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Objectives

During the past few years we have been involved in the development of new computational methods for
quantifying similarity/dissimilarity of chemicals and applications of quantitative molecular similarity
analysis (QMSA) techniques in analog selection and property estimation for use in the hazard
assessment of chemicals. We have also explored the mathematical nature of the molecular similarity, .
space in order to better understand the basis of analog selection by QMSA methods. The parameter
spaces used for QMSA and analog selection were constructed from nonempirical parameters derived
from computational chemical graph theory. Occasionally, graph invariants were supplemented with
geometrical parameters and quantum chemical indices to study the relative effectiveness of graph
invariants vis-a-vis geometrical and quantum chemical parameters in analog selection and property
estimation. We carried out comparative studies of nonempirical descriptor spaces and physicochemical
property spaces in selecting analogs. Molecular similarity methods were applied in predicting modes of
toxic action (MOA) of chemicals. Our similarity/dissimilarity methods have also found successful

applications in the discovery of new drug leads by US drug companies.

In this project, we will have four primary goals: 1) development of a hierarchical approach to molecular
similarity, 2) formulation of quantitative structure-activity relationship (QSAR) models for predictive
toxicology using a hierarchical approach, 3) applications of hierarchical QSAR and QMSA approaches in
computational toxicology related to human health and ecological hazard assessment, and 4) the
application of hierarchical QMSA and QSAR approaches in estimating potential toxicity of deicing agents.

The first goal of the project is the use of parameters of gradually increasing complexity, viz., topological,
topochemical, geometrical, and quantum chemical indices, in the quantification of molecular ,
similarity/dissimilarity of chemicals. We will take a two-tier approach in this area. First, similarity methods
will be used in ordering sets of molecules and in selecting structural analogs of toxic chemicals which
pose human health and ecological hazards. Secondly, we will use the properties of selected analogs in
estimating toxicologically important properties for chemicals. Although different classes of parameters
have been used in the characterization of molecular similarity, no systematic study has been carried out
in the use of all four classes of parameters, mentioned above, in analog selection and property -
estimation. We will apply a hierarchical approach to the use of these four types of theoretical molecular
descriptors in the quantification of molecular similarity/dissimilarity. -

The second goal consists of the development of hierarchical QSAR models for predicting the toxic
potential of chemicals using topological and quantum chemical indices. Initially, we will use parameters
calculated by semi-empirical methods such as MOPAC and AMPAC. Parameters calculated by ab initio
quantum chemical methods will be used in limited cases of QSAR model development, if they are
considered necessary. :

The third goal of the project will be the prediction of human health hazard and ecotoxicological effects of
chemicals using QSAR and QMSA methods developed in the project. Attempts will be made to estimate
endpoints, such as, carcinogenicity, mutagenicity, xenoestrogenicity, acute toxicity, transport of
chemicals through the blood-brain barrier, biodegradation, and bioconcentration factor.

The fourth goal will involve the utilization of QMSA and QSAR methods developed as part of this project
in predicting the potential toxicity of deicing agents.
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Status of Efforts

During the first year of the project the majority of effort was spent in the development of novel
hierarchical QSAR methods, QMSA techniques and the applications of these methods in the prediction
of toxicological, physicochemical and biomedicinal properties of different sets of chemicals. Our
dissimilarity methods were used to group JP-8 constituents into a small number of clusters that can be
used in selecting surrogate mixtures for JP-8 in the Air Force’s toxicological studies. The clustering was
done using algorithmically derived molecular descriptors calculated by our computer program POLLY.
Such parameters can be calculated for any molecular structure, real or hypothetical. This makes the
clustering methods independent of any experimentally determined property of the JP-8 constituents.

During the second year of the project, our effort was directed towards the development of novel optimal
molecular descriptors, the development and use of new topological indices, the study of the
intercorrelation of a large number of molecular descriptors, and the use of calculated molecular-
descriptors in the prediction of toxicological and toxicologically-relevant properties. We also explored the
possibility of developing integrated QSAR (I-QSAR) with the combination of chemodescriptors derived
from computational chemistry and biodescriptors derived from biological techniques such as proteomics.

The third year of the project has focused on the further expansion of our theoretical molecular descriptor
- set through the further development of new topological indices and the acquisition of several other well- -
known software packages for the calculation of molecular descriptors, viz., CODESSA v2.0 and
Molconn-Z v3.50. Along with this expansion, we have continued our pioneering studies in the
intercorrelation of large molecular descriptor sets and the use of this expanded descriptor set in the
prediction of toxicological and toxicologically-relevant properties. We have also begun the initial
exploration of the creation of biodescriptors, derived from matrix invariants, to handle data from
proteomics maps and have developed several new methods for the characterization of DNA sequences.

Accomplishments/ New Findings

The following is the summary of accomplishments of the various tasks of the project during the reporting -
period:

Task 1: Development of Databases

Years 1 &2 Databases of toxicological endpoints and physicochemical properties have been -
developed from published literature. Such data have been used in the hierarchical QSAR and
QMSA studies (vide infra).

Year 3 Efforts to develop more databases from published literature have tapered off, with
more emphasis being placed on other aspects of the project. However, we have been making
efforts to acquire a number of large, proprietary databases from various companies for the
purposes of testing some of our methods against “real” drug-development databases.

Task 2: Development of a Comprehensive Computer Program for Calculating
Topological Molecular Descriptors
Years 1 &2 POLLY can calculate more than one hundred topological indices (Tls). We have

been working to develop algorithms to calculate other topological descriptors such as local
invariants. Such indices will be tested in hierarchical QSAR and QMSA research.

Prediction of Health and Environmental Hazards of Chemical: A Hierarchical 4
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Year 3 A new software module associated with POLLY has been developed and is
currently being tested. This module, called TRIPLET, can calculate 100 local vertex invariants
(LOVIis) which are also known as triplet indices.

Task 3: Integration of Graph Theory and Quantum Chemistry for QSAR

Years 1 & 2 Ongoing research in this area focused on the use of weighted graphs,
pseudographs in the development of novel descriptors. This will lead to novel invariants that can
encode information not quantified by existing molecular descriptors. In the second year of the
project, a paper was submitted for publication that studied the interrelationship of over 200
topological indices.

Year3 _  The intercorrelation study submitted last year was published this spring in the

- Journal of Chemical Information and Computer Science (Basak et al. 2000). This study is being
followed wnth a more rigorous study involving using a larger set of 318 indices on an expanded
set of databases. Additionally, our findings that in many cases quantum chemical indices do no
better than topological indices in QSAR modeling are being borne out by the work of other
researchers.

Task 6: Characterization of Structure Using Theoretical Structural Descriptors

. Years 1 &2 We have used topological indices and principal components (PCs) derived from
them in the characterization of a set of isospectral graphs which cannot be discriminated by the
eigenvalues of the adjacence matrix of molecular graphs. This result was published in the Journal -
of Chemical Information and Computer Sciences (Balasubramanian and Basak 1998).

Attempts have been made to devise descriptors that characterize chemical structures -
optimally. This has been done through the use of weighted graphs. Invariants based on line -
graphs have also been used for QSAR studies. Both of these techniques involve the development
of nove! descriptors for the characterization of molecular structure. :

Year 3 Work on optimized molecular descriptors with Dr. Randic has continued, resulting
in a number of new publications. Additionally, this work has spread into new fields with our
development of methods to characterize protein structure and folding through the use of novel
invariants.

Task 7: Development of Hierarchical QUSA Models

Years 1 &2 Topostructural, topochemical, geometrical as well as quantum chemical
parameters have been used in the development of QUSA methods. We carried out a
dissimilarity-based clustering of JP-8 constituents into fourteen clusters. A mixture of compounds
selected from each cluster can be used as surrogates for the complex JP-8 mixture.

The method has also been used in the clustering of a large, virtual, combinatorial library of
Psoralen derivatives. The results of this analysis were presented in five papers at the
International Biophysics Congress, New Delhi, September 19-23, 1999.

Year3 - Additional studies involving the development and refinement of the hierarchical
QMSA method were presented at the Second Indo-US Workshop on Mathematical Chemistry,
Duluth, MN, May 30-June 3, 2000 and at the National American Chemical Society meeting,
Washington, D.C., August 20-24, 2000.
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Task 8: Development of Hierarchical Approach to QSAR

Year1&2  Quantum chemical parameters calculated by semiempirical methods have been
used in hierarchical QSAR models for predicting toxicity and toxicologically relevant

- physicochemical properties. Several manuscripts have been published in peer-reviewed journals.

Our hierarchical approach has been used in the development of QSAR models for the

prediction of toxicity (e.g., aquatic toxicity, LCso, of a set of benzene derivatives, skin penetration
by polycyclic aromatic hydrocarbons, mutagenicity, etc). We have used mainly:linear statistical
methods such as variable clustering, principal components analysis, etc, for model building. In the
area of neural net analysis, we used linear as well as nonlinear methodology. In the case of
toxicity of benzene derivatives, there were some improvements in the model over the linear
statistical methods by the applications of neural net methodology.

Year 3 Findings of recent hierarchical QSAR modeling studies were presented at both the
Second Indo-US Workshop on Mathematical Chemistry and at the National American Chemical
Society meeting. We have continued working to examine the relative effectiveness of linear and
non-linear statistical methods versus linear and non-linear neural network-methods and has
resulted in the publication of two manuscripts and the submission of two other studies for peer- -
review and publication.

. Work on the development of novel biodescriptors has been progressing well. Our
collaborative efforts aim at the development of a series of novel invariants for the characterization
of proteomics maps. We hope to continue.these studies to move beyond the theoretical stage to
develop software to calculate these invariants and to test them in QSAR model development.
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Publications

The following peer-reviewed papers, which are currently either published, in press, or submitted, report results of
research carried out between August 1, 1997 and September 30, 2000.

1997

1998

1999

Characterization of molecular structures using topological indices, S.C. Basak and B.D. Gute, SAR QSAR
Environ. Res., 7, 1-21 1997. ‘

Computational study of the environmental fate of selected aircraft fuel system deicing compounds, G.W.
Mushrush, S.C. Basak, J.E. Slone, E.J. Beal, S. Basu, W.M. Stalick and D.R. Hardy, J. Environ. Sci.
Health, A32, 2201-2211, 1997.

Predicting acute toxicity (LCso) of benzene derivatives using theoretical molecular descriptors:a .
hierarchical QSAR approach, B. D. Gute and S. C. Basak, SAR QSAR Environ. Res., 7, 117-131, 1997.

Characterization of isospectral graphs using graph invariants and derived orthogonal parameters, K.
Balasubramanian and S. C. Basak, J. Chem. Inf. Comput. Sci., 38, 367, 1998.

Characterization of the molecular similarity of chemicals using topological invariants, S. C. Basak, B. D.
Gute, and G. D. Grunwald, in: Advances in Molecular Similarity, JAl Press, pp. 171-185,vol. 2, R. Carbo-
Dorca and P. G. Mezey (Eds), 1998.

The relative effectiveness of topological, geometrical, and quantum chemical parameters in estimating
mutagenicity of chemicals, S. C. Basak, B. D. Gute and G. D. Grunwald, In QSAR in Environmental
Sciences - VII, F. Chen and G. Schuurmann, eds., SETAC Press, Pensacola, FL, 1998, Chapter 17, p 245-
261. .

A hierarchical approach to the development of QSAR models using topological, geometrical and quantum
chemical parameters, S.C. Basak, B.D. Gute and G.D. Grunwald, In Topological Indices and Related
Descriptors in QSAR and QSPR, Eds. J. Devillers and A.T. Balaban, Gordon and Breach Science
Publishers, Amsterdam, 1999, p 675-696.

Assessment of the mutagenicity of chemicals from theoretical structural parameters: A hierarchical
approach, S.C. Basak, B.D. Gute, and G.D. Grunwald, SAR QSAR Environ. Res., 10, 117-129, 1999. -

Correlation between structure and normal boiling point of acyclic carbonyl compounds, A. T. Balaban, D.
Mills and S. C. Basak, J. Chem. Inf. Comput. Sci., 39, 758-764, 1999.

Hazard assessment modeling: An evolutionary ensemble approach, D.W. Opitz, S.C. Basak and B.D.
Gute, In: Genetic and Evolutionary Computation, Eds. W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V.
Honavar, M. Jakiela, & R.E. Smith, Morgan Kaufmann: San Francisco, 1999, p 1643-1 651.

Information theoretic indices of neighborhood complexity and their applications, S.C. Basak, In Topological
Indices and Related Descriptors in QSAR and QSPR, Eds. J. Devillers and A.T. Balaban, Gordon and
Breach Science Publishers, Amsterdam, 1999, p 563-593.

Normal boiling points of 1,-alkanedinitriles: The highest increment in a homologous series, A.T. Balaban,
S.C. Basak and D. Mills, J. Chem. Inf. Comput. Sci., 39, 769-774, 1999.

Optimal molecular descriptors based on weighted path numbers, M. Randi¢ and S. C. Basak, J. Chem. Inf.
Comput. Sci., 39, 261-266, 1999.

Prediction of complement-inhibitory activity of benzamidines using topological and geometric parameters,
S.C. Basak, B.D. Gute, and S. Ghatak, J. Chem. Inf. Comput. Sci., 39, 255-260, 1999.

Prediction of the dermal penetration of polycyclic aromatic hydrocarbons (PAHs): a hierarchical QSAR
approach, B. D. Gute, G. D. Grunwald, and S. C. Basak, SAR. QSAR Environ. Res., 10, 1-15, 1999.
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Use of statistical and neural net methods in predicting toxicity of chemicals: A hierarchical QSAR approach,
S.C. Basak, B.D. Gute, G.D. Grunwald, D.W. Opitz and K. Balasubramanian, in Predictive Toxicology of
Chemicals: Experiences and Impact of Al Tools - Papers from the 1999 AAAI Symposium, March 22-24,
1999, Stanford, CA, TR SS-99-01, AAAI Press: Menlo Park, CA, 1999, p 108-111.

2000 A comparative QSAR study of benzamidines complement-inhibitory activity and benzene derivatives acute
toxicity, S.C. Basak, B.D. Gute, B. Lucic, S. Nikolic and N. Trinajstic, Computers & Chemistry, 24, 181-191,
2000.

Construction of high-quality structure-property-activity regressions: The boiling points of sulfides, M. Randic
and S. C. Basak, J. Chem. Inf. Comput. Sci., 40, 899-905, 2000.

Multiple regression analysis with optimal molecular descriptors, M. Randic and S.C. Basak, SAR QSAR
Environ. Res., 11, 1-23, 2000.

On 3-D graphical representation of DNA primary sequences and their numerical characterization, M.
Randic, M. Vracko, A. Nandy and S. C. Basak, J. Comput. Chem., 40, 1235-1244, 2000.

QSPR modeling: Graph connectivity indices versus line graph connectivity indices, S. C. Basak, S. Nikolic,
N. Trinajstic, D. Amic and D. Beslo, J. Chem. Inf. Comput. Sci., 40, 927-933, 2000. :
Simple numerical descriptor for quantifying effect of toxic substances on DNA sequences, A.-Nandy and S.
C. Basak, J. Chem. Inf. Comput. Sci., 40, 915-919, 2000. : . ’
Topological indices: Their nature and mutual relatedness, S. C. Basak, A. T. Balaban, G. D. Grunwald and.
B. D. Gute, J. Chem. Inf. Comput. Sci., 40, 891-898, 2000.

Use of graph invariants in QMSA and predictive toxicology, S.C. Basak and B.D. Gute, In Discrete
Mathematical Chemistry, Eds. P. Hansen, P. Fowler, M. Zheng, DIMACS Series 51, American
Mathematical Society: Providence, Rhode Island, 2000, pages 9-24.

Use of statistical and neural net approaches in predicting toxicity of chemicals, S. C. Basak, G.D.
Grunwald, B. D. Gute, K. Balasubramanian and D. Opitz, J. Chem. Inf. Comput. Sci., 40, 885-890, 2000.

In press
Molecular similarity based estimation of properties: A comparison of structure spaces and property spaces,
B.D. Gute, G.D. Grunwald, D. Mills and S.C. Basak, SAR QSAR Environ. Res., 2000. :
On characterization of physical properties of amiho acids, M. Randic, D. Mills and S. C. Basak, Int. J.
Quant. Chem., 2000.
On ordering of folded structures, M. Randic, M. Vracko, M. Novic and S. C. Basak, Mathematical
Chemistry, MATCH, 2000.
Quantitative comparison of five molecular structure spaces in selecting analogs of chemicals, S.C. Basak,
B.D. Gute, and G.D. Grunwald, Mathl. Model. Comput. Sei., 2000.
Reverse Wiener index, A. T. Balaban, D. Mills and S. C. Basak, Croat. Chim. Acta, 2000.
Use of mathematical structural invariants in analysing combinatorial libraries: A case study with Psoralen
derivatives, S.C. Basak, D. Mills, B.D. Gute, A.T. Balaban, K. Basak and G.D. Grunwald, In Some Aspects
of Mathematical Chemistry, Eds. D.K. Sinha, S.C. Basak, R.K. Mohanty and |.N. Basumallick, Visva-Bharati .
University: Santiniketan, West Bengal, India, 2000.
Variable molecular descriptors, M. Randic and S.C. Basak, In Some Aspects of Mathematical Chemistry,
Eds. D.K. Sinha, S.C. Basak, R.K. Mohanty and L.N. Basumallick, Visva-Bharati University: Santiniketan,
West Bengal, India, 2000.
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Accepted
Modelling the solubility of aliphatic alcohols in water. Graph connectivity indices versus line graph
connectivity indices, S. Nikolic, N. Trinajstic, D. Amic, D. Beslo and S. C. Basak, In QSAR/QSPR Studies
by Molecular Descriptors, M. V. Diudea, Ed., Nova Science Publishers, New York, USA, 2000.

Submitted
A neural net-based QSAR algorithm (PCANN) and its comparison with hologram- and multiple linear
regression-based QSAR approaches applied to 1,4-dihydropyridine-based calcium channel antagonists,
V.N. Viswanadhan, G.A. Mueller, S.C. Basak and J.N. Weinstein, J. Chem. Inf. Comput. Sci., 2000.

A new descriptor for structure-property and structure-activity correlations, M. Randic and S.C. Basak, J.
Chem. Inf. Comput. Sci., 2000. -

A novel 2-D graphical representation of DNA sequences of low degeneracy, X. Guo, M. Randic and S.C.
Basak, Chem. Phys. Lett., 2000.

Characteri_iation of DNA primary sequences based on the average distances between bases, M. Randic
and S. C. Basak, J. Chem. Inf. Comput. Sci., 2000.

Distance indices and their hyper-counterparts: Intercorrelation and use in the structure-property modeling,
N. Trinajstic, S. Nikolic, S.C. Basak and . Lukovits, SAR QSAR Environ. Res., 2000. -

* On structural interpretation of distance related topological indices, M. Randic, A.T. Balaban and S.C.
Basak, J. Chem. Inf. Comput. Sci., 2000. .

On the characterization of DNA primary sequences by triplet of nucleic acid bases, M. Randic, X. Guo and
S.C. Basak, J. Chem. Inf. Comput. Sci., 2000.

'On use of the variable connectivity index ' in QSAR:Toxicity of aliphatic ethers, M. Randicand S. C.
Basak, J. Chem. Inf. Comput. Sci., 2000.

Prediction of mutagenicity of aromatic and heteroaromatic amines from structure: A hierarchical QSAR .
approach, S.C. Basak, D.R. Mills and A.T. Balaban, J. Chem. Inf. Comput. Sci.; 2000. '

QSAR with few compounds and many features, D.M. Hawkins, S. C. Basak and X. Shi, J. Chem. Inf. .
Comput. Sci., 2000.

Copies of manuscripts published since the 1999 year-end report are attached as Appendix 1. Copies of the
manuscripts at various levels of review and publication have been omitted for the sake of brevity.

Interactions/ Transitions

Transitions

1. Applied computational methods in the design of a set of six anti-epileptic carbamates by Professor
Alexandru T. Balaban, Vice President, Rumanian Academy. of Sciences.

2 Worked with Dr. James Riviere, North Carolina State University, in the clustering of JP-8 components
using dissimilarity methods developed at NRRI.

3. Worked with Dr. Alexander Gybin, The Chormaline Corporation, Duluth, MN in the computer-assisted
design of photoactive chemicals ,

4. Applied computational methods in the design of a set of novel photoactive chemicals by Professor
Alexandru T. Balaban, Vice President, Rumanian Academy of Sciences (with Dr. Alexander Gybin,
Chormaline Corporation, Duluth, MN).
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5. Worked with Dr. Frank Witzmann, IUPUL, in the development of integrated QSAR methods using
chemodescriptors and biodescriptors.

6. Worked with Dr. Hirak Basu, SLIL Technology, Madison, WI, to generate a virtual library of about
80,000 chemicals to carry out dissimilarity based design of novel anticancer drugs using POLLY
parameters.

7. Worked with Dr. Marjan Vracko, National Institute of Chemistry, Ljubljana, Slovenia, to apply our
hierarchical QSAR approach to predict the toxicity of chemicals of interest to the European community.

8. Currently working on a long-term collaborative project with Dr. Indira Ghosh, Astra/Zeneca, Bangalore,
India, to implement and use topological indices for clustering and analysis of their large, proprietary
databases for the discovery of novel lead compounds.

-

Meetings/ Seminars/ Invited Presentations

1. Dr. S.C, Basak was the Co-Chairperson of the First Indo/US Workshop on Mathematical Chemistry,
organized jointly by NRRI and Visva Bharati University, Santiniketan, West Bengal India, Jan 9-13,
1998. Basak presented the following papers at the workshop:

i. ~ Graph invariants, molecular similarity and QSAR co-authored by B.D. Gute and G.D. Grunwald.
ii. Weighted paths as novel optimal molecular descriptors authored jointly by M. Randic and Basak.

i. The utility of hierarchical model development in examining the structural basis of properties
authored by B.D. Gute, G.D. Grunwald and Basak. - .

iv. Weighted K-nearest neighbors property estimation in molecular similarity authored by G.D.
Grunwald, B.D. Gute and Basak.

v. Dissimilarity based clustering of psoralen derivatives in the topological structure space: A strategy
for drug design authored by Basak, G.D. Grunwald, D. Panja, K. Basak and B.D. Gute.

2. Dr. S.C. Basak gave several invited lectures at various national and international symposia during his
stay in India from December 23, 1997 through January 31, 1998. These lectures included:

i. A distinguished lecture Rational drug design and Ayurvedic medicine at the conference organized .
by the Association of Ayurvedic Doctors of India (AADI), January 4, 1998.

ii. An invited lecture on Use of computational methods and Ayurvedic knowledge in modern drug
discovery at the conference AYURVEDA TODAY, January 8, 1998.

ii. An invited seminar on Assessment of genotoxicity of chemicals from structure: A computational -
approach at the Annual Conference of the Indian Association for Cancer Congress, Calcutta,
January 21-24, 1998. The lecture was co-authored by B.D. Gute and G.D. Grunwald.

3. Dr. S.C. Basak chaired a session at the DIMACS Workshop on Discrete Mathematical Chemistry,
March 23-25, 1998, held at Rutgers University, New Jersey. He also presented an invited paper
entitled Use of graph invariants in QSAR and predictive toxicology at the conference authored jointly by
Basak, B.D. Gute and G.D. Grunwald. :

4. Dr. S.C. Basak gave an invited presentation entitled A computational approach to predicting toxicity:
Possible applications to JP8 jet fuel at the First International Conference on the Environmental Health
and Safety of Jet Fuels, organized jointly by US Air Force, National Institute of Occupational Safety and -
Health, USEPA National Exposure Research Laboratory and American Industrial Hygiene Association,
April 1-3, 1998, San Antonio, TX.

5. Dr. S.C. Basak presented the following papers at the International Conference Computational Methods
in Toxicology held April 20-22, 1998, Dayton, OH:

i. Use of computational methods in predicting potential toxicity of chemicals authored jointly by
Basak, B.D. Gute and G.D. Grunwald.

ii. On construction of optimal molecular descriptors authored jointly by M. Randic and Basak.
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10.
1.
12.
13.

14.

15.
16.
17.

18.

iii. Predicting mode of action of chemicals from structure: A hierarchical approach authored jointly by
Basak, G.D. Grunwald and B.D. Gute.

iv. A hierarchical approach to predictive toxicology using computed molecular descriptors authored
jointly by B.D. Gute, G.D. Grunwald and Basak

Dr. S.C. Basak presented a paper Dissimilarity-based clustering of psoralen derivatives in the
topological structure space: A strategy for drug design at the Second Annual Chemoinformatics
Workshop, organized by the Cambridge Health Institute, Boston, MA, June 15-16, 1998. The paper
was co-authored by G. D Grunwald and B.D. Gute.

Dr. S.C. Basak presented an invited seminar Nove/ drug design methods: Assessing activity and
toxicity using computational chemistry at the Department of Molecular Biology and Genetics, University
of Guelph, Ontario, Canada, July 3, 1998.

Dr. S.C. Basak presented the invited lecture Use of theoretical structural descriptors in molecular -
design-and hazard assessment of chemicals to the scientists of the computer-aided drug design
company NANODESIGN, INC, Toronto, Canada, July 6, 1998.

Dr. S.C. Basak attended the First Environmental Management Science Program Workshop organized
jointly by the American Chemical Society and the Office of Environmental Management, Department of
Energy, Chicago, IL, July 27-30, 1998.

Dr. S.C. Basak presented the invited lecture Theoretical molecular descriptors for the prediction of
bioactivity ftoxicity, selection of analogs, discovery and optimization of leads authored jointly by Basak, -
B.D. Gute, G.D. Grunwald and A.T. Balaban at the Astra Symposium on Advances in Medicinal
Chemistry organized by the Astra company, Bangalore, September 17-19, 1998.

Dr. S.C. Basak presented the invited lecture Prediction of bioactivity of chemicals from structure: A
computational approach at the Indian Institute of Science, Bangalore, India, September 20, 1998.

Dr. S.C. Basak presented the invited lecture Integration of traditional Indian medicine and
chemoinformatics for rapid drug discovery at the conference organized jointly by East India
Pharmaceutical Company, Calcutta, October 12, 1998.

B.D. Gute presented an invited talk A hierarchical QSAR approach to predicting carcinogenicity of
chemicals authored jointly, by S.C. Basak, Gute and G.D. Grunwald, at the 19" Annual Society of
Environmental To_xicology and Chemistry meeting, Charlotte, North Caroline, November 15-19, 1998.

Dr. S.C. Basak presented the invited lecture Clustering of JP-8 constituents into structurally dissimilar
groups: A novel computational strategy for predictive toxicology authored jointly by Basak and G.D.
Grunwald, at the Air Force Office of Scientific Research JP-8 Jet Fuel Toxicology Workshop, held at
the University of Arizona, Tucson, AZ, December 2-3, 1998.

Dr. S.C. Basak presented the invited lecture on Novel drug discovery methods: Predicting
pharmacological and toxicological properties of chemicals using computational chemistry at the
Meharry Medical College, Nashville, TN, January 19, 1999.

Dr. S.C. Basak delivered the first distinguished lecture in Mathematical Chemistry on From graph
invariants to molecular design: 25 years after the connectivity index at Visva Bharati University,
Santiniketan, West Bengal, India, February 11, 1999.

Dr. S.C. Basak presented the invited seminar Theoretical molecular descriptors for the prediction of
bioactivity, toxicity, selection of analogs, discovery and optimization of leads at the Wockhardt
Research Centre, Aurangabad, Maharashtra, India, on February 15, 1999.

Dr. S.C. Basak presented the invited lecture Prediction of bioactivity of chemicals from structure: A
hierarchical computational approach at Bharatiya Vidya Bhavans Swami Prakashananda Ayurvedic
Research Center, Mumbai, India, on February 18, 1999.
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19.

20.

21.

22.

23.

24,

25.

26.

27.

Dr. S.C. Basak presented the invited lecture on Toxicology in silico: Addressing the quagmire of
environmental pollution and protecting public health using computational chemistry authored jointly by -
Basak, B.D. Gute, David Opitz and G.D. Grunwald at the International Symposia Series: Reducing the
Environmental Impacts of Toxic Chemicals in Asian Economies. The impacts of Toxic Chemicals and
Pollutants on Public Health, the Ecology and the Environment of the Bengal Basin - Bangladesh and
India, Dhaka Bangladesh, on March 1, 1999.

Dr. S.C. Basak presented the invited seminar on Novel drug discovery methods: Predicting
pharmacological and toxicological properties of chemicals using computational chemistry at the School
of Pharmacy, Dhaka University, Dhaka, Bangladesh on March 4, 1999.

Dr. S.C. Basak presented the invited talk Computational toxicology: A cost effective approach for the
protection of human and environmental health at the International Conference at Santiniketan, India,
March 7, 1999.

Dr. S.C. Basak gave the invited presentation Estimation of DNA damage from toxic chemicals by
graphical techniques authored jointly by A. Nandy, C. Raychaudhury, S. Ghosh, and Basak on March
8, 1999.

Dr. S.C. Basak attended the at the International Conference Smarter Lead Optimization: Easing the
Bottleneck organized by Cambridge Health Institute, March 18-19, 1999, San Diego, CA and gave the .
following presentations:

'i. A computational approach to pred/ctmg toxicity and toxic modes of action of chemicals from

structure.

ii. Topological indices as molecular descriptors for lead optimization authored jointly by A.T. Balaban
and Basak.

Dr. S.C. Basak attended the American Association of Artificial Intelligence conference, Predictive .
Toxicology of Chemicals: Experiences and Impact of Al Tools, Stanford University, March 22-24, 1999
to present the following lectures:

i.  Use of statistical and neural net methods in predicting toxicity of chemicals: A hierarchical QSAR
approach authored jointly by Basak, G.D. Grunwald, B.D. Gute, K. Balasubramanian and D. Opitz.

ii. A Graphical Technique for Preliminary Assessment of Effects on DNA Sequences from Tox:c
Substances authored jointly by A. Nandy, C. Raychaudhury and Basak.

Dr. Basak presented the following papers at the QSAR Gordon Conference, July 25-30, 1999, Tilton,
New Hampshire:

i. A hierarchical QSAR approach for predicting property/activity of chemicals authored by Basak,
G.D. Grunwald, B.D. Gute, D. Mills, K. Balasubramanian and A.T. Balaban.

ii. Topological indices as molecular descriptors for QSAR authored by A.T. Balaban and Basak.

On a trip to Europe and India during September of 1999, Dr. S.C. Basak gave the following invited
presentations:

i. A hierarchical gsar approach for predicting property/activity of chemical from structure at the Rugjer
Boskovic Institute, Zagreg, The Republic of Croatia. :

ii. Predicting property/activityftoxicity of chemicals from structure: A hierarchical QSAR approach at
the National Institute of Chemistry, Slovenia.

ii. Prediction of activityftoxicity of chemicals from structure using graph invariants at the Visva Bharati
University, Santiniketan, West Bengal, India.

iv. Predicting biomedicinal and toxicological properties of chemicals using molecular descriptors at the
University of Delhi, india.

v. The utility of Ayurvedic medicine for modern drug discovery: An exploratory analysis at the
conference organized by the East India Pharmaceutical Company, Calcutta.

During his trip to India in September of 1999, Subhash Basak also attended the 13th International
Biophysics Congress, New Delhi, and presented the following papers:
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i. Clustering of Psoralen derivatives using topological invariants: A strategy for molecular design
coauthored by G.D. Grunwald, A.T. Balaban and K. Basak.

ii. A hierarchical QSAR approach to predicting bioactivity of chemicals using theoretical molecular
descriptors coauthored by B.D. Gute, D. Mills, G.D. Grunwald, D. Opitz and K. Balasubramanian.

i. Modeling the solubility of aliphatic alcohols in water, graph connectivity indices versus line graph
connectivity indices coauthored by D. Amic, S. Nikolic, N. Trinajstic and D. Beslo. -

iv. Design of high quality structure-property regressions coauthored by M. Randic.

v. On numerical characterization of DNA primary sequences coauthored by M. Randic, M. Vracko and
A. Nandy.

28. Dr. Basak gave an invited presentation on Development of hierarchical gsar models for predicting
toxicity of chemicals: Statistical and neural net approaches at the Air Force Predictive Toxicology
Conference, Wright Patterson Air Force Base, Dayton, OH.

29. Subhash Basak gave an invited presentation Exploring the scientific basis of Ayurvedic medicine: A
computational approach at the conference Beyond Conventional Healthcare: Understanding Alternative
Choices organized by the University of Wisconsin, Superior, Nov., 1999.

30. Dr. Basak participated in the 1999 Partners in Environmental Technology Symposium and Workshop
held in Washington, D.C.

31. Subhash Basak presented the invited lecture Applications of theoretical molecular descriptors.in drug
discovery and predictive toxicology: A computational approach at the University of Montana, Missoula.

32. Dr. Basak gave the invited presentation Clustering of JP-8 chemicals using structure spaces and- .
property spaces: A computational approach authored jointly by B.D. Gute, G.D. Grunwald, D. Mills, J.
" Riviere and D. Opitz at the Air Force Office of Scientific Research JP-8 Jet Fuel Toxicology Workshop,
University of Arizona, Tucson, Jan., 2000. , '

33. Subhash Basak gave the following invited lectures/ presentations during his trip to India, Feb., 2000: .

i. Predicting biomedical and toxicological properties of chemicals using molecular descripfors: A
hierarchical QSAR approach at the International Conference on Medicinal Chemistry and .
Biocatalysis organized by Delhi University. He also presented the following four posters in the
same conference:

(a) Clustering of JP-8 chemicals using structure spaces and property spaces: A computational
approach authored jointly by Basak, B.D. Gute, G.D. Grunwald, D. Mills, J. Riviere and D..
Opitz.

(b) Prediction of gas chromatographic retention indices using variable connectivity index authored
jointly by M. Randic, Basak, M. Pompe and M. Novic. .

(c) Clustering of Psoralen derivatives using topological invariants: A strategy for molecular design
authored jointly by Basak, D. Mills, A.T. Balaban, K. Basak and G.D. Grunwald.

“(d) A novel structure-activity approach to benzamidines complement inhibitory activity authored
jointly by Basak, B. Lucic, S. Nikolic and N. Trinajstic.

ii. Basak also gave the invited presentation Applications of theoretical molecular descriptors in drug
. discovery and predictive toxicology: A computational approach at the Ranbaxy Research
Laboratories, Udyog Vihar Industrial Area, Gurgaon, Hariyana, India.

- 34. D. Mills presented the paper On the use of variable connectivity index for characterization of amino
acids, co-authored by Basak and M. Randic, at the 40th Sanibel Symposium on Atomic, Molecular,
Biophysical and Condensed Matter Theory organized by the Quantum Theory Project, at the University
of Florida, March 2000.

35. Dr. Basak gave the presentation Estimating physicochemical and toxicological properties of chemicals
from calculated molecular descriptors co-authored by D. Mills, B.D. Gute, D. Opitz and K.
Balasubramanian at the Dept. of Energy’s Environmental Management Sciences Program National
Workshop in Atlanta, April, 2000.
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36. Subhash Basak gave the lecture Predicting property/activity/toxicity of chemicals using calculated
molecular descriptors at the University of Florida, Gainesville.

37. Dr. Basak and co-workers presented the following papers at the Second Indo-US Workshop on
Mathematlcal Chemistry, organized by NRRI and Visva Bharati University, India:

vi.

vii.”

viii.

A.T. Balaban presented the poster On the clustering of Psoralens co-authored by Basak, D. Mills,
K. Basak, and G.D. Grunwald.

B.D. Gute presented the poster Molecular similarity-based estimation of properties: A comparison
of structure spaces and property spaces co-authored by G.D. Grunwald, D. Milis and S.C. Basak.

Dr. Basak presented the invited lecture A hierarchical QSAR approach for predicting
property/activity/toxicity of chemicals using theoretical structural descriptors co-authored by B.D.
Gute, D. Mills, A.T. Balaban, D. Opitz and K. Balasubramanian.

B.D. Gute presented the poster Clustering of chemical using theoretical structure spaces: A case
study with 476 diverse chemicals co-authored by Basak, G.D. Grunwald and D. Mills.

D.-Mills presented the poster Clustering of JP-8 chemicals using property spaces and structure
spaces: A novel tool for hazard assessment co-authored by Basak, G.D. Grunwald, B.D. Gute and
J.E. Riviere.

M. Randic presented the poster On use of the variable connectivity index 1/ in QSAR: Toxicity of -
aliphatic ethers co-authored by Basak.

A.T. Balaban presented the invited lecture Topological indices as valuable molecular descrlptors
for QSAR and QSPR co-authored by O. Ivanciuc, D. Mills and Basak.

M. Pompe presented the poster Prediction of gas chromatographic retention indices for oxygenated.

compounds using variable connectivity index '3/ co-authored by M. Veber, M. Randic, M. Novic and
Basak.

A.T. Balaban presented the poster Topological indices: Their nature and mutual relatedness co-
authored by Basak, G.D. Grunwald and B.D. Gute. :

38. Dr. Basak and collaborators made the following presentations at the American Chemical Society
Annual meeting recently in Washington, D.C.:

Vi

A.T. Balaban presented the invited lecture Trends and possibilities for future developments of
topological indices authored jointly by Balaban and S.C. Basak.

B.D. Gute presented the invited lecture Use of graph invariants for the prediction of
property/activity/toxicity of chemicals authored jointly by S.C. Basak, Gute, D. Mills and A.T.
Balaban.

Dr. Basak presented the lecture Similarity-based estimation of properties: A comparison of

structure spaces authored jointly by B.D. Gute, G.D. Grunwald, D. Mills and S.C. Basak.

D. Mills presented the poster Clustering of JP-8 chemicals using structure spaces and property
spaces: A computational approach authored jointly by Mills, $.C. Basak, G.D. Grunwald, B.D. Gute -
and J. Riviere.

D. Mills presented the poster Hierarchical clustering of Psoralen derivatives using topological
invariants: A strategy for molecular design authored jointly by Mills, S.C. Basak, B.D. Gute, A.T.
Balaban, G.D. Grunwald and K. Basak.

D. Mills presented the poster Use of variable connectivity indices on biological molecules authored
jointly by Mills, M. Randic and S.C. Basak.

39. Dr. Basak visited Milan, italy (early September 2000) to discuss collaborative projects with colleagues
at the Istituto di Ricerche Farmacologiche "Mario Negri" and Milan Chemometric Research Group,
Department of Environmental Sciences. He traveled to Slovenia and Croatia, to develop and discuss
joint quantitative structure-activity/toxicity/property relationship (QSAR/ QSPR/ QSTR) research papers
and projects with colleagues at the National Institute of Chemistry, Ljubljana, Slovenia and the Rugjer -
Boskovic Institute.
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Honors and Awards

1. Dr. S.C. Basak was the Co-Chairperson of the First Indo-US Workshop on Mathematical Chemistry,
organized jointly by NRRI and Visva Bharati University, Santiniketan, West Bengal India, Jan 9-13,
1998.

2. Dr. S.C. Basak chaired a session at the DIMACS Workshop on Discrete Mathematical Chem/stry,
March 23-25, 1998, held at Rutgers University, New Jersey.

3. Dr. Basak organized a one-day workshop on Applied Mathematical Chemistry: Molecular Descriptors
and Their Applications in Structure-Property-Activity-Toxicity Relationships, May 3, 1999, at NRRI.
Thirteen speakers from seven different countries, viz., Bulgaria, Croatia, India, Romania, Slovenia,
United Kingdom and United States, gave invited presentations on their latest research on Mathematical
Chemistry, Quantitative Structure-Activity Relationships (QSAR), Computational Chemistry and
Predictive Toxicology.

4. Dr. Basak has been invited to become a member of the International Advisory Committee of the .
International Symposium Current Trends in Drug Discovery Research, February 11-15, 2001, to be
organized by the Central Drug Research Institute (CDRI), Lucknow, India, the’ premier drug discovery
and research institute of the country. The symposium is being organized to celebrate the 50th
Anniversary of CDRI.

5. Basak has been invited to become a member of the Indian National Organizing Committee of the
International Symposium Strategies and Perspectives in Drug Development, Design and Molecular
Modeling to be organized by the Indian Institute of Chemical Biology, Calcutta, Oct. 17-18, 2000.

6. Dr. S.C. Basak was the Co-Chairperson of the Second Indo-US Workshop on Mathematical Chemistry
with Applications to Drug Discovery, Environmental Toxicology, Cheminformatics and Bioinformatics,
held in Duluth, MN and organized jointly by NRRI and Visva Bharati University, India, May 30-June 3,
2000.

New Discoveries/ Inventions, Patent Disclosures

1. We fond that constituents of complex of mixtures like JP-8 can be clustered into different structural groups
using structure spaces derived from topological indices calculated by POLLY

2. An in-depth study of similarity space construction and analog selection resulted in the discovery that for a
particular set of compounds the degree of overlap between the groups of analogs selected by theoretical
descriptor spaces is relatively high. This study also revealed that a similarity space constructed from
physicochemical property data provided relatively unlque sets of analogs as compared to those selected
from the theoretically-derived similarity spaces.

3. For various sets of toxicological and physicochemical properﬁes the topostructural and topochemical
parameters explain most of the variance in the data; the addition of geometrical and quantum chemical
parameters to the set of independent variables did small or no improvement in the predicting power of
models.
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Publications

A hierarchical approach to the development of QSAR models using topological, geometrical and
quantum chemical parameters, S.C. Basak, B.D. Gute and G.D. Grunwald, In Topological
Indices and Related Descriptors in QSAR and QSPR, Eds. J. Devillers and A.T. Balaban,
Gordon and Breach Science Publishers, Amsterdam, 1999, p 675-696.

Assessment of the mutagenicity of chemicals from theoretical structural parameters: A
hierarchical approach, S.C. Basak, B.D. Gute, and G.D. Grunwald, SAR QSAR Environ. Res.,
10, 117-129, 1999.

Hazard assessment modeling: An evolutionary ensemble approach, D.W. Opitz, S.C. Basak and
B.D. Gute, In: Genetic and Evolutionary Computation, Eds. W. Banzhaf, J. Daida, A.E. Eiben,
M.H. Garzon, V. Honavar, M. Jakiela, & R.E. Smith, Morgan Kaufmann: San Francisco, 1999, p .
1643-1651.

Information theoretic indices of neighborhood complexity and their applications, S.C. Basak; In

Topological Indices and Related Descriptors in QSAR and QSPR, Eds. J. Devillers and A.T.

Balaban, Gordon and Breach Science Publishers, Amsterdam, 1999, p 563-593.

Normal boiling points of 1,s-alkanedinitriles: The highest increment in a homologous series, A.T.
Balaban, S.C. Basak and D. Mills, J. Chem. Inf. Comput. Sci., 39, 769-774, 1999.

A comparative QSAR study of benzamidines complement-inhibitory activity and benzene
derivatives acute toxicity, S.C. Basak, B.D. Gute, B: Lucic, S. Nikolic and N. Trinajstic,
Computers & Chemistry, 24, 181-191, 2000.

Construction of high-quality structure-property-activity regressions: The boiling points of sulfides,
M. Randic and S. C. Basak, J. Chem. Inf. Comput. Sci., 40, 899-905, 2000.

Multiple regression analysis with optimal molecular descriptors, M. Randic and S.C. Basak; SAR
QSAR Environ. Res., 11, 1-23, 2000.

On 3-D graphical representation of DNA primary sequences and their numerical characterization,
M. Randic, M. Vracko, A. Nandy and S. C. Basak, J. Comput. Chem., 40, 1235-1244, 2000.

QSPR modeling: Graph connectivity indices versus line graph connectivity indices, S. C. Basak, -
S. Nikolic, N. Trinajstic, D. Amic and D. Beslo, J. Chem. Inf. Comput. Sci., 40, 927-933, 2000.

Sim’ple numerical descriptor for quantifying effect of toxic substances on DNA sequences, A.
Nandy and S. C. Basak, J. Chem. Inf. Comput. Sci., 40, 915-919, 2000.

Topological indices: Their nature and mutual relatedness, S. C. Basak, A. T. Balaban, G. D.
Grunwald and B. D. Gute, J. Chem. Inf. Comput. Sci., 40, 891-898, 2000.

Use of graph invariants in QMSA and predictive toxicology, S.C. Basak and B.D. Gute, In
Discrete Mathematical Chemistry, Eds. P. Hansen, P. Fowler, M. Zheng, DIMACS Series 51,
American Mathematical Society: Providence, Rhode Island, 2000, p 9-24.

Use of statistical and neural net approaches in predicting toxicity of chemicals, S. C. Basak, G.
D. Grunwald, B. D. Gute, K. Balasubramanian and D. Opitz, J. Chem. Inf. Comput. Sci., 40, 885-
890, 2000.
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APPENDIX 1.1

A hierarchical approach to the development of
QSAR models using topological, geometrical...
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690 Topological Indices and Related Descriptors in QSAR and QSPR
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Figure 9 Scatterplot of experimental acute aquatic toxicity (LCsq) vs esti-
mated acute aquatic toxicity using Eq. (16) for 69 benzene derivatives.

the model including geometrical indices, resulting in an overall explanation
of 86.3% of the variance. Figure 9 presents the scatterplot of experimental
versus predicted toxicity for these 69 compounds based on the results of
Eq. (16).

A set of 520 compounds, 260 mutagens and 260 non-mutagens, was
taken from the literature [44] as a source of mutagenicity data. These data
provided qualitative assessments of mutagenicity based on a positive or
negative result in the Ames’ mutagenicity assay. A discriminant function
analysis (DFA) was conducted on this set using the SAS procedure
DISCRIM [38] to create a function capable of classifying the compounds
as active or inactive. Based on the results of a previous study and the
amount of time required for the calculations, the quantum chemical param-
eters were excluded and indicators of molecular fragments associated with
mutagenic activity were included [15]. See the original manuscript for a
further discussion of the data used in this study and the molecular
fragments keyed for the analysis. These classification results, the indices
used in each case, and brief notes on the fragment groups included in the
final models are presented in Table II.

Table Il Classification results for 520 mutagens/non-mutagens from DFA

% Non-mutagens

% Mutagens

Indices Included

Model Type

Correct

Correct

57.3

76.2
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APPENDIX 1.2

Assessment of the mutagenicity of chemicals
from theoretical structural parameters
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ASSESSMENT OF THE MUTAGENICITY
OF AROMATIC AMINES FROM THEORETICAL
STRUCTURAL PARAMETERS:
A HIERARCHICAL APPROACH*

S. C. BASAK!', B. D. GUTE and G. D. GRUNWALD

Natural Resources Research Institute, 5013 Miller Trunk Hwy.,
Duluth, MN 55811, USA

( Received 8 July 1998; In final form 16 October 1998)

A hierarchical approach has been used in this paper in predicting the mutagenicity/non-
mutagenicity of a set of 127 chemicals from their molecular descriptors. The set of descriptors
consisted of topostructural and topochemical parameters, experimental properties like log P,
and quantum chemical indices calculated using a semi-empirical method. The results show that
a combination of topostructural and topochemical molecular descriptors explain most of the
variance in the experimental data. The addition of physical properties or quantum chemical
parameters did not make any significant improvement in the predictive power of the models.

Keywords: Aromatic amines; hierarchical similarity; mutagenicity; quantum chemical descrip-
tors; topological indices

INTRODUCTION

A current interest in the fields of chemistry, toxicology and biomedical
sciences is the prediction of the property/activity of chemicals from
calculated molecular descriptors [1—6]. In both environmental hazard
assessment and pharmaceutical drug design, one has to deal with thousands,
sometimes millions, of real or hypothetical chemical structures. Most of
these compounds have very little of the experimental data necessary for the

*Presented at the workshop Computational Methods in Toxicology, April 20-22, 1998,
Dayton, OH, USA.

tCorresponding author.
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estimation of their toxicity or efficacy. In this age of combinatorial chemistry,
one can synthesize thousands of chemicals very quickly. However, experi-
mental testing of these large numbers of chemicals would not be cost effective.
Also, it is possible to create virtual libraries consisting of billions of structures.
In this case one would like to know the toxic, as well as therapeutic, potential
of such a vast collection of chemicals. The experimental data necessary for the
prediction of the toxicity/activity of these large and diverse sets of chemicals
will not be available to us in the near future.

This pervasive lack of experimental data demonstrates the need for the
development of predictive models based on parameters that can be cal-
culated directly from a chemical’s molecular structure. Recently, our research
group has been involved in the development of a hierarchical approach
to quantitative structure-activity relationship (QSAR) model development
for predicting physicochemical, toxicological and pharmacological prop-
erties of chemicals using theoretical molecular descriptors [3, 6 - 10]. Various
topological indices (TIs) fall in this category of molecular descriptors
[11-23]. Balaban has classified TIs into three generations based on whether
they are integers, real numbers or a sequence of numbers [24]. Different
classes of TIs quantify various aspects of molecular structure. We have shown
in the past that various indices, viz., connectivity indices and complexity
indices developed and used by Basak er al. [15-18] quantify distinctly
different types of molecular structural information. Such indices can be cal-
culated very rapidly. On the other hand, geometrical and quantum chemical
parameters encode information regarding the stereo-electronic aspects
of molecules. These classes of parameters are also algorithmically derived,
Le., they can be calculated for any real or hypothetical molecular structure
without any input of experimental data.

One of our recent interests has been to test the relative effectiveness of the
four classes of theoretical molecular descriptors mentioned above in the
development of QSARs for predicting property/activity/toxicity of chemi-
cals [3, 6-10]. In this paper we have used these parameters in the develop-
ment of models for predicting mutagenicity/non-mutagenicity of aset of 127
aromatic amines.

METHODS

Datasets

A set of 127 aromatic and heteroaromatic amines, previously collected from
the literature by Debnath er al. [25], were used to study mutagenicity. The
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mutagenicity of these compounds in S. Typhimurium TA98 + S9 microsomal
preparation has been expressed as positive or negative mutagenicity by
Benigni [26]. Compounds included in this study and their mutagenic
classification based on experimentally determined mutagenic potency are
given in Table I. Of the compounds used in this study, 106 were classified as
mutagens while twenty-one were determined to be non-mutagens.

TABLE I Aromatic and heteroaromatic amines’

Chemicals TA98 TA98
(Expt)) (Pred.)?

2-Bromo-7-aminofluorene
2-Methoxy-5-methylaniline ( p-cresidine)
5-Aminoquinoline
4-Ethoxyaniline ( p-phenetidine)
1-Aminonaphthalene
4-Aminofluorene
2-Aminoanthracene
7-Aminofluoranthene
8-Aminoquinoline
1,7-Diaminophenazine
2-Aminonaphthalene
4-Aminopyrene
3-Amino-3'-nitrobiphenyl
2,4,5-Trimethylaniline
3-Aminofluorene
3,3'-Dichlorobenzidine
2,4-Dimethylaniline (2,4-xylidine)
2,7-Diaminofluorene
3-Aminofluoranthene
2-Aminofluorene
2-Amino-4’-nitrobiphenyl
4-Aminobiphenyl
3-Methoxy-4-methylaniline (o-cresidine)
2-Aminocarbazole
2-Amino-5-nitrophenol
2,2'-Diaminobiphenyl
2-Hydroxy-7-aminofluorene
I-Aminophenanthrene
2,5-Dimethylaniline (2,5-xylidine)
4-Amino-2'-nitrobiphenyl
2-Amino-4-methylphenol
2-Aminophenazine
4-Aminophenylsulfide
2,4-Dinitroaniline
2,4-Diaminoisopropylbenzene
2,4-Difluoroaniline
4,4'-Methylenedianiline
3,3’-Dimethylbenzidine
2-Aminofluoranthene
2-Amino-3'-nitrobiphenyl
I-Aminofluoranthene

e et o b v et bt hew et et pmmt et et ek bt et bk ik et ettt Bt ke b b pm et b bt et et e et et et et
e e e et et bt bt e gt bk ok Bt vt et bt s () bt e et P ek et e e b bt e Rea b et e et et et d et
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TABLE |

(Continued)

Chemicals

TA98
(Expt.)

7498
(Pred)?

4,4'-Ethylencbis (aniline)
4-Chloroaniline
2-Aminophenanthrene
4-Fluoroaniline
9-Aminophenanthrene
3,3'-Diaminobiphenyl
2-Aminopyrenc
2,6-Dichloro-1,4-phenylenediamine
2-Amino-7-acetamidofluorene
2,8-Diaminophenazine
6-Aminoquinoline
4-Methoxy-2-methylaniline (m-cresidine)
- 3-Amino-2'-nitrobiphenyl
2,4'-Diamino-biphenyl
1,6-Diaminophenazine
4-Aminophenyldisulfide
2-Bromo-4,6-dinitroaniline
2,4-Diamino-n-butylbenzene
4-Aminophenylether
2-Aminobiphenyl
1,9-Diaminophenazine
1-Aminofluorene
8-Aminofluoranthene
2-Chloroaniline
2-Amino-aaa-trifluorotoluene
2-Amino-1-nitronaphthalene
3-Amino-4’-nitrobiphenyl
4-Bromoaniline
2-Amino-4-chlorophenol
3,3'-Dimethoxybenzidine
4-Cyclohexylaniline
4-Phenoxyaniline
4,4'-Methylenebis (o-ethylaniline)
2-Amino-7-Nitrofiuorene
Benzidine
1-Amino-4-Nitronaphthalene
4-Amino-3'-Nitrobiphenyl
4-Amino-4'-Nitrobiphenyl
1-Aminophenazine
4,4'-Methylenebis (o-fluoroaniline)
4-Chloro-2-nitroaniline
3-Aminoquinoline
3-Aminocarbazole
4-Chloro-1,2-phenylenediamine
3-Aminophenanthrene
3,4'-Diaminobipheny!
I-Aminoanthracene
1-Aminocarbazole
9-Aminoanthracene
4-Aminocarbazole
6-Aminochrysene
1-Aminopyrene
4-4'-Methylenebis (o-isopropyl-aniline)

e e e e e e e e e e e et it v e et e e e et e e e et Rt et b e e et et e e v s ok e et et s e e
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TABLE I (Continued)

TA98 - TA98
Chemicals (Expt.) (Pred.)?

2,7-Diaminophenazine
4-Aminophenanthrene
2,4-Diaminotoluene
3,3'-Diaminobenzidine
1,3-Phenylenediamine
3,4-Diaminotoluene
1,2-Phenylenediamine
3-Amino-6-methylphenol
2,4-Diaminoethylbenzene
4,4'-Methylenebis (2,6-diisopropylaniline)
4,4'-Methylenebis (2,6-diethylaniline)
4.4'-Methylenebis (2-methyl-6-r-butylaniline)
4,4'-Methylenebis (2-methyl-6-isopropylaniline)
4,4'-Methylenebis (2-methyl-6-ethylaniline)
4,4'-Methylenebis (2,6-dimethylaniline)
3-Aminobiphenyl

2,3-Diaminobiphenyl
2-Methyl-4-chloroaniline
2-Chloro-4-methylaniline
4-Methoxyaniline

3-Methoxyaniline

Aniline

3-Chloroaniline

3-Ethoxyaniline

2-Ethoxyaniline

4-Aminophenol

3-Aminophenol

2-Aminophenol

2-Methoxyaniline
4-Chloro-1,3-phenylenediamine
2-Nitro-1,4-phenylenediamine
4-Nitro-1,3-phenylenediamine
4-Nitro-1,2-phenylenediamine

e e e et O O e O D e e O OO OO — = O O — — —

'-'———-OOOOOOOOOOOOOOOOOOOO—‘-——‘-—‘—'—-‘—O—

! The table reports the mutagenicity of the aromatic and heteroaromatic amines as: 0 = negative;
I = positive.
2 TA98 results predicted using topostructural and topochemical indices.

Computation of Indices

Topological indices used in this study have been calculated by POLLY 2.3
[27} which can calculate a total of 102 indices. These indices include Wiener
index [28], connectivity indices [11, 12}, information theoretic indices defined
on distance matrices of graphs [13, 14], a set of parameters derived on the
neighborhood complexity of vertices in hydrogen-filled molecular graphs
[15—18], as well as Balaban’s J indices [19-21]. Table II provides brief de-
finitions for the topological indices included in this study.

e
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TABLE Il Symbols, definitions and classifications of topological parameters

Topostructural

Information index for the magnitudes of distances between all possible pairs of
vertices of a graph
Mean information index for the magnitude of distance
Wiener index = half-sum of the off-diagonal elements of the distance matrix of
a graph
Degree complexity
Graph vertex complexity
Graph distance complexity
Information content of the distance matrix partitioned by frequency of
occurrences of distance h
Order of neighborhood when IC, reaches its maximum value for the hydrogen-
filled graph
A Zagreb group parameter = sum of square of degree over all vertices
A Zagreb group parameter = sum of cross-product of degrees over all
neighboring (connected) vertices
Path connectivity index of order &/ = 0-6
Cluster connectivity index of order A =3-6
Chain connectivity index of order h =3-6
Path-cluster connectivity index of order A = 46
Number of paths of length A = 0-10
Balaban’s J index based on distance
Topochemical
Information content or complexity of the hydrogen-suppressed graph at its
maximum neighborhood of vertices
Mean information content or complexity of a graph based on the " (r=0-6)
order neighborhood of vertices in a hydrogen-filled graph
Structural information content for r' (r = 0-6) order neighborhood of vertices
in a hydrogen-filled graph
Complementary information content for r'" (r = 0—6) order neighborhood of
vertices in a hydrogen-filled graph
Bond path connectivity index of order h = 0-6

Bond cluster connectivity index of order A = 3-6

Bond chain connectivity index of order h = 3-6

Bond path-cluster connectivity index of order h = 4-6
Valence path connectivity index of order h = 0-6
Valence cluster connectivity index of order A = 3-6
Valence chain connectivity index of order h = 3-6
Valence path-cluster connectivity index of order h = 4—-6
Balaban’s J index based on bond types

Balaban’s J index based on relative electronegativities
Balaban’s J index based on relative covalent radii

Values for log P and the quantum chemical parameters €yomo and
€Lumo Wwere taken from the work of Debnath er al. [25]. Octanol/water
partition coefficients (log P) were determined experimentally for a set of 67
aromatic and heteroaromatic amines and, when these values were determined
to be in agreement with values calculated using the CLOGP program (release
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3.54), the remainder of the log P values were calculated using CLOGP [29].
The quantum chemical parameters provided by Debnath et al., €gomo and
€Lumo Wwere calculated using the semi-empirical AM1 of MOPAC 4.10
(Quantum Chemistry Program Exchange No. 455) [30].

-

!_jata Reduction

Initially, all TIs were transformed by the natural logarithm of the index plus
one. This was done since the scale of some indices may be several orders of
magnitude greater than that of other indices and other indices may equal zero.

The set of 95 TIs was partitioned into two distinct sets: 38 topostructural
indices and 57 topochemical indices. Topostructural indices are indices
which encode information about the adjacency and distances of atoms
(vertices) in molecular structures (graphs) irrespective of the chemical nature
of the atoms involved in the bonding or factors like hybridization states of
atoms and number of core/valence electrons in individual atoms. Topo-
chemical indices are parameters which quantify information regarding the
topology (connectivity of atoms) as well as specific chemical properties of
the atoms comprising a molecule. Topochemical indices are derived from
weighted molecular graphs where each vertex (atom) is properly weighted
with selected chemical/physical properties. The categorization of the 95 TIs
into these sets is shown in Table II.

To further reduce the number of independent variables to be used for model
construction, the sets of topostructural and topochemical indices were further
divided into subsets, or clusters, based on the correlation matrix using the SAS
procedure VARCLUS [31]. This variable clustering procedure divides the
set of indices into disjoint clusters such that each cluster is essentially
unidimensional. The index most correlated with each cluster, as well as any
indices which were poorly correlated with the cluster (r < 0.70), were selected
for model development. Variable clustering was performed independently for
both the topostructural and topochemical subsets.

Statistical Analysis and Hierarchical DFA

Selection of indices for the final models was conducted using all subsets
regression on the sets of indices chosen through variable cluster analysis in
the SAS procedure REG [32]. This all subsets procedure was performed on
four distinct sets of indices: (1) the topostructural indices selected by variable
clustering, (2) the topostructural indices selected in all subsets regression and

Y T
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the topochemical indices selected during variable clustering, (3) the
topostructural and topochemical indices selected in all subsets regression
and log P, and 4) the model chosen for topostructural and topochemical
indices with log P and with the addition of €yomo and € ymo. These sets of
indices were then used to develop and crossvalidate discriminant function
models for classifying the mutagenicity/non-mutagenicity of the 127 aromatic
and heteroaromatic amines. Figure 1 illustrates the process for the selection of
indices and formulation of DFA models.

RESULTS AND DISCUSSION

In the first step of our hierarchical modeling, 38 topostructural parameters
were subjected to variable clustering procedure. The following indices were
retained from the five clusters generated: Ig’,ﬁ, 0, *xc, ®xcn, *xpc, P, J.
These five clusters explained a total variation of 35.29 and the proportion of
the variance explained was equal to 92.86%. Of the 57 topochemical indices,
the following ten indices were selected from eight clusters: ICy, 1C,, IC,,
SIC,, SIC4, *x2, 6x2, , *xbc, 2", JY. The eight clusters generated from the
topochemical indices resulted in a total variation explained of 51.65 and the
proportion of the variance explained was equal to 90.61%. These indices
were then included in the all subsets regression procedure for the selection of
final indices for discriminant function analysis. In all cases, the RSQUARE
and ADJRSQ values were examined as indicators of model fit, however the
final models were selected based on the Mallow’s Cp statistic (CP). Statistics
for the cluster analysis and the inter-correlation of the clusters for the topo-
structural indices are presented in Tables III and IV, respectively. Similar
statistics for the variable clustering of the topochemical indices can be found
in Tables V and VI.

The all subsets regression of the eight topostructural indices resulted in
the selection of the following indices for model development: Ig,ﬁ, Ps.
These indices were used to create the topostructural DFA model, the
simplest model in the hierarchy, and were also combined with the ten
topochemical indices to create the second model in the hierarchy. All subsets
regression of the thirteen topostructural and topochemical indices resulted
in the selection of the following indices for modeling: Ig’,ﬁ, P, 1Cy, SIC,.
These indices were combined with log P and resulted in a six parameter
model with log P added to the complete set of descriptors from the second
model. Finally, the quantum chemical descriptors, €qomo and € ymo, were
combined with the set of six indices and all subsets regression was used again
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Topostructural Descriptors Topochemical Descriptors
38 Variables 57 Variables
Cluster Cluster
Analysis Analysis
N v
5 Clusters ' 8 Clusters
_ 8 Variables 10 Variables
All Subsets
Regression
\4
3 Variables
DF4 All Subsets
Regression
v
3 Variable § Variables LogP
DFA -
DFA All Subs.els
Regression
Retention Enomo
5 Variable ofall 6 Evovo
DFA Variables
DFA All Subs‘ets
Regression
5 Variables
6 Variable
DFA l .
5 Variable

DFA

FIGURE 1 [Illustration of the hierarchical method of index selection and discriminant
function analysis. :

to select the best parameters for model construction. This procedure resulted

in the selection of the following model: I}Y,IC, Ps,log P, € umo-
Discriminant function analysis, using the SAS procedure DISCRIM [33],

was used to develop models for predicting mutagenicity/non-mutagenicity
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TABLE Il Statistics for the variable cluster analysis of the topostructural indices

Cluster Members Variation  Proportion Second  Index most  Correlation
explained  explained  eigenvalue  correlated

1 18 16.99 0.94 0.71 Py 0.9918

2 2 2.00 1.00 0.00 ‘xc 0.9992

3 3 2.15 0.71 0.72 Xch 0.9104

4 12 11.41 0.95 0.45 1y 0.9977

5 3 2.73 0.91 0.18 4xpc 0.9474

TABLE IV Intercorrelation of the clusters generated in the variable cluster analysis of the
topostructural indices

Cluster 1 2 3 4 5

1 1.0000

2 0.0735 1.0000

3 0.6317 -0.0707 1.0000

4 0.9327 0.1389 0.3922 1.0000

5 0.7131 0.4006 0.2275 0.7793 1.0000

TABLE V  Statistics for the variable cluster analysis of the topochemical indices

Cluster Members Variation  Proportion Second Index most  Correlation
explained  explained  eigenvalue  correlated
i 19 17.61 0.93 0.58 2yt 0.9686
2 8 7.52 0.94 0.42 SIC, 0.9876
3 4 3.76 0.94 0.24 Xl 0.9484
4 6 5.11 0.85 0.80 JY 0.8889
S 5 4.72 0.94 0.23 1C,4 0.9880
6 4 3.72 0.93 0.27 X8, 0.9419
7 6 4.68 0.78 0.79 SIC, 0.9079
8 5 4.52 0.90 0.21 Xbe 0.9225

TABLE VI Intercorrelation of the clusters generated in the variable cluster analysis of the
topochemical indices

Cluster i 2 3 4 5 6 7 8
I 1.0000

2 -0.4121  1.0000

3 02311 -0.2150  1.0000

4 -0.8162  0.4459 —0.0885  1.0000

5 03407  0.6649 —0.0641 —0.2594  1.0000

6 04739 02192 -0.0509 —04812 0.5033  1.0000

7 ~0.5604 04636 -0.1072  0.7565 —0.0130 —0.2089  1.0000

8 0.7805 —0.5046  0.5542 —0.4287 0.0484  0.1481 —0.2913  1.0000
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TABLE VII Results of the cross-validated discriminant function analyses

Hierarchical classes Indices % Correct % Correct
(non-mutagens) (mutagens)

Topostructural I¥,1C, P, 28.6 95.3

Topostructural + 1¥,1C, P, 429 93.4

. Topochemical 1Co, SIC,
Topological + log P I¥,1C, P, 38.1 953
1C,, SIC,, log P
Topological + log P+ 14,1C, P;, 33.3 95.3
Quantum chemical log P,€ELumo

of chemicals in the Ames test. Four distinct models were developed using the
indices selected from the all subsets regression procedure as described above.
The results in Table VII shows that all four models could predict the muta-
genicity of chemicals 93% to 95% of the time whereas they were less effective
in predicting non-mutagenicity (29% to 43%).

The addition of topochemical to the set of topostructural indices, result-
ing in the best predictive model, are shown in Table VII. It is clear from the
results that the addition of topochemical indices to the set of topostructural
indices did slightly decrease the prediction of mutagenicity. However, there
was a significant improvement in the prediction of non-mutagenicity by the
addition of topochemical indices to the set of independent variables.

Finally, the addition of log P and quantum chemical indices did not make
any improvement in the models. This is in line with our earlier work with
physical and biochemical properties which showed that topostructural and
topochemical indices explain most of the variance in the data [3, 6—10].
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Abstract

This paper presents a novel and effective
genetic algorithm approach for generating
computational models for hazard assessment.
With millions of proposed chemicals being
registered each year, it is impossible to come
even remotely close to completing the battery
of tests needed for the proper understanding
of the toxic effects of these chemicals. Com-
puter models can give quick, cheap, and en-
vironmentally friendly hazard assessments of
chemicals. Our approach works by first ex-
tracting a hierarchy of theoretical descriptors
of the structure of a compound, then filtering
these numerous descriptors with a genetic al-
gorithm approach to ensemble feature selec-
tion. We tested the utility of our approach by
modeling the acute aquatic toxicity (LCs)
of a congeneric set of 69 benzene derivatives.
Our results demonstrate a very important
point: that our method is able to accurately
predict toxicity directly from structure.

1 INTRODUCTION

By the end of 1998 the number of chemicals registered
with the Chemical Abstract Service rose to over 19
million (CAS 1999). This is an increase of over 3
million chemicals between 1996 and 1998. It is de-
sirable to test each of these chemicals for their effects
on the environment and human health (which we re-
fer to as hazard assessment); however, completing the
battery of tests necessary for the proper hazard as-
sessment of even a single compound is a costly and
time-consuming process. Therefore, there is simply
not enough time or money to complete these test bat-
teries for even a tiny portion of the compounds which
are registered today (Menzel 1995). An alternative to
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these traditional test batteries is to develop computa-
tional models for hazard assessment. Computational
models are fast (milliseconds per compound), cheap
(less than one cent per compound), and do not run
the risk of adversely affecting the environment during
testing. Additionally, these computational methods
can replace or limit the amount of animal testing that
is necessary. Thus computational models can easily
process all registered chemicals and flag the ones that
require further testing. The central problem with this
approach is developing class specific models that can
be considered accurate enough to be useful. In this
paper, we present a novel and effective approach for
learning computational hazard assessment models by
using an ensemble feature selection algorithm based on
genetic algorithms (GAs) to filter numerous theoreti-
cal descriptors of chemical structure.

To better illustrate the need for effective and quick
hazard assessment, we should consider the situation
of the industrial chemicals ”grandfathered” into con-
tinued use under the Toxic Substances Control Act
(TSCA) of 1976. TSCA has required that a suite of
physicochemical and toxicological screens be run on all
commercial compounds (those produced or imported
in volumes exceeding one million pounds annually) de-
veloped after 1976. However, there are almost 3,000
chemicals that were ”grandfathered” in with the un-
derstanding that it would be the responsibility of the
chemical manufacturing industry to ultimately sup-
ply information about these chemicals. Only recently,
after a 20-year delay, are the chemical manufactur-
ers talking about running 2,800 of these compounds
through basic toxicity screens and while this is promis-
ing, these screens will not be completed until 2004 and
at a cost of between $500 to $700 million dollars. So it
will be another five years before we have basic toxicity
data on compounds that have been in wide-spread use
for more than twenty years (Johnson 1998).

One of the fundamental principles of biochemistry is




that activity is dictated by structure (Hansch 1976).
Following this principle, one can use theoretical molec-
ular descriptors that quantify structural aspects of
a molecule to quantitatively determine its activity
(Basak & Grunwald 1995; Cramer, Famini, & Lowrey
1993). These theoretical descriptors can be generated
directly from the known structure of the molecule and
used to estimate its properties, without the need for
further experimental data. This is important due to
that fact that, with chemicals needing to be evaluated
for hazard assessment, there is a scarcity of available
experimental dédta that is normally required as inputs
(i.e., independent variables) to traditional quantitative
structure-activity relationship (QSAR) model develop-
ment, A QSAR model based solely on theoretical de-
scriptors on the other hand can process all registered
chemicals for hazard assessment.

Our hierarchical approach examines the relative con-
tributions of theoretical descriptors of gradually in-
creasing complexity (structural, chemical, shape, and
quantum chemical descriptors). This approach is im-
portant as none of the individual classes of parame-
ters are very effective at predicting toxicity (Gute &
Basak 1997); however, we show in this paper that we
can effectively predict toxicity if we combine all levels
of descriptors. One potential problem with using our
hierarchical approach is that it often gives many in-
dependent variables as compared to data points since
having a limited number of data points in not uncom-
mon in hazard assessment. For instance, in our case
study of predicting acute toxicity (LCsg) of benzene
derivatives, we have 95 independent variables and 69

data points. Therefore, reducing the number of inde- .

pendent variables is critical when attempting to model
small data sets. The smaller the data set, the greater
the chance of spurious error when using a large num-
ber of independent variables (descriptors). In some
of our earlier QSAR studies we have used statistical
methods such as principal components analysis (PCA)
and variable clustering methods to reduce the num-
ber of independent variables (Basak & Grunwald 1995;
Gute & Basak 1997; Gute, Grunwald, & Basak In
press).

As an alternative solution, we use our previous en-
semble feature selection approach (Opitz 1999) that
is based on GAs. An “ensemble” is a combination
of the outputs from a set of models that are gener-
ated from separately trained inductive learning algo-
rithms. Ensembles have been shown to, in most cases,
greatly improve generalization accuracy over a single
learning model (Breiman 1996; Maclin & Opitz 1997;
Shapire et al. 1997). Recent research has shown that
an effective ensemble should consist of a set of models

that are not only highly correct, but ones that make
their errors on different parts of the input space as
well (Hansen & Salamon 1990; Krogh & Vedelsby 1995;
Opitz & Shavlik 1996a). Varying the feature subsets
used by each member of the ensemble helps promote
the necessary diversity and create a more effective en-
semble (Opitz 1999). We use GAs to search through
the enormous space of finding a set of feature subsets
that will promote disagreement among the component
members of an ensemble while still maintaining the
component member’s accuracy.

Combining our approach of generating hierarchical
theoretical descriptors with our other approach to GA-
based ensemble feature selection, we are able to gen-
erate an effective model for predicting the toxicity of
benzene derivatives using only a few compounds. Our
results show that our model is nearly as accurate as the
battery of tests necessary for the proper hazard assess-
ment of a single compound. Our results also confirm
that our new ensemble feature selection approach is
more effective than previous approaches for modeling
hazard assessment.

The rest of the paper is organized as follows. First
we provide background and related work for both our
hierarchical QSAR approach and our GA-based en-
semble feature selection approach. This is followed by
results of our approach applied to benzene derivatives.
Finally, we discuss these results and provide future
work.

2 QSAR AND THEORETICAL
METHODS

QSARs have come into widespread use for the pre-
diction of various molecular properties, as well as bi-
ological, pharmacological and toxicological responses.
Traditional QSAR techniques use empirical properties
(Dearden 1990; Hansch & Leo 1995; de Waterbeemd
1995); however, due to the scarcity of available data
for the majority of chemicals needing to be evaluated
for hazard assessment, these physicochemical proper-
ties necessary for traditional QSAR model develop-
ment may not be available. When this is the case, it
is imperative that there are methods available which
make use of nonempirical parameters, which we term
theoretical molecular descriptors.

Topological indices (TIs) are numerical graph invari-
ants that quantify certain aspects of molecular struc-
ture (Gute & Basak 1997; Gute, Grunwald, & Basak
In press). The different classes of TIs provide us
with nonempirical, quantitative descriptors that can
be used in place of experimentally derived descriptors



in QSARs for the prediction of properties.

Our recent studies have focused on the role of different
classes of theoretical descriptors of increasing levels of
complexity and their utility in QSAR (Gute & Basak
1997; Gute, Grunwald, & Basak In press). Four dis-
tinct sets of theoretical descriptors have been used in
this study: topostructural, topochemical, geometric,
and quantum chemical indices. Gute and Basak 1997
provide the detailed list of the indices included in our
study.

2.1 TOPOLéGICAL INDICES

The topostruct'ﬁral and topochemical indices fall into
the category normally considered topological indices.
Topostructural indices (TSIs) are topological indices
that only encode information about the adjacency and
distances of atoms (vertices) in molecular structures
(graphs), irrespective of the chemical nature of the
atoms involved in bonding or factors such as hybridiza-
tion states and the number of core/valence electrons
in individual atoms. Topochemical indices (TCIs)
are parameters that quantify information regarding
the topology (connectivity of atoms), as well as spe-
cific chemical properties of the atoms comprising a
molecule. These indices are derived from weighted
molecular graphs where each vertex (atom) or edge
(bond) is properly weighted with selected chemical or
physical property information.

The complete set of topological indices used in this
study, both the topostructural and the topochemi-
cal, have been calculated using POLLY 2.3 (Basak,

Harriss, & Magnuson 1988) and software developed

by the authors. These indices include the Wiener in-
dex (Wiener 1947), the connectivity indices developed
by Randic 1975 and higher order connectivity indices
formulated by Kier and Hall 1986, bonding connec-
tivity indices defined by Basak and Magnuson 1988,
a set of information theoretic indices defined on the
distance matrices of simple molecular graphs (Hansch
& Leo 1995), and neighborhood complexity indices of
hydrogen-filled molecular graphs, and Balaban’s 1983
J indices.

2.2 GEOMETRICAL INDICES

The geometrical indices are three-dimensional Wiener
numbers for hydrogen-filled molecular structure,
hydrogen-suppressed molecular structure, and van der
Waals volume. Van der Waals volume, Viy (Bondi

1964), was calculated using Sybyl 6.1 from Tripos As-

sociates, Inc. of St. Louis. The 3-D Wiener numbers
were calculated by Sybyl using an SPL (Sybyl Pro-

gramming Language) program developed in our lab
(SYBYL 1998). Calculation of 3-D Wiener numbers
consists of the sum entries in the upper triangular sub-
matrix of the topographic Euclidean distance matrix
for a molecule. The 3-D coordinates for the atoms
were determined using CONCORD 3.0.1 from Tripos
Associates, Inc. Two variants of the 3-D Wiener num-
ber were calculated: 3°Wy and 3PW. For 3PWy,
hydrogen atoms are included in the computations and
for 3°W hydrogen atoms are excluded from the com-
putations.

2.3 QUANTAM CHEMICAL
PARAMETERS

The following quantum chemical parameters were cal-
culated using the Austin Model version one (AM1)
semi-empirical Hamiltonian: energy of the highest oc-
cupied molecular orbital (Exomo), energy of the sec-
ond highest occupied molecular orbital (Egonro1),
energy of the lowest unoccupied molecular orbital
(ELumo), energy of the second lowest unoccu-
pied molecular orbital (Eryao1), heat of formation
(AHy), and dipole moment (x). These parameters
were calculated using MOPAC 6.00 in the SYBYL in-
terface (Stewart 1990).

3 FILTERING DESCRIPTORS

As stated above, one potential problem with including
all theoretical descriptors in the hierarchy is that it
gives many independent variables when compared to
the limited number of data points available for hazard
assessment modeling of a particular chemical deriva-

tive. Compounding this problem is that a salient de-

scriptor for one hazard assessment model may not be a
salient descriptor for another problem. That is, the rel-
evance of a descriptor for predicting hazard assessment
is often problem dependent. This section describes

" our approach for automatically filtering the descrip-

tors with a GA-based approach to ensemble feature -
detection. Before explaining our algorithm, we briefly
cover the notion of ensembles.

3.1 ENSEMBLES

Figure 1 illustrates the basic framework of a predictor
ensemble. Each predictor in the ensemble (predictor 1
through predictor IV in this case) is first trained using
the training instances. Then, for each example, the
predicted output of each of these predictors (o; in Fig-
ure 1) is combined to produce the output of the ensem-
ble (6 in Figure 1). Many researchers (Breiman 1996;
Hansen & Salamon 1990; Krogh & Vedelsby 1995;




~

0
@o ensemble output

gl

[ combine predictor outputs |
/[T O1 /rr 02 ﬂON
00 00 ©0

[predictor 1]{predictor 2] « [predictor N]|

XX 000 00

1

@ © @ input

Figure 1: A predictor ensemble.

Opitz & Shavlik 1997) have demonstrated the effec-
tiveness of combining schemes that are simply the
weighted average of the predictors (i.e., 6 = Y ;c y wi-
0; and Zie n Wi = 1), and this is the type of ensemble
on which we focus in this article.

Combining the output of several predictors is useful
only if there is disagreement on some inputs. Obvi-
ously, combining several identical predictors produces
no gain. Hansen and Salamon 1990 proved that for an
ensemble, if the average error rate for an example is
less than 50% and the predictors in the ensemble are
independent in the production of their errors, the ex-
pected error for that example can be reduced to zero
as the number of predictors combined goes to infinity;
however, such assumptions rarely hold in practice.

Krogh and Vedelsby 1995 later proved that the ensem-
ble error can be divided into a term measuring the av-
erage generalization error of each individual predictor
and a term called diversity that measures the disagree-
ment among the predictors. Formally, they define the
diversity term, d;, of predictor ¢ on input z to be:

di(z) = [oi(z) — &(2))*. (1)

The quadratic error of predictor 7 and of the ensemble
are, respectively:

ei(z) = [oi(z) — f(2))?, (2)
e(z) = [o(x) — f(x)]%, 3)
where f(z) is the target value for input z. If we de-
fine F, E;, and D; to be the averages, over the input
distribution, of e(z), e(z), and d(x) respectively, then

the ensemble’s generalization error can be shown to
consist of two distinct portions:

A~ - —

E=E-D, ' (4)

where E (= Y, w;E;) is the weighted average of
the individual predictor’s generalization error and D
(= >, wiD;) is the weighted average of the diversity
among these predictors. What the equation shows
then, is that an ideal ensemble consists of highly
correct predictors that disagree as much as possible.
Opitz and Shavlik 1996a; 1996b empirically verified
that such ensembles generalize well.

Regardless of theoretical justifications, methods for
creating ensembles center around producing predic-
tors that disagree on their predictions. Generally,
these methods focus on altering the training pro-
cess in the hope that the resulting predictors will
produce different predictions. For example, neural
network techniques that have been employed include
methods for training with different topologies, differ-
ent initial weights, different parameters, and training
only on a portion of the training set (Alpaydin 1993;
Freund & Schapire 1996; Hansen & Salamon 1990;
Maclin & Shavlik 1995).

Numerous techniques try to generate disagreement
among the classifiers by altering the training set each
classifier sees. The two most popular techniques
are Bagging (Breiman 1996) and Boosting (Freund
& Schapire 1996). Bagging is a bootstrap ensem-
ble method that trains each network in the ensemble
with a different partition of the training set. It gener-
ates each partition by randomly drawing, with replace-
ment, N examples from the training set, where N is
the size of the training set. As with Bagging, Boosting
also chooses a training set of size N and initially sets
the probability of picking each example to be 1/N.
After the first network, however, these probabilities
change to emphasize misclassified instances. A large
number of extensive empirical studies have shown that
these are highly successful methods that nearly always
generalize better than their individual component pre-
dictors (Bauer & Kohavi 1998; Maclin & Opitz 1997;
Quinlan 1996). Neither approach is appropriate for
our domain since we are data poor and cannot afford
to waste training examples; however, we are feature
rich and can afford to create diversity by instead vary-
ing the inputs to the learning algorithms. Varying the
feature subsets to create a diverse set of accurate pre-
dictors is the focus of the next section.

3.2 THE GEFS ALGORITHM

The goal of our algorithm is to find a set of feature
subsets that creates an ensemble of classifiers (neural
networks in this study) that maximize equation 1 while
minimizing equation 2. The space of candidate sets is
enormous and thus is particularly well suited for ge-



Table 1: The GEFS algorithm.

GOAL: Find a set of input subsets to create an accu-
rate and diverse classifier ensemble.

1. Using varying inputs, create and train the initial
population of classifiers.

2. Until a stopping criterion is reached:

(a) Use genetic operators to create new networks.
(b) Measure the diversity of each network with
respect to the current population.

(c) Normalize the accuracy scores and the diver-
sity scores of the individual networks.

(d) Calculate fitness of each population member.

(e) Prune the population to the N fittest net-
works.

(f) Adjust A.
(g) The current population is the ensemble.

netic algorithms. Table 1 summarizes our recent algo-
rithm (Opitz 1999) called GEFS (for Genetic Ensemble
Feature Selection) that uses GAs to generate a set of
classifiers that are accurate and diverse in their predic-
tions. GEFS starts by creating and training its initial
population of networks. The representation of each in-
dividual of our population is simply a dynamic length
string of integers, where each integer indexes a partic-
ular feature. We create networks from these strings
by first having the input nodes match the string of
integers, then creating a standard single-hidden-layer,
fully connected neural network. Our algorithm then
creates new networks by using the genetic operators
of crossover and mutation.

GEFS trains these new individuals using backpropoga-
tion. It adds new networks to the population and
then scores each population member with respect to
its prediction accuracy and diversity. GEFS normalizes
these scores, then defines the fitness of each population
member (i) to be:

Fitness; = Accuracy; + X Diversity; (5)

where A defines the tradeoff between accuracy and di-
versity. Finally, GEFS prunes the population to the N
most-fit members, then repeats this process. At every
point in time, the current ensemble consists of sim-
ply averaging (with equal weight) the predictions of
the output of each member of the current population.
Thus as the population evolves, so does the ensemble.

We define accuracy to be network i’s training-set accu-

racy. (One may use a validation-set if there are enough
training instances.) We define diversity to be the av-
erage difference between the prediction of our compo-
nent classifier and the ensemble. We then separately
normalize both terms so that the values range from
0 to 1. Normalizing both terms allows A to have the
same meaning across domains.

It is not always clear at what value one should set A;
therefore, we automatically adjust A based on the dis-
crete derivatives of the ensemble error E, the average
population error E, and the average diversity D within
the ensemble. First, we never change A if E is decreas-
ing; otherwise we (a) increase A if E is not increasing
and the population diversity D is decreasing; or (b)
decrease ) if E is increasing and D is not decreasing.
We started A at 1.0 for the experiments in this article.
The amount A changes is 10% of its current value.

We create the initial population by randomly choosing
the number of features to include in each feature sub-
set. For classifier %, the size of each feature subset (NV;)
is independently chosen from a uniform distribution
between 1 and twice the number of original features
in the dataset. We then randomly pick, with replace-
ment, N; features to include in classifier i’s training
set. Note that some features may be picked multiple
times while others may not be picked at all; replicat-
ing inputs for a neural network may give the network
a better chance to utilize that feature during training.
Also, replicating a feature in a genome encoding allows
that feature to better survive to future generations.

Our crossover operator uses dynamic-length, uniform
crossover. In this case, we chose the feature subsets of
two individuals in the current population proportional
to fitness. Each feature in both parent’s subset is in-
dependently considered and randomly placed in the
feature set of one of the two children. Thus it is pos-
sible to have a feature set that is larger (or smaller)
than the largest (or smallest) of either parent’s fea-
ture subset. Our mutation operator works much like
traditional genetic algorithms; we randomly replace a
small percentage of a parent’s feature subset with new
features. With both operators, the network is trained
from scratch using the new feature subset; thus no in-
ternal structure of the parents are saved during the
Crossover.

4 RESULTS

We tested the utility of combining our approach for
generating numerous hierarchical theoretical descrip-
tors of compounds with our approach for filtering
these descriptors with GEFS by modeling the acute




aquatic toxicity (LCsg) of a congeneric set of 69 ben-
zene derivatives. The data was taken from the work
of Hall, Kier and Phipps 1984 where acute aquatic
toxicity was measured in fathead minnow (Pimephales
promelas). Their data was compiled from eight other
sources, as well as some original work which was con-
ducted at the U.S. Environmental Protection Agency
(USEPA) Environmental Research Laboratory in Du-
luth, Minnesota. This set of chemicals was composed
of benzene and 68 substituted benzene derivatives.

Table 2 gives our, results. We studied three approaches
for modeling toxicity: (1) giving all theoretical descrip-
tors to a neural network, (2) reducing the feature set
in a traditional previously published (Gute & Basak
1997) manner, and (3) using our new genetic algorithm
technique on the entire feature set to create a neu-
ral network ensemble. Results for our approaches are
from leave-one-out experiments (i.e., 69 training/test
set partitions). Leave-one-out works by leaving one
data point out of the training set and giving the re-
maining instances (68 in this case).to the learning algo-
rithms for training. (It is worth noting that each mem-
ber of the ensemble sees the same 68 training instances
for each training/test set partition and thus ensembles
have no unfair advantage over other learners.) This
process is repeated 69 times so that each example is
a part of the test set once and only once. Leave-one-
out tests generalization accuracy of a learner, whereas
training set accuracy tests only the learner’s ability to
memorize. Generalization error from the test set is the
true test of accuracy and is what we report here.

We first trained neural networks using all 95 param-
eters. The networks contained 15 hidden units and
we trained the networks for 1000 epochs. We normal-
ized each input parameter to a values between 0 and 1
before training. Additional parameter settings for the
neural networks included a learning rate of 0.05, 2 mo-
mentum term of 0.1, and weights initialized randomly
between -0.25 and 0.25. With all 95 input parameters,
the neural networks obtained a test-set correlation co-
efficient between predicted toxicity and measured toxi-
city (explained variance) of R? = 0.868 and a standard
error of 0.29. Target toxicity measurements ranged
from 3.04 to 6.37.

Our first method for feature-set reduction follows the
work of Gute and Basak 1997 on toxicity domains.
Their method begins by using the VARCLUS method
of SAS 1998 to select subsets of topostructural and
topochemical parameters for QSAR model develop-
ment. With this method, the set of topological in-
dices is first partitioned into two distinct sets, the
topostructural indices and the topochemical indices.

Table 2: Relative effectiveness of statistical and neural
network methods in estimating LCsg of G9 benzene
derivatives. ’

Method R? Standard Error
NN with 95 inputs 0.868 0.29
VARCLUS 0.825 0.32
NN with GEFs 0.893 0.27

To further reduce the number of independent variables
for model construction, the sets of topostructural and
topochemical indices were further divided into subsets,
or clusters, based on the correlation matrix using the
VARCLUS procedure. This procedure divides the set
of indices into disjoint clusters, such that each clus-
ter is essentially unidimensional. From each cluster
we selected the index most correlated with the clus-
ter, as well as any indices which were poorly corre-
lated with their cluster (R? < 0.70). The variable
clustering and selection of indices was performed inde-
pendently for both the topostructural and topochem-
ical indices. This procedure resulted in a set of five
topostructural indices and a set of nine topochemical
indices. These indices were combined with the three
geometric and six quantum chemical parameters de-
scribed earlier. Their approach then applied linear re-
gression to these 23 parameters. This study found that
an accurate linear regression model for acute aquatic
toxicity required descriptors from all four levels of the
hierarchy: topostructural, topochemical, geometrical
and quantum chemical. This model utilized seven de-
scriptors and obtained an explained variance (R?) of
0.863 and a standard error of 0.30 on the whole data
set used as a training set. Our leave-one-out experi-
ment gave an R? = 0.825 and a standard error of 0.32.

Finally we applied our genetic algorithm technique,
GEFS, using all 95 parameters. The parameter set-
tings for the networks in the ensemble were the same as
the settings for the single networks in the first exper-
iment. Parameter settings for the genetic algorithm
portion of GEFS includes a mutation rate of 50%, a
population size of 20, a A = 1.0, and a search length
of 100 networks (20 networks for the initial population
and 80 networks created from crossover and mutation).
While the mutation rate may seem high as compared
with traditional genetic algorithms, certain aspects of
our approach call for a higher mutation rate (such as
the criterion of generating a population that cooper-
ates as well as our emphasis on diversity); other muta-
tion values were tried during our pilot studies. With
this approach, we obtained a test-set correlation coef-
ficient of R? = 0.893 and a standard error of 0.27; the
initial population of 20 networks obtained a test-set



R? = 0.835 and a standard error of 0.31.

5 DISCUSSION AND FUTURE
WORK

The correlation coefficient between the predicted value
from the computational model and the target value
derived from the toxicity test is an extremely informa-
tive metric of accuracy in this case. The exact numeric
value of most toxicity tests is not as important as the
relative ordering and spread of these values. Thus,
a perfect correlation (R? = 1.0) between the compu-
tation model and target toxicity shows the computa-
tional model is as informative as the toxicity obtained
from a battery of expensive and time-consuming tests
— regardless of the standard error. Note the standard
error of 0.27 is fairly good, given the toxicity measure-
ments ranged from 3.04 to 6.37.

While the neural network technique and the standard
data-reduction technique obtained decent correlation
with measured toxicity, our ensemble technique was
about 20% closer to perfect correlation. Note that
GEFs produces an accurate initial population and that
running GEFS longer with our genetic operators can
further increase performance. Thus our approach can
be viewed as an “anytime” learning algorithm. Such
a learning algorithm should produce a good concept
quickly, then continue to search concept space, report-
ing the new “best” concept whenever one is found
(Opitz & Shavlik 1997). This is important since, for
most hazard assessment, an expert is willing to wait
for days, or even weeks, if a learning system can pro-
duce an improved model for predicting toxicity.

Our results demonstrate a very important point: that
our method is able to accurately predict toxicity di-
rectly from structure. Compared to the actual bat-
tery of tests necessary to measure toxicity, a computer
model is much cheaper, much faster, and does not have
a negative impact on the environment. It is important
to also note that the computer model does not have to
be the final measurement for hazard assessment; addi-
tional tests can be run on compounds that are either
flagged by the model, or require more tests by the na-
ture of their use (such as a benzene derivative that may
become a standard fuel). Not only can good computer
models become filters, they will probably be the only
viable option for processing all registered chemicals.

While the method proposed here has proven effective,
there is much future work that needs to be completed.
For instance, we plan to test our method on other data
sets of chemical derivatives; investigate other ensemble
feature selection techniques; investigate variants to our

genetic algorithm approach, and finally investigate the
utility of other descriptors, such as bio-descriptors.

6 CONCLUSIONS

In this paper we presented a novel approach for cre-
ating a computer model for hazard assessment. Our
approach works by first extracting a hierarchy of theo-
retical descriptors derived from the structure of a com-
pound, then filtering the numerous possible descriptors
with a genetic algorithm approach to ensemble fea-
ture selection. We tested the utility of our approach
by modeling the acute aquatic toxicity (LCsg) of a
congeneric set of 69 benzene derivatives. Our results
demonstrate the ability of our approach to accurately
predict toxicity directly from structure. Thus our new
algorithm further increases the applicability of com-
puter models to the problem of predicting chemical
activity directly from its structure.

Acknowledgements

This work was partially supported by National Science
Foundation grant IRI-9734419, a University of Mon-
tana MONTS grant, U.S. Air Force grant F49620-96-
1-0330, and is contribution number 246 for the Center
for Water and the Environment of the Natural Re-
sources Research Institute.

References

Alpaydin, E. 1993. Multiple networks for function
learning. In Proceedings of the 1993 IEEE Interna-
tional Conference on Neural Networks, volume I, 27—
32. San Fransisco: IEEE Press.

Balaban, A. 1983. Topological indices based on topo-
logical distances in molecular graphs. Pure and Appl.
Chem. 55:199-206.

Basak, S., and Grunwald, G. 1995. Estimation
of lipophilicity from molecular structural similarity.
New Journal of Chemistry 19:231-237.

Basak, S., and Magnuson, V. 1988. Determin-
ing structural similarity of chemicals using graph-
theoretic indices. Discrete Appl. Math. 19:17-44.

Basak, S.; Harriss, D.; and Magnuson, V. 1988. Polly
2.3. Copyright of the University of Minnesota.

Bauer, E., and Kohavi, R. 1998. An empirical com-
parison of voting classification algorithms: Bagging,
boosting, and variants. Machine Learning.

Bondi, A. 1964. Van der waals volumes and radii. J.
Phys. Chem. 68:441-451.




Breiman, L. 1996. Bagging predictors. AMachine

Learning 24(2):123-140.

CAS. 1999. The latest cas registry num-
ber and substance count. http://www.cas.org/cgi-
bin/regreport.pl.

Cramer, C.; Famini, G.; and Lowrey, A. 1993. Use of
calculated quantum chemical properties as surrogates
for solvatochromic parameters in structure-activity
relationships. Acc. Chemical Research 26:599-605.

de Waterbeemd, H. V. 1995. Discriminant analysis
for activity prédiction. In Chemometric Methods in
Molecular Design, 283-294. VCH Publishers, Inc.

Dearden, J. "1990. Physico-chemical descriptors.
In Environmental Chemistry and Tozicology, 25-59.
Kluwer Academic Publisher.

Freund, Y., and Schapire, R. 1996. Experiments
with a new boosting algorithm. In Proceedings of
the Thirteenth International Conference on Machine
Learning, 148-156. Morgan Kaufmann.

Gute, B., and Basak, S. 1997. Predicting acute
toxicity (LC50) of benzen derivatives using theoret-
ical molecular descripors: A hierarchical QSAR ap-
proach. SAR and QSAR in Environmental Research
7:117-131.

Gute, B.; Grunwald, G.; and Basak, S. In press. Pre-
diction of the dermal penetration of polycyclic aro-
matic hydrocarbons (PAHs): A hierarchical QSAR
approach. In SAR and QSAR in Environmental Re-
search.

Hall, L.; Kier, L.; and Phipps, G. 1984. Structure-
activity relationship studies on the toxicities of ben-
zene derivatives: 1. an additivity model. FEnviron.
Tozicol. Chem. 3:355-365.

Hansch, C., and Leo, A. 1995. Exploring QSAR: Fun-
damentals and applications in chemistry and biology.
American Chemical Society 557.

Hansch, C. 1976. On the structure of medicinal chem-
istry. Journal of Medicinal Chemistry 19:1-6.

Hansen, L., and Salamon, P. 1990. Neural network
ensembles. IEEE Transactions on Pattern Analysis
and Machine Intelligence 12:993-1001.

Johnson, J. 1998. Pact triggers tests: Thousands
of chemicals may be tested under toxicity screening
program. Chemical Engineering News 76(44):19-20.

Kier, L., and Hall, L. 1986. Molecular Connectivity in
Structure-Activity Analysis. Hertfordshire, UK: Re-
search Studies Press.

Krogh, A., and Vedelsby, J. 1995. Neural net-
work ensembles, cross validation, and active learning.

In Tesauro, G.; Touretzky, D.; and Leen, T., eds.,
Advances in Neural Information Processing Systems,
volume 7, 231-238. Cambridge, MA: MIT Press.

Maclin, R., and Opitz, D. 1997. An empirical evalu-
ation of bagging and boosting. In Proceedings of the
Fourteenth National Conference on Artificial Intelli-
gence, 546-551. Providence, RI: AAAI/MIT Press.

Maclin, R., and Shavlik, J. 1995. Combining the
predictions of multiple classifiers: Using competitive
learning to initialize neural networks. In Proceedings
of the Fourteenth International Joint Conference on
Artificial Intelligence.

Menzel, D. 1995. Extrapolating the future: research
trends in modeling. Tozicology Letters 79:299-303.

Opitz, D., and Shavlik, J. 1996a. Actively searching
for an effective neural-network ensemble. Connection
Science 8(3/4):337-353.

Opitz, D., and Shavlik, J. 1996b. Generating accurate
and diverse members of a neural-network ensemble.
In Touretsky, D.; Mozer, M.; and Hasselmo, M., eds.,

Advances in Neural Information Processing Systems,
volume 8. Cambridge, MA: MIT Press.

Opitz, D., and Shavlik, J. 1997. Connectionist theory
refinement: Searching for good network topologies.
Journal of Artificial Intelligence Research 6:177-209.

Opitz, D. 1999. Feature selection for ensembles. In
Proceedings of the Sizteenth National Conference on
Artificial Intelligence.

Quinlan, J. R. 1996. Bagging, boosting, and c4.5. In
Proceedings of the Thirteenth National Conference on
Artificial Intelligence, 725-730. AAAI/MIT Press.

Randic, M. 1975. On characterization of molecu-
lar branching. Journal of American Chemical Society
97:6609-6615.

SAS. 1998. Cary, NC: SAS Institute Inc. chapter
SAS/STAT User’s Guide, Release 6.03 Edition.

Shapire, R.; Freund, Y.; Bartlett, P.; and Lee, W.
1997. Boosting the margin: A new explanation for
the effectiveness of voting methods. In Proceedings of
the Fourteenth International Conference on Machine
Learning, 322-330. Nashville, TN: Morgan Kauf-
mann.

Stewart, J. 1990. Mopac version 6.00. qcpe #455.
US Air Force Academy, CO: Frank J. Seiler Research
Laboratory.

SYBYL. 1998. Sybyl version 6.1. Tripos Associates,
Inc.

Wiener, H. 1947. Structural determination of paraffin
boiling points. Journal of Am. Chem. Soc. 69:17-20.



APPENDIX 1.4

Information theoretic indices of neighborhood
complexity and their applications
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Table | Correlation coefficients of variables with the principal components (only the 10 most highly correlated are listed)
PCl PC2 PC3 PC4 PCs PC6 PC1 PC8 PCY PCI0
K, 0959 SIC; 0973 *x2 0.694 *xcy 0.848 ®xcpy —0465 1C; 0,501 Xt 0538 Ky -0319 xpe 0292 IC, 0.282
x 0954 CIC, —0955 x2 0.693 ‘x@, 0844 °x&, —0457 SIC, 0424 x& 0494 S —0311 ®xpc 0.285 e 0282
x 0954 CIC; —0.952 Sxp 0.683 “x&y 0795 X%, 0437 S, —0374 %% —0480 X% -0309 *xac 0282 % 0272
K; 0953 SIC, 0947 “xc 0.680 *xcu 0.751 k&, 0406 O -0349 xc —0434 Ky —0301 *yc 0273 e -0233
Ko 0949 SIC; 0940 ’x¢ 0.668 °x¥y 0.751 xcu 0406 SIC, 0334 %2 —0391 ’xcu 0289 Ko 0268 K, —0232
'x 0942 CICs —0940 *xc 0.644 2, 0.740 %,  0.391 X2 0318 Sx¢ —0343 5%, 0287 K, 0264 Kz -0.230
x® 0938 CICs —0922 Sxc 0637 x%y 0718 X2 0316 Xew 0314 %Y 0304 Syt —0281 SIC, 0249 'yx'  0.224
‘x 0935 SICs 0915 *xc 0612 xcu 0.707 Sx&y —0311 3xcy 0314 ¢ 0274 3x% 0277 Sxcn 0239 SIC, 0.222
“x® 0934 SICs  0.887 ®2 0.602 SxY%, 0.672 & 0304 R, 0314 42 0232 Sy —0243 IC, 0235 %' 0218
°x 0934 CIC; -03869 XL 0.600 k2, 0472 Sxc 0310 CIC, 0312 %2 0210 K; -0228 Ky 0228 ¢ 0212
A I T A n ke, T . i o - N Y. —
-0
g8
o B
=0
G
&8
25
v
n g o
2 S
3 o ©
® » \—0 - — o <
&~ - - = 9] ) .
5 ® 3 ® -
- = IR &
= e} (e
3 —3 —3 o
4 =) =) =
s - < Al 9
oa | —- g
= T w Y- =
A I II o0 oe
@ (= o | <
o o + o — @
b N X o =S 5
g N a & %
3 © = Q 5 g
z . o - o o o 3
a ~ o] » o o 0 S
o \ w w =4 e
a. w [\ &’. Q
' s 3
w )
=
s <
¢ g
— = <’
= b & 3



TAST, LN

‘(panunuod) 4 24ndiy
‘(panunuon) ¢ a4ndiy T9 %]
U6 16 M
. —.m
78 I8 4
i
!
w
:
?
i
| :
TTL 1L
Ty rey
TIL rre
Ty Uy

o3 T e

LLS  Sanpul Anxadwo) pooyioqySiaN YdSO puv Yy SO ul S103diuasa(q paiojay puv saoipuf jpaidojodo] 9/¢

¥




uoissaiga1 Sulmol[oj YL ‘JA 9[qeL ul usAIf sie suafeinw us3yj1y ay3 1oj
s1ajoweled O jo sanjea oY) pue AyvIUsFeInu Y3 10§ BIRP AYJ, 'sao1put 1D
pue 03] Juisn soutwesonu | jo dnois e jo {1591 sawy SY3 ul [esrwayd
31 jo sjowouru Jod siuelILaAdl Jo J9qunu Ay} Sureq y) ¥ u ‘Aousjod
owedeInw oY) paje[a11od [L€] /v 12 Yeseg ‘susSenuwr pue susgouroled
Sle way} Jo AUBW SB S[BOIWAYO JO SSepd jueirodwlr ue ore SSUIUIBSOI}IN "(panupuo)) ¢ @an3iy

sauruEsonIN Jo Ayouageiny|

7201 rzor:
“(panunuo))  a4ndiy , .
Tt e . :
W 1ol r'rot

o '
440 I'vo1

€6 g6
01 'eot

7T6

e
Neol¥e oy

YdSO puv Yy SO ut s401d11a5aq paivjay puv sanpu [pordojodoy  8/§

6§ $ao1puy Lnxaduio) pooyiogySian




("y) Auyye Surpuiq ay3 218[91109 PInOd M I3Y1OYM 935S 0) 1s2193Ul JO Sem
11708 "durIqUIdW oY) Aq [B21WAYD Y] Jo Juipuiq ay) st ssovod o:.on_:o:_
Y1 ut days jeniur sy, ‘sonjorqousx pue sSnip jo wsijoqelew o& ut sjo1
uepodw ue Aejd sswifzus [ewosoIo oneday ‘sSnip jo Em:on.SoE
oY} UL PIAJOAUT ST UOIym OSWIAZUS [BUIOSOIONW B SI 05t QWOIY2034)
057g awoiyd03£) 03 sejenmyiqaeg jo Suipuig

1000 >d

10000 > d

‘980 =
L10Dp8°¢ + ("D1)0€°ST — 0021 = ¥ u|

‘LIl =s
(901)07°62 + (°D1)08°98 — 00°19 = ¥ u|

860=4 ‘Sl=u

960=4 ‘Sl=u

“19s v1®p siy) uo padojaaap a1am suorjenba

‘By/sjoww se passaidxy,

059t SO0V 9988y TIS9E  60'F  LOTE Ob'pIl  2u03dy [Auou-u [Kyjop
L3P 098'C 06L'SY TLE'EE  €L°€  66'S1  6L°0S  2uolay [K190-u [Ayjop

, . ElHOEN|
9¢1°E 00L°C T6L'9Y 810'1€  T6'T  06'€C 08'€E 1&xaydyiow-¢ Ayl
90t°¢ 00L°C 8€0'Tr 810'IE  ¥I'€ 659 6195 ouoley [Kidey-u [Ayjop
POI't 0TS°C L8Y'8E 960'8T  LET  8E'TI TS'6Z U0 [AXSY-u [Ayjop
0£L°C 91L’ 0S0°'8€ €S1°ST 88’1 6601 97T  ouolay [Kweost AR
LLBTOIE'E vO8'PE €S1°ST  €0T  6€°01 801z  ouoloy [Awe-u [Ayjop
PISTC 080°¢ 9€6'CE 181°CT 1€ SL'61 99'97  2u01dy [KInqosT [Aylapy
0C9°C 080°¢ 9€6°0¢ 181°TC 611 LI'91 9THT  Qu0ldy |AIng-u [Ayiop
LLE'T CO8'T 9TO9T 1L1°61  9S°0  86'9T 98'67 ouoiay [Kdoidost [Ayiopy
9CLT CO8T I8L'9T 1L1°61  8L°0  €1'€C  09'ST  duolay [Adod-u [Kyjopy
000°T T9Y'T 801°TT 901'91 920  98°SH 91'9S au01ay [Ay1a [Ayepy
[SL'1 9T0T OIL'SI SS6'TI 870~ SEEL «6£06, 2U030Y

a7 a7
D10 %010 'DIL %D1L  d8ol DD joiuon punodwo)
SSuolaouow 4oy sadiput [edtdojodol pue ‘g o] OS] 1’40 Il ®|qeL

18§ saapup dnxapdio) pooysoqydiay

PR PO T S PR Te

§6S°C 121! 860 80¢°9 Ly8'L 08¢°'11 Tl
(444 P81 7£6°0 90¢£'9 Ly8'L 08¢°11 1T
8EY'C P8¢l €60 8LE9 0€8°L 03€°11 AN
685°C $8¢°1 7860 859 608°L 08¢°11 I'I'11
09L°C 6Tl £96°0 916°L 0£8°8 SesTl b0l
$99°C Yo £96'0 1EP'L L¥8'8 SesTl I'v°01
6CLT 6Tl £v6°0 Iyl LY8'8 1334 g0l
09L°C 6Ll £6°0 13444 LY8'8 SesTl 1'€°01
$9L°C £8p°1 £96°0 8Y'L SI18'8 88S°CI Tol
12 €811 £v6°0 81¢°L $08°'8 88S°TI 1'C°01
6TL'T 6Ct’l £96°0 P6S°L 608'8 SesTl ol
$99°C (Y48 £96°0 1€v'L LY8'8 SeeCl 1'1°01
$L6C 8St'1 ££6°0 $00°9 pLTL 9¢8°01 L6
$98°C 8St’l ££6°0 1$0°9 PLTL 9¢8°01 1°¢°6
8C6'C 8St’1 ££6°0 619 9¢T'L 9¢8°01 TT6
876'C 8SY'1 £€6°0 9119 8ST'L 9¢8°01 1’76
$88°C L1§°1 £€6°0 £61°9 0tT’L 688°01 [N
8L6°C LIS'] £€6°0 PEL9 [AXAYS 688°01 "6
§66°C 69’1 8€6°0 819'% 9Te’s SP8'L [
08¢ 69%°1 8¢6°0 8C9°Y T4 SP8L '8
9¢8'C LSY'] 960 9689 608°L- ITI°11 <L
9¢8°C LSY'1 9960 9689 608°L 12111 1'T'L
86'C LSY'1 9%6'0 8069 608°L IZI°11 L
PoL'C LSY'1 9%6°0 9069 608°L [Y40RN| 'L
§95°C 17U 81670 9LV 1e9 89°6 79
68L'C 10 816°0 968'% 16T°9 7896 I'9
LILT 8Iv'l 8160 SLSY PLL'S SL6'8 [
L08'C 8Iv'l 816°0 13284 €SL'S SL6'S I's
$89°C L'l y£6'0 92s'S $98°9 996'6 Ty
$89°C LYl pe6°0 9Ts’sS $98°9 9966 'ty
SIL'T LYl $€6°0 689°S 9789 996°6 [ 4
P8L'T L1Y'] $£6°0 019°S P89 9966 'y
$99°C 123901 €60 96t'9 9C8’L 08¢11 [
9TL'T 1239 £6'0 81¢9 Ly8'L 08¢11 1'¢
8T8'C 8yl 816°0 708v 16L°S SL6'8 44
§L9°T 8yl 816°0 yev'y TI8'S SL6'8 1T
10L°C 89¢°1 868°0 I8¢ ovT's 0698 [
$99°C 89¢'1 8680 658°¢ 61TS 069°8 'l
QI bo) o1 X, X, X, ydoin
(# 24n314) syde.d [ea3dadsosi gg 10j sedipul [B2130]0d0] paId3RS || 3qeL



SD
7.34 0.94 6.70 34.82
0.28 095 6.10 43.12

A+ BX+CX?

0.13 097 4.68 76.61
35.10 097 4.76 74.05

—239.00 40.70 0.96 5.54 53.27

—34.00
—15.00
-9.85
—235.00

LDsg (CCly)

50.50
216.00

195.00
407.00
364.00

14.25

R S S AN ¥ g

, SD the standard deviation, and F the F-ratio between the variances

11.04 35.94
9.13 54.87

0.25 0.86 16.10

74.80 0.91

12.99 24.57
9.62 48.88

A+ BX + CX?
0.54 0.96

1430 0.94
83.50 0.95

-49.70

-26.40

-16.30
—457.00
—448.00

Table IV Parabolic correlation of LDy, values with log P and four topological indices
LDsy (Control)

62.20

340.00
288.00
718.00
620.00

*For each equation, r is the correlation coefficient
of observed and calculated values.

Independent
Variable (X)
log P

TIC,

TIC,

CIC,

CIC,

Neighborhood Complexity Indices 583

TableV - Aquatic toxicity and information indices for aliphatic alcohols

Name log LCs* CIC, 1C,
Methanol . —0.06 0.79 1.25
Ethanol b 20051 1.29 1.22
2-Propanol . -0.80 1.80 1.19
I-Butanol —1.63 2.04 1.16
I-Hexanol - 3.02 2.67 1.12
1-Octanol -4.00 3.15 1.09
1-Nonanol —-4.40 3.35 1.07
1-Decanol —4.84 3.52 1.06
1-Undecanol -522 3.68 1.06
1-Dodecanol -5.27 3.83 1.05

*Expressed as mole/litre.

Table VI Mutagenicity and topological parameters for nitrosamines

No. Compound In R 1Cy IC,
1 Dipropyl-N-nitrosamine —2.53 " 1444 1,945
2°  Dibutyl-N-nitrosamine ~1.90 1.373 1.856
3 Dipentyl-N-nitrosamine —-3.00 1.320 1.769
4 N-Nitrosopyrrolidine -390 1.640 2.040
5 N-Nitrosomorpholine ~281 1.750 2.250
6  N-Nitrosopiperidine —-4.60 1.568 1.949
7 N-Methyl-N-nitroso-N'-nitroguanidine 7.23  2.108 3.578
8 N-Ethyl-N-nitroso-N'-nitroguanidine 586 2.063 3.532
9 N-Propyl-N-nitroso-N'-nitroguanidine 3.69 2006 3.475

10 N-Butyl-N-nitroso-N'-nitroguanidine 389 1.948 3.343

Il N-Isobutyl-N-nitroso-N'-nitroguanidine 434 1948 3.343

12 N-Pentyl-N-nitroso-N’ -nitroguanidine 3.09 1.894 3.207

13 N-Hexyl-N-nitroso-N'-nitroguanidine 1.67 1.844 3.080

14 N-Nitrosomethylurea 1.48 1.888 3.022

15 N-Nitrosoethylurea . 0.10 1.830 3.000

“Natural logarithm of revertants per nanomole, determined by the Ames’
mutagenicity assay.
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L NRESIRERIRR]IZRS Table IX  Correlation of ADs, with log P and topological indices for barbitu-
= |- fTFUFH e ATTTO NN rates (Figure 5) (ADsp = a + bx + ¢x?)
@ N 00 00 00 0 0O <+ — o T O
5 || 38¥IREIE3IRgE X . ; c . 7 s F
u o
hvg MEOTNTOLER VDS TIC, —0.139 0.660E—1 0 13 085 020 29.38
R B v i R v Rl -18.50  0.833  —0.796E-2 13 097 0.10 80.02
5 TIC; 0.522E—1 0.355E-1 0 13 090 0.16 4649
£ — D~ :
T |2o|ESFIRE822809 @ —1210 0330 -0.177E-2 13 099 0.06 196.98
3 —NANNn ~ = NN CIC, -1.03 1.26 0 13 086 0.19 32.25
k- N ——FwoLoARTO -27.80 18.00 -2.60 13097 0.10 69.67
r 2RARALTSEANERSE w 1.84  0.342E-2 0 13 082 021 23.00
g -1.37 0.220E—-1 -0.256E-4 13 097 0.10 74.42
o O e —_— O O VW
BRIELERELRELERERS: an i 1.99 0.450E-3 0 13082 022 2201
n O]l
3 w -0.530  0.266E-2 -0.453E-6 13 097 0.10 75.14
R EEER R EREELE T eem siwc o b oom o 2%
v} 1.1201.9576328.m9..99 - . . . -2. . . .
g |S|reeeabEe® Y ~0.584  0.513 0 13090 0.6 48.02
.m SIS EKER2Z 23 -17.20 5.28 -0.340 13098 0.08 131.38
IR Rl g 'x¥ 0.757 0.474 0 13 085 020 27.73
g - ~8.74 4.46 -0.412 13 096 010 67.12
E |B]8L8a228283e2] logP  2.44 0.498 0 13 085 020 29.13
£ |2~ ——doo—~o—~—a— : 1.93 1.58 —-0.438 13 097 0.10 7640
S (8323229538958
< ADn e e R R s K R ie Kas Has BasWas)
9 small databases of congeneric chemicals like hydrocarbons as well as
S ..m., lm, .W N. diverse and the largest set of chemicals analyzed by us (n > 40,000). So, one
.m er88 can say that the higher order neighborhood indices encode structural
e pm. Dm. nm m EEEETE TS information not quantified by any other class of Tls. . o
e ol L LA e 8888 m m m m Another important property of any structural descriptor is its
3 « << lnv.,.w,,.m,lw,,m, XL L X discriminatory power. We tested this aspect of IC, SIC, and CIC indices
g 1€ m ‘m m ..m m m m .m m m m m using a set of nineteen pairs of isospectral graphs. A comparison of
z W =2332233322222 connectivity indices and our information theoretic indices shows that the
W R R R R R R R R e higher order information indices and connectivity indices have reasonably
i = good ability of discriminating the set of thirty eight graphs [1]. In some
- | 2= .Wl .w,.m..w,lw.l lv..m = m cases, e.g., graphs 10.3.1 and 10.3.2, the values of the % index are almost
S |N|TEZTBTo=3E o m S identical whereas the IC; index is slightly more discriminating (Table IT).
WM ZHa<aZaa<alca One practical use of Tls is in the development of QSAR models for
E Sl-amsvworwoag—an predictive toxicology and pharmacology. In this chapter we have reviewed

the results of our QSPR/QSAR studies of various congeneric sets of
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1687 6.36 6.44 4.61

326 2139 6.56 6.94 4.72
295 220 1351 6.14 6.06 4.23

3.35 346 2262 6.54 7.06 5.23
3.20 458 3169 6.92 8.10 5.33
3.07 338 2215 6.55 7.06 4.45

3.16 265

3.21

85.29
78.40
76.07

79.52

1.15 47.60 85.10
0.65 4232 68.12

1.65 49.60
1.42  48.08
1.05 45.38
0.95 46.01

2.40
2.02
2.01
1.79
1.79
1.49

Isopropyl

Butyl
Phenyl
Allyl
Isopropyl
Ethyl

Ethyl
Ethyl
20  Allyl
Allyl
Ethyl
Ethyl

18
19
21
22
23
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Table XI Correlation of log (1/C) with log P and topological indices for bar-
biturates (Figure 5) log (1/C) = a -+ bx + cx?

X a . b c n R Ky F
TIC, -2.93 0.107 0 23 0.83 033 4825
-9.22 0.350  -0.232E-2 23 0.84 033 24.68
TIC, -181  0.498E-] 0 23 077 039 29.66
—5.28 0.130  —0452E-3 23 0.77 040 14.50
CIC, —4.82 2.17 0 23 083 034 47.63
—14.70 7.94 -0.841 23 084 034 2384
w 1.30  0.302E-1 0 23 0.65 046 15.75
+ —0.803  0.124E-1 -0978E-5 23 0.73 043 |].23
1y 1.47  0.383E-3 0 23 065 046 1520
—-0.262  0.151E-2 0.168E-6 23 0.72 043 11.06
A -7.25 1.45 0 23 0.68 044 18.56
-51.60 14.60 -0.970 23 071 044 9.93
'x —-1.13 0.489 0 23 0.66 046 15.86
-12.80 3.53 —-0.196 23 0.71 044 10.08
' -1.30 0.710 0 23 0.80 0.36 37.21
-4.92 2.03 -0.119 23 081 036 19.07
log P 1.46 0.646 0 23 0.78 038 31.69
A 1.18 0977  —0.864E—1 23 0.78 039 15.57

chemicals. It is clear that the neighborhood indices were able to predict
biochemical, pharmacological, and toxicological properties of various
congeneric sets of chemicals. We also used neighborhood complexity
parameters in hierarchical QSAR analysis. The goal of hierarchical
analysis is to use non-redundant and progressively more complex
parameters in the development of QSAR modecls. Topostructural, topo-
chemical, geometrical as well as semiempirical quantum chemical indices
were used in such studies. The result of such QSAR studies showed that
information theoretic indices encode structural information not quantified
by other TIs and such indices are useful in the development of models for
the prediction of different physicochemical, biomedicinal, and toxicolo-
gical propertics of molecules (41-44).

In conclusion, the neighborhood complexity parameters developed
by us contain some unique structural information not coded by other
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APPENDIX 1.5

Normal boiling points of 1,w-alkanedinitriles: The
highest increment in a homologous series
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The normal boiling point for cyanogen is —22 °C; for its next homologue, malononitrile, it is 219 °C. The
difference,of 241 °C is apparently the highest one encountered for the addition of a single methylene group.
Problems connected with boiling points and a rationalization for this observation are discussed in the context
of intermolecular forces for liquids. A quantitative structure—property relationship (QSPR) study of the
normal bailing points for monohaloalkanes and for the corresponding nitriles is reported. The behavior of
the nitrile group as a pseudohalogen is also discussed. Normal boiling points of compounds having a cyano
group bonded to an electron-attracting substituent situate the CN group close to being a pseudohalogen, but
when the CN group is bonded to electron-donor substituents, the situation changes.

THE LIQUID STATE AND INTERMOLECULAR
FORCES

Intermolecular forces range from the very weak ones such
as those existing in liquefied noble gases to the strongest
ones (hydrogen bonds) existing in hydrogen fluoride, in
dimers of carboxylic acids (even in vapor state), or in liquids
with multiple hydroxy groups such as glycols or water. The
exceptional features of water (liquid state over a wide
temperature range, expansion on freezing, high dielectric
constant, and excellent solvent for a wide variety of
substances) are responsible for making life possible on earth.
Although ionic or metallic liquids also exist, they will not
be discussed here because they are not molecular liquids.
One should mention the important role of intermolecular
forces and especially of hydrogen bonding in all life
processes, in the transcription/translation processes involving
DNA, in protein folding, receptor-agonist intercations,
enzymatic mechanisms, etc.

‘Whereas intermolecular forces in crystals are compounded
with conformational restrictions due to packing factors,
liquids have molecular and conformational mobility (except
for liquid crystals within certain limits). Liquids are more
difficult to model than gases or solids. However, melting
points of crystalline solids are also difficult to correlate with
chemical structure due to packing factors, except for some
classes of congeneric compounds.

Intermolecular forces are reflected by the following: vapor
pressure versus temperature; boiling points at normal pressure
(normal boiling points, NBPs); critical data; latent heat of
vaporization versus temperature; viscosity; density and molar
volume; optical properties such as the refractive index and
molecular refractivity.

From all these clues, the easiest to measure with sufficient
accuracy, and the most often cited for any compound, is the
boiling point; usually, the NBP is cited, but seldom for

t Permanent address: Department of Organic Chemistry, Polytechnic
University Bucharest, Romania.

compounds that would boil at temperatures above 250 °C at
normal pressure because of decomposition. Many iodine
derivatives decompose on heating even at lower temperatures
because of the low C—I bond energy.

NITRILES AND THEIR NORMAL BOILING POINTS

The strongly electron-attracting nitrile (cyano) group is
known to cause high dipole moments. For example, in the
gas phase the dipole moments (in debye units) are as
follows:!

for Ph—X

for Me—X
X=Cl 187D X=Cl 170D
X =CF; 235D X =CF, 286D
X =NO, 350D X =NO, 421D
X=CN 394D X=CN 439D

The resulting dipole—dipole interactions lead to strong
molecular associations, manifested in higher NBPs, heats of
vaporization, and viscosities than those of the corresponding
hydrocarbons with comparable molecular weights.

Among thermodynamic properties, normal boiling points
have been extensively investigated in quantitative structure—
property relationships (QSPRs). From the molecular descrip-
tors used in such correlations, topological indices have been
among the most successful.2=¢ For alkanes, such QSPR
studies allow nowadays the prediction of NBPs within a
range of 2 or 3 °C.7~? For various other classes of compounds
many QSPR studies are available, and their accuracy range
is often lower than 10 °C.10-15

Nitriles, however, proved to defy simple approaches. Thus,
a recent study by Wessel and Jurs for a diverse set of
industrially important chemicals containing nitrogen with
mean-square-root errors of about 9 °C led to satisfactory
results for mononitriles but to very large errors for two
dinitriles, namely, cyanogen and malononitrile.!> We have
therefore decided to look more closely into this matter. A
comprehensive review on malononitrile is available.!6

10.1021/¢19900074 CCC: $18.00 © 1999 American Chemical Society
Published on Web 09/04/1999
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Table 1. Cyano Group as a Pscudohalogen: NBPs for X—Y or X,
Compounds’

(pseudo)- X—CN X=X

halogen X ~FW  NBP(C) FW NBP(C) FW
F 19 =72 49 —188 38
CN 26 -22 60 -22 60
Cl 35 13 66 ~35 71
Br 80 62 110 56 160
[ 127 184 157 178 254

“ Figures have been rounded off to the nearest integer.

Table 2. NBPs of Cyanotrihalomethanes HalaC—CN and of
Tetrahalomethanes HalyC—X (Hal = F, Cl, Bry

F - Cl Br
X NBP(°C) FW NBP(°C) FW NBP(°C) FW
F —128 -88 25 137 107 271
cl —82 104 77 154 160 287
CN -62 95 84 149 170 278
Br =19 149 104 198 190 332
I ~23 196 141 245

? Figures have been rounded off to the nearest integer.

CYANO GROUP AS A PSEUDOHALOGEN

Groups such as cyano, thiocyano, cyanato, and azido are
considered to be pseudohalogens.'?~!? In this paper we shall
focus only on the cyano group. There are also significant
differences, however, between some compounds of halogens
and pseudohalogens, for instance the fact that hydrogen
cyanide is a much weaker acid (with pK, = 9.2) than
hydrogen halides. Also, the coordinating ability of the
cyanide anion for iron leads to a high toxicity, whereas each
of the halide anions has a different biological significance.
One should also recall that the cyano group is bidentate,
being able to form covalent or coordinative bonds at the
carbon or nitrogen atoms. Thus, the elongated shape of the
cyano group makes it different from the spherical halogens.

It is known that molecular weights have a large influence
on NBPs. According to its formula weight (FW), a CN group
is intermediate between a fluorine and a chlorine atom. On
comparing NBPs?*-2 of simple halogens, interhalogens,
Cyanogen, or cyanogen halide linear molecules (Table 1), it
can be seen that the cyano group does indeed behave as a
pseudohalogen. On considering cyanogen halides, the CN
group is placed by NBPs between fluorine and chlorine.
However, on comparing NBPs of cyanogen and those of
elemental halogens, the CN group is situated between
chlorine and bromine, as if the CN group had a slightly
higher formula weight.

In Table 2 the NBPs of cyanotrihalomethanes, X3C—CN,
and of tetrahalomethanes, CX4, are shown. It can be seen
that the cyano group behaves again as a pseudohalogen
‘'situated between chlorine and bromine.

Although some physical data support the idea that the CN
group manifests itself as a pseudohalogen, its chemical
behavior in organic compounds is quite different from that
of halogens. The C—Cl, C—Br, and C—I bond strengths are
much lower than the bond strength of the C—CN bond;
therefore, these halogens (unlike CN groups) are good
leaving groups. In the next section we shall examine organic
compounds whose NBPs are much higher than those of the
corresponding halogen compounds, so that the cyano group
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would be situated beyond iodine; in such cases, the notion
of pseudohalogen is no longer justified.

NORMAL BOILING POINTS OF NITRILES AND
DINITRILES

Mononitriles have NBPs which are quite high when
compared with the corresponding halides (Table 3). In Table
3 structures of halogen derivatives are indicated (in abbrevi-
ated form) according to IUPAC nomenclature rules; for
nitriles, however, to achieve consistency, the CN group is
considered as a pseudohalogen; therefore, the nomenclature
is no longer according to [UPAC. In these cases a CN group
increases the NBP much more than the heaviest stable
halogen atom, namely, iodine. An analogous behavior is
apparent when comparing halocarbonyl or cyanocarbonyl
compounds (Table 4). Also, the NBPs of 1,w-alkanedihalides
for linear alkane chains with one through four carbon atoms,
X(CHy),X (with n = 1—4) are much lower than for the
corresponding |,w-alkanedinitriles (Table 5).

As seen from Table 6 for gem-dihalides or gem-dinitriles
of methane, ethane, or propane, a similar trend with higher
NBPs for X = CN than for X = Hal is observed; moreover,
one sees the curious trend that when the X group in R—X is
1 or CN, the NBPs decrease progressively in the above series
with increasing molecular weight, whereas the corresponding
compounds with X = F, Cl, or Br exhibit the reverse, normal
behavior. A break in Table 6 separates the compounds with
normal and abnormal behavior.

QSPR STUDY OF MONOHALO DERIVATIVES AND OF
THEIR CYANO ANALOGUES

For correlating the chemical structure with the NBP for
the data presented in Table 3 we selected eleven topological
indices: the information indices IC;—~IC; and CIC,—CIC3;2
the Wiener index W; the valence connectivity indices %"~
%;v;*2* and the average distance-sum connectivity adapted
for heteroatoms based on their electronegativities (Balaban’s
index, J,).%% All indices except the last one were computed
using the program POLLY.?

Due to the fact that the scale of the various topological
indices may differ by several orders of magnitude, all indices
were transformed by first adding 1 to the index and then
taking the natural logarithm of this result. The transformed
version of the indices was used in all analyses. The CORR
procedure of the SAS statistical package®? was used to
identify intercorrelated indices. The elimination of such
indices reduced to four the number of selected TIs, namely,
IC,, CIC,, 'yY, and J,.

An all-subset regression was accomplished using the REG
procedure of the same statistical package,?? which indicated
that 'y¥ and J; gave the best results; IC, and CIC, gave the
next best results. The drawback of IC and CIC indices is
that the nature of the halogen does not affect the value of
these indices.

Experimental and calculated data for NBPs of monohalo
derivatives with one through five carbon atoms and the
corresponding mononitriles with two to six carbon atoms
are presented in Table 3, above the solid line. Some nitriles
with six to eight carbon atoms are also included below the
solid line, but they have no halogen counterparts, and the
correlations discussed below do not include them.
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Table 3. NBPs (°C) of Organic Halides and Nitriles R—X and
QSAR in Terms of 'y¥ and J,
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Table 4. NBPs of Halocarbonyl Derivatives (lodine Derivatives
Are Not Available)”

compd NBPe,” NBPea® diffopcac®  '(*° Jb
Me—F —78 —81 3 0.3206 0.6054
Et—F —38 -32 -6 0.6801 0.9143
Pr—F 3 3 0 0.9058 1.0550
Bu—F 33 34 -1 1.0899 1.1346
sBu—F 25 22 3 1.0685 1.2334
1-Cs—F 63 62 1 1.2453 1.1860
Me—Cl =24 -23 -1 0.7580 0.6152
Et—Cl 12 10 2 0.9199 0.9207
Pr—Cl 47 47 0 1.1016 1.0588
iPr—Cl 36 34 2 1.0328 1.1656
Bu—Cl 79 79 0 1.2553 1.1375
sBu—Cl 68 69 -1 1.2081 1.2369
iBu—Cl 69 70 -1 1.2134 1.2407
tBu—Cl 51 51 0 1.1207 1.3635
1-C1-Cs 108 106 2 1.3885 1.1881
2-Cl—-Cs ~97 97 0 1.3473 1.2672
2-Me—1-CI-C; 100 100 0 1.3617 1.3043
3-Me—1-Cl—-C, 99 98 1 1.3520 1.2709
CEt,—Cl 98 99 -1 1.3571 1.2999
Me—Br 4 10 -6 1.0865 0.6403
Et—Br 39 33 6 1.1301 0.9357
Pr—Br 71 69 2 1.2798 1.0685
iPr—Br 60 56 4 1.1906 1.1768
Bu—Br 102 99 3 1.4100 1.1445
sBu—Br 91 90 1 1.3421 1.2453
iBu—Br 91 97 —6 13742 1.2479
tBu—Br 73 i —4 1.2476 1.3727
1-Br—Cs 130 125 5 1.5252 1.1936
2-Br—-Cs 117 116 1 1.4649 1.2737
2-Me—Br—1-C,4 121 125 -4 1.5019 1.3100
3-Me—1-Br—C; 120 122 -2 1.4934 1.2765
CEt,—Br 119 119 0 1.4736 1.3070
Me~I 43 ) -8 1.2627 0.6689
Et—1 73 66 7 1.2528 0.9532
Pr—1 103 100 3 1.3863 1.0801
iPr—1 90 87 3 1.2862 1.1900
Bu-I1 131 127 4 1.5041 1.1531
sBu—I 120 117 3 1.4248 1.2553
iBu—I 121 127 -6 14716 1.2568
tBu—I 100 106 —6 1.3265 1.3833
1-1-Cs 155 150 5 1.6094 1.2000
2-1-Cs 141 141 0 1.5384 1.2818
2-Me—1-1-C4 148 153 -5 1.5880 1.3169
3-Me—-1-1-C4 147 149 -2 1.5802 1.2829
CEt,—1 146 145 1 1.5465 1.3156
Me—CN 82 71 i1 0.5446 1.2196
Et—CN 97 104 -7 0.8259 1.2173
Pr—CN 118 126 —8 1.0239 1.2366
iPr—CN 104 109 -5 0.9810 1.3592
Bu—CN 141 143 -2 1.1891 1.2565
sBu—CN 125 128 -3 1.1647 1.3880
iBu—CN 131 129 2 1.1442 1.3483
tBu—CN 106 108 -2 1.0899 1.5065
1-CN-Cs 164 158 6 1.3308 1.2737
2-CN-C;s 146 145 1 1.3097 1.3888
2-Me—1-CN—C4 154 147 7 1.2920 1.3431
3-Me—1-CN—-C, 157 158 -1 1.3308 1.2737
CEt;—-CN 146 142 4 1.3199 1.4339
EtCMe,—CN 129 126 3 1.2624 1.5304
1-CN—C¢ 183 171 12 1.4549 1.2881
2-CN—-C¢ 164 160 4 1.4363 1.3840
3-Me—1-CN—C;s 172 158 14 1.4298 1.3992
4-Me—1-CN—C;s 180 159 21 1.4298 1.3830
5-Me—1-CN—-C;s 180 158 22 1.3308 1.2737
1-CN—-C, 199 183 16 1.5653 1.3002

@ Figures have been rounded off to the nearest integer. ® Topological
indices 'x¥ and J, are expressed by converting their values (y) into
In(1 + y).

" NBP (°C)

X EtOCOX CICOX
F 57 —45
Ci 95 8
Br 116 25
CN 116 128

7 Figures have been rounded off to the nearest integer.

Table 5. NBPs of 1,w-Dihalides and 1,0-Biscyanides of Linear
Alkanes C,—Cs

NBP (°C)
X XCHX X(CHj):X X(CHz):X X(CH3)aX
F =52 31 42 78
Cl 40 84 121 154
Br 97 131 167 197
I 181 - 200 227

CN 219 266 286 295

7 Figures have been rounded off to the nearest integer.

Table 6. NBPs of gem-Bis(pseudo)halides of Alkanes C;—Cy”

NBP (°C)

X CHzXz MCCHXZ MezCX2
F -52 —25 0
Ci 40 58 71
Br 97 113 i15
I 181 178 148
CN 219 198 170

“ Figures have been rounded off to the nearest integer.

A comment on how the ¥V and J, indices vary with
increasing size and branching of molecules needs to be
added. Both these indices increase with increasing size. The
nature of the halogen X in R—X molecules with the same R
group also leads to a progressive increase in the series F,
Cl, Br, and I; this increase is steep for !x¥ but moderate for
J,. However, increasing branching of the R group for
isomeric molecules leads to decreasing values for 1y but to
increasing values for J,. Of course, as a general rule,
experimental NBPs increase with increasing size and mo-
lecular weight of molecules and decrease with molecular
branching; only poly(fluoroalkanes) are exceptions to this
rule, as mentioned earlier.!3

The corresponding equations are shown in Table 7a,b with
the statistical parameters. For the chloro derivatives J, was
not a significant parameter, so that a monoparametric
equation in terms of 'y gave in this case satisfactory results.
For all other compounds from Table 3, such monoparametric
equations led to worse results than those presented in both
parts a and b of Table 7. Intercorrelation factors between
the four selected indices are presented in Table 8; one can
see that no significant intercorrelation is present. It can be
observed from Tables 3 and 7a that the correlation for nitriles
is slightly poorer than for the halogens; however, the
agreement between the experimental and calculated NBPs
is quite good. Remarkably, the coefficients of the 'y¥
parameter are similar for Br and I in Table 7a and for all
halogens in Table 7b; this fact is reminiscent of the
observation presented in the earlier paper'3 about the fact
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Table 7. Correlation Equations for NBP and Statistical Parameters

(a) In Terms of 'y¥ and J,

NBP s r F
RF (208 £ 23)'y” — (84.0 + 32)/, — (968 £ 15) 4.3 0.998 355
RCl (204 £ 2)!%V— (177 £ 2) 1.4 0999 9444

RBr (203 £ 12)'y¥ + (45.6 £ 9.3}/, — (239 £ 12) 4.5 09% 404
RI (195 £ 15)1y¥ + (593 £ 10)J, — (2354 17) 53 0989 235
RCN (117 £ 8.4)'y¥ — (925 £ 22)J, + (120 £ 27) 6.1 0.976 99

(b) In Terms of IC; and CIC;
NBP 5 r F

RF (223 £ 27)IC; + (197 £+ 47)CIC; — (406 £+ 38) 10.2 0.988 62
RCl (230 £ 16)IC; + (146 £+ 16)CIC, — (333 £27) 9.0 0.978 109
RBr (218 £ 16)IC; + (135 £ 16)CIC, — (286 £27) 8.7 0.977 104
RI (198 & 15)IC; + (115 £ 15)CIC; — (217 +£25) 84 0974 92

RCN (176 £ 30)IC; +793.9 + 20)CIC; — (168 £42) 114 0914 25

Table 8. Intercorrelation Matrix for the Four Selected TIs®

A A IC, CIC,
Ly 1.000 0.702 0.802 0.178
i 1.000 0.451 0.655
IC, 1.000 -0.331
CIC, 1.000

“ Topological indices 'x¥ and J, are shown by converting their values
(y) into In(1 + y).

s °
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Figure 1. Plot of the predicted NBP versus the experimental NBP
for the combined set of 45 monohaloalkanes from Table 3 in terms
of two TIs, namely, 'y¥ and J,.

that one might consider a “generalized halogen” with a
stepwise increment for the four halogens F, Cl, Br, and 1.
Though the aim of the present paper was to discuss nitriles
and not haloderivatives (the NBPs of these last compounds
were the object of a QSPR study in the earlier paper'?), one
can use the same parameters as in Table 7a for a correlation
of NBPs for all 45 halogen derivatives presented in Table 3
according to the following equation:

NBP = (180 + 7.8)'y" + (34 10)J, — (189 £9.2)
s=10°C r=09823 F=579

The diagram shown for this correlation in Figure 1
indicates that only 2-butyl fluoride and three halomethanes
with F, Br, and I have deviations above 14 °C between
observed and predicted NBPs.

Interestingly, the last equation of Table 7a works even
for other aliphatic mononitriles with six to eight carbon
atoms, presented at the bottom of Table 3 below the full
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Table 9. NBPs (°C) of Unsaturated Nitriles and QSAR in Terms of

IC; and CIC,

nitrile IC; CIC; NBPey NBPr  diffexpi-calca
C=CC#N 1.2590 0.2515 78 80 -2
CHCCHN 1.2006  0.0000 43 40 3
C=CCC#N 1.3666 03365 119 112 7
CC=CC#N 1.2936 0.5158 113 116 =3
CC(=C)C#N 1.2936 0.5158 91 116 =25
CC=C(C)C#N  1.2548 0.7853 138 137 1
CC(C)=CC#N  1.2102 0.8531 141 135 6
C=CCCC#N 1.36890 0.5704 140 138 2
CCC=CC#N 1.3930 0.5146 136 137 -1
C=CC=CC#N 13468 04787 137 123 14
CCC(Cy=CC#N 1.3625 0.7391 142 155 -13
CC(C)C=CC#N 1.3300 0.7971 155 155 0
CC(C)=CCC#N 13300 0.7971 166 155 11

line; however, in these cases, all calculated values are lower
than the experimental ones.

Unsaturation in the nitrile chain lowers appreciably the
NBP, as seen in Table 8. Using the same descriptors as in
Table 7b for these nitriles with three to six carbon atoms
having one or two double bonds or one triple bond (denoted
by # in Table 9 which uses Smiles notation for structures),
the QSAR results presented in Table 9 were obtained with
the following equation:

NBP = (214 £ 52)IC, + (109 + 13)CIC, — (217 + 67)
s=11°C r=09121 F=352

A GUESSING GAME

On addressing an audience of chemists, the following
guessing game was proposed: the audience was given the
NBPs of the 1,w-alkanedinitriles X(CH,),X with n = 1—4,
namely, malononitrile, succinonitrile, adiponitrile, and ca-
prononitrile (i.e., the last line in Table 5). Then everyone
was asked to guess the NBP temperature interval for
oxalonitrile (the compound with n = 0) by putting a mark
in one of the following eight intervals: <—20; —20 to +20;
+20 to +60; +60 to +100; +100 to +140; +140 to +180;
+180 to +220; and >+220 °C. Remarkably, no member of
the audience guessed that oxalonitrile (cyanogen with NBP
= 22 °C) should appear in the first temperature interval
(NBP < —20 °C). The other seven temperature intervals were
about equally populated with marks.

LARGEST INCREMENT IN NBP FOR A HOMOLOGOUS
SERIES

The two compounds (cyanogen and manononitrile) men-
tioned to be outliers in the QSPR study cited earlier!?
represent the pair with the largest NBP increment on adding
one methylene group, as seen from Table 10. In this table,
one compares the next two homologues having various
simple groups bonded either directly (R;) or via a methylene
group (RCH3R), where R can be a halogen, a cyano group,
an alkyl, an alkoxy, or an organic electronegative group.
Breaks in the table delineate various related classes of
compounds.

The first entry of the above two compounds constitutes a
class by itself. The huge difference of 241 °C between the
NBPs of cyanogen (oxalonitrile, with NBP = —22 °C) and
malononitrile (with NBP = 219 °C) can be explained by
the fact that cyanogen has a linear geometry and hence a
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Table 10. Differences in NBPs for Compounds Differing by One
Methylene Group?

NBP (°C)

R Rz RCH;R diff
CN —22 219 241
H ~253 -162 91
CF; -78 1 79
CH3-CO 88 138 50
CH,3 ~89 -42 47
HC=C 10 55 45
F —188 =52 136
Cl =35 40 75
Br 56 97 41
1 184 182 -2
Et " 0 37 37
MeO . 14 42 28
EtO 63 88 25
MeS - 110 149 39
EtS 154 181 27
CCly - 186 206 20
COOMe 163 181 18
COOEt 185 199 14
COOPr 211 229 18
COOBu 242 256 14
Ph 256 264 12

? Figures have been rounded off to the nearest integer.

zero dipole moment, whereas malononitrile is a V-shaped
molecule with a high dipole moment, 3.58 D.2%% The
calculated polarizability of malononitrile is abnormally high
in comparison with calculated values.3031

A few other comments in Table 10 should be added. The
first nine entries show differences in NBPs that are higher
than 40 °C for the two homologues. Among these, the first
six have electronegative or slightly electron-donating groups;
the next class includes the four stable halogens, and the trend
in this group with progressively decreasing electronegativity
is quite interesting, starting with the next highest NBP
difference in the whole table (for fluorine) and ending with
a negative difference (for iodine). All these entries have linear
R; and bent R;CH; molecules for the two homologues,
respectively.

The last class with NBP differences lower than 40 °C,
however, demonstrates that electronegativity by itself does
not provide a full explanation for the data contained in Table
10. Indeed, here again we encounter groups with electron-
donating as well as with electron-accepting properties.
However, in this class the R, molecules have no longer linear
geometries except for biphenyl and hexachloroethane.

OTHER DINITRILES

A comparison between volatilities of dinitriles of four-
carbon dicarboxylic acids is interesting, despite the incom-
pletely matched data. Succinonitrile has a NBP of 266 °C
and a dipole moment of 3.93 D. From the two stereoisomeric
olefinic congeners, the dinitrile of fumaric acid with E-
geometry is more volatile (NBP of 186 °C, subliming even
under 100 °C) than the dinitrile of maleic acid (with a higher
dipole moment because of its Z-geometry) which has a BP
of 111 °C at 20 Torr and 99 °C at 13 Torr. The alkynic
congener which has a linear geometry and zero dipole
moment (dicyanoacetylene or acetylenedicarbonitrile, C4N,)
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has a NBP of only 77 °C and sublimes easily. Interestingly,
the dinitrile C¢N, of hexadiynedioic acid with two triple
bonds (with linear geometry) has a NBP of only 154 °C.

Isomers of benzodinitrile also have volatilities that attest
the importance of dipole moments: phthalonitrile with the
highest dipole moment has at 10 Torr a boiling point of 151
°C; isophthalonitrile with a dipole moment which is about
half as large has the BP of 140 °C at the same reduced
pressure; and terephthalonitrile with a zero dipole moment
sublimes at normal pressure at temperatures starting at 153
°C.

When the CN group is attached to an electron-acceptor
substituent, the polarity of the bond is low and the NBP is
within the range expected for a pseudohalogen with a formula
weight close to that of chlorine. However, when the CN
group is bonded to an electron-donor substituent, the high
polarity of the resulting bond enhances appreciably the NBP.
The conclusion is that NBPs are the result of a multiplicity
of factors inherent in determining the intermolecular forces
that exist in the liquid state. In certain cases such as the two
homologous dinitriles with two and three carbon atoms,
QSPR studies should not ignore differences between these
intermolecular interactions.
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Abstract

A novel QSAR study of benzamidines complement—inhibitory activity and benzene derivatives acute toxicity is
reported and a new efficient method for selecting descriptors is used. Complement-inhibitory activity QSAR models
of benzamidines contain from one to five descriptors. The best, according to fitted and cross-validated statistical
parameters, is shown to be the five-descriptor model. Models with a higher number of indices did not improve over
the five-descriptor model. The benzene derivatives structure—toxicity models involve up to seven linear descriptors.
Multiregression models, containing up to ten_nonlinear descriptors, are also reported for the sake of comparison with
previously obtained additivity models. Comparison with benzamidine complement—inhibitory activity models and
with benzene derivatives toxicity models from the literature favors our novel approach. © 2000 Elsevier Science

Ireland Ltd. All rights reserved.

Keywords: QSAR study; Complement-inhibitory activity; Benzene: Five-descriptor model

1. Introduction

In our recent papers a hierarchical QSAR (quantita-
tive structure—activity relationship) approach was used
to model the complement—inhibitory activity of benza-
midines (Basak et al., 1999a) and the acute aquatic
toxicities of benzene derivatives (Gute and Basak, 1997;
Basak et al., 1999c). The hierarchical QSAR approach
uses topological (partitioned into topostructural and
topochemical), geometric and quantum-chemical de-
scriptors in a stepwise fashion to build increasingly
more complex  structure—property-activity models
(Basak et al., 1997, 1999b). Now we report the use,

* Corresponding author.

with the same aim, of a new efficient approach for
selecting the best QSAR models using multivariate
regression (MR) (Lucié¢ and Trinajstié, 1999; Lugi¢ et
al., 1999a) and a standard approach for variable selec-
tion and model generation used in CODESSA (Ka-
tritzky et al., 1999; Lugié et al., 1999b). Sometime ago
Hansch and Yoshimoto (Hansch and Yoshimoto, 1974)
carried out a QSAR study on the complement—in-
hibitory potency of benzamidines using their own ap-
proach. After 10 years, Hall et al. (Hall et al., 1984)
carried out a QSAR study on the toxicities of benzene
derivatives using de novo analysis (Free and Wilson,
1964; Kubinyi and Kehrhahn, 1976), and derived an
additivity model for 66 compounds (they excluded three
compounds as outliers). We will analyze their models
and compare to ours.

0097-8485/00/$ - sec front matter © 2000 Elsevier Science Ireland Ltd. All rights reserved.
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Benzamidines are inhibitors of the complement sys-
tem. Complement is a system of factors occurring in
normal serum which arc characteristically activated by
antibody-antigen interactions and which subscquently
mediate a number ol biologically significant conse-
quences. The factors of the complement system include
at least 20 chemically distinct serum proteins and glyco-
proteins. These factors which normally exist in an
inactive form, may be activated by two (classical and
alternative) pathways. Both pathways generate macro-
molecular membrane attack complexes which lyse a
variety of cells, bacleria and viruses (Kuby, 1992).
Products of this activation result in inflammatory reac-
tions at the site of antibody-antigen interaction. This is
especially pronounced in the case of organ specific and
systemic autoimmune disorders. Therefore. control of
unregulated complement activation is essential, espe-
cially in the case of autoimmune disease.

Acute aquatic toxicities of benzene derivatives in the
fathead minnow (Pimephales promelas) indicate 96-h
values ranging from 3.0 to 6.4 log units for the LC50
(lethal dose to 50% of the sample). Details about LC50
measurements are given in the report by Hall et al.
(Hall et al., 1984).

2. Data sets

2.1. Benzamidines

In Fig. 1 we give the structural formula of benza-
midines and in Table 1 the side-chain structuges and
experimental complement-inhibitory activities in terms
of 1/log C for studied benzamidines. C in log C is the
micromolar concentration of inhibitor required for 50%
inhibition of lyophilized guinea pig complement when
assayed in buffer (Hansch and Yoshimoto. 1974).

2.2. Benzene derivatives
Toxicity data of 69 benzene derivatives are taken

from Hall et al. (Hall et al., 1984). Toxicity data
reported by Hall et al. consists of 26 original experi-

/NH

H,N.

X

Fig. 1. Structural formula of benzamidines.

mental observations and 43 taken from seven different
sources. Thus, the studicd set of benzene derivatives
contains toxicitics of 68 compounds and benzene. The
benzene derivatives in this sct have seven different
substituents; cach substituent being present in at least
six compounds. These substituents arc amino. bromo,
chloro, hydroxyl, mcthyl, mcthoxyl and nitro groups.
Studied benzene derivatives are listed in Table 2. Their
toxicitics are expressed as the negative logarithm of the
lethal concentration of a benzene derivative and de-
noted by —log(LCsy).

2.3. Molecular descriptors

In Table 3 are given symbols and brief description of
descriptors that are used for the QSAR modeling of
benzamidines and benzene derivatives in the present
work. The total number of descriptors is 110 (40 to-
postructural, 61 topochemical, three geometric and six
quantum-chemical descriptors). In the previous QSAR
study of benzamidines (Basak et al.. 1999a) 95 descrip-
tors were used (37 topostructural. 35 topochemical and
three geometric). The difference is caused by a fact that
nine topological descriptors possess zero values (we
included them in our set simply to have the complete
set of descriptors) for all molecules studied and six
quantum-chemical descriptors were not included in the
previous modeling. All topological descriptors were
transformed as it was done Basak et al. (Basak et al.,
1999a) using a natural logarithmic transformation of
the form In(x + 1), where x represents single values of
descriptors. This was done to avoid errors in rounding
up numerical values because the range of descriptor
values was rather large. The geometric descriptors were
transformed by the natural logarithm of the descriptor
for consistency.

In the case of benzene derivatives we used the same
set of descriptors as Gute and Basak (Gute and Basak,
1997) and Basak et al. (Basak et al., 1999c). They were
transformed in the same way as the benzamidine data
set (see Basak et al., 1999a).

2.4. Variable selection and models gencration

To obtain the best possible QSAR models with /
(I=1, 2, 3, ...) descriptors we used a computational
approach, detailed elsewhere (Lugi¢ and Trinajstic,
1999), by which one can select the best MR model with
I descriptors from the set of N descriptors. The number
of possible models with [ descriptors is NY/(V — !
The quality of each model (with / descriptors) was
identified with its correlation coefficient (R), and
among all possible models the best one was selected.
with the highest value of R. To be able to check the
quality of a large number of MR modcls. it was neces-
sary to develop a very fast procedure tor calculating R,

a-
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Observed and calculated (cross-validated, CV, and fitted, FIT) complement-inhibitory activitics 1/log C of 105 benzamidines

No. X 1/log C
Observed Calculated (CV)* Calculated (FIT)*

1 2-CH, —0.444 —0.417 —-0.419
2 3,4-(CH,), —0.425 —0.423 —-0.424
3 H —0.418 —0.424 —0.423
4 3-OH —-0.415 —0.439 —0.434
5 3-CF, -0410 -0.378 —0.382
6 3-NO, - —0.410 —-0.392 -0.395
7 3-Br . ~0.405 —-0.399 —0.400
8 3-CH, —0.398 ~0.399 -0.399
9 3-OCH, - —0.397 —0.401 —0.401
10 3-CH,C¢H; —-0.373 —0.343 —-0.346
11 3,5-(CHj;), —0.361 —0.375 —0.369
12 3-0C;H, —0.355 -0.358 —0.358
13 3-i-C;H,, —0.355 —0.344 —0.345
14 3-OC,H, —0.351 —0.340 —0.341
15 3-C,H, —0.338 —0.355 ~0.353
16 3-CH=CHCH; —0.339 —-0.324 -0.325
17 3-OCH,C.H; -0.331 —-0.324 —0.324
18 3-(CH,),C¢H; —0.330 —0.332 —0.331
19 3-OC¢H,; i —0.329 —0.318 —-0.319
20 3-O(CH,),0C H; -0.325 —0.286 —0.287
21 3-O(CH,),OC¢Hj —-0.323 -0314 —-0.315
22 3-C¢Hs —0.323 —0.366 -0.359
23 3-O(CH,);OC4H,-4-COOH —0.321 -0.296 —~0.297
24 3-OCsH,, -0.320 —0.327 —0.326
25 3-0-i-CsH;, —-0.318 —0.338 —-0.335
26 3-O(CH,),0C,H;-a —0.312 —0.255 —-0.262
27 3-O(CH,),0C,H,-4-NH, —~0.306 —0.288 —0.289
28 3-(CH,),C¢H; —0.302 —0.315 —0.313
29 3-O(CH,);0C¢H,4-NO, - —0.301 —0.282 ~0.282
30 3-O(CH,);0C¢H,-4-NH, . -0.300 -0.298 —-0.298
31 3-(CH,),-4-C;H,N ~0.299 —-0.318 —0.318
32 3-O(CH,);0CGH —0.299 —0.295 —0.295
33 3-O(CH,)yC¢H; —0.296 —0.290 -0.290
34 3-(CH,),-3-C;H,N —0.294 —0.298 —0.298
35 3-(CH,),C¢H,-4-NHAc —0.294 —0.281 -0.282
36 3-(CH,),-2-CsH,N —0.291 —0.300 —0.299
37 3-O(CH,);0C¢H,-2-NH, —-0.283 —0.288 -0.288
38 3-O(CH,);0C¢H,-4-NHAc —0.278 -0.270 —-0.270
39 3-(CH,)4-3-C;H,N —0.276 ~0.284 —0.284
40 3-O(CH,)4C¢H;s —0.276 —0.277 —-0.277
41 3-O(CH,);0C¢H,-3-NHAc -0.270 —0.260 —0.260
42 3-O(CH,),OC¢H,-3,4-Cl, -0.265 —0.271 -0.271
43 3-O(CH,);0C¢H,-3-NH, —0.265 —0.283 —0.283
44 3-O(CH,);0C¢H,-2-NHCOCH,-4-SO,F —0.265 ~0.247 —~0.247
45 3-O(CH,);OCH,-2-NHCOC¢H; —0.265 —0.258 —0.258
46 3-O(CH,);0C4H-4-OCH, —-0.262 —-0.275 —-0.274
47 3-O(CH,),0C¢H,-4-NHCONHCH,-4-SO,F -0.260 —-0.236 -0.237
48 3-O(CH,);0C¢H-2-NHCOC(H,-2-OCH,-5-SO,F —-0.260 —0.226 —0.227
49 3-O(CH,);OCH -4-Cl —-0.257 —0.287 ~0.286
50 3-O(CH,);OC¢H,-2-NO, -0.257 —-0.279 -0.279
51 3-O(CH,);0C¢H,-3-NO, —0.257 —0.268 -0.268
52 3-O(CH,);0C4H,-3-OCH, ~0.256 —0.255 —0.255
53 3-O(CH,),0C¢H,-2-NHCOC(H;-2-CI-6-SO,F —0.255 —-0.247 —0.248
54 3-O(CH,);0C4H,-2-NHCONHCH; —0.255 —0.260 —0.259
55 3-O(CH,),0C¢H,-2-NHCONHCH,-2-Cl-5-SO,F -0.250 —0.246 —0.246
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Table | (Continued)
No. X l/log C
Observed Calculated (CV)* Calculated (FIT)*

56 3-O(CH3),OC(,H4-2-NHCONHCHZC(,H,,-4-SOZF -0.250 -0.232 -0.232
57 3-O(CH3)}OC(,H,,-2-NHCONH-C,,H3-2,4-(CH,)2-5-SOIF —0.248 —0.242 —0.242
58 3-O(CH,);0C4H,-4-COOCH, —0.247 —0.261 -0.261
59 3-O(CH,),0C(H;-3-NO,-4-CH, —-0.245 —-0.268 -0.267
60 3-O(CH,);0CH,-3-CF, —0.245 —-0.276 -0.275
61 3-O(CHZ)JOC(,H‘,-Z-NHCONHC,,l-L,-4-CH_,-3-SOzF —0.245 -0.232 —0.232
62 3-O(CH,);0C4H,-4-NHCOC H; —0.244 —0.242 —0.242
63 3-O(CH2)3OC6H4-2-NHCOCH:OC,,H4-4-503F —-0.244 -0.239 -0.239
64 3-O(CH3)JOCGH;-4—NHCOC,,H,,-4-OCHJ —0.243 -0.228 ~-0.229
65 3-O(CH,);0C4H;-2-NHCOCH -3-SO,F -0.243 -0.234 -0.234
66 3-O(CH2)3OC(,H4-2-NHCOCHIC(,H4-4-SO:F -0.243 -0.242 —0.242
67 3-O(CH,);0OCH,-3-COOCH, —0.242 —0.256 —0.256 '
68 3-O(CH3)JOC(,H4-2-NHCO(CHz)zCﬁH4-4-SOZF -0.242 -0.232 —0.232
69 3-O(CHZ)3OC6H4—4-NHCOC(_H4-4-NO2 -0.239 —-0.234 —-0.234
70 3-O(CH3);OC(,H4-2-NHCOC(,H4—4-NO2 -0.239 —0.248 —0.248 (
71 3-O(CH2)30C6H4-4-NHCONHC‘,H5 -0.237 —-0.252 —-0.252
72 3-O(CH2)30C6H4-4—NHCOC(,H4-3-NOZ —-0.237 —0.225 —-0.225
73 3-0(CH2)3OC6H,,—Z-NHCO(CH2)4C6H4-4-SOZF -0.237 —-0.220 —-0.221
74 3-O(CH2)3OC6H4-2-NHCONHC(,H4~4-SO:F -0.237 —0.248 —0.248
75 3-O(CH2)30C6H4-3-NHCONHC6H4-4-SOZF -0.236 -0.231 —-0.231
76 3-O(CH3)30C6H4-2-NHCONH(CH2)3C6H4-4-SOZF —0.236 —0.224 —-0.224
77 3-O(CH3)4OC6H4-3-NHCOC6H4-4-SOZF -0.236 —-0.222 -0.222
78 3-O(CH3)3OC(,H4-2-NHCONHC(,H3—4-CI-3-SOZF -0.235 -0.236 —-0.236
79 3-O(CH3)4OC6H4—2-NHCOC5H3~4-CH3-3-SOIF —0.235 -0.229 -0.229
80 3-O(CH2)30C6H4-2-NHCOC6H1~2,4-(CH3)3-5-502F -0.234 —0.238 —0.237
81 3-O(CH2)30C6H4-2-NHCOC(,HZ-ZA-CIZ-S-SOZF —-0.234 —0.243 —0.243
82 3-(CH2)4C6H4-2-NHCONHC6H4~3-SOZF —0.234 —0.247 —0.246
83 3—O(CHZ)JOC6H4-3-NHCOC6H4-4<OCH3 —-0.233 -0.219 ~0.219
84 3-(CH2),C4H,-2-NHCONHCH,-4-SO,F —0.233 —0.263 -0.261
85 3-O(CH,);0C¢H,-4-NHCOCH 4-CI - —-0.232 —0.238 -0.238
86 3-O(CH,);0C4H,-2-NHCOCH,-2-CH,-5-SO,F -0.232 —-0.234 -0.234
87 3-O(CH2)4OC6H_,-4-NHCONHC6H3-2-OCH3-5-502F -0.232 -0.214 -0.215
88 3-O(CH,);OC¢H -4-C¢H; —0.230 -0.256 —-0.254
89 3-O(CH2)3OC6H4-2-NHCONHC6H4-3-803F —-0.230 —-0.232 -0.232
90 3-O(CH,);0C4H,-3-NHCOCH,-3-SO,F -0.230 -0.210 —-0.211
91 3-O(CH,),0C4H,-3-NHCOCH,-3-SO,F -0.229 —-0.222 -0.222
92 3-0(CH2)30C6H4-4-CH3-3-NHCOC(,H4-4-SOZF -0.229 -0.227 -0.227
93 3-O(CH3)3OC(,H4-3-NHCONHC6H4-3-SOZF —-0.222 -0.216 —-0.216
94 3-0(CH2)30C6H4-3-NHCOCH2C6H4-4-SOIF -0.220 —-0.222 -0.222
95 3-0(CH,);0C¢H,-3-NHCOC H,4-SO,F -0.219 —-0.224 —0.224
96 3-O(CH3)3OC6H4-2-NHCONHC6H3-2-CI‘5-SOZF -0.217 ~0.235 —-0.235
97 3-O(CH,);0C4H,-3-NHCOCH,OC¢H,-4-SO,F -0.217 -0.218 -0.218
98 3-O(CH3)ZOC6H4-3-NHCONHC6H4-4-SOZF -0.216 —0.245 —0.244
99 3-0(CH3)4OC(,H4-3-NHCONHC,,H4-4-503F -0.215 -0.229 -0.229
100 3-O(CH2)3OC,,H_,-3-NHCOC(_H,-4-NO2 -0.214 —0.226 -0.226 3
101 3-O(CH,),0C(H,-3-NHCOCH,-4-SO,F -0.214 —-0.238 -0.237
102 3-O(CH3)40C6H4—2-NHCONHC(,H,-Z-Cl-S-SOZF -0.207 —0.231 —-0.231
103 3-O(CH3)30C(,H4-3-NHCONHC6H4-4—NOZ -0.204 —-0.233 —0.232 .
104 3-O(CH3),OC(,H4-4-CH3-3-NHCONHC(,H_,-4<502F —0.204 -0.224 -0.223 '
105 3-0(CH2)30C(,H4-3-NHCONH(CHZ)ZC(,H4-4-803F —0.193, —-0.203 -0.203

*CV and FIT values are calculated using Eq. (8).
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Table 2 .
69 benzene derivatives and their observed and calculated (cross-validated, CV, and fitted, FIT) fathcad minnow toxicities, expressed
as —log(LCq))
No. Compound —log(LCy,)
Obscrved Calculated (CV)* Calculated (FIT)*
| Benzene 3.40 3.29 3.32
2 Bromobenzene 3.89 4.04 401
3 Chlorobenzene 3.7 375 375
4 Phenol 3.51 3.31 3.35
5 Toluene 332 351 3.49
6 1.2-Dichlorobenzene 4.40 433 433
7 1.3-Dichlorobenzene 430 4.10 4.12 e
8 1.4-Dichlorobenzene 4.62 4.80 4.77
9 2-Chlorophenol 4.02 4.01 4.01
« 10 3-Chlorotoluene 3.84 3.72 3.73
11 4-Chlorotoluene 433 4.11 4.13
12 1.3-Dihydroxybenzene 3.04 3.31 3.28
13 3-Hydroxyanisole 3.21 3.13 3.14
14 2-Methylphenol 3.77 3.62 3.62
15 3-Methylphenol 3.29 3.52 3.51
16 4-Methylphenol 3.58 3.64 3.64
17 4-Nitrophenol 3.36 3.68 3.66
18 1.4-Dimethoxybenzene 3.07 3.01 3.01
19 1.2-Dimethylbenzene 3.48 3.84 3.81
20 1.4-Dimethylbenzene 421 3.94 3.97
21 2-Nitrotoluene 3.57 3.70 3.69
22 3-Nitrotoluene 3.63 3.67 3.66
23 4-nitrotoluene ) 3.76 3.7 3.7
24 1.2-Dinitrobenzene 5.45 4.95 5.09
25 1.3-Dinitrobenzene 4.38 4.12 4.15
26 1.4-Dinitrobenzene 5.22 4.83 491
27 2-Methyl-3-nitroaniline 348 3.74 3.73
28 2-Methyl-4-nitroaniline 3.24 3.50 3.47
29 2-Methyl-5-nitroaniline . 33 3.80 3.7
30 2-Methyl-6-nitroaniline 3.80 3.76 3.76
31 3-Methyl-6-nitroaniline 3.80 3.61 3.62
32 4-Methyl-2-nitroaniline 3.79 3.78 3.78
33 4-Hydroxy-3-nitroaniline 3.65 3.51 3.52
34 4-Methyl-3-nitroaniline 3.7 3.78 3.78
35 1,2,3-Trichlorobenzene 4.89 4.84 4.84
36 1,2,4-Trichlorobenzene 5.00 5.02 5.02
37 1,3,5-Trichlorobenzene 4.74 4.36 4.45
38 2,4-Dichlorophenol 4.30 4.53 4.52
39 3,4-Dichlorotoluene 474 446 4.48
40 2,4-Dichlorotoluene 4.54 4.57 4.56
41 4-Chloro-3-methylphenol 427 4.27 4.27
42 2.4-Dimethylphenol 3.86 3.74 3.76
N 43 2,6-Dimethylphenol 3.75 3.75 3.75
44 3,4-Dimethylphenol 3.90 3.90 3.90
45 2,4-Dinitrophenoi 4.04 4.03 4.04
46 1.2,4-Trimethylbenzene 4.21 4.07 4.09
¢ 47 2,3-Dinitrotoluene 5.01 5.29 5.21
48 2,4-Dinitrotoluene 3.75 4.29 4.27
49 2.5-Dinitrotoluene S.13 4.89 493
50 2 6-Dinitrotoluene 3.99 443 44|
St 3,4-Dinitrotoluene 5.08 5.29 5.23
52 3.5-Dinitrotoluene 391 4.25 423
53 1,3,5-Trinitrobenzene 5.29 5.29 5.29
54 2-Methyl-3,5-dinitroaniline 4.12 4.23 4.22
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Table 2 (Continued)

No. Compound —log(LCy)

Observed

55 2-Methyl-3.6-dinitroaniline 334

56 3-Methyl-2,4-dinitroaniline 4.26
57 5-Methyl-24-dinitroaniline 492
58 4-Methyl-2,6-dinitroaniline 4.21
59 5-Methyl-2,6-dinitroaniline 4.18
60 4-Methyl-3,5-dinitroaniline 4.46
61 2,4,6-Tribromophenol 4.70
62 1,2,3.4-Tetrachlorobenzene 5.43
63 1,2,4,5-Tetrachlorobenzene 5.85
64 2,4,6-Trichloropheno! 4.33
65 2-Methyl-4,6-dinitrophenol 5.00
66 2,3.6-Trinitrotoluene 6.37
67 2,4.6-Trinitrotoluene 4.88
68 2,3,4,5-Tetrachlorophenol 5.72
69 2,3,4,5,6-Pentachlorophenol 6.06

Caleulated (CV)*

Caleulated (FIT)!

4.59 4.64
397 4.00
3.88 397
4.76 472
4.64 4.61
433 4.34
498 4.82
5.55 5.53
5.76 577
4.68 4.64
4.45 4.48
6.39 6.38
5.32 5.26
5.64 5.65
6.01 6.03

4 CV and FIT values are calculated using Eq. (10).

which was achieved by the orthogonalization of de-
scriptors, because in the orthogonal basis the computa-
tion of R is much faster and simpler (Luci¢ et al.
1995a.b,c; Lugi¢, 1997). Namely, in the case one has the
MR model based on the set of / orthogonalized de-
scriptors di (i=1, ..., I), the correlation coefficient
between the experimental values of modeled activity A
and the values estimated by the model A°' can be
calculated in a very simple way (Eq. (1)):

R=[i R,?T ()
i=1

where Ri is the correlation coefficient between each
orthogonalized descriptor ¢i and the modeled activity
A. For example, using this procedure it takes 28 CPU
min on Hewlett-Packard 9000/ES55 computer, which is
configured as a server, to select the best MR model
with five out of 104 descriptors among ~ 10% possible
models.

3. Results and discussion

3.1. QSAR of benzamidines

where HV is the graph-vertex complexity (Basak, 1987),
n is the number of benzamidine derivatives considered,
R is the correlation coefficient, R, is the leave-one-out
(cross-validated) correlation coefficient, F is F-value, S
is the standard error and S, is the cross-validated
(leave-one-out) standard error of estimate (root-mean-
square error), both with N-2 in the denominator. This
model is only slightly better than the earlier obtained
one-descriptor model, but with a different descriptor
(Basak et al., 1999a):

1/log C= — 0.6428( + 0.0129) + 0.0490( + 0.0017)*° W
n=105 R =0.943 R, =0.940 S=0.0196 S,

=0.0200 F =824 (3)

where *P W is the 3-D Wiener number for the hydrogen-
suppressed structures computed using their geometric
distance matrices (Bogdanov et al., 1989). Close to this
mode! is a model with 3-D Wiener number computed
for structures containing all atoms including hydrogens
(Bosnjak et al., 1991) (n =105, R=0.941, R., =0.939,
§=0.0199 S..=0.0203).

The best two-descriptor model of the benzamidine
structure-complement-inhibitory activity is:

ljlog C= —0.6878( £ 0.0175) + 0.1327( £ 0.0367)W

The best one-descriptor structure—complement—in-
hibitory activity model of benzamidines obtained is:

1/log C= —0.9332( + 0.0229) + 0.4395( + 0.0152)H"
n=105 R=0.943 R, =0.941 S=0.0195 S,
=0.0199 F=832 (2)

+ 0.1864( + 0.0380)*° W
n=105 R=0.950 R, =0.947 $=0.0184 S,
=0.0189 F =467 4

where IV is the 2-D Wiener number (Wiener, 1947).
The best three-descriptor model is given by:
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Table 3

Descriptions of all considered descriptors and symbols of only
those descriptors involved in the models

Information index for the magnitude of distances
between all possible pairs of vertices of a graph
Mean information index for the magnitude of dis-
tance

1144 Wiener index, the half-sum of the off-diagonal cle-
ments of the molecular distance matrix
Degree complexity

HY Graph vertex complexity
Graph distarite complexity
Information content of the distance matrix parti-
tioned by frequency of occurrences of distance /
Information content of the hydrogen-suppressed
graph at its maximum neighborhood of vertices
Order of neighborhood when ICr reaches its maxi-
mum value for the hydrogen-filled graph
A Zagreb group parameter, the sum of square of
degree over all vertices
A Zagreb group parameter, the sum of cross-
product of degrees over all neighboring (con-
nected) vertices

Ic, Mean information content of a graph based on
the rth (r =0-6) order neighborhood of vertices in
a hydrogen-filled graph
SIC,  Structural information content for rth (r = 0-6) or-
der neighborhood of vertices in a hydrogen-filled
graph
CIC, Complementary information content for rth (r =
0-6) order neighborhood of vertices in a hydro-
gen-filled graph
Path connectivity index of order 4 =0-6
Cluster connectivity index of order 4 = 3-6,
Chain connectivity index of order i =6
Path-cluster connectivity index of order 1 =4-6
Bond path connectivity index of order h =0-6
7 Bond cluster connectivity index of order & = 3-6

4%  Bond chain connectivity index of order /=6
Bond path-cluster connectivity index of order /i =

4-6
fopy Valence path connectivity index of order 4 = 0-6
gy Valence cluster connectivity index of order & = 3-6

75 Valence chain connectivity index of order h =6

7 e Valence path-cluster connectivity index of order
h=46

P, Number of paths of length /= 0-10
Balaban’s J index based on distance
Balaban’s J index based on relative electronegativi-
ties
Balaban’s J index based on relative covalent radii
Balaban’s J index based on bond types
Energy of the highest occupied molecular orbital
Energy of the second highest occupied molecular
orbital

Eiumo Energy of the lowest unoccupied molecular orbital
Energy of the second lowest unoccupied molecular
orbital

AH;  Heat of formation

Table 3 (Continued)

u Dipole moment
Van der WaalSs volume
3-D Wiener index for the hydrogen-filled geometric
distance matrix
W 3-D Wiener index for the hydrogen-suppressed geo-
metric distance matrix

RID ”"I .

l/log C= —10.6400( £ 0.0239) + 0.1273( & 0.0355) W
+0.0103( + 0.0037) P,
+0.1698( + 0.0372)3° W
n=105 R=0954 R,=0.949 $=0.0177 S,
=0.0185 F=335 &)

where Py is the path of length nine. Py could be omitted
from Eq. (5) because the related value of error of
regression coefficient is relatively large comparing to
the value of regression coefficient. Then Eq. (5) simply
converts into Eq. (4). The best four-descriptor model is:

1/log C= —0.6999( & 0.0194) + 0.1327( + 0.0354) W
+5.0332( + 1.2285)%7%,
—5.1120 (£ 1.2486)%,%,
+0.1885( £ 0.0359y°° w
n=105 R=0957 R, =0.953 $=0.0170 S,
=0.0177 F=272 (6)

where x5, and %y, denote the bond-chain and valence-
chain connectivity indices of order six, respectively.
Hansch and Yoshimoto (Hansch and Yoshimoto,
1974) published, 25 years ago, the following four-de-
scriptor model for benzamidine derivatives inhibiting
complement (the model is given in their notation):

log(1/C) =0.15( + 0.03)(MR — 1.2)
+ 1.07( £ 0.13)(D-1) + 0.52( £ 0.28)(D-2)
+0.43( % 0.14)(D-3) + 2.425( £+ 0.12)
n=108 R=0.935 $=0.258 ™

where MR is the molar refractivity of substituents at
positions 1 and 2, taken from the compilation by
Hansch et al. (Hansch et al., 1973) or computed, while
D-1, D-2, and D-3 are indicator variables for the
presence or absence of three kinds of the substructural
units in a given benzadimine. To compare fitted statisti-
cal parameters of our four-descriptor mode! (Eq. (6))
with those of model given by Eq. (7), we retransformed
our results into a log (1/C) scale used by Hansch and
Yoshimoto. Thus, we obtained statistical parameters
(R=0.941 and §=0.237) that are comparable with
their result. However, Hansch and Yoshimoto consid-
ered 108 benzamidine derivatives and we only consid-

et sieicaac
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ered 105. This discrepancy is caused by problematic
data for threc compounds which in our case are dis-
carded from the set of benzamidine derivatives (Basak
et al., 1999a). But, the nature of descriptors used in
these two types of models is different. Descriptors used
by us are calculated solely from the structures of stud-
ied molecules while the Hansch-Yoshimoto parameters
(molar refractivities of substituents) are experimentally-
based.
Finally, the five-descriptor model is:

1/log C = 1.5264( + 0.3534) + 0.6323( + 0.0936)(IC),
— 1.6788("+ 0.2720)(IC),
— 1.4540( + 0.2043)(SIC),
—0.4239( + 0.0680)(CIC),
+0.1286( + 0.0149)*0 1
n=105 R=0.963 R, =0.957 $=0.0158 S,
=0.0170 F=253 )

where (IC), and (IC); denote the mean information
content of structure based on the second- and sixth-
order neighborhood of atoms, including hydrogens, in
the structure, respectively, (SIC), and (CIC), are, re-

1 1 1 1

spectively, the structural information content for the
first order neighborhood and complementary informa-
tion content for the sixth order ncighborhood of atoms,
including hydrogens, in the structure. (IC),, (SIC), and
(CIC), are molecular complexity indices introduced
some times ago by one of us (Basak, 1987) for use in
predictive pharmacology and toxicology.

It is interesting to note that the 3-D Wiener number
is present in all models given herc, except in the very
best model with a single descriptor, although is present
in the next best single-descriptor model. This is not
surprising because this descriptor has shown to be very
useful in the structure—property-activity modeling
(Bogdanov et al., 1989; Bosnjak et al., 1991; Mihali¢
and Trinajstic, 1991; Nikoli¢ et al., 1991; Trinajsti¢,
1992).

The models containing more decriptors did not out-
perform the above five-descriptor model. Thus, the
model with five-descriptors (Eq. (8)), selected from the
initial set of descriptors, is the best QSAR model,
according to the calculated cross-validated statistical
parameters, for predicting the benzamidine structure—
complement-inhibitory activity. This model is better
than one-descriptor model previously obtained using
hierarchical approach (Basak et al., 1999a). However,

1 1 1 1 1

-.15

observed 1/logC

.33 -.3 -.28 -.25 -.23 -.2 -.,18

calculated(cross-validated)1/logC

Fig. 2. A plot of observed versus calculated (cross-validated) l/log C complement-inhibitory activity of benzamidines.
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6 5 1 L s i " 1

: observed -log(LC50)

calculated (cross-validated) -logLC50)

Fig. 3. A plot of observed versus calculated (cross-validated) —log(LCys,) benzene derivatives acute toxicities.

according to F-values one-descriptor models selected in
this paper and our previous work (Basak et al., 1999a)
appear to be better models than the model with
five-descriptors. But, the F-value is calcutated only
from the fitted correlation coefficient R and taking into

account the number of parameters optimized in the .

model. Because it is accepted. (Ortiz et al., 1997) that
the cross-validated statistical parameters give better
evidence into the model quality than fitted statistical
parameters, our final conclusions are based on
cross-validated statistical parameters, although the
prediction for compounds from an external data set
would be the best way of model quality testing. A plot
between the experimental and predicted values,
calculated in the cross-validation procedure using Eq.
(8), of 1/log C is given in Fig. 2. Computed (fitted and
leave-one-out cross-validated) 1/log C values are given
in Table 1.

3.2. QSAR of benzene derivatives

The best linear five-descriptor structure—toxicity

model of benzene derivatives selected by CROMRsel
program is: '

—log(LCs)
= 5.2032( £ 0.546) + 0.8488( -+ 0.106) P,

+1.7979( £ 0.183)%x ¥ — 0.4439( + 0.0523)E, ..,

—0.1379( + 0.0195)x — 0.2961( + 0.0927)°° WH
n=69 R=0.927 R,,=0.914 §=0.287 S,, =0.312
F=177 )
where Py is the path of length nine, %y}, valence
path-cluster connectivity index of order four, E,, is
the energy of the lowest unoccupied molecular orbital,
# is dipole moment, and 3PW,, is the 3-D Wiener
number for the hydrogen-filled structures computed
using their geometric distance matrices (Bogdanov et
al,, 1989). This model has two descriptors fewer than
the best model obtained by hierarchical approach (see
Gute and Basak, 1997) and possesses almost the same
statistical parameters.

The best linear seven-descriptor model is:

— log(LCyp)
= 4.4100( £ 0.809) 4 0.8637( £ 0.0988) P,
+2.5278( 4 0.833)%; ¥ — 3.1248( 4+ 0.655)*1 ¥
+ 1.5628( £ 0.372)%% %, — 0.44157( + 0.051)Elumo
—0.1364( + 0.018)x — 0.34054( + 0.087)*° WH
n=69 R=0940 R, =0.925 $=0.262 ., =0.291 F
=66 (10)
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where %% and “y" denote valence path connectivity
indices of order two and four, respectively, and %y}, is
the valence path-cluster conncctivity index of order
six. Other descriptors are the same as those from five-
descriptor model (Eq. (9)). This model (R?=0.884,
F=66, $=0.26) is better than the seven-descriptor
model obtained by hierarchical procedure (scc Gute
and Basak, 1997) (R?=0.863, F= 150, S =0.30), and
one can see that these two models contain three iden-
tical descriptors: Py 3PW,,, and u. Fitted and cross-
validated predicted values for all benzene derivatives
obtained using Eq. (10) are given in Table 2. A plot
between the experimental and predicted values, calcu-
lated in the cross-validation procedure using Eq. (10),
of —log(LCs,) Ts given in Fig. 3.

We also found several seven-descriptor linear multi-
regression models with better statistical prameter than
the best seven-descriptor model of Gute and Basak
(see Gute and Basak, 1997). One of them is very
similar to the model given as Eq. (10) and involving
the following set of descriptors HY, Py, %1%, Sy¥, AH,,
4, 3PW) (see Table 3 for description of descriptors),
and possessing the following statistical parameters
R=10.9398, R, =0.9245 $=0.262, S, =0292, F=
66).

In addition, we perform modeling in order to com-
pare our seven-descriptor model with the additivity
model (using eight terms, i.e. eight optimized parame-
ters) derived by Hall et al. (Hall et al., 1984). To do
this we omitted from the data set compounds 53, 57
and 65, which were identified in by Hall et al. as
outliers. For 66 compounds statistical parameters of
seven-descriptor model (Eq. (10)) are: R=0.955,
R.,=0943, §=0.225, §.,=0255 F=87). This
parameters are better than those for additivity models
obtained by Hall et al. (R=0.951, S=0.249, F=67).

4. Concluding remark

Presented results show that the optimum way to
carry out QSAR modeling is by selecting the best
descriptors in (linear, as was the case here, or nolinear
(Lucti¢ and Trinajsti¢, 1999) multiregression models.
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Instead of using the standard molecular descriptors (topological indices) for regression analysis, which are
numerically fully determined once a molecule is selected, we outline the use of variable molecular descriptors
that are modified during the search for the best regression. The approach is illustrated using boiling points
of sulfidés. We have transformed the connectivity index 'y into a function of two variables (x, y) which
differentiate carbon and sulfur atoms. The optimal values of the variables (x, y) were determined by minimizing
the standard error-of the regression. With the values x = +0.25 and y = —0.95 for carbon and sulfur,
respectively, we have obtained a regression based on a single descriptor and a standard error of 1.8 °C.
With elimination of two outliers (having a deviation of about 4 °C) the standard error is reduced to a

remarkable 1.3 °C.

INTRODUCTION

The past decade has witnessed two important develop-
ments of multivariate regression analysis, MRA, relevant
for quantitative structure—property-activity relationship,
QSAR: (1) expansion of mathematical structural descriptors
for characterization of molecular structure;!=5 (2) construction
of orthogonal molecular descriptors®~'? which result in stable
regression equations. The first, which is of interest when
better regressions are sought, is rather conspicuous, while
the second, which is important for interpretation of the results
of such studies, remains not yet sufficiently widely appreci-
ated.

In this paper we will address the problem of construction
of high-quality regressions (HQR). With hundreds of de-
scriptors available'3~" the questions to consider are as
follows: (1) How should an optimal set of descriptors be
chosen from a large number of available descriptors? (2)
How should one chose between regressions of seemingly
similar quality? (3) How unique are regression results? (4)
Are there important structural elements missed by the
descriptors used? (5) How complete is the space spanned
by molecular descriptors for the structure—property-activity
studies? (6) Do we need additional molecular descriptors?

HIGH-QUALITY REGRESSIONS

The standard error in most correlations still does not
approach the experimental error of measurements. How
realistic is it to hope to arrive at this goal? As we will show,
HQR, in which the standard error has been dramatically
reduced in comparison with traditional approaches using the
same number of descriptors, can be derived with a new kind
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Table 1. Standard error for the Boiling Points of Smaller Sulfides
(n = 21 Compounds) for Selection of Descriptors

descriptors standard error descriptors standard error
7 2.001 1 2.701
1Ln 2.550 n,J 2.748
1P 2.560 n, palwa 2.981
W 2.667 LW 4.808
1> palwa 2.692 w,P 5.109

of molecular descriptors which involve variability that allows
one to optimize the descriptors and minimize the standard
error of regression.

In Table 1 we illustrate the standard errors for correlations
of the boiling points of smaller sulfides (shown in Figure 1)
using a selection of molecular descriptors. When the con-
nectivity index!® is used alone, we find the standard error of
the regression is 2.70 °C, as shown in the middle of Table
1. When the connectivity index is combined with Balaban’s
J index,7 the standard error is further reduced to 2.00 °C.
Other descriptors, viz., n, the number of non-hydrogen atoms,
P3, the number of paths of length 3, W, the Wiener index,!®
and the pyw;, path/walk quotients,'” give only a minor
improvement for the standard error over that based on 'y
used alone. In contrast other combinations of molecular
descriptors (listed in the right part of Table 1) do not give
satisfactory results. The standard error in such combinations
is worse than the standard error when the connectivity index
is used as a single descriptor, which well-illustrates the
importance of the proper selection of molecular descriptors.

The compounds considered here were among 45 saturated
acyclic compounds possessing divalent sulfur atoms for
which Balaban et al.2? found reliable literature data. We took
all compounds having six or fewer carbon atoms, a total of
21, and have recalculated the regressions for only these
smaller sulfides. The study of Balaban and co-workers -
considered a broader class of compounds: 185 saturated
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Figure 1. Molecular graphs of smaller sulfides and their boiling
points. The sulfur atoms are shown as a filled circle.

acyclic compounds possessing divalent oxygen or sulfur
atoms, and devoid of hydrogen bonding, having 11 or less
non-hydrogen atoms. Their purpose was as follows: (i) to
explore the role of heteroatoms within acyclic skeletons in
determining a measured molecular property (boiling points);
(ii) to show that topological descriptors can satisfactorily
account for the observed relative magnitudes of the property;
and (iii) to derive structure—property regressions that may
be useful for predicting boiling points of unknown com-
pounds.

RANDIC AND BASAK

Our objectives arc the same, but our philosophy in this
particular study is somewhat different: Rather than consider-
ing a large set of mixed compounds (alkanes, ethers, diethers,
acetals, and peroxides as well as their sulfur analogues:
sulfides (thioethers), bis-sulfides, thioacetals, and disulfides),
which allows one to use several molecular descriptors and
still maintain high statistical significance for the correlation,
we decided to use only structurally closely related com-
pounds. In particular, we excluded bis-sulfides and disulfides
because of the presence of S—S linkage that is absent in
sulfides. This has reduced the pool of the compounds
considerably, which limits the number of descriptors that one
should use in analyzing the data. By homogenizing the
sample of the compounds to be examined, as we will see,
we can achieve a very high quality regression result using a
single descriptor.

As we see from Table 1, apparently it is difficult to reduce
the standard error for the boiling points of sulfides below
2.5 °C. Among the combinations listed in Table 1, only
Balaban’s J reduced the standard error below 2.5 °C. This
may not be surprising because all descriptors of Table 1
except J do not differentiate sulfur and carbon atoms. Hence,
2.5 °C may well be the limit that such models can attain,
The experimental boiling points for butylmethyl sulfide (7)
and ethylpropy! sulfide (9), 123.2 and 118.5 °C, respectively,
differ by almost 5 °C. If we overlook the difference between
sulfur and carbon, both these structures have the same
molecular graph. The same is true for ethylisopropyl sulfide
(6) and isobutylmethyl sulfide (8), with the boiling points
107.4 and 112.5 °C, respectively. Hence, the simple con-
nectivity index and other topological indices that do not
discriminate heteroatoms can at best approach the standard
error of about 2.5 °C.

Observe that the descriptors listed in Table I are of quite
distinct structural origin and thus do not duplicate one
another. However, many of such indices, even when com-
bined (the right part of Table 1), apparently lack flexibility
to represent the data with desirable accuracy. Using descrip-
tors that differentiate heteroatoms, we reach a standard error
of about 2 °C. The question to consider is as follows: Can
the standard error of 2 °C obtained using !y and J be further
dramatically reduced? Have we reached the limit for cor-
relating the boiling points of sulfides? Is it that the residual
of the molecular property considered cannot be described
by any of the available structural descriptors?

FLEXIBLE MOLECULAR DESCRIPTORS

In order to develop a high-quality regression, we not only
need new descriptors but we need a new kind of molecular
descriptors that have the flexibility to adjust to the variability
that different molecules may show. One such descriptor has
been introduced in the multiple regression analysis 10 years
ago,"22 but apparently has been mostly overlooked. That
novelty can be ignored or overlooked has already been
well-illustrated by the Wiener index W, which waited two
decades to be resurrected. In order to not repeat that history,
we undertook a concerted effort to illustrate properties of
variable descriptors, and the variable connectivity index, in
particular.>~2¢ The variable connectivity index represents an
important and distinct generalization of the connectivity index
'y since it offers a flexibility that traditional topological
indices, all several hundred of them, have been lacking.
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We propose here a special symbol, 'y, for the flexible
connectivity, index which is to be outlined shortly. The
original connectivity index 'y (named so by Kier et al.?’),.
proposed by Randic,'6 used a fixed number as entries in the
weighting algorithm 1/(pg)"? for the contribution of a bond
having p and ¢ neighbors. The higher order connectivity
indices, ™y, were defined analogously using paths of length
m, for m = 2, 3, .... The bonding connectivity indices, 'y®,
were considered by Basak and Magnuson® on the basis of
weights equal to the number of bonds of an atom: 1 for a
single bond, 2 for a double bond, and 3 for a triple bond.
The valence connectivity indices, 'y, developed by Kier and
Hall,® use the difference in valence electrons and the number
of hydrogen atoms to modify the valence parameter for
heteroatoms. Finally “edge connectivity” indices were re-
cently tested using bond adjacency rather than vertex
adjacency in construction of the modified connectivity
indices.!

All the above indices, except 'yf, are based on fixed
weights determined by the connectivity of the molecular
graph model used. In our view, a better strategy is to
introduce weights that make descriptors “flexible”, so not
only that atoms of different type can adjust their weights in
order to yield an optimal characterization of a molecule for
a particular property but that they may change values when
different properties of the same set of molecules are
considered. In general, for a molecule with n different types
of atoms, x, X3, ..., X, one can have n different weights x; (i
=1, 2, .., n); hence, the flexible connectivity index 'yf
becomes a function of n variables. In the case of sulfides,
we consider two variables, the weights of carbon and sulfur
atoms. In the case of natural amino acids there are four kinds
of atoms: carbon, oxygen, nitrogen, and sulfur; hence, in
this case flexible connectivity indices 'yfimply optimization
of four variables.?* Even if there are no heteroatoms, variable
weights can improve regressions visibly.?

It should be noted that while the special types of
connectivity indices, viz., ™y, ™x®, and ™" indices, explore
only local regions of the parameter space, the ™y indices
are capable of exploring the full potential of the parameter
space generated by the presence of heteroatoms in a
molecule. The previously mentioned simple connectivity
indices and valence connectivity indices can be viewed as a
special case of the more general flexible indices ™y .
Consequently, the flexible indices ™y are expected to be
more powerful in predicting molecular properties and
biological activities.

Besides the weighted connectivity indices,?! ~26 many other
topological indices, e.g. the weighted paths p,f32734 the
weighted walks, w,f, the weighted Hosoya index Zf, the
weighted Wiener index WY, and the weighted Balaban index
Jf, can be generalized in a similar way.3% Except for a half-
dozen papers of the present authors,2! 2632734 yse of variable
molecular descriptors is in its infancy.

Dramatic improvement in the quality of regressions was
obtained by using variable connectivity indices. For example,
by introducing a variable parameter x for chlorine in
clonidine and clonidine-like imidazolidines (2-(arylimino)-
imidazolidines),?! the value x = —0.20 for chlorine produces
aregression which, with three weighted connectivity indices,
gave better results for the set of clonidine compounds as
compared to five descriptors used in a traditional QSAR.36
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Figure 2. Molecular graph of ethyl isopropyl sulfide and the
corresponding numbering of atoms used in Table 2.

Table 2. Adjacency Matrix and Modified Adjacency Matrix for
Ethyl Isopropyl Sulfide

adjacency matrix oW sum
1 2 3 45 6
1 010000 i
2101000 2
3010100 2
4 0 01 0 1 1 3
5000100 1
6 0 0 0 1 0.0 1
modified adjacency matrix oW sum
1 23 45 6
I x 1.0 000 1+x
2 1 x1 000 2+x
3 0Oty 1 00 2+y
4 0 01 x 1 1 3+x
50001 x 0 1+x
6 6 0 01 0 x 1+x

This result is particularly striking for this data set, because
there are two extreme potency values which would be
expected to give much trouble in cross-validation. Use of
two variables that differentiate carbon and oxygen in
alcohols, with x = +1.5 and y = —0.85, respectively, reduced
the standard error of 7 °C, obtained using the simple
connectivity index that does not differentiate carbon and
oxygen atoms, to 3.5 °C.22 In the case of amines, the standard
error of 3.48 °C for the boiling point model when !y is used
has been reduced to 1.91 °C with x = +1.25 and y =
—0.65.2 The standard error for a quadratic regression using
the connectivity index for the boiling points of smaller
alkanes is 2.98 °C. When x = +0.65 is introduced as a
weight, not only is 5 = 2.48 obtained, a reduction by a half-
degree Celsius, but higher precision allowed the recognition
of an outlier (with an error of over 6 °C), which, when
eliminated, further reduced the standard error to an impres-
sive 1.57 °C.%5

OPTIMAL DESCRIPTORS FOR SULFUR

We will examine the correlation of the boiling points for
sulfides of Figure 1 using functional molecular descriptors -
and will illustrate the use of a variable connectivity index
by considering ethy! isopropy! sulfide (shown in Figure 2
with the numbering of the atoms used). The adjacency matrix
and the modified adjacency matrix of ethyl isopropyl sulfide
are illustrated in Table 2. If we assume x = 0 and y = 0, we
obtain the usual adjacency matrix of a graph from the row
sums of which the simple connectivity index can be directly
computed. To obtain the bond contribution for 'y, we use
the algorithm 1/(p ¢)'. Here m and n are the respective
valences as obtained from the row sums for atoms m and n
forming the bond (p, q). When x # 0 and y = 0, the
corresponding row sums are modified, and instead of the
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Table 3. Modified Connectivity Index 'y for Ethy! Isopropyl
Sulfide with Different Choices of x and y

x y ¥ (x, y) x y % (x, y)
0 -1.00 439251  +025 -095  2.78049
0 -1.20 329787 0 0 2.770 06
0 -1.00  3.14626  +0.25 -0.90  2.75309
0 -0.95  3.11531 0 +050 267417
0 ~0.90  3.08649  +0.50 —1.00  2.55625
0 -0.75  3.01066  +0.50 -095 252812
0 -0.50 291056 +1.00 -1.00 2.19271
0 -0.25  2.83277  +200 -1.00 1.75229
+025  -1.00  2.80993

fixed valences p, g, we have the variable valence (p + x),
(g + x), or (g + y), depending on the kind of atoms involved.
Thus instead of the simple (“fixed”) connectivity index 'y
= 12 + 1/2 + /6 + 2//3, we have the variable
connectivity indexgiven as a function of two variables:

Yoy =1{1 + 02+ 0} "2+
{2+ 02+ NI+ 1{3G + 02+ y)}2 +
201 + 03 + 0)}”?

In Table 3 we listed selected values of the variable !y
molecular descriptor for ethyl isopropyl sulfide. As we see,
the flexible descriptor is sensitive on the choice of the values
for x and y. For a fixed value of x (carbon atom), as y
decreases and approaches —1, the magnitudes of the modified
connectivity index increase. Similarly for a fixed value of y
as x increases the magnitude of the modified connectivity
index decreases. An increase and a decrease of the modified
index is not so important as is the change of the relative
magnitudes of the indices for different molecules.

In Table 4 we have listed the expressions for the modified
connectivity indices for the set of n = 21 sulfides. In order
to illustrate the flexibility of these generalized connectivity
indices in Table 5, we listed for the selected values of x and
y the numerical values for the variable connectivity indices.
Even though for most of the structures the numerical
magnitudes have not reversed the relative magnitudes, they
altered the magnitudes of the indices for different molecules
sufficiently to influence the quality of the regression dramati-
cally. The ratios of the magnitudes of descriptors for different
molecules are important for MRA, and these do change.
Consider isopropyl propyl sulfide (14) and ethyl isobuty]
sulfide (15) with the boiling points 132.0 and 134.2 °C,
respectively. As we can see from Table 5 when x = —1/,,
and y = -1, the modified connectivity indices are as
follows: 5.059 17 and 5.092 95, giving the quotient 0.9934.
However, when x = 4!, and y = -1 the modified
connectivities are as follows: 2.956 25 and 2.992 24, and
the quotient decreases to 0.9880. These changes may appear
small; however, they are sufficient enough to influence the
standard error and make one alternative better than the other.
When such changes are summed for all molecules, consider-
able improvement in the overall standard error is possible.

In Table 6 we show the standard error as a function of
the parameters x, y, assuming a quadratic regression using n
= 19 compounds. We excluded two structures, ethyl butyl
sulfide 12 and diisopropyl sulfide 20, to be discussed later.
Using the simple connectivity index, the (0, 0) point in Table
6, the standard error is quite respectable 2.71 °C. Neverthe-
less this is about twice the magnitude of typical experimental

RANDI¢ AND BASAK

errors reported for boiling points of organic compounds (1—
1.5 °C). By keeping x constant and varying y, we see a
dramatic reduction of the standard error as we approach the
y = =1 limit. The standard error forx = 0 and y = —~1 is
about 1.5 °C smaller than the initial value (x = y = 0). With
a further change of both parameters x and y, we find the
minimum standard error of 1.326 °C (when x = +0.25 and
y = —0.95). This is less than half of the initial standard error
characterizing the “inflexible” connectivity index.

OUTLIERS

Mathematical descriptors, if correctly calculated, are error-
free. Hence, if in a correlation between an experimental
quantity and mathematical descriptors of one or more points
show larger deviation from the regression curve, this can
mean two things: Either (1) some experimental data used
are in error or (2) the descriptors used fail to capture some
relevant structural feature present in some (and absent in
other) molecules.

Whatever is the reason for the departure of a point from
the regression line, one can consider such a point as an outlier
if the departure from the correlation is more than twice the
standard error. In Figure 3 we show the quadratic correlation
for sulfides, and in Table 7 we listed the computed boiling
point and the residue. As we see from Table 7 ethyl butyl
sulfide and diisopropyl sulfide show large departures from
the regression. In Table 8 are given the regression equations
and the associated statistical parameters for all n = 21
sulfides as well as for the cases n = 19 sulfides where two
outliers have been removed respectively from the set
considered.

By eliminating the apparent outliers (12 and 20), one
substantially reduces the standard error for the quadratic
model, as can be seen from the bottom part of Table 8. The
standard error for the regression when n = 19 reaches the
respectable value of 1.33 °C and the correlation coefficient
and the Fisher ratio have increased. This signals that the
model has improved and that we were justified in eliminating
the two outliers.

In Table 9 we listed the optimal connectivity indices for
the sulfides considered, the experimental boiling points (BP),
the calculated boiling points (BPcalc), the residual of the
regression (Res), the cross-validated boiling points (xBP-
calc), and the standard error associated with cross-validation
(when leaving one entry out). For the two outliers, ethyl butyl
sulfide and diisoproyl sulfide, which were excluded when
the regression equation was derived, we calculate for the
boiling points to be 140.44 and 124.47 °C, respectively. The
first of these values is about 4 °C below the reported
experimental BP; the second value is almost 4.5 °C higher
than the reported experimental BP. The quadratic regression
without the data on the two outliers is illustrated in Figure
4.

A closer look at the last column of Table 9, which lists
the standard errors associated with the cross-validated
regressions, shows (with a single exception 13, dipropyl
sulfide) that the cross-validated standard errors differ about
+0.05 °C from the standard error of the regression (when
all n = 19 compounds are considered). Hence, disregarding
the exception which produced significantly smaller standard
error, the constancy of the cross-validated standard errors
show the robustness of this particular regression.
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Table 4. Generalized Flexible Connectivity Indices for n = 21 Sulfides (of Figure 1)

1 {1+ 02 + y)}'?
2 {1+ 02+ 032+ {2+ 02+ P2+ {0+ x)2 + )2
3 O+ 0Q+ 02+ x4+ 2) + 1{2 + Q2 + P2+ 1{(1 + 22 + y)}2
4 x4+ 2)+ 1H{Q2 + x)(2 + y)}2
S 2{(1 + )3+ )} 2+ 13 + x)2 + P2+ {1+ x)(2 + y)}2
6 2{(1+ )3+ )2+ 143 + )2 + P2+ 12+ )2 + N2+ 11+ 22 + x)}'2
7 {1+ )2+ 02+ 202 + x) + V{2 + )2 + »)}2 + 11{(1 + x)(2 + y)}2
8 {1+ )3+ )} + {3+ 02+ )2+ {2+ )2 + )2+ V{1 + )2 + y)}2
9 2{(1+ )2+ x)} + 202 + x) + 2{(2 + x)(2 + y)}'2
10 (A + )@ + 032+ {4 + )2 + y)I2 + 1{(] + )2 + y)}12
11 {1+ )2+ 02+ 312 + x) + {2 + )2 + »)}?+ {1 + )2 + y)}'?
12 2{(1 + )2+ )} + 202 + x) + 2/{(2 + x)(2 + y)}2
13 2{(1 + )2+ P2+ 22 + x) + 22 + x)(2 + y)}2
14 2{(1+ 0B+ 0} + U2+ x) + {3 + 02 + PP+ {2+ 02+ )2+ {1 + x)2 + p}~?
15 {A+ )G+ 012+ 1{B + 02 + )P2+ 21{2 + )2 + Y2+ (1 + 02 + y)}n
16 {1+ )3+ 02+ U2+ )+ {3+ 02 + )12+ Q2 + 02 + P2+ U{(1 + x)2 + y}”
17 U+ )2+ )2+ {1+ DB+ 0P2+ 202+ 03 + 012+ 1H{Q2 + 02 + y)} + V{1 + 02 + y)}e
18 C2{(1+ )2+ 02+ 11+ DB+ 02+ {2+ 006+ 0P2+ {3+ 02 + y)} 2+ {2 + x)(2 + yp2
19 A+ )2+ 02+ 31 + )3 + )} + {2 + )2 + Y2+ {4 + )2 + y)}2
20 - 41+ )3+ 02+ 203 + x)(2 + y)}2
21 I+ 02+ 02+ 1{A + )6 + 02+ 11{Q + 00 + )2+ 1{2 + 02 + I + {1+ 02 + )2

Table 5. Modified Connectivity Index 'y for Sulfide for a Selection
of Choices of x and y

0,00 (0,-05) (0,-1) (=05,-1) (+0.5,-1) (+1,-1)

1 141421 1.63299 2.00000 2.82843 1.63299 1.41421
2 191421 2.10095 2.41421 3.38541 196535 1.69271
3 241421 2.60095 2.91421 4.05208 236535 2.026 04
4 241421 256891 2.82823 3.94239 229771 197120
5 227006 244260 2.73205 3.83552 222389 191421
6 277006 291056 3.14626 4.39251 255625 219271
7 291421 3.10095 3.41421 471874 276535 2.35937
8 277006 2.956 80 3.27006 4.53596 2.65989 2.28924
9 291421 3.06891 3.32843 4.60906 2.69771 230453
10 2.560 66 2.72474 3.00000 4.21652 2.44260 2.10300
11 341421 3.60096 3.91421 538541 3.16535 2.69271
12 341421 356891 3.82843 527537 3.09771 2.63786
13 341421 356891 3.82843 527537 3.09771 2.63786
14 327006 3.41056 3.64626 5.05917 295625 2.52604
15 327006 3.42476 3.68427 5.09295 299224 2.55873
16 327006 3.45680 3.77006 5.20263 3.05989 2.61357
17 330806 3.49480 3.80806 5.31263 3.07791 2.6236!
18 3.308 06 3.448 57 3.68427 5.16918 297427 2.53608
19.3.060 67 3.19271 3.41421 4.77351 277496 2.38150
20 3.12590 3.25221 3.46410 4.84262 281479 241421
21 334607 3.51861 3.80806 5.38887 3.05994 2.60095

Table 6. Standard Error of the Regression for Different Choices of
the Variable Parameters x and y

-0.5 0 +6.25  +0.50 +1 +2

+0.50 3.273
0 2.711
-0.25 2.363
-0.50 1.966
-0.75 1.558
-0.90 1.382 1.347
~-0.95 1.356 1.326 1.380
~1 2256 1.357 1.327 1.327 1.570  2.042
-1.2 1.720

We believe that it may be possible to further improve the
regression. A close inspection of residuals shows, with very
few exceptions, that all linear structures have positive
residual, while all branched structures show a negative
residual. This suggests the possibility for further reduction
of the standard error (particularly if the exceptions are viewed
as outliers). However, such refinements should be attempted
when a larger set of compounds is considered in order to
see if the observed trend is genuine or not.

Finally, as a warning, we should add that when using
flexible descriptors, elimination of outliers may influence

160

140+

120+

80+

e 22 2% 25 28 30 3z 4 s
Figure 3. 3. Quadratic regression for the boiling points of n = 21
sulfides against the optimal connectivity index (x = +0.25, y =
—0.95).

Table 7. Calculated Boiling Points (BPcalc) and the Residual of
the Regression (Res), When All n = 21 Sulfides Are Considered

BP BPcalc Res
1 373 38.44 -1.14
2 66.6 65.53 +1.07
3 95.5 94.86 +0.64
4 92.0 90.42 +1.58
5 84.4 84.81 -0.41
6 107.4 108.01 -0.61
7 1232 121.09 +2.11
8 112.5 114.14 ~1.64
9 1185 117.14 +1.36
10 101.5 100.04 +1.46
1 145.0 144.21 +0.79
12 1442 140.75 +3.45
13 142.8 140.75 +2.05
14 132.0 132.73 -0.73
15 134.2 134.52 -0.32
16 137.0 138.12 -112
17 139.0 139.40 -0.40
18 133.6 134.05 -0.45
19 1204 121.82 -1.42
20 120.0 124.31 -4.31
21 137.0 138.94 -1.94

the optimal values for the parameters x, y, though not
necessarily dramatically.

CONCLUDING REMARKS

Several criticisms could be raised concerning the outlined
work:¥ Is it appropriate to refer to MRA using flexible
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Table 8. Linear and Quadratic Regressions for Sulfides®

n model coeff x coeff x2  constant r s F
21 linear 60.1981 -61.3339 0.9959 2.61 2291
21 quadratic 102.8180 -7.8615 —117.0919 0.9981 1.83 2328

21 orthogonal 60.1981 —-7.8615 —61.3339 0.9981 1.83 2328

19 linear 60.1057 -60.9916 0.9961 2.59 2180
19 quadratic  108.9647 —9.0423 —124.6847 0.9990 1.33 4192
19 orthogonal 60.1057 -9.0423 -60.9916 0.9990 1.33 4192

°The top part gives the regression equations and the statistical
parameters for all n = 21 sulfides; the bottom part gives the equations
when two outliers are excluded.

Table 9. Optimal Connectivity Indices for the Sulfides Considered,
the Experimental Boiling Points (BP), the Calculated Boiling Points
(BPcalc), the Residual of the Regression (Res), the Cross-Validated
Boiling Points (xBPcalc), and the Standard Error of
Cross-Validated Boiling Points

(+0.25,-0.095) BP BPcalc Res xBPcalc xstderror

1 1.745 75 373 3798 -0.68  40.65 1.31
2 2.11976 66.6 65.66 +0.94 654! 1.34
3 2.564 20 955 9527 +0.23 9523 1.37
4 2.493 37 920 90.82 +1.18  90.60 1.33
5 2.406 48 844 8517 -077 8530 1.35
6 2.780 49 107.4 108.38 -0.98 108.51 1.34
7 3.008 65 1232 12130 +1.90 120.86 1.27
8 2.88555 112.5 11445 -1.95 114.66 1.26
9 293821 118.5 11741 +1.07 11731 1.34
10 2.647 84 101.5 10044 +1.06 100.28 1.38
11 3.453 09 145.0 14376 +1.24 143.42 1.32
12 3.382 66 144.2
13 3.382 66 142.8 14044 +236 138.86 1.20
14 3.224 94 132.0 132,68 -0.68 132.74 1.38
15 3.259 56 134.2 13442 =022 134.44 1.37
16 3.32999 137.0 13790 -0.90 138.01 1.35
17 3.355 50 139.0 139.14 -0.14 139.16 1.37
18 3.250 44 133.6 133.96 -0.36 134.00 1.37
19 3.021 85 1204 122.02 -1.62 122.16 1.30

20 3.067 22 120.0
21 3.346 37 137.0 138.69 -1.69 138.94 1.29
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Figure 4. 4. Quadratic regression for the boiling points of n = 19
sulfides against the optimal connectivity index (x = +0.25, y =
~0.95). Outliers excluded 12 and 20.

descriptors as “high-quality regression”, or should it be called
“high specialty SAR”? Is one justified to arrive at low
standard error by “trimming the data set and by tweaking
the descriptor”? Would the model be any good to predict
boiling points even for other sulfides? Is the approach general
enough and sufficiently justified if we were to use QSAR
models for real world problems? Why not consider more
extensive study on a larger set of data to strengthen the case?
What is the use of a model developed by considering a quite
small, homogeneous set of compounds? Is developing a fit
with standard error less than that of the experimental error
(if that can be achieved) overfitting?

RANDIC AND BASAK

We respond to these question one by one. Variable
connectivity indices (and related variable indices) constitute
a general class of descriptors as compared to the special class
of descriptors used in QSAR (e.g. indicator variables used
in some QSAR, or hydrogen bonding descriptors used in
CODESSA) for which the attribute “high specialty” holds.
Concerning the problem of identifying outliers, these are
well-defined as points that are beyond 2 standard deviations.
There are no good reasons for their inclusion in the data set,
despite that their departure from the regression need not be
due to experimental error. Most often they are not. The
occurrence of outliers may be a signal that the set of
descriptors used to characterize molecules failed to charac-
terize some special structural features which are important
for outliers but not for most of other molecules in the set. A
close look at outliers may help one to recognize such features,
if they are not obvious. For example, correlation of the
boiling points of smaller alkanes? shows only 2,2,3,3-
tetramethylbutane was identified as an outlier (with deviation
of over 6 °C), while the standard error was 2.48 °C. By
removing this compound, standard error dropped to 2 °C.
Hence, a single compound in a set of 20 was able to increase
the standard error almost by !/, °C. Why should this
compound that has additional structural features (significant
overcrowding of methyl groups and a quaternary CC bond)
absent in the rest be included if one is interested in predicting
the boiling point of a compound which has no overcrowded
methyl groups and no quaternary CC bond?

Smaller sulfides considered (and the same has been the
case with smaller alkanes or amino acids) are molecules of
similar size. To consider large selection of compounds
necessarily brings the dominant role of molecular size into
focus as important feature. Before we do this, we should
investigate to what extent the variable weights may depend
on the size of the molecule. At the moment this is an
unresolved problem, which is the main reason for restricting
attention to smaller sets of compounds with similar size. We
should add that it is not uncommon in QSAR to consider
smaller sets of compounds, often because of limited data.
For example in a recent review of comparative QSAR
Hansch and co-workers** gave results for 189 regressions
in which only 33 had more than 20 compounds in the set,
and 156 had less than 20 compounds, that is, less than the
number of sulfides considered in this paper. If compounds
are well-selected, the resulting regressions may be of interest.
We gave here the results for smaller sulfides. If one is
interested in larger sulfides, one should select those, and if
one is interested in all sulfides, one should combine them
all. But again a question can be raised: If one is interested
in predicting the boiling point of smaller sulfides, why does
one need information of compounds that are twice its size?
It is a matter of philosophy, and while we appreciate the
merits of studying a large data basis, we also appreciate the
advantages of studying small homogeneous sets of com-
pounds. Such a study focuses attention at different aspects
of structural chemistry. In fact, one of the present author
made numerous studies on the large set of compounds using
diverse types of molecular descriptors.*0~%

Concerning “overfitting”, which is clearly undesirable, we
would like to point out that this is out of the question when
one uses a single descriptor. Overfitting is a danger in
multiple regression analysis when one uses too many
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descriptors and has too few data. One cannot have overfitting
with a single descriptor. This problem received some
attention.*® Does the variation of descriptors during the
regression poses such a threat? Definitely so, just as a
selection of descriptors from a large pool of descriptors (e.g.
in CODESSA software) does the same. The difference
between the two is that typically when using variable
connectivity index, one generates about 40 different numer-
ical alternative descriptors to choose from, CODESSA
typically chooses a half-dozen descriptors from a pool of
some 400 descriptors!

Finally we have to emphasize that while the idea of
modifying chemical graph descriptors to differentiate het-
eroatoms is not new, as is well-illustrated by the pioneering
work of Kier and Hall on valence connectivity indices,? the
idea of modifying chemical graph descriptors to differentiate
heteroatoms during the search for the best regression; that
is, the idea of variable topological indices, is new.
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We consider construction of optimal molecular descriptors to be used for multiple regression analysis
of several propertics of alcohols. The descriptors are obtained by considering shorter paths with vari-
able weight x for carbon-oxygen bond in alcohol. In particular we consider as molecular descriptors
paths of length 1, 2 and 3. The multiple regression analysis of the following molecular properties was
examined: —log S (S = solubility), CSA (cavity surface area), log P (P = octanol/water partition),
and log -y (y = infinite solution activity coefficient). By minimizing the standard error of the regres-
sion for each property we found optimal variable weight.

Keywords: Variable molecular descriptors; weighted paths; MRA; orthogonal descriptors; alcohol
properties

INTRODUCTION

Study of structure-property and structure-activity relationship continues to attract
considerable attention in chemical literature. Various statistical methods have
been found useful in such studies, including the Principal Component Analysis
(PCA) [1], the Pattern Recognition (PR) [2], the Partial Least Square method
(PLS) {3], the Artificial Neural Networks (ANN) [4]. The oldest data reduction
method, the Multiple Regression Analysis (MRA) [5], continues to be widely
used. Most applications of MRA to QSAR and SAR can be classified into one
of two types:

* Corresponding author.
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(I) Examination of large number of diverse and heterogeneous structures;
(I1) Study of smaller number of homogenous structures.

Each of these studies have their merits and will continue to be pursued. In
both cases often one starts screening a large pool of molecular descriptors from
which one selected smaller number of descriptors that are used for construction

. of regression equations, or construction of principal components. An alterna-
tive, particularly suitable when one study smaller number of structurally related

.. compounds, is to focus attention on only few molecular descriptors which are
general enough to be used in different applications [6, 7]. Such descriptors
were referred to as basis descriptors in analogy with basis vectors in linear
algebra. Advantage of basis descriptors is that they facilitate comparative anal-
ysis, because the same descriptors are used in different applications, for different
molecules and different properties. For example, Kier and Hall {8] used different
combinations of the connectivity indices for the best correlation of alkane heats
of atomization and alkane heats of formation. If, however, one restrict search for
best correlation for the two properties to the same connectivity indices one finds
that the two properties are strictly collinear, the fact that is obscured when one
uses different descriptors because the two samples of structures are somewhat
different.

Despite its wide use MRA was viewed by some as deficient, because as a rule
introduction of an additional descriptor in the analysis causes dramatic changes
of the contributions of already used descriptors. Because of this pronounced
instability of the regression equations it is not possible to interpret the results in
terms of the relative role of the descriptors used. This deficiency (which inciden-
tally is not confined solely to MRA) has been traced to mutual interrelation of
descriptors [9-13]. If the descriptors used are to a greater extend independent of
one another one observes but a minor variations of the coefficients of the regres-
sion equation if a descriptor is included or excluded. However use of moderately
and highly intercorrelated descriptors, which often cannot be avoided, results in
pronounced instability of the regression equation. This is particularly visible
when one introduces descriptors one at a time in a stepwise regression.

This very unsatisfactory affair has been tolerated because despite the insta-
bility of the regression equations each additional relevant descriptor decreases
the standard error of prediction for the property considered. Thus the equation
offers useful predictions but it does not offer useful interpretation. This MRA
nightmare — as some have referred to it — is no more. With introduction of
orthogonalization procedure for molecular descriptors not only that the regres-
sion equation becomes stable but the error of the coefficients reduces with intro-
duction of each additional relevant descriptor [12]. While some have recognized
the significance of using orthogonal molecular descriptors [ 14-16] apparently
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others still do not appreciate or are unaware of the novel situation, which for
the first time makes possible to interpret the relative contributions of descrip-
tors used.

We will refer to MRA using molecular descriptors as MORA, the Multi-
variate Orthogonal Regression Analysis. It has been shown that MORA and

_ MRA remain related so that one can obtain orthogonalized regression equation

form MRA by stepwise regression [9, 10]. With this remedy MRA not only
remains a very viable data reduction method for QSAR and QSPR, but in some
way may again become the method of choice, despite the fact that researchers
in the field are free to be reluctant to use a new method! In our opinion MORA
has an important advantage over PCA. MORA, just as PCA, uses orthogonal
descriptors but in contrast to PCA the descriptors used in MORA can be inter-
preted in terms of the structural meaning of the initial descriptors. In contrast
the linear combinations that define the principal components have, at best, a
vague interpretation (i.e., as bulk, cohesiveness, etc.). Not only that it is hard
to visualize what such linear combinations of descriptors represent, the descrip-
tors that define the principal components are themselves not orthogonal, despite
that the principal components are mutually orthogonal. So we are in no better
situation, as far as an interpretation of the results of PCA is concerned, then we
have been with MRA in the time of instabilities of the regression equations!

OPTIMAL MOLECULAR DESCRIPTORS

With hundreds of molecular descriptors available [17—-19] immediately one is
confronted with decision concerning selection of descriptors. The choices to
consider are: (a) select a subset of “the best” descriptors from a large pool of
available descriptors; (b) use a limited set (of “well ordered” structurally related
descriptors, the basis; (c) use as few as possible descriptors that are suitably
optimized for the particular application. We will refer to the last alternative
as use of optimal molecular descriptors. In the first case we put “the best”
under quotes because the outcome will depend on the criteria used to select
descriptors. Current practice that many adopted of excluding descriptors that
are highly intercorrelated to descriptors already selected, as argued elsewhere
(20, 21], has no theoretical justification. We also put “well ordered” under quotes
because ordering of descriptors will influence interpretation, even though it will
not influence the statistical parameters of the regression analysis.

Optimization of molecular descriptors is relatively novel technique in QSAR
and SAR that has been for the most part overlooked. It is generally recog-
nized that the presence of heteroatoms in a molecule requires use of additional
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molecular descriptors. However, these additional descriptors to be used for C-X
bonds (X can be O, N, ClI, etc.) are usually in advance prescribed, using some
physicochemical analogy or data. For example, Kier and Hall introduced the
valence connectivity indices by assigning to atoms valence parameter based on
the count of valence electrons of each atom [22]. Another possibility, perhaps
not so widely known, uses covalent radii of carbon and other atoms in deriving
parameters to differentiate atoms of different kind [23]. In contrast one of the
present authors considered variable weight as an entry on the main diagonal of
the adjacency matrix of a molecular graph. For example, for ethyl alcohol one
would have for so generalized adjacency matrix:

010 x 1 0
1 01 or I x O
0 1 vy 01 vy

Here x, and y represent variables describing carbon and oxygen atom respec-
tively. Using x and y as variables one can construct the connectivity indices (or
connectivity weighted paths) and search for best values of x and y that would
minimize the standard error in the regression analysis of the property of interest
[24]. For example, in the case of boiling points of alcohols one finds x = 1.50 and
y = —0.85 to result in the smallest standard error. Use of the diagonal entries has
been already considered some time ago in chemical documentation by Spialter
who developed alphanumeric matrices for a representation of chemical structure
[25]. The difference is however, that rather than using symbols C and O (corre-
sponding to x and y) here we search for numerical parameters that result in the
best regression. In the case of chlorine atom the diagonal entry y = —20 [26]
was found to give a better regression that approaches based on the “traditional”
(i.e., the approaches following Hansch’s methodology [27]) molecular descrip-
tors. Similarly, in the case of nitrogen containing molecules the diagonal entries
x = 1.25 for carbon and y = —0.65 for nitrogen give the optimal solution for the
boiling points of amines {28].

All the above cases relate to the connectivity indices and paths when
weighted using the same weighting algorithm. However, variable descriptors
can be constructed for other topological indices besides the connectivity indices.
Construction of these variable generalizations of the Wiener index [29] and the
Hosoya index [30] have been recently outlined [31]. Recently variable weights
have been considered for path numbers {32, 33]. We continue with exploration
of optimally weighted path numbers for characterization of molecules in
this article.

>
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WEIGHTED PATH NUMBERS

Path numbers have been suggested fifty years ago by Platt as potentially useful
molecular descriptors [34]. Apparently the contribution of Platt, despite its
importance, has been overlooked till a revived interest in chemical graph theory
emerged in mid 1970’s. Apparently through a series of papers [35-43] Randié
and Wilkins resurrected path numbers and have illustrated use of paths for
characterization of molecules and their fragments. Later Randic and coworkers

" [44-49] introduced weights for paths of different length by weighting the
- contributions of bonds and longer paths by using 1/4/(m n) as the weight for

individual bonds involved. Weighted paths are also implied in construction of

- higher order connectivity indices [50]. All these cases, however, used rigidly

prescribed weighting scheme, which, once adopted does not change.

As already mentioned the use of the diagonal entries of the adjacency matrix
as variable input initiated construction of new kind of molecular descriptors.
In contrast to hitherto used topological indices and other descriptors the new
descriptors have an inherent flexibility that allows them to be constructed so to
minimize the standard error in a regression. Very recently this kind of flexibility
associated with variable weights has been extended to construction of weighted
molecular paths. This has lead to generalized Wiener number [32], and gener-
alized path numbers [33] already mentioned. Formally the Wiener number can
be written as:

W=1p +2p,+3p;+4p,+---+kp,

where p;, py, ps, ... are the number of paths of length one, length two, length
three, etc. The above can be viewed as dot product of vectors L = (1,2,3,4,...k)
and vector P = (p;, p,, ps, - - . p). If now one introduces vectors L™ of the form
@am,2m,3™, ... k™) the dot product W becomes function of the exponent m,
i.e., instead of W we have now W(m). Here one treats m as variable and, for

'example, in the case of alkanes the best quadratic fit of motor octane numbers

is obtained when m = —1.50 while the best quadratic fit for the boiling points
of alkanes is obtained when m = 1.90.

Randi¢ and Pompe [33] considered a different kind of weights for paths when
examining the molar refraction of unsaturated hydrocarbons. They associated the
weight x to individual C=C bond in alkenes and assigned the weight x to all
paths that involve C=C bond. This approach applies equally to characterization
of heterobonds, as illustrated by Randic and Basak when revisiting the correla-
tion of the boiling points of alcohols [51]. In Table I we give the enumeration
of weighted path for 3-methyl-1-butanol and 2-pentanol, which if one does
not differentiates CC and CO bonds would give the same path count 5, 5, 3,
2, instead of 4 +x, 4 +x, 2+x, 2x and 4 + X, 3+2x,24x, 14+x respectively.
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TABLE 1 Weighted paths for 3-methyl-I-butanol and 2-pentanol

3-Methyl-1-butanol 2-Pentanol
atom P ] P3 P4 atom  p, P2 P3 P4
I+x 1 2 | 1 1+x 1 l
2 2+x 2 2+x 1 |
3 I X 3 2 2+x
I 2 | X 4 2 1 I+x
I 2 1 X 5 1 1 1 1+x
X X X 2x 6 X 2x X X
olecule:
4+x 4+x 2+x 2x 4+x 4+2x 2+x l+x

Clearly when x = 1 the two path vectors are identical, but already setting x = 1.1
or x = 0.9 results in differentiation between the two isomers. In the case of molar
refraction of heptene isomers when using three path numbers the value of x = 0.6
leads to an impressive reduction in the standard error (s = 0.08).

REVIEW OF THE EXPERIMENTAL DATA USED

QSAR and SAR studies often point to FEW experimental points that do not fit
well the derived correlation. So identified outliers are then omitted from correla-
tions with some justification, even though the source for the disagreement is not
known and need not be attributed to presumed experimental error. It is possible
that some outliers have unrecognized structural features which the descriptors
used can not adequately characterize that makes them exceptional. Neverthe-
less, by being different than other compounds under analysis, the outliers may
legitimately be eliminated from considerations. In our study, as will be seen
shortly we were able to identify one such outlier even before starting the regres-
sion analysis. Having several properties of alcohols available we decided first
to review property-property correlations of alcohols to be studied. This pointed
to a discrepancy for the experimental data of 2-hexanol.

We have selected the following properties of alcohols: (a) water solubility
(—log S); (b) cavity surface area (CSA); (c) octanol water partition (log P); and
(d) infinite dilution activity coefficient (In+y ). Already in ref. [51] we examined
the boiling points of alcohols. All these properties have been recently studied by
MRA using alternative molecular descriptors by Cao and Li for —log S, CSA,
and log P [52], and by Mitchell and Jurs for In+y [53]. A set of n = 50 alcohols
were used when considering —log S and CSA, a set of n = 38 alcohols were
used in log P study and a set of n = 43 alcohols were used for In+ study. In
Table II we collected the experimental data for a subset of alcohols studies in
ref. [51-53].
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TABLE II Common experimental data for different sets of alcohols studied (including
boiling points studied in ref. [20])

Alcohol ' ~log § CSA log P Invy b. p.
I-butanol 0 272.1 0.88 392 117.7
2M-1-propanol -0.01 263.8 0.61 3.89 1079
1-Pentanot 0.58 303.9 1.40 5.29 137.8
3M-1-butanol 0.51 2914 1.14 5.34 131.2
2M-1-butanol 0.46 289.4 1.14 5.08 1287
2-Pentanol 0.28 2959 1.14 457 119.0
1-Hexanol 1.21 3357 2.03 6.68 - 157.0
2-Hexanol 0.87 3217 1.61 5.64 1399
3-Hexanol 0.80 3253 1.61 5.85 135.4
3M-3-pentanol 0.36 305.8 1.39 4.85 1224
2M-2-pentanol 0.49 3143 1.39 5.14 121.4
2M-3-pentanol 0.70 3143 1.41 5.63 126.5
3M-2-pentanol 0.71 3113 1.41 5.66 134.2
2,3MM-2-butanol 0.37 301.2 1.17 4.88 118.6
3,3MM-2-butanol 0.61 296.7 1.19 543 120.0
4M-2-pentanol 0.79 3149 141 5.86 131.7
1-Heptanol 1.81 367.5 234 8.09 176.3
2M-2-hexanol 1.07 346.1 1.87 6.49 1425
3M-3-hexanol 0.98 337.7 1.87 6.29 1424
3E-3-pentanol 0.83 3244 1.87 5.94 1425
2,3MM-2-pentanol 0.87 323.8 1.67 6.02 139.7
2,3MM-3-pentanol 0.84 3218 1.67 5.96 139.0
2,4MM-3-pentanol 1.22 3317 1.71 6.82 138.8
2,2-MM-3-pentanol 1.15 326.1 1.69 6.66 136.0
1-Octanol 235 3994 2.84 9.56 195.2
2,2,3MMM-3-pentanol 1.27 3352 1.99 6.95 1522
1-Nonanol 3.00 4312 3.15 11.0 213.1

In Figure 1 we illustrate the correlations for the properties listed in Table II.
In Figure 1a — Figure 1d we show correlation of the four properties consid-
ered here (—log S, CSA, log P and In+) with the boiling points of alcohols.
The correlations between the four properties among themselves (included in
Table III) show similar behavior, similar scatter of points, with a single excep-
tion. The exceptional is the correlation between the two solubilities — log S and
Inv , shown in Figure le, which display extremely high correlation. While for
most other property-property correlations of Table III the regression coefficients
is between r =0.950 and r = 0.990 the correlation of —log S and In~y have
r=0.998. That —log S and In-y make exceptional correlation is even better
reflected in Fisher ratio, which for all mutual property-property correlations is
below 500, but —log S and In~y have impressive F close to 7000.

It is clear from Figure le that a single point appears to be an outlier, most
likely an experimental error either in —log S or In+. When this point (that
belongs to 2-hexanol) is eliminated the revised regression (shown in the lower
part of Table III and indicated by an asterisk) of —log S and Iny shows a
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FIGURE 1 Correlations between different experimental properties of smaller alcohols. Illustrations
(a) — (d): Correlations with their experimental boiling points: Negative logarithm of solubility S;
critical surface area CSA; logarithm of octanol/water partition P; natural logarithm of solublility -,
respectively. Illustration (e): Correlation between the solubilities —log S and In~.
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TABLE III Comparison of correlation parameters for
property-property correlations of alcohols. The asterisk (*)
indicates the regression in which outlier was removed

Property-property r s F
—log S/b.p. 0.9705 0.161 404
- CSA/Mb.p. 0.9499 11.15 231
log P/b.p. 0.9620 0.153 310
In gh.p. 0.9669 0.400 359
—log S/Invy 0.9982 0.040 6873
CSA/Iny 0.9721 8.372 429
log P/Iny 0.9645 0.147 334
~log S/log P 0.9674 0.169 364
CSA/log P 0.9843 6.296 778
—log S/CSA 0.9752 0.1479 486
—log $*/Iny* 0.9993 0.026 16,752
3t
2 -
»
8
SO °
0 L.
-1 i i i 1 L i i 1 1 i ' 1 1
3 4 5 6 7 8 9 10 1"
Iny

(e)
FIGURE 1 (Continued).

dramatic improvement (r =0.999 and F is over 16,750). This further supports

the suspicion that one of the experimental results for 2-hexanol was in error.
That the selected alcohol properties show limited correlation (except for

already mentioned intercorrelation of the two solubilities) points to the fact
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that different properties are dominated by different structural factors and will
require different molecular descriptors. Clearly the considered properties can
not be reduced to the same structural features, which for itself speaks why we
need different molecular indices and should continue to design novel topological
descriptors.

That 2-hexanol is an outlier is even better visible in Figure 2 in which we
show the same regressions between —log S and In+ but have limited the set
of alcohols to isomers of 1-hexanol. In this way we eliminated the dominant
role of molecular size (since we consider only alcohols having the same number
of carbon atoms). In Table IV we give the statistical data for regressions the
corresponding regressions when considering n = 10 hexanols. As we see from
Table IV the statistical parameters have changed dramatically not only because
we have a smaller sample but it is much harder to fit data for molecules of
a same size than correlating data for molecules of different size. The standard
error which now reflects the isomeric variations has decreased but the correlation
coefficient also decreased, because it is more difficult to correlate that part of a
property that does not depend on size than the part of the property that is size
dependent. That 2-hexanol is outlier is now reflected in an unusual increase (by

13
1.2
1.1
1.0
0.9
0.8
"? 0.7
0.6
05}
04

T T T T T T T T T

T

48 50 52 54 56 58 60 62 64 66 68
Iny

FIGURE 2 The regression between the solubilities —log S and In<y for subset of isomers of
1-hexanol.
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TABLE IV Comparison of correlation parameters for prop-
erty-property correlations for the subset of heptanols only.
The asterisk (*) indicates the regression in which outlicr was

removed

Property-property r s F

Iny/(-log S) 0.9790 0.1163 184.9
- *Iny/(—log S) 0.9987 0.0313 2658.2

b. p/CSA 0.8932 5.6100 31.6
) log P/b.p. 0.9484 0.0827 71.5

In+/b.p. 0.9003 0.2486 34.2

an order of magnitude) of the Fisher ratio for regression including and excluding
2-hexanol.

WEIGHTED PATHS AS DESCRIPTORS

Even though correlations between different properties may vary considerably a
single set of well selected molecular descriptors, may nevertheless provide a
basis for their regression analysis. This has been already illustrated using a set
of the connectivity indices in correlating different physicochemical properties
of alkanes [54, 55]. However all previous such studies were based on “fixed”
molecular descriptors (topological indices). It is of interest to see how variable
molecular topological indices using an optimization procedure to determine the
best set of descriptors would describe different molecular properties for the same
very sets of compounds.

In Table V we listed the count of smaller paths in alcohols by discriminating
C-0 bond to which we give weight x. For p, this simply increases the count of
CC bonds by x, but even this increment may be different for different properties.

RESULTS

We should not be surprised that the weights of paths x vary when we consider
different properties even for the same set of compounds. We have seen already
that different molecular properties, particularly when focusing attention to
isomeric variations, do not correlate at all one with another.

We have previously reported a quite successful correlation for alcohol boiling
points when using variable path numbers. In the case of alcohols it was found
that optimal weight for CO bond x = 2.2 reduced the standard error to s = 4.82
when path numbers p, and p, were used as descriptors, and to s = 4.78 when
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TABLE V  Count of smaller paths in alcohols with CO having weight x

Alcohol P D2 P3 P4 Ps
1-Butanol 3+x 2+X 1+x 0 0
2M-1-propanol 3+x 34x 2x 0 0
1-Pentanol 44+x 3+x 2+x I+x 0
3M-1-butanol 44+x 4+x 2+x 1+x 0
2M-1-butanol 4+x 4+x 2+2x X 0

. 2-Pentanol 44+4x 3+ 2x 2+x 1+x 0
1-Hexanol S5+x 4+x 3+x 2+x T+x
2-Hexanol S+x 44 2x 3+x 2+x I+x

- 3-Hexanol S+x 44 2x 3+2x 2+x 1
3M-3-pentanol 5+x 5+3x 4+2x 1 0
2M-2-pentanol S5+x 5+3x 3+x 2+x 0
2M-3-pentanol S+x 5+2x 3+43x 2 0
3M-2-pentanol 5+x S+2x 44+ 2x l+x 0
2,3MM-2-butanol S+x 6+ 3x 4+ 2x 0 0
3,3MM-2-butanol 5+x 7+2x 3+3x 0 0
4M-2-pentanol 5+x 5+ 2x 3+x 2+2x 0
1-Heptanol 6+x S+x 4+x 3+x 2+x
2M-2-hexanol 6+x 6+ 3x 4+x 3+x 2+x
3M-3-hexanol 6+x 6+ 3x 5+2x 3+x 1
3E-3-pentanol 6+x 6+ 3x 6+ 3x 3 0
2,3MM-2-pentanol 6+x 7 +3x 6+2x 2+x (]
2,3MM-3-pentanol 6+x 7+ 3x 6+3x 2 0
2,4MM-3-pentanol 6+x 7+2x 4 +4x 4 0
2,2-MM-3-pentanol 6+x 8+ 2x 4 +4x 3 0
1-Octanol T+x 6+x S+x 4+x 3+x
2,2,3MMM-3-pentanol T+x 9+3x 8+4dx 3 0
I-Nonanol 8+x T+x 6+x 5+x 4+x

path numbers p,, p, and p; were used as descriptors. The above results can
be compared with the standard error of 9°C, obtained by Nikolic, Trinajstié,
and Mihalié [56], who considered the Wiener number, the Shultz index, and
the valence connectivity index as descriptors. Admittedly these authors consid-
ered regressions based on a single descriptor in order to evaluate the relative
merits of individual descriptors. Hence, the standard error of 9°C is not directly
comparable to the standard error when one uses two or more descriptors (which
can drop to bellow 5°C). However, if one is interested in obtaining the best
regression having statistical significance and giving as small as possible stan-
dard error than clearly the procedure based on optimally weighted paths has, as
demonstrated, its advantages.

A number of interesting questions can be posed: (1) Does the optimal weight
depends on compounds (alcohols) selected? In particular, does it depend on
the size of molecules? (2) Does the optimal value of x depends on the number
of parameters used? (3) Does the optimal values for x depends on the prop-
erty considered? Here we will focus on the last two questions. In Table VI we
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TABLE VI Dependence of the statistical para-
meters on the CO bond weight. The optimal
value of the weight x is emphasized

(a) Surface cavity area (CSA)

z r s F

-1 0.9645 15.070 205
0 0.9952 5.583 1588
0.3 0.9977 3.865 3330
0.5 0.9980 3.599 3842
0.7 0.9976 3918 3241
1 0.9964 4.848 2111
1.5 0.9937 6.382 1212
2 0.9913 1722 868
2.5 0.9893 8.337 704
3 0.9877 8.934 611
35 0.9863 9.497 549
4 0.9854 9.734 512
5 0.9838 10.239 461
6 0.9827 10.585 431
7 0.9818 10.835 410

(b) Water solubilities (— log S)

1 0.9883 0.1653 644

1.5 0.9925 0.1325 1011

2 0.9946 0.1127 1402

24 0.9954 0.1038 1655

25 0.9955 0.1023 1706

2.6 0.9956 0.1018 1721

3 0.9959 0.0975 1879

35 0.9961 0.0961 1932

. 4 0.9961 0.0960 1941
' 5 0.9959 0.0981 1855
6 0.9907 0.1011 1749

7 0.9954 0.1039 1655

(c) Octanol -Water partition (log P)

1 0.9845 0.1369 358
1.5 0.9873 0.1240 439
2 0.9885 0.1183 483
2.25 0.9887 0.1170 498
2.5 0.9889 0.1160 503.1
3 0.9890 0.1156 506.3
325 0.9890 0.1157 505.8
35 0.9890 0.1158 504.6
4 0.9886 0.1175 491

show the dependence of the statistical parameters r, s, and F on the weight
x for each property separately. As we see from Table VI even though we
have essentially the same set of compounds the optimal weights vary from
property to property displaying dramatic changes. For each property we gave
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TABLE VI (Continued)
(d) Infinite dilution activity coefficient (In)

k- r s F
1 0.9974 0.4021 2493
2 0.9989 0.2674 5656
3 0.9992 0.2174 8564
4 0.9994 0.1995 10173
5 0.9994 0.1892 11307
6 0.9994 0.1854 11782
7 0.9995 0.1836 12007
8 0.9995 0.1829 12100
9 0.9995 0.1827 12124

10 0.9995 0.1828 12112

12 0.9995 0.1834 12039

15 0.9995 0.1844 11903

the correlation coefficient r, the standard error s, and the Fisher ratio F, as
they vary with x, which has been confined to the appropriate domains. In
view of relatively small number of molecules in each set (between 38 and
50) we limited the number of descriptors at most three and have used P1» P2
and p;.

For CSA the best value found for the weight (which is emphasized in
Table VI) is: x = 0.5, the value x = 3 is optimal for log P regression, the value
x =4 is optimal for —log S, and finally the value x = 9 is the optimal value for
Iny . These values of x may be compared to x = 2.2 found as the best value for
the boiling points of alcohols. Hence, clearly the weight x critically depends on
the property considered.

The increase of the weight X means that the role of C—O bond relative to
C-C bonds is gaining in the importance. In Figure 3a we have illustrated for
the regression of —log S against the weighted paths P> P2» P; the variation
of the standard error s against the weight x while in Figure 3b the similar
dependence of the standard error s against the weight x is shown for CSA. Both
figures show the position of the minimum which corresponds to the optimal
weight for x and show a characteristic asymmetric shape of the dependence of
s(x) similar in shape to potential curves for a diatomic molecules, or parts of
such curves.

Table VII lists the optimal paths p, and p, for the common 27 alcohols (for
which data on all four properties were available) when optimal values of x
are selected for each property. The optimal path p, are not listed and can be
easily derived using expression p; = nCC + x, where nCC is the number of CC
bonds in a molecule. The occurrence of different weights for different prop-
erties introduces changes in the relative role of shorter and longer paths for
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FIGURE 3 (a) Variation of the standard error s against the weight z for the regression of —log S
using weighted paths py, P2, P3 a8 descriptors; (b) Variation of the standard error s against the
weight x for the regression of CSA using weighted paths p;, p3. P3 a8 descriptors.
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TABLE VII  The optimal weighted paths p, and p, for the five properties of alcohols

Alcohol —log § CSA log P In
z=4 z=0.5 r=3 r=9

1-Butanol 6 5 2.5 1.5 5 4 11 10
2M-1-propanol 7 8 35 1 6 6 12 18
1-Pentanol 7 6 35 25 6 5 12 11
3M-1-butanol 8 6 4.5 25 7 5 13 11
2M-1-butanol 8 10 4.5 3 7 8 13 20
2-Pentanol 11 6 4 25 9 5 21 11
1-Hexanol 8 7 45 35 7 6 13 12
2-Hexanol 12 7 S 35 10 6 22 12
3-Hexanol 12 11 5 4 10 9 22 21
3M-3-pentanol 17 12 6.5 5 14 10 32 22
2M-2-pentanol 17 7 6.5 35 14 6 32 12
2M-3-pentanol 13 15 6 45 11 12 23 30
3M-2-pentanol 13 12 6 5 i1 10 23 22
2,3MM-2-butanol 18 12 1.5 5 15 10 33 22
3,3MM-2-butanol 15 15 8 45 13 12 25 30
4M-2-pentanol 13 7 6 35 11 6 23 12
1-Heptanol 9 8 55 4.5 8 7 14 13
2M-2-hexanol 18 8 1.5 4.5 15 7 33 13
3M-3-hexanol 18 13 1.5 6 15 11 33 23
3E-3-pentanol 18 18 7.5 15 15 15 33 33
2,3MM-2-pentanol 19 14 8.5 7 16 11 34 24
2,3MM-3-pentanol 19 18 8.5 15 16 15 34 33
2,4MM-3-pentanol 15 20 8 6 13 16 25 40
2,2-MM-3-pentanol 16 20 9 6 14 16 26 40
1-Octanol 10 9 65 . 55 9 8 15 14
2,2,3MMM-3-pentanol 22 24 11.5 10 19 20 36 44
1-Nonanol 1 10 1.5 6.5 10 9 16 15

different structures. Consider for example 2-methyl-1-butanol and 2-pentanol
(of Table II). When x = 0.5 (the optimal value for CSA) the quotient p,/p;
for 2-methyl-1-butanol and 2-pentanol are not very different, 4.5/3 and 4/2.5
respectively. In contrast when x =4 (optimal value for —log S) the quotient
P2/p3 for 2-methyl-1-butanol and 2-pentanol are very different, 8/10 and 11/6
respectively. The standard topological indices lack the flexibility to adjust simi-
larly to such demand dictated by diversity of properties.

In Table VII we listed the calculated properties and the residuals of the
regression as. obtained for the common n = 27 alcohols. For all the four prop-
erties all the caclulated values are within two standard deviations, except in the
case of SCA where highly branched 2, 2, 3-trimethyl-3-pentanol shows large
residual. The calulaterd CSA is found too small: 324.27, the reported experi-
mental value is however 335.2. By discarding this point as an outlier the standard
error dropps to 3.124. The regression equations are listed in Table IX.
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TABLE VIII Calculated properties of alcohols. We displayed only the results for
alcohols of Table II, but the calculations were based on all alcohols for which data
were available

Alcohol —log §* Residual CSA Residual
1-Butanol 0.035 —0.035 270.19 1.91
2M-1-propanol —0.083 0.073 262.94 0.86
[-Pentanol 0.620 —0.040 301.73 2.17
3M-1-butanol 0.538 —0.028 291.93 -0.53
2M-1-butanol 0.490 —0.030 289.36 0.04
2-Pentanol 0.293 -0.013 296.83 -0.93
1-Hexanol 1.205 0.005 333.28 242
2-Hexanol 0.878 —0.008 328.38 -0.68
3-Hexanol 0.830 -0.030 325.81 -0.51
3M-3-pentanol 0410 —0.050 305.98 -0.18
2M-2-pentanol ’ 0.470 0.020 313.67 0.63
2M-3-pentanol 0.700 0 313.44 0.86
3M-2-pentanol 0.736 —0.026 310.88 042
2,3MM-2-butanol 0.329 0.042 296.18 5.03
3,3MM-2-butanol 0.537 0.073 303.86 3.64
4M-2-pentanol 0.797 —0.007 318.57 —3.67
1-Heptanol 1.790 0.020 364.83 2.67
2M-2-hexanol 1.055 0.015 345.21 0.89
3M-3-hexanol 0.995 -0.015 337.52 0.18
3E-3-pentanol 0.934 -0.104 329.83 -5.43
2,3MM-2-pentanol 0.901 ~0.031 322.59 1.21
2,3MM-3-pentanol 0.853 -0.013 320.02 1.76
2,4MM-3-pentanol 1.155 0.065 332.62 -0.92
2,2-MM-3-pentanol 1.074 0.076 322.81 329
1-Octanol 2.375 -0.025 396.37 3.03
2,2,3MMM-3-pentanol 1.214 0.056 324.27 10.93
1-Nonanol 2.960 0.040 427.92 3.28

COMPARISON WITH MRA FROM OTHER SOURCES

.Comparison between different regression results are primarily of interest because

they can point to dominant and the most relevant molecular descriptors for prop-

erties studied. When such descriptors are identified they can assist in revising

or refining molecular models for compounds considered. The standard error is
likely to point to most useful regression if the accuracy of the prediction is the
only criteria considered. However, the standard error important as it is, is not
necessarily the only parameter of interest in stnféturc-property-activity studies.
Equally important, or even more important, may be the structural meaning of
the descriptors used as they can facilitate not only an impr()verrient' of the model
used but also may offer a better insight into our understadding of the structure-
property relationship, even though structure-property correlation does not invoke
causal relationship.

A strict comparison between different regression results is only possible if the
two studies use the same experimental data on the same set of compounds with
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TABLE VI (Continued)
Alcohol log P Residual In Residual
1-Butanol 0.802 0.078 4.018 -0.098
2M-1-propanol 0.703 —0.093 3.829 0.061
1-Pentanol 1.310 0.091 5.372 —0.082
. 3M-1-butanol 1.243 —0.103 5.281 0.059
2M-1-butanol 1.194 —0.054 5.171 —0.091
2-Pentanol 1.109 0.031 4.556 0.014
. 1-Hexanol 1.817 0.213 6.726 —0.046
2-Hexano! 1.617 —0.007 5910 -0.270
3-Hexanol 1.568 0.042 5.799 0.051
3M-3-pentanol 1.285 0.106 4.880 —0.030
2M-2-pentanot 1.349 0.041 5.003 0.137
2M-3-pentanol 1452 —0.042 5.598 0.032
3M-2-pentanol 1.485 —0.075 5.696 —0.036
2,3MM-2-butanol 1.218 —0.048 4.789 0.091
3,3MM-2-butanol 1.319 —-0.129 5416 0.014
4M-2-pentanol 1.550 —0.140 5.819 0.041
1-Heptanol 2.324 0.016 8.080 0.010
2M-2-hexanol 1.857 0.013 6.357 0.133
3M-3-hexanol 1.792 0.078 6.234 0.056
3E-3-pentanol 1.727 0.143 6.111 -0.171
2,3MM-2-pentanol 1.725 -0.055 6.131 —-0.111
2,3MM-3-pentanol 1.660 0.010 6.020 =0.060
2,4AMM-3-pentanol 1.844 -0.134 6.750 0.070
2,2-MM-3-pentanol 1.778 —0.088 6.660 0.000
1-Octanol 2.832 0.008 9.434 0.126
2,2,3MMM-3-pentanol 1.969 0.021 7.161 —0.211
1-Nonanotl 3.339 —0.189 10.788 0.212
TABLE IX The regression equations

Property Pi 7 Constant

CSA 46.4797 —9.8066 =5.1272 139.7160

—log S 0.6660 —0.0802 —-0.0115 —4.0677 -

log P 0.5904 —-0.0668 -0.0162 —2.3415

Iny 1.4571 -0.0907 —0.0123 —10.8897

the same number of descriptors. This is rarely the case, because between two
studies novel data may be available and is likely to be included in more recent
work. In addition different authors may have their own preferences for selecting
and testing descriptors using larger set of compounds that allow increased
number of descriptors. Our comparison here is of such a kind because Cao
and Li [52] who reported MRA on water solubility, surface cavity area, and
log P included in their set of alcohols also alkanes and cyclo-alkanes. Similarly
Mitchell and Jurs [53] besides alcohols included a variety of organic compounds
having other heteroatoms (halogens, nitrogen). As we will see for our results the
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standard error has been dramatically decreased, in comparison with the above
mentioned results, except for correlation for log P where the improvement is
significant, but not dramatic. In view of the differences in the size of samples
and the diversity of compounds it should not be surprising that we get smaller
standard error than others. What is surprising is by how much we have reduced
the standard error when using optimized descriptors.

Here are listed r and s for the property studies as reported in ref. [52, 53] and
in this work:

Property n N T s Ref.

CSA 69 2 0.9954 5.20 52

—log S 60 2 0.994 0.167 52

log P 54 3 0.992 0.124 52

In~y 296 12 0.978 0.753 53

Invy 271 12 0.376 53

In~y 193 12 0.967 0.559 53
Property n N T s F Ref.
CSA 50 3 0.9980 3.599 3842 this work
SCA* 49 3 0.9985 3.124 5104 this work
—log S 50 3 0.9961 0.0960 1941 this work
—log S* 48 3 0.9978 0.0713 3324 this work
log P 50" 3 0.9890 0.1156 506 this work
Invy 50 3 0.9995 0.1827 12124 this work

Here n is the size of the sample (structures) and N is the number of parameters
(descriptors) used in the regressions, while F is Fisher ratio.

CONCLUDING REMARKS

We have outlined a novel way of deriving powerful structure-property models.
We consider assigning to shorter paths in molecules variable weight x, to
be determined during the regression analysis so that one obtains the smallest
standard error for correlation considered. Even though the approach has been
demonstrated on several physico-chemical properties of simple chemical struc-
tures, it is general and applies to analysis of properties of more complex chemical
compounds. The advantage of the outlined approach is that it yields regressions
accompanied with considerably smaller standard error than are given by similar
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studies using standard molecular descriptors. The “flexibility” of the molecular
descriptor, such as weighted paths used in this study, in contrast to the “fixed”
molecular descriptors, which are numerically determined one molecular struc-
ture is known, makes it possible to describe different properties of a same
set of compounds by the same kind of descriptors. As can be seen from the
filustration given by analysis of several properties of smaller alcohols different
properties may require different weighting factors. This suggests that methods

“in which prescribed modification of topological indices are assumed in order to

describe heteroatoms, such as for example the valence connectivity indices of
Kier and Hall, have inherent limitations, in that they may be suitable for some
molecular properties but less suitable for others. Indeed, several authors have
reported correlations for compounds involving heteroatoms for which a simple
connectivity index gives a better regression that the corresponding valence
connectivity index.

Acknowledgment

This work was supported in part by Ministry of Science and Technology of
Slovenia through grant J1-8901.

References

[1] Hotelling, H. (1933). Analysis of complex of statistical variables into principal components.
J. Educ. Psychol., 24, 417-489.

[2) Wold, S. and Sjostrom, M. (1977). In Chemometrics: Theory and Applications (ACS Symp.
Ser. No. 52), Kowalski, B. R. (Ed.), Am. Chem. Soc., Washington, D. C., p. 243.

[3] Wold, S., Sjosttdm, M. and Eriksson, L. (1998). Partial Least Squares projections to
latent Structures (PLS) in chemistry. In: Encyclopedia of Computational Chemistry, (von
Schleyer, R., Allinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A., Schaefer III, H. F. and
Schreiner, P. R. Eds.). John Wiley & Sons, Chichester, England, pp. 2006-2021.

{4] Zupan, J. (1998). In: Neural networks in chemistry. Encyclopedia of Computational Chemistry.
(von Schleyer, R., Allinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A., Schaefer III, H.F.
and Schreiner, P. R. Eds.). John Wiley & Sons, Chichester, England, 3, 1813-1827.

{5] Malinowski, E. R. (1991). Factor analysis in Chemistry. John Wiley & Sons, New York.

[6] Randi¢, M. and Seybold, P. G. (1993). Molecular shape as a critical factor in structure-property-
activity studies. SAR and QSAR in Environ. Res., 1, 77-85.

{71 Randié, M. (1992). On the representation of molecular graphs by basis graphs. J. Chem. Inf.
Comput. Sci., 32, 57-69.

(8] Kier, L. B. and Hall, L. H. (1976). Molecular Connectivity in Chemistry and Drug Research,
Academic Press, New York.

9] Randié, M. (1991). Orthogonal molecular descriptors. New J. Chem., 15, 517-525.

[10] Randi€, M. (1991). Resolution of ambiguities in structure-property studies by use of orthogonal
descriptors. J. Chem. Inf. Comput. Sci., 31, 311-320.

{11] Randié, M. (1993). Fitting of nonlinear regressions by orthogonalized power series. J. Comput.
Chem., 14, 363-370.

[12] Randi¢, M. (1994). Curve-fitting paradox. Int. J. Quant. Chem: Quant. Biol. Symp., 21,
215-225.




22 M. RANDIC AND S. C. BASAK

[13] Randié, M. (1996). Orthosimilarity. J. Chem. Inf. Comput. Sci., 36, 1092-1097.

[14] Pogliani, L. (1996). Modeling with special descriptors derived from a medium-sized sct of
connectivity indices. J. Phys. Chem., 100, 18065-18077.

{15] Sokki¢, M., Plavsié, D. and Trinajsti€, N. (1996). Link between orthogonal and standard
multiple regression models. J. Chem. Inf. Comput. Sci., 36, 829-832.

{16] Amié, D., Davidovié-Amic, D. and Trinajsti¢, N. (1995). Calculation of retention times of
anthocyanins with orthogonalized topological indices. J. Chem. Inf. Comput. Sci., 35, 136—139.

(17] Hall, L. H. MOLCONN software.

(18] Basak, S. C., Harris, D. K. and Magnuson, V. R. POLLY (version 2.3), Copyright of the
University of Minnesota.

_. [19] Katritzky, A. R., Lobanov, V. S. and Karelson, M. (1995). QSPR: The correlation and quan-

titative prediction of chemical and physical properties from structure. Chem. Soc. Rev., 24,
279-2817.

[20] Randi¢, M. (1997). On characterization of chemical structure. J. Chem. Inf. Comput. Sci., 37,
672-687.

[21] Randié, M., Novi¢, M. and Vratko, M. Molecular Descriptors, New and Old, Lecture Notes
in Chemistry (submitted)

[22] Kier, L. B. and Hall, L. H. (1976). Molecular connectivity VII. Specific treatment of
heteroatoms. J. Pharm. Sci., 65, 1806—1809.

[23] Kupchik, E. J. (1989). General treatment of heteroatoms with the Randic molecular connec-
tivity index. Quant. Struct. — Act. Relat., 8, 98-103.

(24] Randi¢, M. (1991). On computation of optimal parameters for multivariate analysis of structure-
property relationship. J. Comput. Chem., 12, 970-980.

[25] Spialter, L. (1963). The atom connectivity matrix (ACM) and its characteristic polynomial
(ACMP): A new computer oriented chemical nomenclature. J. Am. Chem. Soc., 85, 2012-2013,

[26] Randi¢, M. (1991). Novel graph theoretical approach to heteroatom in quantitative structure-
activity relationship. Chemometrics & Intel. Lab. Syst., 12, 970-980.

[27] Hansch, C. and Leo, A. (1995). Exploring QSAR Fundamentals and Applications in Chemistry
and Biology. ACS Professional Reference Book, ACS Washington, DC, p. 557.

[28] Randi¢, M. and Dobrowolski, J. Cz. (1998). Optimal molecular connectivity descriptors for
nitrogen containing molecules. Int. J. Quant. Chem: Quant. Biol. Symp., 710, 1209-1215.

[29]1 Wiener, H. (1947). Structural determination of paraffin boiling points. J. Am. Chem. Soc., 69,
17-20.

[30] Hosoya, H. (1971). Topological index. A newly proposed quantity characterizing the topo-
logical nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Japan, 44,
2332-2339. ’

{31] Randié, M., Acta Chim. Slovenica (submitted)

[32] Randi¢, M. (1997). Linear combinations of path numbers as molecular descriptors. New J.
Chem., 21, 945-951.

{33] Randi¢, M. and Pompe, M. (1999). On characterization of CC double bond in alkenes. SAR
QOSAR Environ. Res., 10,

(34] Platt, J. R. (1947). Influence of neighbor bonds on additive bond properties in paraffins. J.
Chem. Phys., 15, 419-420.

[35) Randi¢, M. (1978). Fragment search in acyclic structures. J. Chem. Inf. Comput. Sci., 18,
101-107.

[36] Randié, M. and Wilkins, C. L. (1979). On a graph theoretical basis for ordering of structures.
Chem. Phys. Lett., 63, 332-336.

[37) Randi¢, M. and Wilkins, C. L. (1979). Graph-based fragment search in polycyclic structures.
J. Chem. Inf. Comput. Sci., 19, 23-31.

[38] Randi¢, M., Brissey, G. M., Spencer, R. G. and Wilkins, C. L. (1979). Search for all self-
avoiding paths for molecular graphs. Comput. Chem., 3, 5-13.

[39] Randi¢, M. and Wilkins, C. L. (1979). Graph theoretical study of structural similarity in
benzomorphans. Int. J. Quant. Chem: Quant. Biol. Symp., 6, 55-71.

{40] Randi¢, M. and Wilkins, C. L. (1979). Graph theoretical ordering of structures as a basis for
systematic searches for regularities in molecular data. J. Chem. Phys., 83, 15251540 (additions
and corrections: J. Chem. Phys., (1980), 84, 2090.

{41] Randié, M. (1979). Characterization of atoms, molecules, and classes of molecules based on
path enumerations. MATCH, 7, 3-60.




WEIGHTED PATHS AS DESCRIPTORS 23

[42] Randié, M. and Wilkins, C. L. (1980). Graph theoretical analysis of molecular properties.
Isomeric variations in nonanes. Int. J. Quant. Chem., 18, 1005-1027.

[43] Wilkins, C. L. and Randi¢, M. (1980). A graph theoretical approach to structure-property and
structure-activity correlations. Theor. Chim. Acta, 58, 45-68.

[44] Randi¢, M. (1984). On molecular identification numbers. J. Chem. Inf. Comput. Sci., 24
164-175.

[45] Randi¢, M. (1984). Nonempirical approach to structure-activity studies. Int. J. Quant, Chem:
Quant. Biol. Symp., 11, 137-153.

[46] Randié, M. (1985). Graph theoretical approach to structure-activity studies. Search for optimal

= antitumor compounds In: Molecular Basis of Cancer, Part A: Macromolecular Structure,

. Carcinogens, and Oncogens (Rein, R. Ed.). Alan R. Liss, Publ., pp. 309~318.

[47] Randié, M., Jerman-Blai&, B., Grosman, S. C. and Rouvray, D. H. (1986): A rational

"~ approach to the optimal drug design. Math. Modeling, 8, 571-582. '

[48] Randi¢, M., Jerman-Bla%i&, B., Rouvray, D. H., Seybold, P. G. and Grosman, S. C. (1987).
The search for active substructure in structure-activity studies. Int. J. Quant. Chem: Quant.
Biol. Symp., 14, 245-260.

[49] Randié, M., Grosman, S. C., Jerman-Balzic, B., Rouvray, D. H. and El-Basil, S. (1988). An
approach to modeling the mutagenicity of nitroarenes. Math, Comput. Modeling, 11, 837-842.

[50] Kier, L. B., Murray, W. J., Randi¢, M. and Hall, L. H. (1976). Molecular connectivity V.
Connectivity series concept applied to density. J. Pharm. Sci., 65, 1226-1230.

[51] Randié, M. and Basak, S. C. (1999). Optimal molecular descriptors based on weighted path
numbers. J. Chem. Inf. Comput. Sci., 39, 261-266.

[52] Cao, C. and Li, Z. (1998). Molecular polarizability. 1. Relationship to water solubility of
alkanes and alcohols. J. Chem. Inf. Comput. Sci., 38, 1-7.

{53] Mitchell, B. E. and Jurs, P. C. (1998). Prediction of infinite dilution activity coefficients of
organic compounds in aqueous solution from molecular structure. J, Chem. Inf. Comput. Sci.,
38, 200-209. ’ )

[54] Needham, D. E., Wei, L-C. and Seybold, P. G. (1988). Molecular modeling of the physical
properties of the alkanes. J. Am. Chem. Soc., 110, 4186-4194.

[55] Randi¢, M. and Trinajsti¢, N. (1993). Viewpoint 4 - Comparative structure-property studies:
The connectivity basis. J. Mol. Struct. (Theochem), 284, 209-221.

[56] Nikoli¢, S., Trinajsti¢, N. and Mihali¢, Z. (1993). Molecular topological index. J. Math. Chem.,
12, 251~264.

»




APPENDIX 1.9

On 3-D graphical representation of DNA primary
sequences and their numerical characterization -




J. Chem. Inf. Comput. Sci. 2000, 40, 1235—1244 1235

On 3-D Graphical Representation of DNA Primary Sequences and Their Numerical
Characterization

M. Randié,+$# M. Vratko,! A. Nandy and S. C. Basak*+$

National Institute of Chemistry, 1001 Ljubljana, POB 3430, Slovenia, Ames Laboratory - DOE,
Iowa State University, Ames, Iowa 50011, Natural Resources Research Institute,
University of Minnesota at Duluth, Miller Trunk Highway, Duluth Minnesota 55811, and
Computer Division, Indian Institute of Chemical Biology, Calcutta, India

Received April 9, 2000

In this article we (1) outline the construction of a 3-D “graphical” representation of DNA primary sequences,
illustrated on a portion of the human f globin gene; (2) describe a particular scheme that transforms the
above 3-D spatial representation of DNA into a numerical matrix representation; (3) illustrate construction
of matrix invariants for DNA sequences; and (4) suggest a data reduction based on statistical analysis of
matrix invariants generated for DNA. Each of the four contributions represents a novel development that
we hope will facilitate comparative studies of DNA and open new directions for representation and

characterization of DNA primary sequences.

INTRODUCTION

With rapid reporting of DNA sequences derived with
automated DNA sequencing techniques the problem of
processing such information became acute. Usual representa-
tion of the primary sequence DNA is that of a string of letters
A, G,C, T, which signify the four nucleic acid bases adenine,
guanine, cytosine, and thymine, respectively. Such sequences
can be very long, and even the segments of interests when
comparing DNA of different species can be quite lengthy.
In Table 1 we listed DNA of human § globin gene. Its length
is 1424, and its first exon already involves 92 bases.
Comparison of such primary sequences, and even their
fragments having less than 100 bases, could be quite difficult
for several reasons. Consider the list of the first exon of the
B globin gene for eight different species shown in Table 2.
They all look similar, but at the same time they are all
sufficiently different. How similar or how different they are
may depend on how such strings of letters are encoded or
characterized. The standard procedures consider differences
between strings due to deletion—insertion, compression—
expansion, and substitution of the string elements.!™® These
approaches have been applied to a variety of problems, from
the error correcting codes in which Levenshtein has intro-
duced metrics for-string comparisons! to comparison of DNA
sequences, comparison of protein sequences, and applications
in quantitative structure—activity relationship (QSAR).%?
Such approaches, that have been hitherto widely used, are
computer intensive.

We have recently proposed an alternative approach for
comparison of sequences that is based on characterization
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~of DNA by ordered sets of invariants derived for DNA

sequence, rather than by a direct comparison of DNA
sequences themselves. This is analogous to the use of graph
invariants (topological indices) for characterization of mol-
ecules rather than use of information on their geometry and
types of atoms involved. An important advantage of a
characterization of structures (be it molecule or DNA) by
invariants, as opposed to use of codes, is the simplicity of
the comparison of numerical sequences based on invariants.
The price paid is a loss of information on some aspects of
the structure that accompany any characterization based on
invariants. The loss of information, however, can be in part

.reduced by use of a larger number of descriptors (invariants),

as has been well illustrated in SAR and QSAR based on
mathematical descriptors for molecules.!912

Graphical representations of DNA -that have been devel-
oped within the past few years'3~15 offer a route to one such
condensation of information coded by DNA primary se-
quence into a set of invariants. In Figure 1 we show few
graphical representations of selected DNA as reported by
Nandy.'S The graphs are obtained by assigning to the four
directions associated with the positive and the negative x, y
axes the four nucleic acid bases A, G, C, T, such that A and
T correspond to the negative x, y axes, respectively, and G
and C correspond to the positive x and y axes, respectively.
An advantage of graphical representations of DNA is that it
allows visual comparisons which are easier to make. One
should, however, be aware of a loss of information inherent
in such graphical representations. One of the limitations is
that graphical form shows the “path” of the “travel” along
the primary sequence but not the “history” of the travel.
Hence, we do not know when what parts of the graphical
path were retraced. At the top of Figure 2 we show a
graphical representation of the first exon of the human 8
globin gene, at a higher magnification. The rest of Figure 2
shows the first exon of § globin gene of several other species

for comparison. As we can see upon inspection qualitative
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Table 1. DNA of Length 1424 Listing Nucleic Bases in Human
Beta Globin Gene®

RANDIC ET AL.

Table 2. First Exon of Beta Globin Gene for Eight Species Labeled
A-H

ATGGTGCACCIGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGG
GCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGTTGG
TATCAAGGTTACAAGACAGGTTTAAGGAGACCAATAGAAACTGGGCA
TGTGGAGACAGAGAAGACTCTTGGGTTTCTGATAGGCACTGACTCTCTC
TGCCTATTGGTCTATTTTCCCACCCTTAGGCTGCTGGTGGTCTACCCTTGG
ACCCAGAGGTTCTTTGAGTCCTITGGGGATCTGTCCACTCCTGATGCTGT
TATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGC
CTTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGGCACCTITGCCA
CACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGATCCTGAGAACTT
CAGGGTGAGTCTATGGGACCCTTGATGTTTTCTTTCCCCTTICTTTTICTATG
GTTAAGTTCATGTCATAGGAAGGGGAGAAGTAACAGGGTACAGTTTAG
AATGGGAAACAGACGAATGATTGCATCAGTGTGGAAGTCTCAGGATCG
TITTAGTTTCTTTTATTTGCTGTITCATAACAATTGTTTTCTITTGTTTAAT
TCTTGCTTTCITTTTITITCTTCTCCGCAATTTTTACTATTATACTTAATG
CCTTAACATTGTGTATAACAAAAGGAAATATCTCTGAGATACATTAAG
TAACTTAAAAAAAAACTTTACACAGTCTGCCTAGTACATTACTATITG
GAATATATGTGTGCTTATTTGCATATTCATAATCTCCCTACTTTATTITC
TATCTTATTTCTAATACTTTCCCTAATCTCTTTCTTTCAGGGCAATAATG
ATACAATGTATCATGCCTCTTTGCACCATTCTAAAGAATAACAGTGAT
AATTTCTGGGTTAAGGCAATAGCAATATTTCTGCATATAAATATITCTG
CATATAAATTGTAACTGATGTAAGAGGTTTCATATTGCTAATAGCAGC
TACAATCCAGCTACCATTCTGCITTTATTITATGGTTGGGATAAGGCTG
GATTATTCTGAGTCCAAGCTAGGCCCTTTTGCTAATCATGTTCATACCTC
TTATCTTCCTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCC
ATCACTTTGGCAAAGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAA

AGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCACTAA
TATCTTATITCTAATACTTICCCTAATCTCTTTCTTTCAGGGCAATAATG

ATACAATGTATCATGCCTCTTTGCACCATTCTAAAGAATAACAGTGAT
AATTTCTGGGTTAAGGCAATAGCAATATTTCTGCATATAAATATTITCTG
CATATAAATTGTAACTGATGTAAGAGGTTTCATATTGCTAATAGCAGC
TACAATCCAGCTACCATTCTGCTTTTATTTITATGGTTGGGATAAGGCTG
GATTATTCTGAGTCCAAGCTAGGCCCTTTTGCTAATCATGTTCATACCTC
TTATCTTCCTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCC
ATCACTTTGGCAAAGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAA
AGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCACTAA

2ID HSHBB — beta globin gene sequence extract: exons: 192,

223445, 1296-1424; introns: 93-222,446-1295. SQ Hshbb.MK1
- - segment from 62205 to 63628 of HSHBB.

similarities and differences between exons of different species
are immediately apparent.

Mathematical curves can be represented in the form f(x,
y) = 0, which corresponds to graphical projections of DNA
of Figure 2, and in a parametric form x = x(t) and y = y(t).
Clearly there is a loss of information in going from a
parametric representation of a curve x = x(t) and y = y(t) to
the analytical representation of the same curve. The f(x, y)
= 0 only represents the path, while the former, if the
parameter ¢ is interpreted as time, gives the history of the
movement over the path. Equally, there is loss of information
when a a spatial curve is represented by its projection in the
(x, y) plane (or any other plane). Hence, two routes for an

A human beta-globin 92 bases
ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGIGGG
GCAAGGTGAACGTGGATTAAGTTGGTGGTGAGGCCCTGGGCAG

B goat alanine beta-globin 86 bases
ATGCTGACTGCTGAGGAGAAGGCTGCCGTCACCGGCTTCTGGGGCAAGG
TGAAAGTGGATGAAGTTGGTGCTGAGGCCCTGGGCAG

C opossum beta-hemoglobin betaM-gene 92 bases
ATGGTGCACTTGACTTCTGAGGAGAAGAACTGCATCACTACCATCIGGT
CTAAGGTGCAGGTTGACCAGACTGGTGGTGAGGCCCTTGGCAG

D gallus gallus beta globin 92 bases
ATGGTGCACTGGACTGCTGAGGAGAAGCAGCTCATCACCGGCCTCTGGG
GCAAGGTCAATGTGGCCGAATGTGGGGCCGAAGCCCTGGCCAG

E lemur beta-gl;)bin 92 bases
ATGACTTTGCTGAGTGCTGAGGAGAATGCTCATGTCACCTCTCTGTGGG
GCAAGGTGGATGTAGAGAAAGTTGGTGGCGAGGCCITGGGCAG

F mouse beta-a-globin 93 bases
ATGGTTGCACCTGACTGATGCTGAGAAGTCTGCTGTCTCITGCCTGTGGG
CAAAGGTGAACCCCGATGAAGTTGGTGGTGAGGCCCTGGGCAGG

G rabbitbeta-globin 90 bases
ATGGTGCATCTGTCCAGTGAGGAGAAGTICTGCGGTCACTGCCCTGTGGG

GCAAGGTGAATGTGGAAGAAGTTGGTGGTGAGGCCCTGGGC
H rat beta-globin 92 bases

ATGGTGCACCTAACYGATGCTGAGAAGGCTACIGITAGTGGCCTGTGGG
GAAAGGTGAACCCTGATAATGTTGGCGCTGAGGCCCTGGGCAG

250
200
150
100
50
0
-0
-S0 0 S0 100 150 200 250
a-globin genes
1: Horse
2: Rhesus Monkey
" 3: Orang-tan
4. Goat

Figure 1. Few graphical representations of selected DNA that
Nandy and collaborators developed.

improvement of graphical representations of DNA sequences
appear possible: (1) to consider representation analogous
to parametric representation of mathematical curves and (2)
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Figure 2. Graphical representations of the first exon of the human beta globin gene (top), a “detail” of Figure 1 and the remaining beta

globin genes of Table 2.

to consider graphical representation of DNA sequence with
“path” which is in traced in 3D space, rather than a plane.
In this paper we will limit our attention to this latter problem.
We will then describe a scheme which generates for a
graphical spatial representation of DNA a numerical matrix.
Once we arrive at a matrix representation of DNA we will
search for suitable matrix invariants to be used for charac-
terization of DNA. Finally we will consider possible
condensation of derived numerical characterization of DNA
in a more compact format.

3-D REPRESENTATION OF DNA PRIMARY SEQUENCE

Two-dimensional representation of DNA developed by
Nandy* assigned to the four directions defined by the positive
and the negative x and y coordinate axes to the four nucleic
bases so that A and G are associated with the x-axis and C
and T with the y axis. This assignment of directions differs
from the assignment considered by Leong and Morgentha-

ler," who take a move to the right to correspond to A, a
move to the left is C, an upward move is a T, and a
downward move is G.

The nonequivalent directions are created after assignments
of the first base because then there remains only one site
that is opposite to the already selected direction; the other
two sites are at lateral positions. If we could have three
equivalent directions after the first assignment we would
avoid considering the multiplicity of alternatives (projec-
tions). This is possible by using the directions defined by
vertices of a regular tetrahedron. When looking from its
center all the four directions toward the four vertices are
equivalent, hence after selecting one direction the three
directions remain equivalent. Hence, we will assign to four
nucleic acid bases the four directions associated with the
regular tetrahedron. To specify directions we will place the
origin of the Cartesian (x, y, z) coordinate system in the center
of a cube (Figure 3) so that the four corners of the cube,
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T

A
Figure 3. The tetrahedral directions assigned to A, G, C, T nucleic
bases.

Table 3. Cartesian 3-D Coordinates for Initial Part of the Sequence
of DNA Nucleic Bases of the First Exon

x y z x y z
1 A +1 =1 -1 15 T -1 +1 +1
2T +2 0 0 16 C -2 0 +2
3 G +1  +1 -1 17 € -3 -1 43
4 G 0 +2 -2 18 T -2 0 +4
5 T +1  +3 -1 9 G -3 +1 43
6 G 0 +4 -2 20 A =2 0 +2
7 C -1 43 -1 21 G -3 +1  +1
8§ A 0 +2 -2 22 G -4 +2 0
9 C -1 4+t -1 23 A -3 +1 -1

10 C -2 0 0 24 G -4 +2 =2

1T -1 +1 +1 25 A -3 +1 -3

12 G -2 +2 0 26 A -1 0 -4

13 A -1 +1 -1 27 G -3 +1 -5

14 C -2 0 0 28 T =2 +2 -2

which define the tetrahedral directions, have the coordinates
(+1, -1, =1), (-1, +1, =1), (=1, =1, +1), and (+1, +1,
+1). To each tetrahedral direction we assign one nucleic base
as follows:

+1,-1,-1)—A
-L,+,-1)—G
-1,-1,+1)—C
(+1,+,+1)—T

The particular assignment is arbitrary, but this has no
significance since all directions are equivalent. To obtain the
spatial path associated with the DNA sequence, we move in
X, y, z space in the direction that the above assignments dic-
tates. Consider the beginning of the first exon of Table 1:

ATGGTGCA...

The first point of the spatial curve is at point (+1, -1, —1)
which belongs to A, so directed from the origin. From that
point we move in the direction assigned to T, (+1, +1, +1),
which means that all the three coordinates of the position
A, (+1, =1, —1), have to be increased by +1. We arrive
then at the point (+2, 0, 0) as the location of T. From here
we move in the direction defined by (=1, +1, —1) assigned
to G telling that the first and the third coordinates have
decreased while the second coordinate has increased. This
leads to point (+1, +1, —1) as the location of G. Continuing
in the direction of G we have again to decrease x and z (the
first and the third coordinates) and to increase y (the second
coordinate). Thus we come to the point (0, +2, —2). The
process continues, each time we algebraically add the (x, y,
z) coordinates of the new point to that of the last point.
Continuation of this process is illustrated in Table 3 for the
two dozen initial nucleic bases of the first exon. In Figure 4

RANDIC ET AL.
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Figure 4. Portion of 3-D graphical representation of DNA of
Table 1.

we show a portion of 3-D graphical representation of DNA
of Table 1.

NUMERICAL CHARACTERIZATION OF SPATIAL
REPRESENTATION OF DNA

An important advantage of graphical representations of
DNA, both 2-D and 3-D, is the possibility to derive numerical
characterizations for such mathematical objects. One way
to arrive at numerical characterization of DNA is to associate
with its graphical representation given by a curve in the space
(or a plane) a matrix. Once we have a matrix we can use
matrix invariants arrive at various numerical descriptors,
rather than the visual description of the DNA sequence. This
is analogous to the use of matrices associated with molecular
graphs or molecular structure as a source for construction
of topological indices rather than using molecular models
(such as “sticks-and-balls or “space-filling” models) for their
representation. '

Formally, there is no difference between a graphical
“sequence chain” (in 2-D or 3-D space) or an actual polymer
(“atom chain”) in the space. Hence, we can transfer
mathematical methods used for the characterization of
molecules in structure—property and the structure—activity
studies to numerical characterization of 3-D representations
of the primary DNA sequence. This has been considered
recently by Randi¢ and collaborators!” for 2-D graphical
representation of DNA.

We should mention that one can also arrive at numerical
descriptors that may be specific and sensitive to graphical
form of a DNA without necessarily resorting to matrices.
Thus, for example, Raychaudhury and Nandy!? considered
several geometrical parameters of DNA curves, such as, for
example, end-to-end distance as DNA descriptors. Matrices,
however, offer additional descriptors and richer characteriza-
tion and can be manipulated by a computer, and one can
take other advantages of linear algebra, rather than being
confined to ordinary geometry.

Search for novel descriptors may be an endless project,
just as this has been the case with mathematical descriptors
that continue to be constructed for molecules. However, the
art is in finding wuseful descriptors, and those that have
plausible structural interpretation, at least within the model
considered. Matrices have an additional advantage: they
allow one to construct additional matrices by combining
elements of different matrices as components. In this way
one can arrive at additional descriptors for DNA. In this
report we will confine our interest particularly to the graph
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Figure 5. Conformations of eight-atom chain embedded on a
graphite lattice ordered according to decreasing values of the leading
eigenvalue of D/D matrix.

theoretical distance matrix and the Euclidean distance matrix
for characterization of graphical forms of DNA.

MATRICES INVOLVING DISTANCES

The input information in a graph distance matrix!*? is
solely confined to the information on the connectivity of the
structure (system). However, when a graph is embedded in
a space it assumes a fixed geometry. Then, in addition to
the graph theoretical distance between a pair of vertices, we
can also compute the Euclidean distances between the same
pair of vertices. The Euclidean and the graph theoretical
distances can be combined into a single distance/distance
matrix by taking the quotient of the corresponding matrix
elements.222 Collection of such quotients for all pairs of
vertices leads to the so-called D/D matrix. Matrices con-
structed in this way proved very promising as a tool for
characterization of structures embedded in 3-D space. The
normalized leading eigenvalue Ay/n of a D/D matrix offers
a measure of the degree of folding of a chainlike structure
or a curve. In Figure 5 we illustrated configurations of an
eight-atom Cg chains embedded on a graphite lattice. Under
each skeleton is given the normalized 4,/n of D/D matrix.
As we see the largest eigenvalue (1,/8 = 0.7903) is associated
with the least bent all-trans configuration of Cg, and the
smallest eigenvalue (1,/8 = 0.6472) belongs to the highly
folded isomer TCCCT. T and C label stand for trans and cis
conformations of three consecutive CC bonds (consult Table
4 for structures belonging to different labels). For chains of
seven CC bonds even a smaller eigenvalue than 0.6472 is
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Table 4. Leading Eigenvalues for D/D Matrices of Eight-Atom
Chains Embedded on a Graphite Lattice and the Leading
Eigenvalues of the Corresponding Line Adjacency Matrices

conformer  A,/n of D/D matrix Ai/n of line adjacency matrix

TTTTT 0.7903 0.8571
TTTTC 0.7695 0.7191
TTTCT 0.7613 0.5916
TTCTT 0.7541 0.5208
CTTTC 0.7506 0.5858
TTCTC 0.7451 0.4688
TCTCT 0.7448 0.4019
TCTTC 0.7365 0.4748
CTCTC 0.7336 0.3836
TTTCC 0.7250 0.5793
TCTCC 0.7112 0.3773
TTCCT 0.7021 0.4464
CTTCC 0.6997 0.4533
TCCTC 0.6966 0.3538
CCTCC 0.6786 0.3375
TTCCC 0.6654 0.4426
CTCCC 0.6587 0.3347
TCCCT 0.6472 0.3347

possible. It belongs to the hypothetical all-cis configuration
CCCCC, the projection of which on hexagonal lattice gives
a regular hexagon. In this structure the first and the last CC
bond of Cg would overlap, giving for A, = 4.6388, which
when normalized becomes A1/8 = 0.5798. The relative
magnitudes of 4,/n and the shape of corresponding confor-
mations fully supports the interpretation of the normalized
eigenvalue of D/D matrices as an index of the folding of a
structure.

A single descriptor, even though it may be instructive,
offers but a limited characterization for a large system. Often
additional descriptors are needed. They can be constructed
by considering the so-called “higher order” D/D matrices.?®
These matrices are obtained by taking the powers of the
quotients of two distances, rather than just using the quotients
of the distances themselves. As a result we can derive for a
geometrical (graphical-spatial) representation of DNA an
algebraic characterization based on set of invariants, obtained
by calculating the leading eigenvalue of the set of “higher
order” matrices "D/"D. We will continue to use simplified
notation D/D even though the D in the numerator stands for
the Euclidean distances and the D in the denominator stands

_for graph theoretical distances.

D/D MATRICES FOR DNA

The Euclidean distance between bases in a 3-D graphical
model of DNA are obtained from the 3-D coordinates of
the nucleic bases listed in Table 3 using {(x; — x;)* + (3
yi)* + (z — z)*}'2, where xi, yi, zi and x;, yj, z; are the
Cartesian coordinates of the points considered. To obtain the
D/D matrix first we have to normalize the distance scale so
that the Euclidean distance between adjacent vertices equals
1, not +/3 (as a result of taking the side of cube to be equal
1). Then we have to divide each Euclidean distance with
the number of bonds separating the two vertices to obtain
the desired quotient of the two distances. In Table 5 we
illustrate a part of the D/D matrix (corresponding to nine
initial bases of DNA primary sequences of exon 1 of human
B gene). The numerator combined with factor 1/4/3 gives
the Euclidean distance between vertices i, j when the
separation between adjacent bases is assigned distance 1, and
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Table 5. Portion of the D/D Matrix for the First Exon of DNA of Table 1

RANDIC ET AL.

0 1 2124/3 V1133 4/44/3
0 i V121243 V11343
0 1 21243
0 1
0

V271543 V8643 V11113 V8183
V24143 V19/5¢/3 V120643 V117143
J113V3 V8143 V3543 2163
2/24/3 Jny3 0 V31573
] 21273 J3n3Y3 V81443
0 1 212/3 V11343
0 1 21243
0 1
0

Table 6. Numerical Values for the Initial Portion of D/D Matrix and “Higher Order” D/D Matrices®

0 I 0.57735 0.63828 0.57735
0.33333 0.40741 0.33333
* 0011 0.16598 0.11111
~0.12345 0.02755 0.12345
(1.524-4 7.590-4 1.524-4
] 1 1 0.63828
0.40741
0.16598
0.02755
7.590-4
0 1 0.57735
0.33333
0.11111
0.12345
1.524-4

0 i

0.60000 0.27217 0.27355 0.20412

0.36000 0.07407 0.07483 0.04167

0.12960 0.00549 0.00560 0.00174
0.01680 3.011-5 3.135-5 3.014-6
2.821-4 9.064-10 9.831-10 9.085-12

0.70711 0.50332 0.33333 0.27355

0.50000 0.25333 0.11111 0.07483

0.25000 0.06418 0.12345 0.00560
0.06250 0.00412 1.524-4 3.135-5
0.00391 1.696-5 2.323-8 9.831-10

0.63828 0.40825 0.20000 0.19245

0.40741 0.16667 0.04000 0.03704

0.16598 0.02778 0.00160 0.00137
0.02755 7.7116-4 2.560-6 1.882-6
7.590—-4 5.954-7 6.554-12 3.541-12

0.57735 0.33333 0 0.20000

0.33333 0.11111 0.04000

0.11111 0.12345 0.00160
0.12345 1.524-4 2.560-6
1.524-4 2.323-8 6.554-12

1 0.57735 0.33333 0.40825

0.33333 0.11111 0.16667

0.11111 0.12345 0.02778

0.12345 1.524-4 7.716-4

1.524-4 2.323-8 5.954-17

0 1 0.57735 0.63828

0.33333 0.40741

0.11111 0.16598

0.12345 0.02755

1.524-4 7.590-4

0 1 0.57735

0.33333

0.11111

0.12345

1.524-4

0 1
0

° The first row is each box is the numerical value of D/D element, while the successive rows correspond to 2D/2D, “D/*D, *D/*D, and 'D/'¢D,

respectively.

the denominator is the graph theoretical distance between
the same two vertices.

The “higher order” D/D matrices are constructed by raising
the elements of the D/D matrix (Table 5) to an ever
increasing power. In Table 6 we show the corresponding
entries of the higher order D/D matrices which are grouped
into a single matrix where each row gives the numerical
values corresponding to matrix elements of D/D, 2D/2D, D/
‘D, 3D/3D, and 'D/'®D. As we can see all matrix elements
that are smaller than one decrease as the exponents of the
power increase. If one continues to raise exponents to even
higher powers all the elements of "D/*D matrix that are
different from one would soon become very small and could
be neglected. Hence, in the limit as n — « they are zero,
and the resulting D/D matrix reduces to a binary matrix. In
Table 7 we show the initial part of the limiting binary matrix
*D/*D for the first exon of DNA of Table 1 again displaying
only a 9 x 9 section. As we can see, all the elements above

Table 7. Initial Portion of the Limiting (Symmetrical) Matrix of
*D/"D Matrix Truncated at n = 16°

12 3 4 5 6 7 8 9 10 11 12

I 0 1

2 1 0 1 1

3 1 1

4 1 1 0 1

5 I 0 1

6 1 0 1

7 1 0 1

8 1 1

9 I 0 1 1

10 1 0 |

il 1 0 1
12 1

¢ Only zeros at the diagonal position arc shown,

the main diagonal of the limiting matrix corresponding to
adjacent sites in the DNA chain are necessarily equal to 1.
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Figure 6. Conformations of line-adjacency graphs of eight-atom
chains embedded on a graphite lattice ordered according to
decreasing values of leading eigenvalue of line adjacency matrix.
The order of isomers in Figure 5 and this figure is different.

-

0.3347

However, entry 1 appears in addition at all sites associated
with a repetition of the same nucleic base in the primary
DNA sequence. For the first exon of Table 1 this happens
at sites 3, 4 and 9, 10, and so on. When constructing the
3-D graphical model at these sites we continue to move in
the same direction, and the corresponding segment of the
3-D graphical model forms a line segment. Hence, the
elements of the limiting matrix indicate the so-called “line
adjacency”. The limiting matrix, referred to as the “line
adjacency matrix”,2* is known in Graph Theory as the
adjacency matrix of the Menger graph of a configuration.?
For graphs of Figure 5 we show the corresponding Menger
graphs. Their “line adjacency” matrix represents the limiting
“D/*D matrices. They are also embedded in a plane because
they have been derived from already embedded graphs.

A comparison of Figures 5 and 6 shows that line adjacency
matrix carries different information than the D/D matrices
from which it was algebraically constructed. The graphs in
Figure 5 are ordered according to descending magnitudes
of the normalized leading eigenvalue of the adjacency matrix,
and the graphs in Figure 6 are ordered according to the
leading eigenvalue of the limiting matrix. The resulting order
is different from the order induced by the leading eigenvalue
of D/D matrix. The leading eigenvalue of the limiting matrix
can be viewed as an index of flexibility (or stiffness) of a
structure, at least in some special cases.?* Apparently
structures with longer “line” segments have larger 4, or 4,/
n. When this is “translated” to the graphical representation
relating to DNA sequences, the occurrence of “straight”
segments corresponds to recurrence of the same base in a
sequence repeatedly. Hence, DNA sequences with a larger
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Figure 7. Projection of a portion of 3-D graphical representation
of DNA of Figure 4 on the (x, y), (x, 2), and (y, z) coordinate planes.

number of repeating bases and longer such repeating seg-
ments will have a larger leading eigenvalue of the limiting
binary matrix “D/~D.

PROJECTIONS OF 3-D SPATIAL SEQUENCE
REPRESENTATION

Spatial curves can be projected on coordinate planes (x,
y), (x, z) or (y, z), or any plane, for that matter. The
projections of 3-D spatial curves on each of the three
coordinate planes is quite simple when coordinates of all
the points are known. All that is needed is to ignore the
coordinate perpendicular to the plane of the projection.
Hence, for the first nucleic base of Table 1, A, with spatial
coordinates (+1, —1, —1) we have for the projection on the
x, y plane x = 1 and y = — 1. For the projection of the same
base on the x, z plane we have x = 1 and z = —1, while for
the projection of the first nucleic base on the y, z plane we
obtain y = —1 and z = — 1. Hence, the projection coordinates
can be read directly from Table 2 by ignoring one column,
depending on the projection considered. In Figure 7 we show
the three projections for the first 12 bases of exon of DNA
of Table 1. It is interesting to observe that projection of the
spatial 3-D representation of DNA on the (x, y) coordinate
plane is identical with the 2-D graphical representation of
Nandy??7 already depicted at the top of Figure 2. Hence,
our 3-D visual representation of DNA contains automatically
the 2-D graphical representation of Nandy as one of its
projections. This, however, is not surprising, because if we
project the four vertices of the tetrahedron having the
coordinates (+1, —1, —1), (=1, +1, —1), (-1, —1, +1),
(+1, +1, +1) on the (x, y) plane we obtain points (+1, —1),
(=1, +1), (-1, —1), (+1, +1). The first set of points is
associated with directions for A, G, C, T in 3-D as outlined
in this paper, and the second set of points is associated with
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directions for A, G, C, T in 2-D that coincides with that of
Nandy if we rotate the coordinate system by —135°.

Similarly we find that the projection of the spatial 3-D
representation of DNA on the (x, z) coordinate plane is
- identical with the 2-D graphical representation of Leong and
Morgenthaler.' Hence, our 3-D visual representation of DNA
contains alternative 2-D graphical representations as its
projections. We may add that there is third yet the projection
of 3-D graphical representation of DNA, the projection on
the plane (y, z), that corresponds to the assignment of the
four directions defined by the positive and the negative x
and y coordinate axes to the four nucleic bases so that A
and T are associated with the x-axis and C and G with the
y axis. As we see from Figure 7 this projection differs from
those of Nandy, Leang, and Morgenthaler and may have its
own merits. Finally, we should add that one can consider
projections of 3-D graphical curves of DNA on planes other
than coordinate planes. While projections offer convenience
of 2-D representation, all these projections are associated
with some loss of information associated with the projection
process.

Although the three projection paths of the 3-D representa-
tion of DNA are different, their limiting matrices are
identical. This can be understood, because the form of the
limiting matrix depends only on the repetition of same
nucleic base in the primary sequence of DNA and that is
independent of graphical representation of DNA and the
projection process.

MATRIX INVARIANTS OF DNA

The search for a matrix representation of DNA primary
sequence was motivated by desire to have numerical descrip-
tors for DNA that are sequence invariants. Numerical
characterization of DNA primary sequences will make
comparisons of different DNA sequences much simpler than
comparison based on alphabet symbols or the corresponding
codes. Moreover, it will lead to quantitative measure of
similarity and may open a novel method of characterizations
for the same set of sequences. Matrices not only offer various
inherent invariants as a tool for such comparisons but also
allow one to consider modifications of matrix elements and
in this way may further enrich the tool for comparative study
of DNA. In this report we will continue to confine our
attention to D/D matrix of DNA, but it will be clear that the
outlined schemes are equally valid not only for the “higher
order” D/D matrices but also for other matrices that one can
associate with DNA.

Among numerous matrix (and graph) invariants we will
consider first the average matrix element, which in the case
of the graph theoretical distance matrix, except for normal-
ization, is related to the Wiener number, a well-known graph
theoretical invariant.2#?% Alternatively one can consider the

-average row sum, which differs from the average matrix
element and the Wiener number again only by normalization
factor. The average row sum has an advantage, particularly
when the individual row sums do not differ widely, because
it may suggest an approximate value for the leading
eigenvalue of the matrix. According to the Frobenius—Perron
theorem of linear algebra the largest and the smallest row
sums represent the upper and the lower bounds, respectively,
for the leading eigenvalue (4) of a symmetric matrix.>° In
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Table 8. The Upper Bounds, the Lower Bounds, the Leading
Eigenvalue, and the Average Row Sums for Truncated Matrices of
DNA

Tow sum max A fOW sum min  row sum average

1 0 0 0 0

2 1 1 1 1

3 2 1.732051 1.57735 1.718233
4 3 2.629245 2.21563 2.607815
5 3.63828 3.238402 2.79298 3.203444
6 4.34539 3.869193 3.39298 3.843783
7 4.84871 4.242930 3.09442 4.178791
8 5.18204 4455833 2.71756 4.335833
9 5.45559 4737987 3.49400 4.508241

Table 9. Average Matrix Element as a Function of Gradually
Truncated D/D Matrix

Ly Xy X2 ny

1 0 0 0 0

2 0.86603 0.70711 0.70711 0.70711
3 1.21424 1.07298 0.62854 1.07298
4 1.74711 1.52917 1.06066 1.52917
5 2.00204 1.82479 0.90510 1.82479
6 2.34274 2.16431 1.02138 2.16431
7 2.35303 2.25833 1.23982 2.07952
8 2.23832 2.11133 1.21440 1.97442
9 2.25630 2.13265 1.24376 1.89102
10 2.46497 2.24965 1.54132 1.94565
11 2.51032 2.19350 1.71264 2.03576
12 2.55077 2.23357 1.80319 2.00313
13 247111 2.15924 1.75222 1.92259
14 2.51231 2.20976 1.79277 1.89779
15 2.50930 2.12249 1.84061 1.92616
16 2.63879 2.14294 2.01366 2.04107

Table 8 we have listed the upper bounds, the lower bounds,
and the leading eigenvalue for truncated sequence of DNA
forn = 1ton =9. Observe how closely the average row
sum (given in the last column) approximates the leading
eigenvalue, particularly for shorter segments of the matrix.

The leading eigenvalue of a matrix is an important matrix
invariant. We have already mentioned that A,/n of the D/D
matrix is an index of the folding of a structure, and A,/n of
the limiting matrix can be viewed as an index of the
flexibility of a system. Similarly, the 1, of the adjacency
matrix and A, of the path matrix represent alternative indices
of (molecular) branching,3*? while 4, of the D/DD matrix,
where DD represents the detour matrix,33* is an index of
the cyclicity of a system 3336 The average row sum may give
a similar insight into a system as the leading eigenvalue.
The average row sum, however, can be easily computed,
while computation of eigenvalues of large matrices is more
involved, and, of course, the DNA sequences could be very
long. For example, the 1424 bases of Table 1, of which we
considered the first exon only (92 bases), are a part of 73 326
base pairs.”’

The average row sum, and also the average matrix element
of a D/D matrix, will depend on the size of the matrix as is
seen from Table 9 where under the heading x, y, z we have
listed the average matrix element as a function of n, the size
of the matrix at truncation of DNA sequence. The same was
true for the leading eigenvalue of the truncated DN
sequences (Table 8). :

The dramatic condensation of data illustrated above may
be excessive for some more ambitious comparisons of DNA
sequences. In such cases, one can, in addition to D/D matrix,
also consider the leading eigenvalue or the average element
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Table 10. Leading Eigenvalue of the D/D Matrix and Higher Order
D/D Matrices for n = 2 to n = 20 Showing the Convergence for 4,
and the Limit for n —

power A power A

1 4.73797 12 2.35418

2 3.54855 13 2.35143

3 2.99558 14 2.34966

4 2.71223 15 2.34851

5 2.55903 16 2.34777

6 2.47313 17 2.34729

7 2.42349 18 2.34696

8 2.39409 19 2.34675

9 2.37629 20 2.34661
10 2.36537 limit 2.34631654447882
11

2.35850

-

of 2D/2D matrix, of *D/°D matrix, and so on. A dozen "D/"D
matrices can in this way offer a sufficient number of
invariants for more extensive comparisons of DNA se-
quences. In Table 10 we report the leading eigenvalue for a
9 x 9 "D/*D matrices for n = 1 to n = 20, which illustrate
the “profile,” the sequence of descriptors, for the particular
fragment of DNA. As n increases the value of the leading
eigenvalue A; converges to a limiting value. The limit can
be easily computed as it represents the leading eigenvalue
of the binary matrix of the same size (here 9 x 9). Using so
constructed “profiles” the calculation of the similarities of
DNA sequences is transformed into a calculation of similari-
ties of the corresponding numerical sequences of DNA
descriptors, the task which is not computer intensive if
compared to the similar studies using alignment methodolo-
gies. Of course, it yet remains to be investigated which set
of invariants may offer optimal characterization for DNA
comparisons and how sensitive are such “profiles” to minor
changes in DNA composition. In a recent study in which
the DNA sequence was characterized by average distances
between various nucleic acid bases it was shown that the
“distance profiles”, constructed analogously to the here
reported “leading eigenvalue profile”, is very sensitive
already when a single nucleic base has been changed (i.e.,
the case of mutation).*!

CONCLUDING REMARKS

In this article we (1) outlined a construction of a 3-D
“graphical” representation of DNA primary sequences,
illustrated on a portion of the human f globin gene; (2)
described a particular scheme that allows 3-D spatial
representation of DNA to be transformed into a numerical
matrix representation; (3) illustrated derivation of a set of
matrix invariants from the matrix representation of DNA;
and (4) suggested a relative simple data reduction based on
statistical analysis of generated DNA matrix invariants. Each
of the four contributions, in our view, not only will facilitate
comparative studies of DNA but also open possibilities for
further developments of condensation of primary DNA
sequence information. The outlined 3-D representation, for
example, can be modified by use of the sequential labels as
the fourth coordinate in order to avoid 3-D spatial curves
overlap itself. The numerical matrix characterization offers
many alternatives, from the use of different distance measures
to the use of different matrix forms. In addition to the
possibility of selecting matrix invariants, which is almost
unlimited, we have the possibility of selecting different
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matrices to start the process of condensation of data. Hence,
we anticipate here an expansion, if not explosion, of
alternatives that may parallel the expansion of the topological
indices proposed for the characterization of molecular
structure— property-activity relationships and introduction of
novel matrices for chemical graphs. The most significant
aspect considered in this contribution may turn out to be the
data reduction step when a large number of input data are
condensed into a substantially smaller set of derived param-
eters. This important aspect of DNA data analysis has only
recently received some attention,’® 4 but, in view of the
exponential growth of the automated DNA sequencing
techniques, the problem of digesting novel information, no
doubt, will require novel ideas that go beyond just listings
of nucleic bases of a primary sequence. The construction of
sequence “profiles”, illustrated in this report, may be one
way of data reduction, in addition to the recently proposed
grouping of data for different nucleic acids separately, which
allow large (n x n) matrices (where n can run into the
hundreds or the thousands) to be condensed to small (4 x
4) matrices where the rows and the columns are associated
with the four nucleic bases A, G, C, and T. Needless to say
that the outlined approach is suitable for characterization of
local fragments of DNA, which is precisely how one may
look on the truncated DNA fragment considered in this work.
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Five QSPR models of alkanes were reinvestigated. Properties considered were molecular surface-dependent
properties (boiling points and gas chromatographic retention indices) and molecular volume-dependent
properties (molar volumes and molar refractions). The vertex- and edge-connectivity indices were used as
structural parameters. In each studied case we computed connectivity indices of alkane trees and alkane
line graphs and searched for the optimum exponent. Models based on indices with an optimum exponent
and on the standard value of the exponent were compared. Thus, for each property we generated six QSPR
models (four for alkane trees and two for the corresponding line graphs). In all studied cases QSPR models
based on connectivity indices with optimum exponents have better statistical characteristics than the models
based on connectivity indices with the standard value of the exponent. The comparison between models
based on vertex- and edge-connectivity indices gave in two cases (molar volumes and molar refractions)
better models based on edge-connectivity indices and in three cases (boiling points for octanes and nonanes
and gas chromatographic retention indices) better models based on vertex-connectivity indices. Thus, it
appears that the edge-connectivity index is more appropriate to be used in the structure—molecular volume
properties modeling and the vertex-connectivity index in the structure—molecular surface properties modeling.
The use of line graphs did not improve the predictive power of the connectivity indices. Only in one case
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(boiling points of nonanes) a better model was obtained with the use of line graphs.

INTRODUCTION

This study was motivated by two recent papers. In one
Estrada and Rodriguez! have shown that the edge-connectiv-
ity index produced the best single-variable QSPR models
for five out of seven physicochemical properties of octanes.
In another Gutman et al.2 have reported that the use of line
graphs, in some cases, significantly improves the predictive
power of topological indices. We decided to test both of these
results by using them to reinvestigate several QSPR models
from the literature. We also decided to test further the result
that in many cases the optimum exponent of the vertex- and
edge-connectivity indices is not —0.5.3 Since we believe,
along with many others,* that the QSPR modeling will
become the tool of choice for many chemists-at-large in times
to come, it seems to us worthwhile to search for the most
reliable framework to carry out this kind of modeling. The
present study is an attempt in this direction. It should also
be noted that throughout this paper we will use the chemical
graph theoretical concepts and language® only to simplify
the analysis.

Recently, line graphs have been increasingly used in
structure—property modeling,2~!! although they may be
traced back to van’t Hoff, who used the line graphs of the
structural formulas for representing simple organic com-
pounds. Line graphs are described in a monograph on

* Reported in part at the One Day Symposium on Applied Mathematical
Chemistry, held on May 3, 1999, at the Natural Resources Research Institute,
University of Minnesota, Duluth.

#0n leave of absence from The Rugjer Bo¥kovié Institute, HR-10001
Zagreb, The Republic of Croatia.

10.1021/ci990119v CCC: $19.00

chemical graph theory'? and under the name bond graphs
were used in deriving the molecular complexity indices.!?
The line graph L(G) = L of graph G is a graph derived from
G in such a way that the edges in G are replaced by vertexes
in L. Two vertexes in L are adjacent if the corresponding
two edges in G are incident, that is, have a vertex in common.
The construction of a line graph from a tree is shown in
Figure 1.

The line graph L is usually a more complex structure than
the corresponding graph G. Only in the case of unbranched
cycloalkanes, represented by cycles, L and G coincide
because in cycles the number of vertexes V and the number
of edges E are identical. For n-alkanes, represented by the
hydrogen-depleted chains, L is less complex than G because
it has one less vertex than G, since in chains E = V — 1.

The numbers of vertexes V and edges E of the line graph
L and the corresponding graph G are related by

V(L) = E(G) (1)
E(L) = (112) }, d}(G) - E(G) (2)
i
where d; (i =1, 2, ..., V) are degrees of vertexes in G. These
relations can be easily confirmed by inspecting G and L

depicted in Figure 1.
Using the equation

Z d}(G) =M, 3)

where M, is called!*~ !¢ the first Zagreb-group index,'”!® and
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Figure 1. Construction of line graph L from tree T depicting 2,4-dimethylhexane.

introducing (3) into (2), we obtain the expression
E(L)= (1/2)M, - E(G) 4)

Gutman and Estrada derived the same expression,'? but the
factor 1/2 is missing in their expression. From (4) follows
an amusing result that the M, index of the graph is simply
equal to twice the number of vertexes and edges in the line
graph:

M, = 2[E(L) + E(G)] = 2{E(L) + V(L)] 5

SIMPLE MODIFICATION OF THE VALENCE VERTEX-
AND EDGE-CONNECTIVITY INDICES

Vertex-Connectivity Index. The standard definition of
the vertex-connectivity index is20

=Y, [dw)dw) ™" (6)

edges

where d(v;) is the degree of the vertex v; and [d(v;) d(v;)] 03
may be considered as the weight of the i—j edge.?’ The
summation in (6) goes over all edges. The vertex degree d(v;)
is equal to the number of vertexes adjacent to vertex i in a
graph G. Any two vertexes in G are adjacent if there are
edges connecting them.

Equation 6 is open to modification because the choice of
edge weights [d(v) d(v))] % was based on one possible
solution to the inequalities based on ordering graphs.2’ There
are also other choices of weights possible. Hence, the
quantity [d(v;) d(;)]7% can be replaced by [d(v;) d(v))]t,
where k is a variable exponent that can be varied in any
desired range of values, and (6) becomes?

1= ld@)dw)l k=0 )

edges

Edge-Connectivity Index. The standard definition of the
edge-connectivity index is similar to the definition of the
vertex-connectivity index, the only change being in using
the edge degrees d(e;) instead of vertex degrees d(v;):22

€= ), [d(e)d(e)]™* ®)

adjacent edges

The edge degree d(e;) is equal to the number of edges
adjacent to edge i in a graph G. Any two edges in G are
adjacent if they meet at the same vertex. Because every edge
in G connects two vertexes, the edge degree d(e) can be
expressed in terms of their degrees as follows:22

d(e) = d(v) + d(v) — 2 C)]

This expression can be used to assign the degrees of edges
in G. In Figure 2 we give the vertex and edge degrees in

Figure 2. Vertex degrees (digits at each vertex) and edge degrees
(digits at each edge) in tree T and the corresponding line graph L
from Figure 1.

tree T and the corresponding line graph L depicted in Figure
1.

A simple way to assign the degrees to edges in graph G
or its line graph L is to count all adjacent bonds of a bond
for which we wish to determine the edge degree. This
procedure is illustrated in Figure 3.

Equation 8 can also be modified because the quantity [d(e;)
d(e;)]7%5 was the result of mimicking the original definition
of Randi¢ for the vertex-connectivity index.2% Consequently,
[d(e;) d(e;)]™"5 can be replaced by [d(e;) d(e;)]%, where k is a
variable exponent that can be varied in any desired range of
values. Thus, (8) converts into the following equation:

€= Y [de)de)t k=0 (10

adjacent edges

At this point it should also be noted that the edge-
adjacency matrix® of the graph G, EA(G), is identical to the
vertex-adjacency matrix? of the line graph L of G, YA(L):

EAG) =YA(L) (11)

This must be so because the edge degrees in G are identical
to the vertex degrees in the corresponding line graph L (see
Figure 2). The consequence of (11) is that the edge-
connectivity index of G is identical to the vertex-connectivity
index of the corresponding line graph L:"

€(G) = x(L) (12)
RESULTS AND DISCUSSION

We studied five structure—property models that were
already reported in the literature. This was done on purpose
because our aim was to compare the performance of the
obtained models with those already published. The properties
considered were boiling points of octanes and nonanes and




QSPR MODELING

(1) Tree T and its line graph L

M an

(2) Assigning degrees to edges in Tand L
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Figure 3. A simple procedure for assigning the degrees to edges
in tree T and the related line graph L.

molar volumes, molar refractions, and retention indices of
alkanes. Boiling points and retention indices are typical
“surface”-dependent properties, while molar volumes and
molar refractions are “molecular volume”-dependent proper-
ties. In all cases molecules were depicted as graphs and
corresponding line graphs. The standard deviation S was used
as a criterion for the comparison of the models. The optimum
parameter £ in (7) and (10) was determined using the
procedure described in our earlier report;® that is, the
parameter k was taken to be optimum when the value of §
reached a minimum.

Beiling Points of 18 Octanes. We first considered
structure—boiling point models for isomeric octanes, on the
basis of their vertex-connectivity indices computed for octane
trees. The best model was obtained for k = —1.15. The
regression equation is given by

bp = 65.14(+7.29) + 28.87(+4.31)y 1 (13)
n=18 R=085 S§=324 F=45

where bp is the normal boiling point, R the correlation
coefficient, § the standard deviation, F the Fisher ratio, and
%131 a short-hand notation for the vertex-connectivity index
computed using the value of —1.15 for the exponent in (7).
The notation y¥ will be used throughout this paper. The
improvement over the model based on k = —0.5 is rather
slight:

bp = 3.14(£19.23) + 30.33(x£5.27) "% (14)
n=18 R=0821 S§=360 F=33
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The above models are identical to structure—boiling point
models for octanes published elsewhere.>?* Randi¢ et al.?
have also observed that the modified vertex-connectivity
index produces better structure—boiling point models of
lower (C,—C7) alkanes than the standard version of the
vertex-connectivity index. However, they have found that
the exponent value of —0.33 leads to the best models of three
alternatives they considered (k = —0.5, —0.33, —0.25).

The same analysis as with the vertex-connectivity index
was also carried out with the edge-connectivity index. The
best model was obtained for k = —0.30. The regression
equation is given by

bp = 179.75(x11.12) — 13.66(x2.30)e "% (15)
n=18 R=0830 S§=352 F=35

where €793% is a short-hand notation for the edge-connectiv-

_ ity index computed using the value of —0.30 for the exponent

in (10). The notation € will be used throughout this paper.
The improvement over the model based on k = —0.5 is
considerable

bp = 162.76(£29.94) — 14.52(£8.85)e ™" (16)
n=18 R=0379 S§=584 F=3

but the model in (15) is not as good as the model in (13),
though it is somewhat better than the model in (14). This
result supports the work by Estrada and Rodriguez,! because
one of the two physicochemical properties of octanes for
which the use of the edge-connectivity index did not produce
the best single-variable QSPR model was the boiling point,
the other being the heat of vaporization. Estrada and
Rodriguez pointed out that to describe these properties
correctly it is necessary to take into account long-range
contributions in the edge-connectivity index.? In both these
cases better single-variable models were obtained using the
Hosoya Z index.2

Finally, we considered octane line graphs. Since x¥(L)
= ¢l¥(G), we derived structure—boiling point models based
on the edge-connectivity index €*}(L). The best model was

obtained for k = —0.675. The regression equation is given
by

bp = 167.56(+9.03) — 20.17(£3.37)" kL)  (17)
n=18 R=0831 S§=351 F=36

where €"%6K(L) is a short-hand notation for the edge-
connectivity index computed for a line graph using the value
of —0.675 for the exponent in (10). This notation will be
used throughout this paper when the models based on line
graphs and edge-connectivity indices are discussed.

The model in (17) is practically the same as the model in
(15) on the basis of octane trees and the edge-connectivity
index. The improvement over the model based on k = —0.5
is visible:

bp = 138.83(£5.80) — 6.11(+1.39)"*%1L) (18)
n=18 R=0740 S§=424 F=19

However, this model is much better than the corresponding
model in (16) on the basis of octane trees.
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Boiling Points of 35 Nonanes. The same kind of analysis
as in the case of modeling boiling points of octanes is carried
out for nonanes. We first considered structure—boiling point
models for isomeric nonanes, on the basis of their vertex-
connectivity indices computed for nonane trees. The best
model was obtained for k = —1.25. The regression equation
is given by

bp = 94.23(£6.68) + 25.58(+3.97)''*!  (19)
n=35 R=0746 S§S=413 F=4]

The improvement over the model based on k = —0.5 is again
rather slight:

bp = 31.47(£19.64) + 25.67(£4.77) > (20)
n=35 R=0683 S§=453 F=29

The above models are comparable to the structure—boiling
point models for nonanes published elsewhere.>?” The same
analysis was also carried out with the edge-connectivity
index. The best model was obtained for k = —0.375. The
corresponding regression equation is

bp = 225.36(+16.39) — 18.42(£3.41)e "% (21)
n=35 R=0685 S§=452 F=29

This model and the model in (20) are practically the same.
However, it is worse than the model in (19). The improve-
ment over the model based on k = —0.5 is considerable:

bp = 218.35(£30.12) — 21.31(£7.89) " (22)
n=35 R=0426 S=561 F=1

Finally, we considered nonane line graphs. The best model
was obtained for k = —0.70:

bp = 203.18(£9.60) — 22.96(%3.32)e %) (23)
n=35 R=0769 S§=397 F=48

This model is better than any regarding the relationship
between structures and boiling points of nonanes. It repre-
sents an improvement over the model based on k = —0.5:

bp = 161.56(:5.94) — 22.96(+3.32)el"%%L) (24)
n=35 R=0587 S§=503 F=17

Comparison between this model and the related models based
on octane trees shows that the model in (24) is not as good
as the model in (20), but better than the model in (22).

In this example, the edge-connectivity index did live up
to the expectations based on the work by Gutman et al.:?
The use of the line graph edge-connectivity index produced
for nonanes the best structure—boiling point model. However,
the model in (23) is still far from being satisfactory in
comparison with models that use several topological indi-
ces.?® For example, the best structure—boiling point model
for nonanes with five descriptors has R = 0.981 and § =
0.89.%

Gas Chromatographic Retention Indices of Alkanes.
The same methodology as above was applied to the relation-
ship between the structures of alkanes and their gas
chromatographic retention indices.?® We first considered

BASAK ET AL.

structure—~chromatographic retention data correlation for the
first 157 alkanes using as the structural parameter the vertex-
connectivity index. The best correlation was obtained for k
= —0.325:

RI=74.58(+8.48) + 148.14(+£1.53)y7%*) (25)
n=157 R=10992 §=238 F=9330
where RI stands for the retention indices of alkanes. This
model gives a very good agreement between experimental
and computed retention indices of alkanes. Retention indices
of alkanes cover a range from RI(methane) = 100 to RI-
(2,3-dimethylundecane) = 1251.4. In most cases the differ-
ence between experimental and computed values is less than

3%.

The model in (25) is only slightly better than the model
based on k = —0.5:

RI = 64.92(£9.38) + 187.97(£2.13)y"%%  (26)
n=15T R=0990 S§=260 F=7801

The use of the edge-connectivity index produced poorer
models:

RI = 137.98(£13.79) + 200.54(+3.66)' "% (27)
n=157 R=0975 S§=413 F=3008

RI = 134.0(£14.55) + 184.89(+3.54)e! """ (28)
n=157 R=0973 §=432 F=2729
These two models are comparable, but are much better than
models based on alkane line graphs and their edge-con-

nectivity indices:
RI = 206.58(+£21.72) + 262.94(+8.30)e %Ly (29)
n=157 R=10.931 §=682 F=1003

RI = 365.44(£36.63)+104.00(+7.24)el" (L) (30)
n=157 R=075 §=122.2 F =206
There are several structure—chromatographic retention
index correlations for alkanes available in the literature.3?
Most of them are based on the two-dimensional and three-
dimensional Wiener numbers. However, there is also a

correlation available based on the vertex-connectivity index
with k = —0.5 which differs only slightly from (26):3

RI=69.81(£9.31) + 186.93(£2.11)y1™% (31)
n=157T R=0990 S$=260 F=7827

The initial work on the structure—chromatographic reten-
tion data correlations is due to Randié.3! The correlations
based on the two-dimensional (3W) and three-dimensional
(W) Wiener numbers, which are adjusted Walker-type
correlations,? are not as good as the model in (25):3°

RI = 171.2(£15.7) 2W033E00) _ 48 6(427.3) (32)
n=157 R=0984 §=330 F=2403

RI = 170.6(£17.0) *Wo3BE00) _ 371 8(1302) (33)
n=157 R=0982 S§=356 F=2048
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These models are, however, better than the ones based on
edge-connectivity indices computed for either alkane trees
or alkane line graphs. The best overall structure—chromato-
graphic retention data correlation is obtained with the vertex-
connectivity index with k = —0.325 (model in (25)). This is
to our knowledge the best structure—chromatographic reten-
tion data model of alkanes that exists in the literature.
Molar Volumes of Alkanes. We considered molar
volumes of 69 lower alkanes taken from Estrada.?? We first
considered the structure—molar volume relationship using
the vertex-connectivity index. The best correlation was
obtained for a rather small value of k (—0.07). The regression
equation and the statistical parameters for the correlation are:

MV = 55.85(£2.10) + 16.53(£0.32)y " (34)
n=69 R=0988 S$=273 F=2649

where MV stands for molar volume. This regression is better
as expected than the one based on the standard value of k
(—0.50):

MV = 53.07(+4.41) + 29.60(x1.18)y! "% (35)
n=69 R=0951 S§=538 F=632

These models are inferior to those based on the edge-
connectivity index. The best structure—molar volume model
was obtained for k = —0.515:

MV = 57.44(+1.37) + 31.80(x0.41)l™%B! (36)
n=69 R=0995 S§=181 F=609

This model is only very slightly better than the model based
on the standard value of the exponent k:

MV = 58.23(+1.41) + 30.80(£0.41)el %% (37)
n=69 R=0994 S§S=188 F=5669

Equation 37 is different from the corresponding one given
by Estrada? as (1) in his paper. The difference is caused by
the use of erroneous values of the edge-connectivity indices
for six alkanes in Table 1 in Estrada’s paper. The correct
values are (we use the same codes for alkanes as Estrada):
(33MES) —-3.1160, (233MMMS5) —-3.2832, (33MES6) ~3.6766,
(234MMM6) -—3.7921, (244MMM6) -—3.8432, and
(334MMMG6) —3.7107. The model in (37) is in fact better
than the model given in Estrada’s paper (statistical parameters
for Estrada’s structure—molar volume model with six incor-
rect values of edge-connectivity indices are R = 0.993, § =
2.034, and F = 4822).

The statistical characteristics of models based on the edge-
connectivity index also support the work by Estrada and
Rodriguez,! because one of the five physicochemical proper-
ties of octanes for which the use of the edge-connectivity
index produced the best single-variable QSPR model was
the molar volume. This also agrees with analyses which point
out that the edge-connectivity index is more appropriate to
be used in the structure—molecular volume properties
modeling than the vertex-connectivity index.

The structure—molar volume models based on line graphs
and edge-connectivity indices possess rather inferior statisti-
cal parameters than the models shown above:
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MV = 111.14(£5.76) + 12.45(£1.35)e"*%1L) (38)
n=69 R=0748 S=1154 F=285

MV = 67.12(£3.59) + 44.49(£1.67)e %Ly (39)
n=69 R=0956 S§=509 F=714

Molar Refractions of Alkanes. We considered molar
refractions of 69 lower alkanes also taken from Estrada.?
Among the reported experimental values one is incorrect:
Molar refraction of 34MMG6 is 38.8453 instead of 43.6870.3
We first considered the structure—molar refraction relation-
ship using the vertex-connectivity index. The best correlation
was obtained again for a rather small value of k (—0.02).
The regression equation and the statistical parameters for
the correlation are

MR = 6.99(£0.15) + 4.70(£0.02)3"%?  (40)
n=69 R=09993 S§$=0200 F= 46865

where MR is a short-hand notation for molar refraction. This
regression equation is better than the one based on the
standard value of k (—0.50): :

MR = 5.76(+1.88) + 9.11(£0.32)y "% (41)
n=69 R=0962 S=145 F=2824

The model in (40) is better than, and the model in (41) is
worse than, the corresponding models based on the edge-
connectivity index. The best structure—molar refraction
model using edge-connectivity indices was obtained for k
= —0.495:

MR = 7.77(£0.50) + 9.26 (£0.14) %41 (42)
n=69 R=0992 S§=0668 F=4130

There is hardly any difference between this model and the
model based on the standard value of exponent k:

MR = 7.71(£0.50) + 9.36(£0.15) 7% (43)
n=69 R=0992 S§$=0672 F=4090

Equation 43 is different from the corresponding one given
by Estrada? as (2) in his paper. The difference is caused by
erroneous values of the edge-connectivity indices for six
alkanes (see the discussion above). The model in (43) is a
little better than the model in the Estrada paper when the
corrected values of the edge-connectivity indices are used.
We also carried out the statistical analysis of Estrada’s
structure—molar refraction model with six incorrect values
of edge-connectivity indices and obtained different statistical
parameters (R = 0.983, § = 0.964, and F = 1969) from
those reported (R = 0.9913, § = 0.698, and F = 3782).

The model in (43), being better than the model in (41),
supporis the claim by Estrada and Rodriguez' regarding
modeling the molar refraction. In their work one of the five
physicochemical properties of octanes for which the use of
the edge-connectivity index produced the best single-variable
QSPR model was also the molar refraction. However, when
the models based on vertex- and edge-connectivity indices
with variable exponents are considered, the reverse is true:
the model in (40) is better than the model in (42). The model
in (40) is also better than the model in (43).
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Structure—molar refraction models based on alkane line
graphs and edge-connectivity indices are again as in the case
of structure—molar volume models inferior to models based
on connectivity indices computed for alkane trees:

MR = [1.78(£1.29) + 12.30(£0.56)"*"L) (44)
n=69 R=093 S=1861 F=474

MR = 23.29(+1.68) + 3.91(£0.39)e!"%(L) (45)
n=69 R=0772 S§=3358 F=99

Model (40), in which the value of the exponent is rather
low,3* supports the use of the structure-molecular refraction
model based on the’simplest possible topological index, the
number of carbon atoms V:

MR = 2.60 (£0.18) + 4.55 (£0.02) V (46)
n=69 R=10999 §=0.208 F=43200

CONCLUSIONS

We investigated five structure—property models of al-
kanes. The properties considered were molecular surface-
dependent properties (boiling points and gas chromatographic
retention indices) and molecular volume-dependent properties
(molar volumes and molar refractions). Alkanes were
represented by trees and the corresponding line graphs. The
vertex- and edge-connectivity indices were used as structural
parameters. In each studied case we computed connectivity
indices with an optimum exponent and with a standard value
of —0.5. In total we generated six QSPR models for each
property. The obtained results lead us to conclude the
following.

(i) In all cases QSPR models based on connectivity indices
with optimum exponents have better statistical parameters
than the models based on connectivity indices with the
standard value of the exponent (—0.5). This is fully in
agreement with our earlier study® and the ideas of Alten-
burg,3S Randié et al.,> and Estrada.3¢ Therefore, we suggest
that the modified versions of vertex- and edge-connectivity
indices should be routinely employed in the structure—
property modeling rather than the standard versions of the
connectivity indices.

(ii) In the five cases that we studied the structure—boiling
point models for octanes and nonanes and the structure—
chromatographic retention index model for alkanes based on
vertex-connectivity indices are better than the corresponding
models based on edge-connectivity indices. Thus, it appears
that the vertex-connectivity index is more appropriate to be

used in the structure—molecular surface properties modeling .

than the edge-connectivity index. Consequently, the vertex-
connectivity index may be considered as a molecular surface
descriptor.

(iii) In the five cases that we studied the structure—molar
volume and the structure—molar refraction models for Cs—
Cy alkanes based on the edge-connectivity index produced
the best single-variable model. This agrees with the findings
of Estrada and Rodriguez! and is suggestive that the edge-
connectivity index is the better descriptor to be used in the
structure—molecular volume properties modeling than the
edge-connectivity index. Thus, the edge-connectivity index
may be regarded as a molecular volume descriptor. The edge-
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connectivity index appears to be a promising molecular
descriptor,!:1937-3 especially if the long-range contributions
to this index are included in the modeling.%!!

(iv) The use of line graphs in this study did not improve
the predictive power of the connectivity indices. Only in the
case of structure—boiling point modeling for nonanes the
model based on the nonane line graphs produced the best
model among the possibilities considered. Since the con-
struction of the line graphs is not difficult and the computa-
tion of their descriptors can be easily carried out, it is also
reasonable to use them in the QSPR modeling, but to
establish the usefulness of the line graph model in the
structure—property studies, more work is needed.
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Many chemicals are known to be toxic to living organisms, inducing mutations and deletions at the
chromosomal and genetic level. One of the tasks in risk assessment of genotoxic chemicals is to devise a
simple numerical descriptor which may be used to quantify the relationship between chemical dose and the
effect on the genetic sequences. We have developed numerical descriptors to characterize different DNA
sequences which are especially useful in sequence comparisons. These descriptors have been developed
from a graphical representational technique that enables easy visualization of changes in base distributions
arising from evolutionary or other effects. In this paper we propose a scheme to use these descriptors as a
label to help quantify the potential risk hazard of chemicals inducing mutations and deletions in DNA

sequences.

INTRODUCTION

The deleterious effects of many chemicals and newly
synthesized compounds on human and environmental health
is of serious concern. Many of these chemicals are known
to pass through cell barriers and cause mutations and
deletions in DNAs. Recent studies have demonstrated how
many common chemicals cause such effects: exposure to
common environmental chemicals such as nitropyrenes
present in diesel exhausts cause mutations and homologous
recombinations in DNAs leading to carcinogenesis; ! some
polycyclic aromatic hydrocarbons from coal burning for
industry and home heating form DNA adducts that have been
shown to act as transplacental carcinogens and developmental
toxicants® or induce mutations at the GC and the AT base
pairs of the hrpt genes;* other chemicals such as ethylni-
trosourea and ethyl methanesulfonates have been shown to
induce mostly transition types of mutations in DNAs leading
to chromosomal aberrations.> A carbonyl compound, ac-
rolein, present in the environment as commonly used
industrial chemicals, natural products, environmental con-
taminants and products of endogenous metabolism in human
beings, has been found to cause mutations and intrastrand
cross-links between guanine residues,® and similar effects
of many other compounds are known in the literature (see,
e.g., refs 7 and 8). DNA damage is also induced by excesses
of heavy metals such as Rh® and Cu(ll),'®!! which prefer-
entially induce depletion of guanine residues. Table 1 gives
a brief list of some of the data available in recent literature
on effects of chemical substances on DNA sequences.

One of the prime tasks in risk assessment of these and
other chemicals and ions is to define one or more numerical
descriptors of the chemical dose and the measured effect.

*To whom correspondence should be addressed. E-mail: sbasak@
wyle.nrri.umn.edu.

tOn leave from: Indian Institute of Chemical Biology, 4 Raja S C
Mullick Road, Calcutta 700 032, India. E-mail: anandy43@yahoo.com.

Much of the data to date, however, consist of measures of
types of mutations and deletions observed in specific genes
at various levels of chemical dosages, and much of it is order
of magnitude indications of genetic risk.® While some
chemicals would induce mutations and deletions at sites with
specific base pair combinations, others could lead to oxida-
tive damages and mutations at random at intragenic and
intergenic segments including point mutations and small
deletions. Techniques of unbiased measures of such alter-
ations in a DNA sequence from a set of numerical descriptors
would be essential in assessing, in a universal and standard
manner, the risk potential of such chemicals and form a vital
link in integrating pharmacokinetics and mutational studies.

In this paper we outline such a measure arising from
descriptors of DNA sequences of any specified length and
show that small changes due to random point mutations or
deletions in such sequences can be quantified for scaling
purposes. It has developed out of a technique for graphical
representation of DNA sequences but can now be done
rapidly and accurately using computer programs bypassing
the graphical stage altogether.

METHOD

The fundamental basis of our proposed quantitative
descriptor is analysis of base distribution in a sequence by
taking a running account of compositional differences in pairs
of bases, e.g. intra-purines and intra-pyrimidines, as we read
down the sequence from the 5’- to the 3’-end. This is most
easily visualized in terms of a two-dimensional graphical
representation described below. Since the method depends
on small differences between the numbers of bases present
in the sequences, it is very sensitive to small changes in base
composition and distribution patterns.

The method of representing DNA sequences graphically
using a two-dimensional Cartesian coordinate system has
been explained elsewhere.!>!3 The shapes of these DNA

10.1021/ci990117a CCC: $19.00 © xxxx American Chemical Society
Published on Web 00/00/0000 PAGE EST: 4.5




B J. Chem. Inf. Comput. Sci.

NANDY AND BASAK

Table 1. Effects of Different Chemicals on DNA Sequences (Recent Studics)?

mutation composition

substitutions (%)

chemical DNA sample deletions (%) transitions transversions refs and remarks
acrolein SupF gene 24 21 55 (~GCto TA) 4
ethylnitrosourea lacZ 5 43 (~GCto AT) 52(~ATtoTA) 5
ethylmethanosulfonate lacZ 8 74 (~GCto AT) 18(GCtoTA) 5
heavy metals—Rh oligomeric DNA 100 (5°-G deleted in 9 (long-range electron transfer)
duplexes 5’GG-3’ doublets)
5-nitroimidazoles Bacteroides fragilis 100 (majority Cto G, 7
CGto AT)
1,3-butadiene Various—in mice, 8 genetic hazard exists
rat, humans at permitted concns
mutation data not available
polycyclic aromatic hprt gene ~25 ~55 4

hydrocarbons -

“Notes: The “~GC to AT" implies that the majority transitions are of the GC to AT type, etc. Acrolein is one of the a,b-unsaturated carbonyl
compounds present in‘the environment. Nitroimidazoles, Metronidazole and dimetridazole are used in treatment of intraabdominal, pulminory, and
brain abscesses and other diseases. 1,3-Butadiene is widely used in the petroleum industry.

graphs depend on the base distribution in the sequence. The
plot of a typical representation is generated by moving one
step in the positive x-direction for a guanine (G) in the
sequence, the negative x-direction for an adenosine (A), the
positive y-direction for a cytosine (C), and the negative
y-direction for a thymine (T), the succession of such steps
producing a graphical shape characteristic of the sequence.
This essentially plots the progressive differences in the
instantaneous individual totals of guanine and adenosine
along the x-axis (i.e. ng — na ) and of cytosine and thymine
along the y-axis (i.e., nc — nr ); two other sets of axes can
be similarly defined for a complete representation, but we
use the one described here as the default axes system. We
have shown'? that for conserved genes such plots are shape
similar thereby making identification of a new sequence of
the gene family possible rapidly and easily by visual
inspection alone; elsewhere we have shown that one can read
off base preferences and local abundances directly from the
shape of these graphs'* or identify coding and noncoding
regions of the sequences.'S Changes in base distribution and
composition induce changes in the visual plots of the DNA
sequences; for the same genes for different species we have
noticed systematic drifts in the sequence pattern which have
been attributed to evolutionary changes.!6

Differences in the plots of a family of genes can be
quantitatively assessed.!” This method consists essentially
of defining a set of moments of the graph points around the
origin of the plot. In the first order we define quantities s;-
(x) and p(y) which are the sum of the x- and y-coordinate
values of each point averaged by the total number of points
in the distribution. One can then define a graph radius for
each plot

gr = [ (0)) + ()"

and correspondingly a distance measure between two graphs:

d(s,s") = [(u(0) — w0 + (,0) — w, o)A

where s and 5" represent the two graphs. We have observed!”
that small differences in DNA sequences arising out of base
mutations and deletions manifest themselves in observable
changes in gr and d. We propose to use the gz as one

numerical descriptor of a sequence and deviation from g,
Agr, as a measure of the changes in a sequence as a
consequence of genotoxic effects of chemicals. For greater
precision, one could also use a set of u;(x), #1(y), and gg as
numerical descriptors of a DNA sequence.

RESULTS AND DISCUSSIONS

As a preliminary exploration of this technique, we have
used the complete human S globin gene sequence (from the
HSHBB sequence of the EMBL DNA database rel 31),
inclusive of the introns and exons, as the control sequence.
This has a total of 1424 bases consisting of 444 (31.2%)
bases in the coding regions and 980 (68.8%) in the noncoding
part. Plot 1 in Figure 1a shows the graphical representation
of this gene starting from exon 1 through introns 1 and 2 to
exon 3. Intron 1 is G-rich and shows a horizontal shift to
the right; intron 2 has a T-rich part in the initial stages,
represented on our graph as an almost vertical drop, and then
a long stretch of TA repeats that move the graph generally
in a southwesterly direction ending with exon 3 represented
as a small region of a dense cluster of points. Exons 1 and
2 are also represented as (less dense) clusters of points unlike
the long runs of the introns; we have elsewhere!® exploited
this characteristic difference between intron and exon
representations as a means for determining protein coding
regions in new sequences.

With regard to the problem at hand, we simulated the
effects of Rh and Cu(l) toxicity on a DNA by performing
programmatically random deletions of several guanines in
the sample sequence. Such deletions will tend to alter the
#1(x) in the default representation with a bias toward negative
x-values (because of a higher percentage of adenosines in
the altered sequence) while leaving the ,(y) unchanged and
will consequently alter the graph radius. Graphically, the
reductions in the number of guanines will make the plot shift
to the left in the default reference frame, and the shift will
be greater for a greater degree of deletions effected. This is
evident visually from a low value of 5% deletions in the
complete sequence (Figure 1a). The values of Agg for dif-
ferent numbers of guanine deletions are plotted in Figure
1b.

In the case of mutations, the graph radius is quite sensitive
to small changes and to specific base positions affected. A
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Figure 1. (a, top) Human S globin gene and its mode! modifica-
tions plotted in the two-dimensional representation system. Axes
as explained in the text. Plot 1 is for the normal human 8 globin
gene complete with exons and introns. Plot 2 is for the same gene
with 5% random depletion in guanine residues. Plot 3 is the same
gene with 10% depletion in guanine bases. (b, bottom) Plot of
changes in graph radius (Agg) against guanine number for deletion
of guanines in positions 1—14.

mutation in the first position, reading from the 5’-end, effects
the maximum change while a mutation in the last base has
the least effect; this is easily understood from the fact that
the change in the first position alters the coordinate value of
each subsequent point all the way to the last base and thus
affects the value of #; much more than would be the case
for mutation of the last base. (The argument remains true
when read from the 3’-end and as long as one is consistent
in one’s convention; here we use the common convention
of reading from the 5-end.) Figure 2 shows Agr plotted
against the guanine number for mutation of one guanine to
cytosine in each position of the guanine in the complete
sequence of the human 3 globin gene. It is interesting to
note that Agg has a unique value for each position, and, as
can be expected, the value goes down to almost zero for the
last guanine (the kink seen in the curve occurs at a large
gap between successive guanines). Mutations of guanine to
adenosine will produce smaller amount of changes in Aggr
since this is a change occurring exclusively in the x-direction
and lead to a contraction or expansion of the general curve,
whereas the previous mutations produced a change in
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Figure 2. Plot of changes in graph radius (Agg) against the guanine
number for mutation (G to C) of single guanine to cytosine at
various positions.
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Figure 3. Plot of changes in graph radius (Agg) against the guanine
number for mutation (G to A) of single guanine to adenosine at
various positions.

direction of the plot in our default axes system. Figure 3
shows the variation of Aggr with guanine number for mutation
of a single guanine to adenosine. We have noted elsewhere'®
that Agr can therefore be used as quantitative descriptors
for indexing single nucleotide polymorphic genes.

In the present case of indexing as a measure of risk
assessment for toxicity, the sensitivity of Agg raises the
question of adequate knowledge of the exact location of the
toxic damage. Since any random mutation or deletion could
arise from the genotoxic effects, it would be preferable to
average over the entire range of values of Aggr over the
chosen DNA segment to arrive at an acceptable index value
for purposes of comparative assessment. For example, for
the case of mutation of one guanine to adenosine, the average
value of Agr is 0.064 while that for the case of guanine to
cytosine is 0.537, and an index for the two types of causative
chemicals that produce just this level of mutation could be
written in thousandths as 64 or 537.

In the case of multiple base mutations also this trend of
different values of Aggr for mutations at different base
positions will hold true: e.g., mutations of three guanines
to cytosines will cause maximum deviation from gg when
the mutations occur in the first three guanines (Agr =
2.789 76 compared to the unmutated gene), and the change
will be least when the mutations take place in the last three
guanines (Aggr = 0.031 41 compared to the unmutated gene).
Multiple mutations will therefore create a field of values for
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Figure 4. Plot of chariges in graph radius (Agr) against the number

of guanines mutated for G to C mutations. The upper line is the

highest value and the bottom line the lowest value of Agg for a
given number of mutations.
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Figure S. Plot of changes in graph radius (Agg) against the number
of guanines mutated for G to A mutations. The upper line is the
highest value and the bottom line (not visible on this graph range)
the lowest value of Agy for a given number of mutations.

Agg, the maximum for a specific number of mutations being
the value realized from mutations in the first of those bases.
These maximum values will thus form an envelope as shown
in Figure 4, and a lower bound will be created by the
minimum values of Agg; all values between these two
boundaries will relate to the different bases in the sequence
that can be mutated for any specified number of mutations.
Figure 5 shows similar data for the various degrees of G to
A possible mutations.

While we have discussed these effects on the hypothesis
of G to C and G to A mutations, these results can be
generalized to mutations in any base combinations also. For
example, in the case of genetic mutations induced by high
levels of toxic chemicals where more than one base can be
affected, e.g. mutations of the type GC to AT shown in
Figure 6, which occurs in the case of the ethylnitrosourea
and ethyl methanosulfonate types of compounds, one can
determine the value of Agg from a sample sequence exposed
to a standard dosage and use that value as an index for
measuring the least number of mutations that can be
generated from such a number. From Figure 6, for example,
it can be seen that a Agr of 10 implies that the number of
corresponding mutations will be five GC doublets or more.

Thus an experimental measure of Agg for a given dose of
a toxic chemical can lead to association of an index value

NANDY AND BASAK
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Figure 6. Plot of changes in graph radius (Agg) against the number

of GC to AT mutations. The upper line is the highest value and

the bottom line the lowest value of Agg for a given number of
mutations.

that will permit easy gradation of chemicals on levels of
toxicity. Each toxin will affect a DNA in its own unique
ways: some by deleting a preferred base, some by causing
random mutations in one or more preferred bases. The
usefulness of an index such as Agg arises from associating
one number with each dosage level of each chemical
providing an easy path to associating risk with dosage
without having to enumerate which base and how many are
mutated or deleted. Agr thus enables a normalization
approach to risk assessment of genotoxic chemicals where
no other such measure is readily available.

Note that the method is not dependent on the type of DNA
sequence used; while for some chemicals specific DNA
segments will be susceptible to damage, for others damages
can occur in any of the coding or noncoding segments as
for example in case of Cu(Il) and Rh induced damages. The
indexing can be done for all these cases with respect to any
standard sequence segment chosen.

CONCLUSION

Thus we see that the concept of graph radius in a graphical
representation of a DNA sequence can be extended to make
quantitative estimation of any changes in the sequence. This
observation indicates that it is possible to consider using such
quantitation as an index of the intensity of the effects in the
case of changes arising out of effects of genotoxic chemicals.
As of now, however, we are restricted by the paucity of
experimental data to only indicating the use of Agg as a
possible index; experimental work so far are generally in
the nature of inquiries into the kinds of changes induced in
DNA sequences by genotoxic chemicals, whereas building
up a quantitative index would require controlled experiments
relating dosage and the extent of DNA damage.

Our work has shown that Agg, the change in gg, is a very
sensitive indicator of changes in a sequence arising out of
base depletions and mutations. This provides us therefore a
numerical descriptor of the alterations in base distribution
and composition of DNA sequences and can be used to
compare with any standard or control sequence. Agg,
therefore, averaged over its relevant range of values, can be
used as a numerical descriptor to provide a measure of the
genotoxic effects of chemicals such as oxidants such as Rh
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and Cu(Il), or acrolein, ethyl methanosulfonate, or any other
chemicals whose effect on DNA sequences can occur in a
random manner and therefore can affect any part of the DNA
whether coding or noncoding. In the case of genotoxins that
affect specific genes or base combinations, the Agg will need
to be calculated for those specific genes only, and there the
sensitivity of the measure can be exploited to provide an
indicator of the genotoxicity level of the chemicals.
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We calculated 202 molecular descriptors (topological indices, TIs) for two chemical databases (a set of 139
hydrocarbons and another set of 1037 diverse chemicals). Variable cluster analysis of these TIs grouped
these structures into 14 clusters for the first set and 18 clusters for the second set. Correspondences between
the same TIs in the two sets reveal how and why the various classes of TIs are mutually related and provide
insight into what aspects of chemical structure they are expressing.

INTRODUCTION

A major part of the current research in mathematical
chemistry, chemical graph theory, and quantitative structure —
activity/property relationship studies involves topological
indices. Topological indices (TIs) are numerical graph
invariants that quantitatively characterize molecular structure.
A graph G = (V, E) is an ordered pair of two sets V and E,
the former representing a nonempty set and the latter
representing unordered pairs of elements of the set V. When
V represents the atoms of a molecule and elements of E
symbolize covalent bonds between pairs of atoms, then G
becomes a molecular graph (or constitutional graph, because
there is no stereochemical information). Such a graph depicts
the topology of the chemical species. A graph is characterized
using graph invariants. An invariant may be a polynomial,
a sequence of numbers, or a single number. A numerical
graph invariant (i.e., a single number) that characterizes the
molecular structure is called a topological index.

OVERVIEW OF TOPOLOGICAL INDICES USED IN THE
PRESENT STUDY

A large number of topological indices have been defined
and used.!”!! The majority of TIs are derived from the
various matrices corresponding to molecular graphs. The
adjacency matrix A(G) and the distance matrix D(G) of the
molecular graph G have been most widely used in the
formulation of TIs. Integer-number local vertex invariants
(LOVIs) are the vertex degrees (v;) and the distance sums
(distasums, d;) resulting from summation over rows or
columns of entries in the adjacency and distance matrices,
respectively. By mathematical operations performed on such
LOVIs, one can obtain a molecular descriptor, i.e., a
topological index. Wiener’s index W (eq 1),2 the Zagreb
group index M, (eq 2),!' Randié’s connectivity index, x (eq
3),* the higher-order connectivity indices, "y, for paths of
length n defined by Kier and Hall,’ and the J index (eq 4)°

* Corresponding author. Tel: (218)720-4230. Fax: (218)720-4328.
- E-mail: sbasak@nrri.umn.edu.

* University of Minnesota.

¥ Polytechnic University Bucharest.
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fall in this category.

W= (Y d2 (1)

M, =Y v} )

1= )™ )

J= g+ DI, (d; d)™" @)

The summations in formulas 3 and 4 are over all edges
i—jin the hydrogen-depleted graph. The numbers g of graph
edges and pu of cycles in the graph are introduced into
formula 4 in order to avoid the automatic increase of J with
graph size and cyclicity. Indeed, for an infinite linear carbon
chain it was demonstrated that J = & = 3.14159. The nature
of atoms can be taken into account by means of parameters
based on their relative atomic numbers, electronegativities,
or covalent radii, with respect to those of carbon atoms,
multiplying the corresponding distasum in formula 4 for J.

The mean-square-root distance D derived from all topo-
logical distances (denoted by i in the next formula) is defined
asbb

D= ;" ©)

For taking into account the chemical nature of atoms
symbolized by vertices, Kier and Hall advocated the use of
“valence connectivity indices”.>* These are calculated with
formulas similar to Randi¢’s (eq 3), but products of edge
end point (or path vertex) invariants are no longer of vertex
degrees but of weights (valence delta values d;) given by
formula 5

8, = (Z' - H)(Z,~ Z' - 1) (6)

where Z;¥ stands for the number of valence electrons in atom
i, Z;is its atomic number, and H; is the number of hydrogen
atoms attached to atom i.

The most recent additions to the Kier—Hall armamentary
of TIs are electrotopological state indices.™
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Another class of molecular descriptors, the information-
theoretic indices, are derived from an entirely different
reasoning. In this case, the complexity or mode of partition-
ing of structural features is decomposed into disjoint subsets
using an equivalence relation; a molecular complexity index
is then computed using Shannon’s idea of information
content or complexity.'? Real-number local vertex invariants
(LOVIs), on the other hand, may also be defined starting
from different matrices other than A(G) or D(G) or by
applying information theory at the vertex level. Thus,
topological indices U, V, X, and Y were defined.!* Bonchev
and Trinajsti¢ described several information-theoretic TIs
reviewed thoroughly in Bonchev’s book.’

The information-theoretic indices developed by Basak and
co-workers take into account all atoms in the constitutional
formula (hydrogens also being included), and one considers
the information content provided by various classes of atoms
based on their topelogical neighborhood. There are three
main types of informational indices developed by Basak et
al.: IC (mean information content or complexity of a
hydrogen-filled graph, with vertices grouped into equivalence
classes having r vertices; the equivalence is based on the
nature of atoms and bonds, in successive neighborhood
groups); CIC (complementary information content); and SIC
(structural information content), and they are not inter-
correlated with other TIs. In the following formula, the
summation spans the range from i = 1toi = r:

IC,= - Y. p,log, p; (10)
SIC, = IC Jlog, N (1)
CIC, = log, N - IC, (12)

The probability that a randomly selected vertex occurs in
the ith equivalence class is denoted by p;. The IC,, SIC,,
and CIC, indices can be calculated for different orders of
neighborhoods, r (r = 0, 1, 2, ..., p), where p is the radius
of the molecular graph G. At the Oth-order level, the atom
set is partitioned solely on the basis of its chemical nature;
at the level of the first-order topological neighborhood, the
atoms are partitioned into disjoint subsets on the basis of
their chemical nature and their first-order bonding topology.
At the next level, the atom set is decomposed into equiva-
lence classes using their chemical nature and bonding pattern
up to the second-order bonded neighbors. The process is
continued until consideration of higher-order neighbors does
not yield further increase in the number or composition of
disjoint subsets.

A large variety of real-number local vertex invariants, and
thence a larger variety of TIs, were described on the basis
of converting a matrix (A or D for instance) into a system
of linear equations. This is done by means of two column
vectors that can convey topological, chemical, or numerical
information. One nonzero vector is the free term of the
system of equations. The other one (which may be zero, but
this restricts the choices on available supplementary informa-
tion) becomes the main diagonal of the matrix (if both vectors
were zero, then some negative LOVIs would result with
difficulties of interpretation). These vectors may be the
following integers: Z (atomic number of the atom corre-
sponding to each vertex), V (vertex degree), I (identity), N
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(number of non-hydrogen atoms, or order of the graph), N*
(power k of N). Less frequently, one may use for periodicity
of chemical properties real numbers: § (electronegativity)
or R (covalent radius) of the atom corresponding to each
vertex. The resulting matrix with the vector for the main
diagonal constitutes the set of cocfficients for the N
unknowns that represent the real-number LOVIs of the N
vertices. The triplet (matrix, vector for the main diagonal
and vector for the free term) also serves as notation for
LOVIs and for the derived TIs. After the system of N linear
equations is solved, the LOVIs (x;) are assembled into a
“triplet TI"” based on one of the following operations:

1. summation, Z;x;;

2. summation of squares, Zxx?;

3. summation of square roots, Zx;'?;

4. sum of inverse square root of cross-product over edges
ij, Zyxx) ™'

5. product, N[ITx;]',

Numbers 1-5 of the above operations after the triplet
complete the notation of the triplet TIs.!*

To conclude this brief review of TIs, one should mention
recent progress that includes other matrices such as the
reciprocal distance matrix that yields Harary indices,!* the
regressive distance matrices,'¢ the Szeged matrix,!” and the
resistance distance matrix that affords Kirchhoff indices.!
So-called optimal structural descriptors can be obtained from
some TIs by varying some parameters and thereby adapting
them to the database;!? alternatively, in Randié-type formulas
(eqs 3, 4) the exponent is allowed® to differ from '/,. Three-
dimensional molecular descriptors can be derived from
geometrical and topological structural features of molecules.?!

Each of the indices above-discussed is a “global” param-
eter; i.e., it quantifies certain aspects of the entire molecular
structure using a single number.

It is clear from the above discussion that the set of TIs is
a group of heterogeneous entities. They have been defined
to characterize molecular structure on the basis of distinct
objectives and motivations. Despite their distinctive char-
acteristics, Tls share certain common features. A topological
index maps a set of chemicals C into the set R of real or
integer numbers. Therefore, TIs quantify some general
aspects of molecular architecture such as size, shape,
symmetry, bonding type, cyclicity, branching pattern, etc.

Topological indices have been used for isomer discrimina-
tion, quantification of the structural similarity/dissimilarity
of molecules, and prediction of property/activity from
structure.'® The widespread use of TIs obviously encourages
one to ask some fundamental questions about them: What
is the fundamental nature of TIs? To what degree are they
intercorrelated? How does one extract orthogonal information
from TIs?

The intercorrelation of TIs was studied earlier with a
limited set of invariants. Thus, Motoc and Balaban??
described graphically the intercorrelations of the few Tls
known until 1981. These aspects were reviewed in the early
1980s.23 Basak et al. studied the mutual relatedness of a set
of 90 TIs calculated for a set of 3692 diverse chemicals.2*
A third study by Todeschini et al. will be discussed in the
last section of this paper.

All such studies were limited in the sense that they
analyzed data on a smaller and less diverse group of TlIs.
Therefore, in this paper, we have studied the mutual
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Table 1. Summary of Chemical Classes or Features in Databases
Analyzed

database A database B
chemical classes or features (hydrocarbons)  (diverse)
total number of compounds 139 1037
hydrocarbons 139 565
alkanes, cyclic alkanes 73 206
aromatics 66 288
alkyl benzenes 29 80
fused rings 37 56
polycyclic aromatics 37 49
non-hydrocarbons 0 472
halogen-containing compounds 359
heteroatom-containing compounds 101
(sulfur or phosphorus)
Compounds containing both 12
halogens and heteroatoms
organosulfides - 105
organophosphorus 8

relatedness of a set of 202 TIs. We have also tried to extract
useful and orthogonal structural information from the
calculated TIs. This study also reports, for the first time, a
comprehensive discussion of Basak’s information content
indices (IC,, SIC,, CIC,), the triplet indices (proposed by one
of the present authors), and Balaban’s average distance-based
connectivity index J as compared to the traditional and more
widely used indices.

The goal of this paper is two-fold: (a) to study the degree
of intercorrelation among the various types of topological
indices and (b) to extract mutually uncorrelated (orthogonal)

Table 2, Symbols and Definitions of Topological Parameters
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topological parameters that can be used for QSAR/QSPR
studies, quantitation of intermolecular similarity/dissimilarity,
and characterization of real and virtual combinatorial librar-
ies. To this end, we studied the mutual relatedness of a set
of more than 200 topological indices in this paper.

METHODS

Chemical Databases. There were two sets of chemicals
analyzed in this study: a set of 139 hydrocarbons to represent
a moderately homogeneous set of chemicals and a set of
1037 diverse chemicals. The hydrocarbons consisted of 73
C3-C9 alkanes, 29 alkylbenzenes, and 37 polycyclic
aromatic hydrocarbons.” The diverse set of 1037 compounds
consists of those chemicals from the U.S. EPA ASTER
system® for which a measured boiling point was available
and hydrogen-bonding potential (as measured by HB1 = 0)
did not exist. The composition of these data sets is indicated
in Table 1. Table 2 presents the list of all 202 parameters
calculated in this study.

Calculation of TIs. The TIs calculated for this study
(some of which are included in Table 2) include Wiener
number W,2 molecular connectivity indices as calculated by
Randié¢* and Kier and Hall,® frequency of path lengths of
varying size,® information-theoretic indices defined on
distance matrices of graphs using the methods of Bonchev
and Trinajsti¢,” Roy et al.,”” Basak et al, 3! and Ray-
chaudhury et al.,* parameters defined on the neighborhood
complexity of vertices in hydrogen-filled molecular graphs,28-32

index

definition

¥y information index for'the magnitudes of distances between all possible pairs of vertices of a graph

My mean information index for the magnitude of distance

w Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph

I degree complexity
HY  graph vertex complexity
HP graph distance complexity

ic information content of the distance matrix partitioned by frequency of occurrences of distance &

0 order of neighborhood when IC, reaches its maximum value for the hydrogen-filled graph
Iore  information content or complexity of the hydrogen-suppressed graph at its maximum neighborhood of vertices

M, a Zagreb group parameter = sum of square of degree over all vertices

M, a Zagreb group parameter = sum of cross-product of degrees over all neighboring (connected) vertices
IC,  mean information content or complexity of a graph based on the rth (r = 0—6) order neighborhood of vertices in a hydrogen-filled graph
SIC, structural information content for rth (r = 0—6) order neighborhood of vertices in a hydrogen-filled graph

Y path connectivity index of order h = 0~6

by cluster connectivity index of order h = 36

bypc  path-cluster connectivity index of order h = 4—6

kyen  chain connectivity index of order h = 3—6

Byt bond path connectivity index of order h = 0—6

¢°c  bond cluster connectivity index of order h = 3—-6

'¢°cv  bond chain connectivity index of order h = 3—6

'y’ec  bond path-cluster connectivity index of order h = 4—6
by valence path connectivity index of order h = 0—6

x¥'c  valence cluster connectivity index of order h = 3—6
kyven  valence chain connectivity index of order h = 3~6
y*pc  valence path-cluster connectivity index of order s = 4—6
Py number of paths of length h = 0—10

J Balaban’s J index based on distance

J8 Balaban’s J index based on bond types

JX Balaban’s J index based on relative electronegativities
JY Balaban’s J index based on relative covalent radii

CIC, complementary information content for rth (r = 0—6) order neighborhood of vertices in a hydrogen-filled graph

triplet Global invariants based on solutions of linear equation systems using the adjacency matrix (A), distance matrix (D), and column/row
vectors: distance sums (), atomic number (Z), number of non-hydrogen atoms (N and N2), vertex degree (V), or numerical constants (1).
Notation is described by triplets (e.g., AZV). Results are weightings for each atom in a molecule. These weights are combined by five
possible formulas: 1= sum of weights, Zix; 2 = sum of squared weights x?; 3 = sum of square root of weights Yix;'%; 4 = sum of

cross-products Y(xi°x;)~'?; and 5 = product of weights N-[Tx]'™.
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and Balaban’s J indices® as well as triplet indices.!* The
majority of the TIs were calculated using the program
POLLY 2.3.% The J indices and triplet indices were
calculated using software developed in-house by the authors.

STATISTICAL ANALYSIS

For both sets of chemicals, the computed TIs were
transformed by the natural logarithm of the index plus a
constant, generally 1. This was done since the scale of some
indices may be several orders of magnitude greater than that
of other indices.

For each set, a technique known as variable clustering was
performed using the SAS procedure VARCLUS.3* The
variable-clustering procedure divides the set of indices into
disjoint clusters, such that each cluster is essentially uni-
dimensional. This is accomplished by a repeated principal-
components analysis of the sets of indices. The initial
principal-component analysis examines all indices and
defines two principal components or eigenvectors. If the
eigenvalue for the second component is > 1.0, the indices
are split into separate clusters by correlating the indices with
the first and second principal components. Those indices
most correlated with the first component form one cluster
and those indices most correlated with the second component
form another cluster, thus forming two disjoint clusters. A
principal-component analysis is then performed for each
cluster of indices, with the cluster being split if the eigenvalue
for the second component is > 1.0. The procedure is repeated
until the second eigenvalue is <1.0 for all clusters.

RESULTS AND DISCUSSION

The first database (denoted by A) consists of 139
hydrocarbons (alkanes, alkylbenzenes, and polycyclic aro-
matics) and 162 TIs. The number of indices examined was
reduced from the original 202 by removing all but one of
the degenerate (i.e., correlation of 1.0) indices and those
indices that were constant (0.0) for all chemicals. The second
database (denoted by B) is a diverse one and contains 1037
chemical structures and 176 nondegenerate, nonconstant
indices.

The results of the variable-cluster analysis will be pre-
sented, first discussing how the descriptors (variables) for
database A become clustered and then surveying the descrip-
tor clustering for database B, as well as the correspondence
between these clusters. Intercluster correlation will then be
described.

The clusters have been ordered according to decreasing
numbers of descriptors in each cluster; when clusters contain
the same number of descriptors, the numbering of the
corresponding clusters is arbitrary.

In Figure 1, one can see, in graphical form, on the left-
hand side the points denoting the clusters that group together
the descriptors for the hydrocarbon database A and on the
right-hand side those corresponding to the diverse database
B. Each cluster is denoted by a letter (A or B) and a number.
The total number of variables in each cluster is written under
each point. Full lines connect A-type with B-type clusters,
having inscribed on them the numbers of descriptors common
to each pair of clusters; when no number is inscribed, this
indicates a single common descriptor. Dashed side lines
denote the descriptors that do not have counterparts in the
other set of clusters, and the associated numbers on these
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Figure 1. Associations between clusters of descriptors for the
hydrocarbon database (A-type clusters) and the database with
diverse compounds (B-type clusters). Solid lines connect A-type
descriptors with B-type descriptors, and the numbers of common
descriptors are indicated on such lines (when no number is indicated,
there is just one common descriptor). Dashed lateral lines indicate
descriptors that have no correspondence for the other type.

side lines indicate the numbers of such “orphan” descriptors.
Because the two data sets differ both in the numbers of
compounds and in their structures, it is normal to expect that
clusters for one data set will have counterparts in several
clusters in the other data set. This is indeed what was found
to happen, as will be shown below when the diverse data
set will be analyzed.

Only in a single case have we found a one-to-one
correspondence between clusters of descriptors corresponding
to the two data sets (A12 and B14). Nevertheless, in several
instances (A6, Al1l; B4, B9, B15, B16, and B17), a cluster
for one data set (say, A) was found to have all its descriptors
in common with only one cluster of the other data set (say,
B); however, this latter cluster also contains descriptors found
in more than one cluster of the other set.

Clustering of Descriptors for Hydrocarbons. The de-
scriptors for database A are grouped in 14 clusters sum-
marized in Table 3. Cluster A1 has 54 from the total of 162
descriptors; therefore, it groups together about one-third of
all variables. These descriptors depend on both the shape
and the size (magnitude) of the molecular graph; such
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Table 3. Summary of Variable Clustering for 139 Hydrocarbons

number of representative variables
cluster variables (max. 25% of total listed)

Al 54 DN?Z,, DN2Ny, Py, AZV4, ASZs, ANN3,
ANNs, AZN,

A2 19 va P1, Sx' 6xh‘ ﬁxv

A3 13 Oyt 0¥ ANZI

A4 13 SICs, SICs, ICq

AS 12 DSZ,,DSZs, ASZ,

A6 9 DSZ;, DSN;

A7 9 DSN;, DN2N;

A8 6 vac‘ jxhc

A9 6 DSZ,, ASZ,

Al10 5 SIC,

All 4 CIC,

Al2 4 L

Al3 4 SIC,

A14 4 sth

descriptors include the Randi¢ connectivity index, the Kier—
Hall simple path connectivity indices, the Zagreb group
indices, and many triplet indices having as the main diagonal
column vector the atomic number Z or the total number N
of vertices. :

Cluster A2 with about '/; of the total number of descriptors
includes molecular connectivity indices of order higher than
5, the J indices, and two closely similar triplet indices. Cluster
A3 contains mainly valence/bond-corrected molecular con-
nectivity indices. The next cluster, A4, consists mainly of
the information-based indices IC (information content), SIC
(structural information content), and CIC (complementary
information content) for the hydrogen-filled graphs of order
higher than 2 for IC and higher than 3 for SIC and CIC.
Cluster A5 is composed mainly of triplet indices having as
main diagonal unit vectors either distance sums or total
number N of vertices.

Each of the remaining clusters has less than 10 descriptors.
Clusters A6 and A7 contain mostly triplet descriptors: A6
with the distance sum- § and A7 with the order N of the
hydrogen-depleted graph, as the main diagonal unit vector;
cluster A7 also includes two simple path cluster molecular
connectivity indices. Cluster A8 contains simple cluster- and
bond/valence-corrected cluster connectivities of high order
(4-6). Cluster A9 again consists exclusively of triplet
indices, and they are based on summing squares of LOVIs
based mainly on distance sum unit vectors on the main
diagonal.

Cluster A10 includes three information-theoretic indices
IC and SIC of low order (0 and 1) as well as two triplet
indices having in common the two unit vectors (distance sum
§ for the main diagonal, vertex degree V for the free term)
and the operation for assembling LOVIs into an index
(summation of LOVI square roots).

Interestingly, the four smallest clusters having four
descriptors each are pairwise similar in type: A1l with A13,
and A12 with A14. Cluster A11 consists of information TIs
(IC, SIC, CIC) of low order (0—2), whereas A13 includes
the same TIs of slightly higher order (2 and 3). Clusters A12
and A 14 group together molecular connectivity indices based
on simple cluster and simple cycle, respectively.

A general remark for the triplet indices is that what groups
them together is not the matrix on which they are based
(adjacency matrix or distance matrix) but the two unit vectors
that convert such matrices into systems of linear equations.
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Table 4. Summary of Variable Clustering for 1037 Diverse
Chemicals

number of representative variables
cluster variables (max. 25% of total listed)
Bl 49 Po, ANN3, ANN;s, ANL;3, ANN;, ANV,
AS14, DN,
B2 13 ANV, P35, M,
B3 13 AS1y, AS1s, DS1,
B4 13 by, 6%, Py
BS 1 ASNs, AS13, ASN,
B6 10 SIC,, SIC,, CIC,
B7 9 Sxbec., Sxpc
B8 8 ASZ,, ASZ,
B9 6 Syt e
B10 6 3en, *xben
B11 6 IC4, ICs
B12 6 CICy, SIC,
B13 6 S chs %xPch
Bl14 6 sxbc, 4xC
B15 4 JB
B16 4 ASl,
B17 4 DN2N,
B18 2 ANS,

Clustering of Descriptors for the Diverse Set of
Compounds. There are 18 variable clusters grouping to-
gether 176 variables for the database of 1037 diverse
compounds (Table 4). Cluster B1, with 49 descriptors,
includes 28% of all variables; 35 of these descriptors are
common to cluster Al. Some of these indices, e.g., W
(Wiener number), Py (number of non-hydrogen atoms), and
Py (number of bonds in the hydrogen-depleted graph),
express molecular size. It is interesting that most of the triplet
variables (AZV;, AZN;, and ANN; with i = 1-5 as well as
several other ones) are found to be common to clusters Al
and B1. Five other descriptors (%®, %", 3xb, %", and 3
also appear in both clusters Al and B1.

Cluster B2 has nine variables in common with cluster A1;
most of these (%, %, P,—P4) are path connectivities of
intermediate order. A couple of triplet indices (ANV, and
ANYV5) are also in common with cluster A1; another pair of
triplet indices (ASN3 and ASNy) are in common with cluster
A7.

Cluster B3 contains triplet indices with distance sums as
main diagonal vector; they occur in clusters A5 and A9. In
addition, two descriptors (i}’,’ and HP) appear also in cluster
Al.

Cluster B4 is uniquely associated with cluster A2 and
consists of indices %y, 8y, 3¢®, ®®, 5x*, 6", and P¢— Py. These
descriptors are based on long paths; therefore, these variables
appear only when large molecules are involved.

Seven of the eleven variables of cluster B5 form exclu-
sively cluster A6; they are related to molecular shape via
vertex complexity and graph radius. Five triplet indices such
as ASN,;, ASN;s, DSN, DSNs, and ANV, also are common
to these two clusters.

Very interesting correspondences are manifested by cluster
B6, which is mainly associated with two clusters involving
the hydrocarbon database, namely, A4 and A13 (plus one
descriptor in B6 that appears in A10). All variables are of
information-theoretic type. These higher-order variables
(SIC3—-SICs and CIC3—CIC¢) are common to clusters B6
and A4 and represent a true measure of molecular complex-
ity. The lower- and intermediate-order indices such as IC,
or SIC, that appear in clusters B6 and A10 or B6 and A 13,
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respectively, provide information on lower-order complexity
that may be more degenerate than that furnished by the
higher-order information indices. One should stress here that
information content indices form clusters that are separate
from clusters with other descriptors, meaning that such
variables convey unique information relative to structure and
molecular complexity.

Cluster B7 consists only of path-cluster molecular con-
nectivity descriptors that were included in clusters A3, A7,
and A8 for the hydrocarbons.

Cluster B8 includes triplet indices, all of which have the
atomic number Z for the free-term vector in the system of
linear equations. Most of these descriptors appear in clusters
Al, A5, and A9. .

Cluster B9 consists of high-order connectivity-cluster terms
all contained in cluster A8. For hydrocarbons, descriptors
Sy% and %'c are perfectly correlated with descriptor Syc;
therefore, the former variables did not appear in the
hydrocarbon cluster A8. For the diverse-compound database,
such a correlation is not perfect because of differences in
atom types. '

An interesting observation concerns cluster B10: all six
variables are absent from the hydrocarbon database because
the database does not contain any three- or four-membered
rings, unlike the diverse compound database. This is why
indices Y*ycn, ¥*x®ca, and ¥*y"cy appear only in cluster B10.

Cluster B11 has all but one of its descriptors contained in
cluster A4; these information content indices, IC,—ICg,
measure a high degree of nonredundancy of topological
neighborhoods.

Cluster B12 has four of its variables contained in cluster
A11; these descriptors (SICy, CICo—CIC,) express lower-
order redundancy of topological neighborhoods. This is true
- of indices ICy and SIC, as well, which are present in cluster
A10.

From cluster B13, the six descriptors (simple, bond- and
valence-corrected chain molecular connectivity indices) are
partitioned equally between clusters A2 and A 14, according
to the six- versus five-membered ring size, respectively; in
the hydrocarbon database A, six-membered chain (or rings)
predominate.

Cluster B14 is exclusively associated in a one-to-one
relationship with cluster A12. The corresponding descriptors
Sc and *yc as well as their bond- and valence-corrected
counterparts represent connectivity indices on three- and four-
vertex structural clusters. For the hydrocarbon database, we
have again a case in which the two indices *¢®c and *y'c,
perfectly correlated with *yc, do not appear explicitly in
cluster A12.

Half of the variables (J-type indices) in cluster B15 are
contained in cluster A2. These J indices again form a cluster
apart from all other ones in the case of the diverse database,
proving that when heteroatoms are taken into account, the
information provided by such J-type indices is unique.

Clusters B16, B17, and B18 each have a small number of
triplet-type descriptors; the three descriptors of cluster B17
are all contained in cluster A7.

Intercluster Correlations. From each cluster we select
15—25% of the descriptors according to the maximal value
of the correlation coefficient with their own cluster. In most
cases, the first selected descriptor also has the minimal value
of the correlation with the next closest cluster, expressed by
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Figure 2. Graph of highly correlated topological indices (TIs)
according to Todeschini et al. (notation of TIs as in Table 3 of ref
31). Lines connect TIs with r > 0.90.

the 1 — r2 value. When more than one index is chosen from
the same cluster, after the first one was selected as indicated
above, the next one must also fulfill a third criterion, namely,
a low intercorrelation with the previously selected indices
of the same cluster.

There were four intercluster correlations within the
hydrocarbon data set that were greater than 0.9, and all
involved cluster Al. Cluster A1 was positively correlated
with A2, A3, and A7. Cluster Al was correlated negatively
with A5. Each of the clusters characterizes some aspect of
molecular size and shape.

Cluster B1 showed an intercluster correlation of 0.92 with
cluster B2 and —0.90 with cluster B3. These were the only
intercluster correlations greater than 0.9. These clusters are
the three largest clusters in set B. Like cluster A1, cluster
B1 groups TIs expressing molecular size and shape. Interest-
ingly, in set A cluster Al also had a negative intercluster
correlation with cluster AS5; it is therefore not surprising that
clusters A5 and B3 have the most abundantly populated line
connecting them in Figure 1.

In summary, for the hydrocarbon database there are four
intercluster correlations with r > 0.90 all involving on one
hand the first cluster Al and on the other hand clusters A2,
A3, A5, and A7. For the diverse compound database there
are only two such intercluster correlations with r > 0.90,
namely, B1 with B2 and B3. This is not unexpected, as the
combination of the first three clusters in each case contains
more descriptors than the parameters remaining in all the
remaining ones together.

In this context, one should mention that Todeschini and
co-workers published an interesting study® on 23 TIs for a
set of 667 diverse chemicals, 20% of which were hydrocar-
bons; the above authors excluded 10 of these TIs because
they were degenerate, or redundant or had intercorrelation
factors higher than 0.90. A graph depicting highly intercor-
related indices using data published by these authors is
presented in Figure 2, which is similar to a graph published
earlier.?

Ten TIs were then selected by Todeschini et al.,3% namely,
the molecular weight (Mw), J, IC, CIC, the bonding informa-
tion content (BIC), mean Randié¢ connectivity (x), the
information content on atomic composition (/ac), the mean -
Wiener index (W), and the mean information indices on
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equality of distance degree and on the magnitude of distance
degree (IEp geg and I¥p geq, Tespectively). Then, using principal-
component analysis for the above 10 TIs, Todeschini et al.
analyzed the composition of the first six principal-compo-
nents. They found that the first PC is mainly composed of
indices that express the size of molecules (My, W, IC, [E D.deg
and 1¥p g.g). This is in agreement with the earlier finding of
Basak et al. for a set of 3692 diverse chemicals that the first
PC is related to molecular size.?’ Further, Todeschini et al.
found that the second PC is dominated by indices expressing
information on bonds (IC, CIC, and BIC). This is also
analogous to the results reported by Basak et al.?? that the
second axis represents molecular complexity as encoded by
higher-order neighborhood complexity indices (IC,, IC;,
SIC,, SIC;, CIC,, CIC3, etc.). The IC, CIC, and BIC indices
used by Todeschini et al. are based solely on first-order
topological bonding/neighborhoods and slightly different
equivalence relations as compared to the IC,, SIC,, and CIC,
indices defined by Roy et al.”” In studies by Basak et al.,?’
the first-order complexity indices (ICy, SIC,, CIC;) were
usually most correlated with the first PC. Each of the next
four PCs in Todeschini et al.’s study®® is dominated by a
single Tlviz., ¥, Iac, J (indicating branching), and IED_.,cg
(connected with the position of substituents on the molecular
scaffold), respectively.
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Use of Graph Invariants in QMSA and Predictive Toxicology

- S.C. Basak and B.D. Gute

ABSTRACT. Mathematical invariants are frequently used for the characteriza-
tion of molecular graphs. Such invariants quantify structural features of chem-
icals like size, shape, symmetry, cyclicity, complexity, branching, etc. Numeri-
cal graph invariants or topological indices (TIs) have been used in developing
quantitative structure-property/ activity/ toxicity relationship models and in
defining intermolecular similarity. In this paper, we have used a set of TIs and
a class of substructures called atom pairs (APs) in selecting analogs of probe
chemicals from a set of mutagens. The result shows that both of the similarity
methods select analogs which have reasonable structural similarity with the
query chemicals. Such analogs, selected computationally, can be useful in the
hazard assessment of chemicals for which very little or no toxicity data are
available.

1. Introduction

A contemporary interest irf mathematical chemistry is the characterization of
molecular structure using graph theoretic formalism [1]-[11]. A graph G = [V, E]
consists of an ordered pair of two sets V' and E, representing the vertices and edges,
respectively. G becomes a molecular graph when the set V represents the set of
atoms in a molecule and the set E symbolizes chemical bonds between adjacent
atoms (8).

Mathematical characterization of molecular graphs (structures) may be accom-
plished using graph invariants. An invariant may be a polynomial, a sequence of
numbers, or a real number. A real number characterizing a molecular graph is called
a topological index (TI). TIs quantify different aspects of molecular architecture,
viz., size, shape, cyclicity, branching, symmetry, etc [8].

TIs have been used extensively in quantitative structure-property /activity rela-
tionships (QSPR and QSAR respectively) and the quantification of intermolecular
similarity /dissimilarity of chemicals [10}-{24]. In quantitative molecular similarity
analysis (QMSA) studies, TIs have been used to derive high dimensional structure
spaces where the Euclidean distance D;; between a pair of molecules i and j is used
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to quantify the similarity between them. Similarity measures can be used either for
the selection of analogs of chemicals or in the prediction of the property/activity
of a molecule from the property of its selected neighbor(s).

In some of our recent QSAR/QMSA studies we have used different similarity
measures derived from TIs in the selection of analogs and prediction of proper-
ties/activities for diverse sets of chemicals. We have also used orthogonal descrip-
tors derived from a set of over 100 graph invariants to estimate bioactivity/toxicity
of different graphs of molecules. In this paper we have used similarity measures
derived from TIs in: a) selecting analogs of an isospectral graph from a diverse set
of 221 compounds, and b) predicting the mutagenicity of a set of 113 mutagens and
non-mutagens using QMSA methods.

2. Methods

2,1, Databases. A set of 19 pairs of isospectral graphs from the work of
Balasubramanian and Basak [25] were added to a set of 107 benzamidines [26] and
a composite set of 76 diverse compounds used in an earlier study by Basak and
Grunwald [23] to create a varied library of 221 compounds. This composite library
was created to provide a large set containing both congeneric and non-congeneric
sets to test analog selection methods. The chemical structures for the 19 pairs of
isospectral graphs have been presented previously [25].

A second data set, representing a subset of the set of 277 chemicals presented by
Yamaguchi et al. [27] was also used in the current study. This subset consisted of all
the chemicals in the set of 277 chemicals that had reported results for mutagenicity
in the Ames test, mutagenicity in the medium term liver carcinogenesis bioassay,
and carcinogenicity in the two-year rodent bioassay in rat and/or mouse. This
subseting resulted in a set of 113 chemicals, 68 of which are classified as non-
mutagens and 45 of which are classified as mutagens in the Ames test. This set of
chemicals and their observed amutagenicity are reported in Table 1.

TABLE 1: Mutagenicity in the Ames test for 113 chemicals

Obs. Ames
No.* Compound Name Mutagenicity
1.5 butylated hydroxyanisole (BHA) 0
1.6 caffeic acid 0
1.7 catechol 0
1.8 clofibrate 0
1.9 di(2-ethylhexyl)phthalate (DEHP) 0
1.10  hydroquinone 0
1.11  p-methoxyphenol 0
1.12  sesamol 0
1.13  tamoxifen 0
1.14  acetaminophen 0
1.15 benzoin 0
1.16 EPN 0
1.17  gallic acid 0
1.18 a-tocopherol 0
2.2 2-acethylaminofluorene (AAF) 1
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TABLE 1: Mutagenicity in the Ames test for 113 chemicals

Obs. Ames
No.? Compound Name Mutagenicity
2.3 adriamycin 1
2.4 aflatoxin B1 1
2.5  benzo[a]pyrene 1
2.7 captafol 1
2.8 captan 1
2.9 carbazole 1
2.10  dibutylnitrosamine (DBN) 1
2.11  diethylnitrosamine (DEN) 1
2.12  3,2'-dimethyl-4-aminobiphenyl (DMAB) 1
2.14  dimethylnitrosamine (DMN) 1
2.15  N-ethyl-N-hydroxyethylnitrosamine (EHEN) 1
2.16  N-ethyl-N-nitrosourea (ENU) 1
2.20  hydrazobenzene 1
2.22  laciocarpine 1
2.26  3’-methyl-4-dimethylaminoazobenzene (3'-Me-DAB) 1
2.27  3-amino-9-ethylcarbazole 1
2.28  N-nitrosooxazolidine 1
2.29  N-nitrosodi-n-propylamine (NDPA) 1
2.30  N-nitrosomorpholine 1
2.31  N-nitrosopiperidine 1
2.32  N-nitrosopyrrolidine 1
2.33  quinoline 1
2.34 sterigmatocystin 1
2.35 4,4-thiodianilines 1
2.42  alachlor 0
2.43  aldrin 0
2.44 auramine O 0
2.45 Dbarbital 0
2.46  chlordane 0
2.47  chlorendic acid 0
2.48  chlorobenzilate 0
249 DDT 0
2.50 dieldrin 0
2.51  diethylstilbestrol 0
2.53  ethenzamide 0
2.54  17a-ethinyl estradiol 0
2.55 DL-ethionine 0
2.56  hexachlorobenzene (HCB) 0
2.57  a-hexachlorocyclohexane (a-HCH) 0
2.58 d-limonene 0
2.59  monoclotaline 0
2.60 N-nitrosodiethanolamine 0
2.61 phenobarbital 0
2.64 safrole 0

11
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TABLE 1: Mutagenicity in the Ames test for 113 chemicals

Obs. Ames
No.? Compound Name Mutagenicity

2.66  thioacetamide

2.67 triadimefon

2.68  trifluralin

2.69  urethane

2.70  polychlorinated biphenyl (PCB)

2.71  malathion

2.72  vinclozolin

3.1  acetophenetidine (phenacetin)

3.2 azathioprine

3.3 N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN)
3.4  chrysazin (danthron)

3.5 4,4-diaminodiphenylmethane (DDPM)
3.6  7,12-dimethylbenz[a)anthracene (DMBA)
3.7 N-ethyl-N-(4-hydroxybutyl)nitrosamine (EHBN)
3.8 folpet

3.9 hydrogen peroxide

3.11  3-methylcholanthrene (3-MC)

3.12  N-methyl-N’-nitro-N-nitrosoguanidine (MNNG)
3.13  N-methyl-N-nitrosourea (MNU)

3.14  8-nitroquinoline

3.17  streptozotocin

3.18 o-toluidine

3.20  6-methylquinoline

3.21  8-methylquinoline

3.22  nitrofrantoln

3.23  6-nitroquinoline

3.24  quercetin

3.32  acetaldehyde

3.33  atrazine

3.34  di(2-ethylhexyl)adipate (DEHA)

3.35 1,1-dimethylhydrazine

3.39 trichloroacetic acid

3.42  4-acethylaminofluorene (AAF)

3.43  aspirin

3.44 butylated hydroxytoluene (BHT)

3.45 caffeine

3.46  caprolactam

3.47  chenodeoxicholic acid

3.49  cypermethrin

3.50  deltamethrin

3.51 diltiazem

3.52  dimethylsulfoxide (DMSQ)

3.53  diazinon

3.54 fenvalerate

OO OO OCOO0OOO0OOOOO OO O H H I b b i d bt i ped = = === OO0 0000
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TABLE 1: Mutagenicity in the Ames test for 113 chemicals

Obs. Ames
No.* Compound Name Mutagenicity
3.55  glutathione 0
3.56 4-o0-hexyl-2,3,6-trimethylhydroquinone (HTHQ) 0
3.58 lithocolic acid 0
3.59 d-mannitol 0
3.61 . phenol 0
3.64 propyl galiate 0
365 propylparaben 0
3.66 pyrene 0
3.67  resorcinol 0
3.71  trimorphamide 0

e The numbering scheme refers to the enumeration of the chemicals

in the presentation by Yamaguchi et al. [27] where the numeral be-
fore the decimal place refers to the table in which the compound was
listed (see below) and the numerals after the decimal refer to the
compounds location within the table.

Table 1 - Association between inhibitory results in the medium-term
liver bioassay (Ito test) and reported mutagenicity and carcinogenic-
ity.

Table 2 - Association between positive results in the medium-term
liver bioassay (Ito test) and reported mutagenicity and carcinogenic-
ity.

Table 3 - Association between negative results in the medium-term
liver bioassay (Ito fest) and reported mutagenicity and carcinogenic-
ity.

2.2. Calculation of Topological Indices. The TIs calculated for this study
are listed in Table 2 and include Wiener number [28], molecular connectivity in-
dices as calculated by Randié [29] and Kier and Hall [4], frequency of path lengths
of varying size, information theoretic indices defined on distance matrices of graphs
using the methods of Bonchev and Trinajsti¢ [30] as well as those of Raychaud-
hury et al. {31], parameters defined on the neighborhood complexity of vertices in
hydrogen-filled molecular graphs [32]-[34], and Balaban’s J indices [35]-[37]. The
majority of the TIs were calculated using POLLY 2.3 [38]. The J indices were
calculated using software developed by the authors.

The Wiener index (W) [28], the first topological index reported in the chem-
ical literature, may be calculated from the distance matrix D(G) of a hydrogen-
suppressed chemical graph G as the sum of the entries in the upper triangular
distance submatrix. The distance matrix D(G) of a nondirected graph G with n
vertices is a symmetric n X n matrix (d;;), where d;; is equal to the distance be-
tween vertices v; and v; in G. Each diagonal element d;; of D(G) is zero. We give
below the distance matrix D{G;) of the unlabeled hydrogen-suppressed graph G,
of thioacetamide (Fig. 1):
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|1 2 3 4
1{01 2 2
D(Gy) = 2|1 0 11
312 1 0 2
412 1 2 0

W is calculated as:

(2.1) W=1/23dij=) h-gn
. ij h

where g, is the number of unordered pairs of vertices whose distance is h. Thus
for D(G1), W has a value of nine.

3
ﬁ
C
H3C/ \NH2 1 2 4
Thioacetamide Gy

FIGURE 1..Unlabeled, hydrogen-suppressed graph of thioacet-
amide (G,)

Randié’s connectivity index [29], and higher-order connectivity path, cluster,
path-cluster and chain types of simple, bond and valence connectivity parameters
were calculated using the method of Kier and Hall {4]. The generalized form of the
simple path connectivity index is as follows:

(2.2) by = (wij ... vn41) 7V

where v;,vj,...,vn41 are the degrees of the vertices in the path of length h. The
path length parameters (Ps), number of paths of length h (h =0,1,...,10) in the
hydrogen-suppressed graph, are calculated using standard algorithms.
Information-theoretic topological indices are calculated by the application of
information theory on chemical graphs. An appropriate set A of n elements is
derived from a molecular graph G depending upon certain structural characteristics.
On the basis of an equivalence relation defined on A, the set A is partitioned into h

h
disjoint subsets A; of order n;(i = 1,2,...,h; Y n; = n). A probability distribution
i=1
is then assigned to the set of equivalence classes:

A Ay, .. Ap
P1,P2y---1Ph

where p; = n;/n is the probability that a randomly selected element of A will occur
in the i*® subset.
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TABLE 2: Symbols and brief definitions for 101 topological indices

Iors

M
M,

IC,
SIC,

CIC,

"¢
"xen
"xpc

Information index for the magnitudes of distances between all possible
pairs of vertices of a graph

Mean information index for the magnitude of distance

Wiener index = half-sum of the off-diagonal elements of the distance
matrix of a graph

Degree complexity
Graph vertex complexity
Graph distance complexity

Information content of the distance matrix partitioned by frequency of
occurrences of distance h

Information content or complexity of the hydrogen-suppressed graph at
its maximum neighborhood of vertices

Order of neighborhood when IC, reaches its maximum value for the
hydrogen-filled graph
A Zagreb group parameter = sum of square of degree over all vertices

A Zagreb group parameter = sum of cross-product of degrees over all
neighboring (connected) vertices

Mean information content or complexity of a graph based on the rth (r =
0 — 6) order neighborhood of vertices in a hydrogen-filled graph

Structural information content for r* (r = 0 — 6) order neighborhood of
vertices in a hydrogen-filled graph

Complementary information content for r** (r = 0 — 6) order neighbor-
hood of vertices in a hydrogen-filled graph

Path connectivity index of order h =0—6

Cluster connectivity index of order h =3 -6

Chain connectivity index of order h =3 -6
Path-cluster connectivity index of order h=4 -6
Bond path connectivity index of order h =0—6

Bond cluster connectivity index of order h=3 — 6
Bond chain connectivity index of order h =3 — 6

Bond path-cluster connectivity index of order h =4 -6
Valence path connectivity index of order h =0 — 6
Valence cluster connectivity index of order h=3 -6
Valence chain connectivity index of order h =3 — 6
Valence path-cluster connectivity index of order h =4 — 6
Number of paths of length h =0 — 10

Balaban’s J index based on distance

Balaban's J index based on bond types

Balaban’s J index based on relative electronegativities
Balaban’s J index based on relative covalent radii

M Mo iad
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The mean information content of an element of A is defined by Shannon’s
relation [39]:

h
(2.3) IC = =" pilog, p;
i=1

The logarithm is taken at base 2 for measuring the information content in bits.
The total information content of the set A is then n x IC. Figure 2 provides a
sample. calculation for IC;.

It.is to be noted that the information content of a graph G is not uniquely de-
fined. It depends on how the set 4 is derived from G as well as on the equivalence
relation which partitions A into disjoint subsets 4;. For example, when A consti-
tutes the vertex set of a chemical graph G, two methods of partitioning have been
widely used: a) chromatic-number coloring of G where two vertices of the same
color are considered equivalent, and b) determination of the orbits of the automor-
phism group of G thereafter vertices belonging to the same orbit are considered
equivalent. ,

Rashevsky was the first to calculate the information content of graphs where
“topologically equivalent” vertices were placed in the same equivalence class [40].
In Rashevsky’s approach, two vertices u and v of a graph are said to be topologically
equivalent if and only if for each neighboring vertex u;(i = 1,2,...,k) of the vertex
u, there is a distinct neighboring vertex v; of the same degree for the vertex v. While
Rashevsky used simple linear graphs with indistinguishable vertices to symbolize
molecular structure, weighted linear graphs or multigraphs are better models for
conjugated or aromatic molecules because they more properly reflect the actual
bonding patterns, i.e., electron distribution.

To account for the chemical nature of vertices as well as their bonding pattern,
Sarkar et al. [41] calculated information content of chemical graphs on the basis
of an equivalence relation where two atoms of the same element are considered
equivalent if they possess an identical first-order topological neighborhood. Since
properties of atoms or reaction centers are often modulated by stereo-electronic
characteristics of distant neighbors, i.e., neighbors of neighbors, it was deemed
essential to extend this approach to account for higher-order neighbors of vertices.
This can be accomplished by defining open spheres for all vertices of a chemical
graph. If r is any non-negative real number and v is a vertex of the graph G, then
the open sphere S(v,r) is defined as the set consisting of all vertices v; in G such
that d(v,v;) < r. Therefore, S(v,0) = 0, S(v,r) = v for 0 < r < 1, and S(v,r) is
the set consisting of v and all vertices v; of G situated at unit distance from v, if
l<r<2.

One can construct such open spheres for higher integral values of r. For a
particular value of r, the collection of all such open spheres S(v,r), where v runs over
the whole vertex set V, forms a neighborhood system of the vertices of G. A suitably
defined equivalence relation can then partition V into disjoint subsets consisting
of vertices which are topologically equivalent for r** order neighborhood. Such
an approach has been developed and the information-theoretic indices calculated
based on this idea are called indices of neighborhood symmetry (34].

In this method, chemicals are symbolized by weighted linear graphs. Two
vertices u, and v, of a molecular graph are said to be equivalent with respect to

rt* order neighborhood if and only if corresponding to each path u,,u,,...,u, of

fodesis
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H\2 /H4
Gj: thioacetamide H,——CG\ /Na\ k. .
/ ¢ Hs
M
Sy
First-order neighbors:
[- ] i v Vv Vi
YRR R S
: : : \ : \ ’
ccc N N Han© CsgN HpC C
Subsets:
| il 1l v Vv \
(Hi-Hg) (Ha-Hs) Ce C; Ng Sy
° Probability:
| il 1 Y \Y Vi
3/9 2/9 1/9 1/9 1/9 1/9
ICy = 4*1/9* Logs 9+ 2/9 * Log, 9/2 + 3/9 * Log, 9/3 = 2.419 bits
SICy = ICy/Log, 9 = 0.763 bits
CIC; = Log, 12 - IC; = 0.751 bits :
FIGURE 2. Labeled, hydrogen-filled graph of thioacetamide (G2) I
and sample calculations for IC;, SIC, and CIC, :
length r, there is a distinct path v,,vl,...,v, of the same length such that the
paths have similar edge weights, and both u, and v, are connected to the same
number and type of atoms up to the r!* order bonded neighbors. The detailed
equivalence relation has been described in earlier studies {34, 42].
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Once partitioning of the vertex set for a particular order of neighborhood
is completed, IC, is calculated by Eq. (2.2). Basak et al. [32] defined another
information-theoretic measure, structural information content (SIC;), which is cal-
culated as:

(2.4) SIC, = IC,[log;n

where IC, is calculated from Eq.(2.2) and n is the total number of vertices of the
graph.

Another information-theoretic invariant, complementary information content
(CIC;) [43], is defined as:

(2.5) CIC, =logyn ~ IC,

CIC, represents the difference between maximum possible complexity of a
graph (where each vertex belongs to a separate equivalence class) and the realized
topological information of a chemical species as defined by IC,. Sample calculations
for SIC; and CIC, have been included in Figure 2.

The information-theoretic index on graph distance, I}¥ is calculated from the
distance matrix D(G) of a chemical graph G as follows [30]:

(2.6) If =Wlog, W — > gn-hlogy h
h

The mean information index, I_}')V, is found by dividing the information index
I,‘SV by W. The information theoretic parameters defined on the distance matrix,
HP and HY, were calculated by the method of Raychaudhury et al. [31].

Balaban defined a series of indices based upon distance sums within the distance
matrix for a chemical graph that he designated as J indices [35]-[37]. These
indices are highly discriminating with low degeneracy. Unlike W, the J indices
range of values are independent of molecular size. The general form of the J index
calculation is as follows:

(2.7) J=q(e+ 1) Y (sisy) 7

i,j,edges
where the cyclomatic number u (or number of rings in the graph)isy =¢—n+1,
with ¢ edges and n vertices and s; is the sum of the distances of atom ¢ to all
other atoms and s; is the sum of the distances of atom j to all other atoms [35].
Variants were proposed by Balaban for incorporating information on bond type,
relative electronegativities, and relative covalent radii {36, 37].

2.3. Calculation of Atom Pairs. Atom pairs (APs) were calculated using
the method of Carhart et al. [3]. An atom pair is defined as a substructure consisting
of two non-hydrogen atoms 7 and j and their interatomic separation:

< atom descriptor; > — < separation > — < atom descriptor; >

where < atom descriptor > contains information about the atomic type, number of
non-hydrogen neighbors and the number of 7 electrons. The interatomic separation
of two atoms is the number of atoms traversed in the shortest bond-by-bond path
containing both atoms. APs used in this study were calculated by the APProbe
software (43].
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2.4. Statistical Methods and Computation of Intermolecular
Similarity.

2.4.1. Data Reduction. Initially, all TIs were transformed by the natural log-
arithm of the index plus one. This was done since the scale of some TIs may be
several orders of magnitude greater than other TIs.

A principal component analysis (PCA) was used on the transformed indices to
minimize the intercorrelation of indices. The PCA was conducted using the SAS
procedure PRINCOMP [44]. The PCA produces linear combinations of the TIs,
called principal components (PCs) which are derived from the correlation matrix.
The first PC has the largest variance, or eigenvalue, of the linear combination
of TIs. Each subsequent PC explains the maximal index variance orthogonal to
the previous PCs, eliminating any redundancies that could occur within the set
of TIs. The maximum number of PCs generated is equal to the number of TIs
available. For the purposes of this study, only PCs with eigenvalues greater than
one were retained. A more detailed explanation of this approach has been provided
in a previous study by Basak et al.[13]. These PCs were subsequently used to
determine similarity scores as described below.

2.4.2. Similarity Measures. Intermolecular similarity was measured using two -

distinct methods. The AP method uses an associative measure described by Carhart
et al. [3] and is based on atom pair descriptors. The measurement is the ratio of
the number of shared atom pairs between two molecules over the total number of
atom pairs present in the two molecules. Similarity (S) between molecules i and j
is defined as:

(2.8) Sij = 2C/(T: + T;)

where C is the number of atom pairs common to molecule i and j. T; and T; are
the total number of atom pairs in molecule ¢ and j, respectively. The numerator
is multiplied by a factor of 2 to reflect the presence of shared atom pairs in both
compounds. - C

The second similarity method, Euclidean distance (ED) within an n-dimensional
PC space derived from TIs was used. ED between molecules i and j is defined as:

n 1/2
(2.9) . ED;; = [Z(Dik “Djk)z]

k=1

where n equals the number of dimensions or PCs retained from the PCA. Dy and
Djy. are the data values of the k** dimension for molecules i and J, respectively.

2.4.3. Analog / K-Nearest Neighbor Selection. Following the quantification of
intermolecular similarity of the molecules, analogs or nearest neighbors are deter-
mined on the basis of both S and ED. In the case of the AP method, two molecules
are considered identical if S = 1, while they have no atom pairs in common if S = 0.
The ED method measures a distance between molecules, thus the lower the value
of ED the greater the similarity between two molecules.

2.4.4. Property Estimation. Since the data presented in the work of Yamaguchi
et al. [27] represented mutagenicity as non-mutagen (—) or mutagen (+) this data
was treated as a zero-one relationship, where non-mutagens have a value of zero
and mutagens have a value of one. In estimating the mutagenicity of the probe
compound, the mean of the observed mutagenicity of the K-nearest neighbors was
used as the estimate. Thus, if the mean resulted in a value greater than 0.5, the
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compound was classified as a mutagen. However, if the mean was equal to 0.5, the
compound was not classified as the results were inconclusive.

3. Results

3.1. Principal Component Analysis. From the PCA of the 102 TIs, eight
PCs with eigenvalues greater than one were retained. These eight PCs explained,
cumulatively, 95.2% of the total variance within the TI data. Table 3 lists the
eigenvalues of the eight PCs, the proportion of variance explained by each PC, the
cumulative variance explained, and the two TIs most correlated with each individual

PC. -

TABLE 3. Eigenvalues, variance explained and two TIs most cor-
related with the eight principal components

Percent Cumulative
variance  variance First most Second most
PC Eigenvalue explained explained correlated TI correlated TI

PC, 55.52 54.97 54.97 Y (96.5%) 3x (96.4%)
PC, 12.38 12.26 67.23 SIC; (86.4%) SIC; (85.5%)
PC; 1173 11.61 7884 L, (T7.3%) X%, (76.1%)
PC, 6.78 6.71 85.55 IC,  (55.0%) “x&,  (49.7%)
PCs 4.60 4.55 90.10 J (68.9%) JY (62.4%)
PCs 2.35 2.32 92.43 IC, (-47.2%) SIC, (—36.4%)
PCy 1.65 1.63 94.06 e (44.4%) % (43.5%)
PCs 1.16 1.14 95.21 Y (—34.6%) Sxb (23.0%)

3.2. Analog Selection. Figure 3 shows the results of the analog selection for
isospectral graph 10.1.1 using atom pairs to derive a similarity space and PCs to
derive a Euclidean distance space. The first five analogs (neighbors) for the probe
compound, 10.1.1, are presented for each of the similarity methods.

3.3. K-Nearest Neighbor Estimation. Table 4 presents the results for the
prediction of mutagenicity for the 113 molecules over a range of K values (K = 1-5)
for both the AP and ED methods. The results are presented as percent correctly
classified and over-all percent correct prediction rates are provided as a means of
comparing the efficacy of the individual models. The variability between the K
levels is easily explained by the problematic nature of using a binary relationship
such as this one in estimation. When the number of neighbors was even, the
potential for unclassified compounds led to lower prediction rates than in the case
of an odd number of neighbors.

4. Discussion

The major objective of this paper was to study the effectiveness of mathemat-
ical invariants in the characterization of molecular structure and the estimation of
the toxicity of chemicals. An invariant maps a chemical structure into the set R of
real numbers. A specific invariant may be used for the ordering or partial ordering
of sets of molecules or in structure-activity relationship studies [45]. A particular
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Probe
Atom Pair
Method
Simiarity g 095 5093 5-0.88 5=0.86 5-086
Score
Euclidean ’
Distance
Method
Euclidean
Distance ED=0.18 E£D=0.20 ED=0.20 ED=0.20 ED=0.21

FIGURE 3. Analogs selected for isospectral graph 10.1.1

TABLE 4. KNN results for the prediction of mutagenicity for 113 chemicals

Percent Negative Percent Positive Total Percent

Correct Correct Correct
K AP ED AP ED AP ED
1 73.5 75.0 84.1 66.7 77.7 71.7
2 66.2 64.7 72.7 33.3 68.8 52.2
3 779 80.9 88.6 53.3 82.1 69.9
4 70.6 69.1 77.3 42.2 73.2 58.4
5 79.4 77.9 86.4 53.3 82.1 68.1

structural invariant quantifies distinct aspects of molecular structure. Therefore, a
combination of such indices might be more powerful in the mathematical charac-
terization of molecular structure as compared to the use of one specific invariant.
The problem arises out of the fact that often the various graph theoretic indices
of molecular structures are strongly correlated. We have attempted to resolve this
problem through the implementation of a PCA to derive orthogonal variables from
a large set of calculated TIs, and using the orthogonal parameters in the charac-
terization of structure {10, 12, 15, 17, 18, 22, 23).

In the present study we have used calculated atom pairs and principal com-
ponents derived from TIs to select structural analogs for a probe compound from

feiades
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a diverse set containing closely related structures. The result of this analog selec-
tion, depicted in Figure 3, shows that the five neighbors selected by each of the
methods exhibit sufficient power to reject dissimilar structures. In other words,
we may conclude that both the atom pair and Euclidean distance methods are ca-
pable of choosing similar molecules from a collection of structurally diverse struc-
tures. This is in line with our earlier studies with various diverse sets of molecules
(10, 12, 15, 17, 18, 22, 23].

The central paradigm of QSAR holds that similar structures usually have sim-
ilar properties. To test this idea, we selected K-nearest neighbors (K =1 — 5) for
each molecule from a set of 113 mutagens and non-mutagens using the ED and
AP methods and used the selected nearest neighbors in estimating mutagenicity.
The results in Table 4 show that both methods lead to reasonably good estimates,
although the AP method was superior to the ED method.

In conclusion, both the ED and AP methods, based on calculated graph theo-
retic structural invariants, did reasonably well in the selection of structural analogs
and in the estimation of chemical properties based on nearest neighbors.
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Hierarchical quantitative structure—activity relationships (H-QSAR) have been developed as a new approach
in constructing models for estimating physicochemical, biomedicinal, and toxicological properties of interest.
This approach uses increasingly ‘more complex molecular descriptors in a graduated approach to model
building. In this study, statistical and neural network methods have been applied to the development of
H-QSAR models for estimating the acute aquatic toxicity (L.Csp) of 69 benzene derivatives to Pimephales
promelas (fathead minnow). Topostructural, topochemical, geometrical, and quantum chemical indices were
used as the four levels of the hierarchical method. It is clear from both the statistical and neural network
models that topostructural indices alone cannot adequately model this set of congeneric chemicals. Not
surprisingly, topochemical indices greatly increase the predictive power of both statistical and neural network
models. Quantum chemical indices also add significantly to the modeling of this set of acute aquatic toxicity

data.

1. INTRODUCTION

An important aspect of modern toxicology research is the
prediction of toxicity of xenobiotics and environmental
pollutants from their molecular structure.!~!* The potential

- toxicity of a chemical is normally assessed on the basis of a
wide variety of relevant physical and biological properties.
Table 1 provides a partial list of such properties. Risk
assessors use these kinds of toxicological indicators to
estimate the potential risk posed by a given compound, using
simpler properties relevant to a chemical’s toxicity to make
more complex assessments relevant to human and environ-
mental health. However, the Toxic Substances Control Act
(TSCA) Inventory currently includes about 80 000 chemicals,
most of which do not have data for the toxicologically
relevant properties mentioned in Table 1. In fact, roughly
50% of these chemicals do not have any experimental
property data at all.'* Worldwide, more than 16.7 million
distinct organic and inorganic chemicals are known, as is
evident from the number of entries in the Chemical Abstract
Service (CAS) inventory."S For many of these chemicals we
do not have the data necessary for risk assessment. Ad-
ditionally, modern combinatorial chemistry techniques have
led to the production of vast libraries of chemicals at a very
rapid rate. Most of these substances have none of the test
data needed for their hazard estimation.

Recently there have been efforts by the chemical industry
and government agencies to develop reliable databases of
properties that will be used for hazard estimation.!® This

* To whom all correspondence should be addressed. Telephone: (218)
720-4230. Fax: (218) 720-4328. E-mail: sbasak@nrri.umn.edu.

t University of Minnesota, Duluth.

+ Arizona State University.

# University of Montana.

Table 1. Physicochemical and Biological Properties Relevant to the
Assessment of toxicity

physicochemical biological
molar volume receptor binding (Xp)
boiling point Michaelis constant (Ki)
melting point inhibitor constant (K;)
vapor pressure biodegradation
aqueous solubility bioconcentration
dissociation constant (pK.) alkylation profile
partition coefficient metabolic profile -
octanol—water (log P) chronic toxicity
air—water carcinogenicity
sediment—-water mutagenicity
reactivity (electrophile) acute toxicity
) . LDs,
LCso

effort, although commendable, falls short of the need; and
the picture will remain so in the foreseeable future. In the
area of molecular biology, innovative techniques are emerg-
ing where specially engineered cell lines can be used to detect
the activity or toxicity of chemicals to the genetic system.!’~1
Effects of chemicals on the pattern of cellular proteins,
analyzed by proteomics technology, are being used to detect
their potential toxic effects.?~22 Such methods are faster than
the traditional in vivo test methods, and it is possible that
they could be developed to the point where they will replace
or significantly decrease the need for whole-animal screening
methods. At present, neither the available test data nor the
combination of in vitro toxicity testing methods provides
adequate resources for hazard assessment.

Quantitative structure—activity/—toxicity relationship
(QSAR/QSTR) models have emerged as useful tools to
handle the data gap in toxicology and pharmacology.!~1322-26
QSAR models can be used to estimate complex properties
of chemicals from simpler experimental or computed proper-
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ties. In view of the fact that most chemicals in commerce
and environmental pollutants have very little test data, it
would be desirable if we could develop toxicologically
relevant QSARs from properties that can be calculated
directly from a chemical’s structure. In some of our recent
papers we have developed a novel hierarchical QSAR (H-
QSAR) approach where four classes of theoretical molecular
descriptors, viz., topostructural, topochemical, geometrical,
and quantum chemical parameters, have been used sequen-
tially in the formulation of H-QSAR models for predicting
physical, biomedicinal, and toxicological properties.'36823-26

Most of our H-QSARs are based on linear statistical
methods such as multiple linear regression, principal com-
ponents analysis (PCA), and variable clustering. Such
methods yield useful models, but they suffer from the
limitation that in some cases the relationship between a
molecular descriptor and toxicity may be intrinsically
nonlinear. In such cases, the use of linear statistical methods
may not result in the best models. Therefore, in this paper,
we have carried out a comparative study of multiple
regression vis-a-vis neural net methods in predicting the acute
aquatic toxicity (L.Cso) of a set of 69 benzene derivatives.

2. METHODS

2.1. Toxicity Database. The utility of this approach of
generating numerous hierarchical theoretical descriptors of
compounds was tested on a set of acute aquatic toxicity
(LCso) data for 69 benzene derivatives. The data were taken
from a study by Hall et al.,'? who collected acute aquatic
toxicity data measured in fathead minnow (Pimephales
promelas). These data were compiled from eight other
literature sources and included some original work which
was conducted at the U. S. Environmental Protection Agency
Environmental Research Laboratory (USEPA-ERL) in Du-
luth, MN. This set of chemicals was composed of benzene
and 68 substituted benzene derivatives. According to the
authors, these benzene derivatives were tested using meth-
odologies comparable to their own 96-h fathead minnow
toxicity test system. The derivatives chosen for this study
(see Table 2) have seven different substituent groups that
are present in at least six of the molecules: chloro-, bromo-,
nitro-, methyl-, methoxyl-, hydroxyl-, and amino-.

2.2. Calculation of Topological Indices. The complete
set of topological indices (TIs) used in this study, both
topostructural and topochemical, have been calculated using
POLLY 2.3 and other software developed by Basak et al.?’
These indices include the Wiener index,? the connectivity
indices developed by Randié,” higher order connectivity
indices formulated by Kier and Hall,*® bonding connectivity
indices defined by Basak et al.>! a set of information
theoretic indices defined on the distance matrices of simple
molecular graphs,3%* a set of parameters derived on the
neighborhood complexity of hydrogen-filled molecular
graphs,34736 and Balaban’s J indices.3”3° Table 3 provides
the symbols of the topological indices and brief definitions.

The set of TIs was divided into two distinct subsets:
topostructural indices (TSI) and topochemical indices (TCI).
TSIs are topological indices which encode information about
the adjacency and distances of atoms (vertices) in molecular
structures (graphs) irrespective of the chemical nature of the
atoms involved in the bonding or factors such as hybridiza-
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Table 2. Experimental and Estimated Acute Aquatic Toxicity Data
for 69 Benzene Derivatives, Expressed as — log(LCso) for the
Linear Regression Mode! (LR) and the Neural Network Model
Using the 23 Parameters Selected by Variable Clustering

compound expt LR NN
benzene 3.40 3.42 3.65
bromobenzene 3.89 3.7 3.79
chlorobenzene 3.77 3.75 3.77
phenol 351 338 351
toluene 332 3.66 3.62
1,2-dichlorobenzene 4.40 4.29 4.30
1,3-dichlorobenzene 4.30 4.37 4.12
1,4-dichlorobenzene 4.62 451 427
2-chlorophenol 4.02 3.79 391
3-chlorotoluene 3.84 3.88 3.79
4-chlorotoluene 4.33 3.87 3.76
1,3-dihydroxybenzene 3.04 343 3.53
3-hydroxyanisole 3.21 333 345
2-methylphenol 3.77 3.64 3.67
3-methylphenol 3.29 3.60 3.58
4-methylphenol 3.58 353 355
4-nitrophenol 3.36 3.61 3.76
1,4-dimethoxybenzene 3.07 3.28 3.51
1,2-dimethylbenzene 3.48 393 391
1,4-dimethylbenzene 4.21 3.87 3.68
2-nitrotoluene 3.57 3.66 381
3-nitrotoluene 3.63 3.53 371
4-nitrotoluene 3.76 3.49 3.68
1,2-dinitrobenzene 5.45 5.24 4.99
1,3-dinitrobenzene 4.38 4.18 4.19
1,4-dinitrobenzene 522 494 4.85
2-methyl-3-nitroaniline 3.48 379 3.88
2-methyl-4-nitroaniline 324 3.51 3.75
2-methyl-5-nitroaniline 3.35 3.68 3.86
2-methyl-6-nitroaniline 3.80 3.84 3.79
3-methyl-6-nitroaniline 3.80 3.78 3.62
4-methyl-2-nitroaniline 3.79 3.80 3.66
4-hydroxy-3-nitroaniline 3.65 3.61 3.58
4-methy!l-3-nitroaniline 3.77 3.73 3.72
1,2,3-trichlorobenzene 4.89 4.89 5.04
1,2,4-trichlorobenzene 5.00 5.04 4.83
1,3,5-trichlorobenzene 474 5.11 478
2,4-dichlorophenol 4.30 433 4.47
3,4-dichlorotoluene 4.74 426 4.28
2,4-dichlorotoluene 4.54 4.36 444
4-chloro-3-methylphenol 427 3.87 4.07
2,4-dimethylphenol 3.86 3.76 372
2,6-dimethylphenol 375 3.80 3.84
3,4-dimethylphenol 3.90 3.80 3.79
2,4-dinitrophenol 4.04 4.14 4.01
1,2,4-trimethylbenzene 4.21 4.09 3.87
2,3-dinitrotoluene 5.01 5.20 5.28
2,4-dinitrotoluene 3.75 4.10 433
2,5-dinitrotoluene 5.15 4.84 472
2,6-dinitrotoluene 3.99 441 4.63
3,4-dinitrotoluene 5.08 5.11 5.09
3,5-dinitrotoluene 391 4.05 4.16
1,3,5-trinitrobenzene 5.29 5.37 532
2-methyl-3,5-dinitroaniline 4.12 4.13 423
2-methyl-3,6-dinitroaniline 534 4.80 4.54
3-methyl-2,4-dinitroaniline 426 428 420
5-methyl-2,4-dinitroaniline 4.92 4.14 4.02
4-methyl-2,6-dinitroaniline 421 4.67 4.58
5-methyl-2,6-dinitroaniline 4.18 4.80 4.78
4-methy!-3,5-dinitroaniline 4.46 434 443
2,4,6-tribromophenol 4.70 4.89 5.47
1,2,3,4-tetrachlorobenzene - 543 5.62 5.56
1,2,4,5-tetrachlorobenzene 5.85 5.80 5.61
2,4,6-trichlorophenol 433 4.79 4.96
2-methyl-4,6-dinitrophenol 5.00 4.21 4.16
2,3,6-trinitrotoluene 6.37 6.36 5.81
2,4 ,6-trinitrotoluene 4.88 5.16 542
2,3,4,5-tetrachlorophenotl 5.72 5.36 5.58
2,3,4,5,6-pentachlorophenol 6.06 6.03 5.83
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Table 3. Symbols, Definitions, and Classifications of Topological, Geometrical, and Quantum Chemical Parameters

Topostructural
IpY information index for the magnitudes of distances between all possible pairs of vertexes of a graph
Y mean information index for the magnitude of distance
w Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph
P degree complexity
HY graph vertex complexity
HP graph distance complexity
c information content of the distance matrix partitioned by frequency of occurrences of distance &
o order of neighborhood when IC, reaches its maximum value for the hydrogen-filled graph
M, a Zagreb group parameter = sum of square of degree over all vertexes
M, a Zagreb group parameter = sum of cross-product of degrees over all neighboring (connected) vertexes
by path connectivity index of order A = 0—6
7 cluster connectivity index of order h =3, 5
LS chain connectivity index of order h = 6
hrec path-cluster connectivity index of order h = 4-6
Py no. of paths of length # = 0—10
J ~  Balaban’s J index based on distance
Topochemical
Iors . information content or complexity of the hydrogen-suppressed graph at its maximum neighborhood of vertexes
IC, mean information content or complexity of a graph based on the rth (» = 0—6) order neighborhood of vertexes
in a hydrogen-filled graph ’
SIC, structural information content for *# (r = 0—6) order neighborhood of vertexes in a hydrogen-filled graph
CIC, complementary information content for rth (r = 0—6) order neighborhood of vertexes in a hydrogen-filled graph
b bond path connectivity index of order & = 0—6
bt bond cluster connectivity index of order A =3, 5
hvben bond chain connectivity index of order h = 6
horbec bond path-cluster connectivity index of order h = 4—6
hyv valence path connectivity index of order h = 0—6
hr'e valence cluster connectivity index of order h =3, 5
¥y valence chain connectivity index of order h = 6
hyec valence path-cluster connectivity index of order h = 4—6
Balaban'’s J index based on bond types
JX Balaban’s J index based on relative electronegativities
JY Balaban’s J index based on relative covalent radii
Geometrical

Vw van der Waals volume )
by 3D Wiener no. for the hydrogen-suppressed geometric distance matrix
3dWy 3D Wiener no. for the hydrogen-filled geometric distance matrix

Quantum Chemical
Euomo energy of the highest occupied molecular orbital
Eyomot energy of the second highest occupied molecular orbital
Eiumo energy of the lowest unoccupied molecular orbital
Eiumor energy of the second lowest unoccupied molecular orbital
AH; heat of formation
u dipole moment

tion states of atoms and number of core/valence electrons
in individual atoms. TCIs are parameters that quantify
information regarding the topology (connectivity of atoms),
as well as specific chemical properties of the atoms and
bonds comprising a molecule. TCIs are derived from
weighted molecular graphs where each vertex (atom) is
properly weighted with relevant chemical/physical properties.
Table 3 shows the division of the topological indices into
topostructural and topochemical indices.

2.3. Calculation of Geometrical Indices. The geometrical
indices include the three-dimensional (3D) Wiener numbers
for hydrogen-filled and hydrogen-suppressed molecular
structures and van der Waals volume. van der Waals volume,
Vw, was calculated using SYBYL 6.4 from Tripos Associ-
ates, Inc.* The 3D Wiener numbers were calculated by
SYBYL using an SPL (Sybyl Programming Language)
program developed in our laboratory. Calculation of the 3D
Wiener numbers consists of the sum entries in the upper
triangular submatrix of the topographic Euclidean distance
matrix for a molecule. The 3D coordinates for the atoms
were determined using CONCORD 3.2.1.#! The symbols and
definitions of the geometrical indices are included in Table
3.

2.4. Quantum Chemical Parameters. Quantum chemical
parameters were calculated using the Austin Model version
one (AM1) semiempirical Hamiltonian. These parameters
were calculated using MOPAC 6.00 in the SYBYL inter-
face.*? Brief definitions and symbols for the quantum
chemical parameters used in this study are included in Table
3. :

2.5. Statistical Analysis and Hierarchical QSAR. Ini-
tially, all topological indices were transformed by the natural
logarithm of the index plus one. This was done to scale the
indices, since some may be several orders of magnitude
greater than others, while other indices may equal zero. The
geometric indices were transformed by the natural logarithm
of the index for consistency; the addition of one was
unnecessary.

The set of 86 topological indices was then partitioned into
the two distinct sets: topostructural indices (35) and to-
pochemical indices (51). The sets of topostructural and
topochemical indices were then divided into subsets, or
clusters, based on the correlation matrix using the SAS
variable clustering procedure (VARCLUS)* to further reduce
the number of independent variables for use in model
construction. This procedure divides the set of indices into
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disjoint clusters, such that each cluster is essentially unidi-
mensional.

From each cluster, the index most correlated with the
cluster was selected for modeling, as well as any indices
that were poorly correlated with their cluster (R? < 0.70).
These indices were then used in the modeling of the acute
aquatic toxicity of benzene derivatives in fathead minnow.
The variable clustering and selection of indices was per-
formed independently for both the topostructural and to-
pochemical indices. This procedure resulted in a set of five
topostructural indices and a set of nine topochemical indices.

Reducing the number of independent variables is critical
when attempting to model small data sets using linear
statistical methods. The smaller the data set, the greater the
chance of spurious’ error when using a large number of
independent variables (descriptors). A study by Topliss and
Edwards* has shown that for a set with about 70 dependent
variables (observations), no more than 40 independent
variables may be used while keeping the probability of
chance correlations below 1%. This number is dependent
on the actual correlation achieved in the modeling process;
higher correlation results in a better chance of using more
variables with the same limited probability of chance
correlations. In this study we are well below the cutoff of
40 independent variables. In fact, the total number of
descriptors which will be used for model construction and
estimation is 23, well within the bounds of the Topliss and
Edwards criteria.*

Regression modeling was accomplished using the SAS
procedure REG* on four distinct sets of indices. These sets
were constructed as part of a hierarchical approach to QSAR
model development. The hierarchy begins with the simplest
parameters, the TSIs. After using the TSIs to model the
activity, the next level of parameters are added. To the indices
included in the best TSI model, we add all of the TCIs and
proceed to model the activity using these parameters.
Likewise, the indices included in the best model from this
procedure are combined with the indices from the next
complexity level, the geometrical indices, and modeling is
conducted once again. Finally, the best model utilizing.TSIs,
TClIs, and geometrical indices is combined with the quantum
chemical parameters to develop the final model in the
hierarchy.

Additionally, the entire set of 95 descriptors (topostruc-
tural, topochemical, geometrical, and quantum chemical) was
subjected to the variable clustering procedure and a reduced
set of independent variables was used in constructing a
QSAR model. This varies from the other approach in that
the indices were clustered as one set, rather than as four
distinct sets, and resulted in a somewhat different set of
variables. This was done to determine if there is any
advantage in final model predictive power between model
development based on the H-QSAR approach versus the
“kitchen sink” approach, i.e., using the entire descriptor set
in order to find the “best” model.

2.6. Neural Network Methods. Using neural networks,
we studied two classes of approaches for modeling toxicity:
(1) giving all the descriptors to a learning algorithm (neural
network in this case) and (2) reducing the feature set before
giving the (reduced) feature set to a learning algorithm.
Results for our approaches are from leave-one-out experi-
ments (i.e., 69 training/test set partitions). Leave-one-out
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works by leaving one data point out of the training set and
giving the remaining instances (68 in this case) to the learning
algorithms for training. This process is repeated 69 times so
that each example is a part of the test set once and only
once. Leave-one-out tests generalization accuracy of a
learner, whereas training set accuracy tests only the learner’s
ability to memorize. Generalization error from the test set is
the true test of accuracy and is what we report here.

First we trained neural networks using all 95 parameters:
35 TSI, 51 TCI, 3 geometrical, and 6 quantum chemical
parameters. The networks contained 15 hidden units and were
trained for 1000 epochs. Each input parameter was normal-
ized to a value between 0 and 1 before training. Additional
parameter settings for the neural networks included a learning
rate of 0.05, a momentum term of 0.1, and weights initialized
randomly between —0.25 and +0.25.

For our next experiment, we used a smaller set of 23
independent variables divided further into the four levels of
the hierarchy. The 23 independent variables included the 5
topostructural and 9 topochemical parameters provided by
the variable clustering technique (see section 3.1 for a list
of the indices) combined with the 3 geometrical and 6
quantum chemical parameters described in Table 3. The
parameter settings for these networks were the same as the
settings for the other neural network experiment mentioned
above.

3. RESULTS

3.1. Results of Statistical Regression Procedures. The
variable clustering of the topostructural indices resulted in

the retention of five indices: M), IC, O, Pg, Ps. All-subsets
regression resulted in the selection of a four-parameter model
to estimate — log(LCsp) with an explained variance (R?) of
45.3% and a standard error (s) of 0.58. While this is an
unsatisfactory model, the indices were retained and combined
with the topochemical indices in the second step of model
development. The second step combined the 4 indices used
in the first tier model with the 9 topochemical indices selected
in the variable clustering procedure: SICo, SIC;, SIC,, CIC,,
b, Sybe, Sx'c, %Vpe, JX. Again, all-subsets regression was
conducted resulting in a four-parameter model with an
explained variance (R?) of 78.3% and a standard error (s) of
0.36. The 4 indices from the second tier model were
combined with the three geometric parameters: 3PWy, 3PW,
Vw. This resulted in a four-parameter model that replaced
the topochemical index CIC, with the geometric parameter
3DWy. This model had an explained variance (R?) of 79.2%
and a standard error (s) of 0.36. The final step in the
hierarchical method combined the four parameters from the
third tier model with the semiempirical quantum chemical
parameters: Enomo, Enomot, ELumo, ELumors AHf, u. This
set of 10 indices led to a seven-parameter model with an
explained variance (R?) of 86.3% and a standard error (s) of
0.30. This model retained all indices from the third model
and added three of the AM1 quantum chemical parameters.
Our final model, using indices selected from a variable
clustering of the entire set of 95 indices resulted in a seven-
parameter model including three topostructural indices
(%, Ps, IC), one topochemical index (5%"), one geometrical
index (®Wy), and two quantum ‘chemical descriptors
(AHjy, p). This model had an explained variance (R?) of 86.1%
and a standard error (s) of 0.30.
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Table 4. Relative Effectiveness of Statistical and Neural Network
Methods in Estimating the Acute Aquatic Toxicity of 69 Benzene
Derivatives

neural networks linear regression

model R2 5 R2 s
TSI 0.299 0.63 0.366 0.629
+ TCI 0.619 047 0.754 0.392
+3D 0.656 0.44 0.763 0.384
+QC 0.770 0.36 0.825 0.339

all 95 indices 0.758 0.37 0.827 0.337

Leave-one-out analysis was conducted on all models for
purposes of comparison with the results from the neural
networks. The resulting values for cross-validated R? (R.2)
and standard error (5) are reported in Table 4.

3.2. Results of the Neural Network Procedures. The first
approach incorporating all 95 parameters, obtained a test-
set correlation coefficient between predicted toxicity and
measured toxicity (explained variance) of R? = 0.868 and a
standard error of 0.29. The second approach utilizes the

* hierarchical method of grouping descriptors resulted in four

models, one for each level of the hierarchy. The results from
the leave-one-out analysis of these four models, as well as
those for the linear statistical models are summarized in Table
4. Table 2 presents the experimental acute aquatic toxicity
(— log[LCs)]) values for the 69 benzene derivatives as well
as the values estimated by the best statistical model and the
best neural network model, both of which resulted from the
fourth H-QSAR model.

4. DISCUSSION

The results show that both statistical and neural network
models give acceptable estimates for the toxicity of the 69
benzene derivatives studied in this paper. As can be clearly
seen from the comparative results in Table 4, there are two
points in the hierarchical approach in which there are
significant improvements in modeling the data. The addition
of the topochemical indices increases the variance explained
in both the statistical and neural network models by 30—
40% with a consequent drop in the standard error of the
calculations as well. Addition of the quantum chemical
parameters also creates a significant increase in the efficacy
of both models, a 6.2% increase in the variance explained
for the statistical model and an 11.4% increase for the neural
network model.

It is interesting to note that the neural network model using
the subset of 23 inputs selected in part by the VARCLUS
procedure gave slightly better results as compared to the
network developed using all 95 input variables. This could
be the result of filtering out redundant, or nearly redundant,
parameters from the set of independent. variables.

Further work on the relative utility of statistical vis-a-vis
neural network methods is necessary to determine which
types of models are best suited to the estimation of chemical
toxicity.
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