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PREFACE 

Mixing and Stirring took place at the 1999 Geophysical Fluid Dynamics Summer Study 
Program. William R. Young (Scripps Institution of Oceanography) gave the principal lectures, 
with Ray Pierre-Humbert (the University of Chicago) adding two special lectures (only one was 
scheduled; the second was given at the request of the audience). These lectures served us an  . 
introduction to the general physical principles of the subject and its many applications in a large 
number of fields, and provided us with essential mathematical technology. 

As usual, we had a variety of seminars throughout the weeks following the lectures, covering the 
many subjects in which mixing and stirring plays a role. Week 4, organized by Jim Ledwell 
(Woods Hole Oceanographic Institution) with great success, focussed the attention of the 
participants on the oceanic problem. Several visitors came to participate solely in this week, and 
we saw many familiar faces from past summers. 

This year was also the $40th birthday of the Program. In celebration, the Oceanographic 
Institution graciously held a picnic for all the participants, for the people at Woods Hole 
connected to the Program, and for any fellows from previous summers that were able to visit for 
an afternoon. George Veronis gave a memorable speech with a historical perspective. The 
picnic ended with a customary sight - a GFD softball game - and the afternoon, thanks to 
W.H.O.I., was a very pleasant experience. 

This year's fellows proved to be a group that meshed together especially well (including group 
triathlons each morning for the hardier fellows). Their academic accomplishments can be 
viewed elsewhere in this volume. One notable feature of their efforts is that they are all, pretty 
uniformly, commendable projects; sometimes, it has to be admitted that the program doesn't 
work for everyone, but this year, I think it worked as well as it could. Consequently, I think this 
summer was notably successful. 

Special thanks go to Bill Young for his tireless efforts in preparing and giving the principal 
lectures, and for advising so many of the fellows. This summer could not have been so 
successful without Bill. Also, Eric Chassignet and Glenn Flierl spent many selfless hours with 
the computers, and Jack Whitehead dealt magnificently with many administrative matters 
throughout the whole year preceding the Program. Jean-Luc Thiffeault and Claudia Pasquero 
must be thanked for their important contributions to creating this volume. 

And last, but by no means least, I thank W.H.O.I. Education, who continue to provide a perfect 
atmosphere in which to run the program. I specially thank Marcey Simon for all her efforts to 
organize the program, and our two staff assistants, Veta Green and Janet Fields, who stepped in 
to replace the veteran, Lee Campbell, when she moved off to other enterprises. 

N. J. Balmforth 
Director 
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Lecture 1: Overview 

1    Diffusion by discontinous movements 

In 1827 Robert Brown, observed that suspended pollen grains are in an uninterrupted and irregular 
"swarming" motion. Brown was a botanist and at first he believed that only organic materials 
exhibited this agitation. But very soon he extended his observations to particles of inorganic material, 
such as a ground-up fragment of the Sphinx. Through the nineteenth century there was a intermittent 
discussion concerning the cause of this Brownian motion, and in 1877 Delsaux suggested that the 
impact of molecules on a macroscopic particle produces observable displacements. In 1905, after 
nearly a century of debate, Einstein definitively explained this phenomenon [6,7]. 

1.1    Einstein's derivation of the diffusion equation 

Our interest here is in Einstein's derivation of the diffusion equation, which is very different from that 
of Fourier. We consider one-dimensional Brownian motion by projecting the location of the particle 
onto a straight line which we call the rc-axis. 

Einstein's assumptions are the following: (i) the particles move independently of one another; 
(ii) we observe particle positions at time intervals r which are much greater than the time intervals 
between molecular collisions. As a result, the motion in one interval is independent of what happened 
in the previous interval. 

In the interval r each particle has a random displacement A along the z-axis. The probability 
density function (PDF) of A is 0(A). This means that if we observe N > 1 particles for a time r then 
the number of particles which are displaced through a distance which lies between A and A 4- dA is 

dN = iV0(A) dA. (1) 

The PDF 0(A) does not change from interval to interval, and 0 is symmetric and normalised: 

/oo 
0(A) dA = l. (2) 

-oo 

The symmetry of 0 implies that the displacements are unbiased. The average of any function of A, 
/(A), is 

/CO 

/(A)0(A)dA. (3) 
-oo 

In particular, A2 is the mean square displacement in a single step. 
If the concentration of particles at time t is denoted by c(x, t), then the evolution of c is determined 

from the master equation: 

/oo 
c(z-A,t)0(A)dA. (4) 

-oo 



A random walk with 200 steps 

Figure 1:    Simulated Brownian motion using MATLAB; the routine rand is used to generate a sequence of 
200 random displacements. 

The integral over A is a sum over the prior locations at time t of the particles that are at x at time 
t + T. Thus, the number of particles in the interval (x - A,x - A + dA) is c(x - A,i)dA and </>(A) 
is the fraction of these particles which jump from x - A onto x. 

If the concentration c(x, t) changes on a length scale which is much greater than the root mean 
square displacement, then we can approximate the integral equation (4) by the diffusion equation. 
This assumption that c is slowly varying means that it it is sensible to use a Taylor series expansion 

c(x,t) + TCt(x,t) 
/oo 

0(A) 
-oo 

A2 

c(x,t) - Acx{x,t) + —cxx{x,t) dA. (5) 

Next, using (2), we reduce (5) to 

ct{x,t) &Dcxx{x,t), 
2r 

(6) 



This is the diffusion equation, and D is the diffusivity. 
The greatness of Einstein's contribution to this subject is not the derivation above but rather his 

formula for the diffusivity of a macroscopic particle 

D = a   AT      ' (?) 

where R is the gas constant, T the absolute temperature, iVa the Avogadro number, v the coefficient 
of viscosity and a the radius of the particle. Coincidentally, (7) was also discovered in 1905 by William 
Sutherland in Australia. This relation enabled Perrin to determine Avogadro's number by observing 
Brownian displacements [7]. 

The diffusion equation is an approximation of the more exact master equation. As we try to design 
parameterizations of nonlocal mixing processes, in which scale separation assumptions are shaky, we 
should pay more attention to this history and consider the possibility of using integral equations such 
as (4). Notice also that if the Taylor expansion in (5) is continued to higher order then one will usually 
(i.e. for most kernels <f>) obtain a hyperdiffusive term such as cxxxx. 

1.2    The method of moments 

As a check on the derivation of (6), we take a different approach using the method of moments. A 
moment of the concentration is an integral of the form 

f J — < 

xnc{x,t)dx. (8) 

The zeroth moment, n = 0 in (8), is the total number of particles: 

/oo 

c{x,t)dx. (9) 
-oo 

The first and second moments can be interpreted as the center of mass and moment of inertia of the 
concentration profile. 

We expect that N is constant, and it is educational to verify this conservation law for both the 
master equation and the diffusion equation by "taking the zeroth moment". Integrating (4) from 
x = -cotox=:+oo, and changing the order of the integrals on the right-hand side gives 

N(t 
/OO fOO 

dA<j>{A)       dxc(x-A,t). (10) 
-oo J —oo 

Changing variables to x' = x - A in the inner integral, and using (2), gives the particle conservation 
law N(t + r) = N(t). The diffusive analog of particle conservation is easily obtained by integrating the 
diffusion equation (6) from x = -oo to x = +00. Provided that Dcx vanishes at x = ±00 (physically, 
there is no flux of particles from infinity), one immediately finds that Nt = 0. 

Extending the procedure above to higher moments, we can make a comparison between the exact 
results for Jxncdx and the diffusive approximation of these same integrals. To take the first moment 
of the diffusion equation, multiply (6) by x and integrate from x = -00 to x = +00. Once again, we 
use integration by parts and assume that terms such as xcx and c vanish as x -¥ ±00. Thus we find 
that the center of mass is stationary 

d   f°° 
-r I    x 
dtj^ 

xc{x, t) dx = 0. (11) 

The same result can be obtained by taking the first moment of the master equation. The center of 
mass is stationary because in (2) we assume that the PDF of displacements is symmetric. 



Continuing, we come to the second moment. For the diffusion equation we obtain 

J /-00 /-00 

dt 

/OO /-OO 

x2cdx = 2D      cdx = 2DN, (12) 
-OO J — OO 

where, as before, the terms which fall outside the integration by parts are zero because of the rapid 
decay of c as x —> ±00. The student should show that from the master equation 

/OO fOO fOO 

x2c(x,t + r)dx-       x2c{x,t)dx =       A2(j){A)dA. (13) 
-00 J—00 J—00 

Recalling the definition of the diffusivity in (6), we see that in the limit T -> 0 the difference equation 
in (13) can be approximated by the differential equation in (12). 

The law in (12), that the mean square displacement of a cloud of particles grows linearly with time, 
is often taken to be the defining characteristic of diffusion. As we will see later, there are dispersive 
processes which have other power-laws, such as Jx2cdx oc t1/2. These processes are referred to as 
"anomalous diffusion". 

2    Diffusion by continuous movements 

2.1    Lagrangian time series 

In 1922 Taylor [11] analyzed the diffusing power of a velocity field. The basic concept here is that of 
a Lagrangian time series, such as the x-velocity of a tagged fluid particle, u(t), as a function of time. 
This data is Lagrangian (i.e., following a "float"), not Eulerian (i.e, obtained from a "current meter" 
fixed in space). The velocity time series might look like figure 2. Clearly there is some regularity: 
evenly spaced maxima and minima are obvious, and we might guess that there is a wave which is 
producing oscillatory displacements. At the same time, the velocity is not completely predictable, 
and there is no obvious law by which we can anticipate all details of the future using observations of 
the past. 

The simplest assumption we can make to analyze the process in figure 2 is that the velocity is 
statistically stationary. This means that average properties of the velocity, such as the mean square 
velocity, are not changing with time. In operational terms, the assumption of stationarity means 
that if we take nonoverlapping and well-separated subsamples of the time series in figure 2 then the 
statistical properties of the subsamples are identical. 

If the time series is long enough we can chop it into N chunks, each of length T. We define an 
ensemble average by considering each of the N chunks as a single realization of a random process. 
This' procedure introduces the additional assumptions that there is a decorrelation time T <£T, and 
that time averages are equivalent to ensemble averages. Thinking of dispersion, Taylor imagined that 
each chunk was an independent particle, labeled n = 1,2,...,JV, executing continuous movements. 
"Continuous" in this context means that the velocity of particle n, un{t), is a relatively smooth 
function of time, at least in comparison with the jittery motion in figure 1. 

We denote the position of particle n by x„(t), so that if all the particles begin at x = 0 then 

dr /"' 
^ =«„(*), =* Xn(t) = Jun(t')dt'. (14) 

We use angular brackets () to denote the ensemble average. As an example of this notation, the 
average velocity of the N particles is 

1    N 

<«) = -5>n(t). (15) 
n=l 



A time series of Lagrangian velocity 

Figure 2:   A time series with a spectral peak. 

Because of the stationarity assumption, (u) is independent of time, and we can refer all displacements 
relative to the position of the center of mass by writing x' = x - (u)t and u'n = un — (u). To save 
decorating all our subsequent x's and u's with primes we now assume that (u) = 0. 

2.2    Taylor's formula 

The simplest measure of dispersion about the center of mass is the mean square displacement, (x2). 
We can calculate the rate of change of this quantity by first noting that: 

,2 rt dxl n 
dt 

dx2        r 
2xnun,        and (14) =* "df = 2 / «"('K^)dt''• (16) 

We now ensemble average (16). Because of stationarity, (u(t)u(t')) depends only on the time difference 
t — t'. Thus, we introduce the correlation function 

C(t-t') = (u{t)u{t')), 

and. after a change of variables, write the ensemble average of (16) as 

d(x2 

dt 
= 2 fc(t')ät'. 

Jo 

(17) 

(18) 

Equation (IS) is Taylor's formula, which relates the variance in particle displacement (x2) to an 
integral of the Lagrangian velocity autocorrelation function C(t). 

In the simplest situations the correlation function C(t) decreases rapidly to zero as t —> oo so 
that the integral in (18) converges. In this case, the dispersion of the ensemble at large times is 
characterized by a diffusivity (x2) ~ 2Df, where the diffusivity D is related to the correlation function 
bv: 

/•OO 

D = /  C(t) 
Jo 

dt. (19) 

In statistical physics, (19) is known as the Green-Kubo formula. 
Taylor did not claim that turbulent dispersion was governed by the diffusion equation, (6). We 

will return to this point later. For the moment notice that (6) is an approximation valid only for 
sufficently long times that the integral in (18) has converged to the constant D. This restriction is 
related to Einstein's assumption that particle positions are observed at time intervals r which are 
much greater than the decorrelation time. 



3    Diffusion and anomalous diffusion 

In the previous sections we emphasized that the diffusion equation (6) is only valid on times long 
compared to the decorrelation time T, and only if the concentration c(x, t) varies on length scales 
greater than the width of the density 0(A). These assumptions of scale separation in both time and 
space are often not satisfied in real flows. Thus, dispersion experiments over the last ten years have 
revealed behaviours which are much richer than those suggested by the arguments of Einstein and 
Taylor. Experiments often show that the growth of variance is described by a power law 

{x2)<xt*. (20) 

In some cases f = 1 (diffusion), but sometimes £ ^ 1, in which case the process is referred to as 
anomalous diffusion. 

3.1      Rayleigh-Benard convection 

As an example of hydrodynamic diffusion (f = 1) and transient subdiffusion (£ = 2/3) we mention the 
experiments of Solomon and Gollub [9,8] on the dispersion of passive scalar (either methylene blue or 
uranine dye, or small latex spheres) along a chain of Rayleigh-Benard convection cells (see figure 3). 
We refer to the passive scalar generically as "tracer". 

Following the experimental procedure in figure 3, suppose that all of the tracer is initially released 
in a single cell. The main question is: how many cells, N(t), have been invaded by tracer at time 
tl If this dispersive process is described by diffusion then we expect that N(t) oc i1/2. With certain 
interesting restrictions, this t1/,2-law is the experimental result. 

The Rayleigh-Benard flow can be approximately described using a two-dimensional and incom- 
pressible velocity field, {u,v), obtained from the streamfunction 

V» = AT1 Asin[fc{x + Bsinut)]W{z),        (u,v) = {-ipy,^x) - (21) 

The parameter A controls the amplitude of the flow, k = 2TT/X is the wavenumber, and W(z) is a 
function which satisfies the no-slip boundary conditions at z = 0 and z = H. The term Bsixiut is a 
simple model of the lateral oscillation of the roll pattern which results from an instability which occurs 
when the convection is driven sufficiently strongly. Because the flow in (21) is simple, highly structured 
and deterministic, this is not an example of turbulent dispersion. Nonetheless, the experimental results 
can be summarized using the notion of an effective diffusivity. 

The Peclet number is 

P = f, (22) 
where K is the molecular diffusivity of the tracer, is a nondimensional parameter which measures the 
importance of molecular diffusivity to advection. The Peclet number can be considered as the ratio 
of the time it takes a molecule to orbit around a convection cell to the diffusion time across a cell. In 
the experiments described here, P is large and molecules make many circuits around a convection cell 
before Brownian motion jostles them through a distance as large as fc_1. 

There are two cases which must be carefully distinguished: 

Steady rolls The rolls are steady if either u = 0 or B = 0 in (21). In either case, tracer can pass 
from one roll to a neighbour only via molecular diffusion. But, because molecules are advected 
through a distance fc_1, the dye is transported along the array of cells with an effective diffusivity 
Deff oc y/An/k » K. Because Deff -> 0 if K -» 0, the transport is limited by molecular diffusion. 

Unsteady rolls If B and u> are both nonzero then advection (rather than molecular diffusion) can 
take particles through the time-averaged position of the cell boundaries. In this case, there is 
the possibility of transport unlimited by weak molecular diffusion. 



Figure 3:    Transport of uranine dye along an array of convection cells with kB = 0.12; time (from the top): 
1, 2, 4 and 10 periods of oscillation. (Figure courtesy of Tom Solomon [10].) 

In the unsteady case, Solomon and Gollub show that trajectories of particles computed with the 
model streamfunction (21) are similar to the patterns observed experimentally. In both the numerics 
and the experiments, provided that u)B ^ 0, the transport of particles along the array of cells (in the 
x-direction) is due to chaotic advection in the neighbourhood of the roll boundaries. This process is 
strikingly shown in figure 3. 

A rough summary of the results is that in both the steady and the unsteady cases the dye spreads 
via a one-dimensional diffusive process, £ = 1 in (20), with a local effective diffusivity Deg. The 
number of invaded cells is N(t) oc y/D^gi. In the unsteady case Deff is independent of the molecular 
diffusivity K, while in the steady case £>eff oc <JK. The effective diffusivity in the unsteady case is 
enhanced by 1 to 3 orders of magnitude over the effective diffusivity of the steady case (which in turn 
is much greater than the molecular diffusivity, K). 

The summary in the previous paragraph omits many interesting details. One of the more important 
caveats is that the effective diffusivity in the steady case only describes the dispersion process at very 
long times: 

N(t) oc t1/2    when   t » 
k2t 

(23) 

The time l/k2n is an estimate of the time taken for molecular diffusion to transport tracer through 
a distance of order fc-1, from the edge of a cell to the center1. In this long time limit, the evolution 

1We assume that the aspect ratio of the cells is of order unity, kH = O(l). 



of the tracer is slower than the intracellular diffusion time l/k2K and consequently the concentration 
is uniform within each roll. The concentration changes rapidly at diffusive boundary layers (with 
thickness proportional to K

1/2
) which are located at the roll boundaries. The intercellular flux across 

these boundary layers is responsible for the spread of the tracer from one roll to the next. 
The scenario described above does not have time to become established until t > l/k2K. When 

t<l/k2K there is still a significant dispersion of tracer through many cells which is described by the 
anomalous diffusion law 

N(t) oc r1/3    when   t « -J- . (24) 

The anomalous process above relies on molecular diffusion passing tracer quickly across the cell bound- 
aries before there has been time to reach the center of newly invaded cells [3,4,13]. Thus there is a 
transient regime of subdiffusion which preceeds the final asymptotic diffusive law in (23). 

3.2    Anomalous diffusion in two-dimensional turbulence 

Cardoso et al. [2] conducted an experimental study of dispersion in a quasi-two-dimensional turbulent 
flow. The experimental apparatus is a shallow pan of fluid, 30cm by 30cm, and 3mm deep. The 
pan is filled with salty water and flow is driven electromagnetically (E x B forcing). The forcing is 
arranged so that the basic flow is a square lattice of 30 x 30 counter-rotating vortices. This flow is 
almost two-dimensional because of the large disparity between the horizontal dimensions (30 cm) and 
the vertical dimension (3 mm). 

Although the forcing produces a regular array of vortices, this simple pattern is unstable and a 
two-dimensional turbulent flow emerges. Visualization of the turbulence, using tracer particles, shows 
that in the statistically equilibrated state there is a population of vortices whose size is two or three 
times the injection scale of the forcing. Each vortex emerges, moves, merges with other vortices, and 
eventually disappears. 

Cardoso et al. [2] injected dye into this vortex mess and observed the two-dimensional dispersion 
of the dye in the horizontal plane. To measure the growth of the dye blob, they defined 

Rm = L/x2 +y2c{x, y, t) dx dy j   c(x, y, t) dxdy, (25) 

and 

R9 = Jf (*2 + y2) °(x> 2/> *)dx dv I hx> y> *) dxdy ■ W 

The experimental scaling law is 

(Rg,Rm)~t°-32±0M. (27) 

The exponent 0.32 ^ 1/2 indicates anomalous diffusion — specifically subdiffusion, because the dis- 
persion is slower than diffusion. 

By examining typical particle trajectories, such as the one in figure 4, Cardoso et a/.explained the 
subdiffusive growth in terms of an interrupted random walk. Consider a random walker who pauses 
between steps. The length of the pause, T, is a random variable; in the experiment of Cardoso et 
al.the pause is a trapping event in which a molecule is sequestered in the core of a stationary vortex. 
If the average duration of a pause is well defined then one can simply use Einstein's formula (6) 
with r replaced by the average time between steps. However, if the pausing times are very broadly 
distributed then the average duration of a pause may be infinite and consequently the dispersion is 
subdiffusive. We explore this in more details in the next section. 



Figure 4: The trajectory of a single particle shows a sequence of long nights interrupted by trapping events 
in which the particle circles around a vortex. The vortex trapping events are indicated by the arrows. (Prom 
Cardoso et al. [2]) 

3.3    Random walk with pauses 

Consider a random walk in which the walker pauses for a random time r between steps. The various 
- s have a probability density function W(T) (the waiting time PDF). This PDF is normalised, 

f 
Jo 

W{r) dr = 1, 

t he average waiting time spent between steps is 

/>00 

= /   rW(r)dT. 
Jo 

(28) 

(29) 

Motivated by the experiments of Cardoso et al, we entertain the notion that f is infinite because the 
integral in (29) diverges. For example, suppose that for large T, W(T) ~ T~ß. Then f = oo if \i < 2. 

However, if we only observe a finite number of steps, then we do not sample the entire density 
W(T). Specifically, suppose that after N steps, we have experienced pauses of duration T\, T2,... , TJV- 

We want to estimate the likely value of rmax(A'') = max{ri,r2,... ,TN}. The quantity rmax(N) is 
useful because we can argue that the structure of W(T) for r > rmax(AT) cannot be significant for the 
displacement after N steps. 



To determine rmax(N), we turn to probability theory. Consider a random variable 0 uniformly 
distributed in the interval [0,1]. That is, the PDF of 0 is P(0) = 1 if 0 < 6 < 1 and P{9) = 0 
otherwise. Suppose we take N samples, #i,--- ,0/v and define 0m\n(N) = min{0i,--- ,6^}. In this 
simple case it is plausible that 0mjn ~ N~1 as N -> oo. 

Now the trick is to use 6 to represent r: we write 6 = rp, and adjust p so that the power-law tail 
of W(T) ~ T-fi corresponds to the simple structure of P{6) = 1. In fact, 

P(6) = W(T) 
dr 
de 

==>        i ~ T
1
-»-* , (30) 

or p = 1 - ii. Because the minimum value of 6 maps to the maximum value of r, it follows that 

rmax(N) ~ JV^O-D. (31) 

Now we return to (29) to estimate the effective average pause time after N pauses: 

feff=/      TW(T) dr~7££. (32) 
Jo 

It is also plausible that the total time t spent on this random walk is given by 

t ~ iVfeff . (33) 

Combining (31), (32) and (33) yields the following scaling relationships: 

N-t»-1,       fee~t2-f,       rmax~i. (34) 

The final relation is worthy of comment: it implies a form of self-similarity of the random walk. 
To conclude, the total displacement of our random walk is proportional to y/N.  But, with the 

random pauses, the scaling against time has been altered to 

RMS displacement oc VN ~ &-^'2 . (35) 

This theory can be used to interpret the experiment of Cardoso et al: because the RMS displacement 
grows as i1/3 it follows that \i w 5/3. Cardoso et a/.successfully tested this prediction by measuring 
the PDF of trapping times inside vortices. 

4    Stirring and mixing 

4.1    Coffee and cream 

Appealing to the everyday experience of mixing cream into coffee, Eckart [5] argued that the homog- 
enization of two fluids occurs in three stages. The distinction between the stages is the value of the 
concentration gradient averaged over the domain. 

Initial: there are distinct interfaces separating globules of cream and coffee. Within each globule, the 
concentration of cream is nearly constant and the concentration gradient is close to zero. There 
is a very large concentration gradient between regions of coffee and cream. But the interfaces 
between coffee and cream are small in number and not of great area, so the average gradient in 
the coffee mug is small. 

Stirring: the cream is mechanically swirled and folded, and molecular diffusion is unimportant. 
During this second stage the concentration gradients increase. 
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t=1 t=2 t=4 

t=8 t=16 t=32 

Figure 5: Solution of ct + (1 - r2)ce - (8 x 10 4) V2c. The initial condition is c(x, y, 0) = x. 

Mixing: the gradients suddenly disappear and the fluid becomes homogeneous; molecular diffusion 
is responsible for the sudden mixing. 

In a chemical reaction, molecules of different species must come into contact for the reaction to occur. 
Thus, when the species are initially separated, the reaction will not begin until the final mixing stage 
is reached. In this sense there is an important distinction between coarse-grained homogenization, 
occuring solely as a result of stirring, and mixing at the molecular scale. 

To illustrate these concepts figure 5 shows a solution of the advection diffusion equation 

ct + (1 - r2)ce = KV
2

C,        c(r, 6,0) =r sin 0 (36) 

where K = 8 x 10~4. A particle at a distance r from the origin completes a rotation in a time 
27r/(l - r2). Thus particles at smaller values of r will overtake particles at larger values of r and so 
the concentration is twisted into spirals by differential advection (stirring). 

The increase in gradient during the stirring phase is evident in the figure. But at approximately 
t = 16, mixing starts to dominate, and diffusion rapidly reduces the average gradient. From the 
initial condition, an estimate of the time it would take unassisted diffusion to homogenize the fluid is 
TD ~ 1/K = 1250. It is only through the initial process of stirring that the concentration gradient is 
amplified or, alternatively, that the spirals are stretched out so that small diffusion homogenizes the 
tracer at t = 32 <C T&. 
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Figure 6: The straining flow described by the streamfunction tp = -axy. The figure shows how a circular 
patch of tracer is stretched out along the x-axis by the hyperbolic strain. If n - 0 the major axis of the ellipse 
prdws as exp(at) and the minor axis reduces as exp(-ot) so that the area remains constant. 

•4.2    A straining flow 

A simple example of a two-dimensional flow which amplifies concentration gradients is the hyperbolic 
-train shown in figure 6. The streamfunction is i[> = -axy and so the advection diffusion equation is 

ct + axcx - aycy = KV
2

C . (37) 

Nonce the dimensions here: a-1 has dimensions "time" and K has dimensions (length)2/(time). Prom 
these two quantities we can build a combination with the dimensions of (length): 

1 = (38) 

1 h> length I will appear prominently in the sequel. 
We begin our discussion of hyperbolic strain by obtaining a solution in which c is independent of 

I.<>th i and t. In this special case the solution of (37) is 

cy = A exp 
,2 1 

y_ 
~2P 

c(x, ±oo, t) = ±\/2TTAL (39) 

The concentration profile is the error function shown in figure 7. The solution shows the steady state 
tiulance between advection and diffusion: with y/2irAe = 1, the concentration c changes smoothly 
between c = +1 as y -> +oo to c = -1 as y -> -co. The transition occurs in a front of width £. 

We can give an intuitive discussion of how the steady state profile in figure 7 is established as 
the solution of an initial value problem. Suppose we had started with the initial condition such as 
c(x. y. 0) = sgn(y) in which the transition between c = -1 and c = +1 occurs in a distance much less 
than L Then the discontinuity in c initially diffuses freely, growing like y/ni. Once the width of the 
front becomes comparable to t, that is when 

VKt~£, t ~ a' (40) 
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Figure 7: The time independent error function solution to equation (37). 

the spread is arrested and the steady state in figure 7 is established. 
On the other hand, we can also consider an initial condition in which the transition between c = 1 

and c = — 1 occurs on a scale LQ > (■■ In this case the front is initially compressed by the hyperbolic 
strain so that the width is reduced exponentially, L = Loexp(-at). Because io > £ the diffusion is 
unimportant until the exponential reduction in scale reaches i. That is, 

L0e -at t -a'1 \n(Lo/C). (41) 

These considerations illustrate the fundamental importance of I as the scale on which advection and 
diffusion come into balance. 

4.3    Lagrangian coordinates: a simple example 

The hyperbolic strain also provides a painless illustration of some mathematical techniques which can 
be used in more complicated problems. We begin by considering the solution of (37) with K = 0. 
With no diffusion c is tied to fluid particles. The position of a fluid particle is related to its initial 
position (a, b), by solving the differential equations 

(x,y) = a(x,-y), (x,y) = {eata,e-atb). (42) 

The solution of (37) can now be obtained by arguing that the particle which is at the point (x, y) at time 
t began at (a, b) = (exp(-atf)x, exp(at)y) at t = 0. Because the a particle carries the concentration it 
follows that the solution of (37) as an initial value problem is 

c(x,y,t) = Co [exp(-at)x,exp{at)y] , (43) 

where Co (x, y) is the initial condition.   The philosophy of this method is that we care where fluid 
particles come from, but not where they are going to. 

The solution above seems to rely crucially on the restriction that K = 0. But now look what 
happens if we use the Lagrangian coordinates (a, b) in (42) as new independent variables in (37). As 
an accounting device, it is comforting to define r = t and consider that dT as the time derivative with 
(a, 6) fixed. Thus the transformation rules are 

(*•«-(I-1) «■+(I-S) *"(•-*■«"*) 
and 

The punchline is that 

dt = ^-3r + -z-da + -K:db = dr- aada + abdb. at at at 

dt + axdx - aydy = dT , 

(44) 

(45) 

(46) 
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which shows that the change to a Lagrangian description makes the convective derivative trivial. 
Substituting the transformations above into (37) gives: 

ct = Ke~2atcaa + Ke2atcbh. (47) 

Naturally, if K = 0, we recover our earlier solution in (43). But even if K ^ 0 it is often easier to solve 
(47) than the Eulerian form in (37). For example, Fourier transforming (47), with (da,db) -> i(p, q), 
gives a simple ordinary differential equation in time. 

It is instructive to use the method above to solve (37) with the initial condition 

c(x,y,0)=6(x)S(y). (48) 

Physically, this is a spot of dye released in a straining flow. When at <§; 1 the spot spreads diffusively, 
with a diameter which grows as ^/Tä. However when at ~ 1 the diameter of the spot becomes 
comparable to I = ^//t/a, and then the spot stops expanding against the compressive direction of the 
strain. However the spot continues to stretch along the extensive direction. Thus, when at > 1, the 
spot becomes a filament with an equilibrium width of order I and an exponentially growing length. 
These intuitive arguments are supported by the exact solution: 

(49) c(*,i/.*) = 47r/5exp 
x2       y2' 
4/2      4g2 5 

where f(t) and g(t) are 

/» = A(e»«t_i),        g 
la v 

-2at\ (50) 

Notice that the peak concentration ultimately decreases like e~2at. 

4.4    An example of sudden mixing 

As a final look at the hyperbolic straining flow, we note that a solution of (37) is 

c(x,y,t) = A(t)cos{ke-atx)cos(keaty), (51) 

where 

A(t) = exp [-£2k2 sinh 2at] . (52) 

One route to this exact solution is to look for separable solutions of (47), and then transform back to 
the Eulerian coordinates (e.g., Young, Rhines & Garrett,1982). 

The mean value of the square of the concentration gradient varies with time as: 

1.2 
{Vc-Vc} = Z- cosh(2at) exp \-2t2k2 sinh(2ai)] , (53) 

where {} denotes an average over a large area. {Vc-Vc} is plotted in figure 8 for various values of 
kt. Recalling Eckart's description of stirring as increasing the concentration gradient, and mixing as 
decreasing the concentration gradient, we can see the transition between the two phases occurs at the 
peaks of the various curves. If kt -C 1, then the time it takes to reach this peak is given by t», where 

erf. ~-ln(JM). (54) 

Once again, this is the time taken for the exponential factor e~at to reduce initial length of the tracer 
field, fc-1, down to the length t on which strain and diffusion balance. 
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Figure 8: The mean square of the concentration gradient. If k£ <C 1 then the concentration gradient grows 
until t = t, in (54) and then decreases precipitiously. If k£ > 1/2 then diffusion always overpowers strain and 
the mean square gradient decreases monotonically to zero. 

4.5    A Welander scrapbook 

Stirring was beautifully illustrated in a 1955 paper of Welander's [12]. This paper is notable also 
because of its discussion of the importance of coarse-grained averages. Figures 9,10 and 11 reproduced 
from Welander (1955) show that simple velocity fields produce spectacular distortion of passive scalars. 

In figures 9, 10 and 11, some dimensions of the scalar blob are stretched out while other dimensions 
are contracted. Batchelor (1952) [1] argued that in turbulent flows random stretching results in an 
exponential growth of the separation between two initially adjacent fluid elements. That is, if we 
consider two material elements separated by a distance so which is much less than the scale of the 
velocity field, then Batchelor argues that the separation grows as 

s ~ Sot ft (55) 

The time-scale 7-1 is analogous to a-1 in (37), though in figures 10 and 11 the exponential straining 
is driven by a random and unsteady velocity, rather than the simple hyperbolic field in figure 6. Note 
particularly that the exponential law in (55) is valid until the separation s(i) becomes comparable to 
the length scale over which the velocity varies. 
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Figure 9: Welander's numerical solution illustrating differential advection by a simple velocity field. A 
checkerboard pattern is deformed by a quasigeostrophic barotropic solution which models atmospheric flow 
at the 500mb level. The initial streamline pattern is shown at the top and the subsequent figures are at 6 
hours, 12 hours, 24 hours and 36 hours, respectively. Notice that each square of the checkerboard maintains 
constant area as it deforms. 
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Lecture 2: Diffusion 

1 Introduction 

Perhaps you have heard that turbulence is the most difficult problem in fluid mechanics and, according 
to some, the greatest unsolved problem in physics. One indication of the difficulty is that it is 
impossible to give a satisfactory definition of a "turbulent flow". But everyone agrees that one property 
of turbulence is greatly enhanced transport of passive contaminants. For example, relying only on 
molecular agitation, a dissolved sugar molecule takes years to diffuse across a coffee cup, and on that 
time-scale the coffee will surely evaporate. With a spoon the coffee drinker can create eddies that 
transport dissolved sugar throughout the cup in less than one second. This is an example of eddy 
diffusivity. 

Fluid mechanics textbooks often often justify eddy diffusivity by appealing to an analogy between 
turbulent eddies and molecular diffusion — perhaps this notion originates with G.I. Taylor's 1905 paper 
entitled "Eddy motion in the atmosphere" [4]. In any event, the molecular analogy, supplemented 
with some hand-waving, leads to the notion of an eddy diffusivity and for many scientists this is the 
end of the turbulence problem. 

Our goal in this lecture is to explain very explicitly the assumptions behind Taylor's "proof by 
analogy" and to illustrate the interesting points at which the analogy fails. We will pursue this 
program by working with some very simple model flows for which analytic results, such as expressions 
for the eddy diffusivity, are available. As you will soon see, these model flows do not greatly resemble 
turbulence, but then neither does molecular motion! Our excuse is that soluble examples are always 
diverting and educational. 

2 The renovating wave model 

2.1 A recipe for constructing soluble models 

The main problem in analyzing transport is solving the differential equations which describe the 
motion of particles in even very simple flows. However there is a class of flows for which this task is 
trivial. These are steady and unidirectional flows, such as u = siny. A particle which starts at (a, b) at 
t = 0 finds itself at (a + r sin b, b)att = r. This is dull, but it becomes more interesting if at intervals 
of T we "renovate'' the flow by randomly picking a new direction along which the velocity acts. In 
this way we can construct a sequence of iterated random maps and calculate diffusivities, and other 
statistical properties, by averaging the exact solution. I learned of this trick from the literature on 
dynamo theory. The book Stretch, Twist, Fold: the Fast Dynamo is highly recommended for students 
interested in all aspects of stirring and mixing [1]. 

2.2 The renovating wave (RW) model 

As a particular example we now formulate the renovating wave (RW) model. We divide the time axis 
into intervals 

In = {t: (n - 1)T < t < TIT] , (1) 
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and in each interval we apply a velocity, u = (—rpy,tpx), derived from the streamfunction 

ipn(x,y,t) = k^Ucos[kcos9nx + ksm6ny + ipn], (2) 

where 6n and ipn are independent random variables uniformly distributed in the interval [—TT, IT}. Thus 
in each In there is a steady, unidirectional velocity with sinusoidal profile (a single wave). There is 
sudden and complete loss of all information about the past velocity at t = nr because at these instants 
we "renovate" the velocity by picking new random angles 6 and <p. (This means that the velocity 
correlation function, C(t), is zero if t > r.) 

The renovating wave model can be nondimensionalized by using fc_1 as a unit of length and and 
1/(£'£) as a unit of time. With this choice, the model contains a single dimensionless parameter, 
r. = rkU, which is a measure of the persistence of the motion. Much of the literature on random 
advection-diffusion uses model velocity fields which are ^-correlated in time. We can recover this limit 
a> a special case by taking T* -> 0. 

Using dimensionless variables, a particle which is at x„ = (xn,yn) at tn = nr* moves to xn+i at 
/ = (7i + l)r», where 

(zn+i,2/n+i) = {xn,yn) + Tt sin{cnx + sny +tpn) (sn,-cn). (3) 

with .s„ = sin#„ and cn = cos#n. Thus motion in the renovating wave problem is equivalent to an 
iterated sequence of random maps. 

2.3    The single-particle diffusivity 

It i- very easy to calculate the diffusivity in the RW model (and much more difficult to interpret the 
answer). The average of a function of the two random angles 6 and ip (suppress the subscript n) is 
defined by 

tfl = /|£/f/(.„). (4) 
1 h'Tofore. using (3), 

{{Xn+1-Xnf) = Tl. (5) 

'I ii>- computation is trivial if the integral over ip is evaluated first. 
In (5). following our previous discussion based on Einstein's derivation of the diffusion equation, 

»i arc computing the statistics of dispersion along the z-axis. Because the renovating wave model is 
IM »tropic, dispersion in the y-direction is identical to that in the rc-direction. 

Because all of the waves are independent and identically distributed it follows that after n reno- 
vatioii cycles 

((Xn-Xof)=n^-. (6) 

But t = m*, and ((xn — xo)2) = 2Dt, so that using dimensionless variables the diffusivity is 

D-Tt m 

Sometimes D is referred to as the single-particle diffusivity. "Single-particle" emphasizes that D 
strictly applies only to the RMS displacement of a particle from its initial position; D contains no 
information concerning the deformation of a patch of tracer, nor of any other quantity involving 
correlated motion. Thus, using dimensional variables, the diffusivity in (7) is D = U

2
T/8, which is 

independent of k. Because D is independent of the scale of the wave, even a spatially uniform, but 
random-in-time velocity (the case k = 0), has a single-particle diffusivity. 
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t=6x 

t=9x 

t=12x 

Figure 1: Stretching of a small spot, r < 1 where r is the initial radius of the spot, by a succession of random 
sinusoidal flows. The dotted circle is the initial spot. 

t=1x t=2x t=3x 

Figure 2: Stretching of a blob with r = 1, where r is the initial radius. The dotted circle is the initial patch. 
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t=1X t=2x t=3x 

t=4x t=5x t=6x 

t=7x t=8x t=9x 

t=10x t=11x t=12x 

Figure 3: Stretching of a big blob r>l, where r is the initial radius of the blob. The dotted circle representing 
the initial patch may not be visible beneath the wiggly boundary of the blob. 

2.4    Deformation of variously sized blobs 

To emphasize the importance of understanding more than single-particle diffusivities we take a digres- 
sion and illustrate how the deformation of an initially circular blob of fluid depends on the blob radius 
r. (Recall that we have used k~x as unit of length; in terms of dimensional variables the relevant 
nondimensional parameter is kr.) 

If the initial blob is much smaller than the wavelength of the velocity then on the scale of the 
blob the velocity profile is a linear function of the coordinates. Because of this simplicity, the first 
few iterations deform the circular blob into an ellipse which must have the same area as the initial 
circle. We will see in the next lecture that the major axis of the ellipse grows exponentially while the 
minor axis shrinks so that the area is fixed. Once the dimensions of the ellipse are comparable to the 
wavenumber of the flow, more complicated deformations occur. Ultimately the blob will be stretched 
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into a folded filament as in figure 1. 
The blob has the same scale as the velocity field if r ~ 1. Because there is no scale separation 

there is no easy description of the action of the flow on the blob, see figure 2. 
If r 3> 1 then we are in the "eddy diffusivity" limit in which the scale of the velocity field is much 

smaller than the scale of the tracer. This case is shown in figure 3. The action of the waves perturbs 
the edge of the blob, making it look "fuzzy". In fact, the area is preserved, but the circumference 
of the blob grows exponentially. We will be discussing this type of problem for the remainder of the 
lecture. 

2.5    The Lagrangian correlation function 

In (7) we gave the diffusivity of particles moving in an ensemble of renovating waves.  How do we 
obtain the Lagrangian velocity autocorrelation function and verify Taylor's formula that 

/•OO 

D = /  C(t) 
Jo 

dt? (8) 

Considering this question, we encounter an annoying technical difficulty: our derivation of (8) assumes 
that the velocity statistics are stationary. But the renovating wave ensemble, as we defined it back 
in f 1) and (2), is not a stationary stochastic process. This is because with our original definition all 
members of the ensemble renovate at the same instants t = r, t = 2r etcetera. In order to obtain 
a stationary process we should initiate different realizations at uniformly distributed points during 
the renovation cycle. Thus, for realization number j, we pick a random time T^ which is uniformly 
ciistributed in the interval [0,r] and renovate first at t = r^ and then subsequently at t = T^ + r, 
t = rlj) + 2r etcetera. With this new and improved formulation of the RW model the Lagrangian 
correlation function of u{t) is a "triangular" function: 

C(i) = ^(l-;)#(r-t), (9) 

where H is the step function and U is the velocity in (2). The area under this correlation function is 
I) = r-r/8. 

3    The eddy diffusion equation 

3.1     The ensemble averaged Green's function 
Now that we have obtained the RW diffusivity in (7) we turn to the derivation of the eddy diffusion 
•■(luation. For each realization we introduce the Green's function which is 

Gt + u-VG = 0,    with   G(x,x0,0) = (5(x-xo). (10) 

The solution of the problem above is 

G(x,x0,t) =<5(xt -x0), (11) 

where xt is the position at time t (in a particular realization of u) of the particle which started at x0. 
The ensemble averaged Green's function is 

g(r,t) = {G(x,x0,t)),        r = |x-xo|, (12) 

where we have assumed that the random velocity is isotropic, homogeneous and stationary so that g 
can depend only on the distance r and the elapsed time t. 
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Possessing g(r, t), we can then represent the ensemble-averaged solution of the initial value problem 

ct + u-Vc = 0,       c(x, 0) = co(x), (13) 

as the convolution 

<c)(x,i) = |c0(x-x')s(|x'|,i)dx'. (14) 

(We are assuming that the initial condition Co is the same for all realizations.) 
At this point, the analogy between (14) and the master equation of lecture 1 is obvious. With 

the master equation in mind, we can anticipate that a variant of Einstein's derivation of the diffusion 
equation can be applied to (14). Rather than develop a general derivation we prefer to use the 
renovating wave model as a concrete illustration of how one can obtain g, and then pass from the 
integral equation in (14) to an approximate diffusion equation. 

3.2      The averaged Green's function of the RW model 

There are at least two ways of obtaining g(r) in (12) for the RW model: the hard, straightforward 
way (see the appendix) and the easy, devious way. Let us be devious. 

We begin by calculating the probability density function (PDF) of displacements in a single pulse 
of the RW model. Because the ensemble of velocities is isotropic and homogeneous there is no harm in 
supposing that the particle is at the origin and the a>axis is aligned with the direction of the velocity. 
That is, put (xn,yn) = (0,0) and 9n = n/2 in (3). Thus, the displacement r produced by a single 
pulse is 

xn+i-xn = r* sin(pn,    and   r = \xn+i - xn\. (15) 

The PDF of the random variable r can be obtained from the PDF of <p, that is P(</>) = 1/27T, using 
the rule for transforming probabilities: 

™ = E*b»|£l- - ™-l$&- (16) 

In (16) H{T* - r) is a Heaviside step function which ensures that there are no displacements greater 
than r*. (The sum in (16) is because there are four values of <p corresponding to a single value of r.) 

The averaged Green's function is now given by 

P(r) 1  ff (r. - r) 

The geometric factor 2rrr is included because g(r) is a concentration. That is, P(r)dr the expected 
number of particles which fall into the differential annulus between r and r + dr and g(r) is the 
expected number of particles per area in this same annulus; see figure 4. 

Now that we have the averaged Green's function of a single pulse we can obtain the evolution the 
ensemble averaged concentration, (c), over many pulses. Because each pulse is independent of the 
preceeding pulses we have 

(c) (x, (n + 1) TV) = J(C)(K - x>7v)5(|x'|) dx'. (18) 

The master equation above, with g(r) in (17), is an exact description of the evolution of (c) under 
advection by the RW model. 
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Figure 4: Displacements of 40,000 particles in independent realizations of the the RW model. The left panel 
shows the final position of particles which all start at the center of the the circle after one pulse of the wave. 
The density of points corresponds to g(r) in (17). The histogram on the right shows the number of particles 
at a distance r from the center; this is the function P(r) in (16). 

3.3    The diffusion equation 
With the master equation (18) in hand, we can use Einstein's approximations to obtain the diffusion 
equation. Using the dimensionless variables of the renovating wave model, we have 

<c>t«-£V<c>. (19) 

We leave this as a homework exercise and instead we take a different route to (19). 
Because the Fourier transform of a convolution is the product of the Fourier transforms, we can 

simplify (18) by transforming. The Fourier transform of f(x) is defined here1 as 

/» = |e-ikx/(x)dx,        f(x) = ± /eikx/(k)dfc. 

Applying the transform to (18) we obtain 

(cXk,nr.)=p(fc)nCo(k),        fc=|k|. 

(20) 

(21) 

With a good table of integrals one can discover that the Fourier transform of the averaged Green's 
function, g(r) in (17), is 

£(*;) = J2(fcr,/2), (22) 

where Jo is the Bessel function. 
The diffusion equation describes the evolution of large spatial scales, which is the same as small 

wavenumbers. This means that we simplify (21) by taking fcr,/2 < 1 and using the approximation 
J0(fcr»/2) PS 1 - (fc2r2/16) to write 

<c)(k,nT„) ss exp {nln [l - (fc2r2/8)]} co(k). (23) 

xBy denoting the wavenumber with fc we are recycing notation used in (2). 
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But now, since n = t/r* and ln[l - (fc2r» /8)] « -fc2r2/8, we have 

&)(K,t) = e-Dk2tco(k) (24) 

where, as in (19), D = r„/8. Equation (24) is the equivalent to the decay of Fourier components given 
by (19). 

This derivation based on Fourier analysis explicitly recognizes that the diffusion approximation is 
valid only for wavenumbers which satisfy fcr*/2 <C 1. This is a precise statement of the scale separation 
assumption which underlies Einstein's approach. 

4    Ensemble averages and single realizations 

In hydrodynamic dispersion, particles which begin at neighbouring points have similar histories in 
any single realization. Marbled endpapers in old books were produced by floating coloured inks on 
water, stirring the surface, and then capturing the swirls by carefully lowering a sheet of paper onto 
the inky film [3]. This technique, probably originating in Persia in the 1400s, presses hydrodynamic 
correlations into the service of art. Fortunately for printers, and distressingly for statisticians, a single 
realization does not resemble the blurry diffusion equation. 

4.1    Eddy diffusion of a front 
Figure 5 shows a single realization of the evolution of a "front" under the RW advection process. The 
front is the sharp border which separates white from dark; initially this line coincides with the y-axis. 
We suppose that the concentration is c = — 1 for x < 0 and c = +1 for x > 0. Successive pulses of the 
renovating wave produce an increasingly folded front and the c = — 1 fluid invades the region x > 0 
in long thin tendrils. The central question is: 

How well is the process in figure 5 described by the diffusion equation? 

We know that given many realizations of this process, the long-time ensemble average of these 
realizations will follow the diffusion equation (c)t — D{c)xx, with the initial conditions c(x, 0) = ±1. 
The solution of this problem is 

(c) = erf T),        where       r\ = —-==. (25) 

Figure 6 shows this smooth erf solution which, of course, looks nothing like figure 5. If the dark fluid 
in figure 5 contained radioactive contaminant, and we wanted to estimate the maximum exposure of 
at some value of x > 0, then the erf solution in (25) is not useful. 

On the other hand, diffusivities are useful if we want to know how many particles are at such-and- 
such a distance from their initial location. Thus, figure 7 shows a histogram of the positions of 10,000 
particles which all start on the line x = 0 (the initial front). The Gaussian curve in figure 7 is the 
corresponding prediction for the PDF of positions which is obtained by solving (19) with the initial 
condition (c) = S(x): 

c(x, t) =   , exp 
^/4^Dt ADt 

D = £. (26) 

The histograms converge slowly to this Gaussian prediction. This asymptotic success shows that the 
diffusion equations correctly predicts the dispersion of particles when t » r». 

An amusing aspect of the simple problem in figure 5 is that we can easily calculate the RMS 
fluctuations of c around the ensemble average concentration in (25). Because c = ±1 we have (c2) = 1. 
Therefore, defining the fluctuation as 

c' = c-(c), (27) 
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Figure 5: Evolution of a front under the advection by the RW model. The front initially coincides with the 
y-axis. 

1 

0.5 
erf(n) and 1-erf (ri) 

Figure 6:  Evolution of the ensenble-averaged concentration c and its variance during the evolution of the 
front underthe RRW model. Note how most of the variance is localised around x = 0. 
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Figure 7: At t = 0 the front in figure 5 is tagged by placing 10000 particles along the y-axis. The historgram 
above shows the subsequent x-locations of these marker particles as the front is distorted by the RW model 
with T» = 1. The Gaussian curve is given by (26). 

we have 

<c'2> = (C
2>-(c>2 = l-eria(»7). (28) 

The variance (c' ) is also indicated in figure 6. 

4.2    Coarse grained averages and spatial filters 

The process in figure 5 is translationally invariant in the y-direction and so using only a single real- 
ization we can calculate a spatially averaged concentration 

1    fL 

c(x,t) =  lim — /   c(x,y,t)dy. 
L-»oo ZL J_L 

The evolution of c will be asymptotically described by the diffusion equation. 

(29) 
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In a general case, in which there is no statistical symmetry along a particular direction, one can 
take a single realization and define a coarse-grained or low-pass filtered concentration by: 

c(x,i)= fax-x')c(x',i)d2x';        üf(|x|)is a filter. (30) 

The hope is that scale separation between the width of the erf and the swirls will ensure that c « (c). 
Thus the kernel of the filter, K in (30), might be a Gaussian with a width which is at once much 
smaller than the thickness of the erf transition zone and much greater than an individual swirl in 
figure 5. 

Scale separation is essential here because the filtering operation defined by the convolution in (30) 
is not strictly an "average". Some of the properties we take for granted when we use averages are 

(c') = 0,        ((c)) = (c>,        ((a)(b)) = (a)(b). (31) 

For the ensemble average, as indicated in (31), everything works. 
For a filter, such as "in (30), we can define the fluctuation concentration c" in analogy with (27): 

c" = c-c. (32) 

But then c" ^ 0 and none of the other desiderata in (31) follow. In other words, spatial filtering 
instead of the ensemble averaging introduces a host of extra assumptions which should be carefully 
assessed (but almost never are). 

4.3    A digression: Brownian bugs 
I have hinted darkly at problems associated with spatial filters. These issues are largely ignored by 
optimistic scientists. The hope is that scale separation justifies the application of diffusive closures to 
the coarse-grained version of a single realization. Perhaps a justification of this optimistic approach 
is that the alternative seems so repellent. Nonetheless, it is important to realize that interpreting 
coarse-grained distributions as ensemble averages involves a nontrivial assumption. The best way of 
exposing this assumption is to exhibit a problem in which spatial filters and ensemble averages are 
very different. Accordingly, as a model of biological processes, we consider random walkers which 
both die and reproduce. We refer to these biological walkers as Brownian bugs. 

The model is formulated by first placing N > 1 Brownian bugs randomly in the unit square; 
the boundary conditions are periodic in both directions. Each cycle of the simulation begins with a 
random walk step in which bug k, located at x^ = (xk,yk): is displaced to a new position 

(x'k,y'k) = mod[(xk,yk) + {6xk,6yk);i\. (33) 

In (33), 6xk and 6yk are Gaussian random variables and the "mod" is to enforce the periodic boundary 
conditions and keep each bug in the unit square. After this random walk step, the second part of the 
cycle is a "coin toss" which results in either death (heads) or division (tails). When a lucky bug divides, 
the offspring is placed at the same position as the parent. This cycle of random displacement and 
random birth/death is repeated many times in order to simulate many generations of reproduction, 
death and dispersion. 

The simulation shown in figure 8 was implemented in MATLAB using these rules. The striking 
result is that the density of bugs spontaneously develops large-scale clumps and voids. Figure 8 seems 
to show an inverse cascade of patch sizes: patches emerge on small scales in panel (b) and then, 
after more cycles, panels (c) and (d) show that the patches have expanded in scale. To quantify this 
impression, we have computed one-dimensional concentration spectra which show that an increasingly 
red spectrum develops. 

A seemingly innocuous ingredient of the brownian-bug model is that deaths can occur anywhere, 
but births are always adjacent to a living bug. This asymmetry between birth and death is crucial for 
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a) Initial condition, N=20,000 (b) 10 cycles, N=19,692 

(c) 100 cycles, N=17,728 (d) 1000 cycles, N=21,814 
1 fife-."^-1"^ 

Figure 8: (a) The initial condition is JV = 20,000 randomly located bugs in the unit square. Panels (b), (c) 
and (d) then show the development of patches after 10, 100 and 1000 cycles of random displacement followed 
by random birth/death. As the panel titles indicate, there are random fluctuations in the total size, JV, of the 
population. The RMS step length of the underlying random walk is {5x\)1/2 — (6yl)1/2 = 0.005. 

the spontaneous development of the voids and patches evident in figure 8: if one simulates birth by 
randomly placing the new bugs in the unit square then no patches form. This subtle point shows that 
making the births coincide with living bugs — surely a realistic feature of the model — introduces 
pair correlations. From another perspective, one can view the voids in figure 8 as the result of random 
extinctions which create voids. The step length of the random walk in figure 8 is such that diffusion 
is not strong enough to fill in the voids created by extinction. 

The ensemble average of the Brownian bug process is described by 

(c)t = DW2(c) + (X-fx)(c) (34) 

where A is the birthrate and \i the deathrate. However if the coin-toss is fair then births and deaths 
are equiprobable and consequently A = /z. In this case the solution of (34) which satisfies the initial 
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condition is 

A = /z,        =* (c) = l/N. (35) 

The uniform density above is the correct answer for the ensemble average concentration: the location 
of the voids and patches in figure 8 are accidently determined by the MATLAB random number generator. 
If we ensemble average many such patterns then the patches and voids must disappear because the 
process is spatially homogeneous. 

On the other hand, the spatial average of a single realization, such as that in figure 8, will still 
show concentration patches2. Thus, in this Brownian bug example, c/ (c). Indeed, the patches 
are surely an important feature of the "real" answer. The correct but useless result in (35) exposes 
a failure of ensemble averaging. What do we make of this example? Are biological problems, with 
reproduction and death, so fundamentally different from the advection-diffusion of chemical tracers? 
I am not prepared to answer that question in these lectures and I leave further development of this 
example to the students. 

5    Variance budgets 

In this section we return to basics and present an alternative view of eddy-diffusivity. The following 
arguements emphasize the importance of the concentration variance equation. 

5.1    The Reynolds' decomposition 

Our point of departure is the advection-diffusion equation 

ct+ u-Vc = KV
2
C + S, (36) 

where K is the molecular diffusivity of c and u is an incompressible (V-u = 0) velocity field. In (36) 
we have included a source term, s(x, t), which forces the system. 

The velocity u in (36) is a single realization selected from an ensemble of velocity fields. Then we 
can introduce the "Reynolds' decomposition": 

c=(c) + d, (37) 

where () is the ensemble average and c' is the fluctuation from (c) which arises in a single realization. 
Taking the ensemble average of (36) gives 

<c)t + (u)-V(c) + V-(u'c'} = KV2(c) + s. (38) 

(The source .s is taken to be deterministic, (s) = s.) 
Subtracting the ensemble average in (38) from (36) gives the fluctuation equation 

c[ + (u)-Vc' + V-[u'c' - (u'c')] - /cV2c' = -u'-V(c). (39) 

Equation (39) has been organized by taking the source term to the right hand side. Thus we see that 
advective distortion of the mean gradient, V(c), generates the fluctuation c'. 

2If the width of the kernel, K in (30), is larger than the dimension of the patches then filtering will remove the 
patches. However, since the patches expand in scale, eventually they will become so large that they survive the blurring 
power of the filter. 
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5.2 Consequences of linearity 

If c' = 0 at t = 0 then, because (39) is linear, c' and V(c) will be linearly related. It follows that the 
eddy flux (u'c') will also be linearly related to the mean gradient V(c). These simple observations, 
in alliance with the scale separation assumption, can be used to extract a surprising amount of 
information  [2]. 

Because of the scale separation, it is plausible that this linear relation between eddy flux and mean 
gradient can be developed in a series of the form 

(u'iC') = -Pg} * (c) ^ - V% * (c)Jk + ■■■ (40) 

The comma subscripts denote partial derivatives, aj = da/dxj. We are also using the Einstein sum 
convention, where repeated indices are summed. The * in (40) indicates that the product also involves 
convolutions in time, such as 

^S}*(c),i = fvV{t'){c)ß-t')M. (41) 
Jo 

If the mean field is varying slowly over an eddy decorrelation time then the convolution above ap- 
proximates to 

/»OO 

{u'iC') « -Vl?*(c}j * - /  2>gV)di'(c),.(*). (42) 
Jo 

In the simplest cases3 

rOO 

J  2>g>(f)df = I?e*«, (43) 

v. here Dt is the eddy diffusivity. Using (43) the flux gradient relation is 

(u'c') - «V(c) = -£>V(c),        D = De + K , (44) 

.ti.ci the evolution of the average concentration is determined by 

(c)t«DV2(c) + s. (45) 

Tin- is a general version of the specific diffusion equation derived in Section 3.3 for the renovating 
wave model. 

5.3 The G • x-trick 
The tensors V^n\t) are determined by the linear operator on the left-hand side of (39). Thus, these 
tensors depend on (i) the statistical properties of u'; (ii) the mean advection (u); (Hi) the molecular 
diffusion K. The essential point is that these tensors do not depend on (c). At least for the first term 

u   = s — 0 and concentration has the form 
in the series, PL , we can exemplify this by noting that there is a special solution of (36) in which 

c = G • x + d . (46) 

3 ''Simple" means that the velocity ensemble is isotropic, homogeneous and reflexionally invariant. The last re- 
quirement means that the mirror image of a particular realization of u' is just as probable as u'. If the ensemble is 
reflexionally invariant then T>\ ■   is a symmetric tensor. This subtle point will be illustrated later in this lecture series. 
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In (46) the mean concentration is simply (c) = G • x and the fluctuation c' is determined from a 
reduced version of (39): 

C; + u'-Vc'-/cV2c' = -G-u'. (47) 

As emphasized above, the advection of the mean gradient appears as a source term for d on the right 
hand side of (47). Because (47) is linear, and G is constant, the solution c' will be proportional to 
the large-scale gradient G and otherwise independent of G. 

This G • x-trick enforces the platonic ideal of scale separation between the eddies and the mean 
field. If the concept of an eddy diffusivity is to have any validity, then it must work in the simplified 
context of (47). In fact, the G • x-trick is used in doubly-periodic turbulence simulation to calculate 
eddy diffusivities. In that context, u' = (u, v) and c' are efficiently represented by Fourier series. Then 
(47) is solved using a spectral code and the eddy flux is estimated by computing the integral 

(uV) = A-1 ffu'd dx dy, (48) 

over the computational domain. (In (48) A is the total area of the domain so (1) = 1). Notice that in 
(48) the ensemble average is identified with an integral over the domain. Later in these lectures we 
will use this same procedure to analytically calculate the eddy diffusivities of some spatially periodic 
velocity fields. 

5.4 The concentration variance equation 

An equation for the concentration variance, 

2^<c'2>, (49) 

is obtained by multiplying (39) by d and ensemble averaging. The result is 

Zt + (u)-VZ + V • (\u'ca) - KV
2
Z = -K(VC'-VC') - (uV)-V(c). (50) 

The terms on the left-hand side of (50) can be interpreted as fluxes of Z. The two terms on the right 
hand side of (50) are respectively dissipation of variance by molecular diffusion, K, and a source of 
variance due to advective distortion of the mean gradient. 

5.5 Heuristic closure arguments 
In (50) there are three terms which we would like to relate to the mean quantities (c) and Z. First, 
there is -(u'c')-V(c) = DeV(c)-V(c). The remaining two terms are (u'c'2/2) and K(VC'-VC'). 

The correlation (u'c'2/2) in (50) is an eddy-flux of c'2, just as (uc;) is an eddy flux of c'. Thus, 
by analogy with (44), we can argue that 

±(u'd2) = -DeVZ. (51) 

This heuristic argument is discussed further in appendix B. 
The final term in (50) is the dissipation of variance by molecular diffusivity, K(VC' ■ Vc'). The 

simplest closure assumption we can make about this term is that 

K{Vc'-Vd)&ßZ, (52) 
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where ß has the dimensions of time. The closure above relies on dimensional analysis and the linearity 
of (36). However, in anticipation of a later discussion of the Batchelor spectrum, we now make some 
heuristic arguments in support of (52) which suggest that ß is independent of the molecular diffusivity. 

Suppose that the mean field (c) has a length scale L and that the velocity field u' has a length 
scale Lu (in the RW example Lu — A;-1). The scale separation assumption is that 

L > Iu • (53) 

The inequality in (53) is exemplified in idealized case of (46) in which L is infinite. If follows that 
advective distortion of V(c) generates c' first on the scale Lu. Then, following our arguments in lecture 
1, the scale of c' will be exponentially reduced, like exp(—jt), where 7 is roughly proportional to the 
RMS strain of u'. This exponential contraction continues until the cascade is halted by molecular 
diffusion at the scale 

<=# (54) 

Using arguments from lecture 1, we can estimate that the time taken for this arrest at I is 

tj«7_1ln(Lu/*)- (55) 

Then the smallest length scale in the c'-field is I and, plausibly, the gradient is Vc' ~ c'RMSli where 
C
'RMS = V2Z- We now have a simple estimate K(VC'-VC') ~ jZ. This rough argument leads to the 

closure in (52), with ß oc 7, and the caveat that t>t{. 
We can summarize the arguments above by rewriting the variance equation (50) as 

Zt + (u)-VZ-DV2Z = DeV(c)-V{c)-ßZ,        (if t>tt). (56) 

The most dubious approximation is probably (52). To conclude this discussion we will interpret the 
variance equation in two specific examples. 

5.6    Example 1: the dispersing front 

First consider the dispersing front in figure 5. In this example s = K = (u) = 0 and we have already 
know from (28) that 

S-ip-rfM],        ,= -|=. (57) 

On the other hand, since K = 0, it follows that D = De and ß = 0. With these simplifications the 
variance equation (50) reduces to 

Zt-DZxx = DV{c)-V(c), (58) 

where (c) is the erf-solution in (25). As a consistency check, one can show that (57) is the solution of 
the variance equation in (58). 

This example shows that the destruction of variance by molecular diffusivity is not required in 
order to prevent an accumulation of variance: the source on the right-hand side of (58) is balanced 
by eddy diffusion. 

5.7    Example 2: a large-scale source 
In this second example the tracer is injected by a source s = cosqx in (36). We also take (u) = 0 so 
that the mean concentration field is obtained by solving 

(c)t - DV2 (c) = cos qx,    =»     (c> = -^j [l - e~DqH^ cos qx. (59) 
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Figure 9: A simulation of the source problem, with s = cos(x/6), using the RW model to generate u in (36). 
There is no molecular diffusivity (n = 0). The left-hand panel shows the whole domain (the length of the side 
i.-- 12-) while the right hand panel shows a smaller subdomain (the length of the side is 2ii). The concentration 
holds were generated by 10 pulses of the renovating wave using r. = 3 (that is, t — 30). 

(To apply the diffusion equation the scale of the source, q'1, must be much larger than the scale of 
the velocity field.) A steady mean concentration pattern is established when Dq2t > 1. 

The concentration variance is determined by solving the variance equation (56) 

Zt - DV2Z = l-^r [l - e-^'l2 (1 - cos2g*) - K(Vc'-Vc'). (60) 
2 D*q* L J 

In 160). the solution in (59) has been used to evaluate the source term on the right hand side and we 
have left the diffusive sink in its exact form. 

It is clear from (60) that the molecular diffusion, K, plays an important role. If K = 0 then the 
lonp. time solution of (60) has a component which eventually grows linearly with time: 

K = 0,        =» Z<xt/2Dq2. (61) 

Thus, without molecular diffusion, there is "runaway variance".  Ultimately, in a single realization, 
the mean field in (59) will be buried under enormous fluctuations. 

To give an intuitive derivation of (61) we argue that with K = 0 the concentration on each fluid 
element is determined by solving the Lagrangian equation 

— = cos qx(t), (62) 

where x(t) is the randomly changing x-position of the particle. Thus, the concentration on each 
particle is undergoing a random walk along the c-axis, which is induced by the random motion of the 
particle through the cosqx source function. The decorrelation time of this walk is the time it takes a 
particle to diffuse through a distance of order q'1, which is 1/Dq2. Thus, in a time t, there are roughly 
.Y(/) ~ Dq2t independent steps along the c-axis. But because the source acts coherently for a time 
l/Dq2 with a strength of order unity, the step length of this random walk is roughly Ac ~ 1/Dq2. 
Thus, the mean square displacement of c is: 

t 
(O ~ (Ac)2iV(i) 

Dq .2 ' 
(63) 
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Figure 10: This figure compares analytic results with a numerical solution of (62), talcing q = 1/10, and 
using the RW model to generate u. The persistence parameter is r. = 2 and the results axe at t = 400 (that 
is, 200 renovation cycles). The concentration c(x,400) is calculated on a 400 x 400 grid using the method in 
appendix B. In the top panel there are three curves: the concentration as a function of 0 < x < 2Ü7T along the 
line y = 0 (the jagged dotted curve); the j/-averaged concentration defined in (64); the analytic result in (59) 
(the smooth sinusoid). The bottom panel compares the CRMS = \/2Z obtained by solving (60) analytically 
with CRMS estimated using (64). 

which is the final result in (61). 
It is interesting to compare the analytic results in (59) and (60) with a numerical solution of (62). 

Thus we must compute the spatial averages 

i f^1 i r^ 
*(x,t)==2      c(x, y, t) dy,        c2

RMS (x, t) = - \  [c(x, y, t) - cf dy, (64) 

using the numerical solution, and compare these with the analytic results for (c) and Z = CRMS/2. 

The best way to make this comparison is to obtain c(x, y, t) on a regular grid in the (x, j/)-plane. As 
a bonus, one can then also use contouring routines to make pretty pictures of the concentration field 
(see figure 9). 

The concentration field is calculated on a regular grid using the procedure described in Appendix C 
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(essentially the method of characteristics). Figure 10 shows good agreement between this simulation 
and analytic results. Notice that in figure 10 the variance Z peaks where V(c) is greatest. This 
illustrates that concentration fluctuations are produced by advective distortion of the mean gradient: 
where the mean gradient is large there is lots of variance. But 2^0 even where V(c) = 0 (for 
example, at x = 0 and x = 107T in figure 10). Thus, where the source term on the right hand side of 
(60) vanishes, the diffusive term DV2Z supplies variance. 

5.8    Cautionary remarks 

In the both examples above there is no molecular diffusion (K = 0) and consequently there is no 
destruction of variance by the term K(VC'- VC') in (50). As a project for a student, include molecular 
diffusion in the RW model (perhaps by pulsing diffusion in alternation with advection) and assess the. 
efficacy of this process. In particular, can the closure in (52) be justified? 
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A    Calculation of the RW Green's function 

In this appendix we present an alternative calculation of the RW ensemble averaged Green's function, 
g(r), in (17). The unaveraged Green's function, G(x,x0, t), is the solution of (10). Because the process 
is spatially homogeneous it is harmless to take x0 = 0 so that 

G(X,0,T») =5 [x -T*S sin tp] S [y + T*c sin tp] , (65) 

where (s,c) = (sin 0, cos 0). The ensemble average of (65) is computed by integration over tp and 0, 
as in (4). It is very pleasant that there are two integrals and two ^-functions. Thus, we first do the 
^-integral by noting that 6[x - r*s sin tp] is nonzero at the two values of tp where sirup = X/T*S, and 
at those positions: 

-r-[x - T,S sin tp] = ±y/r2s2 - x2 . (66) 
dtp 

Using the standard rule for changing variables in a «^-function, we find that the average of (65) over 
tp alone is 

{G)        
1   S(y + cot9x) (6?) 

V     * SJT2 sin2 6 - x2 

The second integral over 6 is performed by noting that 6{y + cot 6x) is nonzero at the two values of 6 
where cot0 = — y/x, and at those positions 

sin2^-^,        ±ly + Xcot6] = -*^. (68) 
x1 + yl av x 

After changing variables in the J-function we recover g(r) in (17). 
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B    Eddy diffusion of variance 

Ignoring small molecular diffusion (K = 0), if c satisfies the advection equation then any function of c 
satisfies the same equation. That is to say 

De     n Df 

where /(c) = c2, or exp(c), etcetera. Taking an ensemble average, and making the same arguments 
for /(c) as for c, we have that 

(f)t = DV2{f). (70) 

In the particular case / = c2/2, (/) = (e)2/2 + Z and (70) reduces to 

Zt = DV2Z + DV{c)-V{c). (71) 

Matching the terms in (71) with those in (50) we conclude that (u'c'2/2) = -DVZ. 

C    Numerical simulation of the RW process 

Drawing figures 9 and 10 requires that we obtain the solution of (62) on a regular grid in the (x, y)- 
plane. This is an opportunity to use the method of characteristics and learn some MATLAB programming 
techniques. 

Equation (3) shows how the movement of a particle in the RW velocity field is equivalent to a 
random map which determines the position at (n + l)r* in terms of the previous position at TIT*. If 
this particle carries a concentration, c(x,t), which changes because of the cosqx source in (62), then 
the concentration changes can also be calculated and expressed as a map in discrete time. 

Thus, suppose that the concentration on a particle at time t = nrt is cn. Then the change in 
concentration during TIT* <t<(n+ l)r* is obtained by integrating 

Dc , 
— = cos [qxn + qun(t - TIT*)] , (72) 

where the constant z-velocity of the particle is un = s„sin(cnx„ + snyn + <pn), with (sn,cn) = 
(sin6n,cos6n). The integral of (72) can be written as 

-o    , sin(ga;ra+i)-sin(ga:n) 
qu„ 

With equations (73) and (3) we can advance forward in time and so determine the concentration on 
a particle at t = nr». 

However we need to determine the concentration at t = nn at a specified grid point x. The trick 
is illustrated in the Matlab program below. 

11 Solution of 
•/.'/. 
11      Dc/Dt=cos(qx); 
11 
11    cos(q x)   is a large-scale source and u is the RW velocity. 
11    The RW streamfunction is psi=cos[cos(theta) x+ sin(theta)y + phi] 
clc 
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N=400; '/.'/. Use an N*N grid in the plotting window 
q=l/6; '/,'/,  The wavenumber of the cos q x source 

LL=2*pi/q; '/.'/. LL is the domain size 
npulse=10 '/.'/• The number of renovation cycles 

tau=3; '/.'/. The pulse duration of the wave 

•/.'/. Lwin is the side of the square plotting window. 
'/.'/„ Set Lwin=LL to see the big picture. To see small scale details, 

'/,'/. try Lwin = 2*pi. We draw two subplots with different Lwin's 

nloop=0; 
for Lwin=[LL 2*pi] 
nloop=nloop+l 

x=linspace(0,Lwin,N);  '/.*/. x is the coordinate in the plotting window. 
h=x(2); '/.'/. The grid spacing in the plotting window 

for j=l:N 
jj=[((j-D*N+l):(j*N)]; 
pos(jj,l)=zeros(N,l)+(j-l)*h; 

pos(jj,2)=x'; 

end 

conc=zeros(N*N,1); 

'/.'/. The position of the N~2 particles are stored in pos with 

'/,'/.  N"2 rows and 2 columns. Each vertical segment of 
'/,*/. length N in pos contains particles with the same initial x-position. 

'/.*/, the column vector cone contains the concentration on the 

•/,'/. N*N particles in pos. Initially, conc=0 at the N*N 

'/.'/, grid points. Then we integrate 
'/.'/. backwards in time to find the concentration change. 

for k=l:l:npulse 
theta=rand*2*pi; 
wavevec=[cos(theta),sin(theta)] '; 

phase=rand*2*pi; 
vel=sin(pos*wavevec+phase)*[wavevec(2),-wavevec(l)]; 

conc=conc-sin(q*pos(:,1))./(q*vel(:,1)); 

pos=pos+tau*vel; 
conc=conc +sin(q*pos(:,1))./(q*vel(:,1)); 

end 

•/,•/, Emerging from this loop, we have the the new positions 

•/,'/„ and the new concentration 

conc=reshape(conc,N,N); •/.'/. cone is reshaped into an N*N matrix 

hh=subplot(1,2,nloop) 

colormap('gray') 
imagesc(x,x,cone) 

axis equal 
xlabel('x') 

ylabel('y') 
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axis([0 Lwin 0 Lwin]) 
set(hh,'ydir','norm') 

end 
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Lecture 3: Stretching 

1    Line stretching 

In the previous lecture we emphasized that the destruction of tracer variance by molecular diffusivity 
relies on the increase of Vc by stirring. Thus the term K(VC'-VC') in the variance budget eventually 
becomes important, even though the molecular diffusivity K is very small. One goal of this lecture is to 
understand in more detail how tracer gradients in a moving fluid are amplified by simple velocity fields. 
We will assume that K = 0 so that there is stirring without mixing. This is a good approximation 
provided that the smallest scale in the tracer field is much greater than the length t = ^/n/a. that we 
identified in lecture 1. 

Gradient amplification is closely related to the stretching of material lines, a subject that was 
opened by Batchelor in 1952. A material line is a curve that consists always of the same fluid 
particles. Batchelor's main conclusion is that there is a timescale governing the ultimate growth of an 
infinitesimal line element, but no length scale other than that of the element itself. These dimensional 
considerations force the conclusion that the element grows exponentially, 

t = toe"* , (1) 

where 7 is a constant with dimensions of inverse time, related to the timescale that Batchelor had in 
mind. 

Just as some close particle pairs separate exponentially, other pairs starting at distant points are 
brought close together. This might seem paradoxical until one recalls the folded tracer patterns evident 
in Welander's 1955 experiments (see the final figures in lecture 1). If two closely approaching particles 
are carrying different values of c then the gradient Vc will be amplified. Thus, as a corollary of (1) 
we expect that |Vc| ~ |Vco| exp(jt). It is through this exponential amplification of the concentration 
gradients that the small molecular diffusivity K is able eventually to destroy tracer variance. 

1.1    Material line elements and tracer gradients 
Using a geometric argument (see figure 1) we can give a proof-by-intimidation that a material line 
element, £(x,t), attached to a fluid element evolves according to 

5f = K-V)„. (2) 

Here the "convective derivative" is D/Dt = d/dt + u • V. The field of line elements can be visualized 
a collection of tiny straight arrows attached to each moving particle of fluid. Then (2) describes the 
evolution of this collection of arrows. Notice that (2) refers to an infinitesimal line element £. If the 
length of a material line is comparable to the scale of u there is no longer a simple relation between 
the stretching of the material line and local properties of u, such as Vu. 

Taking the gradient of the tracer equation 
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x + £ + u(x + £, rj 8f 

^ + 5^ 

x + u(x, t) 6t 

Figure 1:    The line element £ is short enough to remain straight and to experience a strain that is uniform 
over its length during the time 5t.   Proof by intimidation of (2) :  5£ = [u(x + £,t) — u(x,t)]St, and take 

gives 

£>Vc 
Dt 

= -(Vc-V)u. (4) 

Despite the difference in the sign of the right hand sides of (2) and (4) there is a close connection 
between the solutions of the two equations. 

To emphasize the connection between Vc and £, we mention the conservation law 

£(Vc€) = o. (5) 

(Meteorologists and oceanographers might recognize (5) as a relative of potential vorticity conserva- 
tion.) Later in this lecture (5) is used to deduce Vc from £. 

The easy way to prove (5) is to consider a pair of particles separated by a small displacement £. 
If the concentration carried by the first particle is a, and that of the second particle is C2 = c\ + dc, 
then dc = {-Vc. Thus (5) is equivalent to the "obvious" fact that dc is conserved as the two particles 
move. 

The difficult way to prove (5) is to take the dot product of Vc with (2) and add this to the dot 
product of £ with (4). Performing some nonobvious algebra, perhaps with Mathematica or Maple, 
one can eventually simplify the mess to (5). Suffering through this tedious exercise will convince the 
student that the earlier, easy proof is worthy of serious attention. 

1.2    Eulerian versus Lagrangian: the golden rule 

Particle trajectories, x = x(xo,t), are determined by solving the differential equations 

Dx 
~Dt 

= u(x,t) , x(0) = XQ ■ (6) 

The solution of the differential equation above defines the particle position, x, as a function of the 
two independent variables, Xo and t. Using this time-dependent mapping between x and XQ, we can 
take a problem posed in terms of x and t (the Eulerian formulation) and change variables to obtain 
an equivalent formulation in terms of XQ and t (the Lagrangian formulation). 
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In the Eulerian view, the independent variables are x = (x,y,z) and t. The convective derivative, 

D     d       d       a        a 
■Dt = Ft+Udi + Vd^+Wd-z' (7) 

is a differential operator involving all of the independent variables. 
In the Lagrangian view, the independent variables are x0 and t' and x(x0,t') is a dependent 

variable. As an accounting device, the time variable is decorated with a prime to emphasize that 
a i'-derivative means that the independent variables are xo- To move between the Eulerian and 
Lagrangian representations notice that 

9t     , .     d , .      . . .„. 
di!=   ' Qj;(x'y>z) = (u>v,w)- (8) 

The second equation above is the definition of velocity, u = (u,v,w). 
Using (8), the rule for converting partial derivatives is 

d       d      dx d      dy d      dz d       D ... 

dt'     dt     dt' dx     dt' dy     dt' dz     Dt' K ' 

Equation (9) is the golden rule that enables us to interpret expressions such as 

-^-(unknown) = RHS (10) 

in either Eulerian or Lagrangian terms. Using the golden rule we can dispense with the prime that 
decorates the Lagrangian time variable. 

In the Eulerian interpretation we must express the RHS in (10) as a function of x, y, z and t 
and use the Eulerian definition of the convective derivative in (7). Then (10) is a partial differential 
equation for the unknown. 

In the Lagrangian interpretation D/Dt is the same as a simple time derivative and we must express 
the RHS of (10) as a function of xo, j/o, ^o and t. Then (10) is a ordinary differential equation for the 
unknown. 

As an illustration of the transformation between Eulerian and Lagrangian variables, consider the 
steady, unidirectional velocity field u = [u(y),0]. The solution of (6) is 

x = x0 + u{y)t,        y = yo- (11) 

In this example it is a simple matter to express (x,y) in terms of (zo,2/o) and vice versa. 
The line-stretching equation, (2), has the same form as (10). For the same unidirectional velocity 

field, using components, £ = (£, n), we have in Lagrangian variables 

ft =»»'(»>, g-0. (12) 
(We have used the golden rule (9) above.) Equation (12) is an ordinary differential equation and the 
solution is 

i = £o(zo,2/o)+fr?o(ao,yo)u'(2/o),        ri = r){xo,y0). (13) 

Using (11), we can write (13) in terms of Eulerian variables as 

Z = to[x-u{y)t,y] + tri0[x-u{y)t,y}u'{y),    r\ = T)0[x - u{y)t,y]. (14) 

We can alternatively view (12) in terms of Eulerian variables and in this case we are confronted with 
the partial differential equations 

l + .wg = ,»'&),        §f + «M£| = 0. (15) 
It is easy to check by substitution that (14) is the solution of (15). 
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1.3    Motion is equivalent to mapping 

We obtained (2) using the geometric argument in figure 1. Now we admire some different scenery by 
taking an algebraic path to (2). Our itinerary emphasizes that the solutions of (6) define a mapping 
of the space XQ of initial coordinates onto the space x, and hence the title of this section. 

Using indicial notation (summation implied over repeated indices), it follows from the chain rule 
that 

dxt = ^—l-dx0j. (16) 
OXoj 

Taking the time derivative of (16), and keeping in mind that XOJ is independent of t, gives 

,,   .      dui duidxoj, dm 
Mxi) = in~dxoj = -^z—^r-^k = ^zrdxJ- (17) 

D a   \      dui ,           dm dxoj , dm 
—-AdXi) = ■£ dxoj = •= -x--dxk = -x— 
Dt OXQJ OXoj  OXk OXj 

(We have used the golden rule.) Making the identification dx -> £ we obtain (2). 
The motion of a fluid defines a family of mappings from the space of initial coordinates, XQ, onto 

the space of coordinates x. At t = 0 this is just the identity map but as t increases the map from XQ 

to x can become very complicated. Equation (16) defines the Jacobian matrix, 

'«=££• (I8) 

of the map. 
With these algebraic formalities we have given an alternative derivation of (2) and, as a bonus, we 

have also found a representation of the solution: 

4 = Jto- (19) 
The solution above is known as Cauchy's solution. 

In (19) there is no assumption that the flow is incompressible. If the flow is incompressible (i.e., 
if V-u = 0) then mapping from XQ to x conserves volume. In this case, det J = 1. 

2    Two-dimensional incompressible flow 

In the case of a two-dimensional incompressible flow there is a streamfunction tp = ip(x,t) such that 
u = (u,v)—(-t(iy,ipx). In terms of ip, (2) can be written as: 

The trace of W is zero and the determinant is det(W) = ipxxipyy - iply The solution of (20) can be 
written as 

£ = expQ(V(t')df)£0. (21) 

Thus, using (19), we obtain a fundamental connection between J(t) and W(i): 

J(t)=exP(fw{t')dA. (22) 

Because tr W = 0 it follows1 that det J = 1. This is, of course, just another way of saying that if the 
flow is incompressible then the map from xo to x is area preserving. 

1For a square matrix M 
deteM=etrM. 
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det W>0 det W<0 det W=0 

Figure 2:    The sign of det(W) = ipxxipyy — ipxy determines the streamline pattern. 

2.1    The steady case 

Because (20) is linear the solution is straightforward if the velocity field in the Lagrangian frame is 
steady. Thus 

t&)=#tl 7 = ±y/- det W, 

where 

det W = ifrxxlpyy        Yxy . 

There are three cases, which correspond to the three panels in figure 2: 

v4- 

(23) 

(24) 

Elliptic: If det W > 0, then 7 is imaginary and the local streamfunction has elliptic streamlines; £ 
changes periodically in time and there is no exponential stretching. 

Hyperbolic: If det W < 0 then 7 is real and the streamfunction is locally hyperbolic. Then, as in 
lecture 1, material line elements will be stretched exponentially in one direction and compressed 
in the other. 

Transitional: If det W = 0 then |£| grows linearly with time. 

Following Okubo (1970) and Weiss (1991), the sign of detW has been used to diagnose two- 
dimensional turbulence simulations (e.g., McWilliams 1984). Assuming that det W is changing slowly 
in the Lagrangian frame, one argues that the result in (23) applies "quasistatically". For instance, 
using simulations of two-dimensional turbulence, McWilliams shows that in the core of a strong vortex 
V'xiVy,; - i;v > 0. The interpretation is that there is no exponential stretching of line elements in 
vortex cores, which indicates that these regions are isolated patches of laminar flow. This so-called 
Okubo-Weiss criterion is only a rough guide to the stretching properties of complicated flows; for a 
critique and more refined results see Hua and Klein (1999). 

One pleasant aspect of the steady two-dimensional case is that it is possible to explicitly calculate 
the matrix exponential J(t) = exp(tW). (This is not the case in three dimensions.) Begin by noting 
that 

W2 + (det W)X = 0, (25) 

where X is the 2 x 2 identity matrix. The result above is easily checked by direct evaluation, but (25) 
is also a consequence of tr W = 0 and the Cayley-Hamilton theorem. When (25) is substituted into 
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the definition of the matrix exponential: 

+2 f3 
J = exp(tW)=X + tW + -W2 + -W3 + --- (26) 

2 6 

the sum collapses to 

.    . sin (Vdet Wt) 
J = cos(VdetWt)X + \ ' W. (27) 

v / VdetW 

We now use the result above to formulate a renovation model. 

2.2    The a-C model 
We construct the "<T-£" model using the matrix equation in (20). The idea is to define an ensemble of 
stretching flows in which the 2x2 matrix W is piecewise constant in the intervals Xn = {t: (n — l)r < 
t < TIT}; T is the "decorrelation time". We use the following representation of W in the interval Xn: 

w   - &1 ( °    ~l\ ±?1±.( ~cos2Sn    sin20„ \ .    - 
n~  2  ^ 1     0   j+2\   sin20n     cos20n ) ' { ö) 

£„ is the vorticity and crn the strain. Isotropy is ensured by picking the random angle 0 < 6n < 2-K 

from a uniform density. (We use 26n because the principal strain axes are at angle 6n to the coordinate 
axes, and tbey specify a orientation but not an direction. That is, the strain axes are like vectors 
without an arrow.) 

Because Wn is constant in Xn the calculation of stretching rates can be reduced to a product 
of random matrices. The terms in the product are exp(rWn) and, using (27), one can obtain this 
matrix exponential analytically. There is an extensive and difficult literature devoted to calculating 
the statistical properties of products of random matrices (e.g., Crisanti, Paladin k, Vulpiani, 1993). 
It is fortunate that we can avoid these complications by using the isotropy of the a-C, model to reduce 
averages of matrix products to averages of scalar products. 

Two important properties of Wn are easily related to the vorticity and the strain: 

detWn = \(C- o-l) ,       tr (WlWn) =\(£+ *l) • (29) 

In the examples that follow we will use a-C, ensembles which model spatially homogeneous flows, for 
which (a2) = (C2) (by the way: this is not obvious). In this case (detW„) = 0 and "on average" the 
Okubo-Weiss criterion is zero. 

We employ (27) to obtain an explicit expression for the matrix Jn = exp(rWn). It turns out 
that we do not need the full details: all that is required is 

itr (jT
nJn) = 1 + H(<7„, T„, r), (30) 

where 
2 

E(a,C,r) = ^-j [l -cos (y^^r)] . (31) 

The "trace formula" above should be known to experts on two-dimensional stretching problems, but 
I have not found (30) in the literature. 
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2.2.1    Stretching of squared length 

Consider the first interval Zi, and suppose that at t = 0, £ = ^o(cosx,sinx). At t = r we have 

l\=ÜJ?JxZ*- (32) 

Now we use isotropy to average (32) over the random direction x of the element £0. A trivial calculation 
gives 

((4/4)\ = \tv [j1
TJ1) . (33) 

Tin1 RHS of (33) is given explicitly in (30). We must still average over the random variables a and C- 
This gives 

(ih/to)2) = l + JJp(a,QZ{a,C,T)d<rdC, (34) 

where V{a, Q is the joint PDF of a and < 2. 
We are now well on our way to computing the rate at which I2 grows with the number of renovation 

rvcles. TJ. The average stretching of I2 in each ln is independent of the previous Vs. Thus, to compute 
the growth of £2 over n renovation cycles, we can simply raise the average ^-stretching factor in a 
single I to the n'th power: 

<(^n/4)2) = {l + //^(^C)H(Cr,C,r)d(Tdc}    • (35) 

Th>' stretching rate 72 is defined by 

72=limiln[((V^o)2)1/2l ■ (36) 

The notation 72 anticipates section 4 in which we will define a stretching rate yp which measures the 
enwth of {{InßoY)- 

I sing n = t/r, we have from (35) 

72 = i- ln |l + JJv(a, C)S(ff, C, r) dadc} (37) 

1.. further simplify the integral above we must specify the probability density function V(<T,Q (ex- 
amples follow). 

2.2.2    Randomly oriented Couette flows 

A?- a first example, suppose that in each I„ the random variables Cn and an are independently and 
identically distributed, each equal to ±ß with equal probability. In this case 

Ha, 0 = \ [8(v + ß)+ *(" - ß)\ WC + ß) + *(C - ß)\ • (38) 

This ensemble is a set of randomly oriented Couette flow, such as the third case in figure 2. According 
to the Okubo-Weiss criterion there should be no stretching because det W is identically zero. However, 
this is wrong. 

2If a and C, are independent and identically distributed random varaibles then V{a,C) = V{a)V{C,)- 
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The exponential growth of line elements 
ß=1/2, T=1 , 4000 realizations 

40 50 60 

Iteration number 
100 

Figure 3: A comparison of the exponent 72 in (40) with a simulation (the dotted curves) of the random 
Couette flow. The simulation is conducted by creating random matrices according to the recipe in (28) and 
(38), and then computing the matrix product. The iteration number is the number of matrices in the product. 
To get reasonable agreement between the simulation and the analytic result in (40) one must ensemble average 
over a large number of realizations (4000 in the figure above). The discrepancies evident at large iteration 
number can be reduced by using more realizations. The figure also shows a comparison of the exponent 70 in 
(73) with simulation. 

The recipe in (38) leads to trivial calculations because Cn = °n and S = ß2r2/2.   Thus, even 
without averaging over a and C, 

and it follows that 

\tr(jljn)=l + \ß*T\ 

72 = ^ln(l + — 

(39) 

(40) 

(See Figure 3.) The nonzero exponential stretching, which occurs even though det W = 0, is due to 
the realignment of a material element with respect to the direction of extension of the velocity field 
which occurs at t = nr. In the limit of a very slowly changing velocity field, r -> 00, the stretching 
rate vanishes because there are fewer realignment events. This is the revenge of the Okubo-Weiss 
criterion. 
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Figure 4: The nondimensional stretching exponents 72/ß in (41) as a function of ßr for various values of q. If 
q = 1/2, then det W is zero identically and 7 -> 0 as r ->■ 00. When slightly less than 1/2, and r is sufficiently 
large, the occasional hyperbolic points can make a large contribution to the stretching exponent 72. 

2.2.3    An example with det W ^ 0 

A more interesting stretching ensemble is denned by taking a„ and („ to be identical and independently 
distributed random variables equal to ß with probability q, —ß with probability q, or zero with 
probability 1 - 2q. With this prescription there is a hyperbolic point in ln, as in the middle panel of 
figure 2, with probability 2q(l - 2q). 

One can calculate 72 in (37) by enumeration and averaging over the nine possible pairs (ern,Cn)- 
Calculation gives 

72 = -L In {1 + 2q2ß2T2 + 2q(l - 2q) (cosh/?r - 1)} (41) 

Figure 4 shows the nondimensional j2/ß as a function of ßr for various values of q. From figure 4 we 
conclude that while instantaneous hyperbolic points are not essential for exponential stretching, they 
do help, especially if the correlation time r is long. 

50 



2.2.4    The Batchelor and Kraichnan limits 

The calculation of stretching exponents in this section does not follow the historical path. The 
pioneering papers by Batchelor (1959) and Kraichnan (1974) considered limiting cases — slowly 
decorrelating in the case of Batchelor and rapidly decorrelating in the case of Kraichnan — in which 
stretching rates can be calculated approximately. A major advantage of these approximations is that 
they work equally well in two and three dimensional space. On the other hand, by considering exactly 
soluble two-dimensional models we can extract the Batchelor and Kraichnan limits as special cases. 

Batchelor (1959) considered stretching by slowly decorrelating velocity fields. This is the limit 
in which £r and err are large. Batchelor's main conclusion is that in this quasisteady limit the net 
stretching is dominated by hyperbolic straining events. Indeed, this conclusion is illustrated by the 
exact result for 72 which is plotted in figure 4. 

Kraichnan (1974) considered the opposite limit in which £r and or are small. In this rapidly 
decorrelating limit we can simplify the exact expression in (37) by noting that E w (crr)2/2 <C 1. 
Thus, simplifying (37), we find that the stretching rate is 

72 (°2)T, (42) 

independent of the vorticity. 

2.3     The renovating wave model 

In this section we calculate the average growth of (? using the renovating wave (RW) model.  It is 
interesting to see how this calculation can be done without using matrix identities such as (27). 

Begin by recalling the definition of the RW model. The RW streamfunction is 

ln = (n- l)r» < * < rar» :        ipn = cos [cos 0„ a; + sin0„ y + ipn]. (43) 

In (43), 9n and tpn are random phases and r* is the decorrelation time.   The random phases are 
reinitialized at t = nr» so there is the complete and sudden loss of memory at these instants. (In this 
section we use the dimensionless version of the RW model; the parameter r* = rkU is the ratio of the 
correlation time r to the maximum shear of the sinusoidal wave kU.) 

The renovating wave model is equivalent to the random map 

(xn+i,yn+i) = (xn,yn) + (s„, -cn) sin[cn2n -I- snyn + (pn]T* , (44) 

where (cn,sn) = (cos#n,sinön).  The Jacobian matrix can easily be obtained by differentiation of 
(44):. 

r(») exp(r,W(n>) = 
1 + CnSnT*1pn S^T^tpn 

Notice that det J^n> = 1: the map is area preserving. 
Using ST^n' we can track the stretching of an infinitesimal material element as 

£ -   7"(n)t 
Sn+l        «-'        Su! 

where 7C(n)  = jWj(n). Explicitly: 

K^ -- 

<-n+l — Sn+lSn+1 — Sn^      Sui 

(1 + CnSn7pnTt)
2 + 4l/£T2       (4 - 4)</>„T, + CnSn1plT* 

(4 - 4)^nT» + CnSn1plT?      (1 - CnSn1pnT*)2 + s\^nTl 

(45) 

(46) 

(47) 
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To compute the stretching rate we consider an element which has length £o at t = 0. Because the 
problem is isotropic, it is harmless to choose the coordinate system so that this element lies along the 
x-axis: £0 = ^o(l> 0). After the first iteration of the map: 

£\ = K$P0 = [(1 + CISIVIT,)
2
 + C\IP{TI] 4 (48) 

Averaging (48) over the phases Q\ and ipi gives 

<(V4>)2)=(l + f) • (49) 

If you are suspicious of the argument above, then you might prefer to align the initial material 
element at an arbitrary angle, say £0 = 4 (cos*, sin x)- Repeating the calculation, we now find that 

£l = (K$cos2x + K$sm2x)tl (50) 

Averaging (50) over 8\ and <pi, we recover (49). 
Because each J"(n) is independent of the earlier J's the average growth of f is 

<(V4>)2>=(l + ^)n. (51) 

Using t = TIT*, (51) can be written as 

<(V4,)2>1/2 = ^,        72 s ^- In (l + ^) . (52) 

Aside from notational differences, the expression above for 72 is identical to (40). 

3    Amplification of concentration gradients 

In this section we discuss the amplification of Vc which occurs when a passive scalar is advected by 
a random flow in two dimensions. 

Back in (4) we noted that the quantity £• Vc satisfies the conservation equation 

^(£-Vc) = 0. (53) 

Equation (53) enables us to use our earlier results concerning the stretching of material elements to 
analyze gradient amplification. In fact, using (53), we can obtain Vc from £. The first step is to 
construct a basis by considering the following initial value problem: 

D£ 
Dt 

= {£k'^)ui        with initial conditions   £1(x,0) = x,    ^2(
a:'0) = y, (54) 

where the unit vectors of the coordinate system are x,y,z. As the fluid moves, the parallelogram 
spanned by ^ and £2 will deform. But because u is incompressible, the area of the parallelogram is 
constant and so 

£1 x £2 = z,        (for a11 *)• (55) 

If we can solve (54) for £l7 then we can use (53) and (55) to calculate £2 and Vc. 
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Figure 5:   Numerical solution of the renovating wave model with r = 1. The initial condition is c(x, y, 0) = y. 
Already, at t = 6r, |Vc| is greatly amplified in some regions. 
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Figure 6: A numerical solution of the renovating wave model with r .= 1. The initial condition is c(x, y, 0) = 
y. The plots show the values of c and |Vc| along the slice x = 0. After 20 iterations, |Vc| has developed 
strong spatial intermittency. 
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As an example of this procedure, suppose that the initial condition is c{x, 0) = y. Then it follows 
from (53) that: 

£rVc = 0       and       £2-Vc = l       (for all*). (56) 

Using (55) and (56) we see that 

Vc = 2x£1. (57) 

Thus, in this example, once we calculate £x we obtain Vc as a bonus. 
Figure 5 displays the numerical solution for c and | Vc| after 6 iterations of the renovating wave 

model. The initial condition is c(x,0) — y, so that Vc(a:,0) = y; the decorrelation time is r = 2. 
The field in figure 5 is obtained using a 256 x 256 grid. To find c at the grid point x at time t = TIT, 

one iterates the renovating wave model backwards in time till the initial location (a, b) is determined, 
and then c{x,t) = b. In parallel with this backwards iteration, £(X,TIT) is computed by matrix 
multiplication of the J^1' defined in (45), and then Vc is given by (57). 

An important feature of stirring is the development of intermittency in the concentration gradient, 
|Vc|. In figure 6 the development of intermittency is illustrated, again using the renovating wave 
model. After 20 iterations there are "hotspots" in which large values of |Vc| are concentrated. 
Without diffusion, the gradient of c condenses onto a fractal set as the number of iterations increases 
(Varosi, Antonsen & Ott 1991). 

4    Multiplicative random variables 

In our solution of the <7-£ model in section 2 we used isotropy to reduce a product of random matrices 
to a product of random scalars e.g., see equations (33), (34) and the following discussion. The main 
point of this section is that the statistical properties of isotropic line-element stretching are bedevilled 
by the large fluctuations which are characteristic of products of random variables. Indeed, figure 6 
shows that there are large fluctuations in i2 = |£|2 = |Vc|2. If one is attempting to measure the 
variance dissipation, K(VC-VC), then the intermittent structure of Vc in figure 5 might pose a 
sampling problem. Imagine steering a ship through the field in figure 5 and making occasional point 
measurements of Vc. If the density of measurements is too low then one might easily miss the gradient 
hot-spots and so grossly underestimate K(VC-VC). 

4.1    Most probable values versus mean values 

We begin by stepping back from the stirring problem, and making some general remarks about mul- 
tiplicative random processes. Suppose that a random quantity, X, is formed by taking the product of 
Ar independent and identically distributed random variables 

X = x\X2 ---Xtf. (58) 

What can we say about the statistical properties of XI 
The most nonintuitive aspect of X in (58) is the crucial distinction which must be made between 

the mean value of X and the most probable value of X. As an illustration, it is useful to consider an 
extreme case in which each Xk in (58) is either Xk = 0 or Xk = 2 with equal probability. Then the 
sample space consists of 2^ sequences of zeros and two's. For all but one those sequences, X = 0; in 
the remaining single case X = 2N. Thus, the most probable (that is, most frequently occuring) value 
of Xis 

Xmp = 0. (59) 
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On the other hand, the mean of X is 

sum all the X's from different realizations _ 
number of realizations 

Notice that one can also calculate (X) by arguing that (xk) = 1 and, since the xk's are independent, 
(X) = (xk)N = 1 

The example above is representative of multiplicative processes in that extreme events, although 
exponentially rare if N > 1, are exponentially different from typical or most probable events. Thus, 
for the product of JV random variables the ratio (X)/Xmp diverges exponentially as N -> oo. On the 
other hand, for the sum of N random variables the most probable outcome is a good approximation 
of the mean outcome. Perhaps this is why people have an intuitive appreciation of sums, but find 
products confusing. 

Now let us consider a more realistic example in which each xk is either a or 1/a with probability 
1/2. In this case the p'th moment of X is 

{xl) = t(av + Q-p),        =* (Xn={—— J    • (61) 

Before continuing, the student will profit from showing that the most probable value of X is Xmp = 1 
(for N even). For example, if a = 2 then (X) = (5/4)N, while Xmp = 1. Again, the most probable 
value differs exponentially from the mean value as N -> oo. 

4.2    The log-normal distribution 
Because Xmp is so different from the (X) the problem of determining (X) via Monte Carlo simulation 
is difficult: one may have to exhaust nearly all of the 2N cases in order to obtain a reliable estimate 
of (X). This exhaustion is necessary for the first example, in which xk = 0 or 2. In the example of 
equation (61), provided that a « 1, we can get a pretty good estimate of (X) with less than exhaustive 
enumeration of all sequences of the in's. 

Begin by noting that 

lnX = lnzi +lna;2 H l-lnz/v, (62) 

and so if In xk has finite variance then it follows from the Central Limit Theorem (CLT) that A = In X 
becomes normally distributed as N -> oo. 

The pitfall is in concluding that all the important statistical properties of A, and therefore of 
X = exp(A), can be calculated using the asymptotic log-normal distribution of X. This not the case 
because the PDF of A, V(A), is approximated by a Gaussian only in a central scaling region in which 
|A| < cNl/2, where c is some constant which depends on the PDF of xk. On the other hand, a reliable 
calculation of (Xp) = (exp(pA)) may require knowledge of the tail-structure of V(A). 

To illustrate these difficulties, we use the example in which lnx* = ±lna and (In xk) = In a. 
Invoking the Central Limit Theorem, the asymptotic PDF of A is therefore 

PCLT(A) =    .     l    ,    exp (-A2/2iVln2 a) . (63) 
V27riVln2a 

In the central scaling region, T^A) « 'PCLT(A). 

To determine Xmp we can consider A = In X, which is an additive process for which the mean and 
most probable coincide, so that 

(lnX) = lnXmp,        =»        Xmp = e<ln*>. (64) 
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Figure 7: The function r(a,p) defined in (67). In order to accurately estimate {Xp} using the CLT one must 
have r « 1. 

In our example with lnxfc = ±lna, (lnX) =0 and therefore Xmp = 1. (This is one way of solving 
the problem posed in the previous section; another is to obtain the exact V(A) using the binomial 
density.) 

With hope in our hearts, we now attempt to recover the exact result in (61) by substituting (63) 
into 

/oo 
epA"P (A) dA. (65) 

-oo 

After the integration, one finds that 

<*P>CLT=exp(jVln2a/2). (66) 

To assess the error we form the ratio of the exact result to the approximation: 

{XP)/{XP)CVT = rN,    where   r = \ exp (-p2 In2 a/2) (ap + a~p) . (67) 
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When r(a,p) is close to 1, the error is tolerable in the sense that In (XP)CLT is close to In {Xp). 
For example, with a = 2, the exact result is (X) = (5/4)-^ while (X)CLT = (1.27)w. However 

the second moment p = 2, is seriously in error. As a general rule, (XP)CLT is a reliable estimate of 
(Xp) provided that p2(ln2Xk) < c, where c is the constant which determines the width of central 
scaling region, |A| < cN1/2, in which V(A) « "PCLT(A). We conclude that the complete analysis of a 
random multiplicative quantity cannot be reduced to the Central Limit Theorem merely by taking a 
logarithm. 

4.3 Stretching exponents 

Equation (64) is a very important result for multiplicative random variables: to obtain the most 
probable value of X, one can exponentiate {\nX). This explains why there is so much attention 
paid to (ln[((t)/t0}) in the literature on random line element stretching: knowing the average of the 
logarithm enables one to estimate the stretching of a typical line element. Of course, the typical line 
element may not make a large contribution to the dissipation K(VC' • Vc'). Thus our earlier focus on 
£2 was not wasted, but it was not complete either. 

A good characterization of random stretching is provided by the complete set of stretching expo- 
nents. Following Drummond & Munch, we define the stretching exponents, yp, as 

1    dUp) 
7"SÄS,^> dt '     p>0' (68) 

and 

7o = lim 7p = lim — (In i). (69) 
p-S-0    P        t-KX> dt 

Knowing all these 7's, the asymptotic growth of line elements is characterized by 

(F)1/p ~ £0e
7pt • (70) 

Back in section 2 we calculated only 72 (e.g., see (33) and the subsequent discussion). To conclude 
this section I will discuss the calculation of the other stretching exponents, particularly 70. 

4.4 The stretching exponent 70 of the a-C, model 

As an example of the difference between 70 and 72 we return to the a-C, model. In section 2 we 
obtained a general expression for 72 in (37). Now consider the problem of determining 70. Taking the 
log of (32). writing £0 = £0(cosx,sinx), and then integrating3 over x, we have after some travail, 

<ln(V4))x = ^ln(l + f) , (71) 

where E(a. (, r) is given in (31). Averaging over a and C, and using 70 = T
_1

 (In {(.i/to)), gives 

l + | = (ff,C,T) 

The expression above should be compared with that for 72 in (37). 
3 The integral 

f   ln(a±bcosi)di = 7rln Ua + y/a2 - bA /2I , 

is useful. 

dadC• (72) 
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With the ensemble of random Couette flows in section 2.2.2 we can evaluate the integrals in (37) 
and (72). Thus, we find that 

Notice that 72 > 7o- This is a illustration of the general result that jp is an increasing function of p 
(Childress & Gilbert 1995). Figure 3 compares the expressions for 70 and 72 in (73) with simulation. 

4.5    Stretching in one-dimension 

One-dimensional compressible velocity fields provide striking examples of the nontrivial dependence 
of -.,, on p. We conclude this lecture with a model of random one-dimensional stretching for which 
the -,,"s can be obtained analytically. 

4.5.1     A sinusoidal velocity 

With the one-dimensional velocity u = sinx, the equation governing line element stretching, (2), is 

ft + sinx^ = £cosx,    f(x,0) = l. (74) 

The initial condition above is that the line elements attached to different fluid particles all have the 
same initial length. Because the fluid is compressible, the fluid density p(x, t) satisfies 

pt + (sinxp)x =0       p(x,0) = l. (75) 

h is easy to show by substitution that the solutions of (74) and (75) are related p(x,t) = l/£(x,i). 
Th>- physical interpretation of this result should be obvious... 

To solve (74), we follow the route outlined in section 1.3 by determining the mapping from the 
initial space, XQ, to the space x(xo,t). This means we solve 

Dx 
— = sinx,        x(0,xo) = x0 ■ (76) 

1 »ins separation of variables we find that 

tan(x/2) = e' tan(x0/2), (77) 

winch enables us to determine x given xo, or vice versa. Figure 8 shows how the mapping from x0 to 
1 «volves as t increases. 

In this one-dimensional example, the Jacobian of the mapping is simply 

dx 1 
-— = —: :— = cosh t + cos x sinh t. (78) 
dxo      cosh t — cos xo smh t 

1; is easy to check by substitution that £ = dx/dx0 is the solution of (74). 

4.5.2    A one-dimensioned renovating model 

Using the previous one-dimensional illustration of the Cauchy solution, we can formulate a renovating 
model that illustrates some of the subtleties involved in random stretching problems. Consider an 
ensemble of random renovating one-dimensional velocity fields in which 

u = sin(x + ipn)       if       (n — l)r <t <nr. (79) 
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Figure 8: The left panel shows the mapping from xo to a; at the indicated times. The interval 0 < xo < 7r is 
compressed into the neighbourhood of x = ■n. The right panel shows J{x0,t) at the same times. Notice that 
an element that starts at say, xo = 1/2, is first stretched (J > 1) but then ultimately compressed (J < 1) as 
the particle approaches x = TT. 

The random phase, 0 < (pn < 2n, is reset at t — nr. Notice that there is no preferred location on the 
z-axis; that is, the statistical properties of the process are spatially homogeneous. 

Now, suppose we follow the stretching of a line element attached to a particle that moves in a 
particular realization of this velocity field. We denote location of this particle at t = nr by on, and 
the length of the attached line element at this time by £n. Then, using the solution from the previous 
section, the stretching of the line element is given by the random product 

£n = J(an-i)J(an-2) ■ ■ ■ J(a0)io , (80) 

where the Jacobian is 

J(a) = 
cosh r — cos a sinh r 

(81) 

Because the phase is reset at t = nr, each J(an) in (80) is independent of the others.  Moreover, 
because of spatial homogeneity, each an is uniformly distributed with 0 < a„ < 2n. 

Equation (80) expresses the length of a material line element at i = nr as a product of n random 
numbers. Following our earlier discussion of multiplicative random variables, we first calculate 70 by 
taking the logarithm of (80): 

n-l 

\n(en/£o) = J2lnJM 
k=0 

Thus, the mean of ln(£n/£0) is 

<ln(£n/*o))=n<lnJ>, 

(82) 

(83) 

where 

In J) = j\n[J(a)) ^ = - In [cosh(r/2)] . (84) 

Because ((In J)2) is finite, the central limit theorem applies and we conclude that as n -> 00, \n{£n/£0) 
is approximately normally distributed with the mean value n(ln J). 
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Figure 9:   The stretching exponents 7P(r), with p = 0, 1, ■ • •, 8 calculated using (89) . 

Moreover, we can conclude from the central limit theorem that the most probable value of inßo is 

(W^o)mp«e<ln^^)>=e'«'t, (85) 

where, since n = t/r, 

7o = - ln[cosh(r/2)]/r < 0. (86) 

The result in (85) is remarkable because it implies that most of the line elements in this compressible 
flow exponentially contract (rather than stretch) as t -» oo! 

Exponential contraction of most material lines is incomplete disagreement with the spirit of Batch- 
elor's result in (1), where 7 > 0. The result above, that 70 < 0, is a special consequence of the 
compressible velocity field used in (79). (For a discussion of compressible velocities in a space of 
arbitrary dimension, see Chertkov et al. (1998).) In any event, this example shows that one cannot 
take exponential stretching for granted, no matter how intuitive it seems on the basis of experiments, 
such as those of Welander (1955). . 

How is contraction in the length of most material elements compatible with conservation of the 
total length of the x-axis? The answer is that even though most elements become exponentially 
small as t —> 00, a few elements become exponentially large. Thus most of the length accumulates in 
exponentially rare, but exponentially long, line elements. This is an elementary example of an inverse 
cascade i.e., the spontaneous appearence of large-scale structures (big line elements). 

To demonstrate length conservation, we can compute the mean (as opposed the most probable) 
length of an element. The mean length is 

(tn) = (J)nto, 

where J(a) is defined in (81) and 

(J) = jj{d da 
2i 1. 

(87) 

(88) 

Thus, the mean length of an element is constant, even though most elements exponentially contract. 
As an exercise, I suggest showing that for integer values of p the stretching exponents of this 

one-dimensional model are given by 

7p = In [Pp-i (cosh r)] /pr, (89) 

where Pm is the m'th Legendre polynomial. Thus, in this particular example, there is a nice analytic 
characterization of the rate at which different moments stretch (see figure 9). 
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Lecture 4: Anomalous diffusion 

In this lecture we discuss stochastic models of correlated random walks. By "corre- 
lated" we mean that that if a particle is headed in one direction then there is nonzero 
probability that it continues in that same direction for some time and this probability 
fades to zero as the time interval increases. This is, of course, the situation envisaged 
by Taylor (1921). 

The distinction between normal and anomalous diffusion made in lecture 1 can 
be understood by examining the rate at which velocity correlation decrease to zero. 
Normal diffusion occurs if the velocity correlation decrease rapidly while anomalous 
diffusion results from processes in which particles move coherently for long times with 
infrequent changes of direction. Roughly speaking, this distinction is quantified by the 
tail behaviour of the velocity autocorrelation function. For example, if the correlation 
function decays exponentially then there is normal diffusion, whereas if the correlation 
function decays algebraically then there is the possibility of anomalous diffusion. 

The definition of anomalous diffusion is based only on the behaviour of the second 
moment, (a;2). But we usually want to know more about the distribution of a tracer 
than simply the second moment. In the case of normal diffusion, detailed information 
concerning the tracer distribution is obtained by solving the diffusion equation 

ct = Dcxx . (1) 

Can we obtain continuum models, analogous to (1), which provide the same detailed 
information for anomalously diffusing tracer? The main goal of this lecture is to develop 
partial differential equation models which can be used for this purpose. 

1    Superdiffusion and subdifFusion 

1.1    Taylor's formula and long tails 

Yet again we recall Taylor's formula which relates the growth of position variance to 
an integral of the Lagrangian velocity autocorrelation function, corr(t), 

d(x2) 

at 
2 /"corr(t') dt'. (2) 

Jo 
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In order to obtain (x2) we must integrate (2). Standard manipulations turn the result- 
ing double integral of corr(t) into a single integral 

(x2) = 2 f (t- i')corr(t') dt'. 
Jo 

(3) 

The result (3), which is not in Taylor's original paper, will prove to be very useful. 
We usually have in mind situations in which corr(t) decreases to zero as t —> oo so 

that the integrals in (2) and (3) converge to nonzero values. An example is the reno- 
vating wave model, with its "triangular" correlation function, from lecture 2. Later in 
this lecture I will introduce the telegraph model which has an exponentially decaying 
correlation function, corr(t) = J72exp(—2at). These are both examples in which cor- 
relations decrease very rapidly so that normal diffusion occurs. But now consider the 
possibility that corr(t) decreases so slowly that the integrals in (3) diverge. 

Suppose, for instance, that as t —> oo, corr(t) ~ t~v with 0 < 77 < 1. Even though 
the diffusivity no longer exists, it still follows from (3) that 

(x2) ~ t2-" . (4) 

In this case there is superdiffusion: the variance of the particle displacement grows 
faster than linearly with time because 2 — 77 > 1. 

Taylor's formula also contains the possibility of subdiffusion. This case is subtle 
because, like the example of the sea-surface mentioned in lecture 1, it requires that the 
integral defining D is zero. But suppose additionally that the remaining integral in (3) 
diverges. This can happen if corr(t) ~ ct~v with 1 < 77 < 2. The condition that 1 < 77 
ensures that J*0°° corr(t') dt' converges (to zero). The second inequality, 77 < 2, ensures 
that f* i'corr(t') dt' diverges. Using (3), we again find the scaling law in (4). However 
this time, because 2 — 77 < 1, there is subdiffusion. 

At first glance two possibilities above appear as unlikely exceptions to the more nat- 
ural cases in which both integrals in (3) converge. However there are examples in fluid 
mechanics in which either subdiffusion or superdiffusion is observed experimentally or 
computationally. Thus (4) cannot be dismissed as an unlikely pathology. 

1.2    The Texas experiments 

An experiment illustrating anomalous diffusion has been conducted in Swinney's lab- 
oratory at University of Texas; see Solomon, Weeks &; Swinney (1994) and Weeks, 
Urbach & Swinney (1996). These investigators study the dispersion of particles in an 
almost two-dimensional flow in annular tank (see figure 1). The tank is rotating at 
about 1 or 2 Hertz and the bottom is sloped to simulate the /3-effect. Because of the 
rapid rotation the flow is quasi two-dimensional. 

The flow is forced by pumping fluid through the tank. If the pumping rate is 
sufficiently large then this azimuthal flow is unstable to a vortex-forming instability. 
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video camera 

2d 

Figure 1: A sketch of the rotating annulus; the rotation rate is about 1Hz. Flow is forced by 
pumping water in through the ring of holes marked by I and withdrawing the same volume 
through the other ring marked 0. As a consequence of the strong Coriolis forced acting on 
the radial flow between these concentric rings there is an azimuthal flow around the annulus. 
The experiment is viewed from above using a video camera. Figure courtesy of Eric Weeks. 

A typical flow pattern in the rotating frame is shown in figure 2. Evident also in this 
figure is the azimuthal jet which runs all the way around the tank. The vortex pattern 
can be perturbed experimentally by making the strength of the pumping depend on 
azimuth. In this fashion, one can drive an unsteady flow and observe chaotic particle 
trajectories. 

Automated image processing techniques are used to follow nearly neutrally buoyant 
tracer particles suspended in such flow. Typical particle trajectories are shown in figure 
3. Particles within a vortex remain trapped for very long time (stick). Particles in 
the azimuthal jet experience prolonged flights around the circumference of the tank. 
Because the vortex pattern is not perfectly stationary particles alternate, apparently 
randomly, between flying in jets and sticking in vortices. 

One can change the pattern of jets and vortices by altering the diameters of the 
circular barriers which confine the flow. Thus it is possible to create a flow with two 
oppositely directed jets separated by a vortex chain. In this case the dispersion process 
is more symmetric than in figure 4 because the flights go in both directions around the 
tank. 

During a flight the angular displacement is proportional to the time elapsed since 
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Figure 2: Streaks formed by 100s trajectories of 12 particles reveal four vortices. Weeks et 
al. show that the motion of these coherent vortices is chaotic. That is, a velocity spectrum, 
obtained by measuring velocity with a hot film probe, is broad band. Figure courtesy of Eric 
Weeks. 
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Figure 3: Trajectories of three tracer particles in the flow shown in figure 2. The beginning 
of each trajectory is indicated by a triangle and the end by with a circle. In (b) the particle 
spends most of its life trapped in a single vortex. However, this vortex wobbles erratically 
because the flow is chaotic. In parts (a) and (c) the particles experience several episodes of 
trapping within a vortex and flight around the tank in the jet. Figure courtesy of Eric Weeks. 

Figure 4: Angular displacement, 0(t) for the trajectories in figure 3. There is an obvious 
distinction between the flights and the sticking events. The small oscillations during the 
sticking events correspond to particle motion within a vortex. Figure courtesy of Eric Weeks. 
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the flight began: 

A0 « Ut. (5) 

The displacement, A0, is essentially zero during a sticking event (see figure 4). 
The experiments show that the dispersion of an ensemble of particles is superdiffu- 

sive. That is 

((6 - (6)f) ~ V (6) 

where j > 1; typical values are 7 « 1.4 to 1.7 depending on the experimental configu- 
ration. (It is also possible to observe normal diffusion, 7 = 1, by strongly forcing the 
flow and breaking the azimuthal symmetry of the forcing.) 

To characterize the motion Solomon et al. used sticking and flying PDFs: 

7?F(o)da = Probability that a flight has a duration € (a,a + da). (7) 

Later in this lecture we will refer to a as the "lifetime" of a particle in the flying or 
sticking state. We figuratively speak of a particle being born into the flying state and 
moving coherently for a lifetime a so that the total angular displacement during the 
flight is A0 = Ua. 

The PDF VF is normalized by J0°° VF(a)da = 1 and 

^■00 

rF =  /  OPF{O) da = average duration of a flight. (8) 
./o 

The PDF of sticking times, Vs(a), and the average sticking time, rs, are defined 
analogously. 

Experiments show that as a —>• 00, Vp and Vs have algebraically decaying tails: 

Vp (a) ~ a-^,        Vs (a) - aT»s, (9) 

with 

2<0uF,/*s)<3. (10) 

Because of this slow algebraic decay the variance of the lifetimes, defined by 

(a2)FS= /  a2VF,s(a)da, (11) 
Jo 

diverges. 
The divergence of {a2)F is significant because invoking Einstein's formula for the 

diffusivity 
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and using A9 = Ua, we conclude that D oc ((A0)2) = U2(a2)F = oo. The divergence 
of D is symptomatic of superdiffusion. 

Notice that the denominator f in (12) is related to the average flying and sticking 
times, Tp and TS, which are both finite. Thus, in the Texas experiments, we can say 
that anomalous diffusion occurs because the numerator of (12) is divergent. In other 
cases it is the denominator which causes trouble. 

The Texas experiments show that anomalous diffusion occurs in realistic and geo- 
physically relevant systems. Several theoretical questions suggest themselves. How do 
the algebraic tails of Vs and VF arise, and can we make a microscopic models which 
exhibits this phenomenon? Can we relate the exponents 7, ßF and //s? (From section 
4, the answer to the last question is 7 = 4 - jj,p.) 

2    The telegraph model 

The key issue raised by anomalous diffusion is decay of velocity correlations. Thus 
our goal is to formulate models for which we can explicitly calculate velocity statistics 
and understand the decay of correlations. Our first attempt is not very ambitious: we 
begin with the telegraph model, which is the simplest example of a continuous-time 
correlated random walk. 

2.1    The Lagrangian formulation of the telegraph model 

In a telegraph process the velocity of particle n, denoted by un(t), can have only one of 
two possible values, +U and -U. The velocity of each particle, un(t), flips randomly 
back and forth between ±17 with a transition probability a per time. This means that 
in a time dt a fraction adt of the ensemble switches velocity. Because the transition 
rate, a, is constant we can say that a particle has no "memory" of when it first arrived 
in its present state. Thus this telegraph model is Markovian. 

We refer to the prescription for constructing a telegraph process as model A. There 
is a variant, model B, discussed below. 

With the prescription above, the velocity of a particle is a discontinuous function 
of time as shown in figure 5. The correlation function and the diffusivity are 

r°° U2 

corr(t) = C/2e-2Q|t|,        D=      corr(t) d« = — ,        (model A). (13) 
Jo ^0L 

Notice that the corrtt is infinite at t = 0; this is because the acceleration is infinite at 
the discontinuities in figure 5. 

To obtain (13), return to the definition of the correlation function 

1   N 

corr(t) = -Ytun(0)un{t), (14) 
n=l 
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A random telegraph process 
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Figure 5: An example of a telegraph time series, and the telegraph correlation function. 

where N is the total number of particles in the ensemble. Suppose that at t the sum 
on the right hand side has P(t) positive terms, all equal to U2, and N - P(t) negative 
terms, all equal to -U2. Thus 

corr(t) = ^[2P(i) - N). (15) 

In a time dt, Padt of the positive terms become negative and (N - P)adt of the 
negative terms become positive. Thus, at t + dt, 

(16) P(t + dt) = P(t)(l - 2adt) + Nadt, 

and the analog of (15) is: 

U2 

corr(t + dt) = ^-[2P(t)(l - 2adt) + 2Nadt - N] (17) 

Taking the limit dt -> 0 in (17) gives corrt = -2acorr; the solution of this differential 
equation is (13). 

An alternative telegraph process (model B) is constructed by imagining that at 
random instants each particle flips at coin. The flipping rate is a so that in a time dt, 
there are A^adt coin flips. After each flip, the velocity is +U if there is a head and -U 
if a tail. With this prescription, a particle will change direction on average once out of 
every two tosses. On the other tosses the particle continues in the same direction and 
the result is as if nothing happened. Thus with model B we simply replace a by a/2 
in our earlier calculations and consequently the correlation function and diffusivity are 

roc TJ2 

corr(t) = £/Va|t|,        D = /  corr(t) dt = —,        (model B). 
JO a 

(18) 
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The difference between model A and model B is trivial. However the distinction be- 
tween the two cases will plague us later. 

If we are searching for a model of anomalous diffusion then the telegraph model is 
a disappointment: the exponentially decaying correlation function ensures that D is 
finite and that the displacement variance ultimately grows diffusively. We continue our 
investigation of the telegraph model in order to better understand "ultimately" and 
because in section 4 the telegraph model is used as the foundation of more elaborate 
models which do show anomalous diffusion. 

2.2    The Eulerian formulation of the telegraph model 

Now we ignore the Lagrangian information contained in the correlation function (14) 
and instead we give an Eulerian formulation of the telegraph process. Let R(x, t) 
denote the density (particles/length) of particles moving to the right with velocity +U 
and L(x,t) denote the density of left-moving particles with velocity —U. The coupled 
conservations laws are 

Rt + URx^aiL-R),        Lt-ULX = a{R-L). (19) 

These equations should be self-evident... 
We can put (19) into a revealing alternative form by defining the total concentration, 

Cu./). and the flux, F(x,t), as 

C = R + L,        F = U{R-L). (20) 

In terms of these new variables the model is 

Ct + Fx = 0,        Ft + 2aF = -U2Cx. (21) 

The first equation is conservation of particles and the second equation is the fiux- 
•iradient relation. 

Notice that in (21) Fick's law does not apply — the flux F is not instantaneously 
n-lated to the gradient Cx. Equation (21b), which might be called Cattaneo's law 
(see the 1989 review by Joseph and Preziosi), can be solved as a first-order differential 
«■quation for F(x, t). Thus, the flux at x is expressed as weighted integral over the past 
history of the gradient at x: 

F(x, t) = -U2 f    e-2a^Cx(x, t') dt'. (22) 
J — oo 

The flux has a "fading memory" of the gradient and the exponential in (22) is the 
fading factor which strongly weights the most recent values of the gradient. 

Next, if we eliminate F from (21), we obtain 

Ctt + 2aCt-U2Cxx = 0. (23) 
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Figure 6: Solution of the telegraph equation, at is in the top corner of the panel. At t = 0, 
R = L = exp(-x2/50). The solid curve is C = R + L, and R and L are shown as dotted and 
dashed curves. 
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This is the telegraph equation; the diffusion equation is obtained only as an approx- 
imation which applies to the low frequency and wavenumber components of C(x,t). 
On these large and slowly evolving scales one can neglect the term Ctt in (23) and so 
obtain the approximation 

Ct^DCxx,       D=^-. (24) 
la. 

The diffusivity D in (24) was anticipated in (13). 
Figure 6 shows a numerical solution of (23) starting with an initial condition of 

the form 

R{x,0) = L(x,0) = e->l2x2. (25) 

At small times the density C develops a double peaked structure as the left and right 
going populations separate. This behaviour is transient, and at longer times the central 
part of the concentration relaxes to the well-known Gaussian solution of the diffusion 
equation. 

According to (23) the disturbance travels at a finite speed: these are the "heat 
waves" discussed by Joseph and Preziosi (1989), and also evident in figure 6. The 
approximate diffusion equation (24) makes the unrealistic prediction that disturbances 
are propagated at infinite speed. This unphysical consequence of the diffusion equation 
motivated Cattaneo to propose (21b) as an alternative to Fick's law. 

These considerations shows that one cannot blithely assert the validity of the diffu- 
sion equation (24) as an exact description of dispersion. The diffusion equation applies 
only as an approximate description of low frequencies and long wavelengths. 

2.3    Discretization of the telegraph model 

This section is a digression. Read on if you want to learn how to solve the telegraph 
equation using a simple numerical scheme. (This is how I drew figure 6.) 

We reformulate the telegraph model in terms of discrete variables: divide the rc-axis 
is divided into segments of length ox separated by "scattering sites" at xn = nSx. Time 
is also discretized in units of St so that t = T5t where T is an integer T = 0,1,2 ■ • - 
The walkers move along the z-axis with a velocity that is either +5x/5t or —8x/6t. In 
terms of the continuous model in (19) 

*=!■ (26) 

When a walker reaches the scattering site at xn = nSx he is "backwards scattered" or 
reflected with probability b and "forward scattered" or transmitted with probability 
1 — b. Because the probability of a change in direction, b, is the same for left as for 
right moving walkers there is no mean velocity along the line. 
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Figure 7: A steady state with constant flux, / = [7(1 - b)(R - L), passing through site n. 

Let Rn(T)5x be the number of right walkers in the segment n, n5x < x < (n + l)Sx. 
The number of left walkers, Ln(T)Sx, is defined analogously. R^ and Ln are the discrete 
analogs of the continuous densities used in (19). 

With these rules and definitions, the discrete evolution equations for the ensemble 
arc 

Rn(T) = (1 - &)#n-i(T - 1) + bLn(T - 1), (27) 

Ln(T) = (1 - b)Ln+l(T - 1) + bRniT - 1). (28) 

For instance, in the first equation above, the number of right movers in segment n is 
equal to the number in segment n — 1 at the previous time that successfully passed 
through scattering site n, plus the number of left movers previously in segment n that 
were reflected at this same site. Figure 6 shows the result of iterating the discrete 
system above. 

One exact solution of the difference equations above is 

Rn = Ln = Ln+i = Rn+l = • • • (29) 

This solution is steady: Rn(T) = Rn(T - 1). In fact, (29) is the discrete analog of the 
tquilibrium solution of the diffusion equation. The distribution of walkers is spatially 
uniform with equal numbers going left and right in each interval and there are no 
concentration gradients. An individual walker is moving to and fro, but the ensemble 
is in steady state. 

Next, we consider the constant-flux solution. In figure 7, R right walkers impinge 
on site n from the left and L left walkers impinge on n from the right. In steady state 
it must be that on the left of n there are bR+ (1 - b)L left walkers moving away, while 
to the right there are bL + (1 - b)R right walkers moving away. Thus the flux to the 
right of the site is 'o' 

fix 
f = U[(l-b)R + bL}-UL = —(l-b){R-L), (30) 
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where we have used U = öx/öt. Because there is a steady state, calculating the flux to 
the left of the site gives exactly the same result and so there is a nondivergent flux of 
walkers along the line. 

Next, we can calculate the concentration difference across the site in figure 7. To 
the right of the site the total density of walkers is 

c+ = L + bL+ (l-b)R, (31) 

while on the left the density is 

c- = R + bR+(l-b)L. (32) 

Combining (31) and (32) we have for the concentration jump across the site 

8c = c+-c- = 2b{L - R) (33) 

Thus, using (30), the flux-gradient relation in steady state is 

Does it seem obvious to you that the diffusivity should diverge as b —> 0? If you think 
of the diffusivity as the area under the correlation functions then this divergence should 
be intuitive. It is an instructive exercise to obtain D in (34b) using Taylor's formula. 
(Hint: consider JV » 1 right walkers which initially set out together. At t = Tot, after 
T encounters with scattering sites, how many of these walkers have changed direction 
an even number of times, and how many odd?) 

Comparing the equation above with our earlier expression for the diffusivity, D in 
(13) and (24), we conclude that 

aSt=^-l. (35) 

Thus, with (26) and (35), we can express the parameters of the discrete model, (5x, St, b), 
in terms of the parameters characterizing the continuous model, U and a. 

3    Age-stratified populations 

The telegraph model from section 2 is Markovian. This means that each particle has a 
constant probability per unit time, a, of switching direction. Thus, no matter how long 
a particle has been moving to the right (say), its probability of switching direction in the 
next dt is always adt. Consequently an exponentially decreasing number of particles 
move coherently for long intervals and the telegraph model in (19) does not exhibit 
anomalous diffusion. 
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A satisfactory description of anomalous diffusion demands a non-Markovian model 
in which particles have some memory of their past motion. To obtain superdiffusion it 
is necessary that a right-moving particle is less and less likely to change direction as it 
spends more and more time moving right1. 

Such memory effects are implicit in the models discussed by Weeks et al (1996), and 
in several of the articles in the conference proceedings edited by Schlesinger, Zaslavsky 
& Frisch (1994). The stochastic models discussed in Schlesinger et al. draw heavily 
on statistical physics. In this lecture we are going to develop the theory from scratch 
using a formalism which is accessible to people whose background is in fluid mechanics. 
The climb begins with an excursion into the theory of age-stratified populations. 

Consider a population of items with a finite lifetimes and a death rate which depends 
on age, a. For example, light bulbs in a large building, or the population of the United 
States. At time t the age structure of the population is characterized by a density 
function for which /(a, t)da is the number of items whose age is between a and a + da. 
In terms of /, the total number of items in the population, N(t), and the average age, 
a(t), are given by 

/•oo />oo 

N(t)= /  f{a,t)da,        a(t) = N'1      af{a,t)da. (36) 
Jo Jo 

The density function evolves according to 

ft + fa + <*f = 0, (37) 

where a(a) is the death-rate. The term fa in (37) says that the population translates 
along the age-axis at a rate one year every year. To completely specify the problem 
we must supply an initial condition, and also a boundary condition at a = 0. The 
boundary condition at a = 0 has an obvious interpretation: 

f(0,t) = the birth (or replacement) rate. (38) 

In the case of a population of people, the boundary condition above is a flux of babies 
into the system. 

The Markovian limit is the special case in which a is independent of a. This model 
of a is unrealistic for both light-bulbs and people, though it might apply to a population 
of radioactive molecules. The Markovian case is very simple because one can integrate 
(37) over a and obtain a closed equation for N(t): 

Nt + aN = f(0,t). (39) 

Thus if a is constant and we need only the total number of functional items at t then 
we do not need to solve partial differential equations and deal with the age structure 
of the population. 

XA popular metaphor for the Markovian case is radioactive decay: a molecule has a constant 
probability per unit time of decaying. As a metaphor for the non-Markovian case, imagine entering 
an enormous maze and then trying to find your way back to the entrance. The longer one has 
wandered, the less the chance of stumbling on the exit in the next di. 
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3.1    The steady-state solution 

As a first illustrative example, suppose that the replacement rate is adjusted so that 
TV is constant. (Janitors replace light bulbs as soon as they burn-out.) In this case the 
equilibrium solution of (37) is 

/(a) = iVr"1* (a), (40) 

where 

tf(a) = exp I- / a(a')da') ,        r =  / tf(a)da.      ' (41) 

The function \[>, and its integral r, will occur frequently in the sequel. Notice that the 
replacement rate is /(0) = N/r and this suggests that r should be the average lifetime 
of an item. On the other hand, r will not usually be equal to a in (36). I suggest 
brooding on this "paradox" and, as an exercise, see if you can resolve this confusion to 
your satisfaction by the end of this section. 

In (41) we assume that the death rate a(a) is such that as a -> oo, \I/(a) -4 0 fast 
enough to ensure that r is finite. For instance, if a is constant (this is the Markovian 
case) then ^(a) = exp(—aa) and r = ä = 1/a. 

If the death rate a decreases with age then the average liftetime r might not be 
finite. For example, consider the specific model 

"=ah-    =*    *w = (»y- (42) 

Provided that u > 1 then the integral of if!(a) converges and r = 6/(u — 1). 
If v < 1 then r = oo and there is no steady solution. To understand this curious 

result we must solve an initial value problem (see appendix A). Here we just remark 
that if v < 1 then the average lifetime of a bulb is infinite. Detailed solution of the 
initial value problem in appendix A shows that in this case the replacement rate is 
/(0,t) oc f-1. That is, the total number of new bulbs which have been installed 
at time t grows like tv <C t. The hypothetical manufacturer of lightbulbs with v < 
1 is threatened with bankruptcy: sales decrease with time, even though every bulb 
eventually fails. 

3.2    A cohort of babies 

Imagine a cohort of babies leaving the maternity ward together, or a box of new 
lightbulbs shipped fresh from the factory. These items will function for varying amounts 
of time, and so we can speak of the PDF of lifetimes. We denote this PDF by P(a), 
and our goal is to relate V(a) to the death rate a (a). 
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Consider a group of N items which all start with a = 0 at t = 0. What fraction of 
this cohort survives at t > 0? The surviving fraction is also the fraction of lifetimes 
longer than t and so 

survivin 
/oo 

V{a)da. (43) 

To calculate the surviving fraction, we solve (37) with the initial and boundary condi- 
tions 

f(a,0) = NS(a),        /(0,i) = 0. (44) 

The solution of (37) and (44) is 

f{a,t) = N*{t)8{a-t), (45) 

where \t is defined in (41). Thus #(*) is the fraction of the cohort which is still alive 
at time t; we refer to $ as the survival function. 

It now follows from (43) that the PDF of lifetimes of new items is 

V{a) = -tfa = e*tt. (46) 

The average lifetime, r, is given by the equivalent expressions: 

/>oo rco /»oo 

r=      aV(a)da = - /  a^ada=  /   *(o)da. 
Jo ^0 ^0 

(47) 

Thus, as was suggested in the discussion following (41), to keep a population in equi- 
librium the replacement rate is equal to the size of the population, N, divided by the 
average lifetime of new items, r. 

3.3    Extinction of a population 

As a final example, suppose that at t = 0 we have the steady-state lightbulb population 
in (40). If the janitors then go on strike, so that bulbs burn out without replacement, 
then how many bulbs are still operating at t > 0? In this example we must solve (37) 
with the initial and boundary conditions that 

/(a,0) = iVr-1^(a),        /(0,i) = 0. (48) 

The solution is 

f(a,t) = H(a-t)Nr-l^(a), (49) 
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where H(a — t) is the step function. Thus the fraction of surviving bulbs at t is 

/OO />0O 

tt(a) da = r-1 / (a - t)V(a) da. (50) 

Using the specific model of a in (42), the surviving fraction is 

0(t) = (1 + e~ H)1-". (51) 

Q(t) is the most slowly decaying function we have seen so far: as t -> oo, 0(£) 3> 
$(i) ^> V(t). This model may be relevant to the very slow extinction of professors 
once the supply of graduate students is cut-off. 

Comparing the results in sections 3.1 and 3.2, we see that the steady state popu- 
lation in section 3.1 contains more long-lived items than are in a cohort of new items 
section 3.2. This means that the average lifetime of the light bulbs currently operating 
in the Empire State building is longer than the average lifetime of bulbs shipped from 
the factory. The reason is obvious: items with brief lifetimes fail quickly, and will likely 
be replaced with items whose lifetime is closer to the mean. Thus, fragile individuals 

>-are underrepresented in an operational population. 

4    The generalized telegraph model 

4.1    Formulation 

Using the machinery from the previous section we now construct a generalization of the 
telegraph model which exhibits anomalous diffusion. In this generalization particles 
switch randomly between moving with u(t) — +U, u(t) = 0 and u(t) = —U. The 
transition probabilities between these states are functions of the time since the last 
transition. In other words, each particle carries an "age", a, which is the time elapsed 
since the particle transitioned into its present state. We denote the density of right 
moving particles at (x, t), with age a, by TZ(a, x, t). For left-moving particles the density 
is C(a.t.x), and for the stationary particles the density is S(a,x,t). We refer to the 
left and right-movers collectively as "flying particles" while the stationary particles are 
"stickers". 

The flying particles satisfy the conservational laws 

Tit + lla + UTlx + aFTl = 0,    Ct + Ca- UCX + aFC = 0, (52) 

while the sticking particles have 

St + <Sa + asS = 0. (53) 

The death rates of flying and sticking particles, ap and as respectively, are functions 
of age a; it is through this device that particles have a memory of their previous 
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history. The price we pay for this nonMarkovian memory is that there are now three 
independent variables, (a, t,x). 

Stationary particles are born when left and right-moving particles die. And, con- 
versely, when a stationary particle dies it is reborn as either a left moving particle or 
a right moving particle with equal probability. Notice that in order for a right-moving 
particle to become a left-moving particle it must pass through the intermediate state 
with u = 0. These karmic rules are enforced by boundary conditions at a = 0: 

1 f°° 
C(0,t,x) = H{0it,x) = -      as{a)S(a,t,x)da, (54) 

2 Jo 

and 
/>00 

5(0,t,x) = /  ap(a) [C(a,t,x) +1l(a,t,x)] da. (55) 
Jo 

Trajectories of particles moving with this generalized telegraph process are shown in 
figure 8. 

The model we have formulated here is a generalization of the telegraph model in two 
ways. First, there are three states: left, right and stationary. This minor embellishment 
is motivated by the Texas experiments in which trapping in a vortex corresponds to 
the stationary particles. The nontrivial generalization is the introduction of the age 
variable used to capture memory effects. As an exercise, the student can show that if 
ap and as are independent of a then one can easily integrate over a and reduce (52) 
through (55) to a three-state telegraph model. (This exercise shows how the boundary 
condition at a = 0 works.) As a sequel to this exercise, discuss as —>■ co and show that 
in this limit one obtains effectively a two-state telegraph model. Are you surprised 
that the diffusivity is given by (18)? That is, why do we recover model B, rather than 
model A, when the sojourns in the intermediate state u = 0 are very brief? 

In order to model slowly fading velocity correlations and anomalous diffusion we 
use 

Vp + a Us + a 

With the form above, the transition rates decrease as particles age. Numerical sim- 
ulations of the three-state model using the transition rates in (56) show that many 
particles move in the same direction for a long time (see figure 9). 

The main point of (56) is that if a » 1 then the transition rates ap and as 
are proportional to a-1. This inverse dependence on age ensures that the flying and 
sticking PDFs, VF and Vs in (7), decay algebraically. Thus (56) incorporates important 
experimental information into the model2. One can make a dimensional argument in 

2As far as scaling exponents are concerned, only the a > 1 structure of OF and as matter. We 
use the specific functional form in (56) for simplicity. 
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Figure 8: Trajectories of particles in the generalized telegraph random process. All 
particles are released from x = 0. 

support of (56): ap and as have the dimensions of inverse time. If the only time-scale 
relevant for long-lived particles is the particle age, a, then it follows that ap and as 
are inversely proportional to a. We now show that the parameters vF and vs are easily 
related to the experimentally measured exponents \ip and \xs in (9). 

4.2    The equilibrium solution 

The system (52) through (55) has a solution which is homogeneous (dx = 0) and steady 
{ßt = 0). This equilibrium solution is 

K(a, x, t) = £(a, t, x) = rVF(a),        S(a, t, x) = 2r*5(a) (57) 
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Figure 9: A simulation with JV = 104 particles; aF(a) = as{a) ~ 1.35/a. Upper panels: 
PDFs as a function of age and position show that there are many particles that either stick 
or move at a constant velocity for nearly the whole simualtion. Center panels: PDFs of the 
position of particles develop tails larger than Gaussians as time goes on. Lower panels: PDFs 
of the age of particles have a spike at large times, because there is a fraction of particles that 

never die. 
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where ^Fs(a) is 

■$F,s(a) = exp (- faF,s(a') da' J . (58) 

The constant r in (57) is the transition rate between the different states; r is determined 
by the normalization condition: 

N = 2r{rs + TF),        TFJS = /  ^FS(a)da. (59) 
Jo 

\Ye can use the results from section 3 to interpret rF and Ts as the average lifetimes 
in the flying and sticking states respectively. Using (46), the PDF of lifetimes in those 
states is given by 

VF,s = aF,SyF,s ■ (60) 

Using the expression in (56) for aFs, we see that as a -» oo, the survival functions 
decay algebraically with ^FS ~ a~VF's, and so VF,s ~ a-"*5-1. It follows that the 
p.xponents fiF and ßs defined in (9) are related to vF and v$ by 

ßF,s = VF,S + 1 • (61) 

\\V can summarize our arguments to this point by observing that the experiments 
provide the flying velocity, U, the average lifetime in the flying and sticking states, rF,s, 
and the exponents ßFs- These five experimental data determine the five parameters 
in the generalized telegraph model, namely (U,uFs,0Fs)- 

4.3    Formulation of the initial value problem 

Now that we have determined the model parameters using experimental constraints it 
is time to do some mathematics and use the model to predict the exponent 7 in (6). 
The simplest intial value problem we can consider is (52) through (55) with 

[K{a, 0, x),S(a, 0, x), C(a, 0, x)] = r [tfF(a), 2#5(a), *F(o)] 6(x). (62) 

The constant r is given in (57). Thus, the initial population has an equilibrium dis- 
tribution of ages and is released at x = 0. Because of the symmetry between left and 
right moving particles 

lZ(a,t,x) = C(a,t, — x),        S(a,t,x) = S(a,t,—x). (63) 

Equation (63) greatly simplifies subsequent algebra. 
One technical point (which I confess confuses me) is using the equilibrium age 

distribution as the initial condition in (62).  This choice leads to simple calculations 
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below. And perhaps the gross details of the dispersion process, such the exponent 7, 
are independent of the initial distribution of ages? As an excercise I suggest solving the 
initial value problem using other initial conditions e.g., 7£(a, 0,x) = 6(a)8(t) etcetera. 
Are there any significant differences in the t -> 00 structure of the solution? 

Our strategy will be to obtain a closed hierarchy of spatial moments by multiplying 
the conservation laws (52) and (53) by xn and integrating over x. It is possible to solve 
the first few members of the hierarchy and show that if aF,s and has the form in (56) 
with 1 < v < 2 then as t —> 00 

(x2) = /   x2[Jl{a,t,x)+S{a,t,x)+£(a,t,x)] dxda oc t3~UF . (64) 
Jo     J-00 

Before entering this calculation, we give a simple argument which suggests how the 
anomalous exponent 3 — vF > 1 arises in (64). 

The variance {x2) in (64) can alternatively be written as 

71 = 1 

At time t > 0 some of the N particles will have moved coherently with unchanging 
velocity (either +U or -U) ever since t = 0; half of these particles will be at x = Ut 
and the other half at x - -Ut. These "coherent particles" each contribute a term UH2 

to the sum on the right hand side of (65). The number of coherent flying particles is 
just Q(t)N where 0(i) is given by (51) with v replaced by vF. Thus, because every 
term in the sum in (65) is positive, one has 

(x2) > G{t)UH2 ~ U29F-HZ-VF (66) 

The inequality (66) has teeth only if 3 - vF > 1: then we learn that the coherent 
particles alone produce a superdiffusive contribution to the variance. 

The argument above may suggest to you that superdiffusion is due solely to the few 
extreme particles which move without changes in direction. This is an overstatement: 
the lower bound in (66) is generously less than the exact result for (x2) which we 
obtain in the next section. Thus "nearly-coherent" particles, meaning particles which 
change direction only once or twice, also make a large contribution to the sum in (65). 
This is an essential point, because in their analysis of the experiments Solomon et al. 
discarded all coherent particles from the data set3. Thus the exponent measured by 
Solomon et al reflects only the contribution of nearly coherent particles. 

3This drastic procedure is necessary because some fraction of the experime ntal particles are in 
integrable regions and will fly forever. Retaining all these particles will ultimately lead to the trival 
ballistic exponent 7 = 2. 
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4.4    Solution of the initial value problem 

This is a dry section which contains the details of the analytic calculation of (x2). The 
main point of interest here is that a lot of the algebra can be avoided by proving (75) 
below. (I suggest this as an exercise.) 

The spatial moments are defined by 
/oo 

xn [H(a, t, x), S(a, t, x)C{a, t, x)] dx, (67) 
■oo 

Because of the symmetry in (63) 

ftn(a, t) = (-l)nCn(a, t),        Sn{a, t) = 0 if n is odd. (68) 

The result above allows us to work exclusively with *R,n and Sn while retaining full 
information about the distribution. Using the symmetry, the variance can be written 
as 

/•oo 

{x2)= /  2R2 + S2da. (69) 
Jo 

The zeroth moment of (52) through (55), with the initial condition in (62) is 

[llo(a,t),So(a,t),C0(a,t)]=r[*F(a),2Vs{a)>VF{a)]. (70) 

That is, the zeroth moment is just the equilibrium solution. (This is why using the 
equilibrium age distribution as the initial condition is so convenient.) 

Using (68), the first spatial moment is Si = 0, £i(a, t) = —lZi(a,t) and 

Kit + Tlia + aFTli = UrVF,        7^(0,*) = 0,        fti(a,0)=0. (71) 

The solution of the initial value problem (71) is 

Hi (a, t) = Ur^F (a) min(a, t). (72) 

The second moment equations are £2 = H2 and 

K2t + Tl2a + aF1l2 = 2UTli,        S2t + S2a + asS2 = 0, (73) 

with the a = 0 boundary condition that 
/•OO /"OO 

2ft2(0,i)= /  as{a)S2(a,t) da,        <S2(0,t) = 2 /  aF{a)Tl2{a,t)da.        (74) 
Jo Jo 

To obtain the variance in (69) we do not need the complete solution of (73) and (74). 
Instead, after some judicious integration over a, one finds that 

d_ 
dt 

/•oo 

(x2}=4U /  lli{a,t)da. (75) 
Jo 
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Substituting (72) into the result above we obtain 

^<*2)=4[/2r 
/t />oo 

a^F{a)da + t /  WF(a) do (76) 

If the right hand side of (76) approaches a constant as t -> oo then the variance grows 
diffusively. Otherwise there is anomalous diffusion. 

With (76) in hand, one can easily determine if particular models of aF and ^F lead 
to anomalous diffusion. For example, with the model in (56), evaluating the integrals 
in (42) gives a pleasant exact solution 

ftf) = 4u*r% (i + i) 2-L>F 

+ 
{2-vF){vF-l)     {vF-\){yF-2) 

(77) 

where i = t/6. 
The asymptotic behaviour at large time depends crucially on vF. If vF > 2 then 

t here is normal diffusion: 

:(*2) 
AU2r6 2„/D2 

diN~''    {vF-\){yF-2) 

If 1 < uF < 2, there is superdiffusion 

d 

+ 0(t2-"F). (78) 

di 
<z2} 

4U rVFt +0(1) 

(2-vF){uF-l) 
(79) 

i At \>f = 2 there is a logarithmic term.) 
Notice the minor role of 015(a) in the solution above: if v$ > 1, so that the mean 

st icking time is finite, then the parameters vs and 9s occur only in r. 

4.5    An exercise for the diligent student 

Consider an asymmetric two-state model 

Lt + Ca + ULCX + aL(a)C = 0,        Kt+Hx + URTlx + aR{a)TZ = 0, 

with the boundary conditions 

/•OO /"OO 

C(0,t,x)= /  aR(a)TZ(a,t,x)da,        Tl(0,t,x)= /  aL{a)£(a,t,x)da. 
Jo Jo 

Show that the average velocity is 

rLVL + rRUR _ f\R{a)dat 

Jo 
U = 

TL + TR 
T~L,R 

(80) 

(81) 

(82) 
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where ^L and $R are defined by analogy with (41). Show that the Laplace transform 
of the velocity autocorrelation function is given by 

cdrr(s) = U2
RMS 

where 

1     i~L + TR(l-i)L)(l-j)R) 
s       TLTR      S2(! _ ^B) 

(83) 

U\MS = T±0±URVL. (84) 

(If you use the moment method, you will need Laplace transforms to solve the integral 
equation which arises at n = 1.) Using the model 

VR,L + a 

perform an asymptotic analysis of (83) to identify the anomalous diffusion exponents 
which occur if either or both of vi and vR are less than 2. 

References 

[1] D.D. Joseph and L. Preziosi. Heat waves. Rev. Mod. Phys., 61:41-73, 1989. 

[2] M. Schlesinger, G.M. Zaslavsky, and U. Frisch. Levy Flights and Related Topics in 
Physics. Springer, Berlin, 1994. 

[3] T.H. Solomon, E. Weeks, and H.L. Swinney. Chaotic advection in a two-dimensional 
flow: Levy flights and anomlaous diffusion. Physica D, 76:70-84, 1994. 

[4] G.I. Taylor. Diffusion by continuous movements. Proc. London Math. Soc, 20:196- 
212, 1921. 

[5] E.R. Weeks, J.S. Urbach, and H.L. Swinney. Anomalous diffusion in asymmetric 
random walks with a quasi-geostrophic example. Physica D, 97:291-310, 1996. 

A    Solution of an initial value problem 

In this appendix we discuss the issue raised at the end of section 3.1 and analyze a 
problem in which the death rate of old items is so small that the average lifetime r is 
infinite. For example, this is the case v < 1 in (42). Specifically, consider the initial 
value problem posed by (37) with the initial and boundary conditions 

f(a,0) = N5(a),        f(0:t) = r(t). (86) 
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In (86) the replacement rate r(t) is determined by requiring that 

/•oo 

N= /  f{a,t)da. (87) 
Jo 

The solution of (37) and (86) is 

/ = NV(t)6(a -t) + V(a)r(t - a). (88)' 

The first term on the right hand side of the equation above is the cohort of initial items 
aging and dying. The second term is influx of new items. Imposing (87) on (88), we 
obtain an integral equation for r: 

N = N%{t) + [y{a)r{t - a) da. (89) 
Jo 

The integral relation above is known as the renewal equation 
Because of the convolution in (89), the Laplace transform 

/•OO 

[*(«), f (a)] = /   e-°[*(a),r(o)]do, (90) 
Jo 

is gratifying. In this way we find from (89) that 

f = tflzi*. (91) 

The large-time behaviour of r(t) can be obtained from (91) using standard asymptotic 
methods. 

If a(a) oc 1/a as a -> oo, then the rightmost singularity of ^(s)in the complex 
s-plane is the branch-point at s = 0. We show below in (94) through (97) that the 
structure of ^ at this branch-point is 

*(s) = ror1 + r + - (92) 

If v < 1 then the singular term involving s"_1 dominates the constant r as s -> 0. In 
this case, from(91), 

f(s) -,        =>        r{t) -r-r,        as       t->oo (93) 

Because v < 1 the replacement rate vanishes as t —»■ oo. 
To explain the small-s expansion in (92), we use the model death-rate in (42), which 

produces the survival function 

*(.) = (^)". (<*) 



The Laplace transform in (90) is then 

*(s) = ev8v-1e"'T(l - u, 0s), (95) 

where T(a,x) is the incomplete T-function defined by Abramowitz & Stegun in their 
article 6.5.3. This Laplace transform can be rewritten as 

*(*) = flV-VTCl -u)- 0T(1 - u) J2 rJ.     ,BV (96) 
n=0 

r(2 - v + n) 

The form above is convenient because the singular terms containing s" 1 are localized 
in the first function on the right hand side. When s<l the expansion of (96) is 

*(s) = 0T(1 - v)sv~1 + -^-j + 0(8, su), (97) 

which is the form assumed in (92). 
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Lecture 6: 
The Batchelor spectrum and tracer cascade 

R. T. Pierrehumbert 

1    The advection-diffusion equation 

In this lecture we consider the problem of determining the spectrum of a passive tracer advected by 
a velocity field. The evolution of the tracer is described by the equation 

dte + u • V0 = KV
2
0, (1) 

where K is the molecular diffusivity, u the advection velocity field and dt denotes a partial derivative 
with respect to time. Depending on the particular experimental situation, the tracer G could be 
temperature or density of a passive contaminant such as ink. By 0 being passive, we mean that 
the dynamics of the velocity does not couple with 0. Thus equation (1) is truly linear in 0. We 
confine our attention to the case where u is non-divergent. Most of the mathematical details will be 
carried out in the two dimensional case, though many of the techniques and arguments admit ready 
generalizations to any number of dimensions. Throughout, we employ cartesian.coordinates (x, y). 

Batchelor [1] realized that the general increase of gradients of 0 accompanying the stirring action 
of the velocity field, which is a consequence of the quadratic term of (1), can also be thought of as 
a transfer between different Fourier components of the spectrum of 0. If both u and 0 are written 
in the form of Fourier integrals, the term u • V0 leads to the generation of new harmonics of 0 and 
the growth of ever-increasing wavenumbers. The transfer of tracer variance from low wavenumbers 
to high wavenumbers is mathematically similar to that hypothetised by Kolomogorov for the velocity 
variance in a turbulent field. 

The Fourier components of the tracer 0, if the flow is spatially unbounded, are defined by 

1 r+oo     r+oo 
0Or,j/) = ^y_     y_    dkdie(k,l)eikx+i'y. (2) 

In the present context, it is convenient to define a spectrum function for 0 as 

C(K) = l-J-j\4>K\e(K,4>)\2, (3) 

where Q(K,(f>) are the Fourier components of 0 in polar coordinates K = y/k2 +I2 and <j> = 
arctan(Z/fc). If the tracer field is isotropic the integral is trivial and C[K) = K\Q{K))\2 /2TTV. The 
normalization factor V = / fvdxdy ensures that the spectrum has units of variance of 0 per unit 
wavenumber. In fact it follows from Parseval's equality that the variance of 0 is the integral of C(K) 
in wavenumber space 

(02> =  lim i / f dxdye2(x,y) = f X'dKC(K). (4) 
V->co V J   Jv Jo 
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Following the line of argument of Kolmogorov and Batchelor, we suppose that the diffusivity K 

is so small as to make the effect of diffusion appreciable only at the large wavenumber end of the 
spectrum. The part of the equilibrium range of wavenumbers for which the Fourier components of 
u are independent of viscosity is usually termed the "inertial subrange" and an appropriate term 
for the part of the equilibrium range for which the Fourier components of 0 are independent of 
molecular diffusion is the "advection subrange". No actual destruction of tracer variance takes place 
at wavenumbers in, or smaller than those in the advection subrange. All the destruction takes place 
at high wavenumbers as a result of the action of molecular diffusion. The total rate of destruction of 
variance per unit volume is calculated by integrating the advection-diffusion equation over the whole 
domain 

Ö4(0
2) = -2K(|V0|2) = -X. (5) 

This relation shows that the quadratic terms in (1) makes no contribution to 9t(02). Thus when 
one Fourier component of the spectrum of 0 is changed by the interaction between 0 and u, other 
Fourier components are changed simultaneously in such a way that the sum of the contributions to 
(02) from all Fourier components remains the same. This shows that 0 variance is simply transferred 
from small to large wavenumbers in the advection subrange and X is a given constant quantity. 

If the velocity field u is characterized by a single time scale r, it is possible to predict the spectrum 
of 0 on dimensional grounds. In fact the spectrum C(K) at a wavenumber K is determined by x, 
the mean rate at which variance is cascaded, the time scale r, and the local wavenumber K. There 
is only one combination of these three parameters with dimensions of (02) per unit wavenumer and 
this combination gives the functional form of the spectrum, 

. C(Ü0~XTÄ-1. (6) 

Batchelor noticed that this result is of physical interest for tracers whose diffusivity is much smaller 
than the viscosity of the advecting fluid. In this case the velocity field at scales shorter than the 
viscous cutoff is extremely smooth and the primary effect of the advection on variations of 0 is a 
uniform straining rate of strength T

-1
. 

A characterization of the spectrum of 0 can be obtained also at scales larger than the viscous 
cutoff, if the velocity spectrum has a power law dependence on the wavenumber. The spectrum of 
velocity S(K) is the variance of velocity as a function of wavenumber and is defined in a way analogous 
to the spectrum of 0 such that 

r+<x> 
dKE{K). (7) 1 r 

/o 

If £{K) ~ K~~a, a time-scale r for the velocity field is given by the turnover time at scale K, 

K-1 

T ~ 
y/K8{K) 

• K-(3-«)/2. (8) 

The eddy turnover time decreases with scale for a < 3 and the picture of larger eddies feeding smaller 
eddies is appropriate. For a > 3 the cascade of energy through different scales cannot be considered 
local in wavenumber space and the estimate of r must be corrected to include the presence of non local 
effects, but this is beyond the scope of this lecture. Given an estimate for r, the same dimensional 
argument used for the case of a velocity field characterized by only one time scale implies 

C(K)~XK~{5~a)/2- (9) 

According to Kolmogorov's arguments on isotropic and homogeneous turbulence, the spectrum of 
velocity in the inertial subrange scales as £ (K) ~ K~5/3. In this case the tracer spectrum scales as 
C(K) ~ if-5/3 as well and is known as the Obukhov-Corrsin spectrum [2, 3]. 
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Figure 1: Spectrum of a passive tracer advected by a 3D turbulent field. Wavenumbers are normalized 
by the cutoff viscous scale (the scale at which momentum is dissipated). 

For tracers advected by a turbulent, three-dimensional velocity field, with diffusivity K much 
smaller than the viscosity of the fluid v, we expect to see a spectrum C(K) ~ K~h/3 at scales larger 
than the viscous cutoff, and a spectrum C(K) ~ K_1 at smaller scales, as shown in Figure 1. The 
scaling breaks off at large wavenumbers at the dissipation cutoff (the scale at which the tracer is 
dissipated, here assumed smaller than the scale at which momentum is dissipated) and at small 
wavenumbers at the scale of the domain, if the domain is finite, or at the scale of forcing if there is 
some forcing feeding variance in 0. 

2    The 2-point correlation function: what can it tell us about 
the properties of the flow. 

2.0.1    Definition and uses of the 2-point correlation function 

The aim of the two point correlation function Zi(r) of a concentration field is to yield information 
about the typical variation of the concentration over a distance r. Let's therefore define it as 

Z2(r;...) = (|0(x + rn)-0(x)|2> (10) 

where n is a unit vector in the chosen direction, and the average can be a time, spatial, or ensemble 
average. Depending on the average chosen, Z2(r;...) may also depend on the time t (for spatial or 
ensemble average), or the starting position x (for the time average if the fluid is not homogeneous). 
If the flow is anisotropic, the correlation function depends on n as well. 

The 2-point correlation function can also be rewritten as 

Z2(r,n)    =    (0(x)2) + (0(x + rn)2)-2<0(x)0(x + rn)> 

=    2(02) - 2(0(x)0(x + rn)> (11) 

if the flow is spatially homogeneous.  More generally, one could define correlation functions of any 
order: 

Z,(r) = (|e(x + rn)-0(x)|« (12) 
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As q becomes larger, Zq is increasingly dominated by the most extreme fluctuations (i.e. 0(x + rn) - 
0(x) locally very large). 

The 2-point correlation function yields precious information about the global spatial structure of 
the flow. For instance, 

• if the flow is smooth at all points , then the concentration gradient exists everywhere and 
|V0| < +00. As a result, for small enough r, we get Z2{r) ta (|V0|2)r2; 

• for a flow containing well separated jumps/steps in the concentration field, then Z2(f) oc r; 

• for a non-singular fractal flow, with a possible local accumulation of steps, the correlation func- 
tion becomes Z2(r) oc r"; where 1 < v < 2. Smaller values of v arise form singularities in the 
tracer field—places where the tracer value becomes infinite; 

• if the flow contains integrable singularities, then Z2{f) oc rv with 0 < v < 1, whereas non- 
integrable singularities have v < 0; 

• for a flow with a white noise spectrum, there is no correlation between any two points, so that 
the correlation function is constant Z2(r) oc r°. 

To summarize, non-singular flows have 2-point correlation functions given by Z2(r) oc r" where 
0 < v < 2. There exists no interesting flows with v > 2 since this would require the gradient of 
the velocity to be 0 everywhere. 

2.1    Relation between the 2-point correlation function and the power spec- 
trum 

We saw that the flow variance can be decomposed onto the spectral modes as 

/•OO 

(02> = /    C(K)dK (13) 
Jo 

where, say. C(K) oc K~a. In the specific case of 1-D, one can show that the correlation function can 
also be rewritten as [4, p. 95] 

/»OC 

Z2{r) = 2 /    C(K)(1 - cos(Kr))dK (14) 
■ Jo 

so that 

fl/r ri.fr /»oo 

Z2(r)    =   2/      C{K)K2r2dK + 2       C(K)(1- cos(KR))dK 
Jo Jl/r 
rl/r /»oo 

w   2 /      C(K)K2r2dK + 2 /    C{K)dK 
Jo Jl/r 

2r2 
^3-a")1/7" 

+ 2 
3-a Jo 

Kx~a' 
(15) 

l/r 1-a 

Note that only the tail of C(K) varies like K a, so that the 0 bound of the integral does not actually 
pose any problems, and is a given constant, say Co- Various cases can occur. 

• in the case where a > 3 then the integral is dominated by the first term, and so Z2(r) « 
(3-a)(a-i)ra~1 "*" 2r2<Co- For small r the dominant term is therefore Z2(T) oc r2. 
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• in the case 1 < a < 3 then the integral is 

Z2(r) « 2r2pJ- + 2r2Co + 2^ = r0-1 4 + 2r2Co (16) 
o —Q a —1 (d — aj(a — 1) 

For very small r, the dominant term is ^(r) oc ra_1. 

• in the case where a < 1 the second integral is not convergent; Zi(r) is not defined in that case. 
However, in the limit a —> 1 and a > 1, the dominant terms are 

^(r)»7= £ TT + 7^-^lnrcxln(-N) (17) (3-a)(a-l)      (3-a) Vr*/ 

so that the length-scale r* appears as a cutoff below which the flow is smooth on all scales. The 
limit a -> 1 corresponds to the Batchelor spectrum, and r* is the dissipation scale. 

Note that in the case where a is greater than 3, the correlation function increases faster than r2, 
which cannot correspond to any physical flow. We also see that provided 1 < a < 3 the following 
simple scaling argument applies: Zi{r) is related to the variance on a scale of r, so 

Z2{r)    »   C(K)6K « K~QK where K = 1/r 

oc   ra~l. (18) 

3    Determination of Ztif) from the mixing properties of the 
flow 

3.1    The non-diffusive case 
In the case where the equation governing the spread of concentration contains no source terms, or 
diffusive terms, we have 

£-° 
so in order to know 0(x, t) we only need to track the trajectories back in time to the initial conditions. 
The correlation between the concentrations of 2 points x and x' in the fluid is equal to the correlation 
of the concentration of Xo and x(, in the initial conditions, where x0 and x(, are the initial positions 
of x and x'. However, we also know from the stretching properties of the fluid that any 2 points grow 
exponentially further apart as time evolves (either forwards or backwards). If x and x' are separated 
by T at a time t, x0 and x'0 were separated, on average, by r0 = rexp(Ai) at to = 0, where A is 
the finite time Lyapunov exponent of the flow. If the initial conditions of the flow have a typical 
correlation length-scale L (for instance, the length-scale of the initial forcing in a decaying turbulence 
experiment), then there will be 2 regimes: 

• either rexp(Af) < L, then the particles have remained in the same "eddy", within the same 
correlation length-scale, so that we simply have 

Ar0 « |V0|orexp(Ai) (20) 

where |V0|o is the typical gradient of the eddy at t = 0. 

• on the other hand, if rexp(At) > L the points are uncorrelated and so (|Ar0|2) = 2(02)|o, 
where (02)|o is the variance of the initial flow. 

The resulting profile is shown in in Fig. 2; as one can see, there seems to be no logarithmic profile 
appearing, which would have been the sign of the Batchelor regime. This is typical of the initial 
value problem, where the flow keeps a memory of the initial condition for some period of time before 
reaching a random flow. 
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Figure 2: two-point correlation function in the unforced, non-diffusive case. 

3.2    The forced case 

This time we have 

^ = Kv
2e + 5(x,t) (21) 

where S(x, t) is a source term, with a finite correlation length-scale, but no time correlation, i.e. 

(S(x,t)S(x',t')) = S2
0(\x-x'\)8(t-t') (22) 

where S0(|x - x'|) decays on a lengthscale L. One can distinguish 2 regimes. In the initial phase the 
flow is mixed without dissipation; since the forcing is uncorrelated in time, the system behaves like a 
riindom walk process, so that 

(02) oc Sgi (23) 

Later on. the flow reaches a steady state with a balance between the forcing and the mixing/dissipation 
terms. The dissipation scale Z* for which the strain balances the dissipation is Z* = y/n/A (cf. Bill's 
len ure). The time £* needed for the flow to create structures on the dissipation scale is £* = ^ ln(L/Z*). 
The time-scale t* can be seen as the memory of the system. Trajectories with small Lyapunov exponent 
have a large memory, the flow remains correlated for longer times. The 2-point correlation function 
will mostly depend on scales of order of L. Indeed, if 2 points are separated by r < L, they must 
come from regions which have the same source term, so that the quantity Zi(r) is likely to be small. 
On the other hand, if r > L then the correlation function of the concentration field will be similar to 
that of the source terms. As before, let's consider 2 points at x and x' at a time t and trace their 
trajectories backward in time. Assuming that the statistics of the forced flow are stationary, the flow 
builds up correlation when the separation of the 2 points is larger than L, but loses correlation for 
times larger than the dissipation time-scale. The 2-point correlation function will therefore depend 
on the difference t£ — £*, where ti is the amount of time necessary to reach scales of order L starting 
from and initial separation r: ti = j-lnL/r. This is illustrated in Fig. 2. 

Hence 

Z2{r) oc tL - t* oc — In (r/h) (24) 

This logarithmic dependence in r of the correlation function shows that the forced case is consistent 
with a Batchelor regime. For more details on this subject, see Refs. [5] and [6]. 
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On Stratified Kolmogorov Flow 

Yuan-nan Young 

Abstract 

In this study we investigate the stability of the weakly stratified Kolmogorov shear 
flow. We derive the amplitude equations for this system and solve them numerically to 
explore the effect of weak stabilizing stratification. We then explore the non-diffusive 
limit of this system and derive amplitude equations in this limit. 

1 Introduction 

The Kolmogorov flow - a two-dimensional viscous sinusoidal flow induced by a unidirectional 
external force field - has been studied in the context of generation of large scale turbulence in 
two-dimension. Various aspects of the Kolmogorov flow, such as the generation of 2D turbu- 
lence [1], vortex merging [2], and the negative viscosity in the role of large scale formation in 
2D turbulence [3], have been widely applied to geophysical [4] and laboratory systems [5, 6]. 

In this study we impose a weak, stabilizing temperature gradient and investigate the tem- 
perature evolution associated with the flow instability. We first adopt Sivashinsky's approach 
and derive the finite-amplitude equation for the case of infinite domain (periodic boundary 
conditions) and finite Peclet numbers. We then solve the amplitude equations (both ID and 
2D) numerically and investigate the buoyancy effect on the structure formation of the flow. 
We also investigate large Peclet number cases, where the critical layers in the scalar field 
plays a key role for the flow instability and dynamics. We also make comparison between 
fully numerical simulations and results from the weakly nonlinear analyses. 

2 Formulation and linear analysis 

2.1    Formulation 

The Kolmogorov shear flow is more generally defined as a sinusoidal shear flow, whether the 
fluid is viscous or inviscid. In our 2-D formulation of the problem, where the incompressible 
flow can be written as a stream function, we couple this background shear flow to a stabilizing 
temperature. Without loss of generality, we write the total background state as a sinusoidal 
stream function and a linear temperature profile: 

AT 
*o = U0lcos(z/l),   T0 = —z, (1) 

where UQ is the amplitude of the background shear flow, I is the periodicity of the shear flow, 
and AT is the temperature difference across distance I. Denoting if) as the stream function 
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disturbance and 9 as the temperature disturbance, we first write the momentum equation 
and the advection diffusion equation as follows: 

dtV
2V + 9x(öz*oVV - a^oVO - J(i>, v2v) = ^vV - 9^x, (2) 

dtO + dz<Z0dxe - dx^dzT0 - J(il>, 6) = KV
2
0. (3) 

\\V nondimensionalize the above equations such that the background shear flow uo = — sin 2 
and the background stabilizing thermal gradient is equal to 1 (Re = UQI/V is the Reynolds 
number. Pe = UQI/K is the Peclet number, and Ri = gaÖTl2/UQ is the Richardson number), 
and equations 2 and 3 thus read: 

dtVV - sin z{VV + V)x - Jty, V2^) = ^VV " RiÖx, (4) 

dte-(smze + 4>)x-j(i>,e) = ±-v29. (5) 

In the following subsections we first present results from the usual linear analysis on cases 
where the periodicity of the shear flow is the same as the domain considered (integer pe- 
riodicity). We then consider cases where the perturbations are products of periodic and 
exponential functions (Floquet system) and may exhibit parametric resonance. 

2.2    Linear analysis on the stratified Kolmogorov flow 

In this section we present results of linear analysis on equations 4 and 5 for shear flow of 
periodicity the same as the domain size. The linearized version of equations 4 and 5 read 

dtV
2i)-smzdx{V2iP + i>)    =    ^-VV-Riöx, (6) 

He 

dtO- (sinz6 + ti>)x   =    j^V20. (7) 

Without the stabilizing temperature, the non-stratified Kolmogorov shear flow is known to be 
unstable to long wave length perturbation for Reynolds numbers Re > y/2: the critical wave 
number kc = 0 and the critical Reynolds number Rec = \/2. Also for small horizontal wave 
numbers (k «C 1) the growth rate A can be obtained via the following dispersion relation: 

A = (1 - ^f)k2 + Re2(l + ^)k4 + 0(ke). (8) 

We numerically solve the above linearized equations with periodic boundary conditions 
(in both the horizontal and the vertical directions). Figure 1 shows marginal curves for weak 
stratification (see caption for the corresponding stratification strength for each curve) and 
figure 2 shows the critical Reynolds numbers and wave numbers as functions of Richardson 
numbers for Prandtl number Pr = V/K = 10. As shown in the figures, the critical wave 
number kc increases rapidly as we increase the Richardson number above. As the Richardson 
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(a) 

(b) 

Figure 1: Marginal curves for the unbounded stratified Kolmogorov flow for weak stratifica- 
tion and Prandtl number a = 1. Curves are labeled by their Richardson numbers. In Panel 
(a), from curve 1 to curve 6, the Richardson number is, respectively, 10~7, 10-6, 10-5, 10-4, 
10~3, and 10~2. In Panel (b), the Richardson number is 0.01, 0.05, 0.1 and 0.15 for curve 1 
to curve 4, respectively. 
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(a) (b) 

Figure 2: Critical Reynolds number (a) and critical wave number (b) as functions of Richard- 
son number for Pr = 10 for the periodic case. 

number increases above 10-5, the critical wave number kc increases significantly from 0 
towards some finite value (~ 0.1). This also implies that the inverse cascade observed in the 
nonstratified Kolmogorov shear flow is at risk, namely, the large scale perturbation now has 
been stabilized by the existence of the stably stratified temperature. As will be shown in the 
numerical results, the inverse cascade is indeed prevented by the stabilizing temperature and 
we will discuss this in detail via the tool of Lyapunov functional. 

2.3    Linear analysis on the stratified Kolmogorov flow: 
Floquet calculation 

We now show results from the Floquet calculation for the stratified Kolmogorov shear flow. 
We perturb the system with perturbation of the form: etqz+*kxil)(z,t), where 0 < q < 0.5 
is the Floquet multiplier (Bloch number) and k is the horizontal wave number. With the 
definition of V'2 in equation 9, 

V'2^    =    -(k2 + q2)iP + 2iqdziP + d2
ziP, 

equations 6 and 7 then take the following form: 

dtV2ip-smzik(V'2ip + ^)   =   -^-V4ip - ikRi9, 
Re 

dt9 - ik{sin z6 + ip)   =   ^-V20. 
Pe 

(9) 

(10) 

(11) 

Solving equations 10 and 11 numerically with periodic boundary conditions, we obtain the 
parametric marginal curves for various values of q. Figure 3 shows the critical Reynolds 
number as a function of q for the non-stratified (Ri = 0) case. We first note that Rec(g) > 
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Rec(g = 0), and at around q = 0.35 the minimum moves from one branch to the other, thus 
a cuspy transition at q = 0.35. Prom figure 3 we also note that the most unstable mode has 
the same periodicity as the background shear flow. Therefore, we do not need to perform 
the same Floquet calculation for the stratified case.   Having shown that perturbations of 

(a) (b) 

Figure 3: Critical Reynolds number (a) and critical wave number (b) as functions of the 
Floquet multiplier q for the non-stratified Kolmogorov shear flow. 

the same periodicity are the most unstable, we then proceed to uncover the effect of weak 
stratification on the nonlinear behavior of the flow. By this we in particular mean that we 
are going to perform amplitude expansion around the k = 0 mode for small Ri. From the 
linear analysis, we have observed that the critical wave number kc increase from zero (for no 
stratification, Ri = 0) to finite value (for strong stratification). As kc transitions from 0 to 
finite values, the amplitude equation changes from a Cahn-Hilliard like equation [4] for long 
wavelength instability to a Ginzburg-Landau equation for finite wavelength instability. In 
our weakly nonlinear analysis, we focus on the weak stratification limit where the system still 
inherits the instability to long wavelength perturbation. To have buoyancy (0) appear at the 
desired order in the amplitude equation, we rescale 9 and put Ri to small numbers such that 
Ri = e6i<6 and b = RiO/e5 = eF^O. Equations 4 and 5, in the new scaling, take the following 
form: 

e4aTV
2^ - eJ^, V2V0 - esinz(V2V> + $)$ = ^-(1 - e2)VV - e\, 

Re* 
(12) 

e4dTb - eJ((iJ>, b) - e2F6ip^ - e srnzb^ = — V26, (13) 

where J^ is the usual Jacobian with respect to £ and z. 

3    Weakly nonlinear analysis: Pe ~ (9(1) 

In this section we first construct the amplitude equations for the stratified shear flow with 
Pe ~ 0(1). We remark here that we are mostly interested in two ranges of Pe: Pe ~ 0{1) 
and Pe 3> 1. The range Pe <C 1 is where molecular diffusivity dominates the dynamics, and 
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to first few orders in the expansion, there appears to be no coupling between the temperature 
and the flow, and thus is of no interests in our analysis. In real physical systems (salty water, 
for example), the Pelect number for a small Reynold number of A/2 is already on the order 
of a thousand, and thus cases where Pe > 1 are of more physical relevance. In subsection 
3.3 we present numerical solutions to the amplitude equations for the Pe ~ 0(1) case. In the 
following section, we derive the amplitude equation for the nondiffusive case (Pe ^> 1). 

3.1     Construction of the amplitude equations: 
Pe ~ 0(1) 

Adopting the scaling discussed in section 2.2, and expanding ip and 6 as follows 

if,   =   ij)Q + eipi + e2ip2 + e3V>3 + ■ • ■ , (14) 

9   =   0o + 60i + e202 + e303 + ■ • • , (15) 

we substitute the above expansions into equations 12 and 13. Collecting terms order by order, 
(tpi,0i) that satisfy the periodic boundary conditions (for the "fast variable" z) are obtained, 
and the solvability condition at each order gives rise to relationships between ipi and 0j. At 
the zeroth order ö(e°), the equations are: 

TpOzzzz = 0, p^&0zz = 0, (16) 

and the periodic solutions are 

th = MM,      &O = £(£,T). (17) 

At the first order ö(e1), we obtain the following equations 

^-fazzzz   =   -A^sinz, (18) 
Re 

ipOzB(.-ipotBz   =   p^hzz, (19) 

and the periodic solutions 

ip1 = -ReAt:smz + Al{t,T),       h = PeB^sinz + BI(£,T). (20) 

At the second order C(e2), the equations are as follows: 

„-ihzzzz = ~M sinz - R«A| cos z, (21) 

1 Pe      1 Pe 
—b2zz = -BH sinz - (Re + Pe)AcB? cos z - {— + p^)% - F6A^ + — % cos 2z.    (22) 

At this order C(e2), the solvability condition for ip2 gives rise to the critical Reynolds number 
Re = Ro = \/2- The solvability condition for 02 gives us the following relationship between 
B{= 60) and A{= ^o): 

iY + h)B*+F*A*=0- (23) 
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(27) 

The solutions at this order are: 

-i/>2    =    -RoA1(i sinz - Ro2Aj cosZ + A2(£,T), (24) 

Pe2 

b2   =   PeJ5lfsinz + Pe(Ro + Pe)^B|COS5; — cos2z-%. (25) 
8 

Going on to the 3rd order in e, we have the following equations for ^3: 

jr-fozzzz   =   \RQ2A\-ZAm-A^-A^\sm.z-2'R,Q2Ai^cosz, (26) 

and the solution ^3 is easily obtained as follows: 

ip3 = Ro[Ro2^ - 3%f -A£- A2^\ sinz - 2R0
3AUA%cosz + A3(£,r). 

The solvability condition at this order gives us the amplitude equation: 

(%)r + f^« + {[Ro - ^4?]*}«« " Pe/2 + 1/Pe^ = 0- (28) 

Following Sivashinsky, if we write dz = dz + ezdv, we obtain identical solutions till the second 
order and obtain the following amplitude equation at third order: 

(%)r   =   -^%^-{[Ro-^A2]^}^ 

-AvAm + ^%, + ^-(A^v + pe/2^
6
1/peA 

(29) 

We note that the buoyancy amplitude B is completely slaved to the stream function amplitude 
A as the effect of the stabilizing temperature gradient is put to higher order (e6). Writing 
p = £ + C77, we can turn equation 29 into a uni-directional amplitude equation [1] in terms of 
p and T as follows: 

\App)T =      -^-Apppppp — {[Ro       —Ap]Ap}ppp -\     2~{Ap)pp + pe/2_|_ i/pe^'       ^®' 

where c is the aspect ratio of the characteristics of the uni-directional flow. 

3.2    Lyapunov functional 

In this subsection we derive a Lyapunov functional for the ID amplitude equation (equation 
28). Following [7], we try to find an energetic functional of amplitude A such that the 
evolution of the amplitude can be described by the functional. To be more specific, we seek 
a Lyapunov functional V[A] such that 

drA=-5-^, dTV = -J(A(Z,T)T)2dt, (31) 
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which then implies that the system cannot sustain oscillatory motion and has to settle down 
to a stationary equilibrium. For the ID amplitude equation for the weakly stratified case, 
it is straightforward to find a functional for the amplitude equation 28 if we rewrite it as 

follows: 

*5A     Pe/2 + l/PeJ 

where 

F[A]   =   --AUA\-A\-2A\^. (33) 

Putting Ctf = A, we write down the evolution equation for F as: 

This indicates that the new functional G = F + pJ * is decaying in time and there is a 

stationary solution for arbitrary initial conditions. In the absence of the stabilizing stratifi- 
cation, random perturbation of small scales will reach a stationary solution with minimum 
number of nodes within the domain, i.e., the scale of the stationary solution is the size of the 
domain. This is the essence of inverse cascade: the evolution of the amplitude is such that 
the spatial scale increases until it reaches the scale comparable to the size of the computation 
domain. In the nonstratified case, since the functional is expressed in the gradient of A, an 
the fact that A is periodic in £, we conclude that the stationary solution A(£) should have 
only one bump inside the domain. However, this inverse cascade is arrested by the presence 
of stabilizing stratification, as the additional term C? included in the functional prevents the 
inverse cascade process. This will be demonstrated in the following subsection. 

3.3 . Numerical solution 

In this section we present numerical results from solving the amplitude equations using a 
pseudo-spectral code. First we show results for the ID version of the amplitude equation 
(equation 28), Figure 4 demonstrates the stabilizing effect of the temperature: the ampli- 
tude decreases and the structure tends to be of smaller scale as we increase the strength of 
stratification. As shown in the previous subsection, we can find a Lyapunov functional for 
this equation in terms of the gradient of the amplitude, therefore, we display the temporal 
evolution of the amplitude gradient (figure 5). Figures 5 show the time-space plots for the 
gradients of the amplitudes without any stratification in (a) and with an F6 = 0.1 in (b). We 
note that the inverse cascade manifested in panel (a) is arrested by the presence of stabilizing 
stratification in panel (b), in agreement with the conclusion we draw from the Lyapunov 
functional. The numerical solutions to the uni-directional amplitude equation (equation 30) 
are displayed in figures 6, where the time evolution is for the amplitudes, not the amplitude 
gradients. In panel (a) of figures 6, where there is no stratification, we see the chaotic behav- 
ior of the flow due to the extra nonlinear term. Yet in panel (b) where F6 = 0.1, we see the 
stratification diminishes the chaotic behavior and reduces the flow to spatially periodic. 
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Figure 4: Numerical solutions at t = 300 for various strengths of weak stratification. 

O 5 10 15 20 25 30 O 5 10 15 20 25 30 

(a) (b) 

Figure 5: Time-space plots of the amplitude gradient with F§ = 0 (a) and FQ = 0.1 (b). 
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Figure 6: Time-space plots of the amplitude for the uni-directional flow with FQ = 0 (a) and 
F6 = 0.1 (b). 

In figures 7 we show the solutions (^o + A(£i V,T)) to tne 2-D amplitude equation, where the 
computation domain has been scaled by an aspect ratio c = 20 as suggested in [3]. The only 
difference between these two snapshots of the stream functions is the stratification strength. 
We note that the effect of stratification is manifested not only by the change in the amplitude 
of the flow but also the flow patterns: the stronger the stratification, the smaller the scales 
are for the flow patterns. 

mm 

m 

Mft 

(a) (b) 

Figure 7: Stream function (zeroth order) from the 2D amplitude equation for (a) F$ = 0.01 
at t = 15 and (b) F6 = 0.1. 

In figures 8 and 9 we show the horizontal average of the temperature to demonstrate the 
potential of layer formation in the temperature. Figure 8 is a snapshot of the horizontal 
average temperature: TQ(Z) + B(£, TJ, t). We note that in Panel (a) of figure 9, layers disappear 
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Figure 8: Snapshot of the horizontal average of the total temperature profile for FQ = 0.01. 

and re-appear randomly, while in Panel (b) layer structures eventually disappear due to the 
stabilizing stratification which diminishes the flow. 

(a) (b) 

Figure 9: Horizontal average of the total temperature profile at various times for (a) F& = 0.01 
and (b) F6 = 0.1. 

4    Internal Boundary Layer for large Peclet numbers: Pe -> oo 

In this section we focus on the instability of the stratified shear flow in the large Peclet 
number limit. Figure 10 displays characteristics of the eigenfunctions of the stratified shear 
flow: the stream function disturbance reaches local minima while the temperature peaks at 
the inflection point of the background shear flow. 

The above structure reminds one of the no-slip, no-flux boundary layer: velocities vanish 
at the walls and so does the density flux. This is similar to what we observe from the eigen 
function (for the unbounded case) except that there is a constant background vertical velocity 
if the horizontal wave number k is not zero. Figures 11 show the internal boundary layer 
structure as we vary the Prandtl number. We observe the decrease of the internal boundary 
layer thickness as we decrease the molecular diffusivity.   By balancing the advective term 
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Figure 10: Eigenfunctions for stratified shear flow. The Prandtl number Pr = 104 and sinz 
is the background shear flow. The solid line is for the stream function disturbance ip and the 
dashed line is the temperature disturbance 6. 
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Figure 11: (a) Internal boundary layer structure as the Prandtl number Pr increases. The 
Prandtl numbers for the solid, dashed, and dash-dotted lines are, respectively, 10, 103, and 
105. (b) The boundary layer thickness as a function of Pr (note that since the Reynolds 
number is fixed, the Peclet number is proportional to the Prandtl number). The solid line is 
the best fit for the last five points, which indicate that the thickness scales to Pe-0"326. The 
Richardson number Ri is fixed at 0.01 and the Reynolds number is Re = 1.92. 
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(associated with the background shear flow) and the diffusive term, we obtain a naive scaling 
of the boundary layer thickness (I) with the Peclet number Pe: 

I ~ Pe"1/3, (35) 

which is in fair agreement with the empirical fit obtained from the numerical solutions to the 
linearized equations. Also in this limit of large (or infinite) Peclet number, the scaling and 
expansion used in previous section to derive the amplitude equations no longer work inside 
the "internal boundary layer" as terms of different orders are mixed up. Thus we need to find 
a new scaling inside the internal boundary layer and perform asymptotic matching across the 
internal boundary layer. We first perform asymptotic matching for infinite Peclet number 
rases, and then relax the infinite Peclet number limit to large Peclet number limit (e10) and 
derive the dispersion relations and general linear solutions in subsection 4.2. 

4.1     Scaling and asymptotic matching for the internal boundary layer 

We first focus on the linearized version of equation 13 and put right hand side to zero: 

e2dT6 + sinz(9e - V>£ = 0. (36) 

The zeroth order solution is (A is the amplitude for the stream function disturbance as defined 
in 3.1) 

00 = J«L = J-. (37) 
sinz      sinz 

Tin' solutions for the first and the second order are: 

* = -£-,     e2 = 4*-. (38) 
sin z smz 

Tin- third order solution takes the following form: 

e=c  -  -?*—*$h (39) 
smz     sirz 

As the background shear flow goes to zero at z = 0, the "outer" solutions shown above are 
nt > longer regular. We therefore need to find different scaling around z = 0 to avoid this 
embarrassment by matching the above "outer" solution to the "inner" solution, to be derived 
in the following with the new scaling. The new scaling we adopt is as follows: around z = 0 
we scale z = e3Z and 6 = e_39. The rescaled, linearized equation takes the following form: 

dTe + ZOf: - V? = 0, (40) 

where we have replaced sin z with e"Z. To perform the matching between inner and outer 
solutions, we first write the inner solution 0 as 

r, A B 
e=z + &+- (41) 
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where A is the stream function amplitude and B is to be determined by matching the inner 
solution to the outer solution. We then express the outer solution (full solution to the third 
order) in terms of the rescaled coordinate Z inside the internal boundary layer: 

A        RoAfsmz ,   2^>AHsmz + Rp^cosz + A2  |   3( fa       _C 

smz smz smz sin z     sirz 

-    ± + dfa* + ^RoA1{ + ^^ + M] + «*  - £,), (43) 

where C^ = AT. The leading order term in equation 43 (order e~3) 

6 ~ \A ~ T*] + °{€~l) (44) 

gives us the undetermined B as follows: 

Bz + Ar = 0. (45) 

Having shown how the asymptotic matching works in the internal boundary layer, we press 
on to find the consistent scaling for the Peclet number. Adopting the same scaling for the 
inner solution above, we have to put Pe to order e~10 to have the diffusive term appeared at 
the first order in the equation for 0 inside the internal boundary layer: 

dTe + (ZQ - ii>)t = 4-ezz- (46) 

We first note that the boundary conditions for the above linear equation have to be found 
by matching the inner solution to the outer solution. Secondly, we note that the zeroth 
order term 60 has non trivial Z and £ dependence, in contrary to what we have found for 
Pe ~ 0(1) cases. 

4.2    Amplitude equation and the dispersion relation 

The previous analysis shows that, in the limit of large Peclet number, 6 depends on Z as 
well as £ and r . With this in mind, we proceed from equations 12 and 13 to write down 
the amplitude equation for the internal boundary layer. First we note that as the strength 
of stratification is put to e6, the solutions for the stream function obtained in section 3.1 
are still valid in the internal boundary layer. We then only need to concentrate on the heat 
equation for 6: 

dte- j(ip,e) + smzdxe-dxi> = —v2e (47) 

Adopting the scaling dt = e49T, dx = e% dz = e~zdz and 9 = e_36 the above equation takes 
the following form: 

edTe - e-5 Jty, 6) + e(Ze^ - ^) = ^zz- (48) 
"10 
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Rescaling 0' = e6©, ip' = e6ip and dropping the primes, we arrive at the following equation 
for the temperature disturbance inside the internal boundary layer: 

dre - JW, 0) + Z0? - ^ = 4-Qzz- (49) 
-no 

The stream function amplitude A satisfies the same equation 28 except that inside the internal 
boundary layer, the average of 0X over Z is not simply 0X as 0 depends on Z as well. Also, 
we have to rescale A accordingly inside the internal boundary layer, so all the nonlinear terms 
in equation 28 drop out and we obtain the following equation: 

dTAx = -Ro(x% + A)K« - F6 /       O^dZ, (50) 
^ J "-oo" 

where the integral range (" — oo", "oo") is referred to the scaled internal boundary layer. To 
zeroth order in e, we obtain the following equation: 

dre - Az&z + Z0e -At = r^-Gzz, (51) 
-no 

where A = A(£, T) is the amplitude for the stream function. Equations 50 and 51 are the 
amplitude equations for the internal boundary layer. The linear equations for the internal 
boundary layer are 

3 f°° 
drAtt   =   -Ro(-A^ + A)m^-F6        B^dZ, (52) 

*• J -oo 

dTe = -ze, + A^ + ^-ezz- (53) 
-n.0 

We first derive the dispersion relation for the infinite Peclet number case. Replacing d% with 
ik and dr with s, we obtain the following equations: 

-k2[s + ^-kA-R0k
2]A   =   -F6 f°° ikSdZ, (54) 

{s + iZk)e   =   ikA. (55) 

Substituting equation 55 into 54, we obtain the dispersion relation for the infinite Peclet 
number case: 

s = -^sgn(s)Tr-^k4 + R0k
2. (56) 

1*1 2 

In the case of finite, large Peclet numbers, we expand 0 in both elkx and eiqz and obtain the 
following equations 

-{s + kq2)@ + eg = -2mÄS(q), (57) 
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where Ö and A are Fourier components in the k — q spectral space. The solution to equation 
57 is 

9    =   e(«9+fc93/3)/fc  /     27riÄ6(q')e-W+kl Wkdq' (58) 
Jq 

=   e^+k,l3^k2iTiÄH(-q), (59) 

where H is the Heaviside function. Substituting the above normal mode solution for G into 
52, we get the dispersion relation for the large, finite Peclet number case: 

^6        3Ro  4 2 s = -TTTTT —k? + R0/r. 
|fc| 2 

(60) 

We note the difference between equation 56 and 60 is the existence of sgn(s), and we display 
the two dispersion relations in figure 12. 

Figure 12: Dispersion relation for the internal boundary layer (R0 = y/2). Curves are labeled 
by the scaled Richardson number Fe: From curve 1 to curve 4, F6 are, respectively, 0, 0.005, 
0.02, 0.045. The solid lines are for the infinite Peclet number cases, and the dotted lines are 
for large Peclet number cases. 

We also note that for any given Reynolds number, the value of FQ such that the maximum 
growth rate s is zero is proportional to the Reynolds number and the ratio is 0.0322. We 
are now ready to find the general solution to 6 for large Peclet number cases. We rewrite 
equation 53 as follows: 

KQZZ ~{S + ikZ)B = ikA, (61) 

where K = 1/Pio- Dividing the above equation by ikA and denote / = Q/ikA, we obtain the 
following equation which allows us to find a closed-form solution: 

Kfzz - ik(Z - is/k)f = 1. (62) 

The solution is the Yi function: 
iirA^ 

G 
kn 

■Yi[k{Z-is/k)}. (63) 
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Figure 13: Dispersion relation for the internal boundary layer (Ro = y/2). Dashed lines are 
for order 0(1) Peclet numbers and solid lines are for large Peclet numers. Curve '1' is for 
F6 = 0, curves '2' and 'a' are for F6 = 0.001, curves '3' and 'b' are for F6 = 0.01, curves '4' 
and 'c' are for Fg = 0.03, and curves '5' and 'd' are for FQ = 0.045. 

5    Inviscid limit of the stratified, Kolmogorov shear flow 

In this section we conclude the report by presenting a brief study on the inviscid limit of the 
stratified Kolmogorov shear flow. A general review on linear analysis of the inviscid shear flow 
can be found in [8]. Here we provide a way to find neutral states for the unbounded, stratified 
Kolmogorov shear flow. We have numerically verified the marginal boundary presented in 
the following analyses, and it would be an interesting direction to provide analytic proofs 
that this is indeed the case. We should also point out that there may be hope to couple the 
critical layers (CL) associated with each inflection point in the background shear flow, and 
hence the interaction between CLs can be investigated. 

5.1    Linear analysis: analytical and numerical 

The inviscid, nondiffusive system (1/Pe = 0) is described as follows (where the shear flow is 
a sinusoidal sin z in a periodic domain): 

dtV
2^-J(^,V2^) + smzdx{V

2iP + ^)   =   -Fdx0, 

dt6 - J{ip, 6) + sinz3s0 - dxtj) = 0. 

(64) 

(65) 

The linearized equations can be put into the following equation with the diffusivity being 
zero: 

(sinz - c)(D2 - k2)ip + sinzip = 
F%l> 

smz 
(66) 

where D = dz and c is growth rate divided by the wave number.   In this notation, the 
imaginary part of c indicates instability: positive imaginary part means growing mode and 
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negative imaginary part means decaying mode.   We reorganize the above equation into a 
more familiar form usually found in the past literature: 

sinz-c (smz- c)z 

First we put c = 0, though in general only the imaginary part is required to be zero on the 
neutral curve. Equation 67 now takes the following form: 

sin2 z' 
D2ij) + (l-k2 + -r-2-)il> = 0. (68) 

The above equation can be solved as follows: first we put the left hand side of equation 68 
as the product of two differential operators as defined as follows: 

(D2 + 1 - k2 + -^-W = Ctfip = 0, (69) 
sin z 

where C and Ö are defined as 

C = D + -^-,       tf = D--±-, (70) 
cot z cot z 

and a is to be determined (in terms of k and F). We note that L& = D2 - (/' + /) where 
/ = cot z, and relationships between a, fc, and F are obtained as follows: 

a = l-k2,       F = a - a2 = Vl - k2 - (1 - k2). (71) 

The first solution ipi is obtained by demanding Cipi = 0 and takes the following form: 

il>1 = {smz)y/I=**,   z>0. (72) 

The second solution ip2 satisfies the following equation 

£ty2 = (sin z)-^*1, (73) 

and is obtained as follows: 

V>2 = (sinz)^13*7 fZ(smz')-2VTZ^dz'. (74) 

For some value of k, the second solution is not periodic in z and therefore is not of particular 
interest. F, as a function of k, is shown in figure 14. First we note that the maximum value 
of F is 1/4 when k = y/3/4. We also note that k goes from 0 to 1 as we are only interested 
in positive F. 
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Figure 14: Stability boundary for the inviscid, non-diffusive limit. 

6    Conclusion 

We have investigated the effect of stabilizing stratification on the Kolmogorov shear flow in the 
weak limit where the long wavelength instability inherits from the non-stratified shear flow. 
Concentrating on cases where Pe ~ 0(1), we first derived amplitude equations for the weakly 
stratified Kolmogorov shear flow and demonstrated the stabilizing effects by numerically 
solving the amplitude equations. For the 1-D amplitude equation, the stabilizing gradient 
arrests the inverse cascade and weaken the flow. For the uni-directional amplitude equation, 
the gradient not only lessens the flow, but also diminishes the chaotic behavior of the uni- 
directional solution. The same phenomena have been observed for the large aspect ratio 2-d 
solutions to the full amplitude equation. For the nondiffusive limit (Pe ~ e -10 ), the dynamics 
are dominated by the internal boundary layer. From the linear eigenfunctions, we are able 
to estimate an empirical scaling of boundary layer thickness with the Peclet number. We 
choose boundary layer scaling accordingly and derive amplitude equations for the internal 
boundary layer. Dispersion relations are derived and utilized for some preliminary analysis. 
The linear stability of the stratified, inviscid Kolmogorov shear flow has been investigated as 
a preliminary step to the weakly nonlinear analysis which is now under investigation. 
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What Comes Around Goes Around: 
A Bug's Life 

Jennifer Curtis 

1    Introduction 

Many biological phenomena such as the spread of a favored gene, the population growth 
of species, ecological competition, and others are described by equations that contain the 
dominant physical processes of diffusion, convection, and a background reaction [6]. The 
model studied in this paper describes the limited universe of these forces and its influence 
on the lives and deaths one colony of photosynthetic bacteria living on an inhomogenous 
substrate. 

Interestingly, the model reaches beyond the scope of biology to touch upon unexpected 
research areas in condensed matter physics, including vortices in superconductors [7] and 
semiconductor physics [5]. The bacteria and vortex systems are mathematically analogous, 
non-Hermitian models which have drawn a great deal of interest [1],[3] due to their ability to 
undergo a delocalization transition in their eigenfunctions. Previously such transitions were 
believed to be impossible in one or two dimensional systems [5]. 

The goal of this paper is to continue the analysis of Dahmen, Nelson, and Shnerb (DNS) 
[4],[2]. by studying the delocalization transition in the presence of a weakly non-linear satu- 
ration term. This term represents the crowding of the bacteria due to competition or deadly 
concentrations of toxins from their waste. 

The model is new territory for the mathematical analysis of pattern formation and pop- 
ulation dynamics in biology. With the exception of DNS, very little work has been done on 
this type of inhomogenous system. Our analysis leads to the very interesting result that the 
dynamics of the model is governed by a differential-delay equation. This delay equation is 
explored with the hopes that oscillations, quasi-periodicity or chaos might arise within the 
physical regime of the model. A little familiarity with delay-equations and a comparison with 
another familiar delay-equation of mathematical biology, the Glass-Mackey delay-equation [6] 
, suggests a structural method to quickly predict the dynamic behavior of a subset of such 
equations. 

Finally, several efforts are made to reasonably modify the physical system to achieve 
interesting dynamics. These attempts include changing the form of the non-linear saturation 
and the increasing the spatial complexity of the system. The former is proved to be stable, 
while the latter remains an open-ended question. 
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2 The Modified Fisher Equation 

Imagine one species of bacteria living in a periodic, one-dimensional ring with coordinates in 
x, 0 < x < L. Located at at the origin is an "oasis" where plentiful supplies of food and light 
support life. The rest of the ring is deadly to the bacteria. DNS call this region a "desert". 
The bacteria experience diffusion, as well as a convective drift due to a background current. 
They also compete with their fellow neighbors as mentioned above. This is the source of the 
non-linear term neglected by DNS. The equation governing this model is the Fisher equation 
with an extra term included to account for convection. Originally, the Fisher equation was 
proposed as a model for the spread of a favored gene. The modified Fisher equation is then 

ct(x,t) + ucx{x,t) = Dcxx(x,t) + [ß5{x) - a]c(x,t) - bc2{x, t) , (1) 

where c(x,t) is the concentration of the bacteria. A delta function of strength ß represents the 
oasis and the -a term represents the death rate of the desert. The combination of ßS(x) - a 
is the spatial inhomogeniety of this particular system. 

DS's biological motivation for suggesting this model was to study the effect of spatial 
inhomogenieties in the underlying medium. Disorder in the medium may be due to many 
things, including random diffusion constants, stochastic growth and death rates, or a random 
concentration of environimental factors such as food, toxins or illumination. Here we use the 
simplest choice, a random concentration of food and/or illumination. 

A possible experiment suggested by DNS is to place the bacteria in a thin annular ring 
covered by a dark mask with a small slot cut to let light pass through. Turning the mask at 
a slow speed while the ring remains fixed would simulate the convection current. Currently 
DNS are talking with experimental biologists to do this experiment. Another practical sys- 
tem where this model may be applied is the circumpolar current around Anartica. It has 
been shown to carry photosynthetic plankton completely around the continent, with various 
patches of nutrient-rich upswellings supporting the plankton. 

3 Linear Stability Analysis 

The following section reviews the analysis of the linearized modified-Fisher equation. Here 
we become familiar with the delocalization transition that occurs in this biological model and 
with the associated behavior of the eigenspectrum. Linearizing about the fixed point e = 0 
leads to 

ct(x, t) + ucx{x, t) = Dcxx(x, t) + [ßö(x) - a]c(x, t) . (2) 

3.1    Without the oasis: 
An example of delocalized modes 

Delocalized eigenfunctions are those solutions which have a form like elkx, where k is complex 
and the real part is non-zero. The simplest example of a delocalization occurs if ß = 0. 
Solutions are of the form c(x,t) = estelkx. Periodicity requires that k be quantized as k = 
2-ixm/L, where m is an integer. 
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Figure 1: Regime diagram for an infinite ring 

The associated dispersion relation is 

s = —Dk  + a — iuk (3) 

The growth rate, s, is a discrete set of complex numbers. The plot of Re(s) versus Im(s) is a 
parabola symmetric to the real axis. Increasing the velocity u broadens the parabola. When 
u = 0, the growth rate is real. The value of a determines the stability of the eigenfunctions. 
The growth rate of the mth eigenfunction will be positive if 

a> D (T) (4) 

The eigenfunction with the largest positive growth rate (k = 0) will dominate the system 
at large times. 

3.2    An infinite ring 

We begin the linear analysis of our system for the case of an infinite ring because it has 
simple analytical results which clearly demonstrate the signature of delocalization. Assume 
c(x,t) = estc(x) to eliminate the time dependence in (1), 

sc(x) + ucx{x) = Dcxx(x) + [ßS(x) — oi\c(x) 

It may also be written as 

ct = Cc , 

where the linear operator, 

Cc = Dcxx - ucx + [ßS(x) - a]c , 

(5) 

(6) 

(7) 
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generates the time-evolution of the system. When u = 0, the operator is Hermitian with real 
eigenvalues, and for strong enough disorder, all of its eigenfunctions are real and localized 

[2]. 
Using c(x) = e~kx, a dispersion relation is found to have two roots for the wavenumber 

k, 

Dk2 + uk-s-a = 0, 

-u±^u2 + 4D{s + a) > 
k± = jo ■ (8) 

Periodicity is satisfied only if the eigenfunction c(x) = e~kx decays as x ->■ ±00. Thus we 
use k+ when x > 0 and k- when x < 0. This restriction is the equivalent of solving for only 
the localized eigenfunctions of this physical system, i.e. we are working in the regime where 
k± is real. 

Using the appropriate eigenfunction to the left and right of the origin, we integrate (patch) 
across the delta function to acquire a value for the growth rate s: 

D{cx} + ß = 0, 

D[-k+ - (-*_)] = -ß , 

ß2-u2 (Q. 

The expression for k± (8) can now be simplified using the growth rate (9), 

*± - =£<> , (10) 

=$>     ß > u    when u > 0 , 

ß > —u    when u < 0 . 

The requirements on k± restrict the range of u, according to the given strength of the oasis 
ß. We liave one localized solution, although if the oasis were wider than a delta function, say 
a box. there would be many localized solutions. 

A regime diagram (figure 1) maps the properties of this system as ß and u vary. The 
two straight lines, ß = u and ß = —u, are the boundaries which restrict k±. If crossed, the 
eigenfunctions will be in the delocalized regime. 

The marginal stability curve is the hyperbola labeled 5 = 0. As the parameters u and 
ß tend to infinity, the marginal stability curve coincides with the delocalization transition. 
Inside of the hyperbola, s is positive, and thus the eigenfunctions are unstable and grow in 
time. Outside of the hyperbola, s is negative, and the eigenfunctions are stable and decay 
with time. 

Larger values of a and |u| shift the marginal stability curve upwards, increasing the regime 
of stability. This is because a is the size of the death rate; while in an infinite ring, larger 
velocities carry more bacteria and being carried away from the oasis is a sure death sentence 
in an infinite ring. 
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Plot of concentration c(x) as function of velocity, u 

Figure 2: c(x) for positive velocities 

The behavior of the concentation c(x) when there is positive background velocity is ex- 
amined in figure (2). The plots are asymmetric due to the eigenfunction dependence on the 
Mini of u: 

c{x±) {=&)* (11) 
I IK- velocity blows bacteria away from the orgin to the right, increasing their concentration 
in this region. To the left of the origin, the competing mechanisms of diffusion away from 
th- »asis, and advection back into the oasis result in a thin boundary layer. If no wind or 
rurrent were present, the distribution would be symmetric, decaying exponentially away from 
th<- orgin. 

As the value of the velocity increases, the concentration becomes nearly constant across x 
I.-cause more bacteria is being blown out of the origin. For this particular example, choices 
t. .i t he velocity u are limited by the choice of ß = 1. At u = .99 for instance, the eigenfunction 
i- nearly delocalized. If we surpassed u = 1 we would be examing the delocalized spectrum. 

The one localized mode, is unstable if 

ß2 > 4Da + u2 . (12) 

This section has been included to introduce the problem and gain some intuition for the 
i If »localization transition, and its dependence on the physics (£>, ß, u) of the system. Note 
that for this infinite ring case, the velocity carries the bacteria away from their haven, never 
returning them in time before they die. The velocity has a purely deadly effect. Thus, the 
inequality above, a requirement for instability, makes sense. Only if the life production in 
the oasis, ß, is large enough to overcome the deadly effects of diffusion and convection, will 
t he system grow in time. 

3.3    A finite ring with no convective drift 

We now study the linearized problem in a finite ring with no wind. When u = 0, (5) becomes 

sc = Dcxx + [ßS(x) - a]c . (13) 
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Figure 3: (a) a = § vs KL when u = 0 in finite ring (b) roots of z(l - cos(x)) + 
a sin(a;) = 0. * = a = 0; + = a = 5; o = o = 15; x = a = 25; <= a - 35 

We arrange that the unknown concentration c(x) will be equal to 1 at x = 0. The eigenfunc- 

tions will then be of the form, 

c(x) = (l-A)e-kx + Aekx. 

Using periodicity, c(0) = c{L), we find an expression for A 

A      l-e~kL 
A   —-   _    m 

2 sinh kL 

Combining this result with (14), gives the expression for c{x): 

(14) 

(15) 

c{x) _ .-*« .  (1 - *-klA 
sinhfex . 

sinh kL 

Patching across the delta function gives a transcendental relation for the wavenumber k: 

(16) 

2fc(l - coshfeL) = —jß sinhfeL . (17) 

This is the same expression found for k by DNS [4], if one sets their velocity, v, equal to 
zero Their result was found by solving the problem for a periodic domain with an oasis that 
is a finite square well, and then taking the area of the well to zero. 

To study the delocalized spectrum, this expression can be neatly rewritten by letting 

k = in and a = ßL/{2D): 

KL{1 - COS(KL)) + <7sin(«;L) = 0 . (18) 

In this form we assume that the wavenumber k is purely imaginary. The spectrum may 
be studied graphically by plotting a as a function of kL (see figure 3(a)). *he —n*« 
k for fixed a are found by drawing a line at one value of a and intersecting the curves. The 
numerical results are plotted in 3(b) for various values of a. 
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A double degeneracy exists in the solutions of the finite ring without a delta function 
(cr=0). This degeneracy is not reflected in 3(a) because the dispersion relation was obtained 
after dividing out one extra factor of cosh(kL). The degeneracy of the eigenvalues is broken 
by turning on the delta function strength so that a ^ 0. As a is increased, one of the two sets 
of eigenvalues moves away from the general oscillatory solutions k = 2imi of section (3.1). As 
the strength of the delta function increases, the moving eigenvalues asympotote to (2m + 1)K. 

The other eigenvalue remains fixed at these values. 
None of these delocalized modes are unstable in time, although we will see in the next 

section, that they can be unstable when there is a strong enough wind to help blow the 
bacteria around the ring before they die. 

One localized mode exists. The solution can be found analytically if one assumes that a 
is very large so that cosh a « sinha. In this limit, we find that kL -» a. The localized mode 
can be unstable depending on the values of the parameters k and a. The dispersion relation 
for this system is 

s = Dk2-a. (19) 

3.4    Finite length and a constant wind: 
Traveling around the ring 

We now explore the full linearized problem in a finite ring. The relevant partial differential 
equation is 

sc(x) + ucx(x) = Dcxx(x) + \ßö{x) - a]c(x) . (20) 

We begin with the assumption of the form of the concentration c(x), so that c = 1 at the 
origin, 

c(x) = ((1 - A)e~kx + Aekx)e-™ . (21) 

Applying periodicity gives an expression for the constant A 

— — kL 

2 sinh kL 

Now, to obtain an expression for k similar to (17), we repeat patching. The ucx(x) term 
adds nothing new since it is zero when integrating over x; however the derivative of c(x) is 
now more complicated due to the addition of u/2D in the exponential. Using the definition, 
T] = uL/2D where r\ is the Peclet number of fluid mechanics, we find 

2k (cosh T] — cosh/cL) = — — sinhfcL . (23) 

Note that if u = 0, it is identical to (17) as it should be. Also, if Re(fc) > u and L -» oo the 
dispersion relation reduces to (9). 

Given the concentration in (21), the dispersion relation is 

s = Dk2 - |p - a . (24) 
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Figure 4:  The movement of the localized mode into the delocalized mode with increasing 
velocity. Complex s is a signature of delocalization 

To learn more about this new dispersion relation for k, let k = in and use the definition for 
a: 

KL (coshT) — COS(KL)) + a sinKL = 0 . (25) 

When k is complex, the system is best studied using a numerical algorithim to solve for 
the growth rate s. The results are very interesting. We find that the eigenspectrum is a 
parabola on the complex plane as it was in section (3.1), but now we also have one real 
eigenvalue which varies in its distance to the parabola depending on the velocity u. This is 
the one localized mode that accompanies the delta function. As the velocity is increased, 
t he eigenvalue moves towards and finally onto the apex of the parabola which remains fixed. 
This represents the same delocalization transition we experienced in section (3.2) when we 
crossed the boundaries ß = ±u. Figure 4(b) shows a series of spectra with increasing velocity. 
Here the critical delocalization velocity, the velocity at which the real eigenvalue moves onto 
the parabola, is determined by a more complicated relationship between ß and u which we 
examine in the next section. 

3.5    An important limit for the finite ring with wind 

Here we present a nice way to represent the delocalization transiton for a large but finite 
ring. This is a new addition|to the analysis done by DNS. 

In the limit that L is large, (23) reduces to the dispersion relation 

»-£(*- ß 
2kD 

(26) 

We define a parameter P, which in the limit that L —>■ oo, is a measure of our closeness to 
the delocalization threshold 

p-l-i 
u 

(27) 
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In order to examine the complex eigenvalue spectrum, we rewrite k in terms of a complex 
parameter £, 

k = r,[l + PC], (28) 

where for eventual simplicity, ( is 

C = l + 2±p. (29) 

Then k becomes 

k = T?(1 + P) + x + iy . (30) 

Putting k (28) into the dispersion relation (26) and simplifying gives the expression, 

Making the assumption that PC << 1> we have a final expression for £ 

C = l + £p-- (32) 

Using the definitions for £ (29, 32) and plugging it into k (28), gives a nice expression for the 
wavenumber 

k = iy[l + P + e-nPe-x-iy} . (33) 

Another useful relation is obtained by combining (30, 33), 

x + iy = pe~x-iy , (34) 

where we have used the definition of p 

p = r)e-Pv . (35) 

Setting real and imaginary parts equal, we have two expressions for x and y, 

x   =   pe~x cos y , (36) 

V   =   -pe~xsiny. (37) 

A little maninpulation of these expressions gives the final form that we use to explore the 
delocalization transition, 

z2 + j/2 = p2e-2*, (38) 

- = -tany. (39) 
x 
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p=2 and p=6 
rho= [0.1, 0.3, 0.5, 0.8, 1, 2,4, 6]*exp(-1) 
-~i n r- 

p=.1e"' ' 

Figure 5: (a) A graphical solution of (37). The solid curve is r)en and the dashed curves show 

pcos   v/p2e-27? _ ^2   for tw0 valUes of p = [2,6] *exp(-l). (b) Eigenvalue loci obtained from 

(39) for various values of p. The dotted curve is p = 1/e and the multi-branched dashed 
curves are loci with p < 1/e. The solutions obtained from the intersections of figure 5(a) can 
be placed on the appropriate curves above. 

Figure (5)(b) plots contours of p in the x-y plane, 
wavenumber k is found by solving 

The pair of values (x,y) for each 

pe zcos VP2e-21 — x2 (40) 

for a given p. The most unstable mode (the largest solution) is xo, which is determined by 
xoeXQ = p. The cooresponding yo is always zero, so that the most unstable model has a real 
eignevalue. The higher modes occur in complex conjugate pairs. 

For a given value of p, one can draw the eigenvalue locii in the x+iy plane. It is found 
that when p < exp(—1), two contour curves exist in the x-y plane, while if p > exp(-l), 
only one curve exists. The associated wavenumbers k are represented as points (x,y) on 
the curves, corresponding to the intersections in figure 5(a). If we are in the region where 
p > exp(-l), the contour of p will be to the right of the set of half circles near the origin. An 
infinite set of discrete pairs of (x,y) (and thus wavenumbers k) are found along each contour 
in that set. If p <exp(-l), two curves exist, a half circle and a line somewhere to the left 
of the half circle. Only one pair (x0,y0) exists on the associated half circle, representing the 
one localized mode. The second curve will have an infinite but discrete set of (x,y) pairs 
along it, representing the the delocalized spectrum. When p = exp(-l), we are right at the 
delocalization transition. This corresponds to the eigenvalue s moving onto the apex of the 
parabola in figure 4(b). Thus, the value of the non-dimensional parameter p determines at 
what velocity the delocalization transiton occurs, for a given ß,D,L. 

A similar condition restraint of the velocity like |u| < ß of the infinite ring, comes in the 
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form of the transcendental equation 

p=^e(/3-«)(^)<exp(_i). (41) 

4    Weakly non-linear anaylsis near 
the delocalization transition 

The goal of this work is to study the effect of the non-linear saturation term on the delocal- 
ization transition that we observed in the linear analysis. In the following sections we explore 
this effect in infinite and finite diameter rings. 

The previous section reviewed the results of DNS and carefully studied the existance of 
the delocalization transition in our one-dimensional model. While DNS quickly discuss the 
effects of the non-linear term which represents the competition between the bacteria, they do 
not study it in depth. They suggest that the non-linear term is irrevelant, especially in the 
limit that the ring has an infinite diameter. 

Here we consider the effect of the non-linear saturation term, —fee2, on the delocalization 
transition and discuss its effects on the dynamics of our bacteria colony. The modified-Fisher 
equation is now examined in its entirity: 

ct + ucx = Dcxx + \ßö{x) - a]c - be2 . (42) 

4.1    Infinite ring on a windy day 

We start by studying the infinite ring. We remain near to the delocalization transition 
represented by the lines in figure (1), by keeping ßc nearly equal to the critical beta, ß = u, 

ß = ßc(l + e), (43) 

where e is a small parameter. We also define a slow time T and express the concentration as: 

T = et,       c = ef . 

Rewritten with these scalings, the adjusted equation is 

efr + u/s = Dfxx + ßc{l + e)5(x)f - af - bef . (44) 

Expanding the eigenfunction c = ef: 

f = /o + e/i + e2/2 + • • ■ ; 

Substituting in the expansion of f gives: 

e(/or + e/ir) + t*(/ox + e/ix) = Wo** + e/iM) + (45) 
ßc(l + e)6(x)(f0 + eh) - a(f + eh) - fee(/0 + eh? ■ (46) 

The zeroth order equation in e is: 

Df0xx - n/ox + ßc6(x)fo - a/o = 0 . (47) 
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It is useful to write (47) in terms of the linear operator C (7) defined previously in section 
3.2, so that 

Cfo = 0. (48) 

The solution /o for this zeroth order homogeneous equation is 

f0 = A(T)e^x^ (49) 

where A(T) is the time-dependent constant of the solution. This is the result we expect, 
since the zeroth order solution represents the eigenfunction at the delocalization transition. 
The constant concentration along x is what would see when ßc = u in figure (1). For now, 
we imagine that ß is not quite equal to it. The first-order equation in e is 

/or + u/ix = Dfixx + ßcS(x)h + ßcö(x)f0 - ah - bß . (50) 

Rewriting (50) in terms of the linear operator, C, 

Cfi=hT-ßAx)h + bß. (51) 

The first order eigenfunctions may be solved for from (51), using the definition of /o found 
in (49). 

To find the time-dependence of /o = A(T), we derive an amplitude equation. Using the 
adjoint of /o, /Q, and integration by parts, it is easy to show that 

(/ot^/i) = (/i^t/ot) = 0. (52) 

We may take advantage of this fact if we multiply (51) by /J and integrate over x. The left 
hand side dissapears and the right hand side reduces to the amplitude equation 

</ofAfi} = (fi^ft) = 0 = (ZOVOT) + Hftfi) - (ßcftfo6(x)) . (53) 

Using our solution for the zeroth-order amplitude /o and performing the integrals results in 
the amplitude equation: 

A        (ß" \ A l    6bß"A2 (54) 
Jc 

This result is not unusual for a perturbative analyis of a non-linear problem, and is not 
of much interest except for comparison with the unique results of the next section. It is 
reassuring to note that if ßc = u, this amplitude equation blows up, as it should since none of 
the integrals we performed would have converged. The solution to (54) is found easily using 
the Bernoulli trick which transforms non-linear equations to solvable linear equations. As a 
check on this result, one may show that the analytical and perturbative energies agree at the 
zeroth and first orders. 
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4.2    Finite ring on a windy day: Part I 
The solution 

In this section we work with the entire physical model. At the origin there is an oasis where 
the bacteria grows; away from the origin the bacteria struggles for life, dying at a rate a.. 
The bacteria diffuses along concentration gradients and is advected by a constant background 
flow at speed u. Throughout the ring, the bacteria competes, dying if conditions become too 
crowded, thus adding to the the resultant death rate of the desert. Finally, the bacteria live 
in a finite domain with periodic boundary conditions, e.g. a ring. 

The strategy here, is to expand near the delocalization threshold, as we have done for the 
infinite domain. It is also assumed that the ring is large, but finite. Obviously, this is not the 
most general consideration of the problem that can be made, but it allows one to proceed 
analytically. The meaning of a large domain will be discussed below. 

We begin by non-dimensionalizing the modified-Fisher equation with the intention of 
having a firm grasp of the size of each term. Non-dimensionalizing may obscure the physics, 
but it clarifies the relative magnitudes of terms. It is natural to scale distance with the length 
of the ring and to scale time with the transit time: 

X = Y,    i = iy,    6{x) = 5{Lx) = yS(x) . (55) 
L L L 

The resulting equation is: 

c; + c% = — I ^rßS(x) - a ) c + ^-Cxx - —cl . (56) 
Llo:,~s \ D Lb  2 .»TUi--    TP°\

X
> - a   c + —cix r 

u \L )        Lu u 

Several more useful non-dimensionalizations are: 

d = -a,    ß = -ß,   £> = ■¥-,   c = \/4c • (57) 
u u Lu V a 

These non-dimensionalized constants contain the physical meaning of competing effects,  d 
is the ratio of the decay rate a to the advective transit time L/u.  D is the inverse Peclet 
number, or a measure of the strength of diffusion versus advection. Finally, ß is a measure 
to the nearness of the delocalization transition. If \ß\ = 1, we are at the transition. 

The fully non-dimensionalized equation is 

ct + c& = Dc£x + \ßö{x) - &]c - ac2 . (58) 

We are interested in the non-linearity near the delocalization transition, and so we expand ß 
around 1. Using the non-dimensionalized diffusion coefficient D as the small parameter with 
which we expand, we have 

ß = l + Dßi. (59) 

When ß < 1 there is a localized mode and this mode becomes delocalized if ß > 1. Thus, 
condition (59), in which ß\ is held fixed as D —> 0, ensures that the system is operating 
close to this delocalization threshold. ß\ may be positive or negative, putting us in either 
the localized or delocalized regime, as long as D is small. Small D is the equivalent to large 
L or large u since D = D/Lu (57). 
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Figure 6: The outer and inner eigenfunctions. e = D 

4.2.1    The outer solution 

Dropping the tildes and hats for notational simplicity, and making an expansion in the small 
parameter D, c « c0 + Dc\, (58) becomes: 

(coi + ecu) + (c0x + ecix)    =    (ßS(x) - a)(cQ + ecx) 

+   D(c0xx + ecixx) - a{cl + 2ec0ci) . 

The zeroth order equation is then: 

cot + cox — -aco - ac0 

(60) 

(61) 

(62) 

A series of tricks and substitutions are used to solve for the zeroth order concentration CQ(X, t). 
The result is 

co{x,t) = 
f(t-x) 

(eax - l)f{t-x) + ec (63) 

Checking this expression at x = 0. reveals c(0,t) = f{t). This implies that all higher-order 
terms must be zero at the origin. Meanwhile attempting to demonstrate the periodicity of 
the system at x = 1, 

/(*) = 
/(* " 1) 

(e° - l)/(t - 1) + eQ ' 
(64) 

requires a stringent restriction of f(t - x), suggesting that there is a problem at x = 1. 
In fact, this solution is an "outer approximation", which is valid provided that 0 < x < 

1 - Ö(V). The failure of the outer solution at the boundary becomes apparent, if we define 
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the restricted parameter A, 

Ä5T'   or'  a = ]OK{jd' (65) 

where A is fixed as D —»■ 0. This means that a is large, but not very large. The parameter A 
is necessary for a satisfactory asymptotic development. 

In the sequel we will treat a as O(D0), except when it appears in exponentials, where it 
is Ö{D1). This condition means that the population which is swept away from the oasis will 
decay to O(D) on its passage through the desert before revisiting the oasis. 

In the limit D -¥ 0, with ß\ and A fixed, all details of the solution can be expressed in 
terms of f(t — x) and simple functions of x. The form of the solution is indicated in figure 
(): there is a boundary layer of thickness D immediately to the left of x — 1. 

Rewriting the zeroth order concentration CQ in terms of A and expanding in terms of 
the small parameter D, we see why the outer approximation does not satisfy the periodicity 
requirement. At x = 1, CQ{X = l,i) is: 

c°(g = M)=1.+ /(t_1)_jDA/(t_1)- (66) 

Expanding gives, 

D\f(t-1)      £2A2/(t-l)2  ,        ..... (,7) 

Near x = \, this outer solution of the concentration of bacteria, CQ has decayed to 0(D) and 
thus is inappropriate to describe this region of the ring. The role of the boundary layer at 
x = 1 is to repair this failure, and so to determine the evolution of /(£). This insight is the 
most difficult part of this asympototic expansion. 

4.2.2    The boundary layer 

We now turn to the "inner region", and introduce the stretched coordinate, £ = x/D. In 
terms of £, equation (58) becomes 

Dct + cs = cec + D[ß8{D0 - a]c - Dae2 . (68) 

Making an expansion in D of the concentration: c(£,i) w CQ + Dei, we arrive at an equation 
to solve for the zeroth order, boundary layer concentration, Co(£,£): 

cost; - c0? = 0 . (69) 

The solution is 

co = ft* . (70) 

This solution satisfies the requirement that at £ = 0 we have c(0,i) = /(*), implying that all 
higher order terms are zero at the origin. 
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The first order boundary equation is: 

ci£ - citf - -aco - a2cl - cot ■ (71) 

Solving this inhomogeneous, partial differential equation with the help of the solution co(£, t) 
in (70), gives the expression for the first order boundary layer ci(£,i): 

ci(£,t) = (ft + <*/)& + r(t)(l - <*) + \(e2S - e^)af , (72) 

where r(t) is the constant of integration. 
The constant r(t) is found by matching the outer concentration with the boundary layer 

in the limit that £ ->■ -oo, which is equivalent to taking the limit where the boundary layer 
dissapears, D -» 0. The zeroth order boundary solution CQ is zero, and all the terms but r(t) 
are zero in the first order boundary layer in this limit. For the matching, the outer solution is 
evaluated at x = 1, which is appropriate in this limit, since there is no boundary current for 
an infinite domain. This is an example of a "switchback" - the 0(Dl) inner solution matches 
the leading order outer solution. 

The resultant expression for r(t) is: 

c0(£    =    -oo,t) + Dci(£ = -oo, t) = c0(x = l,t) 

A/(t-l) ,    . 
r{t)    =    ! + /(*-!)■ (73) 

The first order expression for the boundary layer concentration is then: 

d & t) = {ft+«/)^ + rß0T) (l -e')+ \af v' -e?) •       (74) 

Thus r(i) represents a time-delay of t - 1. The origin of this term is interesting to note, as 
it will be the origin of the rest of our discussion. 

As usual, an element of information has been neglected by excluding evaluation of the 
modified-Fisher equation at the origin. The patching condition contains this information, 
and can now be evaluated since we have expressions for the outer and inner solutions. This 
condition, obtained by integrating (68) about the orgin, is 

<%(-)-ct{+) = {l + Dß)c(0), (75) 

where the pluses and minuses indicate evaluation to the left and right of the orgin, and thus 
imply whether to use the outer or inner solution. For instance, c^(+) is actually the outer 
solution to the right of the origin, Dc(x = 0, t). Expanding in D gives 

c0? + Dc^ - Dcox - D2clx = (1 + Dßi)[co(x = 0) + Da{x = 0)] . (76) 

It is interesting to note that the zeroth order outer solution is related non-trivially to the first 
order boundary solution because of the role of the diffusion coeffcient D as a small parameter. 
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The zeroth order equation is trivially satisfied due to our choice of the constant in the 
solution (70). The non-trivial first order expression is: 

cx{x = 0,i) - ce(£ = 0,i) + (1 + ß{)c{x = 0,t) = 0 . (77) 

Differentiating the appropriate expressions of the concentration and evaluating them at x = 0 
(£ = 0) in (77) leads to a very interesting amplitude equation for f(t), 

ft = (Y-*)f--4af  +i + f{t_iy (78) 

This amplitude equation is a differential-delay equation. The rate of change of / at any 
time depends not only on the value of fat that particular moment, but also on the particular 
value of f at a specific earlier time, t — 1. Not suprisingly, the time-delay is 1 time-unit, or 
the time required for transit around the ring. Comparison to the amplitude equation for 
the infinite ring reveals that we have the same Ginzburg-Landau type terms, while the time- 
delay piece is a result of the finite-size of the ring. We note that A is the only parameter that 
depends on the length of the ring L. As the ring becomes infinite in size, A —> 0, so that the 
differential-delay equation reduces to the Ginzburg-Landau equation of the previous section 
with redimensionalization. 

A good check is to verify that the first order energy obtained from (78) agrees with the 
analytic expression for the energy of the linear solution. The linearized version of (78) is: 

/■=(!- a)/+(9) /<*-!) (79) 

Consistent with linearization, we assume this is an eigenvalue problem and let / = est. The 
expression for the first order energy is then: 

ß, e~a~s 

Keiiiembering that we have non-dimensionalized our results, we work the analytic result, (23, 
J ;!. into the same form. Non-dimensionalization leads to, 

2Dk ( cosh Jfe - cosh — J = (1 + Dß) sinh k, (81) 

k = —^/l + AD{a + s). (82) 

To show the equivalence, we expand k in D and drop any terms which have e~^^2D^ since 
t hey are very small. 

kx> — + a + s . (83) 
2D V    ' 

Using this in the transcendental relation for k (81), leaves us with the expression: 

-\ + (aD + sD)(ea+s - 1) = D^-ea+s (84) 
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Figure 7: Periodic and chaotic behavior of the Glass-Mackey equation in various regimes (a) 
quasi-periodic state when m=8 (b) phase diagram, m=8 (c) chaotic state when m=10 (d) 
phase diagram, m=10 

Again, we consider which terms are very small. Much smaller than any of the exponential 
terms, sD is dropped, as is aD, since a ~ ö(—ln(D)). Thus, we are left with an expression 
identical to the first order energy, if we rearrange the following 

.- + {a + s)Dea+s = D^e' ßl ^a+s (85) 

4.3    Finite Ring on a Windy Day: Part II 
The Dynamics 

The next step of this analysis is obvious: we should study the stability of the steady state 
solutions of our amplitude equation. Before beginning this analysis, we set the tone of the 
rest of this project by suggesting the results that were expected. 

4.3.1    Interesting Zoology of Differential-Delay Equations 

Differential-delay equations are well know for their periodic, quasi-periodic, or chaotic be- 
haviour, with examples often arising in biology. One such system is the model suggested by 
Glass and Mackey [6] to describe the regulation of white blood cells. The structure of the 
Glass-Mackey equation is similar to our differential delay equation, 

ct = 
Xc{t - T) 

l + cm(t-T) 
— 7C (86) 

and is nearly identical to ours, if m = 1. 
This differential-delay equation describes the change in time of the concentration of the 

white blood cells Q. The rate at which cells die is proportional to c, e.g., -jc. Meanwhile, the 
flux, A of new cells produced by bone marrow, is dependent on the concentration of the blood 
cells at some previous set time, t — T due to a delay time T in the production of white blood 
cells. This time delay exists because of the time costs of communciation and production. All 
the parameters, A, g, m, T are greater than zero, m is a parameter determined experimentally, 
and if large enough, gives rise to limit cycles or chaos. See figure (7). 
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In our system, we deal with our first exposure to a delay-equation and thus, a potentially 
chaotic system. The possiblility of chaotic dynamics of the concentration of bacteria seems 
like a fascinating result. We examine this possibility below. 

4.3.2    What about us? A stability analysis 

Thus, one might begin the stability analysis of the bacteria-ring system. Perhaps the three 
free parameters of our system, A, ß, and a, can have both reasonable physical values and 
interesting dynamics. Simplifying the differential-delay equation (78) with the definitions 

)9=y-a,    ö=|a,    Ä = ^A , (87) 

the equation becomes 

-,2   ,      V(*-l) f'-ß'-*'+rm=t)- m 

The steady-states of (88) are found by letting ft = 0 where f(t - 1) = /(*). This leads 
to a cubic equation for the roots, one of which is zero, and the other two roots are obtained 
from 

äf2 + (ä-ß)f-(\ + ß)=0. (89) 

The roots are 

(ß-ä)± y/{& + ß)2 + 4öA 
J± =  7TZ  <90> 

Discarding the non-physical negative amplitude, we are left with two steady-states which 
the system may tend towards, / = 0 and /o- A study of the stability is necessary to un- 
derstand the dynamics. Expanding around the steady-state solutions, we use f = fo + efi- 
The delay term in (88) must also be expanded in terms of e. We find that the zeroth or- 
der equation for /o is just the cubic equation obtained earlier. The first order differential 
delay-equation defining f\ is: 

/„ = ßh - 2af0h + -iT7- - -J^J^- ■ (91) 

It is useful to define a function N, 

N=rh' m 

"=-rä' (93) 

to rewrite (91), where N' — dN/dfo- Since this is a linear stability analysis, / = est, which 
gives 

s = ß-2äf0 + Xe~s(N + f0N') . (94) 
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Bosults from differential dalay equation by ARCH! 

beta xl0.a=1 .0=0.01            / 
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betagt, alphatl.DrfJ.Ol 
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A.^: ~ 

_^__ "              b»ial«1,a»1,D»0.lO 

Comparison of Modified Fisher with Glass-Mackey stability 

Modified Fisher 

MF:Nf0 = V(Uf0) 

GM:Nf„ = f„/(1+0 

16 IB 20 

Figure 8: (a) Various steady-state solutions found numerically using ARCHI. Parameters are 
«liven with each curve, (b) Plot of Nfo vs /o of the modified-Fisher equation and the Glass- 
Mackey equation. The leveling off of the modified-Fisher equation prevents any instability. 
The negative slope in the Glass-Mackey equation is what gives it the ability to be unstable. 
The higher the value of the Hill coeffient, m, the steeper the slope. 

To study the growth rate s, let s = /z + iui. (94) becomes, 

ix + icv - ß + 2ä/o = Ac-"-*" (N + foN'). (95) 

Direct instabilities occur when /i, the real part of s, is greater than zero. For simplicity, 
let u.- = 0 and examine if it is possible for /i > 0. We can show that ß = ä/o - XN, using the 
zenith order equation, (89), so that 

I'sinp, (96) we arrive at: 

ß - 2ä/o = -ä/o - XN . 

Ii - ä/o + ÄJV(1 - e-") + Xe'^N' . 

(96) 

(97) 

Assuming u > 0, we find the expression on the right hand side to be negative for all param- 
eters. This disproves our assumption. There can be no direct instability. 

Hopf instabilities are the second possible type of linear instability. Breaking (95) up into 
its real and imaginary parts, squaring and combining them gives 

(ix-ß + 2äfoY + ^ = X'e~^(N + f0N T'\2 (98) 

For simplicity, assume n = 0, and subtract u2 from each side.   Using (96), we have the 
inequality 

(^ + A02<(7V + /oiV')2 

A 
(99) 
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If (99) is true, an instability exists. Further simplification leads to 

1/oAT'l    >    2N+^ (100) 
A 

-X(2 + /0)    -    ä/o(l + /o)2 > 0 . 

This condition is obviously impossible since fo,ä,\ are all positive. Thus, there are no Hopf 
instabilities. This system is stable - an acceptable but dissapointing result for situation 
represented by an equation filled with such apparent possiblity. We check these results with 
a numerical results, exploring some of the 3-dimensional parameter space. The two agree, 
as shown in figure (8(a)), which plots several numerical results. One may note that the 
bumpiness in the amplitude corresponds with the time delay, so that at each time unit, the 
slope increases until the steady-state value is reached. 

4.3.3    Key to Instability: A comparison 

In hindsight, it is easy to predict that our system will be stable for all parameter space, 
despite the freedom of three independent parameters, A, /3,and a. The hint is contained 
in the Glass-Mackey equation (86). Rewriting it in terms of a similar N, the NQM of the 
Glass-Mackey equation is, 

1_ 

i+7or 

-m/p™-1 

(l + /or 

A similar stability analysis shows that direct instabilities are always impossible, while Hopf 
instabilities may exist if 

1/oiV'l >2N. (103) 

This inequality is very similar to our the bug-ring system's inequality for Hopf bifurcations. 
The difference is due to the non-linear term in our amplitude equation (78). One might think 
that the non-linear term is what is preventing instability - that it is damping out oscillations 
- but comparison of these two inequalities reveal that the non-linear term only makes what 
is already impossible, more impossible. The stability is a result of the structure of N and 
NQM- Plot (8)(b) shows JV/o versus /o, where the slope is Xi = N + foN'. For our system, 
the slope is always positive so that 

X1 = N + f0N' > 0 . (104) 

For Glass-Mackey, 

X2 = NGM + foN'GM < 0 . (105) 

We see from (101) that for a Hopf instability to exist, 

0>Xi + N+^-. (106) 
A 

This is impossible unless the slope, Xi < 0, since the other two terms are positive. And so 
we see that the structure of N is crucial to the stability of these types of systems. 

NGM(fo) = TTT^ , (101) 
D 

N'GMUO) =   ''"''I m"x2  • (102) 
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4.4 Other possibilities for instability 

With the initial goals of this work accomplished, it is fun to continue along further lines of 
investigation. For instance, is it possible to modify the non-linear saturation term so that 
we may find a non-steady-state solution? Or what about increasing the spatial complexity? 
Or perhaps adding another delta function to the ring or many more, will lead to chaotic 
dynamics. What if the strength of the delta function(s) varies with time? The first two ideas, 
are explored in the rest of this paper. 

4.4.1    Adjusting the non-linearity 

We begin with the simplest adjustment. What happens if we increase the non-linearity in 
the modified-Fisher equation from -6c2 to -bcnl Perhaps this will do something. However, 
it was shown that if we change the power of c to any value n, that the structure of N will be 

N = r . (107) 
(l + /on)" 

Direct instabilities remain impossible, while this N still does not yield the negative slope N' 
necessary for a Hopf instability. 

In fact, it appears that we must tailor a function which has a similiar behavior to the 
Glass-Mackey type N, so that it levels off at some lower value than it's maximum. For our 
system, this seems physically unreasonable. 

4.5 Two delta functions and more... 
Does spatial complexity breed instability? 

The second physically motivated suggestion, is to increase the complexity of the oasis and 
desert zones to acheive interesting dynamics. If one additional delta function is added to the 
ring, located at position a', possesing a strength ß[, while the first delta function is located 
at a with strength ß\, a similar analysis to section (4) leads to two coupled differential-delay 
equations: 

Jt     K2 4 l + g{t-a) 

,ß'i        ^       3     2      5*7(*-o') /mm 
* = <T " °)g " 4°^ + ! + /(*-«')' (109) 

where A = e~aa/2D and A' = e~aa> /2D In general, for independent parameters, these equa- 
tions yield 8 steady-state solutions (/o,5o), if we count f0,g0 = 0. A study of the stability is 
quite complex. A few things, however can be said: 

1. No direct instabilities exist, for any set parameters. 

2. Equal parameters, ßi = ß[, a = a', results in the amplitudes /0 and go always being 
equal, (/o = go)- This case reduces to the 1-delta function case, so there is no interesting 
zoology here. 
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3. When the parameters are not equal, /o never equals go. Stability has not been proven 
for this case, although numerical tests suggest that the system is stable. 

The first two results are also true a system composed of n delta functions.   The coupled 
delay-equations are straightforward to derive: 

2     ,     *njn 
fit = ßif ~ ä/ i + 

l+/n' 

/2t = &/-<*/ 2 + 

U = ßnf-af\ + Y=^. (no) 
1 + Jn-1 

It would be nice to develop a technique to study the stability of all the steady-state solu- 
tions for 2-delta functions (and then n-delta's) which is more straightforward than the usual 
algebraically complex method. Perhaps this will be accomplished as our familiarity with 
delay-equations grow, just as the simple discovery of N made the analysis of the simplest 
case swifter and less convoluted. 

5 Conclusion 

In conclusion, the modified-Fisher equation and the delocalization transition has been studied 
in detail for a large ring and in the distinguished limit that A is 0(1). While the differential- 
delay equation was an unexpected result, it is an interesting property of the system which 
deserves more study in complex inhomogenous backgrounds. It is also suggested that a time- 
dependent delta function could model oscillations of illumination due to cloud cover, or the 
day/night cycle, as well as lead to an interesting problem with a new delay-equation. Other 
work may also be done in different parameter regimes, especially in the small diameter limit. 
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Coupled Nonlinear Oscillators 

Roberto Sassi 

1    Introduction 

Mutual synchronization is a common phenomenon in biology. It occurs at different levels, 
ranging from the small scale of the cardiac pace-maker cells of the SA (Sino-Atrial) and AV 
(Atrium-Ventricular) nodes in the human hearth that synchronously fire and give the pace 
to the whole muscle, to the coordinated behaviours of crickets that chirp in unison and of 
fireflies that flash together in some parts of southeast Asia. 

The dynamics of coupled oscillators is a very broad field of research; the approach we 
have chosen is only one of the many that are possible. The question we would like to answer 
is something like: "What special phenomena can we expect to arise from the rhythmical 
interaction of whole populations of periodic processes?" [1]. 

Winfree [1] was the first to underline the generality of the problem, fixing the first as- 
sumptions for a mathematical model. In his work each oscillating species (cell, or cricket, 
or firefly) is modeled as a nonlinear oscillator with a globally attracting limit cycle; The 
oscillators were assumed to be weakly coupled and their natural frequencies to be randomly 
distributed across the population. 

Kuramoto [2] proposed the first model (called for this reason the Kuramoto model). His 
assumptions were that each oscillator is equal to the others, upto the frequency and phase, 
that the system has a mean field coupling and that the amplitudes of the oscillations are all 
the same (phase-only model). The equation of the model for the n oscillator is: 

d9n 
dt 

K N 

where K is the coupling strength, u:n is a random variable with probability density function 
g{(jj) and £n is white noise. 

Defining as order parameter the complex number, 

TN   ei6i 
re** = ^       , (2) 

it's possible to measure the synchronization among the oscillators phases: r = 0 corresponds 
to the completely incoherent state, finite r to synchronization. 

Kuramoto determined that r = 0 is always a steady solution; but there exists, in the 
case of no added random noise, a critical value of the coupling parameter Kc = ^4^ below 
which only incoherent populations exist (r = 0). For K > Kc a population of synchronized 
oscillators can exist (r > 0). 
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Time evolution of the distribution of oscillators 
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Figure 1: Numerical simulations on the discrete Kuramoto model with N = 256, D = 0.01, K = 0.65; 
(upper) time evolution of the probability density function computed on the trajectories of the system 
splitting up the 6 axe in sub-intervals; (lower) time evolution of the absolute value of the order 
parameter 
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Time evolution of the distribution of escalators 
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Figure 2: Numerical simulations on the discrete Kuramoto model with N = 256, D = 0.01, K = 0.8; 
(upper) time evolution of the probability density function computed on the trajectories of the system 
splitting up the 6 axe in sub-intervals; (lower) time evolution of the absolute value of the order 
parameter 
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The results of the numerical simulations, performed solving equation (1) with N = 256 
and two different values of the coupling parameter K, are shown in figures (1) and (2); in the 
upper panels the time evolution of the discrete probability density function 1 is plotted; in 
the lower panels, the time evolution of the order parameter is displayed. The initial condition 
is, in both cases, a population of oscillators with phases uniformly distributed in [0,2ir]. 

When K = 0.8 > Kc, in a very short time, the phases of the oscillators gather together in 
a small range of angles and then begin drifting coherently. The order parameter grows quickly 
and exhibits small oscillations due to the random noise added to the system (figure (2)). 

A different situation arises with K = 0.65 < Kc; a coherent behaviour never starts, even 
if small structures can be noticed: small population of oscillators synchronize and drift for 
short periods of time. This is reflected in the order parameter that oscillates between 0 and 
0.3 and decreases only slowly (figure (1)). 

1.1    A continuous model 

Using the approach sketched in the previous paragraph, it's difficult to go much farther; it's 
not easy, for example, to answer questions such as "Is the coherent state (K > Kc) stable?" 

Strogatz & Mirollo [3] introduced a partial differential equation that describes the be- 
haviour of the Kuramoto model in the limit N —> oo. 

The idea is that, in the continuous limit, the state is described by a probability density 
function: p(6.ui,t). The Kuramoto equation (1) becomes: 

/oo     r2n 
/     sm((f> — 6)p((j),u,t)g(üj)d(f>düj, (3) 

-oo JO 

where ?> is the velocity at the point (9,to,t). Moreover, the density function p has to satisfy, 
for each given u, a normalization law 

r2n 
/     Pd6 = l; (4) 

Jo 

and a Fokker-Plank-type conservation law 2 

-p(e,u,t) + —(p(0,u,t)v{0,ut)) = D-^p{0,u,t), (5) 

1 The 6 axis is divided into 64 intervals and, at each instant of time, the normalized histogram of the phases 
of the oscillators is computed. 

2The derivation of the two equations has the flavor of the BBGKY hierarchy in plasma physics and can be 
found in [4]. Some rationalization of equation (5) can be given on recollecting that because the probability is 
conserved, 

9 f2p(e)de  =  p(6i)v(0i) - p{02)v(o2) dt 

I Je 

e2 Q 
(pv)d9 

i in 
1 e.   d9 

Pt    =    -§-e(pv), 

and on remembering Einstein's derivation of the diffusion equation in his work on the explanation of the 
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where 6 G [0; 2TT] and ui 6 [-oo; oo]. 
The order parameter (2), in the continuous limit, becomes: 

C2TT 

re^ /     ei9p(9,u),t)g{u)dedüj. (6) 
oo JO 

2    Linear Stability Theory 

Strogatz & Mirollo [3] worked on the linear stability of the continuous Kuramoto equation. 
We will try to sketch the main results, useful for the discussion that follows. 

With direct substitution into the equations (3) and (5), it can be seen that po = ^ is a 
steady state solution for the system; it corresponds to the incoherent state with r = 0. 

By linearizing p around the steady state solution, that is 

p = Po + e(c(w, t)eie + c* (w, t)e~ie) + h.h., 

where e is a small parameter and c* is the complex conjugate of c, then substituting into (3) 
and introducing the notation 

/oo     r2n 
I     sin(<£ — 0)p((f>, w, t)g(ui)d4>du, 

-oo Jo 

it can be seen that G is different from zero only for functions that have a component on 
the bases e10 and e~l6. That is, the higher harmonics do not give any contribution and the 
linearized equation (5) becomes 

K  f°° 
a = -(D + iu))c + — /     c(u, t)g{v)dv. (7) 

^  J-oo 

The discrete spectrum can be computed by seeking solutions of the form c(w, t) = 6(w)eAt. 
By substituting into equation (7), multiplying by g(u) and integrating over u/, one finds the 
thsjirrsion relation, 

giy) _K_ r 
~ 2 y_, X + D + iu 

du. (8) 

When A is negative, the order parameter decays and the system reverts to the incoherent 
state: vice versa for lambda positive, the order parameter exponentially grows and this is, in 
the coupled oscillators system, the onset of synchronization. 

The system has, also, a continuous spectrum at w = — iD (see [3]). As the dissipation is 
always positive, the modes in the continuous spectrum are either all decaying or, at most, 
neutrally stable when D = 0. 

Brownian motion [5], which indicates that 

Pt    =    2{f)pe8 

=    Dpee 
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Re(X) = -D 

Im(X) 

continuous 
spectrum ~~ 

Reft.) 

continuous 
spectrum 

Im(X) 

Re(W 

(D*0) 

Reft) = 0 

(D = 0) 

Figure 3: Continuous spectrum for the dispersion relation (8) either for the case D ^ 0 (left) and 
for the noise-free case with D = 0 (right). The discrete spectrum is composed of only one mode that 
exists for K > Kc and lies to the right of the continuous spectrum (inside the grey region in the 
picture); in the noise-free case the discrete mode either is unstable or doesn't exist. 

2.1    An example 

Choosing as probability density function a lorentzian, that is 

g(u) = -- 
■K Up- + 1' 

the dispersion relation can be solved analytically; the computed growing rate A is 

sgn(X + D)\ = — -1 + D 

and the critical coupling (that is the value of K at which the system is neutrally stable) is 

Kc = 2(l + D). 

If D = 0, then Kc = ^-TQT; this is the same result that Kuramoto found working on the 
discrete system, as described in the introduction. 

Summarizing, for K < 2, the system does not have any discrete mode; for 2 < K < Kc 

the system is stable and exponentially decaying; if K = Kc it has a neutral mode and with 
K > Kc an unstable growing mode (figure (3(left))). 

It's interesting to notice that, if the dissipation is zero, the system can only be either 
unstable, with a growing mode (K > Kc), or neutrally stable, with no mode (K < Kc) 
(figure (3(right))). But, looking at figure (A(right)), it can be seen that the order parameter 
is, however, decaying exponentially. 

How can we explained this apparent contradiction? Let's look at the solution of the initial 
value problem with K < Kc and the initial condition 

c(w,0) = 
■K U)2 + 4' 
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Figure 4:   Time evolution of the order parameter for the Kuramoto continuous model; compact 
1-W1 

support within [-1;1] for g{w) =  ^\ l+oji; initial condition po h and 
pi = Zs 4+w*' (left) 

D = 0.01, Kc = 0.739, £ = 0.001 and K = 0.8: over-critical coupling, the order parameter grows 
linearly and then, when the nonlinearity becomes strong enough, saturates; (right) D = 0, Kc = 2 — £ 
, £ = 0.1 and K = 0.5: under-critical coupling, the order parameter grows, initially, and then decays. 
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Figure 5: (a): real part of the first Fourier component of p(6, u, t) at two different times, obtained with 
the numerical simulation described in figure (A(right)). (b): real part of the first Fourier component 
of piO.^.t) at time t = 60 analytically computed. In both case is possible to observe the increasing 
number of oscillations. 

Integrating equation (7) via Laplace's transform, we find that 

15 11 /        N r2        1 C{u,t)     =     {--2" 7T U)2 + 4        37T 2iu — 1        37T 2 - iu 
}e iuit 

J_e-<*-D« 4- JL + 1 -It 
3TT 2iui — 1" 37T 2 — iu 

Fvidcntly, the function c(us,t) is proportional to the non-decaying and non-separable term 
f'-'. As time goes on, this term becomes increasingly crenellated. 

What we are seeing here is equivalent to the Landau damping in plasma physics; the 
order parameter is proportional to the integral of the function c(w,i); even if the latter 
doesn't decay, as soon as it starts crenellating, the positive and negative part cancel and the 
integral decreases. 

In fact, computing the absolute value of the order parameter, we have 

- 12p-(f-D* _ -2t 

which decays exponentially as t —> oo. 

3    Numerical Integration 

The integration of the discrete model (equation (1)) has been performed with a fixed step 
(At = 0.1), fully-implicit predictor-corrector scheme.   The fixed time step is forced by the 
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noise added to the derivatives that avoids the convergence of most adaptative methods. 
In the continuous model (equations (5) and (3)) the density function p is periodic with 

period 27r, so the latter can be expanded in the Fourier series: 

00 
Am8 

m=—oo 

Substituting into the equations (5) and (3), we obtain the system of nonlinear ordinary 
differential equations for the Fourier coefficients pm: 

Pot   =   0, 
pmt   =    -KTrm(p-i)pm+i - (imu + Dm2)pm + Kirm(pi)pm-i 

for   m/0 

where 
/oo 

f(u,)g(u,)du, (9) 
-oo 

For each value of w, truncating the Fourier series at m = L, the system can be efficiently 
integrated (a semi-implicit Adams-Bashfort-Moulton predictor-corrector scheme leads to the 
inversion of a tri-diagonal matrix). We used L = 16,32,64,128 in the computations; the 
smaller the dissipation or the longer time windows considered, the bigger the number of 
Fourier components necessary to approximate properly the Kuramoto system. We found 
L = 32 a good compromise in many situations. 

A little more attention is needed for the evaluation of the integral (9). We found that 
the most efficient way of computing it is via Gauss-Legendre quadrature formulae, setting 
compact support for g(<jj), and using the solution for p, produced at the previous available 
time step. 

In figures (6) and (7) the solutions computed for p(6, w, t) are shown; in the sub-critical 
case, when the coupling parameter K is smaller than Kc, stripes of probability can be noticed, 
which increase in number and, slightly tilting, start shrinking. At fixed 0, this is the same 
crenellation as described above and seen in figure (5). 

When K > Kc, in the super-critical case, the probability gathers, initially, in a stripe- 
like area, but immediately also starts to deplete from the central region. Unlike before, the 
number of stripes doesn't increase (in this case there's no Landau damping); two areas collect 
the whole probability. The process is reminiscent of the formation of a shock layer in the 
white regions in figure (7), but a truely weak solution does not form due to the dissipation 
introduced by the noise. 

4    A symmetry property 

Looking at the numerical results of the previous section, it can be observed that, starting 
from p(0,w,O) and g(w) which are even functions in ui, a symmetry is preserved during the 
evolution of the dynamics; that is p(0, u, t) — p(—6, —w, i). This behaviour can be explained 
in a general way. 
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Figure 6: p(6,u,t) at six successive instant of time obtained via numerical integration of the Ku- 
ramoto continuous model with D = 0 and K = 0.5 (see figure (4)(right) for further details). The 
coupling K is sub-critical. 
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Figure 7: p(6, ui, t) at six successive instant of time obtained via numerical integration of the Ku- 
ramoto continuous model with D = 0.01 and K = 0.8 (see figure (4)(right) for further details). The 
coupling K is super-critical. 
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Let's start stating that the probability density function is so that, for each integer n, 

p(9, u, t) = p(9 + 27rn, u, t) = p(27rn - 9, -u, t) = p(-9, -u, t). (10) 

The symmetry property will be proved by construction. 
Let's expand sin(</> - 9) in equation (3); the first integral can be rewritten 

/CO      pit 

I    sm(<f>)p(<f),LJ,t)g(u)d(f>du (11) 
-OO J — 7T 

/OO       f0 

/    sm((j))p((f),cj,t)g(u})d<l)düj + 
-00 ./—7T 

/oo    /-7r 

/   sm((j))p{<t>,u),t)g(cj)d<t>duj; 
-co JO 

If we make the change of variables <f>' — ~4> and u/ = —w and we use equation (10), expres- 
sion (11) becomes 

/oo    pit 

/   sin(0>(0', w', t)g{J)d<t>'dw' + 
-co JO 

/co     rir 

/   sm.{<f)p(<p,w,t)g{ijj)d(l>duj 
-co Jo 

=   0. 

At the end, 

/CO      pit 

/    cos(<f>)p{<j),ü},t)g{u))d<f)düj 
-CO J — 7T 

=    -o(t)sm(0). (12) 

Substituting (12) into equation (5), it can be noticed that p(-0, -w,i) is a solution of the 
Kuramoto model. 

5    Weakly Nonlinear Theory 

When K = Kc, the system is, by definition, linearly neutrally stable. In this situation and 
for D T^ 0, Bonilla &; al. [6] and Crawford [7] developed an asymptotic expansion around 
the equilibrium solution and derived a Landau-type ordinary differential equation for the 
amplitude of the perturbation. 

Defining e < 1, they chose the scalings, 

e2t   =   T 

dt   =   &re2, 

where T is the slow time (when t is very big, T is small), 

K   =   Kc + e2K2 + --- 
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and expanded the function p such that 

p(e,u>,T) = £- + 
2TT 

,i0 =   e(p1(W)a1(T)e^ + p\{u)a\{T)e-lti) + 

=   e2(p2(uj)a2(T)eid + p*2{u)a*2{T)e-i6) + 

=   e\p3(u)a3(T)ei9 + p*3(u)a*3(T)e~i9) + 

From equations (5) and (3) it follows that 

- ^pK /       /     sin(* - «)pg(u)d^du + D «1? —«I - s* II fsin(* - *><*M^+Dw 
and 

G = eGi + e2G2 ■ ■ • 

At the first order (0(e)) : 

Pi 
K f™^ pi{v)g(v)dv 

2(w - iD) 

Continuing to 0(e3), eventually, one derives the amplitude equation, 

-^2 _     ,   ,Tjr _\2T-I      |2 
avr = ~2~ai + (-K» l\ai\ ai 

where 

0\ a(u) 
I = / : 'du = constant 

u-2iD 

/oo 

-oo 

We can see from the expression for pi that this kind of approach is not satisfactory when 
D = 0; p diverges at u = 0, but as long as it's a probability density, this can not have any 
physical meaning and has to be avoided. 

5.1    Weakly Nonlinear Theory: D^O, but small 

In this section we try to sketch how it's possible to develop an asymptotic expansion for the 
case 1 > D ^ 0. Let's choose the variables to scale as in the previous case (Hopf scaling) 
but let's say that D = e2D2. The motivation for this scaling can be found in the numerical 
experiments we performed and in the analysis by Daido and Crawford [4]. 

Substituting, as in the previous paragraph, into the equations (5) and (3) we have 

Z
2
PT + {^r + (pG)e)(Kc + e2K2) = e2D2P6e 
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and at the first and second order we can derive the following expressions for p\ and pi : 

0(e)   :   upie + — = 0, 
ATT 

Pl ~      2-KUJ 

0(e2)    :   Up20 + ^^ = -Kc(p1G1)B, 

= K2
CG\     KCG2 

P2      2nuj2       27TW ' 

Here is the problem we have to overcome; to treat properly the case D<1 we need a 
critical layer around UJ = 0; in fact, at this point, the asymptotic expansion breaks down and 
pi is bigger than p\ . 

Inside the critical layer, we set the new independent and dependent variables 

u   =   ey 

p   =   Z(0,y,T) = Zo + eZi. 

The equation in the inner region becomes 

e2ZT + eyZe + & + (ZG)e)(Kc + e2K2) = e2DiZee 

and at the first two orders 

0(e)   :   yZoe + Q^ + Kc(Z0G1)e = 0, 

1     KCGX Z0 = —. 
2TT y + KcGi 

0(e2)   :   yZie + ^^ + {Z1G1)eKe = 

-ZQT - (ZoGi)eKc + DIZQQQ, 

((y + KcGl)Zl + ^)g = 

T(        GIT Gig D2G\e 

•A^(2/ + KcG1)2'(y + iCcG1)2'(j/ + KcG1)3; 

where T is a function, that for our purpose we not need derive. 
Even in the inner region we still have trouble: when y + KcGi = 0, ZQ diverges and Z\ 

diverges even more; the asymptotic expansion breaks down another time. 
This is very peculiar; the first inner layer is not sufficient at all and it's necessary for 

another critical layer, a second, inside the first. Moreover the shape of this inner layer is 
peculiar: it develops around the curve y + KCG\ = 0. The whole situation is sketched in 
figure (8). 

In this second inner layer we define the new independent variable 

y + KcGx=eai 
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Figure S: Weakly Nonlinear Theory. (A): When the dissipation is small (0(e2)) a critical layer 
becomes necessary around the frequency u = 0 (light gray region); the width of this layer is of order e. 
(B): The sketched-box in (A) is enlarged: inside is possible to notice the second "snake-like" critical 
layer (inner-inner layer, dark gray region), that is necessary around the line y + KCG\ = 0. (C): 
The sketched-box in (B) is enlarged again: the width of the inner-inner layer is of order ea (a = 1 if 
D2 =0: Q = 1/2 if £)2 # 0). 
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and the new dependent variable 

z = my-±^,n 
Deriving a new equation, in this second inner layer, is very technical and we will not 

develop it. The reason lies in the strange relation between T, 0 and £, imposed by the shape 
of the layer. On the change of variable to £, the 0 and T derivatives pick up additional 
£—derivatives, 

[ze]y,T   =   [re]?,r + -^[rde,T 

[zT]y,e   =   [rV]£,0 + -^[rdr,0 

and this makes it much more complex to derive useful analytical expressions. 
We conclude this section sketching an argument for determining the scaling parameter a. 

We can deduce from the relations (13) the scaling for ZQ and Z\, 

0(e)    :    Z0~O(e-Q) 

0(e2)    :   Zi~0(e~2Q    OR   D2e~3a). 

Hence Z\ scales in different way depending on the value of D2. 
We now apply the condition that ZQ and eZ\ have to scale at the same order, which is 

where the expansion formally breaks down and we enter the innermost region. There are 
two different situations, depending upon the value of D2: if D2 = 0, then a = 1, and when 
D2 7^ 0, then a = 1/2. The reason of the scaling we chose for D becomes, now, more clear and 
we would have lost this double behaviour with a higher scaling of the noise term (D -» e^D 
with ß>2). 

Summarizing the results in this section, when D is finite but small, the derived asymptotic 
expansion reveals that we need, at least, two critical layers, one inside the other. The first, 
around u = 0, is of order e; the second, snake-shaped, is inside the first and has a characteristic 
width that depends upon the value of D2. 

6    Steadily propagating solutions 

In this section we look for steadily propagating solutions for p, that is 

p(6,uj,t) = p(8 — fii,o;), 

where Q is the propagation velocity. 
Substituting this expression into equation (3) and making the change of variable $ = 

<f> — 0,t, we find 
/OO       f-2-K 

\     sin((j) - 6)p{<j> - Sit, w)g(w)#da; 
-oo JO 

/     sin($ - (0 - fit))p($, Lü)g{cj)d$duj 
-oo ./0 

= G(9-nt,w). 
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Prom this, we can observe that G preserves the dependence on (6 — tit) that p is supposed 
to have. 

Equation (5), in the situation D '= 0, becomes 

(w - Ü)pg + k{Gp)6 = 0; (13) 

integrating over 9 

p     u-Q + kG{0-ttt) K    ' 

where J{OJ) is a generic function of ui. 
As N.J.B. says in these situations, we are in bad shape; as long as p is a probability- 

distribution function, it can not have singularity; as long as w is a real variable that spans 
the entire real axis, the pole from the denominator of p is hard to avoid. 

This is an interesting point; if the dissipation is zero the system does not admit steadily 
propagating solutions. But what happens when the dissipation is small! 

If D ^ 0, equation (13) has an additional term, and after the integration over 6, we have 

(w - Sl)p + kGp = J(u) + Dpg. (15) 

For the sake of simplicity, let's say that we have fixed w to ä certain value; then there's a 
value of 6 = 6 — fit at which the denominator of equation (14) vanishes; we call this value 
A. 

As D -*■ 0, p scales as 1/(0 - A); hence we need an inner layer in the proximity of 
0 - A = 0 in which the dissipative term becomes important. For this reason we choose the 
following scaling and variables, 

0-A   =   eS 
1 

p   =   -R 

D   =   I2 

Substituting in equation (15) and noting that d$ = de = e~2d$ we have 

kGe(A)5R = J(üj) + R5 

Integrating over <5, we can find the expression of the probability distribution function in the 
inner layer and check the condition for the matching with the outer: 

Rs   =   kG@(A)ÖR-J(u) 

{Re     °2       )s   =   -J{u)e—%  
kGG(.A)S2 tG3(A)i2     f5        -fcGe(A)?2 

R   =   R0e     *— - J{u)e     * e      *      dS. 
J—oo 

The value of RQ can be computed with the normalization condition (4). 
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Figure 9: Steadily propagating solution with ft = 0: a sketch of p{6,u). Near the phase 6 (where 
ui + KG(9) — 0 and G'(6) < 0) a critical layer (light gray region) is necessary. In the outer layer p is 
zero everywhere. 

This solution is potentially dangerous; it has to be bounded, otherwise it again diverges; 
moreover in the limit of 6 going to infinity (that is, going out of the inner layer) R has still 
to be limited, for a proper matching with p. Using these two conditions, we fix the value of 
J(UJ) and i?o 

J(u) = 0   for   Ge(A) < 0, 

J{u) = 0,Ro = 0   for   G©(A)>0, (16) 

The matching with the outer layer is straightforward; as <5 goes to infinity, R it's zero and 
p is zero everywhere. In figure (9) is shown a sketch of the situation for ft = 0. 

Summarizing this result, steadily propagating solution can not develop for D = 0; with D 
finite, but small, they exist only in a small layer, that follows the line (w—Q, + kG(9 — ftt)) = 0 
where GQ(A) < 0. 

The probability density p is exponentially small everywhere in the outer layer; for this 
reason the integral for G is limited to the inner, and 

/oo     rtn 
\     sin($ - 9, t))p($,oj)g(ui)dMu} 

-oo JO 
/oo     ro 

-oo J—c 

fcGfl(A)(S2 

sin(A(w) - Q,t))R0e      2      g(uj)d5du) 

6.1    An example: Q = 0 

Let's say that ft = 0, so that we look for a steady solution of the kind p(8, LJ). In this case, 
steadily propagating solutions can develop only along the line CJ + KG(6) — 0. 

Choosing a symmetric initial condition and applying relation (12), the curve becomes 

u = Kg{t)sin(6). 
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Moreover, along the line, solutions can form only where Gg < 0, that is 

_, . dsin(0) 

de     >   ' 
as K and Q are both positive. In figure (10) this prediction is compared to the actual solution,' 
obtained with the numerical simulations. As it can be seen, the agreement is evident and 
this explains the depletion of probability noticed in the middle of the plane 6-LO, in figure (7). 

7    The case g{d) = 5(w) 

In the previous two sections we appreciate that, if we set D small, but different from zero, it's 
possible to perform an asymptotic expansion and steadily propagating solutions can develop. 
But what happens when D = 0? The described approach only underlined that this is a critical 
situation. In this section, with D = 0, we will show how is possible to solve analytically the 
Kuramoto equations in the case that g(uj) is a Dirac's delta function. 

In this case all the oscillators share the same frequency u = 0 and have different phases. 
Starting from a symmetric initial condition, that is p(0,0) = p(—0,0), and using prop- 
erty (12), equations (5) and (3) become 

r-2-K    roo 

pt{6,0,t)-kdg(p{0,0,t)sm(9) /     caa(<j>)p(<f>,0,t)5(u)du>d<l>)    =   0 
./O      J-oo 

1-2-K 

pt{0,t)-kdg(p(e,t)sm(6)        cos{(/)) p{(j>,t)d(j)   =   0; 
Jo 

Setting 

/■27T 

T(t) = /     cos(4)p{<l>,t)d4>, 
Jo 

the last relation becomes 

pt-k sm(ö)Jr(t)pe = Jfc cos(ö) T{t)p. (17) 

We solve this equation by the method of characteristics; for equation (17) the character- 
istic equation is 

dt d9 dp 

Hence, 

1      -fcsin(0)^(t)      kcos{e)T(t)p' 

JO 

^   =    -ksm(9)T(t) 
dt 

¥■   =   kcos{0)?(t)p. 
dt 
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Figure 10: p(6, OJ, t) at t = 180 obtained via numerical integration of the Kuramoto continuous model 
with D = 0.01 and K = 0.8 (see figure (4)(left) for further details). UPPER: contour plot of p; the 
super-imposed sketched line is ui = KQ{t) sin(#). The steadily propagating solution (with Cl = 0) can 
develop only where G'{6) < 0, as expected. LOWER: plot of p. Looking back to figure (7) is now 
possible to understand why the probability is zero in the middle of the pictures. 
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Solving the first, we obtain 

tan(^) = tan(^)e-fc/o^'K; (18) 

dividing the first with the second 

psin(0)   =   constant = po(6o{O,t))sm(0o(9,t)). 

The derivation here becomes a little technical: 

2tan(fl0/2) 2tan(fl/2)£(t) 
_ l+tan2(fl0/2) _ l+tan2(9/2)£2(t) 

9   ~   Po 2sin(0/2) cos(0/2) ~ Po 2sin(0/2) cos(0/2) 

=   Po 
e-kg 

e"2*« cos2 (0/2)+sin2 (0/2) 

where q = ^T{t')dt' and £ = efc*. 

As time goes on, we expect the order parameter to saturate to a certain constant value; 
this is what we saw in the numerical simulations. The order parameter is, by definition, 
proportional to G by a factor 2n. Calling T the saturation value of G then q, the integral of 
T, becomes 

q~ Tt    as    t —> oo. 

Choosing, now, the initial condition po = cos(0o), and recalling relation (18), we find 

1 - tan2(0o/2) _ 1 - tan2(0/2)£2 

Po   ~    1 + tan2(0o/2) ~ 1 + tan2(0/2)£2 

e-
2fc<?cos2(0/2)-sin2(0/2) 

e-2fc<? cos2 (0/2) + sin2 (0/2) 

Finally, substituting po into the expressions for p and q we have 

_kQ  e-2fcgcos2(0/2)-sin2(fl/2) 
P ~ 6      (e-2fc9 cos2(0/2) + sin2(0/2))2 

and 

tQ-.-hq f2\^,^   e-2fc9cos2(0/2)-sm2(0/2) 
dt 

f r*   e~^W0/2 -sin'0/2    Jfl ,... 
= e      io    COS(g)(e-2^cos2(0/2)+sin2(0/2))2^ (19) 

The integral in (19) can be evaluated in the limit that q goes to infinity. Making the 
change of variable 0 = 2xe~kq and expanding in Taylor's series the trigonometric functions, 
it becomes: 

-2x2 
dq  =   r 
dt J_ v. -T- ^2 

=    -2nt 
oo (1 + ^2 

dx = —2TT 
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Summarizing, as the time goes on, q grows linearly; p becomes small everywhere except 
near 0 = 0 where p ~ ekq, so that it grows exponentially. The dynamics brings probability 
toward a singular phase (the point 6 = 0 here); this is exactly what we saw in the numerical 
simulation, although with different g{us), and along a curve on the (6, LJ) plane. 

Concluding, the solution is a spike-shaped shock-like object. This is also consistent with 
another fact, which is namely that, with g(ui) = S(OJ) and the alternative coupling, sin(<j> — 
6) -¥ 5{(f> — 6), the Kuramoto model reduces to the Burger's equation, 

pt(6,0,t) + [Kp2(eAt)}e. 

8 Discrete vs. Continuous 

An important question is whether the continuous approximation, made in the limit N —> oo, 
remains valid with a relatively small number of oscillators. That is, if the results, obtained 
in the previous sections, are applicable to equation (1). 

We don't have a final answer to such a question, but, comparing figures (11) and (12), 
obtained from the discrete model with N = 256, with (6) and (7), can be seen that the main 
behaviours are the same. In particular, in figure (12), we see the probability gathering in two 
symmetric areas of the plane, as in the continuous case of figure (7). 

A peculiarity of the discrete case is that the concentration of probability drifts in the 
6 direction; we suppose this to be related to the fact that, although the probability den- 
sity function, from which the initial condition is extracted, is symmetric, the actual initial 
condition is not. 

9 Conclusions and other remarks 

The Kuramoto model generates many interesting results; many more than what we were 
expecting. So, in this report, for brevity reasons, we have omitted several of the analyses we 
made. We mention two particular ones here: 

First, we studied the issue of transient amplification: starting from a situation of equi- 
librium with a sub-critical coupling, and imposing perturbations of different intensities, one 
can find solutions to the linear initial-value problem that grow to arbitrarily large amplitude 
before decaying. One important question is whether this transient growth induces nonlinear 
behaviour in the full system before the disturbance can decay. But, from the numerical sim- 
ulations, the system appears to be very robust, with a decay that is very much similar to 
what predicted by the linear theory no matter how big the transient growth. In other words, 
the nonlinearity of the system doesn't provide any new, unexpected behaviours. 

Second, we also applied Nyquist methods to the linear stability problem: in the linear 
analysis section we computed analytically the value of the growth rate and the critical value 
of the coupling parameter for the Lorentzian. For general g(ui), the integral in (8) can be 
solved numerically to furnish similar results, but in many situations it is helpful to have a 
quick, general understanding.   We used the Nyquist criteria to derive the following result 
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Figure 11: p(6,u),t) at six successive instant of time obtained via numerical integration of the Ku- 
ramoto discrete model with D = 0.01 and K = 0.65 (Kc = 0.739, sub-critical coupling). Both 9 and 
ui axes are discretized in 16 intervals. Compact support within [—1;1] for g(ui) = ^Z^J^T; initial 

condition Po = ^ ^ px = f f -^ with £ = 0.1. 
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Figure 12: The same as in figure (11) except K = 0.8 {super-critical coupling). 
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that, here, we only state: the maximum number of unstable growing rates, for the linearized 
Kuramoto system, is the number of monotonic pieces of g(w) divided by two. 

On the other hand, there is further work to be done in at least two different directions: 

• the comparison of the discrete and continuous model is only sketched and needs more 
numerical explorations. Moreover, do traveling solutions, as we saw in figure (12), exist 
in the continuous case? In figure (1) structures can be noticed, even if the coupling is 
sub-critical and we are expecting incoherence. What is the origin of these structures? 
Do they only depend on the initial condition? 

• The change in the form of the coupling seems to be critical (see ad example [4] and [8]). 
What happen if the coupling is different than sin(</> — 0)? Why? 
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Effect of a Simple Storm on a Simple Ocean 

Jeff Moehlis 

1    Introduction: Near-Inertial Oscillations and Storms 

Horizontal motion of a free particle on the Earth's surface subject only to the Coriolis force 
is governed by the equations 

dup dvp 

where uv and vp are respectively the eastward and northward components of the particle's 
velocity in the frame rotating with the Earth, / = 2Q,E sin (f> is the Coriolis parameter, £IE is 
the frequency of the Earth's rotation, and <f> is the latitude (see, e.g., [4]). This has solution 
up + ivp = e~l^(uo + ivo), where «o and vo are the initial components of the velocity. This 
corresponds to the particle's velocity describing a circle of radius {UQ+VQ)

1
'
2

 / f with frequency 
/. In the northern hemisphere, / > 0 and the particle rotates in a clockwise direction when 
viewed from above. The inertial frequency / is the low-frequency cutoff for internal waves in 
the ocean. An internal wave with frequency near / is called a near-inertial oscillation (NIO). 
About half of the total kinetic energy associated with internal waves in the ocean is contained 
in NIOs [5]. 

There is much observational evidence, starting with [17, 14], that wind from storms 
can excite near-inertial currents in the mixed layer of the ocean; recent observations include 
[8, 13. 15]. Simple models which treat the mixed layer as a solid slab have been quite successful 
at explaining the process by which wind generates such currents (see, e.g., [14, 5]). These 
currents decay away after the storm passes, with possible mechanisms for the decay including 
nonlinear interactions which transfer energy to other frequencies [12], turbulent dissipation 
[11]. and the radiation of downward propagating NIOs excited by inertial pumping into the 
interior of the ocean [10]. The last mechanism will be the focus of this paper. Such downward 
propagation of NIOs is believed to be a significant mechanism for mixing in the upper ocean. 

Observations give a time scale for the decay of the energy deposited by the passing storm 
on the order of ten to twenty days [8, 13, 15]. This time scale is in contrast with estimates 
such as that by [10] that near-inertial currents decaying through the downward propagation 
of NIOs and with a horizontal length scale typical of the atmospheric forcing mechanism 
can remain in the mixed layer for longer than a year. To account for this difference, several 
mechanisms for the enhancement of vertical propagation of NIOs have been suggested (these 
are nicely summarized in [16]), including smaller-scale fluctuations within the storms, the 
ß effect [6], and interaction with background geostrophic or quasigeostrophic flow (see, e.g., 
[2, 3, 16]). 
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This paper considers the vertical propagation of near-inertial energy and shear deposited 
into the mixed layer by a storm in the presence of the ß effect. The analysis uses the formalism 
of [18] which is briefly discussed in Section 2. In Section 3, a simplified model with three main 
assumptions is outlined. First, the background flow is assumed to be independent of longitude 
and the associated vorticity is assumed to be zero. Second, the buoyancy frequency is taken to 
be approximately zero in the mixed layer, and constant in the interior (i.e., beneath the mixed 
layer). Third, it is assumed that the storm has moved very rapidly across the ocean and has 
created a horizontally uniform near-inertial current to the east concentrated within the mixed 
layer. Section 4 uses the fact that the depth of the ocean is very much larger than the mixed 
layer depth to formulate and solve the model for an ocean which is (effectively) infinitely 
deep. Section 5 discusses the results and suggests directions for further investigation. 

2    Formalism 

Consider the ocean to be infinite in horizontal extent and of depth D, with the mixed layer 
being the portion of the ocean with -üfmix < z < 0, and the interior the portion with 
—D < z < —Hmix. The x and y axes are taken to point to the east and north, respectively. 
The buoyancy frequency N = N(z) is an arbitrary piecewise continuous function of depth z. 

2.1    Evolution Equation 

Young and Ben Jelloul [18] derive an evolution equation for a complex field A(x, y, z, t) from 
which leading-order NIO motion in the presence of a steady barotropic background flow and 
the ß effect can be deduced: 

where 

ip is the streamfunction for the background flow, £ = V2V> is the associated vorticity, and 
the Coriolis parameter / = /o + ßy- Here V is the horizontal gradient, and V2 = d% + dy. 
Subscripts denote partial differentiation. The asymptotic expansion used in the derivation 
of equation (1) relies upon the frequency of near-inertial waves being close to the inertial 
frequency jfo. The NIO velocity field (u,v,ti;), buoyancy b, and pressure p are given by 

u + iv   =   e'ifotLA (3) 

™   =    -IßN-^A^-iAy^e-^ + cc. 

b   =   -fo{Axz-iAyz)e-
ifot + c.c. 

i 
p   =   -{Ax - iAy)e-

llot + ex. 
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Here b is related to the density p by 

p = po'l-- rN2{z')dz' 
L      Wo 

where po is the reference density at the top of the ocean. Note that p has been normalized 
by PQ. 

The boundary conditions are that w vanishes at the top and bottom of the ocean; this 
corresponds to the boundary condition Az = 0 at z = 0 and z = —D. This boundary 
condition along with equation (3) implies that 

I (u + iv) = 0. 
D 

(4) 

Thus, the barotropic motion is not included in the analysis; note that [10] shows that the 
barotropic response to a storm is instantaneous and the associated currents are weak. 

2.2    Jump Conditions 

Suppose that the buoyancy frequency is discontinuous at z = z&. Integrating equations (2) 
and (3) from z = za — 6 to z = Zd + 6, the following jump condition is obtained: 

zd+S 

' ■ Zd-5 

ß_dA 
N2 dz 

= eifot 
rzd+S 
/        (u + iv)dz. 

JZJ-8 

The left hand side tends to zero as 8 —> 0 provided u and v remain finite (which must be 
true on physical grounds). Thus, 775-^7 is continuous, even when N2 is discontinuous. Now 
assuming that np and £ have no ^-function behavior in the z direction, integrating equation 
(1) over the same interval in z implies that 

rzd+5 
lim /        V2A dz = 0. 

Uzä-6 ä->0 

Thus V2A = Axx + Am is continuous across z = Zd- 

2.3    Energy and Shear 

The quantities 

u2 + v2 = \LA\2, 1 ,    2 uz + vz = 
d_ 
dz 

(LA) (5) 

give local measures of the horizontal kinetic energy per unit mass (hereafter HKE) contained 
in near-inertial motion and the associated vertical shear, respectively.   Using equation (1) 
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and its complex conjugate, 

d\LA\2 

at 
LA\ LA + LAt LA* 

ifo. 
2 

+ 

'■[V-{LAVA* -LA* VA)] 
dW,\LA\2) 

d{x,y) 

f{ d_ 
dz 

^(VA*Z-VA-VAZ-VA*) (6) 

where the star denotes complex conjugation. In the following, it will be useful to integrate 
this over a volume in order to determine how the energy contained in horizontal near-inertial 
motion in the volume depends on the value of derivatives of A evaluated on the surface of 
the volume. A general equation for the evolution of the shear is not given here, but will be 
for the simplified model considered next. 

3    A Simplified Model 

To simplify the analysis, it is assumed that A and ip do not vary in the x direction, and that 
C = 0. The analysis thus keeps the ß effect but neglects the effect of background barotropic 
vorticity. The buoyancy frequency profile is taken to be 

N2 

N2 

=   e2N2 

=   N2 

- -ffmix < Z < 0 

D < Z < —ifmix, 

where K<1. Finally, the storm is assumed to produce the initial condition of a horizontally 
uniform near-inertial current to the east concentrated within the mixed layer. 

Instead of approaching this problem by projecting onto normal modes (see, e.g., [2, 10]), 
the problem will be formulated as an initial value problem on a semi-infinite domain corre- 
sponding to an effectively infinitely deep ocean. In order to formulate the problem properly 
for this limit, this section considers an ocean of finite depth. In Section 4 the solution in the 
limit that the depth of the interior is much greater than the mixed layer depth will be found. 

3.1    Nondimensionalization 

Quantities are nondimensionalized according to 

where 

Typical values ß s; 
and fi « 10-6s-1. 

y = 

Y 

y #n 
+ 1,        t = fit,        N = 

"V    ßh    )     ' 
fi 

N_ 

No' 

2 u2   Nl \1/3 FH, 
/o 

ay 
lO^m-V1,^ 100m, /„ w 10-4s-\ N0 10-V1 give Y « 105m 
The relevant time scale is thus I/O, S3 11.5 days.  Also, with a view to 
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specifying the initial velocity profile according to equation (.3), the velocity and the field A 
are nondimensionalized as 

(Ü v) - ^ A -       /Q2
       A 

where U is a characteristic value of the velocity. The hats will be dropped for ease of notation. 
With this nondimensionalization, the buoyancy frequency profile is 

N2   =   e2       0 < z < 1 

N2   =   1        -H = —^— + Kz<0, 
■"mix 

and equation (1), the boundary conditions, and initial condition become 

Azzt + ^N2Ayy + iyAzz = 0 (7) 

Az   =   0       z = -H,   z = \ (8) 

Azz   =   N2u       t = 0. (9) 

The jump conditions in nondimensional form are 

4z|z=0+    =   e    ^z|z=0-) Ayy\z=0+    =   Ayy\z=0-, (10) 

where z = 0+ and z = 0~ are the limits as z -» 0 from positive and negative z values, 
respectively. 

This nondimensionalization allows some immediate conclusions to be drawn about the 
propagation of NIO energy and shear downwards. Most importantly, if Hmix increases then 
the timescale 1/fi decreases. Thus, assuming that the storm causes a uniform near-inertial 
current throughout the whole mixed layer, energy and shear transfer will be faster for a 
deeper mixed layer. This confirms the results of [10], which associated the more efficient 
transfer with a larger projection of the initial velocity profile on the first vertical mode. 

3.2    Integral Energy Relations and Energy Flux 

The nondimensional local kinetic energy per unit mass is u2 + v2 = \Azz/N
2\2. The nondi- 

mensional form of equation (6), with the assumptions of the simplified model, is 

2jv2 fa(AzzAy ~ A**zAy) + 2i\r2 ^AUAy ~ Ay*Av)- t11) 

Let 
r rO poo roo r rl roo roo 

/     dV = /     dz        dx        dy, /    dV =      dz        dx        dy 
./INT J-H       J-oo       J-oo JUL JO J-oo       J-oo 

be the integrals over the interior of the ocean and the mixed layer, respectively. Assuming 
A:zA* — A*zzAy vanishes for \y\ -> oo and using equation (8) gives the following results: 

-        \Azz\2dV = - /    (A*yzAy-AyzA;)\z=0-dxdy, (12) 

d 
dt 

Azz 

N2 
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dt 

r   I A    2 i    r°°  f00 

l-f.   dV = --1 /     (A*yzAy-AyzA*y)\z=0+dxdy. (13) 
./ML I   € ^e   J—ooJ—oo 

Equations (10),(12) and (13) may be combined to give 

d    f      \A     |2JT/  ,    d    f     \Azz2 
— \     \Azz\zdV +— l      — 
dt JmT dt JUh | ez dV = 0. (14) 

This is a statement of conservation of HKE in nondimensional form. 
The quantity Fßiy.t) = %(AyzAy - AyzA*)\z=0- is the flux of HKE from the mixed layer 

to the interior of the ocean. Letting 

'vd 

similar arguments show that 

/• r—d /"OO /"OO 

/   dV = dz        dx        dy, 
JVj J-H       J-oo       J-oo 

^ /  \Azz\2dV=  r  f°° FE(y,t;d)dxdy, (15) 
"* JVd J-oo J-oo 

where 

FE(y,t;d) = l-(A;zAy - AyzA*y)\z=„d (16) 

gives the flux of HKE from the region z > — d to the region z < —d. Equation (12) is a 
special case of equation (15) with Fß(y,t) — FE{y,t;0~). 

3.3    Integral Shear Relations and Shear Flux 

In Section 3.4, it will shown that, to leading order in e, A is independent of z in the mixed 
layer, and thus there is no shear in the mixed layer. For z < 0 the nondimensionalized 
buoyancy frequency is N = 1, so the vertical shear from equation (5) may be written in 
nondimensional form as u2

z + v\ = \Azzz\2. Similar arguments to those leading to equations 
(6) and (11) give the evolution equation 

öl \AZZZ\   = 2 ~gZ\-"-zzzAyz — AzzzAyz) + - —\AyzzAyz — AyzzAyz). 

Assuming AzzzA*yz — A*zzzAyz vanishes for |y| -> oo, 

J      r rOO      /-OO 

-^ /   \Azzz\2dV= /      /     Fs(y,t;d)dxdy, 
at Jvd J-oo J-oo 

where 

Fs(y,t;d) = %-{A*yzzAyz - AyzzA*yz)\z=-d (17) 

is the flux of vertical shear from the region z > — d to the region z < —d. 
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3.4    Boundary Condition at Base of Mixed Layer 

For 0 < z < 1, equation (7) becomes 

Azzt + ^e2Ayy + iyAzz = 0. 

Expanding A(y, z, t) = A0{y, z, t) + e2A2{y, z,t) + 0{e4), 

Aozzt + iyAozz = 0. 

Integrating this subject to the boundary condition that Az and thus AQZ vanishes at z = 1 
gives 

A0 = e-iyt fgiyjyyt'dt' 
Jo 

for some function g. In particular, AQ is independent of z. At ö(e2) 

A2zZt + iyA2ZZ + yAoyy = 0, (18) 

which may be integrated subject to the boundary condition that A2z vanishes at z = 1 to 
give 

i 
A2zt + iyA2z + 2A0yy(z - 1) = 0. 

Evaluating at z = 0+ and using 

Ayy = A0yy + ö(e2),        Az = e2A2z + 0{e4),        Azt = e2A2zt + 0(e4) 

implies that 

ie2 

Azt + iyAz - —Ayy = 0(e4)        z = 0+ 

Finally, applying (10) gives the boundary condition 

i 

2 

to leading order in e. 

Azt + iyAz - -Ayy = 0       z = 0~ (19) 

3.5    Initial Condition 

Suppose that in a short time compared with the NIO wave propagation time the passing storm 
causes near-inertial currents in the mixed layer with no horizontal structure. For simplicity, 
the initial velocity is assumed to be piecewise constant with depth. Thus the initial velocity 
profile (consistent with equation (4)) is taken to be 

u   =   1        0 < z <1, 

u   =   -— -H<z<0, 
H 

v   =   0        -H <z<l. 
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Integrating equation (9) with respect to z and using the boundary conditions (8) then gives 
at t = 0 

Az   =   e2{z-l)       0<z<l (20) 

Az   =   -Z-^-        -H<z<0. (21) 

4    Solution for an Infinitely Deep Ocean 

The total depth of the ocean is typically on the order of a hundred times the depth of the 
mixed layer; thus, the limit of infinite depth is considered. The initial condition is taken to 
be equation (21) with H —>■ oo. The boundary condition for z -> —oo is taken to be Azz —> 0, 
corresponding to the near-inertial velocities vanishing at infinite depth (see equation (3)). 
This limit does not invalidate the use of equation (1) which assumed hydrostatic balance and 
thus holds for the ocean having depth much smaller than the horizontal scales. The ocean 
still in reality has finite depth, but for depths just below the mixed layer it is effectively 
infinitely deep. Of course, this limit excludes the possibility of reflections off the bottom of 
the ocean which may be important (see, e.g., [9]); thus, the results should be viewed as what 
would happen in the absence of such reflections. Finally, the boundary condition for z = 0~ 
Riven by equation (19) is used. For convenience, the problem to be solved for the semi-infinite 
domain z < 0 is summarized: 

1 
Azzt + -Ayy + iyAzz = 0 z<Q 

Azt + iyAz - 
l-Ayy = 0 z = 0~ 

Azz-*0 z —> —oo 

Ax = -1 * = 0. 

4.1     Solution by Laplace Transforms 

Making the ansatz and definitions 

A(y,z,t) = e-i#B{z,t),        T = j,        B(z,T) = B(z,t), (22) 

implies that 

(23) 

(24) 

(25) 

(26) 

BzzT ~ ^ = 0 z <0 

BzT + \B = 0 z = 0~ 

Bzz->0 z -> —oo 

Bz = -l r = o. 
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Laplace transforming equations (23)-(25) in time gives 

/•OO 

b(z,p)=C[B(z,t)] =        B(z,T)e-pTdT (27) 
Jo 

pbzz - Bzz {z, 0) - %-b = 0 z < 0 (28) 

&zz->0 z->-oo (29) 

p&z - £z(z, 0) + ^6 = 0 z = 0". (30) 

Bzz(z,0) = 0 from equation (26); thus the solution to equation (28) satisfying the boundary 
condition (29) is 

b(z,p)   =   /(p)expf— j, 

Using boundary condition (30) with Bz(z,0) = -1 from (26) determines /(p), giving 

6(z,p) = -- -p^— exp f ^) . (31) 
a yjp + a \y/pj 

In principle, the problem is solved at this stage; inverting this Laplace transform gives B(z, T), 
then A{y,z,t) is obtained from equation (22). This can then be differentiated in order to 
determine various quantities of interest. In practice, it is more convenient to first differentiate 
with respect to z as appropriate, and then to invert the transform. This inversion may be 
done in three different ways: first, for z = 0" analytical expressions can be found, and these 
can be used to find analytical expressions for 0 < z < 1; second, for other z values the 
inversion may be done numerically; and third, the asymptotic behavior can be determined 
by the method of steepest descents. But first, expressions for the flux of energy and shear in 
terms of the field B(z, t) are given. 

4.2    Flux of Energy and Shear 

The energy and shear fluxes given in equations (16) and (17) may be related to the field B 
using equation (22), giving 

FE(t-d)   =    l-t2(B*zB-BzB*)\z=-d (32) 

=   t2[Im(Bz)Re(B)-Re{Bz)Im{B)]\z=_d (33) 

Fs(t;d)   =   -t2(B*zzBz-BzzB*z)\z=-d (34) 

=   t2[Im(Bzz)Re(Bz)-Re(Bzz)Im(Bz)]\z=-d. (35) 
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These fluxes are independent of y so the dependence on this variable is suppressed.  Also, 
initially Azz = 0 for z < 0. Integrating equation (15) with respect to time then gives 

/• roo roo rt 

\   \Azz\2dV = dx        dy l   FE{t-d)dt. 
JVd J-oo       J-oo       JO 

Thus 

E(t;d) = f FE(t;d)dt (36) 
Jo 

is the total amount of HKE which has penetrated into the region z < —d. Calculating the 
initial amount of HKE in the mixed layer for the initial velocity profile shows that E(t; d) —>■ 1 
corresponds to all energy originally in the mixed layer having reached depths below z — — d. 
The quantity 

S{t;d)= [ Fs(t;d)dt (37) 
JO 

is the integrated shear flux which has penetrated into the region z < —d. Note that the initial 
value of the shear for z < 0 and z > 0 is zero, but the total initial shear is infinite because of 
the discontinuity in the initial velocity profile at z = 0. 

4.3    Analytical Solution for z = 0~ 

For z = 0-, inverse Laplace transforms are found in or deduced from a table in [1]. From 
equation (31), 

6(0-, p) = ---^—, 
a^/p + a 

and one obtains 

B((T, T) = r-XO-,?)] = 1—= + ea2rerfc(a\/T). 
OJVTTT 

This is converted to the original time t using equation (22): 

B(°-."=4(^)1/2-""/Vfc<^43/2)- 
Differentiating equation (31) with respect to z and evaluating at z = 0~ gives 

MO",?)    =    —7^-7= =>5z(0-,i) = -eQ2t3/3erfc(-^t3/2), 
P   +   OLy/p A/3 

MO",*) = - p{J+a)   => B„{0-,t) = e*2(3/3erfc(-^ t3/2) - 1, (39) 

(38) 

bzzz(0  ,p)    =   - 
a2 

PiP + (Xy/P) 

/ +3 \ 1/2 

Bm{0-,t) = 1 - e*2i3/3erfc(-^ t3/2) - 2a \±-) (40) 
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The solid lines (labelled d = 0) in Figure 1 show the quantities FE,FS, E, and S calculated 
using the results of this section. FE peaks at the nondimensionalized time t « 0.62; for the 
typical values quoted in Section 3.1, this corresponds to about a week after the storm. From 
Figure 1(b) and using the fact that whatever energy flows through z = 0~ must have initally 
been in the mixed layer, we see that by t = 1 (approximately 11.5 days after the storm) 
nearly half of the energy associated with horizontal NIO currents caused by the storm has 
left the mixed layer. By t — 2 (approximately 23 days after the storm) 82% has left, while 
by t = 3 (just over a month after the storm) 93% has left. Although this simplified model 
cannot be expected to capture the full complexity of a real storm over the ocean, it does give 
reasonable estimates for the time scale for which the decay of NIO energy occurs: [8] found 
that the mixed layer inertial energy was reduced to background levels by 21 days after the 
storm. Both the shear flux Fs and the integrated shear 5 increase monotonically with time, 
an artifact of the initial velocity profile being discontinuous at z = 0. 

E 

Figure 1: (a) FE(t;d), (b) E{t;d), (c) Fs{t;d), and (d) S{t;d) for different distances d below 
the base of the mixed layer. These show instantaneous and integrated fluxes of energy and 
shear; see the text for precise definitions. The solid lines (labelled d = 0) give results at 
z = 0". 

4.4    Analytical Solution for the Mixed Layer 

Expanding B{z,t) = B0{z,t) + e2B2{z,t) + 0(e4) for the interval 0 < z < 1, 

A0(y,z,t)   =   e-WBoiz^zze-^BofrT), 

A2(y,z,t)    =   e-iytB2(z,t)=e-iytB2(z:T), 
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where T = i3/3 as before. Equation (18) then implies that 

i ^ 
B2zzT -~B0 = 0       0<z<l. 

This is Laplace transformed to give 

pbizz - B2zz(z,0) - -bQ = 0, (41) 

where b2 = £[B2) and bo — £[Bo\- The initial condition within the mixed layer is Azz = e2, 
so A2zz = 1 at i = 0; thus B2zz(z, 0) = 1. Now, A is continuous across z = -0, and A = Ao 
to leading order in e. This implies that £o(0+,T) = B(0~,T) to leading order in e. Also, Ao 
and hence BQ are independent of z. Laplace transforming, we conclude that the value of bo 
for 0 < z < 1 is equal to b(0~,p). Using all of this and equation (31) evaluated at z = 0~~ in 
equation (41), 

hzz = - - f ~±- =► B2zz = e«2*3/3erfc(  - t3/2) 

Thus, 

A^iy^^e-^e^'hM^t^). (42) 

The local HKE is, to leading order, |A2ZZ|
2 = \Azz/e2\2; the total HKE contained within the 

mixed layer is 

12 

%    dV= f   \A2zz\
2dV. 

€ JML 

Using a2 = i/2, the amount of HKE per unit volume within the mixed layer is 

CML = 
erfc(-^3/2) (43) 

Prom [1], 

V3 V 7T at3/2 oo 

«ML 
_6_ 
7Tt3 

OO. 

This asymptotic relationship is confirmed in Figure 2.   Since A2zz is independent of z, to 
leading order in e the shear within the mixed layer is zero. 
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^ML ^ML 

0.01 

Figure 2: €ML gives the HKE per unit volume in the mixed layer. The solid line shows 
the exact result and the dashed line shows the asymptotic result, shown both for linear and 
logarithmic axes. 

4.5    Solution for Other Depths 

A tractable analytical form for the inverse Laplace transform of equation (31) for z ^ 0 could 
not be found; however, it may be inverted numerically as described in this section. The 
inverse Laplace transform is given by 

B(z,T) = - —T /  f- dp, 
2-KOLi JB      Jp + a 

where B is the Bromwich contour. Here the branch cut for the square root is taken to be 
along the negative real axis, and the principal branch is chosen. The integrand does not have 
any poles on this sheet of the Riemann surface. Such a pole would satisfy ^/p + a = 0, and 
would be given by pp = a2 = eJ7r/2/2; however, ■s/p^+ a. = y/2emlA ^ 0 and thus there is no 
pole. It is useful to make the change of variables (valid for z ^ 0 and T ^ 0) 

P=(™ 
3\2/3 

TJ 
W, 

Then. 

B(z,T)    = 

*S(,W     ^(-f)1/3, 

2irai jg 
„2 

L r/y/w + a 
-dw 

2nai 

(44) 

(45) 

(46) 

Defining the contour C as in Figure 3 and using the facts that the contributions from C\ and 
C2 vanish and that there are no poles, 

/ g{w;Z,r])dw = \ f + f   +[   +[   }g(w;Z,ri)dw = 0. 
Jc KJB    JAB    JBC    JCD) 

For the path AB, w = rem and 

IAB= /    g{w,t,v)= /    —7-7=-. 
JAB J\     rjty/r + a 

-dr. 
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I w 

Figure 3: Contour used to determine inverse Laplace transformations.  Here A=(—oo,0+), 
B=(-1,0+), C=(-1,0-), and D=(-oo,(T). 

For the path BC, w = e%e and 

7Bc = /    9{w;Z,v) = -i I 
JBC J-TT 

Finally, for the path CD, w = re~tn and 

lev = /    g(w,t,ri) = - 
JCD Ji 

* exp[e(-ae-ig/2 + eie)]ei6 

de. 

dr. 
-T]iy/r + a 

Specifying z and T fixes f and 77. The integrals JABI /BC, and JCD are well-behaved and can 
be calculated numerically. Then 

B{z,T) = ^—(IAB + he + /CD). 

Differentiating (31) with respect to z, 

bz(z,p)   =   - 

bzz{z,p)   =   - 

bZzz{z,p)   =   - 

Using the contour in Figure 3, we find 

1 az\ 

p + a^/p \^l/pJ, 

a I' az\ 

P(VP + «) 
exp WW' 

a2 (az 

pip + ciy/p) VV^ 

„2 

B.(*,T)   =   h-AKl+^i + ^i), 

B^,T) = SeS+^+'S). 2?ri 
v2^2 

B   (zT)   -   ^Lr/-(3)+j(3)+j(3h 
•Dz2z(Z, J J     —       27TJ  ^  AB BC CD''' 

180 



where 

(1) _  y~    e-reefae/v^ (1) _        r* exp^-oe^+e^)] 

CD     J\    r?"r + f]ody/r    ' AB ,/x    r/zir3/2 + rj2ar 

(2) _       r exp[e(-ae-^2 + e^)] (2) _   f»    e-V-**/^ 
BC_      /_,,        rfitW + rfia ' CD ~ A    -tfirV2 + V

2ar    ' 

r(3) _  r    e-^e**/^    , (3) _ _. r exp[^(-ae-^2 + e^)] 
AB_A    t74r2-»73atr3/2ar'        JßC "    V-,      rfie" + arfie"/*      "*' 

r-oo    g-r£g-ia£/v
/r 

74r2 + arpir^l2 

All of these integrals are well-behaved and can be calculated numerically. 

7(3) _ _ r j^ dr /CD-     ^    ^ ...„dr. 

4.6    Results 

4.6.1 Fluxes and Integrated Fluxes 

The quantities FE(t;d),Fs{t;d),E(t;d), and S(t;d) may now be calculated and results are 
shown in Figure 1. From Figure 1(b), as noted in Section 4.3, by t = 1 nearly half of the total 
horizontal near inertial energy has left the mixed layer; only about 38% of the total energy 
has penetrated below z = -1. By t = 2, 82% of the total energy has left the mixed layer, 
but only 58% of the total energy has penetrated below z = —1. Thus, at t = 2 (using the 
typical values quoted in Section 3.1, about 23 days after the storm) nearly a quarter of the 
total energy is contained in the distance iTmix immediately beneath the mixed layer. Figure 
1(d) demonstrates that the shear tends to be localized just below the base of the mixed 
layer. For example, by t — 5 the integrated shear flux which has entered the mixed layer is, 
in nondimensional units, about 5.5. The integrated shear flux which has penetrated below 
z = -0.05 is 4.6, and the integrated shear flux which has penetrated below z = — 1 is 1.35. 

4.6.2 Vertical Profiles 

Using the expressions from Section 4.5 and equation (22) it is now also possible to calculate 
vertical profiles of physically relevant quantities. Figure 4(a,b) shows the vertical dependence 
of the HKE, u2 + v2 = \AZZ\2, and the vertical shear, u2+v2

z = \AZZZ\2, at different times 
for y = 0. For both quantities, as time increases the instantaneous distribution becomes 
more sharply peaked near the base of the mixed layer. The maximum value of u2 + v2 

increases without bound as time increases, but the maximum value of u2+v2 remains bounded 
(asymptotically approaching unity) because of energy conservation. Figure 4(c,d) shows the 
vertical dependence of the fluxes FE and F$- 
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Figure 4: Vertical profiles of (a) u2 + v2 and (b) u2 + v2 at y = 0 for different times showing 
the decay of energy from the mixed layer (0 < z < 1) and resultant behavior in the interior 
(z < 0). Note that u2 + v2 = 0 in the mixed layer to leading order in e. Also, vertical profiles 
of (c) Fs{t, \z\), and (d) Fs{t, \z\) for different times. Note the different vertical scales. 

4.6.3    Back-Rotated Velocity and Shear 

Finally, consider the back-rotated velocity Azz = el^ot(u + iv). This filters out the purely 
intertial motion at frequency /o- Similarly, the back-rotated shear is defined to be Azzz = 
elfoi(u: + iv:). The amplitudes of the back-rotated velocity and shear at different depths 
are shown as time series in Figure 5. At a given depth, the magnitude of the back-rotated 
velocity reaches a peak value shortly after the storm, then decays away, while the magnitude 
of the back-rotated shear increases monotonically with time. Note that Figure 4, may also 
be interpreted in terms of the back-rotated velocity and shear. 

Back-rotated velocity and shear may be represented by hodographs which respectively 
show the vectors (Re(Azz),Im(Azz)) and (Re(Azzz),Im(Azzz)) as curves parametrized by 
time. For /o > 0, if these curves are traced out in a clockwise (counterclockwise) fashion, 
the corresponding motion has frequency larger (smaller) than /o- Figure 6 shows the back- 
rotated velocity and shear at y = 0, z = — 1. The hodographs for both quantities start at 
the origin and are traced out in a clockwise fashion. The back-rotated velocity starts out 
in the third quadrant, reaches a peak in magnitude in the second quadrant, then decays 
in magnitude spiralling back to the origin. The back-rotated shear also starts out in the 
third quadrant, and monotonically increases in magnitude while spiralling outward. Note 
that the lines labelled z = -1 in Figure 5 give the radii of these hodographs as functions 
of time. The depth dependence of the back-rotated velocity is seen by comparing Figure 6 
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with Figure 7(a), where both have y = 0 and thus the same value of the Coriolis parameter. 
Qualitatively the results are the same, but closer to the mixed layer the direction change of 
the back-rotated velocity becomes slower, meaning that the frequency is closer to /o- An idea 
of the latitudinal dependence is seen by comparing Figure 6 with Figure 7(b,c). At y = 1 the 
hodograph is traced out in a clockwise fashion as for y = 0, but at y = — 2 it is traced out in 
a counterclockwise fashion. 

{u2+v2)1'2 \Azzz\ = {ul + vlY'2 

/A- 

\   zJo- — 
/ z=-0.2 —- 

z=-0.5   
z=-1   
z=-2 ----- 

1 

(b)    ,„. -- 

■          i 

—' 

10 15 20 

Figure 5: Time series for \AZZ\ and \AZZZ\ at different fixed z values. 

4.7    Asymptotic Behavior 

Making the change of variables (44), the inverse Laplace transforms of b, bz, bzz, and bzzz can 
he written in the form 

HO   =    f f(w,v)e^w)dw, 

7    / \ a 

hlW)      = y=+W. 

Tlir asymptotic behavior of this in the limit of large £ with r\ fixed can be determined by the 
method of steepest descents. This involves determining the saddle points of h(w) (i.e., points 
satisfying h'(w) — 0) and deforming the contour B so as to pass through each saddle point 
along a path of constant Im(h(w)) such that Re(h(w)) has a local maximum at each saddle 
point. Supposing that there is a simple saddle (h"(wo) ^ 0) at w = wo. 

m 
\Zh"(wo)\lV       ' 

(47) 

Here 7 is the angle relative to the positive real axis at which the path satisfying the above 
conditions passes through the saddle. Letting h"(wo) = aetlT, 7 = -a/2 + ir/2 or 7 = 
-CT/2 + 3-7I-/2; the appropriate choice is determined by making sure that h(w) only has local 
maxima at the saddle points and no where else along the deformed contour. 

Taking the branch cut for the square root along the negative real axis, for this problem, 
there are saddles at 

Wl = re'"/2, w2 = -e ,i7r5/6 
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Figure 6: Back-rotated velocity and shear at z = — l,y = 0. In these and the time series 
in Figure 7, the solid and dashed lines show real and imaginary parts, respectively. The 
diamonds are drawn at t = 0,5,10,15,20. 

with 

h"(wi)   =   Si, 

u    ^        3V3     3. 

h"{w2) = 3e-i7r5/6. 

Figure 8 shows the contours of constant real and imaginary parts of h(w). The deformed 
contour is taken to pass through both of these saddles, and passes to the right of the origin 
in order to avoid the branch cut. Since h(wi) is purely imaginary and ^(102) has negative 
real part, it is immediately seen that the contribution from w2 will be exponentially small 
compared with the contribution from w\ in the limit £ —> 00. Using 7 = 7r/4 for the passage 
through toi, in the limit f -> 00 with 77 fixed 

m-^c^n^e«-^^. (48) 
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Figure 7:  Back-rotated velocity for (a) z = — 0.5,y = 0, (b) z = —l,y = 1, and (c) z 
— l,y = —2. The conventions of Figure 6 are also used for this Figure. 
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F'mure 8: Contours of constant Re(h(w)) (solid lines) and Im(h(w)) (dashed lines) in the 
complex w plane. The thick lines are the contours passing through the saddle points. The 
branch cut is clearly seen along the negative real axis. In the method of steepest descents, the 
Bromwich contour is deformed to pass through w\ = e~l7r/2/2 = —i/2 with angle 7 = 7r/4, 
to the right of the origin avoiding the branch cut, and through w^ = el,r5/6/2 with angle 
-. = IITT/12. 

186 



This implies that 

B     „     12(l + "))prl/2ci(-^/4) 
7r(l+r72) V 3  ? 

7r(l + r/2) V   3 

5        „ 1 + ^r?       /grl/2    i(-3g/2+./4) 

R ~ *?"*       ,/g^rl/2ei(-3g/2+7r/4) 
*"* Wl+^V 3  ^        e 

Now, using £ = rj2T = r]2t3/3 and taking the constant r/ to be r)0, along the "rays" z 
-770

3t3/3, 

2 
„*+«*    =    \A„\* = \B„\

2
~ 

(i + vlWot3' 

ul+vl   =   \Azzz\2 = \Bzzz?~H{l + r]l)tZ, 

FE   =   t2[Im(Bz)Re(B) - Re(Bz)Im(B)]\z=_v3ot3/3 ~ ^^ 

Fs   =   t2[Im(Bzz)Re(Bz) - ReCB^M^ll^-^/s ~ ^^+ ??2)f • 

These asymptotic relationships are confirmed in Figure 9. A more useful way to represent 
the asymptotic results is to write 770 in terms of z and t and then draw contour plots of 
quantities of physical interest in the (z, t) plane; this is shown in Figure 10. Note that £ is 
large for sufficiently large z and/or t. For example, this shows that in the asymptotic limit 
for constant z, as time increases, u2 + v2 and Fß decrease, while u2 + v2 and Fs increase. 

5    Conclusion 

In this paper, a simplified model has been developed and studied for the decay of near-inertial 
currents excited in the mixed layer by a passing storm. This decay occurs due to the radiation 
of downward propagating NIOs into the interior of the ocean. The main assumptions of the 
model are that the background flow does not vary in the longitudinal direction and has no 
associated vorticity, the ocean has a simple (piecewise constant) buoyancy frequency profile, 
and the storm has moved very quickly over the ocean causing a horizontally uniform near- 
inertial current concentrated in the mixed layer. The ß effect is included in the analysis. 
Because the depth of the mixed layer is much smaller than the total depth of the ocean, the 
problem is formulated in the limit of an effectively infinitely deep ocean; the resultant initial 
value problem is solved by Laplace transforms. Analytical and numerical results are given for 
quantities of physical interest including horizontal kinetic energy, vertical shear, energy and 
shear flux, and back-rotated velocity and shear. Also, asymptotic behavior is determined by 
the method of steepest descents. 
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Figure 9: Comparison of numerically calculated (solid lines) and asymptotic (dashed lines) 
results along the ray z = -i3/3, i.e., % = 1. (a) u2 + v2, (b) u2 + v2, (c) FE, (d) Fs. 

Although this simplified model cannot be expected to capture the full complexity of the 
aftermath of a storm passing the ocean, it does capture much of the observed behavior. Most 
importantly, the decay of mixed layer energy is found to occur on the appropriate timescale 
(approximately twenty days). It would be interesting to compare the results obtained for this 
simplified model with observations and numerical simulations. Also, from both a computa- 
tional and a more philosophical perspective, it would be interesting to compare this method 
of solution with the standard approach of projecting onto normal modes (e.g., [2, 3]). In 
the latter, the decay must be viewed as a complicated interference between normal modes, 
while in the method presented in this paper it is more naturally viewed as a radiation prob- 
lem. Extensions to a more realistic ocean and storm would involve including a more realistic 
buoyancy frequency profile (for example, the profile used by [10]), considering the effect of 
different initial velocities (including both horizontal and vertical structure), and considering 
the effect of background flow. The study of all of these could use the same formalism of [18] 
and an approach similar to that presented here. 
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Stirring and Mixing by Vortical Modes 

Jennifer MacKinnon 

Abstract 

Tracer release experiments in coastal and open ocean settings have revealed unex- 
pectedly large isopycnal diffusivities. The stirring and mixing effects of small scale eddies 
(vortical modes) are discussed as a possible candidate for enhancing diffusivity. A simple 
analytical model of vortical modes is used to evaluate their mixing potential. 

1    Introduction 

Recent oceanic dye release experiments have provided a venue for evaluating existing models 
of passive tracer horizontal dispersion. In the Coastal Mixing and Optics (CMO) experiment 
and the North Atlantic Tracer Release Experiment (NATRE), anthropogenic dye was injected 
along constant density surfaces (isopycnals) in streaks a few km long. Subsequent surveys 
through the evolving dye patches with towed instruments were used to look at the qualitative 
nature of dye patch evolution and calculate quantitative measures of isopycnal diffusion [1,2]. 

In the CMO experiment, several mid-water-column dye releases were conducted between 
1995 and 1997 in ~ 80 m deep water on the continental shelf south of New England. Post 
release surveys were conducted over the several days following each release. By assuming 
that dye streak evolution was governed by a balance between horizontal diffusion and strain 
induced stretching [3], Sundermeyer 98 calculates an observed horizontal diffusivity of .3-5 
m2/s [1]. A traditional way of estimating horizontal diffusivity in the ocean is by looking 
at the enhanced diffusivity that comes from combining vertical diffusion with shear from the 
internal wave field [4]. Applying this method to the measured CMO velocities gives diffusion 
estimates that are a factor of 1-10 below observed values[l]. 

The NATRE experiment was conducted in open ocean 1200 km west of the Canary Islands 
during May 1992 [2]. The dye was sampled five times during several subsequent yeaxs. Over 
this extended period, the qualitative evolution of the dye agrees reasonably well with the 
model of horizontal diffusion presented by Garrett 83 [1]. He proposes that a dye patch will 
initially be stretched into long twisted streaks, the width of which is governed by a balance 
between an effective isopycnal diffusivity and exponential stretching. The observed dye at 
6 months is indeed streaky in nature and calculations give an estimated effective diffusivity 
of 3 m2/s. The Young, Rhines and Gaxrett shear dispersion model applied to this situation 
gives an estimate of .08 m2/s [1]. For longer times, Garrett predicts that dye streaks will 
coalesce into a more homogeneous patch that grows with an effective diffusivity related to 
the Lagrangian velocity autocorrelation time scale. During later dye surveys (1-2 years), the 
tracer has expanded to encompass hundreds of kilometers and is more homogeneous.  The 
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observed diffusivity for this scale is 103 m2/s, and agrees with estimates calculated from float 
velocities. 

In both experiments, observed diffusivities on 1-10 km scales are larger than predicted by- 
shear dispersion alone. Both Sundermeyer and Polzin et al.99 propose that the small scale 
eddies known as vortical modes could be an alternate diffusion mechanism. In brief, vortical 
modes are thought to be generated when a vertical mixing event creates a relatively well 
mixed patch of water within a stratified fluid [5]. This density anomaly adjusts to pressure 
and Coriolis forces by spreading radially outward and beginning to rotate anticyclonically. A 
steady rotational state can exist until the anomaly diffuses away or some event or instability 
breaks it apart. Both the adjustment and equilibrium phases can act to enhance horizontal 
diffusivity. 

Sundermeyer considers dimensional arguments and concludes that in the coastal ocean 
at least, horizontal spreading from vortical mode generation and adjustment may be of an 
appropriate magnitude to explain observed diffusivities [1]. Polzin et al. evaluate evidence 
of vortical modes in NATRE by looking at spectral shear and strain values that are not well 
explained by an internal wave field. Using inferred vortical mode spectra, they calculate 
estimates for shear dispersion and stirring contributions to effective diffusivity and also get 
results potentially large enough to explain observations^]. 

To tackle the time dependent picture of diffusivity due to vortical modes, we start with 
a broad qualitative description of what might happen to an initially small dye patch in an 
ocean where small eddies randomly appear and disappear in various locations near the patch. 
We ignore the initial vertical mixing event that generates the vortical mode as beyond the 
scope of this project. Instead we assume that we start with a round (axisymmetric) density 
anomaly that abruptly appears near a small patch of concentrate. Over the lifetime of a 
single vortex, a small dye patch located nearby feels a net (center of mass) displacement 
both outward due to the initial adjustment and around the vortex. The patch also feels 
a distortion due to the stretching effects of radial shear and molecular and shear-enhanced 
diffusion. On a longer timescale, the patch will witness the appearance and disappearance 
of many vortices appearing at different positions around it. Additionally, as it grows in size 
it eventually becomes large enough to feel several spatially separated vortices at the same 
time. The larger the number of vortices felt, the more their net displacements will cancel out 
to produce little net patch movement. However, the net movements felt by smaller segments 
of the patch stretch, twist, and fold the patch; increase gradients; and enhance diffusion 
to cause the patch as a whole to grow in size. We seek an understanding of diffusion that 
will encompass both small and large time limits. For small times, we'll have a more time 
dependent story of patch growth. For larger times and larger spatial scales we hope that 
the net effects of smaller motions can be parameterized by an effective diffusivity. Our goals 
hence are threefold: to understand the time dependence of small time evolution, to estimate a 
long time eddy diffusivity, and to figure out an appropriate time scale for transition between 
these two regimes. 

Toward these goals, we develop a a simple analytical model that we hope replicates some 
of the essential stirring and mixing characteristics of oceanic vortical modes. Such an an- 
alytical approximation allows us to look at the role small eddies may play in the different 
stages of horizontal tracer dispersion, get some bounds on the relative importance of different 
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diffusive mechanisms, and explore how these results are functions of fundamental problem 
parameters. In section 2 we begin by looking at numerically integrated full numerical so- 
lutions for vortical mode generation. ■ Based upon these solutions, in Section 3 we suggest 
an analytical approximation for a vortical mode field and extend it into a time dependent 
stochastic model. In section 4 we evaluate the expected effect of an idealized single vortex 
velocity field on the evolution of a dye patch. We expand the time scale to consider a time 
dependent blinking vortex field in section 5. Throughout, we try to integrate different ways of 
looking at diffusion and consider dependence on a few oceanographic parameters of interest. 
Finally, in section 6 we re-dimensionalize our results and make some simple comparisons to 
the observed ocean values. 

2    Vortical Mode Solutions 

Before we can develop an appropriate analytical model, we must first get a better feeling 
for physically realistic vortex velocity fields. We start with the generation of the density 
anomalies that become vortical modes. We then numerically solve for the equilibrium solu- 
tions that describe the velocity field after an adjustment period. Finally, we consider physical 
arguments for time dependence. 

2.1 Generation Possibilities 

Many observations have shown diapycnal mixing in the ocean to occur episodically [7]. En- 
ergetic events such as internal wave breaking and wave wave interaction can lead to shear 
instabilities and overturning. Such mixing events produce local regions of relatively unstrat- 
ified water. Most observations of mixed patch height in the CMO coastal area range from 
2-10 m [1]. In the NATRE experiment, observed vertical patch sizes were much larger, on 
the order of 10-50 m [6]. It is difficult to measure the horizontal extent of mixing events. A 
starting guess is that the mixed patches have roughly the same aspect ratio as the internal 
waves that generate them, N/f (where N is the buoyancy frequency and f the local inertial 
frequency). Microstructure sections made during the CMO experiment show mixing patches 
on the order of a kilometer in horizontal extent [8]. 

Following Garrett and Munk, we estimate the frequency of vertical mixing events by 
considering net observed vertical diffusivity[l]. We assume that vertical diffusion of tracer 
is due to the sum of discrete identical vertical mixing events which occur with a frequency 
v, are characterized by height /i*, and by stratification change AN2. Using potential energy 
arguments we can infer the frequency of event occurrence given an observed vertical diffusivity 
oiKz, 

o     N2        1     r, „V 
V = *ÄN*1?K'- (1) 

2.2 Adjustment 

A density anomaly of sufficient size in a stratified fluid will evolve according to the pressure 
and Coriolis forces it feels until a state of balance is achieved. In studying the equilibrium 
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solution reached after adjustment of an initial density anomaly, we follow McWilliams tactic 
of combining the thermal wind equations with conservation of potential vorticity and mass 
[9]. He starts by non-dimensionalizing as follows: 

Qd = fN?q 

ed 
= p*v*fh 

gh* 
Td = Ur 

Zd = h*z 

Pd 

Pd 

Vd 

= 

p*v*fh 

P*NX 
9 

where the subscript 'd' indicates the dimensional form of a variable. Variables without this 
subscript (now and throughout this paper) are assumed to be dimensionless. Variable q is 
Ertel's potential vorticity, 6 is the density anomaly (deviation from constant stratification) 
and the other variables have their traditional meaning (radial and vertical distance, pressure, 
density and velocity respectively). Important non-dimensional parameters are given by 

R    -     4V* 

R and B are the Rossby and Burger numbers, ß can be shown to be a measure of the strength 
of the density anomaly, with initial density and stratification profiles given non-dimensionally 

by 

Pi = -z + ße 

«- -'S- 
(We use ß instead of McWilliams 7 because the later is used as a stretching rate in later 
sections.) Following McWilliams, we assume an initial density anomaly of the form 

6 = 2ze-[z2+(r/r°)2L (2) 

At this point, parameters r$ and B both describe an aspect ratio of the problem. Without 
loss of generality, we can set B=l and vary TQ. 

For simplicity, we adopt these non-dimensionalizations for the remainder of our paper. 
Physically, all horizontal distances, angular velocities and times discussed are fractions of 
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the internal Rossby radius, intertial frequency and inertial period respectively. To convert 
any result back into dimensional coordinates, one only needs to specify f, N and an anomaly 
height scale /i*. Dimensional quantities are then given by 

rd   =   -jKr (3) 

&d   =   fßSl (4) 

td   =   jßt. (5) 

We'll return briefly to the world of dimensions at the end of the paper to compare our results 
with oceanographic data. 

The actual process of geostrophic adjustment will involve internal waves which radiate 
energy away in a time roughly given by 1// [10]. After the transients have disappeared, the 
system will achieve an equilibrium state where Coriolis, pressure and centrifugal forces are 
in balance. Equilibrium density and potential vorticity are given by 

Pf   =   ~*-ßTz 

2    Rß,52p? 
4SKSrSz' 

with 

3   S   ,/! + *£ 
r or 

v   ^   |[5-1] 

Ar   dr 

Knowledge of one variable, p(r, z), is enough to specify the whole system. This final state 
is related to the initial state through the net displacements felt by each Lagrangian water 
parcel. Non-dimensional displacement variables are defined as 

C(rf,zf)   =   rf-ri (6) 
■>l(rf,zf)   =   zf-Zi. (7) 

These parcels conserve their density and potential vorticity values during adjustment 

pf{r,z)   =   pi{r-C,z-ri) (8) 

qf{r,z)    =   qi{r-C,z-rj). (9) 
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Figure 1: Pre-adjustment density field used for numerical calculations. The full density field 
is shown in (a), the density anomaly in (b), and a vertical profile at r — 0 in (c). Also shown 
in (c) is a reference linear stratification profile. All values are non-dimensional. 

Plugging forms for Pi,p/,qi,qf into equations (8) and (9) gives us two equations and three 
unknowns (p,C,??)- The final equation comes from requiring that the adjustment be incom- 
pressible, or equivalently that the Jacobian of the lagrangian transformation is identically 
one: 

r j  5r f Szf Szf 6rj 
(10) 

where r*, ry, Zj, zj can be written in terms of £ and 77 following equations 6-7. As McWilliams 
suggests, an iterative method is necessary to solve the non-linear set of equations 8-10 for 
p,(,7y. There are only two free parameters in this system, TQ and ß, which control the aspect 
ratio and strength of the initial anomaly, respectively. Physically, ro = 1 corresponds to an 
anomaly with aspect ratio f/N. Larger ro corresponds to a flatter anomaly and vice versa. 
The anomaly strength is controlled by ß, which ranges from 0 (no anomaly, or background 
stratification) to .5 (minimum of zero stratification). Figure 1 shows an initial density field 
with ro = 1, ß = |,the associated density anomaly, and a profile of density at r = 0 (with 
linear stratification for comparison). These values of ro and ß will be used as a good first 
estimate. 

We numerically integrated solutions to equations (8), (9), and (10) x. Boundary conditions 

Numerical integration was done using routines AVINT and HSTCYL, available from the NIST Guide to 
Available Math Software 
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Figure 2: Equilibrium solutions for the density anomaly (a) and angular velocity (b). 

r?,C,P->0 as r,z ->■ 0 

at 

at 

r = 0 

z = 0. 

are given by 

(11) 

(12) 

(13) 

(14) 

As expected, equilibrium solutions consist of a slumped density anomaly rotating anti- 
cyclonically. Figure 2 shows non-dimensional equilibrium density and angular velocity fields. 
Above and below the main anomaly, there are smaller, cyclonically rotating vortices that 
correspond to regions of enhanced stratification that border the well mixed patch. We ignore 
these smaller vortices for now and hope to come back to them in future work. 

Figure 3 shows profiles at z = 0 of radial adjustment displacements, C, and equilibrium 
angular velocities. Adjustment displacements are largest at the edge of the initial anomaly 
(r = 7*0 = 1), and have a maximum value that approaches 1 as T*O becomes large. Angular 
velocity is roughly given by solid body rotation out to r ~ .5, and exponentially decays for 
larger r. Also shown is an analytical approximation of velocity that will be used in later 
sections. Further dependence on parameters ro and ß is considered by McWilliams. The 
effect of varying these parameters on our diffusion calculations may be discussed in future 
work. 

2.3    Time dependence 

As isolated vortical mode will exist in its equilibrium state until the density anomaly diffuses 
away, another vertical mixing event occurs on top of it, or it succumbs to some type of 
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^   0.5 

Figure 3: Outward adjustment displacements (a) and equilibrium radial velocity (b) at z=0 
for 70 = 1 and ß = .25. Also shown are distances r\ and t2 which are the edge of solid body 
rotation and an effective edge of vortex influence. 

instability or large scale strain. The time scale for vertically mixing an anomaly of height h 
away by a molecular vertical diffusivity Kzm is 

h2 

Kz 
(15) 

A now vortex will on average appear at a particular site with a frequency given by (1). Since 
molecular diffusivity will always be smaller than observed diffusivity, we expect the maximum 
lifetime for vortices will be given by 

T = 1/v. 

For the coastal ocean observed patch size of 2-10 m and observed vertical diffusivity of 
Id" bm2/s, the appropriate dimensional timescale is rd = 1 - 20 days . In non-dimensional 
units. ÜT = .01 — .3. In most cases, significantly less than one rotation is completed. In the 
open ocean, patch heights of 10-50 m and diffusivities of .5-l*10_5m2/s give nondimensional 
UT — .3-15 (All calculations assume Q = .07.) In the later case vortices can exist in 
equilibrium form for many rotations. This difference in the time scale of vortical modes in 
different regions is in itself a major result. We expect that the ways in which vortical modes 
contribute to diffusion may be significantly different in these two situations. Hence, it will be 
a primary goal of subsequent calculations to consider how vortical mode enhanced diffusion 
both qualitatively and quantitatively depends on our choice of r. 

3    Analytical Model 

We now wish to consider the diffusive effects of a field of such vortices. To make our task 
tractable, we incorporate an analytical approximation to the solutions in section 2 into a 
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simple Random Renovating Vortex model that allows us to stochastically approach diffusion 
quantities of interest. We posit a field of vortices, each of which appears in a random loca- 
tion, exists for a set time T, identical for all vortices, and disappears. Associated with the 
appearance of any vortex are instantaneous adjustment displacements £ outward from the 
vortex center. During the subsequent interval r of vortex existence, water parcels follow a 
steady azimuthal velocity field, tt(r). For simplicity, we basically ignore z dependence from 
now on (except when considering vertical shear dispersion). We hope a first order picture 
of the dispersive abilities of vortical modes will emerge from considering the radial depen- 
dence alone. Future work may include a more baroclinic model. The numerical solutions to 
McWilliams equations suggest analytical forms as follows. Let the azimuthal velocity field a 
distance r from the center of the vortex be given by 

The free parameters are ri, the edge of the solid body rotation part of the vortex, QQ, the 
velocity scale, and a, the exponential decay rate for the outer vortex velocity field. Fitting 
this model to the numerical solution shown in Figure 3 yields r\ = .5, a = 1.3, and Qo = .07. 
Also noted on the graph is a distance r%, which we define as a length-scale of vortex influence. 
It should scale roughly with the exponential decay scale, r% ~ 1 + 1/a. For simplicity, we set 
r2 = 2. 

Simplifying further, we assume a parcel at any given location feels only one vortex at 
a time and that vortices do not interact with each other. Despite these caveats, we want 
vortices to be evenly distributed in space, in some statistical sense. Hence, we propose that 
the probability of a vortex appearing within r and r + dr of a given parcel is given by the 
Holtzmark distribution, 

P(r) = \re-^lT^dr. 

Intuitively, this probability is proportional to the area of the strip between r and r + dr, 
multiplied by the probability that there isn't a closer (within a circle r) vortex. The proba- 
bility is normalized using the vortex spatial scale, V2- Finally, we assume that these spatially 
uncorrelated vortices blink in and out of existence simultaneously over units of time r. At 
small scales, the steady flow field of the single, closest vortex will be felt during each time 
interval. For objects of larger scales, several spatially separated vortices may be felt during 
each time step. 

To account for the variability associated with different realizations of vortex placement, 
we ensemble average many quantities of interest. For any quantity which is a function of 
distance to the vortex center, r, we define 

/■OO 

</M> = /     f(r)P(r)dr. 
Jo 

Ensemble averaging can be problematic, as no particular oceanic realization will resemble 
the smoothness of an ensemble average. However, such averaging is necessary to make our 
problem tractable and we hope that the most salient features are preserved. 
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4    Short Times / One Vortex 

Using this model we can consider what happens to a small dye patch during short times, 
in which it feels only the effects of a single vortex. The center of mass of the patch will 
be displaced as a point parcel would be. This displacement is made up of two components, 
the quick adjustment radial displacement and the slow azimuthal displacement from the 
equilibrium velocity field. A patch will also be stretched by radial shear, and for long times, 
and high shear could be wrapped up around the vortex center several times. Finally, the patch 
will be diffusing all this time, both from molecular diffusion and under some circumstances 
from an enhanced horizontal shear dispersion. Each of these items will be considered in turn 
below. 

4.1 Outward Displacements 

The first displacement comes during the adjustment phase and is given by £(r). The ensemble 
average adjustment displacement felt by a parcel will take into account the probability of 
being a given distance away from the closest vortex center and is given by 

(C(r)2>    =   jC{r)P{r)dr (17) 

«   .01 (18) 

where the approximate form was obtained by integrating the numerical C,{r) profile shown 
in Figure 3. As a reminder, these numbers should be scaled by (h*N/f)2 to return to 
dimensional units of m2. Since we don't have a good analytical approximation for £(r) and 
since it doesn't vary with the main parameter of interest, r, we aim for just an order of 
magnitude estimate. 

4.2 Azimuthal Displacements 

The average azimuthal displacements felt by a parcel moving around a vortex will depend 
not only on the distance to the vortex center, but also on the length of time r it has to move. 
For a given r and r, the displacement is shown in Figure 4 and is given by 

I2   =   2r2[l - cos(fi(r)r)] 
roo 

(Z2)    =     /    P(r)2r2[l-cos (Q(r)r)]dr. (19) 
Jo 

With ft(r) given by 16, it is difficult to solve for (I2) analytically. However, there are a 
few limits of interest that are more approachable. For small vortex lifetimes, we can Taylor 
expand(19) in powers of (£2r). 

(I2) « y>0T)2w4(7n
1C'1  f°r3e-(^)2e27lQ(ri-rW. (20) 

i^x (2n)!     Jn 
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V r 

Figure 4: Azimuthai distance traveled during a time r by a particle a distance r away from 
the center of the closest vortex (V). 

Taking only the first expansion term and integrating gives 

(I2) « 2(S20T)V W2) r> (21) 

where we define 

r   = ^[V^ar2e
Q2r'+2ari+(ri/r2)2(3 + 2(ar2)

2)(erf(- + ar2) - 1) 
4 r2 

+2«S»2 ari + (ar2)
2 + l)]. (22) 

The upper bound on (19) is obtained by noting that 

1 - cos [n(r)r] < 2, 

and thus 

{l2)<%rl+rl)e-^)2. (23) 

A numerical solution to equation (19) together with the limits given in (21) and (23) is plot- 
ted in Figure 5a. The outward displacement magnitude, (2, is also plotted for reference. 
Figure 5b shows expected squared displacements divided by r, which is related to the dif- 
fusivity expected for a random walk process of given step length. For increasing r, average 
displacements approach steady values, but expected diffusivities peak and then decline. 

The relative importance of azimuthal versus radial displacements depends on the magni- 
tude of r. From Figure 5, the two effects achieve equal magnitudes for Q,T ~ .6. In coastal 
areas, we expect outward displacements to be more important, and vice versa for the open 
ocean. More precisely, the true ensemble average displacement is {(I + C) ), which is even 
less analytically tractable. But since 

<*2> + (C2)<((z + C)2>, 
calculating them separately gives us an upper bound on average displacement magnitude. 
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Figure 5: Numerically integrated average squared displacements along with analytically cal- 
culated limits are shown in (a). Also shown are adjustment displacements squared for com- 
parison. Random walk diffusivities based on such displacements are shown in (b). 

4.3    Azimuthal stretching 

While a dye patch moves around a vortex center, it is sheared by radial gradients in velocity. 
The direction of shear is likely to be different in different periods of time r. Hence, in 
calculating stretching we must consider not only the distance to a vortex center but also a 
dye streak orientation with respect to a vortex. The increase in length of a small line element 
during one time interval T is shown in Figure 6 and given by 

dfi(r) dft(r) ^ = fi = [j + Tr^LL sin(2^) + (rr^^ cos <j>f" 
dr dr 

Ensemble averaging must be done over r and <j>. We assume that <p is evenly distributed 
between 0 and 2n. After N period of length r have passed, a streak of initial length SQ will 
have grown to 

(4)    =4    K(6s(rA)%)r]n 

= Sn [(1 + V(r 
6ü(r) 

))r]n 

2 v    Sr 
= S2     e-"(n/r2)

2
[1+ra2(noT)2]n_ 

Equation (24) can be written in a simple exponential form 

(24) 

<^> = e**, (25) 
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Figure 6: Stretching of a line element. 

Figure 7: Exponential stretching rate felt over many vortex lifetimes. 

by defining 

7^[ln(l+ra2(fior)2)-(^)2]. 
IT 12 

(26) 

One might note the similarity of this to the Lyapunov exponents calculated for the Random 
Renovating Wave model developed in the principle lectures. The stretching rate, 7, is plotted 
in Figure 7 as a function of fir. 

4.4    Diffusion/Shear Dispersion 

As a dye patch stretches and moves around a vortex center, its area will increase due to hori- 
zontal diffusivity. Molecular diffusion in a sheared velocity field is enhanced by the interaction 
between horizontal or vertical shear and a background horizontal or vertical diffusivity. In 
a steady shear field, this interaction leads to an anomalously fast diffusion at large times[4]. 
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In an oscillatory flow field, the anomalous diffusion of steady shear is appropriate only for 
time-scales smaller than the oscillation time. Over several periods, diffusion regains a Fickian 
character, with an enhanced effective diffusivity which is averaged over the oscillation time 
of the anomalous diffusion. Young et al. considered the vertical shear associated with typical 
open ocean values of the internal wave field and found that horizontal diffusion was enhanced 
over it's molecular values by a factor of N2/f2. Our flow similarly contains a finite time 
scale. In our case, shear is steady for the vortex existence time, T, after which it may change 
direction and magnitude. However, unlike the Young et al. model in which the advective 
solution returns to it's original state at the end of each oscillation, our flow is circular within 
each time period. Therefore, Rhines and Young's work on two-dimensional dispersion for 
closed streamlines is also helpful[ll]. The shear in their case is radial shear of a circular 
flow. To get the best shear dispersion estimate for our problem, we start with the Rhines 
and Young approach and add a vertical component of shear and time dependence. 

Following their approach, we start with the advection diffusion equation for concentration, 
9 in a steady velocity field. For a circular velocity field with azimuthal velocity given by 

-u^ = Ü(r,z) (27) 
r 

and distinct vertical and horizontal diffusivities, the governing equation is 

9t + ne^ = KH[^{rer)r + ^9H] + KZ9ZZ (28) 

If we assume that there is an independent internal wave field with a faster time scale super- 
imposed on our vortical mode field, a plausible relationship between KH and Kz is given by 

[4] 

N2 

P 
We assume the solution can be written as a sum of components with different azimuthal 
wavenumbers, each of which is given by 

KH = -^Kz. (29) 

9   =   A{r,z,t)ein* (30) 

4>   =   <j>-Q{r,z)t. (31) 

Plugging (30) into (28) and grouping terms gives an equation for the rate of concentration 
change in the framework of the advective solution 

At   =   KH[l(rAr)r + ^A} + KzAzz (32) 

-i{KH[-{rdr)r + 2Arnr) + KZ[AÜZZ + 2AZÜZ]} 
r 

-{KHACl2r + Kzn
2

z)}, 
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Figure 8: Non-dimensional magnitude of vertical and horizontal shear from the full numerical 
solutions for an equilibrium vortex velocity field. 

with 

Q, = nt£l. 

The rhs terms of (32) are grouped by powers of (ntCt), which is physically related to 
distance traveled around the vortex center. Analysis in section 2 indicated that oceanic 
vortical modes can have existence times that vary from much shorter to much longer than 
their eddy turnover time such that we are interested in solutions for a range of fi values. 
The first term in (32) is simply molecular diffusion, and in the limit of Cl < 1, this is the 
dominant term. In the opposite limit, Ö > 1, the third term of (32) dominates. This is the 
limit considered by Rhines and Young. Following their analysis, the solution to (32) for large 
Cl becomes 

A^e-\nH*[KH&r+KzSll}_ (33) 

For intermediate values of Ö,, we need to use the full version of (32). Such precision is 
beyond the scope of this paper, and unnecessary to get the sort of magnitude estimates we are 
interested in. The above approximations suggest that for vortices with short lifetimes (coastal 
regions), vortical shear dispersion is not significant, and we can define an appropriate effective 
horizontal diffusivity, Ks which is in this case equal to the traditionally used internal wave 
enhanced value given by (29). In areas with long lived vortices (open ocean), this traditional 
value is likely to be further enhanced by vortical mode shear dispersion. Roughly following 
methods of dealing with oscillatory waves in Rhines and Young and Young et al., we pull 
from (33) an effective diffusivity of the form 

Ks~-n2T2(KHni + Kzni). (34) 
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Figure 9: Schematic of different growth rates that characterize tracer distribution. 

KH is given by (29) and Kz is perhaps a molecular diffusivity. Radial and vertical shears 
from the McWilliams model are shown in Figure 8. The reader will recall that these shears 
are non-dimensional and dimensional forms of ti2 and &2 wiu nave a relative scaling factor of 
N2ff2. Hence, the roughly comparable magnitudes shown in Figure 8 indicate comparable 
importance of the two terms in (34). 

All of the abovementioned effects (stretching, shear dispersion, net displacement) occur 
at the same time for a dye patch feeling a single vortex field. To gain some insight into how 
these various effects fit together into a more coherent picture of diffusion, we now turn to 
longer time scales. 

5    Longer Times 

During longer time periods, a dye patch will experience the effects of multiple vortices, both 
because we are considering times greater than an individual vortex lifetime and because over 
long times a patch grows spatially to feel many vortices. As a dye patch is stretched by 
several randomly oriented vortices in turn, it stretches and folds as illustrated in the cartoon 
in Figure 9. There are now two types of diffusion of interest. First, one might like to know the 
size of the bounding circle, designated as Ap in Figure 9. This represents the area in which 
one has a chance of encountering concentrate. As suggested by Garrett, this area grows as 
the separation between discrete parcels in the flow field[3]. The second quantity of interest is 
the actual area occupied by dye, At, which will depend on the stretching rate 7 from equation 
(26). We now approach both these quantities more specifically for our RRV flow field. 
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5.1    Multiparticle Dispersion 

The bounding area, Ap, will roughly grow like the size of a group of discrete water parcels 
initially close together. Qualitatively, the dispersion rate of a collection of particles is a 
function of how close they are to each other. A group of closeby particles will all be feeling a 
similar velocity field and will move more or less together, dispersed only by the small velocity 
differences between their positions. As they move apart, they feel a larger velocity difference 
and move apart more quickly. In our case there comes a point when they are so far separated 
that (on average) they no longer feel the same vortex, at which point their velocities become 
completely uncorrelated. At this point each particle moves in its own random walk and the 
particle separation distance should increase as twice that of a single random walker. 

Quantitatively, the area of a group of particles is described by the second moment, 

i=l i=l 

with 

1   n 

X =      >   x%- 
1=1 

Parcel position X{ at any time t can be obtained by integrating the Lagrangian velocity field 

Xi = xi0+ f Ui{t')dt'. (36) 
Jo 

Plugging (36) into (35) gives 

a     =   cr0 + 
_"_ r /•* "l2 

Ui{t')dtn 

nfel/o 

4ft fuiVW fui{t")dt". (37) 

For our model, t = NT, where N is the number of vortex lifetimes experienced.   The net 
displacement, x^(t), is simply the sum of displacement from each successive vortex 

rt N     rr 
f Ui(t')dt' = J2 f uf\t')dt'. 

Jo fr[Jo 

Next, we simplify by ensemble averaging (37).  Consider how variance increases on average 
during one period 

n i==i L-/0 J 

-{^j^fui^dt' fu^df), n UUJo        Jo 
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which can be re-written as 
i     n 1      n      n 

i=l i=\ j=l 

- sD^-^W1- <38) 

Here (I2), from (19) is the same for each parcel and (klj) is a measure of correlation between 
a pair of parcels and must be summed over all pair combinations. Physically, (38) states that 
the increase in particle area goes like the single particle diffusivity with a correction term 
that accounts for correlation between particles. If all particles are moving with the same, 
perfectly correlated velocity, (klj) = (Z2), then no relative dispersion occurs. In our flow, the 
degree of correlation is a function of the particle separation, (klj) — T\(o\_^j\. 

To make this calculation more tractable, consider the evolution of distance between only two 
particles. Let (£2) = X2 — xi be the distance between two parcels. The ensemble averaged 
increase in (£2) during any single time period is given by 

(d)-(d-1) = 2(/2)[l-ffii^] (39) 

For two parcels a distance £ apart, (klj) is given by 

/oo    p2n 
/     P(r)2r(r + 6r) y/[l - cos (Q(r)r)][l - cos (ft(r + Sr)r)]d<ßdr, (40) 

with 

£2 £2 
5r = \l — + r2 - \I —— £r cos(^) + r2. 

4 V 4 

We define a spatial correlation function 

_ (klj) 
(I2) *y = ^. (41) 

As is, this representation assumes that as particles grow further apart their velocity becomes 
less correlated but they still feel different parts of the same vortex field. It is more realistic to 
say that significantly separated particles will feel the effects of uncorrelated vortices. From 
Section 2, the lengthscale of vortex influence is r^- We manually impose this constraint 
by defining a new correlation function in which particles greater than r2 away feel different 
vortices 

#(o = (iimm, (42) 
where /(£) is some function that goes from 1 at r = 0 to 0 for large r. There are several 
forms /(£) can take. We could impose that correlation abruptly goes to 0 when the distance 
exceeds r2, so /(£) takes the form of a Heavyside step function 
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Figure 10: Two different possibilities for multiparticle spatial correlation. 

A(£) 
1    r <T2 
0   r > T2- 

(43) 

This is straightforward but a little abrupt. Another possibility is to make the transition very- 
smooth by assuming that the probability of nearby particles being in different vortices goes 
from 0 to 1 linearly: 

A(0-i-^ (44) 

Both possibilities for H' are plotted in Figure 10, where Rij has been numerically cal- 
culated from (19) and (40) for different values of £. Reality is likely to be somewhere in 
between. The second choice has the advantage of a continuous derivative. It also provides 
an approximate lower bound for parcel spatial correlation and hence an upper bound for 
diffusion rate. We will use the form in (44) from now on. 

The real quantity of interest is the time evolution of £ for particles initially separated by a 
distance £o- We numerically integrate (39) for different values of £o and T and plot the results 
in Figure 11. For reference, we also plot the separation growth expected for uncorrelated 
particles based on (19) alone, assuming (klj) = 0. At large times, particle separation goes as 
twice the single particle dispersion rate, (I2), as expected. For a given value of T, the initial 
particle separation, £o> controls the time it takes to settle into linear growth, but not the 
qualitative nature of the transition or any aspect of the large time solution. For different 
values of r, several things change. First, the final diffusivity (the intercept of our log-log 
plot) is different, as expected from the relationship in Figure 5. Second, the transition to 
linear growth has a different character. For r = 1,10, the initial growth in (£2) is slower than 
linear, while for r = 100,1000 it grows with a faster than linear growth rate. 
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Figure 11: Squared pair separation distance obtained by iterative integration, r ranges from 
1 to 1000. In all subplots the solid lines represent £0 values of .1,.5 and 1. The dotted line is 
t \H> growth rate expected for uncorrelated randomly walking particles. 
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5.2    Streak Area 

The other way to characterize the growth of a dye streak is by the actual area of the tracer. 
As described by Ledwell et al. and Sundermeyer, the streak will go through an initial period 
of stretching during which it gets thinner, cross-streak gradients get larger and cross-streak 
diffusive fluxes grow. Eventually a balance between stretching and diffusion is reached, at 
which point the streak continues to grow larger, but its width remains the same. This 
equilibrium width is related to the stretching rate 7 (26), by 

A! = y-i (45) 

where Ks is an appropriate horizontal diffusivity (section 4.4). 
After a width is established, the streak area grows with its increasing length 

At   =   (AJ)(1) 

(46) 
V   7 

for some initial length Zo- 

5.3    The Big Picture 

During the initial period of stretching and folding of a dye patch, the containing area Ap will 
be significantly larger than the actual dye area At. However, tracer area grows exponentially, 
(46), and will catch up. Physically, as the tracer area depicted in Figure 9 grows, different 
parts of the tracer streak get close enough together that they start to merge and the tracer 
fills in the area bounded by Ap. From then on, the dye patch is fairly homogeneous, and 
continues to grow in a Fickian manner with Ap. In Figure 12, we plot Ap(t) and At(t) together 
for 7 = .008, r = 100, £0 = •!• We have assumed that both quantities start with the same 
initial area, 

A0 = 

In this case, tracer area is much smaller than the bounding area up until a time üTQ ~ 70, 
after which tracer area grows linearly as Ap. 

6    Ocean comparisons and Conclusions 

Our goal in this work has been to evaluate whether sub-mesoscale eddies could make a 
significant contribution to horizontal diffusion in the coastal or open ocean. Because it was 
not immediately apparent which of the potential stirring and mixing abilities of vortical modes 
would be important, we undertook a step by step look at the time dependent diffusion of an 
initially small patch of passive tracer. To get a realistic form for a single vortical mode, we 
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Figure 12: Growth rates for multiparticle dispersion and tracer area. They merge 

looked at numerical solutions to the non-linear adjustment of an isolated density anomaly, 
and incorporated an idealized version of these results into a simple stochastic renovating 
vortex model. Most of the qualitative features of qualitative tracer evolution we discuss are 
the same as those described by Garrett for a two-dimensional turbulent field. Using our 
analytical model, we're able to calculate exact values for some of the stages he talks about 
more qualitatively. The picture that emerges is that at space and time scales of the same order 
of magnitude of vortex scales and lifetimes, a patch of dye twists and folds with exponentially 
increasing area, filling a larger bounding area governed by the multiparticle dispersion rate. 
At larger space and time scales, the tracer area grows in a fickian manner with the effect of 
vortical modes incorporated into an effective diffusivity. 

In a realistic ocean, the added complexities of stirring processes operating on a variety 
of time and space scales will prohibit comparison of the distinct stages of diffusion we've 
discussed. The most practical results to emerge from our work are estimates of an effective 
(Fickian) diffusvity, and bounds on when such a diffusivity is appropriate. In the coastal 
ocean, vortex lifetimes are likely to be shorter than their turnover timescale. In this limit, the 
displacements, stretching distortion and shear dispersion associated with azimuthal motion 
may not be as important as displacements from the initial vortex adjustment. We calculate 
a non-dimensional effective diffusivity for this random-walk like motion of .01 (Figure 5.) To 
redimensionalize, we multiply by {N2hlfß)/f2. Using N = 10 cph, / = 1 day-1, ß = .25, and 
/i* = 3-10 m, we get dimensional diffusivities of up to .1 m2/s. While this is an enhancement 
over the estimates from shear dispersion alone, it is still an order of magnitude smaller than 
observations. In the open ocean, vortices may exist for many rotations, in which case the 
mechanisms of Section 5 are more appropriate. Using /i* up to 30 m, we calculate dimensional 
diffusivities of order 1 m2/s, the same order as observations. This value will be appropriate 
only after a dye patch has grown to scales larger than the vortex scale (approximately an 
internal Rossby radius).   Our analysis suggests the time necessary to get there is highly 
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dependent on the initial dye patch size and the vortex lifetime (Figure 11). 
There are numerous additional complexities that could be included in future work. First, 

given the importance of the vortex lifetime, r in our results, we should try to get better es- 
timates of realistic ocean values. We should consider the potential effect of instabilities as a 
limit on expected lifetime. Second, we could consider a model with a continuous distribution 
of vortex lifetimes. Third, we could use a the full baroclinic vortex form suggested by the 
numerical adjustment results. Such an approach would include the effects of cyclonically ro- 
tating vortices, which could significantly enhance stirring motions. Finally, we could compare 
our analytical results with full numerical simulations, such as those being performed by P. 
Lelong [12]. 
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Stationary vortices in a Keplerian shear flow 

P. Garaud 

1    Introduction 

1.1    Planetary formation 

Science in it's most general definition began as a quest to answer the fundamental questions 
on the origin of humanity and it's relation to the surrounding Universe. One of the keys 
to understanding the origin of Life is the mechanism of formation of our own Solar system, 
and especially the formation of planets. This subject has gained a new interest in the past 
few years with the discovery of giant planets orbiting some of the nearest neighbouring stars. 
.The generally accepted theory of planet formation consists in the following steps: 

• Due to the onset of a large scale gravitational instability, the core of a dense molecu- 
lar cloud collapses into a protostar; the conservation of its initial angular momentum 
results in the gradual flattening of the collapsing gas into an accretion disk around the 
protostar. 

• The gas in the accretion disk has two components: a molecular gas, composed mainly 
of H2 and other small molecules, and a dust gas, composed of particles of sizes ranging 
from a few microns to a few centimeters. The interaction between these components 
takes place mainly via Stokes drag. The vertical stratification in the accretion disk 
relies on the balance between pressure and the vertical component of the gravitational 
force. As a result, since the thermal pressure of the dust gas is much smaller than that 
of the molecular gas, the dust settles into a very thin disk within the accretion disk. 

• The dust particles then coalesce into larger and larger grains, up to sizes of a few 
kilometers; as they grow in mass, the dynamics of these "planetesimals" gradually 
decouple from that of the molecular gas. 

• The planetesimals continue aggregating into planets. Giant planets may accrete some 
of the molecular gas still left in the accretion disk. 

However, although the dust aggregation into larger grains is known to take place, the 
exact mechanism is poorly understood. The time-scale for this aggregation process has an 
upper limit of a few Myr (106 yr) set by the evolution of the protostar into a T-Tauri star. 
Indeed, T-Tauri stars are observed to have intense magnetic activity and strong stellar winds 
which scatter all non-gravitationally bound dust and gas into the interstellar space. Random 
encounters of the dust particles due to thermal agitation is not sufficient to account for the 
growth of the dust grains into planetesimals within the T-Tauri evolution time-scale. 
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In an attempt to remedy this problem, it has been shown in the case of two-dimensional 
barotropic turbulence in a rotating fluid that dust particles may migrate to the center of 
anticyclonic vortices [1]. They concentrate there for the lifetime of the vortex. As a result, 
provided the vortices are long lived, it is possible to greatly increase the aggregation rate, and 
reach the required sizes of dust grains before the T-Tauri phase. However, it is not yet clear 
whether a Keplerian flow can undergo self-sustained turbulence. Indeed, from the Rayleigh 
inflexion theorem, we see that the accretion flow is stable to linear shear instability, and the 
latest numerical simulations seem to indicate that the primordial solar nebula may be stable 
to nonlinear hydrodynamic instabilities too [2]. It has been shown that even a very small 
magnetic field may trigger some linear instability [3], but in this case it is not clear how the 
magnetic forces would influence the existence or stability of the vortices. 

Although the problem of hydrodynamical stability of the accretion flows is not yet fully 
understood, there has been evidence in two-dimensional decaying turbulence for the sponta- 
neous apparition and the persistence of vortices on time-scales much larger than the turnover 
time-scale. There is therefore hope in the Keplerian case that even if the turbulence is not 
self-sustained, the initial anisotropies in the flow are large enough to create these long-lived 
vortex structures. The work presented in this report is an attempt at finding steady state 
solutions for vortices in Keplerian accretion flows. If these solutions exist and are found to be 
stable, they would explain the persistence of the vortices, and therefore solve the remaining 
dust aggregation problem. 

1.2    Mathematical setup 

We will always take u to be the velocity field, ip the corresponding stream function and ui 
the potential vorticity. In the work presented here, we have chosen to simplify the problem 
greatly by considering only 2-dimensional, incompressible fluid motion. As a result of this 
approximation, we can now write 

u = -Vx(i/>ez) = ez x V^ and w = wez = V2ipez . (1) 

We will consider the vortex to be a perturbation on the main Keplerian accretion flow. 
The unperturbed shear flow UK is given by the Keplerian rotation law, which describes the 
equilibrium between the centrifugal and gravitational forces: 

\GM- (0\ UK = vKeg = y -jjTe0 (2) 

where R is the distance from the central accreting object of mass M. The corresponding 

vorticity is WK = Wi$f • The vortex studied will be placed at a distance RQ from the center, 
at 6 = 0. In the following work, we will often have to change from the polar coordinate system 
around the central mass, (R,6) to that around the vortex, (r, ip). We chose to take ip = 0 
where 0 = 0; this change of coordinate is represented in Fig.l. 

The perturbed vorticity and flow are represented by dashed quantities. The equation for 
the evolution of the vorticity perturbation is 

^ + u • Vw = ^ + uK • W + u' • VWK + u' • W = 0 . (3) 
ot at 
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Figure 1: Change of coordinate 

This can be rewritten in cylindrical coordinates around the vortex patch as 

du' ldu/__ldcjKdf_     lö^öa/ _ löa/ö^ _ 
dt r dip      r dr   dip      r dr dip      r dr dip 

The vorticity perturbation and the perturbed stream function are related by 

J = VV . (5) 

1.3    Dimensionless quantities 

In order to simplify the expressions, we will now introduce the following new units system: 

M = l, -Ro = 1, and T0 = 1 (6) 

where To is the revolution time around the central object at radius Ro, namely To = 2iry ojfc 

As a result, the Keplerian velocity becomes VK = 2TTR~
1
'

2
. 

1.4    Change of reference frame 

We will be looking for vortex solutions where the vortex is rotating around the central star 
with a Keplerian velocity. Steady state solutions then only have a meaning when taken in 
the rotating coordinate frame. We use a frame of reference rotating with velocity which is 
that of the center of the vortex patch. The relative shear around this point is given by 

vK(R) = 2TT(JR-
1
/
2
 - R) (7) 

The corresponding stream function is 

^K(-R) = 27T (^{R1'2 - 1) - \{R? - 1)) (8) 

Without loss of generality, we have chosen V'K(I) = 0- The Keplerian vorticity and its 
gradient are given by 

uK = TriT3/2 - 47T, and ^ = 4^"5/2 (9) 
dR 2 
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2    Top hat vortices in a Keplerian shear 

In this section we will use an approximation which consists in neglecting the background 
Keplerian vorticity gradient in the vorticity equation. This approximation is valid primarily 
for small vortices. In this case, there exists a solution of the steady state problem with u' 
piecewise constant. We will therefore try to find solutions of the type 

{J = vV   =   q inside the vortex patch 

=   0 outside the vortex patch (10) 

Equation (10) can now be rewritten as 

V2l/ = 4H(a + ri{tp)-r)    ' (11) 

where a is the average radius of the patch, and 77 is the departure from that average. We will 
linearize this equation by considering 77 < a, so that 

VV = qU{a - r) + qr){y)6{a - r) + 0(T?
2
) (12) 

Replacing 10' in equation (4) by this ansatz, we get the contour dynamics equation (pro- 
vided we neglect the term involving the vorticity gradient) 

dr).     vK(r) dr)       Idip'dr)       1 dip' , n , 2\     n ni\ _ij + _ü^_i£ + —Z--L& + ___ (<5 + V5 ) + 0{rf) = 0 (13) 
dt r    dip       r or dip       r dip 

where S = 6(a - r). Taking the steady state part of this equation, we integrate it once across 
the boundary r = a to get 

?£. + %.)      *L+*fL + Otf) = 0 (14) 
dr        dr ) r=a dip      dip 

The condition for no fluid to enter or leave the vortex (which defines it as a localized vortex 
patch) is that the total stream function should be constant along the boundary 

^(tfK+lfl + 0{rf) = 0 (15) 
1 

so that if we integrate equation (14) along the boundary, we get 

^K(a) + ^(a)+(^ + ^)r_ar? = ^ (16) 

where ipv is a constant. Since this implies that the velocity field is everywhere parallel to the 
boundary, there is no net force exerted on the vortex.. 
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2.1    Solution to zeroth order 

Let ij}c be a solution of the zeroth order in rj of equation (12): 

VVc = qU{a - r) . (17) 

We can integrate this on either sides of r = o, which yields the solution 

qr 
i,c{r)   —   ~A—1" cilnr + C2 for r < a 

=   C3 In r + C4 for r > a (18) 

Regularity at the origin requires that c\ = 0, and we can choose C4 = 0. Note that the stream 
function diverges at infinity, but the velocity field is well behaved. Matching the function 
and its derivative at r = a yields 

,2 

(19) 

qa 
=   C3lna 

qa C3 

2 a 

so that finally, we have 

A(r) = 
qr2     qa2 

_X + ~2~ (*.-!)] U(a - r) qa2, 
2  : (20) 

2.2    Solution to first order 

If we define ip' = i/)c + ip, subtracting equation (17) from equation (12) yields 

V2^ = qv{f)S{a - r) . (21) 

Write that ^ = J^in'ipnem'p, and 77 = $2n%emv, then equation (21) becomes 

;l(^)-^-^<-'> (22) 
so the solution will be of the kind 

Mr<o)   =   ai(r/a)W 

V>n(r>a)    =   a2(r/a)-lnl (23) 

provided n ^ 0; we have implicitly imposed regularity of the solutions at the origin and at 
infinity Matching the solution at r = a requires that ai = a^- Finally, integrating equation 
(21) across the discontinuity, we get 

dr 

For n^O, this condition yields 01 = 02 = — ^fef- We therefore get 

^ = - E ffj (V/a)H^(« - r) + (r/o)-Ww(r - a)) #»* (25) 

The case of n = 0 is discussed in the next session. 

= qVn (24) 
a- 
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2.3    Matching the vortex patch to the Keplerian flow. 

The function 77 is given by equation (16), which corresponds to the requirement that the 
shape of the vortex patch remains steady. We rewrite it here 

i,K{a) + r,^-(a) + A(a) + ^{a) + j,(a) = ^ + 0(V
2) (26) 

The V» term, as we saw, is of first order in 77. This equation provides all the 7yn's but 770. 
A last condition arises from the normalization of the total vorticity of the patch, which is 
equivalent to fixing the area of the patch. If we require that the area be A = na2 (i.e. the 
area of a corresponding circular patch), then we have 

A   =11       rdrdy> = / /; dp = n{a + 770)2 + TT V T?
2 

Jo    Jo Jo * n>0 

=   „(a + rjof + Otf) (27) 

The normalization condition on A is therefore 770 = 0, and is valid to first order in 77. The 
only terms left to evaluate are V"K(G) and r}-^{a). 

2.3.1     The linear shear case 

Before starting on the Keplerian shear flow case, let's treat the simple linear shear case; in 
any case, one would expect that the results of the linear shear case are recovered in the limit 
where the size of the vortex patch a is much smaller than the distance of the patch to the 
center of the Keplerian shear flow R. 

A linear shear is given by u^(R) = s(R - 1), (taking the velocity to be 0 at the position 
of the center of the vortex patch) so that the corresponding stream function is iph(R) = 
f {R - l)2. Since, to a first approximation R = 1 + r cosip + 0{r2), we have VLM = 

§r2 cos2v? = ^(e2^ -2 + e~2iip). The matching condition then yields 

££!(e2iv>_2 + e-*v)    +    f-^^e^) ^l(e2^-2 + e-2^) (28) 

intp 11"-       X  ' 9%a 

^ 2\n\ 6      " % 

An important point is that the first term in that expression is potentially much larger 
than the other ones. In order for this term to be balanced, one requires that 77g « sa. Since 
77 <C a, this condition is equivalent to q > s. Hence this work is only valid for vortex patches 
with vorticity much larger than the local Keplerian vorticity. We also see that the second 
term in that expression is of order of 77/a compared to the other ones, and will be neglected 
in the coming analysis. As a result, if we take /Q

27r (28) e~1Tn,pd(p/2ir, we get 

qa2 so2 sa ,    . 
V'T? = -jj- Ina - — and 77±2 = -— (29) 
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and all other r]n are zero. We see again that the condition 77 -C a is equivalent to the condition 
s<g. We therefore have 

SCL 
rj(<p) = cos(2y) (30) 

Q 

To first order in 77, this corresponds to an elliptical shape1. 

2.3.2    The Keplerian shear case 

As a first approximation, let's take R = 1 + r cos<p. This approximation will be discussed 
later. In this case, if we define 

i>K{a) =^K{l + a cosy) = J2 %JnV (31) 
n 

w have, from the matching condition given by equation (26) 

1>r,   =   if + ^-lna (32) 

^    =        M^' n for H > 1 (33) qa[l - \n\) 

Because of the symmetry in ip —>• —93 of the Keplerian shear flow, we know that 1% = !?„, 
which is confirmed by expression (33). The case n = 1 corresponds to a translation of the 
vortex along the 0-direction (azimuthally around the central mass), so that 771 can always 
he taken to be 0 by an appropriate change of referential2. The I„ are given by 

I*    =   f^KWl + acosrte-™^ (34) 

=    2vr / 
Jo 

2(\/l + a cosy - 1) - -(a2 cos2y + 2a cosy) 
Li 2TT 

In order to solve this integral, we need to expand it as a Taylor series (which is necessarily 
convergent since we have a < 1). So 

Jn
K = -Tra2 r cos20e-^ + 4TT /* T ^V cosV"^ (35) Jo 2TT J0    f£     k\ 2vr 

where we define (i^)fc = i/(^ - l)(...)(f — k + 1), and (i/)o = 1. Then 

1% = -™2 J2,n + 4* £ ÜfV^Ct, (36) 
,    fc!        2k   -2- 

fc=|n| 

'Indeed, the equation for an ellipse being r = by/l — a cos2(p/e , if the eccentricity e is very small, then 
r a 6(1+ e cos20/2a) = r0 + ff cos(2v?). 

2Indeed, let's take the example of the displacement of a circular patch: the equation for a circle centered 
on x — T] (instead of x = 0) is (x — rj)2 + y2 = a2. Expanding this to first order in rj and changing coordinates 
from (x, y) to (r, <p), we get r = a + ij cosy;, which corresponds to an n = 1 deformation mode. 
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Figure 2: On the left: steady-state shape of the vortex patch, for a = 0.05,0.1 and 0.2 in the 
Keplerian shear case, with the approximation R = 1 + r costp. In all 3 plots q = 1. On the right: 
Ratio of the 3rd and 4th order of deformation to the 2nd as a function of a. 

where the C* are the binomial coefficients. Finally, we compute the deformation by adding 
the Fourier coefficients as 

^(v) = XI27?n C0S(n(P) (37) 
n>0 

Fig. 2 present the results for some values of a and q. One can however guess (and check) 
that: 

• The larger g, the smaller the deformation from a circular patch. Since q only appears 
in the "normalization" of 7? rather than in the relative amplitude of the modes % of 
deformation, changing q only amounts to changing the total amplitude of the deforma- 
tion. In the following plots, a small value of q was chosen on purpose to let the vortex 
deformation be more easily identifiable. In reality, we should take q > 1 to have the 
required 77 >C a. 

• On the other hand, the value of a will influence the relative importance of the rjn, and 
will dictate the shape of the vortex. The larger a, the larger the higher order modes of 
deformation, and the more difficult the convergence. 

We can see in Fig. 2 that for a (a/Ro in real units) small, the dominant term in the 
deformation 7? is 772, the ellipsoidal term. The ratio of the 3rd and 4rd order deformation 
modes to the second is also shown. As we can see from this plot, for a/R0 < 0.1, the shape 
of the vortex patch is very well approximated by an ellipse. 
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2.3.3    Validity of the approximation R = 1 + r cos(p. 

The full expression for R is 

R = y/l + r2 + 2r coscp « 1 + r coscp + 0(r2) (38) 

therefore the approximation is only valid for r <C 1.  Let's study again the example of the 
linear shear case: this time, we have 

ipL(R) = t(R - l)2 = £ (2 + r2 + 2r cosy> - 20 + r2 + 2r cosp) (39) 

Following the same procedure as before (Taylor expansion + Fourier decomposition) we can 
obtain the Fourier coefficients of iph{o)'- successively 

ipL(a)   =    -s^ja2 + 2a cos(p)k (1/2)* 
fc! 

fc>i 

J2 0^- J2 C^ak+P2k-P cosfc-^ (40) 
fc>l p=0 

so that 

4L = -E^E2fc-p^fc+p^£L,   • (4i) 
fc>l '      p=0 2 

The r/n are given by equation (33). The resulting steady-state shape of the vortex patch is 
shown in Fig.3 This deformation is due to the fact that the flow is not a plane parallel flow, 
but rather curves around the central accreting object. When the size of the patch is large, 
this curvature acts to deform it. 

To conclude, if we interpolate the linear shear results to the Keplerian case, it is likely 
that the approximation will fail for a > 0.1. The full expression for R should therefore be 
kept. The results for the Keplerian shear, using equation (38) in expression (35), are the 
following: 

k 

JK = _47r £ ^ £ a^^CjGt^ (42) 
fc>l        '      p=0 2 

The corresponding vortex patches are presented in Fig. 4, for both a cyclonic and an anticy- 
clonic vortex. 

2.4    Discussion. 

Assuming that the background vorticity is constant, it has been possible to calculate the 
steady state shape of top-hat (i.e. constant piece-wise) vortices. In a linear shear, it is a well 
known result that the shape of the vortices should be elliptical [4]. For very small vortices, 
for which the variation of the background vorticity is negligible, we could expect, and saw 
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Figure 3: On the left: steady-state shape of the vortex patch, for a = 0.1,0.2 and 0.4 in the linear 
shear case. In all 3 plots q = 1. On the right: relative amplitude of the 3rd and 4th moment of 
deformation compared to the second, for varying values of a. 

that the vortices were mainly elliptical in shape. However, for larger vortices3, there is a 
systematic variation from elliptical, and this has two main causes: firstly, the curvature of 
the Keplerian flow around the central star, and secondly (and this is the dominant effect), 
the background variation in the velocity field. The next step in this analysis would be to 
consider the stability of these vortices, in a similar way as has been done by Meacham et 
al.[5]. This is not in the scope of this project. 

3    Including the main flow vorticity gradient 

In the previous section, the vorticity gradient term in the vorticity equation (4) has been 
neglected in order to allow solutions with piece-wise constant vorticity. However, including 
the vorticity gradient term forbids this solution. In particular, when the nonlinear terms can 
be neglected, we will see that there exist stationary wave-like solutions: the lee waves. These 
have to be taken into account in their interaction with the vortex patch. In the following 
work, we will therefore study two main regimes: 

• Far from the vortex, the perturbation induced by the vortex is small; the vorticity 
equation becomes a linear equation for stationary lee waves. The far field of the vortex 
can then be obtained by studying the lee waves which are created around a point vortex. 

• Near the vortex, the perturbation is much stronger than the Keplerian flow. By rescal- 
ing the coordinate system to emphasize the region near the vortex, we will see that 
to a first approximation, the gradient of the vorticity can be neglected.   This zeroth 

3 In fact the approximation of constant vorticity around the vortex is no more valid for the larger 
vortices anyway. 
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Figure 4: Deformation of a vortex patch in a Keplerian shear for a = 0.05,0.1,0.2, and q = 1. 

order solution resembles closely that presented in Section 1 for the linear shear. The 
deformation of the vortex patch is then given by the next order in the approximation. 

In the steady state, equation (4) becomes 

J(^K + ^',WK + W') = 0 (43) 

where the Jacobian J is, in the cylindrical coordinate system 

( ' >~RdRde   RdedR 
(44) 

Let's now use the new coordinate system 

9   =   -X 

R   =   exp(y) (45) 

The Keplerian velocity and stream function in this new ordinate system is then (using equa- 
tions (7), (8), (9) and T = 3TT) 

2r 
vK 

21    (   _1Y y\ 

2 2) 

(46) 

(47) 

WK     =     Te   2* ~ (4^) 

The Jacobian equation then becomes (dropping the primes on the perturbed quantities) 

: 0 (49) 

2r /   iY 

^  =  T  2e2     2 
r _3y   4r 
—e   2  
3 3 

where we now have J(A,B) = dxAdyB — dyAdxB, and the Laplacian operator is V2 = 
dxx + dyy- 
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3.1    The far field: a linear approach 

3.1.1    Assumptions and equations 

We will assume that the perturbation is much smaller than the Keplerian stream function. 
This should be valid everywhere but around Y = 0, where *0K vanishes. Equation (49) implies 
that 

-e  2Y - —- + e lYV^V = F 
2r /  .V   l 2Y   3. 

(50) 

The function F is not unique. This means that there are many steady state solutions to the 
problem we are considering, each of them depending on the type of forcing, the symmetries 
required, the behaviour far from the vortex. We must choose the function F carefully to 
represent the physics of the system considered. We want to represent the presence of a small 
vortex patch, and its influence on the Keplerian accretion flow. Far from the vortex (the 
region considered here), we hope that there exist solutions in which the disturbance caused 
by the vortex is very small, so that the Keplerian stream lines are merely displaced by a small 
amount. Taking these two ideas in consideration, we see that a possible prescription for F is 

F(ipK + if,) = FK(TPK + ,J>) + Q6(X)S(Y) (51) 

where Q is the total vorticity of the patch, and the function FK is defined as 

,     x r -ay     4r      T-, —   2e*Y - -e2Y - - 
3   V 2 2 

(52) 

Putting this ansatz back into equation (50) we get 

e-2YV2^   =   FK(-I1>K+IP)-FK(TPK) + Q6(X)5(Y) 

«   i>F^K) + Q5(X)6(Y) (53) 

since we assumed that ip <C ipK-   The function F^ can easily be obtained by taking the 
Y-derivative of equation (52), and is 

^=s=-ie"l!,(eiy-e2r) (54) 
dY 

We finally get 

(efy - l) V2V = \^ + Q6(X)S(Y) (eiK - e2Y) (55) 

Note that equation (53) is an equation for stationary waves, the lee waves. 
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3.1.2    Localized solutions to the point vortex problem 

The periodicity in X suggests the expansion tp = Y^m^rn^mX■ The symmetry of the system 
as X -> -X limits the sum to m > 0. In this case, we will have to solve 

(e|y " 1) (^ " ^rn) = \^m + ^5(Y) (dY - e^) (56) 

Asymptotically, we see that there exists solutions to this equation which are localized in the 
radial direction: 

• for Y > 1, we get 

3y fd21pm 2       \        3 et     {^T ~ m*™) * l^m (57) 

This equation can be solved exactly by using the change of variable t = e"y, which 
leads to the solutions 

Tpm = I±lJ\ht) (58) 

For Y > 1, t ->■ 0 so we must keep the J+im solution to ensure the decay of the 
solutions. Note that when m = 0, there is no decaying solution. This will be discussed 
later. 

for Y <C — 1, which corresponds to the center of the accretion disk, the equation becomes 

(^-mVn)«-^™ (59) 

which has the decaying solutions 

3P 
ipm oc exp(A/m2 - —Y) (60) 

when ro^O. When m = 0, we get oscillatory solutions. 

Near the point vortex (X, Y small) the equation becomes 

y^-^m)^m + Y^8{Y) (61) 

By changing the variable to t = aY, we get, for the homogeneous part 

=»2„/, ™2 
^% _ HLTpm - J_v-m = 0 (62) 
dt2        a2V™     2aVm V    ' 
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which corresponds to a Whitaker equation with coefficients K = —l/2a, and /i2 = 1/4 (cf. 
2 

Abramovitz &: Stegun [6]) provided ^ = 1/4.   The solutions are the Whitaker functions 
MK>M and WK7ß such that 

MK,ß   =   e-2H2+flM(- + p-K,l + 2ß,t) 

WKiß   =   e-2H^U(^ + ^-K,l + 2^t) (63) 

where M and U are the regular and singular confluent hypergeometric functions. Since we are 
actually solving the problem of stationary waves in a shear flow, we know that the point at 
which the velocity vanishes is a critical layer for the waves. The singularity of the equations 
near Y = 0 reflects the presence of this critical layer. As a result we expect solutions of the 
kind [7] 

Vv   a   tPi{t) 

i)s   a   tln|t|P1(t)+P2(t) (64) 

with P\(t) = a,Q + a\t H and P-i{t) = feo + M + M2 H near the origin, we know that 
we should take \i = 1/2 [6]. The expansion of the functions near the origin is then 

M, «,1/2 
e-^M(l-*,2,*) = e-^f;L^ 

n=0 
(n!2)n 

(65) 

W, «,1/2 =   e~2W(l-K,2,t) 

e~2*£ 

f(^) M(l - K, 2, t) Int + JP (1
/0,Ky (#(1 - « + n) 

-    Vr(l + n)-Vr(2 + n)) + 
T(-K)   1 

(66) 
r(i-«)*. 

where VT(O) = r'(a)/r(a). We see that in order for WKtß to be well defined, we need to 
choose t positive everywhere, which means taking a+ = 2m for Y > 0 and a_ = —2m for 
y < 0. This also means that the Y > 0 and Y < 0 branches will have different values of K: 

K+ = — l/4m and K_ = l/4m. 
Let's now write the full solutions: 

V>m(Y>0)   =   AM/c+]i(2my)+ß^+ii(2my) (67) 

^m(y<0)    =   CMK_1{-2mY) + DWKi{-2mY) (68) 

Since MK i (0) = 0, and WKi(0) = Wi-*)» tne continuity of ^m across the origin implies 

r(l + l/4m)      r(l - l/4m) 

Integrating equation (56) across Y = 0, we get the jump condition 

dlpn 

dY 

0+ f0- 

o-     Jo- 2Y 2vr 

(69) 

(70) 
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The integral term on the RHS is mathematically ill-defined. However, if we assume that it 
should really be the principal value of this integral, then we can show that this term is 0 
using the expansion in Y of ip near Y — 0, and we are left with the simple jump condition 

di,m  °+ =   Q_ (71) 

0-       2?r dY 

Since we have M' i (0) = 1 and W j(0) = pA-vlni + C(K) where C(K) is a constant 

term, we see that the singular part of the derivative is continuous across the origin when the 
function i\)m itself is: indeed, the derivative is 

C(0+)    =   2m^A + Bl^^ + Bc(K+)^ (72) 

C(O-)   =   -2m(c + D^t^- + Dc(K^ (73) 

so that the continuity of the singular part of the derivative implies 

B                    D                     B                      D (?4) 

r(l/4m) r(-l/4m)       T(l + l/4m)      T(l - l/4m) 

using the property T(l + x) = xT(x). 
This comment implies that although the derivative of the function ipm becomes singular 

near the origin, it is still possible to have a finite jump of the derivatives across the origin. 
The asymptotic behaviour and the jump condition define uniquely the four coefficients A, B, 
C and D for each value of m but 0, to yield a unique solution for the far field depending only 
on the vortex strength Q. 

3.1.3 The axisymmetric (m=0) case 

In this case, the solutions do not decay at infinity. In fact, we see that for Y > 1, the equation 
becomes VQ = 0. which has the general solutions ip0 = aY + b, and for Y < -1 there is an 

oscillatory solution ip = c cos (J\ Yj +d( sm(JlYJ. There is here an arbitrariness in the 

choice of the boundary conditions, which is solved by the matching with the inner solution. 
For the purpose of plotting the results only, we chose to take the following boundary conditions 
ip0(Yc) = Tpo{-Yc) = 0. Again, there exists a unique solution fulfilling these 2 boundary 
conditions and the jump condition at the origin. 

3.1.4 Numerical procedure and results 

Having established that there exists a unique solution to the problem, it is now easy to find 
it numerically. We start by integrating equation (56) from +co and -co towards the origin 
using the asymptotic behaviour as a first boundary condition. We define a free parameter h 
as V>77i(0) = h, and use this as a second boundary condition for both branches of the solution. 
We then calibrate this parameter h so that the jump across the origin is indeed Q/2ir. Since 
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both parts of the solution are linear, increasing h by a factor of 2 amounts to increasing Q 
by a factor of 2: there is a linear relation between h and Q, namely 

2TT 
s(m)h (75) 

The coefficients s(m) can be found numerically by fixing h = 1. The result is shown in Fig.5, 
on the left. On the right, the resulting solutions for Q = —50 are shown. Note the slow 
convergence of the modes for large m. This is due to the fact that the point vortex is a 
logarithmic singularity, and the amplitude of the modes vary as 1/m. 

Figure 5: On the left, the coefficients s(m) have been calculated and are represented as a function 
of m. On the right, this calibration has been used to calculate the functions tpm for m = 0,1,2,3,4,5 
for Q = —50. Only the first few have been labelled. The cutoff for ^o has been chosen at Yc = 10. 

Finally, we are left to sum the Fourier coefficients to reconstruct the function: we have 

00 

V> = Vo + 2 Y, TprniY) cos(mX) (76) 
TO=1 

The contour lines of the total stream function (the perturbation and the Keplerian shear) 
have been plotted for 4 values of Q, and are represented in Fig.6. In all cases, the summation 
over m has been truncated at m = 20. 

3.1.5    Discussion 

The solutions obtained correspond well to what might have been expected. There are here 
two main features to the result. Firstly, the presence of a point vortex in any shear flow 
induces the deformation of stream lines seen in Fig. 7. This type of deformation is also seen 
in the results presented here. The second feature corresponds to the presence of the critical 
layer at the radius R = 1, and is characterized by the discontinuity in the velocities at that 
radius. This is qualitatively similar to the case of the Cat's Eyes patterns seen in the plane 
parallel shear flows [7].   The linear approximation theoretically fails as Y -» 0, and a full 
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Figure 6: Stream line contours of around an anticyclonic point vortex in Keplerian shear flow, Q=l, 
(upper left), Q=10 (upper right), Q=-l (lower left) and Q=-10 (lower right) 

non-linear theory would normally be necessary; however, it was shown that the nonlinear 
boudary layer simply connects to the linear branches of the solution far from the critical 
layer, without change in the phase of the logarithm, so that the solution found here is a good 
approximation to the nonlinear solution provided Y ^ e 

3.2    Close to the vortex 

In this case, we want to chose a new scaling to represent the region near the vortex. Let's 
chose to take Y = ey and X = ex, and expand the equations in e, assuming that 6<1. We 
also assume the following form for the stream function ip and the vorticity: 

ip   =   e2(ipo + eipi) 

UJ   =   wo + ewi 

(77) 

(78) 
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Figure 7:  Stream lines around a cyclonic (left) and an anticyclonic (right) vortex positioned at a 
zero-velocity point 

The Jacobian equation becomes 

J (-\y2 - ^rey3 + 1P0 + #1 + 0(e2) , 

f (1 - |«y) + (1 - 2ey)V2^0 + eV2^ + 0(e2)) = 0 

and we also have 

u0   =   vVo 
wi    =   VVi - 2yV2V>o 

(79) 

(80) 

(81) 

The successive orders in e from the Jacobian yield 

JNo-^AvVo)    = 

£ 2 _£, 
2y '    2J J (V>o - 9ry2, -^y + wi) + J (Vi - ^ry

3, v2^01   = 
_5_ 
12' 

(82) 

(83) 

3.2.1     Zeroth order solutions 

The solutions to 

.2  V72„ 
J[i>o- -^y %V Vo 0 (84) 

are well known, and have been calculated in the previous section: taking piece-wise constant 
solutions, we get an elliptical vortex patch of constant vorticity. This suggests the use of the 
elliptical orthogonal coordinate system (x, C)> sucn that 

x   =   /xC  

y   =   /v/^TZTVW2 (85) 

with 1 < X and -1 < C < 1-   The boundary of the vortex is given by x = o so that the 
solution can be written as 

^0 = qU{x - a) (86) 
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The stream function V>o is then given by equation (82).  The Laplacian in the elliptical 
coordinate system is 

V2V>o 
1 

/2(x2-C2) 
d + Vw^^| = <fll{a - x) (87) 

Looking for separable solutions, such that i/joixX) = Y^nGn(x)Hn{Oi we must solve 

Vx^^^[Vx^~l^)    =   A2Gn + 9/V (88) 

vT^|(vT^^)   =   -%Hn-qft> (89) 

Tin' homogeneous part generates the Chebyshev polynomials for both x and C with \ = n. 
The polynomials form the basis for the regular solution. The Hn solutions must always be 
regular, so that we simply have 

H(0 = J>Tn(C) (90) 
n=0 

where the Tn are the Chebyshev polynomials of the first kind. However, because of the 
matching of ^, we also need to find the singular solution for G outside the vortex. In order 
ti > do this, let's perform the change of variables x = cosh a 

(91) 

We have the solutions, for n > 0 

G„ = anena + dne-na   =   an (x + Vx2 - l)" + an (x + Vx2 ~ l)"" 

=   anRn + anSn (92) 

which defines the functions Rn and Sn, and and for n = 0 

Go = a0 ln(x + Vx^-T) + a0 = a0S0 + a~o (93) 

which defines So, and RQ = 1. The special solution, necessary inside the vortex, is a second 
order polynomial in the variables x or C respectively, so that the final solution is 

4"   =   f;(AnTn(x) + (x2-2)^(ßnTn(C) + (C2-2)^) (94) 

00 

Y,CnSn(x)Tn(0 (95) ^o°ut 

n=0 
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where we have used the fact that the solutions must be regular inside the vortex, and that 
they should decay outside the vortex. Note that we can rewrite x2 = (To(x) + T-2(x))/2 = 
(1 + T2(x))/2. The matching condition at the boundary x = a yields the following relation 
between the coefficients 4: 

AnTn(a) + (a2 - 2)^-) (BU + ^-5^)    =   CnSn{a) for n > 0 
2 ; v        4 

A0 + (a2-2)^-](B0-3^-)    =   C0S0{a) for n = 0 
2 7V 4 

The matching of the derivatives yields a similar system, 

f2 

{AnT'n{a) + qf{a - 1)) (ßn + ^-<w)    =   CnS'n(a) for n > 0 

qf2(a - 1) (B0 - 3^-)    =   C0S'Q(a) for n = 0 

ÖUM Using equation (82) with the fact that ^P- = 0 yields 

d  ( ,       1„ 2 

ac V^°" 2ry = 0 (98) 

or rather, 

V'o - \W = Vo(a,C)-Jr/2(a2-l)(l-C2) = c (99) 

where c is a constant. This implies that we must take 

CnSn(a) = \f\a2 - l)(6nfi - 
l-6n,2) (100) 

so we see that only 2 coefficients are non-zero, namely Co and C2- 
If we were to match this with the Keplerian shear flow, and ignore the far field solution, 

we would then obtain a unique relation between the size of the vortex a and it's vorticity q. 

3.2.2    First order solutions 

We now have to solve equation (83). The Jacobians in this equation can directly be trans- 
formed into Jacobians for the new coordinate system: with 

„, A „,     dAdB     dAdB ,im, 
Ji,B-----F 101 

dx 9C      9C dx 
4In order to derive these conditions, we use the orthogonality relation between the Chebyshev polynomials 

fT^QTmiQ-j^    =    !<Sm,nifn/0 (96) 
v/T-C5 

=    7r5m,„ if n = 0 (97) 

234 



we get 

J[i>o- \y\ -\v + "i) + J Ui - ^Ty\ vVo) = 0 (102) 

Since VVo = qH{a - x), we see that 

r 2     r \ _      ,,        , 0 (,       5r , 
J [i>* - gir, - jy + <"iJ = -<?% - x)^ (^i - y^J _ (103) 

This equation suggests the ansatz u\ = qrj(QS(a — x) + W2> so that we have the condition 

dr\ d  ( T2\ d  f 53 

ac*V*-2^^ + äc^-l2r^^ = ° <1M> 
which can be integrated along the boundary to yield 

viO^^o—y2) _ +^(a,C)-^r/V-D3/2(i-C2)3/2 = ^      (ios) d_ 

'dX 

The equation for W2 is 

which implies 

J[i>*-\y2i-\y + u2)=Q (106) 

W2 = G (vo - §y2) + \y (107) 

As in the far field solution, we must chose the function G to represent the presence of a 
vortex. Ideally, the functions F should be the linear continuation of G when tp <C V'K- As a 
first guess, we chose to take simply G = 0, so that 

"2 = \y (108) 

We now have to express the stream function ^l as a function of y. This can be done by 
solving the equation 

V2Vi = 2yqH{a - X) + qri(Q6(a - x) + §1/ (109) 

Set i^i = <f>i + fa + <f>3, where the 4>i satisfy respectively 

V20i    =    qv(C)S(a-x) (HO) 

V2^2    =    |y (111) 

V2h   =   2qyH(a-X) (112) 
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In all three cases we will have to solve the homogeneous equation V2^ = 0. This has already 
been done in the zeroth order case, and the result is 

outside the vortex, where the singular solution must be kept, and 
00 

C = £aj?Tn(X)Tn(C) 
71=0 

inside the vortex. For <fo and <f>3, the special solutions are easy to find and we get 

r 
fa 4>h + h,s = <t>h + ^y + °iy + °o 

fa   =   fa + fa,s = <t>h+ (^y3 + dry + d0) U{a - x) 

(113) 

(114) 

(115) 

(116) 

Note that the solutions are divergent for large y, and that the true solution is obtained 
by matching the near-vortex solution to a far field, wave-like solution. Inside the vortex, 
however, the solutions must be regular. 

To summarize, renormalizing the coefficients an and bn, we have 

V4n   =   Y,a™Tn(x)Tn(0 + <t>2,s + fo,s 
71=0 
00 

VT     =     E«Uti?"W+fenUt5n(x))T„(C) + ^S (117) 
71=0 

where by definition, Ro{x) = 1- The continuity of the function across the boundary of the 
vortex implies that 

|a»r„(a) + f^ ^Mi;(C)d( = § (aTRn(a) + C*$„(«)) U«) 

for n > 0 and 

-™in _i_   /     fa,s\aiO A/- _      /„out   ,   tout c („\\ (119) 

for n = 0. For fa, the function must be continuous across the boundary, but the derivative 
has a jump given by equation (112). Integrating (112) across the boundary, we get 

1   az-l 

/2a2-C2 [dx\a- 
= w(C) (120) 

Let's write 77(C) = Z)^=o VnTniO- The matching condition of the derivatives therefore implies 
that, for n > 0 

(aTK(a) + W(o)) - <nT>) = ^ (121) 
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and for n = 0, 

b%ltS'0(a)=qr,o (122) 

The coefficients r\n can actually be determined from self-consistently using equation (105), 
provided we know an and bn for all n. If we truncate the system at the order N — 1, there 
are in total ZN + 3 coefficients to solve for, and 2N matching conditions. The remaining 
coefficients are given by the matching of this solution to a far field. 

3.3    Matching of the far field to the vortex solution. 

The behaviour of the far-field is mostly determined by the total vorticity Q of the vortex patch 
(with the exception of the axisymmetric component). In order to be consistent between the 
far-field and the close-field, we require that Q = e2q, since we assumed the size of the vortex 
patch to be of order of e. The aim of this section is more to assess whether such a matching 
is possible rather than to perform it. The actual matching, as we shall see, can only be done 
numerically, and will be the aim of future work. 

In order to do this matching, it is necessary to study the behaviour of the inner solution 
for x -» °° and the outer solution as x ~* 1- Tne elliptical coordinate system asymptotically 
tends to the polar coordinate system as x > 1. Indeed, we then have r2 = x2 + y2 « f2x2 

and C ~ cosy? = xj\]x2 + y2. Also, we use the property that Tn( costp) = cos(n(p), and 
that x + Vx  ~ 1 ~ 2x- As a result, for % > 1, the inner solution tends to 

pinner     =     e
2 ^ Cn (y)    "   COs(n^) + €3 [agUt + C ^ (x + V^x' ~ 1)) 

71=0 

+   £ (<Ut (jj + &"Ut (y)"") cosifup) + te,s 
(123) 

On the other hand, as we saw, the outer solution tends to 

oo 

V>outer = a±^0
outer(|Y|)   +   J2 (Am,±M±l/4m,i/2(\Y\) 

n=l 

+   Bm,±W±l/Arn,1/2(\Y\)) cos(nX) (124) 

where the ± sign refers to the difference in the Y > 0 and Y < 0 branches. All the coefficients 
Am ± and Bm,± are uniquely defined, with the exception of the m = 0 mode where we 
imposed some additional boundary conditions to determine them. These may be taken as 
free parameters if necessary to perform the matching on to the inner solution. 

Let's study the various terms that appear in the inner and the outer, and that may 
cause problems in the matching. The most obvious term is the axisymmetric term, which 
has the main component as (r/12)e3y3 in the inner, and that can be shown to behave as 
Co + ClY + C2Y2 + C3Y3 +...+ logarithmic terms in the outer. The Y3 terms can be matched, 
since we can to choose the coefficients C3 on either sides of Y = 0 to be 1?/12. This is possible 
since we had the freedom of varying the boundary conditions on the axisymmetric mode to fit 
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this requirement. Next, we must fit the logarithmic terms. The main logarithmic dependence 
in the inner comes from the 0(e2) term. As we take y —> oo, this term can be assimilated to 
the contribution from a point vortex only in the outer region. We expect this term to match 
exactly onto the outer solution for a point vortex only, which has been studied in Section 
3.2.5. Finally, it can be shown that the remaining difference between the point vortex case 
and the vortex+waves case is non-singular, so that this could possibly be matched onto the 
0(e3) term in the inner. This last matching would yield the coefficients on and bn, and' 
therefore determine the shape of the boundary by determining rj. 

4    Conclusion 

In an attempt to understand the dynamics of vortices in accretion flows, we have been looking 
for steady state solutions of such a system, since the existence of stable steady states might 
be reason for the observed longevity of the vortices. The first part of the project was a simple 
attempt at finding such solutions using the rather crude assumption of a constant vorticity 
field, which is only truly justified in the case small vortex patches. This assumption allowed 
us to consider top-hat vortex solutions, and study their steady state shapes. The second 
part of the project was an attempt at dropping this assumption. In that case, it has been 
shown that a general stationary lee wave solution must be added to the vortex solution in 
order to satisfy the vorticity equation. This problem can only be solved asymptotically in 
two limits: far from the vortex, it is possible to find linearized solutions. Closer to the vortex, 
an expansion in the small parameter e which is really the ratio of the size of the vortex to 
the distance to the center of the shear flow, yields results very similar to the first section: 
to zeroth order, we recover the elliptical vortex solution, and to first order, the deformation 
of the vortex matches onto the "background flow", which consists of the Keplerian flow and 
the lee waves. The possibility of the matching between the two solution has been considered, 
and will be the purpose of future work. 
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Some analysis of a two-dimensional 
double diffusion experiment 

David Osmond 

1    Introduction 

Convection driven by double diffusion occurs when two properties contributing to the density 
of a fluid diffuse at different rates. In the ocean, the density of water is governed primarily 
by heat and salt, and the heat diffuses about 100 times faster than salt. It is now clear that 
double diffusion is an important process driving convection in the ocean, especially given its 
ability to move fluid particles across isopycnals. 

Despite the primary mechanisms of double diffusion being formulated back in 1960 by 
Stern [1] as he considered the 'perpetual salt fountain' experiment conceived by his colleagues 
a few years earlier [2], there remains a great deal to be learnt on the subject. The two simplest 
examples of double diffusive convection are salt fingers and diffusive layers. Both types involve 
a stable stratification of one component, and an unstable stratification of the other, although 
the overall density field is always stable. Fingers occur when the faster diffusing component 
is stably stratified. If we consider the heat-salt situation present in oceans, salt fingers occur 
when the salt is unstably stratified, so there is hot salty water overlying cold fresh water. If a 
perturbation moves a fluid parcel downwards, it finds itself in cooler and fresher surroundings 
than was previously the case. It loses both heat and salt to the surrounding fluid; however, 
since temperature diffuses more rapidly, it experiences a net increase in density and thus 
continues its downwards motion. The surrounding fluid gains heat from this descending 
finger, and it in turn becomes lighter and moves upwards. Eventually the region becomes 
filled with fingers moving in alternating upwards and downwards directions. 

Diffusive layers result when the slower diffusing substance is stably stratified. Thus in 
the ocean they occur when cool fresh water over lies hot salty water. Temperature diffuses 
faster than salt, so the bottom layer is heating the top layer, thus driving convection in a 
similar manner to Rayleigh Benard convection. The top layer also cools the bottom, which 
also drives convection. The convection tends to homogenise the fluid above and below the 
diffusive interface so that a very sharp interface results. 

These two processes are primarily one-dimensional. The substances in the mean state 
have gradients only in the vertical direction. The situation becomes more complicated when 
there are gradients in both horizontal and vertical planes, and the physics of this process are 
less well understood. 

In 1996 Turner and Veronis resumed work on an experiment Turner had been considering 
for a long time, and which was designed to look at one example of the two-dimensional double 
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sugar 

Figure 1: The experimental set-up. Salt and sugar are slowly pumped into the left and right 
hand side respectively of a long tank. Both source rates are 5 ml per minute. The volume of 
fluid in the tank is kept constant by using a constant head overflow device in the very center 
of the tank. 

diffusive problem. Veronis' suggestion was to consider the simplest configurations possible, 
and here we consider one of them. 

2    The Experiment 

A long thin tank (1820 x 80 x 120 mm) is constructed with an inlet at the center of each 
end. and a constant pressure head outlet at mid height in the center of the tank. It is 
pictured in figure 1. The tank is filled with a 50-50 mixture of salt and sugar with a density 
p = 1100 kg/m3. Sugar is chosen as the second diffusing component, as it does not diffuse 
through the side walls of the tank as does heat. Sugar has a diffusivity about 1/3 that of 
salt, and so in this system plays the role that salt does in the ocean, while the salt plays the 
part of heat in the real ocean. 

The experiment commences by slowly pumping a salt solution with density p = 1100 kg/m3 

through the inlet at the left end of the tank, and a sugar solution with the same density in 
through the right hand inlet. Both flow rates are very close to 5 cm3/min. Initially, when 
the salt emerges from the source at the left inlet, it is much saltier than the fluid in the tank, 
and thus salt diffuses out of it. Sugar also diffuses from the fluid in the tank into the salt 
plume, but at a slower rate. The plume gets lighter as salt diffuses from it, while a sheath of 
fluid surrounding the plume gets denser as the salt from the plume diffuses into it. Thus the 
plume separates into a light core which convects up towards the surface, and a dense sheath 
which sinks towards the base. The opposite process occurs at the sugar source, so that the 
core sinks and the sheath rises. 

As time continues, the density difference between the the top and bottom of the tank 
increases. The rate of increase slows however, and after some time (a few days in this 
experiment), a steady state density field is formed. Active double diffusive convection still 
continues however, although it does not alter the density field significantly. To first order, 
the steady state convection consists of a region of fingering in the top left quadrant of the 
tank above the salt plume, and again in the lower right quadrant beneath the sugar source. 
In the top right and bottom left quadrants, diffusive layers are visible. 
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Figure 2: Sugar, salt and density profiles of the left and right hand side of the experimental 
tank. Salt and sugar concentrations are given in units of density 
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The steady state sugar, salinity and density profiles are shown in Figure 2. There are 
distinct differences between the left and right hand side of the tank, as would be expected from 
the antisymmetric convective patterns, so they are profiled separately. The most dominant 
feature of the profiles is the rapid increase of density at mid height. In particular, in both the 
left and right hand sides of the tank most of this increase has arisen from the sugar having 
settled predominantly to the bottom half of the tank. In contrast, the salt is marginally 
unstable in both sides of the tank, having slightly higher concentrations in the top half than 
in the bottom, and rapidly changing extrema at mid height. 

Looking more carefully at the profiles, we can broadly divide each side of the tank into 
4 layers. Starting with the left hand side, on top we have fairly constant concentrations 
for about 50mm. As mentioned earlier, fingers were observed in this region, which in this 
experiment are associated with a stable salt gradient, and an unstable sugar gradient. There 
are some indications of these gradients, although they are clearly very small compared to 
most of the other features. 

The next 10mm contain rapid increases of both salt and sugar, thus leading to a very 
stable density profile. This acts as a very strong barrier to any kind of vertical convection 
through this layer, and indeed one would only expect pure diffusion to transfer properties 
from one side to the other. Measurements of the profile from Figure 2 leads us to estimates 
of the diffusive salt flux to be of order 0.14 mg/s, while the sugar flux is about 0.06mg/s. 
The rate at which both salt and sugar are being pumped into the tank through the source 
is approximately 8.33 mg/s, or about 60 and 150 times larger than the pure salt and sugar 
diffusive fluxes respectively. 

From 50-60mm above the bottom of the tank there is a very stable sugar gradient, and 
an unstable salt gradient. We associate this with a strong diffusive layer, and indeed that is 
what is seen in the experiment. In the lowest 50 mm the sugar concentration gently increases 
and the salt decreases downward as in the diffusive layer above. 

The layers are reversed in the right hand side of the tank. There is a region of weak diffus- 
ing layers on top of a sharp diffusive interface, followed by a layer stable in both properties, 
while weak fingering occurs in the lowest layer. The level of the sources and sink corresponds 
very closely to the interface between the strong diffusive layer and the stable layer. 

As mentioned earlier, the dominant feature of the profiles was the fact that most of the 
sugar was in the bottom half of the tank, while the salt is marginally unstable. This is 
very similar to the profile one would expect if one had run a diffusive layer experiment by 
placing a salt solution above a sugar one. The unstable salt stratification drives the diffusive 
layers until the salt is nearly evenly distributed between the upper and lower halves, in the 
process raising some of the sugar, but not as much as the salt that is lowered. Diffusive layers 
do a better job of reducing the potential energy of a fluid than do fingers, so from energy 
considerations it is not surprising that the density field resembles that of a diffusive layers 
experiment rather than a fingers experiment. But given that both diffusive layers and fingers 
are active in this experiment, it is not immediately clear from a dynamic viewpoint as to why 
the diffusive layers dominate the concentration profiles. 

Given that the sugar travels upwards through the diffusive layers, and downwards through 
the fingers, we present Figure 3 as a simplistic picture of the salt and sugar pathways through 
the tank. 
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Salt pathways 

Sugar pathways 

Figure 3: Simplistic picture of salt and sugar pathways through tank. 

One aspect of double diffusion experiments that has been looked at quite closely is the 
ratio of the fluxes through either the fingers or the diffusive layers. For salt-sugar fingers the 
ratio of sugar to salt fluxes is around 0.9, provided the density ratio, Rp = aTz/ßSz is not 
too close to one. For salt-sugar diffusive layers, the ratio of salt to sugar fluxes is around 0.6, 
again provided the density ratio is not too close to one. Given that we have four dominant 
flux pathways indicated in Figure 3, and four diffusive regions, we may construct a series 
of 4 equations with 4 unknowns. Alas, the 4 equations are not independent, nor are they 
even consistent, so there is no solution other than the trivial zero solution. We may illustrate 
this through an analogy with two connected water wheels. One water wheel is powered by 
a descending sugar solution, and it in turn raises a salt solution. There is friction in the 
system, so that it can only raise 9 kg of salt for every 10kg of sugar that falls through it. We 
shall call this the finger wheel. The second water wheel is powered by the descending salt 
solution, power it uses to raise the sugar solution. This water wheel has a greater friction, 
so that it can only raise 6kg of sugar for every 10kg of salt that powers it. This wheel is 
called the diffusive wheel. The two wheels are connected so that the salt raised by the finger 
wheel powers the diffusive interface wheel, which in turn raises the sugar to drive the first 
wheel. As the wheels are not 100% efficient, the system slows to a halt. Clearly we need 
some other mechanism to get either salt or sugar or both to the top of the system to drive 
the interconnected components so that they run continuously. 

Figure 3 hints at one possibility. In the early stages of the experiment, while the tank 
was still close to being homogeneous, the plumes rapidly split into a core and sheath, one 
part rising up to the top of the tank, and the other half descending to the bottom. These 
are represented by the wiggly lines in Figure 3. In the final steady state, this process is not 
nearly as obvious, but never-the-less there are possible signs of it still occurring. Another 
option is the fact that most of the diffusive layers are inclined at an angle. This can be 
explained through the experimental evidence that fluid is moving parallel to these interfaces. 
Fluid immediately underneath the diffusive layer is continually getting denser, and so as it 
moves laterally underneath the interface, it also tends to sink, thus causing the interface 
to slope downwards.   The fluid above the interface is continually getting lighter, thus it 
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must be moving in the opposite direction to the fluid underneath the interface so that in its 
direction of motion the interface is sloping upwards to accommodate its increased buoyancy. 
This advection can transport sugar or salt vertically (as it travels horizontally), without ever 
crossing the diffusive layer and thus being constrained to the flux transport ratios. 

3    Theory 

Before delving into the theory of diffusive fingers and layers, let us continue with the coupled 
water wheels analogy. For the wheels to turn, we require an additional driving force to 
overcome the friction of the system. Let us derive a formula for the ratio of the flux of the 
driving to the flux transport of the wheels. 

Let us define FTI to be the salt flux indicated in figure 3 for the path that travels from 
the source, up through the fingers, down through the layers, and then out through the outlet. 
F<\ is the corresponding value for the sugar flux. The two wiggly fines flowing upwards from 
the sources represent the driving terms FT2 and i*s2- The driving salt flux FT2 bypasses the 
ringers, using a different mechanism to get to the top, but then joins up with the salt flux 
Fj-\ in traveling down through the layers. Similarly, the driving sugar flux F$2 bypasses the 
layers, but joins up with Fsi to pass through the fingers. Let 7/ « 0.9 be the ratio of the 
suRar to salt flux through the fingers, and 7<f « 0.6 be the ratio of the salt to sugar flux 
through the diffusive layers. Thus we have the following relationships: 

FTI FSI ,., 
V>    ^r-—rr-=7d- (1) 

Fsi + FS2       J     FTt + FT2 

We rearrange to get 

„ 7/(^2+7^X2)        „ ld{FT2+lfFS2) ,0» 

1 ~ 7(27/ ! - 7d7/ 

We consider three situations. 

• FT2 
= 0: 

Fs2 = 0: 

FT2 — Fs2'- 

?£--31—*M,  5i.J!S-.u (3) 
FS2      1-7*7/ FS2      l-7d7/ 

^1=    ind     «1.2,    ^=      ld      «1.3 (4) 
FTI     1 - 7d7/ FT2      1 - 7d7/ 

FTI       _ 7/(1+7d)   _ 1 6 Fsi       = 7d(l + 7/)  ^^ ^ 
FT2 + FS2      2(1 - 7d7/)       ' '    FT2 + FS2      2(1 - jdjf) 

It is clear that in all situations, the driving flux is able to generate more convection than 
tself in the fingers - diffusive layers system; however the ratio is not more than about two. 
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3.1    Salt Fingers 

The linear stability analysis of the perturbations that grow into salt fingers is a well-studied 
problem, and reveals the wavelength of the disturbance which grows fastest. There remains 
some debate as to whether in the equilibrium model the fingers remain with this width (as 
proposed by Schmitt [3]), or whether they obtain a different width which maximises the 
buoyancy flux (see Stern [4] and Howard and Veronis [5]). Most theories appear to agree that 
the salt flux through fingers scales as the formula 

ßFS ~ -rtj?- (6) 

where L is the buoyancy-layer scale defined as 

The discrepancy between most formulas comes into the formula for Tz. It is the unstable 
salt field which drives the fingers, and thus presumably controls the gradients in the finger 
zone, so ideally one would like to rewrite the temperature gradient Tz that appears in (6) in 
terms of the salinity difference in order to determine the flux law solely as a function of ßAS. 
Many people favour a 4/3 power law (see Stern [4], section 11.4), and there is experimental 
evidence in support of this (Turner [6]). However, as we have profiles of both the T and S 
field, we are able to try either formula, and see if they give consistent results. The formula 
we shall use is that derived by Howard and Veronis [5] in the form of (6) given by 

ßF51 = 0.1578 ^ ^1, (8) 

together with Stern and Turner's [7] empirically fit curve to the 4/3 power law 

ßFS2 = C(ßAS)4/3, (9) 

where C = 10~4 m/s 
In both cases we assume the heat flux FT is a factor of 0.91 [7] times the salt flux. 

3.2    Diffusive Layers 

Turner [8] first suggested that since convection through diffusive layers was similar to Rayleigh 
Benard convection, the formula for the heat flux should scale in a similar fashion. That 
is, the nondimensional heat flux through diffusive layers, given by the Nusselt number, 
NUT = FTCI/KTAT, should be proportional to the Rayleigh number to the power of 1/3. 
The reasoning behind this relationship is that the length scale of the convective rolls is not in 
general governed by the size of the tank, and it is this relationship that removes the external 
length scale dependence. It follows that the heat flux is given by 

aFT = C(RP) (g^/u)1'3 (aAT)4/3 (10) 
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1: Fingers 5:W. Diffusion 

2:Stable 6:S. Diffusion 

3:S. Diffusion 7: Stable 

4:W. Diffusion 8: Fingers 

Figure 4: The geometry of the 8 Box model 

The function C has quite a strong dependence on Rp, especially for heat salt systems. 
Shirtcliffe [9] found his experimental results fit the formula 

C = 2.6R;126. (11) 

He also provided an estimate for the flux ratio, ßFs/aFr = 0.60. 

4    The Flux box model 

As mentioned previously in section 2, the experimental profiles drawn in Figure 2 suggest 
the tank can be divided up into eight primary regions, four on each side. We draw them in 
Figure 4. 

Table 1 provides all the data necessary to solve the flux equations given in the preceding 
section. To get the total flux of either solute, we must multiply by the area of the region 
where the fingering or diffusive layer is present. We assume this area is constant for all six of 
the interfaces we consider, and non-dimensionalise it by half the actual physical area of the 
box A, writing the non-dimensional area by Af. We then non-dimensionalise the fluxes by 
the input salt and sugar flux, and the answers are listed in Table 1. 

One clear result is that the flux through box 1 is much smaller than any of the other 
fluxes. This results from the extremely small unstable sugar gradient which is driving it. 
There is a large amount of uncertainty in the value for ßAS, indeed it may be up to a factor 
of three bigger than the best fitting fine used to generate the value listed. This would increase 
the values of Fsi and FT\ by a factor of 9, but they would still remain negligible compared 
to the other terms. 

Another clear result is that nearly all the fluxes are much larger than physically reasonable. 
Although we have not substituted in a value for Af, we would expect it to be of order one, 
meaning that the entire left hand of the tank is fingering in the top layer, diffusing in the 
bottom, and vice-versa in the right hand side. The dimensionless flux values listed imply 
the dimensional fluxes are often over 100 times greater than the input flux. Referring to 
our previous water wheel analogy, a small amount of driving can generate fluxes through 
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Property Box 1 Box 2 Box 3 Box 4 Box 5 Box 6 Box 7 Box 8 
height (m) 0.05 0.01 0.01 0.03 0.05 0.01 0.01 0.03 
aAT 0.8 13.2 -19 -4 -1.4 -24.2 7 8 
ßAS -0.13 15.5 36 6 1.9 44.6 15 -3.5 
Rp 6 - 1.9 1.5 1.4 1.8 - 2.3 
afz{m~l) 16 1320 -1900 -133 -28 -2420 700 -267 
aFlJAj 0.7 - - - - - - 130 
aF^/Af 0.6 - - - - - - 110 

«FhlAf 0.015 - - - - - - 11 
aF^JAf 0.013 - - - - - - 9.7 

^hlA! - - 54 130 110 20 - - 

aF^/Af - - 90 210 190 34 - - 

Table 1: Properties of the Eight Boxes. The fluxes have been normalised by the source input 
Huxes. Af is the area of the convecting region divided by the area of half the tank. The 
subscripts on the fluxes refer to whether they were predicted by equation (8), (9) or (10) 
respectively. 

the coupled diffusive system greater than the driving term, but by no more than a factor of 
two. Clearly a factor of 100 or more is out of the question, even if it were possible for the 
entire input fluxes to reach the top of the tank by some unidentified mechanism to become 
the driving flux. Thus there must be a problem with our application of the theory. There 
are a few obvious suggestions. Firstly, the formula by Howard and Veronis was derived for 
two fluids which have vastly different diffusivities. It was designed for the heat-salt system 
rather than our sugar-salt system. They allowed the salt to pass through the fingers without 
diffusing, so one would expect their formula to predict a larger salt flux than the sugar-salt 
experiment produces. Secondly, our profiles of the both the sugar and salt in most cases just 
(in not have the resolution required to gain accurate values of the salt and sugar contrasts 
across the interfaces. The contrasts that appear in the theories refer to the contrasts that 
< »ccur across the finger or layer interfaces, while we are using instead the contrasts that occur 
across the whole box. In the one dimensional theories the fluid above and below the interfaces 
are usually well mixed, so this difference is not important. In our experiment, the regions are 
distinctly two dimensional. This is most obvious in the experiment through the observation 
that the diffusive layers are generally inclined at some angle to the horizontal. This slope is 
associated with advection parallel to the interface, and we seem not to have the well mixed 
regions above and below the interfaces that the theories assume. Thus the difference between 
the sugar or salt contrasts across the interfaces, and the corresponding differences across the 
boxes that we used to apply the theories may be significant. To conclude, we suggest that 
the simple theories derived from one dimensional models do not adequately describe this 
complicated two dimensional system. 
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5    The box model 

In the previous section, we divided the tank up into the eight well defined regions observed 
in Figure 2. In that model, we used the temperatures and salinities found on the boundary 
of the boxes to determine the fluxes within each box. Let us now construct a similar box 
model corresponding to those eight regions, but now assign a mean temperature and salinity 
to each box rather than boundary values. The idea in this model is to try to calculate the 
fluxes between the boxes as opposed to the fluxes within each box. 

In the previous section, we found that the simple one dimensional formulas for fingering 
and diffusion did not adequately describe the experimental system. Let us discard these 
theories and return to the simple assumption that the flux between two boxes is proportional 
to the difference in concentration between those boxes. Writing a formula for the rate of 
change of salinity in box 1, we get 

ViTi = bl2(T2 - Tx) + 6i5(T5 - Tx) + TiXC - Q& = 0. (12) 

The final equivalence is due to the fact that we are interested in finding the steady state 
solution. The first two terms on the right hand side of this equation are the fluxes of sugar 
into box 1 from box 2 and box 5 respectively, where the b terms are unknown flux transfer 
coefficients. The third term represents a source input term. For the moment we will assume 
that the salt source is able to directly inject fluid into all four boxes on the left hand side 
of the tank (boxes 1-4). C is the salinity of the salt source, also equal to the concentration 
of sugar in the sugar source, while Tu is an unknown outflow coefficient. The fourth term 
represents the rate of outflow of salt from box 1, where Q\ represents the rate at which fluid 
is leaving box 1, which has salinity T\. Finally Vx is the volume of box 1. We choose to use 
units of kg/m3 for both salt and sugar concentrations, so the transfer coefficients bij have 
units of m3/s. It is tempting to interpret these as the volume flux between box i and box 
j; however this is would only be correct if the flux transports were due to advection only, 
which is not true. To further emphasise this, we use different transfer co-efficients for the 
corresponding sugar equations, a^. 

Inherent in the above equation is the assumption that each box is homogeneous. Thus, 
the flux of either solute to the outflow is equal to the the volume flux of the fluid leaving that 
box times the concentration of that solute. In addition, we assume that fluid entering each 
box from the inflow has the concentration of the reservoirs, and thus the flux of either salt is 
proportional to the volume flux times the concentration. 

There are similar equations for rate of change of salinity for the remaining 7 boxes, as 
well as the 8 corresponding equations for sugar, and they may be found in the appendix. In 
addition, there are two more conservation equations. They are simply that the sum of the 
individual salt sources is equal to the flux of the salt source, C J2j Tij = QC, as is the sum 
of the individual sugar sources, C X), Sij = QC. There are also two similar conservation 
equations for the sum of the outflow terms, however they are already implicitly expressed in 
the previous 18 equations. 

The experimental data gives us the values of the sugar and salt concentrations in the 
boxes. Thus the unknowns are the 10 transfer parameters for each of sugar and salt, the 8 
output flux terms Qj, and the 4 input flux terms for each of salt and sugar - a total of 36 
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unknowns. 
As of the moment, we have 19 equations - just over half the number of unknowns - a 

highly under-determined problem. We can introduce more equations, for example by relating 
the transfer coefficients in some way, or reducing the number of unknowns by restricting 
inflow and outflow from some boxes, but for the moment, let us discuss a method of finding 
solutions to under-determined problems, described by Veronis in General Ocean Circulation 
[10]. 

Our eighteen equations may be written in matrix form Ax = b. Here A has 19 rows and 
36 columns, or more generally mxn, where m is less than n. The sizes of x and b are nxl 
and m x 1 respectively. 

The key to the method is to assume we can write x = ATf, where AT is the transpose 
of A, and f is a yet to be determined matrix of size m x 1. f satisfies the following equation, 
AATf = Ax = b. Now AAT is square (m x m), and if it has a non-zero determinant, we 
may solve for f = (AAT)_1b, and thus x = AT(AAT)-1b. 

We have thus determined a unique solution to an undetermined problem. The apparent 
paradox is explained through the writing of x = ATf. This means we are writing the solution 
vector x as a linear combination of the m vectors that make up the rows of A. x has n 
components, and thus defines a point in an n dimensional space. We cannot write all the 
points in the n dimensional space through the summation of m vectors. It turns out that the 
solution this method returns is a projection of the (unknown) true solution in n dimensional 
space, onto a m dimensional space defined by the m rows of A. 

Let us take the example of x+y = 10, so A=[l, 1]. We do not know what the true solution 
is, other than it lies on the line y = 10 - x, but its projection onto the one dimensional vector 
space defined by the one row of A is x = y = 5. It is clear in the formulation of the problem 
that we have not treated x any differently to y, and that is reflected in the identical values 
returned. This is important, as if we distinguish between them somehow, then that can make 
a great difference. For example, let us non-dimensionalise x by L, and y by 2L, writing 
X = x/L and Y = y/(2L). The original equation may now be written X + 2Y = 10/L, and 
the returned solution is X = 2/L, Y = 4/L, which lies on the space defined by the vector 
(1,2), the row of A. In terms of the original variables, the solution is x = 2, y = 8, vastly 
different to the previous solution (5,5) even though the equation solved was identical. This 
has important consequences for how we scale our problem. We must choose consistent scales 
for all quantities, as otherwise the solution will be biased towards those quantities that were 
scaled by values too large. It is clear that to use this method, if there is no reason to favour 
any unknown value over any other, then it is important to reflect that in the formulation of 
the equations, so that their co-efficients are equal. 

Figure 5 shows how the solutions to the box model equations do not change dramatically 
as we increase the number of equations until they equal the number of unknowns. Plotted 
are the inflow, outflow and cross box salt and sugar flux transports. The fluxes have been 
normalised so that the sum of each of the salt and sugar inflows is 100, as is the sum of 
each of the outflows. In picture (a), only the 19 equations listed in the appendix have been 
used. The main point to note in this picture is that the horizontal transports are an order of 
magnitude bigger than the vertical transports. In addition, the inflows and outflows to the 
two middle layers are also an order of magnitude larger than the corresponding values for the 
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Figure 5: Salt and sugar fluxes given by the solution to the box model equations. The fluxes 
have been normalised so that the sum of each of the inflows is 100, as is the sum of the 
outflows. In (a), only the original 19 equations are solved. In (b), there are an additional 10 
equations, corresponding to limiting the outflows to the middle two layers, and applying the 
six vertical dynamic constraints, (c) is an exact solution, as it contains the same number of 
unknowns as equations. It differs from (b) through the inflows being limited to the 3 boxes 
indicated, while the outflows have been limited further to just the two middle layers. 
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Figure 6: Fluxes of salt and sugar given by the solutions to the box model equations. Fluxes 
normalised as in figure 5. In (a), the coefficients of the inflows have been reduced from Co to 
Co/50. In (b) the source inputs are limited to the top left and bottom right hand boxes. In 
both cases the outflows are limited to the middle two boxes on each side, and the six vertical 
dynamical constraints described in the text are applied. 
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upper and lower layer. As a result, there is very little transport of sugar or salt occurring 
in the upper and lower layers. In (b), there are an additional 10 constraints, consisting of 
restricting the outflow from 8 to four layers, and adding 6 vertical dynamical constraints. 
These are based on symmetry arguments and are ai2 = 07s, 612 = &78, 023 = «67, &23 = &67> 
a34 = 056 and 634 = 656. Notice the fluxes are very similar to those plotted in (a). In (c), 
the solution is exact, as the number of unknowns is the same as the number of equations. To 
achieve this match, we have had to restrict the inflows to just the 3 boxes indicated, and the 
outflows to the two boxes indicated. We feel these constraints are too harsh, and we provide 
the result only to show the the exact solution is not too dissimilar to those plotted in (a) and 
(b). 

Our reason for the unexpectedly small fluxes in the upper and lower layers, particularly 
in Figure 5 (a) where we have not forbidden inflow or outflow to the top and bottom layers, 
is that we have formulated our original 19 equations in a manner that is biased against fluxes 
in these regions. This is due to assuming the input source enters all boxes at the source 
concentration. This is a reasonable assumption for the middle two layers, but not so for the 
upper and lower layers. The main reason for allowing inflow and outflow from the upper and 
lower layers is to allow some mechanism to drive the diffusive 'water wheels'. While we have 
not specified what that mechanism is, although we suspect it is due to vertical transport 
along the sloping diffusive layers, it is highly improbable that the flux from the source to 
the upper and lower layers via this mechanism arrives with the concentration of the inflow. 
We have seen in the examples provided earlier that if we non-dimensionalise a term in the 
under-determined system of equations by an large quantity, then that term dominates the 
equation. Thus we expect the inflow terms to dominate the equations. For conservation 
arguments, this term must be balanced by the sum of the other terms, and the co-efficient of 
the outflow is the next biggest term, so it is the next most dominant term. Thus we see the 
cross-box transport seems to play a minor role in these conservation equations. 

To see how changing the scaling for the input terms makes a difference, in Figure 6 (a) 
we show the solution to the system of equations where the source term is now the source 
concentration divided by 50. We can see in this figure that the vertical fluxes is now a similar 
order of magnitude to the horizontal fluxes, and we have convection in the upper and lower 
layers. This solution matches nicely the schematic drawing of the fluxes drawn in Figure 
3, however it is not realistic, as we should really only rescale the input terms to the upper 
and lower boxes in this way. If we were to do that however, we would somehow have to 
redistribute the lost concentration to the two middle layers, the method by which to do so is 
currently not clear. 

As a final test of our box model, we try restricting the source terms to solely the upper 
left and lower right boxes. The resulting fluxes are pictured in Figure 6 (b). Notice the very 
large recirculations apparent in the upper and lower halves. This bears a nice similarity to the 
water-wheel analogy. A driving flux can generate larger fluxes in the coupled double diffusive 
regions that the driving flux itself. In this case the factor is greater than the maximum factor 
of two predicted by the theory, but we have not specified any flux ratio parameters for the 
finger or diffusive regions, and thus we would not expect a match. This example also helps 
to explain why we see very little inflow or outflow from the upper or lower layers. It does not 
take much of an inflow in these layers to drive large amounts of recirculation in the middle 
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layers. It seems logical that this model tends to reject these high-energy solutions when there 
is a much simpler solution with no flux in the upper and lower layers. 

6 Conclusion 

We have seen that a coupled system of fingers and diffusive layers cannot be sustained adjacent 
to each other without some other driving mechanism to transport either salt or sugar to the 
top of system. With driving, the resulting fluxes through the fingers and diffusive layers can 
be up to twice as large as the original driving term. 

The one dimensional flux laws predict fluxes through the salt fingers and -diffusive layers 
up to a few hundred times the source fluxes. These are much too large to be considered 
possible. While the flux laws used are not without question, it is more likely that the two 
dimensional problem we are analysing is too far removed from the one-dimensional theories 
to be of use, in addition to the experimental data being a little too sparsely separated. 

Our box model only permits the driving flux to enter the top of the system at the same 
concentration as the source. The large co-efficient of this source term dominates the vector 
space of the possible solution set, and to first order it is the outflow that matches this term. 
The cross box transports play only a minor role in the solutions. Small amounts of source 
flux terms in the upper and lower layers produce large amounts of recirculation in the middle 
layers, which the model rejects in favour of the less energetic solutions that contain very little 
input terms to the upper and lower layers. To generate non-negligible amounts of convection 
in the upper and lower layers, we require a theory for the mechanism behind the driving 
term, which we may then use to scale the source terms for the upper and lower layers. 
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8    Appendix: The box model equations 

The model has nineteen basic equations, comprised of a sugar equation for each box, 

Si = a12(S2 - Si) + a15{S5 - Sx) + CSix - SXQ\ = 0, 

52 = Gl2(Si - S2) + <123(S3 - S2) + <126(S6 — S2) + CSi2 — S2Q2 = 0, 

53 = a23{S2 - S3) + a34(S4 - S3) + a37{S7 - S3) + CSi3 - S3Q3 = 0, 

S4 = 034 (S3 — S4) + 048(S8 — S4) + CSj4 — S4Q4 = 0, 

S5 = Oi5(Si - S5) + 056(S6 - S5) — S5Q5 = 0, 

SQ = ct26(S2 — S&) + a$e(S5 — Se) + üQ7(S7 — Se) — SeQe = 0, 

S7 = a37(S3 - S7) + a67{S6 - S7) + a78(S8 - S7) - S7Q7 = 0, 

S8 = 04s(S4 - S8) + a7s(S7 — S8) — S8Q8 = 0, 

a salt equation for each box, 

Ti = 6i2(T2 - Ti) + 6i5(T5 - Ti) - TXQX = 0, 

f2 = 6i2(Ti - T2) + 633(23 - T2) + b26(T6 - T2) - T2Q2 = 0, 

T3 = b23(T2 - T3) + &34(T4 - T3) + b37{T7 - T3) - T3Q3 = 0, 

T4 = bu(T3 - T4) + 648(T8 - T4) - T4Q4 = 0, 

T5 = &i5(Ti - T5) + b56{T6 - T5) + CTi5 - T5Q5 = 0, 

T6 = 626(T2 - T6) + b56{T5 - T6) + b67{T7 - T6) + CTi6 - T6Q6 = 0, 

f7 = &37(T3 - T7) + 667(T6 - T7) + 678(T8 - T7) + CTi7 - T7Q7 = 0, 

T8 = &48(r4 - T8) + b78(T7 - T8) + CTi8 - T8Q& = 0, 

plus three conservation equations, 

Q\ + Q2 + Q3 + Qi + Qh + <2e + Qi + Q& = 2Q, 

Sil + Si2 + Sj3 + Sj4 = Q, 

Tu + Ti2 + Tz + TJ4 = Q. 
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1    Introduction 

Experimental observations of the vertical propagation and decay of near inertial oscillations 
(NIO) through the oceanic mixed layer has stimulated a desire to understand the effect of NIO 
activity on mixing processes in the upper ocean. Ocean surface forcing due to the passage 
of large scale wind events or storms instigates the formation of coherent NIO structures 
which tend to migrate in a helical trajectory as evident from near surface buoy drifters. 
Observations also indicate that NIO mixed layer activity eventually decays to background 
levels approximately 20 days after the initial onset of the storm [1]. A major challenge to 
i iccanographers has been to explain the primary mechanisms responsible for the observed time 
scales of NIO propagation and decay. Young and Ben Jelloul [2] hypothesized that advective 
(iistortion by the geostrophic eddy field decreases the NIO horizontal coherence scale. Prom 
a multiple time scale analysis, they formulate a reduced NIO equation linearized about the 
sz«i>strophic flow. This analysis effectively filters out inertial oscillations allowing focus on the 
near inertial component of the motion. Their NIO equation combines the effects of advection 
I>v the geostrophic velocity, wave dispersion, and refraction due to the geostrophic vorticity. 
Subsequent work by Balmforth et al. [3] investigated results from the NIO equation for 
the case of a background geostrophic shear flow. The present study extends this work by 
considering the fundamental properties of the NIO equation for the specific case of linearized 
NIOs superposed on a two stage random wave model of the background geostrophic eddy 
held. 

We begin the paper with an overview of near inertial oscillations and describe the method- 
ology used to obtain the reduced NIO equation that provides the basis for the present study. 
We will see that the NIO equation is characterized by a parameter termed the dispersivity, 
analogous to the diffusivity associated with passive scalar diffusion processes. We then dis- 
cuss the random wave model used to represent the background geostrophic flow and some 
fundamental properties associated with this type of model flow. We then study some limit- 
ing parameter cases of the governing equation, specifically, zero and infinite dispersivity. We 
present data from the numerical solution of the governing equation for a range of dispersivity 
values. Finally, we take a look at the decay of energy in the large scales and conclude with 
comments on directions for future research. 
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2 Near Inertial Oscillations (NIO) 

Inertial oscillations describe fluid motions arising from a force balance between fluid inertia 
and Coriolis acceleration. The reduced horizontal momentum equations, in a reference frame 
rotating with the earth, are 

ut - f0v = 0       and       vt + f0u = 0. (1) 

where the subscript t represents partial differentiation with respect to time and f0 = 2fi sin 6 
is the inertial frequency with 6 and 9. denoting the latitude and the earth's rotation rate, 
respectively. Throughout the paper, we follow the convention that (u, v) describe the hor- 
izontal velocity components in the easterly (x) and northerly (y) directions, respectively, 
and z refers to the vertical direction. The solution to (1), assuming constant /, is simply 
U = Ü e~^ot where U = u + iv and Ü is the initial velocity. The corresponding particle 
trajectories, x + iy = j- e~ifot, form closed loops. As a simple model of the passage of a 
storm front, we assume that at time t = 0, an instantaneous, homogeneous wind eventoccurs 
thereby exciting the entire horizontal domain to move with a uniform velocity of U. The 
ensuing motions, described by (1), are referred to as inertial oscillations. Using data from 
mid latitude ocean buoy drifters [1], estimates of the typical diameter of inertial oscillations 
is of the order of 5km. In reality, however, (1) only represents the leading order behavior of 
the flow; and therefore, ensuing motions are actually near inertial oscillations that are more 
accurately characterized by helical type trajectories and have a finite lifespan in the mixed 
layer of approximately 20 days. 

Note, in the solution of (1), a constant inertial frequency f0 was assumed. This assumption 
ceases to be valid if a coherent fluid motion spans a large enough horizontal extent; then the 
latitude difference (and, hence, the change in /„) between the most northerly and southerly 
points of the coherent motion can no longer be neglected. For simplicity, we neglect these 
so-called ß effects in the remainder of the paper. 

3 Reduced Linearized NIO Equation 

The previous work of Young and Ben Jelloul [2] regarding near inertial oscillations provides 
the basis for the present study. We briefly summarize the relevant points of that work here. 
We begin by assuming hydrostatic, Boussinesq, inviscid, incompressible flow. The velocity is 
linearized about the background geostrophic flow which can be written compactly in terms of 
a streamfunction, #(x, y, z, t) = Pg/{f0p0) with Pg denoting the geostrophic pressure field and 
p0, the mean density. Further reduction of the linearized governing equations (not reproduced 
here) is achieved through a multiple time scale analysis with the requirement that internal 
waves be nearly inertial. The general dispersion relation for internal waves can be written as 
w2 = {NQK\ + ffaD/K2 where CJ is the oscillation frequency, (K/I,KV) denote the horizontal 
and vertical wavenumbers, respectively, K

2
 = K\ + K

2
, and N0 is the characteristic buoyancy 

frequency associated with the vertical density stratification of the fluid (for further discussion 
of internal waves, see Gill [4], pp. 258). We define a small parameter e = (N0Kh)/(f0Kv). 
Physical estimates of N0 in the North Pacific and North Atlantic indicate N0/f0 = O(102) 
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[5]. Therefore, in order for e >C 1, the characteristic vertical wavelengths of the motion 
must be several orders of magnitude smaller than the characteristic horizontal wavelengths, 
i.e. nv >• K/i. This is entirely consistent with our use of the hydrostatic approximation 
(see Gill[4],pp. 159 for a discussion on the equivalence between longwave and hydrostatic 
approximations). The internal wave dispersion relation then reduces to w2 K /0

2(1 + e2); 
whereby, inertial oscillations are recovered at leading order. Departures from perfect inertial 
oscillations become appreciable on the slow time scale ts = e2f0t. 

In the multiple time scale analysis, the complex velocity U is expanded in powers of e2 

giving U = UQ + e2U2 + ■ ■ ■ where the leading order solution UQ is simply the velocity asso- 
ciated with the inertial oscillations governed by (1). For convenience we write the leading 
order solution as UQ = Mz(x,y, z,ts) e~l^ot which allows for trivial integration of the incom- 
pressibility condition to obtain the leading order vertical velocity explicitly. If we further 
define a new complex field A such that M = {f2N~2)Az, then it is also possible to explicitly 
calculate the leading order pressure by integrating the hydrostatic equation along with the 
mass conservation equation. In essence, A incorporates all of the relevant physical quantities 
of interest. Therefore, we prefer to work solely with the dependent variable A. Substituting 
the definition of A into the leading order horizontal velocity solution yields an expression for 
the demodulated velocity of the NIO 

u + iv = e~fotLA, (2) 

where 

LA=(f2N~2Az)z. (3) 

We find that the 0(e2) equation contains resonant terms proportional to e~l^ot. To prevent 
related secular terms from arising in the higher order correction, we require that 

LAt + J(V,LA)+l-foV
2A+^V2yLA = 0, (4) 

where V2 = dxx+dyy represents the horizontal Laplacian operator and J(\I>, LA) = ^x(LA)y— 
^>y(LA)x is the Jacobian. One advantage of (4) is that the first term on the left hand side has 
the direct physical interpretation of being the time rate of change of the horizontal velocity. 
The vertical boundary conditions demand zero vertical velocity at the top and bottom of the 
ocean, translating into 

Ag(x,y,0,t)=Az(x,y,-H,t)=0 (5) 

where H is the depth of the ocean. This condition follows the rigid lid approximation that 
assumes the typical amplitude of surface waves are negligible compared to the vertical wave- 
length of the propagating NIOs. Normalized horizontal boundary conditions are 2ir periodic. 
The initial condition depends on how one chooses to model the passage of the storm or other 
instigating event. We will specify this condition later. The present study will focus on in- 
vestigating some of the fundamental characteristics of the NIO equation (4) in the specific 
context of a simple random wave model of the background turbulent geostrophic eddy field. 
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4    Vertical Normal Modes 

The top and bottom boundaries of the ocean have the effect of confining wave energy to a 
region of finite vertical extent. Thus, the ocean can be considered as a waveguide causing 
energy to propagate along the horizontal direction. With this notion, we proceed in assuming 
a solution to (4) in terms of a superposition of vertical normal modes 

A=Y^Am{00,y,t)Pm{z)Om, (6) 
m—\ 

where m denotes the vertical wavenumber, Pm(z) represents the eigenfunctions, and am 

represents the projection of the initial condition onto the vertical normal modes. Note, the 
expansion in (6) relies on the assumption that the background geostrophic flow is barotropic, 
i.e. $,=0. Applying the differential operator L to (6) gives 

LA = L(AmPm) = (Am)LPm. (7) 

Substituting (7) into (4), 

LPrn _ -i(f0/2)V2Am = 2 

Pm       Amt + J(¥, Am) + i/2(V2*)Am 
m • K) 

For historical reasons [6], eigenvalues are represented as Ä~2, where Rm (dimensions of length) 
symbolizes the Rossby deformation radius. Prom (8), we obtain a partial differential equation 
for Am 

Amt + J(y,Am) + \{V2*)Am = l-^V2Am, (9) 

where hm = f0Rm will be referred to as the dispersivity* associated with the mth vertical 
mode. Since the initial condition of A has been projected onto vertical normal modes, the 
initial condition associated with each Am is simply Am(x,y,0) — 1. Exact numerical values 
of tim depend on the eigenvalues of (8) which, in turn, depend on the shape of the buoyancy 
frequency profile, N = N(z). If we assume iV=constant, then Pm(z) oc cos(N2(f0Rm)~2z) and 
Rm = Nlf0<>jHI(mi<;). A constant buoyancy frequency profile, however, is not a reasonable 
physical model; and therefore, we chose something slightly more realistic. In this regard, we 
follow the work of Gill [6]. Figure 1 shows the model N profile used here. The corresponding 
eigenvalues are computed numerically and plotted in figure 2 using a value of f0 = lxl0_4s_1. 

fThis is appropriate nomenclature since (9) begets a dispersion relation. Consider only the time derivative 
and Laplacian terms; assuming a solution of the form e

kx+ly~ut yields the real-valued dispersion relation 
u.- = h{k2 + £2). This is particularly interesting since (9) "looks like" an advection-diffusion equation but 
because of the i multiplying the Laplacian term, a real-valued dispersion relation is obtained analogous to a 
wave equation. 
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Figure 1: Buoyancy frequency profile used 
to calculate hm. 

Figure 2: Dispersivity as a function of ver- 
tical wavenumber m. 

Of interest is the relatively large range of h values (over four orders of magnitude) apparent 
just within the first 10 vertical modes. We expect this to play an important role in the 
developing structure of A. Also, note that for the N profile in figure 1, h -> m~2 as compared 
to h -> m-1/2 for the case of iV=constant. 

Except for the dependence of the dispersivity h on the vertical wavenumber m, A appar- 
ently satisfies the same initial value problem regardless of the specific vertical normal mode 
under consideration. Therefore, in the remainder of the paper, we drop the subscript m on 
A. Focus is placed on understanding the general behavior of the initial value problem given 

by 

*  '-72,TA  A   _iHTl2 At + J(tf, A) + -(W)A = jV'A, A{x,y,0) = l (10) 

for a range of parameter values 0 < h < oo and a specific form of \£ detailed in section 6. 
Equation (10) will be referred to as the passive scalar dispersion equation. 

5    Scalar Dispersion Equation 

An important aspect of (10) is that the quantity \A\2 is conserved over the spatial domain. 
To see this, we start by writing A in terms of a magnitude R and phase 6 

A = Rel 
(11) 

Substituting (11) into (10), separating real and imaginary parts and dividing by etdn yields 
evolution equations for R and 9, respectively, 
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Rt + J(tf, R) = -£ [2VRV6 + i?V20] , (12) 

et + j(*,e) = -£- + t ^-<vtf (13) 

where ( = V2* represents the vorticity. Multiplying (12) by R and integrating over the two 
dimensional spatial domain gives 

R. f ¥.dS = -h ! V(|w)d5 = -ft I ^-Ve-rdC = -ft [ ~dC, DtJs 2 A       2 Jc  2 yc  2 dr 
(14) 

where DR/Dt = dR/dt + J(\P, Ä) and f is the outward normal unit vector at the boundary. 
In obtaining (14), we have used the product rule VR?/2V8 = V(Ä2/2V0) _ R2/2V26 and 
the divergence theorem. Far-field boundary conditions are utilized, which translates into 
VA ■ r = 0, on the boundary; or in polar representation, |f = 0 and \^. = 0, on the 
boundary. Note, periodic boundary conditions in a two dimensional box automatically satisfy 
the far-field conditions due to the fact that the gradient of the function at one end of the 
periodic domain is exactly equal and opposite to the gradient at the other end. Application 
of the far-field boundary condition to the last expression of (14) leaves 

D_ 
DtJV 

f \A\2dV = 0, (15) 
Jv 

which proves our initial statement at the beginning of the section. 
We contrast (15) with the case of passive scalar diffusion. The equation governing the 

evolution of a scalar concentration field c in a background flow can be written as 

d + J(tf, c) = iA72c,        c{x, y, 0) = c0, (16) 

where v is the molecular diffusivity coefficient, in analogy to the dispersivity of the scalar 
dispersion equation (10). Following the same procedure for A, we find 

D_ 
Dt 

f ^dV = _v\ (VcfdV, (17) 
Jv l Jv 

We conclude that the diffusion process tends to minimize the squared scalar concentration 
whereas the dispersion process conserves this same quantity. What does this say about the 
generation of small scales or the cascade of energy from large to small scales? Does A exhibit 
a Batchelor scale/spectrum [7]? These questions have motivated, to some extent, the work 
herein. At this point, we present the specific streamfunction model used for the remainder 
of the calculations in the paper. 
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6    Two Stage Random Wave Model 

We will investigate the behavior of (10) for the specific two dimensional, random flow field 
described by the following streamfunction ^ 

^        fsin(y + 0n),    2nr < t < (2n + 1)T, 
n     \cos(a; + Xn),    (2n + 1)T < i < (2n + 2)r, 

for n = 0,1,..., where <p, x axe uniform random phases between 0 and 27r and r represents a 
characteristic decorrelation time of the turbulence. A variation of this model has been used in 
the past, [8]. Note, we have nondimensionalized $ by a characteristic streamfunction \I>0 and 
the spatial coordinates by a characteristic horizontal wavenumber /%. The spatial domain is 
thus 2n periodic. In order for the model to have physical relevance to the oceanic geostrophic 
eddy field, we have taken *0 = 3000m2/s and K/J, = 6xl0~5m_1, based on the data of [1]. 
Together, these give a characteristic decorrelation time scale of r* = ö(lday). The velocity 
components, it = (u, v), follow from the definition of the streamfunction as u = —\I>2/ and 
v = ^SX. The corresponding particles trajectories are 

Xn+i = Xn - COs(yn + <f>n)t, 2nr<K(2n+l)T (19) 

2/n+l = Vn + COs(xn+i + Xn)t (2n+l)r<t<(2n+l)r. (20) 

As apparent, the flow model is characterized by a two stage advection process. In the 
first stage, during time intervals 2nr< t< (2n + l)r, particles are advected in the x direction 
only for a time r; while in the second stage, during (2n + l)r < t < (2n + l)r, particles 
are advected in the y direction only for a time r. The combination of these two advection 
stages constitutes a single step in the random wave model. The total time to complete n 
steps is then t = n(2-r). The main advantage of the two stage random model stems from 
simplifications in the subsequent mathematics as will be described later. It is worthwhile to 
analyze the two stage random flow field in terms of the effect on material line stretching and 
fluid particle diffusivity. We compare the two stage model of (18) with a one stage model 
such as the rennovating random wave model, 

^„ = cos [x cos (j)n + y sin <f>n + Xn],    (n - 1)T < t < nr, (21) 

where advection is performed in a single stage. 

6.1    Material line stretching 

We investigate material line stretching induced by (19-20) in the context of Lyapunov expo- 
nents. Lyapunov exponents are used extensively in the study of nonlinear dynamical systems 
as a measure of whether two initial conditions diverge exponentially in time, thus possibly 
leading to the onset of chaos. The same concept is often applied to neighboring fluid particles 
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in the study of fluid turbulence. In this manner, the Lyapunov exponent gives some indica- 
tion of the stretching of differential line elements in the flow. In the case of advection of a 
real-valued passive scalar, this can be directly related to the development of spatial gradients 
in the scalar field. We will consider later whether an analogy to the complex-valued scalar A 
exists. 

6.1.1    Lyapunov exponent: background 

We follow the general definitions and methodology of Seydel [9] regarding the Lyapunov 
exponent calculations. An initially small ring of fluid particles with initial radius p0 deforms 
into an ellipse with major axis \i due to regions of localized strain in the flow. Linearizing the 
flow about the origin p0 = 0, we obtain hn = 3nh0 where J denotes the Jacobian matrix of 
the random map given by (19-20), and h0, hn describe the particle positions in the original 
(circular) and deformed (elliptic) configurations, respectively. Strictly, hn and h0 must be 
differential vectors for the linearization to be valid. We look for exponential stretching of the 
form \\hn\\2 = {\\K\\ eLt)2 where L denotes the Lyapunov exponent. Rearranging and taking 
the limit as t -> oo leads to 

L = lim 
n->oo 4nr 

In ||Jnfto 

UM2 
(22) 

where we have substituted in t = 2nr with 2r denoting the decorrelation time associated 
with the two stage random wave model of (19-20). Since J describes a random process, we 
ensemble average (denoted as (•)) over the random variables (ßn and Xn so that L does not 
depend on a particular realization. Additionally, we use the identity ||Jn/i0||

2 = h^(3n 3n)h0 

to simplify (22). The resultant definition of the Lyapunov exponent used herein is 

L = lim  -— 
n—yoo 4nr 

In (23) 

where K = J"TJn. Note, for convenience, we have taken (K) rather than (InK). The 
ramifications of this subtle difference stem from the fundamental differences between additive 
and multiplicative random walks as detailed by Redner [10]; but it is not a primary concern 
of the present study. 

6.1.2    Lyapunov exponent: two stage random wave model 

We now want to explicitly calculate the Lyapunov exponent defined in (23) for the two 
stage random wave model given by (19-20). During the nth step of the random walk, Jn = 
Jn(Xn)Ji(0n), where Jt and J„ describe advection in the x direction (first stage) and y 
direction (second stage), respectively. Prom (19-20), 

Ji(0n) = 
1    sin(yn + </>„)T 

0 1 
and    J„(xn)= 

1 0 
sin(xn+i + Xn)r   1 

(24) 
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The independence of each step allows the ensemble average of K after n steps to be written 
as 

(K) = (J?(^)(JS(xi) • ■ • (J?(0»)<J7i(Xn)Jn(Xn)>Ji(^)> ■ • ■ JII(XI)>JI(&)>.        (25) 

Introducing the diagonal matrix T= [ g £ ], the inner most ensemble average of (K) can 
be written as (Jn(Xn)r Jn(Xn))- Upon calculating several sequential ensemble averages, the 
recurrsion relation for a = (a, b) becomes apparent. After n steps, we find 

1 — 1 2 

1 x  ~    A 

an 

bn 

(26) 

where ao = bo = l- With this, the general form of the Lyapunov exponent (23) reduces to 

L = lim -— In ( [^ h2] 
n-+oo ATIT 0    bn 

(27) 

In order to represent an in terms of So we need to solve the corresponding eigenproblem, 
Mu = \v, with M as given in (26). Due to space limitations, we do not provide the details 
of this calculation.   The main result is an = RAnR

Tao, where R is the rotation matrix, 

R= W vl 1, and An= fA+     °n 1. After performing the algebra, we find 1 v? u0 
J L   0    A      J 

-l-3n 
—j [(16 + r4 + (r2 - 4)\/16 + T

4
)(8 + r4 - rVl6 + r4)" + 

16 + r4 L 

(16 + r4 - (r2 - 4)Vl6 + r4)(8 + r4 + rVl6 + T4)n] ,    (28) 

6n = 2 -l-3n (4 + T2 + \/16 + r4)(8 + r4 + r2 V16 + r4)n 

V16 + r4 

(T
2
 - 4 + V16 + r4)(8 + T4 - TV16 + T4)" 

16 + r4 + T V16 + r4 
(29) 

Notice, an and 6n are not equal; therefore, stretching is anisotropic in this flow field. In fact, 
looking at the simple case of n = 1, ax = 1 + r2/2 and 6X = 1 + r2/2 + r4/4; we see that more 
stretching occurs in the y direction as compared to the x direction. However, at long times, 
taking the limit as n -)• oo, we find that the stretching does become isotropic as shown in 
the following. We rewrite (27) as 

n-KX) 4nr 

2an L- lim -— \n(hi-^ + hi) + lim 
n->oo 4nr ln(M- (30) 
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Figure 3: Ratio of the two diagonal terms 
in the stretching matrix as a function of 
steps n in the random map. 

Figure 4:    Lyanpunov exponent L as a 
function of turbulent decorrelation time r. 

As n oo. "71          _ + V16+7 j- — —-£ , 4 . Figure 3 shows an/bn as a function of n for a family of 
three r values. We see that for any given r, an/bn asymptotes to a constant value. Therefore, 
in the limit as n -> oo, the first term in (30) goes to zero. At large n, bn remains as the only 
contribution to L and thus stretching becomes isotropic. From figure 3, one can determine 
how quickly the flow becomes isotropic for a given r. We see that for r = 3, stretching 
becomes isotropic after the first step. 

With further manipulation of (27) we obtain the functional relation between L and r 

L = — In 
4r 

(l + r4/8) + VW4 + 16 (31) 

Figure 4 shows the graphical representation of (31) compared with that obtained for the 
rennovating random wave model of (21). Maximum stretching in the two stage random wave 
model occurs at r = 3.64 in contrast to r = 3.94 for the one stage random model. In general, 
the two stage random wave model generates more stretching of the fluid elements. 

6.2    Diffusivity of fluid particles 

We follow Einstein's theory of Brownian movement [11] to determine the diffusivity associated 
with the movement of fluid particles in the random wave model of (19-20). For a random 
walk processes in two dimensions, Einstein showed that 

A2
n = 4Deffi, (32) 

where A is the particle displacement, an overline denotes an average performed over n steps 
in the random walk, and £>eff is the effective diffusion coefficient that appears in the scalar 
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diffusion equation. Since each of the steps in the random walk is independent, A2
n =nA2 = 

A2i/r, where t is the total time and r represents the decorrelation time of the random walk. In 
our particular case, particle displacements during the nth step can be written as r2 =r2

7i +r]In, 
where r^ru are the displacements during the x,y stages of advection, respectively. Without 
loss of generality, we can make the coordinate translation (xn,yn) —> (0,0) before each nth 

step. Applying this simplification to (19-20) gives 

r2 = r2 cos2 (<£„) + r2 cos2 (- cos(</>n)r + Xn) ■ (33) 

Because we want the calculation to be independent of the random phase angles associated 
with a particular realization, we ensemble average over both (j> and x to yield {r2)<j>,x = r2. 
Note, in analogy to (32), A2 = (r2)^)X. Taking the average of (r2)^x over n total steps in the 
random walk and using (32) gives the resultant particle displacement diffusivity of Deg = |. 
It is interesting to note that this diffusivity is identical to that of the rennovating random 
wave model (21) where advection is performed in a single step. At this point, there is some 
confidence in our understanding of the model flow field; we, therefore, proceed to study the 
behavior of the scalar dispersion equation (10) under the two limiting parameter conditions 
of h = 0 and h —>■ oo. 

7    Zero Dispersion Limit 

In the case h — 0, the scalar dispersion equation (10) along with (18) reduces to 

At - cos(y + (f>)Ax - - sin(y+<f>)A = 0,    2m-«<(2n+i)T, (34) 

A t - C0S(X + X)Ay - - Sin(x + %)^4 = 0,      (2n+l)r<t<(2n+2)r. (35) 

We solve the above set of equations using the method of characteristics. In the first stage of 
the random wave model, we define new variables x — x + crf, t = t, y = y; while in the second 
stage, we define y — y + cut, i = t, x = x where cx = cos(y + <j>) and cn = cos(x + x). This 
effectively removes the advective terms from (34) simplifying the problem to two, uncoupled, 
first order ordinary differential equations, one at each advection stage. The solutions valid 
in the first and second stages are 

At = Aoe^^y+rt   and   A = AIe
i/2sän<ä+*>f, (36) 

respectively, where A0 represents the initial condition at the beginning of the nth step. Recall, 
at n = 0, A(x, y, i = 0) = 1. Using the fact that x and y remain constant along characteristic 
curves, the solution can be written in terms of an iterated map 

2nr<K(2n+l)r : AIn+1 = An e
i/2sin(2/n+0n)r? ^ = ^ _ cos(yn + ^ (37) 

(2n+l)T<t<(2n+l)r : An+l = Aln+1 e
i/2sin(xn+1+Xn)r) y^ =yn + cos(xn+1 + X»)T.        (38) 
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Figure 5:  Snapshots of the spatial structure of 5R(A) for the r = 1, h = 0.  Recall that at 
n = 0, &{A) = 1. 

Figure 5 displays four snapshots of 31(A) as computed from the map above for the case of 
T = 1. The resolution is 1028x1028. Later, we will compare these pictures to the structure 
of 31(A) for h 7^ 0. From (37) and (38), it is apparent that no mechanism exists to instigate 
changes in |A|; therefore, |vl| remains constant at its initial value of unity. This agrees with 
the previous results of section 5. However, the phase of A, denoted by 6 as in (11), does 
exhibit interesting behavior. The iterated map for 9 follows directly from (37-38) as 

T T 
0„+i = 0n + sin(y„ + 4>n)- + sin(xn+1 + Xn)^ (39) 

where xn+1 and yn+1 are given as in (37) and (38). We observe that for h = 0, 6 undergoes 
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a random walk process and therefore has an associated diffusivity Dß (not to be confused 
with the diffusivity of particle trajectories). To calculate Dß, we follow the procedure in 
section 6.2. The ensemble averaged variance of 9 is defined as {9' )^,jX = {(0n+1 — 6n)

2). 
Substituting in (39) and performing the average yields (9' ) = T

2
/4. Making the analogy 

with Einstein's theory in (32), we have A2 = (9' }^iX. Taking the average of A2 over n total 
steps in the random walk and using (32) t gives the resultant phase diffusivity Dß = r/16. 

0.5 

•   , -0.5 

9/27C 

X 

Figure 6: Phase of A for the case of h = 0, r = 1 after 25 random advection steps. 

This is an interesting result in that the behavior of 9 for zero dispersivity undergoes a 
normal diffusion process analogous to that of a real passive scalar. The structure of 9 after 
25 iterations of the map in (39), for r = 1, is shown in figure 6. Note, in order to obtain a 
continous field, results are plotted as 9/2-K. The initial condition at t = 0 is 9 = 0 and the 
resolution is 1028 x 1028. This picture looks surprisingly similiar to the stirring of a passive 
scalar as presented in [8] (figure 1 ofthat paper), for a random velocity field nearly equivalent 
to that of (18). 

8    Strong Dispersion Limit 

We use a simple multiscale analysis to investigate the large h behavior of (10) by introducing 
a small parameter e and a slow time t' such that h = 0(l/e) and t' = et. Applying these 
scalings to (10) and multiplying by e gives 

At,+eJ(*,A) + etj-A='-V2A. (40) 

*In the case of 0, we have a one dimensional random walk given by A2„ = 2Degt. 
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We assume that the solution can be written as a power series expansion in e, A = A0 + 
eA1 + e2A2 + ... . The 0(1) equation is obtained by substituting this expansion into (40) 
and taking the limit as e —> 0 

0(1):     A0t, = l-V2A0 (41) 

with the initial condition A0(t = 0) = 1. The solution A0 = 1 trivially satisfies this initial 
value problem. The 0(e) equation is obtained by substituting the 0(1) solution into (40), 
dividing by e, and taking the limit as e -» 0 

0(e):     ^,+1 = 1^ (42) 

with the initial condition A1(t = 0) =0. Note, J(^,A0) = 0. Because of the explicit form 
of (, see (18), we need to consider the two stages of the advection process separately. This 
complicates the problem in that the initial condition for each advection stage depends on the 
final state at the end of the previous advection stage. We start by considering the first time 
interval 0 < t < r, during which £ = — sin(y + <j>) and (42) reduces to 

Ahl--V2A, = -- sin(y + <f>). (43) 

with A](t = 0) = 0. We require both the homogeneous and particular parts of the solution to 
vanish at t = 0. Therefore, the homogenous part of the solution is simply 0. We assume a 
particular solution of the form Ax = a(t') sin(y + <f>). Substituting this into (43), we obtain 
an ordinary differential equation for a(t'), the solution of which is ä(t') = 1 - e~lt'/2. Thus, 
in the first time interval, 

A = l + l(l-e-^)sm{y + <j)) + 0(e2),    0<t<T. (44) 
n 

In the subsequent time interval r < t < 2T, ( = - sin(a; + x) and the initial condition is 
A1(t = r) = (l - e~2fi) sin(y + 4>). Following the same procedure used above, we find 

'-'♦si 
1+e-£(i-T) ((1 - e~^) sin(y + (f>) + l)l sin(x + x) + 0(e2),    r < t < IT. 

(45) 

One thing to notice in the strong dispersion limit is that spatial structure in A develops very 
slowly, in stark contrast to the case of h = 0 where, after only 12 iterations, the structure of 
A has become highly stretched and contorted (see figure 5). We will return to these results 
later in section 10 to ascertain how the energy contained in the large scales of A varies as a 
function of h. We now consider the regime h =£ 0. 
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9    Numerical Solution for h ^ 0 

Both the spatial domain and the streamfunction are 2it periodic; therefore, we seek a general 
solution to (10) in the form of a Fourier series expansion 

A =   ±   ak,e(t) e
ik^y,    aM(0) = I *'    * * " [ ~ °' 

,, 0,    otherwise k,t=—oo V.    7 

(46) 

where K = (&,£) describes the wavenumber vector and a,k,e{t) are the corresponding Fourier 
coefficients. Substituting (46) into (10) yields 

£ 
fc.fa- 

äk,t + it Vx ak,l ~ ik Vy aM + -V #a^ eKX = 53 (Ä2 + £2)aMeÄ-*.    (47) 

In order to eliminate the summations, we utilize the fact that the Fourier modes are 
orthogonal. To exploit this, we multiply (47) by e~iqy~ipx and integrate over y = 0-2it and 
x — 0-27T. Integrations are performed in detail in the Appendix. It is worth noting that if 
we did not chose a two stage random wave model for the velocity field, but rather used a 
single stage model such as (21), then it would not be possible to analytically integrate the 
terms resulting from (47). Performing the integrations yields two sets of coupled, first order 
ordinary differential equations for a^(i), each valid in one of the two stages of the advection 
process 

äk,e + ak,e+i e' 10 '  ' - GM-ie*   —-A—    = -7r(k + nak,e, (48) 

äk,t + ak+i,e e -ix l + i2i 
-Ofe-i^e ,*x 

l-i2£ -ih 
(k2 + i2)ak>£, (49) 

for n = 0,1,... and k, I = —oo,... , —1,0,1,... , oo where (48) and (49) are valid during 
the time intervals 2nr < t < (2n + l)r and (2n + l)r < t < (2n + 2)r, respectively. The 
apparent coupling between nearest neighbors of a results directly from the fact that the 
imposed velocity field contains only one Fourier component, the lowest nonzero wavenumber 
component. A convenient aspect of the two stage random wave velocity field is that, in the 
first stage, coupling occurs only between I wavenumbers; while, in the second stage, coupling 
occurs only between k wavenumbers. 

We solve (48-49) numerically to obtain the time evolution of the Fourier coefficients ak,e-, 
then utilize an inverse fast Fourier transform (FFT) algorithm to perform the resummation in 
(46) to obtain A. In the numerical solution, k, I must be truncated at the Nth Fourier mode, 
i.e. the summation appearing in (46) occurs over — N < k,£ < N. We chose N such that 
the amplitudes of the corresponding Fourier modes at \k\,\£\ > N have decreased below a set 
tolerance. In practice, though, we typically over resolve the Fourier domain by a substantial 
amount since we favor a grid size of 2px2p, p = 0,1,2,... . 
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n=10 

Figure 7:  Snapshots of the spatial structure of dt(A) for the r - 1, h - 1. Recall that at 
n = 0. »(A) = 1. 

The two truncated systems can each be described by a matrix equation, written in the 
general, compact form 

m = f(t,y(t))- 

For example, considering the simple case of N = 2, (50) becomes 

(50) 

272 



a_2 'c   d   0   0   0" a_2 

ä-i 6   c   d   0   0 O-i 

ä0 = 0   6   c   d   0 a0 

Öi 0   0   b   c   d Ol 

ä2 _ 0   0   0   b   c . a2 

(51) 

where ft = (1 + i2fc)/4e^", c = -ih/2(k2+£2), d = -{l-i2k)/Ae-^n, in the first stage; and 
b = (1 - i2£)/4eiXn, c = -ih/2(k2 + £2), d = -(l + i2t)/4e~iXn, in the second stage. We use 
the tridiagonal structure of (51) to our advantage in selecting a discretization method. The 
second order, fully implicit Adams-Moulton method is used in the present study. Applying 
this discretization method to (50) gives 

i/m+l Vn Jm+1        J IT 

« 2        ■ <52> 

The numerical method conveniently perserves the tridiagonal structure of the original 
truncated system. At each time step, we solve two, uncoupled linear, tridiagonal systems 
for Ofc^(t) (one during each advection stage) with an efficient tridiagonal system solver. A 
numerical C code was written to compute the time evolution of a^ and perform the sub- 
sequent inverse FFT to obtain the spatio-temporal structure of A. Since C does not have 
built-in capability for handling complex numbers, special functions were written to deal with 
complex number operations. 

There are some additional comments worth mentioning regarding the present numerical 
scheme. At each time step we verify that the code conserves |yl|2 over the spatial domain 
(refer to section 5) by tracking a0,o- The deviation of a0,0 from the expected value of unity 
is never greater than 1 x 10~10. Additional calculations regarding the stability and accuracy 
of the present numerical scheme were performed; however, due to space limitations, we do 
not provide those details. The analyses stem from a comparison between the solution to 
the discretized equation and the analytical solution obtained in section 8. We found the 
numerical method to be unconditionally stable. Furthermore, we found that the minimum 
time step required to achieve a specified accuracy depended on h and the magnitude of the 
wavenumber K2

. For example, to achieve 98% accuracy in the highest wavenumber component 
of the numerical solution for h = 1, a minimum time step of 0.005 is required. 

Figure 7 displays four snapshots of the spatial structure of dt(A) for the case of h = 1, 
r = 1. The resolution in each picture is 1028x1028. Figure 8 displays the numerical results 
from a comparison study between four different parameter values of h=0, 0.1, 1, and 10. 
Only the real part of A is shown, although the imaginary part exhibits similar structure. The 
snapshots are taken at n = 10 with r = 1. All computations utilized the same random data 
set for 4> and x- 

10    Energy in Large Scales 

We now take a look at how the energy in the large scales decays in time as a function of h. 
Recall from section 5 that (AA*) represents a conserved quantity where (•) denotes a spatial 
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Figure 8: Comparison of the spatial structure of 9t(A) for four different h values of 0, 0.1, 1, 
10. All snapshots were taken at n = 10, r = 1 and utilize the same random data set for </>, %. 

average and the superscript * denotes the complex conjugate. Therefore, we will define the 
energy associated with the complex scalar A as 

e = (A)(A*). (53) 

Figure 9 shows the results of e for three different cases of h = 0, 0.01, 1 as computed from 
the numerical code presented in section 9. The results are for one particular realization only. 
The exponential prediction shown stems from the hypothesis that the spatial average in the 
definition of (53) can be replaced by an ensemble average, i.e. {A) = E[elB], where E[-] 
denotes the expectation of the random process. For the case of h = 0, we showed in section 7 
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Figure 9: Decay of energy in the large 
scales of A for r = 1. 

Figure 10:  Expanded view of figure 9 
in the region near t = 0. 

that 6 obeys a random walk; therefore, the probability of 6 is Gaussian. According to the 
prediction, 

r-oo p-0
2/2<r2 

(A) =   I , „ ei6d9 I J — ( 

,-<72/2 -Det 

V2 
(54) 

7T<7^ 

where Dg is the diffusivity of the phase as calculated in section 7. Obviously from figure 9, 
the prediction (54) fails to describe the actual behavior of e. 

From our analysis of the strong dispersion limit, we know that as ft -» oo, e remains 
constant at the initial value of 1. This yields an interesting picture of the decay of the large 
scale energy as a function of ft. At ft = 0, the rate of decay of e is faster than exponential. 
As ft increases from 0, the rate of decay becomes faster than that for ft = 0. However, at 
some-critical value of ft > 1, the rate of energy decay becomes slower than exponential and 
eventually becomes zero, since e = 1 for all time as ft —> oo. 

11    Conclusion and Future Work 

The main focus of the present study has been the attempt to understand some of the funda- 
mental properties of the passive scalar dispersion equation (10) in the context of a random 
wave model (18) for the two dimensional background turbulent velocity field. We have found 
that the dispersivity parameter K greatly affects the spatiotemporal structure of the complex 
scalar A. For H = 0, both the real and imaginary parts of A become highly stretched and 
contorted even after only 10 iterations of the random wave field. In contrast, for the case of 
h = 1, the spatial structure of A looks blotchy with little indication of stretching or amplifi- 
cation of the gradient of A. As h increases, the time evolution of the spatial structure of A 
becomes increasingly slower. Below a critical value ftc, energy in the large scales of A decays 
faster than exponential; while for cases of h > hc, the energy in the large scales decays slower 
than exponential. In fact, as ft -> oo, the energy in the large scales remains constant at a 
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value of unity. A useful extension of the present study would be to quantify the structure of 
A, visualized herein, using probability density functions. Another natural direction for future 
work would be to determine whether A exhibits a Batchelor scale. In other words, is there 
a limit to the smallest scales of A achievable in the flow? Additionally, if there is a cascade 
of energy from large to small scales, then what are the relevant scalings associated with the 
spectra and how do these compare with the case of passive scalar diffusion? 

Finally with regard to near inertial oscillations, from the vertical normal mode decompo- 
sition presented in section 4 along with figure 2, we recognize that large H corresponds to low 
wavenumber vertical motions while h-*0 corresponds to high wavenumber vertical motions. 
It remains somewhat unclear, though, how one can directly apply the present observations 
regarding the variation in the decay of energy of A with h toward further understanding the 
behavior of the NIO velocity field in the oceanic mixed layer. Recall that in order to relate 
the NIO velocity field to the results of A presented here, we first need to compute A using 
the superposition of vertical normal modes and then apply the operator L. This is left as a 
task for future work. 
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13 Appendix 

Here, we detail the integrations resulting from the Fourier series expansion of A as described 
in section 9. The corresponding terms in (47) will be referred to sequentially as (I)-(V) 
starting from left to right. Each term is multiplied by e~iqy~ipx and integrated over y = 0-27T 
and x = 0-27T. Due to orthogonality of the Fourier modes, 

r2it r2-K 

\     ei(k-p)xdx = 2rr6kp    and     /     e^'^dy = 2Tr6£q, (55) 
Jx=0 Jy=0 

where S is the kronecker delta. The two stages of the advection process are considered 
separately. We only outline integrations for the first stage; those for the second stage follow in 
a similar manner. The first advection stage occurs during time intervals, 2nr < t < (2n + l)r, 
n = 0,1,... with the streamfunction given by * = sin(y + <j>). Terms in (47), excluding term 
(II) which is identically zero, are as follows: 

/•27T />2TT        °° 

(I)      /        /        £   äk>l{t)S
k-^dx 

Jo     Jo   u zr„ 

f>27T 

Sl-^dy = (2vr)2äM, 
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(Ill) -/        /        V   ikcos(y + <l>)ak!i(t)e^-^dy 
Jo     [Jo    k^_„ 

ak,e+i I ~y~ I + o,k,i-x I y 

r-27r |    ^_ / e-i<j> Qi<t> 

i2nk f afe/+i(t)-y- + ak,£-i — 
Lfc=—oo 

ei(k-p)xdx = 

ei(k-P)xdx = 

- ik(2irY 

r2ix       /-2-K _ • °° 

(IV)     -/        /     ^sin(y + ^)    V   aM(i)e^-^dy 
Jo       Jo      * w—.™ fc,f=—OO 

/•27T 

- /     2TT 
Jo 

e   *   V^ m     e 
"1- 2^ «W+1W--4 XI  aM-i(*) 

fc=—00 fc=—00 

ei(fc-p)xda. = 

ei(fc-p)xda. = 

(2?r)     ajfc^+i 4 /"fly-HT 

/•27T /-27T .-* °° 

(V)     /        /     -^   E   (fc2 + ^2)a,1£(i)ei^^^ 
Jo       Jo       ^    ,.-  

ei(fc-p)xda; 

fc,f=-00 

_(27r)2|(fc2+^)aM(i). 

Note, terms similar to cos(y+<^>) ei(-e~q^y can be easily integrated by rewriting the trigonometric 
part as an exponential, e.g. l/2{ei^f+4>) + e-%+<«). 
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The temperature-salinity relationship in the mixed layer 

Raffaele Ferrari 

1 Introduction 

In the surface mixed layer (ML) of the ocean there is a remarkable correlation between the 
horizontal temperature and salinity gradients. The goals of this project are (1) to investi- 
gate if these correlations are the result of processes at work within the ML, (2) to develop 
parameterizations of these processes to be used in large-scale ocean models. 

Observations show abundant examples of horizontal fronts with temperature and salinity 
. that oppose in their joint effect on density on scales of 10 m to 100 km [1], [2], [3]. A useful 
measure of the degree of compensation is the density ratio R, defined as the ratio of the 
relative effect of temperature and salinity on a density front. Stommel and Chen ([4], [5]) 
computed density ratios from large scale meridional temperature-salinity (T — S) gradients in 
the range of latitudes between 20° and 50° and concluded that R has a mean close to 1.7, even 
though individual fronts can have a density ratio markedly different from 1.7. These results 
are obtained from climatological data sets and refer to density ratios on scales of thousands 
of kilometers averaged over a number of years. On smaller horizontal scales, between 20 m 
and 10 km, Rudnick and Ferrari find that the ML density ratio is 1 and not 2 [3]. These 
observations imply that the mean density ratio on large scale is 1.7, even though typical 
thermohaline gradients at small scale have an instantaneous density ratio of 1. 

One possible explanation of the correlations between thermohaline gradients in the ML is 
that atmospheric forcing and entrainment of thermocline waters create and juxtapose water 
masses with compensating T-S gradients. However the ratio of heat to freshwater buoyancy 
fluxes is variable in large scale maps- and in time series at a point and there is no evidence 
that these fluxes force a small scale frontal density ratio of 1 and a large annual mean density 
ratio of 1.7. In this project we propose an alternative interpretation that relies on regulating 
mechanisms in the ML to create correlations between temperature and salinity, regardless of 
the large scale atmospheric forcing. Furthermore we show that the processes responsible for 
these correlations are not properly represented in large-scale ocean models and we suggest 
more appropriate parameterizations. 

2 Nonlinear diffusive parameterizations of eddy transfer of 
heat and salt in the mixed layer 

The basic idea of this study is straightforward: temperature and salinity are dynamically 
active in ML because they contribute to density gradients. All processes that depend on 
density gradients, and not on temperature and salinity gradients separately, are potentially 
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capable of creating T—S relations, because they act only on T—S fluctuations that reinforce in 
their joint effect on density. In order to test this idea, we first derive parameterizations of the 
ML, which use density gradients as the driving field, and then we examine the consequences of 
these parameterizations on the distributions of temperature and salinity in numerical models. 

Let us consider the dispersion of some tracer of concentration 6(x, y, z, t) in the ML. We 
model the ML as a vigorously mixed shallow layer characterized by a high aspect ratio, i.e. 
with a depth H much less than the horizontal scale L. The main point here is that there are 
two very different time scales: a fast time scale over which the layer is mixed vertically and a 
slow time scale associated with horizontal transports. We argue that in order to describe the 
lateral dispersion of the tracer on the slow time scale, it is not necessary to resolve the details 
of the processes active on the fast time scale. The combined action of small scale stirring 
stirring and vertical mixing can be parameterized as a diffusion of the vertically averaged 
tracer. 

A mathematical model for the horizontal transport of tracers in the ML is formulated 
decomposing 0 in a "mean" - denoted by 6 - defined as the average over the depth H of the 
ML and over a period long compared to the time scale of vertical mixing, and in an "eddy" - 
denoted by 6' - defined as the departure from that mean. The Reynold's averaged equation 
for a conserved tracer is 

et + ü-vHe = -v-u'e' + F. (i) 

Here u = (u, v) denotes the horizontal velocity of the incompressible Boussinseq fluid. The 
first term in the RHS of (1) is called the eddy flux divergence. Its net effect is to redistribute 
the tracer within the body of the fluid. The second term, F, represents the averaged fluxes 
of tracer from the surface of the ocean (atmospheric forcing) and through the base of the ML 
(entrainment of thermocline waters). The challenge of this section is to derive a long-term, 
large-scale equation for the mean tracer, by expressing the eddy fluxes in (1) in terms of 
mean quantities. 

Eddy fluxes of a conserved tracer can be parameterized with closures based on local mean 
gradients. The argument goes that a fluid particle carries the value of a conserved, and hence 
transferable, tracer for some length 1', before it is mixed with its new surroundings. If the 
particle was initially typical of its surroundings then the eddy flux of tracer 6 is given by 

u'0' = -u'l' • V0, (2) 

where it is assumed that V0 varies little over distances comparable with the mixing length 
1'. The tensor ü7!7 defines the eddy diffusivity. The most commonly used parameterization 
of horizontal eddy transports in the ML is to assume a down-gradient Fickian diffusion, 

u'0' = -jfcVÖ, (3) 

where k is set to an a priori value constant both in space and time. However down-gradient 
diffusion follows from (2) only if the statistics of the eddy field are horizontally homogeneous 
and isotropic. In the ML lateral eddy transports on time scales longer than the vertical mixing 
time result from hydrodynamical instabilities that release the gravitational potential energy 
stored in horizontal density gradients.   The dynamics is simple; lateral density gradients 
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slump under the action of gravity and drive horizontal eddy fluxes. The eddy velocity u' and 
the eddy displacement 1' associated with the release of potential energy must be, on average, 
in the direction of the density gradients and larger when the horizontal density gradients are 
larger. Therefore in the ML the statistics of the eddy field are not homogeneous and isotropic 
and a down-gradient Fickian closure is not appropriate. It seems natural to look instead for 
closures that include the effect of large scale density gradients. A general expression for the 
eddy diffusivity tensor can be written in the form, 

i?F = 7/(|Vp|)VpVp, (4) 

where p is the density of the fluid, 7 a constant and /(|Vp|) a function whose form de- 
pends on the details of the hydrodynamic instabilities that dominate in the eddy field. The 
corresponding flux of tracer is, 

u^=-7/(|Vp|)(Vp-W)Vp. (5) 

Notice that, even though the flux is in the direction of the mean density gradient, u'Ö'-VÖ < 0; 
thus the flux of tracer tends to be down the tracer gradient. With (5) we can write down an 
equation that describe the dispersion of the mean tracer, 

9t + u • V0 = 7V • [/(|Vp|)(Vp • V0)Vp].+ F, (6) 

where we dropped the overbars. Hereinafter we assume that all variables are averaged over 
the depth of the ML and over times longer than the vertical mixing time. 

We can now turn to the case where the tracers are temperature T and salinity S. Let us 
express density as p = po[l — g~lB], where B is buoyancy. Assuming that the equation of 
state is linear, and using suitable definitions, the buoyancy is 

B = T-S. (7) 

With our definitions, 5, T and B all have the dimensions of acceleration. The nonlinear 
diffusion equations that describe the buoyancy driven dispersion of heat and salt in the ML 
follow from (6), 

Tt + u-VT   =   7V-[/(|V£|)(Vi3-VT)V£] + .Fr, (8) 

St + u-VS   =   -yV-[f(\VB\){VB-VS)VB] + Fs, (9) 

where FT and Fs represent the forcings on temperature and salinity. 
Parameterizations in which the dynamics depends exclusively on horizontal density gradi- 

ents are not new to the oceanographic literature. The idea descends from Stommel's two-box 
idealization of the thermohaline circulation [6]. Stommel posited a transport law in which 
the exchange of mass between boxes is proportional to the square of the density difference. 
Some thirty years later Stommel and Young used the same model to study the T — S relation 
in the ML [7]. Stommel's model is essentially a two-grid points discretization of (8) and (9) 
with /(|V2?[) = |V-B|-1. Other classes of nonlinear diffusion models have been developed 
for the full range of space and time scale that are of interest to oceanographers: from the 
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planetary scale of the thermohaline circulation, through the deformation scale dynamics of 
baroclinic eddies, down to the ageostrophic circulations in shallow water systems. Here we 
limit our attention to models for the upper ocean. The redistribution of temperature and 
salinity in the ML is the result of processes that release the potential energy stored in hori- 
zontal stratification; viz. buoyancy driven shear dispersion at scales below the deformation 
radius and baroclinic instability at larger scales. Our goal is now to emphasize the unity of 
the physical ideas underlying the two processes and to show that both can be described by 
the equations in (8) and (9). 

2.1 Buoyancy driven shear dispersion 

W. R. Young, in the first part of this volume, discussed a class of models to parameterize 
the transport of heat and salt in a ML idealized as a shallow system with strong vertical 
mixing. He derived a set of nonlinear diffusion equations for T and 5, where the nonlinearity 
arises because the horizontal transport of heat and salt is by shear dispersion, and the shear 
flow doing the dispersing is driven by slumping horizontal buoyancy gradients. The main 
point of his presentation was that the lateral diffusivity in such a ML is proportional to the 
horizontal buoyancy gradient squared. Young's model is a particular case of (8) and (9), with 
f(\VB\) = 1 and no vertically averaged flow, u = (0,0), 

Tt   =   7V • [(VB • VT)VB] + FT, (10) 

St   =   7V • [{VB ■ VS)VB] + Fs. (11) 

The constant 7 depends on the depth H of the ML and on the details of the processes doing 
the vertical mixing. If mixing is parameterized as an intermittent process that homogenizes 
the ML at intervals of time T, one finds that 7 = H2

T
3
/96 [8]. Different parameterizations 

agree on the functional dependence of 7 on the depth H and the characteristic time of vertical 
mixing T. 

It is important to discuss the range of oceanic parameters for which the nonlinear diffusion 
equations (10) and (11) might apply. Shear dispersion mechanisms can act only at horizontal 
scales larger than H, say 100 m, and shorter than the deformation radius, typically 10 km 
in the ML. and at timescales longer than the vertical mixing time, say a day. Motions with 
smaller lengths and higher frequencies are parameterized as "vertical mixing" (e.g. Langmuir 
circulations and convective overturning). At larger scales the effects of rotation become 
important and the dynamics change substantially as shown in the next section. For H = 100 
m and r = 1 day one obtains 7 = 1017 m2s3; we use this as a reference value throughout the 
report whenever we make quantitative statements about our results. 

2.2 Buoyancy fluxes produced by baroclinic instability: Green, Stone and 
Held 

At scales larger then the Rossby radius of deformation eddies produced at baroclinically un- 
stable buoyancy gradients can dominate the transports of heat and salt in the ML. Green used 
the arguments reviewed at the beginning of this section to show that the transfer properties 
of baroclinic eddies can be parameterized in terms of their large scale structure [9]. Supposing 
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that the transfer of buoyancy occurs in the growing phase of baroclinic eddies, when energy 
is extracted by the eddy from the baroclinic zone of the large scale flow, Green deduced the 
expected form of the eddy diffusivity in the limit of large Richardson number. He then used 
linear stability analysis of the baroclinic wave to determine the direction of the eddy fluxes. 
Stone derived a similar expression from linear stability analysis and extended Green's results 
to small Richardson numbers [10]. Green and Stone imagined that diabatic processes, like 
vertical mixing, restore the baroclinic zone, replenishing the supply of available potential en- 
ergy until it is discharged again by baroclinic instability. This repeated conversion of energy 
leads to a diapycnal eddy flux. Green and Stone attempted to relate this flux to large-scale 
parameters in zonally averaged models of the atmosphere, 

M = -^i2\By\ey, (12) 

where v' is the meridional eddy velocity, N is the Brunt-Väisälä frequency, a a universal 
constant of proportionality, and I a measure of the meridional eddy displacement. Green 
argues that this distance is set by the width of the baroclinic zone. Stone, however, suggest 
that the deformation radius is the appropriate length scale. The ideas of Green and Stone, 
however, converge on predicting that the baroclinic eddy fluxes across a buoyancy gradient 
are driven by the absolute value of the diapycnal buoyancy gradient. It then makes good 
physical sense to extend (12) to two dimensions as, 

^ei=-^l2\VB\-1(Ve-VB)VB. (13) 

With this parameterization of lateral eddy transports, the dispersion of temperature and 
salinity in the ML is once again described by nonlinear diffusion equations of the form in (8) 
and (9): in this case /(|VJB|) = |V5|_1 and 7 = al2N~l. 

Pavan and Held used the results of numerical simulations to test diffusive parameteriza- 
iitnis of the buoyancy fluxes produced by baroclinic instability [11]. They integrated a two 
layer model of a baroclinically unstable jet to obtain a series of statistically steady states 
for different jet widths and evaluate diffusive approximations of the eddy buoyancy fluxes. 
In their simulations the flow is forced by relaxation to an unstable prescribed buoyancy gra- 
dient. Pavan and Held found that a flux-gradient relationship, deduced by a simple fit on 
numerical results, predicts the magnitude and the shape of the eddy fluxes in the unstable 
jet flows remarkably well. The functional form of the relationship differs from that suggested 
by Green and Stone; for large buoyancy gradients, that is for temperature gradients larger 
t han the climatological mean of 6° C over 1000 km, the effective diffusivity is proportional to 
the fourth power of the buoyancy gradient. In the presence of two stratifying components, 
like heat and salt, one obtains a set of coupled equations for temperature and salinity of the 
form in (8) and (9) with /(|VB|) = |V£|. 

The main conclusion of this brief review is that different diffusive parameterizations of 
tracer fluxes produced by baroclinic instability agree on one point: diapycnal baroclinic fluxes 
can be described with nonlinear diffusive closures where the diffusivity is proportional to some 
power of the buoyancy gradient. Differences emerge only in the power law that relates the 
buoyancy flux to its gradient, but all parameterizations are captured by the general form in 
(8) and (9). The parameterizations discussed so far describe the eddy transports across and 
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not along isopycnal surfaces. A full parameterization of baroclinic instability should account 
for the epipycnal fluxes as well. However our goal is to explain how a density ratio of one is 
maintained in the ML at small scales, even though the ratio of heat and freshwater fluxes is 
extremely variable in the external forcing. Isopycnal eddy fluxes do not release the energy 
stored in horizontal buoyancy gradients and thus cannot explain compensation. Therefore we 
do not attempt a parameterization of epipycnal fluxes in this project, but it remains an open 
question to verify the role of these fluxes in creating correlations between two dimensional 
distributions of temperature and salinity. 

3    Temperature-salinity correlations at small scales as a result 
of nonlinear diffusive parameterizations 

We begin by exploring the implications of the nonlinear diffusive parameterization of the 
ML in an idealized setting. Suppose that temperature and salinity variations are created at 
some instant by atmospheric forcing or entrainment of thermocline waters and that these 
horizontal nonuniformities disappear as a result of nonlinear diffusion. This is a rundown 
problem in which there is no external forcing and the down-gradient diffusion eventually 
erases all the initial fluctuations in temperature and salinity. There is no mechanism to 
produce new randomness: all the randomness comes from the initial condition. Equations 
(8) and (9) reduce to 

T, = 7V ■ [/(|VB|)(VB ■ VT)VB],        St = 7V • [/(|VJ3|)(VB ■ VS)VB].        (14) 

Observe that the free decay of temperature and salinity is perfectly symmetric in this system. 
If the statistics of temperature and salinity are identical in the initial conditions, then no 
asymmetries in the thermohaline fields can develop at later times. One might then expect 
that this rundown problem shows only the progressive decay of the initial temperature and 
salinity fluctuations. However apart from the trivial decay, well before all fluctuations are 
erased, nonlinear diffusion creates nontrivial correlations between the thermohaline fields and 
between their gradients. The physical reason is that in the initial conditions there will be 
regions in which the temperature and salinity gradients will happen to partially compensate 
in their joint effect on buoyancy. In those regions the nonlinear diffusion will be small and the 
initially compensating gradients will persist. Likewise, the initial conditions will also contain 
regions in which the thermohaline gradients accidentally produce large buoyancy changes; 
those regions are then subject to strong diffusion and the gradients will quickly disappear. 
The consequence of this selective decay is that only compensated thermohaline gradients 
persist as the system runs down and a density ratio of 1 is established. 

3.1    One-dimensional model 

We start by considering the simplest problem in which the temperature and salinity have 
spatial variations in only the y-direction. Equations (14) then reduce to 

Tt=>r(\Bv\nTy)y,        St = -r(\By\nSy)y, (15) 
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where n is an integer that can take any value from 1 to 3 according to the nonlinear closure 
under consideration. 

The one-dimensional case is sufficient to illustrate the development of thermohaline cor- 
relations from random initial conditions. Numerical simulations of the system in (15) are 
carried in non dimensional variables. Buoyancy, temperature and salinity are measured in 
terms of the initial RMS buoyancy variations (Bo), lengths in terms of the initial correlation 
length (to), and time in terms of T7 = t\j^B\. T7 is the time it takes to mix tracers over 
a distance £o using nonlinear diffusion driven by the initial RMS buoyancy gradients. In 
terms of non dimensional variables one simply sets 7 = 1 in (15). The initial conditions are 
established by selecting T and S uncorrelated at each grid point using a uniform probability 
density function with zero mean such that 

(B2) = 1,        (T2) = <S2> = \, (16) 

where () is an integral over the domain 

(B2) = i^B2dy. (17) 

The numerical calculations are performed by integrating the non dimensional coupled 
equations for temperature and salinity. Global conservation of heat and salt is satisfied by 
requiring that the gradients Ty and Sy vanish at both ends of the domain (i.e., 'no-flux' 
boundary conditions). We solve the system in (15) on a discrete spatial grid with an explicit 
Euler forward scheme in time and central differencing in space. The time step, At, is short 
enough to accurately solve the set of ordinary differential equations obtained by the spatial 
discretization of (15). 

The creation of positive correlations between temperature and salinity and their gradients 
is shown in a series of T — S and Ty — Sy scatterplots. Figures 1, 2 and 3 show the results 
of simulations with different nonlinear power diffusivities, respectively n = 1, n = 2 and 
n = 3 in (15). In all three cases the thermohaline compensation is evident as an extension 
of the cloud of points along the "compensation line" Ty = Sy at time t = 3. A cloud of 
points collapsed along the "compensation line" is equivalent to a density ratio of 1; thus dif- 
fusive parameterizations with a diffusivity that depends on the horizontal buoyancy gradient 
correctly predict the observed density ratio of 1 at small scales. The reader interested in a 
more rigorous analysis of these simulations is referred to [8], where the nonlinear diffusion 
equation with diffusivity n = 2 is analyzed both numerically and analytically. Here we want 
to stress the fact that compensation is typical of all parameterizations that have a diffusivity 
that grows proportionally with the horizontal gradients of buoyancy. Changing the power 
law in the diffusive parameterization affects the aspect ratio of the cloud of points in the 
scatterplots, but not the orientation of the major axis. 

Finally let us discuss the characteristic time over which compensation occurs. After 
the passage of a hurricane, typical temperature gradients can be as large as 0.1 °C over a 
kilometer. The shear dispersion model for a mixed layer 100 m deep and a vertical mixing 
time of the order of one day, shows compensation over scales of a kilometer after only one 
hour. Choosing a vertical mixing time scale of a third of a day gives that compensation is 
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created in one day. More importantly compensation on scales of 10 km is established in a 
time 100 times slower. Therefore we expect compensation to be restored after each forcing 
event on scales of a kilometer, while on larger scales compensation and external forcing act 
on comparable time scales. This explains why a density ratio of 1 is observed only up to 
scales of at most 10 kilometers. 

3.2    Two-dimensional model 

ID the previous section we investigated nonlinear diffusive parameterizations in one dimension. 
W'o now extend our analysis to two dimensional models. A second spatial dimension adds 
new flavor to the problem, because the nonlinear diffusion depends not only on the magnitude 
but also on the relative orientation of the thermohaline gradients. 

Numerical simulations of the nonlinear diffusion equation in (14) are carried in dimension- 
less variables as discussed in the previous section. Conservation of heat and salt is satisfied 
by imposing periodic boundary conditions at the edges of a square domain. The initial con- 
ditions have random and uncorrelated T and S profiles. The numerical integrator uses a 
third order Adams-Bashford scheme in time and central differences in space. The time step 
is chosen short enough to ensure stability and accuracy of the solutions. 

The two dimensional rundown problem shows that correlations develop between the mag- 
nit udes of the thermohaline fields in much the same way described for the one dimensional 
case. Scatterplots of the thermohaline gradients, computed along an arbitrary path within 
t he domain, collapse along the compensation line during the first phases of the simulation 
and look exactly like those in figures 1, 2 and 3. The new result is that correlations develop 
also between the orientation of the thermohaline gradients. Figure 4 shows histograms of 
the angles between the temperature and salinity gradients at each grid point. The process 
of "thermohaline alignment" is extremely fast and by time t = 1 (of the order of one day 
or less in dimensional units for typical ML gradients) T and S gradients are nearly every- 
where parallel. Note that the number of aligned gradients increases with time, proving that 
nonlinear diffusion actively tilts the T and S isolines so as to create a uniform buoyancy 
held. In one dimension compensation is the result of dissipation of all buoyancy gradients. In 
two dimensions nonlinear diffusion can also create compensated gradients not present in the 
initial conditions, by selectively dissipating those components of thermohaline gradients that 
project on density gradients. The results shown in figure 4 are obtained for a shear dispersion 
closure, that is by substituting f(\VB\) = 1 in (14). Analogous results are obtained for the 
other forms of f(\VB\) introduced in section 2. 

The main result of the two dimensional simulations is that nonlinear diffusive parameter- 
izations of the ML produce compensation between the gradients of temperature and salinity 
along any direction. This is consistent with the density of ratio of 1 measured by profiling the 
ML along one dimensional paths [3]. It remains to understand why compensation and a den- 
sity ratio of 1 are observed only at small scales and not at scales of thousands of kilometers. 
We address this point in the next section. 
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Figure 1: This figure shows the results of a simulation in which 1000 points in the (S,T) and 
(Sy,Ty) planes are created by picking uncorrelated temperature and salinity from a uniform 
probability density with variance 1/2; thus the variance of B = T — 5 is one. The nonlinear 
diffusivity is of the form \By\ = \Ty — Sy\. The upper panels show scatterplots at time t = 0. 
The lower panels scatterplots at t = 3. 
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Figure 2: As in figure (1), but with a nonlinear diffusivity of the form |-Bj,|2 = \Ty — Sy\ 
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Figure 3: As in figure (3), but with a nonlinear diffusivity of the form |l?y|
3 = \Ty — Sy\ 
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Figure 4: Histograms of the angles between the temperature and the salinity gradients at 
four different times in a simulations on a grid of 100 x 100 points. The initial conditions are 
created by picking uncorrelated temperature and salinity from a uniform probability density 
with variance 1/2; thus the variance of B = T - S is one. The thermohaline fields evolve 
according to the equations in (14) with 7 = 1 and /(|V£|) = 1. 
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4    Temperature-salinity relation at large scales explained with 
a forced nonlinear diffusion equation 

We showed how correlations develop between the thermohaline fields as a result of nonlin- 
ear diffusive parameterizations by solving initial value problems in which temperature and 
salinity are prepared as random and uncorrelated distributions. For typical ML thermoha- 
line gradients these correlations are established on time scales of days for length scales of a 
kilometer and much slower for longer length scales. One then expects that horizontal density 
fluctuations on scales of a few kilometers disappear soon after they are created by forcing 
events like storms or wind bursts. This is consistent with the experimental evidence that 
typical thermohaline gradients on scales shorter than 10 km are compensated [3]. At scales 
of tens of kilometers nonlinear diffusion is not as efficient and it does not restore compensa- 
tion between one forcing event and the next. The long term climatological T — S relationship 
and the large scale density ratio of the ML are then the result of the competition between 
nonlinear diffusion, that dissipates horizontal density gradients, and thermohaline forcing, 
that continuously creates thermohaline anomalies. 

The combined action of surface forcing and nonlinear diffusion on large scales in the ML 
is investigated with a model of the form given in (8) and (9). We restrict temperature and 
salinity to have spatial variations only in the meridional y-direction. A one dimensional model 
enables us to perform extensive Monte Carlo simulations and to obtain stable statistics of the 
thermohaline fields under the action of forcing. At the same time the one dimensional case 
capture the essential dynamics of thermohaline compensation; we verified that introducing a 
second dimension in simulations of the rundown problem does not change the dynamics that 
lead to the decay of density gradients. Only the process of thermohaline alignment cannot 
be captured in one dimension, but a characterization of the relative orientation of T and S 
gradients goes beyond the goal of this study. Here we limit our analysis to one dimensional 
statistics like the density ratio. 

Numerical simulations of the nonlinear diffusion equations with forcing must be run for 
long times to achieve stable statistics. In order to save on CPU time, we limited our analysis 
of the equations in (8) and (9) to only one form of nonlinear diffusion. We chose the quadratic 
nonlinear diffusion that follows from a shear dispersion closure and set f(\VB\) = 1. Only a 
few results depend on this particular choice and we will point them out. In one dimension 
the equations for T and S reduce to 

Tt   =   1(B2
yTy)y-a(T-9(y)) + G(y,t). (18) 

St   =   7(B2
ySy)y + F(y,t), (19) 

In the temperature equation (18), 9 is the long time averaged atmospheric temperature 
determined by climatological data and a(T — 0) represents the atmospheric feedback on the 
temperature of the ML: the larger T — 6, the larger the heat flux from the atmospheric 
boundary layer into the ocean ML. G(y, t) represents all other sources of heat such as daily 
and seasonal temperature variations. In the following numerical calculations G(y,i) is set 
to zero under the assumption that the long term surface temperature is dominated by the 
climatological forcing rather than by the short term temperature fluctuations. The parameter 
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a sets the time scale needed for the ocean ML to adjust to the atmospheric temperature 9. 
When this time scale is small compared to the characteristic time scale of nonlinear diffusion, 
the equation for temperature reduces to 

T = 0(y) (20) 

The parameter a is determined by the time averaged heat flux from the atmosphere to the 
ocean and for a 100 m deep ML it is taken to be 10-7 s_1 [12]. For climatological gradients 
(6 °C over 1000 km) the nonlinear diffusion term is three orders of magnitude smaller than 
the relaxation term and (20) is a very good approximation of the equilibrated temperature 
field. Numerical simulations will show that this is indeed the case. 

In the salinity equation (19), F(y,t) represents the combined action of salinity fluxes 
across the air-sea interface (evaporation and precipitation) and across the base of the ML 
(entrainment of thermocline waters). The forcing on salinity F(y,t) is modeled in the form 
of localized sources and sinks randomly distributed in space and time. Each forcing event 
create a salinity anomaly of the order of 0.01 psu in one day, equivalent to 3 cm of freshwater 
dumped in a 100 m deep ML or equivalently to an entrainment of 2 m of water with a salinity 
larger/smaller of 0.5 psu. We adjust the size and frequency of the forcing events so that we 
obtain the equivalent of a precipitation of 1 m per year, a value typical at midlatitudes in the 
North Pacific and in the North Atlantic [13], [14]. In order to conserve salinity the integral 
of the forcing on salinity must have zero average over long times, 

lim 
T->oo 

f   dt f  dyF(y,t) =0. (21) 
Jo       Jo 

We impose this constraint by prescribing F(y, t) as the sum of five positive and five negative 
Gaussians, all of the same amplitude, so that their sum is identically zero at all times. The 
positions of the Gaussians within the L = 1000 km of the domain is sampled from a uniform 
probability distribution and is changed every day. This ensures that the long time average 
forcing is zero at each point, even though several Gaussians can hit in the same place over a 
short period of time and produce strong local salinity and buoyancy gradients. 

The key element of the problem set in (18) and (19) is that there is an asymmetry in the 
large scale forcing of temperature and salinity. Temperature is relaxed to some atmospheric 
climatological mean, while salinity is forced by random rainfall, evaporation and entrainment. 
The idea that asymmetries in the thermohaline forcing together with nonlinear parameter- 
izations of eddy fluxes produce the observed large scale mean density ratio has been raised 
by Stommel [4]. Stommel tested this hypothesis with an idealized two-box model of the ML, 
but did not attempt any comparison with observations. Here we explore the process in the 
context of a continuous model of the ML and we quantify its effect for realistic oceanographic 
parameters. 

4.1    Numerical algorithm 

For the simulations we use dimensionless variables. Temperature and salinity gradients are 
measured in terms of of the climatological temperature gradient (6 °C over 1000 km), lengths 
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in terms of the domain length (1000 km) and the time in terms of the time it takes to mix 
tracers across the domain (3000 years). 

The numerical calculations are performed by integrating the non dimensional equation 
for the temperature and salinity gradients, obtained by differentiating (18) and (19) in y, 

(Ty)t   =   (Bfry)yy-a(Ty-ey)-ß(Ty)yyyy. (22) 

(Sy)t       =        {BySy)yy+Fy- ^(Syjyyyy, (23) 

The hyperviscosity is introduced to dissipate small scale gradients and to allow longer time 
stepping in the simulations. In this section we are interested in the effect of nonlinear diffusion 
on large scales and we do not need to resolve small scale structures. We use a grid spacing 
of 1 km and choose a value for (i that filters out all fluctuations with length scales shorter 
than 3 km. Global conservation of heat and salt is satisfied by requiring that Ty = Tyyy = 0 
and Sy = Syyy = 0 at both ends of the domain (i.e., no-flux boundary conditions). We solve 
the system in (22) and (23) on a discrete spatial grid with an explicit Euler forward scheme 
in time and a dealiased sine spectral code in space. The time step is set by the decorrelation 
time of the stochastic forcing acting on salinity, chosen to be one day. 

4.2    The effect of stochastic forcing on salinity 

The vision of the large scale T — S relation in the ML is that the enormously variable 
forcing creates salinity anomalies that are eliminated by nonlinear diffusion. The combination 
of strong forcing on salinity and nonlinear eddy fluxes holds the average density ratio to 
a constant value. It is instructive to study the decay of a localized salinity anomaly to 
understand how the T — S relationship is established. 

Let us study the evolution of T and S after the forcing has created a large scale salinity 
anomaly. We prescribe a linear climatological gradient (6y = 1) and we assume that the 
relaxation time scale is so fast (large a limit) that temperature is always in equilibrium 
(Ty = 1). In this limit the nonlinear diffusion equation for salinity reduces to, 

St   =    [(Sy  ~   1)    Sy]y   - H(Sy)yyyy, (24) 

We take the initial salinity profile to have the same width and shape of the Gaussian salinity 
anomalies created by F in (19). Figure 5 shows the profiles of S and Sy at time zero and 
at some later time. Salinity is diffused faster where the initial profile has a negative slope 
than where it has a positive slope. This asymmetry is easily explained if we consider that 
for a gradient of given magnitude \Sy\ the nonlinear diffusivity (Sy — l)2 is larger where Sy is 
negative than when Sy is positive. A look at the profiles of salinity gradients confirms that Sy 

diffuses at a slower rate when it has a value close to 1. As expected, in the absence of forcing, 
salinity decays to the only stable solution Sy = 0 (the solution Sy = 1 is only semistable), but 
regions where the salinity gradient is close to one decay slowly. We speculate that averaging 
the solution over many independent forcing events will reflect this asymmetry and produce 
a positive average salinity gradient (Sy); i.e., the presence of a climatological gradient 9y = 1 
breaks the symmetry in the decay of the salinity gradients and determines a finite mean 
density ratio R = l/(Sy). 
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Figure 5: Evolution of a Gaussian salinity anomaly subject to the nonlinear diffusion equation 
in (24). The upper panels show the initial salinity and salinity gradient and the lower panels 
the same variables at a later time. Only the central part of the integration domain is shown. 
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Some general properties of the evolution of the salinity gradient are better revealed by- 
writing equation (23) in variational form, 

(Sy)t = Si 

where ${Sy) is the functional 

*(5y) =   f 
JO 

6$ 

ÖS,, 
+ Fy, (25) 

H(Sy,y)   +   -li{SyyY dy 

and H(Sy,y) is the function 

H{Sy,y)     =     ~Sy     -     ^OySy    +     -9ySy. 

In (25) we introduced the variational derivative of the functional $(Sy), 

6$ 
6S, 

= Hs-lxS, yy 

(26) 

(27) 

(28) 

In the absence of forcing, the form (25) can be used to show that the system has only one 
stable equilibrium which minimizes the functional <&{Sy), i.e., Sy = 0 (figure 27). Furthermore 
t he shape of the potential is such that the decay towards equilibrium is slower around the 
saddle line Sy = 6y. We then expect that, even though the random forcing creates positive 
and negative Sy anomalies with the same probability, salinity gradients with values close to 
zero and 6y are more persistent and the long time averaged salinity gradient at each point 
settles to some value between zero and 6y. 

4.3    Numerical simulations 

We begin our numerical experiments of the system in (22) and (23) by relaxing temperature 
towards a linear climatological gradient; i.e. we set 6y = 1 in (22). The initial temperature 
and salinity gradients are chosen to be zero. The model is run continuously for 3200 years. 

During the first stages of the simulation the thermohaline fields evolve from the initial 
conditions towards a statistically steady state. Temperature relaxes to the climatological 
mean in a few years. After that fluctuations from the equilibrium solution T(y,t) = 6(y) 
are negligible. The spin up time for salinity is approximately 200 years. In the following all 
statistics are computed discarding this initial spin up time. 

Figure 7 shows the mean thermohaline fields averaged over 3000 years. In the upper left 
panel, T and S profiles are plotted as a function of latitude. Salinity develops a large scale 
structure, even though the random forcing is uniformly distributed in the domain. The long 
time average profile of salinity is, to a good approximation, S = (2/3)y. The analog of the 
oceanographic mean horizontal density ratio for this model is R = Ty/Sy = 3/2, where the 
overbars denote the temporal averaging. A mean density ratio of 1.5 on a scale of 1000 km, 
the size of our domain, is consistent with the observational results of Stommel and Chen [4], 
[5].  Notice though that our averages are carried over 3000 years, while both Stommel and 
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Figure 6: The function H(Sy) in the case of a linear climatological temperature gradient, i.e., 
By — 1. The dark line is a possible Sy profile. 

Chen used climatologies averaged over less than 20 years. We return to this point at the end 
of the section. 

Simple arguments based on a Reynold's decomposition of the thermohaline fields are now 
used to interpret the density ratio of 3/2 obtained in the numerical simulations. Let us 
decompose S and T as the sum of a temporal mean plus fluctuations about that mean; i.e., 
S = S + S" and T = T + T'. Numerical experiments show that we can safely neglect T' 
in the Reynold's decomposition of T and write T = T = 6. Taking the time average of the 
nonlinear diffusion equation for salinity then gives, 

St = (s'f + 5^2(35,-20,) + Sy(Sy -6y)
2)   +F. 

\ / y 
(29) 

Both F and St vanish if the average is carried over a long enough time. The sum of the 
first three terms in the RHS of (29) must then vanish as well. Notice that this sum cannot 
be a constant different from zero, because of the no-flux boundary conditions. Furthermore, 
the third term, Sy(Sy — 9y)

2, is likely to be smaller than the first two, because the typical 
amplitude of the fluctuations created by the forcing is larger than the mean gradients; nu- 
merical results show that this is indeed the "case (last panel of figure 7). Therefore the leading 
order balance involves only the first two terms. Setting to zero S'y

3 + S'y
2{3Sy - 26y) gives an 

estimate of the mean salinity gradient, 

Sy~3 

o"3 
=L 
c"2' 

(30) 

The numerical simulations show that S'y
2 settles to a constant profile different from zero, while 

S'3 keeps decreasing throughout the domain.  This explains why Sy asymptotes 2/3 when 
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averaged over long times. Finally we should remark that we did not include the hyperviscosity 
term in this analysis, because its contribution in the long term balance is maintained small 
by choosing an appropriate value for [i. 

The Reynold's decomposition analysis of the equations in (22) and (23) shows that a large 
scale mean salinity gradient is required if all nonlinear fluxes are to balance when averaged 
over long times. This balance depends on the particular form of nonlinear diffusion chosen. 
That is nonlinear closures different from /(| V2?|) = 1 in (8) and (9) would still produce a large 
scale salinity gradient, but its dependence on 6y would not be that given in (30). Stommel 
came to the same conclusion for his two box model [4]. He obtained that, for a diffusivity 
between the two boxes of the form \By\n, the salinity gradient becomes linearly proportional 
to the climatological temperature gradient and the mean density ratio approaches (n + l)/n. 
We verified that Stommel argument applies also in the continuous limit for the diffusivity 

So far we showed thermohaline profiles averaged over 3000 years. Averaging over shorter 
times gives results that are not in statistical equilibrium. Results averaged over two different 
subintervals of 30 years from the same simulation shown in figure 7 give a density ratio close 
to 3/2 in one case (figure 8) and 1 in the second case (figure 9). The differences arise because 
over 30 years the leading order balance in (29) involves both St and F. It is necessary 
to average over longer times to include a number of forcing events large enough to obtain 
stationary statistics. Over a 3000 year time span, each point on the grid is hit on average 
by 106 forcing events, while over a 30 year time span this number is one hundred times 
smaller and as a consequence the average of the forcing is 10 times larger: it is the number 
of independent forcing events that sets the time required to have stable statistics. In this 
sense our results are consistent with observations, because in their analysis Stommel and 
Chen compute averages over a wide range of longitudes in space so that they include many 
realizations of forcing events per unit time. 

5    Discussion 

The main result of this project is that nonlinear diffusive parameterizations of the ML, which 
use buoyancy as the driving field, can explain the different values of density ratio observed in 
oceanographic measurements. At scales shorter than 10 km the nonlinear fluxes are so strong 
that a horizontal density ratio of 1 is restored in a few days whenever a forcing event creates 
an anomaly in T and S. At larger scales the correlations between temperature and salinity 
emerge as a balance between nonlinear diffusion and thermohaline forcing. The large scale 
forcing on temperature is modeled as a relaxation of temperature towards a climatological 
mean profile to account for the atmospheric feedbacks on thermal anomalies. There is no 
reason to include an analogous term in the equation for salinity and the forcing on salinity is 
purely stochastic. The difference in the forcings breaks the symmetry between T and 5. The 
large scale temperature gradient relaxes in a few years towards the climatological mean, while 
salinity develops a large scale gradient that on average is proportional to that of temperature 
even though the forcing on salinity is uniformly distributed over the domain. The ratio of 
the large scale mean gradients of T and S is close to 3/2 for the specific nonlinear diffusion 
parameterization used in the simulations. This value is consistent with observations. 
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Figure 7: Results of a numerical simulation of the system in (22) and (23) with 0 = y and 1000 
grid points. The upper panels show the T, 5, Ty and Sy profiles as a function of latitude 
y. averaged over 3000 years. The average salinity compensates 2/3 of the climatological 
temperature gradient. The lower left panel is the T-S diagram of the averaged T and 5 
profiles. The lower left panel is a plot of the first three terms in the RHS of (30); S'y

3 is the 

continuous line, S'2(3~Sy~ - 26y) is the dashed line and Sy(Sy - 6y)2 is the dashdotted line. 
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Figure 8: Results from the same simulation shown in figure 7 averaged over a subinterval of 
30 years. 
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In order to show both a density ratio of 1 at small scales and a density ratio of 1.5 at large 
scales, we are running numerical simulations of the equations in (18) and (19) with stochastic 
noise on temperature and salinity; that is G(y,t) and F(y,t) have a white spectrum in space 
and time. Preliminary results show that compensation develops over a few grid points and 
produce a small scale density ratio of 1, while at large scales salinity compensates only part 
of the temperature gradient and the density ratio settles to 1.5. 

In our model the instantaneous distribution of buoyancy gradients at large scale is de- 
termined by the most recent forcing events. On the other hand observations in the ML of 
all oceans show that buoyancy fronts tend to concentrate in regions of Eckman convergence. 
The analysis of nonlinear diffusion models with a large scale advection that has regions of 
convergence is a direction for future research. The hypothesis is that the stochastic forcing 
creates buoyancy anomalies uniformly throughout the domain and the advective field collects 
them towards regions of convergence. The result is that the average density ratio is still 3/2, 
but it is all due to a few localized gradients. 

Finally, it would be instructive to implement nonlinear diffusive parameterizations of the 
thermohaline eddy fluxes in large scale ocean models. It is well known that ocean models tend 
to produce unrealistic distributions of salinity in the ML, because there is no feedback mech- 
anism that maintains large scale salinity anomalies within reasonable bounds. Typically the 
cure is to introduce some ad hoc relaxation to observations. Nonlinear diffusive parameteri- 
zations obtain the same result by introducing an indirect feedback through the climatological 
temperature gradient. Furthermore the parameterizations we have discussed in this project 
are the results of closures based on sound physical arguments and are not dictated by nu- 
merical necessity. An obvious goal is to test the different nonlinear parameterizations against 
the observed density ratio to infer which are more appropriate. 
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