.57) 
\vbx] v», "0 r -q \1 
v yby 

• = - v 
hi •+ —r 0 p ■- ', 

kJ k J _q -P 0 k 
7.11 Calculating p, q, and r 

In the case where the Euler angles (y/,0,(j)) are given, we can compute the body axis rates 
using the following formulas. 

p = (j)-lj/-sin6 

q=6 • cos (j) + \j/- cos 0 • sin 0 

r = iff • cos0 • cos0 -0 • sin0 

(7.58) 

(7.59) 

(7.60) 

7.12 Euler Angle Diagram 

Figure 7.8 illustrates the Euler angles. This Euler angle diagram pictorially illustrates the 
order of transformation. Starting with the aircraft heading north, a transformation is performed 
(positive east) through the heading angle (l/O- Then, the aircraft is pitched (positive up) 
through the pitch attitude (0). Finally, the aircraft is rotated (positive right wing down) 
through the roll angle ((f)). It is critical that the order of rotation is just as described (y/,9,(j)), 
otherwise, one would get a different result. 
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Figure 7.8 Euler Angles 
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8.0 TAKEOFF 

8.1 General 

This section will present the theory of takeoff and landing for conventional aircraft. For 
this handbook, conventional aircraft would be any aircraft with a main gear, a nose gear, and 
a single source of thrust at some angle of incidence it. Therefore, 'conventional' could 
include some aircraft that are considered STOL (Short TakeOff and Landing). One could 
derive equations that are more complex for a VSTOL (Vertical or Short TakeOff and 
Landing). 

8.2 Takeoff Parameters 

Let us define the following forces, distances, angles and coefficients as depicted in Figure 
8.1. (Not shown on the drawing [to avoid clutter] are gross thrust [Fg] and the engine inlet 

[or propulsive] drag [ Fe ]). 

a. Dbw = drag of the aircraft body and wing - along the aircraft flight path axis. During 
the ground roll, the flight path will be parallel to the runway. 

b. Dt = drag of the aircraft tail - acts along the aircraft flight path (this term is often 
lumped into the body drag for aircraft without a T-tail). 

c. Lj = lift of the wing - acts perpendicular to the flight path. 

d. L^= lift of the tail - also acts perpendicular to the flight path. 

e. Wt = gross weight - acts through the center of gravity of the aircraft. 

f. F  = net thrust acting parallel to the flight path. 

g. Fl = load on the nose gear (perpendicular to the runway). 

h.    F2 = load on the main gear (perpendicular to the runway). 

i.     X; = distance from the nose gear to the aircraft center of gravity. 

j.     X2 = distance from the main gear to the aircraft center of gravity. 

k. XL^ = distance from the center of gravity to action point of the wing lift 
(aerodynamic center of the MAC [Mean Aerodynamic Chord]). 

1.     XLj = distance from the wing lift point to the tail lift action point, 

m.  Zj = height of the body axis of the aircraft above the ground plane. 
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n.    Z2 = height of the tail center of lift and drag above the aircraft body axis. 

o.   9 = aircraft pitch attitude (angle between X-body axis and horizontal), 

p.   6m = runway slope. 

Figure 8.1 Takeoff and Landing Forces and Angles 

Using the above diagram, we can formulate the equations of motion for the aircraft 
during the ground roll. The equations are the same for either a takeoff or a landing. 

Requiring the summation of forces in the X-axis to be zero: 

Frcos(0 + /,)-Ff=D+Fnv, + F„ 

where: 

D    = total aerodynamic drag, 
Fm   = total runway resistance = runway friction plus runway slope effect, and 

Fex   = excess thrust (positive forward). 

D = Dbw + D, 

(8-1) 

where: 

M2 

Frw=Hi-Fl+p2-F2+W,-sm(ej 

■ coefficient of friction associated with the nosewheels, and 

coefficient of friction associated with the main wheels. 

Fex = NX-Wt (positive forward) 

(8.2) 

(8.3) 

(8.4) 

76 



• 

where: 

AT   = longitudinal load factor. 

Nx=Ax/g0 (8.5) 

Ax=Vg (8.6) 

where: 

Vg = groundspeed. 

Note that the longitudinal load factor definition on the ground includes only the velocity 
derivative term. In the air, the gravity component is included. On the ground, we will 
account for the gravity component in the Wt •sin(0nv) term. 

Collecting terms: 

Fg ■cos(6 + i,)-Fe ={Dbw+Dt) + {^ ■F1 + /vF2+W,-sin(0n„)) + Fei (8-7) 

Requiring the summation of forces in the Z-axis to be zero: 

Z1+L2 + F1 + F2=W(-cos(6>w) (8.8) 

Require the summation of moments about the Y-axis to be zero. Take moments about the 
main wheels, since the aircraft will pitch about the main wheels during the takeoff or landing 
ground roll. Ignore any pitch dynamics during the ground roll or any moment caused by the 
vertical component of gross thrust. 

F1-(X1 + X2) + Z1-(X2-XZ1) + Dtw-ZI+Df-(Z1+Z2) + W(-sin(0J-ZI = 

Wt-cos(dJ-X2 + (Fg-cos(it)-FeyZl+L2-(XL1 + XL2-X2) (8.9) 

What we now have is three equations with three unknowns for purposes of simulating a 
takeoff or landing ground roll. It is assumed that one has a thrust and drag model for the lift, 
drag, gross thrust, and propulsive drag terms in the above equations. However, the lift and 
drag models may not be for in-ground effect. If no in-ground effect corrections are available, 
then some empirical predictions can be used until flight test results are available to create an 
in-ground effect model. 

The three unknowns are the two normal forces on the wheels (F} and F2) and the excess 

thrust (Fex). The primary parameter of interest is the excess thrust from which we can 
compute the derivative of groundspeed. Once we have the excess thrust, we can integrate the 
groundspeed derivative to obtain speed and distance versus time. 

Collecting equations 8.7 through 8.9: 
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Fi,-cos(0 + f,)-F,=DiH, + D,+^-/;;+^2-F2+W,-sin(0ra) + F„ 

Ll+Ll + Fl + F2=Wrcos(dJ 

F1-(Z1 + X2) + L1-(X2-XL1) + D,-(Z1+Z2) + W,-sin(0nv)-Z1 = 

Wrcos(erwyX2+(Fg-cos(.il)-Fe)-Zl+Ll-(XLl+XLi-X2) 

Rearranging the equations: 

Fex+ßrFl+^_-F2^[Fg -cos(i,)-F, -Dbw - D, -W, -sin(0w)] 

F^F^lW.-cosiOJ-Lt-L,] 

(X1+X2)-F,= 

Wt ■cos(9rH,)-X2-W, •sin(0ni.)-Z,+(Fg ■cosCe + O-F.J-Z, +L,-(XL, + XL,-X2)' 

-Ll(X2-XLl)-D,-(Zl+Z2) 

(8.10) 

(8.11) 

(8.12) 

• 

We will define the terms in the square brackets in 8.10 through 8.12 as \, A,, and A3. 

Then we can rewrite equations 8.10 through 8.12 in three by three-matrix form as 
follows: 

1 ^ H2 

0 1 1 

0   (Xl + X2)    0 

m [A| 
*; .=. A 

kJ kJ 
(8.13) 

During the course of flight test, we measure excess thrust (Fex). However, the thrust and 
drag may be unknown, or at least not known precisely. Therefore, we may need to iterate 
between the above equation and the solution of the above equation. The A, term is thrust 
minus drag minus the runway component of weight. 

The matrix relationship in equation 8.13 can be solved by multiplying both sides by the 
inverse of the square matrix. 

1      ft      \i2 A 
0          1            1 •• A 
0  (xl + x2)   0 [A 

-1 

(8.14) 

8.3 Developing a Takeoff Simulation 

Usually, the contractor will provide an initial estimated model for lift and drag as a 
function of angle of attack (a). As mentioned before, one may need to supplement this 
model with empirical ground effect estimation, such as that found in the NASA takeoff and 
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landing simulation program listed in the Bibliography. During the ground roll, the angle of 
attack is equal to the pitch attitude (a = 6). The thrust incidence angle is usually zero or 
small. 

Only the most precise simulations will typically account for a separate tail and body drag, 
so we can ignore  Dt   in many cases. Accounting for tail lift and drag becomes more 
important for modeling braking performance to determine the load distribution on the main 
gear and the nose gear. For takeoff performance, a value of 0.015 is usually assumed for the 
rolling coefficient of friction (/l). Values of \i for a dry runway up to 0.025 are also used. In 
addition, a point mass model will be assumed with all the forces acting through the eg of the 
aircraft. Further, since Fg » Fe at low airspeeds, we make the following approximation: 

Fn=(Fg-Fe)-cos(d + it) (8.15) 

Fex + n-F = Fn-D-Wrsm(dJ (8.16) 

F=W, -cos(0J-L (8.17) 

where: 

F =main gear load (assume all load on the main gear). 

Combining equations 8.16 and 8.17: 

Fa + n-(Wrcos(erw)-L) = Fn-D-Wrsm(9J (8.18) 

Equation 8.18 can be used in two ways. First, to solve excess thrust (equation 8.19). 
Second, to solve thrust minus drag (equation 8.20). We know (or assume values for) the other 
variables: gross weight, runway slope, rolling friction, and aerodynamic lift. 

Fa=[Fn -D\-Wt -sinie J-v{W, -costfJ-L) (8.19) 

[F„-D] = Fex + W,-sin(0rw) + /i-(Wr-cos(0w)-L) (8.20) 

From equation 8.19, we can compute the excess thrust during the ground roll of the 
aircraft. One would be provided models for net thrust drag and lift. The drag and lift models 
would be in the form of drag and lift coefficients versus angle of attack. Typical model 
formulations are as follows: 

Fn=f(M,Hc,T) (8.21) 

CL = f(a,hAGL) (8.22) 

CD=f(CL,hAGL) (8.23) 
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where: 

M = Mach number, 
= pressure altitude (subscript C denotes calibrated), 
= ambient temperature, and 

hAGL = aircraft wing height above ground level. 

The parameter hAGL is needed to account for ground effect. The above are just typical 
model forms. They may also include Reynolds number (or skin friction drag) terms in the 
drag polar. In addition, the engine is usually not at 100-percent thrust at brake release so a 
thrust spool up factor needs to be supplied. One would also incorporate a fuel flow model to 
compute fuel used during takeoff. This is to account for the fuel used for mission 
calculations. 

8.4 Ground Effect 

Figure 8.2 is typical of a relationship defining the decrease in drag due to lift in-ground 
effect. The data points were taken from a curve found in two separate textbooks, neither of 
which gave a source for the data. The texts are The Illustrated Guide to Aerodynamics by 
H.C. Smith and Technical Aerodynamics by Karl D. Wood. The suspicion is that this is from 
some early NACA work. The equation is a curve fit of the points. 

% of Induce d Drag vs Ulb 

y= 24.12Ln(x) + 108.29 

en n *o . 

~"<> 

60   . 

*0  - 

20   . 

0 _ 

0 0-1 0.2 0.1 0.4 0.* 0.6 0.7 

VII Ina helghl over wing spj n /h.'tn 

Figure 8.2 Predicted Ground Effect Drag 

A very simplified model that approximates an F-16 aircraft in military thrust was created 
to illustrate takeoff simulation. The model constants and equations are as follows: 

80 



• 

a. S = 300 = reference wing area (feet). 

b. b =35 = wing span (feet). 

c. AR =4.0= b2 /S = aspect ratio. 

d. hw = 5.0 = height of wing above ground while aircraft on the ground (feet). 

e. Wls = 25,000. = start gross weight (pounds). 

f. Fno = 10,000. = thrust at zero Mach number (pounds). 

g. Fnslg e = 5,000 = slope of thrust versus Mach number (pounds), 

h. KP   = 0.65 = thrust factor at zero time. 

i. T = 2.0 = thrust time constant (seconds). 

(8.24) 

Thrust runs can be used to determine this thrust spool up factor. It may not be a simple 
exponential function as we are using here. For our model, at time = zero, the thrust is 35 
percent of zero Mach number thrust and increases exponentially with a 2.0 second time 
constant. Then the equation for the net thrust for this model becomes: 

Fn=KFn-(Fno+Fnslope-M) 

Wf=tsfc-Fn 

(8.25) 

(8.26) 
' f 

where: 

tsfc = thrust specific fuel consumption. 

A curve fit of the data points in Figure 8.2 was performed to produce an equation for 
ground effect. 

%GE ~ 24.12- Ln 
(h + K) '\ 

+ 108.29 /100 (8.27) 

XCE =1.0,1/XCE> 1.0 

Drag coefficient (CD) is computed as follows: 

^D ~ ^Dmin + ^GE 

( 1 ) 
(n-AR) \~L      ^Lmin) (8.28) 



where: 

CDmin = 0.0500 = minimum drag coefficient, and 

CLmin = 0.05 = lift coefficient corresponding to minimum drag. 

Ambient pressure ratio (<5 ) is as follows (formula derived in the altitude section): 

<5 = (l-6.87559£-6-//c)
52559 (8.29) 

where: 

Hc = 2,300 feet = initial pressure altitude. 

where: 

v   SL ) 
(8.30) 

P = ambient pressure, and 
PSL = ambient pressure at standard day sea level = 2116.22 lbs/ft2 

Lift coefficient (CL ) is as follows (from elliptic wing theory): 

C  -C   + 

f \ 
n-AR 

1 + 'AR 

a (8.31) 

As with the drag coefficient, an adjustment for ground effect needs to be applied to the 
lift coefficient. A lift coefficient factor in-ground effect was determined on two separate 
flight test projects—a fighter and a transport—at the AFFTC. In both cases, the ground effect 
factor at lift-off was about 30 percent. The above lift and drag models are idealizations 
presented to illustrate general trends only. In a flight test project, one would initially use wind 
tunnel data, and later use flight test derived models. The formula is as follows: 

a. -£,(/G£). 

'c = 1.30 
UOGE) 

In both cases, the wing height to span (h/b) is about 0.20. Let us assume that by the 
time h/b increased to 0.5 (half span), the lift ratio decreased to 1.05 (5 percent). Then, 
further assume that the relationship is base 10 logarithmic. That yields Figure 8.3. 
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Lift Curve Ground Effect Factor 
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Figure 8.3 Lift Ratio In-Ground Effect 

The equation corresponding to the above curve is as follows: 

0.55 0.6 

C LUGE). 

'c L(OCE) 
= 0.8609 - 0.6282 • Logl0 ((h + hw )/b) (8.32) 

With the following constraint: 

.     C, 'L(lGE)j >1.0 
'L(OGE) 

The angle of attack is held to zero during the ground roll until a rotation speed is reached. 
This rotation speed (in this simulation example) is at a calibrated airspeed of 100 knots. 
Calibrated airspeed is normally displayed in the cockpit and was discussed in detail in 
Section 4.0 Airspeed. As will be shown in the later vectored thrust takeoff section, the 
selection of 100 knots as the rotation speed is probably much too low for an actual F-16. 
Upon reaching the rotation speed, the typical takeoff will rotate to some given angle of 
attack. Then, that angle of attack is held until the aircraft generates enough lift such that lift is 
greater than weight and the aircraft lifts off the runway. The angle-of-attack profile used in 
this example computer simulation is as follows: 

a = al 'last «)' 
At (8.33) 

where: 
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(A%f1=3-° de2/sec- .) = 3.0 deg/s 

The angle of attack (a) is limited to a predetermined value. In this example simulation 
that value is 13 degrees. In the numerical integration, 13 degrees a is reached at 130 knots 
calibrated airspeed. The lift first exceeds weight at an airspeed of 132 knots. The aircraft (or 
the simulated aircraft) will lift off the ground when lift is greater than weight. 

Lift and drag (formulas in lift and drag section) are computed as follows: 

L = CL ö -M2 -5/0.000675 (8.34) 

D = CD S-M2 -5/0.000675 (8.35) 

Finally, the last terms in our model are the runway resistance. We will assume zero 
runway slope. 

ll = 0.015 rolling coefficient of friction. 

Then, 

Fm=f,.(W,-L) (8.36) 

Fnv, = 0.0 ifL>W, 

Combining terms: 

Fa=F„-(D + Fr») (8-37) 

F«=NX-Wt (8.38) 

N^Vg/+j4 (8-39) 
/   60       /   vt 

During the ground roll, the h-dot (h) term is zero. During the air phase, the normal load 
factor equation is used. Equation 8.40 is derived in the section on normal load factor during 
a climb. 

Nz=cos(y) + ^-!- (8.40) 
So 

Y = sin ' Vy j flight path angle (8.41) 

From theNX,NZ, and y equations (8.39 through 8.41), we can numerically integrate 

groundspeed (V ) and geometric height (h). All of the forces, however, are functions of 
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airspeed and pressure altitude. We have assumed a standard atmosphere for temperature. 
Standard atmosphere is defined in the altitude section. 

T = 288.15-(1.9812/1000)-ffc (8.42) 

V = v +v ' t g w 
(8.43) 

where: 

Vt = true airspeed, and 

Vw = windspeed. We will assume windspeed equals zero. 

The following equations were derived in Section 4.0 Airspeed. 

M=Vt/a 

a = aSL-Jd   = speed of sound 

(8.44) 

(8.45) 

where: 

aa =661.48 knots. 

where: 

0 = 1  Ago I« j = temperature ratio 

^n = [l + 0.2-Af2]3'5-! 

qc = compressible dynamic pressure. 

(8.46) 

(8.47) 

Vc = aSL ■ ]l5-\(qc/PSL + lf35)-l§ = calibrated airspeed (8.48) 

where: 

PSL = 2116.22  (lbs/ft2) = ambient pressure at standard sea level. 

A plot of thrust, drag plus the runway resistance terms and excess thrust versus calibrated 
airspeed, is shown in Figure 8.4. 
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Takeoff Forces Versus Speed 
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Figure 8.4 Takeoff Forces 

The time history of the simulation is shown in Figure 8.5. 

Takeoff Simulation Time History 
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Figure 8.5 Takeoff Parameters 

Table 8.1 shows the significant events during the takeoff. 
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Table 8.1 
TAKEOFF EVENTS 

Seconds (kts) 
a 

(deg) (ft) 
0.0 

Event 

0.0 0.0 0 Brake Release/ 
Fn = 35 Percent 

8.4 50.1 0 0.0 99-Percent Thrust 
15.3 100.0 0 0.0 Rotation Initiated 
19.6 130.3 13 0.0 Rotation Completed 
19.9 132.2 13 0.0 Lift-Off 

Lift>Weight 
23.7 154.0 13 16.3 Out-of-Ground Effect 

26.43 167.6 13 50.0 Obstacle 
Clearance 
Height 

The inflection points in the drag versus calibrated airspeed plot (See Figure 8.4) can 
easily be correlated with the significant events in Table 8.1. For instance, from the initiation 
until completion of rotation, the angle of attack is increasing (at 3 degrees per second), which 
shows up in a dramatic rate of change of drag. Once angle of attack stabilizes at 13 degrees, 
the rate of increase of drag is reduced. 

8.5 Effect of Runway Slope 

Using the pseudo F-16 model, the values of time and distance as a function of runway 
slope (in degrees) are shown in the Table 8.2. The average acceleration is computed as 
follows: 

a - 2-d/t2 average (mean) acceleration (ft/sec2) (8.49) 

where: 

t  = time at lift-off (seconds), and 
d = distance to lift-off (feet). 

Table 8.2 
EFFECT OF RUNWAY SLOPE 

I        Slope 
1        (deg) 

Distance 
(ft) 

Time 
(sec) 

Acceleration 
(ft/sec2) 

From Zero 
(pet) 
4.52 -1.0 3,001 22.6 11.75 

1         °-° 3,131 23.6 11.24 0.00 
0.5 3,164 24.0 10.99 -2.29 
1.0 3,247 24.6 10.73 -4.56 

1         2.0 3,403 25.8 10.22 -9.06 

As can be seen, the effect of runway slope for this particular model is about 4.5 percent 
per degree of runway slope. For a typical light aircraft the effect of runway slope is at least 
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twice that amount, due to the much smaller thrust to weight ratio of the typical light aircraft. 
The Edwards AFB main runway has an average slope of only 0.08 degree (21 feet elevation 
change in 15,000 feet). The true heading for runway 22 is 238.32 degrees from true north 
(224.1 magnetic). The west end of the runway is 21 feet higher than the east end. For our 
F-16 model, this slope would produce a 3,142-foot takeoff distance compared to 3,131 feet 
for a perfectly level runway. 

Although the percentage change in acceleration is about the same for a positive or negative 
runway slope, one must take into account the fact of having a negative absolute rate of climb at 
lift-off for a negative slope runway. For instance, for a lift-off at 100 knots groundspeed with a 
negative 1.0-degree slope runway, the absolute rate of descent is about 3 feet per second. The 
rate of climb (or descent) with respect to the horizontal plane is as follows: 

h = Vs -sin(0 .) (8.50) 

8.6 Effect of Wind on Takeoff Distance 

Again, using the same pseudo F-16 model, Figure 8.6 illustrates the effect of wind. The 
takeoff speed is 132 knots calibrated airspeed. A positive wind on this plot is a headwind. 

Effect of Wind on Liftoff Distance 
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Figure 8.6 Effect of Wind 
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8.7 Takeoff Using Vectored Thrust 

A limiting factor in takeoff distance for a high-performance fighter may be the ability to 
rotate the aircraft. Rotation would usually be achieved using the horizontal tail. The tail 
generates lift from dynamic pressure. A full fuel F-16 with no stores has a takeoff weight of 
approximately 25,000 pounds. The engine on an F-16 aircraft in maximum afterburner has a 



static sea level rating of about 25,000 pounds. This does not mean the engine, when installed 
in the aircraft, produces that much thrust. There will be some degradation due to installation 
losses. For the sake of using even numbers, however, we will assume zero losses. In addition, 
the simulation that will be presented here will be for sea level. Figure 8.7 illustrates forces 
and dimensions for an F-16 aircraft. We will presume that we have installed a nozzle with 
vectoring capability. 

As shown,  the length of the F-16 is 49.25 feet. The following dimensions are 
approximate values scaled from the diagram: 

a. XFn = 14.5 feet (distance from main gear to thrust vector). 

b. X, = 8.7 feet (distance from weight vector to nosewheel). 

c. X2 = 4.4 feet (distance from weight vector to main wheel). 

Figure 8.7 F-16 Dimensions 

The forces are the same as for the conventional takeoff. The difference is that there will 
be thrust vectoring to produce a pitching moment to rotate the aircraft. 

Gv = thrust vectoring angle (+ nozzle up, to produce a pitch up). 

Requiring the summation of moments about the main gear to be equal to zero yields 
equation 8.51. We will assume that the lift and the weight act through the same distance 
(X2). This is not generally the case. We will also ignore the longitudinal forces. A more 
complete simulation would not make these simplifying assumptions. The assumptions made 
here are deleting higher order terms. 
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^jM=0 = Fi-(X1 + X2) + L-X2-Wl-X2 + Fn-sm(9vyXFn (8.51) 

Solving for the nosewheel force (F,): 

_w,.x2-L.x2-Fn.sin(evyxFn 

Rotation will begin when the nosewheel force (F,) becomes zero. At zero airspeed, lift 

(L) is zero. With Fl equal to zero, we can solve for the vector angle that would be required 
to pitch the aircraft at zero airspeed. 

Gv =sin" 
{w,-x2) 

(8.53) 
.fa-**). 

For the conditions we have chosen, the vector angle computes to: 

. [(25,000-4.4) ] 
0v=sin_1  -^ '-  =17.7° (8.54) 

[(25,000-14.5)j 

In round numbers, we would need to rotate the nozzle 18 degrees to rotate the aircraft at 
zero airspeed using thrust alone. That assumes the engine is producing 100-percent thrust at 
brake release. At higher airspeeds, the nozzle angle required will be less due to wing lift. The 
engine vectoring would only be used to initiate rotation. Once rotation begins, the vector 
angle can be decreased as the wing lift increases. Ignoring any tail lift, equation 8.51 
becomes: 

YJM=Iyy-q = {L-Wt)-X2 + Fn-sm(6v) (8.55) 

where: 

lyy   = moment of inertia about the y-body axis, and 

q     = body axis pitch rate. 

For sea level, standard day and with the aircraft model previously defined, Figures 8.8 
and 8.9 illustrate lift-off performance. The simulation assumed rotation was initiated at 90 
knots and a rotation rate of 10 degrees per second was obtained. This 10-degree per second 
rotation rate versus the previous 3-degree per second rate was used in the simulation to 
minimize the distance traveled between initiation of rotation and lift-off. It was presumed that 
some sort of control system function accomplishes the rotation to avoid overrotation at these 
high rotation rates. Overrotation means aft airframe ground contact. The rotation was 
continued until lift-off attitude (a - 0) was attained. Then that attitude was maintained until 
lift-off (L>Wt). 
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Figure 8.8 Distance to Lift-Off 
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Takeoff: Lift-Off Alpha versus Airspeed 
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Figure 8.9 Angle of Attack at Lift-Off 
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8.8 Effect of Thrust Component 

In the previous simulation, which has been the subject of this entire section so far, we 
have ignored the component of thrust. Once the thrust vectoring has accomplished its task of 
rotating the aircraft, the nozzle would be vectored to zero degrees with respect to the thrust 
axis. The simplified formula we used to compute normal load above is shown in equation 
8.56, which is only applicable after lift-off has occurred. During the ground roll, a portion of 
the aircraft weight is supported by the ground. 

• 

N. = k 
W. (8.56) 

The complete formula is as follows: 

L = Ni-W,-Fg-sm(a + il) (8.57) 

Hence, solving for N.: 

N _(L+iVsin(<*+0) 
w. 

(8.58) 

We have presumed the thrust incidence angle it is zero. The effect of ignoring the 

Fg • sin(a) term is quite dramatic. For instance, at the typical lift-off angle of attack for an 

F-16 of 13 degrees a, the term for Fg = 25,000 pounds yields 5,624 pounds of extra 

equivalent lift. A plot of lift-off speed versus angle of attack (Figure 8.10) illustrates the effect. 

Effect of Ignoring Thrust Component In Lift Axis 
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Figure 8.10 Effect of Thrust Component on Lift-Off Speed 
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The corresponding distances are presented in Figure 8.11. The lift-off angle of attack was 
varied to produce the variation in lift-off speed. 

Distance versus Lift-Off Airspeed: Effect of Ignoring Thrust Component 
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Figure 8.11 Effect of Thrust Component on Distance to Lift-Off 

At 13 degrees a, we (the simulation) are able to lift-off at 116.2 knots in only 618 feet. 
Without thrust vectoring, the F-16 would (for these conditions) not be able to rotate before 
approximately 130 knots. We can take the nosewheel force equation and replace the thrust 
vector term with a tail lift term. 

F=WrX2-L-X2-LrX, 
(Xi+X2) 

(8.59) 

Now, replace the terms above with the more general terms as shown in the C-141 
diagram (See Figure 8.1). However, we will ignore runway slope and vertical terms. Again, 
taking moments about the main gear: 

JjM=0=Fi-(Xi + X2) + LliX2-XLl)-L2-(XL1-{X2-XL1})-Wl.X2 (8.60) 

To rotate the aircraft using tail lift, the tail lift (Z^) must be negative. Solving for the 
nose load: 

Fx 
^[L2-(XL2-{X2-XLl}) + Wt-X2-LljX2-XLl)] 

(Xl + X2) 
(8.61) 
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Rotation will occur when the nose load (Fl) equals zero. Solving for the required tail lift 

_[L,-(X2-XI1)-1V,-X2] 
u 

(XL.-iX.-XL,}) 
(8.62) 

For our aircraft model, we have assumed XL, = 0 and we will assume the tail force acts 
at the same point where we assumed the thrust vector acted. Then: 

And: 

XLj = XFn + X2 = 14.5 + 4.4 = 18.9 

LIA i£_iJ = o.303-(L-W) = 0.3-(L-W) 
^        (XLj-X2) 

V '' V ; 

(8.63) 

(8.64) 

Next, we can compute the difference between the tail lift (Ij) and the opposing lift from 

weight (Wt) and wing lift (L,). 

ALifi = L2-03-(L[-Wl) (8.65) 

During the aircraft takeoff ground roll, the angle of attack (a) will be zero, but the wing 
will provide lift due to having flaps down configuration. A tail lift coefficient of 1.50 is 
assumed along with sea level standard conditions and a gross weight of 25,000 pounds. Four 
values of wing lift coefficient are chosen to be 0.10, 0.20, 0.30 and 0.40. Figure 8.12 shows 
the results of plotting ALtft versus calibrated airspeed (Vc) for a tail area of 60 ft2. 
Figure 8.13 is for a tail area of 80 ft2. 

DeltaTall Lift  Tail CL=1.5; Tail S=60 ft"2 

-fc-WIng CL= 0.10 

-S-WingCL< 0.20 
-j^Wing CL= 0.30 

-©-Wing CL=0.40 

Figure 8.12 Delta Tail Lift for Tail Area = 60 ft2 
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Delta Tail Lift CL tail = 1.5; S tail = 80 ftA2 

-0-WingCL=0.10 

-e-WingCL=0.20 

-£-WlngCL=0.30 

-e-WingCL=O.40 

125        130 135 140        145 

Calibrated Airspeed (knots) 

Figure 8.13 Delta Tail Lift for Tail Area = 80 ft2 

The points on the plots where the ALifi becomes positive is the minimum speed for 
rotation. For instance, for a wing lift coefficient of 0.40 and a tail area of 80 ft2, the minimum 
rotation speed is about 119 knots (from Figure 8.13). 

For this aircraft simulation, we have assumed a constant 25,000 pounds of thrust. This is 
much greater than drag at lift-off speed. By varying the rotation speed, we can generate a plot 
of distance versus speed for lift-off (Figure 8.14). The rotation rate was assumed 10 degrees 
per second in each case. The 10-degrees per second rate is much greater than a normal rate of 
about 4 degress per second. The high rotation rate in the simulation was necessary to achieve 
reasonable lift-off speeds. Figure 8.14 shows the results. The line is approximately a straight 
line and is such, due to thrust being much greater than drag, which produces a nearly constant 
acceleration versus speed. 
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Distance versus Vc at Lift-Off 
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Figure 8.14 Distance to Lift-Off versus Airspeed 

In each data point in Figure 8.14, the limiting factor in lift-off was the rotation rate. The lift-off 
occurred before 13-degrees a was achieved. Figure 8.15 shows rotation speed versus lift-off speed and 
illustrates just how rapidly the aircraft (in this case, the aircraft model) was accelerating. 
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Table 8.3 shows the forces at 130 knots calibrated airspeed. 

Table 8.3 
FORCES AT LIFT-OFF SPEED 

(lbs) 
a 

(deg) cL CD 

Lift 
(lbs) 

Drag 
(lbs) (lbs) 

F * ex 

(lbs) 

25,000 0.0 0.10 0.0501 1,716 860 345 23,795 
25,000 13.0 1.420 0.1420 24,369 2,437 9 22,554 

At rotation for 130 knots, for an excess thrust of 22,795 pounds, the speed is increasing at 
17.2 knots per second. That is why we needed such a high rotation rate, in order to achieve a 
reasonable lift-off speed. We must emphasize here that the model used was not an accurate 
F-16 model, but merely an approximate model used to illustrate takeoff principles. The 
equations for the lift and drag models were presented earlier. Figures 8.16 and 8.17 are plots 
of these equations. 

Takeoff Model: CL versus Alpha 
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Figure 8.16 Takeoff Lift Model 
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Takeoff/Landing Drag Model: CD Vs Alpha 
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Figure 8.17 Takeoff Drag Model 

In computing drag on the ground, you start with a given angle of attack, then compute lift 
coefficient, and finally drag coefficient. 

• 

Ground: a^CL^CD (8.66) 

Once lift-off occurs, one is able to compute lift coefficient. You can also measure angle 
of attack. Then, you start with lift coefficient and compute drag coefficient. Ignoring the 
component of gross thrust: 

N -W 
Air: C,= 0.000675 -,—z-—^ 

(S-M2-S) 
->cr (8.67) 

The lift and drag model used for this analysis is an idealized linear model. In the real 
world, there will be deviations from the linear model caused by flow separation at higher 
angles of attack. Experience has shown that this nonlinearity will begin at lift coefficients on 
the order of 0.50. 

8.9 Engine-Inoperative Takeoff 

In this section, we will discuss takeoff of a two-engine aircraft with an engine failure at 
some point during the takeoff ground roll. We will use the same pseudo F-16 aero model. 
However, we will assume two engines instead of one. We will make simplifications, such as 
assuming an instantaneous loss of thrust on the failed engine. The purpose herein is to 
illustrate basic principles - not to generate an accurate simulation. Let us presume a very 
simple thrust model for each engine as follows: 
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a.     yi =5,000 pounds. 

Now, we will simulate a takeoff at high altitude where the performance would be 
minimal if one engine were to fail. We will assume 10,000 feet pressure altitude 
(<5 =0.6877). Figure 8.18 is a time history of a simulation for our 25,000-pound aircraft 
model with both engines operating. 

Takeoff Parameters versus Time 
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Figure 8.18 Takeoff Parameters versus Time 

Takeoff forces versus calibrated airspeed up to an altitude of 100 feet are presented in 
Figure 8.19. The plot is for both engines operating. 

99 



Two-Engine Takeoff Forces 
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Figure 8.19 Takeoff Forces versus Airspeed 

For lift-off and 50 feet, Table 8.4 presents takeoff parameters. 

Table 8.4 
TAKEOFF PARAMETERS AT FLIGHT EVENTS 

Event* 
Time 
(sec) 

a 
(deg) 

Vc 

(kts) (lbs) 

D + F rw 

(lbs) (lbs) 
h 

(ft/sec) 
V 

(kts/sec) 

1 0 0 0 6,877 375 6,502 0 4.96 
2 31.800 0 130.0 6,877 1,206 5,671 0 4.32 
3 33.100 13.0 134.6 6,877 2,600 4,277 0 3.26 
4 39.550 13.0 150.8 6,872 2,990 3,881 3.82 2.71 
5 44.725 13.0 161.6 6,864 3,423 3,441 11.41 1.94 
6 47.575 13.0 165.3 6,850 3,585 3,265 24.50 1.05 

*The num jered event s are as fol ows: 
1. Brake release 
2. Initiate rotation 
3. Lift-off 
4. Out-of-ground effect (hACL =19.7 feet) 
5. 50 feet AGL (above ground level) 
6. 100 feet AGL 

The two-engine case in Figure 8.19 was presented primarily as a baseline of comparison 
for the following engine failed case. We will now assume that one engine fails at exactly the 
initiation of rotation (Vc =130 knots). Figure 8.20 illustrates the same parameters as shown 

in Figure 8.19. 
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Engine Failure Takeoff Forces 
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Figure 8.20 Takeoff Forces versus Airspeed: Engine Inoperative 

Table 8.5 duplicates Table 8.4 for the same events, except we will add an event (2.1), 
which is immediately after we fail one engine in the simulation. 

Table 8.5 
TAKEOFF PARAMETERS AT SIGNIFICANT EVENTS-ENGINE-INOPERATIVE 

Time a Vc F« D + Fm F ex h *   1 Event (sec) (deg) (kts) (lbs) (lbs) (lbs) (ft/sec) (kts/sec) 1 

1 0 0 0 6,877 375 6,502 0 4.96 
2 31.79 0 130.0 6,877 1,206 5,671 0 4.32 

2.1 31.80 0 130.0 3,438 1,206 2,232 0 1.70 
3 33.70 13.0 132.0 3,438 2,503 935 0 0.71 
4 68.00 13.0 147.7 3,436 2,884 552 0.63 0.38 
5 100.00 13.0 154.6 3,432 3,133 299 3.49 0.01 

1     6 109.05 13.0 153.6 3,425 3,100 325 7.04 -0.20 
*The nun nbered events are as follows: 

1.0 Brake release 
2.0 Initiate rotation 
2.1 Engine failure 
3.0 Lift-off 
4.0 Out-of-ground effect (hAGL =19 .7 feet) 
5.0 50 feet AGL (above ground leve 1) 
6.0 100 feet A GL 

As can be seen, by the time altitude equals 100 feet the aircraft is slowing. Although 
excess thrust is increasing slightly, that excess thrust is being used for climb at the expense of 
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airspeed. In case of an engine failure in such a scenario, one would need to reduce the drag 
and pitch over to reduce rate of climb. The drag reduction would be accomplished by raising 
the gear. Then, conduct a low-g turn (to minimize drag) and return to base for landing. This is 
just one possible option. The aircraft flight manual would contain the recommended 
emergency procedure. 

8.10 Idle Thrust Decelerations 

To assist in the development (or verification) of a takeoff and landing simulation, idle 
thrust decelerations may be performed. One would accelerate the aircraft on the runway to 
some high airspeed. Then, cut the throttle to idle and allow the aircraft to freely decelerate. 
We can solve for drag (D) in the equation found in the Developing a Takeoff Simulation 
subsection and then put D into coefficient form. Lift and drag coefficients are discussed in 
the lift and drag section of this handbook. 

D = [Fn-F„-Wrsm(ej-vWrcos(ej} + n-L (8.69) 

• 
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9.0 LANDING 

9.1 Braking Performance 

Using the same aero model as for takeoffs, one can see the effect of braking coefficient of 
friction (/a ) upon stopping performance. The thrust has been set to a constant 600 pounds, 
representing Idle thrust. Minimum drag coefficient has been increased from 0.0500 to 0.0700 
to account for additional drag devices (such as spoilers) activated during braking. In Figure 
9.1, the coefficient of friction has been set to a constant 0.35; this is a typical dry runway 
value. The initial groundspeed was 130 knots for a calibrated airspeed of 124.8 knots. The 
gross weight has been reduced to 20,000 pounds, more representative of landing weight. The 
pressure altitude is 2,300 feet with zero wind. 

Braking Forces: Mu = 0.35; Cd= 0.0700; Fn = 600 lbs 
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Figure 9.1 Braking Forces 

120 

For a dry runway, the ß for maximum braking is typically between about 0.35 and 0.50. 
However, when one has an 8,000-foot runway, you usually will not conduct a maximum 
performance stop just to minimize tire and brake wear. Figure 9.2 shows the distance as a 
function of ß for the 20,000-pound aircraft at 2,300 feet pressure altitude with initial speed 
of 130 knots groundspeed. 
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Dry Runway: Distance versus Mu 
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Figure 9.2 Stopping Distance versus Mu (fi) 

For the braking coefficient range of 0.25 to 0.50, Figure 9.3 illustrates the deceleration 
(knots per second) versus calibrated airspeed. 
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Figure 9.3 Deceleration versus Calibrated Airspeed 

For wet runway conditions, the ß is much less than for dry runway conditions. This is 
especially true at high speed where hydroplaning may occur. Hydroplaning is where the tires 
ride on a film of water and never contact the runway. Figure 9.4 represents actual test data. 
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The test was on a wet runway, with the water applied using water tankers. The data points are 
average values of the actual data and the line is a fourth-order polynomial curve fit of the 
data points. 

y = 3.736E-09X4 -1.381 E-06x3 + 1.811 E-04x2 -1.137E-02x + 4.326E-01 
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Figure 9.4 Mu versus Groundspeed (Wet Runway) 

Figure 9.4 shows the braking coefficient computed from braking tests. The limits that 
will be used in applying the curve fit will be the curve fit values at the extreme points as 
follows: 

a. ^u = 0.336 if Vg < 10 knots, and 

b. ix = 0.047 if Vg > 130 knots. 

A warning is appropriate for using curve fits in simulations. Invariably, the data will not 
extend to the full range of the desired simulation. Using the curve fit beyond the range of its 
data should be avoided by use of limits. A limit would be where the curve fit value (y) would 
take on some predetermined constant value if the x value exceeds the highest (or lowest) 
value used in the curve fit. 

Wet runway forces are shown in Figure 9.5. The forces are computed using the mu or \x 
from Figure 9.4. 
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Braking Forces: Wet Runway 
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Figure 9.5 Braking Forces versus Calibrated Airspeed 

The simulation for our wet runway model produces a total distance of 7,059 feet. This 
compares to a distance of 2,236 feet for our dry runway model using a constant ß of 0.35. 
That is a factor of more than three times longer for a wet runway. That is typical, but as the 
saying goes, "your results may vary." 

9.2 Aerobraking 

When one is faced with a wet or icy runway, in order to reduce the ground roll, 
aerobraking may be used. Upon touching down, instead of immediately pushing over to a 
3-point attitude to begin braking, the aircraft is held at a high pitch angle (to produce a high 
angle of attack) to maximize the aerodynamic drag. In addition, aerobraking may be used on 
a dry runway simply to reduce wear on the brakes and tires. The ability to perform 
aerobraking is limited by at least two factors. First is the tail scrape angle, which limits how 
high of an angle of attack may be held. Second is the control power available to hold the 
aircraft up at an angle of attack. Figure 9.6 illustrates the difference in total resistance for 
aerobraking versus 3-point braking. For this simulation, the 3-point braking has more 
resistance except at high airspeed. However, in many cases, aerobraking can be more 
effective. 
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Drag + Runway Resistance Comparison: Aerobraking versus 3-point Braking 
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9.3 Landing Air Phase 

The landing air phase will be discussed using the same aircraft model we have used for 
the takeoff discussion and the landing ground roll. The simulation will be conducted by first 
computing the initial conditions. We can compute the initial speed (Mach number), by 
assuming that the flight path angle (7) is initially constant (7 = 0). The normal load factor 
equation is the same as for takeoff (equation 8.40). 

N =cos(y) + y,-7 

So 
(9.1) 

Then, 

N = cos(7) (9.2) 

Each aircraft is flown differently and different pilots may have slightly different pilot 
techniques. However, a typical final approach technique is a constant angle-of-attack descent. 
For our simulation, that angle of attack is 13 degrees. From angle of attack we can estimate 
the lift coefficient (CL). The simulation used an estimated CL of 1.05 (out of ground effect) 
for an angle of attack of 13 degrees. Then, we can compute Mach number as follows when 
we also have given the weight and altitude: 

M = |0.000675-JVZ-W; 
ss-c, 

(9.3) 
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Equation 9.3 is solving for Mach number from equation 5.6 in Section 5.0 (Lift and 
Drag). Further, we will assume that true airspeed is constant, initially. The longitudinal load 
factor equation then gives: 

N =A+^_=A 
X     V,+8o     V, 

(9.4) 

We can then solve for the net thrust that would be required to have true airspeed constant 
at the beginning of the landing descent. 

F=D + F„=D + N-W. (9.5) 

Having performed these computations, the initial descent rate is varied. The initial 
conditions chosen—a runway pressure altitude of 2,300 feet at a standard day and an obstacle 
clearance height of 50 feet—are what might be typical with a postmission weight of 18,000 
pounds. 

For this aircraft model, the simulation enters ground effect at 16 feet (AGL) and at 
touchdown, the additional lift is a factor of 1.30. Figure 9.7 illustrates the dramatic impact of 
ground effect. A constant angle of attack of 13.0 degrees is maintained and thrust is held constant. 
However, the ground effect will increase the lift and hence, the descent rate will decrease. 

Final Descent Rate versus Initial Descent Rate 
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Figure 9.7 Final Descent Rate versus Initial Descent Rate 

The aircraft simulation predicted that, for the conditions specified, the aircraft would not 
touch down at any initial descent rate less than about 11.2 ft/sec. This is an ideal computer 
simulation, not a real airplane. In the real world, the pilot would take action to touch down 
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with stick, throttle or speed brake. A pushover would decrease angle of attack, which would 
decrease lift, thereby increasing descent rate. A pushover to about 10 degrees angle of attack 
would suffice. Interestingly, a pullup would also eventually get you on the ground. By 
pulling up sufficiently to dramatically increase drag, the aircraft will decelerate. With a lower 
airspeed, the lift will decrease and when lift becomes less than weight, you will descend. 
Reducing thrust will also cause a deceleration, however, you are already at near idle thrust 
and the small additional thrust increment could be insufficient. Finally, speed brake can be 
used to slow down and reduce lift. 

A time history of the descent for the landing simulation is shown in Figure 9.8. The 
simulation computations were begun at 50 feet AGL (above ground level), but only the last 
20 feet are shown. Notice the curvature in the final phase of the altitude versus time. The 
total distance from 50 feet to touchdown was computed to be 1,074 feet. When the same 
simulation was performed with ground effect terms eliminated, the total distance changed to 
978 feet, for a difference of 96 feet or nearly 10 percent of the air distance. 

Last 20 Feet of Landing Descent 
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Figure 9.8 Landing Air Phase 

9.4 Landing on an Aircraft Carrier 

The following text is the result of information given to the author by Page Senn and 
Richard Huff of the Naval Air Weapons Center, Patuxent River, Maryland. The situation we 
will discuss is the landing of an F/A-18 on a Nimitz class carrier. Figure 9.9 is a U.S. Navy 
photo of an F/A-18 with its tailhook extended. At landing attitude [a = 8.1° and glideslope = 
3.5 degrees (or y - -3.5°)], the vertical height from the tailhook to the pilot's eye is 16.7 feet. 
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The wing is roughly half the distance between the pilots eye and the tailhook as can be seen 
from the photo. Hence, the wing height above the tailhook is about 9 feet. We will use that 
height to make estimates of ground effect. 

Figure 9.9 F/A-18 with Tailhook Extended 

Figure 9.10 is a Navy photo of the U.S.S. Nimitz. The landings are accomplished from 
the aft deck while the carrier is maintaining forward speed to give a minimum wind over the 
deck of 15 knots. A more normal wind is 25 knots. 

Figure 9.10 The U.S.S. Nimitz 

The distance from the ramp to the target hook touchdown point is 230.2 feet. For the 
3.5-degree glideslope, this computes to a hook to ramp clearance of 14.08 feet for no flare. 
For the F/A-18 at 33,000 pounds, the airspeed is 146 knots. With the minimum windspeed of 
15  knots,  this yields a groundspeed of 131   knots  (146-15)  assuming  standard day 
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temperature. We can calculate the time from passing over the ramp to tailhook touchdown as 
follows: 

Atime = 
distance(ft) 230.2 

speed (ft/sec)    131-1.6878 
= 1.04 sec (9.6) 

Since 15 knots of wind is the minimum, the time will generally be longer. A wind of 25 
knots, for instance, would produce a time of 1.13 seconds. The average sink rate from the 
ramp to target hook touchdown computes to 13.5 fps (ft/sec). This compares to the nominal 
sink rate 14 fps. For the F/A-18, the gear limit is 25 fps and testing at Patuxent is 
accomplished up to 20 fps. Now, to estimate ground effect. The wingspan of the F/A-18 is 
40.4 feet. Table 9.1 shows the height/span (h/b) of the aircraft versus distance along the deck 
from over the ramp to tailhook touchdown. Also shown is an estimate of percentage 
reduction in drag from Figure 8.2. 

Table 9.1 
GROUND EFFECT PARAMETERS FOR F/A-18 CARRIER LANDING 

Point Over Deck 

Distance 
Traveled 

(ft) 
Wing Height 

(ft) h/b 

Percentage     1 
Drag 
(pet)         | 

Ramp 0 23.1 0.57 94.8 
50 20.0 0.50 91.4 
100 17.0 0.42 87.4 
150 13.9 . 0.34 82.6 
200 10.8 0.27 76.6 

|    Hook Touchdown 230.2 9.0 0.22 72.1          | 
Note: The percentage drag is an estimate of the drag as a percentage of the out-of-ground 

effect drag. 

We can estimate the change in speed of the aircraft due to ground effect. One form of the 
relationship between drag and drag coefficient is derived in the lift and drag section and is 
repeated below: 

AD 
(ACD-8-M2-S) 

0.000675 
(9.7) 

For sea level standard day, S = 1.0 and airspeed of 141 knots yields a Mach number (M ) 
of 0.2132. Airspeed and Mach number relationships are found in Section 4 (Airspeed). For an 
out-of-ground effect drag coefficient of 0.25, we can estimate the change in speed by 
integrating. 

From ACD, we calculate AD using equation 9.7. Then, for a weight of 33,000 pounds 
we calculate longitudinal load factor and then the derivative of velocity. This assumes that all 
of the drag change goes into acceleration and none into changing the rate of descent. 

N =_^_=i+A=i 
x    33,000    g0    V,    g0 
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32 174 
V=g.N= — Nx =19.06 • AT  (knots/sec) 

' *     1.6878 
(9.8) 

For a groundspeed of 126 knots (212.7 ft/sec), we will assume a constant descent rate 
based upon on a 3.5-degree glideslope. 

h = Vx -sinY = 212.7• sin(-3.5°) = -12.985 ft/sec (9.9) 

Now, we can calculate the change in speed by integrating the speed derivative as shown 
in Table 9.2. 

Table 9.2 
CHANGE IN TRUE AIRSPEED DURING LANDING DUE TO GROUND EFFECT 

Distance 
Traveled 

(ft) 

Percentage 
Drag 
(pet) ACD 

ADrag 

(lbs) Nx (kts/sec) 

Atime 
(sec) (kts) (kts) 

0.0 94.8 0.0130 351 0.0106 0.20 141.00 
50.0 91.4 0.0216 582 0.0176 0.34 0.24 0.06 141.06 
100.0 87.4 0.0316 851 0.0258 0.49 0.47 0.10 141.16 
150.0 82.6 0.0436 1,174 0.0356 0.68 0.71 0.14 141.30 
200.0 76.6 0.0586 1,577 0.0478 0.91 0.94 0.19 141.48 
230.2 72.1 0.0698 1,880 0.0570 1.09 1.08 0.14 141.63 

Note: Above data based upon an out-of-ground effect drag coefficient of 0.25. This was not 
a Navy-provided number. 

Another factor in landing on a carrier is the wind over the deck. There is a downdraft 
(negative vertical wind) immediately aft of the deck. The ship is traveling at a minimum of 
15 knots, the air flows downward aft of the ship. Then, when that air contacts the sea below, 
it is deflected upward creating an updraft for the oncoming aircraft. So, the aircraft first 
encounters an updraft, then a downdraft, and then a sudden loss of any vertical wind as it 
encounters the aft deck. Navy tests did indicate a 1 to 2 knot increase in INS groundspeed 
during landing. 

9.5 Stopping Distance Comparison 

During the same series of tests that produced the braking coefficient of friction data in 
Figure 9.4, tests were also conducted to determine aerobraking drag and dry runway braking 
coefficient. The aerodynamic drag coefficient during aerobraking at 13 degrees angle of 
attack was determined to be about 0.30. The dry runway braking coefficient (ß) was found 
to be in the vicinity of 0.35. In addition, values of lift coefficient were determined from either 
predicted models or flight-determined. For a nominal landing gross weight, the touchdown 
speed is 135 knots calibrated airspeed. Aerobraking can be maintained until approximately 
70 knots calibrated airspeed, limited by available horizontal tail power. Table 9.3 summarizes 
the data for wet runway, dry runway, and aerobraking. 
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Table 9.3 
DRY, WET, AND AEROBRAKING DATA SUMMARY 

Lift Coefficient Drag Coefficient Braking or Rolling   j 

Coefficient (ß) 

3-Point Braking: Dry 0.20 0.095 0.350 

3-Point Braking: Wet 0.20 0.095 Figure 9.4         [ 

Aerobraking 0.90 0.300 0.015            | 

In addition, an idle thrust model was provided by the engine manufacturer. Since thrust 
was a small contributor to the distance integration, we will ignore thrust incidence. Plus, 
runway slope and wind were assumed zero and standard day conditions at sea level were 
used. The equation for excess thrust (Fex) then simplifies to the following: 

Fa = FH-D-niWt-L) (9.10) 

Using equation 9.8 and integrating versus time to compute distance yields Table 9.4. 

Table 9.4 
INTEGRATION OF BRAKING RESULTS 

Airspeed 

Vc 

\     (kts) 

Dry 

v, 
(kts/sec) 

Dry 
Distance 

(ft) 

Wet 

v, 
(kts/sec) 

Wet 
Distance 

(ft) 

Aerobraking 

v, 
(kts/sec) 

Aerobraking 
Distance 

(ft) 

135 -7.17 0 -2.63 0 -6.11 0 
125 -7.06 307 -2.47 873 -5.25 386 
115 -6.95 598 -2.48 1,693 -4.45 705 
100 -6.81 992 -2.58 2,768 -3.34 1,510 
80 -6.63 1,446 -2.71 3,920 -2.12 2,635 
50 -6.41 1,950 -3.04 5,088 N/A N/A 

1     o -6.17 2,283 -5.90 5,660 N/A N/A 
Note: N/A - not applicable 

A few observations from Table 9.4 should be made. First, dry runway 3-point braking 
provides the greatest deceleration at all speeds. However, by aerobraking for the first 20 
knots (135 to 115) the difference in distance is only just over 100 feet. For this small increase 
in stopping distance, a substantial reduction in energy absorption by the brakes can be 
achieved - thereby increasing the service life of the brakes. Second, by using aerobraking 
down to 100 knots, the distance to stop on a wet runway can be reduced by more than 
1,000 feet. 

9.6 Takeoff and Landing Measurement 

In the past (prior to this handbook), much of takeoff performance utilized external tracking. 
At the AFFTC, this was from Askania cameras. Askania was the brand of the particular 
cameras located in towers near each end of the main runway and about 1,500 feet from the 
runway. The cameras tracked the aircraft on film at up to four frames per second. The film 
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contained azimuth and elevation data. The film was developed, read, and computer-processed. 
The computer output included time, distance, velocity, acceleration, and altitude. 

Now, with the advent of INS and GPS, the onboard inertial velocity data can be 
integrated to provide distance. 

d=jvg-dt (9.11) 

where: 

V  = horizontal component of groundspeed. 

Altitude would be determined by integrating the vertical velocity, beginning at the point 
where lift-off occurred. The precise determination of the lift-off point would involve 
additional onboard instrumentation such main gear loads or wheel speed. 

Ah = \ Vv ■ dt = altitude above the lift-off point (9.12) 

where: 

Vv - vertical component of groundspeed. 

Since the INS is subject to small drift errors, it is necessary to subtract out any null error. 
For the horizontal distance, this is obtained by simply collecting data when the aircraft was 
stopped. For the height integration, the vertical velocity at the lift-off point would be 
subtracted out. The GPS does not have a null error. A new device called an EGI (embedded 
GPS/INS) combines the outputs of both an INS and a GPS using a filter. 

To compute acceleration, it is recommended to differentiate the velocities rather than use 
a direct output of the INS. That is because the INS is sensitive to body axis vibrations of the 
aircraft and the acceleration data will be very noisy due to this vibration. Typically, an INS 
will internally integrate the accelerations at a sample rate of at least 50 samples per second. 
By sampling the INS velocities at no more than 5 samples per second, you can essentially 
average out the noise in the data. The topic of noise in accelerometer data is discussed within the flight 
path acceleration heading of the excess thrust section. Then, the longitudinal acceleration can be 
determined with something as simple as a central difference derivative method. 

where: 

i =the i'th time sample. 

Improved integration results would be produced using a moving second-order polynomial 
curve fit; a data process used by the AFFTC. 
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10.0 AIR DATA SYSTEM CALIBRATION 

10.1 Historical Perspective 

In Engineering Aerodynamics (Revised Edition, 1936), Walter Diehl discusses the 
calibration of airspeed indicators. He references NACA Rep. T.N.I35 (1923) by W.G. Brown 
titled, "Measuring an Airplane's True Speed in Flight Testing." Diehl states, "In general, 
airspeed indicators must be calibrated by runs up and downwind over a measured course." 
We later knew this as the groundspeed course method. Diehl points out that such tests should 
not be done when the crosswind exceeds 15 knots as that would have resulted in an error in 
airspeed of more than 1 percent. In 1923, speeds of order of 100 knots were achievable. If the 
groundspeed is 100.0 knots and there is a 15-knot wind exactly perpendicular to the aircraft's 
inertial speed vector, then by trigonometry we could compute that the true airspeed is 101.1 
knots. This is an error greater than 1 percent and even more for speeds less than 
100 knots. We rarely use the groundspeed course method at Edwards because of its lack of 
accuracy at high speeds and variable surface winds. The first problem is minimized with the 
advent of GPS to determine groundspeeds. 

10.2 Groundspeed Course Method 

The course would consist of two parallel lines connected by a line perpendicular to those two 
lines. The course at Edwards, for instance, is 4 miles long. The aircraft heading (direction nose is 
pointing) would be the same as the course heading in method one as shown in Figure 10.1. The 
aircraft would drift from the line due to any crosswind. The way to determine true airspeed is to 
simply use a stopwatch to time the aircraft between the start and end lines. These points are a 
known distance apart. This requires a visual hack of when the aircraft crosses the horizontal lines 
marked on the ground. Then, true airspeed is determined by the following. 

V = 
ADistance 

ATime 
(10.1) 

As long as wind is unchanging, it does not enter into the problem since true airspeed is 
parallel to the course. Then, opposite heading passes are not needed. However, it is common 
to conduct passes in opposite headings just to get an average. Note: A positive wind vector 
direction is the direction from which the wind is blowing. 

Distance 

Figure 10.1 Groundspeed Course - Heading Method 

115 



With the use of GPS, one could determine the component of groundspeed parallel to the 
course. Now, however, one would need to conduct opposite heading passes to average out the 
wind. Then, the average true airspeed is simply the average groundspeed. You would avoid 
the problem of visually determining the time passing points on the ground. In addition, GPS 
groundspeed is very accurate (0.1 m/sec). 

V, (V*+V,2) 
(10.2) 

Note a distinction between conducting opposite heading (direction the nose is pointing) 
and opposite direction (ground track direction) passes. The opposite direction or track angle 
passes would have the aircraft fly directly down the groundspeed line with the aircraft 
pointing into the wind to account for crosswind. You would need to be able to correct for 
crosswind if you flew these opposite direction passes as recommended in AFFTC Standard 
Airspeed Calibration Procedures (Reference 10.1). The opposite direction pass would be as 
shown in Figure 10.2. The opposite heading method is preferable, due to not having to make 
crosswind corrections. Note: A positive wind vector direction is the direction from which the 
wind is blowing. The data reduction in Reference 10.1 ignores crosswind. 

Figure 10.2 Groundspeed Method - Direction Method 

10.3 General Concepts 

The terminology 'airspeed calibration' actually involved the determination of corrections 
to be added to not only airspeed, but also pressure altitude and total temperature. The basic 

measurements are total pressure (Pt), static pressure (P), and total temperature (T,). The 
static (or ambient) pressure and total pressure are used to compute calibrated airspeed (Vc), 

pressure altitude (Hc), and Mach number (M ). With Mach number and total temperature, 
the true airspeed and ambient temperature can be calculated. The equations for these 
parameters are included in the airspeed and altitude sections of this handbook. 

On some limited evaluations, the basic measured parameters on the test aircraft are the 
actual measured values of indicated airspeed, indicated pressure altitude and indicated total 
temperature. The correction equations are as follows: 
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Vc=Vt+ AViC + AVpC calibrated airspeed (10.3) 

Hc = Ht + AHiC + AH c corrected pressure altitude (10.4) 

Tt = Tti + ATti total temperature (10.5) 

where: 

&Vic  = instrument correction to indicated airspeed, 

A Vpc = position error correction to instrument corrected airspeed, 

AHiC = instrument correction to pressure altitude, 

^" PC = position error correction to pressure altitude, and 

A^,    = instrument correction to total air temperature. 

The modifier 'corrected' on pressure altitude is often dropped in practice. However, the 
modifier 'calibrated' on calibrated airspeed needs to be retained to distinguish it from true 
airspeed. When the parameters are instrument readings that not uncorrected for instrument 
and position errors then the modifier 'indicated' should be applied. The terminology 'position 
error' refers to the premise that there is some location on the aircraft to locate a sensor such 
that there would have been zero error in that measurement. However, there is no single 
position that would yield zero error at all Mach numbers and angles of attack. 

When dealing with the three basic measurements (Pt,P,Tt) on a test aircraft the i 
subscript referred to a measurement that had not been corrected for any instrumentation 
errors. The total temperature probe is also subject to an error called a probe recovery factor 
(77). The relationship for total versus ambient temperature is as follows: 

Tt=T-{l + Q.2-r]-M1) (10.6) 

If, in flight test, one has an ambient temperature source (T) and a total temperature 
measurement (7j) one could solve for 7] in the above equation and could calibrate the probe. 
The value for 7] is typically 0.98 to 1.00 for a well-designed system. However, in practical 
application with modern probes a value of 1.0 is frequently used. 

The Tt is the test aircraft's measured total temperature. The ambient temperature (T) 

would have been from another source. The other source could have been from another 
aircraft with a calibrated total temperature probe, from a weather balloon, or from a ground 
temperature measurement. The ground temperature measurement would be the source during 
tower flyby tests. 

Weather balloon data would not be used as a primary calibration source. However, it 
makes an excellent check on your data system. Too many performance engineers ignore this 
valuable source of information. Appendix A contains weather balloon data from the Edwards 
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AFB weather squadron. The data illustrates average values of winds and temperatures versus 
month. There is also data from a sampling of 1 month of weather soundings. 

A study conducted at Edwards AFB in the 1960s indicated that balloon temperature 
accuracies were on the order of ±2 degrees C. 

The two pressure measurements could both have 'position' errors as follows: 

/}=/i+A/> (10.7) 

P=Pt+APs (10.8) 

Often, the symbology used here for ambient pressure (P) will be shown as (Ps). The s 

would denote static. For purposes of this handbook static and ambient are considered the 
same thing. 

In general, both of the pressure measurements are subject to errors. However, it is often 
assumed that there is zero total pressure error. In that case, all of the Pitot-static error is in the 
ambient pressure measurement. A position error parameter called delta p over q is defined as 
follows: 

(P-P.) 
K^ac=- ~ (10-9) 

lac 

where: 

qCic = indicated compressible dynamic pressure, and 

APp = error in ambient pressure (position error). 

With the assumption of zero total pressure error, the correction to be added to 
compressible dynamic pressure simplifies to the following: 

Aqc=-APp (10.10) 

At the AFFTC, a sign convention has been that a positive sign on AP would produce a 

positive correction to be added to both calibrated airspeed (AVC) and pressure altitude 

(AHC). (One can avoid the confusion of a sign change by thinking of APp as being a 

positive correction to be added to the compressible dynamic pressure (qc.)   A positive 
correction to be added to ambient pressure would produce a negative correction to be added 
to both calibrated airspeed and to pressure altitude. So, one would need to change the sign on 
the ambient pressure correction as follows: 

^^Jizv-jizn oo.li) 
1c« Gac 
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10.4 Pacer Aircraft 

An aircraft that is utilized in the airspeed calibration of a test aircraft is called a pacer 
aircraft. The pacer will fly in formation with the test aircraft. The pacer's computed values of 
calibrated airspeed (Vc), pressure altitude (Hc), and ambient temperature (T) are compared 
to those three parameter values from the test aircraft. The test aircraft's Pitot-static 
measurements are referred to as indicated values until a set of corrections can be determined 
by simply comparing to the pacers calibrated computed parameters. Just for simplicity, the 
computed ambient temperature is lumped with the pressure parameters and called Pitot-static 
parameters. The AFFTC pacer aircraft have onboard computers, which calculate 
instrumentation and position errors then add these corrections to the indicated values to 
present calibrated values. The position errors are the difference between the measured (or 
indicated) Pitot-static parameters and the true values. 

Before pacer aircraft became the standard for Pitot-static measurement, it needed to be 
calibrated before it could be utilized in the airspeed calibration of test aircraft. One of the 
methods used in calibrating a pacer aircraft is to fly against another pacer aircraft. This has 
the potential of passing on errors from another pacer. To avoid that problem the new pacer is 
also tested using the tower flyby, accel-decel, and cloverleaf methods. 

10.5 Tower Flyby 

The tower flyby method of airspeed calibration consists of flying along a flyby line on the 
lakebed and passing by an observation tower perpendicular to the flyby line some 1,379 feet 
away (at Edwards AFB). An observer in the flyby tower watches the aircraft pass by the tower. 
With a grid on a window, the observer is able to compute the aircraft's altitude above the tower 
zero grid line as the test aircraft passes in front of the grid on the window. Figure 10.3 shows an 
actual photo of an aircraft (F-l 8) passing by the Edwards AFB flyby tower. 

A pressure altitude measurement in the tower is used to determine the zero grid line 
pressure altitude. Then, the pressure altitude of the aircraft is computed as follows: 

HCa/c-Hptower+&hl 

(T     "N 1std 
p tower tower pressure altitude for the aircraft (10.12) 

where: 

Hp tower = pressure altitude measured at the zero grid line in the tower, 

&hlower   = geometric height of aircraft above the zero grid line measured by the tower, 

Tstd       = standard day temperature (°K) at Hptower, and 

T = test day ambient temperature (°K). 
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Figure 10.3 Flyby Tower Grid 

Figure 10.4 (Reference 10.1) represents flyby tower data. 
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Figure 10.4 Altitude versus Grid Reading for Flyby Tower 
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Since Ah = 31.422 times grid reading and at the very best a guess to the nearest 0.1 inch 
grid is possible, then the accuracy of the flyby tower data is about ±3 feet. That is an 
optimistic figure. Accuracies of better than 3 feet have been demonstrated with differential 
GPS (DGPS) over the flyby line at Edwards. 

Too often, the temperature correction is ignored. To illustrate the error that could result, 
consider a 90-degree F day at Edwards, which is a normal summer day. The geometric 
altitude of the zero grid line of the flyby tower is 2,305 feet. Assuming the pressure altitude is 
equal to the geometric altitude, then the standard day temperature computes to 283.6 degrees 
K. The test day temperature of 90 degrees F equates to 305.4 degrees K. Next, assume the 
aircraft flew by the tower at a geometric height of 200 feet as follows: 

a.    Hr . = 2,305+ 200.- 283.6 
305.4 

2,305+ 186. = 2,491 

If one ignores the temperature effect, the error in altitude would be 14 feet. Figure 10.5 
illustrates the effect of a 10-foot error in pressure altitude on calibrated airspeed at a pressure 
altitude of 2,500 feet. This error is computed based upon the assumption that there is zero 
error in total pressure. 

Effect of a 10-Foot Error in Flyby Tower Altitude 

100 200 300 400 

Indicated Airspeed (kts 

500 600 

Figure 10.5 Effect of 10-Foot Error in Flyby Tower Altitude 

10.6 Accel-Decel 

It is difficult to obtain stabilized airspeed calibration data in the transonic regime. In 
addition, at supersonic speeds, fuel consumption is very high. So, a method of accelerating 
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and decelerating starting and ending at subsonic speeds (where the airspeed calibration is 
known from the tests previously described) is used. The method is as follows: 

a. Perform an altitude survey over a small range of altitude (±1,000 feet, typically) from 
the start condition. The start condition is some Mach number, altitude condition. 

b. Acquire a few additional data points at the same indicated Mach number, but at 
different altitudes. 

c. Measure pressure altitude, Mach number, ambient temperature (computed from Mach 
number and total temperature) and tapeline altitude (radar or GPS). 

d. Compute also, the windspeed and direction, groundspeed and direction, and aircraft 
true airspeed. You now have the following functions: 

1. Hc = f(h) where h = tapeline altitude, 

2. T = f(h), 

3- VwN=f(h),and 

4- VwE=f(h). 

The four functions above are quite accurately represented by a straight-line curve fit. The 
altitude survey can be as few as three data points to yield a straightline fit. Then, the aircraft 
is accelerated from this known calibration subsonic point through the transonic and into the 
supersonic regime where the calibration is not known. The data processing involves 
computing corrections to be added to airspeed, altitude, and total temperature. All of the 
required equations have been presented in previous sections. Figure 10.6 is a plot of a 
pressure survey taken prior to a supersonic accel-decel. The extreme data points are stabilized 
points while the other points are from a subsonic acceleration. The data are corrected using a 
position error curve previously determined from pacer and tower flyby data. The collection of 
data points near 30,000 feet pressure altitude are from a subsonic acceleration corrected using 
the pacer curve. Those data points are shown in the Figure 10.6. 

In Figures 10.6 and 10.7, one supersonic accel-decel data set is shown from data 
collected at the same time as AFFTC data set one. That data set is in the discussion of the 
cloverleaf method. Both plots are the same data; just presented with different parameters. 
Figure 10.7 is correction to be added to indicated pressure altitude. Figure 10.8 is the 
position error parameter versus indicated Mach number. The assumption is made that all of 
the error in the air data comes from the ambient pressure. 
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Delta P/qcic versus Indicated Mach Number 
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Figure 10.8 Accel-Decel Position Error Coefficient 

Section 10.7 is an edited portion of a paper titled, "Pitot-Static Calibration Using a GPS 
Multi-Track Method'' (Reference 10.2). This method is more commonly referred to as the 
cloverleaf method. 

10.7 The Cloverleaf Method - Introduction 

In the early 1970's, the AFFTC developed a new method to calibrate airspeed, References 
10.3 and 10.4. The method was originally dubbed the cloverleaf method due to the pattern 
prescribed in the sky. The idea is as follows: One assumes that wind remains constant while 
the aircraft performs consecutive turns to produce three passes through a common airmass. 
Ideally, the passes should be equally spaced in heading (or 120 degrees apart) and at the same 
indicated airspeed. Besides the two components of wind (north and east), there would be an 
unknown error in true airspeed that would need to be computed. This handbook will present 
the mathematics of this method and some substantiating data. They involve the solution of 
three nonlinear equations in three unknowns. It does not require that each pass be executed at 
the exact same airspeed or at precisely 120 degrees apart. The National Test Pilot School 
(NTPS), in Mojave, California, for instance, uses a method where the passes are 90 degrees 
apart, making the math much simpler (Reference 10.5). 

The development that makes this method dramatically more economical for flight test is 
GPS. One no longer needs to track the aircraft with radar, which reduces test time and 
required test resources, and there is a reduced cost for data processing. The method has been 
applied with reasonable success by the NTPS. What this handbook will contribute beyond 
that which the NTPS has already contributed, is the nonlinear mathematical solution. The test 
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points do not have to be flown as precisely, since the heading angles do not have to be 
exactly 90 degrees apart. 

This handbook will not discuss the theory and operation the GPS system. In addition, it 
will not discuss air data systems at any length. Both subjects have been written about at 
length. See for instance, the U.S. Navy web site http://tycho.usno.navy.mil/gps.html. In 
addition, the references and bibliography contain just a few of the numerous information 
sources on these topics. For the sake of this handbook, the primary piece of information 
required of GPS is the accuracy of the velocities and at what update rate they are available. 
The military specification for velocity is 0.10 meters per second (0.19 knot): The data in this 
handbook was available at 1 sample per second. 

This handbook will attempt to explain and demonstrate the validity of a method to 
calibrate true airspeed (Vt), which invokes the principle that the vector sum of groundspeed 
plus windspeed is equal to airspeed. The terminology 'true' airspeed is used to avoid the 
confusion with the cockpit indicator readings, which are referred to as 'calibrated' airspeed 
(Vc). For those not familiar with calibrated airspeed, the cockpit airspeed indicator only 
measures actual airspeed on a standard day (59 degrees F) at sea level standard pressure 
(2116.22 psf). The cockpit indicator, historically, could be constructed mechanically with 
only one pressure input. That input is a differential pressure between total and ambient 
pressure. The true airspeed, V,, on the other hand, is more complex. True airspeed (Vt) 

requires computations involving total pressure (Pt),  ambient pressure  (P),  and total 

temperature (Tt). 

By solving three equations in three unknowns, it will be shown how one can derive the 
unknown error in Vt and the north and east components of wind. Since it is easier to relate to 

windspeed magnitude (Vw) and direction (y/w), the north and east components will be 
converted to magnitude and direction. 

10.8 The Flight Maneuver 

Figure 10.8 illustrates a sequence of cloverleaf maneuvers. The test is performed by first 
collecting stable data along a heading of y/l. Only a few seconds of data are required to 

acquire average airspeed and groundspeed data. Then a right-hand turn to a heading of y/2 is 
accomplished and repeats another data collection. A final right-hand turn ends up at a 
heading of y/3 and a final collection of data. The whole sequence should be performed in one 
continuous sequence. Left-hand turns could also be used. In that case, the heading sequence 
would be 1,3,2 instead of the 1,2,3 sequence for the right hand turns. The aircraft was flown 
on heading, but the data reduction involves track angle. Heading is the direction the aircraft is 
pointing while track is the angle of the aircraft groundspeed vector. Heading could also be 
considered the direction of the true airspeed vector when the sideslip angle is zero. 
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Figure 10.9 Cloverleaf Flight Maneuver 

On 19 August 1997, three cloverleaf runs were performed using an AFFTC F-15B pacer 
aircraft, USAF S/N 132 (Figure 10.10). A discussion of pacer aircraft can be found in 
References 10.1 and 10.6. These runs were performed at nominal indicated conditions of 
30,000 feet pressure altitude and indicated Mach numbers of 0.6, 0.7, and 0.8. Each run 
consisted of three separate passes at track angles about 120 degrees apart. In round numbers, 
the first pass was at a track angle of 15 degrees (N-E quadrant). Then a left-hand turn was 
performed bringing the aircraft around to a track angle of 255 degrees (S-W quadrant). Finally, 
a second right-hand turn was performed to a track angle of 135 degrees (S-E quadrant). Notice 
that the headings are separated by the ideal value of 120 degrees. If the data were acquired at 
roughly equally spaced angles, then the method should produce reasonable results. The NTPS, 
in fact, has demonstrated that a separation of 90 degrees produces quite adequate results. 

Figure 10.10 Air Force Flight Test Center F-15 Pacer 

10.9 Error Analysis 

This method is a true airspeed calibration method. There are five measurements: total 
pressure (P,), ambient pressure (P ), total temperature (Tt), ground speed (V ), and track angle 

(ö"s). The first two measurements come from pressure transducers. In many cases, the data 
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source may be altitude and airspeed. In that case, total and static pressure are computed from 
altitude and airspeed. The third one is from a total temperature probe. The last two parameters 
are either GPS or radar measurements. The laboratory calibration accuracy for pressure 
transducers is about ± 0.001 in. Hg (0.071 psf) and about ± 0.10 °K for temperature probes. 
Therefore, one will use these numbers and pick a typical condition near the test conditions of the 
data shown in this handbook. 

a. Mach number = 0.800, 

b. Pressure Altitude = 30,000 feet, and 

c. Ambient Temperature = 242.0 °K. 

At those conditions (and carrying out computations to beyond usual resolution): 

a. Pt =957.944 psf, 

b. Pa = 628.432 psf, 

c. Tt = 272.98 °K, and 

d. Vt = 484.959 knots (true airspeed). 

Since we are working with two different units on pressure, the conversion factor is as follows: 

a. in. Hg = 70.726 psf 

add 0.001 in. Hg "error" to Pt 

b. Pt = 958.0147 

computing true airspeed 

c. Vt = 484.999 knots. 

The error in computed true airspeed for an error in total pressure then is: 

d. (AV,)/(APt) = (484.999 - 484.959)/(958.0147-957.944) = 0.565 (knots/psf) = 0.044 
knots per 0.001 in. Hg Total Pressure. 

Hence, for the laboratory accuracy of 1-milli-inch of mercury (0.001 in. Hg) the error in 
total pressure results in a 0.044-knot error in true airspeed. Keep in mind this is the error 
slope at just this one set of conditions. 

To examine ambient pressure errors, add the same error (0.001 in. Hg) to ambient 
pressure, while keeping the other parameters the same. 
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a. P = 628.5027, 

b. V,  = 484.898, then, 

c. (AV, / AP )= (484.898 - 484.959)/(628.5027-628.432) = -0.861 (knots/psf) = -0.067 
knots per 0.001 in. Hg Ambient Pressure. 

A 0.1-degree error in total temperature produces a true airspeed error as follows: 

a. V,  =485.048, 

b. (AV,/T,) = (485.048-484.959)/(0.1) = 0.89 (knots/deg K) = 0.089 knots per 0.1 °K 
Total Temperature. 

For this particular flight condition, an error in the aircraft parameters equal to their 
laboratory accuracies would produce errors in Vt of less than 0.1 knot. For the AFFTC data, 
some of the results will be presented to greater than 0.1-knot resolution, but this does not 
imply that that accuracy level has been achieved. 

Errors in ground speed will produce errors in true airspeed proportional to the error in the 
ground speed on each leg of the method. The ground speed error is likely to be just the 
readability of the data. In the case of using a hand held GPS unit, the error in each leg might 
be either to the nearest knot or to the nearest one-tenth of a knot. 

10.10 Air Force Flight Test Center Data Set 

The results for the 19 August 1997 data are summarized in Tables 10.1 through 10.3. Note that 
the numbers are displayed to at least one digit more than their accuracy level. 

Table 10.1 
AIRCRAFT AVERAGE MEASUREMENTS AND PARAMETERS 

• 

1      Run 
Number (psf) (psf) (degK) (ft) (kts) (degK) 

1 806.375 635.606 260.1 29,750 222.1 243.0 
2 878.482 637.459 266.5 29,686 261.7 243.2 
3 985.959 639.174 275.7 29,627 311.4 243.6 

Note: The subscript i denotes indicated value. 

Table 10.2 
INERTIAL SPEEDS (GPS) 

I     Run 
I Number 

(kts) (deg) (kts) 
°Sb 

(deg) (kts) 
°Sc       1 

(deg) 
1 409.65 18.39 326.41 257.76 370.26 127.14 
2 471.22 16.48 390.51 258.08 431.83 127.80 

1       3 545.07 16.74 465.88 257.20 506.79 128.23 
Notes:     1. Subscripts a, b, and c denote separate passes. 

2. Runs 2a and 2b used radar data. 
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Table 10.3 
OUTPUTS 

Run 
Number M, M 

Ay, 

(kts) (kts) 
ww 

(deg) 

T 
(°K) (ft) 

AHC 

(ft) 

Ayc 

(kts) AP/fe 
1 0.5947 0.6054 6.07 48.01 223.74 242.4 29,935 185 3.32 0.03098 
2 0.6927 0.7088 8.94 46.93 222.54 242.2 30,004 318 4.73 0.03793 
3 0.8119 0.8322 10.87 45.86 223.86 242.1 30,080 453 5.49 0.03759 

The pacer corrections are known to a high degree of accuracy. These corrections are in 
the form of a curve of the parameter AP/qCic versus indicated Mach number. This parameter 
is often referred to as the position error parameter. These corrections are applied to pacer data 
any time the pacer is used to calibrate another aircraft. Figure 10.11 is a plot of the three 
cloverleaf data points with a comparison with the pacer curve. 
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Figure 10.11 Position Error 

Groundspeed time histories for run number one are depicted in Figures 10.12 through 
10.14. Run number one consists of three separate passes (la, lb, and lc). They are at the 
same aim airspeed but at different groundspeeds. These compare radar data and GPS data, 
both of which have been smoothed in this case with a 19-point second-order polynomial 
curve fit. 
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F-15: Run 1a 
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Figure 10.12 Groundspeed - Run la 
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F-15: Run 1b 
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Figure 10.13 Groundspeed - Run lb 
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F-15: Run 1c 
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Figure 10.14 Groundspeed - Run lc 

For the first run (number la), Figure 10.15 illustrates a comparison of true airspeed. The 
pacer aircraft has a direct output of corrected true airspeed. This is compared to a 
computation of true airspeed from GPS groundspeed plus the computed windspeed. 
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Figure 10.15 True Airspeed 

An interesting observation is that as long as the error in airspeed is the same on each leg, the 
computed value of wind will be identical. That means one could use this technique to "measure" 
winds; "measure" since one would actually compute the winds rather than measure them. 
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From the start of the first pass (la) to the completion of the last pass (3c) was 37 minutes. This ^ 
was an excessive amount of time for these tests. It seems clear that something considerably less than Mm 
a full minute of data on each pass would be quite adequate. A 10-second average would suffice. ^^ 
Then, by relaxing the requirement to maintain the test airspeed exactly, an additional amount of test 
time could be saved. Without the need for radar, tracking it becomes unnecessary to co-ordinate with 
the radar tracking team and that saves even more time. It seems reasonable that a factor of two or 
more savings in flight time could be achieved. Thus, not counting the time required to climb to the 
test altitude, each set of three passes could be concluded in about 5 minutes or less. 

10.11 Mathematics of the Cloverleaf Method 

The basic vector equation that one will solve for the cloverleaf method is nothing more than true 
airspeed equals the vector sum of groundspeed and windspeed. 

V,=Vs+Vw (10.13) 

VtN=VgN+VwN (10.14) 

V,s=VgE+VwE (10.15) 

V,=Vtl+AV, (10.16) 

The north and east components of groundspeed are either direct outputs of the GPS or are 
computed as follows: 

VgN=Vg-cos{og) (10.17) 

VgE=Vg-sm(os) (10.18) 

The aircraft track angle (or the direction of the groundspeed vector) is <jg. Writing down 

the relationship that true airspeed squared is equal to the sum of the squares of its 
components. 

V,2 =VIN
2+VlE

2 (10.20) 

Substituting equations 10.14 through 10.16 into equation 10.20 yields equation 10.21. 

(V„ + AV,)2 = (VgN +VwN)
2+(VgE +VwE)

2 (10.21) 

Multiplying out equation 10.21 and collecting terms, one gets: 

AVr(2-Vli+AV,)-VwN.(2.VgN+VwN) 

-ywE-(2-VgE+VwE) = (Vg
2-Vl

2) (10.22) 
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Defining the following: 

a.    x = AV, 

b.    y=Vt wN 

c.   z = V, wE 

d.  c = v.2-vti
2 

A1 = 2-V„.+AV, =2-V„.+;t 

A2 = 2-V^+VWJV=2-V,w + y 

A3 = 2-Vg£+Vw£=2-V,£ + z 

(10.23) 

(10.24) 

(10.25) 

Each pass produces an equation. As show in equation 10.26, subscript 1 is the first pass, 2 
is the second, and 3 is the third. The unknowns x, y and z are presumed constant for all three 
runs. In matrix form, the equations are as follows: 

Al,    -A2,    -A3, 

Al 

Al 
iT.1.2 /ii-2 ■**-^2 

•**   3 3 

X 
rQ] 

•- y ■ = • Q 
z kJ 

(10.26) 

In matrix shorthand form: 

[A].{X} = {C} (10.26) 

The vector of unknowns {X} is solved by multiplying each side of equation 10.26 by 

the inverse of the [A] matrix. 

{x}=[Ar-{c} (10.27) 

The unknowns  x, y and z   in the[x]are also contained in  [Aj. So an iteration is 

required. The initial estimates for the X  values will be zero. Then, the matrix equation is 

used to compute a new set of X values. These values are inserted into [A], [Aj is inverted 

again, and equation 10.27 is used again. Repeat the process until convergence occurs. When 
the iteration is complete you have solved for the desired numbers, namely an error in true 
airspeed and two components of wind. 
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11.0 CRUISE 

11.1 Introduction 

Cruise performance is usually considered the most important test performed during the 
performance testing phase. Especially for transport and bomber aircraft since most of the fuel 
consumed during a typical mission is during stabilized cruise. For accurate mission planning, 
it is critical to be able to predict fuel consumption. Cruise testing was also the most time 
consuming test for transport and bomber aircraft. Even for fighter aircraft, it was a significant 
portion of the performance flight test program. The emphasis is on was, as efforts are being 
made to reduce the amount of flight time spent collecting cruise performance data. 

The primary parameters in cruise performance are specific range (SR) and range factor 
(RF). Specific range is nautical air miles per pound of fuel used. Range factor is specific 
range multiplied by gross weight. 

A typical cruise data point can take up to 10 minutes to perform. This is usually required 
for engine and aircraft stabilization. The typical stabilization requirement is an airspeed 
change of 1 knot per minute. This is equivalent to roughly 0.001 g in flight path acceleration, 
which is roughly 1 percent in drag or fuel flow. A simple example will show this 1-percent 
factor. For a transport category aircraft, a typical lift to drag ratio is an even 10. 

a. LI D = 10 or D/L = 0.10 

b. L = W,    D/W, =0.10   D = 0.10-Wt 

c. D = F-F„ 

Nx = = 0.001    AD = 0.001 -wt 

AD 

D 

_-o.ooi-w, 
0.10-W, 

= -0.01 or - -1.0% 

For nonafterburner operation, a 1-percent change in drag will equate to about a 1-percent 
change in fuel flow. We strive for an accuracy of 1 percent in cruise performance. There are 
many sources of error, which add up to this 1 percent. We have errors in gross weight, 
pressure altitude, Mach number, ambient temperature, fuel flow, and flight path acceleration. 
The main sources of error are in the last two: fuel flow and flight path acceleration. With 
modern instrumentation (as of the writing of this handbook), we have been achieving at least 
1-percent uncertainty in fuel flow. With an INS, we have computed flight path acceleration 
(Nx)to better than 0.001 g. By using INS data, we no longer have to spend 10 minutes to get 
the aircraft perfectly stabilized because we can accurately measure any small acceleration and 
make accurate corrections to the data. The other reason for 10-minute speed power points 
was to get the engine perfectly stabilized. During a series of cruise points, the pilot made only 
small throttle changes between points and kept the throttle fixed at near constant flight 
conditions for several minutes so very long stabilization periods should not be required with 
modern engines. 
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11.2 Cruise Tests 

Cruise tests are done to determine aircraft range and endurance and to help in the 
development of drag, thrust, and fuel flow relationships. Cruise is a wings level, constant 
altitude, and constant speed maneuver. Testing is often accomplished by testing a matrix of 
constant aircraft gross weight-pressure ratio (Wt/8) points. The altitude is varied between 

points to yield an average Wt 18 to be a specified value. It is, however, an approximation 

that constant Wt 18 generalizes the data in any way. There are altitude effects on the data. 
The preferred method is to do constant altitude testing at varying gross weights to cover a 
range of Wt 18 and altitude. The data could be corrected to nominal Wt 18 values, but by 
correcting to weight and altitude it is easier to make flight manual comparisons. 
Table 11.1 represents B-52G data. The G model has turbojet engines that were 1950's 
vintage. 

Table 11.1 
B-52G CRUISE DATA 

Altitude 
(ft) 

Weight 
(lbs) 

Specific Range 
(nm/lb) 

Range Factor 
(nm) 

35,000 400,017 0.0242 9,680 
50,000 194,574 0.0437 8,503        | 

Note:   The cruise condition was 1.7 million pounds W,/5 
and Mach number = 0.76. 

The average degradation in range factor for the B-52G is 0.81 percent per 1,000 feet of 
altitude increase. 

In the case of the B-52H model, the average degradation in range factor is 0.56 percent 
per 1,000 feet of altitude increase. Another data point is early F-16A data that indicated about 
a 0.50 percent per thousand-foot degradation factor. The F-16A is not a long-range aircraft 
and as such had a much smaller fuel fraction. Fuel fraction is the ratio of total fuel weight at 
engine start to empty gross weight. 

Points are flown by stabilizing as nearly as possible to aim airspeed and altitude, typically ±0.01 
Mach number and ±100 feet of altitude. The usual stabilization criterion is 1 knot per minute in 
airspeed and 50 feet per minute in altitude. With an INS to compute aircraft acceleration, the 
stabilization criterion could be relaxed somewhat. Typically, it takes up to 10 minutes to get the 
aircraft stabilized followed by 30 seconds to 1 minute of recorded data. Cruise testing is very time 
consuming with this method. By relaxing the stabilization criterion, considerable savings in time 
could be achieved. In addition, a real-time display of computed flight path acceleration could be 
useful in reducing the time required to stabilize. 

11.3 Range 

The computation of range (R) during cruise is the integration of true airspeed as follows: 

R = jvrdt (11.1) 
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where: 

dt = time increment (hours), and 
R  = range (nam [nautical air miles]), 6,076.115 feet = 1 ran (1,852 meters, exactly). 

We could put the range equation in different forms by making some substitutions. First, we 
want to put Mach number (M ) into the equation by using the Mach number equation as detailed in 
the airspeed section of this handbook. 

a.   M =  '/ , and /a 

b.   a = flSL->/0= 661.48->/0. 

Substituting into the range equation. 

R = l(661AS-M-S)-dt 

Defining fuel flow as the negative of the rate of change of weight: 

w,=- 
dt 

\        j 

where: 

Wf   = fuel flow (pounds/hour), and 

dWt = incremental weight (pounds). 

dt = 

(  P 
V     J J 

dW, 

Substituting for equation 11.4 into equation 11.2: 

' 661.48-M->/<P 
*=-/ W, f 

dW, 

Making these substitutions: 

Wf = 
w, \ 

S-yfd 
Ö-JÖ 

S=W.I 

(11.2) 

(11.3) 

(11.4) 

(11.5) 

(11.6) 

(11-7) 
v        J 
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wf = 
w, 

8-yIe 
w. 

w. 
Jö 

The integration is from a start weight (Wls) to an end weight (Wte). 

(11.8) 

w„ 

* = -J 
w.. 

661.48-M-V0 

( wf  "\ 
S-JÖ 

W. 
fw. 

■4e 

dt 

It's not as bad as it looks. Canceling the V0 terms and putting Wt under dt 

w„661.48-M w. 

K w. 
[/(,.*) 

dt_ 

Wt 

(11.9) 

(11.10) 

If one were to fly constant Mach number and maintain constant W, 18, then the 
numerator term could be brought out of the integral. This would involve a slow cruise climb 
and we will show how much extra thrust that requires. At constant Wt 18 and M , the lift 
coefficient would be a constant. Then, ignoring the change in skin friction drag with altitude, 
the drag coefficient will be constant. Ignoring the thrust component, drag coefficient (as 
derived in the lift and drag section) is as follows: 

Cn =0.000675 • 
(FJS) 

(11.11) 
M-S 

Then Fn 18 will be constant, since we have assumed that Mach number and CD are constant. 

The corrected thrust specific fuel consumption relation is as follows: 

W, 
tsfc/y/e= f-r= = 

F-yfe 

{8-Je) 
(11.12) 
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We have presumed the denominator (Fn/8) to be a constant. The tsfc/yjd is also 

considered to be approximately a constant at constant Mach number and Fnl 8 . Now, we can 
pull these (approximately) constant terms out of the integral and integrate. 

661.48 -M 
R = — 

W, 

Wf 

I ¥ dt 

W 

'(8-JÖ) 

The term in front of the integral is called range factor (RF). 

R = -RF-j 
¥ dt 

W 

You may be more used to seeing RF in the following identical form: 

V 
RF=-*~W,= SR-W, (nautical air miles) 

Wf 

where: 

SR - specific range (nautical air miles per pound of fuel). 

From a table of integrals and natural logarithm relationships: 

dx 
Jf = ta*-ln« = ln(%) = -ln(? 

where: 

In = natural logarithm. 

R = RF In "ts 

w 

(11.13) 

(11.14) 

(11.15) 

(11.16) 

The above equation is convenient to get a quick estimate of range given only the average 
range factor and the start and end cruise weight. Note that this is the range during the cruise 
segment and does not include taxi, takeoff, climb, and descent. 

11.4 Computing Range from Range Factor 

Using the previous tabulated B-52G data, we will compute range and show the magnitude 
of the climb factor. We will assume that the two points at 35,000 and 50,000 feet are the 
beginning and end of the cruise segment of a mission. The cruise is at constant 0.77 Mach 
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number and a Wt 18  of 1,700,000 pounds. Using previously defined formulas for true 
airspeed, energy altitude, and pressure ratio we construct Table 11.2.    We will linearly 
interpolate versus altitude for range factor. 

Table 11.2 
RANGE FACTOR VERSUS ALTITUDE FOR B-52G 

Altitude 
(ft) 

True 
Airspeed 

(kts) 

Energy 
Altitude 

(ft) 

Gross 
Weight 

(lbs) 

Net 
Thrust 
(lbs) 

Range 
Factor 
(nm) 

35,000 443.84 43,721 423,547 42,355 10,843 
36,089 441.65 44,724 402,052 40,205 10,777 
40,000 441.65 48,635 333,155 33,316 10,539 
45,000 441.65 53,635 261,986 26,199 10,234 

|    50,000 441.65 58,635 206,020 20,602 9,930 
Note:  Thrust was computed by assuming a lift to drag (LTD) ratio of 10. This is typical 

for a transport category aircraft. 

We could get a first estimate of range by using an average range factor and the start and 
end conditions. 

R = RF\n 
Ws)_ (9,680 + 8,503) 

v W. 
•In 

400,016 ^| 
194,574 

= 6,552 nam (11.17) 

Since we assumed a linear variation of range factor with altitude, we will get the same 
result by integrating the individual segments. Range factor will not be a linear function of 
altitude, usually. 

The time for this mission computes to be 54,100 seconds (15.04 hours). From the table, 
the delta energy altitude is 14,914 feet. The average speed is 736.5 feet per second. Now, we 
can calculate the average longitudinal load factor necessary to produce enough excess thrust 
to sustain this cruise climb. 

N. 

(14,914) 

_HE _ (51,000) _ 0.2955 
V. 736.5 745.6 

= 0.00040 (11.18) 

At the average weight of 297,295 pounds, the average excess thrust calculates to 119 pounds. 
The average thrust is 29,730 pounds, therefore the ratio of excess thrust to net thrust is: 

F„     29,730 
= 0.0040 or 0.40% 

By ignoring the excess thrust, we over estimated the range by 26 nam (0.40 percent of 
6,552 nam). Quite small, but not negligible. On an actual mission, the mission profile would 
be step climbs. For this example, you would start the cruise segment at 35,000 feet and fly 

140 



constant altitude until it was decided to climb to a new altitude. This might be in increments 
of 4,000 feet. When flying in civilian airspace, the altitudes are 4,000 feet apart. 

11.5 Constant Altitude Method of Cruise Testing 

The recommended method of doing cruise testing is the constant altitude method. The 
F-15 and F-16 projects used constant altitude method. The B-1B used constant altitude 
analysis method, though the points were flown using the constant weight/pressure ratio 
(Wt Id ) method. The constant altitude method consists of choosing a range of weight and 
altitude conditions to cover the aircraft envelope and then flying each weight/altitude 
combination over a range of speeds. For an aircraft with a large weight fraction, this may 
mean flying up to six altitudes at up to three weights (heavy, mid, and light). This could mean 
a maximum of 18 weight/altitude combinations. Nevertheless, with a reasonable amount of 
thrust/drag/fuel flow analysis, this could be cut in half or more. Flying all three weights at the 
predicted optimum cruise Wt/S is usually desirable. The altitudes are chosen by selecting 

six evenly spaced Wt 18 's from minimum to maximum with one at the predicted optimum. 
The minimum is based upon minimum weight at a minimum altitude and the maximum is 
based upon the cruise ceiling defined as a climb capability of 300 feet per minute. The 
altitudes are then rounded to the nearest 5,000 feet, which allows for easy flight manual 
comparisons since flight manuals typically have cruise charts at even 5,000-foot increments. 

For ease of flight manual comparisons, the data presented in reports are a specific range, 
or range factor versus Mach number at even 5,000-foot increments for standard weights, 
representing rounded values of heavy, mid, and light gross weight. 

11.6 Range Mission 

Range missions are performed to gain confidence in the performance data collected 
during climb, cruise, and descent. Rather than relying on fuel flow measurements and 
thrust/drag analysis, the primary measurement during a range mission is aircraft fuel quantity 
indications. The mission is performed by climbing to a given start cruise altitude, 
progressively stepping up in the altitude during constant altitude/Mach number cruise 
segments, and finally doing an idle power descent. Total fuel used is obtained from the fuel 
quantity system. A calibration of the fuel quantity system is obtained during the aircraft 
empty weight and fuel calibration. Using a performance simulation, the test day mission 
performance could be estimated. The simulation thrust/drag/fuel relationships were 
previously determined using data from several maneuvers including climb, cruise, and 
descent. The simulation estimates of fuel used were compared with measured fuel used 
during the mission. 

A practical reality of the flight test programs was that it was difficult to justify devoting 
an entire sortie to only a range mission. A compromise was to obtain fuel-used data during 
long cruise segments that often occurred during certain systems tests. During the B-1B 
project, fuel used data were acquired from several training sorties flown on production 
aircraft at Dyess AFB, Texas. The data came from constant airspeed/altitude segments of 
several hours in duration. A comparison of fuel used was made with simulation results. The 
differences were well within the often-quoted 3-percent accuracy for performance data. This 
provided a valuable confirmation of the flight test results. 
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11.7 Slow Accel-Decel 

A supplement, or perhaps even an alternative to cruise testing, is to do slow accels and 
decels. The data are used to build or verify a thrust versus fuel flow model. In addition, the 
data could be standardized to zero excess thrust. The maneuvers are flown sufficiently slowly 
to make the maximum correction to a range factor of about 10 percent. This compared with 
1-percent corrections made to cruise data. We could estimate the zero excess thrust range 
factor from both the accel maneuver and the decel maneuver. The average of the accel and 
decel standardized range factors is a good estimate of zero excess thrust range factor since 
relatively small corrections are being made. 

The maneuver is done at a rate of less than 1 knot per 3 seconds to yield an accel/decel 
rate of about 20 times the cruise stabilization criterion. A typical accel/decel maneuver takes 
about 6 to 12 minutes. The throttle is moved in small increments during the run to keep the 
accel/decel rate small, but not so small that the maneuver would take too long, thereby losing 
the advantage over stabilized cruise. If the cruise tests are done with a relaxed stabilization 
criterion (±100 feet and ±2 knots in 20 seconds) with only 20 seconds of recorded data, then 
the dynamic cruise has an advantage over the slow accel-decel data. If it is desired to collect, 
thrust and fuel flow data over a range of conditions then the slow accel-decel is a good 
approach. 

11.8 Effect of Wind on Range 

The typical high altitude cruise for both fighter and transport aircraft is about 0.85 Mach 
number. The true airspeed for standard day in the lower atmosphere (troposphere) and upper 
atmosphere (stratosphere) can be computed using formulas from the airspeed section. For 
standard day from 11 kilometers (36,089 feet) to 20 kilometers (65,617 feet), the temperature 
is 216.65 degrees K. 

• 

a.    V=661.48-0.85   I216-65 =487.5 knots 
V 288.15 

The formula for specific range (nams per pound of fuel) is just true airspeed (V,) over 

fuel flow (W)). 

SR = VJ^f (11.19) 

We can compute a specific range with respect to the ground as follows: 

SR
g=

Vs/wf (1L2°) 

Since groundspeed equals true airspeed minus wind and taking just the component 
parallel to the direction of flight (track angle): 

V,=Vt+Vw (11.21) 
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(11.22) 

Finally, the ratio of specific range with respect to the ground to the specific range with 
respect to the moving air mass (equation 11.22 divided by equation 11.19) is as follows: 

As shown in Appendix A, windspeed at an ambient pressure of 200 millibars (mb) 
(38,661 feet) averages about 40 knots above Edwards AFB. The average direction is about 
215 degrees (S-W). Since wind direction is the direction from which the wind is blowing, an 
aircraft heading of 215 degrees would have a 40-knot headwind for this average Edwards 
wind. A headwind is a positive wind. For this condition, the range degradation would be: 

a-    SR$/sR =        5 ~40/487 5 = °-918 = 8-2 percent deS^adation 

This is for an average wind if one were heading directly into the wind. A set of data 
collected for the cloverleaf paper (a portion of which is in the cloverleaf subsection of the air 
data system calibration section) had winds in excess of excess of 100 knots. This data were 
not included in this handbook, but was AFFTC data set number 2 in the referenced paper 
(Reference 10.2). In addition, the wind data shown Appendix A indicates a standard 
deviation of about 25 knots. Flying directly into a 100-knot wind would produce the 
following specific range degradation: 

SR/     (487.5-100)/        nnnc   onc a'        /SR /487 5= percent degradation 

One could just as easily be flying with that wind as a tailwind. 

SR/     (487.5 + 100)/ , _A_    „Ac a'        /'?/?= /487 5 =        Percent improvement 

In general, you would only be affected by the component of wind parallel to the flight 
direction. Wind vector relationships are discussed in detail Section 10.11. This wind effect is 
only relevant in computing physical (ground) nautical miles with a given wind. When 
collecting cruise data, you are flying with respect to the moving air mass. 
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12.0 ACCELERATION AND CLIMB 

12.1 Acceleration 

Accelerations are conducted for multiple purposes. First, to determine optimum climb 
schedules by observing the peak of specific excess power versus Mach number. The actual 
optimum occurs to the right of the peak of specific excess power (Ps) versus M curves, 

depending on whether it is desirable to achieve a minimum time to climb or minimum fuel 
for fixed range. Second, to determine the obvious acceleration performance, i.e., fuel used, 
time, and distance to accelerate. Third, to determine drag/thrust/fuel flow models. Climb data 
can be used for this purpose also, however, accelerations are a more efficient method. The 
accelerations are conducted over a range of altitudes. 

The acceleration maneuver is performed wings level, 1-g, and fixed throttle at constant 
altitude. Usually a climb or turn is done at the beginning of the run to get the engine 
thermally stabilized. Then the aircraft accelerates to a point where the acceleration rate is 
reduced to a small value (less than 1 knot per 10 seconds). The altitude is maintained 
constant during the run. Indicated altitude will jump as the aircraft passes through the 
transonic speed regime. Thus, it is necessary to maintain zero flight path angle usually by 
maintaining pitch attitude (6). Once through the transonic jump, an indicated altitude could 
be used for the rest of the acceleration. Modern aircraft with a head-up display (HUD) and 
INS have a velocity vector displayed on the HUD. Level flight through the transonic region is 
obtained by maintaining the velocity vector on the horizon. 

Figure 12.1 is a sample of some actual acceleration data. The data points have been 
corrected to standard conditions. Standard conditions consist of standard weight, pressure 
altitude, and standard day atmospheric conditions. The fairing is the result of modeling thrust 
and drag, then computing specific excess power from thrust and drag. With one relatively 
short maneuver, one obtains a range of speed (Mach number) at a given altitude. By 
performing accelerations at various altitudes, climb performance can be computed. However, 
a few continuous climbs need to be conducted to confirm that performance (time, distance, 
and fuel used) computed from accelerations yields the same result as that from climbs. 
Accelerations are also performed at elevated g levels. These are discussed in the turn section. 
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Specific Excees Power (ft/min) versus Mach Number 
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Figure 12.1 Specific Excess Power from Acceleration 

12.2 Climb 

The climb maneuver is performed primarily as a check of predicted climb performance 
derived from acceleration data. Usually climbs are conducted at flight manual-predicted best 
climb speeds. Determination of actual best climb speeds requires an analysis using data from 
several sources, which include accelerations. The normal climb is a constant calibrated 
airspeed climb to a break altitude above which a Mach number is maintained constant. The 
climb continues to a climb ceiling (300 feet per minute rate of climb defined as the cruise 
ceiling). Data are standardized to the climb schedule, standard day, standard weight, and 
standard normal load factor. Thrust and drag data are obtained during the climb. The data are 
reduced at constant altitude increments rather than constant time increments to yield a more 
even distribution of data. A standard day rate of climb, time to climb, fuel used, gross weight, 
and distance traveled are plotted versus pressure altitude. A flight manual comparison is 
accomplished with this data. For high performance aircraft, there may be differences in 
performance accelerating through a Mach number/pressure altitude condition versus climbing 
through the same condition. This is due to an engine fuel control system lag. This effect 
needs to be taken into account. Climbs are usually terminated at the "cruise ceiling." Climb 
ceiling definitions are given in Table 12.1. The definitions are from the flight manual 
specification. 
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Table 12.1 
CLIMB CEILING DEFINITIONS 

Ceiling 
Rate of Climb 

(ft/min) 
Combat 500 
Cruise 300 
Service 100 

Absolute o          1 

12.3 Sawtooth Climbs 

As seen in Appendix B, one can expect to see large changes in windspeed and direction 
as a function of altitude. How this would impact climb performance was discussed in the 
effect of wind gradient portion of the altitude section. A comparison was made for an average 
day above Edwards AFB in January. The difference in delta energy altitude flying directly 
into a headwind versus flying directly into a tailwind was 1,308 feet. This was over a 
geometric altitude range from 14,605 to 23,937 feet, or a 14-percent difference in rate of 
climb. Before the advent of accelerometer and INS methods, climb data were attained using 
the sawtooth climb method. 

The sawtooth climb tests are a series of alternate heading climbs through a given altitude 
at a range of speeds. For each speed, a climb would be conducted through the aim altitude 
and airspeed and altitude data would be collected versus time. For instance, the aim altitude 
might be 5,000 feet pressure altitude. Then test points would be chosen over a range of 
speeds to bracket the expected best climb speed. Depending upon the performance level of 
the aircraft, a start altitude would be determined. Then, the aircrew would establish a climb 
speed and climb power at that altitude and would collect data over an established data range, 
perhaps 4,500 to 5,500 feet, for instance. Then, you would descend back to the initial altitude 
of 4,000 feet and repeat the same airspeed point, but this time at an opposite heading angle 
(based upon magnetic compass). The idea here is that the average of these two points would 
be a zero wind gradient condition. Using the acceleration factor, you would correct the data 
to zero acceleration. A zero acceleration rate of climb is the rate of change of energy altitude. 

A sample of some actual flight test sawtooth climb data from an AC-119G (Figure 12.2) 
is shown Figure 12.3. Data were obtained from FTC-TR-69-4, AC-119G Aircraft Limited 
Performance and Stability and Control Test (Reference 12.1). This was one of the last 
AFFTC projects where sawtooth climbs were flown. The thrust designation METO on 
Figure 12.3 denotes Maximum Except for TakeOff. 
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Figure 12.2 AC-119G Aircraft 

Sawtooth Climbs: AC-119G Cruise Configuration METO Power 
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Figure 12.3 AC-119G Sawtooth Climb Data 

We can take these data points, without distinguishing opposite headings, and present 
them in a different manner. Since we had two altitudes and two weights, let us attempt to 
minimize the weight effect in the data by computing the excess thrust. Then, take the excess 
thrust and divide by the pressure ratio (8) to minimize the altitude effect. The data are 
presented in Figure 12.4. 

F„ = N-W, ■W, (12.1) 

The h is the zero acceleration rate of climb in Figure 12.3. The specific algorithms used 
to standardize that data can be found in AF TR No. 6273, Flight Test Engineering Handbook 
(Reference 12.2). 
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Sawtooth Climbs: AC-119G: Fex/delta versus Mach Number 
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Figure 12.4 AC-119G Excess Thrust Data 

12.4 Continuous Climbs 

A climb could be done with any number of different climb schedules. A climb schedule is 
a speed or attitude variation with altitude. The most common type of climb is one that keeps 
calibrated airspeed (Vc) constant until a given Mach number (M ) is reached at which time 
Mach number is kept constant. A variation on that schedule is one in which calibrated 
airspeed is a function of altitude. Usually, both calibrated airspeed and Mach number may 
have been a function of gross weight (Wt), but they do not vary during the climb. For high 
performance fighters (with installed thrust-to-weight ratios greater than 1) the initial part of 
the climb may be done at a constant pitch attitude (6) transitioning to a Mach number at a 
given altitude. Alternatively, the early part of the climb may be performed at less than 
maximum thrust. These types of climbs are required for high performance fighters when the 
aircraft has a longitudinal acceleration load factor greater than 1.00 and can accelerate flying 
straight up. The flight path angle for the constant 0 climb is as follows: 

Y = -a + 0 (12.2) 

Other types of climbs are variable climb schedules such as a varying airspeed schedule, a 
constant true airspeed climb, or a varying Mach number climb. The C-130H climb schedule 
is an example of a varying calibrated airspeed climb. At 150,000 pounds gross weight at sea 
level the recommended schedule is 181-knots calibrated airspeed while at 20,000 feet the 
climb speed is down to 166 knots. In contrast, most aircraft use a constant calibrated 
airspeed/Mach number climb schedule. 
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Accelerations and climbs are both fixed throttle maneuvers. They are usually done with 
power settings like MIL or MAX. Decelerations and descents are usually done in power 
settings such as IDLE, though there could have been a MIL power deceleration under certain 
conditions such as supersonic. 

12.5 Climb Parameters 

AF=1 + (12.3) 

where: 

RIC  = rate of climb (ft/sec), and 
AF    = acceleration factor. 

12.6 Acceleration Factor (AF) 

The acceleration factor (AF) is used in climb performance as a simple conversion 
between a rate of change of tapeline or geopotential altitude and rate of change of energy 
altitude. 

AF-HE 

H 

Most aircraft climbs are conducted by either holding calibrated airspeed (Vc) or Mach 
(M) number constant. In reality, the calibrated airspeed or Mach number is not exactly 
constant but let us make some calculations assuming that they are held exactly constant and 
that there is zero wind so that true airspeed (V,) and inertial speeds (Vg) are identical. The 

true airspeed vector defines the flight path (or wind) axis. The component of aircraft 
acceleration parallel to the flight path is the longitudinal acceleration ( Ax). The longitudinal 

load factor (Nx) is simply the   Ax   divided by the  acceleration of gravity  (g0). In 
conventional aircraft performance, g is assumed a constant at the reference gravity and given 
the value of 32.174 ft/sec2. Figure 12.5 is a representation of acceleration factor for climb at 
constant calibrated airspeed. 
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Constant Calibrated Airspeed Acceleration Factor 
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Figure 12.5 Acceleration Factor - Constant Calibrated Airspeed 

The discontinuity in Figure 12.5 at 36,089 feet is due to the transition from a temperature 
decreasing with altitude to a constant temperature. The above chart is for a standard 
atmosphere. 

12.6.1 Two Numerical Examples for AF 

To illustrate the importance of the concept of AF , let us illustrate AF by two numerical 
sample cases. The two cases will cover the range from a high-speed, high-altitude fighter to a 
low-speed, low-altitude aircraft. 

12.6.1.1 Case 1 

High speed, high altitude, high performance typical of a fighter type aircraft: 

a.   For case 1, assume the following flight conditions: 

1. H = 30,000 feet, and 

2. M =0.900. 

For standard conditions, we could compute the values for calibrated and true airspeed, 
using the equations found in the airspeed section of this text. Please note that we are listing 
the numbers to at least one more significant figure than our limits of flight test data accuracy. 
The following additional significant figures are necessary to make the computations 
accurately: 
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• 

1. Vc = 346.24 knots, and 

2. Vt  =530.39 knots = 895.19 feet/sec. 

Then, 

b.   At 31,000 feet and 0.900 Mach number: 

1. Vc = 338.90 knots, and 

2. V, = 528.09 knots = 891.31 feet/sec (Note that the aircraft is decelerating while 

climbing at a constant Mach number.). 

Now we could numerically calculate the AF : 

dVJdH = 
AH 

AF = 1 + (AV') 
[AH] 

f 

= 1+ 

(891.31 + 895.19) 

32.174 

(891.31-895.19) 

(31,000-30,000) 
= 0.8923 

For a Ps of 200 feet per second, the R/C would be 224.1 feet second. 

Ä/C.»,.._H0_. 
AF    0.8923 

: 224.1 

For a climb through 30,000 feet holding a constant calibrated airspeed of 340 knots, the 
AF computes to 1.3576 for a R/C of 147.3 feet per second. The difference in rate of climb 
between holding constant Mach number versus constant calibrated airspeed is 52 percent. 
This illustrates how large an effect the acceleration factor could be and that it certainly needs 
to be taken into account. The percentage difference gets proportionately smaller at lower 
airspeeds. 

12.6.1.2 Case 2 

The second case is what is a typical climb for a light aircraft. Assume a 100-knot calibrated 
airspeed climb through 5,000 feet. The difference in rate of climb between a constant calibrated 
airspeed and a constant Mach number climb is now down to just 1.9 percent. At a JF^ of 1,000 

fpm, the rate of climb at a constant Mach number is 1,003.7 fpm and the rate of climb at constant 
calibrated airspeed is 984.8. This is small, but not small enough to ignore. Below 36,089 feet in 
the standard atmosphere, a constant calibrated airspeed climb would be accelerating in true 
airspeed and hence, rate of climb would be less than the specific excess power. Conversely, 
below 36,089 feet in the standard atmosphere in a constant Mach number climb, the true airspeed 
would decrease with increasing altitude (Figure 12.6). Above 36,089 feet, when temperature is a 
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constant with altitude for the standard atmosphere, the true airspeed is a constant for a 
constant Mach number. Hence, the acceleration factor would be 1.00 at all Mach numbers. 
Keep in mind that Figure 12.6 is for standard day. • 

Accelertion Factor: Constant Mach Number: H<36,089 

1.00 <^ 

Figure 12.6 Acceleration Factor - Constant Mach Number 

12.7 Normal Load Factor During A Climb 

To derive the formula for the normal load factor in a climb, consider the aircraft flying in 
a pullup maneuver. Figure 12.7 illustrates the vectors during a pullup. The first velocity 
vector (Vt) is at a flight path angle of y,. The second Vt is at y2. The magnitude of the 
change is exaggerated, but consider the change infinitesimal. The aircraft rotates about a 
point C, with a radius R . The acceleration perpendicular to the flight path (ignoring gravity) 
is a centripetal acceleration. 

• 
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Figure 12.7 Centripetal Acceleration Diagram 

The centripetal acceleration is as follows: 

a = ■ YL 
R 

The radius is related to the linear velocity through the angular velocity (0)). 

Vt=CO-R 

The angular velocity 0) is just the derivative of the flight path angle. 

(O- 
.dy/ = Ay/ = {Y2~YX 

> = / 

(12.4) 

(12.5) 

(12.6) fdt   /At       /{t2-t,y 

Solving for the radius R in equation 12.5 and substituting into the acceleration equation 12.4: 

(12.7) '•TjfrS-Vrt 
/Y 

Adding in the component of gravity yields: 

a = g0-cosY+Vry 

Finally, dividing by g0 yields the load factor in the normal axis. 

(12.8) 

N =cosy + V.-Y 

8o 
(12.9) 
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The above equations are valid for constant winds. Usually, the load factors are computed ^^ 
from INS velocities and angles plus true airspeed to enable a transformation from the inertial flB 
axis to the flight path axis. What is desired are inertial accelerations in the wind (or flight 
path) axis. Therefore, if the aircraft has an INS, and the appropriate software to do the axis 
transformations, then there is no need to be concerned about horizontal winds and wind 
gradients. In addition, the difference between a tapeline rate of climb and pressure altitude 
rate of climb is taken into account, since the INS yields geometric rate of climb. The INS 
data is, however, sensitive to the presence of any vertical winds, so efforts are made to fly in 
areas where no vertical winds are expected. For Edwards AFB, the best place to conduct 
performance tests is over the ocean. Both the B-1B and C-17A aircraft conducted their entire 
cruise testing over the ocean. 

12.8 Descent 

A typical descent schedule is a constant Mach number intersecting a constant calibrated 
airspeed. The data are used to generate descent performance, an idle thrust map, and drag 
polar information to complete the performance model. The performance model is used to 
check mission performance. The idle power descent could be accomplished with speed 
brakes extended. 

12.9 Deceleration 

Decelerations are conducted to provide data to compute descent performance. A 
deceleration is performed by accelerating to the Mach number limit then moving the throttle 
to idle and conducting a wings level, constant altitude deceleration. This maneuver gives us 
idle thrust versus speed. Due to inaccuracies in the in-flight thrust deck, there could be a drag 
difference at idle thrust versus drag polar data acquired at higher power settings. The same 
maneuver could be accomplished with the speed brakes extended. 
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13.0 TURNING 

13.1 Introduction 

Turning performance is defined as flight at other than 1 g, usually in the horizontal plane. 
There are four different types of turns: accelerating or decelerating, thrust-limited, stabilized, 
and lift-limited. 

13.2 Accelerating or Decelerating Turns 

Accelerating or decelerating turns are performed at a fixed throttle, constant g, and 
constant altitude. For accelerating turns, the maneuver is done by starting fast, applying 
specified throttle, and pulling into a turn to decelerate the aircraft. Next, reduce g level to the 
specified value and accelerate to either the specified Mach number or the maximum speed. 
The data acquired could be used to generate energy maneuverability charts or to contribute to 
the aircraft drag, thrust, and fuel flow model. 

Turns at fixed g, constant altitude, and fixed throttle are referred to as accelerating or 
decelerating turns. Turns, in general, are used to quantify the turning performance capability 
of the aircraft and to help in the development of the drag and lift curves. With the advent of 
dynamic performance, fewer turns are conducted in flight test. Turns are used primarily to 
check the performance model created from 1-g acceleration and dynamic performance 
maneuvers. Nevertheless, some turns are still necessary as confidence builders in the model 
and to demonstrate specification performance. 

13.3 Thrust-Limited Turns 

A thrust-limited turn is a turn where the pilot attempts to maintain throttle setting, Mach 
number, and pressure altitude while varying normal load factor. Usually about 30 seconds or 
180 degrees of turn data are recorded at stabilized conditions; however, maintaining 
stabilized conditions is often difficult. The data are used to verify the thrust/drag model for 
sustained g and to assist in the development of the drag and lift curves. The data are collected 
at a stabilized g and as such, may be of higher quality than data from dynamic maneuvers. 
Nevertheless, keep in mind that the thrust-limited turn is dynamic since it is at elevated g 
values (and large pitch rates) and may be at different power settings than the dynamic 
performance data. There may have been throttle effects on the drag polar due to inaccuracies 
in the in-flight thrust computation. One value of thrust-limited turns is it produces thrust data 
that is stabilized while accelerations and decelerations are dynamic in thrust. So, the lag time 
constant for thrust could be estimated. With fuel controls scheduling on total temperature in 
the inlet, there may be a different lag constant depending on whether the aircraft is climbing 
or accelerating through a point. The thrust-limited turn is stabilized at a given Mach number 
and pressure altitude condition. As with accelerating or decelerating turns, only a limited 
number of sustained or thrust-limited turns are performed because they are very fuel and 
time-consuming tests compared with the more efficient dynamic maneuvers. It is still 
necessary to perform a limited number of turns as checks on the model. It has been necessary 
on past projects to do significant numbers of turns because of disagreements between turn 
data and dynamic data on the drag polar. Developing correlation factors to adjust the drag 
polars to match the measured turn performance may be necessary. Not relying completely 
upon data obtained from dynamic performance maneuvers is important. 
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Using an INS for flight path accelerations requires a 1-g level run be accomplished before 
the turn to get a wind calibration. This applies to all turning maneuvers. Winds are 
computed from the wind calibration maneuver assuming zero sideslip. These winds are 
assumed to remain constant during the turn. The thrust and fuel flow data obtained in climbs 
and acceleration is dynamic and subject to engine and instrumentation lag. It is possible to 
attain lag time constants by comparing thrust-limited turn data to climb and acceleration data. 

13.4 Stabilized Turns 

Stabilized turns are turns where Mach number, pressure altitude, and normal load factor 
are specified and throttle is varied to obtain a stabilized condition. These maneuvers are 
useful to obtain lift and drag data at specific points along the drag and lift curves and to check 
for specification compliance. The flight test objective is to determine if such conditions can 
be achieved in stabilized flight at something less than or equal to maximum throttle. Another 
way to evaluate that spec point would be to do a thrust-limited turn at MAX thrust at the 
specified flight conditions and then determine whether the desired normal load factor in 
stabilized flight is achieved. Specs are usually written for standard day at a standard weight, 
center of gravity, etc. Therefore, you must correct the data to standard conditions to 
determine spec compliance since the spec may have been missed on the test day but the 
aircraft would have achieved the spec on a more favorable standard day. For the stabilized 
turn, you would have needed some specialized software to perform the standardization or the 
turn could have been standardized assuming it is an accelerating turn at a given pressure 
altitude, Mach number, and normal load factor, then determine the flight path acceleration for 
standard conditions. If the longitudinal flight path load factor (Nx) was positive for the given 
spec conditions, then the spec condition was met. 

13.5 Lift-Limited Turns 

When it is desired to determine limit performance at the angle-of-attack (CC) limit or the 
normal load factor (Nz) limit then a lift-limited turn is performed. If the aircraft has an a/g 
limiter, as is the case on the F-16, then the turn is a full aft stick maneuver. Otherwise, the 
pilot must observe the flight manual limits, which makes this maneuver very difficult to fly 
without exceeding aircraft limits. The angle-of-attack limited portion of the maneuver is used 
to quantify the lift coefficient at the limit angle of attack and to check the angle-of-attack 
calibration at the limit. The check of angle of attack is performed with INS data. This 
maneuver produces data at the highest limits of the drag polar and the lift curve. You also 
obtain limited angle-of-attack data from a split-s. The split-s maneuver is discussed in the 
dynamic performance section. 

Lift-limit and g-limit turns are accomplished by accelerating to limit speed then pulling 
into a maximum allowable g turn and allowing the aircraft to decelerate to the lift limit. This 
defines the lift limit and g limit performance. The throttle setting is usually MIL or MAX, but 
the maneuver may be done at any power setting. Besides getting limit performance, drag 
polar data at or near maximum lift coefficient are obtained. 
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13.6 Turn Equations 

13.6.1 Normal Load Factor 

The transformation equations for load factors from the body axis system to the flight path 
axis are as follows (ignoring sideslip): 

cos a    sin a 

-sin a   cos a \N. 
xb (13.1) 
zb. 

The additional sideslip transformation matrix is given in the Accelerometer Methods 
subsection of the Flight Path Accelerations section. The inverse transformation from the 
flight path axis to the body axis is as follows: 

I* 
I AT 

xb 

zb 

cos a 

sin a 

-sin a 

cos a 
(13.2) 

where: 

Nx = flight path axis longitudinal load factor, 

Nz = flight path axis normal load factor, 

Nxb = body axis longitudinal load factor, and 

Nzb = body axis normal load factor. 

For a constant altitude, constant speed turn, the normal load factor in the wind (flight 
path) axis system in terms of the turn rate can be derived in a similar manner as the formula 
for normal load factor in a climb. There are two components. One, the vertical component is 
exactly 1.0, for the ideal case of exactly constant altitude. Two, the horizontal component is a 
centripetal acceleration. Figure 13.1 shows these vectors. 

Figure 13.1 Normal Load Factor Vectors In a Turn 

So 
#*= — ■*- 

(13.3) 
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N, ■&M)-l 1 + -T (13.4) 

Where ag is the ground track angle and the assumption of zero wind is made. With the 

same idealized assumptions of constant altitude, constant speed, and zero wind, the normal 
load factor in terms of the bank angle can be determined as shown in Figure 13.2. 

N. N^ 

Figure 13.2 Banked Turn Diagram 

Where: 

N, =1.0, and 

N cosd)=   zv, 
N, N, 

Hence, 

N = \ 
COS0 (13.5) 

What both of the Nz equations have in common is that they rely upon unrealistic 
idealizations of zero wind and exact constant altitude and speed. In flight test, either 
accelerometer methods or INS methods are used to compute the actual flight path axis load 
factors. 
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13.6.2 Turn Radius 

In a steady, level turn the centripetal acceleration is the horizontal component of normal 
acceleration. The vertical component is 1-g; just the right amount to maintain exactly 
constant altitude for this idealized relationship. 

V2 

Azh=^- (feet/sec2) (13.6) 

where: 

R     = turn radius (ft), 
Vt     = true airspeed (ft/sec), and 

Azh   - horizontal component of normal acceleration (ft/sec2). 

From trigonometry: 

and, 

Nzh=j(Nz
2-l) (13.7) 

N*=Az/go (13-8) 

Substituting equations 13.7 and equations 13.8 into equations 13.6 and solving for R : 

a.    R = 
V,2 V2 

8o-J(Nz
2-l)    32.174-^-l) 

For R in feet and V, in knots: 

V   T 
v /1.6878                        V2 

R = —*■ ,      I   (13.9) 
32.174-^(^2-l)    91.653.^-1) 

13.7 Turn Rate 

Once the turn radius is determined (equation 13.9), we can compute the turn rate. The 
relationship derives from the kinematics of constant speed rotation about a point. 

Vt =(0-R (13.10) 

where: 
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R = radius of turn, and 
(0 = turn rate. 

The symbology we previously used for turn rate was 6; the rate of change of ground 
track angle. Then, solving for turn rate: 

V / 

The above equation is valid for units of R in feet, Vt in feet per second and <7    in 

radians per second. For R in feet, Vt in knots and 6   in degrees per second we get: 

1.6878 V. 6g =i—-j——L-57.2958 = 33.947-  V'/R (13.11) 
(*) 

13.8 Winds Aloft 

Since the advent of the INS in the 1970s, it has been possible to compute accurate values 
of air data parameters in dynamic maneuvers such as turns. However, this required the use of 
wind calibration runs conducted in wings-level 1-g flight where the air data system errors 
were known from conventional tests. In addition, INS data had small drift errors in the 
groundspeeds. With the availability of the GPS in the 1990s, an accurate value of 
groundspeed was available. The mathematics and illustrating data for one such technique 
used in turning flight (that does not require the use of a wind calibration) will be presented. 

The INS gives you six parameters of interest for performance and flying qualities. These 
are three angles called Euler angles and three velocities in the north (N ), east (E) and down 
(D) directions. The Euler angles are the heading from true north designated psi (y/), the roll 
(or bank) angle designated phi (0), and the pitch attitude designated theta (0). The 

groundspeed components from an INS are VgN, VgE, and VgD.   The problem is that we 

assumed we knew the groundspeeds accurately. We didn't! The typical drift rate of an INS 
was on the order of 1 nautical mile per hour. Therefore, we had typical errors of about 1 knot 
in the horizontal groundspeeds at any one time. Now (late 1990s) we have a new device 
designated as embedded GPS/INS (EGI). This combines the outputs of an INS with the 
velocities and position data from the GPS using a filter. The GPS specification accuracies for 
the horizontal speeds are 0.1 m/sec (0.19 knot). This small error does not drift with time. 
Therefore, we have introduced a new level of accuracy into our data. Now, we will proceed 
to develop the equations starting with the basic vector relationship of true airspeed, 
groundspeed, and wind. 

V,=Vg+Vw (13.12) 

Solving for the magnitude of the true airspeed vector: 

• 
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• 
V, + AV, = ^[(VgN +VwNf+(VgE +VwEf + (VgD +VwDf 

We will assume the vertical wind is zero. Taking the square of both sides: 

(V, + A V, f = \(VsN + VwN f + (VgE + VwE f + Vg0 

(13.13) 

(13.14) 

From here on in the derivation, we will simply strive to minimize the sum of the 
difference between the left and right side of the above equation. Defining a parameter we 
shall call F* (F - star), we want to minimize the sum of this parameter simultaneously with 
respect to each of the three unknowns (VwN_ VwEi AV,). The iteration is the method of 
Taylor's series in three dimensions: 

F*=0.5.(vtx
2+Vty

2+Vlz
2-Vt

2) 

The 0.5 factor is just to eliminate V2 factors in the final formulation. 

vlx = v +v v gN T vwN 

v» =v +v y gE^ YwE 

v«=vgD 

v, = Vli+AVt 

Defining three more parameters: f,g 

f 

and h: 

N 

(13.15) 

(13.16) 

(13.17) 

(13.18) 

(13.19) 

1=1 

8 = tiFi% 
i=i 

h^K-V, 

(13.20) 

(13.21) 

(13.22) 
i=i 

There are JV data points and N must be at least three. The x,y,z unknowns are as 
follows: 

a-    x = VwN, 

b-    y = Vw£,and 
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c.    z = AV,. 

We will assume zero initial estimates for the unknowns, 

a.    x- y = z = 0 

In addition, initialize f,g,h and the partial derivatives to zero as follows: 

a. f = g = h = 0, 

b. df/dx = df/dy = df/dz = 0, 

c. dg/dx = dg/dy = dg/dz = 0, and 

d. dh/dx = dh/dy = dh/dz = 0, 

Next we will generate a matrix of partial derivatives of f,g and h . Summing from one 
to TV: 

• 

df/dx = ±[(Vlxf + F*] 
1=1 J 

y/3y = E[K(i))-(vII(0)] 

1=1 

ag/ax=5)[(vtt(i)).(vv(o)] 
/=i 

a*/dy=E[(^(i-))2+F* 
1=1 *- 

te'fe=X[(-v,(o)-fo(o)] 
i=i 

aÄ/ax=2[(vft(i))-(vl(i))] 
i=i 

3A/3y = |;[(v;(i-))-(V,(/))] 

(13.23) 

(13.24) 

(13.25) 

(13.26) 

(13.27) 

(13.28) 

(13.29) 

(13.30) 
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wdz = Yj-(v,(i))2+F*' 
1=1 

(13.31) 

The following matrix formulation will solve for improved values for the unknowns: 

V v ywN 

vwE = ■ *wE ■ - 

m J+l m\ i 

df Idx dgldx dh/dx 

df/dy dg/dy dh/dy 

df/dz   dg/dz   dhldz 

-1 7" 
8 
-h 

(13.32) 

With improved values for the unknowns, simply return to the beginning of the algorithm 
and repeat the process until convergence occurs. This will usually occur after just a few steps. 
The parameter j is the iteration number. We now have the north and east components of 
wind and the previously unknown error in true airspeed. 
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14.0 DYNAMIC PERFORMANCE ^ 

14.1 Introduction 

Dynamic performance typically involves the collection of lift and drag data at near 
constant Mach number with maneuvers that last less than 15 seconds. This is accomplished 
by varying normal load factor (Nz) in a short time period. There are three dynamic 
performance maneuvers: roller coaster, split-s, and windup turn. 

14.2 Roller Coaster 

The roller coaster is a smooth sinusoidal variation of load factor versus time. The 
maneuver begins with a stabilized trimmed point at an aim Mach number, altitude (Hc), and 

Nz = 1.0. The throttle is kept constant during the maneuver. The maneuver is also called a 
pushover-pullup because that is what is done. The maneuver begins with a pushover to a g 
level less than 1.0. On fighter aircraft that is usually to an Nz of 0.0 and on transport aircraft 

that is usually to an Nz of 0.5. Then a pullup is performed back through Nz of 1.0 to an Nz 

of 1.5 on transport aircraft, or 2.0 or more on fighter aircraft. Some fighter projects used a 
maximum Nz of more than 2.0 and some have used an aim angle of attack (OC) instead of a 
maximum load factor as the maximum point in the roller coaster. This maximum OC is 
usually (but not always) something less than the limit OC. This is because a large maximum 
OC would produce large Mach number losses during the maneuver because the aircraft is at a 
high drag condition at a positive flight path angle (y) and is decelerating very rapidly. After 

attaining maximum Nz then a pushover is performed back to N.  =1.0. 

The rate of change of Nz is between 0.25 and 0.50 g per second. The slower rate would 
produce larger Mach number variations but would also produce smaller rate effects on the 
data. Both Mach number and rate corrections are made to the data; therefore, the maneuver 
will take an average of 8 seconds to perform. Generally, there is a net altitude loss during the 
maneuver and a net Mach number loss, but both are quite small. The Mach number loss is 
usually no more than 0.01 and the altitude loss is less than 1,000 feet. If Nz is more than 2.0 
during the pullup, then the Mach number loss could be more than 0.01, but corrections are 
made to the data to nominal Mach numbers. Nominal Mach numbers would typically be 0.70, 
0.80, 0.85, 0.90, etc. 

A simulation of a roller coaster maneuver was conducted. The aircraft drag model was 
the same as for the takeoff simulation presented in the takeoff section. This was for a pseudo 
F-16 aircraft. For a lift coefficient less than 0.6 and low Mach numbers where compressibility 
is not substantial, Figure 14.1 represents the drag polar used. 
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Lift Coefficient versus Drag Coefficient 
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Figure 14.1 Drag Model 

The initial condition chosen to illustrate the roller coaster is 0.6 Mach number at 30,000 
feet pressure altitude, standard day. The first data point was at Nz =1.0 and then thrust was 
set equal to the drag at that point and kept constant during the remainder of the maneuver. 
The Nx and Nz formulas used are those derived in earlier sections for nonbanked flight as 
follows: 

AT i+
H 

So V. 
(14.1) 

N =cosy + v.-r 
So 

(14.2) 

A sinusoidal variation of normal load factor was chosen to produce a period of 4 seconds 
with amplitude of 1.0 g. The time histories of normal load factor, Mach number, and 
pressure altitude are shown in Figures 14.2, 14.3 and 14.4. As shown, there is a relatively 
small loss in altitude (80 feet) and gain in Mach number (0.004). However, for a fighter type 
aircraft, the range of CL,a is small. On the positive side, due to the slow Nz variation, the 
noise in the data is usually quite low. 
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Roller Coaster Simulation: Normal Load Factor versus Time 

30,000 
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Figure 14.2 Roller Coaster Normal Load Factor 

Roller Coaster Simulation: Altitude versus Time 

Elapsed Time (sec) 

Figure 14.3 Roller Coaster Altitude Time History 
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Roller Coaster Simulation: Mach Number versus Time 

0.605 

Elapsed Time (sec) 

Figure 14.4 Roller Coaster Mach Number Time History 

14.3 Windup Turn 

The windup turn begins at wings level trimmed at an aim Mach number and altitude. The 
throttle is kept constant during the maneuver because most in-flight thrust computer 
programs are ineffective at computing thrust accurately during throttle transients. Then, the 
aircraft is gradually pulled into a turn, at a rate of up to 1.0 g per second, until a limit 
condition on Nz or CL is reached. This usually takes no more than 8 seconds and is often as 
little as 3 seconds. The aircraft is pointed downhill during the maneuver to minimize the 
Mach number loss during the high-g maneuver as drag gets very high and the aircraft 
decelerates rapidly. The aircraft is trading altitude for airspeed. Since the maneuver only 
lasted a few seconds, even large deceleration rates would not vary the Mach number more 
than about 0.02. There is also an altitude loss during the maneuver of up to 2,000 feet. The 
total maneuver, including the recovery, could produce an altitude loss of up to 10,000 feet as 
the aircraft ends up pointed nearly straight down at the conclusion of the maneuver. A better 
maneuver to perform is a pure inverted pullup, which is a portion of a split-s. 

14.4 Split-S 

The split-s is a fighter tactics maneuver used to change direction and altitude very 
rapidly. A portion of the maneuver is an inverted pullup during which Nz is varied from 
near 1.0 to the limit g of the aircraft. This is ideal to collect dynamic performance data. The 
aircraft is trimmed at an aim Mach number and altitude. The throttle is kept constant during 
the maneuver to give an accurate thrust computation. The aircraft is rolled inverted 
(180 degrees roll angle) and an inverted pullup is performed at a rate of up to 1.0 g per 
second to the limit Nz or CC. This takes approximately 3 to 8 seconds. No attempt is made 
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to minimize the Mach number variation, but the Mach number usually decreases no more 
than 0.02 during the data portion of the maneuver, which is less than 8 seconds. As with the 
wind-up turn, an altitude loss of up to 2,000 feet during the data acquisition portion of the 
maneuver is typical, but the total maneuver including recovery could produce an altitude loss 
of up to 10,000 feet. We attempt to collect data from pitch attitudes (0) of 0 to about 
70 degrees to avoid getting data during the INS transition through 90 degrees of 6 at which 
the heading (iff) changes by 180 degrees. This would often dictate the g onset rate since it is 
desired to achieve maximum g or a before the aircraft reaches about a negative 70 degrees 
pitch angle. This maneuver is better than the windup turn for data processing with an INS 
since there are only small bank angle (0) variations from 180 degrees and terms in the INS 
equations involving (j) are negligible. We also did not have any significant roll rate effects. 

To illustrate the split-s, a simulation is shown. The drag model was modified, from that 
used for the roller coaster, with the addition of a separation drag term as follows: 

ACD=0.5-(Q-0.6)2 (14.3) 

ACD = 0 if CL < 0.6 

The Nx formula is identical to the one used for the roller coaster; however, the N 
formula is the negative of the roller coaster formula. This can be seen from the axis 
transformations in the excess thrust section. The transformation for Nz involves sin <j) and 
cos0 terms. For the pure inverted case (0 = 180 degrees): 

a. sin (j) = 0, and 

b. cos0 = -l. 

Then, 

Nt cosy + - 
So 

(14.4) 

Figure 14.5 plots the drag model used. The simulation was performed at a rate of 1.0 g 
per second. The simulation was ceased at a lift coefficient of 1.60. The initial conditions 
chosen were 30,000 feet and a Mach number of 0.85. 
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Split-s and Pullup Drag Model: CL versus CD 
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Figure 14.5 Split-S Drag Model 

The time-history parameters of normal load factor, Mach number, and pressure altitude 
follow in Figures 14.6 through 14.8. 

Split-S Simulation: Nz versus Time 
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Figure 14.6 Split-S Normal Load Factor 
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Split-s Simulation: Mach Number versus Time 
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Figure 14.7 Split-S Mach Number Time History 

Split-S Simulation: Pressure Altitude versus Time 
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Figure 14.8 Split-S Altitude Time History 

14.5 Pullup 

On the F-15 projects, a pullup maneuver has been used in lieu of the split-s to obtain 
high-a data. They have found that the pullup maneuver has one big advantage over the 
split-s. That is, there is no need to recover back to the original altitude. A simulation for the 
pullup was conducted using the same drag model and initial conditions as for the split-s. The 
pullup simulation was conducted at the same g onset rate of 1.0 g per second. In addition, the 
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• 

end condition of CL= 1.60 was the same. The Mach number and pressure altitude time 
histories are in Figures 14.9 and 14.10. 

Pullup Simulation: Mach Vs Time 
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Figure 14.9 Pullup Mach Number Time History 

Pullup Simulation: Altitude Vs Time 

30,000 - 

Elapsed Time (sec) 

Figure 14.10 Pullup Altitude Time History 

Table 14.1 compares the initial conditions and end conditions of the pullup and the 
split-s. 
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Table 14.1 
PULLUP AND SPLIT-S INITIAL AND END CONDITIONS 

Nz 
M (kts) (ft) 

H 
(ft/sec) 

v, 
(kts/sec) 

Initial 1.00 0.850 500.9 30,000 0.0 0.0 
Pullup 6.450 0.785 462.3 30,219 +226.0 -58.7 
Split-S 6.936 0.800 472.8 29,452 -428.2 -45.1 

As can be seen, the split-s has the advantage of not losing as much Mach number. 
However, the pullup does not end up with a very large vertical velocity. 

14.6 Angle of Attack 

During the roller coaster, pullup, and split-s maneuvers the computation of angle of 
attack from the INS is quite simple for bank angles near 0 or 180 degrees. In practice, the full 
transformation equations are used. 

a - 6 - Y (0 - 0) roller coaster and pullup 

a = -6 + Y (<t> = l 80) split-s 

(14.5) 

(14.6) 

The roller coaster maneuver, particularly, could be used to calibrate production angle-of- 
attack probes or vanes. Only for very high angle of attack would you want to use the split-s 
for calibration of production systems. The above equations are simplified for illustration 
purposes only. The full equations involved bending and rate corrections and allowance for 
being off exactly 0 = 0 or 180 degrees. As discussed in the flight path acceleration section, 
the one shortfall of the INS method is that vertical wind is assumed zero. You can detect 
vertical wind by comparing data on the lift curve. 

a.   a = f(CL,M) 

In addition, one can use an INS method to calibrate angle of attack during turns. The turn, 
especially a high-g (high bank angle) turn, will be less sensitive to vertical wind since the 
vertical component of velocities in the angle-of-attack formula is proportional to the cosine 
of the bank angle. 

14.7 Vertical Wind 

If there is an unexplained bias in your data, then it could be that there is a vertical wind. 
One way to minimize the effect of vertical wind is to do a varying g maneuver during a 
stabilized high-g turn, keeping the bank angle (0) near 90 degrees. Since you are not trying 
to get drag data, the throttle could be varied to maintain speed. The vertical wind would not 
affect the turn data as much, since the vertical wind is nearly perpendicular to the axis of the 
angle of attack. 

• 
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15.0 SPECIAL PERFORMANCE TOPICS 

15.1 Effect of Gravity on Performance 

Below is the international gravity formula as adopted by the International Union of 
Geodesy and Geophysics as presented in Britannica™ Online. 

y0= 978.03185 -[l +0.005278892-sin> +0.000023462-sin>] cm/sec2 (15.1) 

Where the symbology used by the International Union is as follows: 

a. Yo = sea level gravity (cm/sec2), and 

b. <p = latitude (degrees). 

In this text, we have used a rather simplified gravity model of g = constant = 32.174 
ft/sec2. As of the writing of this text, that simplification is widely used in the conventional 
aircraft flight testing community. This topic will address the magnitude of error that this 
simplification produces. As will be seen, the error is quite small (<1 percent), but not zero. 

First, we will take the liberty of changing the International Union's sea level gravity 
symbology from y0 to g0. 

Consider only a 1-g flight where the aircraft is unbanked and has zero vertical velocity 
and zero rate of change of vertical velocity. Under these conditions, the normal load factor 
(Nz) would not be precisely 1.00. There are four variables: latitude, altitude, speed, and 
heading. We will consider them individually. 

The internationally agreed upon exact conversion factor between meters (or metres in 
Great Britain) is 0.3048 (divide meters by 0.3048 to yield feet) and the number of centimeters 
(cm) in a meter is 100. Given that and using equation 15.1, some typical values of sea level 
gravity are shown in Table 15.1. 
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Table 15.1 
EFFECT OF LATITUDE ON GRAVITY AT SEA LEVEL 

Place 
Latitude 

(deg) 

g 
9.80665 
(m/sec2) 

g 
32.17405 
(ft/sec2) 

Variation 
from the 
Standard 

(pet) 
Reference North Pole 90.00 9.8322 32.2578 0.26 
Northern Greenland 80.00 9.8306 32.2526 0.24 
Pt. Barrow, Alaska 71.00 9.8267 32.2397 0.20 
Arctic Circle 66.50 9.8239 32.2306 0.18 
Anchorage, Alaska 62.00 9.8207 32.2202 0.14 
St. Petersburg, Russia 60.00 9.8192 32.2151 0.13 
Copenhagen 55.50 9.8155 32.2031 0.09 
London, England 51.30 9.8118 32.1911 0.05 
Lake of the Woods, Minn. 49.33 9.8101 32.1854 0.04 
45 deg latitude 45.00 9.8062 32.1725 0.00 
Bldg. 2750, AFFTC 34.92 9.7973 32.1432 -0.10 

1 Baghdad 33.00 9.7957 32.1380 -0.11 
1 Florida Keys, Florida 24.58 9.7893 32.1170 -0.18 

Mexico City 20.00 9.7864 32.1075 -0.21 
Costa Rica 10.00 9.7819 32.0928 -0.25 
Equador (Equator) 0.00 9.7803 32.0877 -0.27 

Note:    The local gravity at Edwards of 32.136 ft/sec has been measured and agrees with the 
model. 

The above local g values are computed for sea level. Edwards is at 2,300 feet geometric 
altitude and the gravity at that altitude is 32.136 ft/sec2. The gravity varies with altitude. 
Using latitude of 35 degrees, Table 15.2 illustrates this effect using the inverse square gravity 
law. The places in Table 15.1 were chosen to represent either even latitudes or interesting 
places. For instance, Point Barrow, Alaska, and Florida Keys, Florida, represent the extreme 
latitudes of the continental United States. Lake of the Woods, Minnesota, is the highest 
latitude in the lower 48 states. 

The earth's radius (20,925,643 feet) is also from the International Union of Geodesy and 
Geophysics and is a value for the equator. This compares to 20,855,553 feet from the 1976 
U.S. Standard Atmosphere. 
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Table 15.2 
EFFECT OF ALTITUDE ON GRAVITY 

Altitude 
(ft) 

8 
(ft/sec2) 

Percent from 
Surface 

Percent from 
Standard 

0 32.143 0.02 -0.10 
2,300 32.136 0.00 -0.12 
10,000 32.113 -0.07 -0.19 
20,000 32.082 -0.17 -0.29 
30,000 32.051 -0.26 -0.38 
40,000 32.021 -0.36 -0.48 
50,000 31.990 -0.45 -0.57 
60,000 31.960 -0.55 -0.67 
70,000 31.929 -0.64 -0.76 
80,000 31.899 -0.74 -0.86 
90,000 31.869 -0.83 -0.95 
100,000 31.838 -0.93 -1.04           1 

The last two variables are speed and heading which need to be considered together. 
Speed has an effect upon normal load factor due to centripetal terms in the gravity equations 
that are functions of the true heading. Using 40,000 feet and latitude of 35 degrees, 
Table 15.3 illustrates the speed and heading effect. 

Table 15.3 
EFFECT OF HEADING AND SPEED ON NORMAL LOAD FACTOR 

Heading 
(deg) 

0 

Mach 
Number 

Normal Load Factor 

0.0 0.9952 
0 0.8 0.9943 
0 2.0 0.9896 

90 0.0 0.9952 
90 0.8 0.9914 
90 2.0 0.9824 

180 0.0 0.9952 
180 0.8 0.9943 
180 2.0 0.9896 
270 0.0 0.9952 
270 0.8 0.9972 

|               270 2.0 0.9968 

So, what is the significance of this? The normal load factor experienced by an aircraft 
varies with latitude over the earth, how high and how fast the aircraft is flying and in what 
direction. For a given mass of aircraft, we needed to generate 0.23 percent more lift over St. 
Petersburg, Russia, than over Edwards AFB. We needed 0.36 percent less lift at 40,000 feet 
than at 2,300 feet over Edwards AFB. At 0.8 Mach number, 40,000 feet, 0.59 percent more 
lift is required heading west than heading east. Generally, for conventional aircraft 
performance, we have been ignoring these factors. 
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How did these variations in Nz translate to performance? As Nz increased, it was 
necessary to generate more lift and therefore, more drag due to lift was created. In cruise 
performance, a 1-percent increase in drag is about a 1-percent increase in fuel flow required 
to sustain stabilized flight. Using a B-52G drag polar at 0.8 Mach number, corresponding to 
an optimum cruise at 40,000 feet, Table 15.4 was generated. 

Table 15.4 
EFFECT OF HEADING ON DRAG COEFFICIENT 

Heading Nz cD 

Percent from 
Reference 

Reference 1.0000 0.02641 0.00 
270 (west) 0.9972 0.02634 -0.26 
0 or 180 0.9943 0.02628 -0.49 
90 (east) 0.9914 0.02622 -0.72 

Very similar percentage differences were obtained using an F-15 drag polar. At Mach 
number 2.0 for the F-15 aircraft, the variations in drag are less than 0.1 percentage. This is 
due to the much smaller amounts of drag due to lift at the higher speeds. Although Nz varied 
more at M=2.0 than at M=0.8, the effect on performance was actually much less. 

The significant comparison is between west and east being nearly Vz of 1 percent apart. 
The bias between the reference and the other data tended to fall out in flight test data as the 
drag polars generated are biased to compensate for this effect and there is not a Vi percent 
error in range data. Nevertheless, the data collected heading west would have shown about lA 
of 1 percent more drag and fuel flow than the data collected heading east, if the data were 
accurate enough to detect that small difference. 

What we are talking about is roughly up to a Vi of 1-percent factor we had been ignoring. 
This does not produced a bias in our data (unless all our cruise data is collected heading east) 
but is rather a source of the scatter. With an INS as a data source, we can account for the 
variation in gravity. 

15.2 Performance Degradation during Aerial Refueling 

A common misconception is that the drag of the receiver aircraft during aerial refueling is 
increased. The drag of the receiver aircraft is unchanged. The thrust required of the receiver 
is increased due to the receiver climbing in the tanker downwash. The tanker downwash 
creates a negative vertical wind that the receiver aircraft encounters. Relative to the wind 
axis, the receiver is climbing at a flight path angle exactly equal to the tanker downwash 
angle to maintain a constant altitude. To sustain this climb, the receiver aircraft requires 
additional thrust and a resultant increase in fuel flow. 

During tests of the KC-10 aircraft with 10 different types of receiver aircraft, the average 
increase in fuel flow for the receiver aircraft was 25 percent. The B-1B behind a KC-135 
aircraft showed a 15-percent increase. The YC-141B increase in fuel flow behind a KC-135 
was 20 percent. 
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To estimate the increase in thrust required for a receiver aircraft, you only need to know 
the theoretical downwash angle behind the tanker and then apply a downwash factor. The 
downwash factor (K) is simply a multiplicative factor to account for the fact that the receiver 
aircraft is in a flow field that is a combination of the tanker flow field and the free stream. For 
both the KE-3A and the Bl-B aircraft, this K factor is about 0.5. The theoretical downwash 
angle (e0) is exactly twice the ideal angle of attack. 

(ti'AR,) 
g„ = ,      Z\ (15.2) 

where: 

Cu   = lift coefficient of the tanker aircraft, and 

ARt = aspect ratio of the tanker aircraft. 

The actual downwash angle is found (with a K of 0.5) to be approximately equal to the 
ideal angle of attack of the tanker. 

- -     °u (15.3) 

Then the increase in thrust of the receiver could be computed by the component of weight 
through the downwash angle. With respect to the wind axis, the receiver aircraft is climbing 
while behind a tanker in level flight. 

AF„=W,-sin(e) (15.4) 

15.3 Performance Degradation during Terrain Following 

Flight while performing terrain following results in an increase in average fuel flow when 
compared to flight at the same average Mach number and altitude level. While in the terrain 
following mode, the aircraft is constantly either pulling up or pushing over. In a pullup 
(Nz >1) the drag is increased over that for an Nz =1 due to an increase in drag due to lift (or 

induced drag). In a pushover, (Nz <1) the drag is reduced due to a decrease in the drag due to 
lift. Because of the parabolic nature of the drag polar, the magnitude of the drag increase in 
the pullup is greater than the magnitude of the drag decrease in the pushover. The net effect is 
there is a net increase in average thrust required and a resultant increase in average fuel flow. 

For the case of an aircraft with automatic terrain following and afterburner, the average 
increase in fuel flow can be substantial. Every time afterburner is used, the fuel flow 
increases dramatically. The thrust specific fuel consumption (tsfc) will typically be less than 
1.0 in nonafterburner and >2.0 in afterburner. 
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15.4 Uncertainty in Performance Measurements 

There is no precise answer to the question, "how accurately do we measure certain 
performance flight test parameters," as each instrumentation system is different. 
Nevertheless, our experience has given us some approximate uncertainties that we feel are 
obtainable and had been achieved. Some typical parameter uncertainties are shown in Table 
15.5. In some cases, these parameters are not direct instrumentation measurements, but rather 
the result of computations involving several measurements. 

Table 15.5 
PARAMETER UNCERTAINTIES 

Parameter Units Symbol Uncertainty 

Fuel Flow lbs/hr W, ±1% 

Calibrated Airspeed kts Vc ±0.5 knots 

Gross Weight lbs w, ±0.5% 

Longitudinal Load Factor g Nx ±0.001 g 

Normal Load Factor g N* ±0.01 g 

Ambient Temperature °K T ±0.5 °K 
Pressure Altitude ft Hc ±25 feet 

15.5 Sample Uncertainty Analysis 

For a transport category aircraft, a performance figure of merit might be the specific 
range at optimum speed and altitude. Let us choose a typical high altitude cruise condition: 

a. V   = 280 knots (calibrated airspeed), and 

b. Hc = 35,000 feet (pressure altitude). 

On a standard day the ambient temperature is: 

c. T= 218.81 °K. 

Calculating the Mach number: 

d. M= 0.8213. 

True airspeed is: 

e. Vt = 473.44 knots. 

If the computed ambient temperature is in error on the high side by 0.5 degree K then the 
true airspeed would be V, = 473.98 knots for a 0.11-percent error. In addition, an altitude 
error of 25 feet produces a 0.04-percent error, and a calibrated airspeed error of 0.5 knot 
produces a 0.26-percent error. 
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At an LID = 10.0, an error of 0.001 g in longitudinal load factor yields a 1.0-percent 
error in drag. We shall assume error in drag produces a 1.0-percent error in range factor. 
Then, for range factor (RF), we have the following errors: 

a. Vt   0.11 percent due to T error, 

b. Vt   0.04 percent due to Hc error, 

c. Vt   0.26 percent due to Vc error, 

d. Nx   1.00 percent, 

e. Wt   0.50 percent, and 

f. Wf   1.00 percent. 

The root mean square (rms) of the three uncertainties computes to be 1.53 percent. 
Please note that carrying out the speeds to five significant figures did not imply that we could 
measure speeds to that level of accuracy. At the time of this handbook, with the advent of 
EGI even greater accuracies than those presented above may be achieved for airspeeds, 
altitudes, and flight path accelerations. 

15.6 Wind Direction Definition 

What may seem to be an improper definition of wind direction (from which the wind is 
blowing) may derive from ancient Greece. Improper in the sense that defining the wind 
direction as from which it is blowing is opposite from the vector direction of wind. In 
Britannica™ Online, a structure called the Tower of the Winds is discussed briefly. In about 
100 BC an octagonal (eight-sided) marble structure, 42 feet high and 26 feet in diameter, was 
constructed. The eight sides face points of the compass (N, N-N-E, N-E, etc). It would seem 
logical that a wind blowing on the structure would be considered a positive wind. The wind 
would always be positive, since it would be blowing on some side of the structure - never 
away from the structure, so to speak. Therefore, if the wind were blowing directly on the 
north side of the Tower of the Winds, this positive wind would have a direction of north 
(0 degrees). This direction is the direction from which the wind is blowing, the same as the 
compass heading of the Tower. One could think of this Tower as either an aircraft control 
tower or an aircraft. 
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16.0 STANDARDIZATION 

16.1 Introduction 

For presentation and comparison purposes, performance data are usually corrected to 
standard conditions. The standard conditions are specified values of gross weight, pressure 
altitude, eg (center of gravity), and Mach number. Standard ambient temperature is usually 
based on the 1976 U.S. Standard Atmosphere. Standardization relies upon a predicted model 
of drag, thrust, and fuel flow. Usually, small corrections to standard day conditions are made, 
but these could be large when temperature is substantially off standard day. If there is a 10- 
percent error in the predicted model and we made 10-percent corrections to the data, we 
incurred only a 1- percent error in the standardized results. At the AFFTC in midsummer, the 
temperature at 30,000 feet is, on average, 10 degrees C hotter than standard day, which 
produces, typically, about a 10-percent decrease in thrust at MIL or MAX. The 
standardization is performed using an additive increment method. 

16.2 Increment Method 

The general principle of standardization is an additive increment method. The formulas 
used to standardize net thrust (Fn), fuel flow (Wf), and drag (D) are as follows: 

F„=FM+(F"„-K) (16.1) 

where: 

Fns = standardized net thrust (pounds), 

Fm - test day net thrust (pounds), 

F'm = standard day predicted net thrust (pounds), and 

F'm = test day predicted net thrust (pounds). 

Wfs=wft+(w;-w;) (i6.2) 

where: 

Wfi = standardized fuel flow (pounds/hour), 

Wft = test day fuel flow (pounds/hour), 

W'fs = standard day predicted fuel flow (pounds/hour), and 

W^ = test day predicted fuel flow (pounds/hour). 

Fuel flow is first standardized to a minimum fuel lower heating value (LHV), usually 
18,400 Btu/pound. 

Wft=Wft- 
(LHVle^ 

18,400 
(16.3) 
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Then, 

Typical test values of LHV are in the vicinity of 18,550 Btu/poünd, which amounts to a 
Vi-percent correction. The correction will generally increase fuel flow, since the spec is a 
minimum. That is, almost all actual fuel will have an LHV greater than the spec. 

D, =D(+(£>,'-Z),') (16.4) 

where: 

Ds = standardized drag (pounds), 

Dt = test day drag (pounds), 

Ds = predicted standard day drag (pounds), and 

Dt = predicted test day drag (pounds). 

D,=Fnt-Fext (16.5) 

Fex -Nx-Wt = test day measured excess thrust (16.6) 

FeXs = FeXi + (F„; - D,') - (Fnt' - D/) (16.7) 

The above equations illustrate the general principle. The test net thrust is determined, 
usually, from an in-flight thrust deck. The predicted thrust and fuel flows are determined 
from a prediction (or status) deck. These are described briefly in the thrust section. The 
predicted drags are obtained from a contractor-provided predicted drag model subroutine. 
The contractor drag model should include an accounting for skin friction drag. In lieu of that, 
formulas presented in the lift and drag section could be used. 

Each maneuver involves a different parameter being adjusted to standard conditions but 
the basic method is the same incremental difference method. The standardization parameters 
for various maneuvers are discussed in the following text. 

16.2.1 Climb/Descent 

Excess thrust and fuel flow are standardized: 

a.    Nz is computed. 

16.2.2 Acceleration/Deceleration 

Excess thrust and fuel flow are standardized: 

a.    Nz  =1.0. 

181 



16.2.3 Accelerating/Decelerating Turn 

Excess thrust and fuel flow are standardized: 

a.    Nz is specified. 

16.2.4 Cruise 

Fuel flow is standardized: 

a. Nz =1.0 (usually) (Note: a rare exception to the 1.0-g would be for standardizing 
data in an endurance turn.), and 

b. Excess thrust = 0.0. 

16.2.5 Thrust-Limited Turn 

Nz and fuel flow are standardized: 

a.   Excess thrust = 0.0. 

16.3 Ratio Method 

An alternative to the increment method of standardization is a method based upon ratios. 
The formulas for standard day net thrust, fuel flow, and drag would be as follows: 

• 

Fns = Fnr 

W* = Wy < 

W ' 
.ft 

*>, = Dr 

A. 

(16.8) 

(16.9) 

(16.10) 

Then, standard day excess thrust (Fex ) would be: 

F   =F  -D (16.11) 

For fixed throttle maneuvers (climb, turn, and accel), the above equation would suffice. 
For cruise, where standard excess thrust should be zero, an iteration is required. 

The question that needs to be answered is "what is the difference in the magnitude of 
difference between the ratio and difference methods?" Take the case of the standardized 
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excess thrust in acceleration. If there was zero error in both test day measured net thrust and 
in the thrust model, then there would be zero error in the standardization for both ratio and 
increment methods. From the above equations, let us write out the full FeXs formula for both 

increment and ratio methods. 

F   =F FJ -A- A 
t 

.A. 
ratio method (16.12) 

However, 

Dt - Fnt - Fex for both methods (16.13) 

Then, the ratio method becomes: 

F„ =F„ 

/ 
A 

_A. 
+ Fnt- Fm ~Fnt- 

/ 
A 
.A. 

ratio method (16.14) 

FeXs =FeXi +(F„ -Fnt )-(D, -D,) increment method (16.15) 

Then, whichever method introduces the most error into the standardized excess thrust is a 
function of the errors in the prediction models. If the prediction models are in error by 
approximately a constant percentage, then the ratio method will introduce the least error. This 
is because the errors would cancel out when doing the division. Conversely, if the models are 
in error by approximately a constant magnitude, then the increment method will introduce the 
least error. This is due to the errors canceling out when doing the subtraction. 

Either way, one is invariably introducing some errors (hopefully small) into your data by 
the very process of standardization. Standardization is performed as a means of convenient 
data presentation. One should recognize that a data point on a plot presented as standard 
conditions is a data point that was not flown. It represents an extrapolation of an actual test 
point. The following are two sources of error in standardization. 

a. For cruise at high altitude, the standard day conditions may be unachievable. That is 
due to having sufficient thrust on a test day, but not on a standard day. The test day 
temperature may have been substantially colder than standard day giving the engine much 
more thrust than would be available on the warmer standard day. Your cruise standardization 
algorithm should check to assure that standard day drag is less than the maximum available 
thrust. 

b. The engine may be in some manner limited (turbine temperature or rpm limit) on the 
test day. If this limiter is not accurately modeled in the status deck, then the correction to 
standard day will have errors. For instance, the engine may not be on this limit on the 
standard day, yielding additional thrust. Conversely, it may not be on the limit on the test 
day, but would be on the standard day. 
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17.0 A SAMPLE PERFORMANCE MODEL 

17.1 Introduction 

In this section, we will construct a performance model. The model will be highly 
idealized. The purpose of this section is to illustrate some general concepts. One should not 
assume that their drag, thrust, or fuel flow models would be the same as, or as simple as, 
those presented here. 

17.2 Drag Model 

17.2.1 Minimum Drag Coefficient 

In order to illustrate the shape of performance parameters, such as specific excess power 
as a function of Mach number or altitude, we will construct a drag model. That drag model is 
fiction, but approximates that of an F-16 aircraft. Drag has three components. These are skin 
friction, profile drag, and drag due to lift. We could think of drag as having only two 
components: minimum drag and drag due to lift. Minimum drag is then the sum of profile 
drag and skin friction drag. Drag due to lift is also called induced drag. Profile drag is 
sometimes called form drag. For the purposes of our model, we will make up numbers for 
standard day at 30,000 feet pressure altitude. Then, our predicted skin friction drag formulas 
will be used to compute minimum drag at conditions other than standard day at 30,000 feet. 

Our basic formula for drag coefficient is the AFFTC drag model formulation from the 
previous section. We will start by assuming that CDmjn = 0.0200 (200 drag counts) for Mach 
number < 0.80. That is a typical minimum drag coefficient for a wide range of aircraft. From 
the subsonic condition to Mach number = 1.0, the drag coefficient approximately doubles. 
Some data points were assumed and a curve fit was applied. Figure 17.1 is delta drag 
coefficient for the subsonic condition. The equation for minimum drag coefficient at any 
given Mach number is as follows: 

CDmin = 0.0200 + ACD (17.1) 
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delta Cd versus Mach Number - Subsonic 

y = 2.9003X ' - 7.1998X 2 + 5.9828X • 1.6633 

-0.0050  - 

0.80 0.90 

Mach Number 

1.10 

Figure 17.1 Subsonic Drag Increment 

The drag coefficient in the transonic regime will peak out somewhere just past Mach 
number = 1.0 and then will sometimes decrease slightly with increasing Mach number. Each 
aircraft will have different characteristics, of course. Data values for minimum drag were 
assumed at various Mach numbers and curve fits were applied. Figures 17.2 and 17.3 are for 
transonic and supersonic speeds. 

Delta Cdmin - Transonic 

y = -25.5066X4 + 113.4193X3 -188.9433X2 + 139.7543X - 38.7038 
0.023 

0.021 

0.019 

■S 0.013 

0.011 

0.009 

0.005 

r—*-—i * 1 

0.90 0.95 

Mach Number 

Figure 17.2 Transonic Drag Increment 
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0.022 

delta Cd - Supersonic 

y = -0.011534** + 0.061267>? - 0.109113x + 0.083435 

0.0205 

T,        0.02 
Ü 
n 

I   0.0195 

0.019 

0.018 

0.0175 

o  

1.1 1.2 1.3 1.4 1.5 

Mach Number 

1.6 1.7 1.8 1.9 

Figure 17.3 Supersonic Drag Increment 

Notice that there were overlapping data points in each of the plots. For instance, 0.95 and 
1.0 Mach number appeared in both the subsonic and transonic plots. 

Summarizing the following curve fit formulas (where X = Mach number and Y = delta 
cDy. 

a. Subsonic 

1. Y = 2.9003-X3 - 7.1998X2 + 5.9828X -1.6633 

b. Transonic 

2. Y = -25.5066X4 + 113.4193-X3 -188.9433X2 + 139.7543-X -38.7038 

c. Supersonic 

3. Y = -0.01153-X3 + 0.06127X2 -0.10911 -X +0.08343 

Table 17.1 contains the data points, the corresponding curve fits values, and the errors in 
the curve fits. 
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Table 17.1 
TABULATED DRAG RISE DATA 

Mach Number ACD Data ACD Fit Error = Data - Fit 

0.7993 0.00000 
0.8000 0.0000 0.00002 -0.00002 
0.8750 0.0020 0.00230 -0.00028 
0.9000 0.0040 0.00370 0.00030 
0.9500 0.0090 0.00920 -0.00019 
0.9995 0.01984 
1.0000 0.0200 0.01990 0.00010 
1.0500 0.0215 0.02180 -0.00031 
1.0750 0.0216 0.02160 -0.00004 
1.1000 0.0216 0.02148 0.00019 
1.1467 0.0214 
1.1500 0.0213 0.02144 -0.00021 
1.2000 0.0210 0.02080 0.00021 
1.4000 0.0190 0.01910 -0.00011 
1.6000 0.0185 0.01840 0.00005 
2.0000 0.0180 0.01800 0.00000 

: "totes:     1. Bold numbers are at Mach numbers where the curve fits equate. 
2. The error numbers are carried to one extra digit. 

The model for minimum drag is then the three equations (1,2, and 3 on page 187) with 
transition points at the following Mach numbers: 

a. ACD = 0 for M < 0.7993, 

b. ACD = subsonic for 0.7993 < M < 0.9995, 

c. ACD = transonic for 0.9995 < M < 1.1467, 

d. ACD = sup ersonic for 1.1467 < M < 2.000, and 

e. ACD=0.0180forM>2.0. 

The Mach number ranges for the above are not meant to imply any general definition of the 
terms subsonic, transonic, or supersonic. They are simply where the curve fits for this particular 
arbitrary data set intersected. 

The first and last conditions are constraints applied to the model. The low-end constraint 
(M < 0.7993) is to keep the minimum drag at 0.0200 for all Mach numbers less than 0.7993. 
The high-end constraint (M > 2.0) is to keep the polynomial from giving very unreasonable 
results in event the model is used beyond the last Mach number. If this were actual flight test 
data, we could not be certain what the behavior of the minimum drag might be beyond where 
actual test data were acquired. However, wind tunnel data could perhaps be utilized to 
extrapolate beyond where flight test data were obtained. Figure 17.4 puts all three pieces of 
the minimum drag model together on a single plot. 
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delta Cd versus Mach Number 
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Figure 17.4 Summary of Delta Drag Coefficient 

17.3 Skin Friction Drag Coefficient 

Skin friction drag coefficient varies with Reynolds number and Mach number. We will use the 
empirical skin friction flat plate turbulent boundary layer equations presented in the lift and drag 
section, and presume a characteristic length of 10 feet. Figure 17.5 is for standard day conditions. 

Skin Friction Drag Coefficient versus Mach Number 
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Figure 17.5 Skin Friction Drag Coefficient 
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At 30,000 feet and 0.8 Mach number, on a standard day, the slope of the Cf curve is 

0.000014 per 1,000 feet. This is positive with increasing altitude; that is, the higher altitude 
has the higher skin friction drag. Again, at the same condition, the slope of the Cf curve 

versus temperature is 0.0000018 per 1 degree K. The temperature slope is positive with 
increasing temperature; that is, the Cf is higher on a day that is hotter than standard. Those 

A.Cf might appear small until one considers that the typical ratio of wetted area to wing area 

is about 4 and the altitude range of a fighter aircraft is 50,000 feet. Therefore, at 0.8 Mach 
number, for instance, the total variation in drag coefficient due to skin friction (at the same 
lift coefficient) can be calculated as follows: 

S      AC, 
AC  =^L L.M = 4-0.000014-50 = 0.0028 (28 drag counts) (17.2) 

S      Ah 

That is a 28-drag count number over the range of sea level to 50,000 feet. Compare that 
to the typical number of 200 for the minimum drag coefficient. Quite significant! 

For our fictional aircraft (modeled after an F-16 aircraft), we will presume the following 
dimensional data: 

a. S = 300 ft2 - wing area, 

b. / = 10 feet - MAC (characteristic length), 

c. b = 35 feet - wing span, 

d. AR = b2/S =4.083, 

e. Swel =4.0-5 =1,200 ft2, 

f. WZf = 18,000 pounds - zero fuel weight, and 

g. Fuel = 6,000 pounds - fuel capacity. 

These numbers will be used to illustrate performance parameters in other sections of this 
handbook. 

17.4 Drag Due to Lift 

A drag due to lift (induced drag) model will be derived based upon the formulas 
presented in the lift and drag section of this handbook. This model (as with the minimum 
drag and skin friction drag) is developed only as a rough approximation of an actual airplane. 
Figure 17.6 presents idealized drag due to lift slope data points and a second-order 
polynomial curve fit of those points. With actual flight test data, one will be able to develop a 
much more detailed and accurate model. As you can see, we have mostly ignored the 
variation in the transonic Mach number range. 
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Figure 17.6 Drag Due to Lift Slope 

The above drag due to lift model is for the linear (or pure parabola) portion of the drag 
polar. The curve is a parabolic fit of the data and ignores the variations in the transonic speed 
range. In general, there will be a deviation from the linear model as flow separation develops. 
We will call this the nonlinear portion of the model. As shown in the lift and drag section, a 
general formula for drag coefficient that seems to match most flight test data quite well for a 
given Mach number, pressure altitude, and longitudinal center of gravity position condition is 
as follows: 

CD=CDn,n+Kh{CL-CLnünf■ + K2-(CL-Cuf (17.3) 

where: 

K2 = 0ifCL<C Lb 

The y parameter in the theoretical drag due to lift plot is equal to ATI. In most textbooks, 
tne Qmin is ignored. The Cimin (lift coefficient at minimum drag coefficient) is usually some 
small positive value due to positive camber on most wings and positive wing incidence. In 
our model, we will assume the following for a CLmjn 

CLmin = 0.100 - 0.05 -M (17.4) 
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Hence, for this model the Cimin is 0.10 at M = 0.0, 0.05 at M = 1.00, and 0.00 at M = 
2.00. We need to emphasize that this model is pure fiction, but the trends do roughly 
approximate that of a real aircraft such as the F-16. 

For the break lift coefficient CLb, we will assume a constant value of 0.60. To get a rough 

number for K2, consider that the drag coefficient will double over that predicted by the 
linear model by the time a CL of 1.50 is attained. Both K2 and CLb will, in general, be 
functions of Mach number, but for simplicity, we will give them constant values. From our 
models at M = 0.0 and CL <0.60. 

CD = 0.0200 + 0.099 • (Q - 0.10)2 (17.5) 

At CL =1.50; CD =0.2140. 

Solving for K2 from equation 17.5: 

'cD-{CDnin + Kh(CL-CL^)2] 
a.    K2 = 

{cL-cLb) 
, and 

[2-0.2140-0.21401 
b.    K2 = ± ; i = 0.2642. 

(1.5-0.6) 

Figure 17.7 is for this model at M = 0.80. 

Drag Coefficient versus Lift Coefficient (Mach Number = 0.80) 
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Figure 17.7 Drag Model at 0.8 Mach Number 
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Figure 17.7 illustrates how dramatically the drag polar can deviate from the pure 
parabola. The vast majority of 1-g flight occurs at lift coefficients below the point where 
significant flow separation begins. To illustrate the general shape of the polar for CL < CLb 

we will plot drag coefficient versus lift coefficient as a function of Mach number. Figure 
17.8 represents only the subsonic Mach numbers, and Figure 17.9 includes all Mach 
numbers. Note to those who are accustomed to seeing drag coefficient on the x-axis: the plot 
axes are opposite of the usual convention. 

• 

Drag Coefficient versus Lift Coefficient {f(Mach Number)} 
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We now have all of the required components for a sample drag model. This will be used 
in combination with a thrust-fuel flow model to compute performance parameters. We will 
use this to compute performance during cruise, climb, and turn. 

17.5 Thrust and Fuel Flow Model 

As with the drag model, we will construct a set of equations to represent net thrust and 
fuel flow. There will be two separate models. One will be for nonafterburner engine 
operation and the other will be for maximum afterburner. We will begin with a fuel flow 
model for nonafterburner. 

17.6 Thrust Specific Fuel Consumption 

Thrust specific fuel consumption (tsfc) is simply the ratio of fuel flow to net thrust. 

Wf 
tsfc = -±- (17.6) 

Fn 

The parameter will sometimes generalize by dividing by the square root of the total 
temperature ratio. 

tsjcr^-^L (17.7) 
V0r2 

288.15 

Tt2=T • (1 + 0.2- M2) (17.9) 

Ideally, the total temperature would be measured in the engine inlet. However, that 
parameter is difficult to measure and even more difficult to model so one usually (but not 
always) will use a ram air temperature measurement. Ram air temperature is total temperature. 

Figure 17.10 is a sample representation of thrust specific fuel consumption referred 
(tsfcr) versus referred net thrust (Fnl5t2). The parameter referred net thrust is net thrust 
divided by total pressure ratio at the inlet. In this case, we will use a Pitot-static derived total 
pressure ratio. That means we have assumed zero inlet losses. 

F„=T- (17-10) 
°l2 

For M < 1.0: 

5r2=5.(l+0.2-M2)35 (17.11) 
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For M >1: 

St2=S 166.9216• M11\l -M2 -l)" (17.12) 

TSFC/sqrt(thet2) Vs. Fn/delt2 
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Figure 17.10 Thrust Specific Fuel Consumption 

To better illustrate real effects, an additional term will be added to our tsfcr model. 
There is, generally, degradation in the parameter with increasing altitude (or decreasing 
Reynolds number). We will assume the above curve is valid up to a Reynolds number 
corresponding to a standard day at 30,000 feet. The parameter Reynolds number index 
(RNI) is introduced in the lift and drag section. This is the ratio of Reynolds at the test 
condition to the Reynolds number at sea level, standard day, for the same test day Mach 
number. For standard day, we have the following values for RNI: 

a. 30,000 feet RNI = 0.4010, and 

b. 50,000 feet RNI =0.1661. 

A typical degradation in tsfcr is on the order of V* percent per 1,000 feet of altitude. 
Therefore, for 20,000 feet we would have a 5-percent degradation. Hence, a formula for a 
multiplicative factor on tsfcr would be as follows: 

• 

F 
tsfcr = ! + ■ 

(0.4010- RNI) 
(0.4010-0.1661) 

•0.05 (17.13) 

• 
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or: 

Flsfcr =1 + (0.4010- RNI) -0.2129 (17.14) 

Flsfcr= 1.0 if RNI> 0.4010 

The above multiplicative factor is a number greater than one for Reynolds number 
indices less than 0.4010. With that term, we have a simplified model for fuel flow for 
nonafterburning. We must emphasize again, that the models presented here are very 
simplified and are presented to illustrate general trends only. 

17.7 Military Thrust 

For maximum thrust without afterburner, usually designated MIL power, we will 
construct a generalized form. First, we have already introduced the parameter called referred 
net thrust. For our model, we will assume a relationship of referred net thrust versus inlet 
total temperature (Tt2). 

Tt2=r\T-T, (17.15) 

where: 

7]r = inlet temperature recovery factor. 

For this model, we will presume that r\r = 1.0. Usually, the recovery factor is difficult to 
measure and even more difficult to model anyhow. Therefore, typically, the r\r = 1.0 
assumption is made with actual data analysis. A turbine engine is often said to be flat rated. 
That means that the thrust is constant to some value of inlet total temperature. We will 
presume that value to be standard day sea level temperature (288.15 degrees K). After that 
point, the thrust will decrease at some lapse rate. We shall presume the lapse rate to be 
1 percent per 1.0 degree K. We will take a value of 9,000 pounds as the flat rated value of 
referred net thrust. Then, the equation for our model is as follows: 

Fnr=9,000if 7;2< 288.15 (17.16) 

Fnr=9,000-[l-0.01-(7;2-288.15)]if 7^2>288.15 (17.17) 

Figure 17.11 is a graphical representation of the above equations. It should be noted that 
this model is highly idealized. An actual model will have altitude and Mach number effects. 

For standard day, the model presented in Figure 17.12 is for thrust versus Mach number 
as a function of altitude. 
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Referred Net Thrust versus Total Temperature: MIL Thrust 
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17.8 Maximum Thrust 

For maximum (MAX) thrust, we will construct a similar model. First, the formulas for the 
pressure ratio are presented for an assumption of a normal shock inlet. A normal shock inlet is 
one where the recovery is across a normal shock. This is just what you have in a Pitot probe. 

For the maximum thrust with afterburner model, we were going to use the same lapse rate 
(1.0 percent per 1.0 degree K) but ran into the effect of thrust going to zero within the range 
of achievable total temperatures. So, a lapse rate of Vi percent is used instead. We took a flat 
rated value for referred thrust of an even 20,000 pounds. By comparison, the static sea level 
uninstalled thrust ratings in the F-16 engines are (as of this writing) on the order of in excess 
of 25,000 pounds. The equations for referred thrust are as follows: 

Fnr=20,000if 7;2< 288.15 (17.18) 

F„r=20,000-[l-0.005-(7;2-288.15)]if Tr2>288.15 (17.19) 

A graphical representation of the model is shown in Figure 17.13. This model is also 
highly idealized, ignoring Mach number and altitude effects. 

Referred Net Thrust versus Total Temperature Maximum Afterburner 
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Figure 17.13 Referred Net Thrust for Maximum Thrust 

The maximum thrust model is presented as net thrust versus Mach number as a function 
of altitude for standard day in Figure 17.14. 
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Net Thrust (with Afterburning) versus Mach Number (Standard Day) 
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Figure 17.14 Maximum Thrust 

For fuel flow during maximum thrust operation, we will assume a very simple model. 
Experience has shown that thrust specific fuel consumption during maximum afterburner 
operation is at least 2.0. Let us, arbitrarily, assume a value of 2.5: 

a.    tsfcr = 2.50. 

17.9 Cruise 

Using the previously developed drag and fuel flow models, we can compute cruise 
parameters. The parameter range factor was developed in the cruise section and is repeated 
here. 

RF=^-W,   (nam) 
W' 

(17.20) 

An equivalent form of the equation is as follows: 

RF 
661.48 -M- 1 (V 

le, 

(17.21) 
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The term in the denominator is called corrected fuel flow and can be expressed in another 
form. 

Wf 
\ 

s-yfe 
tsfc. 

's) 
(F. (17.22) 

In order to differentiate between dividing by total or ambient conditions, we will use the 
convention of 'corrected' for ambient conditions and 'referred' for total conditions. Hence, 

tsfcc = tsfc, \ 

'S corrected tsfc (17.23) 

tsfcr = tsfc. 
\ 

referred tsfc (17.24) 

This may not be a universal convention, but will be used in this text. 

Combining the range factor in equation 17.21 and corrected fuel flow in equation 17.22 
yields: 

RF 
661.48-M W,. 

tsfcc 
(17.25) 

The concept behind the old constant weight-over-delta (Wt 18 ) method of testing was 

that if one kept M and Wt 18 constant, then drag would be constant. That derived from the 
simplified forms of lift and drag coefficient for 1-g flight and thrust equals drag. 

0.000675 

Q=- 

Cn = 

W. 

M2-S 

0.000675 •(%) 

M2-S 

"■i H%> 

(17.26) 

(17.27) 

(17.28) 

However, we know that both drag and engine thrust specifics vary with Reynolds 
number. 
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17.10 Range 

For our model aircraft on a standard day, at 22,500 pounds gross weight, we can compute 
the parameter range factor. Figure 17.15 is a plot of range factor for a series of altitudes. 
Either the minimum Mach number is dictated by the left scale of the plot, attaining a 
maximum lift coefficient or thrust required exceeding the thrust available. The thrust 
available is deemed to be that determined from our military thrust model. The maximum lift 
coefficient is simply: 

C, = 1.50. 

We will use the same 1.50 value for maximum lift coefficient for all the problems in this 
section. 

Range Factor versus Mach Number (Weight=22,500 lbs) 
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Figure 17.15 Range Factor 

By picking off the peaks of the curves we can plot (Figure 17.16) peak range factor 
versus weight-over-delta. The topic of optimum flight profiles is a topic that will not be 
covered in this section, but suffice it to say that in a sense the closest distance between two 
points is not necessarily a straight line. 
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Constant Altitude Cruise: Weight=22,500 lbs: Range Factor versus Weight-Over-Delta 
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Figure 17.16 Maximum Range Factor 

Figure 17.17 illustrates the effect of Reynolds number on cruise performance and demonstrates 
that you do not get the same range factor at a given Wt 18 and Mach number regardless of altitude 

(or temperature). This is due to skin friction effects on both aircraft drag and on the engine. The 
engine blades are experiencing the same skin friction drag effects as the aircraft wing and other 
surfaces. The weight-pressure ratio (Wt 15 ) is 125,000 pounds for all the data in the next two plots. 

Altitude Effect (W/delta=125,000 lbs) 
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Figure 17.17 Range Factor - Altitude Effect 
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At 0.85 Mach number, Table 17.2 summarizes the numbers off the above plot. 

Table 17.2 
RANGE FACTOR VARIATION WITH ALTITUDE 

Altitude 
(ft) 

Weight 
(lbs) RNI 

Range Factor 
(nm) 

43,030 20,000 0.2322 5736.7 
40,580 22,500 0.2612 5794.3 
38,388 25,000 0.2903 5849.7 

The percentage change per 1,000-foot change in altitude calculates to 0.39 percent. This 
number is comparable to the actual flight test derived values shown in the cruise section for 
three different aircraft. 

Taking the midweight as the baseline, we can also vary temperature and keep altitude and 
weight constant. This will achieve a variation in Reynolds number, as shown in Figure 17.18. 

Weight=22,500 lbs:Altitude=40,580 ft 
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Figure 17.18 Range Factor - Variation with Temperature 

At the same 0.85 Mach number and weight-pressure ratio, the effect of temperature is 
shown in Table 17.3. 

• 

• 
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Table 17.3 
RANGE FACTOR VARIATION WITH TEMPERATURE 

I   Temperature Above Standard 
(degK) 

-20 
(196.65) 

Std 
(216.65) 

+20 
(236.65) 

j       Reynolds Number Index 0.2977 0.2612 0.2312 
1           Range Factor (nm) 5,836.6 5,794.3 5,736.8 

By comparing the numbers Tables 17.2 and 17.3, it can be seen that the slope of range 
factor versus Reynolds number index is essentially identical between varying altitude and 
weight at constant weight-pressure ratio and varying ambient temperature. Both will achieve 
a variation in Reynolds number index. 

17.11 Endurance 

For the case where it is desired to maximize endurance, we would need to find the Mach 
number for minimum fuel flow. Figure 17.19 is a plot of fuel flow versus Mach number for 
the same weight and altitudes considered for range. 

Fuel Flow (Wt=22,500 lbs) 
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Figure 17.19 Fuel Flow-Endurance 

17.12 Acceleration Performance 

Acceleration performance will be computed using our model. The parameter-specific 
excess power (Ps) was defined in the axis systems and equations of motion section. To 

compute Ps from our model the following computations are performed. The drag and thrust 
models are defined in previous parts of this section. 
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CD=f(CL,M,RNI) 

(6-M2.S-CD) 
D=     0.000675 (17-29) 

Tt2=T-(l + 0.2-M2) (17.30) 

F„=f<Tl2) 

Fn=Fnr-8l2 (17.31) 

0=%88.15 (17-32) 

V, =1116.45-M->/0 (ft/sec) (17.33) 

F«=Fn-D (17.34) 

^=% (17.35) 

P,=NX-V, (17.36) 

17.13 Military Thrust Acceleration 

For military thrust (maximum without afterburner), our model and the above calculations 
produce Figure 17.20 for standard day. 

The above altitudes and weights were chosen to be the same as for the cruise. At 42,500 
feet, the model computes a just barely positive Ps, where Ps could be considered the rate of 
climb achievable for constant true airspeed. 

To illustrate the effect of temperature on acceleration performance, an altitude of 10,000 
feet was chosen for Figure 17.21. 

• 
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MIL Thrust Specific Excess Power (Wt=22,500 lbs) 
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Figure 17.20 Military Thrust Specific Excess Power 
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Figure 17.21 Military Thrust - Specific Excess Power, Temperature Effect 
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The above difference in acceleration (and hence, climb) performance as a function of 
temperature is due primarily to thrust. There is, however, a small increase in drag at the 
higher temperatures due to skin friction. To repeat the thrust model presented in equations 
17.16 and 17.17: 

a. Fnr=9,000for7;2<288.15,and 

b. F„r=9,000-(l-0.0l[7;2-288.15])for7;2>288.15. 

This produces net thrust versus Mach number for 10,000 feet pressure altitude as shown 
in Figure 17.22. Drag is also plotted for standard day. 

There is a small drag difference due to skin friction as illustrated in Figure 17.23. 

At the point of minimum drag, we have the following points from the model. Mach 
number is 0.42 in Table 17.4. 

Thrust and Drag (10,000 ft; Wt=22,500 lbs) 
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Figure 17.22 Military Thrust - Thrust and Drag at 10,000 Feet 
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Drag versus Mach Number (Weight = 22,500 lbs; Altitude=10,000 ft) 
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Figure 17.23 Drag at 10,000 Feet - Temperature Variation 

Table 17.4 
DRAG VARIATION WITH TEMPERATURE 

Temperature          I          -20 
(degK)                      (248.3) 

Std 
(268.3) 

+20 
(288.3) 

Drag (lbs)            |       1,825.0 1,833.5 1,841.5 

Now, this 16.5-pound difference in drag, between ±20 degrees K of standard day at 
10,000 feet, is quite small for purposes of acceleration performance. However, if the aircraft 
were doing endurance tests, those 16.5 pounds would be almost a full 1 percent. 

17.14 Maximum Thrust Acceleration 

The analysis of data for maximum thrust is identical to that for military thrust. It's just 
that the numbers are larger. In addition, we get to travel through the transonic region where 
some interesting drag effects may occur. First, we present the standard day Ps plot in 
Figure 17.24. 

The thrust model presented earlier had a referred net thrust of 20,000 pounds for total 
temperature below 288.15 (standard day sea level). The sea level rating for F-16 engines are 
somewhat larger than that number. Be aware, however, that a rating is uninstalled. By 
installing an engine in the aircraft, you will incur substantial inlet and other losses. 
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Ps versus Mach Number (Weight=22,500 lbs) 
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Figure 17.24 Maximum Thrust Specific Excess Power 

As we did with military thrust, we shall examine the effect of temperature on acceleration 
performance. This time we will choose 30,000 feet to conduct a comparison. Note that the 
temperature deltas this time are only 10 degrees K, versus 20 degrees K for the military thrust case. 
In addition, the thrust model chosen had only a Vi percent per degree K slope. This Ps comparison 

is shown in Figure 17.25. 

Maximum Thrust Effect of Temperature (Wt=22,500 lbs; 30,000 ft) 
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Figure 17.25 Maximum Thrust Specific Excess Power Temperature Effect at 30,000 Feet 
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We chose to plot only between 0.9 and 1.60 Mach number for a specific reason. The 
prototype F-16 (YF-16) was involved in a flying competition with an aircraft designated the 
YF-17 (later evolved into the Navy F-18) in 1974. One of the performance specification 
points was the time to accelerate from 0.9 to 1.6 Mach number at 30,000 feet. There were 
other rules: the time would be computed for a standard day and with the weight held constant 
at a midcombat weight. To compute time is a simple numerical integration. 

N   AFn-D)_Vt    ,   *_P, 
W, 8o    V, V. 

(17.37) 

We also had zero wind, because the above equation is only valid for zero wind. In 

addition, since we are accelerating at constant altitude, the h term is zero. 

Vt=ga-NX=32.Y1A-Nx (17.38) 

AV. \ 

'At 

Af = - 

= 32.174-^ 

AV, 
32.174-iV 

(17.39) 

(17.40) 

At 30,000 feet, standard day ambient temperature is -44.44 degrees C (easy number to 
remember) = 228.71 degrees K. A little historical footnote here to illustrate the criticality of 
getting data at as cold a test day ambient air temperature as possible at 30,000 feet. The 
YF-17 performance tests were conducted in late summer and early autumn. A specification 
compliance condition was the time to accelerate from 0.90 to 1.60 Mach number at 30,000 
feet on a standard day. In Appendix A note that the average temperatures at 30,000 feet 
above Edwards AFB are all greater than standard day. We were never able to accelerate the 
YF-17 aircraft to 1.60 Mach number on a test day. The competition (YF-16) had no problem 
getting to 1.60 Mach number even on days hotter than standard. 

V; =1116.45 • M ■ J22SJ%8S 15 = 994.65 • M (17.41) 

^994.65-AM AM 
32.174-iV Nr 

(17.42) 

Finally, 

M=1.60f    1    N 

t = 30.915- 2 
M=0.9 \      x ) 

AM (17.43) 

The results of the time integration as a function of ambient temperature are shown in 
Figure 17.26. Also shown is a second thrust model, which is a 25,000-pound model with the 
same Vi-percent lapse rate beginning at 288.15 degrees K. 
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Time to Accelerate: 30,000 ft: Weight=22,500 lbs 

250 

-10 -5 0 5 10 
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Figure 17.26 Acceleration Time - Variation with Thrust 

17.15 Sustained Turn 

A sustained (or stabilized) turn is a constant altitude, constant speed turn. In order to 
achieve that condition, thrust must equal drag. 

F„=Fg- cos(a + i,)-Ft=D (17.44) 

For this example, we will ignore the angle-of-attack component and simplify to: 

Fn=D (17.45) 

We will make a similar simplification in the normal axis (perpendicular to the velocity 
vector). 

L = N-W. (17.46) 

Knowing thrust, compute drag, then drag coefficient. From drag coefficient, find lift 
coefficient, then lift, then solve for Nz. Since we do not usually have lift coefficient as a 
function of drag coefficient, an iteration scheme is required. Here are the basics of what was 
used in this example. 

We know drag coefficient from the following: 
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• 

_ 0.000675 -Fn 
D~    S-M2-S 

(17.47) 

Begin at 1-g, but use some positive drag polar slope for the first iteration, such as 0.10. 
This is necessary since the slope of the drag polar at 1-g may be zero or even negative. 

AC, 
'AC,2 

j i _   \~Dnew      ^Dold ) (17.48) 

For the first iteration, the old values of CL and CD are the 1-g values. We always know 

the new CD. It is the one above, computed from the available net thrust. Solve for CLnew from 
the above equation. After the first iteration, compute values for the slope numerically by 
choosing some small change in lift coefficient and computing the slope. For instance, we 
used 0.01. 

ACr 

'AC/ 
CD(/(Q+0.01))-CP(/(CL)) 

(Q+0.01)2-CL
2 

(17.49) 

Then, just simply repeat the process a few times until the change in CL is sufficiently 

small (say < 0.001) between steps. Now that you know lift coefficient, then just compute iVz. 
The results for maximum thrust are shown in Figure 17.27. 

Nz versus Mach Number (Wt= 22,500 lbs) 
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Figure 17.27 Maximum Thrust - Sustained Turn Normal Load Factor 
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The constraints imposed on this turn problem were the following. _ 

a-    CL < CLmdX, ™ 

b.   Qmax=1.50, 

c-    Nz < Ntam, and 

d.   N      =9.0. zmax 
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18.0 CRUISE FUEL FLOW MODELING 

This section had contained a regression analysis model of fuel flow and thrust extracted 
from the AFFTC C-17A (Figure 18.1) testing report titled, "0-17 Cruise Configuration 
Performance Evaluation" (Reference 18.1), but since this handbook is intended for public 
viewing, it was necessary to delete the scales on the data plots shown in this section. 

:% 

Figure 18.1 C-17A Aircraft 

W. 
i?F = 661.48-M 

W, 

/MO. 

(18.1) 

Solving for corrected fuel flow. 

W   = VYfC 
W, 

\sJe) 

w. 
= 661.48-M- 

RF 
(18.2) 

The lift coefficient was computed using the curve fits for angle of attack (a) and gross 
thrust (F,) provided in the report (Reference 18.1). Pressure ratio (<5) formulas used are 

found in the altitude section. 

CL= 0.000675- 
W.    F. 
—-—-sin(a) 
8     8 

(18.3) 

Since the data presented in the report (Reference 18.1) were corrected to a reference 
Reynolds number, an estimate of drag at test and reference conditions was computed. Instead 
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of the usual 'standardization' we are essentially 'unstandardizing' the drag data. We are 
going from a reference condition to a standard condition. The formulas used are those 
presented in the lift and drag section. 

The reference wing area (5 ) and the wetted area (Swel) are as follows: 

a. 5=3,800. ft2, and 

b. Swe, = 19,075. ft2. 

Skin friction drag relationships are as follows: 

C7= 0.455/log10(7?A0 2.58 (18.4) 

CfC=Cf/(l + 0.144 -Ml) 2 N0.65 

'fC       ^f (18.5) 

C Df  ~     s       ^/C (18.6) 

The assumption was made that the characteristic length used was the mean aerodynamic 
chord (MAC). That value is as follows: 

/ = MAC = 25.794 feet. 

To perform a curve fit of the fuel flow data, we will remove the skin friction drag 
correction from the thrust data. The standard day drag coefficient (CDs) was computed from 
the drag polar curve fit formulas in the report. The drag coefficient formula in the report was 
referenced to a Reynolds number of 1,800,000 per foot. The test day drag coefficient (CDt) 
was computed as follows: 

*~D,        ^Ds + \^Dfi      ^Dfs) (18.7) 

The standard (or reference) skin friction drag coefficient is based upon the standard Reynolds 
number per foot and the characteristic length. Inserting these numbers into equation 18.4: 

Cfi = 0.455 / log10 (1,800,000 • 25.794f   = 0.00238 (18.8) 

From a formula defined in the lift and drag section, 

RNI 
(r+no) (<n 

v*'y 398.15 

RN = l.l0l-l06-MRNI-l 

(18.9) 
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• 

Finally, the test values of corrected thrust are computed. Note a distinction between test 
values and test day, since the data points are still at standard day temperatures. We will take 
out the correction to a reference Reynolds number. 

[FJS\ = CD'-M 

0.000675 
(18.10) 

18.1 Thrust Specific Fuel Consumption 

Next, we compute the thrust specific fuel consumption corrected as follows: 

TSFCC=TSFC/JÖ = 
wf/{sS) 

[FJS\ 
(18.11) 

The following (Figure 18.2) is a plot of the 141 data points being analyzed. Even though 
the plot has no scales, it will however give you some interesting information. The maximum 

value of the dependent variable (tsfc/yjd) is 11.2 percent greater than the mean and the 
minimum value if 17.9 percent less than the mean. The 1-sigma about the mean is 
7.0 percent. This is a very large variation, however, it should be noted that range factor had a 
14.3-percent variation about its mean (more than twice as much - percentage wise). The use 
of these 'generalizing' parameters is a good first step in modeling your data. That is 
analogous to drag where we use lift and drag coefficients to aid in modeling. We still wish to 
reduce this variation, so we proceed to curve fit the data using multiple regression. 

TSFC/sqrt(theta) versus Fn/delta 
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Figure 18.2 Thrust Specific Fuel Consumption 
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18.2 Multiple Regression 

Now, we will strive to develop an equation that fits the data presented in Figure 18.2. The 
simplest possible equation is a constant. We will use Reynolds number index (RNI) as an 
altitude parameter. In general, the formula will be as follows: 

TSFC/yfe=f((Fn/S),M,RNl) (18.12) 

For ease of representation, we will make the following variable name changes: 

a. Y = TSFC/J0, 

b. Xl = Fn/ö, 

c. X2 = M,and 

d. X3 = RNI. 

Then, equivalently: 

• 

Y = f(Xl,X2,X3) (18.13) 

The author used MS Excel™ to evaluate the data. Excel has matrix operators, however it 
was necessary to develop a multiple regression method for use with Excel. For those who do 
not have a multiple regression program available, the following is the formulation for 
multiple regression. 

The general case for linear multiple regression: 

Y = a0+arXl+a2-X2+--- + am-Xn 

The coefficients are solved by the following: 

N IX, IX, 
5X,    S*./    2*w-*u 

m __ 

(18.14) 

XJ*m'' 2J*«.' ■ *i.' 2J*m.'' *2,i 

2J xm,i 
-i 

[   I>   1 
ZJX-U "Xm,i IX, ^ 
2^^2,i 'Xmi IX,-y, 

IX,2 _ IX.<^_ 

(18.15) 

where: 

N = number of data points. 

The above general curve fit formula was developed by minimizing the sum of the squares 
of the residual errors (55). The formula for 55 is as follows: 
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• 
SS = X(^)2 (18-16) 

where: 

Y = the curve fit equation. 

There are a number of ways to evaluate the quality of a curve fit. We will look at the 
standard deviation. 

o=JSS/(N-l) (18.17) 

A percentage standard deviation will be calculated, 

%a = (a/Y) -100 (18.18) 

where: 

Y = the mean value of the independent variable. 

Here are the results of the curve fits: 

a. Y = a0 %<7 = 7.00%, 

b. Y = a0+ar XI %a =5.30%, and 

c. Y=a0+al-Xl + a2-Xf %a = 5.16%. 

At this point, we should pause to examine the residual errors rather than just blindly 
adding additional terms to the equation. From Figure 18.3, we can see some apparent 
additional Mach number and Reynolds number effects. So far, we have only reduced the 
1-sigma about the mean from 7.0 percent to 5.16 percent. This is a disappointing result; 
however, we suspect there may be a substantial altitude and Mach number effect. The 
parameter we will plot is the percentage error as follows: 

%Error = (Y-fy 
100 

The Y used will be from the last curve fit (equation 18.18). 

(18.19) 
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% Error in TSFC/sqrt(theta) Versus Mach Number 
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Figure 18.3 Percentage Error in Thrust Specific Fuel Consumption 

We can now proceed to add additional terms to our model. 

a. Y = a0+arXl + a2-Xl2+a3-X2   %a = 1.231%, 

b. Y = a0+arXl + a2-Xl2+ai-X2 + a4-X3 %a = 1.230%, 

c. Y = a0+ai-Xl + a2-Xl2+ai-X2 + a4-X3 + a5-X22 %a = 1.229%, and 

d. Y=a0+al-Xl + a2-Xl2+a}-X2 + a4-X3 + a5-X22 + a6-X32 %a = 1.224%. 

At this point, no significant additional gains are evident. Actually, we did not make 
significant gains past equation (a) but proceeded just to illustrate what additional gains were 
made. This particular data set was not a very good one to develop a complete fuel flow 
model. There were no data collected below 6,000 feet pressure altitude, for instance. Only 
stabilized cruise data points were used. Throttle settings above and below that required for 
stabilized cruise should be included in any fuel flow model. 

The C-17A project (Reference 18.1) illustrates that too much time was expended 
collecting cruise data. Enormous quantities of flight time were expended to collect these 
relatively few cruise data points. The stabilization criterion was much too stringent. To quote 
from the report (Reference 18.1), "it was not uncommon for a single cruise point to take 20 
minutes to complete." They required "not less than 2.5 minutes of stabilized data" on each 
data point. There is no reason for that with the advent of INS and GPS measurements to give 
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instantaneous acceleration data. Once some reasonable stabilization is achieved, a few 
seconds of data is all that is required. With the addition of a series of accelerations and 
decelerations at partial thrust, a much more complete fuel flow model could have been 
obtained at a much lower cost in terms of flight time. 

To present just a few of the data points we choose to present those that illustrate an 
altitude effect. The data points are all from the aforementioned C-17 Cruise Performance 
report (Reference 18.1). Range factor variation with altitude is shown in Figure 18.4. 

Range Factor versus Altitude 
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Figure 18.4 Range Factor Variation with Altitude 

The degradation factor of range factor with altitude was 0.20 percent per 1,000 feet at 
1,100,000 pounds Wtl8 and 0.26 percent per 1,000 feet at 1,800,000 pounds Wt 18 . This is 
more than a factor of two less than the degradation factor of older generation aircraft such as 
B-52 aircraft. 

SECTION 18.0 REFERENCE 

18.1    Weisenseel, Charles W. and Chester Gong, C-17 Cruise Configuration Performance 
Evaluation, AFFTC-TR-93-23, AFFTC, Edwards AFB, California, December 1993. 
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19.0 EQUATIONS AND CONSTANTS 

This section is a summary of the primary equations and constants that were derived and 
used in this handbook. 

19.1 Equations 

Acceleration factor AF = 1 + 
("^(dV. 

ySo j dH 

Aircraft geometric height (Edwards flyby tower) bhtower =31.422 • (grid reading) 

Aircraft pressure altitude (flyby tower data) HCa/c = H        + Ahl0Wl,r 
(T   \ 

T 

Alpha transformation body to flight path     [a] = 

Angle of attack a = tan-1 (Vbz /Vbx) 

Angle of attack (zero bank) a-Q-y 

Angle of sideslip ß = sin-1 (Vby/Vt) 

cos a    0   since 

0        1       0 

-sina   0   cosa 

Aspect ratio AR = b 

Beta transformation body to flight path [ß] - 

cos ß     sin ß    0 

-sin/3   cosjS    0 

0 0       1 

Body axis airspeeds 

K bx 

"by 

'bz 

= MT-[of ivf ■ 
'tN 

rtE 

ID 

Body axis pitch rate q = 6 ■ cos 0 + iff ■ cos 6 • sin (j) 

Body axis roll rate p = 0 -yjr ■ sin 6 

Body axis yaw rate r = \jjr- cos 6 ■ cos (j) - 6 • sin <p 
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• 
Calibrated airspeed (Vc < aSL ) ^c/   = 1 + 0.2- 

(v / >^ 
3.5 

Calibrated airspeed (Vc < aSL) Vc = aSL ■ l<5 1c, + 1 
\d/3.5) 

SL 
-1 

K   ,       ^ j 

,            sa  /      166.9216■(Vr/a,r)
1 

Calibrated airspeed (Vc > aSL) 
qyp   = v CJ  5L/5 -1 

7-(Vr
c/fla)"-l 

Calibrated airspeed (Vc > aSL ) Vc = aSL ■ 0.881285 • 
( „        \ 

Qc + 1 
1 SL \     ÖL- J 

2.5 

Cloverleaf method solves this equation (Vti + AV, f = (V N + VwN )2 + (V £ + VwE) 

Compressible dynamic pressure (M < l) 1yp = (l + 0.2 • M2V -1 

Compressible dynamic pressure (M > 1) ^c/l = 166.9216 M\ 
(7-M2-l)2'5 

-1 

Corrected net thrust F„l d 

W, 
Corrected thrust specific fuel consumption tsfc I yfd = ^= ■■ 

F-4Ö (F 
(s.Je) 

Density altitude Hd = 
'4.2559/ 

/ 6.87559^-6 

Density ratio a = \ e 

Drag (test day) Dt=Fnt-Fex 
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Drag coefficient CD- Dl[q • S ) 

Drag coefficient CD = 0.00067506 • D/(<5 -M2-S) 
• 

Drag coefficient due to skin friction CD = Cf 

{  *   ) 

Drag Model (given M)CD= CDmin + K\ ■ (CL - CLmm f + K2-(CL- Cu f 

K2 = 0 when CL < CLb 

Earth axis winds • 

V. wN 

V. wE 

wD 

= MWMM[j8] 
X v 

0 —. VJ 
0 K\ 

Elliptic Wing Theory (M «l)CL = 
2-71 

1 + - 

C2 
— -—k— 

'■■    Tt-AR 

AR 

Energy altitude HE=H + ' 
(2'«.) 

PE    KE 
Energy per unit weight EIW. H = H + 

W.      W. (2-So) 

Equivalent airspeed Ve = \[G ■ Vt 

Excess thrust Fex = Nx-W: 

Excess thrust Fex = [F ■ cos(a + il)-Fe]-D 

Excess thrust test Fex = Nx-Wt 

Flight path accelerations A„ 

cos/3 sinß    0 cos a 0   sin a \\x 

-sin/3 cosi3   0 0 1      0 \y 

0 0       1 -sin a 0   cos a k 
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Flight path accelerations 

Flight path angle y = sin ' 

Flight path load factors 

=[ßi -t«rwMivf • 

N A*f/go 

tf, 
.=. Ayf/8o 

kJ ~AJ§0_ 

Flight path to earth axis transform 

\'gN   '   *wN ) 

ygD "*" *wD ) 

#He]-M-MW 
v, 
0 

0 

Fuel flow Wf = — 
, dt , 

Geopotential altitude g -dh- g0- dH 

Geopotential vs. geometric altitude H 
(r0+h) 

Gross thrust Fg =(Wa +Wf)-Vexit + Pexi, ■ Ae: 

Groundspeed east VgE = Vg ■ sin(crg) 

Groundspeed north VgN = Vg • cos(cg) 

Heading matrix (rotate about the z axis (or yaw)) [l/A ] = 

COSI/A   -siny/-   0 

sini//-     COSI/A    0 

0 0        1 

Heating value corrected fuel flow Wft = Wft 

Ideal gas equation of state P = p-R-T 

rLHVtesl\ 

18,400 
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Incompressible dynamic pressure q = 0.5 • p • V," = 0.5 ■ pSL ■ Ve' 

Inverse square gravity law g = g0 

ro 
(r0 + h) 

Kinetic energy KE-0.5 W, 
So y 

■v: 

Laminar skin friction empirical formula Cf = 
1.328 

V^V 

Lateral load factor Ny = Ay I g0 

Lift coefficient CL=Ll(q-S) 

Lift coefficient CL = 0.00067506• L/(<5 -M2-S) 

Longitudinal load factor Nx = H/Vt + Vt /g0 

Longitudinal load factor^ = Axl g0 

Mach number M = 
a 

Mach number (M > l) M = 0.881285 ■ yP+i 
s2.5 

{ F-«1]) 

Mach number (M < l) M - 5-\\qyP+\ 

Mach number from equivalent airspeed M 

\[V3.5] 

V. 

(aSL-J8) 

Normal load factor Nz = -Az I g0 

Normal load factor in climb N = cos y + v.-r 
So 
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Normal load factor in turn (constant altitude, zero wind) Nz = .\l + 
(V.      ^ 

\8°      J 

Normal load factor in turn (constant altitude, zero wind) N - \ 

Normal load factor times weight Nz-Wt=L + Fg- sin(a + /,) 

cos</> 

Pitch matrix (rotate about y-axis) [0] = 

cos 0     0   sin 0 

0        1      0 

-sin0   0   cos0 

Potential energy PE = W,-H 

Pressure altitude above 36,089 feet Hc = 36089.24 - 20805.84 • In (<% 22336) 

Pressure altitude below 36,089 feet     H = 
l-(<5)' 

(1/5.2559) ' 

(6.87559E-6) 

Pressure ratio <5 = v 
1 SL 

~ .       , „,.~™,.        o       r, ~~^^s      H4.806343£-5l(Hc-36089.24)} 
Pressure ratio above 36,089 feet 8 = 0.22336 • eu n ;' 

Pressure ratio below 36,089 feet 8 = (l - 6.87559E - 6 • H f 
x5.2559 

Ram drag Fr =Wa -V, + Pt2 ■ A, 

Range (approximate) R = RF ■ In 
(W } "ts 

w 

v 
Range factor RF = -*- • W; = SR ■ W. 

W' 

Range for constant altitude (approximate) R ■ 
661.48-Af W, 

^    J w 

(8-Je) 
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Range for constant altitude (approximate) R = -RF • j 
r dt 

W 

w„ 661.48-M-l W* 
Range for cruise at constant altitude R = - f 

S     dt 

(S-S) 

w, 

Range for cruise at constant altitude R = f V, • dt 

Reynolds number RN = 

Reynolds number RN = (7.10 IE + 6) • M ■ I ■ RNI 

Reynolds number index RNI = 
(7 + 110) 

398.15 

Roll matrix (rotate about x-axis) [<j>] 

1      0 0 

Sideslip matrix [ß] 

0   cos0   -sin0 

0   sin0     cos0 

cos/3   -sin/J   0 

sin ß     cos ß    0 

0 0        1 

Slender Body Theory (M = l) CL = — ■ AR ■ a    CDL= ^^ 
n-AR 

Specific excess power Ps = HE - H + V. 
So W N -V " x     r t 

Specific range SR = —— 

Speed of sound a = ^(y-R-T) = 661.48 • # 
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ö \4.2559 
ät^ Standard day density ratio a = — = (l-6.87559E-6-Hc) 

Standard temperature above 36,089 feet T0 = 216.65 °K 

Standard temperature below 36,089 feet T = 288.15 -1.9812E -3- Hc 

Standardized drag Ds = Dt + (D's - D') 

Standardized excess thrust FeXs = FeXi + (Fns -Ds)- (Fnl -Dt) 

Standardized fuel flow Wfi = Wft + (W^ -W'ft ) 

Standardized net thrust Fm - Fm + (Fn'. - F'nt) 

Takeoff excess thrust Fex + fj, ■ (W, • cos^) -L) = Fn-D-Wr sin(0m) 

Temperature correction to pressure altitude change A/z =   T/       . /\Jic 
\ / •* STD J 

,T       \T 
Temperature ratio 0 = 

Theoretical tanker downwash angle £( 

T„     V 288.15 

o (n-AR,) 

4a                             JM2 -1 
Thin Wing Theory (M> 1)C, =   ■ CD =a-CL=- C, 

VM2-1 L 4 

F -V 
Thrust horsepower THP = ——'- (where Vt has units of feet/sec) 

Thrust horsepower (user provided r} and n) THP = rj ■ (a" • BHP) 

Total energy E - KE + PE 

Total temperature Tt = T ■ (l + 0.2 • M2) 

True airspeed V, = >/(vfa
2+V+^2) 
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True airspeed down VtD = V D + Vm gD   '   ' wD 

True airspeed east VtE = V E + Vv gE wE 

True airspeed magnitude Vt = J[VlN
2 + VlE

2 + VtD
2) 

True airspeed north VN - V N + Vv IN gN       * wN 

True airspeed vector V, = Vg + Vw 

True airspeed vector [ß]T-[af.[t]T.[e]T.[v]T.. 
v. IN 

'tE 

v. ID 

Turbulent skin friction empirical formula C 
0.455 

f    (logl0 RN)25& 

Turn radius (constant altitude, zero wind)/? = • V 

80 ■ $»R 
Turn radius (constant altitude, zero wind)<j   =  '/„ 

Velocity rate corrections 
vj n, 
\ ■ =. 

\ ■+ 

w\ K j 

0 r -q ['*] 
-r 0 p ', 

q -P 0 kJ 
Weight Wt =m-g0 
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• 

19.2 Constants 

Conversion feet to meters = multiply feet by 0.3048 (exactly) 

Conversion knots to feet/sec = multiply knots by 1.68781 

Nautical mile (NM ) = 1,852 meters 
= 6,076.1155 feet 

Reference gravity (g0) = 32.17405 feet/sec2 

Reference radius of the earth (r0) (from the 1976 U.S. Standard Atmosphere) = 20,855,553 feet 

Sea level standard temperature (TSL) = 288.15 °K 

Speed of sound at sea level standard day (aSL) = 1,116.4505 feet/sec 

= 661.4788 knots 

Standard sea level pressure (PSL) = 101,325 pascals (newtons/m2) 

= 2,116.2166 pounds/feet2 

Temperature in second segment of standard atmosphere (T0) = 216.65 °K 

Universal gas constant (R) 3,089.8136 feet2/(sec2°K) 

Viscosity at sea level {pLSL) = 3.7373-10"7 slugs/(feet sec) 
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APPENDIX A 

AVERAGE WINDS AND TEMPERATURES FOR 
THE AIR FORCE FLIGHT TEST CENTER 
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AVERAGE WINDS AND TEMPERATURES FOR 
THE AIR FORCE FLIGHT TEST CENTER 

The following average wind and temperature data were provided courtesy of the Edwards 
AFB weather squadron. The data represents average values obtained on a daily basis over a 
period of more than 30 years (1950s through 1980s). Figures Al through A5 represent 
average temperature deviation data versus month for 10, 20, 30, 40, and 50,000 feet pressure 
altitude, respectively. 

Temperature from Standard: Pressure Altitude = 10,000 Feet; AFFTC Average 
Data; Temperature Standard = 268.34 deg K 

- - 
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■g 
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E 
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a 
E 
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Figure Al Delta Temperature at 10,000 Feet 

Temperature from Standard: Pressure Altitude = 20,000 Feet; Average AFFTC 
Data; Standard Temperature = 248.53 deg K 
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Figure A2 Delta Temperature at 20,000 Feet 
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Temperature From Standard: Pressure Altitude = 30,000 Feet; Average AFFTC 

Data; Temperature Standard = 228.71 Deg K 
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Figure A3 Delta Temperature at 30,000 Feet 

Temperature from Standard: Pressure Altitude = 40,000 Feet: AFFTC average 

data; Standard Temperature = 216.65 deg K 
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Figure A4 Delta Temperature at 40,000 Feet 
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Temperature from Standard: Pressure Altitude = 50,000 Feet: AFFTC Average 

data; Standard Temperature = 216.65 deg K 

Month 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

■i'^-l     i 

-ff XT ^ "      •" 

i 

L—I 

! 
L™J 

Figure A5 Delta Temperature at 50,000 Feet 

Figures A6 and A7 present average windspeed and direction versus month. They are 
presented at three different ambient pressure levels. These are in terms of pressures in 
millibar (mb). The following are the corresponding pressure altitudes: 

1. 200 mb = 38,661 feet, 

2. 400 mb = 23,574 feet, and 

3. 600 mb = 13,801 feet. 

Wind Direction versus Month 

□ P = 200 mb 

gP = 400 mb 

E8P = 600 mb 

Figure A6 Wind Direction 
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Windspeed versus Month 

□ P = 200 mb 

BP = 400mb 

J3P = 600mb 

Figure A7 Windspeed 

On a given day, the geometric height will not be equal to the pressure altitude. Figure A8 
illustrates this difference for an average day above Edwards AFB. As can be seen, the 
geometric height (on average) is always greater than the pressure altitude. This is due to the 
fact (again on average) that the atmospheric temperature is greater than standard day for all 
months of the year through 30,000 feet. 

Geometric Height- Pressure Altitude versus Month 

□ P » 200 mb 

0P 400 mb 

0P 600 mb 

Figure A8 Geometric Height minus Pressure Altitude 
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APPENDIXE 

WEATHER TIME HISTORIES 
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WEATHER TIME HISTORIES 

The following charts represent time histories of data for September through October 
1998. On the charts, the terminology flight level (FL) is used. Flight level is pressure altitude 
in feet divided by 100. Figure Bl shows the variation of delta temperature above standard 
versus date. 

Delta Temperature versus Date 

22-Sep 26-Sep 30-Sep 4-Oct 8-Oct 12-Oct 

Date (1998) 

16-Oct 20-Oct 24-Oct 

Note: FL = HC/100 

Figure B1 Delta Temperature Time History 

Figures B2 and B3 illustrate the variation in windspeed and direction versus date at flight 
levels of 100, 200, 300 and 400, respectively. 
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Wind Direction versus Date 

o   300 

■D   150 -- 

22-Scp 26-Sep 30-Sep 4-Oct 8-0ct 12-0ct 16-Oct 20-Oct 24-Oct 

Date (199S) 

Figure B2 Wind Direction Time History 

Wind Speed versus Date 

_     80    — 

22-Sep 26-Sep 30-Sep 4-Ocl 8-Ocl 12-Oct 16-Oct 20-Oct 24-Oct 

Date (1998) 

Figure B3 Windspeed Time History 
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APPENDIX C 

AVERAGE SURFACE WEATHER FOR 
THE AIR FORCE FLIGHT TEST CENTER 
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• 

AVERAGE SURFACE WEATHER FOR 
THE AIR FORCE FLIGHT TEST CENTER 

Figure Cl shows the average surface temperature for the Air Force Right Test Center. 

• 

Average Surface Temperatures 

100 

90 

80 

70 

s      60 

£      50 

40 -- 

30 

20 

I" ] i f 
I 

□ Maximum 

^Minimum 

Jan        Feb        Mar       Apr       May       Jun        Jul        Aug       Sep        Oct       Nov       Dec 

Month 

Figure Cl Average Maximum and Minimum Surface Temperatures 
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 

Abbreviation Definition Unil 

ADC air data computer — 

AF acceleration factor — 

AFB Air Force Base — 

AFFTC Air Force Flight Test Center — 

AGL above ground level ft 

AIAA American Institute of Aeronautics and Astronautics — 

AOA angle of attack deg 

AOSS angle of sideslip deg 

A acceleration ft/sec2 

AF acceleration factor — 

AR aspect ratio dimensionless 

AR, aspect ratio of tanker dimensionless 

\ acceleration in the down direction ft/sec2 

\ acceleration in the east direction ft/sec2 

A* acceleration in the north direction ft/sec2 

K X axis body acceleration ft/sec2 

X Y-axis body acceleration ft/sec2 

\z 
Z-axis body acceleration ft/sec2 

4 flight path longitudinal acceleration ft/sec2 

K longitudinal acceleration ft/sec2 

A> 
flight path lateral acceleration ft/sec2 

A
y 

lateral acceleration ft/sec2 

A flight path normal acceleration ft/sec2 

A normal acceleration (positive down) ft/sec2 

a acceleration ft/sec2 

a speed of sound kts 

Note: 
1. Velocity units in knots or feet per second. 
2. Time in units of seconds or hours. 
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 

Abbreviation 

a 

a 

a SL 

cm 

DGPS 

D 

D 

(Continued) 

Definition 

temperature gradient 

mean (average) acceleration 

speed of sound standard day sea level 

D, bw 

centimeters 

differential GPS 

down 

drag 

drag of the aircraft body and wind 

Unit 

°K/l,000ft 

ft/sec2 

1116.45 ft/sec; 
661.48 kts 

a angle of attack deg 

^A/C 
angle of attack from the aircraft system deg 

aiNS 
angle of attack computed from INS data deg 

BAA body axis accelerometer — 

Btu British thermal unit — 

BHP brake horsepower HP 

b wing span ft 

C Celsius deg 

CD 
drag coefficient dimensionless 

C minimum drag coefficient — 

cL lift coefficient dimensionless 

cLb break lift coefficient dimensionless 

c Wmin lift coefficient at the minimum drag coefficient dimensionless 

cLt tanker lift coefficient dimensionless 

cfc 
compressible skin friction drag coefficient dimensionless 

cfi 
incompressible skin friction drag coefficient dimensionless 

eg center of gravity pet MAC 

eg center of gravity pet MAC 

lbs 

lbs 

250 



• 

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued) 

Abbreviation Definition 

A standard day drag 

D, drag of the aircraft tail 

D, test day computed drag 

D: standard day predicted drag 

D; test day predicted drag 

d distance 

dV, change in true airspeed 

dWt 
weight increment 

dh change in altitude 

dt time increment 

dB decibels 

deg degrees (either temperature or angle) 

E east 

EGI embedded GPS/INS 

E east 

E energy 

F Fahrenheit 

FL flight level 

FPA flight path accelerometer 

F Fahrenheit 

F* summation parameter to be minimized 

Fe 
propulsive drag 

Fex 
excess thrust 

F
g 

gross thrust 

Fn 
net thrust 

F„, referred net thrust 

Unit 

lbs 

lbs 

lbs 

lbs 

lbs 

ft 

lbs 

ft 

sec 

ft-lbs 

deg 

(ft/100) 

deg 

lbs 

lbs 

lbs 

lbs 

lbs 
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued) 

Abbreviation Definition 

^0 
net thrust at zero speed 

FJ8 corrected net thrust 

FJ8,o referred net thrust 

FJS,2 
referred (inlet) net thrust 

F„ standard day net thrust 

K standard day predicted net thrust 

F 
nslope 

slope of thrust versus Mach 

F« test day net thrust 

K test day predicted net thrust 

Fr 
ram drag 

Fm 
runway resistance force 

F 1 Isfcr degradation factor for tsfcr 

Fx 
nose gear load 

F2 
main gear load 

ft foot 

GPS Global Positioning System 

8 acceleration of gravity 

8o reference acceleration due to gravity 

HUD head-up display 

Hg mercury 

Hz Hertz 

H geopotential altitude 

H rate of change of geopotential height 

Hc 
pressure altitude 

HE energy altitude 

Unit 

lbs 

lbs 

lbs 

lbs 

lbs 

lbs 

lbs 

lbs 

lbs 

lbs 

lbs 

lbs 

lbs 

ft/sec2 

32.17405 ft/sec2 

cycles per second 

ft 

ft/sec 

ft 

ft 

• 
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued) 

Abbreviation 

h 

h 

h nAGL 

K 
ICAO 

INS 

In 

IHP 

i 

h 

j 

K 

Kft 

K 

KE 

Kl 

K2 

kg 

km 

kt 

LHV 

L 

h 

U 
I 

Definition 

density altitude 

base geopotential altitude 

tapeline (or geometric) altitude 

rate of change of geometric height 

height above ground level 

height of wing above ground 

International Civil Aviation Organization 

inertial navigation system 

inches 

indicated horsepower 

point number 

thrust incidence angle 

iteration number 

kelvin 

thousand ft 

Kelvin 

kinetic energy 

parabolic coefficient of the drag polar 

nonlinear coefficient of the drag polar 

kilogram 

kilometers 

knot(s) 

lower heating value 

lift 

lift of the wing 

lift of the tail 

characteristic    length    (in    Reynolds    number 
formula) 

Unit 

ft 

ft 

ft 

ft/sec 

ft 

ft 

HP 

deg 

1,000 ft 

degK 

ft-lbs 

dimensionless 

dimensionless 

Btu 

lbs 

lbs 

lbs 

ft 
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued) 

Abbreviation Definition 

K longitudinal (x) distance from eg 

h lateral (y) distance from eg 

*„ moment of inertia about the y-body axis 

h normal (z) distance from eg 

MAC mean aerodynamic chord 

MAX maximum rated thrust 

METO maximum except for takeoff 

MIL Military rated thrust 

M Mach number 

M moment 

m mass 

m meter 

mbar millibar 

N north 

N/A not applicable 

NACA National Advisory Committee for Aeronautics 

NASA National Aeronautics and Space Administration 

NBIU Nose Boom Instrumentation Unit 

NTPS National Test Pilot School 

n/d nondimensional 

nam nautical air miles 

nm nautical mile 

N north 

N number of points in multiple regression 

Nx 
longitudinal load factor 

iV„ lateral load factor 

Unit 

ft 

ft 

ft-lbs/sec 

ft 

dimensionless 

ft-lb 

slugs 

g's 

g's 

normal load factor (positive up) 

propeller efficiency 

gs 

dimensionless 
• 
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued) 

Abbreviation Definition Unit 

n temperature probe recovery factor dimensionless 

V, inlet pressure recovery factor dimensionless 

P ambient (static) pressure lbs/ft2 

PE potential energy ft-lbs 

PSL 
ambient pressure sea level 2,116.2166 lbs/ft2 

Pa 
ambient pressure lbs/ft2 

Ps 
specific excess power ft/sec 

P, total pressure lbs/ft2 

/ total pressure behind a shock lbs/ft2 

p 

pph 

1 

q 

<lc 

R 

RMS 

R 

R 

R 

RIC 

RF 

RN 

RNI 

r 

ro 

roll rate 

pounds per hour 

pitch rate 

incompressible dynamic pressure 

compressible dynamic pressure 

radius of a pullup 

root mean square 

radius of turn or pullup 

universal gas constant for air 

range 

rate of change of pressure altitude 

range factor 

Reynolds number 

Reynolds number index 

yaw rate 

reference radius of the earth 

south 

deg/sec 

deg/sec 

lbs/ft2 

lbs/ft2 

ft 

ft 

3,089.8136 ft2/sec20K 

nam 

ft/sec 

nm 

dimensionless 

dimensionless 

deg/sec 

20,855,553 ft 
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued) 

Abbreviation Definition 

SFTE Society of Flight Test Engineers 

STOL short takeoff and landing 

5 reference wing area 

SR specific range 

SS sum of squares 

S,o referred pressure ratio 

S,2 referred inlet pressure ratio 

s,2 
total pressure ratio 

s.... wetted area 
wet 

sec 

TPS 

T 

THP 

TSFC 

T lSL 

seconds 

Test Pilot School 

temperature 

thrust horsepower 

thrust specific fuel consumption 

sea level standard temperature 

ambient temperature (T = interchangeable 
symbology) 

Tas 
ambient temperature 

T, total temperature 

T base temperature 

t time 

tsfc thrust specific fuel consumption 

tsfcc corrected thrust specific fuel consumption 

tsfcr referred thrust specific fuel consumption 

USAF United States Air Force 

ucg 
X-body axis true airspeed 

VSTOL vertical or short takeoff and landing 

Unit 

ft2 

nm/lbs 

dimensionless 

dimensionless 

dimensionless 

ft2 

°K 

HP 

lb/hr/lb 

288.15 °K 

°K 

°K 

°K 

°K 

sec 

lb/hr/lb 

dimensionless 

lb/hr/lb 

kts 
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued) 

Abbreviation Definition Unit 

V rate of change of inertial velocity (ft/sec)/sec 

Vc 
calibrated airspeed kts 

vD 
down (z) inertial speed kts 

vE east (y) inertial (ground) speed kts 

vN north (x) inertial speed kts 

y vbx 
longitudinal (x-body) axis airspeed kts 

\ 
lateral (y-body) axis airspeed kts 

' v* vertical (z-body) axis airspeed kts 

Vcg 

Y-body axis true airspeed kts 

ve equivalent airspeed kts 

• 

yg 

ys 

groundspeed (usually horizontal component of 
vector) 

groundspeed vector 

kts 

kts 

AVt correction to be added to true airspeed kts 

v, rate of change of true airspeed ft/sec2 

v, true airspeed kts 

vtD true airspeed down kts 

vlE 
true airspeed east kts 

vtN true airspeed north kts 

v, true airspeed vector kts 

vti indicated true airspeed kts 

vv vertical component of groundspeed vector kts 

vw windspeed ft/sec 

yw 
windspeed vector kts 

• 

i 
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued) 

Abbreviation Definition 

v YwD 
down (z) windspeed 

*wE 
east (y) windspeed 

v north (x) windspeed 

w west 

w weight of an element of air 

WZf 
zero fuel weight 

K airflow 

w« 
Z-body axis true airspeed 

wf 
fuel flow 

wf/(s-yfe) corrected fuel flow 

% 
standard day fuel flow 

% 
standard day predicted fuel flow 

w test day predicted fuel flow 

w, weight 

w,/s weight over pressure ratio 

K end gross weight 

wls 
start gross weight 

wrt with respect to 

X independent variable 

XL, distance from eg to wing center of lift 

XL, distance from eg to tail center of lift 

%Fn 
distance main gear to thrust vector 

X-GE ground effect factor 

x, distance from nose gear to eg 

Unit 

kts 

kts 

kts 

lbs 

lbs 

lbs/sec 

ft/sec2 

lbs/hr 

lbs/hr 

lbs/hr 

lbs/hr 

lbs/hr 

lbs 

lbs 

lbs 

lbs 

ft 

ft 

ft 

ft 
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Continued) 

Abbreviation Definition Unit 

X2 distance from main gear to eg ft 

X the x unknown = Vwx 
kts 

Y dependent variable — 

Y curve fit equation — 

y the y unknown = Vwy 
kts 

A height of the body axis above ground ft 

z2 height of the tail center of lift and drag 
above body axis 

ft 

z the z unknown = AVr kts 

Symbol 

a ambient density ratio dimensionless 

a standard deviation — 

• ß sideslip angle deg 

d partial derivative symbol — 

e pitch attitude deg 

e ambient temperature ratio dimensionless 

ev 
thrust vector angle deg 

em 
runway slope deg 

ot2 
total temperature ratio dimensionless 

Ö ambient pressure ratio dimensionless 

v viscosity slugs/ft sec 

v runway coefficient of friction dimensionless 

n coefficient of friction dimensionless 

VSL viscosity at sea level slugs/ft sec 

m angular rate of a pullup deg/sec 

Y flight path angle deg 

• 
Y ratio of specific heats dimensionless 
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 
(Concluded) 

Symbol 

y0 gravity at sea level (function of latitude) cm/sec2 

(j> bank angle deg 

° degrees temperature or angle 

A engine losses factor 

¥ heading angle (degrees from true north) deg 

A increment 

f integral 

<P latitude deg 

(j) roll attitude deg 

V summation 

£0 theoretical downwash angle deg 

T thrust increase time constant sec 

a track angle deg from true north 
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INDEX 

1976 U.S. Standard Atmosphere, 15,16,22, 
31,40,174,180 

Drag due to lift, 184 
Dynamic performance, 164 

Accelerating or decelerating turns, 155 
acceleration, 1 
Accelerometer 

accelerometer noise, accelerometer rate 
corrections, 58,60,72 

Aerobraking, 106, 112, 113 
Airspeed, 12,26, 30, 32, 35, 36, 37, 38, 83, 

96,100,101,104,106, 111, 113, 116,131, 
134,140,150,178,246 

Altitude 
Constant altitude, Energy altitude, 13,15, 

17,18, 23, 24, 25,26, 28,42, 55,114, 
120, 121,134, 136, 140, 141, 166, 170, 
171, 178,201,202,219,236, 246, 251 

Ambient pressure, 82 
Angle of attack, 67 
Atmosphere, 17, 23,40,245 

B 
Braking 

braking coefficient, braking forces, 3, 103, 
106,113 

Butterworth filter 
Four-pole Butterworth filter, 61,63 

EGI, 114,160,179 
Energy 

kinetic energy, potential energy, 140 
Equivalent airspeed, 37 
Euler angles, 66,73,160 
Excess thrust, 3,57,181, 182 

Fuel flow, 4,180,182 

Geometric altitude, 13 
Geopotential altitude, 15 
GPS, 2, 26, 30,57,58,114, 115, 116, 122, 

124, 125,128, 129,132, 134,160,218, 
246,250,251 

Gravity, 173 
Groundspeed, 30, 129 

I 
INS, 26,30,58, 66,71,112, 114,135,136, 

144,146,154,156,158,160,168,172, 
176,218,245,250,251 

Instrumentation, 1, 2, 60,245,246,254 

• 

Calibrated airspeed, 30, 83 
Climb, 3, 144,145, 146,147,149,152,181, 

245 
Cruise tests, 136 

Deceleration, 3, 104,154,181 
Density, 13,26 
Density altitude, 13, 26 
Descent, 3,108,154,181 
Differential GPS, 121 
Differential pressure, 33 
Drag, 2,4,40,41,43,44,45,46, 80, 81,97, 

98,108, 111, 112,113,165,169,184,185, 
186,188,189,190,191,192,206,207 

Drag coefficient, 81 

Landing, 3, 75,76, 103, 107, 109,113,245 
Latitude, 174 
Lift, 2,4, 5,40,41,44,47, 82, 83, 84, 87,94, 

95,97,102,108,113,189,190 
Lift coefficient, 82 

M 
Mach number, 4, 30,32, 33, 35, 39,41,42, 

43,45,47,52, 80, 81, 111, 116,122,126, 
129, 135,136, 140,141,142,144,145, 
148, 151,152,155,156,164,165,167, 
168,172,175,177,178,184,185,186, 
187,188,189,191,192,194,195,197, 
200,202,203,206,209, 217,254 
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Maximum thrust, 54 
Military thrust, 208 
Minimum drag coefficient, 103 

N 
NBIU (Nose Boom Instrumentation Unit), 59 
Noise, 60 
normal load factor, 152 

Reynolds number index, 42, 194,203,216, 
255 

Skin friction drag coefficient, 188 
Split-S, 167,169,170,172 
Standard atmosphere, 85 
Standard day, 25 
Standardization, 180, 183, 245 

Pitot tube, 33 
Pressure altitude, 21 
Pressure ratio, 213 
Pullup, 170,171,172 

R 
Radar, 127, 134 
Ram drag, 50 
Range, 135,136, 139,140, 141,142,200, 

201, 202,203, 219 
Range factor, 135,140, 219 
Range mission, 141 
Rate corrections, 73 
Refueling, 176 
Reynolds number, 41,42,43, 80, 188, 194, 

195, 199,201, 202,203, 213,214, 215, 
216, 217,253, 255 

Takeoff, 3, 75, 76,78, 86, 88, 97, 98, 99,100, 
101,102,113,245,246 

Thrust, 2, 3, 6, 49, 50, 51, 53, 54, 81, 88,92, 
93,102,140, 145,148, 193,194, 195,196, 
197, 198, 204, 205, 206,207,208,210, 
211,215,218 

Thrust runs, 81 
Thrust specific fuel consumption, 193 
Total pressure, 1 
Total temperature, 1 
True airspeed, 1, 30, 32, 125, 178 
Turns, 155, 156 

w 
Weather, 117, 237, 239,241, 243 
Windspeed, 25, 30,236, 240 

• 
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AIRCRAFT PERFORMANCE FLIGHT TESTING 
CHANGE FORM 

Date: 

To: Frank Brown, 412 TWTSFT 
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195 E. Popson Ave. 
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