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CHAPTER 1     INTRODUCTION 

1.1 What is a Porous Medium? 

Almost anything can be considered as porous depending on the observation scale 

(Cushman 1997). In our daily life, we usually think of porous media as the hetero- 

geneous systems consisting of a solid matrix with fluid-filled voids. Dullien (1992) 

proposed two criteria that a material must satisfy in order to qualify as a porous 

medium: 

1. It must contain relatively small spaces, so-called pores or voids, free of solids, 

embedded in the solid or semi-solid matrix. The pores usually contain a fluid, 

such as air, water, oil, etc., or a mixture of different fluids; 

2. It must be permeable to a variety of fluids, i.e., fluids should be able to penetrate 

through one face of a septum made of the material and emerge on the other 

side. In this case one refers to a "permeable porous material". 

Porous media are ubiquitous throughout nature. Artificial (man-made) porous 

media include fabric, paper, concrete, cement, and brick. Vegetal and animal bi- 

ological media, such as arteries and lungs, must convey fluids to transport oxygen, 

nutrients, and wastes. Geological porous media are of interest in this report because of 

their practical importance in oil recovery, groundwater flow, and contaminant trans- 

port in the subsurface. 

1.2 Problem Statement 

Analysis of flow and transport processes through porous media has many applica- 

tions in engineering systems, science, and technology.  Such applications include the 



problem of seepage, intrusion of sea water in coastal areas, contaminant transport 

through the subsurface, enhanced oil recovery, lubrication, filtration of suspended 

solids, geothermal energy management, and nutrition supply in soils. These appli- 

cations are typically interdisciplinary and involve the areas of civil, environmental, 

petroleum, chemical, mechanical, and agricultural engineering: geology and ground- 

water hydrology: food, soil and biochemical sciences. 

With the increasing sense of environmental awareness, people have interest in 

the mechanisms responsible for contaminant transport through groundwater systems. 

Much of the interest has resulted from the enactment of new legislation which ad- 

dress the disposal of solid and hazardous wastes (RCRA) and the cleanup of pre- 

viously contaminated sites (CERCLA). The EPA Superfund Innovative Technology 

Evaluation (SITE) Program is working to expedite environmental remediation by de- 

veloping promising new technologies for the cost-effective cleanup of contaminated 

soil and groundwater (Nyer 1992). Successful implementation of these technologies— 

such as in situ bioremediation, air sparging, soil vapor extraction, surfactant flushing: 

and electrokinetic remediation—requires a clear understanding of subsurface contam- 

inant transport processes. To prevent the deterioration of groundwater quality and 

evaluate remediation technologies, considerable efforts have been made toward the 

development of mass transport models for monitoring, analyzing, and predicting the 

transport of contaminants through the subsurface. 

The ability to model transport through porous media has, however, been lim- 

ited by an insufficient understanding of physical processes at the particulate level. 

Although the geometry of voids and solids in porous media is inherently discrete 

at the microscale, transport through porous media has been traditionally character- 

ized using a macroscopic continuum approach based on Darcy's law and Fick's law 

(Ogata 1970; Bear 1972; Freeze and Cherry 1979). Numerous theoretical and exper- 

imental studies have attempted to predict macroscopic transport from known media 

properties, but knowledge of flow paths and mixing processes that occur within the 

individual pores remains unsatisfactory.  To improve available continuum models, a 



better understanding of the fundamental physics which govern the flow and transport 

processes at the pore-scale is required. One means by which this understanding can 

be achieved is through the development of pore-scale models that more accurately 

represent the geometry of fluid and solid phases within porous media. Development 

of such models permits detailed study of flow and transport phenomena in assem- 

blages of particles with varying shape, angularity, orientation, void ratio, and size 

distribution. This could lead to important discoveries regarding the nature and in- 

terrelationships of permeability and hydrodynamic dispersion tensors used in current 

mass transport models. 

In addition, better knowledge of pore-scale flow and transport processes could 

significantly improve our ability to predict in situ liquid-liquid chemical and biologi- 

cal reaction rates (surfactant flushing, bioremediation), and liquid-solid partitioning 

(adsorption, retardation). Such knowledge would aid our understanding of the migra- 

tion behavior of light and dense non-aqueous phase liquids (LNAPLs and DNAPLs) 

through the subsurface, the mobility of which are largely governed by surface tension 

and pore geometry considerations. 

1.3     Objectives of Research 

The principal objective of this research is to simulate microscopic (pore-scale) 

single-phase flow and tracer transport processes through porous media, and thereby 

gain insight with regard to macroscopic flow and transport behavior. Rather than 

employ a continuum approach. Smoothed Particle Hydrodynamics (SPH) will be 

used to simulate fluid flow and solute transport processes within a periodic pore 

network. SPH is-well suited for this study because it is a fully Lagrangian technique 

in which the numerical solution is achieved without a grid. Using this approach, 

fluid velocity, pressure, contaminant distributions, and volumetric flow rates can be 

computed. In addition, the flow paths of individual fluid masses can be monitored 

as they travel through the void system of the medium. Detailed information about 

transport processes obtained by this approach would be difficult or impossible to 



observe experimentally or with many other numerical techniques. Another advantage 

of SPH is the relative ease with which new physics may be incorporated into the 

formulation. For example, surface tension can be implemented into the model to 

simulate multiphase transport (Morris 1999). 

1.4    Outline of Report 

Chapter 2 of this report reviews literature related to the current research. Chap- 

ters 3 to 5 present the development, verification, and application of the numerical 

model for pore-scale flow, diffusion, tracer convection and hydrodynamic dispersion, 

respectively. Chapter 6 presents the conclusions and expected future research using 

the numerical model. 
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CHAPTER 2    LITERATURE REVIEW 

Although practical hydraulics had its origins in antiquity, scientific attention to 

transport in particulate media began about one hundred and fifty years ago. An 

enormous and still rapidly growing literature, including thousands of articles 

many monographs, has since been devoted to the topic of flow and transport throm 

porous media. It is not intended herein to provide a comprehensive review of these 

works, rather, it is the purpose of this chapter to address the literature specifically 

related to the current research. 

2.1     Models of Porous Media 

A model represents a useful simplification of complex reality. As the detailed 

structure of natural porous media is too complicated to describe mathematically, 

for years these materials have been represented using simplified hypothetical models 

which can be analytically treated. Actually, any modeling of flow and transport 

phenomena in a porous medium has to include a realistic model of the medium itself. 

There have been efforts to describe pore-scale transport through spatially periodic 

porous media, network models, fractal porous media, and reconstructed porous media. 

The following sections outline the progress which has been made in these areas. 

2.1.1     Spatially Periodic Model 

A spatially periodic model views the porous medium as having a spatially periodic 

structure. This is based on translational symmetry, which is a classical concept 

that many materials look much the same at different locations. Spatially periodic 

structure is the simplest structure that can be seen in nature and was historically the 

first to be studied.   Spatially periodic media are generated by infinite sequences of 



repeating unit cells in one, two. or three dimensions. For a three-dimensional problem, 

periodic media can be constructed following the work of Adler (1992).   Consider a 

Figure 2.1: Unit cell of a spatially periodic structure. 

parallelepiped unit cell whose sides are characterized by three vectors Ii, I2, and I3 

(Figure 2.1). The content of this cell is arbitrary. It can be composed of particles, of 

a network of capillary tubes, or of any other solid or void organization. Its volume 

\ unit ceii is assumed to be strictly positive, 

\ unit cell — |Il ' 12 x 13 |, (2.1) 

which is equivalent to assuming that these three vectors are linearly independent. An 

infinite spatially periodic medium is obtained by translating this unit cell by all linear 

combinations R„ of the three vectors I\, I2, and I3, 

R„ = nxIi + n2I2 + n3I3, (2.2) 

where the trio (ni, 712.713) are integers.   By doing this, infinite unit cells are simply 

juxtaposed to one another to form a spatially periodic medium. If Rn is defined as the 



centroid of each unit cell, the global position vector R anywhere within the infinite 

medium mav be identified as. 

R = Rn + r. (2.3) 

where r is the local position vector originating at the centroid of each unit cell (Figure 

2.1). Figure 2.2 depicts an irregular but spatially periodic porous medium in two 

dimensions. 

Figure 2.2: A spatially periodic porous medium. 

A spatially periodic medium is characterized by three physical length scales. The 

first is the microscopic length scale Cm of the characteristic size of the particles over 

which the local interstitial fields (e.g., velocity field) vary due to the local boundary 



conditions satisfied on the particle surfaces. The second is the Darcy scale £D of 

the order of the size of the unit cell over which the mean or average fields vary 

sensibly. People are usually interested in physically describing the gross or average 

transport process occurring at the Darcy scale. Quantities defined at the Dairy scale 

represent, in some sense, averages of comparable quantities defined at each point of 

the interstices. It is necessary to require. 

£D»£m, (2.4) 

such that a volume element of 0{CD) contains a representative number of particles 

and encapsulates enough degree of heterogeneity to render the various meaningful 

averages formed from integration of the local interstitial fields. The last is the macro- 

scopic length scale C which corresponds to a characteristic linear dimension of the 

external boundaries of the porous medium under consideration. For example, the di- 

mension of a specimen of porous media upon which an experiment is being performed. 

In order to model a porous medium as spatially periodic, it is assumed that. 

C = oo    and    C S> Co, (2.5) 

so that some average fields defined on the Darcy scale remain sensibly constant, 

such as pressure gradient and the resulting average discharge velocity. Similarly, the 

average concentration gradient and the corresponding mass flux are sensibly constant 

over £#. 

Some theoretical and numerical research has been devoted to transport through 

spatially periodic porous media. By assigning a given solid configuration to the unit 

cell, it is possible to study the problem at the pore-scale. As this report also assumes 

a porous medium has spatial periodicity, the related literature will be reviewed in 

detail in section 2.4. 

2.1.2    Network Model 

The use of networks of capillary tubes to model porous media was first suggested 

by Fatt (1956). The work was based on the idea that pore space may be represented 



as an interconnected network of capillary tubes whose radii represent the dimensions 

of the pores within a porous medium. The premise of the network model is that the 

void space of a porous medium can be represented by a graph of connected nodes. 

The nodes in the graph correspond to pore bodies and the links that connect the 

nodes correspond to pore throats. Such a graph preserves the essential topology of 

the pore spaces. In addition, sizes can be assigned to the nodes and links according 

to a chosen size distribution of pore bodies and throats (Bryant et al. 1993). 

The pore-scale network approach for investigating the nature of fluid flow has 

been developed extensively in the petroleum engineering (Chatzis and Dullien 1977: 

Larson et al. 1981), and also recently in the fields of hydrology and soil physics 

(Ferrand and Celia 1992; Reeves and Celia 1996; Rajaram et al. 1997). Although 

network models can replicate highly disordered geometry of fluid phases in principal, 

in practice, they have been constructed using various assumptions concerning pore 

structure. Mathematical network models are used in computer simulations while 

physical network models have been developed for flow visualization studies (Wan 

et al. 1996). 

2.1.3     Fractal Model 

Mandelbrot (1982) coined the name "fractal" from the Latin fractus which de- 

scribes the appearance of a broken stone and popularized the concept of fractals. It 

has been found in many fields that fractals could mimic the geometry of the real 

world better than classic geometry. Fractals provide a powerful concept for physicists 

to solve problems characterized by the simultaneous existence of very different scales. 

In recent years, .many complex behaviors of a wide variety of phenomena have been 

quantitatively characterized using the concept of fractals. 

A number of authors have studied the fractal character of porous media (Avnir 

et al. 1985; Wong et al. 1986; Jacquin and Adler 1987; Thompson et al. 1987). Frac- 

tal porous media are highly self-organized in that many static and dynamic properties 

have infinite correlation lengths.  The problem scale of fractal porous media evolves 
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continuously from pore to reservoir. Constitutive variables in such a system are wave 

vector and frequency dependent, and result from non-local theories (Cushman 1990: 

Cushman and Ginn 1993: Cushman et al. 1994: Cushman 1997). 

2.1.4    Reconstructed Porous Media 

Reconstruction of actual porous media has been done using computer mioroto- 

mography (CMT) (Spanne et al. 1994: Peyton et al. 1994: Schwartz et al. 1994) and 

digital image processing (Koplik et al. 1984). Spanne et al. (1994) applied computer 

microtomography to sandstone to determine the geometrical structure of the pores 

to a resolution of 10fim. Reconstructed porous media may mimic more closely the 

geometry of real media and generate numerical samples with desired properties. 

Adler (1992) presented three steps for the study of transport in reconstructed 

porous media. The first involves the measurement of any salient geometric features. 

The second step is the reconstruction process. Samples of porous media are generated 

in such a way that, on average, they possess the same statistical properties as the real 

samples that they are intended to mimic. For the last step, all transport phenomena 

are studied analytically or numerically. Reconstruction of porous media can be done 

on pore- or field-scale, depending on the problem. 

2.2    Single-Phase Flow Through Porous Media 

2.2.1     Introduction 

Henry P. G. Darcy published studies on the development of the water supply 

systems of Dijon in 1856. The law he discovered, namely, that the rate of flow is 

proportional to the total head drop through a bed of fine particles, bears his name 

and is widely employed for investigating the behavior of all types of fluid flow through 

porous media. 

For isotropic media, Darcy's law is written in differential form as, 

v = -KVP = -K{Vp + pg), (2.6) 
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where v denotes the filter velocity (i.e., Darcy velocity, discharge velocity, or specific 

discharge) and VP is the pressure gradient vector. K is the permeability, p is the 

hydrostatic pressure, p is the fluid density, g is the gravitational acceleration, and the 

total pressure P is defined as, 

P = p + pgz, (2.7) 

where z is the distance measured vertically upward from an arbitrarily chosen datum 

level, and g is the gravitational constant. Usually. P is measured by a piezometer 

and is indicated as the "piezometric head" or "total head" h. 

h=IL = Z + z, (2.S) 
99      P9 

which is the sum of the elevation head z and the pressure head -ßg. 

The permeability K depends on both the medium and the fluid. Nutting (1930) 

separated the influence of the porous medium from that of the fluid and stated that. 

K = -, (2.9) 

where /j is the dynamic viscosity of the fluid and k is called the specific, absolute, or 

intrinsic permeability of the medium which has dimensions of length squared. This 

concept was popularized by Wyckoff et al. (1933). For simplicity, k will be called 

permeability in this report. 

Flow in porous media takes place through flow channels, each having a local 

distribution of pore velocity. The average pore velocity, on the whole, must be larger 

than the Darcy velocity owing to the reduced space available for flow, as compared 

with the bulk volume of the porous medium on which the Darcy velocity is defined. 

A commonly accepted hypothesis for the connection between pore velocity and Darcy 

velocity is the Dupuit-Forchheimer assumption (Scheidegger 1974), 

v = vsn, (2.10) 

where vs is the pore or seepage velocity and n is the porosity of the medium. It 

should be noted that the seepage velocity, like Darcy velocity, is not a true physical 
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velocity because the actual velocity of the fluid must be expected to fluctuate grossly 

within one flow channel and from one flow channel to another, and because of the 

tortuosity of the channels. 

In groundwater hydrology and soil mechanics, the fluid of interest is usually water. 

Therefore, a "hydraulic conductivity" kH is defined as. 

kH = ^. (2.11) 

and Darcy's law is written as, 

v =-A-ffV/i =-fctfi, (2.12) 

where i = V/z is the hydraulic gradient. 

The concept of permeability permits a phenomenological description of flow through 

porous media. However, an actual understanding of the phenomena can be obtained 

only if the concept of permeability can be reduced to more fundamental physical prin- 

ciples. It is intuitively clear that permeability is linked with other properties of porous 

media. Many attempts have been made to establish correlations between permeabil- 

ity and other properties of porous media with the help of various models. These 

approaches may be categorized in several different ways. Here, two fundamentally 

different approaches are distinguished: in one, the flow inside conduits is analyzed; 

in the other, the flow around solid objects immersed in the fluid is considered. 

2.2.2     Conduit Flow Model 

Conduit flow does not account for the fact that different pores are intercon- 

nected with each other, so conduit flow models are inherently one-dimensional models. 

Among them, trie Kozeny-Carman model is generally more popular than the rest. 

2.2.2.1     Kozeny-Carman Model 

The Kozeny-Carman approach is also called the "hydraulic radius theory" and 

was developed for creeping flow. In the Kozeny-Carman theory (Kozeny 1927; Car- 

man 1937: Carman 1938a; Carman 1938b; Carman 1939; Carman 1956), the porous 
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medium is assumed to be equivalent to a conduit, the cross section of which may have 

a complicated shape but, on an average, a constant area. 

A Hagen-Poiseuille type equation is assumed to give the average seepage velocity 

in the flow channels, 

„  = _^_5L. ,2.131 

where Le is the effective path length of flow. D is the flow channel diameter, and C, 

is a shape factor. 

In addition to the Dupuit-Forchheimer assumption in Equation 2.10. Carman 

related Darcy velocity with the seepage velocity as. 

v Le 

n L ' 
(2.14; 

which corrects for the fact that a hypothetical fluid particle used in macroscopic flow 

equations and flowing with velocity v covers a path length L in the same time as an 

actual fluid particle flowing with velocity vs covers an average effective path length 

Le, as shown in Figure 2.3. 

Figure 2.3: Kozeny-Carman flow model. 

Combination of Equations 2.13 and 2.14 gives, 

nD2 

16CS (%) 
2' 

(2.15) 
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where D is assumed to be four times the hydraulic radius, 

void volume of medium _        An 
surface area of channels in medium      SQ(\ — n) 

and So is the specific surface area based on the solid volume. By combining Equations 

2.15 and 2.16: the usual form of the Kozeny-Carman equation for permeability is. 

n3 

A- =  2 • (2'17) 

where 4^ is the tortuosity factor T■ A combined factor k! = CST^ = Cs [-£-) 's rh° 

Kozeny-Carman constant. The Kozeny-Carman equation indicates the overwhelming 

importance of pore size (through the S0 term) in determining the permeability of a 

porous medium. 

According to Carman, Cs lies within the range 2.0 to 3.0 with a likely average 

value of 2.5. He also suggested that T2 has a value of about 2.0 in all unconsolidated 

porous aggregates like packed beds, which results in k' = 5.0. Much evidence that is 

now available certainly suggests that for unoriented particle aggregates in the porosity 

range of 0.35 to 0.70, k' = 5.0 ± 10% according to Wyllie and Spangler (1952) and 

Wyllie and Gregory (1955). They also found k' is dependent on the porosity, particle 

shape, and particle orientation. For aggregates of fibers at very large porosities (n > 

0.84), k' was found to increase rapidly with the porosity. 

Although Scheidegger (1974) has strong criticism of the Kozeny-Carman equa- 

tion, some scholars consider the equation to be approximately valid for certain soil 

types (Dullien 1992; Mitchell 1993). The Kozeny-Carman equation can be applied to 

uniformly graded sands and some silts, although serious discrepancies are found when 

the equation is applied to clays. The main reason of the discrepancy is that clays do 

not contain approximately uniform pore sizes. Particles in clays are grouped in clus- 

ters or aggregates that produce large intercluster pores and small intracluster pores. 

It is implicit in the derivation of the Kozeny-Carman equation that there shall be no 

large and small pores in parallel contributing to flow. If such a condition exists, the 

contribution to flow made by the larger pores is disproportional to the corresponding 
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effect on specific surface area. The latter quantity is dominated by the dimensions of 

the small pores. 

2.2.2.2    Capillary Model 

The capillary permeability model is the simplest approach based on the idea of 

conduit flow. Scheidegger (1974) distinguished among straight, parallel, and serial 

type capillary models. 

The straight capillary model (Figure 2.4) represents a porous medium as a bundle 

of identical and parallel straight capillaries of uniform diameter D. The total volume 

Figure 2.4: Straight parallel capillary model. 

flow rate Q through a capillary is given by the law of Hagen-Poiseuille, 

TTD
4
 dP 

Q = - 128^ dx 
(2.18) 

If there are m such capillaries per unit area of cross section of the model, the Darcy 

velocity will be, 

(2.19) mitD4 dP 
v = 

and, 

.   k = 

128^  dx' 

rmrD4 

128 
(2.20) 
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As the model has a porosity of. 

n = -rtinD . 
4 

the permeability is. 

:2.2V 

32 ' 

which is a variant of Kuzeny-Carman equation.  Equation 2.22 also hears similarity 

to the empirical Hazen equation. 

k = CmD2
l0, (2.23) 

where Cm is an empirical parameter and D\Q is the effective grain size of a loose clean 

sand. 

In the straight capillary model, there is no flow orthogonal to the capillaries. 

A general parallel model of capillaries with different diameters has one-third of the 

capillaries in each of three spatial dimensions and arrives at the permeability as. 

—  /     D2a 
96 7o 

(D)dD. (2.24) 

The mean square diameter is evaluated according to a pore size distribution function 

a{D) and 96 is substituted for 32 in Equation 2.22 because only 4 of the capillaries 

are oriented in each direction. Equation 2.24 is sensitive to error at the extrema of the 

pore size distribution function corresponding to the largest pore sizes (Scheidegger 

1974). 

In the serial type capillary model (Figure 2.5), the pore network is approximated 

by three identical sets of tortuous channels. Each channel is assumed to consist of 

segments having different diameters distributed according to a pore size distribution 

function a(D). The permeability of this model is, 

(/ 

/ 

^ V ' 
k=^\ g

n>     '   . (2.25) 
96      faW 

D' 
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The serial type model tends to underestimate permeabilities and is very sensitive to 

uncertainties at the extrema of the pore size distribution function corresponding to 

the smallest pores (Dullien 1992). 

Figure 2.5: Serial capillary model 

2.2.3    Drag Flow Model 

As discussed by Scheidegger (1974), Emersleben (1925) first proposed the "drag 

theory of permeability", which was different from the theory of Kozeny. This approach 

considers flow around submerged objects. The walls of the pores are modeled as 

obstacles in an otherwise straight flow of viscous fluid. Fluid drag forces are estimated 

from the Navier-Stokes equations, and the sum of drag forces is assumed to give the 

resistance of porous medium to flow. The subject of low Reynolds number flow around 

submerged objects is discussed in detail by Happel and Brenner (1965). 

Iberall (1950) specified the obstacles as cylinders. He considered the permeability 

of a random distribution of circular cylinders and showed for low Reynolds number 

Re that, 

3   nD2 2 - In Re 
k = 

16 1 - 77 4 - In fie' 
(2.26) 
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where, 

Re = Ü!°, (2.27) 

D is the diameter of the cylinders, and vs is the average pore velocity (i.e.. seepage 

velocity). It is noted from Equation 2.26 that permeability is not constant hut varies 

with the Reynolds number, i.e., the flow velocity, although the derivation was actu- 

ally based on the assumption of low Reynolds number flow. This slow variation of 

permeability with flow is quite characteristic of many instances in which the flow is 

nominally viscous. 

Brinkman (1947, 1948) assumed the obstacles in the fluid were spheres of diameter 

D held in position by external forces. He extended the Stokes drag force on a sphere (a 

sphere placed in an infinite flow domain) to include the effect of neighboring spheres 

and superimposed Stokes and Darcy flow to obtain, 

VP = -Jv + MV2v. (2.2S) 

The relationship derived by Brinkman for the permeability is, 

k = ^ [ 3 + -±- - 3./—-3) . (2.29) 
72  y       1 - n       V 1 - n       j 

This equation gives k = 0 for n = -A, which makes it unsuitable for relatively 

low porosities (Happel and Brenner 1965). Lundgren (1972) proposed a generalized 

Brinkman equation, 

k = =^-r (3 + —^ 3,/-^- -3) - (2.30) 
i2J-(n) \        \ — n        V 1 — n       J 

Equation 2.30 includes an "effective viscosity'" T(n) defined as, 

47T a2R2 

3 (1 - n)F(a2Rz,aR) 

where. 

Q3+ ,/T-§— -3 
QR=* Y~\      ■ (2.32) 

4 l     _ o 
1 -n     2~ 
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R = £ and F(a2R2,aR) is a complicated expression involving Bessel functions 

and Legendre polynomials. However, the modified Brinkman equation behaves much 

differently from other predictions for n < 0.7 (Dullien 1992). 

The resistance of arbitrarily shaped objects in a steady state stream of a viscous 

fluid can be calculated by solving the Navier-Stokes equations for the appropriate 

boundary conditions. However, analytical solutions for such problems are very lim- 

ited. 

2.2.4    Anisotropie Porous Media and Permeability Tensor 

.Most porous media are anisotropic. Anisotropie permeability can result from both 

preferred orientation of elongated or platy particles and stratification of soil deposits 

(Mitchell 1993). While the pressure gradient and Darcy velocity vectors are parallel 

in isotropic media, their directions are generally non-parallel in anisotropic media. 

Consequently, the value of permeability depends on the direction of measurement in 

an anisotropic porous medium. 

In anisotropic media, Darcy's law is written as, 

v = --VP, (2-33) 
ß 

where the permeability k takes the form of a second-order tensor in a x-y-z Cartesian 

coordinate system, 

f^ii "-xy "*xz 

*^yx yy yz 

i^zx     ^zy     ™zz 

(2.34) 

Considerable effort has been expended to prove the k tensor is symmetric, i.e., kxy = 

kyx, etc. (Szabo 1968; Whitaker 1969; Guin et al. 1971; Case and Cochran 1972). 

The physical meaning of these equalities is that the permeability values in opposite 

directions in the medium are the same, so that the k tensor changes the axes without 

deformation of the system. In exceptional cases, where the pores of a medium form a 

symmetric helicoidal arrangement and the velocity field is forced to have rotation, the 
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tensor is not symmetric (Liakopoulos 1965). It is generally assumed that anisotropic 

porous media are "orthotropic", i.e.. they have three mutually orthogonal principal 

axes. For an orthotropic medium, rotation of the coordinate system will produce a 

diagonal k matrix when the coordinate axes are aligned with the principal axes of 

the medium. In this case, VP and v are parallel and Darcy's law becomes. 

(2.35) 

(2.36) 

(2.37) 

where 1, 2, and 3 denote the three principal directions of the permeability tensor, 

and vt and fcj (i = 1,2,3) are the Darcy velocities and permeabilities in the three 

principal directions, respectively. 

In practice, the permeability is usually measured along a direction n. which may 

not necessarily coincide with the principal permeability directions. Darcy's law in 

this direction is written as, 

vn = -k-^, (2.38) 
ß on 

ßP where vn and jE- are the projections of v and VP in the n direction, respectively, 

i.e.. 

vn = n • v, (2.39) 

dP 
— = n • VP, (2.40) 
on 

and kn is called the directional permeability. The directional permeability may not 

necessarily be equal to the projection of k in the n direction (Case 1971). 

Scheidegger (1974) investigated the relation between directional permeability and 

permeability tensor. He distinguished two possible cases. Case 1: the velocity is 

measured directly and the component of the pressure gradient in the direction of the 
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velocity is used in Darcy's law; Case 2: the velocity in the direction of the pressure 

gradient is measured and used in Darcy's law. 

In the first case, from Equations 2.38. 2.39 and 2.40. 

n • v ,-, ,, \ 

*" = -"ä7vp- l-M 

Operating on the tensor form of Darcy's law in Equation 2.33 loads to. 

-VP = /ik"1-v. (2.42) 

where k"1 is the inverse of k. Combining Equations 2.41 and 2.42 gives. 

k   =      °'v      = I . (2.43) n      n-k-J-v      n-k^-n 

If the principal axes of the permeability tensor are chosen as coordinate axes and the 

n direction makes angles a. ß, and 7 with the principal axes. Equation 2.43 becomes. 

1       cos2 a     cos2 ß     cos2- 9     , 

kn k\ ko £3 
i 

In two dimensions, according to Equation 2.44, the plot of k£ produces an ellipse 

whose axes are in the principal directions of permeability with lengths of axes equal 

to twice the square root of the principal permeability values (Figure 2.6). 

In the second case, however, pressure gradient is in the n direction, i.e.. 

VP = ^n, (2.45) 
on 

and. 

un = n-v = n-kVP= n • k—n. (2.46) 
/i /i on 

Comparison of Equations 2.46 and 2.38 yields, 

kn = n • k • n. (2.47) 

If the principal axes of the permeability tensor are coordinate axes, a similar treatment 

as that used in Case 1 results in following expression, 

kn = ki cos2 a + k2 cos2 ß + k3 cos2 7. (2.48) 
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Figure 2.6: Graphical determination of the direction of the pressure gradient based 

on a given velocity and the permeability tensor ellipse. 

Figure 2.7: Graphical determination of the direction of the velocity based on a given 

pressure gradient and the permeability tensor ellipse. 
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Equation 2.48 defines an ellipse if kn 
5 is plotted for various n directions in two 

dimensions (Figure 2.7). 

Given the first ellipse of permeability, the direction of pressure gradient can be 

graphically determined for a given velocity, while the direction of velocity for a given 

pressure gradient can be determined from the second ellipse of permeability (Li- 

akopoulos 1965; Case and Cochran 1972). The construction procedure for obtaining 

the direction of the velocity vector for a known direction of pressure gradient is (Li- 

akopoulos 1965): 

■ 1. Construct the permeability ellipse in the directions of its principal axes with 

semi-axes equal to the inverse square root of the principal permeabilities, i.e.. 

the second ellipse of permeability; 

2. Draw the direction of the pressure gradient vector passing through the center 

of the ellipse; 

3. Draw the tangent plane at the point where the pressure gradient vector pene- 

trates the surface of the ellipse; 

4. Draw the normal to the tangent plane at the penetration point.   This is the 

direction at which the flow will take place (Figure 2.7). 

A similar procedure can be followed to determine the direction of pressure gradient 

using the first ellipse of permeability (Figure 2.6). More details can be found in 

Liakopoulos (1965). 

There is a standard method for the transformation of a symmetric tensor in any 

arbitrary Cartesfan coordinate system to one in which the tensor is diagonal. For a 

two-dimensional anisotropic porous medium, if kxx, kyy, and kxy are known in the x-y 

Cartesian coordinate system (Figure 2.8), the values of the principal permeabilities 

kx and k2 and the angle 6 (0° < 9 < 180°) between the direction of kx and the positive 

x direction can be determined by (Szabo 1968), 
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1 <.      /      -kxy Tj arctan(-r—^V 
— n-TT «WJ 

45° 

VXI IVyy 
if kxx > kyy and kxy > 0; 

if A;TT = k,lv and A'™ > 0 vyy xy — 

9= I 2L 
$ arctan (,     _I,y,    ) + ^    if A:« < A 

135° 

yy- 

if AIX = Ayy and kxy < 0: 

^ arctan^. "^y
b    ) + TT     if kxx > kyy and kxy < 0. 

fljj; n* j/y 

;2.49) 

A'1,2 —  9        i y\J(kxx - kyy)' + 4Axy. 2.50) 

Figure 2.8: x-y Cartesian coordinate system and principal tensor axes. 

2.2.5    Limitations of Darcy's Law 

Non-Darcy flow behavior was reported as early as 1898 (Mitchell 1993). The 

following hypotheses have been proposed to account for non-linearity between flow 

velocity and gradient (Scheidegger 1974; Mitchell 1993): (1) non-Newtonian behavior 
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of the fluid itself: (2) particle migrations that cause blocking and unblocking of pores: 

(3) local consolidation and swelling of the soil: (4) molecular or ionic effects: and (5) 

turbulent effects associated with high flow rates. 

The linearity of Darcy's law can be derived from the Navier-Stokes equations if 

the inertial and unsteady terms are neglected. Ignoring the inertial term restricts the 

analysis to creeping (laminar) flow where viscous forces dominate in the flow regime. 

The range of validity of Darcy's law is expressed in terms of Re. 

pVC 
Re (2.51) 

where £ is a characteristic length and V is a characteristic velocity of the flow system. 

C is generally the mean pore size, mean grain size, or \/k. Re is a measure of the 

ratio between the inertial and viscous forces of the flow. In any event, it is generally 

believed that Darcy's law is valid as long as Re < 5. 

Darcy's law can be modified to account for non-linear flow behavior at high ve- 

locities. According to Scheidegger (1974). Forchheimer (1901) suggested that Darcy's 

law include a second-order velocity term, 

dP 
dx 

d\V + Ü2V  , (2.52) 

where ai and a2 are constants.   To obtain a better representation of experimental 

data, a cubic term was added later (Scheidegger 1974), 

dP 
dx 

= aiv + a2v
2 + a3u

3. (2.53) 

At low velocities, v2 and v3 are much less than v and Equation 2.53 reduces to 

Darcy's law. The Forchheimer Equation has been generalized further to contain a 

time-dependent term (Polubarinova-Kochina 1952), 

dP 
dx 

2        dv 
a\v + a2v  +a3 —. (2.54) 

Other heuristic corrections to Darcy's law can be found in Scheidegger (1974) and 

Dullien (1992). 
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2.3    Hydrodynamic Dispersion in Porous Media 

2.3.1     Introduction and Convection-Dispersion Equation 

According to Bear (1972), one of the earliest observations of dispersion was re- 

ported by Slichter in 1905 who used an electrolyte as a tracer in studying the move- 

ment of ground water. A tracer is a chemical compound that does not affect the 

density or the viscosity of the fluid phase in which it is diluted and does not sorb 

to the solid phase of the porous medium during transport. Slichter observed that 

at an observation well downstream of the injection point, the tracer concentration 

increased gradually with time. It was also observed that in an uniform flow field 

the tracer advanced in the direction of the flow in a pear-like shape that became 

longer and wider as it advanced. Slichter explained this phenomena by noting that, 

for flow through capillary tubes, fluid velocity varies across the cross section of each 

tube and that, because a porous medium is composed of a great number of these 

tubes, the combined effect is likely to cause the mixing that he observed. This tracer 

spreading phenomenon is called hydrodynamic dispersion in porous media. It is a 

nonsteady, irreversible process in which the tracer mass mixes with progressively 

larger volumes of fluid. If the tracer initially occupies a separate region in the flow 

field, an ever-widening transition zone is created due to dispersion, across which the 

tracer concentration varies from that of the tracer liquid to that of the carrier liquid. 

In practice, the displacement of two miscible fluids may be considered as tracer flow 

when the fluids have the same densities and viscosities, and there is no volume change 

associated with mixing. 

Contaminant transport in the subsurface is generally viewed as the net effect of 

two processes, convection and dispersion. Convection is transport by the average mo- 

tion of the fluid and is the primary mechanism responsible for contaminant migration 

in many aquifers. Dispersion is spreading of the convective contaminant front due to 

the movements of individual contaminant particles through the pores and the various 

physical and chemical phenomena that take place within the pores. Mechanisms that 



contribute to dispersion include molecular diffusion, mechanical dispersion, bound- 

ary layer or film diffusion, and intraparticle diffusion. Currently, one of the most 

widelv held tenets is the assumption that hydrodynamic dispersion, which results 

from molecular diffusion and mechanical dispersion, constitutes the total dispersion. 

2.3.1.1    Molecular Diffusion 

The first quantitative study of diffusion was made by Fick in 1855. who found 

an analogy between molecular diffusion and heat conduction. He adapted Fourier s 

heat equation to describe the diffusion process by stating that mass flux of a diffusing 

substance is proportional to the concentration gradient, 

jo = -doVC, (2.55) 

where j0 is the mass flux, i.e., the rate of mass transfer per unit area of cross section, 

of a diffusive non-reactive tracer. d0 is the coefficient of molecular diffusion, which is 

a scalar in aqueous solution, and C is the tracer concentration, usually defined as the 

mass of tracer per unit volume of solution. In the absence of convection, conservation 

of mass and Equation 2.55 lead to the well-known Fickian diffusion equation for 

transient tracer concentration. 

^ = rf0V
2C, •      (2.56) 

at 

where t is time and V2 is the Laplacian operator. If diffusion occurs within a fluid 

in motion, the following convection-diffusion equation governs the evolution of tracer 

concentration, 

dC = dC+uVC = 4v2c, (2 57) 

at       at 

where 4i = Jx + u • V is the Lagrangian or material derivative and u is the fluid 

velocity vector. 

Albert Einstein in 1905 was the first to derive an expression for d0 of a colloidal 

suspension in an aqueous solution (Einstein 1956). His derivation was based on the 
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assumptions that colloidal molecules are approximately spherical and are large in 

comparison with the molecules of the aqueous solution. The successive displacements 

of the colloidal molecules by collision with liquid molecules were independent giving 

rise to a random walk or Brownian motion. Molecular diffusion (or simply diffusion) 

in solids, liquids, and gases is primarily due to Brownian motion. It is also caused 

by osmotic forces, thermal diffusion, and electro-osmosis. Due to Brownian motion, 

molecularly dispersed contaminants tend to move from a volume element with a 

higher concentration or specific heat toward any neighboring element with a lower 

concentration or specific heat content. This process is independent of convection. 

As a consequence of the tortuous diffusive pathways within porous media and 

the presence of fluid-solid interfaces, the diffusion coefficient in an isotropic porous 

medium d is less than the diffusion coefficient in aqueous solution d0, 

d = d0d*, (2.58) 

where d* is the nondimensional diffusivity of the medium. From a review of data on 

consolidated granular media obtained by several investigators, Perkins and Johnston 

(1963) suggested that the value of d* is approximately 0.7 while Fried and Combarnous 

(1971) reported values of 0.4 to 0.8. Bhattacharya and Gupta (1990) derived a formula 

for d* using central limit theorem applied to ergodic Markov processes, which provides 

a theoretical basis for the values of d* observed in experiments. 

Anisotropie porous media have different diffusion properties in different directions. 

As such, the direction of flow of diffusing substance at any point in such media may 

not be normal to the surface of constant concentration through the point. In an 

anisotropic medium, the vector of the mass flux j is written as, 

j = -dVC, (2.59) 

where the diffusion coefficient d is a symmetric second-order tensor in a x-y-z Carte- 

sian coordinate svstem, 
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d = 

dXx dXy dxz 

dXy dyy dyz 

dxz dyz dzz 

(2.60) 

Accordingly, the nondimensional diffusivity d* is also a symmetric second-order tensor 

in the coordinate svstem. 

d* 

d' d* d* 
IX xy XZ 

d 
   — d* d* d* 
do 

uxy yy yz 

dxz d;z dzz 

(2.61' 

Like for the permeability tensor, rotation of the coordinate system will produce a 

diagonal d tensor when the coordinate axes are aligned with the principal axes of 

diffusion for the medium. Vectors VC and j are parallel in such cases and. 

• dC (2.62) 

(2.63) 

(2.64) 

where 1, 2, and 3 denote the three principal directions of the diffusion tensor, jt and 

dt (i = 1,2,3) are the mass fluxes and diffusion coefficients along the three principal 

directions, respectively. If the normal of a surface makes angles a, ß, and 7 with the 

three principal axes of diffusion, the diffusion coefficient dn in the direction of this 

normal is (Carslaw and Jaeger 1959), 

3\ = -dlär 
J dC 

32 = ~d2ä2' 
A   dC 

33 = -ö3^r, 

dn = di cos2 a + d2 cos2 ß + d3 cos 7. (2.65) 

2.3.1.2    Mechanical Dispersion 

Mechanical dispersion results from velocity variations within the porous media. 

Three mechanisms, shown schematically in Figure 2.9, operate at the microscopic 

level to give rise to such variations: 
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(1) the velocity distribution across each pore channel; 

(2) variations in velocity as a result of the distribution of pore channel size; and 

(3) tortuosity of individual flow paths. 

These processes combine to give two geometrical aspects of dispersion: (Da longitu- 

dinal effect due to the differences between the velocity components along the mean 

velocity direction, and (2) a transverse effect due to the differences between the ve- 

locity components orthogonal to the mean velocity direction. Mechanical dispersion 

is attributed to convection. When convection is weak, mechanical dispersion may be 

negligible relative to molecular diffusion. 

In most dispersion theories, mechanical dispersion is generally considered to be 

mathematically analogous to diffusion because spreading of the contaminant results 

from velocity variations across a concentration gradient. Consequently, the mechani- 

cal dispersion component of tracer flux is commonly represented mathematically by 

a 'Tickian type" equation analogous to Equation 2.59, 

Jm = -DmYC, (2.66) 

where Jm is the mass flux vector due to mechanical dispersion and Dm is the coefficient 

of mechanical dispersion. The characterization of mechanical dispersion as a Fickian 

process remains a subject of continuing debate which will be discussed in detail in 

section 2.3.7. Adding Equations 2.59 and 2.66 gives the total dispersive mass flux 

vector Jd of a tracer as, 

Jd = -DVC, (2.67) 

where D is the coefficient of hydrodynamic dispersion and, 

D = d + Dm. (2.68) 

The total mass flux vector J due to both convection and dispersion is, 

J = uC - DVC. (2.69) 
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(1) (2) 

(3) 

Figure 2.9: Components of mechanical dispersion at the microscopic level: (1) the 

velocity distribution across each pore channel; (2) variations in velocity as a result of 

the distribution of pore channel size; and (3) tortuosity of individual flow paths. 
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Conservation of mass and Equation 2.69 lead to the widely used convection-dispersion 

equation for solute transport (Ogata 1970; Bear 1972; Freeze and Cherry 1979). 

^ = ^g+u.VC = DV2C. (2.70) 
dt       dt 

The convection-dispersion equation models the process of dispersion as a diffusional 

process and predicts that, in an uniform flow field, a set of tracer particles will be 

normally distributed about a center moving with the average convective velocity. 

From the viewpoint of classical statistics, if the travel time for an individual 

tracer particle becomes much larger than the time interval during which its successive 

velocities are positively correlated, its total displacement may be considered as a sum 

of a large number of elementary displacements which are statistically independent of 

one another. Then, the probability distribution of the particle's total displacement 

should be normal according to the central limit theorem (Bear 1972). In view of the 

ergodic principle (in an ergodic system, the ensemble averages and time averages are 

equivalent), this distribution also represents the spatial distribution of displacements 

of a cloud of initially close particles. It is this tendency for the cloud of tracer particles 

to converge to a normal distribution and to spread with a variance that is proportional 

to time that makes it possible to model mass transport as a diffusional process. 

2.3.2     Hydrodynamic Dispersion Tensor and Its Determination 

The coefficient of hydrodynamic dispersion D (Equation 2.67) is a second-rank 

symmetric tensor (Bear 1972; Koch and Brady 1985; Plumb and Whitaker 1988). The 

principal axes of D are believed to be oriented parallel and transverse to the mean 

direction of the-regional flow. This indicates that mass transport can be defined by 

two characteristic dispersion components that are defined once the mean direction of 

regional flow is known. If the dispersion coefficient in the direction of the flow L (i.e., 

the longitudinal dispersion coefficient) and the dispersion coefficient in the direction 

perpendicular to the flow T (i.e., the transverse dispersion coefficient) are denoted as 

DL and DT, respectively, the convection-dispersion equation becomes, 
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^ + U.VC = DL^ + DTV^C, (2.71) 

where V^ is the Laplacian in transverse directions. 

Bear (1961) studied the relationship between D and u. After assuming that only 

part of each velocity component is significant, which is either parallel or normal to 

the mean flow direction, he showed. 

Dkm = aljkm^^-    {ij.k.m. = x.y,z), (2.72) 

where u0 is the magnitude of the fluid velocity, u, is the component of the fluid 

velocity in i direction, and aijkm is called the media"s geometrical dispersivity (a 

fourth-rank symmetric tensor). In general, aijkm contains 81 components. Scheidegger 

(1961) studied the symmetry properties of aijkm and wrote the following equation for 

isotropic media, 

aijkm = aT6i:j6km -\ (SikSjm + 5irndjk), (2.73) 

where aL and aT are the longitudinal and transverse dispersivities of the media, 

respectively, and 5 is the Dirac delta function. 

(1    if i = j; 
(2.74) 

0   if i^j. 

By substituting Equation 2.73 into 2.72, the following equation is obtained, 

Da = aTuQ5ij + {aL - ar)-1^-, (2.75) 
u0 

which provides a theoretical basis for the relation between D and u for isotropic 

media. 

In practice, the longitudinal and transverse mechanical dispersion coefficients are 

generally expressed in terms of the seepage velocity vs in the flow direction L, 

DmL = (aLvs)
m\ (2.76) 

DmT = (aTvs)
m\ (2.77) 
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where mi and m2 are empirical constants between 1 and 2. Laboratory studies have 

indicated that for practical purposes, mi and m2 can be generally taken as unity for 

granular materials (Bedient et al. 1994). For isotropic media, from Equations 2.6S. 

2.58. 2.76, and 2.77, 

DL = do<r + (aLvs)
m\ (2.7S) 

DT = d0d* + {aTvs)
m2. (2.79) 

As most chemical species have d0 on the order of 10"9 to 10-10 ^- at 20°C. the 

contribution of diffusion to hydrodynamic dispersion is typically very small and is 

neglected in most models of groundwater contamination. One exception would be in 

geologic formations where convective transport is essentially zero, such as in very low- 

permeability clays or very deep aquifers where the flow rate may be on the order of 

a few centimeters in a hundred years. 

DL and DT are also defined in terms of the spreading of an initial plume (Fetter 

1993), 

^=4 (2:so) 

DT = °ft, (2.S1) 

where o\ and a\ are the variance of the longitudinal and transverse spreading of the 

plume, respectively. In the asymptotic limit (t —» oo), DL in Equation 2.80 and Dr 

in Equation 2.81 are equivalent to those defined in Equation 2.71 (Brenner 1980a). 

Many experimental studies have been performed to evaluate the influence on 

dispersion of the characteristics of miscible fluids, of the flow field, and of media 

properties. Conclusions have been drawn primarily based on comparisons between 

experimental results and solutions of Equation 2.71. The studies usually lead to re- 

lationships between DL, DT, and the Peclet number Pe. Dimensional analysis shows 

that D is a function of Pe, which defines the ratio between rate of transport by 

convection and the rate of transport by molecular diffusion, 

VC 
Pe = ~. (2.82) 

d0 
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Fried and Combarnous (1971), Bear (1972), and Fried (1975) have summarized many 

of the experimental results. The available data show that dispersion phenomena 

exists in several distinguishable domains according to the value of Pe (Figure 2.10). 

When Pe is very small, molecular diffusion predominates; in the next domain, the 

Figure 2.10: A generic relation between DL and Pe. 

effect of molecular diffusion and mechanical dispersion are of the same order; in the 

third domain, while the longitudinal molecular diffusion is negligible, the transversal 

molecular diffusion tends to reduce the longitudinal spreading; in the fourth domain, 

mechanical dispersion predominates; and when Pe is very large, while mechanical 

dispersion also dominates, the effects of inertia and turbulence can no longer be 

neglected. A regressional analysis usually leads to the following relation between DL 

and Pe, 

^ = aPe^ 
do 

(2.83) 

where a and ß are empirical constants that change with Pe. 

In a comprehensive study of dispersion phenomenon, Klotz and Moser (1974) 

performed 2500 laboratory column tests using radioactive, salt, and dye tracers to 

determine the dependence of DL on the characteristics of the permeant and porous 
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media. Granular materials were tested with differing void ratio, uniformity coefficient, 

and.grain properties (size, shape, and angularity). Their study generally confirms an 

approximate linear relation between DL and vs as suggested by Equation 2.7S with 

777i = 1. In addition, the effective grain size and uniformity coefficient substantially 

affect the value of DL. The influence of the grain shape and the grain roughness as 

well as the water temperature are of minor importance. In the study on transverse 

dispersion in column tests by Klotz et al. (19S0). they evaluated the width of the 

tracer cloud by measuring the concentration-time distributions perpendicular to the 

flow direction. In general, the transverse dispersion was difficult to determine. They 

found no dependence of the width on the flow velocity within the low measuring 

accuracy. On the other hand, they found the width increased with increasing grain 

size of the porous media. The tests confirmed that DT is 6-20 times smaller than DL 

and anisotropic mixing occurs even in isotropic porous media. 

Dispersion theory is concerned with the asymptotic time-dependent, spatial dis- 

tribution of non-reactive (passive) tracer particles introduced into a fluid flowing 

through the interstices of a porous medium under the influence of an externally ap- 

plied pressure gradient. Research on dispersion has covered numerous aspects and 

involved many approaches. Various models have been developed to provide a math- 

ematical description of this process. These models can be classified into four groups: 

geometric, random network, statistically geometric, and statistical models. 

2.3.3    Geometric Model 

Taylor dispersion problem is probably the best example of a geometric model. 

Taylor (1953, 1S54) considered the dispersion in a cylindrical straight tube (Figure 

2.11). Laminar, steady, one-dimensional flow of a fluid (i.e., Poiseuille flow) takes 

place in the tube. The velocity distribution is parabolic across the tube with an 

average velocity of vs. At t = 0, a tracer is introduced at the origin x = 0, simulating 

a pulse of constant concentration C0. The tracer particles are then carried away 

by the flow.   Because of the parabolic velocity profile, the tracer particles close to 



c = cn 

c 

Concentration distribution at I = 0 

C = 0 

Figure 2.11: Taylor dispersion problem. 

the wall move slower than those in the middle of the tube. The spreading of the 

concentration variation front is purely due to convection initially. However, as the 

front moves downward, the distribution of tracer becomes more uniform because 

of transverse molecular diffusion across the flow. The characteristic time for this 

transverse diffusion is, 

''C j      7 
a0 

(2.84) 

where R is the radius of the tube. Using the general diffusion equation in cylindrical 

coordinates, Taylor showed that for t > tc, the average cross section concentration 

C(x,t) satisfies the following equation, 

dC        dC     .,      R2v*d2C 
^ + ^ = (rfo + ^)^- (2.85) 

Equation 2.85 indicates that longitudinal dispersion in a cylindrical straight tube 

obeys the same law as molecular diffusion with an effective dispersion coefficient 
E>2   2 

DTayior = d0 + ^g^ • The Taylor dispersion mechanism is one in which the transverse 

variation of longitudinal velocity and transverse mixing interact to produce an overall 

longitudinal mixing process that is Fickian. Aris (1956) generalized Taylor's approach 
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to irregularly shaped tubes, where local velocity distributions may not be parabolic 

and where d0 varies with concentration. Using a moment-analysis technique, he 

obtained the coefficient of dispersion DAris as. 

R2v2 

DAris = do + a—±, (2.S6) 
do 

where R is a characteristic dimension of the cross section and o is a dimensionloss 

number depending on the cross section. 

In the Taylor-Aris theory of dispersion, the dispersion coefficient is proportional 

to v2. This theory cannot be applied to porous media in general because miscible 

flow in porous media is very different from the flow in a capillary. In porous media, 

most of dispersion comes from the meandering of streamtubes through the complex 

void structure, and not from the presence of a velocity profile within each pore. 

Brenner (1980b, 1981, 1982) coined the name Taylor dispersion to honor Taylor's 

work. The geometric model postulates a geometry which hopefully bears some resem- 

blance to real porous media, yet is sufficiently simple to allow analytical treatment. 

2.3.4    Random Network Model 

Some authors have developed porous media dispersion theory by representing the 

media as random networks of capillaries (De Josselin de Jong 195S; Saffman 1959; 

Saffman 1960). De Josselin de Jong (1958) was the first to suggest that transverse 

dispersion is smaller than longitudinal dispersion. However, his assumptions are very 

restrictive: he neglected molecular diffusion and assumed that fluid velocity is con- 

stant within each capillary. Saffman's model (Saffman 1959; Saffman 1960) was more 

general and represented a major step in the description of hydrodynamic disper- 

sion. The model consists of a network of randomly oriented and distributed straight 

pores in each of which the flow is uniform (i.e., constant fluid velocity). The pores 

are connected with one another at the ends, and several pores may start or end at 

each of these junctions. The path of a fluid particle may be regarded as a random 

walk in which the length, direction, and duration of each step are random variables. 
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Using this approach, Saffman calculated a probability distribution function for the 

displacement of a particle in time and deduced values for the dispersion coefficients. 

Bv assuming the pores had equal circular cross sections of radius R. the pores were 

all of equal length L, and an average velocity vs in the pores, he obtained the coeffi- 

cient of longitudinal dispersion DSaffman,L and the coefficient of transverse dispersion 

DSaffman.T as- 

da      3 ÄV     IV  /',, .     ^.Ucoth.U-l , 
Ds^,= j +8JHS- + — I '3J--1'-        BiP        '''■ ilAA 

and. 

_d0       1 fiV     9LV  f' 2A/cothJ/-l 

r> T 3R2V2X2 

respectively, where M = \^^- and B = d0 + 16J ■ Saffman's model was the 

first that showed the existence of several domains of dispersion with the change of the 

Peclet number Pe and the difference between transverse and longitudinal dispersion 

effects. 

The models of De Josselin de Jong and Saffman were extended by Haring and 

Greenkorn (1970) to the case of non-uniform media by the use of beta distributions 

for the distributions of pore radius and pore length. Capillary pressure, permeability, 

and longitudinal and transverse dispersion coefficients were calculated in terms of the 

parameters of the beta distribution. 

2.3.5    Statistically Geometric Model 

The local volume averaging method produces a statistically geometric model. This 

approach is based on the concept of representative elementary volume (REV) (Bear 

1972) and the Slattery-Whitaker averaging theorem (Slattery 1969; Whitaker 1969). 

An REV in porous media is the smallest volume that yields the local average 

properties (e.g., porosity) such that addition of surrounding media to this volume 

does not change these average values (Figure 2.12). On the other hand, it must be 

sufficiently larger than the size of a single pore that it includes a sufficient number of 
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pores to permit the computation of meaningful statistical averages required for the 

continuum concept. 

Figure 2.12: Porosity n versus its averaging volume V in a porous medium. 

The Slattery-Whitaker averaging theorem relates a transport equation at the mi- 

croscopic level to its macroscopic counterpart. The theorem states the relationship 

between gradients of averages and averages of gradients for functions defined in both 

solid and void phases which exhibit a discontinuity at the phase interface (Figure 

2.13), 

(WO = V W + p il'hdA, (2.89) 
■4-sohd-fluid 

where. 

M = ~ f MV = ^ f    ipdv, 
1   Jv v Jv,luid 

(2.90) 

( ) refers to an average quantity, ip is a scalar, vector, or second-order tensor asso- 

ciated with the fluid, V denotes the averaging volume, Vso[id and Vjiuid are the solid 

and fluid volumes within V, respectively, A is the averaging area that encloses the 

volume V, Aso[id-f[uid is the solid-fluid interfacial area within ,4, and n is a unit vector 

normal to Asoiid_jiuid. Equations 2.89 and 2.90 make it possible to locally average the 
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AtotlJ-flim 

Figure,2.13: Representative elementary volume (REV). 

Navier-Stokes equations and the convection-diffusion equation on an REV. A detailed 

derivation of this approach can be found in Whitaker (1969. 1973, 19S6). Bear (1972). 

and Gray (1975). 

By locally averaging quantities in the REV, a continuum model is established on 

the scale of the REV. This model is an assemblage of randomly interconnected chan- 

nels of varying length, cross section, and orientation. However, due to the complexity 

of the flow paths and the interpore and pore-to-pore fluid dynamic interactions, a 

large number of empirical factors must be introduced in the derivations. Statistically 

geometric models ignore the microscopic nature of the dispersion process—dispersion 

occurs not in one continuous medium, but in a medium which exhibits abrupt changes 

in fundamental properties of its different constitutional phases. This approach is gen- 

erally regarded as robust, but the principal weakness is that rigorous proof of the 

existence of satisfactory averaging volumes (obeying certain ergodic and invariance 

requirements) exists only for idealized porous media. In fact, porous media exhibiting 
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heterogeneity on a continuum of scales have no REV (Cushman 1990; Cushman et al. 

1994). 

2.3.6    Statistical Model 

Probability theory and statistical mechanics have been long used to study mass 

transport in porous media. Bear (1972) argued that the path of a tracer particle can 

be visualized as the vector combination of two motions: one along the pathline of a 

liquid particle, and another between pathlines as a molecular diffusion process. The 

nature of both motions, the first determined by the intricate internal geometry of the 

medium, and the second by the random character of molecular diffusion, prevents 

any deterministic prediction of the paths of tracer particles. In a similar context. 

Greenhorn and Kessler (1969) stated that a deterministic description of dispersion 

is useless and hopeless in practice for at least two reasons: (1) determination of 

the precise fluid-solid boundary of a random porous medium is. and will remain, 

impossible; and (2) the tortuous boundary (even if known) will render the problem 

mathematically intractable. 

The basic postulate of the statistical approach is that, although it is impossible 

to predict the exact path of an individual tracer particle, one may employ probability 

theory to predict the spatial distribution at any time of a cloud of tracer particles 

that are initially at a close proximity, and that move under same average condition 

(Bear 1972). If ergodic hypothesis applies, the problem of the spreading of a cloud 

of labeled particles is reduced in the statistical approach to the problem of random 

motion of a single tracer particle through an ensemble of random porous media. The 

simplest statistical model of dispersion is the one-dimensional random walk model. 

In this model, a particle moves along a straight line as a series of steps of equal 

length, and each step is taken either in the forward or backward direction with equal 

probability of A. It can be shown that if the particle undergoes n displacements per 

unit time, the probability that it will be between x and x + Ax at time t is, 



43 

1 /     x2 

*^=<OT"H-sä))^ (2-91) 

where D = %%- and L is the length of each step. Using the law of large numbers. 

Scheidegger (1954) showed that, for miscible tracers, concentration at a point in the 

displacing fluid is equal to the probability of finding a particle of displacing fluid at 

that point. He also extended the random walk theory to three dimensions. However, 

his analysis led to a scalar D resulting from his negligence of molecular diffusion and 

his assumption of isotropic spreading. 

Unlike models which require non-physical restrictions on the allowable dynamics 

or media heterogeneity, or both, Cushman (1997) developed a general dispersion the- 

ory using classical statistical mechanics which is fully rigorous and obtained without 

any approximation within the conceptual framework of Hamiltonian dynamics. The- 

ories in statistical mechanics provide the tools to go from the atomistic or molecular 

structure of matter to a continuum scale. Such theories allow detailed molecular data 

to be mapped into field and constitutive properties or material parameters (Cushman 

1997). Cushman's nonequilibrium statistical mechanical theory of transport involves 

both diffusive and convective mixing (dispersion) at all scales. The results are based 

on a generalization of classical approaches used in molecular hydrodynamics and on 

time-correlation functions defined in terms of nonequilibrium expectations. The re- 

sulting constitutive laws are nonlocal and constitutive parameters are wave vector 

and frequency dependent. 

2.3.7    Problerp of Scale and Fickian Approximation 

The convection-dispersion transport equation (Equation 2.70) forms the theoret- 

ical basis in almost every analysis of mass transport in groundwater systems. This 

approach has traditionally considered dispersivity as a characteristic single-valued 

property of the entire medium (Bear 1972). However, several studies suggest that 

dispersivity is not a constant but rather depends on the mean travel distance and 
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scale of the problem (Fried 1975; Lallemand-Barres and Peaudecerf 1978; Pickens and 

Grisak 1981; Gelhar et al. 1992). Field experiments have revealed that dispersivity 

increases with distance between the source and the point of observation as the tracer 

encounters progressively larger heterogeneities within the aquifer. Lallemand-Barres 

and Peaudecerf (1978) were the first to publish dispersivity values as a function of 

the distance traveled. A plot of aL versus distance showed the following relationship. 

aL = i (2.92) 

where r is the distance traveled by the contaminant. Equation 2.92 is known as the 

"one-tenth rule" and has been recommended by the EPA as a means to estimate 

dispersivity in preliminary studies where no data exists (U.S.EPA 1985). In a com- 

prehensive review of data from 59 field studies, Gelhar et al. (1992) found that there 

was a systematic increase of ai with observation scale. However, they stated that it is 

not appropriate to represent the relationship between ai and x with a single universal 

line because of the differing degrees of aquifer heterogeneity at different sites. Most 

published values of aquifer dispersivities were obtained by calibrating a mass trans- 

port model to field data. This has usually resulted in relatively large values, typically 

on the order of tens of meters to over 100 meters. The magnitude of the dispersivity 

is a measure of uncertainty regarding heterogeneous flow phenomena in an aquifer. 

The larger the degree of heterogeneity, the larger will be the dispersivity if the system 

is treated as homogeneous with respect to velocity. If a non-homogeneous velocity 

distribution due to large-scale geologic heterogeneities is determined, dispersivities 

would depend on small pore-scale variations of velocity, resulting in values on the 

order of a few centimeters or less. Dispersivities in this range are typical of column 

experiments in which there are no large-scale heterogeneities (Gelhar et al. 1992). 

As can be seen, the domain of research in the field of dispersion is part of the 

problem of change of scale, which is a very general problem in physics (Fried 1975). 

Recent theoretical developments have shown that multiple space-time scales appear 

naturally in the description of the transport of miscible, non-reactive solutes in sat- 

urated porous media (Cushman 1984; Cushman 1986; Koch and Brady 1987; Bhat- 
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tacharya and Gupta 1990; Cushman 1997). Dispersion phenomena manifest different 

behavior depending on different scales. Bhattacharya and Gupta (1983) showed that 

mechanical dispersion, pore diffusion, and molecular diffusion are manifested on three 

separate scales. Scales of interest, often are labeled as microscopic, pore, macroscopic, 

full aquifer, and regional. Associated with each scale there is a separate transport 

equation which can be obtained by filtering of a lower scale equation (Cushman 19S4; 

Cushman 1986). 

The dispersion problem is also a measurement problem. The concept of scale is 

fundamentally connected with the measurement process (Cushman 1986). In prac- 

tice, tracer concentrations are measured by some means. One should first decide on 

the scale of interest; and then, design an instrument to measure on that scale. The 

results from any solution of the transport equations are valid only with respect to the 

a priori scale and instrument (Cushman 1986). For example, laboratory analysis of a 

tracer sample leads to a concentration value averaged over a scale determined by the 

size of the sampling device. Baveye and Sposito (1984) attached an operational signif- 

icance to the averaging associated with measurement devices and suggested defining 

a macroscopic variable by averaging microscopic values according to a weighting func- 

tion associated with the sampling device. Moltyaner (1989) determined the weighting 

function associated with the so-called through-the-wall concentration measurement 

device by considering the interaction of gamma radiation with aquifer materials in a 

laboratory experiment. The function was found to follow an exponential attenuation 

law. 

Some approaches have been proposed to model scale-dependent dispersion (Pick- 

ens and Grisak J981; Tompson 1988). In the work of Pickens and Grisak (1981), 

dispersivity varies temporally as a function of mean travel distance and approaches 

a maximum or asymptotic value. Tompson (1988) described a second-order rela- 

tionship for local dispersive transport which can be cast in the form of a standard 

Fickian relationship with apparent time-dependent dispersivity functions that grow 

to finite, asymptotic values.  To model scale-dependent dispersion, the conventional 
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practice is to involve a simple scaling-up of the porous medium dispersivitv value 

from very small values observed in column experiments to the much larger values 

calculated from field trials. However, some literature suggest that dispersivitv may 

never approach a finite value asymptotically for some cases. As such, the Fickian 

approximation of dispersion and the traditional convection-dispersion equation are 

not valid for these cases. Matheron and Marsily (19S0) showed for the special case 

of a stratified porous medium with flow parallel to the bedding, the transport of so- 

lute cannot, in general, be represented by the usual convection-dispersion equation, 

even for large time. Smith and Schwartz (19S0) concluded that field-scale dispersion 

(macrodispersion). which is usually caused by mixing due to spatial heterogeneities 

in the permeability field, cannot be modeled by a large value diffusion process. Koch 

and Brach- (1987) showed that when the length and time scales on which a transport 

process occurs are not much larger than the scales of variations in the velocity field 

experienced by a tracer particle, a description of the transport in terms of a local, 

average Fickian process is not applicable. In fact, in Cushman's nonequilibrium non- 

local theory of transport (Cushman 1997), the concept of classical Fickian dispersive 

flux is a special case. 

2.4     Transport Through Spatially Periodic Porous Media 

The analysis of transport processes in spatially periodic porous media is a rel- 

atively simple problem when numerical or analytical calculations are confined to a 

unit cell. However, if one were to analyze an irregular unit cell of arbitrary shape, 

the analysis would be no easier than that of other models. The simplest spatially 

periodic porousjnedium consists of a two-dimensional array of circular cylinders or 

three-dimensional array of spheres. Despite its simplicity, no rigorous solutions to the 

transport problem are available for irregular arrays. However, some are available for 

regular arrays of cylinders and spheres. 



2.4.1     Single-Phase Flow 

The flow problem is the steady state creeping flow of an incompressible viscous 

Newtonian fluid through a rigid spatially periodic porous medium. The equations to 

be solved are the Stokes equations. 

0 = -VP + /A72u:    ■ (2-93) 

V-u = 0. (2-94) 

These equations should be supplemented by the no-slip boundary condition at the 

surface Sp of the solid particles. 

u = 0   on    Sp. (2-95) 

In addition, another fundamental hypothesis is needed, i.e., the local fluid velocity u 

is spatially periodic with the same periodicity as the porous medium. 

u(R) = u(R + Rn). (2-96) 

This hypothesis is based on: (1) as the pressure gradient is constant across the unit 

cell, it can be expected that the flux is also constant; and (2) locally, u must satisfy 

the no-slip boundary conditions which is inherently spatially periodic. 

Hasimoto (1959) was the first to calculate successfully periodic fundamental so- 

lutions of the Stokes equations for the flow past a periodic array of obstacles. His 

approach is based on Fourier series expansion and he applied the solution to dilute 

cubic arrays of spheres and square arrays of cylinders. Happel (1959) employed a free- 

surface model to study flows parallel and perpendicular to square arrays of cylinders. 

Snyder and Stewart (1966) calculated the velocity and pressure profiles for Newtonian 

creeping flow through dense cubic and simple cubic beds of spheres using Galerkin's 

method. Their solutions converged slowly and did not satisfy continuity exactly. 

Sorensen and Stewart (1974) improved their method by using a three-dimensional 

set of stream functions and a variational principle.   Zick and Homsy (1982) started 
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from Hasimoto's fundamental solution and obtained a system of Fredholm integral 

equations of the first kind for the unknown stress vector at the surface of a sphere, 

and were able to lower the dimension of the problem as a result. Sangani and Acrivos 

(19S2b) extended the analytical technique of Hasimoto and were able to deduce a 

scheme that was valid for the whole range of solid concentrations of cubic arrays of 

spheres. They also studied the cases of two-dimensional square and hexagonal arrays 

of cylinders. Drummond and Tahir (1984) adapted the method of singularities to 

Inharmonic equations to study flows parallel and perpendicular to arrays of cylinders. 

Due to computational limitations and/or the drawbacks of the approaches them- 

selves, most numerical approaches are limited to study two-dimensional problems. 

Sangani and Acrivos (1982a) developed a numerical technique to study creeping flow 

through square and hexagonal arrays which is suitable for the whole range of poros- 

ity. Larson and Higdon (1986, 1987) employed the boundary-integral method to study 

microscopic axial and transverse flow near the surface of media composed of circular 

and elliptical inclusions. Sangani and Yao (1988a) developed a numerical method by 

extending Hasimoto's approach for evaluating macroscopic transport coefficients by 

computing the many-particle interactions in systems with an arbitrary size and spatial 

distribution of cylinders. They were able to provide creeping flow permeability even 

for some random spatially periodic structures. Using the finite element method, Mee- 

goda et al. (1989) studied the effect of specific surface area, void ratio, particle shape, 

material heterogeneity and arrangement of particles on the permeability of granular 

media. They proposed an equation, which is similar to the Kozeny-Carman equa- 

tion, to predict permeability. Edwards et al. (1990) also employed the finite element 

technique to study flow fields within spatially periodic arrays of cylinders arranged in 

square and hexagonal lattices with microscale Reynolds numbers ranging between 0 

and 200. Bruschke and Advani (1993) developed a closed-form solution numerically 

for flow across a periodic array of cylinders by matching the analytic solution using 

the lubrication approach for low porosities and the analytic cell model solution for 

high porosities. Ghaddar (1995) determined the statistical transverse permeability of 
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two-dimensional random arrays of cylinders by employing nip-elements and a paral- 

lel finite element procedure. Koch and Ladd (1997) employed the lattice-Boltzmann 

method to study the effects of fluid inertia on the pressure drop required to drive 

fluid flow through periodic and random arrays of cylinders. 

Some of the calculations and major results of abovementioned work are briefly 

outlined below. To solve Equations 2.93 to 2.96 for an incompressible flow through a 

periodic array of obstacles with their centers at Rn, a useful approach is to continue 

the interstitial fields analytically into the space occupied by the obstacles, replacing 

the obstacles with singular multipole force distribution (Hasimoto 1959). Equation 

2.93 is replaced by, 

0 = - VP + pV2u - Fn J2 <HR " Rn), (2-9?) 
n 

where Fn is the force acting on one of the obstacles, and 5 denotes Dirac delta function 

defined as. ■ ^; 

/, 

, 1    when Rn G volume; 
5(R-Rn)d3R = I (2.98) 

volume 0    when Rn £ volume, 

and. 

5(R-Rn) = 0    for    R^Rn- (2-99) 

Hasimoto (1959) then expanded u and VP in Fourier series, 

u = ^u^e-2^"-R\ (2.100) 

Rn 

VP = Y, VPRne-
2^-R\ (2.101) 

Rn 

where. 

Rn = nii1+n2i2 + n3i3, (2-102) 
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which are vectors in the reciprocal lattice determined by, 

Ii = £^, (2-103) 
' unit cell 

h = ^-, (2.104) 
' unit cell 

l3 = ^- (2.105) 
' unit cell 

By introducing the series into Equations 2.97 and 2.94, the periodic fundamental 

solution of the Stokes equations for the flow past a periodic array of obstacles is 

obtained. The analysis also leads to a relationship that the drag forces acting on the 

obstacles within the unit cell are balanced by the mean pressure gradient driving the 

fluid, i.e., 

Y,Fn = -VPVumtcell. (2.106) 

Following the same procedure as Hasimoto (1959), for flow through simple cubic 

arrays of spheres with an average velocity of vs in the direction of 2:1, Sangani and 

Acrivos (1982b) presented the formal solution in a Xi-x2-x3 Cartesian coordinate 

system as, 

v _j_(G (s _ &SA+H<ajj± _ L (_<a_ _ 6 d4 + _^\ 
4?r/i \     \ dx\ J dx\ \dx\        dx\dx\      dx\) 

(2.10 

47r/i \   dx\dx2 dx\dx2        dx\ \dx\       dx\dx2 

i_ (r..**. _ „ J^l_ _ r.± (»_ _ ,_* 
"3 = 4^ {Gä^l ~ Hä^t3 -^{94- 3ä4§TJ S>) •      (2'109> 

ap = _6pÄftfe    1 G a^.  (! = li2]3)_ (2,10) 
OXi Vunitcell 47T      ÖXxdXi 

where R is the radius of spheres, and F<f is the dimensionless drag force of the sphere 

in the direction of x\ defined as, 

Fd=      Fd     , (2.111) 
67ijj.vsR 
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where Fd is the drag force acting on the sphere in the xx direction. G, H. and L are 

differential operators, such that, 

fr\ ,    (A   \ 
= E E 

A/=0    m=0 

H BnT1 

32n 

dx\ In 

4m d-Y"     fd\ 4m 

[M = n + 2m) 

f2.112) 

with. 

f = z2 + ix3, (2.113) 

(2.114) 

and the unknown coefficients Anm, Bnm, and C„m are to be determined by applying 

the no-slip boundary condition at the surface of the spheres. Si and S2 in the above 

equations are given by, 

i -27ri(R„-R) 5t _     x     y^ .  
nVunitcell   . R£ 

(2.115) 

and. 

S2 = 
1 

47r3\/unifCen E
e -27ri(R„-R) 

R4 
(2.116) 

For two-dimensional flow perpendicular to an array of cylinders, if the mean flow 

has an average velocity ofvs in the xx direction, the velocity components are (Sangani 

and Acrivos 1982b). 

U\ = vs 

u2 

1    („(„      d2S2\      TTd
2Sx 

4nfi 
GlSi- 

dx\ ) dx\ 

G 
d2So 

H 
d2Sx 

47r/i \   dx\dx2 dx\dx2 

(2.117) 

(2.118) 

where, 

G = E A A   3 2n 

n=0   \Bn 
dx2 2n ' 

(2.119) 
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The analysis leads to results about permeability or dimensionless drag force as 

functions of porosity of the media. For flow through a spatially periodic simple cubic 

array of spheres, the permeability k is related to the dimensionless drag force Fd by. 

£ _   V unit cell p 120) 

6irRFd' 

Hasimoto (1959) found that. 

F71 = 1 - 1.7601O3 +o- 1.5593ö2 + 0(ö5). (2.121) 

where 6 — 1 - n is the solid fraction of the media.   Sangani and Acrivos (19S2b) 

refined the above result as, 

Fd~l = 1 - 1.760103 + 0 - 1.559302 + 3.979903 - 3.07340^ + 0{o^).      (2.122) 

For two-dimensional flow perpendicular to the axes of circular cylinders, the di- 

mensionless drag force is usually redefined as in the literature. 

Fd = -^-, (2.123) 

which is the dimensionless drag force per unit length of the cylinder and the perme- 

ability k is related to Fd by, 

^ _   > unit cell >2 ][9 n 

4irFd 

Sangani and Acrivos (1982a) found that, 

FJ1 = In 4>-°-5 - 0.738 + <f> - O.88702 + 2.O3803 + O(04), (2.125) 

for square arrays and, 

F71 = In 0-°5 - 0.745 + 0 - O.2502 + O(04), (2.126) 

for hexagonal arrays. Drummond and Tahir (1984) proposed that, 

F~l = lncT1 - 1.476 + 2(f) - O.502 - O.O5104 - O.O77508 + O(012), (2,127) 
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for square arrays, 

/71 = In <jTl - 1.498 + 20 - O.502 - O.OO25106 + 0{cpn). (2.128) 

for staggered arrays, and, 

p-i = la^-i _ 1.354 + 20 - 0.5Ö2 - 0!35S^3 - 0.812O6 + 0{on). (2.129) 

for hexagonal arrays. Attention is needed that all the above functional forms between 

FT1 and 6 are usually onlv valid for small 0. i.e., high porosity media. 
a 

2.4.2    Hydrodynamic Dispersion 

To describe tracer dispersion in spatially periodic porous media, in addition to 

solving Equations 2.93 to 2.96, the following convection-diffusion equation is needed. 

— + u • VC = d0V
2C. (2.130) 

dt 

Impenetrability of the solids to solute transport through their surfaces requires,   . ■ 

n • (uC - d0VC) = 0    on    Sp, (2-131) 

where n is the unit normal to the solid surfaces. 

Brenner (1980a) and Brenner and Adler (1982) established a theory for dispersion 

in flow through spatially periodic porous media. The theory is based on the concept 

of Brownian motion of particles and makes use of the method-of-moments developed 

by Aris (1956) and later extended by Horn (1971). The theory leads to a general 

formula for the dispersion tensor. Brenner showed the tensor should be calculated 

by first solving a convection-diffusion problem in the periodic cell, i.e., the B field 

problem. Brenner's theory is rigorous in that no ad hoc assumptions are needed 

except for the assumption of periodicity of the media. The approach is now called the 

generalized Taylor dispersion theory (Brenner 1980b; Brenner 1981; Brenner 1982). 

By local volume averaging on the periodic cell, Carbonell and Whitaker (1983) were 

able to calculate the dispersion tensor through an f field problem. Koch et al. (1989) 
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studied the effect of grain periodicity on dispersion phenomena and the aspects of 

dispersion mechanisms which are artifacts of the periodicity constraint. They showed 

that for a square array of cylinders or a simple cubic array of spheres, and in the limit 

Pe -» oc, DL depends quadratically on Pe and DT approaches a constant value. Mei 

(1992) used a homogenization method to study dispersion in porous media. Starting 

from the Navier-Stokes equations for the fluid and the convection-diffusion equation 

for the tracer, he arrived at Darcy's law and the convection-dispersion equation. 

By solving the f field problem of Carbonell and Whitaker (19S3). Eidsath et al. 

(19S3) carried out a numerical simulation of dispersion in the flow through a square 

array of cylinders. Using a finite element method, they first solved for the flow field, 

and then solved the convection-diffusion equation. Edwards et al. (1991) studied the 

Taylor dispersion of a passive solute within a fluid flowing through a two-dimensional 

spatially periodic porous media using finite element, based on Brenner's B field prob- 

lem. The effects of microscale Peclet and Reynolds numbers on the longitudinal and 

transverse dispersivities were also investigated. Salles et al. (1993) examined theoret- 

ically dispersion in spatially periodic porous media and presented numerical results 

based on Brenner's B method and random walk. 

Brenner's theory (Brenner 1980a) and the method of homogenization (Mauri 1991; 

Mei 1992: Mei et al. 1996) for dispersion in spatially periodic porous media are briefly 

outlined below. Brenner's theory is based on Brownian motion theory for particles. 

Suppose that at time t = 0, a Brownian solute is introduced into a steady state flow at 

some arbitrary position R'. The instantaneous position R = R(i|R') of the particle 

is a stochastic variable. The probability density that the particle is located at R at 

time t, knowing^that it was released at R' at time 0, is denoted by, 

p(R,t|R'). (2.132) 

If the impenetrability of the solid phase applies, the solute must lie somewhere within 

the fluid volume for t > 0, i.e., 

pd3R=l    for    *>0, (2.133) 
I'OO 
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where Vffuid denotes the fluid volumes in all unit cells. In addition, it will be assumed 

that.. 

p^O    as    |R-R'|->oc, (2.134) 

at a sufficiently rapid rate with distance to ensure the convergence of the integral in 

Equation 2.133. Conservation and continuity of probability density requires that p 

satisfy the following equation, 

^ + V-J = 6(R-B!)-6(t), (2.135) 
at 

where J is the flux of the probability. 

J = up-d0Vp, (2.136) 

and satisfies. 

n-J = 0    on    Sp. (2.137) 

The probability density will evolve according to Equations 2.133 to 2.137- The mo- 

ments of the probability density are written as, 

Mm= [   (R-RTP(R,*|RVR- (2.13S) 
Jvj° 

The first three moments are physically the most interesting. Moreover, the transients 

that occur just after the introduction of the solute in the fluid phase are not of interest, 

but rather what occurs after a long enough time so that the tracer particle can sample 

all the interstitial space of the unit cells. This condition is expressed as, 

% » I- (2-139) 

The spatial integration indicated by Equation 2.138 can be decomposed into two 

steps, integration over a unit cell and then over all unit cells. Brenner performed the 

calculation and found that, 

A/o = 1. (2-140) 
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This zeroth-order moment represents the total probability. The first-order moment 

is, 

Mx^vst + B + Exp, (2.141) 

where Exp denotes terms that go exponentially to zero as t —> oc and. 

B = —   f B(r)d3r. (2.142) 
\ unit cell J\un>tcelt 

in which B(r) is a field quantity which satisfies, 

d0V
2B - V ■ (uB) = v4, (2.143) 

and is subjected to the boundary condition, 

n-VB = 0    on    Sp. (2.144) 

Additionally. B must satisfy the pair of jump conditions across opposite cell faces. 

(B) = -<r>, (2.145) 

(VB) = 0, (2.146) 

where the jump in value of the general field F is defined as, 

(F) = F(Rn, r + It) - F(Rn, r), (2.147) 

and I, are the three basic lattice vectors (Figure 2.1). The first-order moment rep- 

resents the average position of the solute after a long time. Brenner also showed 

that, 

dM2 rs_- 

\ unit cell Jvunilceii 
2vav-a* + v,B + Bv, + 2—-^— / VB* • VBdJr + Exp,       (2.148) 

dt 

where the superscript * denotes a post-transposition operator (i.e., A*jk = Aikj in 

Cartesian tensor notation). The physical meaning of the second-order moment lies in 

the calculation for the mean square displacement dyadic (R — R)2, 

(R - R)2 = M2 - rv^Mi, (2.149) 
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where R is the mean displacement of the solute.   Brenner then followed Einstein's 

generalized Brownian motion relation for continua and defined the dispersion tensor 

as. 

D s* I1(R _ R)2 = _^_ I VB* • VB^r. (2.150) 
2 (It \ unit cell Jvunltcc„ 

Furthermore. Brenner (1980a) rigorously proved that the dispersion tensor defined in 

Equation 2.150 is the same quantity as in Equation 2.70 of the conventional continuum 

dispersion model as t —> oo. 

Mei (1992) rederived the key results of Brenner using the theory of homogeniza- 

tion. which is claimed to be a rigorous mathematical procedure particularly suited for 

periodic materials. It is based on two assumptions: (1) there are two vastly different 

length scales in the media, and (2) the media is periodic. The microscopic length 

scale Cm and the macroscopic length scale £ of a spatially periodic porous medium 

are easily identified as the two different length scales for homogenization analysis. 

Using the ratio of the two length scales e = ^ « 1 as the small ordering parameter, 

the perturbation expansions are introduced, 

u. = u(°> + euji> + €*UW + - • - , (2.151) 

p = p(0) + ePW + e2p(2) + ... ^ (2152) 

C = CW + eCW+c2CW + ---, (2.153) 

where u\j) and P(j) are functions of x* and x\ = ex{, and C(j) depends on xt, x't, tx = et, 

and t2 = e2t. Substituting the expansions into the corresponding governing equations 

and boundary conditions, a set of perturbation equations are obtained at successive 

orders. The leading-order equation is homogeneous; either the solution itself or the 

coefficient of the homogeneous solution are indeterminate and independent of Cm. 

The next-order solution enables the calculation of the leading-order equation and the 

constitutive coefficients, such as the permeability and dispersion tensors. 
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2.4.3    Spatially Periodic versus Real Porous Media 

Spatially periodic porous media have been extensively studied for two reasons, 

one is the mathematical tractability and the other is the feasibility of numerical 

implementation. Although assuming spatial periodicity of porous media does not 

stand on solid physical evidence, the advantage of this deterministic approach (i.e.. 

by specifying geometry of solid inclusions in the unit cell) lies in the achievement of 

a complete and detailed understanding of the functional relations existing between 

the microscale and macroscale processes. To study phenomena occurring in spatially 

periodic porous media not only has academic importance, it also provides insights 

for real heterogeneous disordered porous media. Actually, the degree of geometric 

complexity that one is able to include in the attempt to simulate real porous media 

is limited only by the capacities of computers. With the continuing development 

of computer technology, the ability to model real porous media through the use of 

spatially periodic models is approaching. 

The drawback of this approach is that, by assuming spatial periodicity, a discrete 

separation of scales has been required, i.e., periodicity of the '"microstructure" with 

a "scale-of-observation" much larger than the period (Cushman 1997). Owing to the 

costs and poor technology associated with sampling natural porous media, a periodic 

unit cell is not known to exist a priori, and if it does exist, the scale-of-observation is 

not known such that the unit cell appears infinitely small. Then, local theories break 

down and nonlocal with infinite support on the scale-of-observation has to be assumed 

for the processes (Cushman 1997). Periodicity may also produce some artifacts in 

transport phenomena. Koch et al. (1989) studied the different mechanisms that 

contribute to dispersion. They stated that at high Peclet number, the mechanical 

dispersion that is induced by the stochastic fluid velocity field in disordered media 

and is independent of the molecular diffusion is absent in periodic media where the 

velocitv field is deterministic. 
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In general, the potential applicability of some specific results gleaned from the 

spatially periodic analysis should not be overlooked (Brenner 1980a). However, con- 

clusions drawn concerning transport in real disordered porous media from studios of 

ordered porous media should be viewed with caution (Koch et al. 1989). 

2.5    Computational Fluid Dynamics Techniques 

Once a porous media model for certain phenomena is developed, the necessary 

computations are carried out analytically or numerically. Using advanced computa- 

tional fluid dynamics techniques, numerical simulations of porous media phenomena 

have made significant progresses. Conventional numerical methods include finite ele- 

ment, finite difference, and boundary integral methods. Their application in porous 

media transport can be found in many books (Thomasset 1981; Wang and Ander- 

son 1982: Liggett and Liu 1983: Peyret and Taylor 1985). Lattice-gas and lattice- 

Bolt zmann automata are two new methods which offer efficient simulations in complex 

geometries. 

2.5.1     Lattice-gas Method 

Broadwell (1964) was probably the first to develop an automata-type model for 

fluid flow. Velocity was a discrete variable in his model, but space and time were both 

continuous. Later, Hardy et al. (1976) developed a completely discrete model for fluid 

flow on a square lattice which could mimic several features of real flow problems. 

Lattice-gas (LG) models, also called cellular-automata models, are large lattices 

in which each site can be in one of several discrete states. The lattice is populated by 

particles, and the Boolean variables describing the state of the system indicate the 

presence or absence of the particles at the intersections of the lattice. The evolution of 

the system is governed by a set of collision rules that determine how the particles move 

in the lattice, and how they are scattered once they collide with each other. Those 

rules are chosen to conserve mass and momentum for the system. Both time and space 

are discrete, and usually site connections are made between nearest neighbors only. 
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Frisch et al. (1986, 1987) and Wolfram (1986) showed that in order for the discrete 

equations to reduce to the Navier-Stokes equations, two-dimensional simulations have 

to be performed using a triangular lattice. 

Rothman (1988) used lattice-gas automata to model flow through an artificial 

two-dimensional porous medium. He showed that flow rate through the medium was 

proportional to the average hydraulic gradient across the boundaries in accordance 

with Darcy's law. In addition, a lattice scale must be chosen such that the linear di- 

mension of any void space is at least twice the mean free path. i.e.. the average distance 

traveled before particle collision occurs. Brosa and Stauffer (1989. 1991) and Kohring 

(1991) also used two-dimensional lattice-gas models to simulate the flow through ran- 

domly generated porous structures. For systems with up to 22 million sites. Kohring 

(1991) found permeability varied with porosity according to k oc 7\~_ " for n > 0.7. 

He also noted that a detailed study of permeability as a function of particle size and 

size distribution is needed. Rothman (1990) and Gunstensen and Rothman (1991) 

used two-dimensional lattice-gas to model multiphase flow through simple pore struc- 

tures. Baudet et al. (1989) used lattice-gas to simulate two-dimensional dispersion 

of tracer particles for flow between parallel plates. Simulation results agreed very 

closely with analytical solutions under laminar flow conditions. 

Difficulties arise when lattice-gas is applied to three-dimensional problems. While 

a triangular lattice contains sufficient symmetry to yield a macroscopically isotropic 

two-dimensional fluid, no regular lattice exists that yields isotrop}' in three dimen- 

sions. d'Humieres et al. (1986) theorized that flow could be modeled in a four- 

dimensional face-centered hypercubic (FCHC) lattice. Three-dimensional results are 

obtained by projecting the four-dimensional data down to a three-dimensional space. 

Frisch et al. (1987) discussed the approach in detail. The FCHC model has been 

implemented by Rivet et al. (1988) for the simulation of three-dimensional vortex 

behind a circular plate in an uniform flow field. 
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2.5.2    Lattice-Boltzmann Method 

Lattice-gas not only encounters difficulties in three-dimensional problem, it also 

suffers from statistical noise. The lattice-Boltzmann (LB) method has been devel- 

oped to overcome some of the drawbacks of the lattice-gas method. In the spirit of 

the Boltzmann equation of kinetic theory, the lattice-Boltzmann technique models a 

fluid according to the average behavior of particles on a lattice rather than as the dis- 

crete particles themselves. The Boolean site populations of the lattice-gas automata 

become real numbers between 0 and 1 representing their average value through time 

as the simulation progresses. Thus, instead of following each particle in detail, the 

model follows the average behavior of particles at a given site. This also eliminates 

the statistical noise associated with the lattice-gas approach. Lattice-Boltzmann is 

particularly efficient for low Re simulations (McNamara and Zanetti 19SS) and is 

unconditionally stable for the solution of the Navier-Stokes equations (Frisch 1991). 

Using the lattice-Boltzmann FCHC method, Succi et al. (1989) simulated Darcy's 

law for fluid flow through a three-dimensional random medium with 323 = 3276S 

sites. Pores were no smaller in cross section than 4x4 lattice units and no-slip 

boundary conditions were imposed at the walls. For three values of porosity, flow 

rate was found proportional to hydraulic gradient in accordance with Darcy's law 

when Re < 5. Furthermore, Succi et al. (1991) demonstrated that the Boltzmann 

technique is a viable tool to simulate the flow regime for a variety of hydraulics 

problems ranging from laminar to turbulent conditions. Cancelliere et al. (1990) 

simulated flow through a three-dimensional FCHC "penetrable sphere" model using 

lattice-Boltzmann method to calculate permeability as a function of the solid fraction 

of the media. The simulated data fit the Kozeny-Carman equation well, Gunstensen 

and Rothman (1992, 1993) used a lattice-Boltzmann model for the simulation of 

immiscible flow of two fluids through a three-dimensional porous medium consisting 

of randomly overlapping spheres. Ladd (1994a, 1994b) simulated the hydrodynamic 

interaction of particles in a fluid suspension using the lattice-Boltzmann method. 
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2.5.3    Smoothed Particle Hydrodynamics (SPH) 

Smoothed Particle Hydrodynamics (SPH) can also be used to investigate pore- 

scale transport phenomenon in porous media. First developed for astrophysical appli- 

cations (Lucy 1977; Gingold and Monaghan 1977). SPH has been applied successfully 

to a wide range of problems. SPH is a fully Lagrangian computational fluid dynamics 

technique in which the numerical solution is achieved without a grid. Using this ap- 

proach, fluid velocity, pressure and tracer distributions, discharge velocity, and fluid 

particle pathlines can be computed, as well as other information that would be dif- 

ficult or impossible to observe experimentally or with other numerical approaches. 

SPH has a number of advantages over competing numerical techniques. Mobile solid 

boundaries are difficult to incorporate into more conventional methods, which require 

either continual remeshing of the domain or complicated algorithmic modifications. 

The meshless nature of SPH simplifies the simulation of mobile (Monaghan 1994) or 

even deformable boundaries (Libersky and Petschek 1990; Benz and Asphaug 1995: 

Randies and Libersky 1996). The Lagrangian nature of SPH simplifies the inclusionof 

extra physical effects at a fluid-fluid boundary. For example, it is possible to simulate 

immiscible fluids with SPH (Morris 1999), which is of crucial importance to modeling 

the mobility of non-aqueous phase liquids within a solid matrix. Most, methods suffer 

from an increase in complexity when extended to three-dimensional problems. The 

SPH algorithm remains essentially unchanged when considering one, two, or three 

dimensions. In addition, most formulations of SPH guarantee local conservation of 

mass, momentum, and energy. This is not typically the case with competing methods, 

such as the finite element method. While SPH is versatile, errors can sometimes be 

larger than those obtained using grid-based methods tailored for specific problems. 

Moreover, SPH can be computationally expensive for certain applications, although 

at comparable resolutions, the computational expense of SPH is comparable with 

conventional methods. SPH has been extended to model solid dynamics problems as 

well (Libersky and Petschek 1990; Benz and Asphaug 1995; Randies and Libersky 
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1996) and it has only recently been applied to low Reynolds number incompressible 

flows (Morris et al. 1997; Zhu et al. 1997: Zhu et al. 1999). 

2.6    Summary 

A systematic study of pore-scale transport through spatially periodic porous media 

using a true Lagrangian method has not been reported in the literature. Although the 

flow problem has been studied extensively using both circular and elliptical inclusions 

(Hasimoto 1959; Happel 1959; Snyder and Stewart 1966: Sorensen and Stewart 1974: 

Zick and Homsy 1982: Sangani and Acrivos 1982b: Sangani and Acrivos 19S2a: Larson 

and Higdon 1986; Larson and Higdon 1987; Sangani and Yao 1988a: Sangani and 

Yao 1988b; Drummond and Tahir 1984; Meegoda et al. 1989; Edwards et al. 1990: 

Bruschke and Advani 1993; Ghaddar 1995; Ranganathan et al. 1996; Koch and Ladd 

1997). only a few papers have discussed the problem of diffusion and hydrodynamic 

dispersion for circular inclusions (Eidsath et al. 1983: Koch et al. 1989: Edwards 

et al. 1991; Salles et al. 1993). However, most of the solutions were achieved by 

either solving Brenner (1980a) B field problem or Carbonell and Whitaker (1983) f 

field problem without obtaining the evolution and distribution of concentration. The 

following chapters present a study of pore-scale transport through spatially periodic 

porous media using Smoothed Particle Hydrodynamics. Starting from basic fluid 

flow and diffusion equations, the flow and concentration fields are solved to yield 

values of permeability and coefficient of diffusion and hydrodynamic dispersion. Using 

this Lagrangian approach, all relevant information regarding flow, diffusion, tracer 

convection and hydrodynamic dispersion can be obtained. 
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CHAPTER 3    DEVELOPMENT AND VERIFICATION OF A 

PORE-SCALE FLOW MODEL USING SMOOTHED PARTICLE 

HYDRODYNAMICS 

Smoothed Particle Hydrodynamics (SPH) was originally developed for asirophys- 

ical applications to model compressible fluids at high Reynolds number (Lucy 1977: 

Gingold and Monaghan 1977). SPH is well suited to model compressible flows be- 

cause, in SPH, the fluid is driven by local density fluctuations at the particles. Mon- 

aghan (1994) extended SPH to inviscid incompressible flow problems involving free 

surfaces for high Reynolds numbers and free-slip boundary conditions. Efforts have 

also been made to simulate compressible gases with Reynolds numbers as low as 5 

(Takeda et al. 1994). The extension of SPH to model low Reynolds number (Re < 1) 

incompressible flows calls for modifications of the standard SPH formalism which are 

discussed by Morris et al. (1997), Zhu et al. (1997), and Zhu et al. (1999). In this 

chapter, an overview of SPH is first provided, the SPH numerical approach to model 

porous media flow is discussed in detail and verification of the model is presented. 

3.1     Overview of SPH 

The standard approach to SPH is reviewed by Benz (1990) and Monaghan (1992). 

In SPH. a compressible fluid is represented by a field of disordered particles (Figure 

3.1), typically of fixed mass, which follow the local fluid motion, convect contact 

discontinuities, preserve Galilean invariance, and reduce computational diffusion of 

various fluid properties including momentum. The equations governing the evolution 

of the fluid become expressions for interparticle forces and fluxes when written in SPH 

forms. In standard SPH, each particle carries mass m, density p, velocity u, and other 

fluid quantities specific to a given problem.  The particle is mathematically treated 
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Fluid particle 

Sphere of influence 
for particle a 

Figure 3.1: Sphere of influence for SPH particle a. 
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as an interpolation point at which fluid properties are computed as the weighted sum 

of values from neighboring particles. To illustrate, consider a field quantity .4(r) 

expressed by. 

.4(r) =   f A{r')6{r-r')dT', (3.1) 

where r and r' are position vectors and 5 is the Dirac delta function. If S is replaced 

with an interpolation kernel ir(r./?), an integral interpolant .4,(r) of the function is 

obtained. 

.4,(r) =  / .4(r')ir(r - r', h)dr'. (3.2) 

The kernel typically takes the form, 

H-(r,/.)=i/(^), (3.3) 

where a is the number of dimensions for the problem and h is the smoothing length, a 

natural length scale associated with the method of SPH. The kernel has the following 

properties, 

[w{r-r',h)dr' = l, (3.4) 

and. 

limH/(r-r',/i) = (5(r-r/). (3-5) 
h—>0 

For numerical work. -4j(r) is approximated by a summation interpolant AS(T) over 

the particle field, 

^(r) = V^W(|r-rfc|,/i), (3.6) 
V pb 

where field quantities at particle b are denoted by subscript (,. The quantity -^ is 

the inverse of the number density at particle b and can be considered as the volume 

of fluid associated with that particle. 



using the above concepts, SPH equations governing fluid motion can be obtained. 

For example, the fluid density pa at particle a. may be evaluated by direct particle 

mass summation as. 

Pa  =Y1 mb^'ab- (3-~) 

where. 

irn6 = ir(ra6./o. (3- si 

and. 

Tab = rQ - rb. (3.9) 

Other expressions for derived field quantities at the particles are obtained by sum- 

mations involving the kernel and/or its derivatives. As derivatives can be obtained 

by ordinary differentiations provided that H'(r,/i) is differentiable. there is no need 

for a grid. For example, the gradient and divergence of .4(r) can be obtained by,. • 

VAs(r) = Yl —^VVF(|r - r6|, h), (3.10) 
6      Pb 

and, 

V • As(v) = Y, —A» ■ V^(lr - T»l h), (3.11) 
b    Pb 

respectively. However, in practice, it is usually more accurate to use, 

VA = -(V(pA) - AVp) = -Ym»(Ab - Aa)VW{\r - rb\,h), (3.12) 
P*   b 

and. 

V • A = - (V • (pA) -A-Vp) = —J2 mb(Ab - Aa) ■ VW'flr - rb\,h).       (3.13) 
P*   b 
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3.2    Model Establishment for Pore-Scale Flow Problem 

Groundwater flow is generally regarded as incompressible since the bulk fluid 

velocity is much smaller than the corresponding speed of sound. The solution to an 

incompressible flow problem is achieved by solving the following mass and momentum 

conservation equations throughout the flow domain subjected to proper boundary 

conditions. 

V-u = 0, (3.14) 

_ = —Vp + iA72u + g, (3.1o) 
at p 

where v is the fluid kinematic viscosity. 

While SPH is well suited to model compressible fluids, the required modifications 

and extensions on the method of SPH for modeling porous media incompressible flow 

include treatment of real viscosity, introduction of dynamic pressure concept, choice 

of the equation of state and kernel interpolation, and implementation of no-slip flow 

boundary conditions. 

3.2.1     Equation of State 

SPH cannot model a truly incompressible fluid as in SPH. fluid pressure is an 

explicit function of local fluid density and particle motions are driven by local density 

gradients. In SPH, an incompressible flow must be approximated by solving for the 

flow of a nearly incompressible, or quasi-incompressible, fluid. As a result, to close 

the group of equations used for describing compressible fluids, an equation of state is 

required in the form of, 

P=/(p). (3-16) 

Theoretically the actual state equation for the fluid modeled could be used but this 

usually results in a prohibitively small time step for numerical stability due to CFL 

condition (Courant et al.   1928).   Therefore, in SPH, the incompressible fluid flow 



69 

has to be modeled as a quasi-incompressible flow through a quasi-incompressible 

equation of state. But the choice of the numerical speed of sound should control the 

density variation within a reasonable range. In this work, the chosen sound speed is 

low enough to be practical, and vet high enough to limit fluid density fluctuations 

to about 19c. A similar approach has been used in grid-based techniques to model 

steady incompressible flows (Chorin 1967: Türkei 19S7: Tamamidis et al. 1996). 

Most grid-based techniques model the flow of water as incompressible since the 

speed of sound in water is usually very large compared with the bulk fluid motions 

(i.e.. a very low Mach number). Previous applications of SPH to incompressible flows 

of water (Monaghan 1994: Monaghan 1995b) have modified a state equation suggested 

by Batchelor (1967) which describes sound waves accurately, 

p = »((ä7-'). (317) 

where 7 = 7 and a zero subscript denotes reference quantities. The choice of 7 = 7 

in Equation 3.17 causes pressure to respond strongly to variations in density. Thus, 

perturbations to the density field remain small, even at high Reynolds numbers. 

However, as the density fluctuations increase, small errors in density correspond to 

increasing larger errors in pressure. For lower Reynolds number porous media flows, 

more accurate pressure estimates are obtained using SPH if 7 is taken to be unity as 

in grid-based approaches (Chorin 1967; Türkei 1987; Tamamidis et al. 1996), since 

errors in density and pressure remain proportional. 

In previous work involving incompressible fluids, the subtraction of 1 in Equation 

3.17 was introduced to remove spurious boundary effects at a free surface. It is well 

established that-SPH is unstable when attractive forces act between particles (Mor- 

ris 1994; Swegle et al. 1995; Balsara 1995; Morris 1996b). Consequently, for flow 

simulations in this work, this subtraction was found to lead to numerical instabilities 

in regions of sustained low pressure. Since the simulations (and many other applica- 

tions) have particles filling all space (section 3.3.1), the following artificial equation 

of state is used. 



P = c2p, (3.18) 

where c is the speed of sound. 

The sound speed must be chosen carefully to ensure both an efficient and accurate 

solution of a given problem. The value of c must be large enough that the behavior 

of the corresponding quasi-incompressible fluid is sufficiently close to that of the real 

fluid, yet it should not be so large as to make the time step prohibitively small. 

Monaghan (1994) argued that, for density to vary by at most 19c. the Mach number 

of the flow which is defined as, 

Ma=-, (3.19) 
c 

should be 0.1 or less, where U is the typical fluid velocity scale of the problem. In 

fact, for typical smoothing lengths used with SPH, the kernel interpolation is only 

accurate to within approximately 1%. The principal cause of this variation is small 

fluctuations in density which inevitably occur as particles move past one another. 

Thus, local pressure gradients obtained using a high sound speed are potentially 

noisy. Nevertheless, the velocities obtained are accurate if smoothed either by XSPH 

(Monaghan 1989) or viscosity. It was found that the computed pressure field is in 

close agreement with other techniques when c is chosen such that the density varies 

about 1%. 

Considering the balance of forces in Equation 3.15. c2 should be comparable with 

the largest of, 

Ul  «i Z± (3.20) 
A '£A'   A ' K      ] 

where £ is the typical length scale of the problem, F is the magnitude of the driving 

body force of the flow, and A is defined as, 

A = ^, (3.21) 
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where Ap is the maximum density difference in the flow and p0 is the initial fluid 

density. A value of A = 17c was chosen for this study because SPH kernel inter- 

polation is only accurate to within approximately 1%. The first term in Equation 

3.20 corresponds to that derived by Monaghan (1994). The second and third terms 

ensure that pressure forces are comparable with viscous and body forces, respectively. 

Equation 3.20 provides a first estimate of the sound speed to use for a given problem. 

To obtain a better estimate of c2. an initial simulation is run at low resolution to find 

the distance AL in the direction of the applied body force between the locations of 

minimum and maximum fluid density. The third term of Equation 3.20 then becomes. 

PoFAL 

Ap 

3.2.2    Evolution of Density 

(3.22 

If Equation 3.7 is used to evolve density when modeling incompressible free surface 

flows, particle density is smoothed out at the edge of the fluid and spurious pressure 

gradients are induced at the surface. To avoid this problem, Monaghan (1994) initially 

set the density to a reference value, applied a more accurate estimate of the divergence 

of the velocity field, and evolved particle densities according to the following SPH 

equation for continuity, 

?£ = Yimbneb-VaWab, (3.23) 
at       '—*' 

b 

where VQ denotes the gradient with respect to the coordinates of particle a and, 

Ua6 = ua - u6. (3-24) 

Equation 3.23 is derived from the mass conservation equation for a compressible fluid, 

d4 = -pV ■ u. (3.25) 
at 

The simulations of interest here do not involve free surfaces and Equation 3.7 

may be used to evolve particle densities. One disadvantage of this approach is that 

density must be evaluated by summing over the particles before other quantities may 



be interpolated. However, Equation 3.23 allows density to be evolved concurrently 

with particle velocities and other field quantities, thus significantly reducing the com- 

putational effort. Although Equation 3.23 does not conserve mass exactly (Equation 

3.7 does, provided that the total number and masses of particles are constant), this 

is usually only important for faster flows involving shocks. Direct particle summa- 

tion can be used intermittently during a simulation to prevent significant "drift" in 

particle densities regarding to the fluid masses around. 

3.2.3    Evaluation of Acceleration 

The evaluation of particle accelerations comes from the SPH form for the momen- 

tum equation which is dependent on how to evaluate the pressure gradient accelera- 

tion and implement the fluid viscosity. Benz (1990) had detailed derivation for this 

equation for inviscid fluids. 

3.2.3.1     Pressure Gradient Acceleration 

In SPH, the pressure gradient acceleration term in Equation 3.15 is usually sym- 

metrized by writing, 

- = V (P-) 4- 4VP. (3.26) 
P \Pj P2 

This results in the most common SPH expression for the term, 

1T7  \ V^        [Pa   ,   Pb -Wr-S^zr-"''       (327) 

Provided that the kernel is an even function of r, Equation 3.27 conserves linear 

and angular momenta exactly since the forces acting between individual particles are 

antisymmetric. It is natural because of the law of action and reaction. Momentum 

conservation can be satisfied by an infinite number of symmetric forms of the pressure 

gradient acceleration term given by Monaghan (1992), 

-f-Vp)    =-5>6(-^ + -^Wiyo6l (3.28) 
\p    Ja      V     KPiPb      PIPI V 



where e may take any value. The following form (i.e., e = 1) provides certain advan- 

tages for problems involving contact discontinuities, and was used for the research 

described herein. 

1„   \ V^ fPa+Pb 

3.2.3.2    Viscosity 

Many forms of artificial viscosity have been proposed for modeling viscous fluid in 

SPH (Benz 1990: Monaghan 1992). The most commonly used form is incorporated 

into the momentum equation as. 

dua ST*—   (P*+Pb 

b 
dt 

y m (PI+HL + nab) vawab + g. (3.30) 

where. 

n ab 

-0.5Q(CC + Cb)jj,ab + 3Jl\h      :flll.rt<r-n- 
 r, -1 ; \ u   uab     lab ^ u^ O.o{pa + pb) (3.31] 

otherwise, 

Pab 
huab ■ Tgb 

r2
ab + 0.01h^ 

(3.32) 

This viscosity is Galilean invariant and conserves total linear and angular momenta. 

The na6 term produces a shear and bulk viscosity which permit the modeling of strong 

shocks, a and 0 are chosen to be 1 and 2, respectively, for best results. The 0.01/z2 

term is included to keep the denominator nonzero. In this form, viscosity is intended 

only to provide the needed dissipation at a shock front to convert kinetic energy into 

internal energy, so it is only active for approaching particles. 

Although this formulation has been used to model real viscosity (Artymowicz and 

Lubow 1994), it produced inaccurate velocity profiles for simulations in this work. 

Equation 3.30 guarantees conservation of angular momentum, which is important 

for applications involving relatively large fluid velocities or an unbounded fluid edge. 

Since the applications in porous media flow involve low velocities and SPH particles 
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fill all space, a more realistic form of viscosity has been adopted. Other expressions 

have been proposed to model real viscous forces: however, their implementation re- 

quires nested summations over the particles and hence twice the computational effort 

(Flebbe et al. 1994; Watkins et al. 1996). or second derivatives of the kernel which 

introduce sizable errors at low resolution interpolations (Takeda et al. 1994). This 

method employed an SPH estimation of viscous diffusion as, 

,   ^2   x        /Vrrf   \        V^ mb(ßg + ßb)rab • VaU'a6 l^V uL =     -V U       =>     —^ n _ ...,■ Ua6. (6.66) 

Equation 3.33 is based on a similar SPH expression used by Monaghan (1995a) to 

model heat conduction. This hybrid expression combines a standard SPH first deriva- 

tive with a finite difference approximation of a first derivative. By taking a Taylor 

expansion about particle a, it can be shown that this expression is approximate (Mon- 

aghan 1995a). This formulation conserves linear momentum exactly, while angular 

momentum is only approximately conserved. If the kernel takes the form of Equation 

3.3. Equation 3.33 simplifies to, 

,    _2    x           V^ mb(ßa + ßb)Uab      1     dWab /oq,\ 
(l/V  U)a =   >      -. |-ö • (3-34) 

L PaPb rai   drab 
o 

Substituting Equations 3.29 and 3.34 into Equation 3.15, the SPH form of the mo- 

mentum equation is, 

dua y-^       fpa+Pb\v7 „,     , Y^ rnb(ßa + ^b)Uqfe (   1    d\Yab\ .       . 
= _ \     mb\       VaWat + >            , r-~       + g,     (3.35) 

dt b V   P«Pi>   / a papb ^'ra6'      ab ' 

which is used to evaluate particle accelerations. 

3.2.4     Dynamic Pressure 

For low Reynolds number flows, local variations in pressure gradient which force 

fluid motion can be very small in comparison to the hydrostatic pressure gradient. 

This is of special significance to SPH since pressure is obtained using an explicit func- 

tion of density and is only accurate to about 1%. Consequently, for many problems, 

it is simpler to model the dynamic pressure pd defined as, 

Pd = Pt~ Ph, (3-36) 



<z> 

where pt and ph are the total and hydrostatic pressures, respectively. Thus, it is 

the dynamic pressure which is modeled by Equation 3.18 and used in Equation 3.35. 

Since pressure appears in the Navier-Stokes equations only as a gradient, the effect 

of ph is that of a body force. 

--Vpt = —Vpd - -Vph. (3.37) 
P P P 

Substituting Equation 3.37 into Equation 3.15 gives, 

^ = _IVpd + *,V2u + g - -Vph = --VPd + i/V2u + F, (3.3S) 
dt p p p 

whet e F is the net body force driving the flow defined as. 

F = g--Vpfc> (3-39) 
P 

i.e.. fluid particles move in response to an imbalance of forces due to gravity and a 

large-scale static pressure field. Using this approach, pressure gradient driven flow 

through a periodic lattice can be easily simulated. For simplicity, p is used in the 

followings to denote the dynamic pressure Pd- 

3.2.5     Boundary Conditions 

Initial applications of quasi-incompressible SPH involved high Reynolds number 

simulations of free surface flows interacting with free-slip boundaries (Monaghan 1994; 

Monaghan 1995b; Monaghan 1995c). Such work employed boundary particles which 

exerted strong repulsive forces to prevent SPH particles from penetrating solid sur- 

faces. The force has the form of Lennard-Jones form for forces between molecules. 

To realistically model porous media flow, no-slip fluid-solid boundary conditions are 

needed. In addition, for the free surface flows considered by Monaghan (1994), bound- 

ary particles do not contribute to the density of the free SPH particles, thus permitting 

the fluid to freely leave a solid boundary with no pressure-driven restoring force. In 

this work, boundary particles contribute to the density of fluid particles such that 

pressure decreases when fluid and boundary particles diverge. It is possible to imple- 

ment such a boundary condition using image particles (Libersky and Petschek 1990; 
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Libersky et al. 1993; Randies and Libersky 1996). The images are created by re- 

flecting fluid particles across the boundary with opposite velocities. This procedure 

works well for straight channels, but introduces density errors for curved surfaces. 

Takeda et al. (1994) achieved a no-slip boundary condition using special boundary 

terms which mimic a half-space filled with SPH image particles. While the approach 

has proved useful for compressible and moderate to high Reynolds number flows, it 

did not yield sufficiently stable results for quasi-incompressible low Reynolds number 

simulations. 

In this work, real SPH particles are used to create no-slip boundaries. These 

particles contribute to the usual SPH expressions for density and momentum, and 

their own densities are also evolved. Evolving the densities of boundary particles was 

found to better capture peak pressures than if the densities of boundary particles 

were kept constant. Obstacles are created by initially placing SPH particles on a 

regular lattice and deleting those particles which fall within the solid matrixes. Then 

boundary particles are placed in layers parallel to the solid surfaces. Figure 3.2 

illustrates the concept for a curved boundary. 

For each fluid particle a, the normal distance da to the boundary is calculated. 

This normal defines a tangent plane (a line in two dimensions) from which the normal 

distance dB to each boundary particle B is calculated. The velocity of particle a is 

extrapolated across the tangent plane, assuming zero velocity on the plane itself, 

giving each boundary particle the velocity, 

uB = -^u.. (3.40) 
da 

By doing so, boundary particles are assigned artificial velocities such that antisymme- 

try in the velocity field is created across the boundary surface. Ideally, local estimates 

of the velocity gradients at the surface of the boundary would be used to assign these 

artificial velocities to interior points, however, such estimates would require a second 

summation over the particles and, hence, a substantial increase in the computation 

efforts. The approach presented here is simple, stable, accurate, and requires little 

extra computation. 
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Figure 3.2: Construction of no-slip fluid-solid boundary for a curved surface. 

If the boundary is in motion. uQ should be replaced by the fluid velocity rela- 

tive to the boundary. The artificial velocity uB is used to calculate viscous forces, 

whereas the actual boundary velocity is used to evolve boundary particle positions 

and densities. In practice, the discrete arrangement of boundary particles may permit 

a fluid particle to closely approach the nominal curve describing the boundary. In 

such circumstances, potentially large artificial velocities for boundary particles may 

result. To prevent this problem, da is bounded according to. 

max(rfa, —Ax), (3.41) 

where Ax is the initial nearest neighbor distance between fluid particles (Figure 3.3). 

Every SPH particle has its mass associated with. As the first layer of boundary 

particles is placed on the solid surface, the porous medium simulated actually has a 

lesser porosity than intended. This effect diminishes as Ax decreases. 
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Figure 3.3: Initial hexagonal configuration of SPH fluid particles. 

3.2.6    Interpolation Kernel 

The interpolation kernel is used to calculate a weighted sum of fluid properties 

at a point. The use of different kernels for SPH is analogous to the use of different 

finite difference operators for the finite difference method. Most SPH applications 

employ a cubic spline kernel (Schoenberg 1946; Monaghan and Lattanzio 1985) since 

it resembles a Gaussian while having compact support, 

W{r, h) = 
10 

l-|s2 + |s3    if 0 < s < 1; 

(2 - sY if 1 < s < 2; 

if s > 2, 

(3.42) 

where, 

m 
h 

(3.43) 

and the above equation is normalized for two dimensions. However, it has been 

shown that SPH can be unstable to transverse modes when kernels with compact 

support are used (Morris 1994; Morris 1996b). As higher-order splines more closely 

approximating a Gaussian are employed, these instabilities are reduced. One reason 



for the poor performance of lower-order splines is that the stability properties of SPH 

depend strongly upon the second derivative of the kernel. The second derivative of the 

cubic spline is a piecewise-linear function, and. accordingly, the stability properties are 

inferior to those of smoother kernels. For low Reynolds number quasi-incompressible 

flow simulations, cubic spline kernel rapidly produced significant noise in pressure 

and velocity fields. The following quintic spline kernel (Schoenberg 1946) has been 

chosen in this work, here normalized for two dimensions, which results in much less 

noise in the pressure and velocity fields. 

"•'(r,/i) = — 

(3 _ sf - 6(2 - s)'° + 15(1 - s)5    if 0 < s < 1: 

478nh2 

(3 - sY 

(3 - sY 

0 

- 6(2 - s) if 1 < s < 2; 

if 2 < s < 3; 

if s > 3. 

(3.44) 

Figure 3.4 shows Wh2 as a function of 6- for the quintic spline kernel given by Equation 

Figure 3.4: Wh2 versus s for quintic spline kernel. 
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3.44. By using a quintic spline, particles interact within a distance of 3/i (Figure 3.1). 

This produces property estimates that are smoother than those obtained using a 

cubic spline. The numerical solution also has better stability properties as a result 

(Morris 1996b). The quintic spline is. however, more computationally expensive than 

the cubic spline by approximately a factor of two. 

3.2.7    Locating the Nearest Neighboring Particles 

As defined by a kernel with compact support, each particle has a finite number 

of "neighboring" particles with which it interacts. For the quintic kernel, particles 

interact within a distance of 3/i (Figure 3.1). The problem still remains, however, to 

efficiently identify these interacting pairs of particles. In this work, an algorithm em- 

ploying a linked list data structure is used to locate neighboring particles (Monaghan 

and Lattanzio 1985; Morris 1996a). 

The computational domain is divided into square cells, each with a side length 

of 3/i. A list of particles belonging to each cell is created. A particle located within 

a given cell then must only consider interactions with particles in neighboring cells. 

The lists of particles within each cell are implemented as linked lists. That is. there 

is a pointer to the first particle in a cell, and that particle then points to the second 

particle and so on. In one dimension, the algorithm reads as: 

for i = 1 to all particles do 

j = int{(xi - xmin)/(3h)) 

nexti — headj 

headj = i 

hcadj is a pointer to the first particle in cell j, and is initially set to 0, while nexti is 

a pointer from particle i to the next particle in the linked list, headj will point to 0 

if cell j is empty and nexti will point to 0 if particle i is the last particle in the list. 

Finding the nearest neighbors of particle i in cell j is now performed as: 

for cell = j — 1 to j + 1 do 

k — headceii 
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while {k ± 0) do 

consider particle k 

k = nextk 

However, in practice, it is much more efficient to create a temporary list of particles 

in a given cell and interacting neighboring cells and evaluate the interactions between 

them. Also, it is enough to only consider the neighboring cell to one side of the home 

cell because the cell on the other side will consider this home cell as its neighboring 

cell and include it. For example, considering the SPH interactions for cell j. a list of 

particles from cell j (home cell) and cell j + 1 (the neighboring cell to the right) is 

created: 

i = 0 

k = headj 

while {k ^ 0) do 

i = i + l 

listi = k 

k = nextk 

k = headj+\ 

while [k ± 0) do 

i = i + l 

listi = k 

k = nextk 

ntotai — * 

Then the SPH contributions can be readily obtained by considering pairs of particles 

as: 

for ii = 1 to nhome do 

a = listig 

for %i = i\ to ntotai do 

b = listi2 

consider particles a and b 
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These loops consider all the interactions between particles in the home cell j with 

each other and with those particles in the neighboring cell j + 1. The first loop is over 

nhnme particles while the second is over ntotai particles since the interactions between 

particles in the neighboring cell with themselves are not intended. 

3.2.8    Time Integration 

The time integration of SPH equations can be performed using the same basic 

approaches which are employed for other explicit hydrodynamic methods. The chosen 

method should provide high order accuracy with a minimum number of sweeps over 

the particles. In this model, explicit time integration is performed using the modified 

Euler method in which the time step r is limited by stability constraints. The CFL 

condition (Courant et al. 1928) essentially states that the maximum numerical rate 

of propagation of information must exceed the physical rate. In SPH. this translates 

to. 

T < 0.25-. (3.45) 
c 

Additional constraints arise from the magnitude of particle accelerations fa (Mon- 

aghan 1992). 

(3.4C) a   y /Q 

and viscous diffusions, 

h2 ,     ^ 
T < 0.125 — . (3.47) 

v 

Equation 3.47 is based upon the usual condition for an explicit finite difference method 

simulating diffusion. For simulations having high resolution (small h) or large vis- 

cosity, Equation 3.47 is typically the dominant time constraint. The choice of kernel 

and the initial arrangement of particles influence the coefficients in Equations 3.45 to 

3.47. In particular, different splines can have different "effective" resolution lengths 

for the same value of h. For example, use of a cubic spline (which is "narrower" than 
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a quintic for the same smoothing length) may require slightly smaller coefficients in 

the above expressions. 

The time stepping is carried out using a predictor-corrector scheme (Al-Khafaji 

and Tooley 1986). The following equations are used to obtain the field quantities at 

the next time step, 

ii=x° + Iu°: (3.49) 

p*=p° + £/° (3-50) 

i   _ i   ~i 
fi =/(m,i5,ü5,p5,...), (3-51) 

/;=/(mTx5,ü*,-), (3.52) 

ui = u°+ £/«*, (3-53) 

X2 = x° + -it«, (3.54) 

I n      r i 

p\=p* + Lft, (3.55) 

t/1=2t/^-t/°, (3.56) 

x1 = 2x5 _ x\ (3.57) 

p1 = 2p± - p°, (3.58) 

where the superscripts are the time step index, and fa and fp are the acceleration and 

rate of change of density, respectively. In practice, the predictor step uses values of fa 

and fp at the previous midpoint, e.g.. /° = /„ 5, since this reduces the computation 

work without changing the order of the scheme. 
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3.3    Model Initialization and Execution 

3.3.1    Initialization 

For each simulation, fluid particles are initially placed throughout the compu- 

tational domain, i.e., the unit cell of the periodic porous medium, in a hexagonal 

arrangement (Figure 3.3). Each particle is assigned an initial density p0. an initial 

velocity of zero, and a mass ma = p0\'a. where TQ is the volume associated with parti- 

cle a (Figure 3.3). Fluid particles that fall within the solid matrixes are deleted. The 

choice for the number of fluid particles is governed by the desired resolution and the 

computational expense. Larger numbers of particles produce more accurate results 

but also increase computation time. For porous media simulations, it is recommended 

that each pore throat should be spanned by at least 15 particles. As a result, the 

computation time for problems having small porosity (i.e., narrow pore throats) dra- 

matically increases due to the larger number of particles and the reduced numerical 

time step (Equations 3.45 to 3.47). 

Boundary particles are placed on the solid inclusions using a pseudo-hexagonal 

arrangement (Figure 3.2). The first layer of boundary particles are positioned on 

the perimeter with an equal spacing of approximately Ax (depending on the size of 

the solid obstacles). A second layer of an equal number of particles is then placed 

at a distance of X^-Ax from the boundary. A third layer of particles is positioned 

similarly and the process is continued until boundary particles fill an annular zone 

having a thickness of at least 6/i from the solid surface. Particles farther than 6/i are 

not needed because they would not contribute to the calculations due to the use of 

quintic spline kernel. Once the boundary particles are positioned, each is assigned 

a mass consistent with its contributing volume and an initial density of po. The 

solid inclusion is usually large enough to accommodate the annular zone of boundary 

particles. However, when it is small, Ax may be reduced to enforce the boundary 

particle condition (i.e., an annular zone having a thickness of at least 6/i from the solid 

surface). In this work, the number of total SPH particles Npart (including boundary 
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particles) chosen for a simulation is either determined by having about 20 particles 

spanning the narrowest pore throat or having enough boundary particles for the solid 

inclusions. 

The positioning of boundary particles disrupts the initial hexagonal arrangement 

of fluid particles in the problem domain. To account for changes in particle density 

near the boundaries, the initial density field (fluid particles and boundary particles) 

is recalculated using direct summation (Equation 3.7). Once particle densities ai 

corrected, a body force F is applied to initiate fluid motion. F is related to the 

hydraulic gradient i by. 

i = -. (3.59) 
9 

e 

In this model, F can be applied in any direction. Periodic unit cell boundary condi- 

tions are applied to all fluid quantities and the flow is driven by the effective body 

force. 

3.3.2    Execution 

Once the body force is applied to the system, particle densities are evolved accord- 

ing to Equation 3.23 and particle accelerations are computed using Equation 3.35. 

The smoothing length h is chosen equal to 2Az for the quintic kernel. To ensure sta- 

bility of the integration scheme, the time step is limited according to the conditions set 

forth in section 3.2.8. Particle velocities, positions, and densities are updated using 

a predictor-corrector method (section 3.2.8). No-slip fluid-solid boundary conditions 

are simulated by assigning artificial velocities to the boundary particles using Equa- 

tion 3.40. Although computationally less expensive, Equation 3.23 does not conserve 

mass exactly and may introduce errors over the course of a simulation. To correct for 

this', particle densities are updated every 50 time steps by direct summation (Equa- 

tion 3.7). Using this procedure, computational speed is maintained and fluid mass is 

conserved as well. Locating neighboring particles is achieved by creating the linked 

lists for SPH particles (section 3.2.7). 
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Periodic unit cell boundaries are created through the use of solid inclusion and 

fluid particle images (Figure 3.5), and by wrapping fluid particles around the flow- 

domain when they leave one boundary (Figure 3.6). Image fluid particles and solid 

inclusions are created within a distance of Zh (i.e.. one quintic kernel radius) from 

the unit cell to provide the necessary ""neighbors" for particles within the cell. 

Boundary for image particles 

 1 _. 

Figure 3.5: Construction of image particles to simulate a periodic porous medium. 

The Darcy velocities vx and vy in x and y directions are defined as, 

1 
iv = 

''unit i 
uxdV, (3.60) 

«"' Jvfluid 

and. 

vy =   /        uydV, 
v unit cell JVfluid 

(3.61) 
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Figure 3.6: Wrapping fluid particles around unit cell. 

respectively. In SPH, they are evaluated as, 

1       Tr-^rnb 
vT_ - 

^'unitcell     i      Pb 

(3.62 

and. 

1 mb 
7 Yl T~Ufc^ 
unit cell     .      Pb 

(3.63) 

where ub,x and ub,y are x and y components of the velocity of particle b, respectively. 

During the course of a simulation, vx, vy, and the maximum particle velocity umax 

are recorded. Cnanges in these values with time are used to determine whether or 

not the flow has reached steady state. 

3.4    Flow Model Verification 

The SPH numerical flow model has been tested in many cases. Simulations using 

the method show close agreement with series solutions for Couette and Poiseuille 

flows and with other solutions for flow past regular lattices of obstacles. 
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3.4.1     Simulations of Couette and Poiseuille Flows 

3.4.1.1     Couette Flow 

Couette flow is simulated between infinite plates located at y = 0 and y = L 

(Figure 3.7). The svstem is initially at rest. At time t = 0. the upper plate moves at 

V_^f^0^:i);~*s^- 1
-^"--^TM?;T11:T ■ "r - j_--> 

'■-:-.'■ " . 

i 

L 

»0 

X \ ' 

Figure 3.7: Couette flow. 

constant velocity u0 parallel to the x axis. The series solution for the time-dependent 

behavior of this flow is, 

2UQ ,      . .„    .      /777T 

71=1 
7Z7T 

„2_2 
ft   it 

'IT' (3.64) 

where ux is the fluid velocity in the x direction. The flow was simulated using SPH 
^ - - kc 

t     11,-,   =    I     /.TV    II I     " for i/ = 10~6 ^-. L = 10_3m, o = 103 -^L u0 = 1.25 x 10~5 *£. and with 50 particles 

spanning the channel. This corresponds to a Reynolds number of 0.0125 if using, 

UQL 
Re = (3.65) 

Figure 3.8 shows a comparison between velocity profiles obtained using Equation 3.64 

and SPH at several times including the steady state solution (f = oo). The results are 

in close agreement within 0.5%, confirming the accuracy of the approach used to eval- 

uate viscous and boundary forces with SPH. Lower resolution simulation completed 

with 20 particles spanning the channel was found to agree to within approximately 

2% of the series solution values. 
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Figure 3.8: Comparison of SPH and series solutions for Couette flow (Re = 0.0125). 

3.4.1.2     Poiseuille Flow 

Poiseuille flow between stationary infinite plates at y - 0 and y = L is simulated 

(Figure 3.9).     The fluid is initially at rest and driven by an applied body force F 

y 

F 
L 

Figure 3.9: Poiseuille flow. 
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Figure 3.10: Comparison of SPH and series solutions for Poiseuille flow (Re. = 0.0125) 

parallel to the x axis for t > 0. The series solution for the transient behavior is. 

/      \      F   i T       \     \—v       4.FL 
ux(y. t) = —y(L - y) + >   ——-——— 

Ti—n \ ' 

7ry .            . \         /    (2n + 1)
2

TT
2
IS 

sin | -±{2n + 1)) exp l-K- jj- 1 

(3.66) 

SPH was used to simulate Poiseuille flow for u = 10~6 ^-, L = 10-3 m, p = 103 -^-, s md 

F — 10~4 ^j, and with 50 particles spanning the channel. This corresponds to a 

peak fluid velocity u0 = 1.25 x 10~5 ™ and a Reynolds number of 0.0125 if using 

Equation 3.65. A comparison between velocity profile obtained using Equation 3.66 

and SPH appears in Figure 3.10. The results are again in close agreement with the 

largest discrepancy being about 0.7% for the steady state solution. Lower resolution 

simulation completed with 20 particles spanning the channel was found to agree to 

within approximately 2% of the series solution values. 

3.4.2    Simulations of Flow Through Periodic Lattices of Obstacles 

The Couette and Poiseuille flow simulations tested the interaction between viscous 

and body forces and the effectiveness of the no-slip boundary conditions in the model. 
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However, these flows are essentially one-dimensional and do not produce variations 

in dynamic pressure. A more challenging test of the method involves flow through 

lattices of obstacles. In this SPH model, circular and elliptical obstacles have been 

implemented. Before presenting the simulations, three kinds of regular arrays of 

obstacles for spatially periodic porous media considered throughout this report are 

introduced. These are square, staggered, and hexagonal arrays of obstacles. 

3.4.2.1     Square, Staggered, and Hexagonal Arrays of Obstacles 

According to Perrins et al. (1979), there are five possible ways of packing obsta- 

cles in regular two-dimensional arrays (International tables for X-ray crystallography 

1962). Three of these arrays—square, staggered, and hexagonal—are used in this 

work. Figures 3.11 to 3.13 depict the unit cell geometry for the three arrays with 

circular and elliptical inclusions.      The unit cell for the square or staggered array 

Unit cell boundary 

H 
Figure 3.11: Two-dimensional cross sectional representations of unit cell geometry for 

square array with circular and elliptical inclusions. 
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Figure 3.12: Two-dimensional cross sectional representations of unit cell geometry for 

staggered array with circular and elliptical inclusions. 

has side length L, and the unit cell for the hexagonal array has side lengths Lx and 

L2 = \/3Li. The staggered array may be regarded as a superposition of two square 

arrays. The circular inclusion is simply characterized by the radius R, while the ellip- 

tical inclusion is characterized by the major axis 2a, minor axis 2b. and the angle a 

(0° < a < 180°) between the direction of the major axis and the positive x direction. 

For circular inclusions, the three lattices are isotropic for fields applied in the plane, 

while for elliptical inclusions, intrinsic anisotropy exists. 

3.4.2.2    Flow Through a Periodic Square Lattice of Circular Cylinders 

The flow through a periodic square lattice of circular cylinders was first simulated. 

This particular configuration has been studied extensively as a simple model of flow 

through fibrous porous media. The periodic flow was simulated using SPH for L = 

0.1m, u = 1CT6 z^-,i? = 0.02 m, F = 1.5 xl0~7^, and c = 5.77x 10~4 ^. Replacing 
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Figure 3.13: Two-dimensional cross sectional representations of unit cell geometry for 

hexagonal array with circular and elliptical inclusions. 
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L with R in Equation 3.65 and taking the velocity scale to be u0 = 5 x 1(T5 ™ 

gives Re = 1. The SPH simulation was run using approximately 3000 particles 

with a nearest neighbor distance Ax of 0.002 m. Steady state was reached after 

approximately 1500 time steps. To investigate long-term behavior, the simulation 

was continued for another 6000 time steps such that particle arrangements became 

disordered. The problem was also modeled using a finite element method (FEM) 

program for steady incompressible viscous flow. Velocity and pressure distributions 

from the two solutions were compared by plotting values within one nearest neighbor 

distance of the four paths described in Figure 3.14. The results were also compared 

Unit cell 

Figure 3.14:   Paths for comparison of SPH and FEM solutions for flow through a 

periodic square lattice of circular cylinders. 

using contour plots. As the FEM employs a mesh to obtain a solution, it is relatively 

easy to obtain contour plots. The corresponding plots for SPH were obtained by 

interpolating the particle quantities to a 50 by 50 array of grid points using the 

quintic kernel. Smoothing lengths of 1 and 3 grid spacings were used for the velocity 

and pressure, respectively. A greater amount of smoothing was needed to remove 

small fluctuations from the pressure field. Contours generated using this method are 

inaccurate in the immediate vicinity of the cylinder. 

Figure 3.15 shows a comparison of velocity profiles obtained using SPH and FEM 

for paths 1 and 2 defined in Figure 3.14. The results obtained using SPH are in close 

agreement with those from FEM throughout the flow domain. Corresponding contour 
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plots of velocity magnitude are shown in Figure 3.16. Good agreement is obtained for 

the bulk of the flow, although the contour smoothing method inaccurately represents 

SPH velocities near the cylinder. 

Figure 3.17 shows the dynamic pressure along paths 3 and 4 in Figure 3.14. The 

arc of path 3 was taken as 0.002 ?n (one SPH nearest neighbor distance) beyond the 

cylinder boundary. The SPH dynamic pressure profile shows small local fluctuations 

in the vicinity of the cylinder. Elsewhere, the SPH and FEM solutions are in close 

agreement. The peaks in the pressure obtained using SPH on the boundary itself fell 

short of the FEM results by approximately 89c. The FEM better captures pressure 

extrema since grid-stretching increases resolution in the vicinity of the cylinder. Cor- 

responding contour plots of pressure given in Figure 3.18 show that good agreement 

is again obtained for the bulk of the flow. This simulation was repeated with twice 

the particle resolution (approximately 11000 particles) and peak pressures were re- 

produced to within 5%. Pressure values in the immediate vicinity of the boundary, 

however, still exhibited small fluctuations. 

Flow through a periodic square lattice of circular cylinders was also solved for 

L = 0.1m, v = 10-4^, R = 0.02m. F = 5 x 10"5 g. and c = 1 x 10~2 f. 

i/o = 1.5 x 10~4 ™ gives Re = 0.03. The steady state of this flow was reached after 

approximately 1500 time steps. However, the initial lattice was relatively unchanged 

at this point. To demonstrate the long-term behavior of the method, the simulation 

was run for another 300000 time steps. A comparison of velocities along paths 1 

and 2 appears in Figure 3.19 and velocity contour plots are shown in Figure 3.20. 

The results obtained using SPH are in close agreement with those obtained by FEM. 

A comparison otpressure fields presented in Figures 3.21 and 3.22 also shows close 

agreement for the bulk of the flow, with similar fluctuations as observed for Re = 1. 

Although pressure extrema on the boundary were not fully captured by SPH, the 

discrepancies were somewhat smaller (about 5%). The simulation was repeated for 

fewer time steps with twice the resolution (approximately 11000 particles) and peak 

pressures were obtained with less than 49c discrepancy. Once again, however, small 

pressure fluctuations were observed near the boundary. 
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Figure 3.15: Comparison of SPH and FEM velocity profiles along paths 1 and 2 in 

Figure 3.14 for Re = 1. 
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Figure 3.16: Contour plots of velocity magnitude using (a) FEM, and (b) SPH for 

Re = 1 (contour lines are labeled in unit of 10~4 ™). 
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Figure 3.17: Comparison of SPH and FEM pressure profiles along paths 3 and 4 in 

Figure 3.14 for Re = 1. 
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Figure 3.18:   Contour plots of pressure using (a) FEM, and (b) SPH for Re - 1 

(contour lines are labeled in unit of 10-6 Pa). 
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Figure 3.19: Comparison of SPH and FEM velocity profiles along paths 1 and 2 in 

Figure 3.14 for Re. = 0.03. 
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Figure 3.20: Contour plots of velocity magnitude using (a) FEM, and (b) SPH for 

Re — 0.03 (contour lines are labeled in unit of 10-4 ™). 
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Figure 3.21: Comparison of SPH and FEM pressure profiles along paths 3 and 4 in 

Figure 3.14 for Re = 0.03. 
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Figure 3.22: Contour plots of pressure using (a) FEM, and (b) SPH for Re = 0.03 

(contour lines are labeled in unit of 10~3 Pa). 
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3.4.2.3     Flow Through a Periodic Square Lattice of Elliptical Cylinders 

The flow through a periodic square lattice of elliptical cylinders was also simulated 

using both SPH and FEM for comparative study. Velocity and pressure distributions 

from the two solutions were compared by plotting values within one nearest neighbor 

distance of the four paths described in Figure 3.23.    The problem was solved for 

Unit cell 

Figure 3.23:   Paths for comparison of SPH and FEM solutions for flow through a 

periodic square lattice of elliptical cylinders. 

L = 2.16 mm, v 10 -6 m 0.771mm, £ = 2. a = 45°, F = 0.001 m 
7- and s • - ~ "■■ -••-•"'  b 

c = 0.012 ^r. The steady state Darcy velocity vx was found to be 8.10 x 10"° ^ using 

SPH and 8.29 x 10~5 ^ using FEM. The two values agree within a 2.3% difference. 

The average value of vx gives Re = 0.06 if a is used as the length scale.  The SPH 

simulation was run for 50200 time steps using 41412 particles with a nearest neighbor 

distance Ax of 0.0108 mm. 

Figure 3.24 shows a comparison of velocity profiles obtained using SPH and FEM 

for paths 1 and_2. The results obtained using SPH are in close agreement with those 

from FEM throughout the flow domain. Figure 3.25 shows a comparison of dynamic 

pressure along paths 3 and 4. The two solutions are in close agreement except at the 

peaks in the pressure in the vicinity of the cylinder. The fluctuations are similar to 

those observed for circular inclusions (Figures 3.17 and 3.21). Figures 3.24 and 3.25 

confirm that SPH is capable of modeling flow past elliptical inclusions in general. 
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Figure 3.24: Comparison of SPH and FEM velocity profiles along paths 1 and 2 in 

Figure 3.23. 
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Figure 3.25: Comparison of SPH and FEM pressure profiles along paths 3 and 4 in 

Figure 3.23. 
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3.4.2.4    Flow Through Periodic Square and Hexagonal Lattices of Circular 

Cylinders 

The SPH model was further used to simulate two-dimensional creeping Hows of 
U 2 

water (p = 103 -\,v = 10-6 ^-) through two spatially periodic porous media. The 

primary objective of the simulations was to verify the results of the model through a 

comparison with other available solutions in the literature. The media are composed 

of circular cylinders having radius R that are arranged in regular square and hexagonal 

lattices (Figures 3.11 and 3.13). For the square lattice, simulations were performed 

for L = 1.2 mm and porosity n = 0.3, 0.4. 0.5. and 0.6. The corresponding values of 

cylinder radius are R = 0.566, 0.524, 0.479, and 0.428mm. respectively. Simulations 

for the hexagonal lattice were performed for L\ = 1.2mm and n = 0.3. 0.4. 0.5. and 

0.6. The corresponding values of cylinder radius for these simulations are R = 0.527. 

0.488. 0.446. and 0.399mm, respectively. The cylinder diameters used in this study 

fall in the size range of medium sand. In particular, to have a better view about the 

SPH fluid particles, the unit cell chosen here for the square lattice is different from the 

one in Figure 3.11. The unit cells used in this section and the paths for comparison 

are shown in Figure 3.26. 

During the course of a simulation, the cylinder drag force in the x direction, i.e., 

"the direction of the applied body force, was also recorded in addition to vx and ux<max 

every 100 time steps. The cylinder drag force in the x direction Fd is the sum of 

boundary particle forces upon the cylinder in that direction. A dimensionless drag 

force Fd is defined as, 

Fd = -^-. (3.67) 
l.iv x 

The Reynolds number and Mach number of a flow are, 

Re = ^, (3.68) 
v 

and. 

Ma = —, (3.69) 
c 



107 

Unit cell boundary 

Unit cell boundary 

(a) (b) 

Figure 3.26:   Paths for comparison of SPH and FEM solutions for flow through a 

periodic (a) square lattice, and (b) hexagonal lattice of circular cylinders. 



lOS 

respectively.   Tables 3.1 and 3.2 present a summary of the results obtained for the 

steady state flows. The small values of Re correspond to creeping flow conditions and 

the small values of Ma indicate that each flow is quasi-incompressible. 

For any SPH simulation, the fluid particles will eventually become disordered 

as they move through the flow domain. Due to the low Reynolds numbers, however. 

steady state conditions were achieved in a considerably shorter time for the numerical 

simulations in this study. The long-term performance of the model was investigated 

for each cvlinder lattice for n = 0.5 and F — 0.049^4. The initial and final panicle 
s 

positions are shown in Figures 3.27 and 3.28 for the square and hexagonal lattices, 

respectively.    The model was run for 39000 time steps for the square lattice and 27506 

time step = 0       t (s) « 0 time step = 39,000       t (s) - 4.3541 

1.2x10 

3x10 

4x10     - 

4x10 8x10 

i (m) 

1.2x10 

3x10 

4x10 

1.2x10" 1.2x10 

(a) (b) 

Figure 3.27: Particle positions for square lattice with n = 0.5 and F = 0.049 ™ (a) 

initial positions^ and (b) final positions. Fluid and boundary particles are shown in 

black and grey, respectively. 

steps for the hexagonal lattice. In each case, the fluid particles were fully disordered 

at the end of the simulation. Figure 3.29 shows uXtTnax and Fd as a function of time 

for each simulation. The values quickly reached steady state, and thereafter exhibited 

only minor fluctuations. The corresponding plot of Darcy velocity is shown in Figure 
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time step = 0       t (s) = 0 time step = 27,506       t (s) = 3.0736 
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4x10 

1.2x10 4x10"* 8x10 
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1.2x10 

(a) (b) 

77? 
Figure 3.28: Particle positions for hexagonal lattice with n = 0.5 and F = 0.049 -j 

(a) initial positions, and (b) final positions. Fluid and boundary particles are shown 

in black and grey, respectively. 
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Figure 3.29: Maximum fluid velocity and dimensionless cylinder drag force versus 

time for square and hexagonal lattices (n — 0.5, F = 0.049 ™). 

3.30. Steady state Darcy velocity was also achieved quickly. Figures 3.29 and 3.30 

illustrate that the model is numerically stable well after steady state conditions are 

reached. Each problem was also solved using FEiYl for steady incompressible viscous 

flow. In terms of computation time, SPH reached steady state faster than FEM for 

a similar number of particles and nodes. However, a much longer time was required 

for the SPH fluid particles to become fully disordered. Velocity and dynamic pres- 

sure distributions from the two methods are compared by plotting values within one 

nearest neighbor distance (Ax) of the four paths (A,B,C,D) shown in Figure 3.26. 

Figure 3.31 shows profiles of fluid velocity in the x direction and dynamic pressure 

for paths A and^B, respectively, through the square lattice unit cell for n = 0.5 and 

F — 0.049™. Corresponding plots for paths C and D through the hexagonal lattice 

unit cell are shown in Figure 3.32. For both lattices, the values are in close agree- 

ment with typical errors of about 5%. The plots show that the SPH results are less 

smooth than those obtained using the FEM. This "noise" is due to particles moving 

past each other, which is then amplified by the relatively stiff equation of state.  In 
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Figure 3.30:   Darcv velocity versus time for square and hexagonal lattices [n  - 

TTl^ 0.5. F = 0.049^ 
s 

general, values obtained using SPH show more variability as the compressibility of 

the fluid decreases. The plots also indicate that computed pressures for the hexago- 

nal lattice are not fully realized near the stagnation points of the cylinders. This is 

consistent with the findings in the last few sections which showed that, at comparable 

resolutions, SPH does not fully capture pressure extrema on solid boundaries. The 

FEM better captures the extrema since grid-stretching increases resolution in the 

vicinity of a cylinder. The SPH and FEM solutions are, however, in close agreement 

for the bulk of the flow. 

Four additional simulations were performed for each cylinder lattice for n = 0.5 

and F = 0.0392, 0.0245, 0.0098, and 0.0049 ^. Figure 3.33 shows steady state Darcy 

velocity varies linearly with hydraulic gradient for each lattice, which is in agreement 

with Darcy's law. The computed values of hydraulic conductivity are kHx = 0.0255 -f 

for the square lattice and kHx = 0.0307 ^ for the hexagonal lattice. At n = 0.5, the 

hexagonal lattice has a higher hydraulic conductivity than the square lattice because 

of the larger flow channels in the hexagonal lattice unit cell. Values of kHx are plotted 
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Figure 3.31: Comparison of SPH and FEM results for square lattice (a) velocity profile 

for path A, and (b) dynamic pressure profile for path B (n = 0.5, F = 0.049 -j). 
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Figure 3.32: Comparison of SPH and FEM results for hexagonal lattice (a) velocity 

profile for path C, and (b) dynamic pressure profile for path D (n = 0.5, F = 0.049 -?). 
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Figure 3.33: Darcy velocity versus hydraulic gradient for square and hexagonal lattices 

[n = 0.5). 

as a function of n for both lattices in Figure 3.34.   Noting the linearity of plots in 

Figure 3.33. values of kHx for media having porosities other than 0.5 were calculated 

using F = 0.049 ™. As n increases, kHx increases for both lattices and the difference 

in kHx for the lattices decreases. 

Values of -^ and Fd for each numerical simulation are shown as functions of 
R 

porosity in Figure 3.35. Solutions obtained using FEM as well as published results 

from previous studies (Sangani and Acrivos 1982b; Sangani and Yao 1988b; Meegoda 

et al. 1989; Edwards et al. 1990; Ghaddar 1995), which were obtained for various 

values of R, are also shown for comparison. One additional solution has been included 

in Figure 3.35(a) for the square lattice at n = 0.558 for comparison with the data 

of Meegoda et al. (1989). Values are in good agreement with a maximum difference 

of 59c, indicating that SPH is capable of producing results that are comparable with 
k those obtained using other methods.  Figure 3.35 also indicates that -* is a unique 
R 

function of n for each periodic lattice. 

Recalling the definition of Fd in Equation 3.67, Equation 2.106 leads to the fol- 

lowing relation for the media considered in this work, 
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Figure 3.34: Hvdraulic conductivity versus porosity for square and hexagonal lattices. 

^unitcell — ns^x^d^ (3.70) 

where ns is the number of solid obstacles in the unit cell and AunitCeU is the area of the 

unit cell. This relationship provides another independent check of SPH simulation 

results, which appears in Tables 3.3 and 3.4. It is evident that the maximum error of 

the SPH numerical results is about 69c. 

3.5     Summary 

Necessary extensions have been implemented and tested which allow SPH to model 

incompressible flow through porous media. Test results confirm that the proposed 

modifications to.the equation of state, viscosity formulation, boundary conditions, 

and interpolation kernel result in a method which is stable and accurate. Simulations 

of flow through spatially periodic porous media show Darcy velocity proportional 

to hydraulic gradient, as required by Darcy's law. In addition, the solutions are in 

close agreement with values obtained using the finite element method and published 

solutions in the literature. 
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CHAPTER 4    DEVELOPMENT, VERIFICATION, AND 

APPLICATION OF A PORE-SCALE DIFFUSION MODEL USING 

SMOOTHED PARTICLE HYDRODYNAMICS 

In this chapter, the method of SPH is formulated to solve the convection-diffusion 

equation to model tracer diffusion through porous media. Solutions obtained using 

SPH are compared with other solutions and the model is used to calculate diffusion 

coefficients of spatially periodic porous media for the steady state diffusion problem. 

Diffusion coefficients are then used to calculate nondimensional diffusivities of the 

media. The effects of media properties on the values of nondimensional diffusivity 

are also studied. 

4.1     Model Establishment for Pore-Scale Diffusion Problem 

For the tracer diffusion problem, concentration C becomes a property associated 

with SPH particles in addition to mass m and density p. If the convection-diffusion 

equation (Equation 2.57) is rewritten as, 

^ = doV2C = ^PV2C) (4.1) 
dt p 

it becomes evident that the method used to treat viscosity (Equation 3.33) can be 

adopted to evolve tracer concentration, 

dCa _ fd0p   2   \        y^ mb{d0,apa + d0,bpb)rab ■ VQH qfe^ .^ ^ 
~dT~\7 Ja', PaPb(r2

ab + 0.0lh2) 
b 

where, 

Cab = C„ - Cb. (4-3) 

Accordingly, the time step for the integration scheme is limited by, 

T < 0.125^. (4-4) 
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The following predictor-corrector equations are used to obtain particle concentrations 

at the next time step, 

rt=C°+T-fc, (4.5) 

fS = f{m^^~p^cK-), (4.6) 

C*=C° + -fS, (4.7) 

C1 = 2C5-C°, (4.S) 

where fc is the rate of change of concentration in time. As in the flow problem, the 

predictor step uses the value of fc at the previous midpoint (i.e., fc = fc~)- 

The impenetrable solid boundary condition (Equation 2.131) locally requires §p- = 

0. which could be achieved by assigning an appropriate artificial concentration for 

each boundary particle. However, this approach may not prevent solute mass from 

diffusing into the solid phase in a global sense. In this' model, the impenetrable solid 

boundary condition is easily implemented by allowing the exchange of solute mass 

only between fluid particles. 

4.2    Calculation of Diffusion Coefficients of Porous Media Using SPH 

A steady state diffusion problem is solved using SPH to illustrate the calculation 

of diffusion coefficients for spatially periodic porous media (Figure 4.1). Faces x = 

x\ and x — x2 of the medium are maintained at constant concentrations C\ and 

C2, respectively, with C\ > C2. As a consequence of the concentration difference 

C\ — C2, a steady state flow of solute mass necessarily occurs across the medium. If 

the molecular diffusion coefficient d0 is assumed to be constant, that is, independent 

of local concentration C and position R, it is expected on a physical basis that the 

concentration, averaged at a length scale greater than the size of the unit cell, will 

decrease linearly across the medium.   This linear behavior would be obtained for a 



123 

_ C = C2 

Figure 4.1: Steady state diffusion through a spatially periodic porous medium. 
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homogeneous medium under the same conditions.   Hence, a constant macroscopic 

concentration gradient G is introduced as. 

G = c1~c1.^ (4Q) 
X2 — x\ 

where \x is a unit vector pointing in the positive x direction.  The constant macro- 

scopic concentration gradient and the periodicity of the medium inevitably lead to 

a fundamental hypothesis that the local concentration gradient VC is also spatially 

periodic with the same periodicity as the porous medium (Adler 1992). i.e.. 

VC(R) = VC(R + R„), (4.10) 

which results in, 

C(R) = C(R) + G • R, (4.11) 

where C is the spatially periodic component of the concentration field. 

Based on above concepts, a steady state diffusion problem can be solved within a 

unit cell of a spatially periodic porous medium. Thus, the SPH concentration field can 

be used to determine the diffusion coefficients of the medium. For a two-dimensional 

anisotropic porous medium (Figure 4.2), Equations 2.59 and 2.60 lead to, 

— -d   — 
dx       xy dy 

and. 

jx = -dxx— - dxy —, (4'12) 

• A     dC        A     8C U^\ h = -dyx-^~dyy — , (4.13) 

where jx and jy are mass fluxes in x and y directions, respectively.   If a concentra- 
AC 

tion gradient ^- is imposed in the x direction only (Figure 4.2(a)), these equations 

become, 

AC1 

Jx = -dxx-i-, (4-14) ax 

and. 

jy =  -dyx^. (4-15) 



125 

In this case, jx and jy are evaluated from the discrete SPH fluid particles as. 

and. 

y—> dCg ma 

^ dx  pa 
i   - -da—  (4.16; ]x —    «o    ^-^ ma 

v       ' 

Pa 

■^ dCg ma 

dlJ    Pa 
Jy —    "o    v-^ m, sr^ ^a 

Pa 
a 

where $£* and ^f2- are the local concentration gradients in x and y directions. 
ox oy 

respectively, at particle a. Values of dxx and dyx are obtained from Equations 4.14 to 

4.17. If another concentration gradient ^ß is imposed in the y direction only (Figure 

4.2(b)). the same procedure leads to values of dxy and dyy. 

In SPH, the local concentration gradient VCa is evaluated as, 

VCa = V ^CbaVaWab. (4.18) 

If particle a is close to a solid inclusion, the absence of particle concentrations within 

the inclusion has to be taken into account. To do this, Equation 4.18 is used to obtain 

an intermediate estimate (VCQ)*, 

(VCa)* = £—OaVaWo*, (4.19) 
b      Pb 

which is then corrected by a factor Ca. 

VCa = (VCay/Ca, (4.20) 

where, 

Ca = £ —W*- (4-2l) 

6      Pb 

Ca reflects the local number density of fluid particles contributing to the concentra- 

tion at particle a. Similar approaches have been used to improve the accuracy of first 



126 

C= 1 c = o 

(a) 

c = o 

C= 1 

(b) 

Figure 4.2: Problem geometries to determine diffusion coefficients of an anisotropic 

porous medium (a) a concentration gradient is imposed in the x direction, and (b) a 

concentration gradient is imposed in the y direction. 
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derivatives (Randies and Libersky 1996) and calculation of surface tension force (Mor- 

ris 1999) and can be derived within the formalism of element free Galerkin methods 

(Belytschko et al. 1996). 

The diffusion coefficients of a porous medium depend on both medium properties 

and the molecular diffusion coefficient of the interstitial fluid d0. The influence of dQ 

is separated out by defining the nondimensional diffusivity d* (Equation 2.5S) and 

d* (Equation 2.61) for isotropic and anisotropic porous media, respectively. These 

values are functions of the media only. 

4.3    Model Initialization and Execution 

4.3.1    Initialization 

For each simulation, fluid and boundary particles are initialized in the same way 

as for the flow problems described in Chapter 3. Since SPH fluid particles do not 

move for a pure diffusion simulation, particle velocities are not computed. This also 

results in a constant density field and the same neighboring particles for every SPH 

particle throughout a simulation. 

After positioning fluid and boundary particles, linked lists are created for the 

particles and the density field is recalculated. The linked lists and density field remain 

unchanged thereafter (i.e., x* = x° and p* = p° in Equation 4.6). For the problem in 

Figure 4.2(a), concentrations on the left and right edges of the unit cell are assigned 

to be 1 and 0. respectively, resulting in a concentration gradient of -£-. For the 

problem in Figure 4.2(b), concentrations on the bottom and top edges of the unit 

cell are assigned to be 1 and 0, respectively, resulting in a concentration gradient of 

-r-. To expedite the solution, the concentration field in the computational domain is 

initialized according to the imposed macroscopic concentration gradient. 
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4.3.2    Execution 

Once the concentration field is initialized, rates of change of particle concentrations 

are computed using Equation 4.2. The quintic spline kernel is employed and the 

smoothing length h is chosen equal to 2Ax. The time step is limited according 

to Equation 4.4. Concentrations are updated using the predictor-corrector method 

described by Equations 4.5 to 4.8. The impenetrable solid boundary condition is 

implemented by allowing the exchange of solute mass only between fluid particles. 

Image particles and solid inclusions are created within a distance of 3h (i.e.. one 

quintic kernel radius) from the unit cell to provide the necessary •"neighbors" for 

particles within the cell (Figure 3.5). Concentrations of the image fluid particles are 

updated according to Equation 4.11 to maintain the imposed concentration gradient. 

Values of particle concentrations are recorded periodically during the course of a 

simulation to determine the diffusion coefficients of the porous medium. Changes in 

these values with time are used to determine whether or not the diffusion process has 

reached steady state. 

4.4     Diffusion Model Verification 

The SPH diffusion model has been tested for many cases. Simulations using the 

method show excellent agreement with analytical solutions for diffusion in aqueous 

solution and close agreement with other solutions for diffusion through a regular 

lattice of obstacles. 

4.4.1     Simulations of Diffusion in Aqueous Solution 

Two cases of diffusion in a pure aqueous solution with a molecular diffusion coeffi- 
2 

cient of d0 = 10-10 ^- were simulated using SPH. Figure 4.3 shows the geometry for 

one-dimensional diffusion of a substance initially confined to the region —h < x < +h. 

The analytical solution for the values of concentration as a function of time and po- 

sition is (Crank 1975), 
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C=^(er/(^)+er/(2^. 
(4.221 

C 

(4.23) 

M'ofiles 

where erf is the error function defined as. 

etf (3) = ^T /   exp(-ri2)d7]. 

Figure 4.4 shows a comparison between the normalized concentration (^ 

obtained using Equation 4.22 and SPH for h = 0.0004 m at several times. The SPH 

solution was obtained with 20 particles spanning the distance h. The maximum error 

of SPH is about 0.5%. confirming the accuracy of the approach. 

X 

h 

Figure 4.3: Geometry for one-dimensional diffusion in an aqueous solution. 

Figure 4.5 shows the geometry for the diffusion of a substance initially confined in 

a circular area of radius R (i.e.. diffusion due to an instantaneous cylindrical source). 

The analytical solution for the values of concentration as a function of time and 

position is (Crank 1975), 

^/'""(-äW^H     (4-24) 
2d0t        \   4d0tj 

where IQ is the modified Bessel function of the first kind of order zero. Figure 4.6 

shows a comparison between the normalized concentration (JJ-) profiles obtained 

using Equation 4.24 and SPH for R = 0.0005 m at several times. The SPH solution 

was obtained with 25 particles spanning the distance R. Again, the results are in 

excellent agreement with a maximum error of about 0.5%. 
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0.0005       0.001       0.0015       0.002       0.0025 

jc(m) 

Figure 4.4: Normalized concentration versus distance for one-dimensional diffusion iii 

an aqueous solution. 

Figure 4.5: Geometry for two-dimensional diffusion in an aqueous solution. 
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o     SPH/=100(s) 

G     SPH /=400(s) 

x     SPH 1= 1600 (s) 

 Equation 4.24 

0.2-' 

0 0.0005       0.001       0.0015       0.002       0.0025 

r(m) 

Figure 4.6: Normalized concentration versus distance for an instantaneous cylindrical 

diffusion source. 

4.4.2    Simulations of Diffusion Through Periodic Lattices of Obstacles 

A more challenging test of the method involves diffusion through obstacles ar- 

ranged in a periodic lattice. Steady state diffusion through a square lattice of circular 

cylinders was simulated using SPH for d0 = 1(T10 ^-,L = 2 mm, and R = 0.5mm. 

A solution for the same problem was also obtained using a FEM program. The re- 

sults from both solutions are compared in Figure 4.7. Another comparison appears 

in Figure 4.8 to confirm the abilitv of the model to treat elliptical inclusions.   The 

latter problem was solved for d0 10 -10 777' -, L = 2 mm. a = 0.8 mm. f = 2, and 

a = 45°. Good agreement is obtained for the bulk of the void space in both cases. 
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x (mm) 

(a) 

(b) 

Figure 4.7: Contour plots of concentration using (a) FEM, and (b) SPH for a square 

array of circular cylinders. 
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(a) 

(b) 

Figure 4.8: Contour plots of concentration using (a) FEM, and (b) SPH for a square 

array of elliptical cylinders. 
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4.4.3     Simulations of Diffusion Through Composite Media 

If the solid phase is assigned a non-zero molecular diffusion coefficient (i.e., the 

solid inclusion is penetrable in terms of tracer diffusion), effective diffusion coefficients 

for diffusion through the resulting composite medium can be calculated. To do this. 

SPH boundary particles are treated as fluid particles having a different diffusion coef- 

ficient. In this case, boundary particles must span the entirety of solid inclusion, not 

only an annular region from the solid surface. The problem of calculating composite- 

media diffusion coefficients dates back to the classical studies of Maxwell (1S73) and 

Rayleigh (1892). Perrins et al. (1979) furnished a complete theoretical solution of the 

effective conductivity problem for circular cylinders in square and hexagonal arrays 

by extending the method of Rayleigh (1892). Table 4.1 shows the comparison be- 

tween the values of nondimensional diffusivity d* obtained using SPH and published 

by Perrins et al. (1979) for square arrays of circular cylinders (Figure 4.9). The 

solutions are in close agreement with a maximum difference of about 5.5%. The SPH 

solutions approach the values of Perrins et al. (1979) as the resolution (i.e., number 

of particles Npart) increases. 

Figure 4.9: Unit cell of a square array of circular cylinders. The interstitial phase has 

a diffusion coefficient of d0 and the cylinder has a diffusion coefficient of ßdo- 



Table 4.1: Values of d* for composite media. 
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porosity 0 hpart SPH solution Perrins et al. (1979) difference 

0.6 2 11600 1.3136 1.3080 +0.439; 

0.6 2 46000 1.3120 1.3080 +0.31% 

0.6 5 11600 1.7785 1.7307 + 2.76% 

0.6 5 46000 1.7568 1.7307 + 1.51% 

0.6 10 11600 2.0900 1.9806 +3.52% 

0.6 10 46000 2.0370 1.9806 +2.85% 

0.4 2 46000 1.5076 1.5028 +0.32% 

0.4 5 46000 2.4251 2.3744 +2.14% 

0.4 10 46000 3.1796 3.0372 +4.69% 

4.5    Diffusion Model Application 

The steady state diffusion problem was solved using SPH for spatially periodic 

porous media with circular and elliptical cylinders arranged in square, staggered, and 

hexagonal arrays. Diffusion coefficients were obtained from the steady state concen- 

tration fields, and then used to calculate values of nondimensional diffusivity d*. The 

effects of specific surface area 50, porosity n, anisotropy, and cylinder arrangement 

on the values of d* are presented. A total of 154 simulations were completed with a 
2 

molecular diffusion coefficient of the interstitial fluid d0 = 10~10 *g-. Impenetrable 

solid boundary condition applies for all simulations in this section (i.e.. ß = 0). The 

SPH simulation results are summarized in Tables 4.2 and 4.3. 



Table 4.2:  Summary of results for diffusion simulations 

with circular cylinders. 
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simulation So {fn"> n R (mm) '^ part d' 

square arra\ 

sql 2000 0.9 1.0 6938 0.S97S 

sq'2 4000 0.9 0.5 693S 0.S97S 

sq3 20000 0.9 0.1 693S 0.897S 

sq4 4000 0.8 0.5 33S4 0.8144 

sq-5 4000 0.7 0.5 6484 0.7536 

sq6 2000 0.6 1.0 9984 0.696S 

sq7 4000 0.6 0.5 9984 0.6968 

sq8 20000 0.6 0.1 9984 0.696S 

sq9 4000 0.5 0.5 9182 0.6339 

sqlO 2000 0.4 1.0 25806 0.564S 

sqll 4000 0.4 0.5 25806 0.5648 

sql 2 20000 0.4 0.1 25806 0.5648 

sql3 4000 0.3 0.5 71458 0.4363 

staggered a rr ay: 

stl 2000 0.9 1.0 12572 0.8976 

st 2 4000 0.9 0.5 12572 0.8976 

st3 20000 0.9 0.1 12572 0.8976 

st4 4000 0.8 0.5 8320 0.8155 

st5 4000 0.7 0.5 11812 0.7527 

st6 2000 0.6 1.0 11240 0.6916 

st7 4000 0.6 0.5 11240 0.6916 

st8 20000 0.6 0.1 11240 0.6916 

st9 4000 0.5 0.5 20228 0.6355 

conti nued on n ext page 
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Table 4.2: Continue. 

simulation So (jfi) n R (mm) ^part d* 

stlO 2000 0.4 1.0 41920 0.5633 

Stil 4000 0.4 0.5 41920 0.5633 

stl2 20000 0.4 0.1 41920 0.5634 

st 13 4000 0.3 0.5 115044 0.4350 

hexagonal array: 

hel 2000 0.9 1.0 13760 0.8975 

he2 4000 0.9 0.5 13760 0.8975 

he3 20000 0.9 0.1 13760 0.8976 

he4 4000 0.8 0.5 8160 0.8156 

he5 4000 0.7 0.5 18892 0.7579 

he6 2000 0.6 1.0 17632 0.7023 

he7 4000 0.6 0.5 17632 0.7023 

he8 20000 0.6 0.1 17632 0.7024 

he9 4000 0.5 0.5 16292 0.6543 

helO 4000 0.4 0.5 19824 0.6110 

hell 2000 0.3 1.0 38884 0.5659 

hel2 4000 0.3 0.5 38884 0.5659 

hel3 20000 0.3 0.1 38884 0.5660 

hel4 4000 0.2 0.5 95884 0.4942 
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4.5.1     Effect of Specific Surface Area 

The specific surface area S0 is based on the solid volume of the porous media. 

surface area of solid inclusions 
So =  : ~f—.. , .    .    . • (4.2o) 

volume ot solid inclusions 

In two dimensions, it becomes. 

perimeter of solid inclusions . 
So =  7 —P—i—: • (4.2b) 

area ot solid inclusions 

In this work, because only uniform solid obstacles are considered. 

So = |, (4.27) 

for circular inclusions and, 

7T 

4 /     v a2 cos2 x + b2 sin2 xdx 
Jo S0 = -^ — , (4.2S) 

nab 

for elliptical inclusions, respectively. 

The effect of S0 on d* was studied by calculating values of d* for the three circular 

cylinder arrays having S0 = 2000^, 4000^, and 20000^. Three porosities of 0.4, 

O.G. and 0.9 were chosen for the square and staggered arrays, while three porosities 

of 0.3. 0.6. and 0.9 were chosen for the hexagonal array. The results are presented in 

rows sql-sq3, sq6-sq8, sql0-sql2, stl-st3, st6-st8, stl0-stl2, hel-he3, he6-he8, and 

hel l-hel3 of Table 4.2. It is evident that d* is not a function of S0 for any case. This 

is not surprising since d* is dimensionless and is thus not a function of any length 

scale. 

4.5.2     Effect of Porosity 

The functional relationship between d* and porosity n was generated using the 

data in Table 4.2 and is shown in Figure 4.10. Values of d* decrease with decreasing n 

for each array, d* is essentially independent of array type for n > 0.6. For n < 0.6, the 

hexagonal array yields larger values of d* while values for the other arrays are nearly 
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Figure 4.10:   Nondimensional diffusivity versus porosity for square, staggered, and 

hexagonal circular cylinder arrays. 

indistinguishable. Due to the absence of diffusion within the solids, the diffusion 

process is controlled by the distribution of voids within the media. The hexagonal 

array has larger diffusion channels with the same porosity than square and staggered 

arrays, and this effect becomes significant when porosity is low, resulting in a larger 

diffusivity for hexagonal array. 

Perkins and Johnston (1963) suggested a single value of 0.7 for d* of consolidated 

granular media. This value corresponds to a medium of a porosity of about 0.6 

according to Figure 4.10. Fried and Combarnous (1971) reported values of 0.4 to 0.8 

for d\ which is consistent with Figure 4.10. Apparently, a value of g for d* predicted 

by Saffman's model (Equations 2.87 and 2.88) only applies to very low porosity media. 

4.5.3    Effect of Anisotropy 

The effect of anisotropy was studied using elliptical inclusions (Figures 3.11 to 

3.13). In Table 4.3, the values of dxx, d*yy, dxy, d*yx, as well as the principal nondimen- 
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sional diffusivities d\ and d*2, and the angle 8 (Figure 2.8) are reported. Equations 2.49 

and 2.50 were employed to obtain d\, d*2. and 8. The values confirm that d*xy = d'yx 

in all cases. 

Figure 4.11 shows -4- and -£ versus the aspect ratio x, respectively, for elliptical 

cylinder arrays having different a. d* is the corresponding nondimensional diffusivity 

of the anisotropic medium's isotropic counterpart, i.e.. the value for a corresponding 

circular cylinder array with the same porosity n and specific surface area S0. Figure 

4.11 shows that the anisotropy of the media increases with increasing | and that the 
/* si* 

values of -4 and -£ are less dependent on o and array type. Figure 4.12 presents 

-4 and -4 versus a, respectively, for elliptical cylinder arrays having different |. In 

Figure 4.12, values of -4 and -£ are grouped in distinguishable bands according to j 

Figure 4.12 also shows that the effect of a increases with increasing j-. It is concluded 

that o influences the directional properties of the anisotropy; while the magnitude 

of the anisotropy of the media, which can be defined as the value of -4. is mainly 

determined by the aspect ratio of the solid obstacles. 

Figures 4.11 and 4.12 were generated for n = 0.8. For the staggered array, some 

simulations were completed for n = 0.5. Figure 4.13 shows -4 and -£ versus £. 

respectively, for the two sets of simulations for staggered array with porosities of 0.5 

and 0.8. As can be seen, a lower value of porosity not only enhances the magnitude 

of anisotropy of the media, it also increases the effect of a. 

The relationship between 9 and a is shown in Figure 4.14 for n = 0.8. 8 is 

almost identical with a for hexagonal arrays, while is slightly greater than a for 

staggered arrays and slightly less than a for square arrays when a is less than 45°. 

In practice, a linear relationship between 9 and a could be assumed, i.e., the first 

principal diffusion axis is aligned with the preferred orientation of the elongated solid 

obstacles. Unfortunately, this is not true when Figure 4.15 is plotted, which also 

shows 8 versus a for the simulations for n = 0.5. A lower value of porosity shifts the 

first principal diffusion axis away from the direction of particle orientation; however, 

the degree of shifting decreases with increasing aspect ratio %. 
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(a) 

1.00-: 

0.90- 

0.80 

0.70 

0.60 

0.50 

(b) 

Figure 4.11: Normalized principal nondimensional diffusivity (a) -4, and (b) -^ versus 

aspect ratio f for elliptical cylinder arrays having n = 0.8 (SQ = square array, ST = 

staggered array. HX = hexagonal array). 
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Figure 4.12: Normalized principal nondimensional diffusivity (a) -A, and (b) -4 versus 

a for elliptical cylinder arrays having n = 0.8. 
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Figure 4.13: Normalized principal nondimensional diffusivity (a) -4, and (b) -^ versus 

aspect ratio £ for staggered elliptical cylinder arrays having n — 0.5 and 0.8. 
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<X: 

a et 

Figure 4.14: 6 versus a for elliptical cylinder arrays having n = 0.8. 

4.5.4     Effect of Cylinder Arrangement 

The effect of cylinder arrangement is manifested in the above figures. Figure 

4.10 shows that a hexagonal array will likely result in a higher d* value than square 

and staggered arrays for the same porosity. The effect of cylinder arrangement on 

anisotropy is minor as seen in Figure 4.12. The values for different arrangements are 

grouped in a narrow band for different aspect ratios. It is interesting to see that, 

hexagonal array always has a value of anisotropy in between those for the square and 

staggered arrays; and square array shows the most anisotropy and the staggered array 

the least when a is less than about 27°. 

4.6     Summary 

Smoothed Particle Hydrodynamics (SPH) has been implemented to model tracer 

diffusion through porous media. Comparative studies confirm the approach is accu- 

rate.   Nondimensional diffusivities d* were calculated using the model for spatially 
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22.5 

-e— STn = 0.8 a/b = 1.5 
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Figure 4.15:  6 versus a for staggered elliptical cylinder arrays having n 

0.8. 

0.5 and 
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periodic porous media with circular and elliptical cylinders arranged in square, stag- 

gered, and hexagonal arrays. The results provide guidance for determining the values 

of d* of real porous media. While specific surface area 50 does not affect d\ porosity 

n and array type were found to be the most and least important parameters, respec- 

tively, which influence the values of d*. Anisotropy of a medium is mainly determined 

by aspect ratio £ of its solid inclusions. 
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CHAPTER 5    PORE-SCALE TRACER CONVECTION AND 

HYDRODYNAMIC DISPERSION SIMULATIONS 

This chapter extends the SPH numerical models described in Chapters 3 and 4 

to study tracer convection and hydrodynamic dispersion in spatially periodic porous 

media. SPH is used to solve the Taylor dispersion problem and explore the charac- 

terization of dispersion as an asymptotic Fickian process. Discrete SPH particle dau 

are analyzed using the method of moments and the advantages and limitations of the 

numerical model are discussed. 

5.1     Pore-Scale Tracer Convection Model 

In the problem of tracer convection (i.e., without diffusion), some fluid particles 

are tagged as tracers and their movement through void system of the porous medium 

is monitored. Being a Lagrangian technique, SPH tracks the trajectories of fluid 

particles naturally and the SPH flow model (Chapter 3) was easily extended to study 

tracer convection. Implementation of the convection-diffusion equation (Chapter 4) 

was not needed for the tracer convection model because there is no mass exchange 

between tracer and tracer or tracer and carrier fluid. Thus, the solute mass associated 

with each SPH tracer particle is constant during the course of a simulation. Tracer and 

fluid particles are simply distinguished as "black" and "white" SPH fluid particles, 

respectively, in this model. 

Due to the periodicity of flow, the tracer convection problem is solved within a 

single unit cell. The flow is first evolved to steady state; then a chosen number of fluid 

(white) particles within the unit cell are tagged as tracer (black) particles. If tracers 

are assumed to have a concentration C, each tracer particle z carries a constant solute 

mass M.z of, 
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_7TU 
MZ=C—. (5.1) 

Pz 

As the flow continues, tracer and fluid particles are wrapped around the unit cell 

in the same manner as described in Chapter 3 (Figure 3.6). However, information 

regarding the wrapping of tracer particles around the unit cell is recorded and used to 

construct the real tracer field in the corresponding spatially periodic porous medium. 

For example, in Figure 5.1(a). if the tracer particle is known to have crossed the upper 

unit cell boundary once and the right unit cell boundary twice, its real position in the 

spatially periodic porous medium is shown in Figure 5.1(b). Calculations are needed 

for only one unit cell to simulate tracer convection using this method. 

5.2     Pore-Scale Hydrodynamic Dispersion Model 

With implementations of both flow (Chapter 3) and convection-diffusion (Chapter 

4) equations, a pore-scale tracer hydrodynamic dispersion model was developed using 

SPH. The SPH model easily simulates the process of tracer hydrodynamic dispersion 

in principle, however, in practice, simulations are limited by computation time. 

In spatially periodic porous media, while the flow field is also periodic in nature, 

this is not true for the concentration field. As a result, in the problem of simulating 

tracer hydrodynamic dispersion, a computing domain consisting of multiple unit cells 

is needed for evolving the concentration field. For example, although the initial tracer 

plume is confined within one unit cell in Figure 5.2(a), the tracer plume at a later 

time spans to six unit cells in Figure 5.2(b). An efficient algorithm to model the 

evolution of concentration which takes advantage of the periodic nature of flow field 

is described below. 

Figure 5.3 shows the initial concentration field for a problem of tracer dispersion. 

The concentration computing domain consists of six unit cells which are identified 

by the (z, j) coordinates. For this tracer hydrodynamic dispersion model, the flow 

field is calculated in a single unit cell corresponding to i = 1 and j = 1. Every SPH 
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(a) 

Unit cell 

(b) 

Figure 5.1:   Tracer particle positions (a) within the unit cell, and (b) within the 

corresponding spatially periodic porous medium. 
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initial tracer plume 

(a) 

tracer plume at time t 

(b) 

Figure 5.2:  Tracer plumes for the problem of tracer hydrodyuamic dispersion:   (a) 

initial tracer plume, and (b) tracer plume at time t. 
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fluid particle only has one set of flow related quantities (e.g., velocity and density) 

and.carries as many concentration values as the number of unit cells which constitute 

the concentration computing domain. In this case, every fluid particle has six values 

of concentration, one for each unit cell in the concentration computing domain. The 

concentration field is determined by the particle concentration values for each unit 

cell. However, particle positions in unit cell (i, j) other than unit cell (1. 1) are not 

needed during the course of a simulation. According to Equation 4.2. the evolution 

of concentration field is driven by local concentration gradients and only the relative 

positions between particles are needed to calculate the rates of change for concentra- 

tion. The relative positions between particles are calculated from the position values 

in unit cell (1,1) and they are the same for every unit cell. For the purpose of analyz- 

ing and visualizing the concentration field, SPH particles (both fluid and boundary 

particles) are mapped to other unit cells from unit cell (1, 1) in the concentration 

computing domain. 

To perform the simulation in Figure 5.3, the flow field is evolved to steady state 

with all particle concentrations equal to zero. In order to initialize the dispersion 

process, particles in area A (Figure 5.4) are assigned C0 = 1 for unit cell (1, 1). 

Likewise, particles in area B, C, D (Figure 5.4) are assigned C0 = 1 for unit cells (1, 

2). (2, 2), and (2, 1). respectively. 

Once the concentration field is initialized, the flow continues according to the 

methods described in Chapter 3 and the concentration field is evolved according to 

the methods described in Chapter 4. As fluid particles are wrapped around the 

unit cell (1,1) and recalling that all SPH particles physically reside in unit cell (1, 

1). concentration values of the wrapped particles are reassigned accordingly. For 

example, as fluid particle a (Figure 5.5) is wrapped back into unit cell (1, 1), its value 

of concentration for unit cell (i, j) after wrapping equals to the value of concentration 

for unit cell (i - 1, j) before wrapping. 

Values of concentration must also be correctly assigned for image fluid particles. 

For example, if particle c is the image particle of particle b in unit cell (1, 1) (Figure 
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initial tracer plume 

i= 1 ;'=2 i = 3 

Figure 5.3: Initial concentration field for a problem of tracer hvdrodynamic dispersion 

in a spatially periodic porous medium. 

A? 

B 

i = 1 

Figure 5.4: Unit cell (1,1) for the problem in Figure 5.3. 
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5.5), the value of concentration for particle c corresponding to unit cell (z, j) is equal 

to the value of concentration for particle b corresponding to unit cell (? + !.;). 

i l>' 

= 1 

: \a 

C^ 1?. 
1= 1 

Figure 5.5: Wrapping fluid particles and creating image particles to simulate tracer 

dispersion in a spatially periodic porous medium. 

The concentration computing domain used in this work consists of a constant 

number of unit cells. A large concentration computing domain is unnecessary during 

the initial stage of a simulation. For example, the unit cells corresponding to column 

i = 3 in Figure 5.3 are not needed when the dispersion simulation begins. It is possible 

to dynamically change the size of concentration computing domain to accommodate 

the evolution of concentration. However, this requires dynamically determining the 

tracer plume front. The advantages of a dynamically changing concentration com- 

puting domain during the course of a simulation are not explored in this work. For a 

constant concentration computing domain, a simulation terminates when the plume 

front crosses the boundary of the domain. A meaningful simulation of hydrodynamic 

dispersion usually requires several tens of unit cells for modeling the evolution of 

concentration. This significantly lengthens the computation time for each simulation. 

Since SPH uses an explicit time integration scheme, the time step is limited by 

stability constraints. For a low Reynolds number flow simulation, the time step is 

usuallv limited bv fluid viscosity according to Equation 3.47, 
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h2 

T < 0.125 — . 
v 

The time step for properly integrating particle-to-partiele diffusion is (Equation 4.4). 

h2 

T < 0.125 —. 
(>o 

As liquids have a Schmidt number Sc = K- on the order of 103 to 10'. the maximum 
rt0 

time step is limited by Equation 3.47 for a simulation of liquid-typo tracer dispersion. 

As a result, the chosen time step is relatively small for evolving concentrations and 

lengthy computer simulations are needed to simulate dispersion phenomena, due to 

the large concentration computing domain. 

5.3    Method of Moments 

Spatial moments of tracer distribution provide an estimation of the permeability 

and dispersivity of porous media (Aris 1956; Horn 1971; Brenner 19S0a). In the 

SPH tracer convection model, the tracer field is characterized by individual tracer 

particle position R and its associated solute mass Mz. The zeroth moment of tracer 

distribution is. 

fdM 1L,MZ 
Mo = J- = -^ . (5.2) 

/ dM0      Z^M^° 

M0 will have a constant value of unity since Mz = Mz$ in this model. The first 

moment of tracer distribution is, 

Mi = —r  = ~ • (5-3) 
/ dM0 l_,M*'° 

M] represents the position of the center of tracer mass and is used to calculate the 

seepage velocity vs as, 

vs = —^-. (D.4) 
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The centered second moment is, 

/(R-M,)VM      E<R--M'>2^ 
J c^ _£  

JdMo HM: 

M2 represents the spreading of a tracer field about its center and is used ro calculate 

the dispersion coefficient as, 

D=_f. (,6, 

Equation 5.6 is consistent with Equation 2.150. 

For the SPH tracer hydrodynamic dispersion model, the solute mass of a given 

particle is not constant and Equations 5.2. 5.3, and 5.5 become. 

JdM       JcdV ^  EC^ 
Mo 1\10  —   — —   —7. —   __^ m.b  ■ 

',0 
JdMo     JCodY     EC^ 

[O.i 

[udM       [RCdV     ERfcCt>^ 

JdM,       Jc0dV       \C»*^ 

and, 

/"(R - MxfdM       /"(R - MtfCdV     S(R" - Ml)2°b 

fdM0 fCodV J2Cb- 

2C mb 

,o  
Pb.o 

where summations are performed over all fluid particles. Due to molecular diffusion, 

every SPH fluid particle could potentially carry some solute mass in the tracer hydro- 

dynamic dispersion model. The zeroth moment (Equation 5.7) will have a constant 

value of unity if tracer mass is conserved during a simulation and this provides a first 

check of the model. 

If tracer dispersion is a Fickian process, the dispersive flux is proportional to the 

concentration gradient (Equation 2.67). It is usually believed that tracer dispersion 
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is an asymptotic Fickian process. Under such conditions, the dispersive flux can be 

characterized by a constant dispersion coefficient after a characteristic time tc, which 

is the time required for the tracer to sample interstitial space of the unit cells (Brenner 

1980a). However, there are some studies in literature where dispersivity may never 

approach an asymptotic value (section 2.3.7). 

5.4    Interpretation of Tracer Diffusion Using Method of Moments 

Figure 5.6 shows the geometry for one-dimensional diffusion of a substance initially 

confined to a finite region.    The solid configuration is a periodic square array of 
2 

circular cylinders. The problem was solved for d0 — 10~10^-. R — 0.5 mm. u = 

O.S. and h = 0.6 mm.  The method of moments was used to calculate the diffusion 

Solute is confined to this region at t = 0 

Figure 5.6: Initial condition for a tracer diffusion through a square array of circular 

cvlinders. 

coefficient in the x direction dx using Equation 5.6 with At = 1570 s. dx was then 

used to calculate the nondimensional diffusivity in the x direction dx (Equation 2.58). 

Figure 5.7 shows d*x as a function of t. Values of d*x approach an asymptotic value 

of 0.S138 with time. For the same media configuration, d*x was found to be 0.8144 

using the steady state diffusion approach presented in Chapter 4 (Table 4.2). The 

method of moments produced a result which is consistent with that obtained using the 

steady state diffusion approach. However, the method of moments simulation used a 

concentration computing domain consisting of 30 unit cells and therefore required a 
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Figure 5.7:   Nondimensional cliffusivity versus time for diffusion through a square 

array of circular cylinders. 

much longer time to run. 

5.5    Simulations of Taylor Dispersion 

Taylor dispersion between stationary infinite plates at y = 0 and y = L (Figure 

3.9) was simulated using the tracer hydrodynamic dispersion model. The method of 

moments was employed to yield Taylor dispersion coefficients which were compared 

with values from Taylor's analytical solution. 

Taylor (1953) derived Equation 2.85 to describe the average cross section concen- 

tration in a cylindrical straight tube. Equation 2.85 indicates that such dispersion 

mav be characterized as an asymptotic diffusional process with an effective disper- 
c>2   2 

sion coefficient Dray/or = d0 + -^-. For the system shown in Figure 3.9; the Taylor 

dispersion coefficient becomes (Home and Rodriguez 1983; Hull et al. 1987), 

D Taylor 
L2v] 

= d0 + 
210<V 

(5.10) 
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where i;s is the average channel velocity determined by, 

1 -FL\ 
12i/ 

The Reynolds number and Peclet number are. 

Lv. 
Re 

(5.11' 

(5.1: 

and. 

Pe 
da  ' 

respectively. The relationship between Drayior and Pe is, 

^Taylor   _ j _Pe
2 

d0 210 

.13) 

15.14) 

SPH was used to simulate Taylor dispersion between stationary infinite plates 

l(T6Zy~, F = 0.05. 0.10. and with L = 0.001m. p = 103 -H. i/ = 10"6 ^-. d0 

0.15 ^r. and 50 fluid particles spanning the distance L. Poise.uille flow was evolved in 
s 

a square unit cell of the size L x L and the size of the dispersion computing domain 

was AOL x L (Figure 5.8). 

ii v 

40L 

Figure 5.8: Initial condition (t = 0) for Taylor dispersion between two infinite plates. 

2 
A Schmidt number of 1 (i.e., v = d0 = 10-6 ^-) was assumed for the fluid so 

that the time step due to viscosity would be comparable with that due to molecular 

diffusion. While the chosen value of v is reasonable for a liquid, the value of do is 

more appropriate for a gas. For the simulations considered here, the maximum time 
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step is At = 0.0002 s as determined by Equation 3.47.  To observe the asymptotic 

Taylor dispersion behavior, time t must evolve to a value greater than tc, which is 

defined appropriately for this problem geometry as. 

I2 

t  = — (5.15) 
c      4rV 

according to Equation 2.84. Equation 5.15 yields tc = 0.25 s for d{) = 10"6 ^-. A 

simulation with a value of d0 appropriate for a liquid, such as rf0 = 
10~10 V- (0ulcl be 

conducted: however, the value of tc would then be 2500 s and at least 12.500.000 time 

steps (At = 0.0002 s) would be required for t > tc. Furthermore, as the tracer plume 

would be transported much further with increasing time, a much larger dispersion 

computing domain would be needed to contain the tracer body. Within practical 

limits, such a simulation could not be completed using currently available computers. 

After the Poiseuille flow was evolved to steady state, the Taylor dispersion simu- 

lation started with the initial condition shown in Figure 5.8. Figure 5.9 shows plots 

of the tracer concentration field at four times for a simulation with F = 0.10 -^. The 

plots were generated directly using discrete SPH data with the grey-scale representing 

the value of concentration. 

Tracer dispersion was analyzed using the method of moments. Figure 5.10 is a 

plot of the zeroth moment M0 as a function of time. The plot shows that tracer mass 

was conserved in the simulations. Figure 5.11 is a plot of the first moment in the x 

direction Mlx as a function of time. Values of Allx were computed by subtracting 

the first moment at time t = 0 from that at time t. Figure 5.11 shows that the 

center of tracer mass moved at a constant velocity in each case. The average channel 

velocity vs was calculated using Equation 5.4 with At = 0.023, 0.019 and 0.020 s for 

F = 0.05, 0.10, and 0.15™, respectively, and is shown in Figure 5.12. Figure 5.12 

indicates that the flow fields were numerically stable after steady state conditions 

were reached. SPH solutions for vs differ from the analytical solutions by a maximum 

of 1.2%. 
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Figure 5.13 is a plot of centered second moment in the x direction M2x as a function 

of time. Values of M2x were computed by subtracting centered second moment at 

time / = tc from that at time t. Figure 5.13 shows that, in each case, tracer spreading 

about its center grows linearly with time for t > tc. The dispersion coefficient in 

the x direction Dx was calculated using Equation 5.6 with At = 0.023. 0.019 and 

- m 

is seen that for t > tc = 0.25 s. Dx fluctuates about an average value.   Asymptotic 

0.020 s for F = 0.05. 0.10. and 0.15 ^ respectively, and is shown in Figure 5.14. It 
s 

values of DT were taken as Taylor dispersion coefficients Drayior and were found to be 

1.0605 x 10"6. 1.3034 x 10~6. and 1.684S x lO"6 ^- for F = 0.05. 0.10. and 0.15 ^. 

respectively. SPH solutions for DTayior were less than the analytical solutions by a 

maximum of 3.4%. Taylor dispersion is essentially a one-dimensional phenomenon. 

The changes in the first moment and centered second moment in the y direction were 

found to have a maximum magnitude of 10~87n and 10~97n2, respectively, for SPH 

simulations. These values likely result from numerical errors. A summary of results 

for Taylor dispersion simulations is shown in Table 5.1. 
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Figure 5.10: The zeroth moment of tracer distribution versus time for Taylor disper- 

sion between two infinite plates. 
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0.025 

Figure 5.11:  The first moment in the x direction of tracer distribution versus time 

for Taylor dispersion between two infinite plates. 
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Figure 5.12: Average channel velocity versus time for Taylor dispersion between two 

infinite plates. 
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6.0 
o F=0.05 m/s: 

a F=0.10m/s- 
o    F= 0.15 m/s2 

t (s) 

Figure 5.13: Centered second moment in the x direction of tracer distribution versus 

time for Taylor dispersion between two infinite plates. 
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Figure 5.14:  Hydrodynamic dispersion coefficient in the x direction versus time for 

Taylor dispersion between two infinite plates. 
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5.6    Simulations of Tracer Convection 

In this section, the process of tracer convection (i.e.. without diffusion) in two- 

dimensional spatially periodic porous media is studied. Five simulations were com- 

pleted for tracer convection through spatially periodic porous media with circular 

cylinders arranged in square, staggered, and hexagonal arrays.  The fluid was mod- 

eled as water, i.e.. p = 10  —3 
m 

3 hlL anci jy - IQ-^EL. and tracer convection was driven 

by body force F. As shown in Figure 5.15, 7 is the angle between the direction of F 

and the positive x direction. The direction of F is denoted by L, while the direction 

perpendicular to L is denoted by T. Table 5.2 presents a summary of information 

for the tracer convection simulations. Figures 5.16 to 5.20 show the tracer fields at 

four times for each simulation. The tracer fields were analyzed using the method of 

moments for seepage velocity vs, effective porosity neff, and mechanical dispersion co- 

efficients DmL and DmT. Tortuosity T of the media was also calculated. A summary 

of results for the tracer convection simulation analysis is presented in Table 5.3. 

i J 

LJ 

jjgjiapu 

T r      m 

z\y         ^1 X 
 K~ 

Figure 5.15: Body force F direction L and perpendicular direction T. 
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Table 5.2: Summary of information for tracer convection 

simulations. 

Simulation array type R (mm) n - 'part ~, 

1 square array 0.5 0.8 3384 0.001 0° 

2 staggered array 0.5 0.8 8320 0.001 0° 

3 staggered array 0.5 0.8 8320 0.001 30° 

4 hexagonal array 0.5 0.8 8160 0.0007 0° 

5 hexagonal array 0.5 0.8 8160 0.0007 45° 

Table 5.3: Summary of results for tracer convection sim- 

ulation analvsis. 

Simulation T Mf) Re •    -(f) neB n 

1 1.051 9.30 x 10~5 0.047 7.35 x 10~5 0.790 0.8 

2 1.139 9.06 x 10"5 0.045 7.17 x 10~5 0.791 0.8 

3 1.067 9.08 x 10-5 0.045 7.18 x 10~5 0.791 0.8 

4 1.094 6.57 x 10~5 0.033 5.19 x 10~5 0.790 0.8 

5 1.082 6.56 x 10~5 0.033 5.18 x 10"5 0.790 O.S 



175 

o 
o 
+ 
w 
o 
o 
o 
o 
o 

£-   €   $ 
D   6   © 

«ft   & 

^ C- f? 

ü & C 

Cf e €? 

€> © © 

C- £> fc 

O £ €> 

© ® e 
-■^ © © 

© @ © 

© © 6 

m 
in 
o 

■ d 

m 

m 
o 

■■4- 
l-o 

m 
-o 

O 
d 

m 
CM 

-o 
■ d 

CM 
-O 

& JDL 

o 
d 

o 
d 

I 
O 

X 
m 

CO 
o 
+ 
w 
«3 
OS 

o 

s 

© ® © 

m 
in o 

m 
o 

in 
■<*- q 
d 

o 

in 
to 

- o 

o    E 
d   w 

(m)X 

o 

>> 

o 
ct 

"5) 
o 

> 
a 
o o 

o o 

I—I 

3 
bO 



176 

CO 
o 
+ 
Cd 
CO 
Öl 
m 

cv 

© © © 

0 © Ö 

C   €r   6- 

fei 

m 
in 
o 

m 
o 

m 
o 

o 

m 
o 

l-O 

m 
CM 

- o 

CM 
o 

m 
o 
0 

-o 
0 

x 

CO o 
+ 
Cd 
CO 
CO 
CO 
■* 

CO 

B 

© 

€■ 

© 

J 

9 

'J £j. 

c $ * 
*.;'    Its'»   %*> 

/   i 

€? (ft; Q 

> 1 

© {«A & 

j i 
e i®i * 
© fe © 

/( 

© ^ © 

@ © 

m 
m 
o 

m 
o 

m 
o 

o 

m 
o 

0 
0 

£ 0 
O 

X -~ 

L6 
m 
CM 

CJ 

0 c3 
0 at) 

CM 
O 

m 
o 
0 

o 
0 

x 
m 

.OLxg 
(m)X 

c_0Lxg 
(ui)X 



17' 

V ' ^ 

o 
o 
+ 
w 
o o o 
o o 

0) 

6 

m 
CD q 
d 

CD q 
- d 

m 
IT) 
O 

m 
o 

CO o 
+ 
w a 
Oi 
CO 
CO 

in 
CD ©   ©   © 

e   •   e - 
& G r 

CD 
1- O 

m 
m 

- o 

m 
_ o 

«t 

0. 

x    .= 

e* 

o 

(m)£ 

£ 
«S 

o 
o0 

-^ 
CO 

a 

o 

o 
> c o u 
53 
w 

3 



178 

+1   'U"<*' 

co 
o 
+ 
w 
T-H 

m 
CO 

@ 

9      •      I- 

T-PV 

(m)X 
0 

CO 
o 
+ 
w 
o 
o 
CO 

CO 

- "3- 
_ o 

m 
m 

- o 

10 
_ o 
- 6 

m 
CM 

t~ o 

#-• j $* 
e ' <£; ■:  €• 

*   it i €•   r 
© ; & ■ e 

©   ^r- ■ £- 
<?.; -& 

©     €^     © 
c-   c   «j. _ 

@     ©     © 

©   ©   © 

#   e   e 
-fr   •   e 

©   •   e 
^-^T 

X 

O 
O 

m 
r o 

0 

_ o 
0 

m 

Co 
X 
m 

*-o 

c_Olxg       0 
(m)X 

1—1 

10 
c 

5c 



time (s) =.00000E+00 

179 

ID 
CM 
o 

o 
d 

in 

S ° 
•—- o 

o 
o 

o 
X 
in 

e    o   e   ©    £ 
7"      g.      {J-      * 

O     *-•*     «*.'      '-       -■* 
i-    x?    «,     ; 

*"      •*;     ?.-     <-:      -:'■" 
£     fc>     i*      ••- 

VJ C- *- *' 

<£« Ä 

©    ö    a- 

«.    «    0    ©    ©    ? 
f*     {-     «es? 

e» 

0        5x10~3    0.01       0.015      0.02      0.025      0.03      0.035 

x (m) 

(a) 

time (s) =.15880E + 03 

o 
d 

q 
d 

q 
d 

x 

e 
".'      £■      £      ©      &      C 

g>    ©    e    ©    i- 
G     G     &     ©     ©     V     © 

o    &    e    &•    e    <s    ■ 
£*    ©    ©    ©    ©    ft    $    ©    (^    w    *?■    f» 

fr     ©     ©      ©      C      ©      &      i:=      ©      «B      T> 
©©©©©(«©©&      C     C     '-: 

©©•©©©-•©©e-c® ft 
© © © © e © © © © © ® 
©©••©Co©.©©©*" 

s? o f c r 
&    c- i- <:  s 

© © e> n © 
€    c «• © y < 

© ©:.-:;:^'"'.. j^*""* ©o©©©©®* 
©r.-r'©--'©     ©©•©©©©© 

«T "© ••'   •     ©©©©©©©©© 

l- 

I 
r 
t 
L 

if 

•r 
i 

■C 

4 
i 

5x10~J    0.01      0.015      0.02      0.025      0.03 

x (m) 

(b) 

0.035      0.04 

Figure 5.18: Tracer convection through a staggered array of circular cylinders (7 - 

30°). Tracer particles are shown in black. 



time (s)  =.31457E+03 

ISO 

.     .     1     . ,   1   .   .   ,   .   1   ,   . , ( , 1 1 , 
■4.' V. •^ "■ " "* V* 

LD 
■ *-> c- Tr ■?* 1~ 5-      £      t:- v     *• .■* f; G ,V%, - •         " 

CM 
n <"* » '.-'            v-' <?           "i           Ä           Ci £• •;- ■r ■*. <- 'I- 
d ■ €" i£* C' tf% ■V •i?     V     fci ft-     © Vv" © o- ;*. - 

*r. 
V-- v.-        K; fi     c     o     *;• iv i..- *<s 

-,'■ [ 
CM • ? : © ^v .- **           *>-'           f?J f5      O '*■'* 

i*; £, V' 

l_> 

d 
■ 

'Sr. 

,. 
'*-*■ 

- 
■■;'        C        ^       €■ 

£• _jij L       .£'• " 

r 

m 
■ fi, ^> * V -iAC v. v 

r 

o - 
.?- 

- 2- ... 
t? .•;. ': 

i 
o 
o 

■ C-- 
'-■ :- t -" £•:    ©     C ?K t~; 

1 

„_ L 
--) 

■ V «> it >'£" ■    ft     ©      © '}■     Q f* £* 
?L :,' - 

o 
X 

- 
T^ 

G- 
V» 

£' 
.«. & J- 

e    >:-•    <$    s 
©    ©    ö *     £ 

'-4^ 

O 
-.:■ 

Vr 
;:, ■>- 

c I; 

I 
U) & © s    © e-    &-    ©    © $ © o © «J? 

•- -t 
r *■■_ /~ ö p s,    «.    e ©       <? e '- r ft' C-.' f ■_ 

o ro ^—, . l ' r   '    ; .   ,   . T  i   .   j   .   r 1 ' 1 ' 1     '     ' 

5x10  J    0.01       0.015      0.02      0.025      0.03 

x (m) 

(c) 

0.035      0.04 

time (s)  =.47034E + 03 

i. '     J   ■'■-'■'.■   i  >■■■.'.  '     o  '   Ü   '   la.'   '  4.' L '   '■■'   ■   '..'   '   '.'   '   ■'.■■   ■ J. '   ' i 

m G      C     &      0      "      ■$     t      ©     &     £•      £•      C;      «;•      O      4^""   L 
CM 
o - r>    t&    c;    tv    ©    e    e    ©    fe    *.-    -?.-    -::-    &    s, ^'^JLfi'^- 
d  " €■   e   €*   ©   K-   ®   c   ©   e   e   e   ©   & .Äv2aT3&'. ^ 

. 1;     C-     O     ti     e     ©     ©     ©     ®     €s     a-     £3    ■*-^J%^'i;s     '' 
CM     - °   - e    e    &    e    $    a    &    o    e    e    © .. l'OfjJ^ä'    «■- 

s    s    ©    c    e    o    e    G    e    e    e    feSlj^s    c?    e 

un 

c o ~ 6©©«©©e»   ».•'.©:-'«■■■' ©    e    ©   ö    ?> 
■^-o   ' ;-    ©    e    «»    ©    ©    ©    ©    ©:  '© • ■©    <£■     ©    P     ©    C    <3 
>* c    ©    o   ©    fc    ®   e    e'   e-   c    ©    ci    c>    e    c    f.- 

i   o   ©   ©   «i    o   ©-   ©   e   t&   #    e   en    «■   «t=>   e    ^ 
o _ &    ©    e    ©    v    ®    «c    e    ©    t?    e    r«    e    «■'.<    -J3    c? - 

►   ©©©0©«©©©©&©e<?£c 
"O ©•©©©©©©©©&©©©©© ■ 

o   ■ »••©©©«©•©©©©©&©( 
X     ■ ©©©©©©©©©©©©#©€& . 
in   J >••©©©©«©©©©©©©#« 

©©©©©•©©©©©©$<©©© 
o - ■   ,     , *f   ,     p     ,    P,     |    f^ ,    ,  A |     , a    ,     i«)     ,     1«,     ,   f>,     I^I     1*1',     ,*l     |     f;         f i     I   -"ft ,     i * 

5x10 -j 0.01       0.015 0.02      0.025 

x (m) 

(d) 

Figure 5.18: Continue. 

0.03      0.035      0.04 



181 

o 
o 
+ 
w o 
o o o o 

V 
B 

1   ■   V   ■   ' 
£ 

> 

.> 

© 

© 

1    r_ 

tO'O 

@ 

€1 

c.'- 

G 

q 
d 

m m 
o 

- d 

m 
o 

- m 
o 

- o 

- m 
r> 
o 

■ d 

--,. S., ■ m '  ' Vi CN 

f*' <-\ - o 
v.^ - o 

O r— 
V . Cy V. 

ft,". 
V..- C: . 

& & \ 
«& £> -O 

© 
© 

& 1 
C1 

o 

SJ* e c 
v;- <*.■ 

• in 

«0 © i - o 
& ■ o 

0 @ ( 
© e " 

© & < 
0 © d 

© © f 

© 

o 

(. 

X 
m 

CO 

o 
"cc 

o 

(m)X 

ce 

?- 

t/3 

4) 

CO 

ce 
s-. 
CO 

c o 
a 
X 
o> 

CO 

to 

CD 
CD > c 
o 
CD 

S-i 
CD 
Ü 
CO 

LO 
CD 
Li 



182 

en 
o 
+ 
w 
CD 
P3 ro 

if 

w 

m 
E 

.'. o 

lO'O 
(ui)X 

o 

LO 

p 

5b 



co 
o 
+ 
w 

CO 
CO 

if 

K 

0) 

E 

■ o 

lO'O 
(ui) A 

183 

Cu 

O 
O 

i—i 

in 
<p 



184 

. o 

m 
in 

■ o 

m 
. o 

CO 
o 
+ 
CO 

in 

m 

o 
o 

■* 

o 
o 

m 
o 

3 

o 
G 

J. O 
U 

o 
X ~ 

\—i 
o 

(V 

3 
in tuu 

• q 
d 

rsi 
. o 

LO'O 
(tu) A 



time (s)  =,O0000E + 00 

185 

' • ' i_ 

O 
Ö   - 

CM 
O 
d  - 

^ 

q 
d   i 

'r.>     ■:. ■■    b.-     *J    "A    "t5    fe ■     •-''- 

- ■      '    ;v-        .<%        «"',        ."* K!.        ■'.,- 

£>   fr   ii   <&   ©   ©   £;   £ 

€-'    V-'     >•.■     '^     •_■"    *.'•     ';-:: 

C-.-   Q   C.   M   ©   ©   £■   \     £ 

c;-   .'•'•   C   £    S    ©   &   fi    th 

r=>   <S   £   £   ©   C   ©   *'-   ^v 

i£     t>    SJ     &     &     ©     £     ©'     V' 
- W«.-.   @   6    0    ©   @    ©   €r    £ 

o 

C   #   (: 

i  ■   ■  '  ■  i' ■ 
-3 

.rat, ,*> yt>. 
1   '   '   I   [   '   '   '   i   ■ 

0.03 0       5x10~J   0.01      0.015     0.02     0.025 

x (m) 

(a) 

Figure 5.20: Tracer convection through a hexagonal array of circular cylinders (7 

45°). Tracer particles are shown in black. 



time (s)  =.19384E + 03 

186 

O 
d  - 

*£'•     i-> 

CM 
.--v O 

o 
d 

fK?    £>    ^    0    ©    6?    v^    "/' 

,     fii     £     Q     (L\     @     •;-,     <-r-       ■•     <: 

S5    ©    ©    f?    ©    ©    -?*     ;'=    # 

"=     S?     ©     ©     i?     & - ''■■     ri      •■'     i 

I?   £*   w   © ..{ 
^ ® ® ^Laywi-  t- 

€;   «&   ?i   &   &   i-   ■:••   t-   f: 

® ■$$'&:; f& ®   ft   ©   «H    $   S   C'   £    ;?   P    C 
*  #<?%.'•  @  ®  ©  ©  ©  ©  ©  "•   :r-  ^   '^  * 
«?'£?©©<»  g-  ??  £■  e> s> >> r  •■? 

o 

0       5x10~3   0.01      0.015     0.02     0.025     0.03 

x (m) 

(b) 

Figure 5.20: Continue. 



time (s) = .38462E + 03 

18/ 

O 
O 

CM 
^ o 
E o 

o 
d 

o 

'      '      ' L_ 

:     ."•    f   6    §    C   t   &    v    -■    C    -■ '-- 

e v $ £ © © ^ &  -  c  £'  ;--  "   " 
v:;    S    ©    &    fc    #    €    #    &    €     V    v-    £ •    t-    ■■ 

i- f}•  # £  © & © © c   :•■   r? P c> -v. 

'■>   'k   &    £    &   <E"   €>   €1 fctmi CS   <:::    £•'■•   v. 

©   Ji-   €?   *?■   C    €v /£. jl^fei;- ■   ,;''   '* 

""   ^;'   @   C   i^yS&f^''   r 

*v   £;    @   €-   ©   &/^|||fwc'   4'    e   ^    4:     " 
c-  ©  &  «-.  e ;|^?^"c   *    ©  *.■  c  ■,- 

&  <&  © e &/^<#f€' © «f   o- ©  ®  c:   ■; 

£   €f   €*   e--V%";-'®''"€    e    &   C!   e   °   C   i- 
m e■ e  e'"«=:-e e e © £  @ © e c ■■.; 

fe.   €•  '«''©'   ©€=£&©   &<   ©   O   £?   C 

*   ©   •   ©   ©   ©   C   ©   «   fc   ©   £   ©   *•   •;": 

»#©•©©••'©©   ©   ©   £*   ©   & 

> ©' c  © © €•  © €■■ ©  & '*•  e €   C-  C 
i   I   i    i    r 

0 
I'll'  I"-—' ' '  I ' 

5x10-3   0.01     0.015    0.02     0.025    0.03 

x (m) 

(c) 

Figure 5.20: Continue. 



time (s)  =.57539ET03 

1SS 

O 
O 

CN 

o 
Ö 

o 

I     I     I     I 

/' "^       ***        f-'" 

& e  <ü 5= r   ^  *•  <r   -^u^u^-  c: 

'./    K    v;    e       r    •'=       ^     r-:-   >v   ',.'-     -.      -       -       " 

v-    -:.•    fr    &     ;'::    •":    t.:  _ ";'■■.'• r,'-   'V'     •'.'     ''.     C 

•r-    €    ©    <P    €'    C•    ?■    '';'    £•    <.'     £•    Ä"   \i    C-    ' 

?"   '":   *?•   v    f'.-  ••-" ■ '<■    v    ■■'.    i-   ».■■   v'   f 

&    41    <P!    (•;■    *'    C    C?. ■   ?''    t      •••"     £'■    v' O    C 

€    C    £;    <5    £    t    f'   C.    C     :     €     '     C    ./ 

C'   €€•€=€    €;    C-    C   C   V    C   Q    0:   tl    Z 

■   €•   <£•   €*    $•    ©   G-   &   £•   £-   fh   !'■■   ;f-    C-    G    ( 

© &  <~   © f* c; e ® <?,  & c   e  e  <?  e- 

: €? €■ © e  c  e ©€>€-& c-  ?:• e s < 
*•   <T-   £>   £•:   ?    f.   e   <v   f    <!:   €   C    "■>   C   €: 

1  r1  '••' -i—i—i—■—!—r 

0       5x10~J   0.01      0.015     0.02     0.025     0.03 

x (m) 

(d) 

Figure 5.20: Continue. 



189 

5.6.1    Tortuosity of Porous Media 

In SPH, trajectories of individual fluid masses (SPH tracer particles) can be 

recorded as they travel through the void system of the medium. Figures 5.22 to 

5.26 show the trajectories of four tracer particles for each simulation in Table 5.2. 

Tortuosity of the porous medium T was calculated as. 

z¥ 
T = (5.16) 

•< "tracer 

where Le,z and Lz are the length of trajectory and the straight-line distance traveled 

by tracer particle z, respectively (Figure 5.21). and JVtrncer is the total number of 

tracer particles in the flow field. 

Figure 5.21: Trajectory Le,2 and straight-line distance L traveled by tracer particle 
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Figure 5.24: Trajectories of tracer particles in a staggered array of circular cylinders 

b = 30°). 
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Figure 5.27 shows the tortuosity of the media as a function of time for each 

tracer convection simulation in Table 5.2. A constant tortuosity value exists for 

each case, which is presented in Table 5.3. A few interesting observations can be 

made from Figure 5.27. Tortuosity values are considerably less than the commonly- 

1.15 
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1.00 

3 3 P D 0 D I 
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—( 1 h- 
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200 300 

f(s) 

400 500 

Figure 5.27: Tortuosity versus time for simulations in Table 5.2. 

used value of \fl = 1.414, which was originally proposed by Carman (1937) for 

unconsolidated porous aggregates. It is also apparent that tortuosity is a function 

of media geometry. For the three simulations with 7 = 0, the square and staggered 

arrays have the smallest and largest tortuosity, respectively. For the square array 

with 7 = 0, most of the tracer particles will have an unobstructed travel path (Figure 

5.22), which produces a tortuosity value close to unity. The staggered array introduces 

more obstacles into the flow field and tortuosity increases as a result. Although the 

hexagonal array has the same solid surface area in the unit cell as the staggered array, 

it has larger flow channels which results in a tortuosity larger than the square array, 

but less than the staggered array. 

Not only a function of media geometry, tortuosity is also a function of the direction 

of the applied body force. The effect of body force direction on tortuosity is apparent 
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for the staggered array (simulations 2 and 3 in Table 5.2). For 7 = 30°, fewer tracer 

particles must travel around the center solid in the staggered array than that if 7 = 0. 

This results in a lower tortuosity value for 7 = 30°. Similar observations can be made 

regarding the effect of 7 for the hexagonal array. 

5.6.2    Seepage Velocity and Effective Porosity of Porous Media 

Seepage velocity for each tracer convection simulation was calculated using Equa- 

tion 5.4. Figure 5.28 shows seepage velocity in the L direction rsL and in the T 

direction vsT as a function of time for simulation 1 in Table 5.2. vsL fluctuates about 

an average value of vs = 9.30 x 10~5 *§■ within a 5% range, which indicates that 

the tracer flow field is numerically stable. vsT is essentially zero as expected. The 

fluctuations of vsT about zero likely result, from numerical errors. Other values of vsL 

and vsT for other simulations in Table 5.2 show similar patterns when plotted as a 

function of time. Values of vs are presented in Table 5.3. which were also used to 

calculate Re = ^ for the simulations. The small values of Re indicate creeping 

flow conditions. 

Effective porosity neS of the medium was calculated as. 

neB = -, (5-17) 
Vs 

where v is the Darcy velocity in body force direction calculated using Equations 3.62 

and 3.63 for the steady state flow field. Values of neff are presented in Table 5.3. 

The effective porosity excludes "dead end"' pores and thus represents the fraction of 

pore space that is available to transmit fluids. For the media type considered in this 

work. neB should be equal ton. The small difference between neS and n in Table 5.3 

is due to the placement of SPH boundary particles. As the first layer of boundary 

particles is placed on the solid surface, the porous medium simulated actually has a 

porosity slightly smaller than the nominal value. Although neff is nearly equal to n 

for uniform granular materials, it is significantly less than n for clays due to their 

more complex microfabric of clay particle clusters and intercluster voids. 
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Figure 5.2S: Seepage velocity versus time for simulation 1 in Table 5.2. 

5.6.3     Mechanical Dispersion Coefficient of Porous Media 

Mechanical dispersion coefficients for tracer convection were calculated using Equa- 

tion 5.6. Figures 5.29 to 5.33 show M2L, Ahr* DmL, and DmT as a function of time 

for each tracer convection simulation. MIL- M?r, Dmi, and Dmr denote centered 

second moments and mechanical dispersion coefficients in the L and T directions, 

respectively. Values of M2L and M2T were computed by subtracting centered second 

moments at time t = 0 from those at time t. 

M2L and DmL show different types of behavior depending on the body force di- 

rection. When F is aligned with a line of symmetry for the solid inclusions, periodic 

streamlines exist and the increase of M2L with t is nearly quadratic. As a result, 

DmL increases nearly linearly with t (Figures 5.29, 5.30, and 5.32). However, when F 

is not aligned with a line of symmetry for the solid inclusions, irregular streamlines 

exist and M2L shows a more complicated behavior with t (Figures 5.31 and 5.33). 

Although M2L generally increases with t in this case, it may decrease with t for short 
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Figure 5.31: (a) Centered second moment, and (b) mechanical dispersion coefficient 

versus time for tracer convection through a staggered array of circular cylinders (7 = 

30°). 
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periods, which results in a negative value of DmL. Figures 5.31(b) and 5.33(b) show- 

that DmL does not grow with time and instead fluctuates about an average value. 

When F is aligned with a line of media symmetry. MOT and DmT are practically zero 

(Figures 5.29, 5.30. and 5.32). When F is not aligned with a line of media symmetry. 

M2T shows small fluctuations about zero which are amplified when DinT is calculated 

(Figures 5.31 and 5.33). However, the magnitude of DmT is consistently smaller than 

that of DmL. 

The relationship between centered second moment M2 and time can also be studied 

using a log-log scale. It is usually believed that log(M2) and log(t) have a linear 

relationship as, 

log (M2) = slog (t), (5.IS) 

where s provides an indication of dispersion behavior (Cushman 1997). A value of 

s = 1 corresponds to Fickian behavior. Figures 5-34 to 5.3S show log-log plots for 

each tracer convection simulation with a line fitted using least squares. The slope 

of the fitted line s and the regression coefficient. R are denoted on the plots. An 

approximately linear relationship exists for log(M2i) with log(t) (R > 0.92). however, 

it is not appropriate to fit a line for the variation of log(Mrr) versus log(t) (R < 0.1). 

The linear fits for M2L are quite good if F is aligned with a line of media symmetry 

(Figures 5.34 and 5.37). log-log plots cannot be made for M2T since these values are 

practically zero. When F is not aligned with a line of media symmetry, s has a value 

close to unity for the log(M2i)-log(t) relationship, which suggests an approximate 

Fickian dispersion behavior for this case. 

From the tracer convection simulations under laminar flow conditions, an asymp- 

totic mechanical dispersion coefficient was not found for two-dimensional spatially 

periodic porous media when F is aligned with a line of media symmetry, even for 

large times. It is necessary to reexamine the fundamentals of the theory of Fickian 

approximation to understand why the phenomenon does not exist for this case. The 

Fickian approximation assumes that the travel time for an individual tracer particle 
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is much larger than the time interval during which its successive velocities are corre- 

lated. Total displacement is considered as the sum of a large number of elementary 

displacements which are statistically independent of one another. Each particle in 

the tracer cloud is assumed to transverse all possible variations in the velocity field. 

These assumptions lead to a normal distribution of a cloud of initially close particles 

according to the central limit theorem for an ergodic system, which is characterized by 

a constant, dispersivity (Bear 1972). In a random porous medium, these assumptions 

are reasonable to some extent. 

Constant dispersivity implies that a single velocity path is statistically representa- 

tive of all velocity paths. This means that a tracer particle released anywhere in the 

unit cell of a spatially periodic porous medium eventually samples the entire unit cell 

by convection alone. When F is aligned with a line of media symmetry, Figures 5.22, 

5.23. and 5.25 show that different subsets of tracer particles may experience entirely 

different velocity paths in periodic porous media. Preferred flow paths and spatially 
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periodic flow patterns are apparent in those figures. In this case, the structure of the 

periodic porous medium and, therefore, the velocity experienced by a tracer particle 

traversing a streamline, remain correlated throughout all space. The distance between 

two tracer particles released on different streamlines increases with time. As such, 

there is no mechanism for tracer particles traveling through periodic porous media 

under this condition to mix across streamlines in pure tracer convection simulations. 

If F is not aligned with a line of media symmetry (Figures 5.24 and 5.26). although 

streamlines still cannot cross each other under laminar flow conditions, irregular pat- 

terns of streamlines seem to provide the possibility for a tracer particle to sample the 

whole unit cell during the course of a simulation. This results in a mixing process 

which can be approximated as Fickian. Another mechanism which causes tracer mass 

to mix across streamlines is molecular diffusion. 

5.7    Simulations of Tracer Hydrodynamic Dispersion 

Due to computational limitations, extensive simulations of tracer hydrodynamic 

dispersion through spatially periodic porous media are not presented. As an asymp- 

totic Fickian behavior of pure tracer convection was not found for two-dimensional 

spatially periodic porous media when F is aligned with a line of media symmetry, the 

issue of whether tracer hydrodynamic dispersion under this condition can be described 

as an asymptotic Fickian process is explored in this section. 

One-dimensional tracer hydrodynamic dispersion through a periodic square array 

of circular cvlinders (n = 0.8 and R — 0.5 mm) was simulated for p =  103 —^, v ; m 

v = io-6 z£,F = 0.001 ^, and d0 = 10~10 ^, 10~9 ?f-, and 10"8 ^. The body 

force F was applied in the positive x direction, i.e., 7 = 0°, and the induced steady 
7' ft 

state seepage velocity vs was 9.30 x 10~5 ™. For the simulations, Re = -^- = 0.0465, 

Pe = %^ = 465 for d0 = lO"10 ^, Pe = 46.5 for d0 = lO"9 ^, and Pe = 4.65 
«o ö ö 

2 
for do = 10~8 ^-. Figures 5.39 and 5.40 show the tracer concentration fields at four 

times for the simulations with d0 = 10"10 ^- and d0 = 10~8 ^-.   The plots were 

generated directly using discrete SPH data with the grey-scale representing the value 
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of concentration. The tracer plume front becomes obscure and the concentration field 

becomes more uniform as d0 increases. 

Figure .5.41 is a plot of M2L as a function of time. Values of M2L were computed 

by subtracting the centered second moment at time * = 0 from that at time t. Figure 

5.41 shows that, at any given time, tracer spreading about its center increases as 

d0 decreases. Values of hydrodynamic dispersion coefficient in the L direction DL 

were calculated using Equation 5.6 and are shown in Figure 5.42.   An asymptotic 
2 

dispersion coefficient was found for the simulation with d0 = 1CT8—.   However, 

the curve corresponding to d0 = 10~10 *§- differs little from the one for pure tracer 
2 

convection.   The curve corresponding to d0 = 1(T9 ^- lies between the curves for 
2 2 

do = 10"10 *§- and d0 = 1CT8 ^-, as expected. 

Tracer hydrodynamic dispersion in two-dimensional spatially periodic porous me- 

dia can be fundamentally different from pure tracer convection when F is aligned 

with a line of media symmetry. An asymptotic Fickian behavior exists for tracer 

hydrodynamic dispersion under this condition. However, Fickian behavior appears 

some time after the tracer is introduced into the flow. A characteristic time tc defined 

as (Equation 2.139), 

c" d ■o 

is needed for tracer to sample interstitial space of the unit cells. The mechanism 

of molecular diffusion, which provides the possibility for tracer to sample all pore 

space, is absent in pure tracer convection. The value of tc is a direct function of the 
2 

coefficient of molecular diffusion. For the simulation with d0 = 10" —, tc = 25 s 

if using CD = ft = 0.5 mm, which is approximately the time when DL becomes 
2 

essentially constant in Figure 5.42.   However, tc = 2500 s for d0 = 10~10 ^- and 
2 

tc = 250 s for d0 = 10~9 ^-. These simulations were not run long enough to reach tc. 
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Figure 5.41: Centered second moment in the L direction of tracer distribution versus 

time for tracer transport through a square array of circular cylinders. 
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Figure 5.42: Dispersion coefficient in the L direction of tracer distribution versus time 

for tracer transport through a square array of circular cylinders. 
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5.8     Summary 

Pure tracer convection and hydrodynamic dispersion models were developed using 

Smoothed Particle Hydrodynamics (SPH). The dispersion model was used to simulate 

the Taylor dispersion problem and the results were in close agreement with analytical 

solutions. Simulations using the tracer convection model were used to calculate tortu- 

osity and effective porosity of porous media. It was found that pure tracer convection 

through two-dimensional spatially periodic porous media cannot be described as an 

asymptotic Fickian-type process, even for large times, if F is aligned with a line of 

media symmetry. However, an asymptotic Fickian approximation is valid for tracer 

hydrodynamic dispersion through two-dimensional spatially periodic porous media. 

If F is not aligned with a line of media symmetry, Fickian-type mixing is possible 

for pure tracer convection. Due to the time step constraint for the explicit time inte- 

gration method and limited computer resources, the SPH model has limitations for 

simulating tracer dispersion through porous media. 
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CHAPTER 6     CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

6.1     Conclusions 

1. Necessary extensions have been implemented and tested which allow Smoothed 

Particle Hydrodynamics (SPH) to model low Reynolds number incompressible 

flow through porous media: 

2. Computed values of permeability and cylinder drag force from simulations of 

flow through spatially periodic porous media using the SPH model are in ac- 

cordance with Dairy's law and in close agreement with finite element solutions 

and other published solutions in the literature: 

3. Necessary extensions have been implemented and tested which allow SPH to 

model diffusion through porous media; 

4. Computed values of concentration and effective diffusion coefficient from sim- 

ulations of diffusion through spatially periodic porous media using the SPH 

model are in close agreement with finite element solutions and other published 

solutions in the literature; 

5. Nondimensional diffusivities d* were calculated using the SPH model for spa- 

tially periodic porous media with circular and elliptical cylinders arranged in 

square, staggered, and hexagonal arrays. While specific surface area SQ does 

not affect d*, porosity n and array type were found to be the most and least im- 

portant parameters, respectively, which influence the values of d*. Anisotropy 

of a medium was found to be mainly determined by the aspect ratio -ß of its 

solid inclusions; 
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6. Tracer convection and hydrodynamic dispersion models were developed using 

. SPH; 

7. Tracer convection simulations were used to calculate tortuosity and effective 

porosity of porous media. Values of tortuosity calculated using SPH were less 

than \fl — 1.414 as proposed originally by Carman (1937) for unconsolidated 

porous aggregates. Tortuosity was found to be a function of media geometry 

and the body force F direction. Values of effective porosity calculated using 

SPH were close to the nominal porosity values for the media type considered in 

this work: 

8. Solutions for Taylor dispersion between infinite plates using hydrodynamic dis- 

persion model were in close agreement with analytical solutions; 

9. Simulations using SPH indicated that pure tracer convection through two- 

dimensional spatially periodic porous media cannot be described as an asymp- 

totic Fickian-type process, even for large times, if F is aligned with a line of 

media symmetry. However, an asymptotic Fickian approximation is valid for 

tracer hydrodynamic dispersion through spatially periodic porous media. If F 

is not aligned with a line of media symmetry, Fickian-type mixing is possible 

for pure tracer convection; 

10. Due to the time step constraint for the explicit time integration method and 

limited computer resources, the SPH model has limitations for simulating tracer 

dispersion through porous media. 

6.2     Recommendations for Future Work 

1. An advanced parallel algorithm is needed for the SPH model to improve its 

efficiency such that mass transport through porous media can be simulated; 

2. A systematic study of media dispersivity as a function of media properties and 

flow conditions can be conducted using the SPH model; 
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3. Extension of the SPH model to three-dimensional problems is needed to simulate 

real random porous media; 

4. Incorporation of progressively more complicated physics, such as surface ten- 

sion, is needed to model multiphase transport, fluid-solid sorption/desorption 

processes, solute reactions, and decay: 

5. A discrete model for fluid-solid systems can be achieved by coupling a three- 

dimensional SPH model with the discrete element method (DEM), which models 

the solid phase. DEM will allow modeling of a deformable solid matrix. It is 

possible to study the generation of pore pressure within porous media subjected 

to both static and dynamic loadings using this coupled SPH-DEM model. The 

study may then lead to important findings regarding to liquefaction behavior 

of loose saturated sand. 
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