
TECHNICAL REPORT 1834 
September 2000 

Creation of Dolphin-Like 
Spectrum Filters Through the 

Use of Evolutionary Programming 

D. A. Helweg 
D. S. Houser 

P. W. B. Moore 

Approved for public release; 
distribution is unlimited. 

SSC San Diego 

20001030 134 



TECHNICAL REPORT 1834 
September 2000 

Creation of Dolphin-Like 
Spectrum Filters Through the 

Use of Evolutionary Programming 

D. A. Helweg 
D. S. Houser 

P. W. B. Moore 

Approved for public release; 
distribution is unlimited. 

SPAWAR 
Systems Center 

San Diego 

SSC San Diego 
San Diego, CA 92152-5001 

JJTI0 QUALITY ISES?JSgSD 4 



SSC SAN DIEGO 
San Diego, California 92152-5001 

E. L. Valdes, CAPT, USN R- C. Kolb 
Commanding Officer Executive Director 

ADMINISTRATIVE INFORMATION 

This report describes work performed for the Office of Naval Research, Code 321US, by the 
Research and Animal Care Branch, D351, SSC San Diego. Funding was provided under Program 
Element OMA. 

Released by Under authority of 
R. L. Brill, Head J. E. Haun, Head 
Research and Animal Care Branch Biosciences Division 

PS 



EXECUTIVE SUMMARY 

A type of self-optimizing computer algorithm, called evolutionary programming, was used to 
create a number of models of the dolphin ear. The models consisted of a series of overlapping 
bandpass filters that varied in sensitivity and bandpass region and were distributed across the 
range of dolphin hearing. The evolutionary program iteratively varied the shape, number, and 
distribution of filters in each model and optimized the acoustic sensitivity of the model to the 
hearing sensitivity of the dolphin. Final models displayed acoustic sensitivities similar to the 
dolphin across the range of dolphin hearing. These bandpass models are frequency domain filters 
usable as preprocessors to biomimetic mine countermeasure classification/detection algorithms 
and auditory weighting functions in environmental compliance issues related to the interaction 
between marine mammal populations and anthropogenic sound. 
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INTRODUCTION 

Dolphins demonstrate an unsurpassed ability to detect and identify submerged and buried objects 
through the use of biological sonar. The dolphin sonar system is tolerant to noise and reverberant 
environments (Au and Penner, 1981), requires no visual input for target verification/classification 
(Kellogg, 1958), is capable of detecting buried targets (Heiweg et al., 1999; Roitblat et al., 1995), 
and is robust to targets with aspect-dependent shape (Heiweg et al., 1996; Moore and Bivens, 1995). 
Because of their superb target detection and identification abilities, dolphins have been employed by 
the Navy Marine Mammal Systems to assist with Mine Countermeasure (MCM) efforts. Dolphin 
echolocation has also inspired the development of object classifier systems based upon the structural 
and functional characteristics of dolphin echolocation. Ultimately, these "biomimetic" classifier sys- 
tems will enhance fleet mine hunting assets. 

The "Integrator Gateway Network" (IGN) was developed to test the potential improvement that 
could be imparted to a spectrum-based neural network classifier through the implementation of echo 
summation (Moore et al., 1991). Dolphins ensonify targets by directionally emitting a rapid series of 
damped sinusoids of short duration (Au, 1980; Au et al., 1974) and process the returning echoes. The 
IGN mimicked this operational characteristic by using the spectrum of a target echo as input. Spectra 
from subsequent echoes were sequentially submitted to the network to form a cumulative representa- 
tion of spectral inputs prior to a classification decision. The IGN demonstrated increased classifica- 
tion accuracy relative to more basic network designs and its further development was prompted. 

Roitblat et al. (1993) augmented the biomimetic features of the IGN by developing a compu- 
tational model of the dolphin ear that was used as a pre-processor of echo spectrum inputs. The 
purpose of the model was to weight the spectral inputs according to the observed auditory sensi- 
tivity of the bottlenose dolphin. The model consisted of 30 overlapping bandpass filters scaled in 
sensitivity according to the spacing and density of hair and ganglion cells within the inner ear of 
the dolphin (Roitblat et al., 1993). Ear model sensitivity matched dolphin sensitivity to frequen- 
cies > 50 kHz, but the output did not match the dolphin sensitivity below 50 kHz (figure 1). 

Inferring design from anatomical features is a logical step in the development of a computational 
ear model. However, inadequate understanding of the physiological processes associated with dol- 
phin auditory system anatomy, and the translation of those processes within the central auditory 
pathways, limits the computational implementation of these processes. Evolutionary programming 
(EP) offers an alternative approach to improving model design that does not rely upon expert infor- 
mation of the system being modeled. Computationally analogous to natural evolutionary processes, 
EP algorithms optimize model structure through an iterative process of parameter variation and 
model evaluation (Back, 1996). EP has been applied to all manner of engineering control and design 
problems (Rao and Chellapilla, 1996), optimization theory (Choi, 1999), and biological system mod- 
eling (Just et al., 2000), and is becoming increasingly popular as a design and optimization tool 
across a broad range of scientific disciplines. As such, EP has demonstrated itself as an appropriate 
technique for improving the biomimetic nature of the dolphin ear model. 
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Figure 1. Comparison of the auditory sensitivity of the dolphin, the sen- 
sitivity of the dolphin ear model created by Roitblat et al. (1993), and the 
polynomial function to which the dolphin ear models were optimized. 

The ear model, described hereafter, is constructed of a series of overlapping filters with each 
filter bandpass region described by an array of real valued numbers. The product of a filter array 
and the frequency spectrum of any signal produces a weighted output of the signal's spectrum. 
The combined weighting of all filters produces an output analogous to the signal scaling 
expected from the frequency-dependent sensitivity of the dolphin ear. This report details the 
optimization of a bandpass ear model to the auditory sensitivity of the dolphin through the 
implementation of EP. 

SCALED AMPLITUDE MODELS 

Methods 

The design of several ear model architectures was attempted. Ear models were produced with 
either 1) scaled amplitude responses and a fixed range of center frequency distributions, or 2) with 
biomimetic dynamic range simulation and a variable range of center frequency distributions. Fre- 
quency resolution of the former model type was limited to ~0.98 kHz, and that of the latter to -0.49 
kHz. Within each category models were built in which filters were defined either by a pseudo- 
Gaussian (PG) function or a rounded exponential (ROEX) function. 

Pseudo-Gaussian Design (PG) 

In order to test the ability of the EP to optimize a model loosely based upon filter structures 
defined in the original bandpass ear model (Roitblat et al., 1993), bandpass filters were constructed 
from a modified Gaussian distribution. Center frequency (p) of the filter (the frequency of maximum 
sensitivity) was defined as the mean of the Gaussian distribution. Filter shapes were modified to 
control for amplitude modulation as a function of standard deviation (o) by removing cfrom the 
denominator of the Gaussian distribution equation, thus producing the PG distribution. The resulting 
equation describing filter shape then became 
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where Xi is the ith point on the distribution curve. Each filter was described by a 256 bin vector with 
each bin corresponding to a ~ 0.98 kHz width such that is {1, 2, 3, ..., 256} and the frequency 
range covered by the filter shape was ~ 1 to 250 kHz. 

Center frequencies (p) were distributed from 1 to 120 kHz and filter ß was determined as a frac- 
tional power of the frequency range. This spacing was implemented to approximate the non-uniform 
clumping of characteristic frequencies observed on the mammalian basilar membrane (Geisler and 
Cai, 1996; Greenwood, 1990). The equation was 

L 

where Fn is an integer defining the number of filters in the model, fi is the/A filter, and //, is the center 
frequency of the j'h filter, where j E {1, 2, 3,..., Fn}. 

Shape and sensitivity of the bandpass region was determined by implementing a frequency- 
dependent amplitude-scaling factor (S) and a variable controlling the 3-dB frequency bandwidth (Q3) 
in the spectral power domain. The scaling factor was determined as a base variable taken to a nega- 
tive fractional power of the frequency range such that 

(£-D 
S = yF" 

where y is the base variable. This factor is analogous to the scaling used by Roitblat et al. (1993), 
which was based upon hair cell densities along the basilar membrane. 

The variable Q3 was defined as the ratio of \i to the -3 dB bandwidth of the filter in the spectral 
domain. This value was determined as an exponential function of filter center frequency and subse- 
quently substituted into the base PG equation for a. The relationship between a and Q3 was 
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where a = 2.351 (a was empirically derived for the PG distribution in the power domain). Substitu- 
tion for cand \i and incorporation of the S into the PG distribution formed the equation describing 
filter shape and placement. 
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Rounded Exponential (ROEX) Design 

A second series of models was created with filter shapes determined using a rounded exponential 
(ROEX) function (Patterson et al., 1982), a function commonly used to describe filter shapes in 
auditory models. This type of filter design was implemented to determine whether the interaction of 
ROEX filters produced an ear model with better sensitivity matching across the range of dolphin 
hearing than that developed with the more generic PG design. The ROEX function used was 

(1 + pg)exp(-pg) 



where g is the absolute relative frequency deviation from peak sensitivity (ß), and p defines filter 
quality (i.e., a variable similar to Q3). The value of g was determined as 

g=K*,.-Aiy.)/^l 

where flj is the peak frequency of the f filter and je {1, 2, 3, ..., Fn}. Filter quality parameter (p) 
was determined as a logarithmic function of fx such that 

p - m*\og((lj) + b 

where m and b are constants. Each filter was described by a 256 bin array with each bin correspond- 
ing to ~ 0.98 kHz. 

Factors dictating roll-off of the filter below center frequency and a weighting factor determining 
the skew of the low frequency tail were incorporated into the ROEX equation producing 

A[(l + pg)exp(-pg)] + B[(\ + rs)exp(-rg)] 

where r is the parameter determining roll-off of the filter in the tail portion, and A and B serve to 
adjust the slopes of the passband and tail regions of the filter (Patterson et al., 1982; Rosen et al., 
1998). The value of r was set as an arbitrary proportion of filter quality such that 

r = zp 

The value B was set as a linear function of filter peak frequency (jxj) (estimates by A. Supin, pers. 
comm.) such that 

B = U(ßHj) 

Since A and B adjust the magnitude of the filter components, the sums of the separate effects must 
equal unity. Thus 

A = \-B 
A scaling factor identical to that applied in the PG model was applied to each generated filter 

shape. Filters were spaced according to the same center frequency distribution equation given for the 
PG model. (Note: in the ROEX model, [i designated filter peak frequency as opposed to filter center 
frequency in the PG model.) 

The Evolutionary Program (EP) 

Variables determining filter shape and distribution were submitted to an EP scheme with self- 
adaptive mutation (Fogel, 1995). Mutation was controlled via a Cauchy mutation operator 
(Chellapilla and Fogel, 1997). Table 1 lists the parameters submitted to the evolutionary process, i.e., 
the variables used to create the filter shapes. A collection of these variables constituted an "individ- 
ual," designated A. The collection of all A determined the "population." 

Initialization: The "parents" of a starting population, A, (where / = 1, 2, 3, ..., rand Tis an 
integer determining the size of the "parent population"), were initialized with the same filter 
number (F„), either 40, 80, or 160. Other parameter values were randomly initialized within a 
user-defined range. For the PG model, initial bounds for y and the slope (m), intercept (b), and 
coefficient of the exponent (x) were set at {0, 10}, {0, 10}, {0, 2}, and {0, 0.025}, respectively. 
Standard deviation (GEvPg) for each parameter was initially set at 0.5, 0.5, 0.15, and 0.001, 
respectively. For the ROEX model, initial bounds for m, b, z, ß, and y were {0,5}, {0,10}, {0,1}, 
{0, 20}, and {0,10}, respectively. Initial GEvPg applied to each parameter was 1, 1.5, 0.15, 3, and 
1.5, respectively. 



Table 1. Parameter values with initialization limits, initial standard deviations, and description of 
parameter function for the Scaled Amplitude Models. Parameters are grouped according to the 
function describing the filter shape. 

Parameter 
Minimum 

Initialization 
Limit 

Maximum 
Initialization 

Limit 

Initial 
Standard 
Deviation 

Definition 

PG Model 

y 0 10 0.5 base value for filter amplitude scaling 

m 0 10 0.5 slope of the equation determing Q 

b 0 2 0.15 intercept of the equation determing Q 

X 0 0.025 0.001 coefficient of the exponent in the 
equation determing Q 

Fn (a) (a) (b) filter number 

ROEX Model 

y 0 10 1.5 base value for filter amplitude scaling 

m 0 5 1 slope of the equation determing filter 
quality (p) 

b 0 10 1.5 intercept of the equation determing p 

z 0 1 0.15 slope of equation determing filter tail 
length (r) 

Fn (a) (a) (b) filter number 

ß 0 20 3 coefficient of filter peak amplitude (u) 
used in determining filter magnitude 

adjustment 

(a) Filter number explicitly set to 40, 80, or 160 
(b) Probabilistic mutation limited to integer step sizes of + 2 

Mutation: After initialization, each A, was cloned and mutated to form the "offspring," AT+1. Val- 
ues of Fn were mutated in a probabilistic manner such that there was an equal probability that Fn 

would increase by 1 or 2, decrease by 1 or 2, or stay the same, if 20 < Fn < 200. If Fn reached bound- 
ary values, there was an equal probability that F„ would increment by 1 or 2, if at the lower bound, 
decrement by 1 or 2, if at the upper bound, or remain unchanged. Real valued parameters were 
mutated via a Cauchy random variable (Chellapilla and Fogel, 1997). (For the PG model these 
parameters were: the amplitude scaling value (y) and the slope (m), intercept (b), and coefficient (x) 
of the exponent for the equation determining Q3. For the ROEX model these parameters were: the 
amplitude scaling value (y), coefficient of center frequency (ß) used to determine filter skirt magni- 
tude adjustment, coefficient of filter quality (z) used to determine low frequency tail length, and the 
slope (m) and intercept (b) of the equation used to determine filter quality.) 

Model Evaluation: Following mutation, parameter values from each individual ("parents" (A,) and 
"offspring" (AT+,)) were inserted into a filter function (PG or ROEX) to create a bank of filters. Each 
filter bank was evaluated for its sensitivity through a simulated audiometric assessment. A library of 
noise (N) and signal + noise (S+N) trials was created to test the sensitivity of the filters. Each library 
consisted of a 256x5000 matrix with each element of each row corresponding to a binwidth of ~ 0.98 
kHz, i.e., equivalent to the frequency distribution described for the filter arrays. Each bin was initial- 
ized with randomly generated "noise" values ranging from 0.00 to 0.25. In the S+N library a real 



valued "signal" of 0.55 was added to the bin corresponding to a given frequency. For instance, to add 
a signal to the 5 kHz frequency of the S+N library, 0.55 was added to the value of the 5th bin of each 
row of the library. This matrix thus became the 5 kHz S+N library, or (S5+N). This procedure was 
conducted for frequencies of 1 kHz and from 5 to 150 kHz in 5 kHz increments, resulting in 31 
libraries. Libraries were created to standardize the stimuli with which the filter banks were tested. 
This eliminated potential differences that could have been introduced by random noise and allowed 
comparison across repeated runs of the EP. 

The response of the filters to N trials (RN) and S/+ N trials (RSN/ ) was derived by multiplying 

the filter matrix (F) by the rows of the N library, and rows of the S/ + N library, respectively, for a 
given test frequency such that 

RN(i) = F*N(0 ,   i = l, 2, 3,..., 5000 

RSN/ 0") = F*SN/(i),      i = 1, 2, 3,..., 5000 

where N and SN/ represent the row vectors of the N library and the (S/+ N) library at frequency/ 
A squared-difference (SD) vector was then determined as 

SD(i) = [RSN/ (I)-RN(I)]
2
,     i = 1, 2, 3,..., 5000 

and the sensitivity metric (0/) for the tested frequency determined as 

5ooo rf„ 
^=0.00022 IXSD(IJ) 

where Fn denotes the number of filters in the model. The process was repeated for all values of/, 
i.e., all 31 test frequencies. 

The values of (f>f for all /were normalized from 0 to 1 to form the normalized response curve of the 
ear model (Te). A normalized threshold curve of the bottlenose dolphin was generated as a compila- 
tion of experimentally determined thresholds for frequencies from 1 to 8 kHz (Johnson, 1968) and 
10 to 150 kHz (Brill et al., 1997). A smoothed audiometric shape (Td) was generated from the points 
with a 6th order polynomial function (r2 = 1.00; figure 1). The normalized response curve of the ear 
model was compared to the normalized threshold curve of the bottlenose dolphin at 19 different fre- 
quencies (2, 3, 4, and 5 kHz, and 10 to 150 kHz at 10 kHz intervals). The absolute value of the 
maximum deviation between the two curves was used as the performance metric (Pm) for tournament 
selection, such that for 

d(i) = Td(i)-Te(i) 

where Tj is the function representing the dolphin sensitivity curve, Te is the normalized output of the 
ear filter bank, i e {2, 3, 4, 5, 10, 20, 30, ..., 150} representing the comparison frequencies, and d is 
the difference between the functions at frequency i, 

P= Max (</(/)) m 

The value of Pm thus gives a measure of the goodness of fit between the sensitivity of the ear filter 
model and the behaviorally determined audiogram of the bottlenose dolphin. 

Selection: Following model evaluation, selection of parameter sets for inclusion in the next gen- 
eration was determined via tournament selection with a tournament size of 10 (Goldberg and Deb, 
1991). During tournament selection, the Pm value of each ear model was compared against the Pm 



values of 10 other randomly selected models from within the population. The better performing of 
the two models from each comparison, i.e., the model with the lesser Pm value, received a "win." 
After all models were evaluated, the total number of "wins" for each individual was tabulated and the 
members of the population ranked according to the number of "wins." The half of the "population" 
with the greatest number of "wins" was selected as the "parent" group for the next generation. All 
other individuals were eliminated from the population. 

The value of T (parent population size) was set at 20 for all trials. Each generation each "parent" 
(A,-) produced one "offspring" (AT+(), i.e., 20 "parent" parameter sets produced 20 "offspring" 
parameter sets, which is equivalent to a (20+20) evolutionary algorithm (Schwefel, 1981). Computer 
trials were terminated when no improvement in the Pm of the best individual of the population 
occurred over 50 to 100 generations. Three trials with Fn initialized at 40, 80, or 160 were performed 
for a total of nine trials per model type (PG or ROEX). 

Computing Facilities 

All optimization trials were run at the Navy High Performance Computing Center at Space and 
Naval Warfare Systems Center, San Diego (SSC San Diego) on a Hewlett-Packard V2500 multi- 
processor system. The V2500 utilized 16 440-MHz 4-way superscalar PA-8500 processors and 16 
GB of RAM. All code was written in aC++, the HP version of C++ designed for use on HP Unix 
systems (see appendix 1). Evolutionary programming code was multithreaded in order to utilize the 
parallel-distributed processing capabilities of the V2500 system. Multithreading was performed 
according to current POSK standards and through inclusion of pthread.C source libraries specifically 
supplied for the HP V2500. 

Results 
Pseudo-Gaussian Design 

Final models from all trials used between 27 and 45 filters (table 2). Values of Q3 ranged from 1.4 
to 2.8. Differences in maximum and minimum values of Q3 for all other models were no greater than 
0.6 and several models approached a constant-ß.? configuration. 

Figure 2 compares the sensitivity of the best performing model to the smoothed dolphin audiogram 
and the sensitivity of the original dolphin ear model (Roitblat et al., 1993). This model consisted of 
27 filters with values of Q3 ranging from ~ 1.4 to 2.8 across the measured frequency range. The 
optimal amplitude scaling value (y) was 3.91. The maximum deviation between the observed dolphin 
hearing sensitivity and the best performing ear model with PG designed filters was 0.08. 

All computational PG models demonstrated maximum deviations less than 0.12 from the behav- 
iorally measured relative auditory sensitivity of the bottlenose dolphin. Greatest deviations in sensi- 
tivity matching occurred at 5 kHz, 30 kHz, and 130 kHz. Deviations at 130 kHz were less notable 
than deviations at lower frequencies due to the steep slope of the threshold curve above 100 kHz. 



Table 2. Parameter values and maximum deviation from observed dolphin auditory 
sensitivity for the best performing pseudo-Gaussian models. 

Trial Number m X b y 
Filter 

Number 
Maximum 
Deviation 

40 initial filters 

0.03 1.27E-03 1.86E+00 2.42 40 1 0.11 

2 1.36 5.63E-03 7.00E-02 3.91 27 0.08 

3 1.56 2.50E-03 5.56E-05 2.98 33 0.1 

80 initial filters 

1 0.2 7.34E-03 1.53E+00 2.67 35 0.1 

2 0.05 2.00E-02 1.74E+00 3.13 28 0.09 

3 0.06 2.00E-02 2.00E+00 2.79 34 0.1 

160 initial filters 

1 1.91 1.40E-04 1.00E-10 2.46 41 0.11 

2 0.24 1.36E-03 1.59E+00 2.45 38 0.11 

3 0.36 7.06E-05 1.66E+00 2.43 45 0.11 
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Figure 2. Comparison of the best performing scaled-amplitude model created 
with the PG filter design to both the observed dolphin sensitivity and the sensitivity 
of the Roitblat et al. (1993) model. 

In order to determine the similarity in performance of the models, comparisons were made 
between the frequency-dependent sensitivities of the best performing model from each optimization 
trial. Deviations between the outputs of final models were greatest between 110 to 130 kHz and 
ranged from 0.10 to 0.17. Differences were less than 0.04 for all other frequencies tested. 



Rounded Exponential Design 

Optimal filter number for all models was 37 and amplitude scaling values (y) were stable, differing 
by no more than 0.55 (table 3). Filter quality (p) ranged from 7.3 to 11.3 across all model configura- 
tions, but differed by a maximum of 1.5 for all filters within a configuration. For three of the models, 
p approached a constant value. Greatest deviations in sensitivity matching typically occurred at 
2 kHz, 5 kHz, and 140 kHz (figure 3). 

Table 3. Parameter values and maximum deviation from observed dolphin auditory sensitivity for 
the best performing ROEX models. 

Trial Number m b z y ß 
Filter 

Number 
Maximum 
Deviation 

40 initial filters 

1 1.00E-10 11.30 61.85 2.13 24.30 37 0.13 

2 0.09 10.88 0.76 2.22 16.19 37 0.13 

3 0.07 10.92 14.53 2.19 249.47 37 0.13 

80 initial filters 

1 0.74 7.31 0.01 2.68 8.58 37 0.13 

2 0.42 9.19 2.30 2.38 58.38 37 0.13 

3 0.71 7.78 7.51 2.57 27.08 37 0.13 

160 initial filters 

1 0.65 8.10 2.04 2.55 687.71 37 0.13 

2 0.45 9.08 360.19 2.40 5943.44 37 0.13 

3 0.63 8.15 0.06 2.53 1087.13 37 0.13 
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Figure 3. Comparison of the output of two ROEX designed 
scaled-amplitude models to the observed auditory sensitivity of 
the dolphin. Triangles indicate frequencies at which maximum 
deviations between the curves occur. 

In order to determine the similarity in performance of the models, comparisons were made 
between the frequency-dependent sensitivities of the best performing model from each optimization 
trial. The maximum deviation between the output of all ROEX models was 0.03 and always occurred 
at 30 kHz. 

The maximum deviation between observed dolphin hearing sensitivity and the sensitivity of all 
evolved ROEX-based models was 0.13, regardless of the number of filters at initialization (figure 3). 
When considering the range of hearing covered by PG and ROEX models (2 to 150 kHz), the PG 
model provided a better overall fit to the observed dolphin sensitivity. However, when considering 
the frequency range of 40 to 100 kHz, better sensitivity matching was achieved by the ROEX model 
(see figure 2 and figure 3). 

GAIN SIMULATION MODELS 

Methods 
Pseudo-Gaussian (PG) and Rounded Exponential (ROEX) Designs: 

Equations determining filter shape utilized in the "Gain Simulation Models" were identical to 
those used in the "Scaled Amplitude Models" with the following exceptions: 

1.   Each filter was described by a 512 bin vector with each bin corresponding to a ~ 0.49 kHz 
width. Frequency range covered by the filter shape remained ~ 1 to 250 kHz. 

10 



2. The first bin of each filter array was set to zero to accommodate a DC offset. Thus for all fil- 
ters, JC„ as described in "Scaled Amplitude Models" was implemented as (xt- 1) where i e 
{2, 3, 4,...,512}. 

3. Instead of utilizing a static frequency range for distribution of filters, e.g., 120 kHz in the 
"Scaled Amplitude Model", a variable was incorporated determining the top center frequency 
allowable (fa). Thus, the frequency range across which filters were distributed was allowed to 
evolve within the EP such that 

ll 

ßj=W 

4. The scaling factor (S) applied to both the PG and ROEX models was changed to a 4th order 
polynomial of the form 

S = a, *Hj+(a2*ßj2) + (a3 *ß/) + (a4 *ß/) + C 

where \i is the filter center frequency (PG) or frequency of peak sensitivity (ROEX) and 
at (i = 1, 2, 3, 4) and C are variables submitted to the EP. 

The Evolutionary Program 

Variables determining filter shape and distribution were submitted to an EP scheme with self- 
adaptive mutation (Fogel, 1995) and a Cauchy mutation operator (Chellapilla and Fogel, 1997). 
Table 4 lists the parameters submitted to the evolutionary process. Changes from the EP described 
for the optimization of the "Scaled Amplitude Models" follow: 

Initialization: All A, were initialized with Fn = 40 and a jx, =120. Other parameter values were ran- 
domly initialized within a user-defined range. For the PG model, initial bounds for the slope (m), 
intercept (b), and coefficient of the exponent (x) of the equation determining Q3 were set at {0, 10}, 
{0, 2}, and {0, 0.025}, respectively. Initial bounds for the 4 coefficients (a,) and intercept (C) of the 
scaling equation were {0, 10}, {0, 2}, {0, 1}, {0, 1}, and {0, 100}. Standard deviation (aEvpg) for 
each parameter was initially set at 0.5, 0.15, 0.001, 0.5, 0.15, 0.05, 0.05, and 5, respectively. For the 
ROEX model, initial bounds for m, b, z, and ß were {0,5}, {0,10}, {0,1}, and {0, 20} and the initial 
GEvpg applied to each parameter was 1, 1.5, 0.15, and 3, respectively. Initial bounds and cEvpg for the 
four coefficients and intercept of the scaling equation were identical to that used in the PG design. 

Mutation: All coefficients (a,) and the intercept (Q of the equations determining the scaling factor 
(S) were mutated via a Cauchy random variable. The variable /x, was mutated in a probabilistic man- 
ner such that there was an equal chance that pt would increase by 1 or 2, decrease by 1 or 2, or 
remain the same. All other variable mutations followed the method described under "Scaled 
Amplitude Models." 

Model Evaluation: Following mutation, parameter values from each individual in the population 
("parents" (A,) and "offspring" (AT+,)) were inserted into a filter function (PG or ROEX) to create a 
bank of filters. Each filter bank was evaluated for its sensitivity through a simulated audiometric 
assessment. Instead of using a series of N and S+N trials (see "Scaled Amplitude Models"), a library 
of impulsive signals was generated to test the filters. The library consisted of a 512x512 matrix (T) 
with each element of each row corresponding to a binwidth of ~ 0.49 kHz, i.e., equivalent to the 
frequency distribution described for the filter arrays. All elements were initially set to zero. In order 
to create a computational analog of an impulsive test signal at successive frequencies for each 
spectral bin, 
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Table 4. Parameter values with initialization limits, initial standard deviations, and description of 
parameter function for the Gain Simulated Models. Parameters are grouped according to the func- 
tion describing the filter shape. 

Minimum       Maximum Initial 
Parameter       Initialization    Initialization      Standard 

Limit Limit Deviation 
Definition 

PG Model 

m 0 10 0.5 

b 0 2 0.15 

X 0 0.025 0.001 

ai 0 10 0.5 

a2 0 2 0.15 

a3 0 1 0.05 

a4 0 1 0.05 

C 0 100 5 

Mi (a) (a) (b) 

Fn (a) (a) (b) 

slope of the equation determining Q 

intercept of the equation determining Q 

coefficient of the exponent in the equation 
determining Q 

1st coefficient of the scaling equation 

2nd coefficient of the scaling equation 

3rd coefficient of the scaling equation 

4th coefficient of the scaling equation 

intercept of the scaling equation 

maximum characteristic frequency 

filter number 

ROEX Model 

m 

b 0 10 1.5 

z 0 1 0.15 

ai 0 10 0.5 

a2 0 2 0.15 

a3 0 1 0.05 

a4 0 1 0.05 

C 0 100 5 

Ht (a) (a) (b) 

Fn (a) (a) (b) 

ß 0 20 3 

slope of the equation determining 
filter quality ( p ) 

intercept of the equation determining p 

slope of equation determining filter 
tail length (r) 

1st coefficient of the scaling equation 

2nd coefficient of the scaling equation 

3rd coefficient of the scaling equation 

4th coefficient of the scaling equation 

intercept of the scaling equation 

maximum characteristic frequency 

filter number 

coefficient of filter peak amplitude (p.) used 
in determining filter magnitude adjustment 

(a) Fn= 40 and nt= 120 for all trials 

(b) Probabilistic mutation limited to integer step sizes of +: 

T(i,i) = 1.0,  i = 1,2,3 512 

for all i, 

The response of the filters (F) to T trials (RT) was derived by multiplying the filter matrix by the 
row of the impulse signal library for a given test frequency (/) such that 

RT(/) = F*T(/), 

where T represent the row vector of the impulse signal library and 
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/ = (i-l)*0.49,    i = l,2,3, ...,512 

where/is measured in kHz. The sensitivity metric (0/) for the tested frequency was then determined 
as 

Fn 

0/=£RT(W).    i = 2, 3, 4, ...,512 
j 

where Fn denotes the number of filters in the model. The values of 0/for all/were transformed to dB 
re: (maximum 0/) to form the response curve of the ear model (Te). 

re(o = 20*iogl//%MAX) 

A threshold curve of the bottlenose dolphin (Td) was generated as a compilation of data points 
taken from Johnson (1 to 8 kHz; 1968) and Brill et al. (10 to 150 kHz; 1997) and converted to dB re: 
(maximum sensitivity). The response curve of the ear model was compared to the threshold curve of 
the bottlenose dolphin at incremental frequencies of 0.98 kHz. For frequencies on 7^ for which 
experimentally obtained sensitivities have not been obtained, sensitivities were estimated via linear 
interpolation. The absolute value of the maximum deviation between the two curves was used as the 
performance metric (Pe) for tournament selection, such that for 

d(i) = \Td(i)-Te(i)\ 

where 7^ is the function representing the dolphin sensitivity curve, Te is the output of the ear filter 
bank, i e {1, 2, 3,..., 255} and d is the difference between the functions at frequency (i * 0.98 kHz), 

P   =max (d(i)) 

Selection: Tournament selection was performed identically to the method described previously 
(see "Scaled Amplitude Models"). Computer trials were terminated after 1500 generations. Six trials 
were performed for each model type (PG or ROEX). 

Computing Facilities 

All optimization trials were run at the Navy High Performance Computing Center (SSC San Diego) 
on a Hewlett-Packard V2500 multi-processor system. The V2500 utilized 16 440-MHz 4-way super- 
scalar PA-8500 processors and 16 GB of RAM. All code was written in aC++, the HP version of 
C++ designed for use on HP Unix systems (see appendix 2). 

Results 
Pseudo-Gaussian Design 

The number of filters used in each model was highly variable, ranging from 19 to 214 (table 5). In 
contrast, fa was less variable ranging from 75 to 97. Values of Q3 ranged from 1.2 to 3.7. Differences 
in maximum and minimum values of Q3 for all other models were no greater than 2.1 and one model 
converged upon a constant-ßj configuration (optimization #3, see table 5). 
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Table 5. Parameter values and maximum deviation from observed dolphin auditory sensitiv- 
ity for the best performing pseudo-Gaussian models. Maximum deviations are in dB re: 
maximum sensitivity of the dolphin. 

Trial Number m X b Vt 
Filter 

Number 

Maximum 
Deviation 

(dB) 

1 0.46 1.12E-02 8.32E-01 75 74 11.4 

2 3.23 1.31E-03 3.19E-02 97 32 13.2 

3 2.95 1.11E-04 1.47E-04 89 19 15.1 

4 1.19 4.37E-03 2.76E-01 81 61 8.9 

5 1.09 1.14E-02 9.23E-02 94 214 11.3 

6 1.23 4.55E-03 2.14E-01 82 121 9.0 

a» a2 a3 a4 C 

1 9.73 1.49 1.24E+00 4.29E-06 1.80E+02 

2 56.33 2.58 5.04E-06 1.00E-10 1.00E-10 

3 2877.98 0.35 9.72E-01 4.03E-06 2.69E+02 

4 18.08 2097.56 9.83E-05 8.13E-04 5.67E+02 

5 0.20 93.03 9.08E-02 1.00E-10 1.00E-10 

6 1468.44 656351.00 2.53E+02 1.29E+00 7.71 E+03 

Figure 4 demonstrates the maximum deviation between observed dolphin hearing sensitivity and 
the sensitivity of the best performing ear model with PG designed filters (Pm = 8.9 dB re: max sensi- 
tivity). Maximum deviations from dolphin sensitivity occurred at 3, 10, 30, and 145 kHz (figure 4). 
This model consisted of 61 filters with values of Q3 ranging from ~ 1.5 to 2.0 across the measured 
frequency range. 

0.1 10 

FREQUENCY (kHz) 

100 1000 

Figure 4. Comparison of the best performing gain simulation model 
using a PG filter design to the actual auditory sensitivity of the dol- 
phin. Triangles signify frequencies at which maximum deviations 
between the two curves occur. 
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All models implementing PG designed filters demonstrated maximum deviations less than 15 dB 
from the behaviorally measured auditory sensitivity of the bottlenose dolphin. Mean maximum 
deviation was 11.5 dB. Greatest deviations in sensitivity matching typically occurred at 2 and 30 
kHz. As in other models, deviations above 100 kHz were graphically less obvious than deviations at 
lower frequencies because of the steep slope of the threshold curve. 

In order to determine the similarity in performance of the models, comparisons were made 
between the frequency-dependent sensitivities of the best performing model from each optimization 
trial. Deviations between the outputs of the different models were greatest between 111 to 150 kHz 
where they ranged from 17.0 to 22.5 dB. 

Rounded Exponential Design 

The optimal number of filters used in each model ranged from 35 to 92 (table 6). The range of fil- 
ter quality (p) used in each model was variable with both constant p values and ranges from 1.1 to 5.7 
being observed. Considering all models together, p ranged from 1.1 to 10.4. The two ear models that 
utilized constant-/? ROEX filters (p of 10.2 and 10.4) had the closest fit to the dolphin sensitivity 
curve (Pm equal to 10.0 and 10.4, respectively). Greatest deviations in sensitivity matching occurred 
at 2 and 30 kHz for every ear model and at 120 kHz in three of the six models. 

Table 6. Parameter values and maximum deviation from observed dolphin auditory sensitiv- 
ity for the best performing ROEX models. Maximum deviations are in dB re: maximum sen- 
sitivity of the dolphin. 

Trial Number m b z ß Vt Filter Number 

1 1.90E+00 10.02 0.25 13.92 88 44 

2 1.18E-03 10.13 1.69 0.50 77 92 

3 9.35E-01 7.07 95.34 1162.17 77 35 

4 2.49E+00 0.97 5.28 0.44 79 47 

5 1.96E+00 3.19 1.10 29.52 80 89 

6 1.18E-02 10.42 1.85 7392.32 77 60 

ai a2 a3 a4 C Maximum 
Deviation 

1 5.03E+01 5.75E+00 1.00E-10 1.00E-10 8.91 E-04 13.3 

2 1.60E+01 4.18E+00 4.25E-09 8.52E-09 3.53E-02 10.0 

3 1.00E-10 1.03E+00 6.17E-04 1.00E-10 4.22E+00 11.3 

4 1.80E+00 6.05E+02 1.00E-10 1.00E-10 5.07E+01 11.0 

5 1.68E+01 1.92E+05 3.74E-02 1.00E-10 2.40E+02 10.9 

6 5.96E+02 1.97E+02 8.53E-03 1.00E-10 4.06E+00 10.4 

In order to determine the similarity in performance of the models, comparisons were made 
between the frequency-dependent sensitivities of the best performing model from each optimization 
trial. The maximum deviation between the output of all ROEX models was 21.1 dB and occurred at 
150 kHz. Deviations >10.0 to 21.1 dB occurred above 133 kHz and directly increased with 
frequency. 
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Figure 5 demonstrates the maximum deviation between observed dolphin hearing sensitivity and 
the sensitivity of the best performing ROEX-based model (Pm = 10.0 dB re: maximum sensitivity). 
Maximum deviations occurred at 2, 30, 120, and 150 kHz (figure 5). This model consisted of 92 fil- 
ters, a maximum center frequency (jit) of 77 kHz, and constant p values of 10.1 across the measured 
frequency range. 
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0.1 10 100 1000 

Discussion 

FREQUENCY (kHz) 

Figure 5. Comparison of the best performing gain simulation model 
using a ROEX filter design to the actual auditory sensitivity of the dol- 
phin. Triangles signify frequencies at which maximum deviations 
between the two curves occur. 

Through the use of EP, a suite of dolphin ear models has been designed that can be used as fre- 
quency spectrum filters and implemented as preprocessors to target echo classifiers. Two groups of 
models were created consisting of either filter banks scaled for spectral inputs or filter banks that 
emulate the actual auditory range of the bottlenose dolphin. Within these model types, filters were 
created based upon either PG or ROEX distributions. All optimized models, scaled or otherwise, 
demonstrated a considerable improvement over the original bandpass filter model (Roitblat et al., 
1993) by exhibiting sensitivity matching across the range of dolphin hearing. 

Though targeted for incorporation into biomimetic mine countermeasure algorithms, these models 
can generally be used as auditory weighting functions. Depending upon whether amplitude-scaled or 
gain-simulated models are to be used, differences in the performance of the ROEX and PG filter 
designs should be considered prior to implementation. For instance, in the amplitude-scaled models, 
the smallest maximum deviations between model and dolphin sensitivity were observed when mod- 
els were constructed with PG designed filters. However, frequencies at which the greatest deviations 
from dolphin sensitivity occurred were spread across the range of hearing. Models constructed from 
ROEX filters had sensitivities that deviated to a greater extent from the dolphin sensitivity, but 
maximum deviations were isolated to low (< 5 kHz) and high (> 140 kHz) frequency ends of the 
hearing range. The contribution of filtering effects at these frequencies should be reduced relative to 
the total output of the model because of the rapid decline in sensitivity above 100 kHz. Thus, if the 
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focus is on frequencies spanning the middle of the dolphin hearing range (e.g., 40 to 60 kHz), it 
would be more appropriate to use models based upon ROEX filters. In contrast, if the filtering effect 
across the entire range of hearing is desired, models based upon PG filters would be more appropri- 
ate. 

Results of the scaled amplitude model optimizations utilizing PG filters suggest that near-optimal 
model construction was achieved when filter banks contained between 27 and 45 filters. Optimal 
design for ROEX-based models was likely achieved since all models evolved a design utilizing 37 
filters and the greatest deviation between any two models was no greater than 0.03. In contrast, gain- 
simulated models were much more variable in their evolved structures, probably due to the additional 
degrees of freedom introduced by the addition of design variables (e.g., n,). 

The filter numbers utilized by the models are similar to Johnson's (1968) estimated number of 
critical bands for the bottlenose dolphin. Values of Q3 determined for the PG model ranged from 1.4 
to 2.8 and are in close agreement with estimates derived from critical band measurements; Q esti- 
mates for 30, 60, and 120 kHz (measured at the critical band) are 1.8, 2.4, and 2.7, respectively (Au 
and Moore, 1990). Thus, even though the amount of expert information incorporated into model 
development was limited, the artificial systems demonstrate emergent properties analogous to the 
biological system. 

The task of creating an artificial system capable of emulating the object detection and identifica- 
tion capabilities of the Navy's Marine Mammal Systems is daunting. Idealistically, this task can be 
approached by emulating the processes underlying echolocation (sound transmission, reception, and 
signal processing). The models described here attempt to model a component of the dolphin's receive 
system and thus contribute to the overall effort. Use of these models as preprocessors in biomimetic 
object classification systems increases the biomimetic nature of those systems by providing a better 
approximation of the peripheral auditory processing in the dolphin. Furthermore, such models can be 
used as auditory weighting functions (AWF). These AWF's can be applied to questions regarding the 
environmental impact of water-borne anthropogenic sound upon marine mammals such as the dol- 
phin. Anthropogenic signals of concern can be filtered in order to predict how the peripheral auditory 
system of the dolphin attenuates frequency components of the signal. These models serve as a basis 
for the development of more advanced models and provide a framework upon which to build 
additional biomimetic components. 
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APPENDIX 1A - SOURCE CODE 
SCALED AMPLITUDE MODEL: PSEUDO-GAUSSIAN DESIGNED FILTERS 

The source code for the evolutionary program created to optimize a series of pseudo-Gaussian 
designed bandpass filters to the relative auditory sensitivity of the bottlenose dolphin may be found at 
http://www.spawar.navv.mil/sti/publications/pubs/tr/1834/dolphinepcode.doc. The following source 
code and header files are present: 

main.C 
app.C app.h 
member.C member.h 
eval.C eval.h 
nrutil.C nrutil.h 
interp.C interp.h 
random.C random.h 
objfns.C objfns.h 

The reader is referred to the text of the technical report for procedures on building the noise (N) 
and signal + noise (S+N) files used in testing the filters. 

The code is written in aCC+ and aCC, the proprietary C++ and C language for HP UNIX systems. 
When porting to other UNIX systems, check the system-specific documentation to resolve cross- 
platform incompatibilities. Multithreading is achieved through implementation of the pthread 
libraries for the HP UNIX aCC programming language. 
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APPENDIX 1B - SOURCE CODE 
SCALED AMPLITUDE MODEL: ROEX DESIGNED FILTERS 

The source code and the header file for creating ROEX designed filters during scaled amplitude 
model creation and optimization can be found at 
http://www.spawar.navv.mil/sti/publications/pubs/tr/1834/dolphinepcode.doc. Most of the dif- 
ferences between this program and that described under appendix 1A are contained in the objfns.C 
source code. However, because the number of parameters necessary to create the ROEX filters dif- 
fers from that of the pseudo-Gaussian filters, changes within app.C and member.C are necessary to 
ensure that the additional parameter values are reported in the log files. 

Changes needed in app.C: 

1. The function(s) AppGetAvg*() will need to be added to get the population average standard 
deviations for any additional parameter(s). 

2. DisplayStatsO, WriteInfoToFile(), WriteBestToFile(), and WriteDirect() need to be modified 
to write the value of additional parameters associated with the ROEX function to file. 

Changes needed in member.C: 

1.   MemberGetAvgS*() needs to be added for each additional AppGetAvg*() function placed in 
app.C. 

Code is written in aCC+ and aCC, the proprietary C++ and C language for HP UNIX systems. 
When porting to other UNIX systems, check the system-specific documentation to resolve cross- 
platform incompatibilities. Multithreading is achieved through implementation of the pthread 
libraries for the HP UNIX aCC programming language. 
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APPENDIX 2A - SOURCE CODE 
GAIN-SIMULATION MODEL: PSEUDO-GAUSSIAN DESIGNED FILTERS 

The source code for the evolutionary program created to optimize a series of pseudo-Gaussian 
designed bandpass filters to the relative auditory sensitivity of the bottlenose dolphin can be found at 
http://www.spawar.navy.mil/sti/publications/pubs/tr/1834/dolphinepcode.doc. The following source 
code and header files are present: 

main.C 
app.C app.h 
member.C member.h 
eval.C eval.h 
random.C random.h 
objfns.C objfns.h 

The reader is referred to the text of the technical report for procedures on building the impulse sig- 
nal library used to test the ear filters. 

Code is written in aCC+ and aCC, the proprietary C++ and C language for HP UNIX systems. 
When porting to other UNIX systems, check the system-specific documentation to resolve cross- 
platform incompatibilities. 
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APPENDIX 2B - SOURCE CODE 
GAIN-SIMULATION MODEL: ROEX DESIGNED FILTERS 

The source code and the header file for creating ROEX designed filters during gain simulation 
model creation and optimization can be found at 
http://www.spawar.navy.mil/sti/publications/pubs/tr/1834/dolphinepcode.doc. Most of the dif- 
ferences between this program and that described under appendix 2A are contained in the objfns.C 
source code. However, because the number of parameters necessary to create the ROEX filters dif- 
fers from that of the pseudo-Gaussian filters, changes within app.C and member.C are necessary to 
ensure that the additional parameter values are reported in the log files. 

Changes needed in app.C: 

1. The function(s) AppGetAvg*() will need to be added to get the population average standard 
deviations for any additional parameter(s). 

2. DisplayStatsO, WriteInfoToFile(), WriteBestToFile(), and WriteDirect() need to be modified 
to write the value of additional parameters associated with the ROEX function to file. 

Changes needed in member.C: 

1.   MemberGetAvgS*() needs to be added for each additional AppGetAvg*() function placed in 
app.C. 

Code is written in aCC-i- and aCC, the proprietary C++ and C language for HP UNIX systems. 
When porting to other UNIX systems, check the system-specific documentation to resolve cross- 
platform incompatibilities. 
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