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Introduction: 

The signal transduction specificity that underlies Epidermal Growth Factor (EGF) 

Receptor (EGFR) physiology is an important component of tissue growth and 

development. Identifying the basic molecular mechanisms that regulate this signaling 

network is an important step in distinguishing the difference between positive (normal 

growth) and negative (uncontrolled cell proliferation) EGFR cell biology. A well 

described phenomena that accompanies EGFR signaling is the entry of the activated 

EGFR into the cell via clathrin coated vesicles (1). Inhibition of EGFR internalization 

results in the selective inhibition of some, but not all, signaling pathways (2-5). The 

purpose of this research is to further explore the spatial and temporal components of 

EGFR signal transduction by examining the signaling properties of the activated EGFR 

when it is trapped in an early endosomal vesicle. The scope of this research includes 

developing a model system to examine early endosomal signaling, assessing the 

biochemical properties of EGFR, and determining the signaling properties of the 

endosomally localized EGFR as well as those of other members of the EGFR family, 

namely ErbB2. 



Body: 

Growth Factors and their corresponding cell surface receptors are important 

components in the maintenance and growth of normal epithelial cells. Overexpression 

and unregulated signaling of members of the ErbB growth factor receptor family is 

associated with many mammary carcinomas and a poor prognosis for recovery (6,7). 

This proposed research seeks to better understand the coordinated regulation of signaling 

by the ErbB family of cell surface receptors, and more specifically, ErbB 1 or the 

Epidermal Growth Factor (EGF) Receptor (EGFR). The EGFR, like many cell surface 

receptors, undergoes ligand mediated endocytosis. This internalization process has 

historically been thought to be merely a mechanism for attenuating receptor signaling by 

removing the activated receptor and ligand from the cell surface. It is now appreciated 

that the role of the endocytic pathways plays a more complex role in EGFR signaling (2- 

5). Our approach utilizes the introduction of mutant forms of proteins involved in 

membrane trafficking. It is expected that overexpression of these proteins will disrupt 

normal endocytic trafficking of the EGFR allowing for analysis of EGFR signaling at 

distinct cellular locations. 

Rab5 is a small molecular weight GTP-binding protein that has been well described 

as an important regulator in the formation of the early endosome (8,9). A point mutation 

of rab5 (glutamine to lysine mutation at residue 79 - denoted Q79L) reduces the ability 

of the to hydrolyze GTP thus, leaving the protein in the constituitively active state. The 

consequence of this mutation is an enlarged early endosome enriched in transferrin 

receptors (9,10). Our model system incorporated HeLa cells stably transfected with wild 

type (WT) and activated mutant (Q79L) rab5 under a tetracycline regulated system. 



Specifically, in the induced rab5 (Q79L) HeLa cells we observed the characteristic 

enlarged endosomal morphology as well as immunofluorescent localization of rab5, 

transferrin and transferrin receptors. These data indicated that we had successfully 

recapitulated our desired model system. When the endocytic trafficking of the EGFR 

was examined, quite surprisingly, we discovered there was no change in the rate of EGFR 

uptake, degradation or recycling. 

As experiments progressed and the rab5 (Q79L) HeLa cells were subjected to a more 

rigorous biochemical characterization, we discovered that in our stably transfected HeLa 

cells the endosomal morphology and cellular localization of rab5 alone did not accurately 

predict changes in the kinetics of transferrin receptor enocytosis and/or recycling. We 

postulated that the levels of rab5 expression were not sufficient to give the desired 

biochemical effect. To eliminate this problem, we generated and characterized 

tetracycline inducible adenoviruses that encoded for both the WT and Q79L rab5 

proteins. This new model system allowed rapid and uniform introduction of high levels 

of the rab5 proteins. We began our studies with the morphological and 

immunofluorescent characterization of the cells. Once again, these data were consistent 

with those reported in the literature, however upon biochemical analysis of transferrin 

receptor uptake and recycling, we failed to see the reported phenotype. 

A second explanation for the inability to see the expected phenotype was that the cells 

had compensated for the rab5(Q79L) overexpression, allowing the EGFR receptor to 

utilize other mechanisms for membrane trafficking. To test this hypothesis, we 

developed a strategy to rapidly express the rab5 proteins at high levels (approximately 

50-fold over endogenous protein) and in a relatively short period of time (1 hour). 



Analysis of rab5 expression under these conditions yield the same result: the 

morphological phenotype but no change in EGFR membrane trafficking. 

At this point, we began to suspect that the originally reported data were 

misinterpreted. Initial publications suggested that rab5 played a role in coordinating the 

membrane trafficking of the transferrin receptor by regulating fusion to the early 

endosomal compartment. Thus, when a constituitively activated mutant of rab5 is 

present, transferrin receptor endocytosis increases, receptor recycling decreases, and the 

early endosome becomes enlarged. While we were able to see the enlarged endosomes, 

we did not see the accompanying changes in endosomal trafficking; therefore, the 

enlarged endosomes were not sufficient to predict biochemical changes in membrane 

trafficking. In a through analysis of our results, we confirmed that the enlarged 

endosomes appropriately localized with various markers of cellular compartments (i.e. 

EEA1, rab7, rab9, LAMP-1, mannose-6- phosphate receptor, and the trans golgi 

network). The enlarged endosomes could effectively traffic the transferrin receptor 

through them as demonstrated by the appearance and disappearance of Alexa-Transferrin 

in them. Kinetic examination of markers of membrane trafficking - uptake and recycling 

of transferrin, fluid phase uptake (a non-specific marker of membrane trafficking), and 

lipid recycling (a non-specific marker of membrane recycling). 

From these experiments, we have concluded that while rab5(Q79L) can induce the 

formation of an enlarged early endosome, this endosome is not an accurate predictor of 

changes in the kinetics of transferrin receptor uptake and/or recycling. These data are 

being written up and will be submitted as a manuscript to The Proceedings of the 

National Academy of Science (U.S.A.). 



The above described work has provided a "hands on" approach to learning membrane 

trafficking. As indicated in my proposal, I joined the laboratory of Dr. Sandra Schmid to 

learn the science of membrane trafficking to complement my existing expertise receptor 

tyrosine kinase signal transduction. Although these results were unexpected, the rigorous 

analysis of membrane trafficking has been an excellent training. With this project under 

my belt as well as the co-authoring a review for Current Opinions in Cell Biology (11), I 

am very well prepared to study the second and third specific aims. 



Appendix to Summary: 

1)  Key Research Accomplishments: 

Characterization of stable rab5(WT) and rab5(Q79L) HeLa cellslines. 

Generation of tetracycline regulatable adenoviruses encoding for rab5(WT) and 

rab5(Q79L). 

Demonstration that the rab5(Q79) formed enlarged endosome is retains its functionality 

Demonstration that the rab5(Q79) formed enlarged endosome is not an accurate 

predictor of changes in membrane trafficking. 
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2)  Reportable Outcomes 

Manuscripts: 

• B. P. Ceresa and S. L. Schmid, Regulation of signal transduction by endocytosis (2000), 

Current Opinion in Cell Biology Vol 12 (2) p. 204-210. (Appendix A) 

• B. P. Ceresa and S. L. Schmid, Endocytic trafficking occurs normally through 

rab5Q79L-induced enlarged endosomes. (Manuscript in preparation and to be 

submitted to PNAS). 

Employment: 

• 6/1/00 - Assistant Professor of Cell Biology at Oklahoma University Health Sciences 

Center, Oklahoma City, OK. 
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Regulation of signal transduction by endocytosis 
Brian P Ceresa and Sandra L Schmid 

Endocytosis of ligand-activated receptors has generally been 

considered a mechanism to attenuate signaling. There is now a 

growing body of evidence suggesting that this process is 

much more sophisticated and that endocytic membrane 

trafficking regulates both the intensity of signaling and the co- 

localization of activated receptors with downstream signaling 

molecules. 

Address 
The Scripps Research Institute, Department of Cell Biology, IMM-11, 
10550 North Torrey Pines Road, La Jolla, CA 92037, USA 

Current Opinion in Cell Biology 2000,12:204-210 

0955-0674/00/$ - see front matter © 2000 Elsevier Science Ltd. 
All rights reserved. 

Abbreviations 
ß2AR ß2 adrenergic receptor 
EBP50 ERM-binding phosphoprotein-50 
EGF epidermal growth factor 
EGFR epidermal growth factor receptor 
ERK1/2 extracellular regulated kinases 1 and 2 
ERM ezrin-radixin-moesin 
G protein guanine-nucleotide-binding protein 
GPCR G-protein-coupled receptor 
IRS-1 insulin receptor substrate-1 
NDF Neu differentiation factor 
PI3-K phosphatidyl inositol 3-kinase 
PLD phospholipase D 
RTK receptor tyrosine kinase 
TGF-a transforming growth factor-a 

Introduction 
Cell surface receptors are the molecules through which 
changes in the extracellular environment are communicated 
within the cell. Among the diverse cellular responses to lig- 
and-mediated signaling events are the uptake of nutrients 
and ions, the regulation of protein and DNA synthesis, and 
decisions about the proliferation or death of the cell. These 
responses are triggered when intracellular signaling mole- 
cules are activated or generated through signaling pathways 
initiated by ligand-bound cell surface receptors. However, it 
remains poorly understood how these resultant signaling 
pathways are regulated to form a co-ordinated, receptor-spe- 
cific response. A cell can express a variety of cell surface 
receptors, which utilize a limited number of directed and 
regulated signaling pathways; yet each receptor produces a 
distinct response in cell physiology. The interactions of acti- 
vated cell surface receptors with downstream effectors 
needed to amplify and transduce biochemical signals are 
governed by such diverse cellular processes as membrane 
trafficking, compartmentalization and regulated protein 
expression. This review focuses on the interplay between 
membrane trafficking and signaling by cell surface recep- 
tors. We discuss how membrane trafficking regulates signal 

, transduction and how signaling events, in turn, regulate dis- 
tinct steps in membrane trafficking. 

Caveolae as coordinators of signaling 
molecules 
One well-studied example of compartmentalized signaling 
occurs from caveolae, which are morphologically defined 
as 'omega'-shaped invaginations of the plasma membrane. 
Biochemically, these membrane domains are defined by 
their association with a family of cholesterol-binding pro- 
teins called caveolins, which function to establish and/or 
maintain these structures. Caveolae constitute 
microdomains of the plasma membrane that are enriched 
in cholesterol, glycosphingolipids and lipid-anchored 
membrane proteins. With over 30 membrane receptors, 
signaling molecules and membrane transporters localized 
to caveolae, these lipid- and protein-dense cell surface 
microdomains are natural candidates for centers of signal- 
ing activity (reviewed in [1]). 

Recent compelling evidence that caveolae are signaling 
centers comes from analysis of the direct consequences of 
modulating endogenous levels of caveolin or interfering 
with caveolin function in signaling. For instance, using an 
antisense strategy to inhibit the expression of caveolin-1 in 
NIH-3T3 cells causes their transformation by facilitating 
anchorage-independent growth and hyperactivation of 
extracellular regulated kinases 1 and 2 (ERK 1/2) [2]. 
Signaling through these pathways was restored when cave- 
olin-1 returned to endogenous levels. Correspondingly, 
overexpression of caveolin-1 suppresses ERK 1/2 signaling 
[3]. Caveolin overexpression does not have an inhibitory 
effect on all signaling pathways. The expression of recom- 
binant caveolin-1 in NIH-3T3 cells causes an increase in 
phospholipase Dl (PLD1) activity [4]. 

A more striking example of the specificity of caveolae- 
dependent signaling events is the finding that the 
disruption of caveolin function or caveolae structure, 
caused either by overexpression of dominant-negative 
caveolin-3 mutants or by depletion of cellular cholesterol, 
interferes with the activation of the protein kinase raf by 
activated H-ras without affecting its activation by the 
almost identical isoform K-ras [5*]. The difference 
between these two ras isoforms is their localization at the 
plasma membrane: H-ras, but not K-ras, is palmitylated, a 
modification that targets it to the cholesterol-rich lipid 
microdomains associated with caveolin. A functional rela- 
tionship between caveolin expression and cholesterol was 
also observed in Caenorhabditis elegans, in which either 
reduction of caveolin expression by RNA interference or 
depletion of cholesterol perturbs ras signaling through the 
MAP kinase pathway [6*]. 

The dramatic and diverse effects that caveolin function 
has on regulating signaling molecules are probably the 
result of using extreme measures to manipulate a system 
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Recent data suggest that even the release of Hh may be regulated by cho- 
lesterol. A gene called dispatched was identified in a screen for mutations 
with a Hedgehog-like phenotype. Like patched, it has sterol-sensing domain 
but seems to be required for the release of Hh from the cells that synthesize 
it. Intriguingly, dispatched does not facilitate the release of GPI-anchored Hh, 
suggesting that the release of normal cholesterol-modified Hh is not simply 
related to raft association. 



Regulation of signal transduction by endocytosis Ceresa and Schmid    205 

that is, under normal conditions, more delicately balanced 
by much smaller changes in caveolin function. In 
NIH-3T3 and Ratl cells, mutationally activated c-erbB2 
(c-neu) causes the downregulation of caveolin-1, but not 
caveolin-2 [7]. These decidedly more subtle changes are 
probably part of a complex feedback mechanism to regu- 
late transformation potential under prolonged growth 
factor stimulation. 

The exact role of caveolin and caveolae remains enigmat- 
ic. There is good evidence that they play direct roles in 
regulating plasma membrane cholesterol levels [8]. 
Although caveolae are clearly regions enriched with signal- 
ing proteins, it remains uncertain whether these structures 
function to spatially coordinate signaling events or whether 
there exists a more direct role for cholesterol and mem- 
brane subdomain composition itself in controlling the 
activity of signaling complexes. 

Endocytosis as a regulator of signal 
transduction 
Ligand-mediated endocytosis is characteristically an early 
response in the signaling pathways triggered by a diverse 
group of cell surface receptors, including heterotrimeric 
guanine-nucleotide-binding protein (G protein)-coupled 
receptors (GPCRs), receptor tyrosine kinases (RTKs) and 
cytokine receptors [9,10]. Upon binding of the ligand (hor- 
mone, neuropeptide, growth factor, odorant, etc.) to its 
cognate cell surface signaling receptor, the activated 
receptors are targeted to clathrin-coated membrane invagi- 
nations, which, through a series of highly regulated, yet 
still not fully understood, biochemical events, eventually 
pinch off to form a clathrin-coated vesicle. Subsequent 
membrane fusion and budding reactions deliver the con- 
tents of the vesicle through sequential endosomal 
compartments. During progression along the endocytic 
pathway, the endosomes are modified in protein composi- 
tion and pH, and their contents are sorted for shipment to 
the appropriate cellular destination. Among these fates are 
retention in the endosomal compartment, recycling back 
to the plasma membrane and delivery toward a lysosomal 
degradation pathway. 

Ligand-mediated endocytosis plays at least two functions 
in receptor signaling. First, it can serve as a biophysical 
mechanism for attenuating the signaling of an activated 
cell surface receptor. Discussed in this review is the evolv- 
ing story of the ErbB RTK family, which illustrates how 
controlled receptor trafficking regulates the potency of 
mitogenic signaling. Second, endocytosis plays a role in 
placing the activated cell surface receptor in the appropri- 
ate cellular location to interact with downstream signaling 
molecules. Signaling to ERK 1/2 by the internalized 
ß2 adrenergic receptor (ß2AR) and the epidermal growth 
factor (EGF) receptor (EGFR) not only demonstrates this 
phenomena but also provides insight into how these inter- 
actions might be regulated. 

Endocytosis as a means of regulating receptor 
activity 
An excellent example of how endocytic membrane traf- 
ficking can regulate signaling comes from studies on the 
ErbB family of RTKs. ErbB family members, including 
the EGFR (ErbBl), are activated upon dimerization 
induced by binding their ligands, which are EGF, trans- 
forming growth factor-a (TGF-a) and Neu differentiation 
factor (NDF). The specific ligand determines the compo- 
sition of the dimeric receptor (Figure 1). 

It has been appreciated for some time that different ErbB 
receptor ligands invoke different signaling potencies, par- 
ticularly in terms of their mitogenic potential [11]. This has 
been convincingly demonstrated and mechanistically 
explored by stably transfecting cells lacking ErbB family 
members with ErbBl alone or in combination with either 
ErbB2 or ErbB3 [12*]. Cells expressing only ErbBl were 
less proliferative in response to EGF than in response to 
TGF-a. When either ErbB2 or ErbB3 was co-expressed 
with ErbBl, the cells became significantly more respon- 
sive to EGF, without altering their response to TGF-a. 
These increases in mitogenic response correlate with the 
increased recycling and decreased downregulation of 
ErbBl homodimers that occur in the presence of TGF-a 
or when ErbB2- or ErbB3-containing heterodimers are 
activated by either EGF or TGF-a. 

As implied by these results, endosome sorting is regulated 
by interaction with both lumenal and cytoplasmic domains 
of the ErbB family members. Two lines of evidence sug- 
gest that endosome acidification and the pH-dependent 
dissociation of receptor-ligand complexes are central in 
controlling this sorting decision. First, TGF-a and NDF 
dissociate from their receptors at a relatively higher pH 
than EGF, suggesting that this dissociation would occur in 
early endosomal compartments, which are involved in 
receptor recycling. Second, treating cells with the 
ionophore monensin, which increases the pH of endoso- 
mal sorting compartments, leads to increased 
downregulation of receptors activated with TGF-a and 
NDF [12*,13*]. Studies with chimaeric receptors encoding 
the ligand-binding extracellular domain of ErbBl and the 
intracellular domain of ErbB2 [14] or other ErbB family 
members [15] indicate that sorting signals in the ErbBl 
cytoplasmic domain are required for receptor degradation. 

One candidate molecule that may recognize sorting determi- 
nants in ErbBl is c-Cbl or its C. elegans ortholog Sli-1. c-Cbl 
has been shown to be a downstream substrate and negative 
regulator of a number of cell surface receptors, although its 
mechanism has been poorly understood [16,17]. Levkowitz 
eta/. [18] found that c-Cbl is recruited to endosomes in cells 
transiently expressing the lysosomally directed ErbBl, but 
not the recycling ErbB3. c-Cbl is required for ligand-depen- 
dent ubiquitination of ErbBl in endosomes, a modification 
that may target the protein to the lysosome degradative path- 
way. Importantly, mutants of either the ErbBl RTK or c-Cbl 
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Structural and signaling properties of the 
ErbB receptor tyrosine kinase family (see text 
for details). 

that disrupt their interactions [18,19,20**] result in decreased 
ErbBl degradation and increased mitogenic signaling [19] 
(Figure 2a). Results using other cell surface signaling recep- 
tors suggest a general role for ubiquitination in regulating 
endocytic membrane trafficking [21]. 

Pathophysiological consequences of receptor 
tyrosine kinase trafficking 
The physiological significance of differential RTK traf- 
ficking has been demonstrated by studies utilizing 
cultured breast cancer cell lines expressing varying ratios 
of endogenous ErbBl and ErbB2 RTKs. Through a series 
of biochemical and immunocytochemical studies, Wang et 
al. [22*] demonstrate that, despite auto-tyrosine-phospho- 
rylation of both family members upon EGF treatment, 
endocytosis of dimeric receptor complexes is inversely pro- 
portional to ErbB2 expression. The physiological 
consequence of the differential cellular trafficking is 
increased mitogenic signaling owing to the prolonged acti- 
vation state of ligand-receptor complexes involving ErbB2 
or ErbB3 subunits [12*,13*,23]. 

This selective degradation of only ErbBl receptors may 
explain the more carcinogenic nature of other ErbB family 
members. For instance, expression of ErbB2 has long been 
correlated with many carcinomas and poor prognosis 
[24,25]. One plausible explanation for ErbB2's carcino- 
genic effect is its ability to increase the ratio of 
ErbBl-ErbB2 heterodimers over ErbBl homodimers. In 
doing so, alterations in membrane trafficking would result 
in enhanced mitogenicity. 

Signaling from within the endosome 
The concept that activated receptors interact with down- 
stream signaling molecules at discrete endocytic locations 

has been postulated for years [26,27]. Previously, testing 
this hypothesis was limited by the inability to trap an acti- 
vated receptor at unique endocytic locales without 
significantly altering the receptor structure and/or impair- 
ing signaling pathways. Now, with a clearer understanding 
of the initial stages of endocytosis and receptor desensiti- 
zation, less invasive cell biological methods for disrupting 
endocytosis have been developed. Thus, there has been a 
plethora of data examining receptor signaling prior to entry 
into the endocytic pathway. 

The two most commonly used tools are dominant-negative 
constructs of the GTPase dynamin and the GPCR-binding 
protein arrestin. Overexpression of dominant inhibitory 
forms of dynamin (those that can not bind or hydrolyze 
GTP) blocks clathrin-mediated endocytosis [28], causing 
the retention of many, but not all, receptors at the cell sur- 
face. Overexpression of dominant-negative forms of 
arrestin [10,29*] specifically blocks the endocytosis of 
GPCR. Arrestin binds activated GPGRs after they become 
phosphorylated on serine residues within their carboxyl ter- 
mini through a GPCR-kinase-mediated feedback loop. 
Arrestin binding prevents activated GPCR further interact- 
ing with heterotrimeric G proteins and transducing signals. 
In addition, arrestins serve as adapter molecules that target 
activated GPCR to endocytic coated pits [30]. Together, 
these methods have proven effective in a direct comparison 
of the signaling of receptors retained on the cell surface 
with that of those allowed to enter the endocytic pathway. 

Not surprisingly, there are some signaling pathways that are 
completely unaffected or enhanced by retaining activated 
receptors at the cell surface. These include the most proximal 
events in receptor signaling, such as the intramolecular kinase 
activity of RTKs, activation of heterotrimeric G proteins, 
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Figure 2 

Endocytosis of signaling receptors. 
(a) Differential endocytic trafficking of 
homodimeric and heterodimeric ErbB1 and 
ErbB2 RTKs. Ligand binding induces receptor 
dimerization and targeting to clathrin-coated 
pits, which pinch off in a dynamin-dependent 
manner. The coated vesicles form, then shed 
their clathrin coats and fuse with the mildly 
acidic early endosome, where the RTKs are 
sorted for recycling or degradation. Ligands 
dissociate from ErbB2-containing dimers, 
which are then sorted on a monesin-sensitive 
step to the recycling endosome and returned 
to the cell surface. ErbB1 dimers retain bound 
ligand until encountering the lower pH or later 
endosomal compartments. Within 
endosomes, ErbB1 dimers associate with 
c-Cbl, are ubiquitinated and targeted for 
degradation in the lysosome. (b) Formation of 
the ß2AR-ß-arrestin-c-Src complex as a 
mechanism to form the ß2AR-containing 
endosome. Upon hormone stimulation, the 
a and ßy subunits of the activated 
heterotrimeric G protein dissociate to cause 
activation of downstream effectors such as 
adenylyl cyclase (AC). The ßy subunits 
facilitate the G-protein-coupled receptor 
kinase (GRK)-mediated phosphorylation of 
ligand-bound ß2AR. ß-Arrestin (ßArr) binds 
both the phosphorylated ß2AR and c-Src, 
causing formation of the ß2AR-ß-arrestin- 
c-Src complex at the plasma membrane. The 
ß-arrestin interaction with clathrin targets the 
ß2AR to coated pits. Its subsequent 
internalization is a prerequisite for signaling to 
theERK 1/2 pathway. 
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phosphorylation of insulin receptor substrate-1 (IRS-1) by 
the insulin receptor, regulation of adenylyl cyclase activity 
and stimulation of phospholipase Cy. Given the plasma 
membrane location and/or the kinetics of activation of 
these effectors, it seems unlikely that receptor endocytosis 
would be a prerequisite for their activity. 

More intriguing are those events that are attenuated when 
receptor endocytosis is inhibited — namely the activation 
of phosphatidyl inositol 3-kinase (PI3-K) and ERK 1/2 
[31-36]. In the case of insulin receptor signaling, PI3-K 
associates with IRS-1 in an insulin-dependent manner as a 
prerequisite for signaling. When insulin receptor endocy- 
tosis is blocked by dominant-negative dynamin, there is a 
significant reduction in insulin-dependent PI3-K activity, 
despite full tyrosine phosphorylation of the insulin recep- 
tor and IRS-1. The change in kinase activity is reflected in 
a corresponding decrease in the amount of p85 regulatory 
subunit of PI3-K associated with IRS-1 [31]. 

Although there are a number of cell surface receptors that 
require endocytosis for ERK 1/2 activation, there are an 
equal number that do not (Table 1). One possible explana- 
tion is that the need for endocytosis is receptor-specific 

and that the role of endocytosis in ERK 1/2 activation may 
be a mechanism through which signal specificity is con- 
ferred. These results are reminiscent of the differential 
effects on ras signaling through MAP kinase observed 
upon caveolae disruption (see above) and suggest that 
multiple mechanisms exist to spatially regulate the MAP 
kinase signaling pathway. 

Interestingly, it has been reported that dominant inhibitory 
dynamin decreases (J. opiod receptor mediated activation of 
ERK 1/2 in HEK293 cells independent of an effect on the 
endocytosis of the u opiod receptor [37]. It is possible this 
is a consequence of dynamin's role in regulating an inter- 
mediate signaling protein whose endocytosis is required 
for ERK 1/2 activation. Alternatively, these data may sug- 
gest a second role for dynamin, in addition to regulating 
endocytosis. However, expression of dominant-negative 
dynamin has no effect on ERK 1/2 activation by the cc2 

adrenergic receptor, which, like the (X opiod receptor, cou- 
ples to Gaiy/0 guanine-nucleotide-binding proteins and is 
internalized in a dynamin-independent manner [38]. 

Taken together, this selective inhibition of signaling path- 
ways suggests that an activated receptor and requisite 
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Table 1 

Consequences of inhibited endocytosis on ERK activity. 

Receptor Endocytic block Cell line ERK activity References 

Receptor tyrosine kinase 
EGFR 
IR 

Dynamin 
Dynamin 

HeLa 
H4IIE 

J- 50% 
i 50% 

[35] 
[31] 

G-protein-coupled receptors 
a2AAR 
OC2BAR 

Dynamin* 
Dynamin 

COS-1,HEK293 
COS-1.HEK293 

No change 
No change 

[33,38] 
[33,38] 

a2CAR Dynamin COS-1 No change [33] 

ßAR Dynamin, arrestin HEK293 160% [32,45] 

8 opiod 
\i opiod 
K opiod 

Dynamin 
Dynamin 
Dynamin, arrestin 
Dynamin 

Cos-7, HEK293 
HEK293 
CHO 
HEK293 

i 80% 
i 80% 
No change 
i 80% 

[46] 
[46] 
[47] 
[46] 

5HT1A 

Serotonin receptor Dynamin, arrestin HEK293 i 50% [34] 

LPA Dynamin, arrestin HEK293 150-80% [32] 

CXCR2 Dynamin HEK293 No change [48] 

*Endocytosis is dynamin independent. 

signaling molecules are not sufficient to direct appropriate 
cellular responses — endocytosis is also an essential 
component. 

Signal transduction can regulate endocytosis 
Although the role of the endocytic pathway in receptor sig- 
nal transduction has only recently been appreciated, it has 
been known for some time that signaling receptors must 
be active for their endocytosis [39]. Our understanding of 
the role of receptor signaling in endocytosis has been lim- 
ited to mutagenesis studies defining the receptor domains 
that are involved in recruitment to clathrin-coated pits and 
endocytosis. New studies using endocytosis-deficient cell 
lines have readdressed this mechanism and the nonrecep- 
tor tyrosine kinase c-Src has emerged as an important 
regulator of endocytosis. 

The effect of the endocytic pathway on signaling and vice 
versa has been best characterized using ß2AR as a model. 
With the first observation of ß2AR internalization upon 
agonist stimulation came the hypothesis that this was 
strictly a mechanism by which activated receptors were 
removed from the cell surface and sequestered within the 
cell to prevent further activation of a downstream effector, 
namely adenylyl cyclase. This hypothesis continued to 
garner momentum with the observation of ligand-depen- 
dent phosphorylation and the subsequent association of 
ß-arrestin to prevent further signaling to heterotrimeric 
G proteins. 

More recent results have suggested an additional role for 
ß-arrestin binding. In this work, Luttrell etal. [40**] demon- 
strate that agonist activation of ß2AR results in the formation 
of a ß2AR-ß-arrestin-c-Src complex. This protein complex 

targets the receptor to a clathrin-coated pit (Figure 2b). It 
has been shown that kinase-inactive forms of c-Src can 
inhibit, and constitutively active forms of c-Src can 
enhance, ß2AR endocytosis [41]. Activation of both ß2AR 
and the LPA (lysophosphatidic acid) receptor leads to 
phosphorylation of dynamin, in the former case, through a 
c-Src-dependent process [41,42]. These data suggest that 
c-Src is an upstream regulator of dynamin function in ß2AR 
endocytosis. It has been shown that EGF-stimulated acti- 
vation of c-Src leads to tyrosine phosphorylation of clathrin 
and that phosphorylation is required for the recruitment of 
clathrin to the membrane [43]. Taken together, these data 
strongly suggest a role for c-Src in receptor endocytosis — 
the question remains whether c-Src is a regulator of 
dynamin function or a recruiter of clathrin or both. 

Another candidate protein for regulating ß2AR signaling is 
the ezrin-radixin-moesin (ERM)-binding phosphopro- 
tein-50 (EBP50). EBP50 binds to the G-protein-regulated 
kinase 5 (GRK5)-phosphorylated cytoplasmic tail of ß2AR 
via a PDZ domain and to the cortical cytoskeleton through 
an ERM-binding domain. In HEK293 cells, the disruption 
of the ß2AR-EBP50-actin interaction results in dimin- 
ished ß2AR recycling [44*]. Although EBP50 has not been 
shown to have a direct role in ß2AR signaling, its effects on 
ß2AR endocytic trafficking are likely to have important 
implications in signaling [44*], similar to those described 
above for ErbB family members. 

Conclusions 
The key to fully understanding the cell physiology mediat- 
ed by cell surface receptors lies not only in the 
identification of downstream effectors but also in the 
exquisite spatial and temporal regulation of the interactions 
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with these effectors. Clearly, membrane trafficking plays an 
important role both in controlling the location of signaling 
interactions and in regulating the cellular degradation and 
recycling of the activated receptor. From a biomedical 
prospective, the identification of the sites and knowledge 
of the kinetics of receptor activation of downstream effec- 
tors provides an opportunity to design rational therapeutic 
strategies to manipulate a given signaling pathway. 
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