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A SIMPLE' ANALYTICAL MODEL FOR THE DUST DEVIL 

Abstract 

A simple analytical model was developed for prescribing the velocity fields in a 

dust devil,  a small intense vortex phenomenon common in arid regions.    The proposed 

model has a viscous "inner" region (boundary layer) composed of a Prandtl layer and 

an Ekman inflow layer and an inviscid "outer" region of cyclostrophic balance.    Obser- 

vations indicate that to a good approximation the outer flow is a Rankine combined 

vortex.    Linearization of the equation of motion allows a solution for the radial and 

tangential velocities in the boundary layer and for the depth of the layer in terms of two 

parameters obtainable from observations: a(r),  the inflow angle at the top of the Prandtl 

layer; and n(r),  a modified Ekman length determined by the outer flow.    The vertical 

velocity field is then found by application of the continuity equation.    The velocity fields 

are found to resemble a first-order solution by Kuo for convective atmospheric vortices, 

and compare reasonably with the measurements of Sinclair. 

Introduction 

Atmospheric thermals,  vertical convective currents whose existence or initiation 

depends primarily on buoyancy,  have for many years been of great scientific interest to 

meteorologists as well as of use to sailplane enthusiasts.   A very interesting special 

case of atmospheric thermal is the dust devil,  an intense vortex phenomenon found in 

arid regions where a thin thermal boundary layer with a highly super-adiabatic lapse 
* 2 

rate develops due to solar surface heating.     Ives   reports that the lapse rate at the 

ground can exceed 2000 times the adiabatic value (see Fig. 1).    Since an adiabatic lapse 

rate defines neutral static stability,  such a thermal layer represents a large source of 

potential energy.    This potential energy source and some initial vorticity are generally 

agreed to be the dominant factors in the formation of dust devils.    Once started, the 

vortex is maintained by the inflow of fresh surface-heated environmental air (the fuel) 

toward the center (core) where buoyancy forces carry it aloft.    The intense rotary 

motion is generated and sustained by the tendency of the air to conserve its angular 

momentum as it spirals toward the center.    The rotation and the updraft result in a 

helical motion, usually made visible by entrained surface dust and debris that are 

carried aloft. 
These dust columns vary in height from a few feet to nearly 2000 ft, but thermal 

currents above the vortex can persist to heights greater than 15,000 ft according to 
3 

Sinclair's    sailplane measurements. 

' Michelson   shows that a shear flow can provide a stabilizing influence to allow the 
formation of such a layer with a density inversion. 
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Fig. 1.     Typical environmental temperature distribution favorable for the formation of 
dust devils.    Ives (in "Behavior of the dust devil") shows that in a relatively- 
thin surface layer of 2-3 m,  the environmental lapse rate is strongly super- 
adiabatic.    Although the exact temperature distribution in the region from 
z = 0 to z = 500 ft needs more data points,  a plot of his data shows that above 
500 ft,  and probably some distance below it,  the environmental lapse rate is 
essentially dry adiabatic. 
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4 
Lifetimes vary from a few seconds to nearly 20 min,  most lasting under 2 min. 

Ives2 observed an exceptional example during construction of a large railroad embank- 

ment near Sonora: 
In midmorning,  a large dust devil suddenly appeared at the end of the 

embankment,  and removed therefrom approximately one cubic yard 

of sand per hour for four hours.    Erosion was halted,  and the dust 

devil broken up, by parking a bulldozer at the end of the fill. 

Dust devils depend directly on the availability of heated boundary-layer air and dissipate 

quickly if this fuel is removed. 
The dust columns tend to meander across the desert floor at the prevailing wind 

speed.   However, Sinclair has observed an apparent critical wind speed above which 

dust devil activity decreases, probably due to destruction of the heated boundary layer 
4 

by increased vertical mixing and shearing of the vortices near the ground. 

The vertical velocities near the ground can be appreciable; Ives    made an early 

estimate of these by measuring the terminal velocities of small animals sometimes 

lifted by dust devils. 
However,  the most detailed measurements of dust-devil velocity,  pressure and 

temperature fields were made by Sinclair.3   A typical set of his measurements,  taken 

at altitudes of 7 and 31 ft are reproduced in Fig. 2.    He measured tangential velocities 

approaching 15 m/sec,  vertical velocities of 10 m/sec (at 7 ft),  and maximum radial 

velocities of about 5 m/sec.    Commonly, between the environment and the core there 

is a pressure drop in excess of 2 mb and a temperature increase of 4°C or more.    As 

shown by Sinclair3 in Fig. 3,  the tangential flow resembles a Rankine combined vortex 

with a core of solid-body rotation and a free vortex outside.    (Figures 2 and 3 are the 

same dust devil.) 
The present analysis assumes an outer tangential flow from measurements by 

Sinclair,3 Fig. 3,  and determines the structure of the velocity fields in the inner flow 

region or boundary layer.    All three velocity components are determined,  the most 

interesting being the radial inflow, which supplies fresh fuel,  and the vertical velocity, 

which carries it aloft.   Also determined is the depth of the boundary layer,  the height 

at which friction and radial inflow become negligibly small.    Typical profiles are 

plotted and compared to a result by Kuo   and the measurements of Sinclair. 

In his amusing acccount Ives notes that the kangaroo rat (terminal velocity ~25 mph) 
is "apparently unhurt after landing, although usually very angry," whereas a jackrabbit 
(terminal velocity ~35 mph) is  "stunned and internally injured." 
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Fig. 2.    Dust devil measurements (Fig. 4.2 from Sinclair's "A quantitative analysis of 
the dust devil") —temperature,  pressure and wind velocity profiles across the 
base of dust devil moving to the left at 3 m sec-1.    The measurements were 
made in flat desert terrain on 13 August 1962,  at 1300 MST near Tuscon, 
Arizona.    The temperature profiles are at the top of the figure and represent 
temperatures (°C) along a horizontal line at the indicated heightsof 7 ft,   17 ft 
(light line) and 31 ft.    The lower temperature scale refers to the 7-ft profile 
and the upper scale to both 17-ft and 31-ft levels.    Pressure profiles for the 
7-ft and 31-ft levels are shown directly below the temperature data.    The pres- 
sure scale is in millibars below the environmental pressure.    The wind veloc- 
ity is presented in terms of the three cylindrical components u,  v,  and w in 
msec-1 for the 7-ft and 31-ft levels,  and represents the velocity with respect 
to a coordinate system fixed to the ground.    The negative signs on either side 
of zero for v7 and v31 merely indicate that the dust devil is rotating anti- 
cyclonically, which in cylindrical coordinates requires,  by convention (right- 
hand system),  a negative tangential component.    The abscissa is the radial 
distance (meters) out from the dust devil center (defined as that point in which 
v changes direction and remains approximately 180 degrees from the wind be- 
fore center passage).    That is also the center of the cylindrical system at each 
level (i. e.,  r = 0).    Due to the dust-devil slope,  each level has a separate 
radial scale.    The D-D Dia.  refers to the width in meters of the dust column, 
at each level. 
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Fig. 3. Observed radial distribution of the mean tangential velocity at two levels in a 
dust devil,  with superposed Rankine combined vortex profiles (Fig. 9.2 from 
Sinclair's  "A quantitative analysis of the dust devil"). 

The Model 

The axially symmetric velocity field is divided vertically into three main layers, 

as shown in Fig. 4.    The lowest,  or Prandtl,  layer extends from the surface z = 0 to a 

Rankine combined 
vortex region 

■N 

> 
" outer" 
flow 

> 

inner 
boundary 
layer 
flow 

Radius r 

Fig.  4.    Schematic diagram of the three main layers of the model. 



level z = a which corresponds to the anemometer level for large-scale disturbances 

but is expected to be lower in the dust devil.   In this layer the motion is controlled 

completely  by the viscous drag on its upper and lower surfaces,  and the velocity and 

vertical shear are assumed parallel.    In the second or Ekman layer there is transition 

from the frictionally controlled radial inflow at z = a to a cyclostrophic balance at 

z = H(r),  where H(r),  the top of the Ekman layer,  is a function of the radial distance 

from the vortex axis.    In the upper layer z > H,  viscous effects are assumed negligible, 

and the tangential motion everywhere satisfies the cyclostrophic-wind equation,  Eq. (3). 

In accordance with observations (see Fig. 3) this tangential flow is assumed to be a 

Rankine combined vortex which has an interior (r < rc) region of solid-body rotation and 

an exterior (r > r ) region characterized by constant angular momentum.    (Although 

Figs.  3a and 3b indicate that rQ> the "core radius," possibly increases with height, 

the simple model presented here assumes rQ to be constant throughout the three 

layers.)   On the tangential flow there is superposed a vertical velocity resulting from 

the radial inflow below H and the requirement of mass continuity. 

THE EKMAN INFLOW LAYER 

The Horizontal Velocity Fields in the Ekman Layer 

According to Ellsaesser6 the vector equation of motion for steady,  frictionally 

controlled,  gradient flow    may be written 

2 , 

i/£-^ =2n   XV + wXV- grad, P, 

where 

(1) 
)     -»"„'•■> •   • —'■ ■      => h- • 

8z' 

V = horizontal wind vector = ve\ + uer 

u = angular velocity = v/r ez 

2f2    = Coriolis parameter 
z 
v = kinematic eddy viscosity 

grad, P = horizontal gradient of pressure 

For "large scale" atmospheric motions (e. g.,  geostrophic flow, hurricanes,  etc.) 

the Coriolis term is dominant and existing solutions (Taylor   and Ellsaesser ) linearize 

about this term.    However, for the much smaller-scale dust devil the centrifugal term 

is dominant and the Coriolis term is several orders of magnitude smaller.      Thus 

*"Gradient flow" includes both Coriolis and centrigugal acceleration terms,   whereas 
"geostrophic flow" includes only the Coriolis term and "cyclostrophic flow" includes 
only the centrifugal term. 

^E. g.,   at 20° north,  2fiz = 5 X 10"5 sec-1.    For small r: v = 10 m/sec,  r = 10 m, 

Y^jr = 2 X 104; for large r: V = 1 m/sec,  r = 100 m,  |^ = 2 X 102. 
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sufficient to describe the dust devil is the simpler, but nonlinear,  equation for 

cyclostrophic flow: 

2"* 
„^ =uXV -gradhP. <2> 

9z 

To obtain an approximate solution to Eq. (2) we assume that friction becomes 

negligible at z = H and that gradhP and v are constant in the layer 0 < z < H. Then 

the cyclostrophic equation resulting from Eq.  (2), 

grad, P =   u   X V  ,       at z = H (3) 

VLV=ZXV -cocXVc. <4> 

is valid throughout the Ekman layer,  and Eq.  (2) becomes 

(At this point it should be emphasized that V and u are functions of r and z,  and the 

outer-flow parameters Vc and ZQ are functions of r.    For clarity,  functional dependence 

will not be indicated until the end.) 

Equation (4) must be linearized to be solved.    We make the convenient 

assumption that the tangential velocity,  and thus u,  is constant in the Ekman layer. 

This is not a bad approximation,  since Fig. 3 indicates less than a 10%   change in the 

tangential velocity between z = 2 and 10 m.    This linearizes the equation so that within 

the Ekman layer we now have 

V&=ZX(V-Vc). (5> 

Now Eq.  (5) has the same form (but different constants) as the equation for the 

"Ekman spiral" for geostrophic flow as solved by Taylor.7     Using Taylor's mathematical 

technique,  we replace the velocity vectors V and Vc by complex numbers V and Vc (see 

Fig. 5).    Then Eq.  (5) may be written 

82(V - V J 
v 2 - i u,c (V - Vc) = 0, 

oz 

*This is easily seen to reduce to the well-known cylindrical steady force-free Navier 
Stokes equation for r and 0. ,,..•■_ 

It is quite important to note that,  from Eq.  (1),  large-scale vortices such as 
hurricanes have a preferred direction of rotation because of the Coriolis term whose 
sign depends on the hemisphere.   However,  since this term is negligible in the dust 
devil,  Eq.  (2) implies that dust devils should have no such preferred direction,  which 
is experimentally verified by Sinclair.3 
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V(a)=V0e i a 

v = VQ COS a 

u = VQ sin a 

Fig. 5.    Complex notation. Fig. 6. Inflow at top of Prandtl layer z = a. 

since V   is constant.    This has the solution c 

V - V    = ce 
-n(l+i)z + den(l+i)z^ 

.1/2 where n = (w /2j/)  '   .    We apply the following boundary conditions at z = a and H: 

V(a) = V0 eto(r) (see Fig. 6) 

K(/U 
9V\ 
dz) 'z=a 

(Prandtl1 s assumption) 

V - Vc -*■ 0 as z -* oo        (assumed valid at z = H) 

where   K is simply a proportionality constant.    These yield 

(6) 

d = 0 

^„e^ -Vc)e^
1H)B 

We now have for the Ekman layer 

V-Vc^V0e
,a-Vc)e"T'(1+l>(z-a) (7) -(v0«
fa-vc). 

The corresponding value for the frictional stress T is 

9V_   to     (XT      to     „   \   -rj(l+i)(z-a)    -3?ri/4 

Thus the stress forms an angle of - -?■ with the cyclostrophic deviation (V - V"c).   At 

the level z = a we now have 

-8- 



\ek=^KW(v0ek-vJe-3lrt/4j 

which by separation into real and imaginary parts and simultaneous solution yields 

* VQ = V"c (cos a - sin a)                                                                                             (8) 

and 

K = 2^  <cot<* " D-                                                                                                      0) 

Combining Eqs.  (7) and (8) and noting that 

(cos a - sin a) e^ - 1 = - ^ sin a e'
iI('r/4)"wI

> 

we obtain 

v + iu=,Vc jl -^sinae"rl(z"a)"i[r'(z-a)+(7r/4)-a|                                 (10) 

which has the components 

v(r, z) = V (r)  1 - <s/2 sin a cos [y,(z - a) + | - J e
_ri(z"a) 

(11) 
u(r, z) = Vc(r)\f2 sin a sin L(z - a) + | - a| e

_r)(z"a) 

where a = a(r) and n = rj(r). 

The top of the Ekman layer (z = H) is defined as the height at which u first changes 
sign, i.e., 

n(H -s)+-r-a=i: 

or 

¥ +*<r) 
H(r) = a + -±__   .                                                                                              (12) 

By setting the z derivative of Eq.  (11) to zero we find that the radial inflow,  u, has 

a maximum at the level satisfying 

tan [rj(z - a) +| -a] = 1, 



which implies 

(r)=a+£(4. <13> 
Vx r'(r) 

Substitution of Eq.  (13) into Eq.  (11) yields the maximum radial velocity occurring 

at a given radius r: 

u        (r) = V  (r) sina(r) e 
max cx 

-a(r) (14) 

The Vertical Velocity Field in the Eckman Layer 

Having found the radial-inflow velocity,  u(r, z),  everywhere in the Ekman layer 
* 

(a < z < H), we use the axially symmetric continuity equation 

_i£irul + 8w=0 (15) 
r    3r        9z 

to determine the vertical velocity, i. e., 

w(r,z)-w(r,a)=fZi¥dZ (16) 
Ja 

8r 
'a 

where w(r, a) is the vertical velocity at the top of the Prandtl layer,  to be determined 

in the next section of this report. 

As seen in the preceding analysis,  the major parameters determining the radial 

inflow are a(r),  the inflow angle at the top of the Prandtl layer,  and n(r),  a modified 

Ekman length determined by V  (r),  the cyclostrophic velocity at the top of the Ekman 

layer.    In order to determine n(r), we proceed to specify V"c(r) in terms of Vm,  the 

maximum tangential velocity in the Rankine combined vortex at the level z = H,  as 

shown in Fig. 7.    (Typically,  Vm = 10-15 m/sec,  and rQ = 5-10 m.) 

Since V  (r) has different functional dependence in the two regions,  we calculate 

w(z) separately for each. 

Core Region,   0 < r < rc: 

V       V 
T* C IH 

Vc     r    Vm    and     wc = ~F = r~~ " constant- 

Therefore rj = constant,  and from Eq.  (16) the vertical velocity is given by 

V 
w(r, z) - w(r, a) = -— 2Ix(r, z) + rl2(r, z) (17) 

*_ *The negative sign is required on the r term because our u is positive when the flow 
is toward r = 0. 
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V (r) = — V 

 Y  
Free vortex region 

r
c 

V.(r) = - V 

Fig. 7.    Cyclostrophic velocity distribution,  V  (r),  above the Ekman layer. 

in which 

I^r, z) =  \[2  sin  a(r)  / 
Ja. 

sin n(z - a) + | - a(r) -n(z-a) d5 

and 

I2(r,z) ~= J2   (Z  e"^2"^ 87 {Sin tt(r) Sin 

J a 

n(z - a) + | - <*(r) dz. 

In evaluating 11 andl„ we will need the relations 

bx 

/ 

bx   .    ,    ,    .   , e e      sin (x + c) dx = 
b2 + 1 

cos (x + c) - b sin (x + c) 

1 sin x sin Y = 7) cos (x - y)  - cos (x + y) 

(18) 

(19) 

-11- 



and 

2 sin (x + j) = sin x + cos x. (2°) 

By the transformation of variables 

z = n(z - a),       dz = rj dz, (21) 

I    can be integrated by Eq.  (18) to yield a sum of the sine and cosine of the same angle. 

Using Eq.  (20),  this can be converted to the sine of the angle plus 7r/4.    Since the angle 

already contained TT/4,  it now contains ir/2 and can be converted to the cosine.    Applying 

the limits then yields 

Ii(rjZ) =sinairl|Cosa(r) - e^2'^ cos [r,(z -a) - a(r)\\. (22) 

(Remember that in the core r\ = constant.) 
Next apply Eq.  (19) to the argument of the r-derivative of I2<    Since r] = constant, 

the term containing the cosine of the sum is independent of r.    Thus 

I2(r, z) = 2 jk(r) P    e-1(z-a) sin [r,(z - a) + f - 2a{v)\ dz, 
Ja 

and again applying the same procedure yields 

Iz(rjZ) =I|£.(r)|COs[2a(r)] -e"^2"^ cos[r,(z -a) -2«(r)j}. (23) 

Free Vortex Region,  r > rc: c 
r V V     r c   -r               , c m   c V    = — V          and u    = — = ö  c      r      m c       r & 

Therefore 

r\ = n(r) = J 
rcVm   1 

2v      r ' 

and from Eq.  (16) the vertical velocity is given by 

w(r,z) -w(r,a) = Vm(-^)l3(r,z), 

in which 

I3(r,z) E2P   £  {sin «<r> sin [r,(r)(z - a) + f - a(r)] e^1^2^^*. 

(24) 

ÜIL = ZL 

'a 

This integration is more difficult since r\ = n(r).    Applying Eq.  (19),  noting that T£ = -£ 

yields 

-12 



I„(r, z) = i  <r, z) - —3—  I     rj(z - a) e"
r,(z"a) f(r, z) dz 

6 * \/2r   Ja »>/2r   Ja 

where 

f(r,z) =<sinjn(z - a) + J]+cos [r)(z - a) + Jj- sin jn(z - a) + \ - 2<*j 

- cos Irj(z - a) + |- -2a 1 > . 

Application of Eq.  (20) to f(r, z) yields two terms of the form sin (y + n/2), which 

we replace with cosine terms.    Then Eq.  (19) is used to combine the two cosines to pro- 

duce a product of sine terms, yielding 

I3(r, z) = l2(r, z) + 2 S™a f    z sin(z - a) e"z dz, 

where transformation Eq.  (21) has been used in the integral.       Defining 

\ Z) EL r 
•>o 

I.(r, z) = |     z sin (z -a) e'z dz, 

two integrations by parts of the terms containing z yields 

21, L4 -z e      Isin (z -or) + cos (z - a)       +   J      e      jsin (z - a) + cos (z - a)\ dz. 

Use of Eq.  (20) permits evaluation of the remaining integral by Eq.  (18). 

Evaluation of limits of integration and converting back to z yields 

I3(r, z) = I2(r, z) + ^f- J cos a - e"r,(z"a)[N/2 rj(z - a) sin 

/rj(z -a) " a + 4) + cos (n (z - a) - a j H   . (25) 

Through Eqs.  (17),  (22),  (23),  (24),  and (25),  the variation of the vertical velocity 

is now known everywhere in the Ekman inflow layer; but we need yet to determine 

w(r,a),  its value at the lower boundary,  the top of the Prandtl layer z = a. 

THE PRANDTL LAYER 

In the thin Prandtl layer adjacent to the ground the motion is governed by the 

viscous drag on the lower and upper surfaces of the layer.   We use the Prandtl 

assumptions that the density is constant; that stress,  velocity and shear are parallel; 

and that there exists a mixing length,  i, which is a statistical measure of the linear 

dimensions of the turbulent motions.    This yields,  for the stress, 

T = pi2 

$ 
■13- 



It is further assumed that the mixing length 

a. = k(z + zQ), 

where k = 0.4.    Solving for V gives 

V 
k  */ p 

'z + z. 
log 

requiring that V = 0 at z = zQ.    The constant z„ is a measure of surface roughness. 

By taking the ratio of the velocity at a level z < a to the velocity at the base of the 

Ekman layer z = a, we obtain 

V(r, z) = V0 eia(r) F(z), 

where 

log —    \ 

F(z) a + z. 
log 

Combing this with Eq.  (9) yields 

u(r, z) 
= 

sin a 

v(r, z) cos a 

V  (r)(cos a - sin a) F(z). (26) 

The radial inflow in the Prandtl layer is given by Eq.   (26), which through a 

trigonometric simplification becomes 

u(r,z) =|-Vc(r)[«y2sin(2ff +|)- l] F(z). (27) 

Integrating the continuity Eq.  (15) from z = 0 to z < a,  and using Eq.  (27) and 

V  (r) from Fig. 1, we obtain,  for the vertical velocity in the Prandtl layer, 

For large-scale motions,  a« 10 m,  zfl « 10 cm.    For the dust devil we expect 
a~ 1 m,  so ZQ « 1 cm appears reasonable (Byers,^ p.   605). 

■14- 



V      ( 
w(r,z) = - ^ jl --N/2 sin (2a + f)+rcoB(2a+f)ff]| G(z) 

w(rj z) = Ls_JL tf cos (2« + I) |J G(z) 

0 < r < r 

r > r. 

(28) 

where 

G(z) 
JO 

F(z) dz 
log fr^lKHK)- 

Discussion of Results 

SPECIFICATION OF a(r) AND n(r) 

In order to calculate the velocity fields,  the parameters a(r),  the inflow angle at 
/u <r)\l/2 

the top of the Prandtl layer,  and   n(r) =U-    J      , the Ekman length based on the 

cyclostrophic angular velocity u (r),  must be determined from observations.    Figure 8 
.„3 shows an approximate typical distribution for a(r) from discussion in Sinclair    (p. 117), 

C 
D 

O 

Fig. 8.   Approximate distribution of a(r) inflow angle at top of Prandtl layer,  from 
Sinclair's "A   quantitative analysis of the dust devil," p. 117). 
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who indicates that the inflow angle is approximately 30°  at large distances (r > 50 m) 

and about 20° for r « 10 m,  and approaches zero within the dust column.    Sinclair also 

comments that at times considerable outflow may occur in the core, which might mean 

that our Prandtl-layer flow angle a had changed sign.    Such an outflow would force the 

often-observed downdraft in the core by continuity.    However,  Sinclair points out that 

there is no systematic radial outflow,  and the observations presented in Fig. 2 indicate 

oscillations in the sign of u in the core.    Because of this uncertainty in the exact value 

for a in the core we use an average value of a« 0 in the core and will not attempt to ob- 

tain any downdraft in our results.   Also,  and perhaps more importantly,  the approach 

used in this paper,  while quite good for describing the basic velocity fields in the dust 

devil,  is probably not capable of properly analyzing the core downdraft phenomenon. 

If,  as Sinclair3 speculates (p.   112),  this downdraft is a region of somewhat cooler 

air embedded in the warm central region of the dust devil,  a correct description of 

this must also include the energy equation, which has not been required in the present 

analysis. 
Specification of V (r), the velocity distribution in the cyclostrophic region above 

the Ekman and Prandtl boundary layers,  determines uQ(r) and thus n(r).    For the 

following calculations,  V (r) is taken from the distribution shown in Fig. 3b, which is 

very nearly the velocity distribution in the cyclostrophic region. 
(Although in the present analysis a(v) and r;(r) are specified independently,  it is 

interesting to note that they can be related using Eq.   (9) which contains n,  n(r),  a{r), 

and K,   a proportionality constant from Prandtl's assumption,  Eq.   (6).    Assuming K is 

known,  Eq.   (9) may be rewritten to yield a(r) in terms of r)(r),  i. e., 

cot a(r) = 1 + 2(c/Ltrj(r). 

One might choose K = 0.2 cm2/sec/g"\  which gives a « 20° for /u = 200 g/cm    /sec 

and rj = 0.02 cm"1.    However,  for the present work it is preferrable to leave a(r) a 

parameter to be specified from experimental observations.) 

HEIGHT OF THE EKMAN LAYER AND BASIC BOUNDARY 

LAYER BEHAVIOR OF u,  v,  AND w 

Using the above values for o-(r) and n(r),  the top of the Ekman inflow layer,  H(r), 

is calculated from Eq.  (12),  and plotted in Fig. 9,  which shows nearly constant 

(approximately 12 m) thickness in the core and rapid growth outside. 
Typical radial and tangential velocities in the Ekman and Prandtl layers are com- 

puted from Eqs.  (11) and (26) and plotted in dimensionless form in Fig. 10.    The radial 

velocity profile is most interesting,  taking its maximum value near the ground and 

rapidly decaying as the top of the Ekman layer is approached.    The variation of vertical 

velocity with height near the edge of the dust devil core is shown in   Fig. 11. 
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Fig. 9.    Top of Ekman inflow layer H(r) vs radius r for dust devil data from Figs. 4 and 
8 (V m 

13 m/sec,  r    = 9 m,  a = 1 m,   v - 15 m2/sec) 

COMPARISON WITH KUO 

Kuo5 has developed a simplified system of equations for atmospheric convection 

problems by expanding the flow variables in powers of two small parameters defined by 

the percentual variances of the equivalent potential temperature and density.    He then 

investigated convective atmospheric vortices by introducing a thick layer of unstable 

stratification and a large vorticity as the basic elements for the creation and maintenance 
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0.5 

Fig. 10.    Typical radial (u) and tangential (v) velocity profiles in the Ekman and 
Prandtl layers.    (Computed for r = 13.3 m,  Vc = 10 m/sec, a = 30°, 
v = 15 1217 sec,  a = 1 m.) 

of such vortices.    Although primarily interested in tornadoes which have such a thick 

unstable layer,  he claimed that,  to the accuracy considered, his model should also 

describe lesser storms such as dust devils and whirlwinds resulting from unstable 

stratification in a much thinner layer.    In spite of his more sophisticated approach and 

different emphasis,  his first-order boundary-layer analysis yields similar profiles for 
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Fig. 11.    Variation of vertical velocity with height near the edge of dust devil core, 
r* rc.    (Computed for r = 6, Vc = 13, a= 0°,   9o-/9r = 6°/m, v = 15 m^/sec, 
a = 1 m.) 
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the velocity components and qualitatively the same behavior for the boundary -layer 

thickness,  reproduced in Fig. 12 (compare to Figs.  9,   10,  and 11). 

This agreement lends support to the solution obtained in the present model and 

should indicate that most probably Kuo's solution does hold for dust devils,  provided 

the scale is properly reduced by inclusion of a thin,  highly unstable thermal layer and 

less inherent vorticity than that found in the tornado. 

DETAILED VELOCITY COMPONENT BEHAVIOR AND COMPARISON 

TO SINCLAIR'S MEASUREMENTS 

Figure 13 shows the computed radial variation of the tangential,  radial,  and 

vertical velocity components near the bottom of the Ekman inflow layer.    The maximum 

tangential velocity is seen to be approximately 10% less than the maximum tangential 

velocity in the cyclostrophic region.    This again justifies the linearizing assumption 

(a)   Velocity components u, v, w. (b)   Boundary layer thickness. 

Fig. 12.    Kuo's boundary layer results (from "On the dynamics of convective atmo- 
spheric vortices"). 

-20- 



•Ac 

Fig. 13.    Behavior of the tangential,  radial,  and vertical velocity components near the 
bottom of the Ekman inflow layer,   z/rc = 0.222 
able behavior,  not calculated due to uncertainty in a(r) 
V     =13 m/sec,  r    =9m,  a = lm, v = 152/sec.) m ' c ' 

Dashed lines indicate   prob- 
(Computed for 

that u is constant in the boundary layer,  initially made on the basis of experimental 
* 

observations. 
3 

Figure 13 demonstrates the experimentally verified facts (Sinclair,    p. 117) that 

the radial velocity reaches its maximum outside of v„_„ and w        ,  and whereas w 

decays very rapidly from its maximum value,  u decays very much slower.    Also 
3 

according to the figure,  the region of w occurs within v        ,  as Sinclair    shows 

actually occurs (p. 114). 
From Fig. 13 we deduce that in the boundary layer the environmental air spirals 

toward the low-pressure center with essentially horizontal motion (even with perhaps 

slight downward velocity) until it reaches the vicinity of the dust column,  where it 

enters the region of w and thus begins rising rapidly in a helical motion of almost 

constant radius.    Sinclair3 states (p. 117) that this is indeed what happens. 

The magnitude of u appears consistent with experimental values about 3-4 m/sec 

if V     is 13-15 m/sec.    However,  the corresponding maximum value for w,  2 m/sec, 

However,  Sinclair's measurements,  Fig. 3,  show a slight increase in maximum 
amplitude of v at the lower level,   contrary to what one would expect from the boundary- 
layer analysis,   cf.  Fig. 10.    This minor discrepancy is not deemed serious and will 
not be pursued further. 
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is smaller than experiments indicate can occur at this level (5-10 m/sec from Fig. 2). 

Possible reasons the theoretical w is too small are the approximate (and not quite cor- 

rect) distribution for a(r) near the core and the assumption of axial symmetry,  perhaps 

not too good if  the dust devil is sloped and moving. 
However,  a calculation of w above the boundary layer where the radial velocity is 

negligible,  given in Fig. 14,  shows a marked increase in magnitude (to nearly 8 m/sec 

for V     =13 m/sec),  which is much closer to experimentally observed values. 
m ' . 
It is also interesting to note that lower in the boundary layer the v profile is 

steeper or more cuspy near v_ov (at r ) than it is higher,  as seen by comparing v in 

Figs.   13 and 14.    Sinclair's experimental measurements in Fig. 3 also indicate this 

behavior. 
A physical visualization of the radial variation of the inflow u is given in Fig. 15, 

where computed nondimensional u profiles are shown at their respective nondimensional 

distances from the vortex axis r = 0.    Also shown are the line of umax(r) from Eq.  (13), 

the top of the Ekman layer H, and a typical-sized dust column (from Sinclair,    Fig. 2). 

Interestingly, according to Sinclair's   measurements, Fig. 2, the edge of the dust 

column,  r ,,  occurs within the radius of maximum tengential velocity,  rc.    (From 

Figs. 2 and 3:   at z = 7 ft,  rd = 2.6 m, rc = 5 m; at z = 31 ft,  rd = 5.3 m,  rc = 9 m.) 

•Ac 

Fig. 14.    The tangential and vertical velocity components above the Ekman layer in the 
cyclostrophic region.    The radial velocity is negligible and the superposition 
of the v and w velocity fields would result in a helical motion.    Dashed lines 
indicate probable but uncalculated behavior.    (Computed for Vm = 13 m/sec, 
r   .= 9 m, a = 1 m,   v = m2/sec.) 
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Fig. 15-    Variation of inflow profiles with radius,   showing line of maximum u,  top of 
Ekman layer H,  and dust column (from Sinclair's "A quantitative analysis of 
the dust devil," Fig. 2).    The velocity is nondimensionalized with respect to 
Vm and lengths with respect to rc.    (Computed for Vm = 13 m/sec,  rc = 6 m, 

1 m,  v = 15 m2/sec,  Vc from Fig. 3b.) 
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Sinclair states that he observed radial inflow at all levels (z = 7,   17,  31 ft) ex- 

cept on the "forward" (with respect to direction of motion of the dust devil) side of the 

31-ft level,  where radial outflow was observed.    He observes that this was due to the 

sloping of the dust devil resulting from wind shear.     Perhaps also part of the "inflow" 

observed behind the dust devil at this height could be a wake effect resulting from wake 

momentum deficiency (as in Schlicting,9 Ch.  XXIII).    From our boundary-layer analysis, 

which implicitly assumes a vertical,  stationaryt dust devil,  we would expect only a 

small inflow at z = 31 ft (or approx.   10 m),  not more than 1 to 1-1/2 m/sec,  from 

Fig. 15. 
A diagram for the vertical-velocity variation with height is shown in Fig. 16, 

illustrating the radial expansion with altitude of the region of upward vertical motion 

that Sinclair3(pp. 113-114) states appears similar to the radial expansion of a turbulent 

jet by entrainment.   In our model, the radius at which wm&x occurs remains constant, 

since we have assumed r   to be constant throughout the boundary layer.   A more com- 

plicated model might attempt to obtain this funnel shape by setting rQ = rc(z), but this 

would be empirical and thus   quite unsatisfying. 

Conclusions 

It has been shown that the cyclostrophic-wind equation,  Eq.  (2),  can be 

linearized for the dust devil to produce a simple analytical result for the velocity fields, 
which agrees with a boundary-layer result of Kuo and yields good qualitative and semi- 

quantitative agreement with the observations and measurements of Sinclair.    The 

linearization was justified first by experimental measurements and then later by  the 
solution itself.    The analytical result depends functionally on two parameters a(v) and 

rj(r),  obtainable from experimental data. 
An obvious and practical extension of this model would be to develop a perturbation- 

expansion solution in a more systematic manner; so the present result appeared as the 

first-order solution,  and a correction term was obtainable by consideration of second- 

order terms.    Also,  since our model cannot properly describe the core downdraft and 

does not deal explicitly with the thin,  unstable,  thermal boundary layer,  a more 

sophisticated analysis should include an energy equation and equation of state,  which 

might then yield temperature and density fields.    Apparently Kuo   has made such an 

attempt with some success. 

According to Sinclair    (p. 121),   sloping dust devils are more frequent than vertical 
ones. 

^More accurately,  we have assumed a coordinate system fixed to and moving with 
the dust devil. 
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(D 

Radius, r/rc 

Fig. 16.    Vertical velocity distributions near bottom and top of the Ekman layer shown 
in relation to the dust column and H.    Velocity is nondimensionalized with 
respect to Vm and length with respect to rc.    Velocity profiles are taken from 
Figs. 13 and 14.    (Computed for Vm = 13 m/sec,  rc = 9 m,  a = 1 m, 
v = 15 m2/sec,  V  (r) from Fig. 3b.) 
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