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Objectives 

During the past few years we have been involved in the development of new computational methods for 
quantifying similarity/dissimilarity of chemicals and applications of quantitative molecular similarity 
analysis (QMSA) techniques in analog selection and property estimation for use in the hazard 
assessment of chemicals. We have also explored the mathematical nature of the molecular similarity ^ 
space in order to better understand the basis of analog selection by QMSA methods. The parameter 
spaces used for QMSA and analog selection were constructed from nonempirical parameters derived 
from computational chemical graph theory. Occasionally, graph invariants were supplemented with 
geometrical parameters and quantum chemical indices to study the relative effectiveness of graph 
invariants vis-ä-vis geometrical and quantum chemical parameters in analog selection and property 
estimation. We carried out comparative studies of nonempirical descriptor spaces and physicochemical 
property spaces in selecting analogs. Molecular similarity methods were applied in predicting modes of 
toxic action (MOA) of chemicals. Our similarity/dissimilarity methods have also found successful 
applications in trie discovery of new drug leads by US drug companies. 

In this project, we will have four primary goals: 1) development of a hierarchical approach to molecular 
similarity, 2) formulation of quantitative structure-activity relationship (QSAR) models for predictive 
toxicology using a hierarchical approach, 3) applications of hierarchical QSAR and QMSA approaches in 
computational toxicology related to human health and ecological hazard assessment, and 4) the 
application of hierarchical QMSA and QSAR approaches in estimating potential toxicity of deicing agents. 

The first goal of the project is the use of parameters of gradually increasing complexity, viz., topological, 
topochemical, geometrical, and quantum chemical indices, in the quantification of molecular 
similarity/dissimilarity of chemicals. We will take a two-tier approach in this area. First, similarity methods 
will be used in ordering sets of molecules and in selecting structural analogs of toxic chemicals which 
pose human health and ecological hazards. Secondly, we will use the properties of selected analogs in 
estimating toxicologically important properties for chemicals. Although different classes of parameters 
have been used in the characterization of molecular similarity, no systematic study has been carried out 
in the use of all four classes of parameters, mentioned above, in analog selection and property 
estimation. We will apply a hierarchical approach to the use of these four types of theoretical molecular 
descriptors in the quantification of molecular similarity/dissimilarity. 

The second goal consists of the development of hierarchical QSAR models for predicting the toxic 
potential of chemicals using topological and quantum chemical indices. Initially, we will use parameters 
calculated by semi-empirical methods such as MOPAC and AMPAC. Parameters calculated by ab initio 
quantum chemical methods will be used in limited cases of QSAR model development, if they are 
considered necessary. 

The third goal of the project will be the prediction of human health hazard and ecotoxicological effects of 
chemicals using QSAR and QMSA methods developed in the project. Attempts will be made to estimate 
endpoints, such as, carcinogenicity, mutagenicity, xenoestrogenicity, acute toxicity, transport of 
chemicals through the blood-brain barrier, biodegradation, and bioconcentration factor. 

The fourth goal will involve the utilization of QMSA and QSAR methods developed as part of this project 
in predicting the potential toxicity of deicing agents. 
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Status of Efforts 

During the first year of the project the majority of effort was spent in the development of novel 
hierarchical QSAR methods, QMSA techniques and the applications of these methods in the prediction 
of toxicological, physicochemical and biomedicinal properties of different sets of chemicals. Our 
dissimilarity methods were used to group JP-8 constituents into a small number of clusters that can be 
used in selecting surrogate mixtures for JP-8 in the Air Force's toxicological studies. The clustering was 
done using algorithmically derived molecular descriptors calculated by our computer program POLLY. 
Such parameters can be calculated for any molecular structure, real or hypothetical. This makes the 
clustering methods independent of any experimentally determined property of the JP-8 constituents. 

During the second year of the project, our effort was directed towards the development of novel optimal 
molecular descriptors, the development and use of new topological indices, the study of the 
intercorrelation of a large number of molecular descriptors, and the use of calculated molecular 
descriptors in the prediction of toxicological and toxicologically-relevant properties. We also explored the 
possibility of developing integrated QSAR (l-QSAR) with the combination of chemodescriptors derived 
from computational chemistry and biodescriptors derived from biological techniques such as proteomics. 

The third year of the project has focused on the further expansion of our theoretical molecular descriptor 
set through the further development of new topological indices and the acquisition of several other well- 
known software packages for the calculation of molecular descriptors, viz., CODESSA v2.0 and 
Molconn-Z v3.50. Along with this expansion, we have continued our pioneering studies in the 
intercorrelation of large molecular descriptor sets and the use of this expanded descriptor set in the 
prediction of toxicological and toxicologically-relevant properties. We have also begun the initial 
exploration of the creation of biodescriptors, derived from matrix invariants, to handle data from 
proteomics maps and have developed several new methods for the characterization of DNA sequences. 

Accomplishments/ New Findings 

The following is the summary of accomplishments of the various tasks of the project during the reporting 
period: 

Task 1: Development of Databases 
Years 1 & 2    Databases of toxicological endpoints and physicochemical properties have been 
developed from published literature. Such data have been used in the hierarchical QSAR and 
QMSA studies (vide infra). 

Year 3 Efforts to develop more databases from published literature have tapered off, with 
more emphasis being placed on other aspects of the project. However, we have been making 
efforts to acquire a number of large, proprietary databases from various companies for the 
purposes of testing some of our methods against "real" drug-development databases. 

Task 2: Development of a Comprehensive Computer Program for Calculating 
Topological Molecular Descriptors 

Years 1 & 2    POLLY can calculate more than one hundred topological indices (TIs). We have 
been working to develop algorithms to calculate other topological descriptors such as local 
invariants. Such indices will be tested in hierarchical QSAR and QMSA research. 
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Year 3 A new software module associated with POLLY has been developed and is 
currently being tested. This module, called TRIPLET, can calculate 100 local vertex invariants 
(LOVIs) which are also known as triplet indices. 

Task 3: Integration of Graph Theory and Quantum Chemistry for QSAR 
Years 1 & 2    Ongoing research in this area focused on the use of weighted graphs, 
pseudographs in the development of novel descriptors. This will lead to novel invariants that can 
encode information not quantified by existing molecular descriptors. In the second year of the 
project, a paper was submitted for publication that studied the interrelationship of over 200 
topological indices. 

Year 3 The intercorrelation study submitted last year was published this spring in the 
Journal of Chemical Information and Computer Science (Basak et al. 2000). This study is being 
followed with a more rigorous study involving using a larger set of 318 indices on an expanded 
set of databases. Additionally, our findings that in many cases quantum chemical indices do no 
better than topological indices in QSAR modeling are being borne out by the work of other 
researchers. 

Task 6: Characterization of Structure Using Theoretical Structural Descriptors 
Years 1 & 2    We have used topological indices and principal components (PCs) derived from 
them in the characterization of a set of isospectral graphs which cannot be discriminated by the 
eigenvalues of the adjacence matrix of molecular graphs. This result was published in the Journal 
of Chemical Information and Computer Sciences (Balasubramanian and Basak 1998). 

Attempts have been made to devise descriptors that characterize chemical structures 
optimally. This has been done through the use of weighted graphs. Invariants based on line 
graphs have also been used for QSAR studies. Both of these techniques involve the development 
of novel descriptors for the characterization of molecular structure. 

Year 3 Work on optimized molecular descriptors with Dr. Randic has continued, resulting 
in a number of new publications. Additionally, this work has spread into new fields with our 
development of methods to characterize protein structure and folding through the use of novel 
invariants. 

Task 7: Development of Hierarchical QMS A Models 
Years 1 & 2    Topostructural, topochemical, geometrical as well as quantum chemical 
parameters have been used in the development of QMSA methods. We carried out a 
dissimilarity-based clustering of JP-8 constituents into fourteen clusters. A mixture of compounds 
selected from each cluster can be used as surrogates for the complex JP-8 mixture. 

The method has also been used in the clustering of a large, virtual, combinatorial library of 
Psoralen derivatives. The results of this analysis were presented in five papers at the 
International Biophysics Congress, New Delhi, September 19-23, 1999. 

Year 3 Additional studies involving the development and refinement of the hierarchical 
QMSA method were presented at the Second Indo-US Workshop on Mathematical Chemistry, 
Duluth, MN, May 30-June 3, 2000 and at the National American Chemical Society meeting, 
Washington, D.C., August 20-24, 2000. 
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Task 8: Development of Hierarchical Approach to QSAR 
Year 1 & 2      Quantum chemical parameters calculated by semiempirical methods have been 
used in hierarchical QSAR models for predicting toxicity and toxicologically relevant 
physicochemical properties. Several manuscripts have been published in peer-reviewed journals. 

Our hierarchical approach has been used in the development of QSAR models for the 
prediction of toxicity (e.g., aquatic toxicity, LC50, of a set of benzene derivatives, skin penetration 
by polycyclic aromatic hydrocarbons, mutagenicity, etc). We have used mainly linear statistical 
methods such as variable clustering, principal components analysis, etc, for model building. In the 
area of neural net analysis, we used linear as well as nonlinear methodology. In the case of 
toxicity of benzene derivatives, there were some improvements in the model over the linear 
statistical methods by the applications of neural net methodology. 

Year 3 Findings of recent hierarchical QSAR modeling studies were presented at both the 
Second Indo-US Workshop on Mathematical Chemistry and at the National American Chemical 
Society meeting. We have continued working to examine the relative effectiveness of linear and 
non-linear statistical methods versus linear and non-linear neural network methods and has 
resulted in the publication of two manuscripts and the submission of two other studies for peer- 
review and publication. 

Work on the development of novel biodescriptors has been progressing well. Our 
collaborative efforts aim at the development of a series of novel invariants for the characterization 
of proteomics maps. We hope to continue these studies to move beyond the theoretical stage to 
develop software to calculate these invariants and to test them in QSAR model development. 
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Publications 

The following peer-reviewed papers, which are currently either published, in press, or submitted, report results of 
research carried out between August 1, 1997 and September 30, 2000. 

1997 Characterization of molecular structures using topological indices, S.C. Basak and B.D. Gute, SAR QSAR 
Environ. Res., 7, 1-21 1997. 

Computational study of the environmental fate of selected aircraft fuel system deicing compounds, G.W. 
Mushrush, S.C. Basak, J.E. Slone, E.J. Beal, S. Basu, W.M. Stalick and D.R. Hardy, J. Environ. Sei. 
Health, A32, 2201-2211, 1997. 

Predicting acute toxicity (LC50) of benzene derivatives using theoretical molecular descriptors: a 
hierarchical QSAR approach, B. D. Gute and S. C. Basak, SAR QSAR Environ. Res., 7, 117-131, 1997. 

1998 Characterization of isospectral graphs using graph invariants and derived orthogonal parameters, K. 
Balasubramanian and S. C. Basak, J. Chem. Inf. Comput. Sei., 38, 367, 1998. 

Characterization of the molecular similarity of chemicals using topological invariants, S. C. Basak, B. D. 
Gute, and G. D. Grunwald, in: Advances in Molecular Similarity, JAI Press, pp. 171-185,vol. 2, R. Carbo- 
Dorca and P. G. Mezey (Eds), 1998. 

The relative effectiveness of topological, geometrical, and quantum chemical parameters in estimating 
mutagenicity of chemicals, S. C. Basak, B. D. Gute and G. D. Grunwald, In QSAR in Environmental 
Sciences - VII, F. Chen and G. Schuurmann, eds., SETAC Press, Pensacola, FL, 1998, Chapter 17, p 245- 
261. 

1999 A hierarchical approach to the development of QSAR models using topological, geometrical and quantum 
chemical parameters, S.C. Basak, B.D. Gute and G.D. Grunwald, In Topological Indices and Related 
Descriptors in QSAR and QSPR, Eds. J. Devillers and AT. Balaban, Gordon and Breach Science 
Publishers, Amsterdam, 1999, p 675-696. 

Assessment of the mutagenicity of chemicals from theoretical structural parameters: A hierarchical 
approach, S.C. Basak, B.D. Gute, and G.D. Grunwald, SAR QSAR Environ. Res., 10, 117-129, 1999. 

Correlation between structure and normal boiling point of acyclic carbonyl compounds, A. T. Balaban, D. 
Mills and S. C. Basak, J. Chem. Inf. Comput. Sei, 39, 758-764, 1999. 

Hazard assessment modeling: An evolutionary ensemble approach, D.W. Opitz, S.C. Basak and B.D. 
Gute, In: Genetic and Evolutionary Computation, Eds. W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. 
Honavar, M. Jakiela, & R.E. Smith, Morgan Kaufmann: San Francisco, 1999, p 1643-1651. 

Information theoretic indices of neighborhood complexity and their applications, S.C. Basak, In Topological 
Indices and Related Descriptors in QSAR and QSPR, Eds. J. Devillers and A.T. Balaban, Gordon and 
Breach Science Publishers, Amsterdam, 1999, p 563-593. 

Normal boiling points of 1,o-alkanedinitriles: The highest increment in a homologous series, AT. Balaban, 
S.C. Basak and D. Mills, J. Chem. Inf. Comput. Sei, 39, 769-774, 1999. 

Optimal molecular descriptors based on weighted path numbers, M. Randiö and S. C. Basak, J. Chem. Inf. 
Comput. Sei., 39, 261-266, 1999. 

Prediction of complement-inhibitory activity of benzamidines using topological and geometric parameters, 
S.C. Basak, B.D. Gute, and S. Ghatak, J. Chem. Inf. Comput. Sei., 39, 255-260, 1999. 

Prediction of the dermal penetration of polycyclic aromatic hydrocarbons (PAHs): a hierarchical QSAR 
approach, B. D. Gute, G. D. Grunwald, and S. C. Basak, SAR. QSAR Environ. Res., 10, 1-15, 1999. 
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Use of statistical and neural net methods in predicting toxicity of chemicals: A hierarchical QSAR approach, 
S C Basak B.D. Gute, G.D. Grunwald, D.W. Opitz and K. Balasubramanian, In Predictive Toxicology of 
Chemicals:'Experiences and Impact of Al Tools - Papers from the 1999 AAAI Symposium, March 22-24, 
1999, Stanford, CA, TR SS-99-01, AAAI Press: Menlo Park, CA, 1999, p 108-111. 

2000    A comparative QSAR study of benzamidines complement-inhibitory activity and benzene derivatives acute 
toxicity, S.C. Basak, B.D. Gute, B. Lucic, S. Nikolic and N. Trinajstic, Computers & Chemistry, 24,181-191, 
2000. ' 

Construction of high-quality structure-property-activity regressions: The boiling points of sulfides, M. Randic 
and S. C. Basak, J. Chem. Inf. Comput. Sei., 40, 899-905, 2000. 

Multiple regression analysis with optimal molecular descriptors, M. Randic and S.C. Basak, SAR QSAR 
Environ. Res., 11, 1-23,2000. 

On 3-D graphical representation of DNA primary sequences and their numerical characterization, M. 
Randic, M. Vracko, A. Nandy and S. C. Basak, J. Comput. Chem., 40,1235-1244, 2000. 

QSPR modeling: Graph connectivity indices versus line graph connectivity indices, S. C. Basak, S. Nikolic, 
N. Trinajstic, D. Amic and D. Beslo, J. Chem. Inf. Comput. Sei., 40, 927-933, 2000. 

Simple numerical descriptor for quantifying effect of toxic substances on DNA sequences, A. Nandy and S. 
C. Basak, J. Chem. Inf. Comput. Sei., 40, 915-919, 2000. 

Topological indices: Their nature and mutual relatedness, S. C. Basak, A. T. Balaban, G. D. Grunwald and 
B. D. Gute, J. Chem. Inf. Comput. Sei, 40, 891-898, 2000. 

Use of graph invariants in QMSA and predictive toxicology, S.C. Basak and B.D. Gute, In Discrete 
Mathematical Chemistry, Eds. P. Hansen, P. Fowler, M. Zheng, DIMACS Series 51, American 
Mathematical Society: Providence, Rhode Island, 2000, pages 9-24. 

Use of statistical and neural net approaches in predicting toxicity of chemicals, S. C. Basak, G. D. 
Grunwald, B. D. Gute, K. Balasubramanian and D. Opitz, J. Chem. Inf. Comput. Sei., 40, 885-890, 2000. 

In press . . 
Molecular similarity based estimation of properties: A comparison of structure spaces and property spaces, 
B.D. Gute, G.D. Grunwald, D. Mills and S.C. Basak, SAR QSAR Environ. Res., 2000. 

On characterization of physical properties of amino acids, M. Randic, D. Mills and S. C. Basak, Int. J. 
Quant. Chem., 2000. 

On ordering of folded structures, M. Randic, M. Vracko, M. Novic and S. C. Basak, Mathematical 
Chemistry, MATCH, 2000. 

Quantitative comparison of five molecular structure spaces in selecting analogs of chemicals, S.C. Basak, 
B.D. Gute, and G.D. Grunwald, Mathl. Model. Comput. Sei, 2000. 

Reverse Wiener index, A. T. Balaban, D. Mills and S. C. Basak, Croat. Chim. Ada, 2000. 

Use of mathematical structural invariants in analysing combinatorial libraries: A case study with Psoralen 
derivatives S C Basak, D. Mills, B.D. Gute, AT. Balaban, K. Basak and G.D. Grunwald, In Some Aspects 
of Mathematical Chemistry, Eds. D.K. Sinha, S.C. Basak, R.K. Mohanty and I.N. Basumallick, Visva-Bharati 
University: Santiniketan, West Bengal, India, 2000. 

Variable molecular descriptors, M. Randic and S.C. Basak, In Some Aspects of Mathematical Chemistry, 
Eds. D.K. Sinha, S.C. Basak, R.K. Mohanty and I.N. Basumallick, Visva-Bharati University: Santiniketan, 
West Bengal, India, 2000. 
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Accepted 
Modelling the solubility of aliphatic alcohols in water. Graph connectivity indices versus line graph 
connectivity indices, S. Nikolic, N. Trinajstic, D. Amic, D. Beslo and S. C. Basak, In QSAR/QSPR Studies 
by Molecular Descriptors, M. V. Diudea, Ed., Nova Science Publishers, New York, USA, 2000. 

Submitted 
A neural net-based QSAR algorithm (PCANN) and its comparison with hologram- and multiple linear 
regression-based QSAR approaches applied to 1,4-dihydropyridine-based calcium channel antagonists, 
V.N. Viswanadhan, G.A. Mueller, S.C. Basak and J.N. Weinstein, J. Chem. Inf. Comput. Sei., 2000. 

A new descriptor for structure-property and structure-activity correlations, M. Randic and S.C. Basak, J. 
Chem. Inf. Comput. Sei., 2000. 

A novel 2-D graphical representation of DNA sequences of low degeneracy, X. Guo, M. Randic and S.C. 
Basak, Chem. Phys. Lett., 2000. 

Characterization of DNA primary sequences based on the average distances between bases, M. Randic 
and S. C. Basak, J. Chem. Inf. Comput. Sei., 2000. 

Distance indices and their hyper-counterparts: Intercorrelation and use in the structure-property modeling, 
N. Trinajstic, S. Nikolic, S.C. Basak and I. Lukovits, SAR QSAR Environ. Res., 2000. 

On structural interpretation of distance related topological indices, M. Randic, AT. Balaban and S.C. 
Basak, J. Chem. Inf. Comput. Sei., 2000. 

On the characterization of DNA primary sequences by triplet of nucleic acid bases, M. Randic, X. Guo and 
S.C. Basak, J. Chem. Inf. Comput. Sei., 2000. 

On use of the variable connectivity index Y in QSAR:Toxicity of aliphatic ethers, M. Randic and S. C. 
Basak, J. Chem. Inf. Comput. Sei., 2000. 

Prediction of mutagenicity of aromatic and heteroaromatic amines from structure: A hierarchical QSAR 
approach, S.C. Basak, D.R. Mills and AT. Balaban, J. Chem. Inf. Comput. Sei., 2000. 

QSAR with few compounds and many features, D.M. Hawkins, S. C. Basak and X. Shi, J. Chem. Inf. 
Comput. Sei., 2000. 

Copies of manuscripts published since the 1999 year-end report are attached as Appendix 1. Copies of the 
manuscripts at various levels of review and publication have been omitted for the sake of brevity. 

Interactions/ Transitions 

Transitions 
1. Applied computational methods in the design of a set of six anti-epileptic carbamates by Professor 

Alexandru T. Balaban, Vice President, Rumanian Academy of Sciences. 

2. Worked with Dr. James Riviere, North Carolina State University, in the clustering of JP-8 components 
using dissimilarity methods developed at NRRI. 

3. Worked with Dr. Alexander Gybin, The Chormaline Corporation, Duluth, MN in the computer-assisted 
design of photoactive chemicals 

4. Applied computational methods in the design of a set of novel photoactive chemicals by Professor 
Alexandru T. Balaban, Vice President, Rumanian Academy of Sciences (with Dr. Alexander Gybin, 
Chormaline Corporation, Duluth, MN). 
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5. Worked with Dr. Frank Witzmann, IUPUI, in the development of integrated QSAR methods using 
chemodescriptors and biodescriptors. 

6. Worked with Dr. Hirak Basu, SLIL Technology, Madison, Wl, to generate a virtual library of about 
80,000 chemicals to carry out dissimilarity based design of novel anticancer drugs using POLLY 
parameters. 

7. Worked with Dr. Marjan Vracko, National Institute of Chemistry, Ljubljana, Slovenia, to apply our 
hierarchical QSAR approach to predict the toxicity of chemicals of interest to the European community. 

8. Currently working on a long-term collaborative project with Dr. Indira Ghosh, Astra/Zeneca, Bangalore, 
India, to implement and use topological indices for clustering and analysis of their large, proprietary 
databases for the discovery of novel lead compounds. 

Meetings/ Seminars/ Invited Presentations 
1. Dr. S.C, Basak was the Co-Chairperson of the First Indo/US Workshop on Mathematical Chemistry, 

organized jointly by NRRI and Visva Bharati University, Santiniketan, West Bengal India, Jan 9-13, 
1998. Basak presented the following papers at the workshop: 
i.    Graph invariants, molecular similarity and QSAR co-authored by B.D. Gute and G.D. Grunwald. 
ii.    Weighted paths as novel optimal molecular descriptors authored jointly by M. Randic and Basak: 

iii.   The utility of hierarchical model development in examining the structural basis of properties 
authored by BD. Gute, G.D. Grunwald and Basak. 

iv.   Weighted K-nearest neighbors property estimation in molecular similarity authored by G.D. 
Grunwald, B.D. Gute and Basak. 

v.   Dissimilarity based clustering ofpsoralen derivatives in the topological structure space: A strategy 
for drug design authored by Basak, G.D. Grunwald, D. Panja, K. Basak and B.D. Gute. 

2. Dr. S.C. Basak gave several invited lectures at various national and international symposia during his 
stay in India from December 23,1997 through January 31,1998. These lectures included: 
i.    A distinguished lecture Rational drug design and Ayurvedic medicine at the conference organized 

by the Association of Ayurvedic Doctors of India (AADI), January 4, 1998. 
ii.   An invited lecture on Use of computational methods and Ayurvedic knowledge in modern drug 

discovery at the conference AYURVEDA TODAY, January 8,1998. 
An invited seminar on Assessment of genotoxicity of chemicals from structure: A computational 
approach at the Annual Conference of the Indian Association for Cancer Congress, Calcutta, 
January 21-24,1998. The lecture was co-authored by B.D. Gute and G.D. Grunwald. 

in 

Dr. S.C. Basak chaired a session at the DIMACS Workshop on Discrete Mathematical Chemistry, 
March 23-25, 1998, held at Rutgers University, New Jersey. He also presented an invited paper 
entitled Use of graph invariants in QSAR and predictive toxicology at the conference authored jointly by 
Basak, B.D. Gute and G.D. Grunwald. 

Dr. S.C. Basak gave an invited presentation entitled A computational approach to predicting toxicity: 
Possible applications to JP8jet fuel at the First International Conference on the Environmental Health 
and Safety of Jet Fuels, organized jointly by US Air Force, National Institute of Occupational Safety and 
Health, USEPA National Exposure Research Laboratory and American Industrial Hygiene Association, 
April 1-3, 1998, San Antonio, TX. 

Dr. S.C. Basak presented the following papers at the International Conference Computational Methods 
in Toxicology held April 20-22,1998, Dayton, OH: 
i.    Use of computational methods in predicting potential toxicity of chemicals authored jointly by 

Basak, B.D. Gute and G.D. Grunwald. 
ii.    On construction of optimal molecular descriptors authored jointly by M. Randic and Basak. 
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iii.   Predicting mode of action of chemicals from structure: A hierarchical approach authored jointly by 
Basak, G.D. Grunwald and B.D. Gute, 

iv.   A hierarchical approach to predictive toxicology using computed molecular descriptors authored 
jointly by B.D. Gute, G.D. Grunwald and Basak 

6 Dr. S.C. Basak presented a paper Dissimilarity-based clustering ofpsoralen derivatives in the 
topological structure space: A strategy for drug design at the Second Annual Chemoinformatics 
Workshop, organized by the Cambridge Health Institute, Boston, MA, June 15-16, 1998. The paper 
was co-authored by G. D Grunwald and B.D. Gute. 

7 Dr S.C. Basak presented an invited seminar Novel drug design methods: Assessing activity and 
toxicity using computational chemistry at the Department of Molecular Biology and Genetics, University 
of Guelph, Ontario, Canada, July 3,1998. 

8 Dr. S.C. Basak presented the invited lecture Use of theoretical structural descriptors in molecular 
design and hazard assessment of chemicals to the scientists of the computer-aided drug design 
company NANODESIGN, INC, Toronto, Canada, July 6,1998. 

9 Dr S.C. Basak attended the First Environmental Management Science Program Workshop organized 
jointly by the American Chemical Society and the Office of Environmental Management, Department of 
Energy, Chicago, IL, July 27-30,1998. 

10 Dr. S.C. Basak presented the invited lecture Theoretical molecular descriptors for the prediction of 
bioactivity /toxicity, selection of analogs, discovery and optimization of leads authored jointly by Basak, 
B.D. Gute, G.D. Grunwald and AT. Balaban at the Astra Symposium on Advances in Medicinal 
Chemistry'organized by the Astra company, Bangalore, September 17-19,1998. 

11. Dr. S.C. Basak presented the invited lecture Prediction of bioactivity of chemicals from structure: A 
computational approach at the Indian Institute of Science, Bangalore, India, September 20,1998. 

12 Dr. S.C. Basak presented the invited lecture Integration of traditional Indian medicine and 
chemoinformatics for rapid drug discovery at the conference organized jointly by East India 
Pharmaceutical Company, Calcutta, October 12,1998. 

13 B D Gute presented an invited talk A hierarchical QSAR approach to predicting carcinogenicity of 
chemicals authored jointly, by S.C. Basak, Gute and G.D. Grunwald, at the 19 Annual Society of 
Environmental Toxicology and Chemistry meeting, Charlotte, North Caroline, November 15-19,1998. 

14 Dr S C. Basak presented the invited lecture Clustering of JP-8 constituents into structurally dissimilar 
groups- A novel computational strategy for predictive toxicology authored jointly by Basak and G. D. 
Grunwald, at the Air Force Office of Scientific Research JP-8 Jet Fuel Toxicology Workshop, held at 
the University of Arizona, Tucson, AZ, December 2-3,1998. 

15 Dr. S.C. Basak presented the invited lecture on Novel drug discovery methods: Predicting 
pharmacological and toxicological properties of chemicals using computational chemistry at the 
Meharry Medical College, Nashville, TN, January 19, 1999. 

16 Dr S.C. Basak delivered the first distinguished lecture in Mathematical Chemistry on From graph 
invariants to molecular design: 25 years after the connectivity index at Visva Bharati University, 
Santiniketan, West Bengal, India, February 11,1999. 

17. Dr. S.C. Basak presented the invited seminar Theoretical molecular descriptors for the prediction of 
bioactivity, toxicity, selection of analogs, discovery and optimization of leads at the Wockhardt 
Research Centre, Aurangabad, Maharashtra, India, on February 15,1999. 

18 Dr S C Basak presented the invited lecture Prediction of bioactivity of chemicals from structure: A 
hierarchical computational approach at Bharatiya Vidya Bhavans Swami Prakashananda Ayurvedic 
Research Center, Mumbai, India, on February 18, 1999. 
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19. Dr. S.C. Basak presented the invited lecture on Toxicology in silico: Addressing the quagmire of 
environmental pollution and protecting public health using computational chemistry authored jointly by 
Basak, B.D. Gute, David Opitz and G.D. Grunwald at the International Symposia Series: Reducing the 
Environmental Impacts of Toxic Chemicals in Asian Economies. The Impacts of Toxic Chemicals and 
Pollutants on Public Health, the Ecology and the Environment of the Bengal Basin - Bangladesh and 
India, Dhaka Bangladesh, on March 1, 1999. 

20. Dr. S.C. Basak presented the invited seminar on Novel drug discovery methods: Predicting 
pharmacological and toxicological properties of chemicals using computational chemistry at the School 
of Pharmacy, Dhaka University, Dhaka, Bangladesh on March 4, 1999. 

21. Dr. S.C. Basak presented the invited talk Computational toxicology: A cost effective approach for the 
protection of human and environmental health at the International Conference at Santiniketan, India, 
March 7, 1999. 

22. Dr. S.C. Basak gave the invited presentation Estimation of DNA damage from toxic chemicals by 
graphical techniques authored jointly by A. Nandy, C. Raychaudhury, S. Ghosh, and Basak on March 
8, 1999. 

23. Dr. S.C. Basak attended the at the International Conference Smarter Lead Optimization: Easing the 
Bottleneck organized by Cambridge Health Institute, March 18-19, 1999, San Diego, CA and gave the 
following presentations: 
i.    A computational approach to predicting toxicity and toxic modes of action of chemicals from 

structure. 
ii.    Topological indices as molecular descriptors for lead optimization authored jointly by AT. Balaban 

and Basak. 

24. Dr. S.C. Basak attended the American Association of Artificial Intelligence conference, Predictive 
Toxicology of Chemicals: Experiences and Impact of Al Tools, Stanford University, March 22-24,1999 
to present the following lectures: 
i.    Use of statistical and neural net methods in predicting toxicity of chemicals: A hierarchical QSAR 

approach authored jointly by Basak, G.D. Grunwald, B.D. Gute, K. Balasubramanian and D. Opitz. 

ii.   A Graphical Technique for Preliminary Assessment of Effects on DNA Sequences from Toxic 
Substances authored jointly by A. Nandy, C. Raychaudhury and Basak. 

25. Dr. Basak presented the following papers at the QSAR Gordon Conference, July 25-30, 1999, Tilton, 
New Hampshire: 
i.    A hierarchical QSAR approach for predicting property/activity of chemicals authored by Basak, 

G.D. Grunwald, B.D. Gute, D. Mills, K. Balasubramanian and AT. Balaban. 
ii.    Topological indices as molecular descriptors for QSAR authored by AT. Balaban and Basak. 

26. On a trip to Europe and India during September of 1999, Dr. S.C. Basak gave the following invited 
presentations: 
i.    A hierarchical qsar approach for predicting property/activity of chemical from structure at the Rugjer 

Boskovic Institute, Zagreg, The Republic of Croatia, 
ii.   Predicting property/activity/toxicity of chemicals from structure: A hierarchical QSAR approach at 

the National Institute of Chemistry, Slovenia, 
iii.   Prediction of activityAoxicity of chemicals from structure using graph invariants at the Visva Bharati 

University, Santiniketan, West Bengal, India, 
iv.   Predicting biomedicinal and toxicological properties of chemicals using molecular descriptors at the 

University of Delhi, India, 
v.    The utility ofAyurvedic medicine for modern drug discovery: An exploratory analysis at the 

conference organized by the East India Pharmaceutical Company, Calcutta. 

27. During his trip to India in September of 1999, Subhash Basak also attended the 13th International 
Biophysics Congress, New Delhi, and presented the following papers: 
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i.    Clustering of Psoralen derivatives using topological invariants: A strategy for molecular design 
coauthored by G.D. Grunwald, AT. Balaban and K. Basak. 

ii.   A hierarchical QSAR approach to predicting bioactivity of chemicals using theoretical molecular 
descriptors coauthored by B.D. Gute, D. Mills, G.D. Grunwald, D. Opitz and K. Balasubramanian. 

iii.   Modeling the solubility of aliphatic alcohols in water, graph connectivity indices versus line graph 
connectivity indices coauthored by D. Amic, S. Nikolic, N. Trinajstic and D. Beslo. 

iv.   Design of high quality structure-property regressions coauthored by M. Randic. 
v.    On numerical characterization of DNA primary sequences coauthored by M. Randic, M. Vracko and 

A. Nandy. 

28. Dr. Basak gave an invited presentation on Development of hierarchical qsar models for predicting 
toxicity of chemicals: Statistical and neural net approaches at the Air Force Predictive Toxicology 
Conference, Wright Patterson Air Force Base, Dayton, OH. 

29. Subhash Basak gave an invited presentation Exploring the scientific basis ofAyurvedic medicine: A 
computational approach at the conference Beyond Conventional Healthcare: Understanding Alternative 
Choices organized by the University of Wisconsin, Superior, Nov., 1999. 

30. Dr. Basak participated in the 1999 Partners in Environmental Technology Symposium and Workshop 
held in Washington, D.C. 

31. Subhash Basak presented the invited lecture Applications of theoretical molecular descriptors in drug 
discovery and predictive toxicology: A computational approach at the University of Montana, Missoula. 

32. Dr. Basak gave the invited presentation Clustering ofJP-8 chemicals using structure spaces and   . 
property spaces: A computational approach authored jointly by B.D. Gute, G.D. Grunwald, D. Mills, J. 
Riviere and D. Opitz at the Air Force Office of Scientific Research JP-SJet Fuel Toxicology Workshop, 
University of Arizona, Tucson, Jan., 2000. 

33. Subhash Basak gave the following invited lectures/ presentations during his trip to India, Feb., 2000: 
i.    Predicting biomedical and toxicological properties of chemicals using molecular descriptors: A 

hierarchical QSAR approach at the International Conference on Medicinal Chemistry and 
Biocatalysis organized by Delhi University. He also presented the following four posters in the 
same conference: 
(a) Clustering of JP-8 chemicals using structure spaces and property spaces: A computational 

approach authored jointly by Basak, B.D. Gute, G.D. Grunwald, D. Mills, J. Riviere and D. 
Opitz. 

(b) Prediction of gas Chromatographie retention indices using variable connectivity index authored 
jointly by M. Randic, Basak, M. Pompe and M. Novic. 

(c) Clustering of Psoralen derivatives using topological invariants: A strategy for molecular design 
authored jointly by Basak, D. Mills, AT. Balaban, K. Basak and G.D. Grunwald. 

(d) A novel structure-activity approach to benzamidines complement inhibitory activity authored 
jointly by Basak, B. Lucic, S. Nikolic and N. Trinajstic. 

ii.    Basak also gave the invited presentation Applications of theoretical molecular descriptors in drug 
discovery and predictive toxicology: A computational approach at the Ranbaxy Research 
Laboratories, Udyog Vihar Industrial Area, Gurgaon, Hariyana, India. 

34. D. Mills presented the paper On the use of variable connectivity index for characterization ofamino 
acids, co-authored by Basak and M. Randic, at the 40th Sanibel Symposium on Atomic, Molecular, 
Biophysical and Condensed Matter Theory organized by the Quantum Theory Project, at the University 
of Florida, March 2000. 

35. Dr. Basak gave the presentation Estimating physicochemical and toxicological properties of chemicals 
from calculated molecular descriptors co-authored by D. Mills, B.D. Gute, D. Opitz and K. 
Balasubramanian at the Dept. of Energy's Environmental Management Sciences Program National 
Workshop in Atlanta, April, 2000. 
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36. Subhash Basak gave the lecture Predicting property/activityAoxicity of chemicals using calculated 
molecular descriptors at the University of Florida, Gainesville. 

37. Dr. Basak and co-workers presented the following papers at the Second Indo-US Workshop on 
Mathematical Chemistry, organized by NRRI and Visva Bharati University, India: 
i.    A.T. Balaban presented the poster On the clustering ofPsoralens co-authored by Basak, D. Mills, 

K. Basak, and G.D. Grunwald. 
ii.    B.D. Gute presented the poster Molecular similarity-based estimation of properties: A comparison 

of structure spaces and property spaces co-authored by G.D. Grunwald, D. Mills and S.C. Basak. 

iii.   Dr. Basak presented the invited lecture A hierarchical QSAR approach for predicting 
property/activityAoxicity of chemicals using theoretical structural descriptors co-authored by B.D. 
Gute, D. Mills, AT. Balaban, D. Opitz and K. Balasubramanian. 

iv.   B.D. Gute presented the poster Clustering of chemical using theoretical structure spaces: A case 
study with 476 diverse chemicals co-authored by Basak, G.D. Grunwald and D. Mills, 

v.   D, Mills presented the poster Clustering of JP-8 chemicals using property spaces and structure 
spaces: A novel tool for hazard assessment co-authored by Basak, G.D. Grunwald, B.D. Gute and 
J.E. Riviere, 

vi.   M. Randic presented the poster On use of the variable connectivity index 1%'in QSAR: Toxicity of 
aliphatic ethers co-authored by Basak. 

vii.' AT. Balaban presented the invited lecture Topological indices as valuable molecular descriptors 
for QSAR and QSPR co-authored by O. Ivanciuc, D. Mills and Basak. 

viii. M. Pompe presented the poster Prediction of gas Chromatographie retention indices for oxygenated 
compounds using variable connectivity index Vc°-autnored Dv M- Veber, M. Randic, M. Novic and 
Basak. 

ix.  AT. Balaban presented the poster Topological indices: Their nature and mutual relatedness co- 
authored by Basak, G.D. Grunwald and B.D. Gute. 

38. Dr. Basak and collaborators made the following presentations at the American Chemical Society 
Annual meeting recently in Washington, D.C.: 
i.    AT. Balaban presented the invited lecture Trends and possibilities for future developments of 

topological indices authored jointly by Balaban and S.C. Basak. 
ii.    B.D. Gute presented the invited lecture Use of graph invariants for the prediction of 

property/activityAoxicity of chemicals authored jointly by S.C. Basak, Gute, D. Mills and AT. 
Balaban. 

iii.   Dr. Basak presented the lecture Similarity-based estimation of properties: A comparison of 
structure spaces authored jointly by B.D. Gute, G.D. Grunwald, D. Mills and S.C. Basak. 

iv.   D. Mills presented the poster Clustering of JP-8 chemicals using structure spaces and property 
spaces: A computational approach authored jointly by Mills, S.C. Basak, G.D. Grunwald, B.D. Gute 
and J. Riviere, 

v.   D. Mills presented the poster Hierarchical clustering of Psoralen derivatives using topological 
invariants: A strategy for molecular design authored jointly by Mills, S.C. Basak, B.D. Gute, AT. 
Balaban, G.D. Grunwald and K. Basak. 

vi.   D. Mills presented the poster Use of variable connectivity indices on biological molecules authored 
jointly by Mills, M. Randic and S.C. Basak. 

39. Dr. Basak visited Milan, Italy (early September 2000) to discuss collaborative projects with colleagues 
at the Istituto di Ricerche Farmacologiche "Mario Negri" and Milan Chemometric Research Group, 
Department of Environmental Sciences. He traveled to Slovenia and Croatia, to develop and discuss 
joint quantitative structure-activity/toxicity/property relationship (QSAR/ QSPR/ QSTR) research papers 
and projects with colleagues at the National Institute of Chemistry, Ljubljana, Slovenia and the Rugjer 
Boskovic Institute. 

Prediction of Health and Environmental Hazards of Chemical: A Hierarchical 14 
Approach Using QMSA and QSAR-Subhash C. Basak 



Honors and Awards 
1. Dr. S.C. Basak was the Co-Chairperson of the First Indo-US Workshop on Mathematical Chemistry, 

organized jointly by NRRI and Visva Bharati University, Santiniketan, West Bengal India, Jan 9-13, 
1998. 

2. Dr. S.C. Basak chaired a session at the DIMACS Workshop on Discrete Mathematical Chemistry, 
March 23-25, 1998, held at Rutgers University, New Jersey. 

3. Dr. Basak organized a one-day workshop on Applied Mathematical Chemistry: Molecular Descriptors 
and Their Applications in Structure-Property-Activity-Toxicity Relationships, May 3, 1999, at NRRI. 
Thirteen speakers from seven different countries, viz., Bulgaria, Croatia, India, Romania, Slovenia, 
United Kingdom and United States, gave invited presentations on their latest research on Mathematical 
Chemistry, Quantitative Structure-Activity Relationships (QSAR), Computational Chemistry and 
Predictive Toxicology. 

4. Dr. Basak has been invited to become a member of the International Advisory Committee of the 
International Symposium Current Trends in Drug Discovery Research, February 11-15, 2001, to be 
organized by the Central Drug Research Institute (CDRI), Lucknow, India, the premier drug discovery 
and research institute of the country. The symposium is being organized to celebrate the 50th 
Anniversary of CDRI. 

5. Basak has been invited to become a member of the Indian National Organizing Committee of the 
International Symposium Strategies and Perspectives in Drug Development, Design and Molecular 
Modeling to be organized by the Indian Institute of Chemical Biology, Calcutta, Oct. 17-18, 2000. 

6. Dr. S.C. Basak was the Co-Chairperson of the Second Indo-US Workshop on Mathematical Chemistry 
with Applications to Drug Discovery, Environmental Toxicology, Cheminformatics and Bioinformatics, 
held in Duluth, MN and organized jointly by NRRI and Visva Bharati University, India, May 30-June 3, 
2000. 

New Discoveries/ Inventions, Patent Disclosures 

1. We fond that constituents of complex of mixtures like JP-8 can be clustered into different structural groups 
using structure spaces derived from topological indices calculated by POLLY 

2. An in-depth study of similarity space construction and analog selection resulted in the discovery that for a 
particular set of compounds the degree of overlap between the groups of analogs selected by theoretical 
descriptor spaces is relatively high. This study also revealed that a similarity space constructed from 
physicochemical property data provided relatively unique sets of analogs as compared to those selected 
from the theoretically-derived similarity spaces. 

3. For various sets of toxicological and physicochemical properties the topostructural and topochemical 
parameters explain most of the variance in the data; the addition of geometrical and quantum chemical 
parameters to the set of independent variables did small or no improvement in the predicting power of 
models. 
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APPENDIX 1.1     A hierarchical approach to the development of 
QSAR models using topological, geometrical... 
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SB 

IO 

SB 

Model Type 

Topostructural 

Topostructural 
+ topochemical 

Topostructural 
+ topochemical 
+ fragments 

Topostructural 
+ topochemical 
+ fragments 
+ geometrical 

Table II    Classification results for 520 mutagens/non-mutagens from DFA 

Indices Included 

X,  Xc,  XPC, PIO 
H°>Mu2X,Pi0,IC5,\*a,\", 
V, 3^h, 

6xv
Ch, 

6xv
PC, A J* 

HD, M,  \, Pl0, IC5, V, \r-h,
6^, A 

nitroso1, mustard2, sulf3, benz4 

//°, MX  \, P{0, IC„ V, ^h, \vc> A 

nitroso', mustard2, sulf3, benz", Fw 

% Mutagens 
Correct 

76.2 

74.6 

69.2 

71.5 

% Non-mutagens 
Correct 

57.3 

63.1 

71.9 

71.9 

'Nitroso-compounds. 2Halogenated substituted mustard, sulfur mustard or oxygen mustard. 3Organic sulfates 
or sulfonates.   Biphenyl amine, benzidine or 4,4'-methylenedianiline derivatives. SO 
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APPENDIX 1.2     Assessment of the mutagenicity of chemicals 
from theoretical structural parameters 
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STRUCTURAL PARAMETERS: 
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A hierarchical approach has been used in this paper in predicting the mutagenicity/non- 
mutagenicity of a set of 127 chemicals from their molecular descriptors. The set of descriptors 
consisted of topostructural and topochemical parameters, experimental properties like logP, 
and quantum chemical indices calculated using a semi-empirical method. The results show that 
a combination of topostructural and topochemical molecular descriptors explain most of the 
variance in the experimental data. The addition of physical properties or quantum chemical 
parameters did not make any significant improvement in the predictive power of the models. 

Keywords: Aromatic amines; hierarchical similarity; mutagenicity; quantum chemical descrip- 
tors; topological indices 

INTRODUCTION 

A current interest in the fields of chemistry, toxicology and biomedical 
sciences is the prediction of the property/activity of chemicals from 
calculated molecular descriptors [1-6]. In both environmental hazard 
assessment and pharmaceutical drug design, one has to deal with thousands, 
sometimes millions, of real or hypothetical chemical structures. Most of 
these compounds have very little of the experimental data necessary for the 

♦Presented at the workshop Computational Methods in Toxicology, April 20-22, 1998, 
Dayton, OH, USA. 

'Corresponding author. 
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est.mat.on of their toxicity or efficacy. In this age of combinatorial chemistry 
one can synthesize thousands of chemicals very quickly. However, experi- 
mental testing of these large numbers of chemicals would not be cost effective 
Also, ,t ,s poss.ble to create virtual libraries consisting of billions of structures' 
In this case one would like to know the toxic, as well as therapeutic, potential 
of such a vast collection of chemicals. The experimental data necessary for the 
pred.ct.on of the toxicity/activity of these large and diverse sets of chemicals 
will not be available to us in the near future. 

This pervasive lack of experimental data demonstrates the need for the 
deveopment of predictive models based on parameters that can be cal- 
culated directly from a chemical's molecular structure. Recently, our research 
group has been involved in the development of a hierarchical approach 
to quantitative structure-activity relationship (QSAR) model development 
for predicting physicochemical, toxicological and pharmacological prop- 
erties of chemicals using theoretical molecular descriptors [3, 6-101 Various 
topolog.cal indices (TIs) fall in this category of molecular descriptors 
11 -23]. Balaban has classified TIs into three generations based on whether 

they are integers, real numbers or a sequence of numbers [24]. Different 
classes of TIs quantify various aspects of molecular structure. We have shown 
m the past that various indices, viz., connectivity indices and complexity 

difeemt Pr Hf rd ^ BaS3k e' al [15~18J "UantifV distinctly 
different types of molecular structural information. Such indices can be cal- 
culated very rapidly. On the other hand, geometrical and quantum chemical 
parameters encode information regarding the stereo-electronic aspects 
of molecules These classes of parameters are also algorithmically derived 
i.e they can be calculated for any real or hypothetical molecular structure 
without any input of experimental data. 

One of our recent interests has been to test the relative effectiveness of the 
four classes of theoretical molecular descriptors mentioned above in the 

caTnTr QfRS f°r PrediCting ProPerty/-tivity/toxicity of chemi- 
cals J3 6- 10] In this paper we have used these parameters in the develop- 
ment of models for predicting mutagenicity/non-mutagenicity of a set of 127 
aromatic amines. 

METHODS 

Datasets 

A set of 127 aromatic and heteroaromatic amines, previously collected from 
the literature by Debnath et al. [25], were used to study mutagenicity. The 
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mutagenicity of these compounds in S. Typhimurium TA98 + S9 microsomal 
preparation has been expressed as positive or negative mutagenicity by 
Benigni [26]. Compounds included in this study and their mutagenic 
classification based on experimentally determined mutagenic potency are 
given in Table I. Of the compounds used in this study, 106 were classified as 
mutagens while twenty-one were determined to be non-mutagens. 

TABLE I   Aromatic and heteroaromatic amines 

Chemicals 7/198 
(Expt.) 

TA98 
(Pred.f 

2-Bromo-7-aminofluorene 
2-Methoxy-5-methylaniline (p-cresidine) 
5-Aminoquinoline 
4-Ethoxyaniline (p-phenetidine) 
1 -Aminonaphthalene 
4-Aminofluorene 
2-Aminoanthracene 
7-Aminofluoranthene 
8-Aminoquinoline 
1,7-Diaminophenazine 
2-Aminonaphthalene 
4-Aminopyrene 
3-Amino-3'-nitrobiphenyI 
2,4,5-Trimethylaniline 
3-Aminofluorene 
3,3'-Dichlorobenzidine 
2,4-Dimethylaniline (2,4-xylidine) 
2,7-Diaminofluorene 
3-Aminofluoranthene 
2-Aminofluorene 
2-Amino-4'-nitrobiphenyl 
4-Aminobiphenyl 
3-Methoxy-4-methylaniline (o-cresidine) 
2-Aminocarbazole 
2-Amino-5-nitrophenol 
2,2'-DiaminobiphenyI 
2-Hydroxy-7-aminofluorene 
1 -Aminophenanthrene 
2,5-Dimethylaniline (2,5-xylidine) 
4-Amino-2'-nitrobiphenyl 
2-Amino-4-methylphenol 
2-Aminophenazine 
4-Aminophenylsulfide 
2,4-Dinitroaniline 
2,4-Diaminoisopropylbenzene 
2,4-Difluoroaniline 
4,4'-Methylenedianiline 
3,3'-Dimethylbenzidine 
2-Aminofluoranthene 
2-Amino-3'-nitrobiphenyl 
1 -Aminofluoranthene 
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TABLE I    (Continued) 

Chemicals TA9B, 
(Expl.) 

TAW 
(Pred.f 

4,4'-Ethylenebis (aniline) 
4-Chloroaniline 
2-Aminophenanthrene 
4-Fluoroaniline 
9-Aminophenanthrene 
3,3'-Diaminobiphenyl 
2-Aminopyrene 
2,6-Dichloro-1,4-phenylenediamine 
2-Amino-7-acetamidofluorene 
2,8-Diaminophenazine 
6-Aminoquinoline 
4-Methoxy-2-methylaniline (m-cresidine) 
3-Amino-2'-nitrobiphenyl 
2,4'-Diamino-biphenyI 
1,6-Diaminophenazine 
4-AminophenyldisuIfide 
2-Bromo-4,6-dinitroaniline 
2,4-Diamino-n-butylbenzene 
4-Aminophenylether 
2-Aminobiphenyl 
1,9-Diaminophenazine 
1-Aminofluorene 
8-Aminofluoranthene 
2-ChloroaniIine 
2-Amino-aaa-trifluorotoluene 
2-Amino-l-nitronaphtha!ene 
3-Amino-4'-nitrobiphenyl 
4-Bromoaniline 
2-Amino-4-chlorophenol 
3,3'-Dimethoxybenzidine 
4-Cyclohexylaniline 
4-Phenoxyaniline 
4,4'-Methylenebis (o-ethylaniline) 
2-Amino-7-Nitrofluorene 
Benzidine 
1 -Amino-4-Nitronaphthalene 
4-Amino-3'-NitrobiphenyI 
4-Amino-4'-Nitrobiphenyl 
1-Aminophenazine 
4,4'-Methylenebis (o-fluoroaniline) 
4-Chloro-2-nitroaniline 
3-Aminoquinoline 
3-AminocarbazoIe 
4-Chloro-l,2-phenylenediamine 
3-Aminophenanthrene 
3,4'-Diaminobiphenyl 
I -Aminoanthracene 
1-Aminocarbazole 
9-Aminoanthracene 
4-Aminocarbazole 
6-Aminochrysene 
1-Aminopyrene 
4-4'-Methylenebis(o-isopropyI-aniline) 
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TABLE I   (Continued) 

r-498 7V498 

Chemicals (Expt.) (Pred.f 

2,7-Diaminophenazine 1 1 
4-Aminophenanthrene 0 1 
2,4-Diaminotoluene 1 
3,3'-Diaminobenzidine 1 
1,3-Phenylenediamine 0 
3,4-Diaminotoluene 1 
1,2-Phenylenediamine 0 
3-Amino-6-methylphenoI 1 
2,4-Diaminoethylbenzene 1 
4,4'-Methylenebis (2,6-diisopropylaniline) 0 0 
4,4'-Methylenebis (2,6-diethylaniline) 0 0 
4,4'-Methylenebis (2-methyl-6-r-butylaniline) 0 0 
4,4'-Methylenebis(2-methyl-6-isopropylaniline) 0 0 
4,4'-Methylenebis (2-methyl-6-ethylaniline) 0 0 
4,4'-Methylenebis (2,6-dimethylaniline) 0 1 
3-Aminobiphenyl 0 1 
2,3-Diaminobiphenyl 0 1 
2-Methyl-4-chloroaniline 0 1 
2-Chloro-4-methylaniline 0 1 
4-Methoxyaniline 0 1 
3-Methoxyaniline 0 1 
Aniline 0 0 
3-Chloroaniline 0 0 
3-Ethoxyaniline 0 1 
2-Ethoxyaniline 0 1 
4-Aminophenol 0 1 
3-Aminophenol 0 0 
2-Aminophenol 0 0 
2-Methoxyaniline 0 1 
4-Chloro-1,3-phenylenediamine 1 1 
2-Nitro-l ,4-phenylenediamine 1 1 
4-Nitro-1,3-phenylenediamine 1 1 
4-Nitro-1,2-phenylenediamine 1 1 

1 The table reports the mutagenicity of the aromatic and heteroaromatic amines as: 0 = negative; 
1 = positive. 
2 TA98 results predicted using topostructural and topochemical indices. 

Computation of Indices 

Topological indices used in this study have been calculated by POLLY 2.3 
[27] which can calculate a total of 102 indices. These indices include Wiener 
index [28], connectivity indices [11,12], information theoretic indices denned 
on distance matrices of graphs [13,14], a set of parameters derived on the 
neighborhood complexity of vertices in hydrogen-filled molecular graphs 
[15-18], as well as Balaban's J indices [19-21]. Table II provides brief de- 
finitions for the topological indices included in this study. 
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TABLE II    Symbols, definitions and classifications of topological parameters 

Toposlructural 

IQ Information index for the magnitudes of distances between all possible pairs of 
vertices of a graph 

ID Mean information index for the magnitude of distance 
W Wiener index = half-sum of the off-diagonal elements of the distance matrix of 

a graph 
ID Degree complexity 
Hv Graph vertex complexity 
H° Graph distance complexity 
IC Information content  of the distance matrix  partitioned  by  frequency of 

occurrences of distance h 
O Order of neighborhood when ICr reaches its maximum value for the hydrogen- 

filled graph 
Mi A Zagreb group parameter = sum of square of degree over all vertices 
Mi A  Zagreb  group  parameter = sum of cross-product  of degrees over all 

neighboring (connected) vertices 
h\ Path connectivity index of order h = 0-6 
hXc Cluster connectivity index of order h = 3-6 
*XCh Chain connectivity index of order h = 3-6 
*XPC Path-cluster connectivity index of order h — 4-6 
Pi, Number of paths of length h = 0- 10 
J Balaban's J index based on distance 

Topochemical 

IORB Information content or complexity of the hydrogen-suppressed graph at its 
maximum neighborhood of vertices 

ICr Mean information content or complexity of a graph based on the rlh (r = 0-6) 
order neighborhood of vertices in a hydrogen-filled graph 

SICr Structural information content for rth (r = 0-6) order neighborhood of vertices 
in a hydrogen-filled graph 

CICr Complementary information content for rth (r = 0-6) order neighborhood of 
vertices in a hydrogen-filled graph 

hXh Bond path connectivity index of order h = 0-6 
hXc Bond cluster connectivity index of order h = 3-6 
*Xch Bond chain connectivity index of order h = 3-6 
*XPC Bond path-cluster connectivity index of order h = 4-6 
hXv Valence path connectivity index of order h = 0-6 
hXc Valence cluster connectivity index of order h = 3-6 
*Xch Valence chain connectivity index of order h = 3-6 
'XPC Valence path-cluster connectivity index of order h = 4-6 
JB Balaban's J index based on bond types 
Jx Balaban's J index based on relative electronegativities 
JY Balaban's J index based on relative covalent radii 

Values for \ogP and the quantum chemical parameters GHOMO and 
SLUMO were taken from the work of Debnath et al. [25]. Octanol/water 
partition coefficients (log P) were determined experimentally for a set of 67 
aromatic and heteroaromatic amines and, when these values were determined 
to be in agreement with values calculated using the CLOGP program (release 
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3.54), the remainder of the \ogP values were calculated using CLOGP [29]. 
The quantum chemical parameters provided by Debnath et ai, GHOMO and 
€LUMO were calculated using the semi-empirical AMI of MOPAC 4.10 
(Quantum Chemistry Program Exchange No. 455) [30]. 

Data Reduction 

Initially, all TIs were transformed by the natural logarithm of the index plus 
one. This was done since the scale of some indices may be several orders of 
magnitude greater than that of other indices and other indices may equal zero. 

The set of 95 TIs was partitioned into two distinct sets: 38 topostructural 
indices and 57 topochemical indices. Topostructural indices are indices 
which encode information about the adjacency and distances of atoms 
(vertices) in molecular structures (graphs) irrespective of the chemical nature 
of the atoms involved in the bonding or factors like hybridization states of 
atoms and number of core/valence electrons in individual atoms. Topo- 
chemical indices are parameters which quantify information regarding the 
topology (connectivity of atoms) as well as specific chemical properties of 
the atoms comprising a molecule. Topochemical indices are derived from 
weighted molecular graphs where each vertex (atom) is properly weighted 
with selected chemical/physical properties. The categorization of the 95 TIs 
into these sets is shown in Table II. 

To further reduce the number of independent variables to be used for model 
construction, the sets of topostructural and topochemical indices were further 
divided into subsets, or clusters, based on the correlation matrix using the SAS 
procedure VARCLUS [31]. This variable clustering procedure divides the 
set of indices into disjoint clusters such that each cluster is essentially 
unidimensional. The index most correlated with each cluster, as well as any 
indices which were poorly correlated with the cluster (r < 0.70), were selected 
for model development. Variable clustering was performed independently for 
both the topostructural and topochemical subsets. 

Statistical Analysis and Hierarchical DFA 

Selection of indices for the final models was conducted using all subsets 
regression on the sets of indices chosen through variable cluster analysis in 
the SAS procedure REG [32]. This all subsets procedure was performed on 
four distinct sets of indices: (1) the topostructural indices selected by variable 
clustering, (2) the topostructural indices selected in all subsets regression and 
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the topochemical indices selected during variable clustering, (3) the 
topostructural and topochemical indices selected in all subsets regression 
and log/*, and 4) the model chosen for topostructural and topochemical 
indices with log P and with the addition of GHOMO and GLUMO- These sets of 
indices were then used to develop and crossvalidate discriminant function 
models for classifying the mutagenicity/non-mutagenicity of the 127 aromatic 
and heteroaromatic amines. Figure 1 illustrates the process for the selection of 
indices and formulation of DFA models. 

RESULTS AND DISCUSSION 

In the first step of our hierarchical modeling, 38 topostructural parameters 
were subjected to variable clustering procedure. The following indices were 
retained from the five clusters generated: lD,IC,0,4xc,6Xch,4XPC,^3>-/- 
These five clusters explained a total variation of 35.29 and the proportion of 
the variance explained was equal to 92.86%. Of the 57 topochemical indices, 
the following ten indices were selected from eight clusters: IC0, IC2, IC4, 

SIC2,SIC4)
4Xc>6Xch'4Xpc> V,-^- The eight clusters generated from the 

topochemical indices resulted in a total variation explained of 51.65 and the 
proportion of the variance explained was equal to 90.61%. These indices 
were then included in the all subsets regression procedure for the selection of 
final indices for discriminant function analysis. In all cases, the RSQUARE 
and ADJRSQ values were examined as indicators of model fit, however the 
final models were selected based on the Mallow's Cp statistic (CP). Statistics 
for the cluster analysis and the inter-correlation of the clusters for the topo- 
structural indices are presented in Tables III and IV, respectively. Similar 
statistics for the variable clustering of the topochemical indices can be found 
in Tables V and VI. 

The all subsets regression of the eight topostructural indices resulted in 
the selection of the following indices for model development: Io,IC,P3. 
These indices were used to create the topostructural DFA model, the 
simplest model in the hierarchy, and were also combined with the ten 
topochemical indices to create the second model in the hierarchy. All subsets 
regression of the thirteen topostructural and topochemical indices resulted 
in the selection of the following indices for modeling: Iß,IC,P3,IC0,SIC2. 
These indices were combined with \ogP and resulted in a six parameter 
model with log P added to the complete set of descriptors from the second 
model. Finally, the quantum chemical descriptors, GHOMO and eLUMO, were 
combined with the set of six indices and all subsets regression was used again 
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Topostructural Descriptors 
38 Variables 

Cluster 
Analysis 

Topochemical Descriptors 
57 Variables 

Cluster 
Analysis 

5 Clusters 
8 Variables 

All Subsets 
Regression 

3 Variables 

DFA 

3 Variable 
DFA 

EHOMO 

ELUMO 

All Subsets 
Regression 

5 Variables 
6 Variable 

DFA 
DFA 

5 Variable 
DFA 

FIGURE 1    Illustration of the hierarchical method of index selection and discriminant 
function analysis. 

to select the best parameters for model construction. This procedure resulted 
in the selection of the following model: Iß,IC, P3,logP,GLUMO- 

Discriminant function analysis, using the SAS procedure DISCRIM [33], 
was used to develop models for predicting mutagenicity/non-mutagenicity 
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TABLE III    Statistics for the variable cluster analysis of the topostructural indices 

Cluster Members       Variation      Proportion       Second       Index most    Correlation 
explained       explained      eigenvalue      correlated 

2 
3 

12 
3 

16.99 0.94 
2.00 1.00 
2.15 0.71 
11.41 0.95 
2.73 0.91 

0.71 
0.00 
0.72 
0.45 
0.18 

Xc 
6XCh 
,w 

4° 
XPC 

0.9918 
0.9992 
0.9104 
0.9977 
0.9474 

TABLE IV   Intercorrelation of the clusters generated in the variable cluster analysis of the 
topostructural indices 

Cluster 12 3 4 5 

1.0000 
0.0735 1.0000 
0.6317 -0.0707 1.0000 
0.9327 0.1389 0.3922 1.0000 
0.7131 0.4006 0.2275 0.7793 1.0000 

TABLE V    Statistics for the variable cluster analysis of the topochemical indices 

Cluster Members Variation 
explained 

Proportion 
explained 

Second 
eigenvalue 

Index most    Correlation 
correlated 

19 
8 
4 

6 
5 
4 
6 
5 

17.61 
7.52 
3.76 

5.11 
4.72 
3.72 
4.68 
4.52 

0.93 
0.94 
0.94 

0.85 
0.94 
0.93 
0.78 
0.90 

0.58 
0.42 
0.24 

0.80 
0.23 
0.27 
0.79 
0.21 

V 0.9686 
SIC, 0.9876 
Vc 0.9484 

JY 0.8889 
IC4 0.9880 
6 * 
ACh 0.9419 
SIC2 0.9079 
4 * 
ARC 0.9225 

TABLE VI    Intercorrelation of the clusters generated in the variable cluster analysis of the 
topochemical indices 

Cluster 1 2 3 4 5 6 7 8 

1 1.0000 
2 -0.4121 1.0000 
3 0.2311 -0.2150 1.0000 
4 -0.8162 0.4459 -0.0885 1.0000 
5 0.3407 0.6649 -0.0641 -0.2594 1.0000 
6 0.4739 0.2192 -0.0509 -0.4812 0.5033 1.0000 
7 -0.5604 0.4636 -0.1072 0.7565 -0.0130 -0.2089 1.0000 
8 0.7805 -0.5046 0.5542 -0.4287 0.0484 0.1481 -0.2913 1.0000 
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TABLE VII    Results of the cross-validated discriminant function analyses 

Hierarchical classes Indices 

l£,IC,/>3 

% Correct 
(non-mutagens) 

28.6 

% Correct 
(mutagens) 

Topostructural 95.3 

Topostructural + 
Topochemical 

l£,IC,/>3, 
ICo,SIC2 

42.9 93.4 

Topological + log P i£,lc, P>, 

IC0,SIC2,log/' 

38.1 95.3 

Topological + log P + l£,IC, P„ 33.3 95.3 

Quantum chemical logP^LUMO 

of chemicals in the Ames test. Four distinct models were developed using the 
indices selected from the all subsets regression procedure as described above. 
The results in Table VII shows that all four models could predict the muta- 
genicity of chemicals 93% to 95% of the time whereas they were less effective 
in predicting non-mutagenicity (29% to 43%). 

The addition of topochemical to the set of topostructural indices, result- 
ing in the best predictive model, are shown in Table VII. It is clear from the 
results that the addition of topochemical indices to the set of topostructural 
indices did slightly decrease the prediction of mutagenicity. However, there 
was a significant improvement in the prediction of non-mutagenicity by the 
addition of topochemical indices to the set of independent variables. 

Finally, the addition of log P and quantum chemical indices did not make 
any improvement in the models. This is in line with our earlier work with 
physical and biochemical properties which showed that topostructural and 
topochemical indices explain most of the variance in the data [3, 6-10]. 
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Abstract 

This paper presents a novel and effective 
genetic algorithm approach for generating 
computational models for hazard assessment. 
With millions of proposed chemicals being 
registered each year, it is impossible to come 
even remotely close to completing the battery 
of tests needed for the proper understanding 
of the toxic effects of these chemicals. Com- 
puter models can give quick, cheap, and en- 
vironmentally friendly hazard assessments of 
chemicals. Our approach works by first ex- 
tracting a hierarchy of theoretical descriptors 
of the structure of a compound, then filtering 
these numerous descriptors with a genetic al- 
gorithm approach to ensemble feature selec- 
tion. We tested the utility of our approach by 
modeling the acute aquatic toxicity (LC50) 
of a congeneric set of 69 benzene derivatives. 
Our results demonstrate a very important 
point: that our method is able to accurately 
predict toxicity directly from structure. 

1    INTRODUCTION 

By the end of 1998 the number of chemicals registered 
with the Chemical Abstract Service rose to over 19 
million (CAS 1999). This is an increase of over 3 
million chemicals between 1996 and 1998. It is de- 
sirable to test each of these chemicals for their effects 
on the environment and human health (which we re- 
fer to as hazard assessment); however, completing the 
battery of tests necessary for the proper hazard as- 
sessment of even a single compound is a costly and 
time-consuming process. Therefore, there is simply 
not enough time or money to complete these test bat- 
teries for even a tiny portion of the compounds which 
are registered today (Menzel 1995). An alternative to 

these traditional test batteries is to develop computa- 
tional models for hazard assessment. Computational 
models are fast (milliseconds per compound), cheap 
(less than one cent per compound), and do not run 
the risk of adversely affecting the environment during 
testing. Additionally, these computational methods 
can replace or limit the amount of animal testing that 
is necessary. Thus computational models can easily 
process all registered chemicals and flag the ones that 
require further testing. The central problem with this 
approach is developing class specific models that can 
be considered accurate enough to be useful. In this 
paper, we present a novel and effective approach for 
learning computational hazard assessment models by 
using an ensemble feature selection algorithm based on 
genetic algorithms (GAs) to filter numerous theoreti- 
cal descriptors of chemical structure. 

To better illustrate the need for effective and quick 
hazard assessment, we should consider the situation 
of the industrial chemicals "grandfathered" into con- 
tinued use under the Toxic Substances Control Act 
(TSCA) of 1976. TSCA has required that a suite of 
physicochemical and toxicological screens be run on all 
commercial compounds (those produced or imported 
in volumes exceeding one million pounds annually) de- 
veloped after 1976. However, there are almost 3,000 
chemicals that were "grandfathered" in with the un- 
derstanding that it would be the responsibility of the 
chemical manufacturing industry to ultimately sup- 
ply information about these chemicals. Only recently, 
after a 20-year delay, are the chemical manufactur- 
ers talking about running 2,800 of these compounds 
through basic toxicity screens and while this is promis- 
ing, these screens will not be completed until 2004 and 
at a cost of between $500 to $700 million dollars. So it 
will be another five years before we have basic toxicity 
data on compounds that have been in wide-spread use 
for more than twenty years (Johnson 1998). 

One of the fundamental principles of biochemistry is 



that activity is dictated by structure (Hansch 1976). 
Following this principle, one can use theoretical molec- 
ular descriptors that quantify structural aspects of 
a molecule to quantitatively determine its activity 
(Basak & Grunwald 1995; Cramer, Famini, & Lowrey 
1993). These theoretical descriptors can be generated 
directly from the known structure of the molecule and 
used to estimate its properties, without the need for 
further experimental data. This is important due to 
that fact that, with chemicals needing to be evaluated 
for hazard assessment, there is a scarcity of available 
experimental data that is normally required as inputs 
(i.e., independent variables) to traditional quantitative 
structure-activity relationship (QSAR) model develop- 
ment. A QSAR model based solely on theoretical de- 
scriptors on the other hand can process all registered 
chemicals for hazard assessment. 

Our hierarchical approach examines the relative con- 
tributions of theoretical descriptors of gradually in- 
creasing complexity (structural, chemical, shape, and 
quantum chemical descriptors). This approach is im- 
portant as none of the individual classes of parame- 
ters are very effective at predicting toxicity (Gute & 
Basak 1997); however, we show in this paper that we 
can effectively predict toxicity if we combine all levels 
of descriptors. One potential problem with using our 
hierarchical approach is that it often gives many in- 
dependent variables as compared to data points since 
having a limited number of data points in not uncom- 
mon in hazard assessment. For instance, in our case 
study of predicting acute toxicity (LC50) of benzene 
derivatives, we have 95 independent variables and 69 
data points. Therefore, reducing the number of inde- 
pendent variables is critical when attempting to model 
small data sets. The smaller the data set, the greater 
the chance of spurious error when using a large num- 
ber of independent variables (descriptors). In some 
of our earlier QSAR studies we have used statistical 
methods such as principal components analysis (PCA) 
and variable clustering methods to reduce the num- 
ber of independent variables (Basak &; Grunwald 1995; 
Gute & Basak 1997; Gute, Grunwald, & Basak In 
press). 

As an alternative solution, we use our previous en- 
semble feature selection approach (Opitz 1999) that 
is based on GAs. An "ensemble" is a combination 
of the outputs from a set of models that are gener- 
ated from separately trained inductive learning algo- 
rithms. Ensembles have been shown to, in most cases, 
greatly improve generalization accuracy over a single 
learning model (Breiman 1996; Maclin & Opitz 1997; 
Shapire et al. 1997). Recent research has shown that 
an effective ensemble should consist of a set of models 

that are not only highly correct, but ones that make 
their errors on different parts of the input space as 
well (Hansen & Salamon 1990; Krogh & Vedelsby 1995; 
Opitz & Shavlik 1996a). Varying the feature subsets 
used by each member of the ensemble helps promote 
the necessary diversity and create a more effective en- 
semble (Opitz 1999). We use GAs to search through 
the enormous space of finding a set of feature subsets 
that will promote disagreement among the component 
members of an ensemble while still maintaining the 
component member's accuracy. 

Combining our approach of generating hierarchical 
theoretical descriptors with our other approach to GA- 
based ensemble feature selection, we are able to gen- 
erate an effective model for predicting the toxicity of 
benzene derivatives using only a few compounds. Our 
results show that our model is nearly as accurate as the 
battery of tests necessary for the proper hazard assess- 
ment of a single compound. Our results also confirm 
that our new ensemble feature selection approach is 
more effective than previous approaches for modeling 
hazard assessment. 

The rest of the paper is organized as follows. First 
we provide background and related work for both our 
hierarchical QSAR approach and our GA-based en- 
semble feature selection approach. This is followed by 
results of our approach applied to benzene derivatives. 
Finally, we discuss these results and provide future 
work. 

2    QSAR AND THEORETICAL 
METHODS 

QSARs have come into widespread use for the pre- 
diction of various molecular properties, as well as bi- 
ological, pharmacological and toxicological responses. 
Traditional QSAR techniques use empirical properties 
(Dearden 1990; Hansch & Leo 1995; de Waterbeemd 
1995); however, due to the scarcity of available data 
for the majority of chemicals needing to be evaluated 
for hazard assessment, these physicochemical proper- 
ties necessary for traditional QSAR model develop- 
ment may not be available. When this is the case, it 
is imperative that there are methods available which 
make use of nonempirical parameters, which we term 
theoretical molecular descriptors. 

Topological indices (TIs) are numerical graph invari- 
ants that quantify certain aspects of molecular struc- 
ture (Gute & Basak 1997; Gute, Grunwald, & Basak 
In press). The different classes of TIs provide us 
with nonempirical, quantitative descriptors that can 
be used in place of experimentally derived descriptors 



in QSARs for the prediction of properties. 

Our recent studies have focused on the role of different 
classes of theoretical descriptors of increasing levels of 
complexity and their utility in QSAR (Gute & Basak 
1997; Gute, Grunwald, &; Basak In press). Four dis- 
tinct sets of theoretical descriptors have been used in 
this study: topostructural, topochemical, geometric, 
and quantum chemical indices. Gute and Basak 1997 
provide the detailed list of the indices included in our 
study. 

2.1 TOPOLQGICAL INDICES 

The topostructural and topochemical indices fall into 
the category normally considered topological indices. 
Topostructural indices (TSIs) are topological indices 
that only encode information about the adjacency and 
distances of atoms (vertices) in molecular structures 
(graphs), irrespective of the chemical nature of the 
atoms involved in bonding or factors such as hybridiza- 
tion states and the number of core/valence electrons 
in individual atoms. Topochemical indices (TCIs) 
are parameters that quantify information regarding 
the topology (connectivity of atoms), as well as spe- 
cific chemical properties of the atoms comprising a 
molecule. These indices are derived from weighted 
molecular graphs where each vertex (atom) or edge 
(bond) is properly weighted with selected chemical or 
physical property information. 

The complete set of topological indices used in this 
study, both the topostructural and the topochemi- 
cal, have been calculated using POLLY 2.3 (Basak, 
Harriss, & Magnuson 1988) and software developed 
by the authors. These indices include the Wiener in- 
dex (Wiener 1947), the connectivity indices developed 
by Randic 1975 and higher order connectivity indices 
formulated by Kier and Hall 1986, bonding connec- 
tivity indices defined by Basak and Magnuson 1988, 
a set of information theoretic indices defined on the 
distance matrices of simple molecular graphs (Hansch 
& Leo 1995), and neighborhood complexity indices of 
hydrogen-filled molecular graphs, and Balaban's 1983 
J indices. 

2.2 GEOMETRICAL INDICES 

The geometrical indices are three-dimensional Wiener 
numbers for hydrogen-filled molecular structure, 
hydrogen-suppressed molecular structure, and van der 
Waals volume. Van der Waals volume, Vw (Bondi 
1964), was calculated using Sybyl 6.1 from Tripos As- 
sociates, Inc. of St. Louis. The 3-D Wiener numbers 
were calculated by Sybyl using an SPL (Sybyl Pro- 

gramming Language) program developed in our lab 
(SYBYL 1998). Calculation of 3-D Wiener numbers 
consists of the sum entries in the upper triangular sub- 
matrix of the topographic Euclidean distance matrix 
for a molecule. The 3-D coordinates for the atoms 
were determined using CONCORD 3.0.1 from Tripos 
Associates, Inc. Two variants of the 3-D Wiener num- 
ber were calculated: 3DWH and 3DW. For 3DWH, 
hydrogen atoms are included in the computations and 
for 3DW hydrogen atoms are excluded from the com- 
putations. 

2.3    QUANTAM CHEMICAL 
PARAMETERS 

The following quantum chemical parameters were cal- 
culated using the Austin Model version one (AMI) 
semi-empirical Hamiltonian: energy of the highest oc- 
cupied molecular orbital (S/roA/o)) energy of the sec- 
ond highest occupied molecular orbital (EHOMOI)I 

energy of the lowest unoccupied molecular orbital 
(ELUMO), energy of the second lowest unoccu- 
pied molecular orbital (ELUMOI), heat of formation 
(AHj), and dipole moment (ß). These parameters 
were calculated using MOPAC 6.00 in the SYBYL in- 
terface (Stewart 1990). 

3    FILTERING DESCRIPTORS 

As stated above, one potential problem with including 
all theoretical descriptors in the hierarchy is that it 
gives many independent variables when compared to 
the limited number of data points available for hazard 
assessment modeling of a particular chemical deriva- 
tive. Compounding this problem is that a salient de- 
scriptor for one hazard assessment model may not be a 
salient descriptor for another problem. That is, the rel- 
evance of a descriptor for predicting hazard assessment 
is often problem dependent. This section describes 
our approach for automatically filtering the descrip- 
tors with a GA-based approach to ensemble feature 
detection. Before explaining our algorithm, we briefly 
cover the notion of ensembles. 

3.1    ENSEMBLES 

Figure 1 illustrates the basic framework of a predictor 
ensemble. Each predictor in the ensemble (predictor 1 
through predictor N in this case) is first trained using 
the training instances. Then, for each example, the 
predicted output of each of these predictors (o< in Fig- 
ure 1) is combined to produce the output of the ensem- 
ble (5 in Figure 1). Many researchers (Breiman 1996; 
Hansen k Salamon 1990; Krogh & Vedelsby 1995; 
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Figure 1: A predictor ensemble. 

Opitz & Shavlik 1997) have demonstrated the effec- 
tiveness of combining schemes that are simply the 
weighted average of the predictors (i.e., ö = Yli^N w«' 
Oi and ]T)t€JV Wi = 1)> and this is the type of ensemble 
on which we focus in this article. 

Combining the output of several predictors is useful 
only if there is disagreement on some inputs. Obvi- 
ously, combining several identical predictors produces 
no gain. Hansen and Salamon 1990 proved that for an 
ensemble, if the average error rate for an example is 
less than 50% and the predictors in the ensemble are 
independent in the production of their errors, the ex- 
pected error for that example can be reduced to zero 
as the number of predictors combined goes to infinity; 
however, such assumptions rarely hold in practice. 

Krogh and Vedelsby 1995 later proved that the ensem- 
ble error can be divided into a term measuring the av- 
erage generalization error of each individual predictor 
and a term called diversity that measures the disagree- 
ment among the predictors. Formally, they define the 
diversity term, d;, of predictor i on input x to be: 

di(x) = [0i(x) - o(x)}2. (1) 

The quadratic error of predictor i and of the ensemble 
are, respectively: 

M^["iW-/Wf, (2) 
e(x) = [d(x) - f(x)}2, (3) 

where f(x) is the target value for input x. If we de- 
fine E, Ei, and D{ to be the averages, over the input 
distribution, of e(x), e(x), and d(x) respectively, then 
the ensemble's generalization error can be shown to 
consist of two distinct portions: 

E = E-D, (4) 

where E (= Yliwi^i) 's ^ie weighted average of 
the individual predictor's generalization error and D 
(= 'YljWiDi) is the weighted average of the diversity 
among these predictors. What the equation shows 
then, is that an ideal ensemble consists of highly 
correct predictors that disagree as much as possible. 
Opitz and Shavlik 199Ga; 1996b empirically verified 
that such ensembles generalize well. 

Regardless of theoretical justifications, methods for 
creating ensembles center around producing predic- 
tors that disagree on their predictions. Generally, 
these methods focus on altering the training- pro- 
cess in the hope that the resulting predictors will 
produce different predictions. For example, neural 
network techniques that have been employed include 
methods for training with different topologies, differ- 
ent initial weights, different parameters, and training 
only on a portion of the training set (Alpaydin 1993; 
Freund & Schapire 1996; Hansen & Salamon 1990; 
Maclin & Shavlik 1995). 

Numerous techniques try to generate disagreement 
among the classifiers by altering the training set each 
classifier sees. The two most popular techniques 
are Bagging (Breiman 1996) and Boosting (Freund 
& Schapire 1996). Bagging is a bootstrap ensem- 
ble method that trains each network in the ensemble 
with a different partition of the training set. It gener- 
ates each partition by randomly drawing, with replace- 
ment, N examples from the training set, where N is 
the size of the training set. As with Bagging, Boosting 
also chooses a training set of size N and initially sets 
the probability of picking each example to be 1/AT. 
After the first network, however, these probabilities 
change to emphasize misclassified instances. A large 
number of extensive empirical studies have shown that 
these are highly successful methods that nearly always 
generalize better than their individual component pre- 
dictors (Bauer & Kohavi 1998; Maclin k Opitz 1997; 
Quinlan 1996). Neither approach is appropriate for 
our domain since we are data poor and cannot afford 
to waste training examples; however, we are feature 
rich and can afford to create diversity by instead vary- 
ing the inputs to the learning algorithms. Varying the 
feature subsets to create a diverse set of accurate pre- 
dictors is the focus of the next section. 

3.2    THE GEFS ALGORITHM 

The goal of our algorithm is to find a set of feature 
subsets that creates an ensemble of classifiers (neural 
networks in this study) that maximize equation 1 while 
minimizing equation 2. The space of candidate sets is 
enormous and thus is particularly well suited for ge- 



Table 1: The GEFS algorithm. 

GOAL: Find a set of input subsets to create an accu- 
rate and diverse classifier ensemble. 

1. Using varying inputs, create and train the initial 
population of classifiers. 

2. Until a stopping criterion is reached: 

(a) Use genetic operators to create new networks. 

(b) Measure the diversity of each network with 
respect" to the current population. 

(c) Normalize the accuracy scores and the diver- 
sity scores of the individual networks. 

(d) Calculate fitness of each population member. 
(e) Prune the population to the N fittest net- 

works. 

(f) Adjust A. 
(g) The current population is the ensemble. 

netic algorithms. Table 1 summarizes our recent algo- 
rithm (Opitz 1999) called GEFS (for Genetic Ensemble 
Feature Selection) that uses GAs to generate a set of 
classifiers that are accurate and diverse in their predic- 
tions. GEFS starts by creating and training its initial 
population of networks. The representation of each in- 
dividual of our population is simply a dynamic length 
string of integers, where each integer indexes a partic- 
ular feature. We create networks from these strings 
by first having the input nodes match the string of 
integers, then creating a standard single-hidden-layer, 
fully connected neural network. Our algorithm then 
creates new networks by using the genetic operators 
of crossover and mutation. 

GEFS trains these new individuals using backpropoga- 
tion. It adds new networks to the population and 
then scores each population member with respect to 
its prediction accuracy and diversity. GEFS normalizes 
these scores, then defines the fitness of each population 
member (i) to be: 

Fitnessi = Accuracyi + A Diversityi        (5) 

where A defines the tradeoff between accuracy and di- 
versity. Finally, GEFS prunes the population to the N 
most-fit members, then repeats this process. At every 
point in time, the current ensemble consists of sim- 
ply averaging (with equal weight) the predictions of 
the output of each member of the current population. 
Thus as the population evolves, so does the ensemble. 

We define accuracy to be network i's training-set accu- 

racy. (One may use a validation-set if there are enough 
training instances.) We define diversity to be the av- 
erage difference between the prediction of our compo- 
nent classifier and the ensemble. We then separately 
normalize both terms so that the values range from 
0 to 1. Normalizing both terms allows A to have the 
same meaning across domains. 

It is not always clear at what value one should set A; 
therefore, we automatically adjust A based on the dis- 
crete derivatives of the ensemble error E, the average 
population error E, and the average diversity D within 
the ensemble. First, we never change A if E is decreas- 
ing; otherwise we (a) increase A if E is not increasing 
and the population diversity D is decreasing; or (b) 
decrease A if E is increasing and D is not decreasing. 
We started A at 1.0 for the experiments in this article. 
The amount A changes is 10% of its current value. 

We create the initial population by randomly choosing 
the number of features to include in each feature sub- 
set. For classifier i, the size of each feature subset (iVj) 
is independently chosen from a uniform distribution 
between 1 and twice the number of original features 
in the dataset. We then randomly pick, with replace- 
ment, Ni features to include in classifier i's training 
set. Note that some features may be picked multiple 
times while others may not be picked at all; replicat- 
ing inputs for a neural network may give the network 
a better chance to utilize that feature during training. 
Also, replicating a feature in a genome encoding allows 
that feature to better survive to future generations. 

Our crossover operator uses dynamic-length, uniform 
crossover. In this case, we chose the feature subsets of 
two individuals in the current population proportional 
to fitness. Each feature in both parent's subset is in- 
dependently considered and randomly placed in the 
feature set of one of the two children. Thus it is pos- 
sible to have a feature set that is larger (or smaller) 
than the largest (or smallest) of either parent's fea- 
ture subset. Our mutation operator works much like 
traditional genetic algorithms; we randomly replace a 
small percentage of a parent's feature subset with new 
features. With both operators, the network is trained 
from scratch using the new feature subset; thus no in- 
ternal structure of the parents are saved during the 
crossover. 

4    RESULTS 

We tested the utility of combining our approach for 
generating numerous hierarchical theoretical descrip- 
tors of compounds with our approach for filtering 
these descriptors with GEFS by modeling the acute 



aquatic toxicity (LC$0) of a congeneric set of 69 ben- 
zene derivatives. The data was taken from the work 
of Hall, Kier and Phipps 1984 where acute aquatic 
toxicity was measured in fathead minnow (Pimephales 
promelas). Their data was compiled from eight other 
sources, as well as some original work which was con- 
ducted at the U.S. Environmental Protection Agency 
(USEPA) Environmental Research Laboratory in Du- 
luth, Minnesota. This set of chemicals was composed 
of benzene and 68 substituted benzene derivatives. 

Table 2 gives our. results. We studied three approaches 
for modeling toxicity: (1) giving all theoretical descrip- 
tors to a neural network, (2) reducing the feature set 
in a traditional previously published (Gute & Basak 
1997) manner, and (3) using our new genetic algorithm 
technique on the entire feature set to create a neu- 
ral network ensemble. Results for our approaches are 
from leave-one-out experiments (i.e., 69 training/test 
set partitions). Leave-one-out works by leaving one 
data point, out of the training set and giving the re- 
maining instances (68 in this case) to the learning algo- 
rithms for training. (It is worth noting that each mem- 
ber of the ensemble sees the same 68 training instances 
for each training/test set partition and thus ensembles 
have no unfair advantage over other learners.) This 
process is repeated 69 times so that each example is 
a part of the test set once and only once. Leave-one- 
out tests generalization accuracy of a learner, whereas 
training set accuracy tests only the learner's ability to 
memorize. Generalization error from the test set is the 
true test of accuracy and is what we report here. 

We first trained neural networks using all 95 param- 
eters. The networks contained 15 hidden units and 
we trained the networks for 1000 epochs. We normal- 
ized each input parameter to a values between 0 and 1 
before training. Additional parameter settings for the 
neural networks included a learning rate of 0.05, a mo- 
mentum term of 0.1, and weights initialized randomly 
between -0.25 and 0.25. With all 95 input parameters, 
the neural networks obtained a test-set correlation co- 
efficient between predicted toxicity and measured toxi- 
city (explained variance) of R2 = 0.868 and a standard 
error of 0.29. Target toxicity measurements ranged 
from 3.04 to 6.37. 

Our first method for feature-set reduction follows the 
work of Gute and Basak 1997 on toxicity domains. 
Their method begins by using the VARCLUS method 
of SAS 1998 to select subsets of topostructural and 
topochemical parameters for QSAR model develop- 
ment. With this method, the set of topological in- 
dices is first partitioned into two distinct sets, the 
topostructural indices and the topochemical indices. 

Table 2: Relative effectiveness of statistical and neural 
network methods in estimating LC50 of 69 benzene 
derivatives. 

Method R2 Standard Error 
NN with 95 inputs 
VARCLUS 
NN with GEFS 

0.868 
0.825 
0.893 

0.29 
0.32 
0.27 

To further reduce the number of independent variables 
for model construction, the sets of topostructural and 
topochemical indices were further divided into subsets, 
or clusters, based on the correlation matrix using the 
VARCLUS procedure. This procedure divides the set 
of indices into disjoint clusters, such that each clus- 
ter is essentially unidimensional. From each cluster 
we selected the index most correlated with the clus- 
ter, as well as any indices which were poorly corre- 
lated with their cluster (R2 < 0.70). The variable 
clustering and selection of indices was performed inde- 
pendently for both the topostructural and topochem- 
ical indices. This procedure resulted in a set of five 
topostructural indices and a set of nine topochemical 
indices. These indices were combined with the three 
geometric and six quantum chemical parameters de- 
scribed earlier. Their approach then applied linear re- 
gression to these 23 parameters. This study found that 
an accurate linear regression model for acute aquatic 
toxicity required descriptors from all four levels of the 
hierarchy: topostructural, topochemical, geometrical 
and quantum chemical. This model utilized seven de- 
scriptors and obtained an explained variance (R2) of 
0.863 and a standard error of 0.30 on the whole data 
set used as a training set. Our leave-one-out experi- 
ment gave an R2 = 0.825 and a standard error of 0.32. 

Finally we applied our genetic algorithm technique, 
GEFS, using all 95 parameters. The parameter set- 
tings for the networks in the ensemble were the same as 
the settings for the single networks in the first exper- 
iment. Parameter settings for the genetic algorithm 
portion of GEFS includes a mutation rate of 50%, a 
population size of 20, a A = 1.0, and a search length 
of 100 networks (20 networks for the initial population 
and 80 networks created from crossover and mutation). 
While the mutation rate may seem high as compared 
with traditional genetic algorithms, certain aspects of 
our approach call for a higher mutation rate (such as 
the criterion of generating a population that cooper- 
ates as well as our emphasis on diversity); other muta- 
tion values were tried during our pilot studies. With 
this approach, we obtained a test-set correlation coef- 
ficient of R2 = 0.893 and a standard error of 0.27; the 
initial population of 20 networks obtained a test-set 



R2 = 0.835 and a standard error of 0.31. 

5    DISCUSSION AND FUTURE 
WORK 

The correlation coefficient between the predicted value 
from the computational model and the target value 
derived from the toxicity test is an extremely informa- 
tive metric of accuracy in this case. The exact numeric 
value of most toxicity tests is not as important as the 
relative ordering and spread of these values. Thus, 
a perfect correlation (R2 = 1.0) between the compu- 
tation model and target toxicity shows the computa- 
tional model is as informative as the toxicity obtained 
from a battery of expensive and time-consuming tests 
- regardless of the standard error. Note the standard 
error of 0.27 is fairly good, given the toxicity measure- 
ments ranged from 3.04 to 6.37. 

While the neural network technique and the standard 
data-reduction technique obtained decent correlation 
with measured toxicity, our ensemble technique was 
about 20% closer to perfect correlation. Note that 
GEFS produces an accurate initial population and that 
running GEFS longer with our genetic operators can 
further increase performance. Thus our approach can 
be viewed as an "anytime" learning algorithm. Such 
a learning algorithm should produce a good concept 
quickly, then continue to search concept space, report- 
ing the new "best" concept whenever one is found 
(Opitz & Shavlik 1997). This is important since, for 
most hazard assessment, an expert is willing to wait 
for days, or even weeks, if a learning system can pro- 
duce an improved model for predicting toxicity. 

Our results demonstrate a very important point: that 
our method is able to accurately predict toxicity di- 
rectly from structure. Compared to the actual bat- 
tery of tests necessary to measure toxicity, a computer 
model is much cheaper, much faster, and does not have 
a negative impact on the environment. It is important 
to also note that the computer model does not have to 
be the final measurement for hazard assessment; addi- 
tional tests can be run on compounds that are either 
flagged by the model, or require more tests by the na- 
ture of their use (such as a benzene derivative that may 
become a standard fuel). Not only can good computer 
models become filters, they will probably be the only 
viable option for processing all registered chemicals. 

While the method proposed here has proven effective, 
there is much future work that needs to be completed. 
For instance, we plan to test our method on other data 
sets of chemical derivatives; investigate other ensemble 
feature selection techniques; investigate variants to our 

genetic algorithm approach, and finally investigate the 
utility of other descriptors, such as bio-descriptors. 

6    CONCLUSIONS 

In this paper we presented a novel approach for cre- 
ating a computer model for hazard assessment. Our 
approach works by first extracting a hierarchy of theo- 
retical descriptors derived from the structure of a com- 
pound, then filtering the numerous possible descriptors 
with a genetic algorithm approach to ensemble fea- 
ture selection. We tested the utility of our approach 
by modeling the acute aquatic toxicity (LC50) of a 
congeneric set of 69 benzene derivatives. Our results 
demonstrate the ability of our approach to accurately 
predict toxicity directly from structure. Thus our new 
algorithm further increases the applicability of com- 
puter models to the problem of predicting chemical 
activity directly from its structure. 
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APPENDIX 1.4 Information theoretic indices of neighborhood 
complexity and their applications 
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Table I    Correlation coefficients of variables with the principal components (only the 10 most highly correlated are listed) 

PCI PCI PCS PC4 PCS PC6 PC7 PCZ PC9 .    PC10 

Ki 0.959 SICj 0.973 4vb 
Xc 0.694 4XCH 0.848 6 

XCH -0.465 ICo 0.501 Xc 0.538 K10 -0.319 Xpc 0.292 IQ 0.282 
2x 0.954 CIC4 - 0.955 Y 0.693 4vb 

XCH 0.844 XcH -0.457 SICo 0.424 Y 0.494 6xv -0.311 Xpc 0.285 Y 0.282 

\ 0.954 CICj - 0.952 Y 0.683 XCH 0.795 <vb 
XCH 0.437 «vv 

XCH -0.374 Y -0.480 Y - 0.309 Xpc 0.282 Y 0.272 
K2 0.953 SIC4 0.947 4Xc 0.680 3XCH 0.751 Jvb 

XCH 0.406 O -0.349 6Xc -0.434 K9 -0.301 4Xc 0.273 3vb 
Xc -0.233 

Ko 0.949 SIC2 0.940 Y 0.668 XCH 0.751 3XCH 0.406 SICo 0.334 Y -0.391 5XCH 0.289 K, 0.268 K, -0.232 

'x 0.942 CICj -0.940 5Xc 0.644 3vb 
XCH 0.740 XCH 0.391 3vb 

Xc 0.318 3Xc -0.343 5vb 
XCH 0.287 K|0 0.264 K8 -0.230 

Y 0.938 CIC6 -0.922 6Xc 0.637 XCH 0.718 4vb 
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Xc 0.232 Y -0.243 ICo 0.235 Y 0.218 
ux 0.934 CICj -0.869 Xc 0.600 Y« 0.472 6XC 0.310 CIC, 0.312 3vb 
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Table IV    Parabolic correlation of LD50 values with log P and four topological indices 

Independent LDso (Control) = A+BX+CX2 
LDso (CC14) = A + BX+CX2 

Variable (X) 
A B C        ra       SD F A B C       r2      SD F 

logP 62.20 -49.70 14.30   0.94   11.04 35.94 50.50 - 34.00 7.34   0.94   6.70 34.82 
TICo 340.00 - 26.40 0.54   0.96     9.13 54.87 216.00 -15.00 0.28   0.95   6.10 43.12 
TIC, 288.00 - 16.30 0.25   0.86   16.10 14.25 195.00 -9.85 0.13   0.97   4.68 76.61 
CICo 718.00 -457.00 74.80   0.91    12.99 24.57 407.00 - 235.00 35.10   0.97   4.76 74.05 
CIC, 620.00 -448.00 83.50   0.95     9.62 48.88 364.00 - 239.00 40.70   0.96   5.54 53.27 
aFor each equation, r is the correlation coefficient, SD the standard deviation, and Fthe F-ratio between the variances 
of observed and calculated values. 
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Table VIII    Lipophilicity, anesthetic dose (AD50) in mice, and molecular descriptors for barbiturates (Figure 5) 1" 
5. 
a- a. 
5 
§ 

No. Ri Ri ADso logP TICo 77C, C/Co W 'D 
7W 
'D 

lx y 
1 Methyl 1-Methyl, 1-Propenyl 2.64 0.65 43.90 73.48 3.01 272 1727 6.35 6.42 4.22 
2 Ethyl 1-Methyl, 1-Propenyl 3.15 1.15 47.60 82.35 3.21 324 2127 6.56 6.98 4.78 a. 

>3 

3 Propyl 1-Methyl, 1-Propenyl 3.29 1.65 51.19 89.18 3.40 391 2640 6.75 7.48 5.28 a 
&• 

4 Allyl 1-Methyl, 1-Propenyl 3.39 1.35 49.09 89.43 3.27 391 2640 6.74 7.48 4.89 a. 
5 Butyl 1-Methylvinyl 3.36 2.15 54.69 95.26 3.56 474 3281 6.92 7.98 5.78 3 
6 Methyl 1-Methylvinyl 2.12 0.15 40.06 67.28 2.78 218 1338 6.14 5.88 3.71 ■3' 
7 Ethyl 1-Methylvinyl 2.91 0.65 43.90 76.23 3.01 265 1687 6.36 6.44 4.27 2 
8 Propyl 1-Methylvinyl 3.04 1.15 47.60 83.10 3.21 326 2139 6.56 6.94 4.77 5' 

9 Allyl 1-Methylvinyl 3.06 0.85 45.38 82.40 3.07 326 2139 6.56 6.91 4.38 to 
10 Butyl 1-Methylvinyl 3.33 1.65 51.19 89.18 3.40 402 2709 6.74 7.44 5.27 a». 

11 Isobutyl 1-Methylvinyl 3.27 1.45 51.19 91.18 3.40 389 2627 6.75 7.30 5.13 Q 
3 

12 Amyl 1-Methylvinyl 3.32 2.15 54.69 94.77 3.56 494 3409 6.90 7.94 5.77 
ft. 

13 Isoamyl 1-Methylvinyl 3.26 1.95 54.69 98.01 3.56 480 3318 6.91 7.80 5.63 3 
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Table X    Lipophilicity, log(I/C), the potency for inhibition of Arbacia egg cell division, and molecular descriptors for 
barbiturates (Figure 5) 

No. /?. R7 log (1/C)   \ogP   TIC0      TIC,      C/C0    W 'D /, 
w 

X 

1 Ethyl 2-Ethylhexyl 3.70 3.45 63.23 104.20 3.95 690 4984 7.22 8.99 7.16 
2 Allyl 1-Methylbutyl 3.62 2.15 54.69 98.01 3.56 472 3268 6.92 7.98 5.76 
3 Benzyl Isopropyl 3.40 2.64 55.46 101.85 3.54 644 4660 7.23 8.96 6.17 
4 Allyl Benzyl 2.82 2.54 53.10 95.18 3.43 660 4773 7.23 9.08 5.90 
5 Ethyl l-Methyl-2-Butenyl 3.30 1.65 51.10 89.18 3.40 398 2683 6.74 7.48 5.28 
6 Ethyl Hexyl 3.12 2.65 56.53 89.42 3.68 532 3655 6.87 8.06 6.23 
7 2-Methylallyl 1-Methylbutyl 3.17 2.45 58.12 104.09 3.71 548 3888 7.09 8.34 6.15 
8 Ethyl Isoamyl 2.82 1.95 53.10 88.70 3.52 418 2811 6.72 7.41 5.59 
9 Ethyl 1-Methylbutyl 2.92 1.95 53.10 88.70 3.52 398 2683 6.74 7.48 5.65 
10 Ethyl 1-Ethylpropyl 2.85 1.95 53.10 88.70 3.52 387 2615 6.75 7.52 5.69 
11 Ethyl Amyl 2.82 2.15 53.10 84.60 3.52 431 2892 6.71 7.56 5.73 
12 Ethyl 2-Phenylethyl 2.66 2.80 55.46 99.10 3.54 700 5044 7.20 9.08 6.29 
13 Ethyl 1,3-Dimethylbutyl 2.82 2.25 56.53 94.93 3.68 474 3278 6.91 7.84 6.01 
14 Ethyl Cyclopentyl 2.77 0.79 49.09 85.43 3.27 382 2578 6.75 7.60 5.47 
15 Allyl Isobutyl 2.41 1.65 51.19 91.94 3.40 402 2711 6.74 7.42 5.19 
16 Ethyl Cyclohexenyl 2.24 1.20 52.69 90.79 3.44 458 3169 6.92 8.10 5.97 
18 Ethyl Butyl 2.40 1.65 49.60 79.52 3.35 346 2262 6.54 7.06 5.23 
19 Ethyl Phenyl 2.02 1.42 48.08 85.29 3.20 458 3169 6.92 8.10 5.33 
20 Allyl Isopropyl 2.01 1.15 47.60 85.10 3.21 326 2139 6.56 6.94 4.72 
21 Allyl Allyl 1.79 1.05 45.38 78.40 3.07 338 2215 6.55 7.06 4.45 
22 Ethyl Isopropyl 1.79 0.95 46.01 76.07 3.16 265 1687 6.36 6.44 4.61 
23 Ethyl Ethyl 1.49 0.65 42.32 68.12 2.95 220 1351 6.14 6.06 4.23 
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APPENDIX 1.5     Normal boiling points of 1,dy-alkanedinitriles: The 
highest increment in a homologous series 
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The normal boiling point for cyanogen is -22 °C; for its next homologue, malononitrile, it is 219 °C. The 
difference.of 241 °C is apparently the highest one encountered for the addition of a single methylene group. 
Problems connected with boiling points and a rationalization for this observation are discussed in the context 
of intermolecular forces for liquids. A quantitative structure-property relationship (QSPR) study of the 
normal boiling points for monohaloalkanes and for the corresponding nitriles is reported. The behavior of 
the nitrile group as a pseudohalogen is also discussed. Normal boiling points of compounds having a cyano 
group bonded to an electron-attracting substituent situate the CN group close to being a pseudohalogen, but 
when the CN group is bonded to electron-donor substituents, the situation changes. 

THE LIQUID STATE AND INTERMOLECULAR 
FORCES 

Intermolecular forces range from the very weak ones such 
as those existing in liquefied noble gases to the strongest 
ones (hydrogen bonds) existing in hydrogen fluoride, in 
dimers of carboxylic acids (even in vapor state), or in liquids 
with multiple hydroxy groups such as glycols or water. The 
exceptional features of water (liquid state over a wide 
temperature range, expansion on freezing, high dielectric 
constant, and excellent solvent for a wide variety of 
substances) are responsible for making life possible on earth. 
Although ionic or metallic liquids also exist, they will not 
be discussed here because they are not molecular liquids. 
One should mention the important role of intermolecular 
forces and especially of hydrogen bonding in all life 
processes, in the transcription/translation processes involving 
DNA, in protein folding, receptor-agonist intercations, 
enzymatic mechanisms, etc. 

Whereas intermolecular forces in crystals are compounded 
with conformational restrictions due to packing factors, 
liquids have molecular and conformational mobility (except 
for liquid crystals within certain limits). Liquids are more 
difficult to model than gases or solids. However, melting 
points of crystalline solids are also difficult to correlate with 
chemical structure due to packing factors, except for some 
classes of congeneric compounds. 

Intermolecular forces are reflected by the following: vapor 
pressure versus temperature; boiling points at normal pressure 
(normal boiling points, NBPs); critical data; latent heat of 
vaporization versus temperature; viscosity; density and molar 
volume; optical properties such as the refractive index and 
molecular refractivity. 

From all these clues, the easiest to measure with sufficient 
accuracy, and the most often cited for any compound, is the 
boiling point; usually, the NBP is cited, but seldom for 

* Permanent address: Department of Organic Chemistry, Polytechnic 
University Bucharest, Romania. 

compounds that would boil at temperatures above 250 °C at 
normal pressure because of decomposition. Many iodine 
derivatives decompose on heating even at lower temperatures 
because of the low C-I bond energy. 

NITRILES AND THEIR NORMAL BOILING POINTS 

The strongly electron-attracting nitrile (cyano) group is 
known to cause high dipole moments. For example, in the 
gas phase the dipole moments (in debye units) are as 
follows:1 

for Me-X 
X = C1 1.87 D 
X = CF3 2.35 D 
X = N02 3.50 D 
X = CN 3.94 D 

for Ph-X 
X = C1 1.70 D 
X = CF3 2.86 D 
X = N02 4.21 D 
X = CN 4.39 D 

The resulting dipole—dipole interactions lead to strong 
molecular associations, manifested in higher NBPs, heats of 
vaporization, and viscosities than those of the corresponding 
hydrocarbons with comparable molecular weights. 

Among thermodynamic properties, normal boiling points 
have been extensively investigated in quantitative structure- 
property relationships (QSPRs). From the molecular descrip- 
tors used in such correlations, topological indices have been 
among the most successful.2-6 For alkanes, such QSPR 
studies allow nowadays the prediction of NBPs within a 
range of 2 or 3 °C.7-9 For various other classes of compounds 
many QSPR studies are available, and their accuracy range 
is often lower than 10 °C.10_15 

Nitriles, however, proved to defy simple approaches. Thus, 
a recent study by Wessel and Jurs for a diverse set of 
industrially important chemicals containing nitrogen with 
mean-square-root errors of about 9 °C led to satisfactory 
results for mononitriles but to very large errors for two 
dinitriles, namely, cyanogen and malononitrile.12 We have 
therefore decided to look more closely into this matter. A 
comprehensive review on malononitrile is available.16 

10.1021/ci9900074 CCC: $18.00     © 1999 American Chemical Society 
Published on Web 09/04/1999 
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Table 1. Cyano Group as a Pseudohalogen: NBPs for X—Y or X2 

Compounds" 

(pseudo)- X-CN X-X 
ogen X FW NBP (°C) FW NBP(°C) FW 

F 19 -72 49 -188 38 
CN 26 -22 60 -22 60 
Cl 35 13 66 -35 71 
Br 80 62 110 56 160 
I 127 184 157 178 254 

" Figures have been rounded off to the nearest integer. 

Table 2. NBPs of Cyanotrihalomethanes Hal3C-CN and of 
Tetrahalomethanes Hal3C-X (Hal = F, Cl, Br)° 

Cl Br 
X NBP (°C) FW NBP (°C) FW NBP CO FW 

F -128 -88 25 137 107 271 
Cl -82 104 77 154 160 287 
CN -62 95 84 149 170 278 
Br -79 149 104 198 190 332 
1 -23 196 141 245 

" Figures have been rounded off to the nearest integer. 

CYANO GROUP AS A PSEUDOHALOGEN 

Groups such as cyano, thiocyano, cyanato, and azido are 
considered to be pseudohalogens.17-19 In this paper we shall 
focus only on the cyano group. There are also significant 
differences, however, between some compounds of halogens 
and pseudohalogens, for instance the fact that hydrogen 
cyanide is a much weaker acid (with p£a = 9.2) than 
hydrogen halides. Also, the coordinating ability of the 
cyanide anion for iron leads to a high toxicity, whereas each 
of the halide anions has a different biological significance. 
One should also recall that the cyano group is bidentate, 
being able to form covalent or coordinative bonds at the 
carbon or nitrogen atoms. Thus, the elongated shape of the 
cyano group makes it different from the spherical halogens. 

It is known that molecular weights have a large influence 
on NBPs. According to its formula weight (FW), a CN group 
is intermediate between a fluorine and a chlorine atom. On 
comparing NBPs20-22 of simple halogens, interhalogens, 
cyanogen, or cyanogen halide linear molecules (Table 1), it 
can be seen that the cyano group does indeed behave as a 
pseudohalogen. On considering cyanogen halides, the CN 
group is placed by NBPs between fluorine and chlorine. 
However, on comparing NBPs of cyanogen and those of 
elemental halogens, the CN group is situated between 
chlorine and bromine, as if the CN group had a slightly 
higher formula weight. 

In Table 2 the NBPs of cyanotrihalomethanes, X3C-CN, 
and of tetrahalomethanes, OC4, are shown. It can be seen 
that the cyano group behaves again as a pseudohalogen 
situated between chlorine and bromine. 

Although some physical data support the idea that the CN 
group manifests itself as a pseudohalogen, its chemical 
behavior in organic compounds is quite different from that 
of halogens. The C—Cl, C-Br, and C—I bond strengths are 
much lower than the bond strength of the C-CN bond; 
therefore, these halogens (unlike CN groups) are good 
leaving groups. In the next section we shall examine organic 
compounds whose NBPs are much higher than those of the 
corresponding halogen compounds, so that the cyano group 
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would be situated beyond iodine; in such cases, the notion 
of pseudohalogen is no longer justified. 

NORMAL BOILING POINTS OF NITRILES AND 
DINITRILES 

Mononitriles have NBPs which are quite high when 
compared with the corresponding halides (Table 3). In Table 
3 structures of halogen derivatives are indicated (in abbrevi- 
ated form) according to IUPAC nomenclature rules; for 
nitriles, however, to achieve consistency, the CN group is 
considered as a pseudohalogen; therefore, the nomenclature 
is no longer according to IUPAC. In these cases a CN group 
increases the NBP much more than the heaviest stable 
halogen atom, namely, iodine. An analogous behavior is 
apparent when comparing halocarbonyl or cyanocarbonyl 
compounds (Table 4). Also, the NBPs of l,a>-alkanedihalides 
for linear alkane chains with one through four carbon atoms, 
X(CH2)„X (with n = 1-4) are much lower than for the 
corresponding l.cu-alkanedinitriles (Table 5). 

As seen from Table 6 for gem-dihalides or gem-dinitriles 
of methane, ethane, or propane, a similar trend with higher 
NBPs for X = CN than for X = Hal is observed; moreover, 
one sees the curious trend that when the X group in R—X is 
I or CN, the NBPs decrease progressively in the above series 
with increasing molecular weight, whereas the corresponding 
compounds with X = F, Cl, or Br exhibit the reverse, normal 
behavior. A break in Table 6 separates the compounds with 
normal and abnormal behavior. 

QSPR STUDY OF MONOHALO DERIVATIVES AND OF 
THEIR CYANO ANALOGUES 

For correlating the chemical structure with the NBP for 
the data presented in Table 3 we selected eleven topological 
indices: the information indices IC1-IC3 and CIC1-CIC3;2-1 

the Wiener index W; the valence connectivity indices °xv— 
2Xy;4M and the average distance-sum connectivity adapted 
for heteroatoms based on their electronegativities (Balaban's 
index, J,).75-26 All indices except the last one were computed 
using the program POLLY.27 

Due to the fact that the scale of the various topological 
indices may differ by several orders of magnitude, all indices 
were transformed by first adding 1 to the index and then 
taking the natural logarithm of this result. The transformed 
version of the indices was used in all analyses. The CORR 
procedure of the SAS statistical package32 was used to 
identify intercorrelated indices. The elimination of such 
indices reduced to four the number of selected TIs, namely, 
IC2, CIC2, lx\ and /,. 

An all-subset regression was accomplished using the REG 
procedure of the same statistical package,32 which indicated 
that lx" and Jx gave the best results; IC2 and CIC2 gave the 
next best results. The drawback of IC and CIC indices is 
that the nature of the halogen does not affect the value of 
these indices. 

Experimental and calculated data for NBPs of monohalo 
derivatives with one through five carbon atoms and the 
corresponding mononitriles with two to six carbon atoms 
are presented in Table 3, above the solid line. Some nitriles 
with six to eight carbon atoms are also included below the 
solid line, but they have no halogen counterparts, and the 
correlations discussed below do not include them. 
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Table 3. NBPs (°C) of Organic Halides and Nitriles R-X and 
QSAR in Terms of <x" and J, 

compd NBPe, NBPc, diffe expt-calc J,h 

Table 4. NBPs of Halocarbonyl Derivatives (Iodine Derivatives 
Are Not Available)0 

NBP(°C) 

Me-F -78 -81 
Et-F -38 -32 
Pr-F 3 3 
Bu-F 33 34 
sBu-F 25 22 
1-Cs-F 63 62 

Me-Cl -24 -23 
Et-Cl 12 10 
Pr-Cl 47 47 
iPr-Cl 36 34 
Bu-Cl 79 79 
sBu-CI 68 69 
iBu-Cl -69 70 
tBu-Cl .51 51 
1-C1-C5 108 106 
2-Cl-Cj -97 97 
2-Me-l-Cl-C4 100 100 
3-Me-l-Cl-C4 99 98 
CEt2-Cl 98 99 

Me-Br 
Et-Br 
Pr-Br 
iPr-Br 
Bu-Br 
sBu-Br 
iBu-Br 
tBu-Br 
1-Br-Cj 
2-Br-Cj 
2-Me-Br-l-C4 

3-Me-l-Br-C4 
CEt2-Br 

Me-I 
Et-I 
Pr-I 
iPr-I 
Bu-I 
sBu-I 
iBu-I 
tBu-I 
I-I-C5 
2-I-C5 
2-Me-l-I-C4 

3-Me-l-I-C4 

CEt2-I 

Me-CN 
Et-CN 
Pr-CN 
iPr-CN 
Bu-CN 
sBu-CN 
iBu-CN 
tBu-CN 
1-CN-Cs 
2-CN-Q 
2-Me-l-CN-C4 

3-Me-l-CN-C4 

CEt2-CN 

4 
39 
71 
60 

102 
91 
91 
73 

130 
117 
121 
120 
119 

43 
73 

103 
90 

131 
120 
121 
100 
155 
141 
148 
147 
146 

82 
97 

118 
104 
141 
125 
131 
106 
164 
146 
154 
157 
146 

10 
33 
69 
56 
99 
90 
97 
77 

125 
116 
125 
122 
119 

51 
66 

100 
87 

127 
117 
127 
106 
150 
141 
153 
149 
145 

71 
104 
126 
109 
143 
128 
129 
108 
158 
145 
147 
158 
142 

3 
-6 

0 
-1 

3 
1 

-1 
2 
0 
2 
0 

-1 
-1 

0 
2 
0 
0 
1 

-1 

-6 
6 
2 
4 
3 
1 

-6 
-4 

5 
1 

-4 
-2 

0 

-8 
7 
3 
3 
4 
3 

-6 
-6 

5 
0 

-5 
-2 

1 

11 
-7 
-8 
-5 
-2 
-3 

2 
-2 

6 
1 
7 

-1 
4 

EtCMe2-CN 
1-CN-Q 
2-CN-Q 
3-Me-l-CN-Cs 
4-Me-l-CN-Cs 
5-Me-l-CN-Cs 
l-CN-C, 

129 
183 
164 
172 
180 
180 
199 

126 
171 
160 
158 
159 
158 
183 

3 
12 
4 

14 
21 
22 
16 

0.3206 
0.6801 
0.9058 
1.0899 
1.0685 
1.2453 

0.7580 
0.9199 
1.1016 
1.0328 
1.2553 
1.2081 
1.2134 
1.1207 
1.3885 
1.3473 
1.3617 
1.3520 
1.3571 

1.0865 
1.1301 
1.2798 
1.1906 
1.4100 
1.3421 
1.3742 
1.2476 
1.5252 
1.4649 
1.5019 
1.4934 
1.4736 

1.2627 
1.2528 
1.3863 
1.2862 
1.5041 
1.4248 
1.4716 
1.3265 
1.6094 
1.5384 
1.5880 
1.5802 
1.5465 

0.5446 
0.8259 
1.0239 
0.9810 
1.1891 
1.1647 
1.1442 
1.0899 
1.3308 
1.3097 
1.2920 
1.3308 
1.3199 

0.6054 
0.9143 
1.0550 
1.1346 
1.2334 
1.1860 

0.6152 
0.9207 
1.0588 
1.1656 
1.1375 
1.2369 
1.2407 
1.3635 
1.1881 
1.2672 
1.3043 
1.2709 
1.2999 

0.6403 
0.9357 
1.0685 
1.1768 
1.1445 
1.2453 
1.2479 
1.3727 
1.1936 
1.2737 
1.3100 
1.2765 
1.3070 

0.6689 
0.9532 
1.0801 
1.1900 
1.1531 
1.2553 
1.2568 
1.3833 
1.2000 
1.2818 
1.3169 
1.2829 
1.3156 

1.2196 
1.2173 
1.2366 
1.3592 
1.2565 
1.3880 
1.3483 
1.5065 
1.2737 
1.3888 
1.3431 
1.2737 
1.4339 

1.2624 
1.4549 
1.4363 
1.4298 
1.4298 
1.3308 
1.5653 

1.5304 
1.2881 
1.3840 
1.3992 
1.3830 
1.2737 
1.3002 

EtOCOX C1COX 

F 
Cl 
Br 
CN 

57 
95 

116 
116 

-45 
8 

25 
128 

* Figures have been rounded off to the nearest integer. 

Table 5. NBPs of \jta 
Alkanes Ci-C4° 

-Dihalides and l,<u-Biscyanides of Linear 

NBP (°C) 

X         XCH2X X(CH2)2X        X(CH2)3X        X(CH2)4X 

F 
Cl 
Br 
I 
CN 

-52 
40 
97 

181 
219 

31 
84 

131 
200 
266 

42 
121 
167 
227 
286 

78 
154 
197 

295 

* Figures have been rounded off to the nearest integer. 

Table 6. NBPs of gem-Bis(pseudo)halides of Alkanes Ci—Ci" 

NBP (°C) 

X CH2X2 MeCHX2 Me2CX2 

F 
Cl 
Br 

I 
CN 

-52 
40 
97 

181 
219 

-25 
58 

113 

178 
198 

0 
71 

115 

148 
170 

* Figures have been rounded off to the nearest integer. * Topological 
indices lx" and /, are expressed by converting their values (y) into 
ln(l + y). 

" Figures have been rounded off to the nearest integer. 

A comment on how the lxv and Jx indices vary with 
increasing size and branching of molecules needs to be 
added. Both these indices increase with increasing size. The 
nature of the halogen X in R—X molecules with the same R 
group also leads to a progressive increase in the series F, 
Cl, Br, and I; this increase is steep for *xv but moderate for 
Jx. However, increasing branching of the R group for 
isomeric molecules leads to decreasing values for 1%V but to 
increasing values for Jx. Of course, as a general rule, 
experimental NBPs increase with increasing size and mo- 
lecular weight of molecules and decrease with molecular 
branching; only poly(fluoroalkanes) are exceptions to this 
rule, as mentioned earlier.13 

The corresponding equations are shown in Table 7a,b with 
the statistical parameters. For the chloro derivatives Jx was 
not a significant parameter, so that a monoparametric 
equation in terms of '#v gave in this case satisfactory results. 
For all other compounds from Table 3, such monoparametric 
equations led to worse results than those presented in both 
parts a and b of Table 7. Intercorrelation factors between 
the four selected indices are presented in Table 8; one can 
see that no significant intercorrelation is present. It can be 
observed from Tables 3 and 7a that the correlation for nitriles 
is slightly poorer than for the halogens; however, the 
agreement between the experimental and calculated NBPs 
is quite good. Remarkably, the coefficients of the '#v 

parameter are similar for Br and I in Table 7a and for all 
halogens in Table 7b; this fact is reminiscent of the 
observation presented in the earlier paper13 about the fact 
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Table 7. Correlation Equations for NBP and Statistical Parameters 

(a) In Terms of 'j;v and 7, 

NBP s r F 

RF 
RC1 
RBr 
RI 
RCN 

(208 ± 23)'r - (84.0 ± 32)7, - (96.8 ± 15) 
(204 ± 2)'r - (177 ± 2) 
(203 ± 12)'x" + (45.6 ± 9.3)7, - (239 ± 12) 
(195 ± 15)'zv + (59.3 ± 10)7, - (235 ± 17) 
(117 ± &A)Y ~ (92.5 ± 22)7, + (120 ± 27) 

(b) In Terms of IC2 and CIC2 

4.3 
1.4 
4.5 
5.3 
6.1 

0.998 
0.999 
0.994 
0.989 
0.976 

NBP 

355 
9444 
404 
235 
99 

RF (223 ± 27)IC2 + (197 ± 47)CIC2 - (406 ±38) 
RC1 (230 ± 16)IC2 + (146 ± 16)CIC2 - (333 ± 27) 
RBr (218 ± 16)IC2 + (135 ± 16)CIC2 - (286 ± 27) 
RI (198 ± 15)IC2 + (115 ± 15)CIC2 - (217 ± 25) 
RCN (176 ± 30)IC2 +T93.9 ± 20)CIC2 - (168 ± 42) 

10.2 0.988 62 
9.0 0.978 109 
8.7 0.977 104 
8.4 0.974 92 

11.4 0.914 25 

Table 9. NBPs (°C) of Unsaturated Nitriles and QSAR in Terms of 
IC2 and CIC2 

nitrile IC2 CIC2     NBP„„    NBP, diff. fcxpl-calcd 

C=CC#N 
C#CC#N 
C=CCC#N 
CC=CC#N 
CC(=C)C#N 
CC=C(C)C#N 
CC(C)=CC#N 
C=CCCC#N 
CCC=CC#N 
C=CC=CC#N 
CCC(C)=CC#N 
CC(C)C=CC#N 
CC(C)=CCC#N 

1.2590 
1.2006 
1.3666 
1.2936 
1.2936 
1.2548 
1.2102 
1.3689 
1.3930 
1.3468 
1.3625 
1.3300 
1.3300 

0.2515 
0.0000 
0.3365 
0.5158 
0.5158 
0.7853 
0.8531 
0.5704 
0.5146 
0.4787 
0.7391 
0.7971 
0.7971 

78 
43 
119 
113 
91 
138 
141 
140 
136 
137 
142 
155 
166 

80 
40 
112 
116 
116 
137 
135 
138 
137 
123 
155 
155 
155 

-2 
3 
7 

-3 
-25 

1 
6 
2 

-1 
14 

-13 
0 

11 

Table 8. Intercorrelation Matrix for the Four Selected TIs° 

Y 7, IC2 CIC2 

1.000 Y 
J, 
ic2 

CIC2 

° Topological indices Y and A are shown by converting their values 
(y) into ln(l + y). 

0.702 0.802 0.178 
1.000 0.451 0.655 

1.000 -0.331 
1.000 

ISO 

100 

60 

• 

0.4« 
• •& ■ 

• ■ 
■0                               -GO 

-50 

•100 * 

w                   100                  ISO                  a 

Experimental NBP 

»R-FBH-C1 AR-BH) R-l| 

Figure 1. Plot of the predicted NBP versus the experimental NBP 
for the combined set of 45 monohaloalkanes from Table 3 in terms 
of two TIs, namely, Y and Jx. 

that one might consider a "generalized halogen" with a 
stepwise increment for the four halogens F, Cl, Br, and I. 
Though the aim of the present paper was to discuss nitriles 
and not haloderivatives (the NBPs of these last compounds 
were the object of a QSPR study in the earlier paper13), one 
can use the same parameters as in Table 7a for a correlation 
of NBPs for all 45 halogen derivatives presented in Table 3 
according to the following equation: 

NBP = (180 ± 7.8)V + (34 ± 10)/, - (189 ± 9.2) 

s = 10 °C      r = 0.9823      F = 579 

The diagram shown for this correlation in Figure 1 
indicates that only 2-butyl fluoride and three halomethanes 
with F, Br, and I have deviations above 14 °C between 
observed and predicted NBPs. 

Interestingly, the last equation of Table 7a works even 
for other aliphatic mononitriles with six to eight carbon 
atoms, presented at the bottom of Table 3 below the full 

line; however, in these cases, all calculated values are lower 
than the experimental ones. 

Unsaturation in the nitrile chain lowers appreciably the 
NBP, as seen in Table 8. Using the same descriptors as in 
Table 7b for these nitriles with three to six carbon atoms 
having one or two double bonds or one triple bond (denoted 
by # in Table 9 which uses Smiles notation for structures), 
the QSAR results presented in Table 9 were obtained with 
the following equation: 

NBP = (214 ± 52)IC2 + (109 ± 13)CIC2 - (217 ± 67) 

i = ll°C      r = 0.9121       F = 52 

A GUESSING GAME 

On addressing an audience of chemists, the following 
guessing game was proposed: the audience was given the 
NBPs of the l,w-alkanedinitriles X(CH2)„X with n = 1-4, 
namely, malononitrile, succinonitrile, adiponitrile, and ca- 
prononitrile (i.e., the last line in Table 5). Then everyone 
was asked to guess the NBP temperature interval for 
oxalonitrile (the compound with n = 0) by putting a mark 
in one of the following eight intervals: <-20; -20 to +20; 
+20 to +60; +60 to +100; +100 to +140; +140 to +180; 
+180 to +220; and >+220 °C. Remarkably, no member of 
the audience guessed that oxalonitrile (cyanogen with NBP 
= —22 °C) should appear in the first temperature interval 
(NBP < -20 °C). The other seven temperature intervals were 
about equally populated with marks. 

LARGEST INCREMENT IN NBP FOR A HOMOLOGOUS 
SERIES 

The two compounds (cyanogen and manononitrile) men- 
tioned to be outliers in the QSPR study cited earlier12 

represent the pair with the largest NBP increment on adding 
one methylene group, as seen from Table 10. In this table, 
one compares the next two homologues having various 
simple groups bonded either directly (R2) or via a methylene 
group (RCH2R), where R can be a halogen, a cyano group, 
an alkyl, an alkoxy, or an organic electronegative group. 
Breaks in the table delineate various related classes of 
compounds. 

The first entry of the above two compounds constitutes a 
class by itself. The huge difference of 241 °C between the 
NBPs of cyanogen (oxalonitrile, with NBP = -22 °C) and 
malononitrile (with NBP = 219 °C) can be explained by 
the fact that cyanogen has a linear geometry and hence a 
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Table 10. Differences in NBPs for Compounds Differing by One 
Methylene Group" 

NBP (°C) 

R R2 RCH2R diff 

CN -22 219 241 

H -253 -162 91 
CF, -78 1 79 
CH3-CO 88 138 50 
CH3 -89 -42 47 
HC^C 10 55 45 

F -188 -52 136 
Cl -35 40 75 
Br 56 97 41 
I 184 182 -2 

Et 0 37 37 
MeO 14 42 28 
EtO 63 88 25 
MeS 110 149 39 
EtS 154 181 27 
CCI3 186 206 20 
COOMe 163 181 18 
COOEt 185 199 14 
COOPr 211 229 18 
COOBu 242 256 14 
Ph 256 264 12 

" Figures have been rounded off to the nearest integer. 

zero dipole moment, whereas malononitrile is a V-shaped 
molecule with a high dipole moment, 3.58 D.28,29 The 
calculated polarizability of malononitrile is abnormally high 
in comparison with calculated values.30-31 

A few other comments in Table 10 should be added. The 
first nine entries show differences in NBPs that are higher 
than 40 °C for the two homologues. Among these, the first 
six have electronegative or slightly electron-donating groups; 
the next class includes the four stable halogens, and the trend 
in this group with progressively decreasing electronegativity 
is quite interesting, starting with the next highest NBP 
difference in the whole table (for fluorine) and ending with 
a negative difference (for iodine). All these entries have linear 
R2 and bent R2CH2 molecules for the two homologues, 
respectively. 

The last class with NBP differences lower than 40 CC, 
however, demonstrates that electronegativity by itself does 
not provide a full explanation for the data contained in Table 
10. Indeed, here again we encounter groups with electron- 
donating as well as with electron-accepting properties. 
However, in this class the R2 molecules have no longer linear 
geometries except for biphenyl and hexachloroethane. 

OTHER DINITRILES 

A comparison between volatilities of dinitriles of four- 
carbon dicarboxylic acids is interesting, despite the incom- 
pletely matched data. Succinonitrile has a NBP of 266 °C 
and a dipole moment of 3.93 D. From the two stereoisomeric 
olefinic congeners, the dinitrile of fumaric acid with E- 
geometry is more volatile (NBP of 186 °C, subliming even 
under 100 °C) than the dinitrile of maleic acid (with a higher 
dipole moment because of its Z-geometry) which has a BP 
of 111 °C at 20 Torr and 99 °C at 13 Torr. The alkynic 
congener which has a linear geometry and zero dipole 
moment (dicyanoacetylene or acetylenedicarbonitrile, C4N2) 

has a NBP of only 77 °C and sublimes easily. Interestingly, 
the dinitrile C6N2 of hexadiynedioic acid with two triple 
bonds (with linear geometry) has a NBP of only 154 °C. 

Isomers of benzodinitrile also have volatilities that attest 
the importance of dipole moments: phthalonitrile with the 
highest dipole moment has at 10 Torr a boiling point of 151 
°C; isophthalonitrile with a dipole moment which is about 
half as large has the BP of 140 CC at the same reduced 
pressure; and terephthalonitrile with a zero dipole moment 
sublimes at normal pressure at temperatures starting at 153 
°C. 

When the CN group is attached to an electron-acceptor 
substituent, the polarity of the bond is low and the NBP is 
within the range expected for a pseudohalogen with a formula 
weight close to that of chlorine. However, when the CN 
group is bonded to an electron-donor substituent, the high 
polarity of the resulting bond enhances appreciably the NBP. 
The conclusion is that NBPs are the result of a multiplicity 
of factors inherent in determining the intermolecular forces 
that exist in the liquid state. In certain cases such as the two 
homologous dinitriles with two and three carbon atoms, 
QSPR studies should not ignore differences between these 
intermolecular interactions. 
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Abstract 

A novel QSAR study of benzamidines complement-inhibitory activity and benzene derivatives acute toxicity is 
reported and a new efficient method for selecting descriptors is used. Complement-inhibitory activity QSAR models 
of benzamidines contain from one to five descriptors. The best, according to fitted and cross-validated statistical 
parameters, is shown to be the five-descriptor model. Models with a higher number of indices did not improve over 
the five-descriptor model. The benzene derivatives structure-toxicity models involve up to seven linear descriptors 
Multiregression models, containing up to ten.nonlinear descriptors, are also reported for the sake of comparison with 
previously obtained additivity models. Comparison with benzamidine complement-inhibitory activity models and 
with benzene derivatives toxicity models from the literature favors our novel approach. © 2000 Elsevier Science 
Ireland Ltd. All rights reserved. 

Keywords: QSAR study; Complement-inhibitory activity; Benzene; Five-descriptor model 

1. Introduction 

In our recent papers a hierarchical QSAR (quantita- 
tive structure-activity relationship) approach was used 
to model the complement-inhibitory activity of benza- 
midines (Basak et al, 1999a) and the acute aquatic 
toxicities of benzene derivatives (Gute and Basak, 1997; 
Basak et al., 1999c). The hierarchical QSAR approach 
uses topological (partitioned into topostructural and 
topochemical), geometric and quantum-chemical de- 
scriptors in a stepwise fashion to build increasingly 
more complex structure-property-activity models 
(Basak et al.,  1997, 1999b). Now we report the use, 

* Corresponding author. 

with the same aim, of a new efficient approach for 
selecting the best QSAR models using multivariate 
regression (MR) (Lucic and Trinajstic, 1999; Lucic et 
al., 1999a) and a standard approach for variable selec- 
tion and model generation used in CODESSA (Ka- 
tritzky et al., 1999; Lucic et al., 1999b). Sometime ago 
Hansch and Yoshimoto (Hansch and Yoshimoto, 1974) 
carried out a QSAR study on the complement-in- 
hibitory potency of benzamidines using their own ap- 
proach. After 10 years, Hall et al. (Hall et al., 1984) 
carried out a QSAR study on the toxicities of benzene 
derivatives using de novo analysis (Free and Wilson, 
1964; Kubinyi and Kehrhahn, 1976), and derived an 
additivity model for 66 compounds (they excluded three 
compounds as outliers). We will analyze their models 
and compare to ours. 

0097-8485/00/S - see front matter © 2000 Elsevier Science Ireland Ltd. All riehts reserved. 
PII: S0097-8485(99)00059-5 
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Bcnzamidincs arc inhibitors of the complement sys- 
tem. Complement is a system of (actors occurring in 
normal serum which arc characteristically activated by 
antibody-antigen interactions and which subsequently 
mediate a number of biologically significant conse- 
quences. The factors of the complement system include 
at least 20 chemically distinct serum proteins and glyco- 
proteins. These factors which normally exist in an 
inactive form, may be activated by two (classical and 
alternative) pathways. Both pathways generate macro- 
molecular membrane attack complexes which lyse a 
variety of cells, bacteria and viruses (Kuby, 1992). 
Products of this activation result in inflammatory reac- 
tions at the site of antibody-antigen interaction. This is 
especially pronounced in the case of organ specific and 
systemic autoimmune disorders. Therefore, control of 
unregulated complement activation is essential, espe- 
cially in the case of autoimmune disease. 

Acute aquatic toxicities of benzene derivatives in the 
fathead minnow {Pimephales promelas) indicate 96-h 
values ranging from 3.0 to 6.4 log units for the LC50 
(lethal dose to 50% of the sample). Details about LC50 
measurements are given in the report by Hall et al. 
(Hall et al., 1984). 

2. Data sets 

2.1. Benzamidiiies 

In Fig. 1 we give the structural formula of benza- 
midines and in Table 1 the side-chain structu|es and 
experimental complement-inhibitory activities in terms 
of 1/log C for studied benzamidines. C in log C is the 
micromolar concentration of inhibitor required for 50% 
inhibition of lyophilized guinea pig complement when 
assayed in buffer (Hansch and Yoshimoto. 1974). 

2.2. Benzene derivatives 

Toxicity data of 69 benzene derivatives are taken 
from Hall et al. (Hall et al., 1984). Toxicity data 
reported by Hall et al. consists of 26 original experi- 

X 

Fig. 1. Structural formula of bcnzamidincs. 

mental observations and 43 taken from seven different 
sources. Thus, the studied set of benzene derivatives 
contains toxicities of 68 compounds and benzene. The 
benzene derivatives in this set have seven different 
substituents; each substituent being present in al least 
six compounds. These substituents are amino. bromo. 
chloro, hydroxyl. methyl, mcthoxyl and nitro groups. 
Studied benzene derivatives arc listed in Table 2. Their 
toxicities are expressed as the negative logarithm of the 
lethal concentration of a benzene derivative and de- 
noted by — log(LC50). 

2.3. Molecular descriptors 

In Table 3 are given symbols and brief description of 
descriptors that are used for the QSAR modeling of 
benzamidines and benzene derivatives in the present 
work. The total number of descriptors is 110 (40 to- 
postructural, 61 topochemical, three geometric and six 
quantum-chemical descriptors). In the previous QSAR 
study of benzamidines (Basak et al.. 1999a) 95 descrip- 
tors were used (37 topostructural. 55 topochemical and 
three geometric). The difference is caused by a fact that 
nine topological descriptors possess zero values (we 
included them in our set simply to have the complete 
set of descriptors) for all molecules studied and six 
quantum-chemical descriptors were not included in the 
previous modeling. All topological descriptors were 
transformed as it was done Basak et al. (Basak et al., 
1999a) using a natural logarithmic transformation of 
the form ln(.v+ 1), where .v represents single values of 
descriptors. This was done to avoid errors in rounding 
up numerical values because the range of descriptor 
values was rather large. The geometric descriptors were 
transformed by the natural logarithm of the descriptor 
for consistency. 

In the case of benzene derivatives we used the same 
set of descriptors as Gute and Basak (Gute and Basak, 
1997) and Basak et al. (Basak et al., 1999c). They were 
transformed in the same way as the benzamidine data 
set (see Basak et al., 1999a). 

2.4. Variable selection and models generation 

To obtain the best possible QSAR models with / 
(7=1, 2, 3, ...) descriptors we used a computational 
approach, detailed elsewhere (Lucic and Trinajstic, 
1999), by which one can select the best MR model with 
/ descriptors from the set of N descriptors. The number 
of possible models with / descriptors is A'!/(/V—/)!/! 
The quality of each model (with / descriptors) was 
identified with its correlation coefficient (/?), and 
among all possible models the best one was selected, 
with the highest value of R. To be able to check the 
quality of a large number of MR models, it was neces- 
sary to develop a very fast procedure lor calculating R, 
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Table 1 
Observed and calculated (cross-validated, CV, and fitted, FIT) complement-inhibitory activities 1/log C of 105 benzamidines 

No. X I/log C 

Observed Calculated (CV)a Calculated (FIT)1' 

1 2-CH, -0.444 -0.417 -0.419 
2 3,4-(CH,)2 -0.425 -0.423 -0.424 
3 H -0.418 -0.424 -0.423 
4 3-OH -0.415 -0.439 -0.434 
5 3-CF, -0.410 -0.378 -0.382 
6 3-N02 -0.410 -0.392 -0.395 
7 3-Br -0.405 -0.399 -0.400 
8 3-CH, -0.398 -0.399 -0.399 
9 3-OCH, -0.397 -0.401 -0.401 
10 3-CH2C6H5 -0.373 -0.343 -0.346 
11 3,5-(CH3)2 -0.361 -0.375 -0.369 
12 3-OC3H7 -0.355 -0.358 -0.358 
13 3-/-C5H„ -0.355 -0.344 -0.345 
14 3-OC4H9 -0.351 -0.340 -0.341 
15 3-C4H9 -0.338 -0.355 -0.353 
16 3-CH=CHC6H5 -0.339 -0.324 -0.325 
17 3-OCH,C6H5 -0.331 -0.324 -0.324 
18 3-(CH2)2C6H5 -0.330 -0.332 -0.331 
19 3-OC6Hl3 -0.329 -0.318 -0.319 
20 3-0(CH2)4OC6Hs -0.325 -0.286 -0.287 
21 3-0(CH2),OC6H5 -0.323 -0.314 -0.315 
22 3-C6H5 -0.323 -0.366 -0.359 
23 3-0(CH2),OC6H4-4-COOH -0.321 -0.296 -0.297 
24 3-OC5HH -0.320 -0.327 -0.326 
25 3-0-;-C5Hn -0.318 -0.338 -0.335 
26 3-O(CH2)2OC10H7-a -0.312 -0.255 -0.262 
27 3-0(CH2)4OC6H4-4-NH, -0.306 -0.288 -0.289 
28 3-(CH2)4C6H5 -0.302 -0.315 -0.313 
29 3-0(CH2)3OC6H4-4-NO, -0.301 -0.282 -0.282 
30 3-0(CH2)3OC6H4-4-NH, -0.300 -0.298 -0.298 
31 3-(CH2)2-4-C5H4N -0.299 -0.318 -0.318 
32 3-0(CH2)3OC6H5 -0.299 -0.295 -0.295 
33 3-0(CH2)3C6H5 -0.296 -0.290 -0.290 
34 3-(CH2)2-3-C5H4N -0.294 -0.298 -0.298 
35 3-(CH2)4C6H4-4-NHAc -0.294 -0.281 -0.282 
36 3-(CH2)2-2-C5H4N -0.291 -0.300 -0.299 
37 3-0(CH2)3OC6H4-2-NH, -0.283 -0.288 -0.288 
38 3-0(CH2)3OC6H4-4-NHAc -0.278 -0.270 -0.270 
39 3-(CH2)4-3-C5H4N -0.276 -0.284 -0.284 
40 3-0(CH2)4C6Hs -0.276 -0.277 -0.277 
41 3-0(CH2)3OC,iH4-3-NHAc -0.270 -0.260 -0.260 
42 3-0(CH,)3OC6H3-3,4-CU -0.265 -0.271 -0.271 
43 3-0(CH2)3OC6H4-3-NH," -0.265 -0.283 -0.283 
44 3-0(CH2)3OC6H4-2-NHCOC6H4-4-SO,F -0.265 -0.247 -0.247 
45 3-0(CH2)3OC6H4-2-NHCOC6H5 -0.265 -0.258 -0.258 
46 3-0(CH2)3OC6H4-4-OCH, -0.262 -0.275 -0.274 
47 3-0(CH2)4OC6H4-4-NHC'ONHC6H4-4-S02F -0.260 -0.236 -0.237 
48 3-0(CH2)1OC6H4-2-NHCOC6H3-2-OCH3-5-SO,F -0.260 -0.226 -0.227 
49 3-0(CH,)1OC6H4-4-Cl -0.257 -0.287 -0.286 
50 3-0(CH,),OC6H4-2-NO, -0.257 -0.279 -0.279 
51 3-0(CH,)1OQ,H4-3-NO, -0.257 -0.268 -0.268 
52 3-0(CH,)3OC6H4-3-OCH, -0.256 -0.255 -0.255 
53 3-0(CH2)1OC(iH4-2-NHCOC6H,-2-Cl-6-SO,F -0.255 -0.247 -0.248 
54 3-0(CH2),OC6H4-2-NHCONHC6H5 -0.255 -0.260 -0.259 
55 3-0(CH,),OC6H4-2-NHCONHC6H,-2-Cl-5-SO,F -0.250 -0.246 -0.246 

<^m 
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Table '. 1 (Cimtiimed) 

No. X l/log C 

Observed Calculated (CV)" Calculated (FIT)11 

56 3-0(CH,),OC6H4-2-NHCONHCH,Q,H4-4-SO,F -0.250 -0.232 -0.232 
57 3-0(CH2),OC(,H4-2-NHCONH-C(,H,-2,4-(CH,"),-5-SO,F -0.248 -0.242 -0.242 
58 3-0(CH,),OC,,H4-4-COOCH, -0.247 -0.261 -0.261 
59 3-0(CH:),OQ,Hr3-NO,-4-CH, -0.245 -0.268 -0.267 
60 3-0(CH2),OC6H4-3-CF, -0.245 -0.276 -0.275 
61 3-0(CH:),OC„H4-2-NHCONHQ,H4-4-CH,-3-SO,F -0.245 -0.232 -0.232 
62 3-0(CH2)3OC6H,-4-NHCOC6H, -0.244 -0.242 -0.242 
63 3-0(CH2),OC6H4-2-NHCOCH,OQ,H4-4-SO,F -0.244 -0.239 -0.239 
64 3-0(CH2),OQH4-4-NHCOC6H4-4-OCH, -0.243 -0.228 -0.229 
65 3-0(CH,),OC6H4-2-NHCOQ,H4-3-SO,F -0.243 -0.234 -0.234 
66 3-0(CH,),OC6H4-2-NHCOCH,Q,H4-4~-SO,F -0.243 -0.242 -0.242 
67 3-0(CH,)1OC6H4-3-COOCH, -0.242 -0.256 -0.256 
68 3-0(CH2)3OC6H4-2-NHCO(CH,),QH4-4-SO,F -0.242 -0.232 -0.232 
69 3-0(CH,)3OC6H4-4-NHCOQH4-4-N02 -0.239 -0.234 -0.234 
70 3-0(CH,),OC6H4-2-NHCOC6H4-4-NO, -0.239 -0.248 -0.248 
71 3-0(CH2)3OC6H4-4-NHCONHQH5 -0.237 -0.252 -0.252 
72 3-0(CH2)30C6H4-4-NHCOC,,H4-3-N02 -0.237 -0.225 -0.225 
73 3-0(CH2)3OC6H4-2-NHCO(CH,)4C6H4-4-SO,F -0.237 -0.220 -0.221 
74 3-0(CH2)3OC6H4-2-NHCONHC(,H4-4-SO,F -0.237 -0.248 -0.248 
75 3-0(CH,)3OC6H4-3-NHCONHC(,H4-4-SO,F -0.236 -0.231 -0.231 
76 S-OCCH^OQH^-NHCONHCCH^QH^-SC^F -0.236 -0.224 -0.224 
77 3-0(CH2)4OC6H4-3-NHCOC6H4-4-SO,F -0.236 -0.222 -0.222 
78 3-0(CH2),OC6H4-2-NHCONHC6H,-4-CI-3-SO,F -0.235 -0.236 -0.236 
79 3-0(CH2)4OC6H4-2-NHCOQH3-4-CH3-3-SO,F -0.235 -0.229 -0.229 
80 3-0(CH,),OC6H4-2-NHCOC6H,-2,4-(CH,),-5-SO,F -0.234 -0.238 -0.237 
81 3-0(CH,),OC6H4-2-NHCOC6H,-2,4-Cl,-5-SO,F " -0.234 -0.243 -0.243 
82 3-(CH2)4C6H4-2-NHCONHC6H4-3-S02F -0.234 -0.247 -0.246 
83 3-0(CH2)3OC6H4-3-NHCOC6H4-4-OCH, -0.233 -0.219 -0.219 
84 3-(CH2)4C6H4-2-NHCONHQH4-4-SO,F -0.233 -0.263 -0.261 
85 3-0(CH2),OC6H4-4-NHCOC6H4-4-Cl -0.232 -0.238 -0.238 
86 3-0(CH2)3OC6H4-2-NHCOC6H,-2-CHr5-SO,F -0.232 -0.234 -0.234 
87 3-0(CH,)4OC6H4-4-NHCONHC6H,-2-OCHr5-SO,F -0.232 -0.214 -0.215 
88 3-0(CH2),OC6H4-4-C6H5 -0.230 -0.256 -0.254 
89 3-0(CH2)3OC6H4-2-NHCONHC6H4-3-SO,F -0.230 -0.232 -0.232 
90 3-0(CH2)3OC6H4-3-NHCOC6H4-3-S02F " -0.230 -0.210 -0.211 
91 3-0(CH2)2OC6H4-3-NHCOC6H4-3-SO,F -0.229 -0.222 -0.222 
92 3-0(CH2)3OC6H4-4-CH,-3-NHCOC6H4-4-SO,F -0.229 -0.227 -0.227 
93 3-0(CH2)3OC6H4-3-NHCONHC6H4-3-SO,F" -0.222 -0.216 -0.216 
94 3-0(CH2)3OC6H4-3-NHCOCH,C6H4-4-SO> -0.220 -0.222 -0.222 
95 3-0(CH2)3OC6H4-3-NHCOC6H4-4-S02F -0.219 -0.224 -0.224 
96 3-0(CH2)3OC6H4-2-NHCONHC6H3-2-Cl-5-SO,F -0.217 -0.235 -0.235 
97 3-0(CH2)3OC6H4-3-NHCOCH,OC6H4-4-SO,F" -0.217 -0.218 -0.218 
98 3-0(CH2)2OC6H4-3-NHCONHC6H4-4-SO,F -0.216 -0.245 -0.244 
99 3-0(CH2)4OC6H4-3-NHCONHC6H4-4-SO> -0.215 -0.229 -0.229 
100 3-0(CH,)3OCt,H4-3-NHCOC(,H4-4-NO, -0.214 -0.226 -0.226 
101 3-0(CH2)2OC6H4-3-NHCOC6H4-4-SO,F -0.214 -0.238 -0.237 
102 3-0(CH2)4OC6H4-2-NHCONHQH,-2-CI-5-SO,F -0.207 -0.231 -0.231 
103 3-0(CH2),OQH4-3-NHCONHC6H4-4-NO, -0.204 -0.233 -0.232 
104 3-0(CH2)3OC6H4-4-CH,-3-NHCONHQ,H4-4-SO,F -0.204 -0.224 -0.223 
105 3-0(CH,)3OC6H4-3-NHCONH(CH,),QH4-4-SO> -0.193. -0.203 -0.203 

t;xi:o 

" CV and FIT values are calculated using Eq. (8). 
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Table -> 
69 be nzenc derivatives and their observed and calculated (cross-validated. CV. and fitted, FIT) fathead minnow toxicities, expressed 
as - og(LC5l)) 

No. Compound -log(LC,„) 

Observed Calculated (CV)a Calculated (FIT)" 

1 Benzene 3.40 3.29 3.32 

2 Bromobenzenc 3.89 4.04 4.01 

3 Chlorobenzene 3.77 3.75 3.75 
4 Phenol 3.51 3.31 3.35 

5 Toluene 3.32 3.51 3.49 

6 1.2-DichJorobenzene 4.40 4.33 4.33 

7 1.3-Dichlorobenzene 4.30 4.10 4.12 

8 1,4-Dicnlorobenzene 4.62 4.80 4.77 
9 2-ChloTophenol 4.02 4.01 4.01 

10 3-Chlorotoluene 3.84 3.72 3.73 
11 4-Chlorotoluene 4.33 4.11 4.13 
12 1,3-Dihydroxybenzene 3.04 3.31 3.28 

13 3-Hydroxyanisole 3.21 3.13 3.14 -  .           .-£.' 

14 2-Methylphenol 3.77 3.62 3.62 '.':." L.'£i':'S 
15 3-Methylphenol 3.29 3.52 3.51                                                         '- :-.•-;$ 

16 4-Methylphenol 3.58 3.64 3.64 

17 4-Nitrophenol 3.36 3.68 3.66 
18 1.4-Dimethoxybenzene 3.07 3.01 3.01 
19 1.2-Dimethylbenzene 3.48 3.84 3.81 
20 1.4-Dimethylbenzene 4.21 3.94 3.97 
21 2-Nitrotoluene 3.57 3.70 3.69 
22 3-Nitrotoluene 3.63 3.67 3.66 
23 4-nitrotoluene 3.76 3.71 3.71 
24 1.2-Dinitrobenzene 5.45 4.95 5.09 
25 1,3-Dinitrobenzene 4.38 4.12 4.15 
26 1,4-Dinitrobenzene 5.22 4.83 4.91 

■_....;, :r ::,-.-. .-£ 

'■                    27 2-Methyl-3-nitroaniline 3.48 3.74 3.73 fJäzäg&zsa 
28 2-Methyl-4-nitroaniline 3.24 3.50 3.47 
29 2-Methyl-5-nitroaniline 3.35 3.80 3.77 
30 2-Methyl-6-nitroaniline 3.80 3.76 3.76 
31 3-Methyl-6-nitroaniline 3.80 3.61 3.62 
32 4-Methyl-2-nitroaniline 3.79 3.78 3.78 
33 4-Hydroxy-3-nitroaniline 3.65 3.51 3.52 
34 4-Methyl-3-nitroaniline 3.77 3.78 3.78 
35 1,2,3-Trichlorobenzene 4.89 4.84 4.84 
36 1,2,4-Trichlorobenzene 5.00 5.02 5.02 ' •<•'/'••.;s 
37 1,3,5-Trichlorobenzene 4.74 4.36 4.45 *?«•■;£. :»,~3 
38 2,4-Dichlorophenol 4.30 4.53 4.52 ••■■••.•■: ■■■:■ 

39 3,4-Dichlorotoluene 4.74 4.46 4.48 
40 2,4-Dichlorotoluene 4.54 4.57 4.56 
41 4-Chloro-3-methylphenol 4.27 4.27 4.27 
42 2,4-Dimethylphenol 3.86 3.74 3.76 
43 2,6-Dimethylphenol 3.75 3.75 3.75 
44 3,4-Dimethylphenol 3.90 3.90 3.90 
45 2,4-Dinitrophenol 4.04 4.03 4.04 
46 1,2,4-Trimethylbenzene 4.21 4.07 4.09 
47 2,3-Dinitrotoluene 5.01 5.29 5.21 
48 2,4-Dinitrotoluene 3.75 4.29 4.27 
49 2,5-Dinitrotoluene 5.15 4.89 4.93 
50 2,6-Dinitrotoluene 3.99 4.43 4.41 
51 3,4-Dinitrotoluene 5.08 5.29 5.23 
52 3.5-Dinitrotoluene 3.91 4.25 4.23 
53 1,3,5-Trinitrobenzene 5.29 5.29 5.29 
54 2-Methyl-3,5-dinitroaniline 4.12 4.23 4.22 



186 S.C. liusak <•/ til.    Computers & Chemistry 24 (2000) I SI   191 

Table 2 (Continual) 

No. Compound -loglLC,,,) 

Observed 

5.34 

Calculated (CV)" 

4.59 

Calculated (ITI'V 

55 2-MethyI-3,6-dinitroaniline 4.64 

56 3-Methyl-2,4-dinitroaniline 4.26 3.97 4.00 

57 5-MethyI-2,4-dinitroaniline 4.92 3.88 3.97 

58 4-Mcthyl-2,6-dinitroaniIinc 4.21 4.76 4.72 

59 5-Mcthyl-2,6-dinitroanilinc 4.18 4.64 4.61 

60 4-Methyl-3,5-dinitroaniline 4.46 4.33 4.34 

61 2,4,6-Trjbromoplienol 4.70 4.98 4.82 

62 1,2,3,4-Tetrachlorobcnzene 5.43 5.55 5.53 

63 1,2,4,5-Tetrachlorobenzcne 5.85 5.76 5.77 

64 2,4,6-Trichloroplicnol 4.33 4.68 4.64 

65 2-Mcthyl-4,6-dinitrophenol 5.00 4.45 4.48 

66 2,3.6-Trinitrotoluenc 6.37 6.39 6.38 

67 2,4,6-Trinitrotoluene 4.88 5.32 5.26 

68 2,3,4,5-Tetrachlorophenol 5.72 5.64 5.65 

69 2,3,4,5,6-Pentachloroptienol 6.06 6.01 6.03 

a CV and FIT values are calculated using Eq. (10). 

which was achieved by the orthogonalization of de- 
scriptors, because in the orthogonal basis the computa- 
tion of R is much faster and simpler (Lucic et al. 
1995a,b,c; Lucic, 1997). Namely, in the case one has the 
MR model based on the set of / orthogonalized de- 
scriptors di (»=1  /), the correlation coefficient 
between the experimental values of modeled activity A 
and the values estimated by the model A'*1 can be 
calculated in a very simple way (Eq. (1)): 

R- IV (1) 

where Ri is the correlation coefficient between each 
orthogonalized descriptor di and the modeled activity 
A. For example, using this procedure it takes 28 CPU 
min on Hewlett-Packard 9000/E55 computer, which is 
configured as a server, to select the best MR model 
with five out of 104 descriptors among ~ 108 possible 
models. 

3. Results and discussion 

3.1. QSAR of benzamidines 

The best one-descriptor structure-complement-in- 
hibitory activity model of benzamidines obtained is: 

1/log C = - 0.9332( ± 0.0229) + 0.4395( ± 0.0152)//v 

«=105 /? = 0.943 Äcv = 0.941 5 = 0.0195 Scv 

= 0.0199 F= 832 (2) 

where Hv is the graph-vertex complexity (Basak, 1987), 
n is the number of benzamidine derivatives considered, 
R is the correlation coefficient, R^ is the leave-one-out 
(cross-validated) correlation coefficient, F is f-value, S 
is the standard error and Scv is the cross-validated 
(leave-one-out) standard error of estimate (root-mean- 
square error), both with N-2 in the denominator. This 
model is only slightly better than the earlier obtained 
one-descriptor model, but with a different descriptor 
(Basak et al., 1999a): 

1 /log C = - 0.6428( ±0.0129) 4- 0.0490( ±0.0017)3D W 
n = l05 R = 0.943 Rc,. = 0.940 S = 0.0196 Scv 

= 0.0200 F=824 (3) 

where 3D Wis the 3-D Wiener number for the hydrogen- 
suppressed structures computed using their geometric 
distance matrices (Bogdanov et al., 1989). Close to this 
model is a model with 3-D Wiener number computed 
for structures containing all atoms including hydrogens 
(Bosnjak et al., 1991) (n = 105, /? = 0.941, Rcv = 0.939, 
5 = 0.0199 Scv = 0.0203). 

The best two-descriptor model of the benzamidine 
structure-complement-inhibitory activity is: 

1/log C = - 0.6878( ± 0.0175) + 0.1327( ± 0.0367) W 

+ 0.1864(±0.03S0)3D^ 

„ = 105 R = 0.950 Rcv = 0.947 S = 0.0184 Scv 

= 0.0189 F = 467 (4) 

where W is the 2-D Wiener number (Wiener, 1947). 
The best three-descriptor model is given by: 
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Table 3 

Descriplions of all considered descriptors and symbols ol" only 
those descriptors involved in the models 

Information index for the magnitude of distances 
between all possible pairs of vertices of a graph 
Mean information index for the magnitude of dis- 
tance 

W Wiener index, the half-sum of the off-diagonal ele- 
ments of the molecular distance matrix 
Degree complexity 

Hv       Graph vertex complexity 
Graph distance complexity 
Information content of the distance matrix parti- 
tioned by frequency of occurrences of distance / 
Information content of the hydrogen-suppressed 
graph at its maximum neighborhood of vertices 
Order of neighborhood when IO reaches its maxi- 
mum value for the hydrogen-filled graph 
A Zagreb group parameter, the sum of square of 
degree over all vertices 
A Zagreb group parameter, the sum of cross- 
product of degrees over all neighboring (con- 
nected) vertices 

Icr Mean information content of a graph based on 
the rth (r = 0-6) order neighborhood of vertices in 
a hydrogen-filled graph 

SICr      Structural information content for rth (r = 0-6) or- 
der neighborhood of vertices in a hydrogen-filled 
graph 

CICr Complementary information content for rth (r = 
0-6) order neighborhood of vertices in a hydro- 
gen-filled graph 
Path connectivity index of order h = 0-6 
Cluster connectivity index of order h = 3-6, 
Chain connectivity index of order /; = 6 
Path-cluster connectivity index of order h = 4-6 
Bond path connectivity index of order h = 0-6 

Bond cluster connectivity index of order h = 3-6 

Bond chain connectivity index of order It — 6 
Bond path-cluster connectivity index of order h = 
4-6 
Valence path connectivity index of order h = 0-6 
Valence cluster connectivity index of order h = 3-6 
Valence chain connectivity index of order /; = 6 
Valence path-cluster connectivity index of order 
/I = 4-6 

P, Number of paths of length / = 0-10 
Balaban's J index based on distance 
Balaban's J index based on relative electronegativi- 
ties 
Balaban's J index based on relative covalent radii 
Balaban's J index based on bond types 
Energy of the highest occupied molecular orbital 
Energy of the second highest occupied molecular 
orbital 

£iumo Energy of the lowest unoccupied molecular orbital 
Energy of the second lowest unoccupied molecular 
orbital 

AHr       Heat of formation 

Table 3 (Continued) 

"v:c 

I,      V 
/Pc 

Dipole moment 
Van der WaalSs volume 

'IF,,    3-D Wiener index for the hydrogcn-lillcd geometric 
distance matrix 

'M7     3-D Wiener index for the hydrogen-suppressed geo- 
metric distance matrix 

1/log C = - 0.6400( ± 0.0239) + 0.1273( ± 0.0355) W 

+ 0.0103(±0.0037)/\, 

+ 0.1698(±0.0372)5DH/ 

«=105 /? = 0.954 Rcv = 0.949 5 = 0.0177 5tv 

= 0.0185 F= 335 (5) 

where P9 is the path of length nine. P9 could be omitted 
from Eq. (5) because the related value of error of 
regression coefficient is relatively large comparing to 
the value of regression coefficient. Then Eq. (5) simply 
converts into Eq. (4). The best four-descriptor model is: 

1/log C = - 0.6999( + 0.0194) + 0.1327( ± 0.0354) IV 

+ 5.0332(±1.2285)6^h 

-5.1120 (±1.2486)6^v
h 

+ 0.1885(±0.0359)5DW 

n= 105 R = 0.957 i?cv = 0.953 5 = 0.0170 5CV 

= 0.0177 F= 272 (6) 

where 6y\ and 6^^h denote the bond-chain and valence- 
chain connectivity indices of order six, respectively. 

Hansch and Yoshimoto (Hansch and Yoshimoto, 
1974) published, 25 years ago, the following four-de- 
scriptor model for benzamidine derivatives inhibiting 
complement (the model is given in their notation): 

log(l/C) = 0.15( ± 0.03)(MR - 1.2) 

+ 1.07( ± 0.13)(D-1) + 0.52( ± 0.28)(D-2) 

+ 0.43( + 0.14)(D-3) + 2.425( ±0.12) 

n =108 R = 0.935 5 = 0.258 (7) 

where MR is the molar refractivity of substituents at 
positions 1 and 2, taken from the compilation by 
Hansch et al. (Hansch et aL 1973) or computed, while 
D-l, D-2, and D-3 are indicator variables for the 
presence or absence of three kinds of the substructural 
units in a given benzadimine. To compare fitted statisti- 
cal parameters of our four-descriptor model (Eq. (6)) 
with those of model given by Eq. (7), we retransformed 
our results into a log (1/C) scale used by Hansch and 
Yoshimoto. Thus, we obtained statistical parameters 
(R = 0.941 and 5 = 0.237) that are comparable with 
their result. However, Hansch and Yoshimoto consid- 
ered 108 benzamidine derivatives and we only consid- 
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ered 105. This discrepancy is caused by problematic 
data for three compounds which in our case are dis- 
carded from the set of benzamidinc derivatives (Basak 
et al., 1999a). But, the nature of descriptors used in 
these two types of models is different. Descriptors used 
by us are calculated solely from the structures of stud- 
ied molecules while the Hansch-Yoshimoto parameters 
(molar refractivities of substituents) are experimentally- 
based. 

Finally, the five-descriptor model is: 

1/log C = 1.5264( ± 0.3534) + 0.6323( ± 0.0936)(IC)2 

-1.6788(*±0.2720)(IC)6 

-1.4540(±0.2043)(SIC), 

-0.4239(±0.0680)(CIC)6 

+ 0.1286(±0.0149)3DW 

n = 105 R = 0.963 Rcv = 0.957 S = 0.0158 Scv 

= 0.0170 F= 253 (8) 

where (IC)2 and (IC)6 denote the mean information 
content of structure based on the second- and sixth- 
order neighborhood of atoms, including hydrogens, in 
the structure, respectively, (SIC), and (CIC)6 are, re- 

. is 

. T 

spectively, the structural information content for the 
first order neighborhood and complementary informa- 
tion content for the sixth order neighborhood of atoms, 
including hydrogens, in the structure. (1C),., (SIC)r and 
(CIC)r arc molecular complexity indices introduced 
some times ago by one of us (Basak, 1987) for use in 
predictive pharmacology and toxicology. 

It is interesting to note that the 3-D Wiener number 
is present in all models given here, except in the very 
best model with a single descriptor, although is present 
in the next best single-descriptor model. This is not 
surprising because this descriptor has shown to be very 
useful in the structure-property-activity modeling 
(Bogdanov et al., 1989; Bosnjak et al., 1991; Mihalic 
and Trinajstic, 1991; Nikolic et al., 1991; Trinajstic, 
1992). 

The models containing more decriptors did not out- 
perform the above five-descriptor model. Thus, the 
model with five-descriptors (Eq. (8)), selected from the 
initial set of descriptors, is the best QSAR model, 
according to the calculated cross-validated statistical 
parameters, for predicting the benzamidine structure- 
complement-inhibitory activity. This model is better 
than one-descriptor model previously obtained using 
hierarchical approach (Basak et al., 1999a). However, 
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Fig. 2. A plot of observed versus calculated (cross-validated) 1/log C complement-inhibitory activity of benzamidii 
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Fig. 3. A plot of observed versus calculated (cross-validated) -Iog(LC50) benzene derivatives acute toxicities. 

according to /"-values one-descriptor models selected in 
this paper and our previous work (Basak et al., 1999a) 
appear to be better models than the model with 
five-descriptors. But, the F-value is calculated only 
from the fitted correlation coefficient R and taking into 
account the number of parameters optimized in the 
model. Because it is accepted (Ortiz et al., 1997) that 
the cross-validated statistical parameters give better 
evidence into the model quality than fitted statistical 
parameters, our final conclusions are based on 
cross-validated statistical parameters, although the 
prediction for compounds from an external data set 
would be the best way of model quality testing. A plot 
between the experimental and predicted values, 
calculated in the cross-validation procedure using Eq. 
(8), of 1/log C is given in Fig. 2. Computed (fitted and 
leave-one-out cross-validated) 1/log C values are given 
in Table 1. 

3.2. QSAR of benzene derivatives 

The best linear five-descriptor structure-toxicity 
model of benzene derivatives selected by CROMRsel 
program is: 

-log(LC50) 

= 5.2032( ± 0.546) + 0.8488( ± 0.106JA, 

+1.7979( + 0.183)4* k - 0.4439( + 0.0523)£lumo 

-0.1379( ± 0.0195)// - 0.2961( + 0.0927)3D WH 

n = 69 i? = 0.927 i?cv = 0.914 5 = 0.287 5CV = 0.312 

F=77 (9) 

where P9 is the path of length nine, Ax\,Q valence 
path-cluster connectivity index of order four, £lumo is 
the energy of the lowest unoccupied molecular orbital, 
ß is dipole moment, and 3DWH is the 3-D Wiener 
number for the hydrogen-filled structures computed 
using their geometric distance matrices (Bogdanov et 
al., 1989). This model has two descriptors fewer than 
the best model obtained by hierarchical approach (see 
Gute and Basak, 1997) and possesses almost the same 
statistical parameters. 

The best linear seven-descriptor model is: 

- log(LC50) 

= 4.4100( + 0.809) + 0.8637( + 0.0988)/>9 

+ 2.5278( ± 0.833)V - 3.1248( ± 0.655)V 

+ 1.5628( ± 0.372)VPc - 0.44157( + 0.051)£lumo 

- 0.1364( ±0.018)/< - 0.34054( + 0.087),D WH 

n = 69 R = 0.940 Rcv = 0.925 S = 0.262 Scv = 0.291 F 

= 66 (io) 
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where 2^v and 4/v denote valence path connectivity 
indices of order two and four, respectively, and ''x^ is 
the valence path-cluster connectivity index of order 
six. Other descriptors are the same as those from five- 
descriptor model (Eq. (9)). This model (R2 = 0.884, 
F=66, 5 = 0.26) is better than the seven-descriptor 
model obtained by hierarchical procedure (see Gute 
and Basak, 1997) (R2 = 0.863, F=50, 5 = 0.30), and 
one can see that these two models contain three iden- 
tical descriptors: P9 

mWw and /<. Fitted and cross- 
validated predicted values for all benzene derivatives 
obtained using Eq. (10) are given in Table 2. A plot 
between the experimental and predicted values, calcu- 
lated in the cross-validation procedure using Eq. (10), 
of - log(LC50) Ts given in Fig. 3. 

We also found several seven-descriptor linear multi- 
regression models with better statistical prameter than 
the best seven-descriptor model of Gute and Basak 
(see Gute and Basak, 1997). One of them is very 
similar to the model given as Eq. (10) and involving 
the following set of descriptors H\ P9, *%*, 5xl, AHr, 
ft, iDWH (see Table 3 for description of descriptors), 
and possessing the following statistical parameters 
/? = 0.9398, Rcv = 0.9245, 5 = 0.262, 5CV = 0.292, F= 
66). 

In addition, we perform modeling in order to com- 
pare our seven-descriptor model with the additivity 
model (using eight terms, i.e. eight optimized parame- 
ters) derived by Hall et al. (Hall et al., 1984). To do 
this we omitted from the data set compounds 53, 57 
and 65, which were identified in by Hall et al. as 
outliers. For 66 compounds statistical parameters of 
seven-descriptor model (Eq. (10)) are: R = 0.955, 
^ = 0.943, 5 = 0.225, 5CV = 0.255 F=87). This 
parameters are better than those for additivity models 
obtained by Hall et al. (tf = 0.951, 5 = 0.249, F=67). 

4. Concluding remark 

Presented results show that the optimum way to 
carry out QSAR modeling is by selecting the best 
descriptors in (linear, as was the case here, or nolinear 
(Luöic and Trinajstic, 1999) multiregression models. 
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Instead of,using the standard molecular descriptors (topological indices) for regression analysis, which are 
numerically fully determined once a molecule is selected, we outline the use of variable molecular descriptors 
that are modified during the search for the best regression. The approach is illustrated using boiling points 
of sulfides. We have transformed the connectivity index x% into a function of two variables (x, y) which 
differentiate carbon and sulfur atoms. The optimal values of the variables (x, y) were determined by minimizing 
the standard error of the regression. With the values x = +0.25 and y = -0.95 for carbon and sulfur, 
respectively, we have obtained a regression based on a single descriptor and a standard error of 1.8 °C. 
With elimination of two outliers (having a deviation of about 4 °C) the standard error is reduced to a 
remarkable 1.3 °C. 

INTRODUCTION 

The past decade has witnessed two important develop- 
ments of multivariate regression analysis, MRA, relevant 
for quantitative structure-property-activity relationship, 
QSAR: (1) expansion of mathematical structural descriptors 
for characterization of molecular structure;1"5 (2) construction 
of orthogonal molecular descriptors6-12 which result in stable 
regression equations. The first, which is of interest when 
better regressions are sought, is rather conspicuous, while 
the second, which is important for interpretation of the results 
of such studies, remains not yet sufficiently widely appreci- 
ated. 

In this paper we will address the problem of construction 
of high-quality regressions (HQR). With hundreds of de- 
scriptors available13-15 the questions to consider are as 
follows: (1) How should an optimal set of descriptors be 
chosen from a large number of available descriptors? (2) 
How should one chose between regressions of seemingly 
similar quality? (3) How unique are regression results? (4) 
Are there important structural elements missed by the 
descriptors used? (5) How complete is the space spanned 
by molecular descriptors for the structure-property-activity 
studies? (6) Do we need additional molecular descriptors? 

HIGH-QUALITY REGRESSIONS 

The standard error in most correlations still does not 
approach the experimental error of measurements. How 
realistic is it to hope to arrive at this goal? As we will show, 
HQR, in which the standard error has been dramatically 
reduced in comparison with traditional approaches using the 
same number of descriptors, can be derived with a new kind 

* Drake University and The University of Minnesota. 
'FAX (home): 515 292 8629. 
! The University of Minnesota. 
1 E-mail: sbasak@nrri.umn.edu. 

Table 1. Standard error for the Boiling Points of Smaller Sulfides 
(n = 21 Compounds) for Selection of Descriptors 

descriptors standard error descriptors standard error 

x,i 2.001 X 2.701 
X.n 2.550 n,J 2.748 
X,P 2.560 n,p2lW2 2.981 
t.w 2.667 J,W 4.808 
%,pilv>i 2.692 W,P 5.109 

of molecular descriptors which involve variability that allows 
one to optimize the descriptors and minimize the standard 
error of regression. 

In Table 1 we illustrate the standard errors for correlations 
of the boiling points of smaller sulfides (shown in Figure 1) 
using a selection of molecular descriptors. When the con- 
nectivity index16 is used alone, we find the standard error of 
the regression is 2.70 CC, as shown in the middle of Table 
1. When the connectivity index is combined with Balaban's 
J index,17 the standard error is further reduced to 2.00 °C. 
Other descriptors, viz., n, the number of non-hydrogen atoms, 
Pit the number of paths of length 3, W, the Wiener index,18 

and the prfwt, path/walk quotients," give only a minor 
improvement for the standard error over that based on x% 
used alone. In contrast other combinations of molecular 
descriptors (listed in the right part of Table 1) do not give 
satisfactory results. The standard error in such combinations 
is worse than the standard error when the connectivity index 
is used as a single descriptor, which well-illustrates the 
importance of the proper selection of molecular descriptors. 

The compounds considered here were among 45 saturated 
acyclic compounds possessing divalent sulfur atoms for 
which Balaban et al.20 found reliable literature data. We took 
all compounds having six or fewer carbon atoms, a total of 
21, and have recalculated the regressions for only these 
smaller sulfides. The study of Balaban and co-workers 
considered a broader class of compounds:   185 saturated 

10.1021/ci990115q CCC: $19.00     © 2000 American Chemical Society 
Published on Web 03/31/2000 
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Figure 1.  Molecular graphs of smaller sulfides and their boiling 
points. The sulfur atoms are shown as a filled circle. 

acyclic compounds possessing divalent oxygen or sulfur 
atoms, and devoid of hydrogen bonding, having 11 or less 
non-hydrogen atoms. Their purpose was as follows: (i) to 
explore the role of heteroatoms within acyclic skeletons in 
determining a measured molecular property (boiling points); 
(ii) to show that topological descriptors can satisfactorily 
account for the observed relative magnitudes of the property; 
and (iii) to derive structure-property regressions that may 
be useful for predicting boiling points of unknown com- 
pounds. 

Our objectives are the same, but our philosophy in this 
particular study is somewhat different: Rather than consider- 
ing a large set of mixed compounds (alkanes, ethers, diethers, 
acetals, and peroxides as well as their sulfur analogues: 
sulfides (thioethers), bis-sulfides, thioacetals, and disulfides), 
which allows one to use several molecular descriptors and 
still maintain high statistical significance for the correlation, 
we decided to use only structurally closely related com- 
pounds. In particular, we excluded bis-sulfides and disulfides 
because of the presence of S-S linkage that is absent in 
sulfides. This has reduced the pool of the compounds 
considerably, which limits the number of descriptors that one 
should use in analyzing the data. By homogenizing the 
sample of the compounds to be examined, as we will see, 
we can achieve a very high quality regression result using a 
single descriptor. 

As we see from Table 1, apparently it is difficult to reduce 
the standard error for the boiling points of sulfides below 
2.5 CC. Among the combinations listed in Table 1, only 
Balaban's J reduced the standard error below 2.5 °C. This 
may not be surprising because all descriptors of Table 1 
except J do not differentiate sulfur and carbon atoms. Hence, 
2.5 °C may well be the limit that such models can attain. 
The experimental boiling points for butylmethyl sulfide (7) 
and ethylpropyl sulfide (9), 123.2 and 118.5 °C, respectively, 
differ by almost 5 °C. If we overlook the difference between 
sulfur and carbon, both these structures have the same 
molecular graph. The same is true for ethylisopropyl sulfide 
(6) and isobutylmethyl sulfide (8), with the boiling points 
107.4 and 112.5 °C, respectively. Hence, the simple con- 
nectivity index and other topological indices that do not 
discriminate heteroatoms can at best approach the standard 
error of about 2.5 °C. 

Observe that the descriptors listed in Table 1 are of quite 
distinct structural origin and thus do not duplicate one 
another. However, many of such indices, even when com- 
bined (the right part of Table 1), apparently lack flexibility 
to represent the data with desirable accuracy. Using descrip- 
tors that differentiate heteroatoms, we reach a standard error 
of about 2 °C. The question to consider is as follows: Can 
the standard error of 2 °C obtained using lx and J be further 
dramatically reduced? Have we reached the limit for cor- 
relating the boiling points of sulfides? Is it that the residual 
of the molecular property considered cannot be described 
by any of the available structural descriptors? 

FLEXIBLE MOLECULAR DESCRIPTORS 

In order to develop a high-quality regression, we not only 
need new descriptors but we need a new kind of molecular 
descriptors that have the flexibility to adjust to the variability 
that different molecules may show. One such descriptor has 
been introduced in the multiple regression analysis 10 years 
ago,21-22 but apparently has been mostly overlooked. That 
novelty can be ignored or overlooked has already been 
well-illustrated by the Wiener index W, which waited two 
decades to be resurrected. In order to not repeat that history, 
we undertook a concerted effort to illustrate properties of 
variable descriptors, and the variable connectivity index, in 
particular.23-26 The variable connectivity index represents an 
important and distinct generalization of the connectivity index 
[X since it offers a flexibility that traditional topological 
indices, all several hundred of them, have been lacking. 



HIGH-QUALITY STRUCTURE-PROPERTY-ACTIVITY REGRESSIONS J. Chem. Inf. Comput. Sei., Vol. 40, No. 4, 2000   901 

We propose here a special symbol, V, for the flexible 
connectivity, index which is to be outlined shortly. The 
original connectivity index '# (named so by Kier et al.27), 
proposed by Randic,16 used a fixed number as entries in the 
weighting algorithm \l{pq)m for the contribution of a bond 
having p and q neighbors. The higher order connectivity 
indices, m%,n were defined analogously using paths of length 
m, for m = 2, 3, .... The bonding connectivity indices, 'j;b, 
were considered by Basak and Magnuson29 on the basis of 
weights equal to the number of bonds of an atom: 1 for a 
single bond, 2 for a double bond, and 3 for a triple bond. 
The valence connectivity indices, 'JJ", developed by Kier and 
Hall,30 use the difference in valence electrons and the number 
of hydrogen atoms to modify the valence parameter for 
heteroatoms. Finally "edge connectivity" indices were re- 
cently tested using bond adjacency rather than vertex 
adjacency in construction of the modified connectivity 
indices.31 

All the above indices, except '%', are based on fixed 
weights determined by the connectivity of the molecular 
graph model used. In our view, a better strategy is to 
introduce weights that make descriptors "flexible", so not 
only that atoms of different type can adjust their weights in 
order to yield an optimal characterization of a molecule for 
a particular property but that they may change values when 
different properties of the same set of molecules are 
considered. In general, for a molecule with n different types 
of atoms, X[, xz,..., x„, one can have n different weights x-, (i 
= 1, 2, ..., n); hence, the flexible connectivity index x%i 

becomes a function of n variables. In the case of Sulfides, 
we consider two variables, the weights of carbon and sulfur 
atoms. In the case of natural amino acids there are four kinds 
of atoms: carbon, oxygen, nitrogen, and sulfur; hence, in 
this case flexible connectivity indices ]x! imply optimization 
of four variables.24 Even if there are no heteroatoms, variable 
weights can improve regressions visibly.25 

It should be noted that while the special types of 
connectivity indices, viz., "%, mXb< and mx* indices, explore 
only local regions of the parameter space, the mxf indices 
are capable of exploring the full potential of the parameter 
space generated by the presence of heteroatoms in a 
molecule. The previously mentioned simple connectivity 
indices and valence connectivity indices can be viewed as a 
special case of the more general flexible indices "xf. 
Consequently, the flexible indices mx{ are expected to be 
more powerful in predicting molecular properties and 
biological activities. 

Besides the weighted connectivity indices,21-26 many other 
topological indices, e.g. the weighted paths ptf,32-34 the 
weighted walks, wk

{, the weighted Hosoya index Zf, the 
weighted Wiener index Wf, and the weighted Balaban index 
J!, can be generalized in a similar way.35 Except for a half- 
dozen papers of the present authors,21-26,32"34 use of variable 
molecular descriptors is in its infancy. 

Dramatic improvement in the quality of regressions was 
obtained by using variable connectivity indices. For example, 
by introducing a variable parameter x for chlorine in 
clonidine and clonidine-like imidazolidines (2-(arylimino)- 
imidazolidines),21 the value x = -0.20 for chlorine produces 
a regression which, with three weighted connectivity indices, 
gave better results for the set of clonidine compounds as 
compared to five descriptors used in a traditional QSAR.36 

1 

-o- 
4 

■O 
5 

Figure 2.   Molecular graph of ethyl isopropyl sulfide and the 
corresponding numbering of atoms used in Table 2. 

Table 2. Adjacency Matrix and Modified Adjacency Matrix for 
Ethyl Isopropyl Sulfide 

adjacency matrix row sum 

1    2 3 4 5 6 
1    0    1 0 0 0 0 1 
2    1    0 1 0 0 0 2 
3    0    1 0 1 0 0 2 
4    0    0 1 0 1 1 3 
5    0    0 0 1 0 0 1 
6    0    0 0 1 0 0 1 

modified adjacency matrix row sum 

1    2    3 4 5 6 
1    x    1 0 0 0 0 l + x 
2    1    x 1 0 0 0 l + x 
3    0    1 V 1 0 0 2 + y 
4    0    0 1 X 1 1 3 +JE 
5    0    0 0 1 X 0 l + x 
6    0   0 0 1 0 X l + x 

This result is particularly striking for this data set, because 
there are two extreme potency values which would be 
expected to give much trouble in cross-validation. Use of 
two variables that differentiate carbon and oxygen in 
alcohols, with x = +1.5 and y= - 0.85, respectively, reduced 
the standard error of 7 °C, obtained using the simple 
connectivity index that does not differentiate carbon and 
oxygen atoms, to 3.5 °C.22 In the case of amines, the standard 
error of 3.48 °C for the boiling point model when lx is used 
has been reduced to 1.91 °C with x = +1.25 and y = 
-0.65.23 The standard error for a quadratic regression using 
the connectivity index for the boiling points of smaller 
alkanes is 2.98 °C. When x = +0.65 is introduced as a 
weight, not only is s = 2.48 obtained, a reduction by a half- 
degree Celsius, but higher precision allowed the recognition 
of an outlier (with an error of over 6 °C), which, when 
eliminated, further reduced the standard error to an impres- 
sive 1.57 °C.25 

OPTIMAL DESCRIPTORS FOR SULFUR 

We will examine the correlation of the boiling points for 
sulfides of Figure 1 using functional molecular descriptors 
and will illustrate the use of a variable connectivity index 
by considering ethyl isopropyl sulfide (shown in Figure 2 
with the numbering of the atoms used). The adjacency matrix 
and the modified adjacency matrix of ethyl isopropyl sulfide 
are illustrated in Table 2. If we assume x = 0 and y = 0, we 
obtain the usual adjacency matrix of a graph from the row 
sums of which the simple connectivity index can be directly 
computed. To obtain the bond contribution for lx, we use 
the algorithm l/(p q)m. Here m and n are the respective 
valences as obtained from the row sums for atoms m and n 
forming the bond (p, q). When x * 0 and y ^ 0, the 
corresponding row sums are modified, and instead of the 
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Table 3. Modified Connectivity Index 'x for Ethyl Isopropyl 
Sulfide with Different Choices of x and y 

X y 'x (*. y) X y lx U, y) 
0 -1.00 4.392 51 +0.25 -0.95 2.780 49 
0 -1.20 3.297 87 0 0 2.770 06 
0 -1.00 3.146 26 + 0.25 -0.90 2.753 09 
0 -0.95 3.11531 0 + 0.50 2.674 17 
0 -0.90 3.086 49 +0.50 -1.00 2.556 25 
0 -0.75 3.010 66 + 0.50 -0.95 2.528 12 
0 -0.50 2.910 56 + 1.00 -1.00 2.192 71 
0 -0.25 2.832 77 + 2.00 -1.00 1.752 29 

+0.25 -1.00 2.809 93 

fixed valences p, q, we have the variable valence (p + x), 
(q + x), or (q + y), depending on the kind of atoms involved. 
Thus instead of the simple ("fixed") connectivity index x% 
= 1A/2 + 1/2 + ' 1/V6 + 2A/3, we have the variable 
connectivity index given as a function of two variables: 

lX(x,y)=lW+x)(2 + x)}m + 
,1/2 l/{(2 + x)(2 + y)}'u + l/{(3 + x)(2 + y)}lu + 

2/{(l + x)(3 + x)} 1/2 

In Table 3 we listed selected values of the variable lx 
molecular descriptor for ethyl isopropyl sulfide. As we see, 
the flexible descriptor is sensitive on the choice of the values 
for x and y. For a fixed value of x (carbon atom), as y 
decreases and approaches -1, the magnitudes of the modified 
connectivity index increase. Similarly for a fixed value of y 
as x increases the magnitude of the modified connectivity 
index decreases. An increase and a decrease of the modified 
index is not so important as is the change of the relative 
magnitudes of the indices for different molecules. 

In Table 4 we have listed the expressions for the modified 
connectivity indices for the set of n = 21 sulfides. In order 
to illustrate the flexibility of these generalized connectivity 
indices in Table 5, we listed for the selected values of x and 
y the numerical values for the variable connectivity indices. 
Even though for most of the structures the numerical 
magnitudes have not reversed the relative magnitudes, they 
altered the magnitudes of the indices for different molecules 
sufficiently to influence the quality of the regression dramati- 
cally. The ratios of the magnitudes of descriptors for different 
molecules are important for MRA, and these do change. 
Consider isopropyl propyl sulfide (14) and ethyl isobutyl 
sulfide (15) with the boiling points 132.0 and 134.2 °C, 
respectively. As we can see from Table 5 when x = —xk, 
and y = -1, the modified connectivity indices are as 
follows: 5.059 17 and 5.092 95, giving the quotient 0.9934. 
However, when x = +lk and y = -1 the modified 
connectivities are as follows: 2.956 25 and 2.992 24, and 
the quotient decreases to 0.9880. These changes may appear 
small; however, they are sufficient enough to influence the 
standard error and make one alternative better than the other. 
When such changes are summed for all molecules, consider- 
able improvement in the overall standard error is possible. 

In Table 6 we show the standard error as a function of 
the parameters x, y, assuming a quadratic regression using n 
= 19 compounds. We excluded two structures, ethyl butyl 
sulfide 12 and diisopropyl sulfide 20, to be discussed later. 
Using the simple connectivity index, the (0, 0) point in Table 
6, the standard error is quite respectable 2.71 °C. Neverthe- 
less this is about twice the magnitude of typical experimental 

errors reported for boiling points of organic compounds (1 - 
1.5 °C). By keeping x constant and varying y, we see a 
dramatic reduction of the standard error as we approach the 
y = -1 limit. The standard error for x = 0 and y - -1 is 
about 1.5 °C smaller than the initial value (x = y = 0). With 
a further change of both parameters x and y, we find the 
minimum standard error of 1.326 °C (when x = +0.25 and 
y = -0.95). This is less than half of the initial standard error 
characterizing the "inflexible" connectivity index. 

OUTLIERS 

Mathematical descriptors, if correctly calculated, are error- 
free. Hence, if in a correlation between an experimental 
quantity and mathematical descriptors of one or more points 
show larger deviation from the regression curve, this can 
mean two things: Either (1) some experimental data used 
are in error or (2) the descriptors used fail to capture some 
relevant structural feature present in some (and absent in 
other) molecules. 

Whatever is the reason for the departure of a point from 
the regression line, one can consider such a point as an outlier 
if the departure from the correlation is more than twice the 
standard error. In Figure 3 we show the quadratic correlation 
for sulfides, and in Table 7 we listed the computed boiling 
point and the residue. As we see from Table 7 ethyl butyl 
sulfide and diisopropyl sulfide show large departures from 
the regression. In Table 8 are given the regression equations 
and the associated statistical parameters for all n = 21 
sulfides as well as for the cases n = 19 sulfides where two 
outliers have been removed respectively from the set 
considered. 

By eliminating the apparent outliers (12 and 20), one 
substantially reduces the standard error for the quadratic 
model, as can be seen from the bottom part of Table 8. The 
standard error for the regression when n = 19 reaches the 
respectable value of 1.33 CC and the correlation coefficient 
and the Fisher ratio have increased. This signals that the 
model has improved and that we were justified in eliminating 
the two outliers. 

In Table 9 we listed the optimal connectivity indices for 
the sulfides considered, the experimental boiling points (BP), 
the calculated boiling points (BPcalc), the residual of the 
regression (Res), the cross-validated boiling points (xBP- 
calc), and the standard error associated with cross-validation 
(when leaving one entry out). For the two outliers, ethyl butyl 
sulfide and diisoproyl sulfide, which were excluded when 
the regression equation was derived, we calculate for the 
boiling points to be 140.44 and 124.47 °C, respectively. The 
first of these values is about 4 °C below the reported 
experimental BP; the second value is almost 4.5 °C higher 
than the reported experimental BP. The quadratic regression 
without the data on the two outliers is illustrated in Figure 
4. 

A closer look at the last column of Table 9, which lists 
the standard errors associated with the cross-validated 
regressions, shows (with a single exception 13, dipropyl 
sulfide) that the cross-validated standard errors differ about 
±0.05 °C from the standard error of the regression (when 
all n = 19 compounds are considered). Hence, disregarding 
the exception which produced significantly smaller standard 
error, the constancy of the cross-validated standard errors 
show the robustness of this particular regression. 
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Table 4. Generalized Flexible Connectivity Indices for n = 21 Sulfides (of Figure 1) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

2/{(l + x 
1/{(1 + x 
1/{(1 + x 
l/(x+2) 
2/{(l + x 
2/{(l + x 
1/{(1 + x 
2/{(l + x 
2/{(l + x 
3/{(l +x 
1/{(1 + x 
2/{(l + x 
2/{(l + x 
2/{(l + * 
2/{(l + JC' 
2/{(l + x 

•1/{(1 + x 
2/{(l + x 
1/{(1 + X 
4/{(l + x 
1/{(1 + x 

(2 + y)}"2 

(2 + x)}"2 + l/{(2 + x)(2 + y)}"2 + 1/{(1 + x)(2 + y)}"2 

(2 + x)}m + l/(x + 2) + l/{(2 + jt)(2 + y)}"2 + 1/{(1 + Jt)(2 + y)}"2 

+ l/{(2 + x)(2 + y)}"2 

"(3 + x)}"2 + l/{(3 + x)(2 + y)}m + 1/{(1 + x)(2 + y)}m 

(3 + x)}m+ l/{(3 + x)(2 + y)}"2 + l/{(2 + x)(2 + y)}l/2 + 1/{(1 + jt)(2 + x)}m 

(2 + J:)}"
2
 + 2/(2 + x) + l/{(2 + jc)(2 + y)}"2 + 1/{(1 + x)(2 + y)}"2 

(3 + x)} + l/{(3 + x)(2 + x)}"2 + l/{(2 + x)(2 + y)}"2 + 1/{(1 + x)(2 + y)}"2 

(2 + x)} + 2/(2 + x) + 2/{(2 + x)(2 + y)}"2 

(4 + x)}m + l/{(4 + x)(2 + y)}m + 1/{(1 + Jt)(2 + y)}"2 

(2 + x)}"2 + 3/(2 + x) + l/{(2 + x)(2 + y)}"2 + 1/{(1 + x){2 + y))m 

(2 + x)}"2 + 2/(2 + x) + 2/{(2 + x)(2 + y)}m 

(2 + x)}"2 + 2/(2 + x) + 2/{(2 + j()(2 + y)}m 

(3 + x)}"2 + 1/(2 + x) + l/{(3 + x)(2 + y)}"2 + l/{(2 + x)(2 + y)}ln + 1/{(1 + jt)(2 + y)}"2 

(3 + JC)}"
2
 + l/{(3 + x)(2 + x)}m + 2/{(2 + x)(2 + y)}"2 + 1/{(1 + x)(2 + y)}"2 

(3 + x)}m + 1/(2 + x) + l/{(3 + x)(2 + x)}"2 + l/{(2 + jt)(2 + y)}"2 + 1/{(1 + x)(2 + y)}"2 

(2 + x)}m + 1/{(1 + x)(3 + x)}"2 + 2/{(2 + x)(3 + x)}"2 + l/{(2 + x)(2 + y)} + 1/{(1 + x)(2 + y)}"2 

(2 + x)}m + 1/{(1 + x)(3 + x)}m + l/{(2 + JC)(3 + x))"1 + l/{(3 + x)(2 + y)}"2 + l/{(2 + x)(2 + y)}"2 

(2 + x))m + 3/{(l + x)(3 + x)}"2 + l/{(2 + x)(2 + y)},a + l/{(4 + JC)(2 + y)}"2 

(3 + x)}"2 + 2/{(3 + x)(2 + y)}"2 

(2 + x)}"2 + 1/{(1 + x)(3 + x)}"2 + l/{(2 + x)(3 + x)}"2 + l/{(2 + x)(2 + y)}"2 + 1/{(1 + x)(2 + y)}"2 

Table 5. Modified Connectivity Index l% for Sulfide for a Selection 
of Choices of x and y 

(0,0) (0, -0.5) (0,-D (-0.5,-1) (+0.5,-1) (+1,-1) 

1   1.414 21 1.632 99 2.000 00 2.828 43 1.632 99 1.41421 
2  1.91421 2.100 95 2.414 21 3.385 41 1.965 35 1.692 71 
3 2.414 21 2.600 95 2.914 21 4.052 08 2.365 35 2.026 04 
4 2.414 21 2.568 91 2.828 23 3.942 39 2.297 71 1.97120 
5 2.270 06 2.442 60 2.732 05 3.835 52 2.223 89 1.91421 
6 2.770 06 2.910 56 3.146 26 4.392 51 2.556 25 2.192 71 
7 2.914 21 3.100 95 3.414 21 4.718 74 2.765 35 2.359 37 
8 2.770 06 2.956 80 3.270 06 4.535 96 2.659 89 2.289 24 
9 2.914 21 3.068 91 3.328 43 4.609 06 2.697 71 2.304 53 

10 2.560 66 2.724 74 3.000 00 4.216 52 2.442 60 2.103 00 
11  3.414 21 3.600 96 3.914 21 5.385 41 3.165 35 2.692 71 
12  3.414 21 3.568 91 3.828 43 5.275 37 3.097 71 2.637 86 
13 3.414 21 3.568 91 3.828 43 5.275 37 3.097 71 2.637 86 
14 3.270 06 3.410 56 3.646 26 5.059 17 2.956 25 2.526 04 
15 3.270 06 3.424 76 3.684 27 5.092 95 2.992 24 2.558 73 
16 3.270 06 3.456 80 3.770 06 5.202 63 3.059 89 2.613 57 
17 3.308 06 3.494 80 3.808 06 5.312 63 3.077 91 2.623 61 
18 3.308 06 3.448 57 3.684 27 5.169 18 2.974 27 2.536 08 
19 3.060 67 3.192 71 3.414 21 4.773 51 2.774 96 2.38150 
20  3.125 90 3.252 21 3.464 10 4.842 62 2.814 79 2.414 21 
21  3.346 07 3.518 61 3.808 06 5.388 87 3.059 94 2.600 95 

Table 6. Standard Error of the Regression for Different Choices of 
the Variable Parameters x and y 

0.5 0         +0.25      +0.50        +1 +2 

+0.50 3.273 
0 2.711 

-0.25 2.363 
-0.50 1.966 
-0.75 1.558 
-0.90 1.382       1.347 
-0.95 1.356       1.326       1.380 
-1           2.256       1.357       1.327       1.327       1.570 2.042 
-1.2 1.720 

We believe that it may be possible to further improve the 
regression. A close inspection of residuals shows, with very 
few exceptions, that all linear structures have positive 
residual, while all branched structures show a negative 
residual. This suggests the possibility for further reduction 
of the standard error (particularly if the exceptions are viewed 
as outliers). However, such refinements should be attempted 
when a larger set of compounds is considered in order to 
see if the observed trend is genuine or not. 

Finally, as a warning, we should add that when using 
flexible descriptors, elimination of outliers may influence 

Figure 3. 3. Quadratic regression for the boiling points of n = 21 
sulfides against the optimal connectivity index (x = +0.25, y = 
-0.95). 

Table 7. Calculated Boiling Points (BPcalc) and the Residual of 
the Regression (Res), When All n = 21 Sulfides Are Considered 

BP BPcalc Res 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

37.3 
66.6 
95.5 
92.0 
84.4 

107.4 
123.2 
112.5 
118.5 
101.5 
145.0 
144.2 
142.8 
132.0 
134.2 
137.0 
139.0 
133.6 
120.4 
120.0 
137.0 

38.44 
65.53 
94.86 
90.42 
84.81 

108.01 
121.09 
114.14 
117.14 
100.04 
144.21 
140.75 
140.75 
132.73 
134.52 
138.12 
139.40 
134.05 
121.82 
124.31 
138.94 

-1.14 
+ 1.07 
+0.64 
+ 1.58 
-0.41 
-0.61 
+2.11 
-1.64 
+ 1.36 
+ 1.46 
+0.79 
+3.45 
+ 2.05 
-0.73 
-0.32 
-1.12 
-0.40 
-0.45 
-1.42 
-4.31 
-1.94 

the optimal values for the parameters x, y, though not 
necessarily dramatically. 

CONCLUDING REMARKS 

Several criticisms could be raised concerning the outlined 
work:37 Is it appropriate to refer to MRA using flexible 
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Table 8. Linear and Quadratic Regressions for Sulfides" 

model coeffjc     coeffx2     constant 
21 linear 60.1981 -61.3339 0.9959 2.61 2291 
21 quadratic 102.8180 -7.8615 -117.0919 0.9981 1.83 2328 
21 orthogonal 60.1981 -7.8615 -61.3339 0.9981 1.83 2328 

19 linear 60.1057 -60.9916 0.9961 2.59 2180 
19 quadratic 108.9647 -9.0423 -124.6847 0.9990 1.33 4192 
19 orthogonal 60.1057 -9.0423 -60.9916 0.9990 1.33 4192 

"The top part gives the regression equations and the statistical 
parameters for all n = 21 Sulfides; the bottom part gives the equations 
when two outliers are excluded. 

Table 9. Optimal Connectivity Indices for the Sulfides Considered, 
the Experimental Boiljng Points (BP), the Calculated Boiling Points 
(BPcalc), the Residual of the Regression (Res), the Cross-Validated 
Boiling Points (xBPcalc), and the Standard Error of 
Cross-Validated Boiling Points 

(+0.25,-0.095)     BP     BPcalc     Res     xBPcalc   xstd error 
1 1.745 75 37.3 37.98 -0.68 40.65 1.31 
2 2.119 76 66.6 65.66 +0.94 65.41 1.34 
3 2.564 20 95.5 95.27 +0.23 95.23 1.37 
4 2.493 37 92.0 90.82 + 1.18 90.60 1.33 
5 2.406 48 84.4 85.17 -0.77 85.30 1.35 
6 2.780 49 107.4 108.38 -0.98 108.51 1.34 
7 3.008 65 123.2 121.30 + 1.90 120.86 1.27 
8 2.885 55 112.5 114.45 -1.95 114.66 1.26 
9 2.938 21 118.5 117.41 + 1.07 117.31 1.34 

10 2.647 84 101.5 100.44 + 1.06 100.28 1.38 
11 3.453 09 145.0 143.76 + 1.24 143.42 1.32 
12 3.382 66 144.2 
13 3.382 66 142.8 140.44 + 2.36 138.86 1.20 
14 3.224 94 132.0 132.68 -0.68 132.74 1.38 
15 3.259 56 134.2 134.42 -0.22 134.44 1.37 
16 3.329 99 137.0 137.90 -0.90 138.01 1.35 
17 3.355 50 139.0 139.14 -0.14 139.16 1.37 
18 3.250 44 133.6 133.96 -0.36 134.00 1.37 
19 3.021 85 120.4 122.02 -1.62 122.16 1.30 
20 3.067 22 120.0 
21 3.346 37 137.0 138.69 -1.69 138.94 1.29 

Figure 4. 4. Quadratic regression for the boiling points of n = 19 
Sulfides against the optimal connectivity index (x = +0.25, y = 
-0.95). Outliers excluded 12 and 20. 

descriptors as "high-quality regression", or should it be called 
"high specialty SAR"? Is one justified to arrive at low 
standard error by "trimming the data set and by tweaking 
the descriptor"? Would the model be any good to predict 
boiling points even for other sulfides? Is the approach general 
enough and sufficiently justified if we were to use QSAR 
models for real world problems? Why not consider more 
extensive study on a larger set of data to strengthen the case? 
What is the use of a model developed by considering a quite 
small, homogeneous set of compounds? Is developing a fit 
with standard error less than that of the experimental error 
(if that can be achieved) overfitting? 

RANDIC AND BASAK 

We respond to these question one by one. Variable 
connectivity indices (and related variable indices) constitute 
a general class of descriptors as compared to the special class 
of descriptors used in QSAR (e.g. indicator variables used 
in some QSAR, or hydrogen bonding descriptors used in 
CODESSA) for which the attribute "high specialty" holds. 
Concerning the problem of identifying outliers, these are 
well-defined as points that are beyond 2 standard deviations. 
There are no good reasons for their inclusion in the data set, 
despite that their departure from the regression need not be 
due to experimental error. Most often they are not. The 
occurrence of outliers may be a signal that the set of 
descriptors used to characterize molecules failed to charac- 
terize some special structural features which are important 
for outliers but not for most of other molecules in the set. A 
close look at outliers may help one to recognize such features, 
if they are not obvious. For example, correlation of the 
boiling points of smaller alkanes25 shows only 2,2,3,3- 
tetramethylbutane was identified as an outlier (with deviation 
of over 6 °C), while the standard error was 2.48 °C. By 
removing this compound, standard error dropped to 2 °C. 
Hence, a single compound in a set of 20 was able to increase 
the standard error almost by V2 °C. Why should this 
compound that has additional structural features (significant 
overcrowding of methyl groups and a quaternary CC bond) 
absent in the rest be included if one is interested in predicting 
the boiling point of a compound which has no overcrowded 
methyl groups and no quaternary CC bond? 

Smaller sulfides considered (and the same has been the 
case with smaller alkanes or amino acids) are molecules of 
similar size. To consider large selection of compounds 
necessarily brings the dominant role of molecular size into 
focus as important feature. Before we do this, we should 
investigate to what extent the variable weights may depend 
on the size of the molecule. At the moment this is an 
unresolved problem, which is the main reason for restricting 
attention to smaller sets of compounds with similar size. We 
should add that it is not uncommon in QSAR to consider 
smaller sets of compounds, often because of limited data. 
For example in a recent review of comparative QSAR 
Hansch and co-workers38'39 gave results for 189 regressions 
in which only 33 had more than 20 compounds in the set, 
and 156 had less than 20 compounds, that is, less than the 
number of sulfides considered in this paper. If compounds 
are well-selected, the resulting regressions may be of interest. 
We gave here the results for smaller sulfides. If one is 
interested in larger sulfides, one should select those, and if 
one is interested in all sulfides, one should combine them 
all. But again a question can be raised: If one is interested 
in predicting the boiling point of smaller sulfides, why does 
one need information of compounds that are twice its size? 
It is a matter of philosophy, and while we appreciate the 
merits of studying a large data basis, we also appreciate the 
advantages of studying small homogeneous sets of com- 
pounds. Such a study focuses attention at different aspects 
of structural chemistry. In fact, one of the present author 
made numerous studies on the large set of compounds using 
diverse types of molecular descriptors.40"45 

Concerning "overfitting", which is clearly undesirable, we 
would like to point out that this is out of the question when 
one uses a single descriptor. Overfitting is a danger in 
multiple  regression  analysis  when  one  uses  too  many 
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descriptors and has too few data. One cannot have overfitting 
with a single descriptor. This problem received some 
attention.46 Does the variation of descriptors during the 
regression poses such a threat? Definitely so, just as a 
selection of descriptors from a large pool of descriptors (e.g. 
in CODESSA software) does the same. The difference 
between the two is that typically when using variable 
connectivity index, one generates about 40 different numer- 
ical alternative descriptors to choose from, CODESSA 
typically chooses a half-dozen descriptors from a pool of 
some 400 descriptors! 

Finally we have to emphasize that while the idea of 
modifying chemical graph descriptors to differentiate het- 
eroatoms is not new„ as is well-illustrated by the pioneering 
work of Kier and Hall on valence connectivity indices,28 the 
idea of modifying chemical graph descriptors to differentiate 
heteroatoms during"the search for the best regression; that 
is, the idea of variable topological indices, is new. 
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We consider construction of optimal molecular descriptors to be used for multiple regression analysis 
of several properties of alcohols. The descriptors are obtained by considering shorter paths with vari- 
able weight x for carbon-oxygen bond in alcohol. In particular we consider as molecular descriptors 
paths of length 1, 2 and 3. The multiple regression analysis of the following molecular properties was 
examined: — log S (S = solubility), CSA (cavity surface area), log P (P = octanol/water partition), 
and log 7 (7 = infinite solution activity coefficient). By minimizing the standard error of the regres- 
sion for each property we found optimal variable weight. 

Keywords: Variable molecular descriptors; weighted paths; MRA; orthogonal descriptors; alcohol 
properties 

INTRODUCTION 

t..i 

':/ 

Study of structure-property and structure-activity relationship continues to attract 
considerable attention in chemical literature. Various statistical methods have 
been found useful in such studies, including the Principal Component Analysis 
(PCA) [1], the Pattern Recognition (PR) [2], the Partial Least Square method 
(PLS) [3], the Artificial Neural Networks (ANN) [4]. The oldest data reduction 
method, the Multiple Regression Analysis (MRA) [5], continues to be widely 
used. Most applications of MRA to QSAR and SAR can be classified into one 
of two types: 

* Corresponding author. 
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(I) Examination of large number of diverse and heterogeneous structures; 
(II) Study of smaller number of homogenous structures. 

Each of these studies have their merits and will continue to be pursued. In 
both cases often one starts screening a large pool of molecular descriptors from 
which one selected smaller number of descriptors that are used for construction 

„of regression equations, or construction of principal components. An alterna- 
tive, particularly suitable when one study smaller number of structurally related 

..compounds, is to focus attention on only few molecular descriptors which are 
general enough to be used in different applications [6, 7]. Such descriptors 
were referred to as basis descriptors in analogy with basis vectors in linear 
algebra. Advantage of basis descriptors is that they facilitate comparative anal- 
ysis, because the same descriptors are used in different applications, for different 
molecules and different properties. For example, Kier and Hall [8] used different 
combinations of the connectivity indices for the best correlation of alkane heats 
of atomization and alkane heats of formation. If, however, one restrict search for 
best correlation for the two properties to the same connectivity indices one finds 
that the two properties are strictly collinear, the fact that is obscured when one 
uses different descriptors because the two samples of structures are somewhat 
different. 

Despite its wide use MRA was viewed by some as deficient, because as a rule 
introduction of an additional descriptor in the analysis causes dramatic changes 
of the contributions of already used descriptors. Because of this pronounced 
instability of the regression equations it is not possible to interpret the results in 
terms of the relative role of the descriptors used. This deficiency (which inciden- 
tally is not confined solely to MRA) has been traced to mutual interrelation of 
descriptors [9-13]. If the descriptors used are to a greater extend independent of 
one another one observes but a minor variations of the coefficients of the regres- 
sion equation if a descriptor is included or excluded. However use of moderately 
and highly intercorrelated descriptors, which often cannot be avoided, results in 
pronounced instability of the regression equation. This is particularly visible 
when one introduces descriptors one at a time in a stepwise regression. 

This very unsatisfactory affair has been tolerated because despite the insta- 
bility of the regression equations each additional relevant descriptor decreases 
the standard error of prediction for the property considered. Thus the equation 
offers useful predictions but it does not offer useful interpretation. This MRA 
nightmare — as some have referred to it — is no more. With introduction of 
orthogonalization procedure for molecular descriptors not only that the regres- 
sion equation becomes stable but the error of the coefficients reduces with intro- 
duction of each additional relevant descriptor [12]. While some have recognized 
the significance of using orthogonal molecular descriptors [14-16] apparently 
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others still do not appreciate or are unaware of the novel situation, which for 
the first time makes possible to interpret the relative contributions of descrip- 

tors used. 
We will refer to MRA using molecular descriptors as MORA, the Multi- 

variate Orthogonal Regression Analysis. It has been shown that MORA and 
MRA remain related so that one can obtain orthogonalized regression equation 
form MRA by stepwise regression [9, 10]. With this remedy MRA not only 
remains a very viable data reduction method for QSAR and QSPR, but in some 
way may again become the method of choice, despite the fact that researchers 
in the field are free to be reluctant to use a new method! In our opinion MORA 
has an important advantage over PCA. MORA, just as PCA, uses orthogonal 
descriptors but in contrast to PCA the descriptors used in MORA can be inter- 
preted in terms of the structural meaning of the initial descriptors. In contrast 
the linear combinations that define the principal components have, at best, a 
vague interpretation (i.e., as bulk, cohesiveness, etc.). Not only that it is hard 
to visualize what such linear combinations of descriptors represent, the descrip- 
tors that define the principal components are themselves not orthogonal, despite 
that the principal components are mutually orthogonal. So we are in no better 
situation, as far as an interpretation of the results of PCA is concerned, then we 
have been with MRA in the time of instabilities of the regression equations! 

OPTIMAL MOLECULAR DESCRIPTORS 

With hundreds of molecular descriptors available [17-19] immediately one is 
confronted with decision concerning selection of descriptors. The choices to 
consider are: (a) select a subset of "the best" descriptors from a large pool of 
available descriptors; (b) use a limited set (of "well ordered" structurally related 
descriptors, the basis; (c) use as few as possible descriptors that are suitably 
optimized for the particular application. We will refer to the last alternative 
as use of optimal molecular descriptors. In the first case we put "the best" 
under quotes because the outcome will depend on the criteria used to select 
descriptors. Current practice that many adopted of excluding descriptors that 
are highly intercorrelated to descriptors already selected, as argued elsewhere 
[20, 21], has no theoretical justification. We also put "well ordered" under quotes 
because ordering of descriptors will influence interpretation, even though it will 
not influence the statistical parameters of the regression analysis. 

Optimization of molecular descriptors is relatively novel technique in QSAR 
and SAR that has been for the most part overlooked. It is generally recog- 
nized that the presence of heteroatoms in a molecule requires use of additional 
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molecular descriptors. However, these additional descriptors to be used for C-X 
bonds (X can be O, N, Cl, etc.) are usually in advance prescribed, using some 
physicochemical analogy or data. For example, Kier and Hall introduced the 
valence connectivity indices by assigning to atoms valence parameter based on 
the count of valence electrons of each atom [22]. Another possibility, perhaps 
not so widely known, uses covalent radii of carbon and other atoms in deriving 
parameters to differentiate atoms of different kind [23]. In contrast one of the 
present authors considered variable weight as an entry on the main diagonal of 
the adjacency matrix of a molecular graph. For example, for ethyl alcohol one 
would have for so generalized adjacency matrix: 

0 1   o\ fX 1    0 
1 0    1 or 1 x   0 
0 i  y Vo i  y 

Here x, and y represent variables describing carbon and oxygen atom respec- 
tively. Using x and y as variables one can construct the connectivity indices (or 
connectivity weighted paths) and search for best values of x and y that would 
minimize the standard error in the regression analysis of the property of interest 
[24]. For example, in the case of boiling points of alcohols one finds x = 1.50 and 
y = —0.85 to result in the smallest standard error. Use of the diagonal entries has 
been already considered some time ago in chemical documentation by Spialter 
who developed alphanumeric matrices for a representation of chemical structure 
[25]. The difference is however, that rather than using symbols C and O (corre- 
sponding to x and y) here we search for numerical parameters that result in the 
best regression. In the case of chlorine atom the diagonal entry y = -20 [26] 
was found to give a better regression that approaches based on the "traditional" 
(i.e., the approaches following Hansch's methodology [27]) molecular descrip- 
tors. Similarly, in the case of nitrogen containing molecules the diagonal entries 
x = 1.25 for carbon and y = —0.65 for nitrogen give the optimal solution for the 
boiling points of amines [28]. 

All the above cases relate to the connectivity indices and paths when 
weighted using the same weighting algorithm. However, variable descriptors 
can be constructed for other topological indices besides the connectivity indices. 
Construction of these variable generalizations of the Wiener index [29] and the 
Hosoya index [30] have been recently outlined [31]. Recently variable weights 
have been considered for path numbers [32, 33]. We continue with exploration 
of optimally weighted path numbers for characterization of molecules in 
this article. 
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WEIGHTED PATH NUMBERS 

Path numbers have been suggested fifty years ago by Platt as potentially useful 
molecular descriptors [34]. Apparently the contribution of Platt, despite its 
importance, has been overlooked till a revived interest in chemical graph theory 
emerged in mid 1970's. Apparently through a series of papers [35-43] Randid 
and Wilkins resurrected path numbers and have illustrated use of paths for 
characterization of molecules and their fragments. Later Randic and coworkers 
[44-49] introduced weights for paths of different length by weighting the 
contributions of bonds and longer paths by using l/v^m n) as the weight for 
individual bonds involved. Weighted paths are also implied in construction of 
higher order connectivity indices [50]. All these cases, however, used rigidly 
prescribed weighting scheme, which, once adopted does not change. 

As already mentioned the use of the diagonal entries of the adjacency matrix 
as variable input initiated construction of new kind of molecular descriptors. 
In contrast to hitherto used topological indices and other descriptors the new 
descriptors have an inherent flexibility that allows them to be constructed so to 
minimize the standard error in a regression. Very recently this kind of flexibility 
associated with variable weights has been extended to construction of weighted 
molecular paths. This has lead to generalized Wiener number [32], and gener- 
alized path numbers [33] already mentioned. Formally the Wiener number can 
be written as: 

W = 1 Pl + 2 p2 + 3 p3 + 4 p4 + • • • + k pk 

where p1,p2,p3,... are the number of paths of length one, length two, length 
three, etc. The above can be viewed as dot product of vectors L = (1,2,3,4,... k) 
and vector P = (p,, p2, p3,... Pk). If now one introduces vectors Lm of the form 
(lm,2m,3m,...km) the dot product W becomes function of the exponent m, 
i.e., instead of W we have now W(m). Here one treats m as variable and, for 
example, in the case of alkanes the best quadratic fit of motor octane numbers 
is obtained when m = -1.50 while the best quadratic fit for the boiling points 
of alkanes is obtained when m = 1.90. 

Randic and Pompe [33] considered a different kind of weights for paths when 
examining the molar refraction of unsaturated hydrocarbons. They associated the 
weight x to individual C=C bond in alkenes and assigned the weight x to all 
paths that involve C=C bond. This approach applies equally to characterization 
of heterobonds, as illustrated by Randic and Basak when revisiting the correla- 
tion of the boiling points of alcohols [51]. In Table I we give the enumeration 
of weighted path for 3-methyl-l-butanol and 2-pentanol, which if one does 
not differentiates CC and CO bonds would give the same path count 5, 5, 3, 
2, instead of 4 + x, 4 + x, 2 + x, 2x and 4 + x, 3 + 2x, 2 + x, 1 + x respectively! 
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TABLE I    Weighted paths for 3-methyl-I-butanol and 2-pentanol 

3-Methyl- 1-butanol 2-Penlanol 

atom 
1 

Pi 
1+x 

P2 
1 

P3 
2 

P4 atom 
1 

Pi 
1 

P2 
1 + x 

P3 
1 

P4 
1 

2 2 2 + x 2 2 + x 1 1 
3 3 1 X 3 2 2 + x 
4 1 2 1 X 4 2 1 1+x 
5 1 2 1 X 5 1 1 1 1+x 
6 X X X 2x 6 X 2x X x 
Molecule: 

4 + x 4 + x 2+x 2x 4 + x 4 + 2x 2 + x 1 + x 

Clearly when x = 1 the two path vectors are identical, but already setting x = 1.1 
or x = 0.9 results in differentiation between the two isomers. In the case of molar 
refraction of heptene isomers when using three path numbers the value of x = 0.6 
leads to an impressive reduction in the standard error (s = 0.08). 

REVIEW OF THE EXPERIMENTAL DATA USED 

QSAR and SAR studies often point to FEW experimental points that do not fit 
well the derived correlation. So identified outliers are then omitted from correla- 
tions with some justification, even though the source for the disagreement is not 
known and need not be attributed to presumed experimental error. It is possible 
that some outliers have unrecognized structural features which the descriptors 
used can not adequately characterize that makes them exceptional. Neverthe- 
less, by being different than other compounds under analysis, the outliers may 
legitimately be eliminated from considerations. In our study, as will be seen 
shortly we were able to identify one such outlier even before starting the regres- 
sion analysis. Having several properties of alcohols available we decided first 
to review property-property correlations of alcohols to be studied. This pointed 
to a discrepancy for the experimental data of 2-hexanol. 

We have selected the following properties of alcohols: (a) water solubility 
(- log S); (b) cavity surface area (CSA); (c) octanol water partition (log P); and 
(d) infinite dilution activity coefficient (In 7 ). Already in ref. [51] we examined 
the boiling points of alcohols. All these properties have been recently studied by 
MRA using alternative molecular descriptors by Cao and Li for - log S, CSA, 
and log P [52], and by Mitchell and Jurs for In7 [53]. A set of n = 50 alcohols 
were used when considering - log S and CSA, a set of n = 38 alcohols were 
used in log P study and a set of n = 43 alcohols were used for In 7 study. In 
Table II we collected the experimental data for a subset of alcohols studies in 
ref. [51-53]. 
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TABLE II   Common experimental data for different sets of alcohols studied (including 
boiling points studied in ref. [20]) 

Alcohol -hgS CSA logP In 7 b.p. 

I-butanol 0 272.1 0.88 3.92 117.7 
2M-l-propanol -0.01 263.8 0.61 3.89 107.9 
1-Pentanol 0.58 303.9 1.40 5.29 137.8 
3M-l-butanol 0.51 291.4 1.14 5.34 131.2 
2M-l-butanol 0.46 289.4 1.14 5.08 128.7 
2-Pentanol 0.28 295.9 1.14 4.57 119.0 
1-HexanoI 1.21 335.7 2.03 6.68 157.0 
2-Hexanol 0.87 327.7 1.61 5.64 139.9 
3-Hexanol 0.80 325.3 1.61 5.85 135.4 
3M-3-pentanol 0.36 305.8 1.39 4.85 122.4 
2M-2-pentanol 0.49 314.3 1.39 5.14 121.4 
2M-3-pentanol 0.70 314.3 1.41 5.63 126.5 
3M-2-pentanol 0.71 311.3 1.41 5.66 134.2 
2,3MM-2-butanoI 0.37 301.2 1.17 4.88 118.6 
3,3MM-2-butanol 0.61 296.7 1.19 5.43 120.0 
4M-2-pentanol 0.79 314.9 1.41 5.86 131.7 
1-Heptanol 1.81 367.5 2.34 8.09 176.3 
2M-2-hexanol 1.07 346.1 1.87 6.49 142.5 
3M-3-hexanol 0.98 337.7 1.87 6.29 142.4 
3E-3-pentanoI 0.83 324.4 1.87 5.94 142.5 
2,3MM-2-pentanoI 0.87 323.8 1.67 6.02 139.7 
2,3MM-3-pentanol 0.84 321.8 1.67 5.96 139.0 
2,4MM-3-pentanol 1.22 331.7 1.71 6.82 138.8 
2,2-MM-3-pentanol 1.15 326.1 1.69 6.66 136.0 
1-Octanol 2.35 399.4 2.84 9.56 195.2 
2,2,3MMM-3-pentanol 1.27 335.2 1.99 6.95 152.2 
1-Nonanol 3.00 431.2 3.15 11.0 213.1 

In Figure 1 we illustrate the correlations for the properties listed in Table II. 
In Figure la — Figure Id we show correlation of the four properties consid- 
ered here (—log S, CSA, log P and In7) with the boiling points of alcohols. 
The correlations between the four properties among themselves (included in 
Table III) show similar behavior, similar scatter of points, with a single excep- 
tion. The exceptional is the correlation between the two solubilities — log S and 
In 7 , shown in Figure le, which display extremely high correlation. While for 
most other property-property correlations of Table III the regression coefficients 
is between r = 0.950 and r = 0.990 the correlation of —log S and In7 have 
r = 0.998. That -log S and In7 make exceptional correlation is even better 
reflected in Fisher ratio, which for all mutual property-property correlations is 
below 500, but — log S and In 7 have impressive F close to 7000. 

It is clear from Figure le that a single point appears to be an outlier, most 
likely an experimental error either in —log S or In7. When this point (that 
belongs to 2-hexanol) is eliminated the revised regression (shown in the lower 
part of Table III and indicated by an asterisk) of —log S and In7 shows a 



M. RANDIC AND S. C. BASAK 

100 110 120 130 140 150 160 170 180 190 200 210 220 

b.p. 

(a) 

4ÖU 

430 • 

410 ■ 

390 • 

370 • /• 
<350 
CO 
O330 

■ • 
• /• • 

310 

290 - /      •* 
270 • 

• 

250 - 
■ . t ■ 1 

100 110 120 130 140 150 160 170 180 190 200 210 220 

b.p 

(b) 

FIGURE 1 Correlations between different experimental properties of smaller alcohols. Illustrations 
(a) — (d): Correlations with their experimental boiling points: Negative logarithm of solubility S; 
critical surface area CSA; logarithm of octanol/water partition P; natural logarithm of solublility 7, 
respectively. Illustration (e): Correlation between the solubilities —log S and In7. 
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FIGURE 1 (Continued). 
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TABLE III Comparison of correlation parameters for 
property-property correlations of alcohols. The asterisk (*) 
indicates the regression in which outlier was removed 

Property-property r £ F 

-log S/b.p. 
CSA/b.p. 
log P/b.p. 
In g/b.p. 

0.9705 
0.9499 
0.9620 
0.9669 

0.161 
11.15 
0.153 
0.400 

404 
231 
310 
359 

- log S/ In 7 
CSA/ln7 
log P/ln7 

0.9982 
0.9721 
0.9645 

0.040 
8.372 
0.147 

6873 
429 
334 

-log S/log P 
CSA/log P 

0.9674 
0.9843 

0.169 
6.296 

364 
778 

-log S/CSA 0.9752 0.1479 486 

-log S*/ln7* 0.9993 0.026 16,752 

FIGURE 1    (Continued). 

dramatic improvement (r = 0.999 and F is over 16,750). This further supports 
the suspicion that one of the experimental results for 2-hexanol was in error. 

That the selected alcohol properties show limited correlation (except for 
already mentioned intercorrelation of the two solubilities) points to the fact 
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that different properties are dominated by different structural factors and will 
require different molecular descriptors. Clearly the considered properties can 
not be reduced to the same structural features, which for itself speaks why we 
need different molecular indices and should continue to design novel topological 
descriptors. 

That 2-hexanol is an outlier is even better visible in Figure 2 in which we 
show the same regressions between - log S and In 7 but have limited the set 
of alcohols to isomers of 1-hexanol. In this way we eliminated the dominant 
role of molecular size (since we consider only alcohols having the same number 
of carbon atoms). In Table IV we give the statistical data for regressions the 
corresponding regressions when considering n = 10 hexanols. As we see from 
Table IV the statistical parameters have changed dramatically not only because 
we have a smaller sample but it is much harder to fit data for molecules of 
a same size than correlating data for molecules of different size. The standard 
error which now reflects the isomeric variations has decreased but the correlation 
coefficient also decreased, because it is more difficult to correlate that part of a 
property that does not depend on size than the part of the property that is size 
dependent. That 2-hexanol is outlier is now reflected in an unusual increase (by 

1.3 

1.2 - 

1.1 

1.0 

0.9 

0 
7 0.7 

• 

0.6 

0.5 - 

0.4 

0.3 
• ' ' ' 

4.8 5.0 5.2 5.4 5.6    5.8 6.0 6.2 6.4 6.6 6.8 

lny 

FIGURE 2   The regression between the solubilities -log S and In7 for subset of isomers 
1-hexanol. 

of 
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TABLE IV Comparison of correlation parameters for prop- 
erty-property correlations for the subset of heptanols only. 
The asterisk (') indicates the regression in which outlier was 
removed 

Property-property r s F 

ln7/(-log S) 0.9790 0.1163 184.9 
•!n7/(-log S) 0.9987 0.0313 2658.2 
b. pJCSA 0.8932 5.6100 31.6 
log P/b.p. 0.9484 0.0827 71.5 
In 7/b.p. 0.9003 0.2486 34.2 

an order of magnitude) of the Fisher ratio for regression including and excluding 
2-hexanol. 

WEIGHTED PATHS AS DESCRIPTORS 

Even though correlations between different properties may vary considerably a 
single set of well selected molecular descriptors, may nevertheless provide a 
basis for their regression analysis. This has been already illustrated using a set 
of the connectivity indices in correlating different physicochemical properties 
of alkanes [54, 55]. However all previous such studies were based on "fixed" 
molecular descriptors (topological indices). It is of interest to see how variable 
molecular topological indices using an optimization procedure to determine the 
best set of descriptors would describe different molecular properties for the same 
very sets of compounds. 

In Table V we listed the count of smaller paths in alcohols by discriminating 
C-O bond to which we give weight x. For p, this simply increases the count of 
CC bonds by x, but even this increment may be different for different properties. 

RESULTS 

We should not be surprised that the weights of paths x vary when we consider 
different properties even for the same set of compounds. We have seen already 
that different molecular properties, particularly when focusing attention to 
isomeric variations, do not correlate at all one with another. 

We have previously reported a quite successful correlation for alcohol boiling 
points when using variable path numbers. In the case of alcohols it was found 
that optimal weight for CO bond x = 2.2 reduced the standard error to s = 4.82 
when path numbers p, and p2 were used as descriptors, and to s = 4.78 when 
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TABLE V    Count of smaller paths in alcohols with CO having weight x 

Alcohol Pi P2 Pi P4 P5 

1-Butanol 3 + x 2 + x 1 + x 0 0 
2M-l-propanol 3 + x 3 + x 2x 0 0 
1-Pentanol 4 + x 3 + x 2 + x I + x 0 
3M-l-butanol 4 + x 4 + x 2 + x 1 + x 0 
2M-l-butanol 4 + x 4 + x 2 + 2x X 0 
2-Pentanol 4 + x 3 + 2x 2 + x 1 + x 0 
1-Hexanol 5 + x 4 + x 3 + x 2 + x 1 +x 
2-Hexanol 5 + x 4 + 2x 3 + x 2 + x 1+x 
3-Hexanol 5 + x 4 + 2x 3 + 2x 2 + x 1 
3M-3-pentanol 5 + x 5 + 3x 4 + 2x 1 0 
2M-2-pentanoI 5 + x 5 + 3x 3 + x 2 + x 0 
2M-3-pentanol 5 + x 5 + 2x 3 + 3x 2 0 
3M-2-pentanol 5 + x 5 + 2x 4 + 2x 1 + x 0 
2,3MM-2-butanol 5 + x 6 + 3x 4 + 2x 0 0 
3,3MM-2-butanol 5 + x 7 + 2x 3 + 3x 0 0 
4M-2-pentanol 5 + x 5 + 2x 3 + x 2 + 2x 0 
I-Heptanol 6 + x 5 + x 4 + x 3 + x 2 + x 
2M-2-hexanoI 6 + x 6 + 3x 4 + x 3 + x 2 + x 
3M-3-hexanol 6 + x 6 + 3x 5 + 2x 3 + x 1 
3E-3-pentanoI 6 + x 6 + 3x 6 + 3x 3 0 
2,3MM-2-pentanol 6 + x 7 + 3x 6 + 2x 2 + x 0 
2,3MM-3-pentanol 6 + x 7 + 3x 6 + 3x 2 0 
2,4MM-3-pentanol 6 + x 7 + 2x 4 + 4x 4 o 
2,2-MM-3-pentanol 6 + x 8 + 2x 4 + 4x 3 o 
I-Octanol 7 + x 6 + x 5 + x 4 + x 3 + x 
2,2,3MMM-3-pentanol 7 + x 9 + 3x 8 + 4x 3 o 
1-Nonanol 8 + x 7 + x 6 + x 5 + x 4 + x 

path numbers p,, p2 and p3 were used as descriptors. The above results can 
be compared with the standard error of 9°C, obtained by Nikolic, Trinajstic, 
and Mihalic [56], who considered the Wiener number, the Shultz index, and 
the valence connectivity index as descriptors. Admittedly these authors consid- 
ered regressions based on a single descriptor in order to evaluate the relative 
merits of individual descriptors. Hence, the standard error of 9 °C is not directly 
comparable to the standard error when one uses two or more descriptors (which 
can drop to bellow 5°C). However, if one is interested in obtaining the best 
regression having statistical significance and giving as small as possible stan- 
dard error than clearly the procedure based on optimally weighted paths has, as 
demonstrated, its advantages. 

A number of interesting questions can be posed: (1) Does the optimal weight 
depends on compounds (alcohols) selected? In particular, does it depend on 
the size of molecules? (2) Does the optimal value of x depends on the number 
of parameters used? (3) Does the optimal values for x depends on the prop- 
erty considered? Here we will focus on the last two questions. In Table VI we 
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TABLE VI Dependence of the statistical para- 
meters on the CO bond weight. The optimal 
value of the weight x is emphasized 

(a) Surface cavity area (CSA) 

I r s F 

-1 0.9645 15.070 205 
0 0.9952 5.583 1588 
0.3 0.9977 3.865 3330 
0.5 0.9980 3.599 3842 
0.7 0.9976 3.918 3241 
1 0.9964 4.848 2111 
1.5 0.9937 6.382 1212 
2 0.9913 7.722 868 
2.5 0.9893 8.337 704 
3 0.9877 8.934 611 
3.5 0.9863 9.497 549 
4 0.9854 9.734 512 
5 0.9838 10.239 461 
6 0.9827 10.585 431 
7 0.9818 10.835 410 

(b) Water solubilities (- - log S) 

1 0.9883 0.1653 644 
1.5 0.9925 0.1325 1011 
2 0.9946 0.1127 1402 
2.4 0.9954 0.1038 1655 
2.5 0.9955 0.1023 1706 
2.6 0.9956 0.1018 1721 
3 0.9959 0.0975 1879 
3.5 0.9961 0.0961 1932 
4 0.9961 0.0960 1941 
5 0.9959 0.0981 1855 
6 0.9907 0.1011 1749 
7 0.9954 0.1039 1655 

(c) Octanol -Water partition (log P) 

1 0.9845 0.1369 358 
1.5 0.9873 0.1240 439 
2 0.9885 0.1183 483 
2.25 0.9887 0.1170 498 
2.5 0.9889 0.1160 503.1 
3 0.9890 0.1156 506.3 
3.25 0.9890 0.1157 505.8 
3.5 0.9890 0.1158 504.6 
4 0.9886 0.1175 491 

show the dependence of the statistical parameters r, s, and F on the weight 
x for each property separately. As we see from Table VI even though we 
have essentially the same set of compounds the optimal weights vary from 
property to property displaying dramatic changes. For each property we gave 
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TABLE VI   (Continued) 

(d) Infinite dilution activity coefficient (In 7) 

X r s F 

1 0.9974 0.4021 2493 
2 0.9989 0.2674 5656 
3 0.9992 0.2174 8564 
4 0.9994 0.1995 10173 
5 0.9994 0.1892 11307 
6 0.9994 0.1854 11782 
7 0.9995 0.1836 12007 
8 0.9995 0.1829 12100 
9 0.9995 0.1827 12124 
10 0.9995 0.1828 12112 
12 0.9995 0.1834 12039 
15 0.9995 0.1844 11903 

the correlation coefficient r, the standard error s, and the Fisher ratio F, as 
they vary with x, which has been confined to the appropriate domains. In 
view of relatively small number of molecules in each set (between 38 and 
50) we limited the number of descriptors at most three and have used p,, p2 

and p3. 

For CSA the best value found for the weight (which is emphasized in 
Table VI) is: x = 0.5, the value x = 3 is optimal for log P regression, the value 
x = 4 is optimal for - log S, and finally the value x = 9 is the optimal value for 
In 7 . These values of x may be compared to x = 2.2 found as the best value for 
the boiling points of alcohols. Hence, clearly the weight x critically depends on 
the property considered. 

The increase of the weight x means that the role of C-0 bond relative to 
C-C bonds is gaining in the importance. In Figure 3a we have illustrated for 
the regression of -log S against the weighted paths p^ p2, p3 the variation 
of the standard error s against the weight x while in Figure 3b the similar 
dependence of the standard error s against the weight x is shown for CSA. Both 
figures show the position of the minimum which corresponds to the optimal 
weight for x and show a characteristic asymmetric shape of the dependence of 
s(x) similar in shape to potential curves for a diatomic molecules, or parts of 
such curves. 

Table VTI lists the optimal paths p2 and p3 for the common 27 alcohols (for 
which data on all four properties were available) when optimal values of x 
are selected for each property. The optimal path pj are not listed and can be 
easily derived using expression p, = nCC + x, where nCC is the number of CC 
bonds in a molecule. The occurrence of different weights for different prop- 
erties introduces changes in the relative role of shorter and longer paths for 
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FIGURE 3 (a) Variation of the standard error s against the weight x for the regression of - log S 
using weighted paths p„ p2, p3 as descriptors; (b) Variation of the standard error * against the 
weight i for the regression of CSA using weighted paths p„ pj. Pj as descriptors. 
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TABLE VII   The optimal weighted path s p2 and p3 for the five properties of alcohols 

Alcohol -logS CSA OgP In 
c = 4 i = 0.5 r = 3 x - 9 

1-ButanoI 6 5 2.5 1.5 5 4 11 10 
2M-l-propanol 7 8 3.5 1 6 6 12 18 
I-Pentanol 7 6 3.5 2.5 6 5 12 11 
3M-l-butanol 8 6 4.5 2.5 7 5 13 11 
2M-l-butanol 8 10 4.5 3 7 8 13 20 
2-PentanoI 11 6 4 2.5 9 5 21 11 
■l-Hexanol 8 7 4.5 3.5 7 6 13 12 
2-Hexanol 12 7 5 3.5 10 6 22 12 
3-Hexanol 12 11 5 4 10 9 22 21 
3M-3-pentanoI 17 12 6.5 5 14 10 32 22 
2M-2-pentanol 17 7 6.5 3.5 14 6 32 12 
2M-3-pentanol 13 15 6 4.5 11 12 23 30 
3M-2-pentanoI 13 12 6 5 11 10 23 22 
2,3MM-2-butanol 18 12 7.5 5 15 10 33 22 
3,3MM-2-butanol 15 15 8 4.5 13 12 25 30 
4M-2-pentanol 13 7 6 3.5 11 6 23 12 
1-Heptanol 9 8 5.5 4.5 8 7 14 13 
2M-2-hexanol 18 8 7.5 4.5 15 7 33 13 
3M-3-hexanol 18 13 7.5 6 15 11 33 23 
3E-3-pentanol 18 18 7.5 7.5 15 15 33 33 
2,3MM-2-pentanol 19 14 8.5 7 16 11 34 24 
2,3MM-3-pentanol 19 18 8.5 7.5 16 15 34 33 
2,4MM-3-pentanol 15 20 8 6 13 16 25 40 
2,2-MM-3-pentanol 16 20 9 6 14 16 26 40 
1-OctanoI 10 9 6.5 5.5 9 8 15 14 
2,2,3MMM-3-pentanol 22 24 11.5 10 19 20 36 44 
1-Nonanol 11 10 7.5 6.5 10 9 16 15 

different structures. Consider for example 2-methyl-l-butanol and 2-pentanol 

(of Table II). When x = 0.5 (the optimal value for CSA) the quotient p2/p3 

for 2-methyl-l-butanol and 2-pentanol are not very different, 4.5/3 and 4/2.5 
respectively. In contrast when x = 4 (optimal value for - log S) the quotient 

P2/P3 for 2-methyl-l-butanol and 2-pentanol are very different, 8/10 and 11/6 

respectively. The standard topological indices lack the flexibility to adjust simi- 
larly to such demand dictated by diversity of properties. 

In Table Vm we listed the calculated properties and the residuals of the 
regression as obtained for the common n = 27 alcohols. For all the four prop- 

erties all the caclulated values are within two standard deviations, except in the 

case of SCA where highly branched 2, 2, 3-trimethyl-3-pentanol shows large 

residual. The calulaterd CSA is found too small: 324.27, the reported experi- 

mental value is however 335.2. By discarding this point as an outlier the standard 

error dropps to 3.124. The regression equations are listed in Table IX. 
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TABLE VIII Calculated properties of alcohols. We displayed only the results for 
alcohols of Table II, but the calculations were based on all alcohols for which data 
were available 

Alcohol -logs' Residual CSA Residual 

1-Butanol 0.035 -0.035 270.19 1.91 
2M-l-propanol -0.083 0.073 262.94 0.86 
I-Pentanol 0.620 -0.040 301.73 2.17 
3M-l-butanol 0.538 -0.028 291.93 -0.53 
2M-l-butanoI 0.490 -0.030 289.36 0.04 
2-PentanoI 0.293 -0.013 296.83 -0.93 
1-HexanoI 1.205 0.005 333.28 2.42 
2-Hexanol 0.878 -0.008 328.38 -0.68 
3-HexanoI 0.830 -0.030 325.81 -0.51 
3M-3-pentanol 0.410 -0.050 305.98 -0.18 
2M-2-pentanol 0.470 0.020 313.67 0.63 
2M-3-pentanol 0.700 0 313.44 0.86 
3M-2-pentanol 0.736 -0.026 310.88 0.42 
2,3MM-2-butanol 0.329 0.042 296.18 5.03 
3,3MM-2-butanol 0.537 0.073 303.86 3.64 
4M-2-pentanol 0.797 -0.007 318.57 -3.67 
1-Heptanol 1.790 0.020 364.83 2.67 
2M-2-hexanol 1.055 0.015 345.21 0.89 
3M-3-hexanol 0.995 -0.015 337.52 0.18 
3E-3-pentanol 0.934 -0.104 329.83 -5.43 
2,3MM-2-pentanol 0.901 -0.031 322.59 1.21 
2,3MM-3-pentanol 0.853 -0.013 320.02 1.76 
2,4MM-3-pentanol 1.155 0.065 332.62 -0.92 
2,2-MM-3-pentanol 1.074 0.076 322.81 3.29 
1-Octanol 2.375 -0.025 396.37 3.03 
2,2,3MMM-3-pentanol 1.214 0.056 324.27 10.93 
1-Nonanol 2.960 0.040 427.92 3.28 

COMPARISON WITH MRA FROM OTHER SOURCES 

Comparison between different regression results are primarily of interest because 
they can point to dominant and the most relevant molecular descriptors for prop- 
erties studied. When such descriptors are identified they can assist in revising 
or refining molecular models for compounds considered. The standard error is 
likely to point to most useful regression if the accuracy of the prediction is the 
only criteria considered. However, the standard error important as it is, is not 
necessarily the only parameter of interest in structure-property-activity studies. 
Equally important, or even more important, may be the structural meaning of 
the descriptors used as they can facilitate not only an improvement of the model 
used but also may offer a better insight into our understanding of the structure- 
property relationship, even though structure-property correlation does not invoke 
causal relationship. 

A strict comparison between different regression results is only possible if the 
two studies use the same experimental data on the same set of compounds with 
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TABLE VIII    (Continued) 

Alcohol logP Residual In 7 Residual 

1-ButanoI 0.802 0.078 4.018 -0.098 
2M-l-propanol 0.703 -0.093 3.829 0.061 
1-Pentanol 1.310 0.091 5.372 -0.082 
3M-l-butanol 1.243 -0.103 5.281 0.059 
2M-I-butanol 1.194 -0.054 5.171 -0.091 
2-Pentanol 1.109 0.031 4.556 0.014 
1-Hexanol 1.817 0.213 6.726 -0.046 
2-Hexanol 1.617 -0.007 5.910 -0.270 
3-Hexanol 1.568 0.042 5.799 0.051 
3M-3-pentanol 1.285 0.106 4.880 -0.030 
2M-2-pentanol 1.349 0.041 5.003 0.137 
2M-3-pentanol 1.452 -0.042 5.598 0.032 
3M-2-pentanol 1.485 -0.075 5.696 -0.036 
2,3MM-2-butanoI 1.218 -0.048 4.789 0.091 
3,3MM-2-butanol 1.319 -0.129 5.416 0.014 
4M-2-pentanol 1.550 -0.140 5.819 0.041 
1-Heptanol 2.324 0.016 8.080 0.010 
2M-2-hexanol 1.857 0.013 6.357 0.133 
3M-3-hexanoI 1.792 0.078 6.234 0.056 
3E-3-pentanol 1.727 0.143 6.111 -0.171 
2,3MM-2-pentanol 1.725 -0.055 6.131 -0.111 
2,3MM-3-pentanol 1.660 0.010 6.020 -0.060 
2,4MM-3-pentanol 1.844 -0.134 6.750 0.070 
2,2-MM-3-pentanol 1.778 -0.088 6.660 0.000 
1-Octanol 2.832 0.008 9.434 0.126 
2,2,3MMM-3-pentanol 1.969 0.021 7.161 -0.211 
1-Nonanol 3.339 -0.189 10.788 0.212 

TABLE IX   The regression equations 

Property Pi Pi Pi Constant 

CSA 46.4797 -9.8066 -5.1272 139.7160 
-log S 0.6660 -0.0802 -0.0115 -4.0677 
log P 0.5904 -0.0668 -0.0162 -2.3415 
In 7 1.4571 -0.0907 -0.0123 -10.8897 

the same number of descriptors. This is rarely the case, because between two 
studies novel data may be available and is likely to be included in more recent 
work. In addition different authors may have their own preferences for selecting 
and testing descriptors using larger set of compounds that allow increased 
number of descriptors. Our comparison here is of such a kind because Cao 
and Li [52] who reported MRA on water solubility, surface cavity area, and 
logP included in their set of alcohols also alkanes and cyclo-alkanes. Similarly 
Mitchell and Jurs [53] besides alcohols included a variety of organic compounds 
having other heteroatoms (halogens, nitrogen). As we will see for our results the 
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standard error has been dramatically decreased, in comparison with the above 
mentioned results, except for correlation for log P where the improvement is 
significant, but not dramatic. In view of the differences in the size of samples 
and the diversity of compounds it should not be surprising that we get smaller 
standard error than others. What is surprising is by how much we have reduced 
the standard error when using optimized descriptors. 

Here are listed r and s for the property studies as reported in ref. [52, 53] and 

in this work: 

Property n N r s Ref. 

CSA 69 2 0.9954 5.20 52 

-log s 60 2 0.994 0.167 52 

log P 54 3 0.992 0.124 52 

In 7 296 12 0.978 0.753 53 

In 7 271 12 0.376 53 

In 7 193 12 0.967 0.559 53 

Property n N r s F Ref. 

CSA 50 3 0.9980 3.599 3842 this work 

SCA* 49 3 0.9985 3.124 5104 this work 

— log S 50 3 0.9961 0.0960 1941 this work 

-log S* 48 3 0.9978 0.0713 3324 this work 

log P 50   • 3 0.9890 0.1156 506 this work 

In 7 50 3 0.9995 0.1827 12124 this work 

Here n is the size of the sample (structures) and N is the number of parameters 
(descriptors) used in the regressions, while F is Fisher ratio. 

CONCLUDING REMARKS 

We have outlined a novel way of deriving powerful structure-property models. 
We consider assigning to shorter paths in molecules variable weight x, to 
be determined during the regression analysis so that one obtains the smallest 
standard error for correlation considered. Even though the approach has been 
demonstrated on several physico-chemical properties of simple chemical struc- 
tures, it is general and applies to analysis of properties of more complex chemical 
compounds. The advantage of the outlined approach is that it yields regressions 
accompanied with considerably smaller standard error than are given by similar 
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studies using standard molecular descriptors. The "flexibility" of the molecular 
descriptor, such as weighted paths used in this study, in contrast to the "fixed" 
molecular descriptors, which are numerically determined one molecular struc- 
ture is known, makes it possible to describe different properties of a same 
set of compounds by the same kind of descriptors. As can be seen from the 
illustration given by analysis of several properties of smaller alcohols different 
properties may require different weighting factors. This suggests that methods 
In which prescribed modification of topological indices are assumed in order to 
describe heteroatoms, such as for example the valence connectivity indices of 
Kier and Hall, have inherent limitations, in that they may be suitable for some 
molecular properties but less suitable for others. Indeed, several authors have 
reported correlations for compounds involving heteroatoms for which a simple 
connectivity index gives a better regression that the corresponding valence 

connectivity index. 
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In this article we (1) outline the construction of a 3-D "graphical" representation of DNA primary sequences, 
illustrated on a portion of the human ß globin gene; (2) describe a particular scheme that transforms the 
above 3-D spatial representation of DNA into a numerical matrix representation; (3) illustrate construction 
of matrix invariants for DNA sequences; and (4) suggest a data reduction based on statistical analysis of 
matrix invariants generated for DNA. Each of the four contributions represents a novel development that 
we hope will facilitate comparative studies of DNA and open new directions for representation and 
characterization of DNA primary sequences. 

INTRODUCTION 

With rapid reporting of DNA sequences derived with 
automated DNA sequencing techniques the problem of 
processing such information became acute. Usual representa- 
tion of the primary sequence DNA is that of a string of letters 
A, G, C, T, which signify the four nucleic acid bases adenine, 
guanine, cytosine, and thymine, respectively. Such sequences 
can be very long, and even the segments of interests when 
comparing DNA of different species can be quite lengthy. 
In Table 1 we listed DNA of human ß globin gene. Its length 
is 1424, and its first exon already involves 92 bases. 
Comparison of such primary sequences, and even their 
fragments having less than 100 bases, could be quite difficult 
for several reasons. Consider the list of the first exon of the 
ß globin gene for eight different species shown in Table 2. 
They all look similar, but at the same time they are all 
sufficiently different. How similar or how different they are 
may depend on how such strings of letters are encoded or 
characterized. The standard procedures consider differences 
between strings due to deletion-insertion, compression- 
expansion, and substitution of the string elements.1"9 These 
approaches have been applied to a variety of problems, from 
the error correcting codes in which Levenshtein has intro- 
duced metrics for string comparisons1 to comparison of DNA 
sequences, comparison of protein sequences, and applications 
in quantitative structure-activity relationship (QSAR).8,9 

Such approaches, that have been hitherto widely used, are 
computer intensive. 

We have recently proposed an alternative approach for 
comparison of sequences that is based on characterization 
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of DNA by ordered sets of invariants derived for DNA 
sequence, rather than by a direct comparison of DNA 
sequences themselves. This is analogous to the use of graph 
invariants (topological indices) for characterization of mol- 
ecules rather than use of information on their geometry and 
types of atoms involved. An important advantage of a 
characterization of structures (be it molecule or DNA) by 
invariants, as opposed to use of codes, is the simplicity of 
the comparison of numerical sequences based on invariants. 
The price paid is a loss of information on some aspects of 
the structure that accompany any characterization based on 
invariants. The loss of information, however, can be in part 
reduced by use of a larger number of descriptors (invariants), 
as has been well illustrated in SAR and QSAR based on 
mathematical descriptors for molecules.10-12 

Graphical representations of DNA that have been devel- 
oped within the past few years13-15 offer a route to one such 
condensation of information coded by DNA primary se- 
quence into a set of invariants. In Figure 1 we show few 
graphical representations of selected DNA as reported by 
Nandy.16 The graphs are obtained by assigning to the four 
directions associated with the positive and the negative x, y 
axes the four nucleic acid bases A, G, C, T, such that A and 
T correspond to the negative x, y axes, respectively, and G 
and C correspond to the positive x and y axes, respectively. 
An advantage of graphical representations of DNA is that it 
allows visual comparisons which are easier to make. One 
should, however, be aware of a loss of information inherent 
in such graphical representations. One of the limitations is 
that graphical form shows the "path" of the "travel" along 
the primary sequence but not the "history" of the travel. 
Hence, we do not know when what parts of the graphical 
path were retraced. At the top of Figure 2 we show a 
graphical representation of the first exon of the human ß 
globin gene, at a higher magnification. The rest of Figure 2 
shows the first exon of ß globin gene of several other species 
for comparison. As we can see upon inspection qualitative 
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Table 1.  DNA of Length 1424 Listing Nucleic Bases in Human 
Beta Globin Gene" 

ATGGTGCACCrcACTCCTCAGGAGAAGTCrCCCGTTACTGCCCTGTGGG 

GCAAGGTGAACCTGGATGAAGTTGGTGGTGAGGCCCrGCCCAGCTTGG 

TATCAACGTTACAAGACAGGTTTAAGGAGACCAATAGAAACTGGGCA 

TGTGGAGACAGAGAAGACTCTTGGGTTTCTGATAGGCACrGACTCTCTC 

TCX:CTATTGCTCTATTTTCCCACCCTTAGCCrGCTGGTGGTCrACCCTTGG 

ACCCAGAGGTrCnTGAGTCCrTTGGGGATCrGTCCACTCCTGATGCrGT 

TATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGC 

CnTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGGCACXrnTGCCA 

CACTGAGTGAGCrGCACTGTGACAAGCTGCACGTGGATCCTGAGAACTT 

CAGGGTGACTCTATGGGACCCTTGATGTTTTCrrTCCCLttCIIirCTATG 

GlTAAGTTCATCTCATAGGAAGGGGACAAGTAACACGGTACACTrTAC 

AATGGCAAACACACGAATGATrGCATCACTGTGGAAGTCTCAGGATCG 

TTTTAGITICI ni'ATTTGCTGTTCATAACAATTGI 111(J111TG1T1AAT 

TCTTGCTITCTrnTrrrrCTTCTCCGCAATTTrTACTATrATACTTAATG 

CCTTAACATTGTGTATAACAAAAGGAAATATCTCTGAGATACATTAAG 

TAACTrAAAAAAAAACnTACACAGTCTGCCTAGTACATTACTATTTG 

GAATATATGTGTGCTrAnTGCATATTCATAATCTCCCTACnTATnTC 

TArCrrATn-CTAATACTTrCCCTAATCTCnTaTTCAGGGCAATAATG 

ATACAATGTATCATCCCTCTTTCCACCATTCTAAAGAATAACAGTCAT 

AATTTCTGGGTTAACGCAATAGCAATATTTCTGCATATAAATATTTCTG 

CATATAAA1TGTAACTCATGTAAGAGGTTTCATATTGCTAATACCACC 

TACAATCCAGCTACCATTCTGCTnTATTTTATGCTTCGGATAAGCCTG 

CATTATTCTCACTCCAAGCTAGCCCCITTTGCTAATCATGTTCATACCTC 

TTATCTTCCTCCCACAGCTCCrGGGCAACGTGCTGGTCTGTGTGCTGGCCC 

ATCACnTGGCAAAGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAA 

AGTGGTGGCrGGTGTGGCTAATGCCCTGGCCCACAAGTATCACTAA 

TATCTrATrrCrAATACTTTCCCTAATCTCTTTCnTCAGGGCAATAATG 

ArACAATGrATCATGCCTCTTTGCACCATTCTAAAGAATAACAGTCAT 

AATTTCTGGGTTAAGGCAATAGCAATATTTCTGCATATAAATATTTCTG 

CATATAAATTGTAACTGATGTAAGAGGTTTCATATTGCTAATAGCAGC 

TACAATCCAGCTACCATTCTGCTTTTATTTTATGGTTGGGATAAGGCTG 

GATrATTCTGACTCCAAGCTAGGCCCTTn'GCTAATCATGTrCATACCTC 

TrATCTrCCTCCCACAGCTCCTGGGCAAOnXiCrGGTCrGTGTGCTGGCCC 

ATCACnTGGCAAAGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAA 

AGTGGTGGCrGGTGTGGCrAATGCCCTGGCCCACAAGTATCACrAA 

"ID HSHBB - beta globin gene sequence extract: exons: 1-92, 
223-445,1296-1424; introns: 93-222, 446-1295. SQ Hshbb.MKl 
- - segment from 62205 to 63628 of HSHBB. 

similarities and differences between exons of different species 
are immediately apparent. 

Mathematical curves can be represented in the form f(x, 
y) = 0, which corresponds to graphical projections of DNA 
of Figure 2, and in a parametric form x = x(t) and y = y(t). 
Clearly there is a loss of information in going from a 
parametric representation of a curve x = x{i) and y — v(t) to 
the analytical representation of the same curve. The f(jc, v) 
= 0 only represents the path, while the former, if the 
parameter / is interpreted as time, gives the history of the 
movement over the path. Equally, there is loss of information 
when a a spatial curve is represented by its projection in the 
(x, y) plane (or any other plane). Hence, two routes for an 

RANDIC ET AL. 

Table 2. First Exon of Beta Globin Gene for Eight Species Labeled 
A-H 

A human beta-globin 92 bases 

ATGGTGCACCTCACTCCTGAGCACAAGTCTGCCGTTACTGCCCTGrGGG 

GCAACCTGAACGTGGATTAAGTTGGTGGTGAGCCCCTGGGCAC; 

B goal alanine beti-globin 86 bases 

ATCCTGACTGCTGAGGAGAAGGCTGCCGTCACCGGCrraGGGGCAAGG 

TGAAAGTGGATGAAGTTGGTGCTGAGGCCCTGGGCAG 

C opossum bcta-hctnoglobfn beta M-gene 92 bases 

ATGGTGCACTTGACTTCTGACGAGAAGAACrGCATCACrACCATCTGGT 

CTAAGGTGCAGGTTCACCAGACTCGTGGTGAGGCCCTTCCCAC 

D gallusgallus beta globin 92 bases 

ATGGTCCACrGCACTGCTGAGGAGAAGCACCTCATCACCGGCCTCTGGG 

GCAAGGTCAATGTGGCCGAATGTCGGGCCCAAGCCCTGGCCAG 

E lemur beta-globin 92 bases 

ATGACTn'GCTGAGTGCTGAGGAGAATGCTCATGTCACCTCTCTGTGGG 

CCAAGGTGGATGTAGAGAAAGTTGGTGGCGAGGCCTTGGGCAG 

F mouse beta-a-globin 93 bases 

ATGGTTGCACCTGACrGATGCTGAGAAGTCTGCTGTCTaTGCCTGTGGG 

CAAACGTGAACCCCGATGAAGTrGGTGGTGACCCCCTGCCCAGC 

G rabbitbcta-globin 90 bases 

ATGGTGCATCTGTCCAGTGAGGAGAAGTCTGCGGTCACTGCCCTGTGGG 

CCAACCTCAATCTCGAAGAAGTrCGTCGTCAGCCCCTCGGC 

H ral beta-globin 92 bases 

ATGCTCCACCTAAaGATCCTGAGAAGGCTACl'GrrAGTGGCCTGTGGG 

CAAACCrCAACCCTCATAATGTTCGCGCTCAGCCCCTCGGCAC 

au 
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Figure 1. Few graphical representations of selected DNA that 
Nandy and collaborators developed. 

improvement of graphical representations of DNA sequences 
appear possible: (1) to consider representation analogous 
to parametric representation of mathematical curves and (2) 
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Figure 2. Graphical representations of the first exon of the human beta globin gene (top), a "detail" of Figure 1 and the remaining beta 
globin genes of Table 2. 

to consider graphical representation of DNA sequence with 
"path" which is in traced in 3D space, rather than a plane. 
In this paper we will limit our attention to this latter problem. 
We will then describe a scheme which generates for a 
graphical spatial representation of DNA a numerical matrix. 
Once we arrive at a matrix representation of DNA we will 
search for suitable matrix invariants to be used for charac- 
terization of DNA. Finally we will consider possible 
condensation of derived numerical characterization of DNA 
in a more compact format. 

3-D REPRESENTATION OF DNA PRIMARY SEQUENCE 

Two-dimensional representation of DNA developed by 
Nandy4 assigned to the four directions defined by the positive 
and the negative x and y coordinate axes to the four nucleic 
bases so that A and G are associated with the ;r-axis and C 
and T with the v axis. This assignment of directions differs 
from the assignment considered by Leong and Morgentha- 

ler,14 who take a move to the right to correspond to A, a 
move to the left is C, an upward move is a T, and a 
downward move is G. 

The nonequivalent directions are created after assignments 
of the first base because then there remains only one site 
that is opposite to the already selected direction; the other 
two sites are at lateral positions. If we could have three 
equivalent directions after the first assignment we would 
avoid considering the multiplicity of alternatives (projec- 
tions). This is possible by using the directions defined by 
vertices of a regular tetrahedron. When looking from its 
center all the four directions toward the four vertices are 
equivalent, hence after selecting one direction the three 
directions remain equivalent. Hence, we will assign to four 
nucleic acid bases the four directions associated with the 
regular tetrahedron. To specify directions we will place the 
origin of the Cartesian (*, y, z) coordinate system in the center 
of a cube (Figure 3) so that the four corners of the cube, 
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Figure 3. The tetrahedral directions assigned to A, G, C, T nucleic 
bases. 

Table 3. Cartesian 3-D Coordinates for Initial Part of the Sequence 
of DNA Nucleic Bases of the First Exon 

X y z X y z 
1 A + 1 -i -1 15 T -1 + 1 + 1 
2 T + 2 0 0 16 C -2 0 + 2 
3 G + 1 + i -1 17 C -3 -1 + 3 
4 G 0 .+ 2 -2 18 T -2 0 + 4 
5 T + 1 + 3 -1 19 G -3 + 1 + 3 
6 G 0 +4 -2 20 A -2 0 + 2 
7 C -1 + 3 -1 21 G -3 + 1 + 1 
8 A 0 +2 -2 22 G -4 +2 0 
9 C -1 + 1 -1 23 A -3 + 1 -1 
10 C -2 0 0 24 G -4 + 2 -2 
11 T -1 + 1 + 1 25 A -3 + 1 -3 
12 G -2 + 2 0 26 A -1 0 -4 
13 A -1 + 1 -1 27 G -3 + 1 -5 
14 C -2 0 0 28 T -2 + 2 -2 

which define the tetrahedral directions, have the coordinates 
(+1, -1, -1), (-1, +1, -1), (-1, -1, +1), and (+1, +1, 
+ 1). To each tetrahedral direction we assign one nucleic base 
as follows: 

(+1,-1. -1)-* A 

(-1,+1,-1)-G 

(-1,-1,+1)-C 

(+1,+1,+1)-T 

The particular assignment is arbitrary, but this has no 
significance since all directions are equivalent. To obtain the 
spatial path associated with the DNA sequence, we move in 
x, y, z space in the direction that the above assignments dic- 
tates. Consider the beginning of the first exon of Table 1: 

ATGGTGC A.... 

The first point of the spatial curve is at point (+1, -1, -1) 
which belongs to A, so directed from the origin. From that 
point we move in the direction assigned to T, (+1, +1, +1), 
which means that all the three coordinates of the position 
A, (+1, -1, -1), have to be increased by +1. We arrive 
then at the point (+2, 0, 0) as the location of T. From here 
we move in the direction defined by (-1, +1, -1) assigned 
to G telling that the first and the third coordinates have 
decreased while the second coordinate has increased. This 
leads to point (+1, +1, -1) as the location of G. Continuing 
in the direction of G we have again to decrease x and z (the 
first and the third coordinates) and to increase y (the second 
coordinate). Thus we come to the point (0, +2, -2). The 
process continues, each time we algebraically add the (AT, y, 
z) coordinates of the new point to that of the last point. 
Continuation of this process is illustrated in Table 3 for the 
two dozen initial nucleic bases of the first exon. In Figure 4 

Figure 4.   Portion of 3-D graphical representation of DNA of 
Table 1. 

we show a portion of 3-D graphical representation of DNA 
of Table 1. 

NUMERICAL CHARACTERIZATION OF SPATIAL 
REPRESENTATION OF DNA 

An important advantage of graphical representations of 
DNA, both 2-D and 3-D, is the possibility to derive numerical 
characterizations for such mathematical objects. One way 
to arrive at numerical characterization of DNA is to associate 
with its graphical representation given by a curve in the space 
(or a plane) a matrix. Once we have a matrix we can use 
matrix invariants arrive at various numerical descriptors, 
rather than the visual description of the DNA sequence. This 
is analogous to the use of matrices associated with molecular 
graphs or molecular structure as a source for construction 
of topological indices rather than using molecular models 
(such as "sticks-and-balls or "space-filling" models) for their 
representation.10 

Formally, there is no difference between a graphical 
"sequence chain" (in 2-D or 3-D space) or an actual polymer 
("atom chain") in the space. Hence, we can transfer 
mathematical methods used for the characterization of 
molecules in structure-property and the structure-activity 
studies to numerical characterization of 3-D representations 
of the primary DNA sequence. This has been considered 
recently by Randic and collaborators17 for 2-D graphical 
representation of DNA. 

We should mention that one can also arrive at numerical 
descriptors that may be specific and sensitive to graphical 
form of a DNA without necessarily resorting to matrices. 
Thus, for example, Raychaudhury and Nandy18 considered 
several geometrical parameters of DNA curves, such as, for 
example, end-to-end distance as DNA descriptors. Matrices, 
however, offer additional descriptors and richer characteriza- 
tion and can be manipulated by a computer, and one can 
take other advantages of linear algebra, rather than being 
confined to ordinary geometry. 

Search for novel descriptors may be an endless project, 
just as this has been the case with mathematical descriptors 
that continue to be constructed for molecules. However, the 
art is in finding useful descriptors, and those that have 
plausible structural interpretation, at least within the model 
considered. Matrices have an additional advantage: they 
allow one to construct additional matrices by combining 
elements of different matrices as components. In this way 
one can arrive at additional descriptors for DNA. In this 
report we will confine our interest particularly to the graph 
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Figure 5. Conformations of eight-atom chain embedded on a 
graphite lattice ordered according to decreasing values of the leading 
eigenvalue of D/D matrix. 

theoretical distance matrix and the Euclidean distance matrix 
for characterization of graphical forms of DNA. 

MATRICES INVOLVING DISTANCES 

The input information in a graph distance matrix19'20 is 
solely confined to the information on the connectivity of the 
structure (system). However, when a graph is embedded in 
a space it assumes a fixed geometry. Then, in addition to 
the graph theoretical distance between a pair of vertices, we 
can also compute the Euclidean distances between the same 
pair of vertices. The Euclidean and the graph theoretical 
distances can be combined into a single distance/distance 
matrix by taking the quotient of the corresponding matrix 
elements.21,22 Collection of such quotients for all pairs of 
vertices leads to the so-called D/D matrix. Matrices con- 
structed in this way proved very promising as a tool for 
characterization of structures embedded in 3-D space. The 
normalized leading eigenvalue kiln of a D/D matrix offers 
a measure of the degree of folding of a chainlike structure 
or a curve. In Figure 5 we illustrated configurations of an 
eight-atom Cg chains embedded on a graphite lattice. Under 
each skeleton is given the normalized kiln of D/D matrix. 
As we see the largest eigenvalue (Aj/8 = 0.7903) is associated 
with the least bent all-trans configuration of C8, and the 
smallest eigenvalue (Ai/8 = 0.6472) belongs to the highly 
folded isomer TCCCT. T and C label stand for trans and eis 
conformations of three consecutive CC bonds (consult Table 
4 for structures belonging to different labels). For chains of 
seven CC bonds even a smaller eigenvalue than 0.6472 is 

Table 4. Leading Eigenvalues for D/D Matrices of Eight-Atom 
Chains Embedded on a Graphite Lattice and the Leading 
Eigenvalues of the Corresponding Line Adjacency Matrices 

conformer A|/n of D/D matrix X\ln of line adjacency matrix 

TTTTT 0.7903 0.8571 
TTTTC 0.7695 0.7191 
TTTCT 0.7613 0.5916 
TTCTT 0.7541 0.5208 
CTTTC 0.7506 0.5858 
TTCTC 0.7451 0.4688 
TCTCT 0.7448 0.4019 
TCTTC 0.7365 0.4748 
CTCTC 0.7336 0.3836 
TTTCC 0.7250 0.5793 
TCTCC 0.7112 0.3773 
TTCCT 0.7021 0.4464 
CTTCC 0.6997 0.4533 
TCCTC 0.6966 0.3538 
CCTCC 0.6786 0.3375 
TTCCC 0.6654 0.4426 
CTCCC 0.6587 0.3347 
TCCCT 0.6472 0.3347 

possible. It belongs to the hypothetical all-cis configuration 
CCCCC, the projection of which on hexagonal lattice gives 
a regular hexagon. In this structure the first and the last CC 
bond of Cg would overlap, giving for X\ = 4.6388, which 
when normalized becomes Ai/8 = 0.5798. The relative 
magnitudes of kiln and the shape of corresponding confor- 
mations fully supports the interpretation of the normalized 
eigenvalue of D/D matrices as an index of the folding of a 
structure. 

A single descriptor, even though it may be instructive, 
offers but a limited characterization for a large system. Often 
additional descriptors are needed. They can be constructed 
by considering the so-called "higher order" D/D matrices.23 

These matrices are obtained by taking the powers of the 
quotients of two distances, rather than just using the quotients 
of the distances themselves. As a result we can derive for a 
geometrical (graphical-spatial) representation of DNA an 
algebraic characterization based on set of invariants, obtained 
by calculating the leading eigenvalue of the set of "higher 
order" matrices "D/"D. We will continue to use simplified 
notation D/D even though the D in the numerator stands for 
the Euclidean distances and the D in the denominator stands 
for graph theoretical distances. 

D/D MATRICES FOR DNA 

The Euclidean distance between bases in a 3-D graphical 
model of DNA are obtained from the 3-D coordinates of 
the nucleic bases listed in Table 3 using {(x, - Xj)2 + (y\- 
yi)2 + (Zi _ Zj)2}"2, where xx, y„ z; and xs, yjt z} are the 
Cartesian coordinates of the points considered. To obtain the 
D/D matrix first we have to normalize the distance scale so 
that the Euclidean distance between adjacent vertices equals 
1, not ^3 (as a result of taking the side of cube to be equal 
1). Then we have to divide each Euclidean distance with 
the number of bonds separating the two vertices to obtain 
the desired quotient of the two distances. In Table 5 we 
illustrate a part of the D/D matrix (corresponding to nine 
initial bases of DNA primary sequences of exon 1 of human 
ß gene). The numerator combined with factor l/\/3 gives 
the Euclidean distance between vertices i, j when the 
separation between adjacent bases is assigned distance 1, and 
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Table 5.  Portion of the D/D Matrix for the First Exon of DNA of Table 1 

0 2/273 
1 
0 

7l 1/373 
V12/2 73 
1 
0 

4/4 V 3 
7l 1/373 
2/273 
1 
0 

727/573 
724/473 
7l 1/373 
2/273 
1 
0 

78/673 
7l9/573 
78/473 
73/373 
2/2 73 
1 
0 

711/773 
712/673 
73/573 
0 
73/373 
2/273 
1 
0 

RANDIC ET AL. 

78/873 
7iin73 
2/673 
73/573 
78/473 
7ll/373 
2/273 
1 
0 

Table 6. Numerical Values for the Initial Portion of D/D Matrix and "Higher Order" D/D Matrices" 

0 1 0.57735 0.63828 0.57735 0.60000 0.27217 0.27355 0 20412 
0.33333 0.40741 0.33333 0.36000 0.07407 0.07483 0.04167 

' 0.11111 0.16598 0.11111 0.12960 0.00549 0.00560 0.00174 
'0.12345 0.02755 0.12345 0.01680 3.011-5 3.135-5 3.014-6 
.1.524-4 7.590-4 1.524-4 2.821-4 9.064-10 9.831-10 9.085-12 

0 1 1 0.63828 0.70711 0.50332 0.33333 0.27355 
0.40741 0.50000 0.25333 0.11111 0.07483 
0.16598 0.25000 0.06418 0.12345 0.00560 
0.02755 0.06250 0.00412 1.524-4 3.135-5 
7.590-4 0.00391 1.696-5 2.323-8 9.831-10 

0 1 0.57735 0.63828 0.40825 0.20000 0.19245 
0.33333 0.40741 0.16667 0.04000 0.03704 
0.11111 0.16598 0.02778 0.00160 0.00137 
0.12345 0.02755 7.716-4 2.560-6 1.882-6 
1.524-4 7.590-4 5.954-7 6.554-12 3.541-12 

0 1 0.57735 0.33333 0 0.20000 
0.33333 0.11111 0.04000 
0.11111 0.12345 0.00160 
0.12345 1.524-4 2.560-6 
1.524-4 2.323-8 6.554-12 

0 1 0.57735 0.33333 0.40825 
0.33333 0.11111 0.16667 
0.11111 0.12345 0.02778 
0.12345 1.524-4 7.716-4 
1.524-4 2.323-8 5.954-7 

0 1 0.57735 0.63828 
0.33333 0.40741 
0.11111 0.16598 
0.12345 0.02755 
1.524-4 7.590-4 

0 1 0.57735 
0.33333 
0.11111 
0.12345 
1.524-4 

0 1 
0 

■ The first row is each box is the numerical value of D/D element, while the successive rows correspond to 2D/2D, 'DI'O, ,D/'D, and 16D/I6D, 
respectively. 

the denominator is the graph theoretical distance between 
the same two vertices. 

The "higher order" D/D matrices are constructed by raising 
the elements of the D/D matrix (Table 5) to an ever 
increasing power. In Table 6 we show the corresponding 
entries of the higher order D/D matrices which are grouped 
into a single matrix where each row gives the numerical 
values corresponding to matrix elements of D/D, ^^D, 4D/ 
4D, 8D/8D, and 16D/I6D. As we can see all matrix elements 
that are smaller than one decrease as the exponents of the 
power increase. If one continues to raise exponents to even 
higher powers all the elements of "D/"D matrix that are 
different from one would soon become very small and could 
be neglected. Hence, in the limit as n — °° they are zero, 
and the resulting D/D matrix reduces to a binary matrix. In 
Table 7 we show the initial part of the limiting binary matrix 
°°DI°°D for the first exon of DNA of Table 1 again displaying 
only a 9 x 9 section. As we can see, all the elements above 

Table 7. Initial Portion of the Limiting (Symmetrical) Matrix of 
"D/"D Matrix Truncated at n = 16" 

1 2      3      4 5 6 7 8 9 10 11 12 
1      0 1 
2      1 0      1      1 
3 1      0      1 
4 1      1      0 1 
5 1 0 1 
6 1 0 1 
7 1 0 1 
8 1 0 1 
9 1 0 1 1 

10 1 0 1 
11 1 1 0 1 
12 1 0 

"Only zeros at the dia gonal position are sh own. 

the main diagonal of the limiting matrix corresponding to 
adjacent sites in the DNA chain are necessarily equal to 1. 
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Figure 6. Conformations of line-adjacency graphs of eight-atom 
chains embedded on a graphite lattice ordered according to 
decreasing values of leading eigenvalue of line adjacency matrix. 
The order of isomers in Figure 5 and this figure is different. 

However, entry 1 appears in addition at all sites associated 
with a repetition of the same nucleic base in the primary 
DNA sequence. For the first exon of Table 1 this happens 
at sites 3, 4 and 9, 10, and so on. When constructing the 
3-D graphical model at these sites we continue to move in 
the same direction, and the corresponding segment of the 
3-D graphical model forms a line segment. Hence, the 
elements of the limiting matrix indicate the so-called "line 
adjacency". The limiting matrix, referred to as the "line 
adjacency matrix",24 is known in Graph Theory as the 
adjacency matrix of the Menger graph of a configuration.25 

For graphs of Figure 5 we show the corresponding Menger 
graphs. Their "line adjacency" matrix represents the limiting 
°°D/°°D matrices. They are also embedded in a plane because 
they have been derived from already embedded graphs. 

A comparison of Figures 5 and 6 shows that line adjacency 
matrix carries different information than the D/D matrices 
from which it was algebraically constructed. The graphs in 
Figure 5 are ordered according to descending magnitudes 
of the normalized leading eigenvalue of the adjacency matrix, 
and the graphs in Figure 6 are ordered according to the 
leading eigenvalue of the limiting matrix. The resulting order 
is different from the order induced by the leading eigenvalue 
of D/D matrix. The leading eigenvalue of the limiting matrix 
can be viewed as an index of flexibility (or stiffness) of a 
structure, at least in some special cases.24 Apparently 
structures with longer "line" segments have larger X\ or k\l 
n. When this is "translated" to the graphical representation 
relating to DNA sequences, the occurrence of "straight" 
segments corresponds to recurrence of the same base in a 
sequence repeatedly. Hence, DNA sequences with a larger 

Figure 7. Projection of a portion of 3-D graphical representation 
of DNA of Figure 4 on the (x, y), (x, z), and (y, z) coordinate planes. 

number of repeating bases and longer such repeating seg- 
ments will have a larger leading eigenvalue of the limiting 
binary matrix ~D/°°D. 

PROJECTIONS OF 3-D SPATIAL SEQUENCE 
REPRESENTATION 

Spatial curves can be projected on coordinate planes (x, 
y), (x, z) or (y, z), or any plane, for that matter. The 
projections of 3-D spatial curves on each of the three 
coordinate planes is quite simple when coordinates of all 
the points are known. All that is needed is to ignore the 
coordinate perpendicular to the plane of the projection. 
Hence, for the first nucleic base of Table 1, A, with spatial 
coordinates (+1, -1, -1) we have for the projection on the 
x, y plane x = 1 and y = -1. For the projection of the same 
base on the x, z plane we have x = 1 and z = -1, while for 
the projection of the first nucleic base on the y, z plane we 
obtain y = -1 and z = -1. Hence, the projection coordinates 
can be read directly from Table 2 by ignoring one column, 
depending on the projection considered. In Figure 7 we show 
the three projections for the first 12 bases of exon of DNA 
of Table 1. It is interesting to observe that projection of the 
spatial 3-D representation of DNA on the (x, y) coordinate 
plane is identical with the 2-D graphical representation of 
Nandy26,27 already depicted at the top of Figure 2. Hence, 
our 3-D visual representation of DNA contains automatically 
the 2-D graphical representation of Nandy as one of its 
projections. This, however, is not surprising, because if we 
project the four vertices of the tetrahedron having the 
coordinates (+1, -1, -1), (-1, +1, -1), (-1, -1, +1), 
(+1, +1, +1) on the (JC, y) plane we obtain points (+1,-1), 
(-1, +1), (-1, -1), (+1, +1). The first set of points is 
associated with directions for A, G, C, T in 3-D as outlined 
in this paper, and the second set of points is associated with 
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directions for A, G, C, T in 2-D that coincides with that of 
Nandy if we rotate the coordinate system by -135°. 

Similarly we find that the projection of the spatial 3-D 
representation of DNA on the (x, z) coordinate plane is 
identical with the 2-D graphical representation of Leong and 
Morgenthaler.14 Hence, our 3-D visual representation of DNA 
contains alternative 2-D graphical representations as its 
projections. We may add that there is third yet the projection 
of 3-D graphical representation of DNA, the projection on 
the plane (y, z), that corresponds to the assignment of the 
four directions defined by the positive and the negative x 
and y coordinate axes to the four nucleic bases so that A 
and T are associated with the jc-axis and C and G with the 
y axis. As we see from Figure 7 this projection differs from 
those of Nandy, Leong, and Morgenthaler and may have its 
own merits. Finally, we should add that one can consider 
projections of 3-D graphical curves of DNA on planes other 
than coordinate planes. While projections offer convenience 
of 2-D representation, all these projections are associated 
with some loss of information associated with the projection 
process. 

Although the three projection paths of the 3-D representa- 
tion of DNA are different, their limiting matrices are 
identical. This can be understood, because the form of the 
limiting matrix depends only on the repetition of same 
nucleic base in the primary sequence of DNA and that is 
independent of graphical representation of DNA and the 
projection process. 

MATRIX INVARIANTS OF DNA 

The search for a matrix representation of DNA primary 
sequence was motivated by desire to have numerical descrip- 
tors for DNA that are sequence invariants. Numerical 
characterization of DNA primary sequences will make 
comparisons of different DNA sequences much simpler than 
comparison based on alphabet symbols or the corresponding 
codes. Moreover, it will lead to quantitative measure of 
similarity and may open a novel method of characterizations 
for the same set of sequences. Matrices not only offer various 
inherent invariants as a tool for such comparisons but also 
allow one to consider modifications of matrix elements and 
in this way may further enrich the tool for comparative study 
of DNA. In this report we will continue to confine our 
attention to D/D matrix of DNA, but it will be clear that the 
outlined schemes are equally valid not only for the "higher 
order" D/D matrices but also for other matrices that one can 
associate with DNA. 

Among numerous matrix (and graph) invariants we will 
consider first the average matrix element, which in the case 
of the graph theoretical distance matrix, except for normal- 
ization, is related to the Wiener number, a well-known graph 
theoretical invariant.28,29 Alternatively one can consider the 
average row sum, which differs from the average matrix 
element and the Wiener number again only by normalization 
factor. The average row sum has an advantage, particularly 
when the individual row sums do not differ widely, because 
it may suggest an approximate value for the leading 
eigenvalue of the matrix. According to the Frobenius-Perron 
theorem of linear algebra the largest and the smallest row 
sums represent the upper and the lower bounds, respectively, 
for the leading eigenvalue (Ai) of a symmetric matrix.30 In 

Table 8. The Upper Bounds, the Lower Bounds, the Leading 
Eigenvalue, and the Average Row Sums for Truncated Matrices of 
DNA 

row sum max row sum mm      row sum average 

1 
1 

0 
1 

0 0 0 

3 2 1.732051 1.57735 1.718233 
4 3 2.629245 2.21563 2.607815 
5 3.63828 3.238402 2.79298 3.203444 
6 4.34539 3.869193 3.39298 3.843783 
7 4.84871 4.242930 3.09442 4.178791 
8 5.18204 4.455833 2.71756 4.335833 
9 5.45559   4.737987 3.49400 4.508241 

Table 9. Average Matrix Element as 
Truncated D/D Matrix 

a Function of Gradually 

x, y, z               x, y x, z z.y 
1 0 0 0 0 
2 0.86603 0.70711 0.70711 0.70711 
3 1.21424 1.07298 0.62854 1.07298 
4 1.74711 1.52917 1.06066 1.52917 
5 2.00204 1.82479 0.90510 1.82479 
6 2.34274 2.16431 1.02138 2.16431 
7 2.35303 2.25833 1.23982 2.07952 
8 2.23832 2.11133 1.21440 1.97442 
9 2.25630 2.13265 1.24376 1.89102 

10 2.46497 2.24965 1.54132 1.94565 
11 2.51032 2.19350 1.71264 2.03576 
12 2.55077 2.23357 1.80319 2.00313 
13 2.47111 2.15924 1.75222 1.92259 
14 2.51231 2.20976 1.79277 1.89779 
15 2.50930 2.12249 1.84061 1.92616 
16 2.63879 2.14294 2.01366 2.04107 

Table 8 we have listed the upper bounds, the lower bounds, 
and the leading eigenvalue for truncated sequence of DNA 
for n = 1 to n = 9. Observe how closely the average row 
sum (given in the last column) approximates the leading 
eigenvalue, particularly for shorter segments of the matrix. 

The leading eigenvalue of a matrix is an important matrix 
invariant. We have already mentioned that Xiln of the D/D 
matrix is an index of the folding of a structure, and X\ln of 
the limiting matrix can be viewed as an index of the 
flexibility of a system. Similarly, the X\ of the adjacency 
matrix and k\ of the path matrix represent alternative indices 
of (molecular) branching,31-32 while X\ of the D/DD matrix, 
where DD represents the detour matrix,33-34 is an index of 
the cyclicity of a system.35'36 The average row sum may give 
a similar insight into a system as the leading eigenvalue. 
The average row sum, however, can be easily computed, 
while computation of eigenvalues of large matrices is more 
involved, and, of course, the DNA sequences could be very 
long. For example, the 1424 bases of Table 1, of which we 
considered the first exon only (92 bases), are a part of 73 326 
base pairs.37 

The average row sum, and also the average matrix element 
of a D/D matrix, will depend on the size of the matrix as is 
seen from Table 9 where under the heading x, y, z we have 
listed the average matrix element as a function of n, the size 
of the matrix at truncation of DNA sequence. The same was 
true for the leading eigenvalue of the truncated DNA 
sequences (Table 8). 

The dramatic condensation of data illustrated above may 
be excessive for some more ambitious comparisons of DNA 
sequences. In such cases, one can, in addition to D/D matrix, 
also consider the leading eigenvalue or the average element 
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Table 10. Leading Eigenvalue of the D/D Matrix and Higher Order 
D/D Matrices for n = 2 to « = 20 Showing the Convergence for X\ 
and the Limit for n — °° 

power A, power a. 
1 4.73797 12 2.35418 
2 3.54855 13 2.35143 
3 2.99558 14 2.34966 
4 2.71223 15 2.34851 
5 2.55903 16 2.34777 
6 2.47313 17 2.34729 
7 2.42349 18 2.34696 
g 2.39409 19 2.34675 
9 2.37629 20 2.34661 

10 2.36537 limit 2.34631654447882 
11 2.35850 

of 2D/2D matrix, of 3D/3D matrix, and so on. A dozen "D/"D 
matrices can in this way offer a sufficient number of 
invariants for more extensive comparisons of DNA se- 
quences. In Table 10 we report the leading eigenvalue for a 
9x9 "D/"D matrices for n = 1 to n = 20, which illustrate 
the "profile," the sequence of descriptors, for the particular 
fragment of DNA. As n increases the value of the leading 
eigenvalue X\ converges to a limiting value. The limit can 
be easily computed as it represents the leading eigenvalue 
of the binary matrix of the same size (here 9 x 9). Using so 
constructed "profiles" the calculation of the similarities of 
DNA sequences is transformed into a calculation of similari- 
ties of the corresponding numerical sequences of DNA 
descriptors, the task which is not computer intensive if 
compared to the similar studies using alignment methodolo- 
gies. Of course, it yet remains to be investigated which set 
of invariants may offer optimal characterization for DNA 
comparisons and how sensitive are such "profiles" to minor 
changes in DNA composition. In a recent study in which 
the DNA sequence was characterized by average distances 
between various nucleic acid bases it was shown that the 
"distance profiles", constructed analogously to the here 
reported "leading eigenvalue profile", is very sensitive 
already when a single nucleic base has been changed (i.e., 
the case of mutation).41 

CONCLUDING REMARKS 

In this article we (1) outlined a construction of a 3-D 
"graphical" representation of DNA primary sequences, 
illustrated on a portion of the human ß globin gene; (2) 
described a particular scheme that allows 3-D spatial 
representation of DNA to be transformed into a numerical 
matrix representation; (3) illustrated derivation of a set of 
matrix invariants from the matrix representation of DNA; 
and (4) suggested a relative simple data reduction based on 
statistical analysis of generated DNA matrix invariants. Each 
of the four contributions, in our view, not only will facilitate 
comparative studies of DNA but also open possibilities for 
further developments of condensation of primary DNA 
sequence information. The outlined 3-D representation, for 
example, can be modified by use of the sequential labels as 
the fourth coordinate in order to avoid 3-D spatial curves 
overlap itself. The numerical matrix characterization offers 
many alternatives, from the use of different distance measures 
to the use of different matrix forms. In addition to the 
possibility of selecting matrix invariants, which is almost 
unlimited, we have the possibility of selecting different 

matrices to start the process of condensation of data. Hence, 
we anticipate here an expansion, if not explosion, of 
alternatives that may parallel the expansion of the topological 
indices proposed for the characterization of molecular 
structure-property-activity relationships and introduction of 
novel matrices for chemical graphs. The most significant 
aspect considered in this contribution may turn out to be the 
data reduction step when a large number of input data are 
condensed into a substantially smaller set of derived param- 
eters. This important aspect of DNA data analysis has only 
recently received some attention,38-40 but, in view of the 
exponential growth of the automated DNA sequencing 
techniques, the problem of digesting novel information, no 
doubt, will require novel ideas that go beyond just listings 
of nucleic bases of a primary sequence. The construction of 
sequence "profiles", illustrated in this report, may be one 
way of data reduction, in addition to the recently proposed 
grouping of data for different nucleic acids separately, which 
allow large (n x n) matrices (where n can run into the 
hundreds or the thousands) to be condensed to small (4 x 
4) matrices where the rows and the columns are associated 
with the four nucleic bases A, G, C, and T. Needless to say 
that the outlined approach is suitable for characterization of 
local fragments of DNA, which is precisely how one may 
look on the truncated DNA fragment considered in this work. 
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Five QSPR models of alkanes were reinvestigated. Properties considered were molecular surface-dependent 
properties (boiling points and gas Chromatographie retention indices) and molecular volume-dependent 
properties "(molar volumes and molar refractions). The vertex- and edge-connectivity indices were used as 
structural parameters. In each studied case we computed connectivity indices of alkane trees and alkane 
line graphs and searched for the optimum exponent. Models based on indices with an optimum exponent 
and on the standard value of the exponent were compared. Thus, for each property we generated six QSPR 
models (four for alkane trees and two for the corresponding line graphs). In all studied cases QSPR models 
based on connectivity indices with optimum exponents have better statistical characteristics than the models 
based on connectivity indices with the standard value of the exponent. The comparison between models 
based on vertex- and edge-connectivity indices gave in two cases (molar volumes and molar refractions) 
better models based on edge-connectivity indices and in three cases (boiling points for octanes and nonanes 
and gas Chromatographie retention indices) better models based on vertex-connectivity indices. Thus, it 
appears that the edge-connectivity index is more appropriate to be used in the structure-molecular volume 
properties modeling and the vertex-connectivity index in the structure-molecular surface properties modeling. 
The use of line graphs did not improve the predictive power of the connectivity indices. Only in one case 
(boiling points of nonanes) a better model was obtained with the use of line graphs. 

INTRODUCTION 

This study was motivated by two recent papers. In one 
Estrada and Rodriguez1 have shown that the edge-connectiv- 
ity index produced the best single-variable QSPR models 
for five out of seven physicochemical properties of octanes. 
In another Gutman et al.2 have reported that the use of line 
graphs, in some cases, significantly improves the predictive 
power of topological indices. We decided to test both of these 
results by using them to reinvestigate several QSPR models 
from the literature. We also decided to test further the result 
that in many cases the optimum exponent of the vertex- and 
edge-connectivity indices is not -0.5.3 Since we believe, 
along with many others,4 that the QSPR modeling will 
become the tool of choice for many chemists-at-large in times 
to come, it seems to us worthwhile to search for the most 
reliable framework to carry out this kind of modeling. The 
present study is an attempt in this direction. It should also 
be noted that throughout this paper we will use the chemical 
graph theoretical concepts and language5 only to simplify 
the analysis. 

Recently, line graphs have been increasingly used in 
structure-property modeling,2,6"" although they may be 
traced back to van't Hoff, who used the line graphs of the 
structural formulas for representing simple organic com- 
pounds. Line graphs are described in a monograph on 

* Reported in part at the One Day Symposium on Applied Mathematical 
Chemistry, held on May 3,1999, at the Natural Resources Research Institute, 
University of Minnesota, Duluth. 

* On leave of absence from The Rugjer BoSkovid Institute, HR-10001 
Zagreb, The Republic of Croatia. 

chemical graph theory12 and under the name bond graphs 
were used in deriving the molecular complexity indices.13 

The line graph L(G) = L of graph G is a graph derived from 
G in such a way that the edges in G are replaced by vertexes 
in L. Two vertexes in L are adjacent if the corresponding 
two edges in G are incident, that is, have a vertex in common. 
The construction of a line graph from a tree is shown in 
Figure 1. 

The line graph L is usually a more complex structure than 
the corresponding graph G. Only in the case of unbranched 
cycloalkanes, represented by cycles, L and G coincide 
because in cycles the number of vertexes V and the number 
of edges E are identical. For n-alkanes, represented by the 
hydrogen-depleted chains, L is less complex than G because 
it has one less vertex than G, since in chains E = V - 1. 

The numbers of vertexes V and edges E of the line graph 
L and the corresponding graph G are related by 

V(L) = E(G) (1) 

£(L) = (1/2) X 42(G) - £(G) (2) 

where dt (i = 1, 2,..., V) are degrees of vertexes in G. These 
relations can be easily confirmed by inspecting G and L 
depicted in Figure 1. 

Using the equation 

I 42(G) = M, (3) 

where M{ is called14 16 the first Zagreb-group index,17'18 and 

10.1021/ci990119v CCC: $19.00     © 2000 American Chemical Society 
Published on Web 04/07/2000 
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Figure 1.  Construction of line graph L from tree T depicting 2,4-dimethylhexane 

introducing (3) into (2), we obtain the expression i 

E(L) = (1/2)M, - £(G) (4) 

Gutman and Estrada derived the same expression," but the 
factor 1/2 is missing in their expression. From (4) follows 
an amusing result that the M\ index of the graph is simply 
equal to twice the number of vertexes and edges in the line 
graph: 

M, = 2[£(L) + £(G)] = 2[£(L) + V(L)]        (5) 

SIMPLE MODIFICATION OF THE VALENCE VERTEX- 
AND EDGE-CONNECTIVITY INDICES 

Vertex-Connectivity Index. The standard definition of 
the vertex-connectivity index is20 

X= X [d(v,)d{Vj)Y 
edges 

0.5 
(6) 

where d{v) is the degree of the vertex v-, and [d(v) d(v,)Yai 

may be considered as the weight of the /-;' edge.21 The 
summation in (6) goes over all edges. The vertex degree d{v,) 
is equal to the number of vertexes adjacent to vertex i in a 
graph G. Any two vertexes in G are adjacent if there are 
edges connecting them. 

Equation 6 is open to modification because the choice of 
edge weights ld(vi) d(Vj)]~0-5 was based on one possible 
solution to the inequalities based on ordering graphs.20 There 
are also other choices of weights possible. Hence, the 
quantity [d(vi) diuj)]'0-5 can be replaced by [d(vd d(Vj)]1, 
where k is a variable exponent that can be varied in any 
desired range of values, and (6) becomes3 

edges 
**o (7) 

Edge-Connectivity Index. The standard definition of the 
edge-connectivity index is similar to the definition of the 
vertex-connectivity index, the only change being in using 
the edge degrees d(e,) instead of vertex degrees rf(v,-):22 

I      [</(«,) die}] 
adjacent edges 

-0.5 
(8) 

The edge degree die) is equal to the number of edges 
adjacent to edge i in a graph G. Any two edges in G are 
adjacent if they meet at the same vertex. Because every edge 
in G connects two vertexes, the edge degree die) can be 
expressed in terms of their degrees as follows:22 

d{e) = d(v,) + divß - 2 (9) 

This expression can be used to assign the degrees of edges 
in G. In Figure 2 we give the vertex and edge degrees in 

V     \3 3/     \3 

Figure 2. Vertex degrees (digits at each vertex) and edge degrees 
(digits at each edge) in tree T and the corresponding line graph L 
from Figure 1. 

tree T and the corresponding line graph L depicted in Figure 
1. 

A simple way to assign the degrees to edges in graph G 
or its line graph L is to count all adjacent bonds of a bond 
for which we wish to determine the edge degree. This 
procedure is illustrated in Figure 3. 

Equation 8 can also be modified because the quantity [die) 
diej)]~0$ was the result of mimicking the original definition 
of Randic for the vertex-connectivity index.20 Consequently, 
[diet) diej)]'0-5 can be replaced by [die) die,)]k, where A: is a 
variable exponent that can be varied in any desired range of 
values. Thus, (8) converts into the following equation: 

« =      I       [die^diej)]" 
adjacent edges 

k*0 (10) 

At this point it should also be noted that the edge- 
adjacency matrix23 of the graph G, EA(G), is identical to the 
vertex-adjacency matrix23 of the line graph L of G, VA(L): 

bA(G)=vA(L) (11) 

This must be so because the edge degrees in G are identical 
to the vertex degrees in the corresponding line graph L (see 
Figure 2). The consequence of (11) is that the edge- 
connectivity index of G is identical to the vertex-connectivity 
index of the corresponding line graph L:19 

«(G) = z(L) 

RESULTS AND DISCUSSION 

(12) 

We studied five structure-property models that were 
already reported in the literature. This was done on purpose 
because our aim was to compare the performance of the 
obtained models with those already published. The properties 
considered were boiling points of octanes and nonanes and 
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(1)     Tree T and its line graph L 

(2)     Assigning degrees to edges in T and L 

© . 

Z^Z^t. Z^Zl 
Figure 3.  A simple procedure for assigning the degrees to edges 
in tree T and the related line graph L. 

molar volumes, molar refractions, and retention indices of 
alkanes. Boiling points and retention indices are typical 
"surface"-dependent properties, while molar volumes and 
molar refractions are "molecular volume"-dependent proper- 
ties. In all cases molecules were depicted as graphs and 
corresponding line graphs. The standard deviation S was used 
as a criterion for the comparison of the models. The optimum 
parameter k in (7) and (10) was determined using the 
procedure described in our earlier report;3 that is, the 
parameter k was taken to be optimum when the value of 5 
reached a minimum. 

Boiling Points of 18 Octanes. We first considered 
structure-boiling point models for isomeric octanes, on the 
basis of their vertex-connectivity indices computed for octane 
trees. The best model was obtained for k = -1.15. The 
regression equation is given by 

bp = 65.14(±7.29) + 28.87(±4.31)xM15]    (13) 

n=18      R = 0.859      5 = 3.24      F = 45 

where bp is the normal boiling point, R the correlation 
coefficient, S the standard deviation, F the Fisher ratio, and 
^[-i.i5] a short-hand notation for the vertex-connectivity index 
computed using the value of -1.15 for the exponent in (7). 
The notation xlk] W1H De used throughout this paper. The 
improvement over the model based on k = -0.5 is rather 
slight: 

bp = 3.14(±19.23) + 30.33(±5.27)x1-0-501    (14) 

n=18       R = 0.821       5=3.60      F = 33 

The above models are identical to structure-boiling point 
models for octanes published elsewhere.3'24 Randic et al.25 

have also observed that the modified vertex-connectivity 
index produces better structure-boiling point models of 
lower (C2-C7) alkanes than the standard version of the 
vertex-connectivity index. However, they have found that 
the exponent value of -0.33 leads to the best models of three 
alternatives they considered (k = -0.5, -0.33, -0.25). 

The same analysis as with the vertex-connectivity index 
was also carried out with the edge-connectivity index. The 
best model was obtained for k = -0.30. The regression 
equation is given by 

bp= 179.75(±11.12)- 13.66(±2.30)e1-0-301   (15) 

n=18      R = 0.830      5=3.52      F = 35 

where e[~0,301 is a short-hand notation for the edge-connectiv- 
ity index computed using the value of -0.30 for the exponent 
in (10). The notation e1*1 will be used throughout this paper. 
The improvement over the model based on k = -0.5 is 
considerable 

bp= 162.76(±29.94) - 14.52(±8.85)eI_0-501  (16) 

n=18      R = 0.379      5=5.84      F=3 

but the model in (15) is not as good as the model in (13), 
though it is somewhat better than the model in (14). This 
result supports the work by Estrada and Rodriguez,1 because 
one of the two physicochemical properties of octanes for 
which the use of the edge-connectivity index did not produce 
the best single-variable QSPR model was the boiling point, 
the other being the heat of vaporization. Estrada and 
Rodriguez pointed out that to describe these properties 
correctly it is necessary to take into account long-range 
contributions in the edge-connectivity index.9 In both these 
cases better single-variable models were obtained using the 
Hosoya Z index.26 

Finally, we considered octane line graphs. Since #W(L) 
= e[<1((j), we derived structure-boiling point models based 
on the edge-connectivity index em(L). The best model was 
obtained for k = -0.675. The regression equation is given 
by 

bp = 167.56(±9.03) - 20.17(±3.37)et"0-675)(L)     (17) 

n=18      R = 0.831       5=3.51       F = 36 

where et_0-675,(L) is a short-hand notation for the edge- 
connectivity index computed for a line graph using the value 
of -0.675 for the exponent in (10). This notation will be 
used throughout this paper when the models based on line 
graphs and edge-connectivity indices are discussed. 

The model in (17) is practically the same as the model in 
(15) on the basis of octane trees and the edge-connectivity 
index. The improvement over the model based on k = -0.5 
is visible: 

bp= 138.83(±5.80)- 6.11(±1.39)cl_0-50](L) (18) 

7i=18      R = 0.740      5=4.24      F = 19 

However, this model is much better than the corresponding 
model in (16) on the basis of octane trees. 
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Boiling Points of 35 Nonanes. The same kind of analysis 
as in the case of modeling boiling points of octanes is carried 
out for nonanes. We first considered structure-boiling point 
models for isomeric nonanes, on the basis of their vertex- 
connectivity indices computed for nonane trees. The best 
model was obtained for k = -1.25. The regression equation 
is given by 

bp = 94.23(±6.68) + 25.58(±3.97)x'"'-251    (19) 

n = 35       R = 0.746      5=4.13       F=41 

The improvement over the model based on k = -0.5 is again 
rather slight: 

bp = 31.47 (±19.64) + 25.67(±4.77)x("0'501   (20) 

n = 35      R = 0.683      5 = 4.53      F = 29 

The above models are comparable to the structure-boiling 
point models for nonanes published elsewhere.3,27 The same 
analysis was also carried out with the edge-connectivity 
index. The best model was obtained for k = -0.375. The 
corresponding regression equation is 

bp = 225.36(±16.39)- 18.42(±3.41)e'~0-3751 (21) 

n=35      R = 0.685      5=4.52      F = 29 

This model and the model in (20) are practically the same. 
However, it is worse than the model in (19). The improve- 
ment over the model based on k = -0.5 is considerable: 

bp = 218.35(±30.12) - 21.31(±7.89)c1"0-501   (22) 

n=35       R = 0.426      5=5.61       F=l 

Finally, we considered nonane line graphs. The best model 
was obtained for k = -0.70: 

bp = 203.18(±9.60) - 22.96(±3.32)eH)-70](L)    (23) 

„ = 35      R = 0.769      5=3.97      F = 48 

This model is better than any regarding the relationship 
between structures and boiling points of nonanes. It repre- 
sents an improvement over the model based on Jt = -0.5: 

bp = 161.56(±5.94) - 22.96(±3.32)e["°-50)(L)    (24) 

n = 35      R = 0.587      5=5.03      F=17 

Comparison between this model and the related models based 
on octane trees shows that the model in (24) is not as good 
as the model in (20), but better than the model in (22). 

In this example, the edge-connectivity index did live up 
to the expectations based on the work by Gutman et al.:2 

The use of the line graph edge-connectivity index produced 
for nonanes the best structure-boiling point model. However, 
the model in (23) is still far from being satisfactory in 
comparison with models that use several topological indi- 
ces.28 For example, the best structure-boiling point model 
for nonanes with five descriptors has R = 0.981 and 5 = 
0.89." 

Gas Chromatographie Retention Indices of Alkanes. 
The same methodology as above was applied to the relation- 
ship between the structures of alkanes and their gas 
Chromatographie retention indices.30 We first considered 

structure-chromatographic retention data correlation for the 
first 157 alkanes using as the structural parameter the vertex- 
connectivity index. The best correlation was obtained for k 
= -0.325: 

RI = 74.58(±8.48)+ 148.14(± 1.53)^l_0325J   (25) 

n=157      /? = 0.992      5=23.8       F = 9330 

where RI stands for the retention indices of alkanes. This 
model gives a very good agreement between experimental 
and computed retention indices of alkanes. Retention indices 
of alkanes cover a range from Rl(methane) = 100 to RI- 
(2,3-dimethylundecane) = 1251.4. In most cases the differ- 
ence between experimental and computed values is less than 
3%. 

The model in (25) is only slightly better than the model 
based on k = -0.5: 

RI = 64.92(±9.38) + 187.97(±2.13)x1"0-50'   (26) 

n=157      /? = 0.990      5=26.0      F = 7801 

The use of the edge-connectivity index produced poorer 
models: 

RI = 137.98(±13.79) + 200.54(±3.66)e[_0-551     (27) 

n=157      R = 0.975      5 = 41.3       F = 3008 

RI= 134.0(±14.55) + 184.89(±3.54)e1"0-501   (28) 

n=157      R = 0.973      5 = 43.2       F = 2729 

These two models are comparable, but are much better than 
models based on alkane line graphs and their edge-con- 
nectivity indices: 

RI = 206.58(±21.72) + 262.94(±8.30)e'"°-7751(L) (29) 

n=157      /? = 0.931       5=68.2      F=1003 

RI = 365.44(±36.63)+104.00(±7.24)61_0-50)(L)  (30) 

n = 157      R = 0.756      5=122.2      F = 206 

There are several structure-chromatographic retention 
index correlations for alkanes available in the literature.30 

Most of them are based on the two-dimensional and three- 
dimensional Wiener numbers. However, there is also a 
correlation available based on the vertex-connectivity index 
with k = -0.5 which differs only slightly from (26):30 

RI = 69.81(±9.31)+ 186.93(±2.11)x'~0501   (31) 

n=157      R = 0.990      5 = 26.0      F = 7827 

The initial work on the structure-chromatographic reten- 
tion data correlations is due to Randic.31 The correlations 
based on the two-dimensional (2W) and three-dimensional 
(3W) Wiener numbers, which are adjusted Walker-type 
correlations,32 are not as good as the model in (25):30 

RI = 171.2(±15.7) V»5(±00,3) - 48.6(±27.3)    (32) 

„=157      R = 0.984      5=33.0      F = 2403 

RI = 170.6(±17.0) V-325(±0013) - 3i.8(±30.2)    (33) 

n=157      # = 0.982      5=35.6      F = 2048 
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These models are, however, better than the ones based on 
edge-connectivity indices computed for either alkane trees 
or alkane line graphs. The best overall structure-chromato- 
graphic retention data correlation is obtained with the vertex- 
connectivity index with it = -0.325 (model in (25)). This is 
to our knowledge the best structure-chromatographic reten- 
tion data model of alkanes that exists in the literature. 

Molar Volumes of Alkanes. We considered molar 
volumes of 69 lower alkanes taken from Estrada.22 We first 
considered the structure-molar volume relationship using 
the vertex-connectivity index. The best correlation was 
obtained for a rather small value of k (-0.07). The regression 
equation and the statistical parameters for the correlation are: 

MV = 55.85(±2.10) + 16.53(±0.32)^[-007]   (34) 

n = 69      R = 0.988      5 = 2.73      F = 2649 

where MV stands for molar volume. This regression is better 
as expected than the one based on the standard value of k 
(-0.50): 

MV = 53.07(±4.41) + 29.60(±1.18)xl~0-501   (35) 

„ = 69      R = 0.951       5=5.38      F = 632 

These models are inferior to those based on the edge- 
connectivity index. The best structure-molar volume model 
was obtained for k = -0.515: 

MV = 57.44(±1.37) + 31.80(±0.41)e[~0-5151   (36) 

n = 69      ß = 0.995      5=1.81       F = 6094 

This model is only very slightly better than the model based 
on the standard value of the exponent k: 

MV = 58.23(±1.41) + 30.80(±0.41)e1"0-501   (37) 

n = 69      R = 0.994      5=1.88      F = 5669 

Equation 37 is different from the corresponding one given 
by Estrada22 as (1) in his paper. The difference is caused by 
the use of erroneous values of the edge-connectivity indices 
for six alkanes in Table 1 in Estrada's paper. The correct 
values are (we use the same codes for alkanes as Estrada): 
(33ME5) -3.1160, (233MMM5) -3.2832, (33ME6) -3.6766, 
(234MMM6) -3.7921, (244MMM6) -3.8432, and 
(334MMM6) -3.7107. The model in (37) is in fact better 
than the model given in Estrada's paper (statistical parameters 
for Estrada's structure-molar volume model with six incor- 
rect values of edge-connectivity indices are R = 0.993, S = 
2.034, and F = 4822). 

The statistical characteristics of models based on the edge- 
connectivity index also support the work by Estrada and 
Rodriguez,1 because one of the five physicochemical proper- 
ties of octanes for which the use of the edge-connectivity 
index produced the best single-variable QSPR model was 
the molar volume. This also agrees with analyses which point 
out that the edge-connectivity index is more appropriate to 
be used in the structure-molecular volume properties 
modeling than the vertex-connectivity index. 

The structure-molar volume models based on line graphs 
and edge-connectivity indices possess rather inferior statisti- 
cal parameters than the models shown above: 
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MV = 111.14(±5.76) + 12.45(±1.35)e1_0-501(L)    (38) 

n=69      R = 0.748      5=11.54      F = 85 

MV = 67.12(±3.59) + 44.49(±1.67)el-0-7751(L) (39) 

n = 69      R = 0.956      5 = 5.09      F=714 

Molar Refractions of Alkanes. We considered molar 
refractions of 69 lower alkanes also taken from Estrada.22 

Among the reported experimental values one is incorrect: 
Molar refraction of 34MM6 is 38.8453 instead of 43.6870." 
We first considered the structure-molar refraction relation- 
ship using the vertex-connectivity index. The best correlation 
was obtained again for a rather small value of it (-0.02). 
The regression equation and the statistical parameters for 
the correlation are 

MR = 6.99(±0.15) + 4.70(±0.02)x1"0021     (40) 

n = 69      R = 0.9993       S = 0.200      F = 46865 

where MR is a short-hand notation for molar refraction. This 
regression equation is better than the one based on the 
standard value of k (-0.50): 

MR = 5.76(±1.88) + 9.1 l(±0.32)x[_0 501     (41) 

„ = 69      R = 0.962      5=1.45      F = 824 

The model in (40) is better than, and the model in (41) is 
worse than, the corresponding models based on the edge- 
connectivity index. The best structure-molar refraction 
model using edge-connectivity indices was obtained for k 
= -0.495: 

MR = 7.77(±0.50) + 9.26 (±0.14)el~0-4951    (42) 

„ = 69      /? = 0.992      5=0.668      F = 4130 

There is hardly any difference between this model and the 
model based on the standard value of exponent k: 

MR = 7.71(±0.50) + 9.36(±0.15)e[_0-501     (43) 

n = 69      R = 0.992      5 = 0.672      F = 4090 

Equation 43 is different from the corresponding one given 
by Estrada22 as (2) in his paper. The difference is caused by 
erroneous values of the edge-connectivity indices for six 
alkanes (see the discussion above). The model in (43) is a 
little better than the model in the Estrada paper when the 
corrected values of the edge-connectivity indices are used. 
We also carried out the statistical analysis of Estrada's 
structure-molar refraction model with six incorrect values 
of edge-connectivity indices and obtained different statistical 
parameters (R = 0.983, S = 0.964, and F = 1969) from 
those reported (/? = 0.9913, S = 0.698, and F = 3782). 

The model in (43), being better than the model in (41), 
supports the claim by Estrada and Rodriguez1 regarding 
modeling the molar refraction. In their work one of the five 
physicochemical properties of octanes for which the use of 
the edge-connectivity index produced the best single-variable 
QSPR model was also the molar refraction. However, when 
the models based on vertex- and edge-connectivity indices 
with variable exponents are considered, the reverse is true: 
the model in (40) is better than the model in (42). The model 
in (40) is also better than the model in (43). 
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Structure-molar refraction models based on alkane line 
graphs and edge-connectivity indices are again as in the case 
of structure-molar volume models inferior to models based 
on connectivity indices computed for alkane trees: 

MR = 11.78(±1.29)+ 12.30(±0.56)e'~0-751(L)    (44) 

n = 69      R = 0.936      5=1.861       F = 474 

MR = 23.29(±1.68) + 3.91(±0.39)e1"°'50)(L) (45) 

« = 69      Ä = 0.772      5 = 3.358      F = 99 

Model (40), in which the value of the exponent is rather 
low,34 supports the use of the structure-molecular refraction 
model based on the'simplest possible topological index, the 
number of carbon atoms V: 

MR = 2.60 (±0.18)+ 4.55 (±0.02) V       (46) 

n = 69   R = 0.999   S = 0.208   F = 43200 

CONCLUSIONS 

We investigated five structure-property models of al- 
kanes. The properties considered were molecular surface- 
dependent properties (boiling points and gas Chromatographie 
retention indices) and molecular volume-dependent properties 
(molar volumes and molar refractions). Alkanes were 
represented by trees and the corresponding line graphs. The 
vertex- and edge-connectivity indices were used as structural 
parameters. In each studied case we computed connectivity 
indices with an optimum exponent and with a standard value 
of -0.5. In total we generated six QSPR models for each 
property. The obtained results lead us to conclude the 
following. 

(i) In all cases QSPR models based on connectivity indices 
with optimum exponents have better statistical parameters 
than the models based on connectivity indices with the 
standard value of the exponent (-0.5). This is fully in 
agreement with our earlier study3 and the ideas of Alten- 
burg,35 Randic et al.,25 and Estrada.36 Therefore, we suggest 
that the modified versions of vertex- and edge-connectivity 
indices should be routinely employed in the structure- 
property modeling rather than the standard versions of the 
connectivity indices. 

(ii) In the five cases that we studied the structure-boiling 
point models for octanes and nonanes and the structure- 
chromatographic retention index model for alkanes based on 
vertex-connectivity indices are better than the corresponding 
models based on edge-connectivity indices. Thus, it appears 
that the vertex-connectivity index is more appropriate to be 
used in the structure-molecular surface properties modeling 
than the edge-connectivity index. Consequently, the vertex- 
connectivity index may be considered as a molecular surface 
descriptor. 

(iii) In the five cases that we studied the structure-molar 
volume and the structure-molar refraction models for C5- 
C9 alkanes based on the edge-connectivity index produced 
the best single-variable model. This agrees with the findings 
of Estrada and Rodriguez1 and is suggestive that the edge- 
connectivity index is the better descriptor to be used in the 
structure-molecular volume properties modeling than the 
edge-connectivity index. Thus, the edge-connectivity index 
may be regarded as a molecular volume descriptor. The edge- 

connectivity index appears to be a promising molecular 
descriptor,1'1037"39 especially if the long-range contributions 
to this index are included in the modeling.911 

(iv) The use of line graphs in this study did not improve 
the predictive power of the connectivity indices. Only in the 
case of structure-boiling point modeling for nonanes the 
model based on the nonane line graphs produced the best 
model among the possibilities considered. Since the con- 
struction of the line graphs is not difficult and the computa- 
tion of their descriptors can be easily carried out, it is also 
reasonable to use them in the QSPR modeling, but to 
establish the usefulness of the line graph model in the 
structure-property studies, more work is needed. 
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Many chemicals are known to be toxic to living organisms, inducing mutations and deletions at the 
chromosomal and genetic level. One of the tasks in risk assessment of genotoxic chemicals is to devise a 
simple numerical descriptor which may be used to quantify the relationship between chemical dose and the 
effect on the genetic sequences. We have developed numerical descriptors to characterize different DNA 
sequences which are especially useful in sequence comparisons. These descriptors have been developed 
from a graphical representational technique that enables easy visualization of changes in base distributions 
arising from evolutionary or other effects. In this paper we propose a scheme to use these descriptors as a 
label to help quantify the potential risk hazard of chemicals inducing mutations and deletions in DNA 
sequences. 

INTRODUCTION 

The deleterious effects of many chemicals and newly 
synthesized compounds on human and environmental health 
is of serious concern. Many of these chemicals are known 
to pass through cell barriers and cause mutations and 
deletions in DNAs. Recent studies have demonstrated how 
many common chemicals cause such effects: exposure to 
common environmental chemicals such as nitropyrenes 
present in diesel exhausts cause mutations and homologous 
recombinations in DNAs leading to carcinogenesis;1'2 some 
polycyclic aromatic hydrocarbons from coal burning for 
industry and home heating form DNA adducts that have been 
shown to act as transplacental carcinogens and developmental 
toxicants3 or induce mutations at the GC and the AT base 
pairs of the hrpt genes;4 other chemicals such as ethylni- 
trosourea and ethyl methanesulfonates have been shown to 
induce mostly transition types of mutations in DNAs leading 
to chromosomal aberrations.5 A carbonyl compound, ac- 
rolein, present in the environment as commonly used 
industrial chemicals, natural products, environmental con- 
taminants and products of endogenous metabolism in human 
beings, has been found to cause mutations and intraStrand 
cross-links between guanine residues,6 and similar effects 
of many other compounds are known in the literature (see, 
e.g., refs 7 and 8). DNA damage is also induced by excesses 
of heavy metals such as Rh9 and Cu(H),10,11 which prefer- 
entially induce depletion of guanine residues. Table 1 gives 
a brief list of some of the data available in recent literature 
on effects of chemical substances on DNA sequences. 

One of the prime tasks in risk assessment of these and 
other chemicals and ions is to define one or more numerical 
descriptors of the chemical dose and the measured effect. 

* To whom correspondence should be addressed. E-mail: sbasak@ 
wyle.nrri.umn.edu. 

* On leave from: Indian Institute of Chemical Biology, 4 Raja S C 
Mullick Road, Calcutta 700 032, India. E-mail: anandy43@yahoo.com. 

Much of the data to date, however, consist of measures of 
types of mutations and deletions observed in specific genes 
at various levels of chemical dosages, and much of it is order 
of magnitude indications of genetic risk.8 While some 
chemicals would induce mutations and deletions at sites with 
specific base pair combinations, others could lead to oxida- 
tive damages and mutations at random at intragenic and 
intergenic segments including point mutations and small 
deletions. Techniques of unbiased measures of such alter- 
ations in a DNA sequence from a set of numerical descriptors 
would be essential in assessing, in a universal and standard 
manner, the risk potential of such chemicals and form a vital 
link in integrating pharmacokinetics and mutational studies. 

In this paper we outline such a measure arising from 
descriptors of DNA sequences of any specified length and 
show that small changes due to random point mutations or 
deletions in such sequences can be quantified for scaling 
purposes. It has developed out of a technique for graphical 
representation of DNA sequences but can now be done 
rapidly and accurately using computer programs bypassing 
the graphical stage altogether. 

METHOD 

The fundamental basis of our proposed quantitative 
descriptor is analysis of base distribution in a sequence by 
taking a running account of compositional differences in pairs 
of bases, e.g. intra-purines and intra-pyrimidines, as we read 
down the sequence from the 5'- to the 3'-end. This is most 
easily visualized in terms of a two-dimensional graphical 
representation described below. Since the method depends 
on small differences between the numbers of bases present 
in the sequences, it is very sensitive to small changes in base 
composition and distribution patterns. 

The method of representing DNA sequences graphically 
using a two-dimensional Cartesian coordinate system has 
been explained elsewhere.12'13 The shapes of these DNA 
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Table 1. Effects of Different Chemicals on DNA Sequences (Recent Studies)" 

NANDY AND BASAK 

mutation composition 

substitutions (%) 

chemical DNA sample deletions (%) transitions transversions refs and remarks 
acrolein 
elhylnitrosourea 
ethylmethanosulfonate 
heavy metals—Rh 

5-nitroimidazoles 

1,3-butadiene 

polycyclic aromatic 
hydrocarbons 

SupF gene 
lacZ 
lacZ 
oligomeric DNA 

duplexes 
Bacteroides fragilis 

Various—in mice, 
rat, humans 

hprt gene 

24 
5 
8 
100 (5'-G deleted in 

5'GG-3' doublets) 

-25 

21 
43 (~GC to AT) 
74 (~GC to AT) 

55 (~GC to TA) 
52(~ATtoTA) 
18(GCtoTA) 

100 (majority C to G, 
CG to AT) 

~55 

4 
5 
5 
9 (long-range electron transfer) 

8 genetic hazard exists 
at permitted conens 
mutation data not available 

4 

" Notes: The "~GC to AT' implies that the majority transitions are of the GC to AT type, etc. Acrolein is one of the a,b-unsaturated carbonyl 
compounds present inthe environment. Nitroimidazoles, Metronidazole and dimetridazole are used in treatment of intraabdominal, pulminory, and 
brain abscesses and other diseases. 1,3-Butadiene is widely used in the petroleum industry. 

graphs depend on the base distribution in the sequence. The 
plot of a typical representation is generated by moving one 
step in the positive x-direction for a guanine (G) in the 
sequence, the negative ^-direction for an adenosine (A), the 
positive ^-direction for a cytosine (C), and the negative 
y-direction for a thymine (T), the succession of such steps 
producing a graphical shape characteristic of the sequence. 
This essentially plots the progressive differences in the 
instantaneous individual totals of guanine and adenosine 
along the x-axis (i.e. riG — nA) and of cytosine and thymine 
along the y-axis (i.e., nc - nT ); two other sets of axes can 
be similarly defined for a complete representation, but we 
use the one described here as the default axes system. We 
have shown12 that for conserved genes such plots are shape 
similar thereby making identification of a new sequence of 
the gene family possible rapidly and easily by visual 
inspection alone; elsewhere we have shown that one can read 
off base preferences and local abundances directly from the 
shape of these graphs14 or identify coding and noncoding 
regions of the sequences.15 Changes in base distribution and 
composition induce changes in the visual plots of the DNA 
sequences; for the same genes for different species we have 
noticed systematic drifts in the sequence pattern which have 
been attributed to evolutionary changes.16 

Differences in the plots of a family of genes can be 
quantitatively assessed.17 This method consists essentially 
of defining a set of moments of the graph points around the 
origin of the plot. In the first order we define quantities fii- 
(x) and fii(y) which are the sum of the x- and y-coordinate 
values of each point averaged by the total number of points 
in the distribution. One can then define a graph radius for 
each plot 

SR = l(Mi(x))2 + (Ml(y))2]m 

and correspondingly a distance measure between two graphs: 

d(s,s') = [(«,(*) - nx{x')f + (fify) - fil(y'))2]m 

where s and s' represent the two graphs. We have observed17 

that small differences in DNA sequences arising out of base 
mutations and deletions manifest themselves in observable 
changes in gR and d. We propose to use the gR as one 

numerical descriptor of a sequence and deviation from gR, 
AgR, as a measure of the changes in a sequence as a 
consequence of genotoxic effects of chemicals. For greater 
precision, one could also use a set of /i\{x), fi\(y), and gR as 
numerical descriptors of a DNA sequence. 

RESULTS AND DISCUSSIONS 
As a preliminary exploration of this technique, we have 

used the complete human ß globin gene sequence (from the 
HSHBB sequence of the EMBL DNA database rel 31), 
inclusive of the introns and exons, as the control sequence. 
This has a total of 1424 bases consisting of 444 (31.2%) 
bases in the coding regions and 980 (68.8%) in the noncoding 
part. Plot 1 in Figure la shows the graphical representation 
of this gene starting from exon 1 through introns 1 and 2 to 
exon 3. Intron 1 is G-rich and shows a horizontal shift to 
the right; intron 2 has a T-rich part in the initial stages, 
represented on our graph as an almost vertical drop, and then 
a long stretch of TA repeats that move the graph generally 
in a southwesterly direction ending with exon 3 represented 
as a small region of a dense cluster of points. Exons 1 and 
2 are also represented as (less dense) clusters of points unlike 
the long runs of the introns; we have elsewhere15 exploited 
this characteristic difference between intron and exon 
representations as a means for determining protein coding 
regions in new sequences. 

With regard to the problem at hand, we simulated the 
effects of Rh and Cu(II) toxicity on a DNA by performing 
programmatically random deletions of several guanines in 
the sample sequence. Such deletions will tend to alter the 
Piix) in the default representation with a bias toward negative 
x-values (because of a higher percentage of adenosines in 
the altered sequence) while leaving the//i(j) unchanged and 
will consequently alter the graph radius. Graphically, the 
reductions in the number of guanines will make the plot shift 
to the left in the default reference frame, and the shift will 
be greater for a greater degree of deletions effected. This is 
evident visually from a low value of 5% deletions in the 
complete sequence (Figure la). The values of AgR for dif- 
ferent numbers of guanine deletions are plotted in Figure 
lb. 

In the case of mutations, the graph radius is quite sensitive 
to small changes and to specific base positions affected. A 
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Figure 1. (a, top) Human ß globin gene and its model modifica- 
tions plotted in the two-dimensional representation system. Axes 
as explained in the text. Plot 1 is for the normal human ß globin 
gene complete with exons and introns. Plot 2 is for the same gene 
with 5% random depletion in guanine residues. Plot 3 is the same 
gene with 10% depletion in guanine bases, (b, bottom) Plot of 
changes in graph radius (A#R) against guanine number for deletion 
of guanines in positions 1—14. 

mutation in the first position, reading from the 5'-end, effects 
the maximum change while a mutation in the last base has 
the least effect; this is easily understood from the fact that 
the change in the first position alters the coordinate value of 
each subsequent point all the way to the last base and thus 
affects the value of fii much more than would be the case 
for mutation of the last base. (The argument remains true 
when read from the 3'-end and as long as one is consistent 
in one's convention; here we use the common convention 
of reading from the 5'-end.) Figure 2 shows AgR plotted 
against the guanine number for mutation of one guanine to 
cytosine in each position of the guanine in the complete 
sequence of the human ß globin gene. It is interesting to 
note that AgR has a unique value for each position, and, as 
can be expected, the value goes down to almost zero for the 
last guanine (the kink seen in the curve occurs at a large 
gap between successive guanines). Mutations of guanine to 
adenosine will produce smaller amount of changes in AgR 
since this is a change occurring exclusively in the x-direction 
and lead to a contraction or expansion of the general curve, 
whereas the previous mutations produced a change in 

151 

Guenlne Number 

Figure 2. Plot of changes in graph radius (A#R) against the guanine 
number for mutation (G to C) of single guanine to cytosine at 
various positions. 

151 

Guanine Number 

Figure 3. Plot of changes in graph radius (AgR) against the guanine 
number for mutation (G to A) of single guanine to adenosine at 
various positions. 

direction of the plot in our default axes system. Figure 3 
shows the variation of AgR with guanine number for mutation 
of a single guanine to adenosine. We have noted elsewhere18 

that AgR can therefore be used as quantitative descriptors 
for indexing single nucleotide polymorphic genes. 

In the present case of indexing as a measure of risk 
assessment for toxicity, the sensitivity of AgR raises the 
question of adequate knowledge of the exact location of the 
toxic damage. Since any random mutation or deletion could 
arise from the genotoxic effects, it would be preferable to 
average over the entire range of values of AgR over the 
chosen DNA segment to arrive at an acceptable index value 
for purposes of comparative assessment. For example, for 
the case of mutation of one guanine to adenosine, the average 
value of AgR is 0.064 while that for the case of guanine to 
cytosine is 0.537, and an index for the two types of causative 
chemicals that produce just this level of mutation could be 
written in thousandths as 64 or 537. 

In the case of multiple base mutations also this trend of 
different values of AgR for mutations at different base 
positions will hold true: e.g., mutations of three guanines 
to cytosines will cause maximum deviation from gR when 
the mutations occur in the first three guanines (AgR = 
2.789 76 compared to the unmutated gene), and the change 
will be least when the mutations take place in the last three 
guanines (AgR = 0.031 41 compared to the unmutated gene). 
Multiple mutations will therefore create a field of values for 
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Figure 4. Plot of changes in graph radius (AgR) against the number 
of guanines mutated for G to C mutations. The upper line is the 
highest value and the bottom line the lowest value of A#R for a 
given number of mutations. 
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No. of Guanine Mutations 

Figure 5. Plot of changes in graph radius (AgR) against the number 
of guanines mutated for G to A mutations. The upper line is the 
highest value and the bottom line (not visible on this graph range) 
the lowest value of AgR for a given number of mutations. 

AgR, the maximum for a specific number of mutations being 
the value realized from mutations in the first of those bases. 
These maximum values will thus form an envelope as shown 
in Figure 4, and a lower bound will be created by the 
minimum values of AgR; all values between these two 
boundaries will relate to the different bases in the sequence 
that can be mutated for any specified number of mutations. 
Figure 5 shows similar data for the various degrees of G to 
A possible mutations. 

While we have discussed these effects on the hypothesis 
of G to C and G to A mutations, these results can be 
generalized to mutations in any base combinations also. For 
example, in the case of genetic mutations induced by high 
levels of toxic chemicals where more than one base can be 
affected, e.g. mutations of the type GC to AT shown in 
Figure 6, which occurs in the case of the ethylnitrosourea 
and ethyl methanosulfonate types of compounds, one can 
determine the value of AgR from a sample sequence exposed 
to a standard dosage and use that value as an index for 
measuring the least number of mutations that can be 
generated from such a number. From Figure 6, for example, 
it can be seen that a AgR of 10 implies that the number of 
corresponding mutations will be five GC doublets or more. 

Thus an experimental measure of AgR for a given dose of 
a toxic chemical can lead to association of an index value 
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Figure 6. Plot of changes in graph radius (A#R) against the number 
of GC to AT mutations. The upper line is the highest value and 
the bottom line the lowest value of AgR for a given number of 
mutations. 

that will permit easy gradation of chemicals on levels of 
toxicity. Each toxin will affect a DNA in its own unique 
ways: some by deleting a preferred base, some by causing 
random mutations in one or more preferred bases. The 
usefulness of an index such as AgR arises from associating 
one number with each dosage level of each chemical 
providing an easy path to associating risk with dosage 
without having to enumerate which base and how many are 
mutated or deleted. AgR thus enables a normalization 
approach to risk assessment of genotoxic chemicals where 
no other such measure is readily available. 

Note that the method is not dependent on the type of DNA 
sequence used; while for some chemicals specific DNA 
segments will be susceptible to damage, for others damages 
can occur in any of the coding or noncoding segments as 
for example in case of Cu(II) and Rh induced damages. The 
indexing can be done for all these cases with respect to any 
standard sequence segment chosen. 

CONCLUSION 

Thus we see that the concept of graph radius in a graphical 
representation of a DNA sequence can be extended to make 
quantitative estimation of any changes in the sequence. This 
observation indicates that it is possible to consider using such 
quantitation as an index of the intensity of the effects in the 
case of changes arising out of effects of genotoxic chemicals. 
As of now, however, we are restricted by the paucity of 
experimental data to only indicating the use of AgR as a 
possible index; experimental work so far are generally in 
the nature of inquiries into the kinds of changes induced in 
DNA sequences by genotoxic chemicals, whereas building 
up a quantitative index would require controlled experiments 
relating dosage and the extent of DNA damage. 

Our work has shown that AgR, the change in gR, is a very 
sensitive indicator of changes in a sequence arising out of 
base depletions and mutations. This provides us therefore a 
numerical descriptor of the alterations in base distribution 
and composition of DNA sequences and can be used to 
compare with any standard or control sequence. AgR, 
therefore, averaged over its relevant range of values, can be 
used as a numerical descriptor to provide a measure of the 
genotoxic effects of chemicals such as oxidants such as Rh 
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and Cu(II), or acrolein, ethyl methanosulfonate, or any other 
chemicals whose effect on DNA sequences can occur in a 
random manner and therefore can affect any part of the DNA 
whether coding or noncoding. In the case of genotoxins that 
affect specific genes or base combinations, the AgR will need 
to be calculated for those specific genes only, and there the 
sensitivity of the measure can be exploited to provide an 
indicator of the genotoxicity level of the chemicals. 
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We calculated 202 molecular descriptors (topological indices, TIs) for two chemical databases (a set of 139 
hydrocarbons and another set of 1037 diverse chemicals). Variable cluster analysis of these TIs grouped 
these structures into 14 clusters for the first set and 18 clusters for the second set. Correspondences between 
the same TIs in the two sets reveal how and why the various classes of TIs are mutually related and provide 
insight into what aspects of chemical structure they are expressing. 

INTRODUCTION 

A major part of the current research in mathematical 
chemistry, chemical graph theory, and quantitative structure- 
activity/property relationship studies involves topological 
indices. Topological indices (TIs) are numerical graph 
invariants that quantitatively characterize molecular structure. 
A graph G = (V, E) is an ordered pair of two sets V and E, 
the former representing a nonempty set and the latter 
representing unordered pairs of elements of the set V. When 
V represents the atoms of a molecule and elements of E 
symbolize covalent bonds between pairs of atoms, then G 
becomes a molecular graph (or constitutional graph, because 
there is no stereochemical information). Such a graph depicts 
the topology of the chemical species. A graph is characterized 
using graph invariants. An invariant may be a polynomial, 
a sequence of numbers, or a single number. A numerical 
graph invariant (i.e., a single number) that characterizes the 
molecular structure is called a topological index. 

OVERVIEW OF TOPOLOGICAL INDICES USED IN THE 
PRESENT STUDY 

A large number of topological indices have been defined 
and used.1"" The majority of TIs are derived from the 
various matrices corresponding to molecular graphs. The 
adjacency matrix A(G) and the distance matrix D(G) of the 
molecular graph G have been most widely used in the 
formulation of TIs. Integer-number local vertex invariants 
(LOVIs) are the vertex degrees (vi) and the distance sums 
(distasums, di) resulting from summation over rows or 
columns of entries in the adjacency and distance matrices, 
respectively. By mathematical operations performed on such 
LOVIs, one can obtain a molecular descriptor, i.e., a 
topological index. Wiener's index W (eq l),2 the Zagreb 
group index Mi (eq 2)," Randic's connectivity index, % (eq 
3),4 the higher-order connectivity indices, "%, for paths of 
length n defined by Kier and Hall,5 and the J index (eq 4)6 

•Corresponding author. Tel:   (218)720-4230. Fax:   (218)720-4328. 
E-mail: sbasak@nrri.umn.edu. 

* University of Minnesota. 
* Polytechnic University Bucharest. 

fall in this category. 

W=(I>.)/2 

1/2 

(1) 

(2) 

(3) 

(4) 

The summations in formulas 3 and 4 are over all edges 
i-j in the hydrogen-depleted graph. The numbers q of graph 
edges and fi of cycles in the graph are introduced into 
formula 4 in order to avoid the automatic increase of J with 
graph size and cyclicity. Indeed, for an infinite linear carbon 
chain it was demonstrated that/= n = 3.14159. The nature 
of atoms can be taken into account by means of parameters 
based on their relative atomic numbers, electronegativities, 
or covalent radii, with respect to those of carbon atoms, 
multiplying the corresponding distasum in formula 4 for 3. 

The mean-square-root distance D derived from all topo- 
logical distances (denoted by i in the next formula) is defined 
as" 

Ö = [(I ,-'2)/(I,-«)] 
1/2 

(5) 

For taking into account the chemical nature of atoms 
symbolized by vertices, Kier and Hall advocated the use of 
"valence connectivity indices".5a-b These are calculated with 
formulas similar to Randic's (eq 3), but products of edge 
end point (or path vertex) invariants are no longer of vertex 
degrees but of weights (valence delta values (5,) given by 
formula 5 

a,= (z/'-ffJ)/(z,-z/'-i) (6) 

where Z,v stands for the number of valence electrons in atom 
i, Z; is its atomic number, and H-t is the number of hydrogen 
atoms attached to atom i. 

The most recent additions to the Kier-Hall armamentary 
of TIs are electrotopological state indices.50 
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Another class of molecular descriptors, the information- 
theoretic indices, are derived from an entirely different 
reasoning. In this case, the complexity or mode of partition- 
ing of structural features is decomposed into disjoint subsets 
using an equivalence relation; a molecular complexity index 
is then computed using Shannon's idea of information 
content or complexity.12 Real-number local vertex invariants 
(LOVIs), on the other hand, may also be defined starting 
from different matrices other than A(G) or D(G) or by 
applying information theory at the vertex level. Thus, 
topological indices U, V, X, and Y were defined.13 Bonchev 
and Trinajstic described several information-theoretic TIs 
reviewed thoroughly in Bonchev's book.7 

The information-theoretic indices developed by Basak and 
co-workers take into account all atoms in the constitutional 
formula (hydrogens also being included), and one considers 
the information content provided by various classes of atoms 
based on their topological neighborhood. There are three 
main types of informational indices developed by Basak et 
al.: IC (mean information content or complexity of a 
hydrogen-filled graph, with vertices grouped into equivalence 
classes having r vertices; the equivalence is based on the 
nature of atoms and bonds, in successive neighborhood 
groups); CIC (complementary information content); and SIC 
(structural information content), and they are not inter- 
correlated with other TIs. In the following formula, the 
summation spans the range from i = 1 to i = r. 

IC = -XiP,l°g2Pi 

SIC, = IC/log2 N 

CIC, = log2 N - IC, 

(10) 

(11) 

(12) 

The probability that a randomly selected vertex occurs in 
the ith equivalence class is denoted by p,-. The ICr> SICr> 

and CICr indices can be calculated for different orders of 
neighborhoods, r (r = 0, 1, 2, ..., p), where p is the radius 
of the molecular graph G. At the Oth-order level, the atom 
set is partitioned solely on the basis of its chemical nature; 
at the level of the first-order topological neighborhood, the 
atoms are partitioned into disjoint subsets on the basis of 
their chemical nature and their first-order bonding topology. 
At the next level, the atom set is decomposed into equiva- 
lence classes using their chemical nature and bonding pattern 
up to the second-order bonded neighbors. The process is 
continued until consideration of higher-order neighbors does 
not yield further increase in the number or composition of 
disjoint subsets. 

A large variety of real-number local vertex invariants, and 
thence a larger variety of TIs, were described on the basis 
of converting a matrix (A or D for instance) into a system 
of linear equations. This is done by means of two column 
vectors that can convey topological, chemical, or numerical 
information. One nonzero vector is the free term of the 
system of equations. The other one (which may be zero, but 
this restricts the choices on available supplementary informa- 
tion) becomes the main diagonal of the matrix (if both vectors 
were zero, then some negative LOVIs would result with 
difficulties of interpretation). These vectors may be the 
following integers: Z (atomic number of the atom corre- 
sponding to each vertex), V (vertex degree), / (identity), N 

(number of non-hydrogen atoms, or order of the graph), Nk 

(power k of N). Less frequently, one may use for periodicity 
of chemical properties real numbers: 5 (electronegativity) 
or R (covalent radius) of the atom corresponding to each 
vertex. The resulting matrix with the vector for the main 
diagonal constitutes the set of coefficients for the N 
unknowns that represent the real-number LOVIs of the N 
vertices. The triplet (matrix, vector for the main diagonal 
and vector for the free term) also serves as notation for 
LOVIs and for the derived TIs. After the system of N linear 
equations is solved, the LOVIs (*,-) are assembled into a 
"triplet TI" based on one of the following operations: 

1. summation, £;*,•; 
2. summation of squares, E,*,2; 
3. summation of square roots, 2(X,"2; 
4. sum of inverse square root of cross-product over edges 

5. product, NlUiXi]"". 
Numbers 1-5 of the above operations after the triplet 

complete the notation of the triplet TIs.14 

To conclude this brief review of TIs, one should mention 
recent progress that includes other matrices such as the 
reciprocal distance matrix that yields Harary indices,15 the 
regressive distance matrices,16 the Szeged matrix,17 and the 
resistance distance matrix that affords Kirchhoff indices.18 

So-called optimal structural descriptors can be obtained from 
some TIs by varying some parameters and thereby adapting 
them to the database;19 alternatively, in Randic-type formulas 
(eqs 3, 4) the exponent is allowed20 to differ from '/2. Three- 
dimensional molecular descriptors can be derived from 
geometrical and topological structural features of molecules.21 

Each of the indices above-discussed is a "global" param- 
eter; i.e., it quantifies certain aspects of the entire molecular 
structure using a single number. 

It is clear from the above discussion that the set of TIs is 
a group of heterogeneous entities. They have been defined 
to characterize molecular structure on the basis of distinct 
objectives and motivations. Despite their distinctive char- 
acteristics, TIs share certain common features. A topological 
index maps a set of chemicals C into the set R of real or 
integer numbers. Therefore, TIs quantify some general 
aspects of molecular architecture such as size, shape, 
symmetry, bonding type, cyclicity, branching pattern, etc. 

Topological indices have been used for isomer discrimina- 
tion, quantification of the structural similarity/dissimilarity 
of molecules, and prediction of property/activity from 
structure." The widespread use of TIs obviously encourages 
one to ask some fundamental questions about them: What 
is the fundamental nature of TIs? To what degree are they 
intercorrelated? How does one extract orthogonal information 
from TIs? 

The intercorrelation of TIs was studied earlier with a 
limited set of invariants. Thus, Motoc and Balaban22 

described graphically the intercorrelations of the few TIs 
known until 1981. These aspects were reviewed in the early 
1980s.23 Basak et al. studied the mutual relatedness of a set 
of 90 TIs calculated for a set of 3692 diverse chemicals.24 

A third study by Todeschini et al. will be discussed in the 
last section of this paper. 

All such studies were limited in the sense that they 
analyzed data on a smaller and less diverse group of TIs. 
Therefore,  in  this  paper,  we  have  studied   the  mutual 
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Table 1. Summary of Chemical Classes or Features in Databases 
Analyzed 

database A database B 
chemical classes or features (hydrocarbons) (diverse) 

total number of compounds 139 1037 
hydrocarbons 139 565 

alkanes, cyclic alkanes 73 206 
aromatics 66 288 

alkyl benzenes 29 80 
fused rings 37 56 
polycyclic aromatics 37 49 

non-hydrocarbons 0 472 
halogen-containing compounds 359 
heteroatom-containing compounds 101 

(sulfur or phosphorus) 
Compounds containing both 12 

halogens and heteroatoms 
organosulfides   ' 105 
organophosphorus 8 

relatedness of a set of 202 TIs. We have also tried to extract 
useful and orthogonal structural information from the 
calculated TIs. This study also reports, for the first time, a 
comprehensive discussion of Basak's information content 
indices (ICr, SICr, CICr), the triplet indices (proposed by one 
of the present authors), and Balaban's average distance-based 
connectivity index J as compared to the traditional and more 
widely used indices. 

The goal of this paper is two-fold: (a) to study the degree 
of intercorrelation among the various types of topological 
indices and (b) to extract mutually uncorrelated (orthogonal) 

Table 2. Symbols and Definitions of Topological Parameters 

topological parameters that can be used for QSAR/QSPR 
studies, quantitation of intermolecular similarity/dissimilarity, 
and characterization of real and virtual combinatorial librar- 
ies. To this end, we studied the mutual relatedness of a set 
of more than 200 topological indices in this paper. 

METHODS 

Chemical Databases. There were two sets of chemicals 
analyzed in this study: a set of 139 hydrocarbons to represent 
a moderately homogeneous set of chemicals and a set of 
1037 diverse chemicals. The hydrocarbons consisted of 73 
C3-C9 alkanes, 29 alkylbenzenes, and 37 polycyclic 
aromatic hydrocarbons.25 The diverse set of 1037 compounds 
consists of those chemicals from the U.S. EPA ASTER 
system26 for which a measured boiling point was available 
and hydrogen-bonding potential (as measured by HB1 = 0) 
did not exist. The composition of these data sets is indicated 
in Table 1. Table 2 presents the list of all 202 parameters 
calculated in this study. 

Calculation of TIs. The TIs calculated for this study 
(some of which are included in Table 2) include Wiener 
number W,2 molecular connectivity indices as calculated by 
Randic4 and Kier and Hall,5 frequency of path lengths of 
varying size,5 information-theoretic indices defined on 
distance matrices of graphs using the methods of Bonchev 
and Trinajstic,7 Roy et al.,27 Basak et al.,28-31 and Ray- 
chaudhury et al.,32 parameters defined on the neighborhood 
complexity of vertices in hydrogen-filled molecular graphs,28-32 

index definition 

7WD 
w 
1° 
tfv 

Hi 
IC 
0 
/ORB 

W, 
Mi 
IC, 
SICr 

CIC, 
kx 
kx 
Vc 
*Zch 

Vc 
Va 

Vc 
Vci, 
VFC 
p* 
J 
p 
J* 
p 
triplet 

information index for'the magnitudes of distances between all possible pairs of vertices of a graph 
mean information index for the magnitude of distance 
Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph 
degree complexity 
graph vertex complexity 
graph distance complexity 
information content of the distance matrix partitioned by frequency of occurrences of distance A 
order of neighborhood when ICr reaches its maximum value for the hydrogen-filled graph 
information content or complexity of the hydrogen-suppressed graph at its maximum neighborhood of vertices 
a Zagreb group parameter = sum of square of degree over all vertices 
a Zagreb group parameter = sum of cross-product of degrees over all neighboring (connected) vertices 
mean information content or complexity of a graph based on the rth (r = 0-6) order neighborhood of vertices in a hydrogen-filled graph 
structural information content for rth (r = 0-6) order neighborhood of vertices in a hydrogen-filled graph 
complementary information content for rth (r = 0-6) order neighborhood of vertices in a hydrogen-filled graph 
path connectivity index of order h = 0-6 
cluster connectivity index of order A = 3-6 
path-cluster connectivity index of order A = 4-6 
chain connectivity index of order A = 3-6 
bond path connectivity index of order A = 0-6 
bond cluster connectivity index of order A = 3-6 
bond chain connectivity index of order A = 3-6 
bond path-cluster connectivity index of order A = 4-6 
valence path connectivity index of order A = 0-6 
valence cluster connectivity index of order A = 3-6 
valence chain connectivity index of order A = 3-6 
valence path-cluster connectivity index of order A = 4-6 
number of paths of length A = 0-10 
Balaban's J index based on distance 
Balaban's / index based on bond types 
Balaban's J index based on relative electronegativities 
Balaban's J index based on relative covalent radii 
Global invariants based on solutions of linear equation systems using the adjacency matrix (A), distance matrix (D), and column/row 

vectors: distance sums (S), atomic number (Z), number of non-hydrogen atoms (N and N2), vertex degree (V), or numerical constants (1). 
Notation is described by triplets (e.g., AZV). Results are weightings for each atom in a molecule. These weights are combined by five 
possible formulas; 1 = sum of weights, Zixr, 2 = sum of squared weights IfX,2; 3 = sum of square root of weights Xi*,"2; 4 = sum of 
cross-products L(*rxy)~l/2; and 5 = product of weights N-{ZjXi]"N. 
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and Balaban's J indices6 as well as triplet indices.14 The 
majority of the TIs were calculated using the program 
POLLY 2.3.33 The J indices and triplet indices were 
calculated using software developed in-house by the authors. 

STATISTICAL ANALYSIS 

For both sets of chemicals, the computed TIs were 
transformed by the natural logarithm of the index plus a 
constant, generally 1. This was done since the scale of some 
indices may be several orders of magnitude greater than that 
of other indices. 

For each set, a technique known as variable clustering was 
performed using the SAS procedure VARCLUS.34 The 
variable-clustering procedure divides the set of indices into 
disjoint clusters, such that each cluster is essentially uni- 
dimensional. This is accomplished by a repeated principal- 
components analysis of the sets of indices. The initial 
principal-component analysis examines all indices and 
defines two principal components or eigenvectors. If the 
eigenvalue for the second component is >1.0, the indices 
are split into separate clusters by correlating the indices with 
the first and second principal components. Those indices 
most correlated with the first component form one cluster 
and those indices most correlated with the second component 
form another cluster, thus forming two disjoint clusters. A 
principal-component analysis is then performed for each 
cluster of indices, with the cluster being split if the eigenvalue 
for the second component is > 1.0. The procedure is repeated 
until the second eigenvalue is <1.0 for all clusters. 

RESULTS AND DISCUSSION 

The first database (denoted by A) consists of 139 
hydrocarbons (alkanes, alkylbenzenes, and polycyclic aro- 
matics) and 162 TIs. The number of indices examined was 
reduced from the original 202 by removing all but one of 
the degenerate (i.e., correlation of 1.0) indices and those 
indices that were constant (0.0) for all chemicals. The second 
database (denoted by B) is a diverse one and contains 1037 
chemical structures and 176 nondegenerate, nonconstant 
indices. 

The results of the variable-cluster analysis will be pre- 
sented, first discussing how the descriptors (variables) for 
database A become clustered and then surveying the descrip- 
tor clustering for database B, as well as the correspondence 
between these clusters. Intercluster correlation will then be 
described. 

The clusters have been ordered according to decreasing 
numbers of descriptors in each cluster; when clusters contain 
the same number of descriptors, the numbering of the 
corresponding clusters is arbitrary. 

In Figure 1, one can see, in graphical form, on the left- 
hand side the points denoting the clusters that group together 
the descriptors for the hydrocarbon database A and on the 
right-hand side those corresponding to the diverse database 
B. Each cluster is denoted by a letter (A or B) and a number. 
The total number of variables in each cluster is written under 
each point. Full lines connect A-type with B-type clusters, 
having inscribed on them the numbers of descriptors common 
to each pair of clusters; when no number is inscribed, this 
indicates a single common descriptor. Dashed side lines 
denote the descriptors that do not have counterparts in the 
other set of clusters, and the associated numbers on these 
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Figure 1. Associations between clusters of descriptors for the 
hydrocarbon database (A-type clusters) and the database with 
diverse compounds (B-type clusters). Solid lines connect A-type 
descriptors with B-type descriptors, and the numbers of common 
descriptors are indicated on such lines (when no number is indicated, 
there is just one common descriptor). Dashed lateral lines indicate 
descriptors that have no correspondence for the other type. 

side lines indicate the numbers of such "orphan" descriptors. 
Because the two data sets differ both in the numbers of 
compounds and in their structures, it is normal to expect that 
clusters for one data set will have counterparts in several 
clusters in the other data set. This is indeed what was found 
to happen, as will be shown below when the diverse data 
set will be analyzed. 

Only in a single case have we found a one-to-one 
correspondence between clusters of descriptors corresponding 
to the two data sets (A12 and B14). Nevertheless, in several 
instances (A6, All; B4, B9, B15.B16, and B17), a cluster 
for one data set (say, A) was found to have all its descriptors 
in common with only one cluster of the other data set (say, 
B); however, this latter cluster also contains descriptors found 
in more than one cluster of the other set. 

Clustering of Descriptors for Hydrocarbons. The de- 
scriptors for database A are grouped in 14 clusters sum- 
marized in Table 3. Cluster Al has 54 from the total of 162 
descriptors; therefore, it groups together about one-third of 
all variables. These descriptors depend on both the shape 
and the size (magnitude) of the molecular graph; such 
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Table 3. Summary of Variable Clustering for 139 Hydrocarbons 

number of representative variables 
cluster        variables (max. 25% of total listed) 

Al 

A2 
A3 
A4 
A5 
A6 
A7 
A8 
A9 
A10 
All 
A12 
A13 
A14 

54 

19 
13 
13 
12 

9 
9 
6 
6 
5 
4 
4 
4 
4 

DN2Z4, DN2N„, Po, AZV4, ASZ4, ANN3, 
ANNj.AZNj 

Y P'. Y Y. Y 
V.Y.ANZ1 
SIC«, SIC5,IC6 

DSZ,, DSZj.ASZ, 
DSZ3, DSN5 

DSN3, DN2N, 
Yc.Vc 
DSZ2, ASZ2 

SIC, 
CIC, 
Yc 
SICj 
Yd. 

Table 4. Summary of Variable Clustering for 1037 Diverse 
Chemicals 

number of representative variables 
cluster variables (max. 25% of total listed) 

descriptors include the Randic connectivity index, the Kier- 
Hall simple path connectivity indices, the Zagreb group 
indices, and many triplet indices having as the main diagonal 
column vector the atomic number Z or the total number N 
of vertices. 

Cluster A2 with about Vs of the total number of descriptors 
includes molecular connectivity indices of order higher than 
5, the J indices, and two closely similar triplet indices. Cluster 
A3 contains mainly valence/bond-corrected molecular con- 
nectivity indices. The next cluster, A4, consists mainly of 
the information-based indices IC (information content), SIC 
(structural information content), and CIC (complementary 
information content) for the hydrogen-filled graphs of order 
higher than 2 for IC and higher than 3 for SIC and CIC. 
Cluster A5 is composed mainly of triplet indices having as 
main diagonal unit vectors either distance sums or total 
number N of vertices. 

Each of the remaining clusters has less than 10 descriptors. 
Clusters A6 and A7 contain mostly triplet descriptors: A6 
with the distance sum S and A7 with the order N of the 
hydrogen-depleted graph, as the main diagonal unit vector; 
cluster A7 also includes two simple path cluster molecular 
connectivity indices. Cluster A8 contains simple cluster- and 
bond/valence-corrected cluster connectivities of high order 
(4-6). Cluster A9 again consists exclusively of triplet 
indices, and they are based on summing squares of LOVIs 
based mainly on distance sum unit vectors on the main 
diagonal. 

Cluster A10 includes three information-theoretic indices 
IC and SIC of low order (0 and 1) as well as two triplet 
indices having in common the two unit vectors (distance sum 
S for the main diagonal, vertex degree V for the free term) 
and the operation for assembling LOVIs into an index 
(summation of LOVI square roots). 

Interestingly, the four smallest clusters having four 
descriptors each are pairwise similar in type: All with A13, 
and A12 with A14. Cluster All consists of information TIs 
(IC, SIC, CIC) of low order (0-2), whereas A13 includes 
the same TIs of slightly higher order (2 and 3). Clusters A12 
and A14 group together molecular connectivity indices based 
on simple cluster and simple cycle, respectively. 

A general remark for the triplet indices is that what groups 
them together is not the matrix on which they are based 
(adjacency matrix or distance matrix) but the two unit vectors 
that convert such matrices into systems of linear equations. 

Bl 

B2 
B3 
B4 
B5 
B6 
B7 
B8 
B9 
BIO 
Bll 
B12 
B13 
B14 
B15 
B16 
B17 
B18 

49 

13 
13 
13 
11 
10 
9 
8 
6 
6 
6 
6 
6 
6 
4 
4 
4 
2 

Po, ANN3, ANNs, AN13, ANN,, ANV4 

ASU, DN214 

ANV,,P3, M2 

ASl,,ASl5,DSli 
Y Y. Pi 
ASN5, AS13, ASN, 
SIC3,SIC4,CIC4 

YPC, YC 
ASZ2, ASZ, 

IC4, IC5 

CIC,, SIC, 

AS12 

DN2N 
ANS, 

Clustering of Descriptors for the Diverse Set of 
Compounds. There are 18 variable clusters grouping to- 
gether 176 variables for the database of 1037 diverse 
compounds (Table 4). Cluster Bl, with 49 descriptors, 
includes 28% of all variables; 35 of these descriptors are 
common to cluster Al. Some of these indices, e.g., W 
(Wiener number), P0 (number of non-hydrogen atoms), and 
Pi (number of bonds in the hydrogen-depleted graph), 
express molecular size. It is interesting that most of the triplet 
variables (AZV,-, AZN,-, and ANN,- with i = 1-5 as well as 
several other ones) are found to be common to clusters Al 
and Bl. Five other descriptors (°j;b, 2xb, 3%b, °xv. and 3^v) 
also appear in both clusters Al and Bl. 

Cluster B2 has nine variables in common with cluster Al; 
most of these (Y *%, Pi-P*) are path connectivities of 
intermediate order. A couple of triplet indices (ANVi and 
ANV5) are also in common with cluster Al; another pair of 
triplet indices (ASN3 and ASN4) are in common with cluster 
A7. 

Cluster B3 contains triplet indices with distance sums as 
main diagonal vector; they occur in clusters A5 and A9. In 
addition, two descriptors (I* and HD) appear also in cluster 
Al. 

Cluster B4 is uniquely associated with cluster A2 and 
consists of indices 5x, 6X, 5Xb> V. 5#\ V> and P6~P\o- These 
descriptors are based on long paths; therefore, these variables 
appear only when large molecules are involved. 

Seven of the eleven variables of cluster B5 form exclu- 
sively cluster A6; they are related to molecular shape via 
vertex complexity and graph radius. Five triplet indices such 
as ASN,, ASN5, DSNi, DSN5, and ANV2 also are common 
to these two clusters. 

Very interesting correspondences are manifested by cluster 
B6, which is mainly associated with two clusters involving 
the hydrocarbon database, namely, A4 and A13 (plus one 
descriptor in B6 that appears in A10). All variables are of 
information-theoretic type. These higher-order variables 
(SIC3-SIC6 and CIC3-CIC6) are common to clusters B6 
and A4 and represent a true measure of molecular complex- 
ity. The lower- and intermediate-order indices such as IC, 
or SIC2 that appear in clusters B6 and A10 or B6 and A13, 
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respectively, provide information on lower-order complexity 
that may be more degenerate than that furnished by the 
higher-order information indices. One should stress here that 
information content indices form clusters that are separate 
from clusters with other descriptors, meaning that such 
variables convey unique information relative to structure and 
molecular complexity. 

Cluster B7 consists only of path-cluster molecular con- 
nectivity descriptors that were included in clusters A3, A7, 
and A8 for the hydrocarbons. 

Cluster B8 includes triplet indices, all of which have the 
atomic number Z for the free-term vector in the system of 
linear equations. Most of these descriptors appear in clusters 
A1.A5, and A9.   ■, 

Cluster B9 consists of high-order connectivity-cluster terms 
all contained in cluster A8. For hydrocarbons, descriptors 
6Xbc and Vc are perfectly correlated with descriptor 6xc, 
therefore, the former variables did not appear in the 
hydrocarbon cluster A8. For the diverse-compound database, 
such a correlation is not perfect because of differences in 
atom types. 

An interesting observation concerns cluster BIO: all six 
variables are absent from the hydrocarbon database because 
the database does not contain any three- or four-membered 
rings, unlike the diverse compound database. This is why 
indices 3/4Xch, 3/4Xbch, and 3'Vch appear only in cluster BIO. 

Cluster B11 has all but one of its descriptors contained in 
cluster A4; these information content indices, IC2-IC6, 
measure a high degree of nonredundancy of topological 
neighborhoods. 

Cluster B12 has four of its variables contained in cluster 
All; these descriptors (SIC0, CIC0-CIC2) express lower- 
order redundancy of topological neighborhoods. This is true 
of indices ICo and SICi as well, which are present in cluster 
A10. 

From cluster B13, the six descriptors (simple, bond- and 
valence-corrected chain molecular connectivity indices) are 
partitioned equally between clusters A2 and A14, according 
to the six- versus five-membered ring size, respectively; in 
the hydrocarbon database A, six-membered chain (or rings) 
predominate. 

Cluster B14 is exclusively associated in a one-to-one 
relationship with cluster A12. The corresponding descriptors 
lXc and 4xc as well as their bond- and valence-corrected 
counterparts represent connectivity indices on three- and four- 
vertex structural clusters. For the hydrocarbon database, we 
have again a case in which the two indices *xbc and 4xvc, 
perfectly correlated with 4^c, do not appear explicitly in 
cluster A12. 

Half of the variables (./-type indices) in cluster B15 are 
contained in cluster A2. These J indices again form a cluster 
apart from all other ones in the case of the diverse database, 
proving that when heteroatoms are taken into account, the 
information provided by such 7-type indices is unique. 

Clusters B16, B17, and B18 each have a small number of 
triplet-type descriptors; the three descriptors of cluster B17 
are all contained in cluster A7. 

Intercluster Correlations. From each cluster we select 
15-25% of the descriptors according to the maximal value 
of the correlation coefficient with their own cluster. In most 
cases, the first selected descriptor also has the minimal value 
of the correlation with the next closest cluster, expressed by 

Figure 2. Graph of highly correlated topological indices (TIs) 
according to Todeschini et al. (notation of TIs as in Table 3 of ref 
31). Lines connect TIs with r > 0.90. 

the 1 - r2 value. When more than one index is chosen from 
the same cluster, after the first one was selected as indicated 
above, the next one must also fulfill a third criterion, namely, 
a low intercorrelation with the previously selected indices 
of the same cluster. 

There were four intercluster correlations within the 
hydrocarbon data set that were greater than 0.9, and all 
involved cluster Al. Cluster Al was positively correlated 
with A2, A3, and A7. Cluster Al was correlated negatively 
with A5. Each of the clusters characterizes some aspect of 
molecular size and shape. 

Cluster Bl showed an intercluster correlation of 0.92 with 
cluster B2 and -0.90 with cluster B3. These were the only 
intercluster correlations greater than 0.9. These clusters are 
the three largest clusters in set B. Like cluster Al, cluster 
Bl groups TIs expressing molecular size and shape. Interest- 
ingly, in set A cluster Al also had a negative intercluster 
correlation with cluster A5; it is therefore not surprising that 
clusters A5 and B3 have the most abundantly populated line 
connecting them in Figure 1. 

In summary, for the hydrocarbon database there are four 
intercluster correlations with r > 0.90 all involving on one 
hand the first cluster Al and on the other hand clusters A2, 
A3, A5, and A7. For the diverse compound database there 
are only two such intercluster correlations with r > 0.90, 
namely, Bl with B2 and B3. This is not unexpected, as the 
combination of the first three clusters in each case contains 
more descriptors than the parameters remaining in all the 
remaining ones together. 

In this context, one should mention that Todeschini and 
co-workers published an interesting study35 on 23 TIs for a 
set of 667 diverse chemicals, 20% of which were hydrocar- 
bons; the above authors excluded 10 of these TIs because 
they were degenerate, or redundant or had intercorrelation 
factors higher than 0.90. A graph depicting highly intercor- 
related indices using data published by these authors is 
presented in Figure 2, which is similar to a graph published 
earlier.22 

Ten TIs were then selected by Todeschini et al.,35 namely, 
the molecular weight (A/w), J, IC, CIC, the bonding informa- 
tion content (BIC), mean Randic connectivity (x), the 
information content on atomic composition (/AC), the mean 
Wiener index (W), and the mean information indices on 
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equality of distance degree and on the magnitude of distance 
degree (7ED,deg and /WD,dCg, respectively). Then, using principal- 
component analysis for the above 10 TIs, Todeschini et al. 
analyzed the composition of the first six principal-compo- 
nents. They found that the first PC is mainly composed of 
indices that express the size of molecules (Mw, W, IC, 7ED,deg 

and /WD,deg). This is in agreement with the earlier finding of 
Basak et al. for a set of 3692 diverse chemicals that the first 
PC is related to molecular size.29 Further, Todeschini et al. 
found that the second PC is dominated by indices expressing 
information on bonds (IC, CIC, and BIC). This is also 
analogous to the results reported by Basak et al.29 that the 
second axis represents molecular complexity as encoded by 
higher-order neighborhood complexity indices (IC2, IC3, 
SIC2, SIC3, CIC2, CIC3, etc.). The IC, CIC, and BIC indices 
used by Todeschini et al. are based solely on first-order 
topological bonding/neighborhoods and slightly different 
equivalence relations as compared to the ICr, SICr, and CICr 

indices defined by Roy et al.27 In studies by Basak et al.,29 

the first-order complexity indices (ICi, SICi, CICi) were 
usually most correlated with the first PC. Each of the next 
four PCs in Todeschini et al.'s study35 is dominated by a 
single Tl.viz., %, 7Ac, J (indicating branching), and 7ED.deg 
(connected with the position of substituents on the molecular 
scaffold), respectively. 
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ABSTRACT. Mathematical invariants are frequently used for the characteriza- 
tion of molecular graphs. Such invariants quantify structural features of chem- 
icals like size, shape, symmetry, cyclicity, complexity, branching, etc. Numeri- 
cal graph invariants or topological indices (TIs) have been used in developing 
quantitative structure-property/ activity/ toxicity relationship models and in 
defining intermolecular similarity. In this paper, we have used a set of TIs and 
a class of substructures called atom pairs (APs) in selecting analogs of probe 
chemicals from a set of mutagens. The result shows that both of the similarity 
methods select analogs which have reasonable structural similarity with the 
query chemicals. Such analogs, selected computationally, can be useful in the 
hazard assessment of chemicals for which very little or no toxicity data are 
available. 

1. Introduction 

A contemporary interest in* mathematical chemistry is the characterization of 
molecular structure using graph theoretic formalism [1]-[11]. A graph G = [V,E] 
consists of an ordered pair of two sets V and E, representing the vertices and edges, 
respectively. G becomes a molecular graph when the set V represents the set of 
atoms in a molecule and the set E symbolizes chemical bonds between adjacent 
atoms [8]. 

Mathematical characterization of molecular graphs (structures) may be accom- 
plished using graph invariants. An invariant may be a polynomial, a sequence of 
numbers, or a real number. A real number characterizing a molecular graph is called 
a topological index (TI). TIs quantify different aspects of molecular architecture, 
viz., size, shape, cyclicity, branching, symmetry, etc [8]. 

TIs have been used extensively in quantitative structure-property/activity rela- 
tionships (QSPR and QSAR respectively) and the quantification of intermolecular 
similarity/dissimilarity of chemicals [10]-[24]. In quantitative molecular similarity 
analysis (QMSA) studies, TIs have been used to derive high dimensional structure 
spaces where the Euclidean distance Dij between a pair of molecules i and j is used 
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to quantify the similarity between them. Similarity measures can be used either for 
the selection of analogs of chemicals or in the prediction of the property/activity 
of a molecule from the property of its selected neighbor(s). 

In some of our recent QSAR/QMSA studies we have used different similarity 
measures derived from TIs in the selection of analogs and prediction of proper- 
ties/activities for diverse sets of chemicals. We have also used orthogonal descrip- 
tors derived from a set of over 100 graph invariants to estimate bioactivity/toxicity 
of different graphs of molecules. In this paper we have used similarity measures 
derived from TIs in: a) selecting analogs of an isospectral graph from a diverse set 
of 221 compounds, and b) predicting the mutagenicity of a set of 113 mutagens and 
non-xnutagens using QMSA methods. 

2. Methods 

2.1. Databases. A set of 19 pairs of isospectral graphs from the work of 
Balasubramanian and Basak [25] were added to a set of 107 benzamidines [26] and 
a composite set of 76 diverse compounds used in an earlier study by Basak and 
Grunwald [23] to create a varied library of 221 compounds. This composite library 
was created to provide a large set containing both congeneric and non-congeneric 
sets to test analog selection methods. The chemical structures for the 19 pairs of 
isospectral graphs have been presented previously [25]. 

A second data set, representing a subset of the set of 277 chemicals presented by 
Yamaguchi et al. [27] was also used in the current study. This subset consisted of all 
the chemicals in the set of 277 chemicals that had reported results for mutagenicity 
in the Ames test, mutagenicity in the medium term liver carcinogenesis bioassay, 
and carcinogenicity in the two-year rodent bioassay in rat and/or mouse. This 
subseting resulted in a set of 113 chemicals, 68 of which are classified as non- 
mutagens and 45 of which are classified as mutagens in the Ames test. This set of 
chemicals and their observed «mutagenicity are reported in Table 1. 

TABLE 1: Mutagenicity in the Ames test for 113 chemicals 

X~Ä^t 

No."    Compound Name 
Obs. Ames 
Mutagenicity 

1.5 butylated hydroxyanisole (BHA) 
1.6 caffeic acid 
1.7 catechol 
1.8 clofibrate 
1.9 di(2-ethylhexyl)phthalate (DEHP) 
1.10 hydroquinone 
1.11 p-methoxyphenol 
1.12 sesamol 
1.13 tamoxifen 
1.14 acetaminophen 
1.15 benzoin 
1.16 EPN 
1.17 gallic acid 
1.18 a-tocopherol 
2.2 2-acethylaminofluorene (AAF) 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
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No."    Compound Name 
Obs. Ames 
Mutagenicity 

2.3 adriamycin 
2.4 aflatoxin Bl 
2.5 benzo[a]pyrene 
2.7 captafol 
2-. 8 captan 
2.9 carbazole 
2.10 dibutylnitrosamine (DBN) 
2.11 diethylnitrosamine (DEN) 
2.12 3,2'-dimethyl-4-aminobiphenyl (DMAB) 
2.14 dimethylnitrosamine (DMN) 
2.15 N-ethyl-N-hydroxyethylnitrosamine (EHEN) 
2.16 N-ethyl-N-nitrosourea (ENU) 
2.20 hydrazobenzene 
2.22 laciocarpine 
2.26 3'-methyl-4-dimethylaminoazobenzene (3'-Me-DAB) 
2.27 3-amino-9-ethylcarbazole 
2.28 N-nitrosooxazolidine 
2.29 N-nitrosodi-n-propylamine (NDPA) 
2.30 N-nitrosomorpholine 
2.31 N-nitrosopiperidine 
2.32 N-nitrosopyrrolidine 
2.33 quinoline 
2.34 sterigmatocystin 
2.35 4,4'-thiodianiline. 
2.42 alachlor 
2.43 aldrin 
2.44 auramine 0 
2.45 barbital 
2.46 chlordane 
2.47 chlorendic acid 
2.48 chlorobenzilate 
2.49 DDT 
2.50 dieldrin 
2.51 diethylstilbestrol 
2.53 ethenzamide 
2.54 17a-ethinyl estradiol 
2.55 DL-ethionine 
2.56 hexachlorobenzene (HCB) 
2.57 a-hexachlorocyclohexane (a-HCH) 
2.58 d-limonene 
2.59 monoclotaline 
2.60 N-nitrosodiethanolamine 
2.61 phenobarbital 
2.64 safrole 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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TABLE 1: Mutagenicity in the Ames test for 113 chemicals 

No."    Compound Name 
Obs. Ames 
Mutagenicity 

2.66 thioacetamide 0 
2.67 triadimefon 0 
2.68 trifluralin 0 
2.69 urethane 0 
2.70 polychlorinated biphenyl (PCB) 0 
2.71 malathion 0 
2.72 vinclozolin 0 
3.1 acetophenetidine (phenacetin) 
3.2 azathioprine 
3.3 N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) 
3.4 chrysazin (danthron) 
3.5 4,4'-diaminodiphenylmethane (DDPM) 
3.6 7,12-dimethylbenz[a]anthracene (DMBA) 
3.7 N-ethyl-N-(4-hydroxybutyl)nitrosamine (EHBN) 
3.8 folpet 
3.9 hydrogen peroxide 
3.11 3-methylcholanthrene (3-MC) 
3.12 N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) 
3.13 N-methyl-N-nitrosourea (MNU) 
3.14 8-nitroquinoline 
3.17 streptozotocin 
3.18 o-toluidine 
3.20 6-methylquinoline^ 
3.21 8-methylquinoline 
3.22 nitrofrantoln 
3.23 6-nitroquinoline 
3.24 quercetin 
3.32 acetaldehyde 0 
3.33 atrazine 0 
3.34 di(2-ethylhexyl)adipate (DEHA) 0 
3.35 1,1-dimethylhydrazine 0 
3.39 trichloroacetic acid                                                           0 
3.42 4-acethylaminofluorene (AAF) 0 
3.43 aspirin 0 
3.44 butylated hydroxytoluene (BHT) 0 
3.45 caffeine 0 
3.46 caprolactam 0 
3.47 chenodeoxicholic acid 0 
3.49 cypermethrin 0 
3.50 deltamethrin 0 
3.51 diltiazem 0 
3.52 dimethylsulfoxide (DMSO) 0 
3.53 diazinon 0 
3.54 fenvalerate 0 

r''^~*~£-'"?--_- 
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Obs. Ames 
No." Compound Name Mutagenicity 

3.55 glutathione 0 
3.56 4-o-hexyl-2,3,6-trimethylhydroquinone (HTHQ) 0 
3.58 lithocolic acid 0 
3.59 d-mannitol 0 
3.61 phenol 0 
3.64 propyl galiate 0 
3.65 propylparaben 0 
3.66 pyrene 0 
3.67 resorcinol 0 
3.71 trimorphamide 0 

The numbering scheme refers to the enumeration of the chemicals 
in the presentation by Yamaguchi et al. [27] where the numeral be- 
fore the decimal place refers to the table in which the compound was 
listed (see below) and the numerals after the decimal refer to the 
compounds location within the table. 
Table 1 - Association between inhibitory results in the medium-term 
liver bioassay (Ito test) and reported mutagenicity and carcinogenic- 
ity. 
Table 2 - Association between positive results in the medium-term 
liver bioassay (Ito test) and reported mutagenicity and carcinogenic- 
ity. 
Table 3 - Association between negative results in the medium-term 
liver bioassay (Ito fest) and reported mutagenicity and carcinogenic- 
ity. 

c??~^|3£§| 

2.2. Calculation of Topological Indices. The TIs calculated for this study 
are listed in Table 2 and include Wiener number [28], molecular connectivity in- 
dices as calculated by Randic [29] and Kier and Hall [4], frequency of path lengths 
of varying size, information theoretic indices denned on distance matrices of graphs 
using the methods of Bonchev and Trinajstic [30] as well as those of Raychaud- 
hury et al. [31], parameters defined on the neighborhood complexity of vertices in 
hydrogen-filled molecular graphs [32]-[34], and Balaban's J indices [35]-[37]. The 
majority of the TIs were calculated using POLLY 2.3 [38]. The J indices were 
calculated using software developed by the authors. 

The Wiener index (W) [28], the first topological index reported in the chem- 
ical literature, may be calculated from the distance matrix D(G) of a hydrogen- 
suppressed chemical graph G as the sum of the entries in the upper triangular 
distance submatrix. The distance matrix D(G) of a nondirected graph G with n 
vertices is a symmetric n x n matrix (dij), where d^ is equal to the distance be- 
tween vertices t>j and Vj in G. Each diagonal element da of D(G) is zero. We give 
below the distance matrix D(G\) of the unlabeled hydrogen-suppressed graph Gi 
of thioacetamide (Fig. 1): 
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W is calculated as: 

(2.1) 

Did)    =    2 

1 2 3 4 
1 0 1 2 2 
2 1 0 1 1 
3 2 1 0 2 
4 2 1 2 0 

W = l/2£dy=£h.0k 

where <?/, is the number of unordered pairs of vertices whose distance is h. Thus 
for D(Gi), W has a value of nine. 

H,C NHa 

Thioacetamide »1 

FIGURE  1.. Unlabeled, hydrogen-suppressed graph of thioacet- 
amide (Gi) 

Randic's connectivity index [29], and higher-order connectivity path, cluster, 
path-cluster and chain types of simple, bond and valence connectivity parameters 
were calculated using the method of Kier and Hall [4]. The generalized form of the 
simple path connectivity index is as follows: 

(2.2) \ = 5>it;;...i>fc+i)-l/2 

where Vi,Vj,...,Vh+i are the degrees of the vertices in the path of length h. The 
path length parameters (Pj,), number of paths of length h (h = 0,1,..., 10) in the 
hydrogen-suppressed graph, are calculated using standard algorithms. 

Information-theoretic topological indices are calculated by the application of 
information theory on chemical graphs. An appropriate set A of n elements is 
derived from a molecular graph G depending upon certain structural characteristics. 
On the basis of an equivalence relation denned on A, the set A is partitioned into h 

h 
disjoint subsets At of order n<(t = 1,2,..., h; J2 n< = n). A probability distribution 

i-l 
is then assigned to the set of equivalence classes: 

Ai,A2,...,Ah 

Pl,P2,---,Ph 

where p< = rn/n is the probability that a randomly selected element of A will occur 
in the iih subset. 
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TABLE 2: Symbols and brief definitions for 101 topological indices 

TW 1
D 

TW 
lD 

W 

JD- 

Hv 

HD 

IC 

lORB 

O 

Mi 

M2 

ICr 

SICr 

CICr 

"x 

V 
*& 

V 
\vc 
h-,v 

X-Ch 

Ph 

J 
JB 

JX 

JY 

Information index for the magnitudes of distances between all possible 
pairs of vertices of a graph 
Mean information index for the magnitude of distance 

Wiener index = half-sum of the off-diagonal elements of the distance 
matrix of a graph 

Degree complexity 
Graph vertex complexity 

Graph distance complexity 

Information content of the distance matrix partitioned by frequency of 
occurrences of distance h 
Information content or complexity of the hydrogen-suppressed graph at 
its maximum neighborhood of vertices 
Order of neighborhood when ICr reaches its maximum value for the 
hydrogen-filled graph 
A Zagreb group parameter = sum of square of degree over all vertices 
A Zagreb group parameter = sum of cross-product of degrees over all 
neighboring (connected) vertices 
Mean information content or complexity of a graph based on the rth (r = 
0-6) order neighborhood of vertices in a hydrogen-filled graph 
Structural information content for rth (r = 0 — 6) order neighborhood of 
vertices in a hydrogen-filled graph 
Complementary information content for rth (r = 0 — 6) order neighbor- 
hood of vertices in,a hydrogen-filled graph 
Path connectivity index of order h — 0 — 6 
Cluster connectivity index of order h = 3 — 6 
Chain connectivity index of order h = 3 — 6 
Path-cluster connectivity index of order h = 4 — 6 
Bond path connectivity index of order h = 0 — 6 
Bond cluster connectivity index of order h = 3 — 6 
Bond chain connectivity index of order h = 3 — 6 
Bond path-cluster connectivity index of order h = 4 — 6 
Valence path connectivity index of order h = 0 — 6 
Valence cluster connectivity index of order h = 3 — 6 
Valence chain connectivity index of order h = 3 — 6 
Valence path-cluster connectivity index of order h = 4 — 6 
Number of paths of length h = 0 - 10 
Balaban's J index based on distance 
Balaban's J index based on bond types 
Balaban's J index based on relative electronegativities 
Balaban's J index based on relative covalent radii 

ri'Äf.-i^gä~ig 
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The mean information content of an element of A is defined by Shannon's 
relation [39]: 

(2.3) IC = ~XlPil0S2Pi 

The logarithm is taken at base 2 for measuring the information content in bits. 
The total information content of the set A is then n x IC. Figure 2 provides a 
sample calculation for IC\. 

It.is to be noted that the information content of a graph G is not uniquely de- 
fined. It depends on how the set A is derived from G as well as on the equivalence 
relation which partitions A into disjoint subsets A{. For example, when A consti- 
tutes the vertex set of a chemical graph G, two methods of partitioning have been 
widely used: a) chromatic-number coloring of G where two vertices of the same 
color are considered equivalent, and b) determination of the orbits of the automor- 
phism group of G thereafter vertices belonging to the same orbit are considered 
equivalent. 

Rashevsky was the first to calculate the information content of graphs where 
"topologically equivalent" vertices were placed in the same equivalence class [40]. 
In Rashevsky's approach, two vertices u and v of a graph are said to be topologically 
equivalent if and only if for each neighboring vertex u,(t = 1,2, ...,k) of the vertex 
u, there is a distinct neighboring vertex Vi of the same degree for the vertex v. While 
Rashevsky used simple linear graphs with indistinguishable vertices to symbolize 
molecular structure, weighted linear graphs or multigraphs are better models for 
conjugated or aromatic molecules because they more properly reflect the actual 
bonding patterns, i.e., electron distribution. 

To account for the chemical nature of vertices as well as their bonding pattern, 
Sarkar et al. [41] calculated information content of chemical graphs on the basis 
of an equivalence relation where two atoms of the same element are considered 
equivalent if they possess an identical first-order topological neighborhood. Since 
properties of atoms or reaction centers are often modulated by stereo-electronic 
characteristics of distant neighbors, i.e., neighbors of neighbors, it was deemed 
essential to extend this approach to account for higher-order neighbors of vertices. 
This can be accomplished by defining open spheres for all vertices of a chemical 
graph. If r is any non-negative real number and v is a vertex of the graph G, then 
the open sphere S(v, r) is defined as the set consisting of all vertices vt in G such 
that d(v,Vi) < r. Therefore, S{v,0) = 0, S{v,r) = v for 0 < r < 1, and S(v,r) is 
the set consisting of v and all vertices v{ of G situated at unit distance from v, if 
1 < r < 2. 

One can construct such open spheres for higher integral values of r. For a 
particular value of r, the collection of all such open spheres S(v, r), where v runs over 
the whole vertex set V, forms a neighborhood system of the vertices of G. A suitably 
defined equivalence relation can then partition V into disjoint subsets consisting 
of vertices which are topologically equivalent for rth order neighborhood. Such 
an approach has been developed and the information-theoretic indices calculated 
based on this idea are called indices of neighborhood symmetry [34]. 

In this method, chemicals are symbolized by weighted linear graphs. Two 
vertices u0 and v0 of a molecular graph are said to be equivalent with respect to 
Tth order neighborhood if and only if corresponding to each path u0, Ui,..., rxr of 
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H2 u 
\ /   4 

G2:  thioacetamide H,—C6 Na 
/   V     ^H5 

H3 II 

First-order neighbors: 

I II 
H,H2H3 H4H5 

C C C N N 

III IV 

HH HC C   % N 

V 

A\ 
VI 

§9 

Subsets: 

(H1-H3) (H4-H5) 

IV 

C7 

V 

N8 

VI 

Sg 

Probability: 

3/9 2/9 1/9 

IV 

1/9 

V 

1/9 

VI 

1/9 

IC, = 4 * 1/9 * Log2 9 + 2/9 * Log2 9/2 + 3/9 * Log2 9/3 

SIC, = IC,/Log2 9 

= 2.419 bits 

= 0.763 bits 

CIC, = Log2 12 - IC2 = 0.751 bits 

FIGURE 2. Labeled, hydrogen-filled graph of thioacetamide (G2) 
and sample calculations for ICuSICi and CICX 

length r, there is a distinct path v0,vl,...,vr of the same length such that the 
paths have similar edge weights, and both u0 and v0 are connected to the same 
number and type of atoms up to the rth order bonded neighbors. The detailed 
equivalence relation has been described in earlier studies [34, 42]. 
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Once partitioning of the vertex set for a particular order of neighborhood 
is completed, ICr is calculated by Eq. (2.2). Basak et al. [32] defined another 
information-theoretic measure, structural information content (SICr), which is cal- 
culated as: 

(2.4) SICr = ICr/\og2n 

where ICT is calculated from Eq.(2.2) and n is the total number of vertices of the 
graph; 

Another information-theoretic invariant, complementary information content 
(CICr) [43], is defined as: 

(2.5) CICr = log2n- ICr 

CICr represents the difference between maximum possible complexity of a 
graph (where each vertex belongs to a separate equivalence class) and the realized 
topological information of a chemical species as defined by ICr- Sample calculations 
for SICi and CIC\ have been included in Figure 2. 

The information-theoretic index on graph distance, I™ is calculated from the 
distance matrix D(G) of a chemical graph G as follows [30]: 

(2.6) 1D WlogtW-^gH-hlogih 

The mean information index, I™, is found by dividing the information index 
IQ by W. The information theoretic parameters defined on the distance matrix, 
HD and Hv, were calculated by the method of Raychaudhury et al. [31]. 

Balaban defined a series of indices based upon distance sums within the distance 
matrix for a chemical graph that he designated as J indices [35]-[37]. These 
indices are highly discriminating with low degeneracy. Unlike W, the J indices 
range of values are independent of molecular size. The general form of the J index 
calculation is as follows: 

(2.7) J = q(n+l)-1    J2   (^i)_1/2 

ijtedges 

where the cyclomatic number /J. (or number of rings in the graph) is fi = q — n + 1, 
with q edges and n vertices and Si is the sum of the distances of atom i to all 
other atoms and Sj is the sum of the distances of atom j to all other atoms [35]. 
Variants were proposed by Balaban for incorporating information on bond type, 
relative electronegativities, and relative covalent radii [36, 37]. 

2.3. Calculation of Atom Pairs. Atom pairs (APs) were calculated using 
the method of Carhart et al. [3]. An atom pair is defined as a substructure consisting 
of two non-hydrogen atoms i and j and their interatomic separation: 

< atom descriptor; > — < separation > — < atom descriptor^ > 

where < atom descriptor > contains information about the atomic type, number of 
non-hydrogen neighbors and the number of 7r electrons. The interatomic separation 
of two atoms is the number of atoms traversed in the shortest bond-by-bond path 
containing both atoms. APs used in this study were calculated by the APProbe 
software [43]. 
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2.4. Statistical Methods and Computation of Intermolecular 
Similarity. 

2.4.1. Data Reduction. Initially, all TIs were transformed by the natural log- 
arithm of the index plus one. This was done since the scale of some TIs may be 
several orders of magnitude greater than other TIs. 

A principal component analysis (PCA) was used on the transformed indices to 
minimize the intercorrelation of indices. The PCA was conducted using the SAS 
procedure PPJNCOMP [44]. The PCA produces linear combinations of the TIs, 
called principal components (PCs) which are derived from the correlation matrix. 
The first PC has the largest variance, or eigenvalue, of the linear combination 
of TIs. Each subsequent PC explains the maximal index variance orthogonal to 
the previous PCs, eliminating any redundancies that could occur within the set 
of TIs. The maximum number of PCs generated is equal to the number of TIs 
available. For the purposes of this study, only PCs with eigenvalues greater than 
one were retained. A more detailed explanation of this approach has been provided 
in a previous study by Basak et a/.[13]. These PCs were subsequently used to 
determine similarity scores as described below. 

2.4.2. Similarity Measures. Intermolecular similarity was measured using two 
distinct methods. The AP method uses an associative measure described by Carhart 
et al. [3] and is based on atom pair descriptors. The measurement is the ratio of 
the number of shared atom pairs between two molecules over the total number of 
atom pairs present in the two molecules. Similarity (5) between molecules i and j 
is defined as: 

(2.8) Sij = 2C/(Ti + Tj) 

where C is the number of atom pairs common to molecule z and j. T{ and Tj are 
the total number of atom pairs in molecule i and j, respectively. The numerator 
is multiplied by a factor of 2 to reflect the presence of shared atom pairs in both 
compounds. « 

The second similarity method, Euclidean distance (ED) within an n-dimensional 
PC space derived from TIs was used. ED between molecules i and j is defined as: 

(2.9) EDij = T,v>*-Diky 
nl/2 

,fc=l 

where n equals the number of dimensions or PCs retained from the PCA. Dik and 
Djk are the data values of the kih dimension for molecules i and j, respectively. 

2.4.3. Analog / K-Nearest Neighbor Selection. Following the quantification of 
intermolecular similarity of the molecules, analogs or nearest neighbors are deter- 
mined on the basis of both S and ED. In the case of the AP method, two molecules 
are considered identical if S = 1, while they have no atom pairs in common if 5 = 0. 
The ED method measures a distance between molecules, thus the lower the value 
of ED the greater the similarity between two molecules. 

2.4.4. Property Estimation. Since the data presented in the work of Yamaguchi 
et al. [27] represented mutagenicity as non-mutagen (-) or mutagen (+) this data 
was treated as a zero-one relationship, where non-mutagens have a value of zero 
and mutagens have a value of one. In estimating the mutagenicity of the probe 
compound, the mean of the observed mutagenicity of the if-nearest neighbors was 
used as the estimate. Thus, if the mean resulted in a value greater than 0.5, the 

P 

ty^^M 
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compound was classified as a mutagen. However, if the mean was equal to 0.5, the 
compound was not classified as the results were inconclusive. 

3.  Results 

3.1. Principal Component Analysis. From the PCA of the 102 TIs, eight 
PCs with eigenvalues greater than one were retained. These eight PCs explained, 
cumulatively, 95.2% of the total variance within the TI data. Table 3 lists the 
eigenvalues of the eight PCs, the proportion of variance explained by each PC, the 
cumulative variance explained, and the two TIs most correlated with each individual 
PC. 

TABLE 3. Eigenvalues, variance explained and two TIs most cor- 
related with the eight principal components 

Percent Cumulative 
variance variance First most       Second most 

PC Eigenvalue explained explained correlated TI    correlated TI 

PC, 55.52 54.97 54.97 Y (96.5%) 3
X (96.4%) 

PC2 12.38 12.26 67.23 SIC3 (86.4%) SIC4 (85.5%) 
PC3 11.73 11.61 78.84 Xch (77.3%) 5xhh (76.1%) 
Pd 6.78 6.71 85.55 IC0 (55.0%) \-Ch (49.7%) 
PC5 4.60 4.55 90.10 J (68.9%) JY (62.4%) 
PCs 2.35 2.32 92.43 ICo (-47.2%) SICQ (-36.4%) 
PC7 1.65 1.63 94.06 Ya (44.4%) Yc (43.5%) 
PC8 1.16 1.14 95.21 % (-34.6%) % (23.0%) 

3.2. Analog Selection. Figure 3 shows the results of the analog selection for 
isospectral graph 10.1.1 using atom pairs to derive a similarity space and PCs to 
derive a Euclidean distance space. The first five analogs (neighbors) for the probe 
compound, 10.1.1, are presented for each of the similarity methods. 

3.3. Ä-Nearest Neighbor Estimation. Table 4 presents the results for the 
prediction of mutagenicity for the 113 molecules over a range of K values (K = 1-5) 
for both the AP and ED methods. The results are presented as percent correctly 
classified and over-all percent correct prediction rates are provided as a means of 
comparing the efficacy of the individual models. The variability between the K 
levels is easily explained by the problematic nature of using a binary relationship 
such as this one in estimation. When the number of neighbors was even, the 
potential for unclassified compounds led to lower prediction rates than in the case 
of an odd number of neighbors. 

4.  Discussion 

The major objective of this paper was to study the effectiveness of mathemat- 
ical invariants in the characterization of molecular structure and the estimation of 
the toxicity of chemicals. An invariant maps a chemical structure into the set R of 
real numbers. A specific invariant may be used for the ordering or partial ordering 
of sets of molecules or in structure-activity relationship studies [45].  A particular 
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Atom Pair 
Method 

Similarity 
Score 

S=0.9S S=0.93 S=0.88 S=0.86 S=0.86 

Euclidean 
Distance ED=0.19 ED=0.20 ED=0.20 ED=0.20 ED=0.21 

FIGURE 3. Analogs selected for isospectral graph 10.1.1 

TABLE 4. KNN results for the prediction of mutagenicity for 113 chemicals 

Percent Negative Percent Positive Total Percent 
Correct Correct Correct 

K AP ED AP ED AP ED 

1 73.5 75.0 84.1 66.7 77.7 71.7 
2 66.2 64.7 72.7 33.3 68.8 52.2 
3 77.9 80.9 88.6 53.3 82.1 69.9 
4 70.6 69.1 77.3 42.2 73.2 58.4 
5 79.4 77.9 86.4 53.3 82.1 68.1 

structural invariant quantifies distinct aspects of molecular structure. Therefore, a 
combination of such indices might be more powerful in the mathematical charac- 
terization of molecular structure as compared to the use of one specific invariant. 
The problem arises out of the fact that often the various graph theoretic indices 
of molecular structures are strongly correlated. We have attempted to resolve this 
problem through the implementation of a PCA to derive orthogonal variables from 
a large set of calculated TIs, and using the orthogonal parameters in the charac- 
terization of structure [10, 12, 15, 17, 18, 22, 23]. 

In the present study we have used calculated atom pairs and principal com- 
ponents derived from TIs to select structural analogs for a probe compound from 
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a diverse set containing closely related structures. The result of this analog selec- 
tion, depicted in Figure 3, shows that the five neighbors selected by each of the 
methods exhibit sufficient power to reject dissimilar structures. In other words, 
we may conclude that both the atom pair and Euclidean distance methods are ca- 
pable of choosing similar molecules from a collection of structurally diverse struc- 
tures. This is in line with our earlier studies with various diverse sets of molecules 
[10, 12, 15, 17, 18, 22, 23]. 

The central paradigm of QSAR holds that similar structures usually have sim- 
ilar properties. To test this idea, we selected Af-nearest neighbors (K = 1 - 5) for 
each molecule from a set of 113 mutagens and non-mutagens using the ED and 
AP methods and used the selected nearest neighbors in estimating mutagenicity. 
The results in Table 4 show that both methods lead to reasonably good estimates, 
although the AP method was superior to the ED method. 

In conclusion, both the ED and AP methods, based on calculated graph theo- 
retic structural invariants, did reasonably well in the selection of structural analogs 
and in the estimation of chemical properties based on nearest neighbors. 
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Hierarchical quantitative structure—activity relationships (H-QSAR) have been developed as a new approach 
in constructing models for estimating physicochemical, biomedicinal, and toxicological properties of interest. 
This approach uses increasingly more complex molecular descriptors in a graduated approach to model 
building. In this study, statistical and neural network methods have been applied to the development of 
H-QSAR models for estimating the acute aquatic toxicity (LC50) of 69 benzene derivatives to Pimephales 
promelas (fathead minnow). Topostructural, topochemical, geometrical, and quantum chemical indices were 
used as the four levels of the hierarchical method. It is clear from both the statistical and neural network 
models that topostructural indices alone cannot adequately model this set of congeneric chemicals. Not 
surprisingly, topochemical indices greatly increase the predictive power of both statistical and neural network 
models. Quantum chemical indices also add significantly to the modeling of this set of acute aquatic toxicity 
data. 

1. INTRODUCTION 

An important aspect of modern toxicology research is the 
prediction of toxicity of xenobiotics and environmental 
pollutants from their molecular structure.1-13 The potential 
toxicity of a chemical is normally assessed on the basis of a 
wide variety of relevant physical and biological properties. 
Table 1 provides a partial list of such properties. Risk 
assessors use these kinds of toxicological indicators to 
estimate the potential risk posed by a given compound, using 
simpler properties relevant to a chemical's toxicity to make 
more complex assessments relevant to human and environ- 
mental health. However, the Toxic Substances Control Act 
(TSCA) Inventory currently includes about 80 000 chemicals, 
most of which do not have data for the toxicologically 
relevant properties mentioned in Table 1. In fact, roughly 
50% of these chemicals do not have any experimental 
property data at all.14 Worldwide, more than 16.7 million 
distinct organic and inorganic chemicals are known, as is 
evident from the number of entries in the Chemical Abstract 
Service (CAS) inventory.15 For many of these chemicals we 
do not have the data necessary for risk assessment. Ad- 
ditionally, modern combinatorial chemistry techniques have 
led to the production of vast libraries of chemicals at a very 
rapid rate. Most of these substances have none of the test 
data needed for their hazard estimation. 

Recently there have been efforts by the chemical industry 
and government agencies to develop reliable databases of 
properties that will be used for hazard estimation.16 This 
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720-4230. Fax: (218) 720-4328. E-mail: sbasak@nrri.umn.edu. 

* University of Minnesota, Duluth. 
* Arizona State University. 
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Table 1. Physicochemical and Biological Properties Relevant to the 
Assessment of toxicity 

physicochemical biological 

molar volume 
boiling point 
melting point 
vapor pressure 
aqueous solubility 
dissociation constant (pXJ 
partition coefficient 

octanol-water (log P) 
air—water 
sediment—water 

reactivity (electrophile) 

receptor binding (KD) 
Michaelis constant (Km) 
inhibitor constant (AT;) 
biodegradation 
bioconcentration 
alkylation profile 
metabolic profile 
chronic toxicity 
carcinogenicity 
mutagenicity 
acute toxicity 

LD50 
LCso 

effort, although commendable, falls short of the need; and 
the picture will remain so in the foreseeable future. In the 
area of molecular biology, innovative techniques are emerg- 
ing where specially engineered cell lines can be used to detect 
the activity or toxicity of chemicals to the genetic system.17-19 

Effects of chemicals on the pattern of cellular proteins, 
analyzed by proteomics technology, are being used to detect 
their potential toxic effects.20-22 Such methods are faster than 
the traditional in vivo test methods, and it is possible that 
they could be developed to the point where they will replace 
or significantly decrease the need for whole-animal screening 
methods. At present, neither the available test data nor the 
combination of in vitro toxicity testing methods provides 
adequate resources for hazard assessment. 

Quantitative structure—activity/-toxicity relationship 
(QSAR/QSTR) models have emerged as useful tools to 
handle the data gap in toxicology and pharmacology.1-13,22-26 

QSAR models can be used to estimate complex properties 
of chemicals from simpler experimental or computed proper- 
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ties. In view of the fact that most chemicals in commerce 
and environmental pollutants have very little test data, it 
would be desirable if we could develop toxicologically 
relevant QSARs from properties that can be calculated 
directly from a chemical's structure. In some of our recent 
papers we have developed a novel hierarchical QSAR (H- 
QSAR) approach where four classes of theoretical molecular 
descriptors, viz., topostructural, topochemical, geometrical, 
and quantum chemical parameters, have been used sequen- 
tially in the formulation of H-QSAR models for predicting 
physical, biomedicinal, and toxicological properties. IJA8i23"a 

Most of our H-QSARs are based on linear statistical 
methods such as multiple linear regression, principal com- 
ponents analysis (PCA), and variable clustering. Such 
methods yield useful models, but they suffer from the 
limitation that in some cases the relationship between a 
molecular descriptor and toxicity may be intrinsically 
nonlinear. In such cases, the use of linear statistical methods 
may not result in the best models. Therefore, in this paper, 
we have carried out a comparative study of multiple 
regression vis-ä-vis neural net methods in predicting the acute 
aquatic toxicity (LC5o) of a set of 69 benzene derivatives. 

2. METHODS 

2.1. Toxicity Database. The utility of this approach of 
generating numerous hierarchical theoretical descriptors of 
compounds was tested on a set of acute aquatic toxicity 
(LC50) data for 69 benzene derivatives. The data were taken 
from a study by Hall et al.,12 who collected acute aquatic 
toxicity data measured in fathead minnow (Pimephales 
promelas). These data were compiled from eight other 
literature sources and included some original work which 
was conducted at the U. S. Environmental Protection Agency 
Environmental Research Laboratory (USEPA-ERL) in Du- 
luth, MN. This set of chemicals was composed of benzene 
and 68 substituted benzene derivatives. According to the 
authors, these benzene derivatives were tested using meth- 
odologies comparable to their own 96-h fathead minnow 
toxicity test system. The derivatives chosen for this study 
(see Table 2) have seven different substituent groups that 
are present in at least six of the molecules: chloro-, bromo-, 
nitro-, methyl-, methoxyl-, hydroxyl-, and amino-. 

2.2. Calculation of Topological Indices. The complete 
set of topological indices (TIs) used in this study, both 
topostructural and topochemical, have been calculated using 
POLLY 2.3 and other software developed by Basak et al.27 

These indices include the Wiener index,28 the connectivity 
indices developed by Randi<5,29 higher order connectivity 
indices formulated by Kier and Hall,30 bonding connectivity 
indices defined by Basak et al.,31 a set of information 
theoretic indices defined on the distance matrices of simple 
molecular graphs,32*33 a set of parameters derived on the 
neighborhood complexity of hydrogen-filled molecular 
graphs,34-36 and Balaban's J indices.37-39 Table 3 provides 
the symbols of the topological indices and brief definitions. 

The set of TIs was divided into two distinct subsets: 
topostructural indices (TSI) and topochemical indices (TCI). 
TSIs are topological indices which encode information about 
the adjacency and distances of atoms (vertices) in molecular 
structures (graphs) irrespective of the chemical nature of the 
atoms involved in the bonding or factors such as hybridiza- 

Tablc 2. Experimental and Estimated Acute Aquatic Toxicity Data 
for 69 Benzene Derivatives, Expressed as - log(LCso) for the 
Linear Regression Model (LR) and the Neural Network Model 
Using the 23 Parameters Selected by Variable Clustering 

compound expt LR NN 

benzene 3.40 3.42 3.65 
bromobenzene 3.89 3.77 3.79 
chlorobenzene 3.77 3.75 3.77 
phenol 3.51 3.38 3.51 
toluene 3.32 3.66 3.62 
1,2-dichlorobenzene 4.40 4.29 4.30 
1,3-dichlorobenzene 4.30 4.37 4.12 
1,4-dichlorobenzene 4.62 4.51 4.27 
2-chlorophenol 4.02 3.79 3.91 
3-chlorotoluene 3.84 3.88 3.79 
4-chlorotoluene 4.33 3.87 3.76 
1,3-dihydroxybenzene 3.04 3.43 3.53 
3-hydroxyanisole 3.21 3.33 3.45 
2-methylphenol 3.77 3.64 3.67 
3-methylphenol 3.29 3.60 3.58 
4-methylphenol 3.58 3.53 3.55 
4-nitrophenol 3.36 3.61 3.76 
1,4-dimethoxybenzene 3.07 3.28 3.51 
1,2-dimethylbenzene 3.48 3.93 3.91 
1,4-dimethylbenzene 4.21 3.87 3.68 
2-nitrotoluene 3.57 3.66 3.81 
3-nitrotoIuene 3.63 3.53 3.71 
4-nitrotoIuene 3.76 3.49 3.68 
1,2-dinitrobenzene 5.45 5.24 4.99 
1,3-dinitrobenzene 4.38 4.18 4.19 
1,4-dinitrobenzene 5.22 4.94 4.85 
2-methyl-3-nitroaniline 3.48 3.79 3.88 
2-methyl-4-nitroaniline 3.24 3.51 3.75 
2-methyl-5-nitroaniIine 3.35 3.68 3.86 
2-methyl-6-nitroaniline 3.80 3.84 3.79 
3-methyl-6-nitroaniline 3.80 3.78 3.62 
4-methyl-2-nitroaniline 3.79 3.80 3.66 
4-hydroxy-3-nitroaniline 3.65 3.61 3.58 
4-methyl-3-nitroaniline 3.77 3.73 3.72 
1,2,3-trichIorobenzene 4.89 4.89 5.04 
1,2,4-trichlorobenzene 5.00 5.04 4.83 
1,3,5-trichlorobenzene 4.74 5.11 4.78 
2,4-dichlorophenol 4.30 4.33 4.47 
3,4-dichlorotoluene 4.74 4.26 4.28 
2,4-dichlorotoluene 4.54 4.36 4.44 
4-chloro-3-methylphenoI 4.27 3.87 4.07 
2,4-dimethylphenol 3.86 3.76 3.72 
2,6-dimethylphenol 3.75 3.80 3.84 
3,4-dimethylphenol 3.90 3.80 3.79 
2,4-dinitrophenol 4.04 4.14 4.01 
1,2,4-trimethylbenzene 4.21 4.09 3.87 
2,3-dinitrotoluene 5.01 5.20 5.28 
2,4-dinitrotoIuene 3.75 4.10 4.33 
2,5-dinitrotoluene 5.15 4.84 4.72 
2,6-dinitrotoluene 3.99 4.41 4.63 
3,4-dinitrotoIuene 5.08 5.11 5.09 
3,5-dinitrotoluene 3.91 4.05 4.16 
1,3,5-trinitrobenzene 5.29 5.37 5.32 
2-methyl-3,5-dinitroaniline 4.12 4.13 4.23 
2-methyl-3,6-dinitroaniline 5.34 4.80 4.54 
3-methyl-2,4-dinitroaniline 4.26 4.28 4.20 
5-methyl-2,4-dinitroaniline 4.92 4.14 4.02 
4-methyl-2,6-dinitroaniline 4.21 4.67 4.58 
5-methyl-2,6-dinitroaniline 4.18 4.80 4.78 
4-methyI-3,5-dinitroaniline 4.46 4.34 4.43 
2,4,6-tribromophenoI 4.70 4.89 5.47 
1,2,3,4-tetrachlorobenzene 5.43 5.62 5.56 
1,2,4,5-tetrachlorobenzene 5.85 5.80 5.61 
2,4,6-trichlorophenol 4.33 4.79 4.96 
2-methyl-4,6-dinitrophenoI 5.00 4.21 4.16 
2,3,6-trinitrotoluene 6.37 6.36 5.81 
2,4,6-trinitrotoluene 4.88 5.16 5.42 
2,3,4,5-tetrachlorophenol 5.72 5.36 5.58 
2,3,4,5,6-pentachlorophenol 6.06 6.03 5.83 
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Table 3. Symbols, Definitions, and Classifications of Topological, Geometrical, and Quantum Chemical Parameters 

/DW 

7DW 

W 
P 
Hv 

If 
IC 
O 
Mi 
Mt 
hX 
"Xc 
hXa 
YK 
P» 
J 

/ORB 
ICr 

SIC, 
CIC, 
Y 
Vc 
Ya. 
VPC 
Y 
Vc 
Ya, 
YK 
J* 
Jx 

ß 

3DWH 

£HOMO 

£HOMOI 

£LUMO 

£LUMOI 
AHf 

M 

Topostructural 
information index for the magnitudes of distances between all possible pairs of vertexes of a graph 
mean information index for the magnitude of distance 
Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph 
degree complexity 
graph vertex complexity 
graph distance complexity 
information content of the distance matrix partitioned by frequency of occurrences of distance h 
order of neighborhood when IC, reaches its maximum value for the hydrogen-filled graph 
a Zagreb group parameter = sum of square of degree over all vertexes 
a Zagreb group parameter = sum of cross-product of degrees over all neighboring (connected) vertexes 
path connectivity index of order h = 0—6 
cluster connectivity index of order h = 3, 5 
chain connectivity index of order h = 6 
path-cluster connectivity index of order h = 4-6 
no. of paths of length h = 0— 10 
Balaban's J index based on distance 

Topochemical 
information content or complexity of the hydrogen-suppressed graph at its maximum neighborhood of vertexes 
mean information content or complexity of a graph based on the rth (r = 0—6) order neighborhood of vertexes 

in a hydrogen-filled graph 
structural information content for r1* (r = 0-6) order neighborhood of vertexes in a hydrogen-filled graph 
complementary information content for rth (r = 0—6) order neighborhood of vertexes in a hydrogen-filled graph 
bond path connectivity index of order h = 0—6 
bond cluster connectivity index of order h = 3, 5 
bond chain connectivity index of order h = 6 
bond path-cluster connectivity index of order h — 4—6 
valence path connectivity index of order h — 0-6 
valence cluster connectivity index of order h = 3,5 
valence chain connectivity index of order h = 6 
valence path-cluster connectivity index of order h = 4-6 
Balaban's J index based on bond types 
Balaban's J index based on relative electronegativities 
Balaban's J index based on relative covalent radii 

Geometrical 
van der Waals volume 
3D Wiener no. for the hydrogen-suppressed geometric distance matrix 
3D Wiener no. for the hydrogen-filled geometric distance matrix 

Quantum Chemical 
energy of the highest occupied molecular orbital 
energy of the second highest occupied molecular orbital 
energy of the lowest unoccupied molecular orbital 
energy of the second lowest unoccupied molecular orbital 
heat of formation 
dipole moment 

tion states of atoms and number of core/valence electrons 
in individual atoms. TCIs are parameters that quantify 
information regarding the topology (connectivity of atoms), 
as well as specific chemical properties of the atoms and 
bonds comprising a molecule. TCIs are derived from 
weighted molecular graphs where each vertex (atom) is 
properly weighted with relevant chemical/physical properties. 
Table 3 shows the division of the topological indices into 
topostructural and topochemical indices. 

23. Calculation of Geometrical Indices. The geometrical 
indices include the three-dimensional (3D) Wiener numbers 
for hydrogen-filled and hydrogen-suppressed molecular 
structures and van der Waals volume, van der Waals volume, 
Vw, was calculated using SYBYL 6.4 from Tripos Associ- 
ates, Inc.40 The 3D Wiener numbers were calculated by 
SYBYL using an SPL (Sybyl Programming Language) 
program developed in our laboratory. Calculation of the 3D 
Wiener numbers consists of the sum entries in the upper 
triangular submatrix of the topographic Euclidean distance 
matrix for a molecule. The 3D coordinates for the atoms 
were determined using CONCORD 3.2.I.41 The symbols and 
definitions of the geometrical indices are included in Table 
3. 

2.4. Quantum Chemical Parameters. Quantum chemical 
parameters were calculated using the Austin Model version 
one (AMI) semiempirical Hamiltonian. These parameters 
were calculated using MOP AC 6.00 in the SYBYL inter- 
face.42 Brief definitions and symbols for the quantum 
chemical parameters used in this study are included in Table 
3. 

2.5. Statistical Analysis and Hierarchical QSAR. Ini- 
tially, all topological indices were transformed by the natural 
logarithm of the index plus one. This was done to scale the 
indices, since some may be several orders of magnitude 
greater than others, while other indices may equal zero. The 
geometric indices were transformed by the natural logarithm 
of the index for consistency; the addition of one was 
unnecessary. 

The set of 86 topological indices was then partitioned into 
the two distinct sets: topostructural indices (35) and to- 
pochemical indices (51). The sets of topostructural and 
topochemical indices were then divided into subsets, or 
clusters, based on the correlation matrix using the SAS 
variable clustering procedure (VARCLUS)43 to further reduce 
the number of independent variables for use in model 
construction. This procedure divides the set of indices into 
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disjoint clusters, such that each cluster is essentially unidi- 
mensional. 

From each cluster, the index most correlated with the 
cluster was selected for modeling, as well as any indices 
that were poorly correlated with their cluster (R2 < 0.70). 
These indices were then used in the modeling of the acute 
aquatic toxicity of benzene derivatives in fathead minnow. 
The variable clustering and selection of indices was per- 
formed independently for both the topostructural and to- 
pochemical indices. This procedure resulted in a set of five 
topostructural indices and a set of nine topochemical indices. 

Reducing the number of independent variables is critical 
when attempting to model small data sets using linear 
statistical methods. The smaller the data set, the greater the 
chance of spurious" error when using a large number of 
independent variables (descriptors). A study by Topliss and 
Edwards44 has shown that for a set with about 70 dependent 
variables (observations), no more than 40 independent 
variables may be used while keeping the probability of 
chance correlations below 1%. This number is dependent 
on the actual correlation achieved in the modeling process; 
higher correlation results in a better chance of using more 
variables with the same limited probability of chance 
correlations. In this study we are well below the cutoff of 
40 independent variables. In fact, the total number of 
descriptors which will be used for model construction and 
estimation is 23, well within the bounds of the Topliss and 
Edwards criteria.44 

Regression modeling was accomplished using the SAS 
procedure REG43 on four distinct sets of indices. These sets 
were constructed as part of a hierarchical approach to QS AR 
model development. The hierarchy begins with the simplest 
parameters, the TSIs. After using the TSIs to model the 
activity, the next level of parameters are added. To the indices 
included in the best TSI model, we add all of the TCIs and 
proceed to model the activity using these parameters. 
Likewise, the indices included in the best model from this 
procedure are combined with the indices from the next 
complexity level, the geometrical indices, and modeling is 
conducted once again. Finally, the best model utilizingJTSIs, 
TCIs, and geometrical indices is combined with the quantum 
chemical parameters to develop the final model in the 
hierarchy. 

Additionally, the entire set of 95 descriptors (topostruc- 
tural, topochemical, geometrical, and quantum chemical) was 
subjected to the variable clustering procedure and a reduced 
set of independent variables was used in constructing a 
QSAR model. This varies from the other approach in that 
the indices were clustered as one set, rather than as four 
distinct sets, and resulted in a somewhat different set of 
variables. This was done to determine if there is any 
advantage in final model predictive power between model 
development based on the H-QSAR approach versus the 
"kitchen sink" approach, i.e., using the entire descriptor set 
in order to find the "best" model. 

2.6. Neural Network Methods. Using neural networks, 
we studied two classes of approaches for modeling toxicity: 
(1) giving all the descriptors to a learning algorithm (neural 
network in this case) and (2) reducing the feature set before 
giving the (reduced) feature set to a learning algorithm. 
Results for our approaches are from leave-one-out experi- 
ments (i.e., 69 training/test set partitions). Leave-one-out 

works by leaving one data point out of the training set and 
giving the remaining instances (68 in this case) to the learning 
algorithms for training. This process is repeated 69 times so 
that each example is a part of the test set once and only 
once. Leave-one-out tests generalization accuracy of a 
learner, whereas training set accuracy tests only the learner's 
ability to memorize. Generalization error from the test set is 
the true test of accuracy and is what we report here. 

First we trained neural networks using all 95 parameters: 
35 TSI, 51 TCI, 3 geometrical, and 6 quantum chemical 
parameters. The networks contained 15 hidden units and were 
trained for 1000 epochs. Each input parameter was normal- 
ized to a value between 0 and 1 before training. Additional 
parameter settings for the neural networks included a learning 
rate of 0.05, a momentum term of 0.1, and weights initialized 
randomly between -0.25 and +0.25. 

For our next experiment, we used a smaller set of 23 
independent variables divided further into the four levels of 
the hierarchy. The 23 independent variables included the 5 
topostructural and 9 topochemical parameters provided by 
the variable clustering technique (see section 3.1 for a list 
of the indices) combined with the 3 geometrical and 6 
quantum chemical parameters described in Table 3. The 
parameter settings for these networks were the same as the 
settings for the other neural network experiment mentioned 
above. 

3. RESULTS 
3.1. Results of Statistical Regression Procedures. The 

variable clustering of the topostructural indices resulted in 
the retention of five indices: Mi, IC, O, Ps, Pg. All-subsets 
regression resulted in the selection of a four-parameter model 
to estimate — log(LC5o) with an explained variance (R2) of 
45.3% and a standard error (s) of 0.58. While this is an 
unsatisfactory model, the indices were retained and combined 
with the topochemical indices in the second step of model 
development. The second step combined the 4 indices used 
in the first tier model with the 9 topochemical indices selected 
in the variable clustering procedure: SICo» SICi, SIC4, CICo, 
V> 5Xhc, sXyc, VPC> J

X
- Again, all-subsets regression was 

conducted resulting in a four-parameter model with an 
explained variance (/?2) of 78.3% and a standard error (s) of 
0.36. The 4 indices from the second tier model were 
combined with the three geometric parameters: 3DWH, iDW, 
Vw. This resulted in a four-parameter model that replaced 
the topochemical index CICo with the geometric parameter 
3DWH. This model had an explained variance (R2) of 79.2% 
and a standard error (s) of 0.36. The final step in the 
hierarchical method combined the four parameters from the 
third tier model with the semiempirical quantum chemical 
parameters: EHOMO, £HOMOI, £LUMO. £LUMOI. A///, fi. This 
set of 10 indices led to a seven-parameter model with an 
explained variance (Ä2) of 86.3% and a standard error (s) of 
0.30. This model retained all indices from the third model 
and added three of the AMI quantum chemical parameters. 
Our final model, using indices selected from a variable 
clustering of the entire set of 95 indices resulted in a seven- 
parameter^ model including three topostructural indices 
(°X, P9, IC), one topochemical index (5%v), one geometrical 
index (

3D
WH), and two quantum chemical descriptors 

(A///, ft). This model had an explained variance (R2) of 86.1% 
and a standard error (s) of 0.30. 
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Table 4. Relative Effectiveness of Statistical and Neural Network 
Methods in Estimating the Acute Aquatic Toxicity of 69 Benzene 
Derivatives 

neural networks linear 

Re2 

regression 

model Äc2 s s 

TSI 0.299 0.63 0.366 0.629 
+ TCI 0.619 0.47 0.754 0.392 
+ 3D 0.656 0.44 0.763 0.384 
+ QC 0.770 0.36 0.825 0.339 
all 95 indices 0.758 0.37 0.827 0.337 

Leave-one-out analysis was conducted on all models for 
purposes of comparison with the results from the neural 
networks. The resulting values for cross-validated R2 (Rc

2) 
and standard error (s) are reported in Table 4. 

3.2. Results of the Neural Network Procedures. The first 
approach incorporating all 95 parameters, obtained a test- 
set correlation coefficient between predicted toxicity and 
measured toxicity (explained variance) of R2 = 0.868 and a 
standard error of 0.29. The second approach utilizes the 
hierarchical method of grouping descriptors resulted in four 
models, one for each level of the hierarchy. The results from 
the leave-one-out analysis of these four models, as well as 
those for the linear statistical models are summarized in Table 
4. Table 2 presents the experimental acute aquatic toxicity 
(— logfLCso]) values for the 69 benzene derivatives as well 
as the values estimated by the best statistical model and the 
best neural network model, both of which resulted from the 
fourth H-QSAR model. 

4. DISCUSSION 

The results show that both statistical and neural network 
models give acceptable estimates for the toxicity of the 69 
benzene derivatives studied in this paper. As can be clearly 
seen from the comparative results in Table 4, there are two 
points in the hierarchical approach in which there are 
significant improvements in modeling the data. The addition 
of the topochemical indices increases the variance explained 
in both the statistical and neural network models by 30— 
40% with a consequent drop in the standard error of the 
calculations as well. Addition of the quantum chemical 
parameters also creates a significant increase in the efficacy 
of both models, a 6.2% increase in the variance explained 
for the statistical model and an 11.4% increase for the neural 
network model. 

It is interesting to note that the neural network model using 
the subset of 23 inputs selected in part by the VARCLUS 
procedure gave slightly better results as compared to the 
network developed using all 95 input variables. This could 
be the result of filtering out redundant, or nearly redundant, 
parameters from the set of independent variables. 

Further work on the relative utility of statistical vis-ä-vis 
neural network methods is necessary to determine which 
types of models are best suited to the estimation of chemical 
toxicity. 
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