
AFRL-IF-RS-TR-2000-123
Final Technical Report
August 2000

THREE FINAL STEPS TOWARD PORTABILITY

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F351

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

imc

20001002 047

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-123 has been reviewed and is approved for publication.

APPROVED: -12
RALPH KÖHLER
Project Engineer

FOR THE DIRECTOR: : MffcL
NORTHRUP FOWLER, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTC, 26 Electronic Pky, Rome, NY 13441-4514.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

THREE FINAL STEPS TOWARD PORTABILITY

Craig Lund

Contractor: Mercury Computer Systems, Inc.
Contract Number: F30602-97-2-0271
Effective Date of Contract: 24 July 1997
Contract Expiration Date: 30 November 1999
Program Code Number: F351
Short Title of Work: Three Final Steps Toward Portability
Period of Work Covered: Jul 97 - Nov 99

Principal Investigator:
Phone:

AFRL Project Engineer:
Phone:

Crain Lund
(508) 256-1300
Ralph Köhler
(315)330-2016

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Ralph Köhler, AFRL/IFTC, 26 Electronic Pky, Rome, NY.

REPORT DOCUMENTATION PAGE
Form Approved

OUB No. 07040138

reporting burden for this collection of information is estimated to avenge 1 hour per response, including the time for reviewing instructions, »arcling nisting rlau sources, gathering and miMrring t«l data needed, enduinaotiwj andnwapeg
lection of information. Send cotnmenls regarding this burden estimete or any other aspect of this collection ol information, Muring suggestion» for reduong this bunten, to Washington Headanrters Services, Director«, lor tntomratnti
Sons and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Of fbe of Management and Budget Paperwork Reduction Project (07044)1881 WasWngtrai, DC 20601

Public
the «lection
Operati

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

AUGUST 2000

REPORT TYPE AND DATES COVERED

FinalJul97-Nov99
4. TITLE AND SUBTITLE

THREE FINAL STEPS TOWARD PORTABILITY

6. AUTHORIS)

Craig Lund

7. PERFORMING ORGANIZATION NAMEIS) AND ADDRESS(ES)

Mercury Computer Systems, Inc.
199 Riverneck Road
Chelmsford MA 01824-2820

9. SPONSORING/MONITORING AGENCY NAMEIS) AND ADDRESSIES)

Defense Advanced Research Projects Agency Air Force Research Laboratory/IFTC
3701 N. Fairfax Drive 26 Electronic Pky
Arlington VA 22203-1714 Rome NY 13441-4514

5. FUNDING NUMBERS

C - F30602-97-2-O271
PE- 62301E
PR-D002
TA- 01
WU-P5

8. PERFORMING ORGANIZATION.
REPORT NUMBER

N/A

ID. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2000-123

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Ralph Kohler/IFTC/(315) 330-2016

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
A software gap exists between the research and deployment communities. The research under this project is described by
two research projects that build upon the Application Configuration language (ACL) foundation. The first is the "ACL" for
Research Systems", which focused on code migration from research environments like NHPCC's into deployment situations.
The underlying component programming model Mercury had advocated promotes the re-use of software modules and

maintainability of large software projects. The second: "entering the Data Domain", created a standard API for real-time
data shaping and data mapping - gluing the MPI and ACL worlds together in an innovative manner, eliminating the need Cor
custom solutions. An industry standard data remapping API for signal processing has resulted from this effort. Recent
progress towards standard programming tools and Application Programmer Interfaces (APIs) brings the embedded signal
processing community closer to application source code portability. Portability will enable sharing code among signal
processing projects and will allow applications to quickly take advantage of hardware from new vendors.

14. SUBJECT TERMS

Talaris, Scalability Challenges, Unix Launcher, RACE Generator Tool, Application
Configuration Language, Automatic Mapper

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

56
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) IEG)
Prescrilwdliy ANSI StoV 23B.ia „.
Dasignea aaaaj Pattern Pro, «HSIDKR, fkt 9«

Table of Contents

1.0 Executive Summary

2.0 Introduction

3.0 Mercury Program Participation

4.0 MHPCC Program Participation 13

5.0 MSTI Program Participation 18

6.0 Summary and Future Research 22

Appendixes

[A] Final presentation and demonstration at DARPA PI meeting

(PowerPoint Presentation)

26

List of Figures

Figure

1 Talaris environment as a framework for component programming

2 Representation of Modules, Parts and Connections

1.0 Executive Summary
This final report summarizes the results of research, that Mercury Computer Systems, Lie.

MPI Software Technology (MSTI), the Albuquerque High Performance Computing

Center (AHPCC), the Maui High Performance Computing Center (MHPCC)T and the

Naval Command, Control and Ocean Surveillance Center (NCCOSQ Research,

Development, Test and Evaluation Division (SPAWAR) performed on the "Three Final

Steps Toward Portability" program. The program was supported by the Defense

Advanced Research Projects Agency (DARPA) under BAA 97-06, entitled "Adaptive

Computing Systems, Embedded High Performance Computing and Ultrascale

Computing".

A software gap exists between the research and deployment communities. Software

created by researchers is rarely leveraged when primes contractors build real-time

prototypes or deploy embedded systems. This is because the research and deployment

communities use different tools, languages, and operating systems.

Recent progress towards standard programming tools and Application Programmer

Interfaces (APIs) brings the embedded signal processing community closer to application

source code portability. Portability will enable sharing code among signal processing

projects. Portability will also allow applications to quickly take advantage of hardware

from new vendors. The result will be faster development cycles, at lower cost, with mare

functionality.

Barriers to portability have continued to fall. One significant obstacle remains—mapping

parallel software onto real hardware in a portable and productive way. Fortunately,

Mercury Computer Systems, in collaboration with many commercial and academic

organizations, has had a successful research program focused on productive, portable

mapping techniques. The team members, as indicated above, have sought to push this

research collaboration in two new directions. Our push attacked the last barriers to source

code portability between real-time, deployment environments.

Our collaboration's past work in this area, centers on a language called "ACL"1 for

Application Configuration Language. ACL allows a programmer, or a programming tool,

to specify a software structure, a hardware structure, and the mapping between them. The

ACL language is general enough to incorporate arbitrary, legacy software—both unlinked

modules and complete applications. Existing ACL tools such as The Math Works'

SIMULINK, Matra's CapCase, and Mercury's TCE allow users to describe software

requirements, specific hardware configurations, and arbitrary mappings. In the hands of a

programmer, the ACL language is powerful enough to go beyond expressing complex

mapping algorithms. ACL can also capture fault recovery strategies, potentially allowing

software to remap around hardware failures.

This report describes two research projects that build upon this ACL foundation. Each

project was performed independently. Combined, the projects knocked down significant

barriers to source code portability within parallel, real-time, deployment environments.

• The ACL for Research Systems project focused on code migration from research

environments like MHPCC's into deployment situations (we needed this project if only to

allow use of Mercury's previous MATLAB deployment effort within the MHPCC STAP

community). The underlying component programming model Mercury has advocated

promotes the re-use of software modules and maintainability of large software projects.

• The Entering the Data Domain project created a standard API for real-time data

shaping and data mapping—gluing the MPI and ACL worlds together in an innovative

manner; eliminating the need for custom solutions like Mercury's Parallel Application

System (PAS) and SPAWAR's Scalable Parallel Environment (SPE). An industry

standard data remapping API for signal processing has resulted from the (still continuing,

independent from this contract) effort, again creating and stimulating improved code

portability.

For ACL overview materials, reference, and tutorial, see:
• www.mc.com/talaris_foloVtalariseet.html
• www.mc.com/backgrounder_folder/icassp/icassp.html
• www.mc.com/talaris_fold/taIaris/slideO.html

ACL for Research Systems

Mercury's implementation of ACL is named "Talaris" (Figure 1). Most of Talaris

executes on a workstation. An portion of Talaris, called the "Generator*\ is specific to

each run-time target. Generators create "Launch Kits". Most targets require small, stand-

alone programs, called "Launchers", to execute these Launch Kits. A Generator and

Launcher already exist for Mercury's MC/OS operating system on i860s, SHARCs,

PowerPCs, as well as for Wind River's VxWorks on a 68000. At the start of this project

no organization had yet elected to build a UNIX Generator and Launcher.

SVWÖBKfflBKlQN EMBEDDED TOSET

Toota Model»' Generator* «Uta

Figure 1. Talaris environment as a framework for component programming.

UNIX Shared-Memory Processor (SMP) boxes do not often encounter the scalability

challenges that ACL was designed to meet. Scalability challenges refering to the

problems associated with mapping an unchanging application between multiple hardware

configurations in a deployment situation. Various defense platforms, for example, may

be in different stages of an upgrade cycle, resulting in several hardware configurations

that a single application must tolerate. Also, laboratory configurations very often differ

from field hardware configurations. These are examples of problems ACL was designed

to resolve.

UNIX boxes are a convenient place to experiment with code that will ultimately find its

way into embedded environments. This fact made ACL interesting in such environments.

MHPCC, for example, wanted to experiment with ACL in the UNIX research phase of

projects with deployment potential.

There is yet another reason for creating a UNIX Launcher. Tool vendors, such as Khoral

Research (KRI), target both embedded and traditional applications. ACL for UNIX

would simplify creating such tools by eliminating a key difference between embedded

and scientific platforms.

We actually required two different UNIX launchers, one variant targeting MPI

middleware within interactive workstations clusters from Sun and IBM. The other targets

MPI within the D3M-SP batch environment.

Entering the Data Domain

Existing DARPA investments in ACL and MPI represent a significant step towards

portable signal processing software. Unfortunately, one critical API layer remains

undefined. Signal processing programmers need an API that is focused on data "shape".

Here we refer to the patterns that programmers use to scatter data sets between memory

systems within a distributed, parallel, hardware environment. Signal processing

programmers need an API that can "transpose" data rows and columns, not just a message

passing API.

Visual signal processing tools also require such an API. Like programmers, visual tools

that target signal processing "think" in terms of data flow and shape, a model MPI and

MPI/RT are not optimized for.

Our developed Data Reorganization Interface (DRI) API is something ideally layered

"above" MPI/RT. However, any runtime that supports a shape-oriented API faces a

significant algorithm/software/hardware mapping challenge — ACL's domain.

Thus our team wanted to define a data shape/remapping API that can leverage both

MPI/RT and ACL. Our team wanted to cooperatively study the issue. Mercury intends to

promote the team's conclusions throughout the DoD signal processing community.

Our team had planned to leverage the development of a MPI/RT specification for

"transpose and reshape," whose purpose was to introduce an early-binding form of data

reorganization into MPI/RT. Participants have pushed for the addition of "early binding,

collective redistribution" into MPI.

Our team has not asked DARPA, during the program or at this time, for help building the

first implementation of our new API. This is because, since we were successful at

building consensus, we believe that platform suppliers like Mercury will create

implementations at their own expense.

Conclusion

A third element of the originally proposed program, as indicated in the project's name

was unfortunately not funded under this effort. In it, as a continuation of the DARPA

BAA 95-19 Mercury's "Bridging the Development Gap" contract, our team was to define

an API specification for mapping algorithms, and implement a tool that can call these

interchangeable mapping algorithms to accomplish mapping. The software and hardware

specification for this tool was to be ACL. KRI was originally proposed to build the

Automatic Mapper as an enhancement to Mercury's TCE.

The completed and reported effort has shrunk the percieved software gap by creating

standards and a tool infrastructure that the research and deployment communities can

share. Our work has been intensitively focused on parallel programming and on

multicomputer data mapping challenges specific to signal processing.

2.0 Introduction
This final report describes recent research and development work related to BAA 97-06

that has significantly improved developer productivity for parallel programming of signal

processing applications today, while laying the groundwork for dramatic advances in the

future.

Mercury's ACL is a language that allows programmers to treat legacy software object

libraries as software components with defined interfaces (stack frames, POSIX sockets,

MPI/RT channels, and so on). Using ACL, programmers can express how they wish to

interconnect software components into a complete application. ACL can capture similar

information on target hardware configurations. The real power of ACL is its ability to

then express how to map a software concept into a hardware reality. Because ACL is a

complete programming language based upon the popular TCL, such mappings can be

algorithms that react to change when, for example, hardware fails.

Mercury's TCE is a tool "framework" with plug in extensions that manipulates ACL.

TCE, developed under a previous DARPA contract, runs on workstations. Team

members have implemented many of the project elements as TCE extensions.

ACL for Research Systems

An ACL environment already exists for Mercury's MC/OS environment and for Wind

River's VxWorks. Spectron is working to add ACL support to its SPOX-MP. Extending

Mercury's tool suite to support each new target requires that someone develop a new

"Generator" for each target. Most environments also need a corresponding "Launcher"

which executes on the targets (see Figure 1). Mercury is to implement the new

Generators as extensions to TCE.

Generators emit "Launch Kits." A Generator understands its target's capabilities (such as

shared memory and sockets), the target's operating system services, and the target's

development tool chain.

Launchers processes Launch Kits at runtime. Launch Kits contain a description of which

object files a Launcher must load onto each target processor. Kits also describe resource

requirements such as interprocess communication objects that Launchers must establish

before handing control over to a user's application.

Developing a Generator and Launcher for each new target requires tackling several

challenges that are not immediately obvious. First among them is that UNIX or MPP

platforms are rarely dedicated to a single application. Therefore, the ACL Launcher will

not have control of the entire platform. Our new Launchers will need to request resources

(processors, memory, or workstations) from a higher authority, a concept not built into

original Launcher implementations. We have developed Launchers and Generators for

three new target environments:

• POSIX Reference Implementation. This provides a UNIX reference implementation

of ACL that leverages the POSIX API (i. e. shared memory, semaphores, sockets,

threads) running on an SMP SPARCstation using Solaris 2.x. From this starting point

other organizations can create ports to other POSIX environments.

• MPI Reference Implementation. This provides an MPI reference implementation

based on a cluster of Sun Workstations using MPICH. This reference implementation

provides a starting point for future MPI-based implementations of ACL.

• IBM SP-2 Implementation. Starting with the MPI Reference Implementation

described above, MHPCC has provided enhancements to support an IBM SP-2 using

IBM's MPI.

We have made these enhancements by changing the Talaris tool chain in a significant

way. Today Talaris has a single "Generator" component which creates the "Launch Kits"

that Launchers execute. Mercury's experience with Spectron's ACL work has shown that

a better approach is to have a separate generator for each target environment (MC/OS,

VxWorks, SPOX-MP, POSIX, MPI). After consulting with Mercury, Spectron had

suggested that Mercury expose the toolbox inside the TCE that manipulates ACL.

Mercury calls this Java toolbox the Configuration Model Interface (CMI). Mercury has

adopted this approach. We first created a generic generator designed to supplant our

existing generator. We then created two variants, one for POSEX and another for MPI.

Because of the way in which TCE was written in the Java programming language, the

new generators became Java Beans. (An introduction to Java Beans technology can be

found at <http://splash.javasoft.com/beans/WhitePaper.html>).

Entering the Data Domain

Our team did not intend to define a data shaping/remapping API without focusing much

of our time initially on the runtime system that sits underneath the API. This is because,

when a program requests a data remap, the runtime system must query the

software/hardware map to determine how many memory systems are involved. This fact

implies that significant data movement decisions must be made after compile and link

time. Making decisions this late is a challenge because "early binding" is a key

foundation of performance in all real-time systems. The most flexible solution requires

making all data movement strategy decisions at runtime. The highest performance

solution requires making such decisions just after the map is known, but before execution

begins.

At the start of the program existing APIs do not allow the latter approach. Existing data

shape/remapping APIs focussed on either flexibility or performance, but rarely on both.

KRI's Distributed Data Services was one extreme example. It is very flexible at run time,

but there is no hope of ever fitting it into a DSP chip's high performance, restricted

resource environment. Mercury's PAS was at the opposite extreme: a very targeted

feature set that fits into a SHARC, but with little runtime flexibility. Neither example

integrates well with MPI.

The community needed something better. In this program we studied high performance

options and then publicly proposed solutions to the embedded community. The team will

declare success only after we have build broad consensus in the community.

3.0 Mercury Computer Systems Program Participation
In Mercury's approach to component programming, a software application is expressed as

an interconnection of software Modules that executes on a configuration of hardware

Modules. A software Module consists of executable code that operates on data and

commands via one or more Ports of the Modules. Interconnections of Ports between

Modules are Connections. Graphically, the relationships of Modules, Ports, and

Connections are shown in Figure 2.

Ports Connection

7LS Module*^ ■ *■■ Module

Figure 2. Representation of Modules, Ports and Connections

In the RACE implementation, Modules are POSDC threads or processes, Ports are various

types of protocols (e.g., message passing, synchronization, and shared-memory

application programming interfaces (APIs)), and Connections are objects that attach to

Ports. Hardware Modules consist of processors and their memory systems, the interface

to the processor, and the connection of interfaces (e.g., connection to a shared bus or

point-to-point fabric).

ACL

Mercury has developed an underlying run-time system that supports a component

programming model. Such a run-time system processes a "netlist" which specifies the

interconnection and processor assignments of software modules available as object code.

From the netlist, the runtime system synthesizes the required executable images, loads the

images into appropriate processors, sets up the "interconnections" as inter-process

communication objects, and begins execution of the application. The underlying "netlist"

specification is actually a scripting language. Specifically, we have created a specialized

Tool Command Language (TCL) extension package that we call ACL (Application

Configuration Language).

Talaris

Mercury has also created a powerful environment for cooperating tools that better support

the development of complex applications. Implemented in Java, the Talaris Environment

is very portable and extensible. It is being applied to an increasing range of target systems

and programming interfaces.

Talaris Modeler - The Model is controlled by a transaction engine called the Talaris

Modeler that manages and synchronizes (in real-time) both the Model and the

corresponding ACL command source. The Modeler is equally at ease with the ACL

source form of the Model and the underlying Model itself, with its computed entities and

relationships. Because the Modeler supports a Model-View-Controller architecture, all

views of the Model - including the ACL command form - are constantly synchronized as

the contents of the Model are changed.

Talaris Tools « On startup, the Environment uses initialization settings to establish the

semantics of the Model, the number and names of Model domains, the initial type

hierarchy, and the selected target system. The developer proceeds to open, edit, and save

ACL documents with Editing Tools. When the configuration is complete, the developer

uses Target Tools to build and launch the application on a specific target system.

Mercury's RACE Generator Tool - To create applications to launch on RACE

systems, Mercury's RACE Generator Tool builds a launch kit in a sequence of four

phases:

• Analysis - scan the Model, resolve ambiguities and other defaults, perform

initialization deadlock analysis

• Files - create all the input to the launch kit, initialization instructions, dependency

file, dispatch tables

10

• Build - compile dispatch tables, build the executable images

• Kit - create a launch kit from the output of the files and build phases. To reduce the

time required to create a launch kit, the Generator computes the minimum build plan.

The analysis and files phases are done only if the model has changed, the build phase

is done only if its inputs have changed, and the kit phase updates the final kit contents

only if the build phase resulted in changes. This enables fast turnaround during kit

generation as well as during launch, because redundant image-loads are thereby

avoided.

Mercury's RACE Launcher -- Mercury's RACE Launcher starts applications on RACE

systems in four steps:

• Image load. Note that a sizeable application may involve several hundred megabytes

of executable images being loaded onto hundreds of processors. Using features of

MC/OS, the RACE Launcher avoids reloading images that have not changed since the

last launch.

• Process and thread creation. The Launcher constructs argc/argv/env data for

processes and marshals arguments for thread entry points.

• Initialization. To start properly and without deadlock, a complex application requires

precise setup of thousands of software communication mechanisms. The Launcher is

able to do this in coordinated phases, avoiding possible deadlock conditions in a

highly orchestrated communication protocol between the Launcher and small agent

modules that have been placed in each process by the Generator.

• Initiation. With all initialization complete, the Launcher releases threads and starts

processes.

With this infrastructure, application development is equated to building a fully specified

and populated application model in the Talaris Modeler. A fully specified application

model contains:

• A system hardware model that expresses the instances of hardware Modules and

their interconnection.

11

• A software model that expresses the instances of software Modules and their

interconnection.

• The assignment of software Modules to hardware Modules.

A fully populated model means that object files (i.e., a "o" file or library entry) exist for

each software Module (for the assigned hardware Module type) and the hardware exists.

Program Accomplishments

Mercury has modified the Launcher from its initial ACL tool suite. Mercury has also

modified the initial Talaris "Generator" scheme to allow targeting the new Launchers.

The resulting derivative work leveraged into POSIX and MPICH running over a network

of Sun workstations. The following steps have achieved this goal:

• Mercury has written a detailed project plan that described how Mercury planned to

extend its initial ACL tool suite to support UNIX workstation clusters running POSIX

and MPICH.

• Mercury has organized a meeting of a subset of the team to review the project plan.

Mercury has updated its plan to reflect comments from team members.

• Mercury has made source code modifications as called for in the plan and written

documentation. The result was an "alpha" quality binary release that Mercury has

made available upon request. For the next six months Mercury accepted, and acted

upon, bug reports received from users. Mercury has made multiple binary releases

during this period. At completion, Mercury has elevated the release's quality label

from "alpha" to "beta". A CD-ROM distribution is available upon request.

After the Sun binary release reaches beta quality, Mercury has turned all source code we

believed necessary over to MHPCC. MHPCC has used that to port the source code to its

IBM SP-2 which runs IBM's MPI (see next Section).

12

4.0 MHPCC Program Participation
Existing Mercury and DARPA investments in software tools for embeddable computing

have resulted in substantial improvement in the portability between Mercury embedded

solutions and UNIX based architectures. A complete porting solution involves the

integration of a number of standardized software components such as the Message

Passing Interface (MPI and MPI/RT), Vector Signal Image Processing Library (VSIPL),

and the Application Configuration Language (ACL). MHPCC has been supporting

Mercury's efforts to provide a transition path by supporting the development of an

Application Programmer Interface (API) through the Entering the Data Domain task and

through the port of the Application Configuration Language (ACL) to the IBM SP

architecture.

The Application Configuration Language (ACL) is a mechanism for describing the

interconnection of software components on embeddable hardware utilizing an abstraction

that isolates computational software modules from the details of hardware

interconnection topology. ACL facilitates the utilization of legacy software libraries in

multiprocessor architectures by providing a reconfigurable mechanism for mapping

software processes onto hardware structure.

Program Accomplishments

Talaris/ACL was successfully migrated to an IBM workstation at AHPCC and to multiple

interactive IBM-SP nodes at MHPCC. The Talaris/ACL port is fully functional using

MPICH/P4 on the Ethernet communication fabric. A number of Talaris example

programs have been successfully compiled, generated, and launched on both an IBM

RS6000 workstation at AHPCC, and on multiple interactive EBM-SP nodes at MHPCC.

These examples utilize a variety of transport types including System V shared memory

and semaphores, sockets, and MPI.

A number of modifications to the launcher, agent, and generator code were required in

order to complete the Talaris/ACL port to the ADC environment. Changes were also

13

made to the ACL files for the Talaris example programs in order to make them work

under ADC. These modifications are summarized in the following sections.

Talaris Modifications for SP2

Launcher and Agent — The few problems encountered in migration of the launcher and

agent C-language code to the ADC environment were difficult and time-consuming. One

problem arose from the fact that the order of stack evaluation for the C-language is not

specified in any standard. Thus, procedure calls with formal arguments of the form

status = pthread_create(&array[i-H-], &value, &array[i]);

can produce different results depending on whether the formal arguments are evaluated

left-to-right or right-to-left. The solution was to remove the order of stack evaluation

dependency from procedure calls in the agent and launcher code.

A second problem arose from the fact that Solaris 2.6 pthreads are based on the Version

10 standard whereas ADC 4.2 pthreads are based on the Version 7 standard. The default

behavior for Version 10 pthread creation is to make threads non-detachable (joinable),

whereas the default behavior for Version 7 pthread creation is to make threads detachable

(non-joinable). Talaris/ACL pthreads created by the launcher and agent are assumed to

be joinable, which is not the default behavior of pthread creation under ADC 4.2. The

solution was to issue a call, after pthread attribute initialization, to explicitly set the

pthread detach-state.

The last problem arose from the fact that the ADC 4.2 sockaddr struct type is slightly

different in content and size, from the BSD4.3-compatible Solaris sockaddr struct. This

difference was causing the agent socket code to truncate socket pathnames by a single

character. The system error message produced by this was a very misleading "error -

socket address in use". The solution was to specify a switch -DCOMPAT_43 on the

agent compiler line, which instructed the compiler to utilize a BSD4.3-compatible

sockaddr struct.

14

Once these three final changes were made, the launcher and agent code began to work

under the ADC operating system on both RS6000 workstation and BM-SP nodes.

Generator — At present, the existing generator is being coerced into producing ADC

compatible executables by overriding the behaviors associated with the native compute

node type SOLARIS_NODE. This was accomplished by:

(1) Adding the statements

set_property SOLARIS_NODE -compilerjool xlc_r

set_property SOLARIS_NODE -linkerjool xlc_r

to the global util.tcl file in the example program directory.

(2) Establishing the following soft-links in the /usr/mercury/talaris/utp/lib directory

libpthread.a -> /usr/lib/libpthreads.a

libposix4.a -> /usr/lib/libxnet_r.a

libnsl.a-> /usr/lib/libnsl_r.a

libsocket.a -> /usr/lib/libc_r.a

so that the generator linker line for the SOLARIS_NODE type

$(CC).... -lagent -lpthread -lposix4 -lnsl -lsocket

would, in effect, produce the equivalent of the following for ADC

$(CC).... -lagent -lpthreads -lxnet_r -lnsl_r -lc_r

(3) Establishing the following soft-link in the /usr/mercury/talaris/utp/lib directory

libmpi.a -> /usr/local/mpich/... ./rs6000/lib/libmpich.a

so that user applications using MPI will link the MPICH/P4 library.

A new node type, AIX_NODE, was introduced to the Talaris Unix Target Package (UTP).

The changes introduced to the Java code will require a compile/rebuild of the Talaris

generator. Because of the loss of key developers and the lack of any previous Makefile to

use as a template, rebuild and test of the Java code changes was not completed. Once

completed, user applications will only need to specify the ADC_NODE type in their ACL

15

code in order to generate ADC-compatible code. Thus, the temporary workarounds

involving SOLARIS_NODE overrides will not longer be needed.

Example Program Common Makefile and ACL File Modifications — Minor

modifications were made to the common.mk make dependency file in the Talaris

examples directory to make use of the thread-safe compiler and pull in the appropriate

header files for the MPICH/P4 libraries. For reference, the CFLAGS were defined as

follows:

CFLAGS = -g -qchars=signed -qfold -qlangvl=ansi \

-D_ALL_SOURCE -D_XOPEN_SOURCE_EXTENDED=l \

-D_COMPAT_43 -DAK -DOSV=42 -I/usr/local/mpich/include

The mpich include path, specified here with the -I switch, may be different at different

sites.

The individual example ACL_TCL files were modified to utilize transport pathnames

compatible with the local ATX environment. That is, transport pathnames of the form

/UTPtOObsoc, that require root permission under AIX, were replaced by pathnames of the

form /nfs/sigpro/b at AHPCC, and by pathnames of the form Zscratch4/t00b at MHPCC.

The pathnames must refer to nfs-mounted partitions, for accessibility by multiple

processors. The pathnames were limited to 14 characters for maximum compatibility

across operating systems.

Finally, for the examples (t08 through tl3) that utilize MPI, the following conditional was

added to accommodate a missing define under ATX.

#ifndef MPI_CHARACTER

#defme MPI_CHAR MPI_CHARACTER

#endif

16

Talaris Installation on the SP2

The alpha release of Talaris for the SP2 is set up using the Solaris version installation,

which is then modified using an instruction sheet for the SP2 environment. At such time

as the Generator modifications to support the ADC_NODE flag are compiled and tested,

references to "borrowing" the SOLARIS_NODE definitions will be deleted.

Talaris Limitations on the SP2 -- The alpha release of Talaris for the SP is configured

to use MPICH 1.1 or 1.2, rather than the native ADC MPI implementation. The test cases

have not yet been run with the compiler flags set to use the fast switch in user space. This

results in inter-node communication running over Ethernet in IP space, which has

considerably lower bandwidth.

Talaris is unable to run jobs in batch mode. Talaris replicates much of the functionality

of IBM's SP2 Parallel Operating Environment (POE). The POE consists of a set of

software components for developing, compiling, executing, debugging, profiling, and

tuning parallel programs. A typical SP user will have a number of POE environment

variables set via C shell scripts, none of which are applicable to Talaris. In addition, both

IBM's Load Leveler and MHPCC's Maui Scheduler work with POE to control the batch

job queues. Preliminary investigation concluded that modifying Talaris to support batch

mode would require a significant development project on its own, and likely necessitate

disabling POE and Load Leveler.

Presentation at Embedded Processing Principal Investigator Meeting at MHPCC

Joe Fogler of AHPCC, Karen Lauro and Henk Spaanenburg of Mercury during a

DARPA-sponsored Embedded PI meeting in Maui the week of March 15,1999 assisted

with the installation and configuration of a Talaris 2.1 Beta demo on a pair of SPARC

machines running Solaris 2.6 at MHPCC (see Appendix A for the presentation).

The results of the MHPCC work are now available on their internal web site, including

on-line documentation, source code, and executables.

17

5.0 MSTI Program Participation
The "Entering the Data Domain" effort under DARPA support of the Mercury "Three

Final Steps to Portability" program has achieved significant results and has focused

community effort on Data Reorganization Interface (DRI) issues. This effort is concerned

with the issue of data reorganization for datacubes, and has specifically created the

"DARPA Data Reorganization Forum," with attendant standards draft document2,

informative web pages, and has met regularly during the program3.

MPI Issues

The original MPI functions for "all-to-all" were unable to handle general, non-square

single-group remapping, and omitted dataflow remapping. MPI-2 corrected this in part,

but failed to provide early binding. MPI/RT ("MPI/RT - An Emerging Standard for

High-Performance Real-Time Systems", A. Kanevsky, A. Skjellum, A. Rounbehler,

Proceedings of the 31st Annual Hawaii International Conference on System Sciences,

1998) corrected the lack of early binding. However, MPI/RT's definition also recognized

that the level of abstraction needed for efficient transpose and reshape needed a different

API. This API would offer the interface for MPI/RT programmers to get the benefits of

early binding. However, none of the benefits of mapping are guaranteed. This has been

studied from two respects. First, the quality of service specifications for all MPI/RT

collective operations can conceivably be extended to include mapping hints. Second, the

types of quality of service offered for MPI/RT collective operations can be augmented

appropriately. In addition, the notion of adding quality of service or other constraints to

the spawning commands of MPI/RT (drawn from MPI-2) can be used to help guide

system choices that will later enable quality of service to be realized.

Documentation of the type of transpose and reshape extensions appropriate to Entering

the Data Domain has been undertaken. Furthermore, the efficacy of the "MPI/RT

2 Data Reorganization Interface Bindings, MPI Binding Specification, and Draft DARPA Data
Reorganization Development document.

3 Meetings in Boston, MA (05-Nov-97), Albuquerque, NM (13-Jan-98), Boston, MA (05-Mar-98),
Starkville, MS (21-May-98), Boston, MA (25-Sep-98), Bedford, MA (01-Dec-98), San Diego, CA (02-Feb-
99), Moorestown, NJ (1 l-Jun-99)

18

datacube reshape" has been reviewed by the forum participants, and common application

use scenarios have been connected with the interface, and have been graded for efficacy

and ease-of-use.

The general permutation mappings of the MPI/RT transpose and reshape has been

considered for application situations well known to KRI, Mercury, and SPAWAR, and

MSTI. MSTI has considered possible generalizations to these permutations, when and if

appropriate.

Entering the Data Domain

Application programs that perform data parallel operations for signal processing require

data flow between memory systems within a distributed, parallel hardware environment.

Often, successive algorithm stages require the reorganization of data as it flows in

pipelined fashion between processing elements. The Message Passing Interface provides

a unified API for the simple movement of data but does not address the concept of data

shape and the need for reorganization of data shape.

The purpose of the Entering the Data Domain task was to address a critical need for a

unified Application Programmer Interface (API) that describes software objects and

methods for the movement and reorganization of distributed data shapes. This API

defines a software layer that builds upon existing interprocess communication (BPQ

middleware such as MPI, and provides a higher-level interface to simplify the

development of parallel distributed signal processing applications.

Although MPI is sometimes viewed as the focus of development, the data reorganization

interface API being developed is actually much broader in scope and is intended to serve

as a guide for software development involving other EPC middleware including MPI/RT,

VIA, PAS, and others. MSTI plans to implement the Entering the Data Domain

extensions as part of its commercial MPI offerings.

19

Program Accomplishments

MSTI undertook a series of standardization meetings as specified by the statement of

work, to bring together members of the embedded and parallel processing community in

order to define and standardize a set of procedures (syntax and semantics) for data-

reorganization of datacubes. This set of services is a key technology for in-place and out-

of-place parallel computations for important classes of signal and image processing of

relevance to US DOD and other areas, such as medical imaging.

Key accomplishments are as follows: development of a meta-API specification for

describing important data-reorganization primitives, extensive discussions on how to

integrate these with MPI-1.2 and MPI/RT, and an expansion of research and practical

knowledge concerning the state of the art in expressive primitives for data reorganization.

The documents describing this work, together with the minutes of the meetings, are

posted at, www.data-re.org: this site will be kept active indefinitely by MSTI in order to

continue promotion of the area.

The documents as currently developed offer an initial set of meta-API instructions that

can be specialized for a number of message passing systems. Specific proposals have

been made thus far on how to do this specialization for MPI-1.2 (as extensions).

Approaches for doing the same type of specialization for MPI/RT have not been

developed, but are closely related to the approaches to be followed for MPI-1.2

extensions, with certain exceptions that make sense to hash out within the MPI/RT

Forum, rather than within the Data Reorganization Forum.

The body of knowledge developed addresses a low-level API, one that works with objects

and permutations on index sets for tactile matrices and vectors. It has been determined

through the course of this research effort that a competing, high-level tensor approach is

also possible, either as a complement or in lieu of the low-level implementation. It has

generally been agreed that the tensor approach is a good topic for future research, and

needs to be strongly correlated with any parallel extensions for VSIPL. Literature in the

area of multi-dimensional FFTs suggests that vector, parallel, and superscalar multi-

20

dimensional FFTs must be closely linked to the data reorganization problem in order to

achieve optimal performance (e.g., Tolimieri 1997). In this sense, the committee has

restricted itself to the low-level meta-API, recognizing that much more work is needed to

achieve a high-level meta-API as well.

The low-level meta-API is capable of describing in place and bi-partite corner turn

operations for N-dimensional dense data objects, where N is limited to six-dimensional in

the current draft. This arbitrary limitation was done based on expediency and perceived

application needs at this time. The data distributions and conformations supported reflect

both explicit and implicit indexing strategies commonly in use in the High Performance

Computing community.

The documents as currently developed are supplemented by a set of minutes and

proposals that form the entirety of the results thus far. and together form the body of

knowledge created. Because competing ideas remain about instantiation of the meta-API,

this remains work for the future.

Despite completion of this DARPA program's tasks, this effort is going to continue on a

pro bono effort for at least an additional year, held in conjunction with MPJ/RT and

VSIPL meetings. The purpose of the continued meetings are as follows: to see specific

instantiations of the meta-API introduced into a future revision of the MPI/RT standard,

and to explore relationships with any parallel VSIPL that emerges (since data

reorganization and parallel FFTs are strongly correlated). These efforts are beyond the

scope of the orginal task descriptions under this contract, but are being undertaken by a

set of volunteers because of the perceived extreme value of the Data Reorganization

effort to the High Performance Embedded Community.

The working group was chaired initially by Anthony Skjellum, who later added Ken Cain

of MITRE, as co-chair, given his strong involvement. Other key contributors are Jon

Greene (Mercury Computer Systems), James Lebak (MIT Lincoln Labs), and Nathan

Doss (Lockheed Martin GES).

21

6.0 Summary and Future Research
The following sections summarize our findings and products, and also introduces new

elements in the programming environment for portability.

ACL for Research Systems

Mercury will make the new generators and launchers available to anyone who asks, at no

cost (with the possible exception of reasonable media and administrative fees). The

generators are extensions to TCE (TCE is available thanks to a previous DARPA con-

tract). The new Launchers are small programs specific to the platform they target (i. e.

Sun MPICH and IBM MPI). This proposal, combined with Mercury's previous DARPA

contract, makes large portions of TCE, and a portable implementation of ACL, available

to anyone who asks, at no cost beyond potential media and administrative charges.

However, an important part of both TCE and Portable ACL remains untouched by

DARPA investment. We call this item the "Modeler." It is the core of both tools and

represents a significant Mercury investment. We offer access to the Modeler as an in-

kind, cost sharing contribution. This means that Mercury will make Modeler binaries

available to anyone who asks, providing that person is engaged in non profit, DARPA-

sponsored research. Mercury may demand a reasonable royalty from people who plan to

commercialize our Modeler code.

Operating system vendors can use this code to quickly incorporate ACL functionality into

their offerings. In addition, tool vendors may use this source code to layer ACL

functionality onto operating systems that do not offer ACL.

MHPCC could have delivered the IBM SP-2 generator and launcher to KRI where it

could have been combined with the output of the originally proposed, but not funded by

DARPA, An Automatic Mapper project into a mapping and launching tool suite.

MHPCC would have coordinated and established acceptance criteria with KRI to insure

the port meets KRI's software standards and conforms to KRI's software environment.

22

An Automatic Mapper

The Automatic Mapper task has been proposed to provide an extensible framework in

which to develop and characterize algorithms for mapping software systems onto

hardware.

Mapping can be described most succinctly as a process in which a software system is

mapped onto available hardware such that a performance-motivated objective function is

optimized. Algorithm mapping for embedded systems is a non-linear optimization

problem that depends on memory consumption and communication latency among other

factors. Automatic mapping employs the user of an algorithm to perform the mapping

without manual intervention. The appeal of automatic mapping is that it eliminates an

often-repeated, time-consuming task from the algorithm developer and thus reduces cost

and increases the portability of the algorithm across multiple hardware configurations

Automatic mapping is a current research topic. Automatic mapping algorithms have been

published from Ptolemy-related research at the University of California, Berkeley and the

PARS A project at the University of Texas, Arlington. This effort would not attempt to

discover new mapping algorithms. We propose to produce a framework to allow flexible

algorithm selection for the mapping process. The resulting framework will allow

different mapping algorithms to be rapidly introduced and applied to software and

hardware to be mapped. Reference mapping algorithms will be implemented to verify the

framework's utility.

Such a mapper starts with an algorithm represented as a graph in which nodes represent

computational steps and arcs represent data or control flow, and a hardware description in

which nodes represent computational elements (processors) and arcs represent data

pathways. Additional information representing operational parameters will be attached to

each node and arc to describe the performance or behavioral characteristics of each.

Software parameters include computational requirements, data size and shape

information, and similar. Hardware parameters include performance characteristics of

processing elements as well as hardware limitations such as memory capacity, and

23

communication fabric parameters such as bandwidth, latency, and routing characteristics.

The proposed automatic mapper will accept these two graphs as input and produce a

mapping of the software onto the hardware that meets the constraints imposed by each.

The goal of such a mapper is to produce an optimal mapping. Clearly, producing an

optimal map is an intractable problem. However, a sub-optimal solutions can be

achieved by using first-fit, simulated annealing and greedy algorithm models.

The intractable nature of this problem argues strongly for the availability of a framework

that allows rapid insertion of mapping algorithms for evaluation purposes. The utility of

such a framework is to provide a means for researchers to test and characterize heuristic

mapping algorithms to determine their viability without being required to implement new

testing harnesses for each mapping algorithm. Such a framework would include a

description syntax for hardware and software graphs including hardware and software

performance data as well as an API for graph interrogation.

As input, the framework will process ACL descriptions of both hardware and software.

Hardware and software performance data will initially be imported as separate,

supporting information using a syntax to be determined. Later, KRI and Mercury will

consider using ACL "properties" to carry hardware and software performance data.

KRI is interested in the "Entering the Data Domain" study because KRI faces an identical

challenge within its Embedded Khoros effort. As we have previously stated, Embedded

Khoros cannot afford the overhead associated with Distributed Data Services. Therefore,

KRI must define a Data Services subset that can meet embedded performance constraints.

Entering the Data Domain

The result of this research program is a public domain standards document. We hope that

commercial vendors will implement the standard at their own expense. We believe that

vendor implementations will follow at no cost to DARPA.

24

Appendix A.

Final presentation and demonstration at

DARPA Embedded Systems PI meeting

(PowerPoint Presentation)

25

&•;.

eSüsr-

■;. P.

. *

it-;'' ■■

sfcfc'

W.
w-....

C
O
£
o
> a>
Q
c
o

o
a.
<

■■■■

s
(0

0)
■D

a>

E
LU

25 2
(o -g

o o

c
a>
E
c
o

■MM

>

c
LU

(0
TO

to
©
>

c

75 r-

■§■ "i
ES5
■*■ © ■—
w © <5
ES £
© (0
To I
0)
T3
©
T3

©

E
LU

3
©

1^
CM
O

I
CM

i

i
CM
O
CO
O
CO
LL.
■*—»

Ü
CO

c o
Ü
■ ■

o
I

3 m

C ®
a> o
CO 3

* is

o
c

(0
E
o

"co

o
3 a
E
o o
3
O
a3

26

c
o

I
•E;
©?
CO?

CO

O rg

11
2 S
0) >*

5. Q.
o 3
>

13

'5
•5
•73

5 .3

•4;
335

■MB

27/28

C "M es

SIC

IS

(0 o ■(Mi

o
c
0
O

CD
"O
C
'S
E

SEi a
löi

Ml
Q

£ I s
co E
to a,
£ o

■a a!
"Ö >
CO 0)
o"°

TJ O
a co

> a
CO o

c
(0 o
CO
c
o

0
CD
O a_
3
O
CO

.a .2
ac
a CD
CO 3

Ö"
CD
CO CD

3

£
3

O^^ w CO
ID

CD ^
"S.S.

(0 CO
CO c
5.2
CO Ä

co 2
"5 +*

E co
o CD o
o >

ph
i

c
CD CO ■■■i a

o E
a CD
o CD

n CD
CD 13
XI o O
h- c O

i

E O "O

J5 CD
>

c
CO

«5
■MÜ

2 "5
Q. CD

^B CO
CD E

■■M "Ö 1
■MB O

o
o

1
CD

c c E
o +5

CD
'S
Ü

■■1
O

"O c O
c 3 CO
CD
Q. E c

CD
X E a
CD o X
U) o CD

c ^ CD
o JJJJ "3 CO *■*

^ CO +ri
CO CD CO

o «\

t o CD
"Ö o Q.O

3= ^ o
CD £ o .

■C
o

c "if 3 o ^M ■■■

E
o

um

o
CD o a. So

h- CO CO Q.

CD

CD

IS
■D
3
o Mmm

£ 5
CO >
CD +3
o>o

"O CD
CD ,S

5 "D

o
c

CO

£
CO

E
CD

o
■ MB

c
3

CO
> E
CO E
CO o ■\ o
£ ^
CD •^H

C CO
o CD
a CO

E CO
CD

o Ü
o O

< ä

CO

5 =
<D CO

co.E
<D CO

* c
CD o

H
i|
£■£ co
Ä Eg
«0 9} O
Jo« — m >3

13 » $ fc.» o

8?£ ,2s » <D
12 O > CD «5 CD

O o CD
£ E£

29

o

O

iS<D'

1(5:

(5

c o
■ MM

o
CO
(0

O (0

co
CD
ES
C CO

c 9-
C Ö)
o.E

f 3
CO OL

T3 O
CD O)
(0 (0
(0 £
13 .=

*"° C c

8.8
E.2>
o Hi

CO 0)

K- .Q
.2 E

I- «
sä

Q .5
O)
c
0)

"O o
E
c
o
•**
CO

3
G)
■■■■

C
o
o
©

CO
■ MM

£
3
*■»
O
3

'S
CO

c
cu

CO •

CD c
O CD

.2 o
*■• . *-

C c c
gl 2
C +3 CD
CD CO S-

O «8 O

CD *- m ■Sog
£ S.o.
x 5H a
0 ** (0
^ <= *■ ro) o
CO .£ >»
O CD.tS

E «2
CO

^ •- a co
® ?o)E

o -j5 g .2

"2 CO TO £

-^ 0. o CO
J? CO "Z "O
3 « C C
O) co o «
^.EEJD

o c o g
CD "U > IU
x: c CD co
H CO T3 SZ

o

E x
o £ H— *J *^
<B.S-0)

CO w "U
- J «
a>o £
o <o

o o
+■*

c
o
^ <D

C) 4-
J3 CO

«CO CO «g

5 2
Q- a.
CD "Ü

£E s
5 § CO
© o "a

'S T"ö

2 < w
co 2, CO
£ CD CD

§ § c
||S
£ CO ^
CO —

SI
CO (B

.E 3
CO D)

El

« 5
to •=
O o o ~
co 9-
« <
CO c
I- CO

CO
CD u c
CD
CO
w
CD a
O CO

E§ •I Ä E 2 o > o
O a)
a?

«g

CO *J

£ "5

** C e co .^ E
£ ^c

• Ä?
5 *- 3
CO *-• ^

S « c

1< <S o cu t: c
co£ o
^ — co

w c -c -Ö

5-> °- 3 5 CO

O

CO £
>» a
* c

J= 1
CO N
CO «
S E

i*
o> §
i2 a)
C 3
O JQ
= O
O T3

l§

11
CO .0)

C c

E o
a)

— So
CO c >
33 CD O
"EEo
— CD Ä

c E o
3 — %3
O c CO
CD 0).=
S 'co a
r- CD a
JE "Ö CO

30

Is
so

ft:

li

Mi
■ ■■i Ü

Br:
A))

-,*■■ '

■>*-

iCO!
■■■■ ?

ml
m

#2
c

.22
Ö

c
•la» o c

i"5

CO
4-« Q>
© Ö)
O) (0 &. ^
£ o h" (0

QL

31

$i-
$?:■: ■

$: E
*¥;;■' ©
Kir-V1,

Kr'"'*'" to
|v >

BI* ■ (0
^S'" • ■ 4-»
fee a> 0)

BSK"?
^m ^B

o a +2
a 0 Ipx 3 Q.

üt i CO
0)

K'^'r*^*^ O
<

"35
c

pis i ■£
i-Q. o c PR! ö)

CO
3
D)

U
C
CO
(0 o

■ MB

PL. C
(8
-1

PtO £
o c

(0
E

prco' 0

lh- 3 CO
Ö) ■■■

fcr 0
ife'-' ■

o
13
O

Ifc^ - a E
Mr/:' ,• c "O
S^'V'-* o 0)
gg£-' • N
SrV'' ■I"*

jjj^'."
(0 o I

Es?>'y

■■■■

a
o
to ^-:. a 3

§^'-'.
< o

«Ü 0
O 13
4- O

§ E
c c
0 *= a E 0 c

a.
<

c
o ■■■■

"5 o ■■■
c
3
E
E
o o
CO

0
O)
CO
3
O)
c
«

c
o

E
0
to

c
0
E
0

(QL

£

c
0
c
o a
E

§ f £
0 g t:
£ O en

©
CO

5 o u c

c
CO

CO

E S -S CO

o
CO
CO

E
0
"5
CO

c
0
E a
0 "S
-8 <°
J3> A a >
«5 CO

CO

c
0
E a o
0
>
0

0

c
3

CM
Q.
C/>

E w
Ä ©
to UJ > o
• <
0 a
E? £»

0 0

c
CO

CO
c
o

■ IB

to
X,
o
g

.S- 3

o o a.
X
■■■
3
CO

><

O
Q.

C/>
o

< a.

a.
<

c
o
to
o
c
3
£
£
o o
0
a

E o S S E

32

f>* -5

IQ-
D

To

122

m

c
o
to
£ c
o CO

"o S
N S
CO Q)

c g
0) §
O T3

£ co
CO -c

CO JJ
O CO
*" CD

si
is
IHM ■«

o c
o) .2

■Ü to

0) Q. a a
o CO

CO -H-
O 3
3 2
c CO

UJ

CD
"Ö

-Q

c
o

"co
o

£
o
to
N ■ Ml

c
o

Ü
c
>»
CO

"D
C
CO

c

c
o

o £

« O
a
Q.
CO

@
UJ
O
<
cc

£
CO CO

CO CO

o o-
s ♦
CD

CO
O

c
3
£ .
E S
8 s
o c

co o>
O "O
2 o
5> a

c
o
E

.2 <D
CO o
> c
co fS

m CD co S.
g>T5

«= CO

£ CD a o)
CD 5?

CD -
U 5 c .2
CO CO

§ >
O CD
t: a
CD 3
0. (/>

O
CO
CD

"O

CD a
CO

CD

CD

25
&
3
a
CD
X
CD
■
c
o
to
»—

To
>

CD
O

■g
CD

mmm a
co
cr

c
P1

"3
CD

c
CD c o a
E
o o
©

CO
CO
3
CD

D)
C
o>
CO
3
o
Ü
c
CD

CD

CD

CO

73
C
CO

CO o

CO

E
CO
CD o
3

TJ
CD
au

T3
C
CO

CD

i
o
CO

c
o

1
g CO
o 5
3 C

CO
CO
CD
CO
O a
M uj

(0

§.S-
1 8

33-

O o

S-DS
c c +-
5= CO C

Ü>j o > « s top >
fill«*

i=; a>£ 2
Sei E °

o c »«. * _ o

CD
c
0)
O)

is

E8E
OTJ£

.2 cog

^ ■» "25
- w 2 ■«i ** Q.

-CQ

i§i>
2 C W

.-: O a)
too
5 «2c
tg°-Ä
5-1 S ■=

rr (0 g iL

t2oS
c£c/> 3
<

> 5
o «5

c g >< o
jS co •- (o -c
5 o*> o *

D)
c
'55
(0
a)
o
o

o "5 'XA a I:

CO

o
o
0)
Q

O H= 3 0) CO „

^ a> o 2- 3 =

§ ?co£cog
.2 C ■= 3 CD X

C "■!= H 3 3 .

■o ■= S c E «= 3

||«81.8|
w» £ « = g" o

E 2 £-° >•§ "
§2»! o §,.2:1
</> 5 «•? £ 2 2

a>
«

o

c
o

■ MM

"5

c
o
Ü

.C £ r- 0) "■" CD 3

c ? CD «.E 3 o i

£ i2 i= fe -S o c J

Q)Q) C 4) C £ C£ l-cos,;£o*'

£ 3
O O
r- Q)
5 x
|0)

OLO!i= E a© co o cfi
■5 2: o co * CD c co -2 -
2 co o © co o>= S tS ^

0) £ 8 5 "5 = E
 O *» ffl Mt CO
3 CO o S 2 > S
"5 <D CO 3 £ CD -°

= m 3 *" O « CO
<9 ~ CO P*%t O — CO TJ w Ö) Js w

- 30 CO C .2 >
ä © £ © e C ö>
3 c CD > .E >
- O o C CD CO o

o
o
Q.

o
CO
CD
c
CD a
CD

a 3 *r = c CD CD CD
0.0)0 § fc333

£ o £ WD E 2S

co^
O jz

CD -
£ (o
+* CO

?o
CO CO
CD CD
= CO
,2 co

C A

ii
i- o
0) CD
« 2

34 5)

m m
12'
c

UJ

§0>i

E; icy

Si
pi
!■:■ ■

»■*•■■

122

35

IB-' m

la
It.
m
CO

M a.

« «s

1

t? : p- ; +1

$?£•'>■• : c
W-' ':■ r- CD
St*-"' v D)
p|:- ■ <0
|j&S:i. . ■; Ba

g^y-v!.- . i CO
P&' ? 3
w> "-. •Ö
Sfel'-l';.V' \ ■ MB

life.' I > ■■■■

TJ
pL-«a i c

m

ICO

rV'--'-

(0
0)

2
0)
c
CD
Ö) .

i.2

■Si
»to

AL W

== 0)
"= *> s >
■8 »

«3*-
0) (0

CD
0) CD

c
o

&W! CO as u
S- öi

(1) Ü

c5S

-C Q.

CD O
"Ö CO

2 CD ^~

»8
ufg
Go

is
8 »
2 9)

O) o
2 Q.

LU
Ü

~-u E
CO CO <j>

*«• *? CO co r —

0)

CO c

N °
"■5"° CO A)
■^ co
C CO
— .Q

Ä CO

CD

"8 O
CD m £ 2
Sto
O <D

CD O CD £

O O
|C0

o CO
CO c
CD $ -

C <0 3
OT3"g

<D CO fc

c 1.2 c

o
CO

AN CO
■9 c CD cc o «? C -S c CD

0°
c CO c
3 o 3
CO 73 CO
-I o -J
O £ CD

c <° .= 3

13 > C0s=
CD?
GC.E

3'
O
CD
X ^<D
• W Ö)
co** g
"8

c
■■■■

o

>2
•u c
CD O

o c
CO CD

= <
CO

OS

1«
«I CD &
BO-
'S c

M —i CO
cE
o><2
<c
__^ ■■■■

o c
CO©
COTJ
CD 5

sS
a.-
CD'CO
£ CD

CO
CO
CD o
o

CD

CO ■»-
LU C
Ü 5
O) Q.
.E £
co ä
co c
CD S

5 i

CO
CD
CO
CO
CD
O
o

CO
■D
CO
CD

CO
CD
N
C
o

Ü
c
>
CO

c
CO
Q.
3
"S
CO
CO w
CD
O

CD

U
c
3
CO

o

CD o
CO S
o a.

CO CD
P O)
-I CO

CD

CO

c
o

a .
co co
E "co-
CD CO

O co^

o
+* CO
c .2
o) 9-
< §■
2 a)

.Q
CO
3
"5

°> 5 (]) CO

£ O w

CO
fl)
3

T3
O
E
CD
CO
3
CD
C

■■■

3
O
CD

S
CD

CO

S
CO

CD

O
c
3
CO

CD

■u
CD
4-i
Ü
CD

"O ■■■■
>
g

GL

"O

C

CD

O
c
3
CO

CD

E
2
TJ
CD

O
CO

CD
T3
C
O
■■■■

CO o
■■■■

a.
Q.
CO
CD

£
3
a
CD
X
CD

CD
CO
O
O

O
c
CO
o
CD
CO
3
CD

38 * ^ ■* J i

Pi

o
p*i
iti *'

fei

e:

12

-Ä..: ^^

5 t ;

1 f 1
? 1 >

; -.' J; ■;■

■: f 5

; 8 i | | J « i
- ■;' S * ■'

;' 3 * ■ ■'

39
i i : { i S •
1 * < I i I ;

i r i n N ■ i T 3 =; t S

* tf i' i *

? j | M

Wi'

iä>

3 E
E 0)

CO CO
3
o (0
0) c

ha

0 3
ö) Q.
O E
0) o +* o o

c
o

IIB

"S o

co E
= E
3 8
O O
<D (0
> CO
<D CD

o 8
§ &
CO =
c ©
CD £
O CO
a CO

i| o S
O O
- Ü

CO (0
« t:

Eg
CO (0

o i
CO S,
(I) CO

<S u a.

CL

t
CO

■MB

jo
CO

CO
73
CD

"Ö
O o
I

c
CO
X

CD
>
CD

o
TJ
CD
CO
3
C
CD

Is
Is
Eg
CD Q.
CO 3
S> CO

&XW-

id
t^.<D»

"Si

tot
IB

CO!

LL

I?

CD?
«a i
£i

POM

SSI
to)*

w

i t s ■{
\

s
\

\

\

\

\
> 1

\ \

\

I V—i. —

CM
O
CO CO

© o
CM

(oas) aiuii Aouajei auiej j js|.

w

\

00
Tf

o
Tt-

CM o
CO (0

CD
^ o
CM o
CO

o
hm

CL
CO ■

CO
<tf 1-
CO 1

T
CO
IO O

Q. ■
CO Q.
*■ s

CO •a
0)

o o "O
**• (0

CO
o o
1

CD "O
o c

CM
CO o CO

0. I

CM t
CO

o o o
o
©
co

o
o
CO

o o o o
CM

(SdOldlAl) ind'MBnojiii
IP* 42

mi
ElCOi
© I

mi
cOI
:coi

CO I mi

■Oh s<
4- GC

Q.—

gw

ciy -
Oh O

Surf

aces
fflh»
"=< >

i«

0) o o

v. > >>

EurS
© Q 0)

© 0)

E.I

2?

5
J»cn£

O a.
(0
©
(0
£
O) c
o
O) c
o

0)
3
o
o

CO
c
o
CO
(0
0)
-I
4-* c
0)

= © 3
S £"
CO
"C — go«

(0 ** "E ©"§
CO © ?

I" S <o ... cc —
2 °S TI 3.2
O O ■£•

I its»
« «j ■ to

£ÜÜ
o o p
2 it Q.

O)
c

■ MB

Ü c
CO

c
0)

CO
©

O)

3

©
3
(0
>

CO
©

a
E
■■■■

c
(0
c
CO
(0
CD

c
o

T3 o >
ET C

(0-* CO
•J- CO IS
co« o
CO
h-

E
S 2 §

©
>
©

CO
c
as
E
= a

c
o

CO

jo
CO

CO o
Q
Q

H <

(0C£
- CO

8 • c

a EcoE o
g •■5 7ö4- -

o
75 ® 13 © **

£ * c > 2 co co .s
E 5 E 'S
o o>o -5
a>"cl><]> 2

Q. a. .Q Q. a.

o °>©
2 3.1
c C.S
Ö ■£ £ E »
co>go|
*S O C O. >
«co >•£

"5 5.2 co £
.2 § g © o
"5 © = "5 E

■* *■* M- *#t °

Si £"»3
** o ."C CO >
8 « 8 c Z

-Q *- sr > co

©

© o
£■0
*- ©
3 ©
O C

CO +* - c -

o o o

^ E-£

■OJS O £ CO

a) co"E
© CO 3 C £ I
S © c

« £**-
.2.2i
■"= >

© Q.O

co — a>
"5.3 2 © ** 2

CO

>* o>
co <

fig
5 *- a. a
E.a
o P
O Q.
^>»

ü C
c o

s<
« ts

o
O Q.
P£

5 a)
5 DC

»I
c to

«*

o Q)

CO

o

CO 3 © S-^
■c5*«Sco
H£<-DUJ

g- 3
.E c o
E 2«

«o

n Q

CO

c
o

(Q

s«
♦ ♦

o
c
o
<

c
3

C
cs

lifö. 1 43

DISTRIBUTION LIST

addresses number
of copies

RALPH KÖHLER
AFRL/IFTC
26 ELECTRONICS PKWY
ROME NY 13441-4514

MERCURY COMPUTER SYSTEMS* INC
199 RIVERNECK ROAD
CHELMSFORD MA 01824-2820

AFRL/IFOIL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROME NY 13441-4514

ATTENTION: DTIC-OCC
DEFENSE TECHNICAL INFO CENTER
8725 JOHN J. KINSMAN ROAD, STE 0944
FT- BELVOIR, VA 22060-6218

DEFENSE ADVANCED RESEARCH
PROJECTS ASENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

ATTN: NAN PFRIMMER
IIT RESEARCH INSTITUTE
201 MILL ST.
ROME, NY 13440

AFIT ACADEMIC LIBRARY
AFIT/LDR, 2950 P.STREET
AREA 3# 3LDS 642
WRIGHT-PATTERSON AF3 OH 45433-7765

ATTN: SMDC IM PL
US ARMY SPACE S MISSILE DEF
P.O. BOX 1500
HUNTSVILLE AL 35307-3801

CMD

DL-1

TECHNICAL LIBRARY D0274<PL-TS)
SPAWARSYSCEN
53560 HULL ST.
SAN DIEGO CA 92152-5001

COMMANDER* COOE ATLOOOD
TECHNICAL LIBRARY, NAWC-WD
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-6100

CDR, US ARMY AVIATION * MISSILE CMO
REDSTONE SCIENTIFIC INFORMATION CTR
ATTN: AMSAM-RD-OB-Rr (DOCUMENTS)
REDSTONE ARSENAL AL 35898-5000

REPORT LI3RARY
MS P364
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM S7545

AFIWC/MSY
102 HALL BLVD, STE 315
SAN ANTONIO TX 78243-7016

USAF/AIR FORCE RESEARCH LABORATORY
AFRL/VS05ACLI3RARY-3LDG 1103)
5 WRIGHT DRIVE
HANSCOM AF3 MA 01731-3004

ATTN: EILEEN LADUKE/D460
MITRE CORPORATION
202 BURLINGTON RD
BEDFORD MA 01730

OUSD(P)/DTSA/OUTD
ATTN: PATRICK 3. SULLIVAN, JR,
400 ARMY NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

DL-2

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

