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Abstract 

In May of 2000, Micro Analysis and Design, Inc. and Klein Associates, Inc., were 
awarded a Phase I SBIR to research and develop computational models of decision 
making in stressful and uncertain conditions (Topic # N00-074, Modeling and Simulation 
of Decision-making Under Uncertainty). This research was motivated by the need for 
improved behavioral realisms in computer generated forces (CGFs) with an eye toward 
reducing and, perhaps, even eliminating the need for human-in-the-loop simulations. 
Rather than continue in the tradition of rational choice theories and rule-based expert 
systems, we took a novel approach to this research and began work on a model of 
Recognition Primed Decision making (RPD). The RPD model explains how people can 
use their experience to arrive at good decisions without having to compare the strengths 
and weaknesses of alternative courses of action. For this reason, RPD theory seems to be 
a natural foundation for a more realistic model of human decision making under stress 
and uncertainty, but it also presents novel challenges from a computational point of view. 
We summarize below how we addressed these challenges during our Phase I work, and 
how we will work toward a validated modeling technology under a Phase II contract. 
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1. Introduction 
Computer simulation is now commonplace in both training and systems analysis. While 
this development has mitigated the risk inherent in live exercises and prototype 
development, it has also revealed the shortcomings of the computational representations 
of human decision making behavior. These shortcomings are particularly clear in 
Computer Generated Forces (CGFs). Computer generated entities often behave 
predictably and inflexibly (Gillis and Hursh 1999) and this limits their value both as 
training tools and as valid predictors of human/system performance. The goal of our 
Phase I research was to research and develop modeling technologies to improve the 
computational representation of human decision making in stressful and uncertain 
conditions. Ultimately, we expect to improve behavioral realisms in CGFs and thereby 
reduce or even eliminate the need for human-in-the-loop simulations. 

Our Phase I research has been premised on the assumption that the best way to improve 
behavior in CGF's is to bring the computational representation of human decision making 
more in line with the actual human decision making process. Hence, we have looked to 
the field of Naturalistic Decision Making for inspiration and, in particular, at the theory 
of Recognition Primed Decision making (RPD). As its name implies, RPD theory posits 
recognition as the central mechanism in the decision making process and thus stands in 
sharp contrast to more traditional theories of decision making that revolve around 
explicit, rule-based strategies. Although there is ample evidence that humans rarely use 
rule-based strategies in stressful and uncertain situations, most of the current 
representations of human decision making are rule-based. The resulting models are often 
brittle, costly to develop, and, most significantly, offer little insight into the human 
decision making process. Our work has been motivated by the need for a cost-effective 
model of decision making that is both robust and perspicuous. 

We have leveraged our Phase I efforts off an independent (and ongoing) contract we have 
with NAWCTSD to develop a computational model of RPD (Developing Computational 
Models of Naturalistic Decision Making; contract # N61339-99-C-0103; COTR: Dr. 
Denise Lyons). That work was an important starting point both because it set the stage for 
us in general theoretical terms and because it provided the basic architecture we are 
currently using to model decision making in stressful and uncertain environments. But it 
was merely a starting point; the last six months of work has revealed a unique set of 
challenges. Below we will describe how we addressed these challenges during Phase I 
and how we foresee Phase II work proceeding. We begin in Section 2 with a discussion 
of our theoretical view of stress, uncertainty and decision making. Suffice it to say, the 
literature on this topic is somewhat fractured, and we have invested a good deal of effort 
to arrive at what we feel is a cogent theoretical foundation. In Section 3, we will describe 
some of the computational issues we have encountered. These are issues that go beyond 
the problems we faced when we first began working on our computational model of 
RPD. In section 4 we will discuss how these issues played against each other as we 
summarize seriatim the tasks we accomplished during our Phase I work. In Section 5, we 
will introduce preliminary results and describe some outstanding problems. Finally, in 
Section 6 we will summarize our work and offer a brief assessment of our progress 
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against the current state of the art. This discussion will set the stage for our proposed 
Phase II efforts. 

2. Theoretical Issues 
Stress and uncertainty are ubiquitous in the battlefield, but they are conspicuously absent 
from the behavioral representations in CGFs. It seems obvious that one way to improve 
behavioral realism in CGFs is to model the effects of stress and uncertainty. Indeed, this 
was the main thrust of our Phase I research. But despite the fact that the problem seems 
so obvious, the solution is very difficult. In order to model the effects of stress and 
uncertainty on the decision making process, we first had to understand these effects from 
a theoretical point of view. Unfortunately, we found a discouragingly disconnected 
theory; in fact, Hammond claims it is "internally incommensurable" (Hammond 2000). 
Nevertheless, we needed a starting point, and so we carefully picked through the 
literature. This section provides a brief introduction to the theoretical foundation we have 
adopted. First we offer a description of the theories upon which the computational model 
is grounded, and then we describe the psychological effects we have implemented. 

Within the stress literature, studies can be placed into three categories depending on how 
stress is approached. For more detail on these distinctions, please see (Lazarus 1966; 
Levine and Scotch 1970; McGrath 1970; Cox 1975; Appley and Trumbell 1976). In the 
first approach, stress is treated as a dependent variable for study. Stress is described in 
terms of an individual's response to stress. The second approach treats stress as an 
independent variable and describes stress in terms of the stimulus characteristics of 
disturbing or noxious environments. The third approach views stress as the reflection of a 
lack of "fit" between the individual and the environment. In trying to reconcile these 
different opinions, we found ourselves attracted to the Klein's (1996) view that there is 
no such thing as stress; rather it is construct we impose on the world to help make better 
sense of the effects we see around us. In Klein's words stress is an intervening variable 
between particular kinds of stimulus-response relations. Although some will find this 
view iconoclastic, it affords us a principled foundation for treating workload as a 
quantifiable surrogate for stress (see Section 3.3 below). 

For the purpose of this project, Stressors are defined as acute Stressors—sudden and 
temporary Stressors such as personal threat, time pressure, noise, task overload, and 
distractions (Schmitt and Klein 1996). We have not addressed prolonged Stressors such as 
life stress, sleep deprivation, and exposure to heat or cold. 

As to the effects of stress, the traditional view of arousal (whose effect is analogous to 
stress) is the Yerkes and Dodson (1908) inverted-U theory. This theory postulates that 
both high and low levels of arousal result in reduced performance, while moderate 
arousal levels result in increased performance. Lacey (1967) later contradicted this theory 
by showing that physiological, cognitive, and behavioral responses to stress varied across 
different situations and did not all correspond to the Yerkes-Dodson curve. Again, after 
reviewing these results, we found ourselves confronting seemingly irreconcilable 
research. So, rather than try to implement contradictory performance reactions, we 
limited our attentions to the cognitive reactions to stress (see below). 
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Finally, we had to adopt the decision making model that would be subject to the effects 
of stress and uncertainty. The RPD model was chosen for this project because it describes 
how experienced people actually make decisions in naturalistic settings of time pressure, 
conflicting goals, and dynamic conditions. The RPD model explains how people can use 
their experience to arrive at good decisions without having to compare the strengths and 
weaknesses of alternative courses of action. The claim is that people use their experience 
to "size up" a situation, and recognize it as typical. Typicality amounts to the recognition 
of goals, cues, expectancies, and most important, a courses of action (see Figure 1). 
Where classical decision theories postulate a rational agent who carefully considers a host 
of alternatives against a background of perfect information, RPD theory describes an 
agent poised to act who depends on his expertise to assess the available information and 
identify the first workable alternative under less than optimal conditions. 

For these reasons, RPD seemed a natural choice for a model of decision making in 
uncertain and stressful conditions. But as our work progressed, we found ourselves 
doubting that seemingly natural choice. In fact, as we continued our literature review a 
dilemma began to emerge. On the one hand, we wanted to begin with a theory that 
describes what people actually do under conditions of uncertainty and stress. While there 
is a large body of research on the effect of stress and uncertainty on analytic decision 
making processes (most notably, Tversky and Kahneman 1974), it seems that in stressful 
and uncertain situations outside the laboratory the decision maker does not have the time 
or luxury to compare options systematically. Indeed, research conducted in naturalistic 
settings reveals that experts rarely use analytic strategies and we saw no point in building 
a computational model to reflect a decision strategy rarely used in actual situations. On 
the other hand, however, the RPD model is presented as an explanation of how 
experienced decision makers can perform well in spite of stress. Researchers have 
observed experienced decision makers using the RPD strategy in a variety of stressful 
and uncertain domains. Remarkably, these decision makers were able to adapt to stressful 
conditions of noise, uncertainty, and time pressure to perform effectively time and again. 
This raised the question of whether the RPD model is sensitive to the effects of stress. It 
seemed we could either build a model of a decision making strategy that was sensitive to 
the effects of stress but patently unrealistic or we could follow the current research on 
what people actually do and end up with a model completely insensitive to the effects we 
wanted to capture. 

Fortunately, the dilemma resolved itself. Discussions at Klein Associates revealed several 
aspects of the RPD model that are sensitive to stress. Some of the following aspects are 
reported in (Klein, Schmitt et al. 1996). Others are postulations based on ongoing 
observations in naturalistic settings and require further study. 

• A decision maker's ability to imagine how a particular COA might unfold 
is impacted by time pressure. In terms of the RPD model this means that the 
agents process of mental simulation will either be severely limited or avoided 
altogether. Also, environmental Stressors may impact the ability to "self-talk" 
(i.e., distractions could reduce concentration required to visualize or talk 
through a mental simulation). 
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• Stress, especially uncertainty, could change information seeking 
behaviors. Perhaps it will direct information seeking to specific salient cues. 
This focus on a particular cue could result in a loss of other information as 
attention is narrowed. 

• The introduction of other tasks such as self-management tasks could 
result in excessive workload for the agent and this could lead to "sloppy" 
recognition of the situation. In other words, the decision maker might end up 
relying on fewer cues to assess the situation and thus overlook fine 
distinctions between situations. The result here could be an artificially crude 
choice among CO As. 

• Reduced working memory capacity (because of noise and self 
monitoring) would result in a decrease in the amount of cues the decision 
maker could remember at one time. This could result in a speed/accuracy 
tradeoff. 

Many of the impacts of stress on RPD are process effects (how a decision maker comes 
to a decision) as opposed to product effects (the outcome of the decision). This is due 
partly to the fact that the RPD is a satisficing model. Decision makers, especially under 
stress, do not try to come up with the best possible decision, but rather, a decision that 
works in the situation. This could make it difficult to compare the products of decision 
making. Using a satisficing strategy an agent might come to the same decision with or 
without the effects of stress and uncertainty. The differences would be in the process. A 
similar issue with a satisficing model is determining what constitutes a "good" decision. 
Is a good decision one that has a positive output (i.e., the track was correctly identified, 
the enemy was shot down)? If so, on what basis do you compare decisions to determine 
which is better? If two different decisions such as conduct a frontal assault and. perform a 
defensive maneuver both result in the enemy attack being halted and minimal casualties, 
which is the better decision? 

Validation of our computational model will be a delicate matter in light of these issues. 
But we have not let this fact delay our progress. Rather, we have focused our attention on 
narrowed attention and working memory limitations as the most tangible process effects 
from a computational point of view, and we have begun to explore alternative avenues 
for model validation at the process level. After some serious theoretical discussion, we 
are now confident that the RPD model is an appropriate foundation for our work. 
Moreover, we have been able to exploit mechanisms implicit in our computational model 
of RPD to realize these process effects in a natural way. This was an unexpected 
development, but it has given us greater confidence that our work is on the right track. 

3. Computational Issues 
We began our Phase I work with some of the basic computational components already in 
place. Under our contract with NAWCTSD we had begun development of a 
computational model of RPD using Micro Saint as the base implementing technology. 
We also had ready access to a variety of workload models as well as a sophisticated 
model of information processing. In fact, at the outset we faced something of an 
embarrassment of riches; there were so many models and ideas floating around that it was 



Micro Analysis & Design. Inc. Uncertainty. Stress and Decision Simulation 

hard to envision the architectural relations between our decision making model and the 
component models of stress and uncertainty. After spending some time in this mire, we 
found ourselves embracing a newfound sense of pragmatism; our attention turned away 
from the most sophisticated component models we could use to those that simply got the 
job done. We also found a more streamlined architecture emerging than the one we 
originally proposed. At the same time, however, there were still points in the model that 
called out for more sophisticated development. We describe the resulting RPD model 
below, starting with a review of the component models, continuing with a discussion of 
the links between the component models before concluding with a discussion of a 
performance server architecture we propose to use to embed our decision models in HLA 
compliant simulations. 

3.1 The Computational Model of RPD 
As we indicated above, we were already working 
with Klein Associates and NAWCTSD to develop a 
computational model RPD when our Phase I work 
began. At that point, we had constructed a task 
network model to reflect the flow of activities 
depicted in figure 1 and we had spent a good deal of 
time thinking about how to construct computational 
analogues for notions like "situation awareness," 
"typicality" and "anomaly detection." The most 
pressing problem at that time was to overcome a 
seemingly unavoidable theoretical contradiction, 
namely, how can one build a faithful, computational 
representation of an explicitly non-analytic decision 
strategy like RPD? The answer was, of course, to 
impose the appropriate levels of abstraction; although 
the underlying code would be necessarily rule-based 
(indeed, programming languages are the ultimate 
expression of rule-based behavior), we felt that at a 
conceptual level, the model was sufficiently far 
removed from the lower-level implementation details 
to engender non-rule based behavior. 

Figure 1. The RPD Model, 
Diagnostic Variation 

From a theoretical point of view, this was an important step forward. But immediately 
after we had taken this step, we encountered another problem. Because we were so 
preoccupied with the implementation of the non-analytic aspects of the RPD, we hadn't 
paid very much attention to the fact that RPD is theory of experienced decision making. 
After working hard to address some difficult questions about situation awareness and 
knowledge representation, we happily settled for what turned out to be an overly 
simplistic approach to long term memory. In particular, we had decided to represent 
situations as sets of features, some of which represented low-level, brute facts about the 
environment, and others that represented high-level inferences and judgments the agent 
makes about his environment. We stored the encoded situations and their associated 
courses of action (COAs) as bit strings and stored them in a 2-D array with each row 
representing a particular episode. This so-called long term memory (LTM) array was to 
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be our computational analogue for experience. To make use of this experience, we 
developed a simple "recognition" routine in which we searched through the LTM array 
row-by-row to find the row that matched all the features of the current situation. 
Although it was straightforward, this approach to LTM had several shortcomings. First, 
LTM had to be populated by hand; before we could run a simulation, we would sit down 
and enumerate all the possible situations and decide a-priori which COA to associate with 
each situation. In this way, we guaranteed a match for every possible situation the 
synthetic decision maker might encounter. But it became clear during this process that 
some of the associations we were making were arbitrary— too many rows in LTM came 
to represent either meaningless or debatable associations between situations and COA's. 
Moreover, when we tried to disambiguate situations, we found ourselves engaged in a 
vicious regress. The seemingly obvious solution was to distinguish situations by 
introducing additional features that would, we thought, make for more fine grained 
distinctions. Of course, this meant more bits to encode, which meant more situations to 
distinguish and we found the very problem we had hoped to address recurring on a larger 
scale. This was bad enough, but in addition there was also something intuitively lacking 
in a recognition routine that simply matched features between a single row of LTM and 
the current situation. It seemed more plausible that recognition occurred as a host of 
similar experiences were recalled and not just when the features of a single episode 
matched those of the current situation. Finally, and most significantly, we began to worry 
that a recognition routine which depended on the hard-coded contents of LTM together 
with the recognition of a single episode would ultimately reflect, albeit indirectly, a form 
of rule-based behavior. By the time we began our Phase I work, it was clear that we 
needed a better model of LTM. 

The better model came from an unlikely source. While reading up on situation 
assessment aids (Noble 1993), we came across a reference to (Hintzman 1986, Hintzman, 
1984 #3) and his multiple trace model of LTM. Unlike other models of LTM that posit a 
store of generic concepts or schema (i.e. LTM as a collection of experience types), 
Hintzman suggests that LTM is simply a store of individual experiences (i.e., LTM as a 
collection of experience tokens). Each experience has its own trace in LTM, even if that 
experience happens to be exactly like another experience. The experiences themselves are 
represented by individual bit-strings that encode specific features of the experience. In 
these respects, Hintzman's work seemed similar to our own, but his recognition routine 
was significantly different. Indeed, rather than index a particular row of LTM as the 
product if recognition, Hintzman's model of recognition is a process of forming a 
composite "echo." The idea is to take something like a weighted average across every 
experience in LTM according to its similarity to the current situation. While it was clear 
that the basic structure of our original LTM matched Hintzman's multiple trace model, 
we hadn't considered anything like his recognition routine and we found the idea that 
recognition could be the product of multiple experiences quite compelling. 

We were quick to adopt Hintzman's approach. We now talk about LTM as set of vectors 
(i.e., traces), each of which represents features of a situation, a set of expectancies about 
the situation and an associated COA. The expectancies and the COA are two of the four 
by-products of recognition (cf, Figure 1). Each vector element is three-valued: -1, 0, or 1. 



Micro Analysis & Design. Inc. Uncertainty. Stress and Decision Simulation 

10.000   0.000 
0.571 
0.571 
0.571 
0.571 
0.571 
0.571 
0.571 
0.571 
0.571 

0 
0.296 -1 
0.296 -1 
0.296 1 
0.296 1 
0.296 1 
0.296 -1 
0.296 -1 
0.296 -1 
0.296 -1 

0.857   1.000 -1 
0.571    0.296 1 
0.571    0.296 1 
0.571    0.296 1 
0.857   1.000 -1 
0.857   1.000 -1 
0.857   1.000 -1 
0.857   1.000 -1 
0.857   1.000 -1 
0.571    0.296 -1 
0571    0.296 -1 
0.571    0296 1 
0.571    0.296 1 
0.571    0.296 1 
0.571    0.296 1 
0.571    0.296 1 
0.857   1.000 -1 
0.857   1.000 -1 
0.857   1.000 -1 
0.571    0.296 -1 

Figure 2 An example of LTM 

Recognition depends on similarity values that are computed between the situation at hand 
and each trace in LTM. The similarity of a particular episode in LTM to the current 
situation is a normalized summation over the product of the situation features and the 
corresponding trace 
features.    As    Hintzman 
points out, the resulting 
sum is something like a 
Pearson's r-value where 
high        similarity        is 
reflected      by      values 
approaching  1  (although 
the      analogy      to      a 
correlation       coefficient 
isn't   entirely   complete 
since    negative    values, 
though possible, have no 
theoretical   significance). 
Alternatively, in keeping 
with the vector 
terminology,      similarity 
values can be thought of as dot-products that reflect the "alignment" of the current 
situation with a particular trace in LTM. 

These similarity values dictate1 how much each trace in LTM contributes to the echo that 
represents     the     by-products     of 
recognition.  For example,  suppose 
we are modeling a decision with two 
possible COAs: COA #1 and COA 
#2. To form the echo, we compare 
the current situation to all the traces 
in LTM and discover several vectors 
with high similarity to the current 
situation each of which has COA #1 
associated with it. But we also find a 
few   vectors   that   have   COA   #2 
associated with them. The echo that 
comes back from LTM will strongly 
indicate     COA     #1     has     been  
recognized, but there will also be 
hints of COA #2 in the echo.  Figure Figure 3 An exampie 0f an echo from LTM. In this 
3 provides a visual example of an case COA#4 is chosen; the other COAs are 
echo that is returned from LTM. recognized, but they are all "remembered" as 

unsuccessful—hence the negative echoes. 

S- *ir,Hib "(i 
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It'«:? Hell* 
values echoed 
from I. TM 

«.AÜ iAl ?ir ?.*■> SA4 SAB SA$-, SA7 SAB SAS SAID SA11   SA12 SA13 SAU 

1-1-1-1-1          1          1          1          1-1-1           1          1          0          0       _0  
i 

EcfcotraeÄ ExpO   Expl Esu2   &<f>3   " ""'.COA:J 
178 481 1          1 -1         -1 ...   4 

EXPÄ1     EXP82    EXPS3    EXPtM 

1 In the recognition algorithm, the contribution a trace actually makes to the echo is a cubic function of its 
similarity to the current situation. In this way we guarantee that a few highly similar traces will be better 
represented (i.e., more strongly recognized) than a larger number of less similar traces. 



Micro Analysis & Design, Inc. Uncertainty, Stress and Decision Simulation 

Because every trace in LTM can contribute to the echo, recognition is often "fuzzy." It 
will not always be clear which COA has been recognized since different traces might 
have different COAs associated with them. This is not too surprising given that Hintzman 
developed this multiple trace model to reflect aspects of associative recall—a 
phenomenon where a given stimulus will not always elicit a fixed response. Although we 
did not have associative recall in mind when we began to explore Hintzman's work, it 
turns out that having a "fuzzy" echo captures the intuition that was lacking in our original 
approach, namely, that when decision makers recognize a situation they are not matching 
it to a particular episode from their past but rather that they are recalling features from a 
host of experiences that were similar in important respects. Moreover, from the point of 
view of our current work, we believe that data structures and routines that underlie 
Hintzman's multiple trace model present us with a promising approach to models of 
uncertainty. For instance, given that the echo that comes from LTM might not be 
univocal, we have a natural analogue of ambiguity—a situation where the information 
about the current situation leads to different assessments of the situation. Conversely, if 
there is information missing about the current situation—perhaps the agent does not have 
access to a certain cue, or he doesn't trust his perception—we expect that the similarity 
values will be lower and less variable across the traces in LTM since there will be many 
traces with low similarity to the probe and no trace will be especially similar to the probe. 
Hence we expect that no particular COA will stand out in the echo. Again, we find 
intuitive appeal here; it makes sense that if an agent lacks information—for whatever 
reason—it will be difficult to pick out any course of action. 

3.2 A Model of Uncertain Information (via LTM) 

The results of a psychological study of uncertainty conducted by Klein Associates for the 
USMC (Klein, Schmitt et al. 1996) suggests that there are at least four sources of 
uncertainty that affect agents in three different ways. Among these, Klein Associates 
identified missing information, unreliable information, and ambiguous information as the 
kinds of uncertainty most frequently encountered during a combined arms exercise at 
both regimental and battalion command levels. These sources of uncertainty are 
consistent with the types of task-related stress identified in (Cannon-Bowers, Salas et al. 
1996) as amenable to empirical study. 

Although the multiple trace model of LTM afforded us a natural computational analogue 
for ambiguous and missing information, implementing these aspects of uncertainty 
required an analysis not present in Hintzman's original discussion. The main difficulty 
was that we could not tell just by inspection whether an echo represented the recognition 
of a particular situation or, rather, just the random convergence of otherwise unrelated 
traces in LTM. To put this worry into context, to model ambiguity with an echo 
containing multiple COAs, we had to know that the ambiguity was genuine in the sense 
that the various peaks in the echo were the product of multiple systematic associations in 
LTM and are not just random spikes in a noisy echo. Conversely, to model the effects of 
missing information we had to know when the information contained in the echo was lost 
in the noise. In short, we needed a way to filter the significant features of the echo from 
those that appear by chance. 
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Our approach to this problem was rather straightforward. We began by noting that, just 
like the traces in LTM, the echo from LTM is itself a vector composed of an ordered n- 
tuple representing the recognized course of action2 followed by values representing 
whether the various expectancies for that situation have been asserted, denied or do not 
apply (values of 1, -1, and 0 respectively). To compute the individual values in the echo 
vector, we take a sum down the corresponding column of LTM, with each row in LTM 
making a contribution to the echo in proportion to its similarity to the current situation. 
Now, since any number of traces can contribute their (possibly different) COA to the 
echo, several bits in the COA portion of the echo might have non-zero values. This is the 
sense of a "noisy" echo; rather than find a single non-zero value in a particle bit-position, 
we might find several non-zero values in various bit-positions. Of course, if all the 
sufficiently similar traces agree on COA and expectancies, then we expect a clear, 
univocal echo. The more interesting question, however, is what we should expect if none 
of the sufficiently similar traces agree on COA or expectancies. Indeed, in the worst case, 
the association between situations and by-products would be entirely random, and the 
resulting echoes would be nothing but noise. 

We have used this worst-case analysis to set a threshold between vector-values that can 
be ignored as noise and those that should be attributed to a systematic association 
between situations and by-products. In the case of the COA, a random association is 
naturally represented by a binomial distribution where the number of trials equals the 
number of traces in LTM and the likelihood of success for a given COA bit to contain a 1 
is \lm (m = the number of course of actions and therefore the number of slots in the n- 
tuple echo that are devoted to the COA). In the case of the expectancies, the likelihood of 
the expectancy being asserted or denied is .5 (i.e., it is equally likely that the bit contains 
something, a 1 or -1, as opposed to nothing, a 0, in roughly half the traces). This gives us 
ready values for means and standard deviations and by fixing a confidence interval we 
can determine how many and how few l's we expect to appear by chance in a given 
column. Given a mean value for the similarity across all the traces in LTM we finally 
arrive at threshold values that indicate the peak values we would expect if the echo were 
nothing but "noise." 

These threshold values do three things. For the COA portion of the echo, they indicate 
when we have genuine ambiguity (as opposed to multiple non-zero values just due to 
chance). Second, they give us cutoff points for the expectancy values that reduce a 
continuously varying echo content value to a Boolean Value indicating whether the 
expectancy has been asserted (either positively or negatively). Third, by establishing a 
noise floor, we can determine when missing information about the current situation 
actually has an effect on recognition. 

Finally, we should note the sense in which we claim to have modeled uncertainty here. In 
most discussions of decision making under uncertainty, the challenge is to develop 
algorithms that deal with missing or unreliable data. The approaches taken in those 

2 Where n is the total number of COAs available and the /h COA is represented by a 1 in the /th bit of the n- 
tuple and 0's in the remaining n-\ positions. 
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contexts often revolve around error and risk analysis, the propagation of subjective belief 
through a Bayesian network and the prospects for a clever search through an otherwise 
intractable solution space. In the real world, a decision making agent (human or 
computer) will always confront data that are both unreliable and capable of supporting 
multiple and even contradictory hypotheses. Developing computational systems to deal 
with real-world uncertainty is a daunting task. In the synthetic world of simulations, 
however, things are different. There are still data to contend with, but it is generated by 
us (or at least by our algorithms) and it is up to us to impose a sense of uncertainty. When 
does a synthetic tank driver doubt the information that appears, so to speak, on his 
synthetic range finder? When is a computer generated foot soldier unsure of which path 
to take through the computer generated terrain? The challenge here is to model the 
decision making behavior and the associated cognitive processes in such a way that the 
data available in the simulation can induce a sense of uncertainty in the limited "mind" of 
the synthetic agent. Before we can model the effects of uncertainty on decision making, 
we must know when the data are perceived as uncertain by the synthetic decision maker. 
The models we described above represent a first step toward endowing computer 
generated entities with these kinds of "subjective" responses and, in turn, more realistic 
behavior. Moreover, we believe our approach is both intuitively and theoretically 
satisfying. But it is important to keep in mind that knowing how to deal with uncertain 
data is very different from knowing when the data are uncertain. 

3.3 A Model of Stress (via workload) 

We did not have to look far for our model of uncertain information; there was an almost 
organic fit between the results of (Klein, Schmitt et al. 1996; Schmitt and Klein 1996) 
and the recognition mechanisms implicit in our model of LTM. Introducing the effects of 
stress, by contrast, was not so immediate. First of all, the theory concerning stress and its 
effects on the decision making process is messy. In fact, there is no univocal definition of 
stress in the literature, much less a uniform method for measuring it—whatever it is. 
Second, there wasn't an obvious analogue for stress in our model nor was there an 
obvious point at which to introduce its effects—whatever they are. 

At the risk of stepping on theoretical toes, we began to survey workload measures as 
possible computational analogues for "stress." We did this for three reasons. First, given 
what little consensus there is about stress, workload stands out as a commonly cited 
example of endogenous stress (Hammond 2000). Second, we felt we could introduce 
workload requirements in a non-arbitrary way on the information-seeking tasks that drive 
decision making in our model. Finally, by equating stress and workload, we could tap 
into the established workload research methodologies that have proved useful to analysts 
in the past. 

Among the several validated and accepted workload methodologies, the VACP (visual, 
auditory, cognitive and psychomotor) model developed by McCracken and Aldrich 
(1984) offered us the optimal combination of computational feasibility, theoretical 
validation, and algorithmic modesty. The VACP approach is simple and intuitive. 
Workload is a sum of parts—a multidimensional construct based on sensory, cognitive, 
and psychomotor components. The visual (V) and auditory (A) stimuli are attributes of 
the sensory component; the amount of information processing required of the operator 
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defines the cognitive component (C) and the agent's behavioral responses are what make 
up the psychomotor (P) component. McCracken and Aldrich developed 7-point ordinal 
scales for rating the visual, cognitive and psychomotor components and a 4-point scale 
for rating the auditory component of each task. These scales represent the relative 
difficulty for various component tasks. For example, on the cognitive scale an automatic 
task like simple association takes a value of 1.0 while more complicated, analytical tasks 
(evaluation, judgment, estimation, calculation) take on values between 6.0 and 7.0. The 
specific value for a task is based on the opinions of analysts and subject matter experts 
familiar with the task under consideration. 

The VACP workload model indicates operator overloading in a straightforward way: 
Total workload for concurrent tasks is computed simply by summing the individual 
ratings of workload for all components (visual, cognitive, auditory, kinesthetic and 
psychomotor) involved in the task. If this sum exceeds a specified threshold, then the 
operator is overloaded. Of course, the actual value of this threshold and the operator's 
response to the overload are empirical matters and are relative to the other tasks involved. 
Nevertheless, the VACP methodology affords several advantages. First, because a single 
workload modality can induce an overload condition, workload estimates on the VACP 
model tend to be conservative. This provides us a hedge against inadvertently modeling 
the "super-operator," an agent capable of performing an unrealistic number of tasks 
simultaneously. Second, the VACP model has a solid empirical foundation (cf, 
Bierbaum, Szabo et al. 1987). Finally, implementation of the VACP model is reasonably 
straightforward. Although we have ready access to WinCrew, a computational model of 
Wickens' more sophisticated Multiple Resource Theory of workload, that code is very 
complex. Working on only a six month contract, we wanted to avoid the inevitable 
headache of integrating a stand-alone, commercial quality software product with our 
current test bed work. 

3.4 Integrating the Component Models 
After making ourselves familiar with the VACP methodology, we turned to the job of 
assigning the component V, A, C, and P measures to the information seeking tasks in our 
test bed model. The test bed model is centered around a driver's decision of whether or 
not to continue through or to stop at a stoplight. Information seeking tasks for which 
workload has been applied include checking the rear-view mirror, assessing the distance 
left until the stoplight, checking for cross traffic and so on. We relied solely on our own 
"expert" judgment, so the assignments of workload values were a bit ad hoc, but our 
concern at the time was not with empirical validity. Rather, with the workload measures 
in place we were finally in position to integrate the component models of stress, 
uncertainty and RPD. 

11 
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Figure 4 Architecture for the USADS Decision Making Model 

The basic architectural relations are depicted in Figure 4 above. As discussed, the model 
of uncertain information is implicit in the echo returned from the LTM model to the RPD 
component. Likewise, the model of stress is embedded in the workload management 
component. The flow of activity across the model is as follows: A predetermined set of 
cues from the "external world" is continually presented to the model across an (HLA) 
interface. The attention management routine imposes a sampling strategy according to 
the decision-maker's current goal and workload level. Sampled values are stored together 
with a time stamp in a "working memory" array. At the same time, the act of sampling 
contributes to an ongoing workload measure according to the VACP component value 
assigned to the associated cue update task. The updates continue (with values "decaying" 
toward 0 according to a default rate specified by the analyst) until a decision is required. 
At that point, the contents of the working memory array are used to probe LTM and an 
echo representing the by-products of recognition is returned. If it happens that the echo is 
uncertain or ambiguous (in the sense described above) then the cognitive workload 
component is increased, potentially affecting the sampling strategy used to update 
subsequent cues and the rate at which values decay in working memory is incremented to 

3 Determining which cues to present is a matter of balancing the information gained from a cognitive task 
analysis of the decision-type being modeled against the information actually available in the simulation. 
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the next faster decay rate all before the agent attempts to re-diagnose the situation (i.e., 
update his working memory and probe LTM again). Otherwise, the expectancies returned 
from LTM are used to direct subsequent cue sampling which continues until the 
expectancies are either satisfied, or the situation is re-diagnosed, or the decision maker 
simply runs out of time. In any event, the most recently echoed COA will be returned to 
the external world. 

Throughout this process, we keep track of elapsed time. The agent is aware, so to speak, 
of the fleeting time to make his decision, and as time passes, the psychomotor workload 
component is continually incremented. This is intended to reflect a sort of "slow-boil" 
pressure on the agent and the attendant effects of self-monitoring that are likely to occur 
as time-pressure increases. As before, an overload condition induced by the psychomotor 
component will affect the sampling strategy used and the rate at which cues decay in 
working memory. 

The effects of stress and uncertainty both play out in terms of narrowed attention and 
decreased capacity in working memory (insofar as increased decay rates effectively limit 
the amount of information that is likely to be present in working memory at a given 
time). In this way we preserve an important theoretical link between uncertainty and 
stress: namely, in addition to whatever effects uncertainty has on recognition, uncertainty 
itself is a Stressor (cf, Klein, Schmitt et al. 1996)). Uncertainty induces both product and 
process effects. Where traditional approaches have emphasized the effects of uncertainty 
on product, our model of LTM allows us to capture both effects in an elegant manner: 
probing LTM with incomplete information will likely lead to imprecise recognition (i.e., 
noisy echo=bad product) while the echo itself can be analyzed in such a way to trigger 
increased workload components, and hence, contributes to increased stress and its 
attendant process effects. Indeed, there is an intuitively satisfying cycle represented here: 
uncertainty affects stress which, in turn, affects attention management and working 
memory, which can ultimately affect uncertainty. 

Three comments are in order here. First, we have yet to implement the HLA-compliant 
interface (although we have begun to explore an HLA-compliant architecture; see below). 
During Phase I, we built a task network model of the external world around our decision 
making model, which made for a trivial exchange of data. We did, however, take care to 
encapsulate the decision making model so that it could be easily embedded in another 
simulation (task network or not). For example, array sizes and constant values can be 
read into the model from a separate text file. Second, how exactly attention shifts in a 
particular situation (i.e., which cues capture the agent's attention, which he will ignore) is 
to be determined by the analyst (see Section 4.6 below). We have yet to study the effects 
of shifting attention in our test bed model simply because we lack baseline data against 
which to compare decision output (this will be one of the first tasks we undertake should 
an option toward Phase II work be awarded). Finally, we have been conservative in the 
variety of effects we have implemented (though see Section 4.3 below). As we indicated 
above, the literature on the topic is difficult to sort out. There seems to be some 
agreement that attention does in fact narrow due to stress (Keinan 1987), and, by 
extension, that working memory capacity reduces (or is, at least, it is devoted to the 
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processing of fewer bits of information). Unfortunately, it remains an open question 
whether narrowed attention improves or degrades decision making performance (Klein 
1996). It will be interesting to see how these process effects play out in our model. For 
the time being, however, we have steered clear of implementation just for the sake of 
implementation and have instead limited ourselves to modeling the process effects for 
which found some theoretical consensus. 

3.5 An Interface to JSAF 
CGF simulations have undergone extensive development and modification in order to 
implement new and advanced entity functionality. Like several other independent efforts 
that have aimed to improve entity representation, our Phase I work has focused on the 
possibility of enhancing a specific aspect in the behavior of a computer generated entity. 
As tantalizing as the possibilities might be, the improvement will go by the boards if we 
can't effectively integrate our models with a CGF like JSAF. The obvious solution is to 
incorporate our decision making models directly within the CGF. This, however, would 
only continue a trend of constant modification that has become something of a software 
maintenance dilemma for the JSAF integrators and would result in a highly complex and 
difficult to maintain product. 

Fortunately, we can take advantage of another technique to add functionality in CGF 
models. We have begun to explore the process that involves transferring ownership of 
JSAF attributes to an external server. This technique expands the JSAF architecture to 
provide greatly enhanced entity representation without adding to an already complex 
CGF application. Under previous ModSAF development efforts, MA&D has developed a 
method that both dramatically improves the human/system performance representation 
and basically bypasses the configuration control process. That method of improving 
human representation is to transfer ownership of attributes, such as system/human 
performance, to an external server. More importantly, transferring ownership addresses 
complex modeling issues while minimizing or eliminating the impacts of configuration 
management on a software application such as JSAF. 

We are currently exploring a performance server architecture that would allow us to 
realize the benefits of an improved model of decision making. Figure 5 shows the 
architecture. In the figure, the modules shown within the dotted box are part of the 
decision making server system. Each of the modules communicates and sends data using 
Distributed Interactive Simulation (DIS) protocol data units (PDUs) or High Level 
Architecture (HLA) objects, attributes, and interactions. The other modules are typical of 
those that would interact with the decision server and also communicate though a 
DIS/HLA network. 
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Figure 5 The RPD performance server architecture 

The RPD Decision Server determines JSAF entity behaviors based on the algorithms and 
data structures discussed above. These decisions are then "served" to the JSAF entities. 
The other boxed module is the RPD-enabled JSAF. It is a slightly modified version of 
JSAF that can communicate and transfer attribute ownership to an external server (the 
decision server in this case). The RPD-enabled version of JSAF will retain all the 
performance capabilities found in the baseline version but will also have the ability to 
obtain realistic human decision making behaviors from the RPD Decision Server. This 
capability will be selectable by the JSAF operator through a graphical user interface 
(GUI). The following subsections provide specific details on each of these simulators. 

3.5.1 The RPD Decision Server 
The RPD Decision Server will track subscribed JSAF entities and operational 
performance to represent more realistically both the decision making process and product 
on the synthetic battlefield. The act of an RPD-enabled JSAF entity subscribing to a 
performance server transfers executions of the appropriate decision type from RPD- 
enabled JSAF to the RPD Decision Server. This subscription process causes the RPD 
Decision Server to begin tracking the subscribed entity. It records entity tracking 
information including its type and any provided parameters the analyst deems germane to 
the decision-making process. The RPD Decision Server then provides decision 
parameters to the subscribed entity. 

3.5.2 RPD-enabled JSAF 
The performance server architecture depends on an RPD-enabled version of JSAF. This 
means we must modify JSAF to represent decision making effects on entity performance 
and behaviors. In RPD-enabled JSAF, we will affect the behavior of a particular kind of 
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entity making a particular kind of decision. We will not attempt to modify every aspect of 
an entity's decision making behavior. As the chosen entities reach the selected decision 
points, RPD-enabled JSAF will affect these decision behaviors so that they represent 
actual human behaviors more accurately. 

3.5.3 Connecting the Client to the Server 
A subscription process will be used by the performance server architecture to perform the 
transfer of attribute ownership from an RPD-enabled JSAF entity to an RPD Decision 
Server. When RPD-enabled JSAF is used to create an entity, a process to subscribe to a 
RPD Decision Server will be initiated. The sequence will involve a handshake protocol 
that ensures that a link is established between an individual entity and a single RPD 
Decision Server. The subscription process is depicted in Figure 6. 

Client 
(JSAF) 

Subscribe for service 
any server 

Ift>nsec& 
+ no ack return 

Who can 
help me? 

Server 
(RPD) 

I can support (n) 

I choose you 

■GSMSe 

I acknowledge you choose me 

i®«* 

Here's data 

D 

D 

Receive request 

Can I perform this 
service? 

N 

/ Have I already been 
/ chosen by this requester 
I (check table) 

[ can support 
(send action 
response #1) 

Stop 

Is this a 
wild card 
request 

Is this directed 
to me? 

£- 
Send acknowledge selection 

(send action response #2) 

Add to table to provide service 

Figure 6 The subscription process for transferring attribute ownership from a client to a server 

An RPD-enabled JSAF entity will initiate the subscription process with RPD-enabled 
JSAF sending an Action Request PDU requesting service from an RPD Decision Server. 
If available, an RPD Decision Server will reply with an Action Response PDU 
acknowledging that it can serve performance data to that entity. Because the architecture 
is scaleable, multiple RPD Decision Servers could provide such data, hence multiple 
RPD Decision Servers might respond to the request. RPD-enabled JSAF will arbitrate the 
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responses and select a specific RPD Decision Server by replying with an Action Request 
PDU. Along with the reply, the RPD-enabled JSAF entity will send any initialization data 
indicating prior Stressor conditions the entity has encountered. The selected RPD 
Decision Server will acknowledge the reply and then will provide behavioral and 
operational performance parameters to the RPD-enabled JSAF entity. 

This subscription process will effectively transfer ownership of the RPD-enabled JSAF 
entity's behavioral and operational parameters to an RPD Decision Server. As we 
indicated above, our architecture will be scalable and allow for any number of RPD 
Decision Servers to be present. 

3.5.4 Embedded versus performance server approach 

We have benefited from the experience of our previous efforts to improve entity 
behavioral representation in ModSAF. The performance server architecture we described 
above is one of the fruits of that experience. We propose to use this architecture rather 
than embedding our decision making models directly into JSAF for several reasons. First, 
implementing something as complex as decision making behavior will require extensive 
modifications to existing JSAF libraries and the inclusion of additional libraries and data 
files. Consequently, the embedded model would not provide much flexibility or ease of 
expandability. If we were to model additional decision types or if the existing ones 
required changes, we would have to develop additional software for the JSAF code. The 
embedded approach is also limited to a relatively simplistic implementation of the 
behavioral representation methodology. A more sophisticated approach could have the 
potential to significantly degrade JSAF performance. By contrast, the performance server 
architecture will allow us to have dynamic environments affect the behavioral 
representation of JSAF entities. Based upon previous ModSAF development experience, 
the performance server architecture will require fewer, easier, and simpler modifications 
to JSAF and performance will remain basically unaffected. 

In addition, there will be benefits that do not relate to JSAF functionality. These benefits 
are wide ranging and have more of an effect on implementation and development within 
JSAF. They include improved configuration management of JSAF, simplified 
verification, validation and accreditation (VV&A), scalability, and improved behavior 
representation fidelity. Using the performance server approach, JSAF configuration 
management issues will be vastly reduced. Modification or additions to decision making 
behavior functionality will not involve JSAF and thus will not interact with the JSAF 
configuration management process. The external server will provide the gains in JSAF 
functionality and JSAF will only need to have the capability to use this server. VV&A 
issues will be reduced due to the fact that the functionality provided by the server will go 
through the VV&A process without directly involving JSAF. Currently, when 
functionality is added into JSAF, a VV&A process involves all of JSAF. Given the large 
and complex nature of JSAF, attempts to verify, validate and accredit enhancements to 
JSAF can be challenging. The performance server approach is scalable in that multiple 
servers can be used to service the demand. The ability for an entity to select a 
performance server that is not busy will be built into the subscription process. Part of this 
selection process will include load balancing algorithms to distribute entities and the 
processing load among servers. Finally, user selectable fidelity will also be a huge 
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benefit. In the embedded approach, all of the entities must use the same behavioral 
representation methodology. Under the performance server approach, the server 
behavioral representation algorithms can be modified much more easily and customized 
as desired. Individual servers can have different levels of fidelity and CGF users will 
have an improved capability to compartmentalize simulations into classified and 
unclassified cells. 

While it has many benefits, the performance server architecture has two potential 
shortcomings. The first is the potential to increase network latency. If the behavioral 
representation or additional functionality being added via a performance server approach 
is extremely time sensitive, network latency could be unacceptable. Given our 
performance server application, we believe this latency will be small compared to the 
behavioral times and will thus have a negligible effect. The second potential shortcoming 
is increased network bandwidth. Due to the network communication between the server 
and JSAF, the network bandwidth needed will be increased. In our scenarios, given the 
length of time between requests for parameter updates from the server, we believe the 
additional bandwidth needed will be negligible. 

4. Phase I Tasks 
The technical approach we described above developed as we pursued the following Phase 
I tasks. 

.    Select real-world examples of decision making in stressful and uncertain 
environments 
Determine the primary modeling objectives 
Design an integrating architecture 
Identify gaps in modeling architecture 
Develop a functional specification for the model 

. Develop a user-interface prototype for our modeling tool 
With the exception of the fourth task, the completion of these tasks required both 
theoretical and computational effort. We describe below the extent to which we have 
accomplished each task and, moreover, how otherwise disparate research efforts in 
psychology and computer simulation have complemented each other throughout our 
Phase I work. 

4.1 Task 1 - Select real-world examples of decision making in stressful and uncertain environments 

Although the long-term goal of this project calls for the development of a generic 
technology to model a variety of decisions, our work began with a search for specific 
examples of decisions made in stressful and uncertain conditions. We did this for two 
reasons. First, from a theoretical standpoint, such examples give concrete meaning to 
terms like "typicality," "situation awareness," and "expectancy." By understanding how 
these terms apply in a specific setting, we gain a deeper understanding of the extent to 
which they can be generalized in a computational model. It is one thing to say that an 
agent will re-assess a situation in the face of a failed expectancy, but it is quite another to 
say what that really means in a specific operational context (does the agent re-consider 
the information he already has, does he look for new information? what, exactly, is the 
information under consideration in the first place? etc). The answer to such questions in 
specific settings gives us more detail to work with than theory alone provides. Second, 
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from the point of view of model development, concrete examples provide both an 
empirical touch stone to guide our efforts and offer one of the few potential avenues of 
validation for our decision models. Indeed, unlike other aspects of human performance, it 
is very hard to quantify the products of decision making behavior and thus we find 
ourselves relying on existing analyses of actual decision making behavior for both model 
construction and validation. 

With these motivations in mind, we worked with Klein Associates to identify existing 
work from which we might draw our examples. In recent years, Klein Associates has 
conducted three major efforts with different branches of the United States Marine Corp 
(USMC). The first was to understand the decision requirements of Marine Corps in 
regimental command and control centers. Klein Associates was asked to study the 
structure of decision making in the Combat Operations Center (COC), in order to 
determine how to improve it. Four exercises were observed and over 200 critical 
decision-making incidents were collected from key players in the COC. The key decision 
requirements of the COC were identified as an organizational entity, as well as some of 
the primary barriers to carrying out these requirements. For example, the seasoned 
officers in the COC could size up situations rapidly, yet most procedures put the task of 
situation assessment in the hands of junior officers, who struggled because of their lack 
of experience. Another problem was in handling uncertainty. Frequently, actions were 
taken more to reduce anxieties about what was happening, rather than to answer real and 
timely questions. This project was a front-end analysis of the COC decision making, and 
the findings are being used in several different ways. 

The second effort dealt with the USMC's experimentation with a new method of fighting 
battles that is designed to be safer, seamless, adaptable, and hard to counter. The concept 
consists of dispersing multiple squad-sized units on a battlefield and having these units be 
the "eyes-on", calling in reports of enemy activity and directing fires on the enemy from 
aircraft and from ground units in the rear. The theory here is that these small dispersed 
units are rather difficult for a mechanized enemy to destroy, let alone locate, and they can 
be inserted and removed quickly. Commanding and controlling these units is no small 
task. What type of control structure will work best? How do you portray this clearly on 
displays? How can technology support as opposed to hinder this type of operation? The 
USMC is working on such questions, and Klein Associates' role was to study the 
decision making that occurred (or did not occur) and find ways to support it. Klein 
Associates also provided an unbiased perspective on what supports effective operations 
and what does not in terms of displays, organization, ergonomics and information flow. 

The third effort is related to the second effort. Given the re-organization described above, 
the squad leaders out on the battlefield are in new and vastly different roles than they 
have previously encountered. They are now being faced with challenging decisions that 
have never before been placed upon them. Klein Associates was tasked to train these 
enlisted Marines to become better thinkers and decision makers on the battlefield. The 
Decision Skills Training program was developed to accomplish this. The approach was to 
improve decision-making performance by providing tools that facilitate the development 
of decision makers' domain expertise, rather than teaching generic decision-making 
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strategies. Tools were developed to teach squad leaders to read situations better and 
faster, identify plausible options more effectively, manage their time and attention better, 
see patterns, make discriminations, and show more of the characteristics of expert 
decision makers. The tools were refined based on the feedback Klein Associates received 
from an experiment. Several methods were developed to provide increases in experience, 
and increases in the amount of learning that can be derived from experiences. These 
include a technique for identifying decision requirements, a method for presenting 
low-level simulations, a method for reflecting on the decision making in training events, 
a method for mentally simulating plans, and a method for leaders to obtain feedback on 
expression of intent. 

Although none of these efforts were undertaken with a computational model of decision 
making in mind, the work is still relevant. In order to make recommendations about 
organization, training and decision support it was necessary to identify the stresses and 
types of uncertainty that the subjects faced in their various decision-making domains. It 
was likewise necessary to understand how agents deal with these demands. Both kinds of 
information are important to our current work. 

Originally, we had intended to sift through this body of work in order to identify the 
kinds of decisions that would be most germane to ONR interests and, of those, select 
examples for which we have ready access to supporting data. We have, however, 
procrastinated our original plans. As we began to consider how we would embed our 
decision making models into JSAF, it became clear that the variety of "decisions" we 
might actually be able to affect will be somewhat limited. So, we thought it best to wait 
until we have conducted a more thorough survey of the JSAF code before we settle on 
specific decisions to model. Indeed, it makes no sense to model a decision that cannot be 
affected, or worse, does not exist, in the existing JSAF code. Once we have a better idea 
of the available decisions, we will select from them according to the same criteria 
discussed above. 

In the meantime, we have piggybacked our development efforts on the test bed model we 
constructed for our work with NAWCTSD. The test bed model is built around a driver's 
decision whether to run a traffic light. We used this example because it struck us as 
naturalistic and because driving is a familiar domain (no need for SMEs). The model 
itself is fairly modest in its complexity, but work on the test bed has still demanded that 
we make theoretical issues concrete. Moreover, because the test bed is fairly simple, the 
implementation of the additional stress and uncertainty models has been relatively 
straightforward. 

4.2 Task 2 - Determine the primary modeling objectives 

It almost goes without saying that the design of a modeling technology depends on its 
intended use. For example, a tool designed to be embedded as an intelligent expert in an 
embedded training system would be quite different than a tool used to improve 
behavioral realism in CGFs. After preliminary discussions with ONR personnel, it 
became clear that a realistic model of decision making is needed to eliminate human-in- 
the-loop CGF simulations so that multiple runs can be performed quickly and cheaply. 
Moreover, the simulated decision behavior needs to be sufficiently realistic so that the 
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results from the simulation can be used to answer questions that resist more direct, 
analytical solutions. 

Several design implications follow from this objective. First, the need for a validated 
predictive model takes on added importance in this context. In the training environment, 
the current lack of behavioral realism in CGFs has obvious, but limited, consequences. 
Most soldiers can quickly identify their computer generated opponents and while this 
limits the effectiveness of simulator-based training, it does not affect the other types of 
training a soldier will receive nor, for that matter, does it imply that simulator-based train 
is without merit. By contrast, the data produced by a simulation depend entirely on the 
robustness of the underlying models. If those models are suspect, then so too is the data 
gained from them. Unlike the use of CGFs for training, the use of CGFs for analysis is an 
all-or-nothing game. Second, a tool that supports the use of CGFs for analysis should not 
significantly impact the time or effort it takes to develop the overarching CGF scenarios. 
The tool should allow for the efficient construction and integration of decision making 
models, and the resulting models themselves should be perspicuous. Historically, the 
simulation of human decision making has been dominated by sophisticated rule-based 
approaches. Though such models can engender realistic behavior, they are very complex 
(often involving thousands of production rules) and difficult to develop. This added 
complexity is unwelcome in the CGF environment where the simulations are already 
enormously complex. As our Phase I work has progressed we have realized that we must 
develop our decision modeling tool as a means to an end and not an end in itself, and this 
has imposed a healthy sense of parsimony on our model architecture. Finally, a tool that 
is used to develop CGF simulations for analysis should at least have the potential to 
provide meaningful data about the decision making process—even if that process is not 
the object of investigation in every simulation. Once again, even if a rule-based approach 
engenders realistic behavior, insofar as human decision making is thought not to be rule- 
based, such models will fail to reveal anything about the actual human process they 
ostensibly represent. Throughout our Phase I efforts we have tried to reflect actual human 
decision making processes in our model. 

4.3 Task 3 - Design an integrating architecture 

This task received the bulk of our attention during Phase I. As we indicated above, we 
now have the basic architectural relations in place to link our model of decision making 
with a model of uncertainty (via a multiple trace model of LTM) and a model of stress 
(via a workload model). Although we have been conservative in the variety of effects we 
have implemented, we have represented an important theoretical connection between the 
effects of stress and uncertainty in our model. We have also begun to explore an 
architecture that will allow us to embed our models in HLA-compliant simulations. 
Finally, with an eye toward a generic and flexible model of RPD, we have consciously 
limited the amount of context-specific hard-coding in our initial test bed model. 

4.4 Task 4 - Identify gaps in modeling architecture 

At the outset of our Phase I work, we identified the need for a pattern-recognition routine 
capable of dealing with uncertain information as the most significant gap in our modeling 
architecture. As it happened, we found an elegant solution to the problem of missing 
information in the recognition routine we use to access our LTM. Indeed, as we discussed 
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above, the real difficulty in dealing with uncertain information was that of modeling a 
"subjective" response in the synthetic decision maker. 

Still, we have uncovered new gaps in our architecture. Most notably, we have yet to 
implement a robust model of exogenous Stressors (e.g., heat, noise, fatigue). This is due 
more to a lack of time than any outstanding theoretical issues. In fact, implementing the 
degradation functions discussed in our original proposal will be straightforward; in 
exactly the same way we assign workload values to each of the cue-updating tasks, we 
can affect the time it takes to perform the update as well as the accuracy of that update 
according to a skill degradation multiplier. Thus the information stored in the working 
memory can be more-or-less timely and more-or-less accurate. In turn, the echo that 
returns from LTM will reflect a more or less accurate assessment of the situation. 

A second, more significant gap is that of "populating" LTM with experience. This is 
really a combination of three problems. First, we must devise some way of supplying our 
synthetic decision maker with a store of experiences with his environment. In more 
concrete terms, we need to produce a collection of traces that can be used to produce an 
echo during the decision making process. We explored two possibilities during Phase I: 
the first was to create LTM by hand—something we wanted to avoid on the basis of past 
experience—and the second was to start with tabula rasa, so to speak, and store the 
results of multiple runs through a simulation as the traces in LTM. In this way we would 
eventually store enough "experience" to form coherent echoes. The latter alternative 
holds promise as a natural analogue for "learning from experience," but it also introduces 
a second problem, namely, how do know when we have added enough traces to capture 
regularities in the synthetic environment but not so many that the echoes from LTM wash 
out in noise? Indeed, one of the shortcomings of our multiple trace model of LTM is that, 
in general, the larger LTM becomes, the more likely it is that several, perhaps unrelated, 
traces will contribute to the echo. We are currently addressing this issue under our 
contract with NAWCTSD, and we are confident that whatever solution we find will 
translate directly to our model of decision making under stressful and uncertain 
conditions. 

Questions about model validation have also surfaced during our Phase I work. Obviously, 
we will not address these questions by filling gaps in our model architecture, but we must 
address them nonetheless. In particular, we must decide how we will evaluate process 
effects in our model as we implement the effects of stress and uncertainty. Up to now, we 
have often found ourselves relying on face validity to evaluate our implementation. We 
must also be able to determine when LTM has become "convergent" (i.e., when there are 
just enough traces to reflect regularities in the environment, but not too many). Should 
the optional task be awarded, we will explore these questions. 

4.5 Develop a functional specification for our model 

See appendix. 

4.6 Develop a user-interface prototype for our modeling tool 

Our most recent Phase I efforts have been devoted to the development of a user-interface 
that will facilitate the construction of our decision models in HLA-compliant simulation 
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environments. This interface will be the essential link between our decision-making 
model and a CGF such as JSAF. The interface will allow the analysts to specify the type 
of entity making the decision, the type of decision being made and the information 
necessary to make such a decision. More importantly, the interface will serve as a front 
end for the middleware that will provide the mapping between the information the analyst 
specifies and the data that is actually exchanged during the simulation. The middleware 
will be developed in accordance with HLA specifications and will use the simulation 
management interactions (SIMAN) of the Real Time Platform Level Reference Federated 
Object Model (RPR FOM) in order to pass necessary data as specified by the analyst. 
A graphical user interface will guide an analyst through a series of forms that collect the 
information necessary to drive an RPD decision model. We describe these steps in detail 
below. 

RPD Model Prototype 
The opening screen (Figure 7) introduces 
the user to the RPD Model and includes 
various options in the menu bar including 
"New RPD Model" and the option to "Open 
Existing". With these options, a user can 
start from scratch, completing the necessary 
fields in each of the successive forms and 
then save his work so that the same model 
can be opened again later and modified as 
necessary without having to begin the whole 
process anew. 

Figure 7 Intro screen for RPD Model Prototype 

Step 1: Select Decision Making Entity 
After selecting either the "New" or "Open" 
option from the File menu, the user will be 
prompted to select the main entity of interest 
(Figure 8); this will be the decision-making 
entity. The analyst will select one item from 
the entities available through JSAF using a 
checkbox list. (See Figure 8) 
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^                       9 
>H    Ho Amphibious Vehicle                 jS 

^M    ^BD Spacecraft                             ||i 
j^|    ^BD Surface Vessel 
■ IQ Submersible Vessel                 M 
j^|    ^ID MultiDomain Platform               ||; 
^M    ^Bn Human                                   p 
■ IQ NonHuman                            i||| 
^M    ^BG Sensor                                  fi 
I    ■[] Radio 
■ IQ Munition 
■ Ifl CulturalFeature                       !■ 
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Figure 8 Step 1 - Select Decision Making Entity 
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Step 2: Select the decision of interest 
After selecting the decision-maker, the user 
will select the decision to be made by the 
RPD Decision Server. (See Figure 9) 

RPD Engine iiiiiii isi I 

Step 3: Select entities germane to the 
decision 
Presumably, the decision to be made will 
depend on the behavior of other entity types 
in the synthetic environment. Thus, we 
allow the user to select again from the 
available entities in JSAF. (See Figure 10). 

□ Assault ü 
ylalfl                              ■ 
□ Change Formation 1^ 
□ Concealment 
□ Follow a Vehicle 
□ Minefield Traverse 
□ Move 
□ Rendezvous 
□ Repair 1Ü 

Figure 9 Step 2 - Selecting the Decision of Interest 

Figure 10 Step 3 - Selecting influencing entities 

Step 4: Select input cues for the decision- 
making entity 
The next step for the analyst in the process 
of creating an RPD model is to designate the 
attributes of the decision-making entity that 
cue the decision (Figure 11). These can be 
thought of as information internal to the 
entity that must be assessed in order make 
the decision. Provided in step 4 is a list of 
all attributes available through the RPR 
FOM that pertain to the decision making 
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entity. These include attributes inherent to the entity (i.e. WorldLocation, 
AccelerationVector) as well as attributes that belong to interaction classes that could be 
carried out by the entity (Collision.CollisionLocation, WeaponFire.MunitionType). 

Step 5: Select input cues for 
influencing entity 
Since the decision making entity must 
also be aware of what other entities are 
doing, we prompt the user to select the 
germane attributes of the entities 
selected in Step #3. These attributes can 
be thought of as external information 
that cues decision making behavior. 

Together, the internal and external cues 
form the set of features used to 
individuate situations in LTM, and are 
thus the contents of the agent's 
"situation awareness." (See Figure 12) 

Figure 12 Step 5 - Selecting influencing entities' cues 

Steps 6a and 6b: Cue variable 
specifications 

In order to model the effects of stress, 
we allow the analyst to determine the 
workload type and value associated with 
the act of perceiving each cue (both 
internal and external). In addition, the 
analyst can specify an "attention 
management value" and decay rate (as 
discussed above). The attention 
management rank determines the 
relative likelihood of a particular cue 
being sampled (relative with respect to 
the other cues being sampled). In fact, 
the analyst specifies two such values for 
each cue: one value to be used during 
low-stress (i.e., non overloaded) 
conditions, and another value to be used 
during high-stress (i.e., overload) 
conditions. In this way we can represent 
the effects of attention narrowing 
discussed above. Likewise, during low- 
stress    conditions,    the    decay    rate 

«  RPD Engine rrr 
I :.„i. 

immm ftesriüFTB 

|                         icle     | 
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■ t AccelerationVector.X float 

AccelerationVector.Y float 
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Figure 13 Step 6a - Database grid for cue variable specifications 
such as workload, attention management, and decay rate 
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specified by the analyst will ensure a forgetful decision maker, while in high-stress 
conditions, the incremented decay rates will capture the effects of decreased working 
memory capacity. (See Figure 13) 

Figure 14 Step 6b - Boundary specification for variable encoding 

At this point, we expose the analyst 
to   an   obnoxious   implementation 
detail. Due to the mechanics of our 
LTM model, the synthetic decision 
maker   is   limited   to   a   three-bit 
memory, so to speak. Each bit in 
LTM encodes a feature that is either 
asserted (value of 1), denied (value 
of -1) or unknown (value of 0). 
Consequently,     any     non-Boolean 
attribute value (i.e., integer or float) 
must be represented in a form the 
synthetic     decision     maker     can 
understand in these three-bit terms. 
Our proposed approach here is to 
represent     non-Boolean     attribute 
values in terms of discrete scales. 
For example, an attribute that can 
take on any value between say, 0 and 
100, will be represented in LTM by, 
say, a low-medium-high scale where values less than 33 are encoded as low, values 
between 33 and 66 are encoded as medium, and values greater than 66 are encoded as 
high. In this way we are able to maintain the three-bit memory structure, and yet still 
represent non-Boolean attribute values.4 Unfortunately, this also means the analyst must 
decide how fine a scale to use to represent each non-Boolean attribute value, and, 
likewise, where to impose cut-off points on the scale. The GUI shown in (Figure 14) is 
intended to facilitate this process: the analysts specifies the "Resolution" of the scale and 
the "Boundary" values that will set cut-off points between intervals on the scale. 

Having stepped the user through this process, the middleware will impose a trace 
structure on LTM and ensure that the RPD decision server receives the necessary 
information from the various federates in the CGF simulation. 

5. Preliminary Results and Outstanding Problems 

With a working test bed model in place, we have begun model analysis in tandem with 
continuing development. The main issues we hope to answer are whether we can add 
traces to LTM on the fly, so to speak, and have our synthetic decision maker "learn" the 

4 Note, there are two reasons this problem is not solved simply by adopting a base-3 numeral system. First, 
it is simplifies the encoding if each trace in LTM has the same "width" (i.e., each trace must use the same 
number of bits to represent situations). Second, past a certain point, it is advantageous to limit the overall 
width of traces in LTM. 
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appropriate associations between situations and COAs, and whether this approach will 
guide similar situations to converge on appropriate courses of action. Put in slightly more 
abstract terms, we need to determine when LTM is converging in the sense that a given 
situation will eventually induce a composite echo that represents the recognition of an 
appropriate COA for that situation. The analysis we have performed and will continue to 
perform is guided by several questions: Are similar traces grouped uniquely according to 
COA? Is that unique COA appropriate? How long does it take the decision maker to 
learn associations or similarly for the model to "spin-up"? Are there visible effects of 
stress and uncertainty on the decision maker's performance such as a decline in 
appropriate situation-COA associations? 

There are five possible courses of action for our synthetic driver: GO, STOP, SPEED-UP, 
SLOW-DOWN, and MAINTAIN. The driver starts off with no experience (i.e., there are 
no traces in LTM) and, at first, must guess which of these COAs is appropriate for the 
situation at hand. After the driver implements a COA, a success value is assigned to that 
situation-COA experience according to the objective outcome of the COA. Note that an 
optimal decision is assigned a success value of ' 1' while an abysmal choice of COA is 
assigned a success of-1'. For example, stopping when the driver is very far from the 
light is bad (hence receiving a large negative success value), while driving through a 
green light is good (hence receiving a large positive success value). At the end of each 
episode, the situation-COA pair is stored together with the success value as a new trace in 
LTM. As the driver encounters subsequent situations, both by-products and success 
values are recalled from LTM; at this point, rather than choose randomly from the 
available COAs, the driver can use the successes and failures of his past experiences to 
make his choice. 

In this context, we can address questions about the convergence of LTM by analyzing the 
changing success values assigned to each episode as the driver gains experience. We 
expect that success values will improve with time only if similar situations are eventually 
grouped uniquely with an appropriate (i.e., successful) COA. 

After stepping through several model runs, we found that many of the echoes returned 
were very flat - rarely did an echo signal recognition toward a unique COA. For the 
most part, all echo content values were between the two noise thresholds, indicating that 
either LTM was too noisy or that our calculation of the noise thresholds was flawed. We 
looked carefully at our approach for computing the noise thresholds and did in fact decide 
to alter our method. Initially, we were calculating the noise by figuring the echo content 
values from a completely random LTM, counting every trace in LTM as a trial. The 
problem with this is that some traces are orthogonal to the probe and thus do not 
contribute to the echo at all. Eventually, we decided not to count these non-contributing 
traces when we compute noise thresholds. In particular, we decided not to count non- 
contributing traces toward the number of trials that fix the binomial distribution we use to 
model noisy echoes. We also decided that the average success should be computed only 
over the contributing traces (as opposed to averaging success over all the traces in LTM). 
These changes, collectively, contributed to lower, more realistic noise thresholds. 

27 



Micro Analysis & Design, Inc. Uncertainty, Stress and Decision Simulation 

With lower noise thresholds, it is evident that situations are in fact converging on courses 
of action. More often than not, a clear, unique course of action is recognized as its echo 
content value is significantly positive - exceeding the positive noise threshold. Once 
again stepping through model runs one at a time, we investigated the echo and the 
relationship of its content values to the positive and negative thresholds. Amazingly, 
with no rules, or previous experiences to feed LTM initially, the model behaved very 
well. With or without stress and uncertainty, the driver is very good at distinguishing 
between intermediate and final courses of action. He knows when to stop speeding up, or 
slowing down, and when to go or stop. 

In order to assess both the overall performance of the decision maker as well as the 
effects of stress and uncertainty on model output, we ran ten batches of 500 runs for a 
driver influenced by stress and uncertainty and ten batches for a driver not influenced by 
stress and uncertainty. In the discussion following, a batch refers to a 500-run 
simulation, and a segment refers to a 100-run block of runs within a batch. The results 
for the two different sets of simulations are summarized in Appendix B. 

In both sets of results, mean success values for all but two segments of 100 runs are 
positive. This indicates to us that the driver is in fact learning and similar situations are 
converging on optimal or sub-optimal courses of action. This is further evidenced by the 
comparison of the number of decisions with positive success values to the total number of 
decisions for each 100 runs. Out of the 100 segments in the 20 batches combined (the 10 
with stress and uncertainty and the 10 without), only 6 segments yielded more negative 
success values than positive ones. Therefore, 94 out of 100 sets of 100 runs were 
predominantly successful. This suggests that our decision maker is learning and is 
forming appropriate associations between situations and courses of action (significance 
test are forthcoming). 

Looking at the trends in the success values from the first 100 runs to the fifth 100 runs 
inside each batch (each simulation of 500 successive runs), we do not notice any 
consistent indication that success values are continuously increasing with experience. 
However, the first segment of 100 runs in almost every batch exhibits the lowest mean 
success compared to the other four segments of 100 runs. After the first segment, mean 
success values roughly increase until the second or third segment at which point they 
seem to stabilize or slightly taper off. We interpret this as an indication that our spin-up 
phase occurs in the first 100 to 200 runs and soon thereafter the model reaches its optimal 
performance. 

To determine whether any improvements between the first segment of 100 runs and later 
segments of 100 runs inside a given batch were statistically significant, we employed a 
sign test. We used the sign test to compare mean success values between the following 
pairs of segments in each batch: 

1st and 2nd 100 runs 
1st and 3rd 100 runs 
1st and 4th 100 runs 
1st and 5th 100 runs 
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In the model simulations with stress and uncertainty, 18 out of 40 comparisons indicated 
a significant improvement from the first segment of 100 runs (the last column in Table 1 
and Table 2 in Appendix B indicates whether or not a given segment had a significantly 
higher mean success value than the first segment in the same batch). As for the model 
runs without stress and uncertainty, only 13 out of the 40 comparisons depicted a 
significant improvement. Although this might make it seem as though there is no 
consistent improvement with experience, there are many factors to take into account. 
The sign test was used only to detect if an improvement was significant. All of the 
negative results from the sign test do not necessarily indicate declines in performance; 
they only tell us that the mean success of the latter segment in the given batch was not 
significantly greater than the mean success of the first segment of 100 runs. Another 
factor to take into account is that the sign test does not reflect segments' mean success 
values, but rather the relationship between success values. The fact that 98% of the 
segments tested had positive mean success values suggests that the decision maker is 
learning. Lastly, we arbitrarily chose the segment size of 100 runs. We assumed that the 
first 100 runs would have poor performance due to the model's spin-up phase and 
therefore would be a good segment against which to measure the performance of later 
segments in a batch. However, we often found that the first segment was quite 
successful, therefore leaving little room for improvement in later segments. 
Consequently, the low proportion of significant improvements revealed by the sign test 
comparisons could be due to the fact that there was not a whole lot of room for 
improvement. 

We have discussed overall model performance in a general sense, but we also need to 
differentiate between the results for the different types of model simulations. As noted 
earlier, we ran 10 batches of 500 runs with the routines for stress and uncertainty and we 
ran 10 batches without the stress and uncertainty routines. Surprisingly, the overall 
average success value for the simulations with stress and uncertainty was 0.381 whereas 
the average success for simulations without stress and uncertainty was lower at 0.275. 
Looking solely at the proportion of decisions with positive success values, again the 
simulations using stress and uncertainty seemed to do somewhat better with 68% of the 
decisions showing positive success values while simulations without the effects of stress 
and uncertainty yielded successful decisions 62% of the time. 

These results may seem awkward; one would expect that the effects of stress and 
uncertainty actually hinder the performance of a decision maker yet our preliminary 
results indicate otherwise. This could primarily be due to the fact that in our first attempt 
at modeling stress and uncertainty we have assigned workload values, decay rate, and 
overload threshold values arbitrarily in order to get the model running with the complete 
routines for stress and uncertainty. Because we do not yet have good data from subject 
matter experts to feed to the workload and memory decay portions of the model, we 
would expect the results of stress and uncertainty to be inconsistent, unpredictable, and 
perhaps even contradictory. 
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6. Summary 
The goal of our Phase I research was to explore the possibility of improving behavioral 
realism in CGFs by improving the representation of human decision making in stressful 
and uncertain conditions. Our approach was premised on the assumption that an 
improved representation of decision making would begin with the most current theories 
of human decision making. Consequently, we found ourselves reviewing the literature on 
Naturalistic Decision Making, and the model of Recognition Primed Decision making in 
particular. In this respect, our work has diverged sharply from traditional, rule-based 
approaches. Rather than implementing utility functions or multi-attribute analyses, our 
Phase I work depended on models of situation awareness, long term memory and 
recognition. Moreover, we had to link these models in such a way that they could 
accommodate additional models of stress and uncertainty. Integrating these component 
models in a principled way has been one of the largest challenges of our Phase I work. 
The difficulties here are compounded by the fact that the theory concerning the effects of 
stress and uncertainty on the decision making process is fractured. But despite this fact, 
we believe we have developed an architecture that will capture the effects of uncertainty 
in a natural way, reflect changes in endogenous stress (via a workload measure) and 
extend easily to capture the effects of exogenous Stressors. 

Because we have tied our efforts so closely to a cutting-edge theory of what human 
decision makers actually do, we see potential in our approach that has been wanting in 
more traditional approaches. For instance, we believe that the structure of our models is 
far more perspicuous than that of most rule-based models of decision making. This has 
the potential to streamline model development and, at the same time, should give the 
analyst a clearer picture of what's going on during model execution. Moreover, unlike a 
rule-based system that might depend on literally thousands of production rules, the RPD 
mechanisms we have modeled here are relatively simple and this, together with the 
performance server architecture we've proposed, will make the integration of our 
decision models into distributed simulations more straightforward—a welcome relief in 
the context of CGFs where no one needs to see additional complexity. Finally, because 
we have represented the decision making process that humans are actually thought to use, 
our model has the potential to provide information to the analyst about the decision 
making process that would otherwise be unavailable through simulation. 

We have laid a solid foundation for Phase II work in the last six months. We are now 
ready to model additional exogenous Stressors, and to begin analyzing the overall impact 
of stress and uncertainty in our model. With these results in hand, we would be ready to 
move beyond our test bed model and begin work on modeling decisions within a CGF 
environment. We expect this work will lead to additional refinements in our model 
architecture, but more importantly, it will provide the context in which we will develop 
our middle-ware. With the middleware and the attendant interfaces in place, we will have 
created a stand-alone tool to model human decision making in stressful and uncertain 
conditions. This technology will reduce the need for human-in-the-loop simulations and 
thus provide the analyst with a powerful source of data. 
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Appendices 

A. Functional Specifications and Test Bed Network Diagram 

The test bed model consists of two main components: the first is the task network that 
models the driving environment (both in terms of the objective features of the 
environment and the tasks the driver performs while interacting with the environment) 
and the second is an object-oriented model of LTM. The task network is a stoplight 
model that was created under an independent contract for NAWCTSD. 

Task Network 
When the model begins executing, the driver samples from the environmental features 
(i.e., the driver notices cues in the environment) in the "driving tasks" section of the task 
network (tasks 13, 14, 15, 20, 52, 59, 73 in Figure 15). At the same time, the task network 
imposes distractions that compete for the driver's attention. Cues are sampled inside the 
"driving tasks" according to a set of probabilities that dictate the relative likelihood of 
performing each update task. In this way, we can affect the driver's "attention 
management" strategy. Visual, auditory, cognitive, and psychomotor (VACP) 
component workload values are incremented inside each task accordingly and the total 
workload is repeatedly updated as the sum of the four component's workload values. In 
order to represent the effects of inherent time pressure on cognitive workload, we 
implemented a linear function to increment cognitive workload as a function of the time 
left in the decision scenario. If, in fact, the driver is overloaded due to stress and/or 
uncertainty, a new set of cue sampling probabilities that reflect the driver's narrowing of 
attention is enforced. After each update task is performed, and assuming that the update 
was not precluded by a distraction, the sampled cue value is stored along with a time 
stamp in a "working memory" array. These values form the basis for the driver's 
"situation awareness". A continuously repeating function compares the time stamps for 
each of the cue values with the current time and if the difference between the two exceeds 
the given cue's decay time (a predetermined value) then that cue is essentially forgotten 
(i.e., the cue value goes to zero in the working memory array). 

The driver continues to loop through the driving tasks and update "working memory" 
sub-network (network #21) until he recognizes that he is at a critical point and needs to 
start making decisions. This sends the driver into the RPD sub-network (network #32). 
Inside the RPD subnetwork, the contents of the working memory array are passed to the 
LTM module (discussed in more detail below), at which point execution in the task- 
network is paused and a variety of methods are called to produce a Hintzman-like echo 
from LTM (these methods are discussed below). This echo represents the by-products of 
recognition (expectancies and COA in particular). If none of the returned COAs exceed 
the noise threshold then an 'uncertainty' flag is set which causes cognitive workload to 
increase. Similarly, if more than one COA is recognized (i.e., more than on COA 
exceeds the noise threshold), then an 'ambiguous' flag is set and cognitive workload 
increases. The by-products are passed back to the task network and execution resumes 
with the driver comparing the evolving state of his environment to the expectancies just 
retrieved from LTM. 
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Network   O   stoplight model 4.1 
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Figure 15 Micro Saint task network diagram for the traffic model 

If the expectancies are satisfied, then the driver implements the recognized COA 
(performing one task among tasks 36, 37, 61, 62, 63, and 38). If, however, the 
expectancies are violated, the driver will re-assess the situation; that is, the driver will 
loop through a new cycle of cue updates and working memory updates, probe LTM a 
second time and then evaluate the most recently returned set of expectancies. This 
process continues until a set of expectancies is satisfied or the driver simply runs out of 
time. In either event, the driver implements the most recently recognized COA. 

Once the COA is implemented, the driver's decision is evaluated against the current state 
of the environment (task #51). Success values range from very unsuccessful to very 
successful depending on the consequences of the driver's decision. For example, if the 
driver has decided to run the light and there happens to be traffic in the intersection, then 
the driver's decision is deemed very unsuccessful. By contrast, if the driver decides to 
stop at a red light, then his decision is evaluated as moderately successful. This success 
value is passed back to LTM with the contents of working memory that cued the COA 
that was, in fact, implemented. These values, together with a set of expectancy values 
representing the state of the environment at the time the decision was implemented, are 
stored as a new trace in LTM, and thus add to the driver's experience. At this point 
execution halts. 

An Object Oriented Model of LTM 
Our implementation of Hintzman's multiple trace model of LTM depends on four 
objects, a "learning" algorithm and an interface.   In particular, we have a long term 
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memory object, a current situation object, an echo object, and an object that represents 
the current state of the environment. We briefly describe each object and their methods 
below. 

Current Situation Object 

The current situation object stores the values from the task network representing the 
agent's working memory (WM). Once the agent has a complete representation of the 
current situation in WM, a method is invoked to probe LTM (a two dimensional array 
stored in the long term memory object discussed below). At this time similarity and 
activation values are computed (with respect to the current situation) for each trace in 
LTM. 

Long Term Memory Object 

Long term memory is a two dimensional array variable belonging to this object. Each 
row in the array represents a different situation and the associated by-products of 
recognition. The LTM object also supports methods for populating itself (using either 
"rules" specified by the analyst, past experience or by adding traces on the fly during 
model execution). 

Echo Object 

Using the similarity and activation values calculated within the current situation object, 
the echo object computes the echo intensity and the echo content. The echo content 
represents the byproducts of recognition (expectancies and course of action). This object 
also contains a method for determining noise thresholds. These thresholds are called upon 
later in the learning algorithm before the byproducts are returned to the task network. 

Learning Algorithm 

The learning algorithm determines the COA and expectancy values that are returned to 
the task network by comparing echo content values with their respective noise thresholds 
(different thresholds are calculated for COAs and for expectancies). For the COA the 
most successful significant echo is returned. If none of the COAs are significantly 
positive, and one or more are significantly unsuccessful, then the algorithm chooses 
randomly among the remaining echoes that are neither significantly unsuccessful nor 
significantly successful. To determine the expectancy values from the expectancies' echo 
content values, a similar comparison is performed between expectancy thresholds and 
expectancy echo content values. If a content value is greater than the positive threshold, 
then that expectancy value is returned to the task network as a ' 1' (indicating that the 
expectancy has been asserted positively—i.e., expect this). If, on the other hand, the 
content value is less than the negative threshold, then it is returned as a '-1' (indicating 
that the expectancy has been negatively asserted—i.e., expect this not, or rather, this 
shouldn't happen) and if the content value is between the two thresholds, the expectancy 
value is returned as a '0' (indicating that nothing is to be expected of this feature). 

World State Object 
This object stores values from the task network representing the state of the environment 
a few seconds after the expectancies have been recognized. These values are stored in 
LTM as will eventually influence the expectancies the agent form in later situations.  In 
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addition to the expectancies, this object also stores the success value computed at the end 
of a run. 

Software Interfacing Object 
Communication between the task network and the LTM module is accomplished through 
Microsoft's Component Object Model (COM). COM is an open architecture designed to 
accomplish cross-platform communication. Using supporting libraries and conventions, 
COM allows the interaction between two different pieces of software in a consistently 
object oriented manner. The software interfacing object listens to COM for the variables 
being sent from the task network. With its various receive-variable procedures, all of the 
necessary variables coming from COM via the task network are recognized and assigned 
to the corresponding Visual Basic variables. 

A-4 



Micro Analysis & Design, Inc. Uncertainty, Stress and Decision Simulation 

B. Preliminary Results Data 

Simulation Segment of 
Runs 

Mean 
Success 

Total 
Decisions 

# Decisions 
Resulting in 

Positive Success 
Sign Test 

r 

Sign Test: 
Significant 

Improvement? 

1 

1st 100 0.154 280 156 — — 

2"J 100 0.166 261 149 0.51 No 
3ld 100 0.318 251 163 0.60 Yes 
4Ul 100 0.244 260 157 0.55 No 
5l" 100 0.157 321 182 0.51 No 

2 

1SL100 0.094 284 157 — — 

2llU 100 0.308 284 185 0.61 Yes 
3ld 100 0.452 245 177 0.68 Yes 
4U| 100 0.463 269 195 0.69 Yes 
5l" 100 0.455 253 183 0.70 Yes 

3 

lil 100 0.511 303 227 — — 

2nd 100 0.455 302 219 0.45 No 
3lU 100 0.546 316 243 0.53 No 
4Ul 100 0.538 328 251 0.55 No 
5Ul 100 0.557 277 214 0.54 No 

4 

P100 0.230 342 207 — — 

2"d 100 0.524 329 250 0.67 Yes 
3,d 100 0.498 326 244 0.66 Yes 
4ai 100 0.433 310 221 0.61 Yes 
5th 100 0.498 321 239 0.65 Yes 

5 

lsl 100 0.425 423 298 — — 

2uU 100 0.359 462 312 0.47 No 
3,u 100 0.346 444 297 0.44 No 
4th 100 0.327 462 303 0.43 No 
5U| 100 0.370 423 287 0.47 No 

6 

P 100 0.118 189 103 — — 

2"d 100 0.311 167 108 0.60 Yes 
3rd 100 0.371 171 116 0.63 Yes 
41" 100 0.314 199 129 0.58 No 
5l" 100 0.423 213 151 0.64 Yes 

7 

lil 100 0.402 322 223 — — 

2"d 100 0.480 310 229 0.56 No 
3,d 100 0.484 298 220 0.56 No 
4Ü1100 0.439 297 212 0.56 No 
5ül 100 0.519 295 223 0.57 Yes 

8 

lsl 100 0.404 276 192 — — 

2"d 100 0.393 291 201 0.50 No 
3ld 100 0.399 227 158 0.51 No 
4Jl 100 0.304 275 176 0.45 No 
5l" 100 0.414 210 147 0.51 No 

9 

P 100 0.294 428 274 — — 

2nd 100 0.402 403 280 0.57 Yes 

3,d 100 0.400 469 325 0.56 No 

4"1 100 0.344 448 297 0.56 No 

5111 100 0.359 434 291 0.56 No 
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Simulation Segment of 
Runs 

Mean 
Success 

Total 
Decisions 

# Decisions 
Resulting in 

Positive Success 
Sign Test 

r 

Sign Test: 
Significant 

Improvement? 

10 

P 100 0.258 227 143 — — 

2"ü 100 0.421 212 149 U.61 Yes 
3ld 100 0.481 192 141 Ü.66 Yes 
4Ul 100 0.426 189 134 0.63 Yes 
5l" 1ÜÜ Ü.450 210 152 0.63 Yes 

Table 1   Results for 10 batches of 500 model runs each.   In all of the 10 batches, stress and uncertainty 
were included. 

Simulation Segment of 
Runs 

Mean 
Success 

Total 
Decisions 

# Decisions 
Resulting in 

Positive Success 
Sign Test 

R 

Sign Test: 
Significant 

Improvement? 

1 

lsl 100 0.002 274 132 — — 

2nd 100 0.108 280 153 0.52 No 
3rd 100 0.090 327 167 0.56 No 
41" 100 0.121 291 150 0.55 No 
5th 100 0.158 290 158 0.58 Yes 

2 

lsl 100 0.074 473 230 — — 

2lid 100 0.126 518 266 Ü.54 No 
3rd 100 0.160 423 229 0.54 No 
4l" 100 0.225 448 249 0.58 Yes 
5111100 0.162 394 214 0.56 Yes 

3 

lil 100 0.295 283 181 — — 

2"d 100 0.312 253 163 0.55 No 
3lj100 0.441 219 156 0.61 Yes 
4dl 100 0.273 266 167 0.50 No 
51" 100 0.330 263 174 0.54 No 

4 

lbl 100 0.263 240 149 — — 

2ild 100 0.447 218 157 0.60 Yes 
3,d 100 0.425 207 147 0.61 Yes 
4111 100 0.410 223 157 0.58 No 
5l" 100 0.373 203 138 0.57 No 

5 

1st 100 0.245 275 168 — — 

2ud 100 0.378 229 156 0.55 No 
3,d 100 0.328 308 202 0.55 No 
4l" 100 0.377 249 169 0.55 No 
5l" 100 0.293 256 163 0.53 No 

6 

P 100 0.295 255 164 — — 

2nd 100 0.380 247 172 0.52 No 
3,d 100 0.389 231 155 0.57 Yes 
4th 100 0.339 231 150 0.52 No 
5Ul 100 0.546 195 149 0.62 Yes 

7 

lsl 100 0.026 287 136 — — 

2uJ 100 0.311 275 171 0.63 Yes 
3,d 100 0.046 241 114 0.48 No 
4l" 100 0.300 249 151 0.62 Yes 
5U[ 100 0.385 245 163 0.66 Yes 
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Simulation Segment of 
Runs 

Mean 
Success 

Total 
Decisions 

# Decisions 
Resulting in 

Positive Success 
Sign Test 

R 

Sign Test: 
Significant 

Improvement? 

8 

1" 100 0.362 274 191 — — 

2ud 100 0.381 297 210 0.51 No 
3rd 100 0.312 246 168 0.47 No 
4U| 100 0.361 278 190 U.54 No 
5l" 100 0.471 237 173 0.59 Yes 

9 

P 100 0.383 232 157 — — 

2,ld 100 0.397 223 154 0.52 No 
3rd 100 0.500 248 183 0.56 No 
4U| 100 0.287 236 150 0.47 No 
5Ul 100 0.350 247 165 0.48 No 

10 

lsl 100 0.074 280 147 — — 

2"d 100 0.263 259 154 0.58 Yes 
3,d 100 -0.050 253 109 0.46 No 
4l" 100 0.222 271 162 0.56 No 
5L" 100 -0.015 261 116 0.50 No 

Table 2 Results for 10 batches of 500 model runs each. In all of the 10 batches, stress and uncertainty 
were not included. 
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