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Abstract 
Many systems, composed of hardware, software, and combinations thereof, function in 

sequential stages: each subsystem (stage) must operate correctly in order for the next to be 

challenged. All stages, including the interfaces between major function subsystems, are 

subject to design defects, which if actuated cause that stage, and hence that test, to fail. We 

provide models that evaluate the "testing as learning and improving" paradigm: the models 

describe the effect of end-to-end or linked-stage testing, and defect identification and 

removal, on field or delivered-system reliability. A major concern is the evaluation of 

operating characteristics of such test designs as the "first run of r total system successes (e.g. 

3)" stopping rule. The models include Bayesian formulations in which the unknown number 

of defects in each subsystem at any stage during testing is a random variable with known 

distribution. The models and methods of this paper provide test planners with the answers to 

"what if questions concerning the likely future(s) of entire systems placed on test. They can 

be used to address test resource requirements. 



1. Introduction and Model Formulation 

This paper provides mathematical models of reliability growth by design defect or 

failure-mode identification and removal in system reliability testing and management, for 

instance during military Test and Evaluation (see Seglie, 1998). The models demonstrate 

how testing can promote early learning about, and rectification of, system defects in 

design, manufacturing, and operations. In the military and elsewhere, such testing should, 

and does, begin with engineering-level Developmental Testing (DT), initially of 

subsystems, and terminates with end-to-end Operational Testing (OT). At present, 

attempts are being made to compress and combine DT and OT so as to shorten 

acquisition time and decrease its expense. The models proposed are intended to provide 

insight to modern test planners. Software that exercises the models is available from the 

authors. 

The model structure to be studied is the following. A system, S, is made up of S 

(S> 1) subsystems or stages, each of which must function on demand, in sequence, for 

perfect operation; failure of any subsystem, especially to interact with another subsystem 

(interaction can also be viewed as a stage), means total system failure. Demands for 

subsystem, or inter-subsystem, function occur in order, stagewise; s= 1, 2, ...,S. If a 

demand at an intermediate stage/subsystem, s, succeeds, i.e. any faults do not activate, a 

demand is placed on stage/subsystem s + 1; if all such demands succeed, the entire system 

operates successfully on that particular test or usage occasion (it may not again if 

remaining faults activate). That is, a system following current design and realization must 

function "end-to-end" in order to operate reliably — "suitably" in military parlance. This 

"success" does not mean that the particular system mission is necessarily overall 

successful or "effective" (a reliable weapon may not accomplish its mission: it may miss, 

or hit a wrong target). Such may also be, in part, reliability issues, but attributable to 



C4ISR errors. Note, however, that the design defect removals we aim for may include 

those in basic functionality ("effectiveness") such as accuracy and lethality. 

To perform a system-level operational test of S, suitable test conditions are first 

established. It is desirable to quantify those conditions (weather and other environmental 

effects, pre-test transport and setup stress, target properties, etc.). This can be done by 

incorporating explanatory variables to represent between-test variations. For recent 

related modeling see Bogdonavicius and Nikulin (2000). Under given conditions let each 

subsystem possess a certain (random, or at least unknown) number of failure modes (or 

defects), ds, for subsystem s, s<S. These modes become active (cause failure) with 

probability 6S if a demand is received at that stage; otherwise are inactive or survive with 

probability 1 - 9S = Gs. In order for the sth subsystem to experience test, and hence 

possibly reveal a failure mode, all previous i e (1, 2, ...,s- 1) subsystems, and their 

interconnection and transition actions, must survive, and hence transmit, demands. If a 

failure mode in a subsystem is activated (causes failure), the design or execution may 

well be modified. Here it is optimistically assumed that the failure mode is removed, and 

thus "reliability growth" occurs, but this simplicity may not hold: new failure modes may 

actually be introduced, and bedrock non-removable failure modes will remain. These 

realities are ignored for simplicity in the present report, so the results are likely to be 

optimistic. We also ignore the detrimental effects of system aging (one-shot items 

eventually age on the shelf). We again emphasize that in operational field testing it is 

often the inter-subsystem interactions that exhibit surprising new failure modes which 

must be discovered by suitable testing. Our model can cover such situations by simply 

defining some stages as "interaction subsystems". 

Here, testing the complete system (e.g. a missile or an information system) requires 

that "early" (5=1,2,...) subsystems survive so that "late" (s = ... 5-1, 5) subsystems can 

experience demand, and hence literally be subjected to test. Failures of early subsystems 



protect later subsystems from test; this effect must be overcome in order for the entire 

system to be tested. Engineering-level or developmental tests (DT) of the individual 

component subsystems will be, or have been, carried out, but these cannot be completely 

trusted to identify all failure modes that may appear in actual operation when the entire 

system is assembled and tested, much less in the field. In the ideas we explore are related 

to, but not the same as classical burn-in; whereby early testing removes weak components 

from an existing population; see Block and Savits (1997) for a nice review, and also Lynn 

and Singpurwalla (1997). Our problem emphasizes design burn-in: systems are tested and 

the design improved before a population of manufactured and fielded items is created. 

Members of that population can possibly then experience classical burn-in before 

fielding, but the need should be reduced if the design has already been improved. 

2. Operationally Relevant Questions 

Given preliminary values of the parameters, inferred from engineering design and 

experience with analogous subsystems and systems, it is operationally meaningful to 

address such questions as these prior to starting expensive field testing: 

(a) After a given number of system tests, what is the (approximate) probability that 

the system will operate satisfactorily (not fail) when released to the field or delivered to a 

user? 

(b) How many tests are likely to be required to achieve the first (or/h) end-to-end 

success? 

(c) How many tests are required to achieve r (e.g. 3, or 5) consecutive end-to-end test 

successes, or, in statistical parlance, a (first) run ofr, a possible test stopping rule that is 

attractive because of its simplicity and intuitive evidence of system success? 

(d) Suppose testing is stopped after T tests (possibly fixed, or random governed by a 

stopping rule such as "first occurrence of a run ofr (e.g. r = 3, 5,... whatever) successful 



reliability tests of entire system"), after which no further design modifications are 

contemplated. What are the failure characteristics of the system if fielded: e.g. what is the 

operational/field probability of system (reliability) success? For a previous account of 

this measure of system success under "reliability growth" see Fries and Maillart (1996). 

What is the probability that the system completes a mission that requires at least M 

successes if M+R systems are allocated? What is the mean, and variability, of the 

number of tests required? 

3. Models for Discovery of Hidden, or Sequentially-Evident, Design Defects 

A system is composed of a number, S, of subsystems each of which contains an 

uncertain number of failure modes (design defects). When a design defect is activated 

during a test, the system fails at that subsystem, and that particular test terminates. Figure 

1 illustrates the configuration, and outcomes. 

(Start Test)—+ Dx(f) D2(t) 

Stage 1        Stage 2 

K D&) -► (End Test Successfully) 

StageS 

(End Test Unsuccessfully at Stage s) 

Figure 1 

Let 

Ds(f) = number of design defects present in Stage s after? tests; 

Ds(0) = number of design defects present initially in Stage s before test (or at 

least before operational, end-to-end, testing). At this stage the 

distribution of Ds(0) may be treated as a Bayes prior, or as an expression 

of inherent variability; a Bayes prior can describe hyperparameters. 



Stages are request-activated strictly serially, starting with Stage 1 and ending with 

Stage S. If any stage fails to respond, the following stage is not demanded/request- 

activated and the system trial/test fails. The Stage s request activation can only occur if all 

previous stages, i = 1, 2, ..., s-\ respond to their request activations. (This does not imply 

that stages that successfully respond to their request activations are free of defects - they 

may well randomly activate and cause failures on later trials, or even on a mission after 

system release.) Repeated testing tends to remove defects, but there will be little reward 

from testing long enough to eliminate defects that are unlikely to activate in the field. 

4. Model: Stage-wise (Binomial) Failures, One-at-a-Time Removable 

Invoke the stage-wise failure model, and allow only one activated design defect to be 

identified and removed per test (no new design defects are introduced). If more than one 

failure mode or defect is activated on a test we assume that only one of these can be 

identified and removed; the others can activate again. 

There follow several functional-equation modeling systems that respond to questions 

posed earlier. 

4.1 Expected Probability of System Field Success After a Fixed Number, t, of Tests 

Let D,(0) be the initial number of defects in stage i, i = 1,..., S. Assume that some 

defect in stage i is revealed during a test with probability Pi{di); qi(di) = \-pi{di) 

where dt is the number of defects in stage i, assumed > 1. A special case is §}(</,-) = Of, 

but allowance for random (extra) variability in 9 (e.g. as a Beta random variable) is 

natural to reflect within-stage variability beyond the simple binomial. Note that this is 

viewed as representing physical mixtures; it is not necessarily a Bayesian prior. A defect 

revealed in stage i causes the system to fail without revealing any defects in later stages; 

these are hidden for that test. Each test reveals at most one identifiable defect or fault. 

Such a discovered defect is assumed removed with certainty (with probability equal to 



one) by present assumption (if it is successfully removed with probability p then we may 

replace the probability a defect is discovered and removed, e.g. 1 - 6 by (1 - 6)p and 

proceed). Let D,{t) be the number of defects remaining in stage i after t tests. Let Qt be the 

probability a remaining defect in stage i does not activate while the system is put in use in 

the field during one mission. (Desirably, ß« or> qit the probability a test does not 

reveal a defect.) Note: for initial example, but not throughout, activation of some design 

fault or defect is Binomial: $(</,-) = 1-0?'. It is possible to represent extra-Binomial 

stage-to-stage variability by mixing within stages to provide extra-binomial variability: 
Ewf 1; see Appendix A. 

Define 

p{di,...ds,t) = P{Dl(t) = dl,...,Ds(t) = ds}, (4.1) 

the joint probability of the number of defects present in each stage after t tests. The 

following forward equation (Markov chain) can be established by conditioning: 

p{dx,...,ds,t + \) = 

S S (i-\ \* 
p{d1,...,ds,t)Y[qi{di) + Y,p{du...,di + l,...,ds,t) Y[qj{dj)    [l-q^+l)]       (4.2) 
- ^-tl .    ^ \M ) ( 

™STnnet«tf One desiS" defect amoved on test / removed on test t (e g |Qm stage;J=1;2)...>s) 

Note: the term in the last product, (   )* = 1 if i = 1. 

The recursion is initialized with 

1     ifDl(0) = du...,Ds{0) = ds 
p{dl,...,ds,6} = 

0    otherwise 

The probability of system survival in the field after t tests is 

(4.3) 

Q{t)=   ?lp{dl,d2,...,ds,t)flg!> . (4.4) 
d\r--4s y=l 



Or, more generally, with field probabilities of survival allowed to differ from those of the 

test and experience stage-wise mixing, 

5 

2(0= TM&'-JsjUQjfa)' (4.5) 

The   following   examples   are   based   on   simple   Binomial   stagewise   failures: 

Prob of system survival after t tests 
Initial number of defects: 3, 3, 3, 3 

8 10 12 

t: number of tests 

14 16 18 20 

--♦--9:.5 .5 .5 .5 -»-9:.25 .25 .75 .75  -*-9:.75 .75 .25 .25 

Figure 2 

The graph suggests that reliability growth in a several-stage serial system is not likely to 

have the characteristic of classical one-stage reliability growth models of Duane and later 

authors, e.g. Fries (1993). There are ample physical reasons for this behavior. They also 

imply that more rapid and complete defect elimination and hence "reliability growth" 

occurs if the last-reached system stages are apt to fail sooner than the earlier-reached 

stages. The reason is that need to re-test the last stages forces more tests of the earlier 



because of the end-to-end success requirement. It is unlikely that a designer, or tester, can 

ever directly influence such a distribution of defects, but there may be implications for 

variations in the intensity of component-level testing: one might tolerate a few more 

faults in later stages, so that earlier stages will be subjected to more operational end-to- 

end tests. 

4.2 Probability of Mission Success in the Field if Testing Stops After First Run of r 
Consecutive Successful Tests 

Suppose the system test is stopped when there are r (r > 1, e.g. 3) successful end-to- 

end tests in a row (a "first run of r"). A test with this stopping rule ensures that all stages 

are tested at least r times. The probability of system survival after completion of the test 

can be computed using a backward equation as follows. Let pr(d\, ...,ds) be the 

conditional probability of system mission survival in the field after the test, given that the 

initial numbers of defects are 2>i(0)= d\, ...,D^Q)= ds. Use the previous stagewise 

survival probabilities, q^di) to write 

( s Y s 
pr(dud2,...,ds)= YI%W riö(4) 

V i=i J /=i 

+ 
'   r s       v" 
l- nit*) 

V i=\              J 

Run of r successful tests 
occurs before any test failures 

tffWy)] Mt(di)) 

(4.6) 
'    ( s \ 

V J=I 

i-i 

pr(dx,...,di-\,...,ds) 

No r-run during first r tests 

Note: (   )  =1 if/=! 

Start over after a failure at stage i before run of r successful tests achieved 

The recursion starts with/?r(0,..., 0) = 1, and thus builds up to any desired initial load of 

design defects. 

$(«/,) = £[**] 



Here the field survival probability is assumed equal to the field test system survival 

probability: Q{d) = q(d). 

Note: the above equation permits quick numerical determination of the mean or 

unconditional probability of field success. Simulations show that there can be substantial 

difference between the mean and the actual probability of success, depending on fault 

survival. The following forward equation can be used to calculate the distribution of the 

probability of system survival after the test. 

Let ^(ö„...,flj) be the probability that there are a,-, i=\, ...,S defects remaining 

sometime during the test. The probabilities yr(al,...,as) can be obtained recursively as 

follows. 

yr{ax,...,as) 

= £?v(fll'-»fl*+1'-'fls)" 
5=1 

1- 
s 

n *'(*'•) qs{as+l) 

V V «'«           ) ) 

1- 
Y         " 

X '*s             ; ). 

<s-x Y (4-7) 
Y[qi("i)   [l-gs(as + l)] 

, i=i J 

with initial condition yr(d1,...,ds) = l where dt is the initial number of defects in stage :', 

i = l, ...,S; note  ( )*= 1 if* = 1. 

The probability of having a, remaining defects in stage /, i = 1,..., S after completion 

ofthetestis 

yr(al,...,as) = yr(ai,...,as) 
s 

r. 
i=i 
TliM (4.8) 

These probabilities can be used to obtain the distribution of the probability of field 

survival after the test is completed. 

10 



Numerical results with Bernoulli-trials Stagewise Variability. 

In the example whose results are displayed in Figure 3 #(<£•) =Q(di) =&f'. Note 

that Figure 3 displays considerable robustness of mean mission survival outcome to 

number of design defects and activation probabilities: often the mission survival 

probability exceeds 0.8-0.9. Note that in the case #=0.75, ft = 0.25, ft = 0.75, 

ft = 0.25, the probability of mission survival after testing increases slightly as the initial 

number of defects in each stage increases. In this case the larger test activation 

probabilities ft = 1 - ft = 0.75 for stages 2 and 4 result in more testing of stages 1 and 3. 

Consequently, the design defects in stages 1 and 3 are more apt to be discovered and 

removed; the probability of mission survival after testing increases as the number of 

defects increases. 

Prob of system survival after run of 3 successful tests 
1 

0.9 

0.8 

I 0.7 

w 0.6 

I 0.5 
1 0.4 
JO 
2 0.3 
CL 

0.2 

0.1 

0 
3 4 5 6 7 8 

Initial number of defects in each of 4 stages 

10 

♦ 8:.5 .5 .5.5 •0:.75 .25 .75 .25 H6:.25 .75 25 .75 

Figure 3 
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4.3 Mean Time to Stop After Reaching First Run of r Consecutive Successful Tests 

This is a measure of the time cost of a test program that is run-terminated. Let 

rr{d\,d.2, ...,ds) be the conditional expected time (number of tests) until a run of r 

successes first occurs, given that there are initially dt defects in stage i. Here is a 

backward equation for this performance measure. 

rr(dl,d2,...,ds) = r\Ylqi{di)\ 

r-run after r tests: 
initial r-run 

(  S 

iwo 
V \i=\ J 

r 

n=\ 

Probability no initial run of r 

n + YdTr{d\,...idj-\i...1ds) 
fi$(4)]*(i-&(4)) 

V 1=1 J 

i-n$(4) 
1=1 

Expected number of tests to achieve r-run, given failure to achieve initial r-run 

Vi=i J    V     1=1 
r s       Y 

i- YIWi) 
\ i=i     ) , 

(4.9) 

Probability first activation after n<r tests, 
given no run of r 

Note: (   ) =1 if y = 0 

An initial condition is 

r,(0,0,...,0) = r (4.10) 

Numerical results with stagewise over-variability. 

In the examples of Figures 4, 6, and 8 we compare the probability of mission success 

for several cases when (a) the stagewise probabilities 0, are taken as invariable ("fixed"), 

Bernoulli trials probabilities vs. (b) the stagewise probabilities are themselves variable, 

independently for each stage and test. This extra-Binomial variability can conveniently be 

characterized by a diffuse beta distribution with mean equal to the fixed values of (a). The 

12 



variability in (b) represents some aspects of uncontrollable between-test, and between- 

test-stage conditions; see Appendix A. In each case that has been investigated the 

probability of field success is higher for (a), "fixed" or controlled probabilities, than for 

(b), the corresponding stage-wise mixed probability. Practical considerations suggest that 

(b) may be the more qualitatively realistic, because of the likelihood of extra 

uncontrollable variations in the field. Some such are likely to be roughly common to all 

stages; this is analyzed in Appendix B. 

From Figures 4, 6, and 8 it is striking that the order of the defect survival probability 

occurrence (which may be practically difficult to control at the developmental testing 

stage) can be influential at the final field survival probability level. Once again, the case 

of Figure 8, # 0.75, 0.25, 0.75, 0.25 exhibits improved field response with more defects 

for the Bernoulli-trials case, but not for the over-variability case studied. From Figures 5, 

7, and 9 it is seen that the mean times to achieve a success run of 3 for the different 

parametric cases are remarkably similar. These are isolated examples only, but certainly 

promote interest in run-like rules. 

13 



Prob of field success for a test with stopping rule of 3 successes in a row 

2 4 6 8 

Initial number of defects in each of 4 stages 

10 

♦ 9=.5 ..5, .5, .5 ttbeta mixed: a=.1, b=.1 

Figure 4 

The mixing distribution employed in Figure 4 is symmetric, but with high weighting near 

0 and 1. Such an environment badly penalizes the tester if there are many (e.g. 5 or more) 

defects in the system initially. 

14 



Mean number of tests to obtain 3 successes in a row 
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Figures 

The expected times to complete the tests in Figure 5 are remarkably similar for these 

cases. 
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Prob of field success for a test with stopping rule 3 successes in a row 

03 

© 
Ü 
o 
w 

33 
_© 
*♦— 

o 

0.9 

0.8 

0.7 

0.6 

0.5 

=f 0.4 

o 
0.3 

0.2 

0.1 

E ^ 
—A- —   — ™M~ ♦ ♦ 

E 

0 2 4 6 8 10 

Initial number of defects in each of 4 stages 

I ♦ 9:.2S .75 .25 .75 Bbeta mixed (a,b): (.3,.1),(.1,.3),(.3,.1),(.1,.3) I 

Figure 6 

ID Figure 6 a somewhat diffuse mixing distribution (Beta) is used for each stage, with 

means located at the "deterministic" levels. Once again, however, the stagewise mixtures 

at stages, independent, and recalculated independently between tests, have a substantial 

degrading effect on the mean probability of a system's field success if the system is 

accepted after a run of 3. 

16 



50 

45 

40 

"3 
© 

35 

o 30 

25 

c 20 
<T5 
© 15 

10 

Mean number of tests to obtain 3 Successes in a row 

2 4 6 8 10 12 

initial number of defects in each of 4 stages 

■8:.25 .75 .25 .75 Bbeta mixed (a,b): (.3,.1),(.1,.3),(.3,.1),(.lÜ3)j 

Figure 7 
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Figure 8 
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Mean number of tests to obtain 3 successes in a row 
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Figure 9 

5. Bayesian Formulations 

A natural approach to the uncertainty concerning the numbers of design defects 

initially present is a Bayesian one in which A<0) is treated as a random variable with 

(prior) distribution IT = \n!d,d > 0J, 1 < i < S. In what follows we shall suppose that the 

random variables A{0), 1 < i < S are independent and that the conditional model for 

failure discovery and removal is as in Section 4 with #(<£■) the conditional probability of 

subsystem i success, given d; defects present. In such a setup, consider the situation 

following t tests of the system. 

Each subsystem i will have its own history Hit = {xn, xa, ■ ■ ■, xit} where each Xy takes 

one of three possible values, namely 

{subsystem i was not subjected to scrutiny during testy because of the 
failure of an earlier subsystem} = O,/, 
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{subsystem i was subjected to scrutiny during testy and operated 
successfully} == St/, and 

{subsystem i was subjected to scrutiny during testy and a defect was 
activated and removed} = Ftj. 

The first of these cannot occur for subsystem 1. Let U\t) be the inferred (posterior) 

distribution of Dt(t) upon suitable application of Bayes' theorem. Updating is described as 

follows: 

At+\, = Wd(t), ifxit+l=Oit 

n^ + l>ocn^)£(4 ifxit+l=Sit+l;   and (5.1) 

ocnj,+1(*){l-£(rf + l)},   ifxit+l=FiM. 

In general the posterior lT(t) will depend upon the entire history Hit and in particular will 

depend upon the order in which successes and failures occur. 

In this highly complex scenario it seems reasonable to make an initial search for 

simplicity. In particular, we seek conditions under which each U\t) depends upon Hit only 

through {St(t), Ffc)}, where 

y=i 

the total number of successful operations of subsystem i during t tests and F,{t) is 

similarly defined in terms of failures (i.e. defect activations and removals). Expressed 

simply, we require that the numbers of successes and failures to date should be sufficient 

statistics for each subsystem. Work by Benkherouf and Bather (1988) in the context of oil 

exploration implies that this requirement forces a conditional model of the form 

qt(d) = 6?,d>0, for some 0it 0 < 0t < 1, (5.2) 

which is the Binomial case of Section (4.1). Until indicated otherwise we suppose that 

(5.2) holds. 

19 



Further, Glazebrook (1993) introduced a family of prior distributions which are 

conjugate for this problem. Let £,{0) ~ n'(0) = U(Xi, ft, $), 1 < i < S, where the 

probability mass function (p.m.f.) for Tl(X, ft, iß) is given by 

n,(A,^^) = n0(A,ö,^V/(rf-1)/2{n(i-^)} , d>o (5.3) 
t=\ 

where HQ{X, ft $ is a normalizing constant. The parameter space associated with this 

family is {0 < X < 1, 0 < G< 1, <f>= 0} u {X> 0, 0 < ft< 1, #>> 0}. The first parameter A 

may be interpreted as an overall rate of finding failures while $ may be thought of as a 

rate of depletion of defects in a subsystem under failure, and subsequent defect removal. 

Parameter 0 is always assigned the value of the probability in the conditional Binomial 

model in (5.2). Special cases of this model are 

Tl{X, 0,O) = E(X, ft);   n(X,0,l) = H(X,0), (5.4) 

the Euler and Heine distributions with parameters (X, ft) respectively. These are discussed 

by Benkherouf, Glazebrook, and Owen (1992). The reader should note that, for regions of 

its parameter space, the Euler distribution may approach either a Poisson or a geometric 

distribution. Thus the prior family (5.3) is quite versatile. 

With the prior Tl(Xj, ft, #) in (5.3) and the conditional model (5.2), the posterior 

distribution for A(0 is given (upon operation of (5.1)) by 

ni(t) = n[Ai8?'{t}**F'{t),0i,fr],   \<i<S. (5.5) 

From (5.5), the situation following t tests is such that the overall rates of defect 

detection in subsystems have fallen to the values 

Ai0Si(<ht<mf   i<i<S; (5.6) 

it is reasonable to stop testing when these values are sufficiently small. 
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5.1 Bayes stopping rules 

With the above structures in place we can design stopping rules which are Bayes 

optimal for a range of objectives. In such problems, a major difficulty is presented by the 

computational demands of producing a fully sequential solution via dynamic 

programming. However, in the context of reliability growth in which the number of 

defects is reduced (stochastically) at each test, one-step-look-ahead (myopic) rules should 

perform well. See, for example, Benkherouf and Bather (1988), Gittins (1989) and Manor 

and Kress (1997) for examples of this phenomenon. Suppose that we wish to maximize 

an objective 

En{-cT+QT) (5.7) 

where Tis the number of tests performed, c is a (suitably standardized) cost per test and 

1,       for successful field deployment following T tests, 

0,      otherwise. 

In (5.7) the expectation is taken with respect to the prior distributions (summarized by II). 

A key quantity required for the development of a solution to (5.7) is the predictive 

probability of successful field deployment Q(S, F) at a point in which the data from 

testing are summarized by sufficient statistics S, F= {($, F,), 1 < i < S}. Utilizing the 

above independence assumptions, 

Q(S,¥) = YlQ{Si,Fi) (5.8) 

where Q,{Si, Fi) is the predictive probability of successful field deployment of subsystem i 

with sufficient statistics (ShFi), l<i<S. Taking lf(0) = U(Zi, 0h $), conditional model 

(5.2) and Q,(d) = 0?, d > 0,1 < i < S, we deduce from (5.5) that 

QT = 
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d>0 
0(«,^) = 2(i-öf)nrf{A/öf+^,öl,^} 

(5.9) 

= l-A,-öf' 
u^ef^^A^)' 

We write £{ß(S, F)} for the expected predictive probability of successful field 

deployment following one additional test, starting from (S, F). Utilizing (5.5) and (5.8) 

we deduce that 

£{Ö(S,F)} = £ 
s 

Z 
i=\ 

i-\ 

Y[QJ(SJ,FJ) 
(     i-x A 

{l-öfä.-fiJJßS + Xi'.F + l' 

[ s )    (      s 

+\UQ(Si>Fi) [ßS + jl'.F 
11=1 J     V      »=i        J 

(5.10) 

where in (5.10), V is an 5-vector whose z'th component is one, with zeros elsewhere. A 

Bayes myopic stopping rule for problem (5.7) concludes testing as soon as the gain in 

system reliability from one further test is less than the cost of the test. Formally, the 

associated stopping region is 

[(S, F); E{Q(S, F)} - ß(S, F)} < c]. (5.11) 

When c is small (i.e. the cost of one more test is negligible compared to the utility of 

having a system fully operational in the field) then from (5.9) and (5.10) we can show that 

the stopping region in (5.11) may be well approximated by 

(S,F); |>0?+^(l-0,) ß(S,F)<c 

3J(S,F);t^f'+^(l-^)<4- 

(5.12) 

i=i 

See the comments around (5.6) above. The simple conservative stopping rules above will 

approximate (5.11) well for c close to zero. 
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Numerical example 

The stopping rule in (5.12) was applied to a testing problem with 4 stages, 3 defects 

being initially present in each stage. Results may be found in Table 1. Four different sets 

of theta values were considered, namely, 0(1): 0.75, 0.75, 0.75, 0.75, 6(2): 0.5, 0.5, 0.5, 

0.5, 0(3): 0.25, 0.25, 0.75, 0.75, and 0(A): 0.75, 0.75, 0.25, 0.25. The prior distributions 

used to determine the stopping rules were taken to be Euler in all cases. For these 

distributions a value of A is required. We explored two different approaches to making 

this choice. In approach 1 we set A to be 1 - $, thus guaranteeing that the unconditional 

initial subsystem failure probability in the Bayesian model was equal to the (actual) initial 

failure probability with three defectives. Under this approach, we used priors 

£(0.578,0.75), £(0.875, 0.5), and £(0.984, 0.25) as appropriate. These A choices are 

denoted A(*\) in the table. Under approach 2, for given 0we chose A such that the mean 

of the E(A, 0) distribution was 3. Under this approach, we used priors £(0.500,0.75), 

£(0.672, 0.5), and £(0.734,0.25) with the A choices denoted A(*2) in the table. Testing 

continued until an appropriate version of the stopping criterion in (5.12) was met with c 

set equal to 0.1, 0.06, 0.04, 0.02, 0.01. The smaller the value of c, the more conservative 

is the resulting test. Each case (cell of the table) was run 3,000 times. The results are 

given by the unbracketed values in each cell of the table, which are (reading from top to 

bottom): 

(1) actual mean probability of field success at end of testing; 

(2) mean predictive probability of field success under the Bayesian model at end of 

testing; 

(3) mean number of tests. 

The bracketed values are the corresponding standard errors. 
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Table 1 
Probability of field success and mean number of tests with a Bayes myopic stopping rule 

Scenarios 
0.1 0.06 0.04 0.02 0.01 

WX^ll)) 
0.515 
0.475 

11.569 

(0.004) 
(0.001) 
(0.025) 

0.736 
0.712 

15.041 

(0.004) 
(0.000) 
(0.014) 

0.842 
0.831 

17.415 

(0.003) 
(0.000) 
(0.011) 

0.929 
0.927 

20.712 

(0.002) 
(0.000) 
(0.009) 

0.966 
0.960 

22.970 

(0.002) 
(0.000) 
(0.003) 

(3W2)) 
0.437 
0.467 

10.562 

(0.003) 
(0.001) 
(0.024) 

0.724 
0.737 

14.831 

(0.004) 
(0.000) 
(0.018) 

0.829 
0.848 

17.263 

(0.003) 
(0.000) 
(0.015) 

0.925 
0.921 

19.906 

(0.002) 
(0.000) 
(0.006) 

0.961 
0.965 

22.847 

(0.002) 
(0.000) 
(0.007) 

msm 
0.865 
0.777 

13.904 

(0.004) 
(0.001) 
(0.006) 

0.928 
0.882 

14.958 

(0.003) 
(0.000) 
(0.004) 

0.938 
0.937 

15.872 

(0.003) 
(0.000) 
(0.007) 

0.969 
0.969 

16.937 

(0.002) 
(0.000) 
(0.004) 

0.987 
0.984 

17.973 

(0.001) 
(0.000) 
(0.003) 

(6(2X422)) 
0.750 
0.801 

13.426 

(0.005) 
(0.000) 
(0.014) 

0.867 
0.902 

14.712 

(0.004) 
(0.000) 
(0.010) 

0.933 
0.952 

15.862 

(0.003) 
(0.000) 
(0.007) 

0.968 
0.976 

16.935 

(0.002) 
(0.000) 
(0.005) 

0.983 
0.988 

17.966 

(0.002) 
(0.000) 
(0.003) 

(6*3)^31)) 
0.270 
0.251 
7.952 

(0.002) 
(0.002) 
(0.018) 

0.608 
0.564 

12.609 

(0.005) 
(0.004) 
(0.053) 

0.843 
0.823 

16.677 

(0.003) 
(0.000) 
(0.010) 

0.931 
0.921 

19.886 

(0.002) 
(0.000) 
(0.006) 

0.968 
0.965 

22.871 

(0.002) 
(0.000) 
(0.006) 

(6(3)^32)) 
0.253 
0.313 
7.761 

(0.002) 
(0.002) 
(0.014) 

0.691 
0.710 

13.738 

(0.004) 
(0.000) 
(0.017) 

0.815 
0.832 

16.262 

(0.003) 
(0.000) 
(0.014) 

0.918 
0.929 

19.673 

(0.002) 
(0.000) 
(0.010) 

0.963 
0.961 

21.937 

(0.002) 
(0.000) 
(0.005) 

(*4XA(41)) 

0.860 
0.857 

13.554 

(0.004) 
(0.000) 
(0.013) 

0.908 
0.862 

13.694 

(0.003) 
(0.000) 
(0.009) 

0.923 
0.923 

14.724 

(0.003) 
(0.000) 
(0.010) 

0.947 
0.950 

15.792 

(0.002) 
(0.000) 
(0.008) 

0.964 
0.964 

16.856 

(0.002) 
(0.000) 
(0.007) 

(£W(42)) 
0.860 
0.883 

13.553 

(0.004) 
(0.000) 
(0.012) 

0.862 
0.883 

13.561 

(0.004) 
(0.000) 
(0.012) 

0.918 
0.935 

14.706 

(0.003) 
(0.000) 
(0.010) 

0.954 
0.957 

15.817 

(0.002) 
(0.000) 
(0.008) 

0.967 
0.969 

16.867 

(0.002) 
(0.000) 
(0.007) 

We note the following from the numerical results. The larger /l-values obtained from 

approach 1 usually result in slightly longer tests than those resulting from the smaller 

values associated with approach 2. The final predictive estimate of field success tends to 

be slightly conservative (i.e. an underestimate) on the average for approach 1, but tends to 

be slightly optimistic (i.e. an overestimate) for approach 2. The latter is not surprising 

since approach 2 adopts priors which imply an overestimate of the initial probability of 

field success. That said, the results give encouraging evidence of operating characteristics 

which are robust to the choice of lambda, especially so when c is small. One particular 

point to note is that for case 0(2), the characteristics of the Bayes rules when c = 0.04 are 
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very comparable to those obtained from the "3 successes in a row" stopping rule. The 

reader is referred to Figures 4 and 5 above. 

5.2 Stagewise overvariability 

Appendix A and Section 4 argue for a modification of (5.2) by the representation of 

extra-Binomial stage-to-stage variability in the conditional model. The proposal is to 

replace (5.2) by 

gi(d) = E(ed)   with0~Gy,   l<i<S. (5.13) 

Recall that the Binomial model (5.2) was required for the simple structures above based 

upon sufficient statistics (S, F). We conclude that, with the more general (5.13), the 

posterior distribution lY(t) will depend upon the entire history Hit= {xa, xa,..-, xit}, 

excepting only those entries xy equal to Oy. Put another way, IT(/) will depend upon the 

complete sequence of successes and failures to date. It emerges that, while we lost 

simplicity of structure by generalizing in this way we make important advances in 

applicability of the model and in addition develop a rationale for run tests as good 

stopping criteria. 

We focus first on a single subsystem and, for the present, drop subsystem identifier i. 

The subsystem has D(0) defects initially with associated (prior) distribution U = {nd, 

d>0}. The conditional model is q(d), with p{d) = 1 - g(d), d>0. We consider a 

sequence of / tests during which the subsystem is subject to scrutiny upon <p + ]jT^" CTJ , 

occasions of which <p result in failure (and defect removal) and ^^ crj result in system 

success. More precisely, o\ is the number of successes before the first subsystem failure, 

C7^i is the number of successes following the last (<pth) subsystem failure and aj, 2<j< 

<p, is the number of successes between failures (/'- 1) and./. We write {a\, cr2,..., o^, 

(p) for this data configuration. 
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By repeated application of (5.1), the posterior probability of d subsystem defects 

remaining following these t tests is given by 

*Tld+cp\Y[p{d + j) 
p+i 

U{?(d+<p+i-k)Yk 

k=\ 

(5.14) 

Further simplification results in the special case 

q(d) = 
1 

d + l 

which results from taking 6~ U[0,l] in (5.13). See (A.3) in Appendix A. The posterior 

distribution in (5.14) then becomes 

^■d\ax,02,...,eT9+u(p tt^+f 
d + l 

d + q> + l n 
k=\\ 

1 
d + tp + 2-k; 

Ok 

(5.15) 

We now perform some calculations which shed light upon the nature of updating and 

reliability growth in this context. A key focus of the analysis will concern how the 

posterior probability of system survival in the field varies with the data. When we discuss 

the full system we shall need to restore the subsystem identifier i. Consider now two 

subsystem data configurations {o\, a2,..., o>n, <p} = {o% (p) and {a\,<j2,...,a'^+],<p} = 

Definition. Data configuration {o, (p) dominates configuration  {a',q>} if X*-ia* - 

The above definition is describing a partial ordering between data configurations in 

which the dominating sequence has the same (total) number of successes and failures, but 

has the failures earlier. Note that in the models based on the Binomial conditional model 

in (5.2), the posterior distributions for the two sequences would be identical. This is no 

longer the case. 
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We now generalize the material around (5.8) by writing Qt{&, (fi)} for the predictive 

probability of field success for subsystem i following data (a1, (ß), \<i<S, where 

ö{(°V)} = Zniky Q(d),   l<i<S. (5.16) 
d>0       ' 

The corresponding predictive probability for the system as a whole is 

Q^K^^^^.^^^^flQ^^)}. (5.17) 
i=i 

In the following result we use  n^- ,•   as a notation shorthand for the (posterior) 

distribution for the number of defects in subsystem i following data configuration (c', (ft), 

\<i<S. 

Theorem.   For any choices of prior distribution TV and conditional model (5.13) for 

which §i(l) = EGi (6)<l, the following hold: 

(1) If {&, <p1} dominates {a",#>'} then n^y is stochastically smaller than E^,,  ,; 

(2) If the sequence {Q{d), d> 0} is non-decreasing and {a!, <ß} dominates {c'j,<p1}, 1 < 

i < S, then 

ö{(aV)}^fl{(a'V|   lZiZS, 

and hence 

ö{(ff^^),(a^^),..,(a^^)}>ö{(a'^^),(a'^^),...,(a'^^)}; 

(3) If the sequence {Q(d), d> 0} is non-decreasing then Qt{(&, <p')} is non-decreasing in 

each a), 1 <j < <pl + 1,1 <i<S, as is Q{(a\ (p\ (a2, <f\ ..., (cs, <ps)}. 

(4) If rio > 0,1 < i < S, then during a run of r successes the predictive probability of field 

success approaches 1 at a geometric rate in r. 
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Proof. 
(1) Lety be such that cx'J and 1 <j < <p'. Consider configuration ja" +ly+1 -l7}. Direct 

application of (5.14) shows that 

V^   -K(c.tai .Md+<pi+l-j) — -Kf[a  ,<p ,j—-- —— 
n

dy+v^-v,cp' qi{d+(p -j) 

.      N (5.18) 

= Ki(o'i,<pi,j)      \      ,    '    d>0, 

for some constant K((a",<p'jy But since distribution G,- has support contained in [0,1] 

it is straightforward to show that lEGi(6d+1)/EGi(&d),d>o\ is a non-decreasing 

sequence. It follows immediately from (5.18) that the distribution n^„+1/+i_1y ,, is smaller 

than n'a„y in the likelihood ratio ordering and hence also in the stochastic ordering. 

However, we can move from (a", <p') to dominating configuration (a1, <p') by means of a 
sequence of transitions of the form (cr1,#>')-»   (c' +\J+X-\j,cpl\ for some j. This, 

together with the transitivity of stochastic ordering yields (1). 

(2) is a simple consequence of (1). 

The proof of (3) involves straightforward application of (5.14) and is omitted. 

(4) A run of r successes means that each subsystem data configuration is (r,0). By (5.14) 

we have that 

Q{(r,0)} > ITo|r)0 = ,"° >    , n'° , (5.19) 
Z^'ä{W)}    n'o+{i-rro}{£(i)}r 

d>0 

where inequality (5.19) utilizes the decreasing nature of the sequence \EGi{Od),d >0> = 

[qi(d), d > 0}. From (5.19) we deduce that that predictive probability of field success for 

the whole system is 
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e[M)}-no{M)}*n 
1=1 1=1 I in 

/=1       U0 

and the result is a straightforward consequence. 

The conclusions of the above result are strongly suggestive that runs tests, while not 

being Bayes optimal in the formal sense above, should nevertheless provide simple and 

effective designs for a range of reasonable cost criteria. We discuss prior analyses of such 

tests later. 

5.3 Bayes confidence regions 

A natural focus for inference following testing is the unknown parameter />(system 

survival in the field). Suppose that, as in (4.4), this takes the value ]^[ö(^) when the 
J=I 

(unknown) number of defectives remaining in subsystem / following testing is di} 1 < / < 

S. The case Qi(di) = Qdi, 1 < i<S, and Q is a constant is particularly simple and we 

consider this first. In this model the probability of field survival is Q'°l   . 

Let IT be the posterior distribution for the number of defective modes remaining in 

subsystem i following testing. The ft', l<i<S, yield ft, the posterior distribution for 

the number of defective modes remaining in the entire system following testing. For 

given a > 0, let D(d) be given by 

(    d \ 
D(a) = mm J;^n„>l-a , 

V   II=O ) 

then {1, Q,..., ö°(a)} is a 100(1 - a)% Bayes confidence region for the parameter of 

interest. 
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In general, we need to work with an ordering of the quantities {]~J* Q(d,), d\ > 0, 

d2>0,...,ds>0}. Call the (ordered) members of the collection 1 = Q0 > Qx > Q2 >... 

with 

*.=|*nß(*)=ß-| 

and 

dedr L i=l J 

for the corresponding posterior probability. For given a> 0, let r{a) be given by 

(    r \ r{a) = ram r;££„>l-a , 
V   «=o ) 

then {l,Qi,Q2,---,Qr(a)} is a 100(1 - a)% Bayes confidence region for/»(system survival 

in the field). 

5.4 Prior analysis of test designs 

As in Section 4, proposed test designs may be assessed by means of a prior analysis 

(i.e. in advance of the tests) focusing on such key measures as the meanjp(system survival 

in the field) following the test, the mean time to the conclusion of testing, and the 

probability that the field probability of success is greater than 1 - a. From a Bayesian 

viewpoint, the appropriate measures will be expectations taken with respect to the prior 

distributions rT, 1 < i<S. Suppose that thep,(dh d2,..., ds) are available for d, > 0, 1 < 

i < S, by the computations described in Section 4.2. Then 

X|nn'^)U(^i^2 ds) (5.20) 

is the appropriate measure of say, the mean ^(system survival in the field) following a 

"run of r" test. The summation in (5.20) is over all d( > 0,1 < i < S. 
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In the case of very diffuse priors, implementation of (5.20) may be computationally 

expensive. Simpler alternatives exist for some of the specially structured models 

described at the beginning of this section. Consider, for example, a situation in which 

IT = E(Ai, $i), 1 < i < S, and we have the conditional Binomial model of (5.2). From (5.9) 

we conclude that, since $ = 0 for this choice of prior, we have 

^[l-efp^l-Ä!,   \<i<S, 
rfäO 

for the unconditional probability of subsystem i success initially. When we further 

assume that the /?(system survival in the field) takes the conditional form |~[5 6f , we 

then have for the mean probability of system field success 

" s 

Ifln'(*)W<!i,« ds),Qr(XuX2,...,Xs) 

n|ft(>-*Wn(i-*<«f) 
t=\ U=l      J ;=1 

Run of r successful tests occurs before any test failures 

+xxn(n(i-^W{ro^ 
t=i i=i t'=i {i=i       j [j=\      j 

1 ""*       '      ..^———    .      v        ,  ,  , „„—,—,        / 

Start over after a failure at stage i during test t<r 

ando-(0,0,...,0)=l. 

Numerical example. 

Table 2 reports results from a numerical study of the probability of system field 

success after a test, which ends with r successes in a row. The system consists of 4 stages. 

Given ds defects in stage s, s = 1,..., 4, the conditional probability that the system passes 
4 

one test is JJ^OO wnere 

i=i 

^=4*]^^ 
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with 6S having a beta distribution. Two cases of randomized 0S are considered. In case A, 

each theta is drawn from a uniform distribution independently for each stage and test. In 

case B, 0S is drawn from a beta distribution with mean bs I [as +bs) for 

(<*s,bs) = 

(.9,1) fors = l, 

(.7,3) fors = 2, 

(.3, .7) fors = 3, 

(.1,.9) fors = 4 

In all but three cases, the field probability of system success is J^[0.8dj^ where ds(r) 
s=l 

is the number of defects remaining in stage s after the test is complete. The initial 

numbers of defects in each stage are independently drawn from Poisson distributions with 

the means noted in the table. There are 25 replications for each case. Displayed are the 

mean of the mean probability of system field success, the means of the probabilities that 

the probability system field success after the test is greater than or equal to 0.7, 0.8, 0.9, 

and 0.95, and the mean of the mean number of tests required to obtain a run of r 

successes. The standard errors of the means appear in parentheses underneath the means. 

The distribution of the 0S, s = 1,..., 4 has a great effect on the probability of successful 

field performance after the test. In case B, the defects in stage 4 are less likely to reveal 

themselves during the test. Thus for case B, the probability of field success after a test 

until a run of 3 successes is smaller than for the case of uniformly distributed 0S, 

s=l,...,4. 

The initial mean number of defects in each stage also affects the probability of field 

success. The case with 5 defects in stage 4 has the smallest mean of the mean probability 

of field success after a test. The mean of the mean probabilities of field success after a 

test until there is a run of 7 successes in a row is 0.66 for this case. 
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The mean of the mean number of tests needed to obtain a run of r successes for the 

cases displayed is somewhat insensitive to the pattern of the initial mean number of 

defects in each stage and the probability of defect discovery during test. 

In all but three of the cases the probability of a defect in a stage causing failure during 

use in the field is 0.8, which is different than these probabilities during testing. In the 

three cases in which the probability of field success is the same as that in testing, the 

mean probabilities of field success are higher. It is important to design tests so that they 

represent field conditions as closely as possible. 
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Table 2 
Mean of summary statistics for simulations of testing until obtain a run of r successes 

mean of 
over- the mean 

mean mean mean mean mean var number of 
mean mean mean mean of prob prob prob prob prob surv prob tests 

initial # initial # initial # initial # mean that the that the that the that the # in field for of needed to 
defects defects defects defects prob prob prob prob prob sue each surv obtain r 
stage stage stage stage # field field field field field in a remaining during successes 

1 2 3 4 rep surv surv>7 surv>8 surv>.9 surv>.95 row:; defect test in a row 
2.75 2.75 2.75 2.75 25 0.96 

(0.00) 
0.96 

(0.00) 
0.96 

(0.00) 
0.84 

(0.00) 
0.84 

(0.00) 
3 0.8 A 14.46 

(0.49) 
2.75 2.75 2.75 2.75 25 0.59 

(0.03) 
0.32 

(0.05) 
0.32 

(0.05) 
0.13 

(0.02) 
0.13 

(0.02) 
3 0.8 B 14.1 

(0.64) 

2.75 2.75 2.75 2.75 25 0.74 
(0.02) 

0.56 
(0.05) 

0.56 
(0.05) 

0.31 
(0.04) 

0.31 
(0.04) 

5 0.8 B 17.67 
(0.55) 

2.75 2.75 2.75 2.75 25 0.82 
(0.02) 

0.70 
(0.04) 

0.70 
(0.04) 

0.44 
(0.04) 

0.44 
(0.04) 

7 0.8 B 21.85 
(0.61) 

field prob 
same as 

2.75 2.75 2.75 2.75 25 0.91 
(0.01) 

0.96 
(0.00) 

0.94 
(0.01) 

0.69 
(0.04) 

0.44 
(0.04) 

7 testing B 21.85 
(0.61) 

1 2 3 5 25 0.95 
(0.00) 

0.95 
(0.00) 

0.95 
(0.00) 

0.83 
(0.00) 

0.83 
(0.00) 

3 0.8 A 15.09 
(0.7) 

1 2 3 5 25 0.43 
(0.03) 

0.12 
(0.02) 

0.12 
(0.02) 

0.04 
(0.01) 

0.04 
(0.01) 

3 0.8 B 11.31 
(0.49) 

1 2 3 5 25 0.56 
(0.03) 

0.28 
(0.04) 

0.28 
(0.04) 

0.13 
(0.02) 

0.13 
(0.02) 

5 0.8 B 17.32 
(0.65) 

1 2 3 5 25 0.66 
(0.03) 

0.44 
(0.04) 

0.44 
(0.04) 

0.24 
(0.02) 

0.24 
(0.02) 

7 0.8 B 23 
(0.82) 

field prob 
same as 

1 2 3 5 25 0.87 
(0.01) 

0.97 
(0.00) 

0.82 
(0.04) 

0.44 
(0.04) 

0.24 
(0.02) 

7 testing B 23 
(0.82) 

5 3 2 25 0.96 
(0.00) 

0.97 
(0.00) 

0.97 
(0.00) 

0.85 
(0.00) 

0.85 
(0.00) 

3 0.8 A 14.19 
(0.72) 

5 3 2 25 0.80 
(0.02) 

0.69 
(0.05) 

0.69 
(0.05) 

0.38 
(0.05) 

0.38 
(0.05) 

3 0.8 B 13.31 
(0.67) 

5 3 2 25 0.88 
(0.02) 

0.84 
(0.04) 

0.84 
(0.04) 

0.56 
(0.05) 

0.56 
(0.05) 

5 0.8 B 17.02 
(0.84) 

5 3 2 25 0.92 
(0.01) 

0.90 
(0.03) 

0.90 
(0.03) 

0.68 
(0.05) 

0.68 
(0.05) 

7 0.8 B 20.22 
(0.95) 

5 3 2 25 0.95 

(0.01) 

0.97 

(0.00) 

0.94 

(0.01) 

0.87 

(0.02) 

0.68 

(0.05) 

7 field prob 
same as 
testing B 

20.22 

(0.95) 
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Summary and Conclusions 

In this paper we consider models of overall system testing to achieve reliability 

growth by design defect identification and removal. This is sometimes referred to as Test- 

and-Fix (TAF). We consider a system with S stages in sequence; if a test reveals a defect 

in stage s, the later stages s + 1,..., S are not subjected to the test. We assume that at most 

one defect is removed per test. 

A sequential test plan that ensures that all the stages will be tested at least r times is to 

test until there is a run ofr consecutive system successes. A system success means that all 

the stages operate successfully during the test, which implies that the propensities to fail 

of remaining design defects is likely to be small. Results obtained for a Bayesian model 

formulation suggest that, while not being Bayes optimal in a formal sense, a runs test 

provides a simple and effective test stopping rule for a range of reasonable cost criteria. 

We propose analytical procedures to calculate the mean probability of field system 

survival after successful completion of a runs test, the distribution of the probability of 

system field survival after a successful runs test, and the mean number of individual 

system tests required to achieve a run of r successes, and hence test termination. 

Numerical studies indicate that the probability of system field success after a runs test can 

be quite sensitive to the probabilities that a test activates faults in each of the stages. 

However, the mean number of tests required to obtain a run ofr successful tests appears 

to be relatively insensitive to these activation probabilities. This suggests that it is 

important to design operational tests so that the test mimics field operation of the system 

as closely as possible. 

The procedures of this paper have been programmed in Visual Basic and Excel. The 

software is available from PAJ. Exercise of such software can provide guidance to test 

planners and analysts. 
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APPENDIX A 
Models for Stage-wise Over/Extra Variability 

Generalize the initial binomial stagewise (sub)model by randomizing Gs: replace 6S by 
the random variable 0S and replace $is by EWds 1 = qs{ds). 

Beta Mixing: 

One reasonable normalization is 

*, = -^- (A.2) 
as+bs 

where ft is the original "deterministic" survival probability, i.e. put qs(l) = 9S. 

The above model simultaneously chooses the same random value for each defect in a 

stage for each visit to the stage, and is independent between stages. For a uniform 

distribution (as = bs=l), 

qs{ds) = -±- (A.3) 
l + ds 

while the corresponding non-mixed version is   -    , the latter decreasing much more 

rapidly than the former. 

Alternative ("Transform") Mixing: 

If 

qs(ds) = E[ed/] = E[e-d^ln^], (A4) 

the Laplace transform of the positive random variable (-lnft); here are some tractable 

possibilities: 
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Gamma Mixing: 

The Laplace transform of Y~ Gam(/? = shape, ju = mean) is 

E[e--]M + f (A.5) 

so if Y= -\n0, put £= a? to find 

g(d) = 
1 

l + .^l 

(A.6) 

V ß 

If p = ß= 1 the result equals the uniform (Beta) result, but the Gamma result above is 

more flexible. Normalizing at d = 1, 

<?(!) = 
1 

(        \ß 

1 + " 

= 0. (A.7) 

v   /v A 

If /? is an optional tuning parameter, 

ß=ß{e-x'ß-i). 

Stable Law Mixing: 

The Laplace transform of a positive stable law (see Feller, 1966) is 

(A.8) 

E\e~&] = e~{a^,   for a> 0 and 0 < ß< 1 (A.9) 

-(«*)" If Y= -ln0, then q(d) = e~(ad) . Normalize at d = 1 to get 

q(d) = 0dß (A. 10) 

where 6 is the "deterministic" probability of defect survival. 

Inverse Gaussian (IG) Mixing (see Johnson, Kotz, and Balakrishnan, 1994): 

The IG distribution is that of the first-passage time of a Brownian motion with drift. If 

F=-ln0then 
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q(d) = E[ed] = E[e-dr] = exp --{(\ + 2cjudf -l} (A. 11) 

where 

/i = E[-\n0],   c = 
Var[-ln0] 

the latter being the coefficient of variation of (-ln#).   q(d) = e'^ if c 

depends on the tuning parameter c. 

(A. 12) 

0. The q(d) 
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APPENDIX B 
Effects of Test-to-Test Variability 

Let T(d\, d2, ...,dj,..., dg, s) denote the random number of tests to achieve a run of r 

successes for the first time, conditional dt defects being initially present in stage i, 

i = 1,..., S and on the environmental test-specific random variables e, these latter are 

assumed positive, independently sampled, and held fixed for each entire test; they thus 

represent test-to-test variability, which can be random (as here), but also deterministic, 

explanatory/regression variables. It can be seen that, conditional on e components, 

T(dud2,...,dj,...,ds;s) 

= n + T(dud2,...,dj -l,...,ds;s!_) for « = 1,2,..., r,j= 1,2,..., S, with probability 

n(8(*)rn(f<(*))',-"n(a(*)r''fi(«(*)rf>-(3>(''J)r): 
i=i i=i j=i i=i v j 

s s s 
= r with probability tl(UdiTYl(Wi)T •■■flWi)T • (B.l) 

J=I 1=1 i=i 

The next steps lead to finding the mean time to first attain a run of r test successes, 

thus stopping the overall test. 

First, take the expectation, conditional on s: 

E[T{dx,d2,...,ds;§)] 

n=ly'=l k=\ 1=1 1=1 v 

The conditional (on e) expected time to ran of r, when there is no ran of r in first r 
(run-breaker occurs at Stagey; next test starts over with dj-\ defects in Stagey) 

+'-nw*)rnM*)r...n(ft(*)r 
v i=i i=i  1=1 ( 

The conditional expected value of ran length, 
when the run occurs on the first r tests 

(B.2) 

Next, remove the condition on s, noting that the ä appearing in T(d\, d2,..., dr\,..., 

ds; £') refers to future tests, and is here assumed independent on all before; this is a 
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plausible convenience but not  a necessity.  Taking expectations or removing the 

f-condition under the iid assumption yields 

rr(dud2,...,ds) = EeE[T{dud2,...,ds;e)] 

r     S 
= SS{" + K^v--^y-l=---^5)}(M4J1)rf2,...,j5))n",(^_1(J1^2;...^s)-^(^1,J2)...,^)) 

+r(Ms{dud2,...,ds))r (B3) 

where 

Mj-i(di,d2,...,ds) = Ee 

= EK 

fl(ft(*))- 

1=1 

( '-' 
-Sta?'(*) 

I 1=1 

(B.4) 

and 

Ms(dud2,...,ds) = El 

= Ef 

mm 
. i=i 

( s       V (B.5) 

The latter expressions can be evaluated in terms of the Laplace transform of the 

^-distribution. Many such transforms of distributions are simple and explicit; see 

Appendix A for examples. 

Let R(d\, di,..., ds; s) denote the random probability of success after passing a test 

stopped after a run of r successes, again conditional on test-specific environmental 

random variables er, £(/) refers to field environments, which may differ from those of the 

tests. 
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R{di,d2,...,ds;e) = R(di,d2,...,di -l,...,ds;e$ 

for n = 1,2,..., r - 1 and i = 1,2,..., S with probability 

n 
7=1 

rKawrrKawr-IKawrxfifc^))*^-^*))*) 
1=1 1=1 1=1 7=1 

't(f) 

1=1 

failure before run of T-; start over 

s s 

=n(ö(*)) ; with probability n(^(^))£i-nfe(^)r 
.   '=1 1=1 7=1 

no failure during run of r 

Remove conditions on sx (iid) and sum, using 

MJ(di,d2,...,ds) = Ei expj-s£(-In $(*/,■)) 
7=1 

J = l,2,...,S 

Ms,f{dud2,...,ds) = E£(f) exp -*X(-lnQ(4)) 

Vx(dud2,...,ds) = EEE[R(dl,d2,...,ds;e)] 

= {Ms(dud2,...,ds))rMSj(dl,d2,...,ds) + y£(Ms(d1,d2,...,ds)) 
run of r successful tests before any failures 

71=1 

l-(Ms(di,...,dS))
r 

\-Ms{dw..4s) 
no r-run during first r tests 

S 

x^Pr(dl,d2,...,di-l,...,ds)[Mi-l(d1,d2,...,ds)-Mi(dl,d2,...,ds)] 
7=1 

start over after failure at some stage (i) before achieve run of r; remove defect, continue 

The following figures display the important role that the presence of environmental 

variability may play in the ability of operational testing to result in the fielding of reliable 

systems. 

Figure B.l displays probabilities of system field success for a system that has been 

tested until there is a run of 5 successes. The testing environmental random variables 

have a gamma distribution with mean 1 and shape parameter 0.5. The field environmental 
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random variable has a gamma distribution with mean 1 and shape parameter beta, which 

has been made widely variable. Note that the smaller beta is, the greater is the probability 

of field system survival. In the present case the testing environment is variable enough to 

produce an effect that is, in the quite disparate field conditions, quite insensitive to the 

distribution of random field effects. 

Probability of system survival after completing test until a run of 5 successes in a row 
6=0.5 0.5 0.5 0.5 

Test: Gamma distributed environment mean=1 and shape parameter=0.5 
Field: Gamma distributed environment mean=1 and shape parameter beta 

0.9 

0.8 

TO 
1 0.6 
E 0.5 o 
"§ 0.4 

* 0.3 

0.2 

0.1 

-* 

3 4 5 6 7 8 

Initial number of defects in each of 4 stages 
10 

• field environ beta=0.1 Afield environ beta=0.5 «field environ beta=1 Afield environ beta=5! 

Figure B.l 

In contrast to Figure B.l, Figure B.2 (respectively B.3) displays probabilities of field 

success (respectively, the number of tests to obtain 5 successes in a row) for a system that 

has again been tested until there is a run of 5 successes in a row. Here the field 

environmental random variable has a gamma distribution with mean 1 and shape 

parameter equal to 0.5. The test environment random variables have a gamma distribution 

with mean 1 and variable shape parameter ß. The small shape parameter, ß= 0.1, results 

in smaller mean number of tests required but at the price of a smaller probability of field 
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success. The reason: a gamma density function with ß= 0.1 has most of its mass close to 

0. Thus, most of the time the probability that a defect is revealed during a test is close to 

0, and the test is over too soon to eliminate many faults. However, since the field 

environment random variable has a shape parameter equal to 0.5, the defects remaining 

after the test is completed are likely to be triggered in the field. 

Prob of system survival after completing test until run of 5 successes in a row 
6=0.5 0.5 0.5 0.5 

. TestGamma distributed environment mean=1 and shape parameter beta 
Field: Gamma distributed environment mean=1 and shape parameter=0.5 
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Initial number of defects in each of 4 stages 

(♦testenvirbeta: =5 «testenvirbeta^ A test environ beta=0.5 ■••test envirbeta=.3 •testenvirbeta=0.1 

Figure B.2 

Variable test environments that allow a disproportionate number of excessively benign 

environments, even though balanced by some that are excessively stringent, can thus 

severely bias the quality of the fielded product. This is only common sense, but 

quantified. 
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Mean number of tests needed to obtain 5 successes in a row 
Test: Gamma distributed environment mean=1 and Shape Parameter=beta 
Field: Gamma distributed environment mean=1 and Shape Parameter=0.5 
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Figure B.3 

48 



DISTRIBUTION LIST 

1. Research Office (Code 09) 1 
Naval Postgraduate School 
Monterey, CA  93943-5000 

2. Dudley Knox Library (Code 013) 2 
Naval Postgraduate School 
Monterey, CA  93943-5002 

3. Defense Technical Information Center 2 
8725 John J. Kingman Rd., STE 0944 
Ft. Belvoir, VA  22060-6218 

4. Therese Bilodeau (Editorial Assistant) 1 
Dept of Operations Research 
Naval Postgraduate School 
Monterey, CA  93943-5000 

5. Prof. Donald P. Gaver (Code OR/Gv) 3 
Dept of Operations Research 
Naval Postgraduate School 
Monterey, CA  93943-5000 

6. Prof. Patricia A. Jacobs (Code OR/Jc) '. 25 
Dept of Operations Research 
Naval Postgraduate School 
Monterey, CA  93943-5000 

7. Prof. Kevin D.Glazebrook 2 
Dept. of Statistics 
Newcastle University 
Newcastle upon Tyne  NER17RU 
ENGLAND 

8. Dr. Ernest Seglie  
Science Director, DOT&E 
3E318 Pentagon 
Washington, DC  20301-1700 

9. Mr. Michael Bauman  
Director, USA Training & Doctrine Command Analysis Center (TRAC) 
Fort Leavenworth, KS  66027 

10. Mr. Kevin Becker  
Compaq Computer Corp. 
MS CAC 06-64 
1055RidgeviewCt. 
Cupertino, CA  95014 

11. Prof. Henry Block  
Dept. of Math and Statistics 
University of Pittsburgh 
Pittsburgh, PA   15260 

49 



12. Prof. Dan Boger  
Chair, C3I Academic Group 
Naval Postgraduate School 
Monterey, CA  93943-5000 

13. Dr. Robert L. Carpenter  
Naval Health Research Center Detachment - Toxicology 
2612 Fifth St., Bldg. 433, Area B 
Wright-Patterson AFB, OH  45433-7903 

14. Center for Naval Analyses   .... 
4401 Ford Avenue 
Alexandria, VA  22302-0268 

15. Dr. W. Peter Cherry  
Vector Research Inc. 
P.O. Box 1506 
Ann Arbor, MI  48106 

16. Mr. Thomas Christie  
Institute for Defense Analysis 
1800 North Beauregard 
Alexandria, VA  22311 

17. Dr. Michael L. Cohen  
Study Director 
Committee on National Statistics 
2101 Constitution Ave. 
Washington, DC  20418 

18. Prof. Sir David Cox. 
Nuffield College 
Oxford  OXIINF 
ENGLAND 

19. Dr. Larry Crow  
AT&T Bell Laboratories 
67 Whippany Road 
Whippany,NJ  07981 

20. Dr. Siddhartha Dalai  
Telcordia Technologies 
445 South Street 
Morristown, NJ  07960-6438 

21. Dr. D. F. Daley  
Statistics Dept. (I.A.S.) 
Australian National University 
Canberra, A.C.T  2606 
AUSTRALIA 

22. Dr. Robert Easterling  
Sandia National Laboratories 
MS 0417 
Albuquerque, NM  87195 

50 



23. USAMSAA .  
ATTN: (ATSD Dr. Paul M. Ellner) 
392 Hopkins Road 
Aberdeen Proving Ground, MD  21005-5071 

24. Dr. Arthur Fries  
Institute for Defense Analysis 
1800 North Beauregard 
Alexandria, VA  22311 

25. Dr. Andrew German  
Statistics Dept. 
Columbia University 
New York, NY   10027 

26. Prof. Bernard Harris  
Dept. of Statistics 
University of Wisconsin 
610 Walnut Street 
Madison, WI  53706 

27. Mr. Walter W. Hollis  
Deputy Under Secretary of the Army (OR) 
ATTN: SAUS (OR) 
The Pentagon, Room 2E660 
Washington, DC  20310-0102 

28. Prof. J. B. Kadane  
Dept. of Statistics 
Carnegie-Mellon University 
Pittsburgh, PA   15213 

29. Dr. Sallie Keller-McNulty  
Los Alamos National Laboratory 
Group TSA-1 
MSF 600 
Los Alamos, NM  87545 

30. Dr. Jon Kettenring  
Bellcore 
445 South Street 
Morris Township, NJ  07962-1910 

31. Dr. Moshe Kress.. 
CEMA 
P.O.B. 2250 (TI) 
Haifa   31021 
ISRAEL 

32. Prof. GuyLatouche  
University Libre Bruxelles 
C.P. 212, Blvd. De Triomphe 
Bruxelles  B-1050 
BELGIUM 

51 



33. Dr. A. J. Lawrance  
Dept. of Mathematics 
University of Birmingham 
P.O. Box 363 
Birmingham  B15 2TT 
ENGLAND 

34. Prof. J. Lehoczky  
Department of Statistics 
Camegie-Mellon University 
Pittsburgh, PA   15213 

35. Dr. Colin Mallows , 
AT&T Bell Telephone Laboratories 
600 Mountain Avenue 
Murray Hill, NJ  07974 

36. Dr. Harry Martz  
Los Alamos National Laboratory 
Group TSA-1 
MSF 600 
Los Alamos, NM   87545 

37. Prof. M. Mazumdar  
Dept. of Industrial Engineering 
University of Pittsburgh 
Pittsburgh, PA   15235 

38. Prof. Ali Mosleh  
University of Maryland 
Dept of Materials & Nuclear Engineering 
Rm.2100A 
Marie Mount Hall 
College Park, MD  20742-7531 

39. Prof. M. Nikuline  
UFR MIZS Universite Bordeaux 2 
Boite Postale 69 
Bordeaux  33076 
FRANCE 

40. Dr. David H. Olwell  
1877 N. Marble Ridge PI. 
Tucson, AZ  85715 

4L Prof. Steven Pollock  
Dept of Industrial-Operations Engr. 
1831IOE 
University of Michigan 
Ann Arbor, MI  48109 

42. Prof. Jesse Poore  
Dept of Computer Science 
University of Tennessee 
KnoxviUe,TN  37996 

52 



43. Dr. JohnE. Rolph  
Information and Operations Management 
Univ. of Southern California 
School of Business Administration 
Los Angeles, CA  90089-1421 

44. Prof. M.F. Romalhoto  
Departamento de Matematica 
Instituto Superior Tecnica 
Avenida Rovisco Pais 
Lisboa   1096 
PORTUGAL 

45. Prof. Frank Samaniego... 
Statistics Department 
University of California 
Davis, CA  95616 

46. Prof. Sam Saunders  
PO Box 458 
Kirkland,WA  98083-0458 

47. Prof. TomSavits  
Dept. of Math and Statistics 
University of Pittsburgh 
Pittsburgh, PA   15260 

48. Prof. N. D. Singpurwalla  
George Washington University 
Washington, DC   20052 

49. Prof. Duane Steffey  
Dept. of Math and Computer Science 
San Diego State University 
5500 Campanile Dr. 
San Diego, CA  92182-7720 

50. Prof. L.C. Thomas  
School of Management 
University of Southampton 
Highfield 
Southampton  S017 1BJ 
ENGLAND 

51. Dr. Michael Tortorella  
Bell Laboratories 
M/S 2L-536 
101 Crawford's Corner Rd. 
HolmdeLNJ  07733-3030 

52. Dr. D. Vere-Jones  
Dept. of Math 
Victoria Univ. of Wellington 
P.O. Box 196 
Wellington 
NEW ZEALAND 

53 



53. Dr. L. Wein  
Operations Research Center, Rm E40-164 
Massachusetts Institute of Technology 
Cambridge, MA  02139 

54. Dr. Gideon Weiss  
Dept. of Statistics 
The University of Haifa 
Haifa  31905 
ISRAEL 

55. Mr. Steven Whitehead  
c/o Commander, Operational Test & Evaluation Force 
7970 Diven Street 
Norfolk, VA  23505 

56. Dr. Daniel Willard  
Deputy Under Secretary of the Army (OR) 
ATTN: SAUS (OR) 
The Pentagon, Room 2E660 
Washington, DC  20310-0102 

57. Dr. Alyson Wilson  
Los Alamos National Laboratory 
Group TSA-1 
MSF 600 
Los Alamos, NM  87545 

54 


