
^

Final SAMAS #4505624 Report

The Uitiveiüify of Florida

Wireless
Communications
Dissertation Studies

• •••••••••

Project Director Dr. FredJ. Taylor

20001030 064

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

10/18/00
3. REPORT TYPE AND DATES COVERED

Final Report - 06/01/96-05/31/99

4. TITLE AND SUBTITLE

A Mobile Computing Environment

6.AUTHOR(S) Dr. F.J. Taylor, Mr. Stuart Lopata,
and Dr. Jonathan D. Mellott

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Florida, Division of Sponsored Research,
219 Grinter Hall, P.O. Box 115500
Gainesville, FL 32611 (352)392-1582

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
Ballston Centre Tower One, 800 North Quincy Street,
Arlington, VA 22217-5660
Attn: Andre M. Von Tilborg, ONR 311

5. FUNDING NUMBERS

G//N00014-96-1-0976

8. PERFORMING ORGANIZATION
REPORT NUMBER

1 and final

10. SPONSORING/MONITORING
AGENCY REPORT NUMBERS

11. SUPPLEMENTARY NOTES

none

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The objective of the Department of the Navy award was to facilitate and stimulate new
research in the area of wireless communications. The Navy support was in the form of
graduate student stipends to support the dissertation research of U.S. national students
in this field, especially in the area of defining innovative solutions at the physical
layer (hardware). These accomplishments include:
* Design and development of fast DSP-ASIC processors (commercial versions licensed

through Philips Semiconductor)
* Design and development of low-power DSP ASICs.
* Design of digital radio subsystem and validation procedures (including the HSP43211,

Intersil digital down converter).
* Extensive compute and simulation facilities including Synopsys, Altera, TI, Philips,

and Mathworks. 14. SUBJECT TERMS

Architectures, digital signal processing, wireless communications

17. SECURITY
CLASSIFICATION OF REPORT

unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

unclassified

15. NUMBER OF PAGES
218

16. PRICE CODE

-0-
20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

DTIC QUALITY IK i^iSi/iSäü SD4

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI St. Z39-18
298-102

Final Report
Department of the Navy
SAMAS No. 4505624

Dissertation Research Fellowship
Program

OBJECTIVES

The objective of the Department of the Navy SAMAS No. 4505624 award
was to facilitate and stimulate new research in the area of wireless
communications. The Navy support was in the form of graduate student
stipends to support the dissertation research of U.S. national students in this
field. The study was motivated by the proposer's historical involvement in this
field, especially in the area of defining innovative solutions at the physical
layer (hardware). These accomplishments include:

• Design and development of fast DSP-ASIC processors (commercial
versions licensed through Philips Semiconductor)

• Design and development of low-power DSP ASICs.

• Design of digital radio subsystem and validation procedures (including the
HSP43211, Intersil digital down converter).

• Extensive compute and simulation facilities including Synopsys, Altera,
Tl, Philips, Mathworks, and other resources.

The reported dissertation studies made extensive use of all these resources.

^GQMPyiSHMENTS

Under the Department of the Navy SAMAS No. 4505624 award, one Ph.D.
dissertation was completed and a second is nearing completion. They are:

1. Very Long Instruction Word Architecture for Digital Signal Processing, Dr.
Jonathon Mellott.

2. Wireless Local Area Networking and Channeling at 2.4GHz, Stuart
Lopata

The completed dissertation is reported in abstract form, and in complete form
as an attachment. The on-going dissertation research is abstracted and
included in interim report form as an attachment.

Very Long InstmctöönWörä Architecture for Digital
SigriaiProtJeioiihig

Dr. Jonathon D. Mellott (Ph.D., 1997, University of Florida)

The research reported resulted in a Ph.D. degree awarded to Jonathon D.
Mellott for his original research in Very Long Instruction Word Architectures
(VLIW) for digital signal processing (DSP). Under the Department of the Navy
SAMAS No. 4505624 support, Dr. Mellott developed a new class of
processor that is applicable to a number of wireless information
communication applications. The study was motivated by the new class of
VLIW architectures being promoted by Texas Instruments (Tl) and a
knowledge of superior (speed and power) arithmetic structure for this class of
processor. The research, reported as an attachment, indicates that significant
benefits can be gained in both speed and power using this new architecture.

Scholarly paper resulting from the dissertation research are as follows:

1. Mellott, J., Lewis, M., and Taylor, F., "ASAP - A 2D DFT VLSI Processor
and Architecture," IEEE ICASSP Conference, Atlanta, 1996.

2. Mellott, J., and Taylor, F., "Very Long Instruction Word Architecture for
DSP," IEEE ICASSP Conference, Munich, 1997.

3. Meyer-Baese, U., Mellott, J., and Taylor, F., "Frequency Sampling Filter
Bank Using the RNS," IEEE ICASSP Conference, Munich, 1997.

4. Taylor, F., and Mellott, J., Hands On Digital Signal Processing. McGraw
Hill, 1998.

Upon graduation, Dr. Mellott joined the Athena Group Inc. as a lead VLSI
engineer where he has led design activities involving VLIW architectures
under the sponsorship of NIST, BMDO, and the Army. The NIST project lead
to a technology that is being marketed by Philips Semiconductor for ASIC
applications.

Wireless Local Area Networking and Channeling at

Stuart Lopata (Ph.D. expected in 2001, University of Florida)

The reported research provides a foundation for Mr. Lopata's dissertation
research into IEEE802.11 class wireless LAN (WLAN) communications. The
research conducted under the Department of the Navy SAMAS No. 4505624
project involved making detained measurement of the 2.4GHz IEEE802.11
class signal environment. This data did not exist and is essential to properly
direct the dissertation research. Measurements included signal strengths,
noise level, interference sources, multi-path effects, and antenna sensitivity.
This information is now used to "seed" both the mathematical models and
simulators used in the research of the enhanced 5GHz IEEE 802.11 WLAN
that is based on an orthogonal frequency division modulation (OFDM)
standard.

Publications, Stuart Lopata author

Optimum Frequency Estimation Strategies for Repeated Training Signals via
Efficient Time-Domain Processing, in review, IEEE Transactions of
Communications

OFDM Channel Estimation in an Indoor Wireless Environment, in review,
IEEE Transactions of Communications

Multiple Threshold Detection and Timing Estimation in OFDM for WLANs, in
review, IEEE Transactions of Communications

Appendix A: Very Long Instruction Word Architecture for
Digital Signal Processing

VERY LONG INSTRUCTION WORD ARCHITECTURES FOR DIGITAL
SIGNAL PROCESSING

By

JONATHON D. MELLOTT

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

1997

TABLE OF CONTENTS

LIST OF FIGURES vi

LIST OF TABLES ix

ABSTRACT xi

CHAPTERS

1 INTRODUCTION 1

1.1 Comparison of General Purpose Processors Versus DSP Processors 4
1.2 Motivation for VLIW Insertion in Digital Signal Processors 9

1.2.1 Characteristics of digital signal processing algorithms 10
1.2.2 Architectural resources for digital signal processing 11
1.2.3 Techniques for exploiting instruction level parallelism 17
1.2.4 VLIW for digital signal processing 20

1.3 Research Activities 21

2 INTRODUCTION TO THE RESIDUE NUMBER SYSTEM 25

2.1 The Chinese Remainder Theorem 26
2.2 Complex Residue Number System 27
2.3 Quadratic Residue Number System 28
2.4 Galois-Enhanced Quadratic Residue Number System 29
2.5 Logarithmic Residue Number System 31
2.6 Previous Work in the RNS and Conclusions 32

3 THE ATHENA SENSOR ARITHMETIC PROCESSOR 37

3.1 Test Chip 39
3.2 Detailed Architecture Description 44

3.2.1 Synchronous static RAM 44
3.2.2 Data switch 47
3.2.3 Command and configuration register 47
3.2.4 LRNS correlator processor 48
3.2.5 LRNS processor element 50

3.3 Execution of Basic Algorithms 53

ii

3.3.1 Initialization 53
3.3.2 Basic vector operations 54
3.3.3 Convolution 57

3.4 ASAP Test Fixture 62
3.5 ASAP Testing 65
3.6 Summary 66

4 VERY LONG INSTRUCTION WORD DIGITAL SIGNAL PROCESSORS . 68

4.1 VLIW Processor Overview 68
4.2 VLIW Processor Functional Units 71

4.2.1 Instruction fetch and decode unit 71
4.2.2 Address arithmetic unit 72
4.2.3 Conventional arithmetic unit 74
4.2.4 Residue arithmetic units 74

4.3 On-Chip Memories 78

5 VERY LONG INSTRUCTION WORD COMPILER TECHNOLOGY 80

5.1 Introduction 80
5.2 The Cpgp Programming Language 81

5.2.1 Motivation 81
5.2.2 Differences between C and Cjjgp 82
5.2.3 Results 85

5.3 Algorithm Analysis 86
5.3.1 Convolution and the finite impulse response filter 87
5.3.2 Discrete Fourier transform 97
5.3.3 QR decomposition 108
5.3.4 Results 110

6 CONCLUSIONS 112

6.1 Summary 112
6.2 Contributions 114
6.3 Future Work 115

APPENDICES

A CDSP LANGUAGE REFERENCE 117

A.l Introduction 117
A.2 Notation 117
A.3 Lexical Elements 118

A.3.1 Character set 118
A.3.2 Abstract literals 119

in

A.3.3 Comments 121
A.3.4 Identifiers 122
A.3.5 Reserved words 123

A.4 Translation Unit 123
A.4.1 Function definitions 124
A.4.2 External object definitions 125

A.5 Conversions 126
A.6 Expressions 127

A.6.1 Primary expressions 127
A.6.2 Postfix operators 128
A.6.3 Unary operators 131
A.6.4 Cast operators 132
A.6.5 Convolution and sum of products operators 133
A.6.6 Multiplicative operators 134
A.6.7 Additive operators 135
A.6.8 Bitwise shift operators 135
A.6.9 Relational operators 136
A.6.10 Equality operators 137
A.6.11 Bitwise AND operator 137
A.6.12 Bitwise exclusive OR operator 138
A.6.13 Bitwise inclusive OR operator 138
A.6.14 Logical AND operator 138
A.6.15 Logical OR operator 139
A.6.16 Conditional operator 139
A.6.17 Assignment operators 139
A.6.18 Comma operator 141

A.7 Constant Expressions 141
A.8 Declarations 141

A.8.1 Storage-class specifiers 142
A.8.2 Type specifiers 143
A.8.3 Type qualifiers 145
A.8.4 Declarators 145
A.8.5 Type names 146
A.8.6 Type definitions 146
A.8.7 Initialization 147

A.9 Statements 147
A.9.1 Labeled statements 148
A.9.2 Compound statements 148
A.9.3 Expression statements 149
A.9.4 Selection statements 149
A.9.5 Iteration statements 150
A.9.6 Jump statements 153

IV

B M-FILES 155

B.l DFT Code 155
B.l.l rpdft.m 155
B.1.2 gtdft.m 155

B.2 CRT Code 156
B.2.1 crtconf.m 156
B.2.2 gen.m 157
B.2.3 crt.m 158

C TYPOGRAPHICAL NOTES 159

REFERENCES 161

BIOGRAPHICAL SKETCH 168

LIST OF FIGURES

1.1 Transistor Densities per Chip Trends for Memories and Microprocessors 3

2.1 Block Diagram of a GEQRNS Multiplier 30

2.2 Block Diagram of an LRNS Multiplier-Accumulator 33

2.3 Photograph of Gauss Machine Single Channel, Quad Processor Card .. 34

2.4 Illustration of (a) Pad Quantity to Area Ratio Management Options
and (b) Impact of Process Improvements on Pad Quantity to Area Ratio 35

3.1 Block Diagram of ASAP Architecture 38

3.2 Annotated Die Photograph of the ASAP Device 40

3.3 Pinout of the Test Chip 43

3.4 ASAP Test Chip in Test Fixture 44

3.5 Block Diagram of Modular Multiplier/Adder/Accumulator Arithmetic
Element 45

3.6 Block Diagram of Synchronous SRAM 46

3.7 Data Switch Block Diagram 47

3.8 LRNS Correlator Processor 49

3.9 Simplified Block Diagram of Modular Multiplier/Adder/Accumulator
Arithmetic Element 51

3.10 Annotated Die Photograph of LRNS Processor Element 52

3.11 Pipeline Operation for Vector Multiplication 55

3.12 Pipeline Operation of Vector Addition 55

3.13 Pipeline Operation of Vector Accumulate 56

vi

3.14 Pipeline Operation of Multiply-Accumulate Operation 57

3.15 Pipeline Operation of Linear Convolution Operation for M = N = 3 ... 60

3.16 Pipeline Operation for Circular Convolution 62

3.17 Block Diagram of ASAP Test Fixture 63

3.18 Photograph of ASAP Test Fixture with Device Under Test 64

4.1 VLIW Machine Architecture Block Diagram 69

4.2 Example of VLIW Instruction Compaction 73

4.3 Block Diagram of an Address Arithmetic Unit 73

4.4 Extended RNS MAC Architecture 75

4.5 Next Generation Vector Unit 76

5.1 CßSP Source for Convolution Sum 88

5.2 Data Distribution and Flow for Two Processor Convolution Sum 88

5.3 Data Distribution and Flow for Two Processor Convolution Sum Using
Interleaved Data 89

5.4 Data Distribution for an L Processor Convolution Sum 91

5.5 Data Distribution for an L Processor Convolution Sum Using Inter-
leaved Data 92

5.6 VLIW Filter Speedup Versus Filter Order and Number of Processors,
Best Case 94

5.7 VLIW Filter Speedup Versus Filter Order and Number of Processors,
Worst Case 95

5.8 Group of Processor Elements with Three-Level Hierarchical Proces-
sor/Memory Switching 96

5.9 VLIW Filter Speedup Versus Filter Order and Number of Processors
Using NUMA Interconnect with (a) G = 4, and (b) G = 8 98

5.10 Good-Thomas FFT Permutation Maps for M = 3 x 5 = 15 101

vii

5.11 Good-Thomas FFT Input/Output Sequence Permutation for M = 15
Computation 101

5.12 CDSP Function for an N = 15 Good-Thomas FFT 103

5.13 Rader Prime DFT Circular Convolution Engine, p = 17 106

5.14 Cpgp Implementation of a p = 5 Rader Prime DFT 107

5.15 Qj)SP Function for QR Decomposition 109

5.16 Diagram of Execution Timing and Exploitable Block Level Parallelism
for Householder QR Decomposition Ill

A.l Semantics of index Attributes 131

A.2 Control Flow For the if and if-else Statements 150

A.3 Control Flow For the while Statement 151

A.4 Control Flow For the do-while Statement 151

A.5 Control Flow For the for Statement 152

A.6 Control Flow For the dopar Statement 153

vin

LIST OF TABLES

3.1 ASAP Test Chip Pin Descriptions 42

3.2 Synchronous SRAM Command Effects 46

3.3 Command Register Map 48

3.4 Correlator Data I/O and Control Signals 50

3.5 LRNS Control Signals and Operations 51

3.6 LRNS Processor Initialization Inputs 53

3.7 Processor Initialization Sequence 54

3.8 Vector Multiplication Procedure 54

3.9 Vector Addition Procedure 55

3.10 Vector Accumulate Procedure 56

3.11 Vector Multiply-Accumulate Procedure 57

3.12 Linear Convolution for M = N = 3 58

3.13 Linear Convolution Procedure for N — 3 59

3.14 Circular Convolution for N = 3 60

3.15 Actual Dataflow for Circular Convolution for N = 3 61

3.16 Circular Convolution Procedure for N = 3 61

3.17 Pattern Generator Pod Mapping 63

3.18 Command Signals to LSA Dl Pod Mapping 65

3.19 Estimated Performance of LRNS MAC Cell in MOSIS Technologies,
Where Available 66

ix

3.20 Estimated Performance of an LRNS Array of Thirty-Two Bit MACs
on a 1 cm2 Die for Real and Complex Arithmetic 66

4.1 Addressing Modes Supported by Address Arithmetic Unit 74

5.1 Product of All Combinations of Two or More Primes in {2,3,5,7,11,13} 105

A.l The Gjjgp Character Set 118

A.2 Regular Expressions for Integral Literals 119

A.3 Escape Sequences for Character and String Literals 120

A.4 Regular Expression for Floating-Point and Fixed-Point Formats 121

A.5 &DSP Reserved Words 123

A.6 Direction of Automatic Type Conversions 126

A.7 Compound Assignment Operations and Equivalent Assignments 140

■ Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

VERY LONG INSTRUCTION WORD ARCHITECTURES FOR DIGITAL
SIGNAL PROCESSING

By

Jonathon D. Mellott

December, 1997

Chairman: Dr. Fred J. Taylor
Major Department: Electrical and Computer Engineering

Very long instruction word (VLIW) architecture offers an opportunity for superior

multiprocessor digital signal processor implementations. By eschewing the hardware

resource management provided in superscalar and superpipelined processor implemen-

tations, a VLIW processor has more available hardware resources for computations.

The disadvantages of the VLIW approach are that object code is no longer compat-

ible across multiple generations of processors and that the compilation technology

to support a VLIW processor is more complicated than that required by traditional

processor architectures.

This dissertation describes a VLIW architecture for digital signal processing. The

described architecture has multiple functional units, including a residue number sys-

tem convolution processor. The convolution processor is based upon the Athena

sensor arithmetic processor, a 1.2 billion operation per second SIMD convolution

processor, which is also described. To solve the difficulties associated with software

development for a VLIW digital signal processing microprocessor, a new high-level

language based upon the C programming language is described. Implementations of

several key digital signal processing algorithms are analyzed with respect to opportu-

xi

nities for instruction-level and block-level parallelism, and their resource requirements

in the context of a VLIW digital signal processing environment.

Xll

CHAPTER 1
INTRODUCTION

When I used to build racing engines a few decades ago, we had someone
stuff a 500 HP street racing engine in a Ford Falcon. It turned the tires
but didn't put the power on the ground. Bigger tires were added so it
got enough bite to break the suspension, which was improved until the
transmission and driveshaft broke, which were upgraded so the last version
worked really well and twisted the frame so badly the windshield popped
out on the first shift, and the doors wouldn't ever close once opened.
—Bill Davidsen

Since the 1970s the semiconductor industry has experienced geometric growth in

the number of transistors that can be placed on a chip [1], see Figure 1.1. With

time, designers of digital signal processing (DSP) devices have been able to take

advantage of the geometric growth with respect to the number of transistors that

could be placed on a chip to produce successive generations of processors that offered

greater performance due to the increased number of circuit elements available. For

example, consider the Texas Instruments TMS320 DSP family. Using the sixteen

bit, fixed-point CIO generation as a baseline, the C20 generation augmented the

CIO architecture with a fast multiplier. The C30 generation used a thirty-two bit

floating point architecture. The C40 generation added DMA (direct memory access)

processors for multicomputer interconnect to the C30 core. As the number of available

circuit elements per chip increases, increasingly more functionality can be added. As

the number of functional units that can be placed on a single chip processor increases

the question of how to actually use those resources becomes very difficult to answer.

In this chapter motivation will be offered for research into the insertion of very long

instruction word techniques into the design of architectures for high performance dig-

ital signal processors that are not highly application specific. Existing solutions based

on general purpose digital signal processors have concentrated on multiple-instruction,

multiple-data (MIMD) parallel solutions (such as Texas Instruments TMS320C40 and

TMS320C80 products). These solutions have not proven to be entirely satisfactory

due to system integration and software development obstacles. Digital signal process-

ing applications are especially well suited for VLIW architectures, and the nature of

digital signal processing implementations sidesteps the most troublesome software life-

cycle compatibility issues that currently hinder the widespread application of VLIW

techniques in the general purpose computer market.

VLIW techniques can be used to exploit opportunities for instruction level par-

allelism just as superscalar and superpipelining techniques are also used to exploit

opportunities for instruction level parallelism. VLIW instruction scheduling tech-

niques can also be adapted to allow opportunities for block level parallelism to be

exploited. A final advantage of VLIW architecture over the competing superscalar

architecture is that the hardware resources that are expended in superscalar architec-

tures to support multiple instruction issue are eliminated in VLIW and are therefore

available for additional functional units or other architectural resources.

This introduction is organized as follows. The first section provides a comparison

of general purpose processors versus DSP processors. This is necessary to justify

some of the assumptions under which the work has proceeded. The next section

provides motivation for VLIW insertion into digital signal processors by examining the

characteristics of digital signal processing algorithms and the architectural resources

necessary to perform those algorithms efficiently, and provides a survey of available

10'

10°

T
r
a
n

10'

10°

P
e
r

C
h
i

P

10J

LJ Memory

O Microprocessors

256M

D

PPC620

entiumPro
PPC604

Pentium

Source: Hutchcson, G.D., Hutcheson, J.D.,
"Technology and Economics in the Semiconductor
Industry," Scientific American, Jan. 1996.

I I I I | I I I I | I I I I |

1970 1980 1990 2000

Year of Availability

Figure 1.1: Transistor Densities per Chip Trends for Memories and Microprocessors

techniques for exploiting instruction-level parallelism. The final section introduces

the research reported in this dissertation.

1.1 Comparison of General Purpose Processors Versus DSP Processors

To develop the motivation for this work it is necessary to understand the dif-

ferences between general purpose processors and digital signal processors. General

purpose processors are defined as those processors designed to execute a variety of

algorithms efficiently. Features found on most general purpose processors (although

not all) include

• multiple data types supported by the processor hardware,

• multi-level cache memories,

• paged virtual memory management in hardware,

• support for hardware context management including supervisor and user modes,

• unpredictable instruction execution timing,

• large general purpose register files,

• orthogonal instruction sets, and

• simple or complex memory addressing depending upon whether the processor

is a RISC (reduced instruction set computer) or CISC (complex instruction set

computer).

The most important data types for general purpose processors are the character

type followed by the integer type. From the viewpoint of market share, the majority

of general purpose processors will be employed in business applications that involve

text and database processing. Floating-point arithmetic is generally not crucial in

most applications run on general purpose computers, although there are niche markets

where this is not true (e.g., the technical workstation market).

Cache memories have been demonstrated to be a useful enhancement for many

general purpose processors due to demonstrated instruction locality and data local-

ity for many types of problems run on general purpose computers. The inclusion

of sometimes substantial cache memories in general purpose computers is made on

the assumption that programs that demonstrate instruction or data locality will be

run on that computer. This assumption will hereafter be referred to as the "cache

assumption." Frequently, the cache assumption is used to justify the design of shared

memory multiprocessing general purpose computers where the main memory is con-

nected to the processors via a shared bus. If the cache assumption is violated the

performance of single and multiprocessing general purpose computers is generally de-

graded. The types of applications run on classic vector supercomputers, such as the

various Cray implementations, were assumed by their designers to violate the cache

assumption for data access and therefore eschew data caches [2].

Large register files are included in many general purpose architectures, although

there are exceptions (e.g., the Intel x86). Since most general purpose machines operate

on scalar data and the cache assumption usually holds, large register files are generally

beneficial. General purpose registers and orthogonal instruction sets tend to make

it easier to write compilers that emit efficient object code, and are also beneficial

to the assembly language programmer. Also, the load-store architectural constraint

used in many RISC processors makes larger register files attractive: since external

memory can only be accessed by load and store operations it is desirable to keep more

operands on hand in the register file to obtain good performance.

Hardware support for the management of virtual memory and multiple process

contexts is desirable in general purpose computers. Most general purpose processors

support timeshared execution of multiple processes; even single-user desktop com-

puters generally are running many processes simultaneously. Virtual memory allows

programs to run in a degraded manner if their primary memory requirements exceed

available resources. The penalty for virtual memory is increased data access latency

due to address translation penalties and long page fault latencies. The latter is gen-

erally managed by switching the processor context to another process so that the

processor does not idle while a page fault is being serviced. Support for multiple

process contexts by a general purpose computer is therefore crucial for optimal use

of the processor resource among multiple tasks.

Instruction execution timing on general purpose processors is generally unpre-

dictable: this is a result of a myriad of features designed to enhance the performance

of the processor. Cache memory and virtual memory introduce a substantial amount

of uncertainty in instruction execution timing. The amount of time required to read

or write a particular location in memory will depend upon whether or not a cache

hit occurs, at which level of the cache it hits, whether or not that virtual address

resides in the TLB (translation look-aside buffer), the latency of the main memory

which can be affected by when the last access occurred and refresh requirements

in addition to access contention by other processors or DMA. Various architectural

enhancements such as superscalar execution, speculative execution, out-of-order exe-

cution, and branch target caches may further confound any attempt to measure the

execution time of an instruction.

A derivative class of general purpose processor is the microcontroller. Most mi-

crocontrollers are derived from successful general purpose microprocessor designs,

although some are original designs. Microcontrollers are typically targeted at embed-

ded applications like many digital signal processors, but typically these applications

do not require the arithmetic performance of the digital signal processor. Microcon-

trollers usually eliminate features such as large cache memories and virtual memory

and instead add integrated peripheral interfaces to support the intended embedded

applications.

In contrast to general purpose processors, digital signal processors are designed

primarily to do arithmetic very efficiently. Most digital signal processing applications

are embedded and hard real-time in nature. Additional architectural features are

added so as to enhance the execution of typical digital signal processing algorithms.

DSP processors are typified by the following characteristics:

• only one or two data types supported by the processor hardware,

• no data cache memory,

• no memory management hardware,

• no support for hardware context management,

• exposed pipelines,

• predictable instruction execution timing,

• limited register files with special purpose registers,

• non-orthogonal instruction sets,

• enhanced memory addressing modes,

• on-board fast RAM (random access memory) and/or ROM (read-only memory),

and

• on-board DMA.

Most DSP processors only support one data type really well. Other data types,

if supported, usually only have partial support. Since the primary purpose of a

8

digital signal processor is to perform arithmetic, elimination of excess data types is

a reasonable optimization. This optimization extends to the datapaths; dynamic bus

sizing and fractional word width operations are generally eliminated.

Digital signal processing applications usually have hard real-time requirements

that dictate that instruction execution timing be predictable. The cache assumption

may also be violated for data access, depending upon the problem to be solved with

the digital signal processor. Therefore data cache memory is generally not included in

digital signal processors. Like the classic vector supercomputers, most digital signal

processors instead devote resources to on-chip fast RAM or ROM that is explicitly

managed by the programmer. Many of the same justifications used to justify the

vector registers in vector machines can be used to justify on-chip memories found in

digital signal processors. From a VLSI manufacturing perspective, on-chip memories

produce an excellent return on investment since there are many well understood

techniques to enhance the manufacturing yield of memories [3]. While the same

arguments are made for on-chip cache memories, the return on investment is greater

for on-chip RAM (assuming that it is used efficiently) since tag RAM and address

comparators required for cache implementations are eliminated, a substantial savings

that also results in reduced access latency when compared with cache memory.

Memory management hardware is not included in digital signal processors since

virtual memory cannot be implemented in systems with hard real-time requirements.

When secondary storage is required for the processing of data, that storage is generally

managed by the programmer. Likewise, most digital signal processors are dedicated

to single problems and therefore do not need process-level multitasking, so hardware

context management is not required. When multitasking is required on a limited

scale it can be provided through cooperative means or via device driven interrupts.

Digital signal processors typically operate on arrays of data rather than perform

operations on scalars and therefore do not gain great benefit from large register files.

Register files in digital signal processors typically feature a number of special purpose

registers to support exotic addressing modes and other features that could not be

justified in general purpose processors but are well used in digital signal processing

applications. Consequently, instruction sets for digital signal processors are typically

non-orthogonal. Most high-level language compilers for digital signal processors are

not able to take advantage of many of the special features of the digital signal proces-

sor's instruction set architecture and therefore do not emit efficient object code. This

is largely due to the fact that most high-level languages are designed for general pur-

pose processors. Consequently, most high-level language development environments

for digital signal processors rely upon libraries of hand-coded subprograms to achieve

adequate performance. Programs that are fully hand-coded in assembly language can

usually achieve even better performance than that obtainable with optimized library

code. The reliance upon hand optimized assembler code for digital signal processing

applications has historically been a reasonable approach: since most DSP products

represent a combination of hardware and software, the increased life-cycle costs of

assembler code can be recovered via the reduction in per-unit hardware costs of the

components. Given this paradigm, instruction set orthogonality is sacrificed to add

special features that benefit DSP applications. The assembler programmer is able

to take advantage of those special features that would not be used by a standard

high-level language compiler.

1.2 Motivation for VLIW Insertion in Digital Signal Processors

This section will describe the motivation for the study of VLIW insertion into digi-

tal signal processors. This will be done by first examining the characteristics of a large

10

class of digital signal processing algorithms and from those characteristics extract-

ing architectural features needed to support digital signal processing. Opportunities

for instruction level parallelism will also be identified. Finally the motivation for

examining VLIW versus other throughput enhancement techniques will be examined.

1.2.1 Characteristics of digital signal processing algorithms

Most digital signal processing algorithms are dominated by multiply-accumulate

operations used to form sums of products [4]. Existing digital signal processors are

optimized to compute expressions of the form

* = X) xiVi- (i-i)

For example, the finite impulse response (FIR) filter is computed using

N-l

Vn=Yl QiXn-i, (1-2)
t'=0

where the finite sequence {a,} is the set of filter coefficients, {x,} is the input sequence,

and {yt} is the output sequence. The form of (1,2) is that of the discrete convolution

operation. From the perspective of digital signal processors the discrete correlation

and convolution are essentially equivalent: they differ only in the ordering of a set of

coefficients.

Another type of common operation performed in digital signal processing is vector

arithmetic. In particular, the sum of two vectors {xn} and {j/„} given as zn = xn + yn

is used to superimpose or add signals. Alternatively, this sum may take the form

zn = axn + yn where a is a a scalar. This form is sometimes called a SAXPY

(Scalar a X Plus Y) operation [5]. The product of two vectors {a;n} and {yn}, given

11

as zn = x„y„, is used in windowing operations commonly found in basic spectral

estimation applications [6].

The discrete Fourier transform (DFT) is very important in applications ranging

from spectral estimation to automatic target recognition. The DFT of a finite se-

quence {xn} of length N is given as

Xn = £ xne-*™klN, (1.3)

for n e {0,1,2,...,N — 1}. The DFT as given in (1.3) is an expensive opera-

tion to perform requiring iV2 complex multiply-accumulates to compute Xn for all

n G {0,1,2,..., N — 1}. Alternate means of computation of DFTs have been devel-

oped to reduce the computational expense of the DFT or to gain an implementation

advantage [7]. The Cooley-Tukey fast Fourier transform (FFT) [8] and the Good-

Thomas fast Fourier transform [9] both reduce the complexity of the transform to

approximately 0(N log N) operations. The Cooley-Tukey FFT can be constructed

using bit-reversed addressing, a feature most digital signal processors have included,

thus making the Cooley-Tukey FFT the most popular implementation. The Good-

Thomas FFT is composed of many small prime block length DFTs. It has been

demonstrated to be advantageous in a VLSI sense to use the Good-Thomas FFT

rather than the Cooley-Tukey FFT as the required small prime block length DFTs

can be efficiently performed using dedicated VLSI hardware [10, 11, 12, 13, 14]. De-

spite its advantages in VLSI hardware, the Good-Thomas FFT has seen only limited

application.

1.2.2 Architectural resources for digital signal processing

Digital signal processors are designed around a different set of assumptions than

those which drive the design of general purpose processors. First, digital signal pro-

12

cessors generally operate on arrays of data rather than scalars so the scalar load-store

architectures found in general purpose RISCs don't make a lot of sense. The eco-

nomics of software development for digital signal processors is different from that for

general purpose applications. Digital signal processing problems tend to be algorith-

mically smaller than a word processor, for example. In many cases the ability to use

a slower and therefore cheaper digital signal processor by expending some additional

software engineering effort is economically attractive: a good return on investment

may be achieved if five dollars per unit of manufacturing cost can be saved in a prod-

uct that will ship a million units by expending an extra man-year of development

effort. A consequence of these factors is that most programming of digital signal pro-

cessors is done in assembly language rather than high-level languages. In fact, digital

signal processors have been architected to allow optimal assembly code to be writ-

ten quickly to the point that compilers for standard high-level languages are unable

to produce efficient code. This is essentially the CISC instruction set architecture

paradigm.

Addressing modes. General purpose processors have either many addressing

modes (CISC processors) or few addressing modes (RISC processors). CISC pro-

cessors may support addressing modes such as direct, register or memory indirect,

indirect indexed, indirect with displacement, indirect indexed with displacement, and

the indexed modes may support pre- and post- increment or decrement of the indices.

Historically, complex addressing modes have resulted in higher code entropy which

has two consequences: first, the productivity of the assembly language programmer

is enhanced, and second, the resulting object code is more compact. A number of

factors have contributed to the disappearance of complex addressing modes charac-

teristic of CISC processors. The first is the change in the economics of hardware

13

costs versus software development costs: thirty years ago software development was

cheap and hardware was expensive so hand coded assembler was commonly used in

application programs, while today hardware is inexpensive relative to software de-

velopment costs so most applications are coded exclusively in high-level languages.

Another issue is related to the first: it has proven to be difficult to get compilers to

take full advantage of complicated addressing modes and non-orthogonal instruction

sets. Another strike against complex addressing modes in general purpose computers

is that the complex addressing modes tend to cause pipeline stalls due to the compli-

cated data dependencies produced by the complex addressing modes. Even modern

CISC implementations have been optimized so that better performance results when

complex addressing modes are avoided. Eschewing complex addressing modes has

led to the adoption of a load-store philosophy that allows functional units to accept

issues without stalling due to depending upon data stored in memory. By moving to a

register indirect load-store architecture all of the more complex addressing operations

are performed in software thus allowing greater flexibility in scheduling instruction

issue. A register indirect load-store architecture synthesizes more complicated "ad-

dressing modes" with several simple instructions. The compiler is free to statically

arrange these instructions with awareness of the impact of adjacent instructions on

the scheduling of processor resources. The processor may also elect to rearrange the

execution of these simple instructions within the constraints of available resources and

apparent data dependencies. In contrast the classic CISC has the micro-operations of

each instruction statically scheduled in the microprogram for a particular instruction.

Digital signal processing applications frequently require non-sequential access to

data arrays using modular or bit reversed addressing. These addressing modes are

not easily supported in general purpose RISC or CISC processors. For maximum

performance in digital signal processing applications it is sensible to add dedicated

14

hardware support for these addressing modes. To summarize, the addressing modes

required include

• address register indirect,

• address register indirect with unit stride and non-unit stride modular indexing,

and

• address register indirect with bit-reversed indexing.

Existing digital signal processor architectures are single-issue so, with the exception

of the special modes indicated, the address register file and arithmetic unit would be

similar to that found general purpose architectures. To support multiple issue it will

be necessary to define either a hardware or software mechanism to support concurrent

address generation for multiple function units. How to do this efficiently, and whether

it should be done at the hardware or software (or both) level, is an open question.

Instruction set enhancements. Since execution time in digital signal pro-

cessing applications is dominated by operations of the form in Equation 1.1 it is sen-

sible to provide instruction set support for executing a loop a fixed number of times.

In fact looping based upon the value of a counter is the most common branching op-

eration in digital signal processors; so much so that many have dedicated instructions

to implement zero or reduced penalty looping. For example, both the Texas Instru-

ments TMS320 series processors and Motorola DSP56000 series processors support

an instruction that causes the next machine instruction to be repeated a fixed number

of times [15, 16]. Consequently, a justification for dedicating substantial resources to

a branch-target cache [17, 18] cannot be found. Large scale branch-target caching

15

makes more sense in general purpose applications as many of these applications have

branching patterns that are difficult to predict at compile time.

Most integer digital signal processors actually employ a fixed-point arithmetic for-

mat. The fixed-point format is achieved by integrating shifters with the multiplier-

accumulator so as to allow pipelined adjustment of operands and results. The mul-

tipliers and accumulators included in most fixed-point digital signal processors are

oversized to allow transient computations to exceed the normal word width of the

processor. For example, the Texas Instruments TMS320C50, a sixteen bit fixed-point

digital signal processor, has a multiplier that takes two sixteen bit operands and

produces a thirty-two bit output as well as a thirty-two bit accumulator. Likewise

the Motorola DSP56000, a twenty-four bit fixed-point digital signal processor, has a

multiplier that takes twenty-four bit operands, produces forty-eight bit outputs and

has a fifty-six bit accumulator. These processors include architectural support for

controlling rounding and normalization of results.

Since the dominant language for programming digital signal processors is assem-

bly, generally there is some effort put into the instruction set so as to make it easier

for the assembly language programmer. For example, exposed pipelines are usually

avoided, however, in the quest for higher performance at lower unit cost, designers

of some processors (such as the TMS320C50) have resorted to exposed pipelines.

Since multiply-accumulate operations are so common in digital signal processing ap-

plications, explicit multiply-accumulate instructions are included in the instruction

set of digital signal processors. In general purpose processors multiply-accumulate

operations might be supported via chaining of the multiplier and adder functional

units (particularly in RISC implementations). Even the paragon of CISC processors,

the VAX, didn't have an explicit floating-point multiply-accumulate instruction, al-

16

though it did have an extended integer multiply instruction that could be used in

some instances to perform multiply-accumulate operations [19].

The problem of exposed pipelines is significant in that it hampers the assembly

language programmer. It promises to become much worse in future processors as

throughput considerations demand deeper pipelines. This is clearly a problem that

must be managed in the programming tools. In particular, new programming tools

should be able to migrate code among successive generations of processors with dif-

fering pipeline depths without programmer intervention.

Dataflow support. Since digital signal processors are designed to support real-

time processing of large quantities of sampled data they generally have support for

enhanced dataflow. Modified Harvard architectures are generally applied, particularly

with respect to on-board memories. Some digital signal processors also support modi-

fied asymmetric Harvard architectures with respect to external interfaces that support

data storage and I/O (input/output) operations. For example, the TMS320C30 has

a twenty-four bit (16M word) primary addressing space for programs and data and a

second thirteen bit (8K word) addressing space for data storage and peripherals.

Some digital signal processors include DMA controllers that are capable of per-

forming memory-memory move operations concurrent with computational tasks. An

independent DMA controller would typically be used to load new data into the on-

chip memory while some computation is performed. This allows an internal Harvard

architecture to be better exploited by keeping the processor busy with computation

rather than programmed data I/O. Currently these DMA resources are managed ex-

plicitly by the programmer. To support rapid code development and portability it is

important that the management of the DMA resources be simplified, at least, if not

moved completely into the programming tools.

17

1.2.3 Techniques for exploiting instruction level parallelism

As VLSI (very large scale integration) technology has improved it has become

possible to include additional hardware resources to enhance the performance of gen-

eral purpose and application specific processors. To increase throughput in traditional

von Neumann machines additional hardware resources are added to exploit opportuni-

ties for instruction level parallelism [20]. The techniques that have been developed to

exploit opportunities for instruction level parallelism are superpipelining, superscalar

architecture, dataflow processors and very long instruction word architecture. Since

software development costs have spiraled upwards, a significant amount of work has

been done in the area of automatic compiler-based optimization of high-level language

code. To a certain extent the ability to automatically optimize code drives general

purpose processor architecture. An excellent survey on the topic of compilation for

parallel machines can be found in Gokhale and Carlson [21].

The technique of superpipelining has been exploited by processors such as the

DEC Alpha and Intel Pentium Pro to achieve high throughput. Superpipelining

works by adding pipeline stages so as to achieve a very short machine cycle thus

allowing a high issue rate. While instructions are issued sequentially at a high rate

they take many cycles to complete, so while one instruction is started several or many

previous instructions may be in various stages of completion. The disadvantage of

superpipelining is that it increases latency (the time from when an instruction is

issued to when it is completed) and makes pipeline flushes more expensive. From

a hardware perspective the addition of pipeline registers requires significant extra

hardware resources. To hide the pipeline from the programmer and/or compiler the

processor must keep track of resources that have been committed to instructions that

are in progress in the pipeline. If resource conflicts occur then the pipeline is stalled

or bubbles are introduced into the pipeline. Instructions are generally ordered by

18

the compiler, programmer, and/or processor so as to avoid pipeline stalling whenever

possible.

Superscalar processors use multiple functional units to achieve instruction level

parallelism. Examples of modern superscalar processors are the Intel Pentium which

has two integer pipelines and one floating-point pipeline and the Sun/Texas Instru-

ments SuperSPARC [22] which also has two integer pipelines and one floating-point

pipeline. A high instruction issue rate is achieved by issuing more than one instruc-

tion per machine cycle. To do this the processor must track the resource requirements

of each instruction to be sure that it does not conflict with resource requirements of

instructions executing on other pipelines. Like superpipelined processors, superscalar

processors rely on the programmer or compiler to arrange instructions so as to mini-

mize resource conflicts and thereby maximize the instruction issue rate. Some recent

processor implementations are capable of changing the order of execution (out-of-

order execution) so as to optimize instruction issue, however, this technique is very

hardware intensive.

Dataflow processors work by having each instruction indicate which subsequent

instructions depend upon the results of a particular instruction. With this explicit

dependence information encoded into the instruction stream it is relatively easy to

issue instructions so as to achieve an optimal issue rate. Dataflow processors have not

found success in the mainstream of general purpose processors but rather in research

and application specific processors [23].

Superscalar and superpipelining are the current commercially dominant tech-

niques for achieving instruction level parallelism. There has only been one significant

commercial VLIW computer, the Trace Multiflow [24, 25]. There is also a research

VLIW in recent literature, the VIPER [26, 27]. VLIW is similar to superscalar in

that it depends upon multiple function units operating in parallel. VLIW differs

19

from superscalar in that it uses a very long instruction word to issue an instruc-

tion to each function unit on every instruction cycle. The resource interlocks that

exist in superscalar processors to prevent resource conflicts are eschewed in VLIW

machines in favor of resolving resource conflicts at compile or load time. In many

ways this philosophy is similar to a microprogrammed controller with multiple func-

tional units [28] such as some systems constructed using bit-slice devices [29]. The

proponents of VLIW propose that the resources expended in superscalar processors

to prevent resource conflicts are better spent on additional function units and that

instruction scheduling is better performed in software rather than hardware, particu-

larly since software instruction scheduling (by the compiler) can take advantage of a

global view of the program as well as additional information that exists at the source

code level but does not exist at the object code level. The early superscalar imple-

mentations were fairly successful in achieving good issue rate performance versus the

number of function units. Later implementations have been somewhat less successful

at maintaining function unit utilization; as the number of function units has increased

issue rate efficiencies have decreased. For example, some new four-way superscalar

implementations rarely achieve four issues per cycle. As the number of function units

increases the difficulties in managing the units to achieve multiple issue is becoming

increasingly complex. These problems are combining to motivate commercial inter-

ests to look at VLIW for next generation processor architectures. For example Intel

and Hewlett-Packard are collaborating on a VLIW influenced processor to replace

their existing x86 and PA-RISC products [30]. Significant obstacles — particularly

software compatibility issues — remain to be solved in order for VLIW to significantly

impact the general purpose computer market [20].

20

1.2.4 VLIW for digital signal processing

VLIW architecture insertion into digital signal processors is attractive for a va-

riety of reasons. VLIW allows multiple function units to be used in a digital signal

processor without the hardware overhead and cost associated with the bookkeeping

functions, such as scoreboards [2], found in superscalar processors. The tradeoff is

more complicated software development, however this is mitigated somewhat by most

digital signal processing applications having relatively simple codes with limited flow

control. This complexity can be managed with programming tools and these more

advanced programming tools can be leveraged to allow selection of a particular VLIW

architecture based upon programming requirements.

In addition to instruction level parallelism, digital signal processing codes fre-

quently have opportunities for block level parallelism that can be exploited on VLIW

processors [31]. For example, a windowing operation might precede a Fourier trans-

form in a real-time spectrum analyzer. Using block level parallelism a VLIW processor

might be windowing record iV + 1 while computing the Fourier transform of record

N. The problem of code expansion is one that must be seriously considered in digital

signal processing applications since memory for firmware is an expensive resource.

However, it is worth noting that digital signal processing applications tend not to

have a lot of flow control operations besides looping and thus do not exacerbate the

code expansion problem [21].

A significant advantage of VLIW over superscalar implementations is predictable

instruction execution timing. Since operations on a VLIW are scheduled into instruc-

tions at compile time and all pipeline stalls and bubbles are visible, execution time

is easily determined. Another advantage is that the DSP developer is more tolerant

of the software compatibility issues that currently hinder the application of VLIW to

general purpose markets. In particular, the DSP developer tends to be much more

21

tolerant of the expense of retargeting application codes to different processor archi-

tectures: binary object code compatibility among different generations of processors

is not required.

1.3 Research Activities

VLIW is an attractive approach for achieving parallelism, both instruction level

and block level, for digital signal processing applications. Since digital signal process-

ing applications are frequently very cost sensitive with respect to hardware, the cost

benefits of VLIW are particularly attractive. Despite the obvious benefits of VLIW

for digital signal processing there has been little interest in VLIW in the digital sig-

nal processing community, until recently. From a commercial perspective, attempts

at parallelism for digital signal processing have relied upon expensive multiprocessor

communications in Kung's Warp [32] and iWarp [33] processors, and Texas Instru-

ments' TMS320C40 [34], or alternatively multiple independently programmed ALUs

(arithmetic logic units) in Texas Instruments' TMS320C80 [35]. The iWarp processor

was developed for commercial implementation by Intel but never sold in any volume.

The TI TMS320C40 is essentially a TMS320 family floating-point processor with six

integrated communications ports allowing C40 to C40 data I/O. Unfortunately the

C40 has limited appeal due to high cost — largely driven by the die area overhead

of the communication ports and the 391 pin interstitial ceramic PGA (pin grid ar-

ray) package. Another impedance to widespread use of the C40 was the difficulty

in writing code that used the C40's communications features. The new TMS320C80

combines a RISC floating-point processor with multiple ALUs under independent

program control. The ALUs are optimized for pixel processing operations and the

device is optimized for, and being marketed towards video processing applications.

22

Attempts to construct parallel processing digital signal processors have not been

entirely successful. The currently extant commercial solutions rely on MIMD archi-

tectures that have proven to be difficult to use effectively for digital signal processing

applications. The ultimate goal of this research was to arrive at a VLIW digital sig-

nal processor architecture that integrates RNS (residue number system) arithmetic

elements into an architecture capable of performing general signal processing tasks.

Inclusion of RNS processors is motivated by the high arithmetic bandwidth relative

to die area that can be achieved with RNS. To achieve this goal, the constraints of

digital signal processing applications and their differences from general purpose ap-

plications must be carefully considered. To this end, the following research activities

were undertaken:

1. Identify the function units required of a VLIW digital signal processor. Quantify

the number of units required, on-board memory requirements, and I/O band-

width requirements. This will be driven by algorithmic requirements. This is

not a quest for a single solution but rather a spectrum of solutions.

2. Study the insertion of RNS processing elements into a non-application specific

VLIW digital signal processor. RNS has proven to be very attractive for appli-

cation specific digital signal processors, however, it is difficult to use for non-

application specific digital signal processors. Identify those elements required

to integrate RNS computing with general DSP problems. Quantify advantages

and disadvantages of RNS insertion.

The first objective is analytical in nature. While basic digital signal processing

algorithms such as filtering and Fourier transforms are considered, more complex sig-

nal processing algorithms such as the QR decomposition [5] necessary for applications

such as beamforming [36] are examined. To fully take advantage of the proposed ar-

23

chitecture it is necessary to identify where and under what constraints RNS processing

can be applied as previously suggested by the author [37]. A spectrum of resource

requirements are developed. This is consistent with the current trend towards proces-

sor cores with variants designed for specific markets; microprocessors of fifteen years

ago may have only been offered in one or two variants whereas modern processors

are offered in many tens of variants (hundreds or thousands if standard cell cores are

included) [1].

The second objective is primarily a synthesis and comparative computer architec-

ture problem. Since the developed architecture includes both RNS and conventional

arithmetic elements, a balance is identified within realistic current and anticipated

future technological constraints.

To tie these research objectives together it was necessary to address the problem of

programming a full VLIW DSP microprocessor. The instruction scheduling problem

is relatively well-understood and is a subject of ongoing research. This problem is not

addressed here. To enable a program first, select hardware last system integration

paradigm it is necessary to enable processor independent software development. The

solution to this problem is to adopt a high-level language for programming DSP ap-

plications. Existing high-level languages are intended for general purpose computers,

not digital signal processors. Therefore, the obvious conclusion is that a high-level

language for digital signal processors and digital signal processing applications is re-

quired. The C programming language is considered a "high-level assembly language"

for general purpose processors, however, performs poorly in digital signal processing

applications, especially on DSP microprocessors.

To produce a high-level assembly language that works well for digital signal pro-

cessing applications and DSP microprocessors, the semantics of the C programming

language have been significantly modified, creating a new language, Cjjgp . The

24

Gjygp language is an innovative approach to high-level language DSP programming.

A language reference manual with a complete LALR (lookahead left recursive) gram-

mar is provided in Appendix A.

CHAPTER 2
INTRODUCTION TO THE RESIDUE NUMBER SYSTEM

The following introduction and theoretical sections are derived from Mellott, et

al. [38]. There exist a number of signal processing applications that demand high com-

putational throughput in combination with high reliability, small size, and low power

dissipation. In the past, high performance has come at the expense of reliability,

size, power, and cost requirements. The prevalent arithmetic system used in digital

hardware is two's complement. While two's complement is easy to use, it suffers from

several impediments to achieving high performance. The speed of the adder in a two's

complement system decreases at least with the logarithm of the word width of the

adder due to the propagation of the carry term across the adder. The two's comple-

ment multiplier suffers not only from the "curse of carry," but also from quadratic

growth of the required die area as the word width of the operands increases [39]. Mul-

tiplier structures continue to occupy large die area on modern VLSI microprocessors.

Since the RNS is a carry-free arithmetic system, word widths of arbitrary size may be

produced with no speed penalty in the adder. The size of the multiplier also grows

linearly with respect to the word width of the multiplicands, rather than quadraticly

as in two's complement schemes. The speed of RNS rithmetic elements, both addition

and multiplication, is independent of the word width. Besides high performance, the

RNS enables a high degree of fault-tolerance at the architectural level [40, 41]. Due

to the high level of integration possible with RNS arithmetic elements, RNS is an

enabling technology for ULSI (ultra large scale integration) systolic arrays [33, 42]

and other high-order, integrated multi-processor architectures.

25

26

2.1 The Chinese Remainder Theorem

There are two large penalties in performing arithmetic in the two's complement

system: the carry must propagate across the entire word for addition operations,

and the size of the multiplier grows as the square of the width of the word. The

Chinese Remainder Theorem (CRT) [43, 44] suggests a means of eliminating the

carry propagation problem and of producing a multiplier that grows linearly with

the width of the word. The RNS takes advantage of the isomorphism Z/MZ <-*

Z/piZ x Z/p2Z x Z/p3Z x • • • x Z/PLZ given by the CRT. Throughout the remainder

of this text, the notation Zp (which is taken to be the ring ({0,1,2,... ,p — 1}, •, +))

will be used to denote Z/pZ since Zp = Z/pZ. The CRT is presented below.

Theorem 1 (The Chinese Remainder Theorem) Let M = Tlf-xPi, where for

i,j E {1,2,3,...,//}, gcd(pi,pj) = 1 for all i ^ j, and each p,- € Z+ (the positive

integers). Then there exists an isomorphism <f>: ZM *-*■ ZPl x "L^ x ZP3 x • • • x ZPL

described by the following.

Let m,i = M/pi, and rriimj1 = 1 (mod p,) for all » € {1,2,3,...,L}. If X €

IIM, let <i>{X) = (xi, x2, x3,..., XL) where x, = X (mod p,) for all i G {1,2,3,..., L}

then X = <f>~1{x\, x2, x3,..., XJJ) is described by the following congruence

XsfemfKr1*,-),,} (modM) (2.1)

where («)p indicates the unary (mod p) operation.

The CRT is the basis of the RNS. In the RNS, two's complement integers are

converted to their L-tuple residue representation by the ring isomorphism (f>: "LM *-*

ZPl x ZP2 x ZP3 x • • • x ZPL described by the CRT. The numbers, which are in their L-

tuple representation, may be added and multiplied component-wise and reconstructed

via the CRT to form the correct result in "LM-

27

Generally, the moduli are chosen to be small enough that the multipliers may

be implemented with the aid of reasonably small memory-based lookup tables. In a

VLSI or ASIC implementation advanced memory technology could be leveraged.

2.2 Complex Residue Number System

The RNS may be used to perform computations with complex numbers by using

RNS arithmetic elements to emulate the operations which would be performed using

conventional arithmetic. The use of RNS arithmetic to perform complex operations is

called complex RNS or CRNS. Take the Gaussian integers a+jb, c+jd € %idj]/(j2 +

1), and let rß denote the isomorphism between the Gaussian integers and the CRNS:

V>: Zjw[i]/0'2 + 1)HZPIXZKXZP,X-X ZPi x ZPl x ZP2 x ZP3 x • • • x ZPL. (2.2)

Then addition in the CRNS is performed as

(a+jb) + (c + jd) = (a + c)+j(b + d) (2.3)

and multiplication in the CRNS is performed as

(a + jb) x (c + jd) = (ac - bd) + j(ad + be) (2.4)

= 0-1w«Wc)-^W(rf)} +

iV"1{V'(«)V'(^ + V'W(c)}.

28

While the complex addition takes only two additions, the complex multiplication

takes four multiplications and two additions: the CRNS requires the same number of

additions and multiplications as the Gaussian integers.

2.3 Quadratic Residue Number System

The quadratic RNS, or QRNS [41], is a variation upon the RNS which allows com-

plex additions to be performed with two RNS additions and complex multiplications

to be performed with two RNS multiplications. This enhancement is accomplished

by encoding the real and imaginary components into two independent components.

Given a prime p of the form p = Ak -f 1 where k € Z, the congruence x2 = — 1

(mod p) has two solutions in the ring (Zp, +, •) that are multiplicative and additive

inverses of one another. Let j and j~x denote the two solutions to the above congru-

ence. Define a mapping 0: Zp\j]/(j2 + l)-»ZpxZp (where Zp/{j2 +1) is a sub-ring

of ZM/0' + 1)) by

0(a+jb) = (z,z*) (2.5)

z = (a + jb) (modp) (2.6)

z* = (a-jb) (modp). (2.7)

The inverse mapping 0~l: ZpxZp-> Zp[/]/(j
2 + 1) is given by

B-\z,z*) = {2~\z + z*))p+j(2-1j-l(z - *•))„. (2.8)

Suppose (z,z*),(w, w*) e Zp x Zp. Then the addition and multiplication opera-

tions in the ring (Zp x Zp, -f, •) are given by

(z,z*) + (w,w*) = (z + w,z* + w*), (2.9)

29

and

(z, z*)(w, to*) = (zw, z*w*). (2.10)

The isomorphic mappings 6 and B~x are generally implemented via arithmetic

elements and table lookup. Since the z and z* channels are independent, parallel

hardware may be constructed to perform operations on both channels at the same

time without any communication between the channels. This parallelism allows a

complex addition or multiplication to be performed in one cycle. While parallel

hardware would allow a CRNS addition in one cycle, the multiplication in the CRNS

requires two additions and four multiplications. Using the same amount of hardware

as a QRNS multiplier-accumulator, a CRNS multiplier-accumulator would take twice

as many cycles to complete a single multiply-accumulate operation.

2.4 Galois-Enhanced Quadratic Residue Number System

The QRNS requires a multiplier that takes N bit inputs and produces an N bit

output. The multiplier could be implemented using either a direct implementation

with modular correction or a lookup table. The primary disadvantage of these ap-

proaches is that despite the small size of the RNS adder, the multiplier is still large.

By taking advantage of the properties of Galois fields [45], it is possible to simplify

the implementation of an RNS multiplier.

For any prime modulus p there exists some a G Zp that generates all non-zero

elements of the field GF(p). That is to say,

{c?\i = 0,l12,...,p-2} = GF(p)\{0}. (2.11)

Thus, all non-zero elements of Zp may be uniquely represented by their number the-

oretic logarithms. These number theoretic logarithms may be added modulo p — 1 to

30

produce multiplication,

(a<i+J'>H)p = (aV)r (2.12)

Note that since zero is not an element of GF(p) \ {0} the zero must be handled as an

exception. Practically, this means that the inputs must be checked before the number

theoretic logarithm to determine whether either one is a zero, and if one of the inputs

is a zero, then the output of the multiplier should be set to zero.

The architecture of a Galois-enhanced QRNS, or GEQRNS, multiplier is illus-

trated in Figure 2.1 without the zero detection and handling indicated. The mul-

tiplier requires two duplicate 2^-entry memories to perform the number theoretic

logarithm, an adder to add the logarithms, and an 2Ar+1-entry table to perform the

modulo p — 1 correction and number theoretic exponentiation. Note that while the

modulo p — 1 correction and number theoretic exponentiation represent two separate

steps, they may be integrated into a single table. Alternatively, if a modular adder

is used, the 2N+1 -entry table may be replaced with a 2^-entry table. Typically, the

multiplicands will be converted to the GEQRNS number theoretic logarithm form by

the conversion engine which computes the residues of the integer inputs.

<ab>.

Figure 2.1: Block Diagram of a GEQRNS Multiplier

31

2.5 Logarithmic Residue Number System

The logarithmic RNS, or LRNS [45], is an enhancement to the GEQRNS whereby

the results of addition operations are kept in the form of a number theoretic logarithm.

Using the definition of p and a from Section 2.4, if x, y G GF(p) \ {0} then there

exist unique i,j € {0,1,2,..., N — 2} such that x = a' and y = a3. If x or y are zero

then the arithmetic operation must be handled as an exception. Multiplication may

be performed as in the GEQRNS using addition:

{xy)p=(aW)p = (a^^)p. (2.13)

In the GEQRNS one would exponentiate a number theoretic logarithm before per-

forming addition. The disadvantage of this is that two types of data are handled by

the system and data conversions may need to be performed in some instances.

In the LRNS addition is performed in such a way as to keep the results in loga-

rithmic form. Consider computing the sum x + y in the LRNS:

(x + y)p = <a*' + a»')P (2.14)

= (o,"(l+a<i-")'-1)>p.

There exists a unique k € {0,1,2,..., N - 2} such that ak = (1 + a^'^'-1). The

logarithm k is a function of the difference (j — i)p-i (i.e., k = f({j — i)P-i)) and may

be precomputed and stored in a table. Consequently, Equation 2.14 may be reduced

to

(a,'(l + <*<i-,'>''-1)>P = (a'aW-*"*'-1)),, (2.15)

= (a,'+/«J'-,'>*-l))p.

32

It is evident from this form that an LRNS addition operation can performed using one

addition operation, one subtraction operation, and one small-table lookup operation.

Since zero does not have a logarithm, if either or both of x and y are zero then the

calculation must be handled as an exception. This is not difficult since zero is the

additive identity. A block diagram of an LRNS multiplier-accumulator that takes

LRNS operands as input and produces an LRNS result is shown in Figure 2.2. A

value that is not a valid representation for the logarithm of a number in GF(p) \ {0}

is used to represent zero.

2.6 Previous Work in the RNS and Conclusions

In Mellott [37], a high performance multiprocessor architecture based upon the

RNS is described. The Gauss machine [46, 38] is a hybrid systolic array and vector

processor of GEQRNS processing elements which can achieve the peak equivalent of

320 million operations per second when performing complex arithmetic, see Figure 2.3.

From this work it was determined that RNS systolic arrays are capable of performing

many computations at rates limited only by the I/O capabilities of the processor. The

I/O capabilities of the processor are ultimately limited by the VLSI technology: the

practical limits on the number of I/O pads on a die represents a significant bottleneck.

The issues involved in management of the number of pads versus the total die area

are illustrated in Figure 2.4. The I/O problem is exacerbated by the limited speed

of external connections versus internal connections. Furthermore as the pad count

increases the minimum die area increases due to the requirement that the pads are

arranged on the perimeter of a square or almost square die, see Figure 2.4(a). As I/O

pads are added to a die, the area increases with the square of the number of pads.

Improvements in process technology (i.e., scaling from an x fiva to x/2 /im minimum

feature size) do not provide any relief since pad size is determined by the physical

33

A

Zero Detect

0

PSEL_5l

ENABLE
V7

Register AZ

ASEL VI 0/

B

Zero Detect ZB

<A+B>„.,

±P_
Register

PR

Force Zero 4
PRZ

Zero Detect
AZS +

ZA $>1

ENABLE-^~iedsle7

M> T^l PSEL

Zl

ZF

BSEL

BZS^

<A-B>„.,

Function
ROM

,SF

Zero Detect

<A+B>li

ZR

Figure 2.2: Block Diagram of an LRNS Multiplier-Accumulator

constraints of the external electrical connection, not the fabrication process. In fact,

ongoing process and lithography improvements also serve to exacerbate the number

of pads to die area ratio problem by increasing the amount of logic that can be placed

on-chip without improving the number of pads, see Figure 2.4(b). Ultimately there

is no way to add enough pads to supply data to a large scale processor that uses all

of the die area for arithmetic elements.

The conclusion that follows from this analysis is that data must be loaded on-chip

and substantial processing must be done on that data to have any hope of achieving

34

Figure 2.3: Photograph of Gauss Machine Single Channel, Quad Processor Card

35

HIHIHI im-rr

lx
Core Die

Area

2x
0 I/O Pads

' 11 ii i im

lx
I/O Pads

I H I I I I I I I I I I Ill Illl

4x
Core Die Area

II I I I I I I I I II I I I I I I I I I I I I I I I ITTT

 II I I I I I I I I I I

3/4x
Core Die Area E

i in inn II i i n mi

(a)

lx Feature Size
i i>t 11'

.l/4x Feature Size

NT
n 1111111

I I I I I I I ITTT

l/2x
Feature Dimension

1 111 11IIII1IIII

1111111

-T
T

I II 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(b)

Figure 2.4: Illustration of (a) Pad Quantity to Area Ratio Management Options and
(b) Impact of Process Improvements on Pad Quantity to Area Ratio

optimal use of large arrays of RNS processors. To enable some sort of optimally

utilized RNS signal processor to be used in general purpose signal processing applica-

tions, a highly integrated RNS processor must be designed. A VLSI implementation

must include the following features:

• an RNS processor,

• RNS/integer forward/reverse conversion hardware,

• a conventional arithmetic processor,

36

• substantial on-chip memory to alleviate data I/O bottlenecks, and

• an independent data I/O capability to shuttle data between on-chip and off-chip

memories.

From these specifications, the most obvious opportunities to accelerate DSP op-

erations using the RNS are either to loosely couple an RNS accelerator to a micro-

processor (DSP or general purpose), or to tightly couple RNS architectural elements

to a DSP microprocessor. Since the latter approach implies multiple function units

within a single instruction set architecture, the architecture should support multiple

issue.

CHAPTER 3
THE ATHENA SENSOR ARITHMETIC PROCESSOR

The Athena Sensor Arithmetic Processor1 (ASAP) has been important in moti-

vating this study. The ASAP device provided motivation to examine the integration

of VLIW architectural techniques with digital signal processors, and in particular, the

integration of the ASAP processor technology in the VLIW environment. To date,

RNS processor implementations have been hardwired to specific applications. To al-

leviate the burden of custom engineering of hardware solutions that use the RNS, it is

necessary to integrate an RNS technology into an environment where applications can

be developed at the software level. A VLIW approach was selected since it offers the

means to manage multiple functional units, as would be needed in a general purpose

digital signal processor that uses an RNS processor technology.

The primary goal of the Athena Sensor Arithmetic Processor (ASAP) device

is to perform video rate DFTs using the Good-Thomas FFT [9, 7, 11] algorithm.

To support the target 231x231 frame size, it is necessary to support Rader prime

DFTs [10, 7, 12] of length three, seven, and eleven. Therefore convolutions of length

two, six, and ten must be supported. Since two dimensional DFTs can be constructed

using one dimensional DFTs, it is reasonable to expect the device to perform a one

dimensional DFT using on-chip resources. To this end at least three banks of 256

words of on-chip SRAM (static RAM) are desirable. For other applications larger

on-chip memories may be desirable; however, for the ASAP design this RAM size

xThe Athena Sensor Arithmetic Processor was developed by the author as a consultant to The
Athena Group, Inc. in support of U.S. Air Force contract F08630-93-0072.

37

38

and type was the most logical. One of the three banks can supply the z or z* com-

ponents (assuming QRNS coding) for the DFT while another bank can contain the

coefficients for the DFT, and the last bank can be used to accumulate the results.

Since the designed LRNS arithmetic elements have an extremely voracious appetite

for data, inclusion of a fourth bank of memory to allow data I/O to be performed

concurrently with computations is warranted.

Since data locality can be insured, the data RAMs are connected to the processor

and external data I/O path via a configurable switch. The configuration is written

so as to select individual memories as operand sources, results storage, or to connect

a memory block to the external data I/O path. A block diagram of the resulting

architecture is shown in Figure 3.1.

256 Word

SSRAM

256 Word

SSRAM

256 Word

SSRAM

256 Word

SSRAM
t

1
■

Configurable Switch

*

Variable Length (12) LRNS Correlator/Vector

Processor

External

Data I/O

Figure 3.1: Block Diagram of ASAP Architecture

The ASAP chip is a four moduli (241, 233, 229, 197) SIMD (single-instruction,

multiple-data) processor. There are twelve LRNS arithmetic elements configured as

a variable length linear correlator/convolver. Circular convolution is achieved by

restarting the convolution operation. The processor array may also be used for vec-

tor addition, multiplication, and multiply-accumulate operations. To ensure adequate

data bandwidth to support computation, there are four 256 word synchronous static

39

RAMs (SSRAMs) that are used for processor data. Provisions are made for paral-

lelism by allowing RAM I/O concurrent with computations for those RAM blocks

not involved in the current computation, and by allowing arithmetic and convolution

operations concurrent with recovery of previous results from the convolver. Control

of this first generation of large scale devices is provided entirely by external inputs to

the device for maximum flexibility.

The ASAP processor is fabricated in the MOSIS (metal-oxide semiconductor im-

plementation service) 0.8 /xm triple-metal CMOS (complementary metal oxide semi-

conductor) process (Hewlett-Packard) and packaged in a 108 pin ceramic pin grid

array package. An annotated die photo of the device is shown in Figure 3.2. There

are four processor "quadrants," and each quadrant is independent except for control,

clocking, and power, which are shared among all four quadrants. Within each proces-

sor quadrant the four memories are clearly visible, as are the twelve LRNS multiplier-

accumulators that comprise the array processor. Total die area is 38.6 mm2. The core

area (die size minus pads) is 31.8 mm2. The forty-eight eight bit LRNS processors plus

control and data buses that form the thirty-two bit length twelve convolver/correlator

occupy only 19.6 mm2 of the die area. Each individual LRNS multiplier-accumulator

core occupies only 0.246 mm2 (210 fim x 1170 (im) of die area. The design scales

directly into the 0.6 fim MOSIS (Hewlett-Packard) process that went online in Fall

of 1995 — the above core areas may be multiplied by 0.5625 to arrive at the core die

areas in the 0.6 ^m process.

3.1 Test Chip

A small test chip was fabricated before the large ASAP device was fabricated to

test the function and performance of the key constituent cells of the ASAP device. The

device implements a single GEQRNS multiplier-accumulator unit. The test device

40

Figure 3.2: Annotated Die Photograph of the ASAP Device

41

was fabricated using the standard TinyChip frame under the MOSIS 2.0 /urn CMOS

process. In addition to the basic cells required by the ASAP device, the test device

also included enhanced observability features that could not have been reasonably

provided for on the full-scale ASAP device due to packaging constraints.

The test device is packaged in a forty pin ceramic DIP (dual in-line package)

with a pinout as given in Figure 3.3 and signals as described in Table 3.1. A block

diagram of the arithmetic unit included on the device is shown in Figure 3.5. The

device has two data inputs, the A bus and B bus. There is a single data output, the

Y bus. There are six digital control inputs, the analog threshold input for the ROM

(read-only memory) sense amplifiers, and a clock signal that is buffered and drives

the register elements. There are two positive rail (VCC) and ground (GND) inputs

for power, one of each used to drive the I/O ring and core logic.

The test device is shown in a test fixture with the cavity exposed in Figure 3.4.

Due to the packaging constraints of the TinyChip format a great deal of die area is

wasted in this implementation. Using the same die area as the TinyChip, but with

a slightly modified geometry, two multiplier-accumulators could have been placed on

the device.

Using undedicated pins, two test structures were added to the test device. First,

a single true single phase positive-edge triggered enable D register was added. This

register was included because of it was an untested design and its functionality is

dependent upon dynamic circuit performance. The register's input is the A7 data

operand input, its enable signal is the A6 data operand input, and its buffered output

is presented on the dedicated pin A70UT.

The second test structure was an eight-to-one MUX with its inputs connected

directly to the eight ROM sense amplifier outputs. Like the register element, the

sense amplifier represents one of the riskier portions of the design due to its analog

42

Table 3.1: ASAP Test Chip Pin Descriptions
Signal Name Input/Output Pin Numbers Description

A0-A7 I 37, 38, 39, 40,
1, 4, 3, 2

A operand input.

B0-B7 I 34, 33, 32, 31,
29, 28, 27, 26

B operand input.

Y7-Y0 0 6, 7, 8, 9, 11,
12, 13, 14

Y result output.

ASEL I 19 Adder A operand mux se-
lect. One selects the output
of the P mux while zero se-
lects the Y bus.

BSEL I 17 Adder B operand mux se-
lect. One selects the B bus
while zero selects the P bus.

PSEL I 18 P mux select. One
forces zero output while zero
passes the A bus through.

FSEL I 20 Feedback bus mux select.
One forces zero into the
accumulator /output register
while zero passes the F bus
through.

AENABLE I 21 Adder register enable.
MENABLE I 23 Multiplier register enable.
THRESH Analog In 24 ROM sense amplifier thresh-

old. Never tie lower than
2V.

PHI I 36 Clock input.
VCC I 30 Logic power supply.
VCC I 5, 15 I/O power supply.
GND I 10 Logic ground.
GND I 25,35 I/O ground.

A70UT 0 16 Registered copy of A7. Con-
trolled by A6.

EN I 3 Register enable for A7 out-
put register. Same pin as
A6.

TA0-TA2 I 26, 27, 28 ROM test output mux se-
lect. Same pins as B5-B7.

TOUT 0 22 ROM test mux output.

43

A4 [1 40] A3

A7 [2 39] A2

A6(EN) E 3 38] Al

A5 C 4 37] AO

Vcc C 5 36] PHI

YO [6 35 J GND

Yl [7 34] BO

Y2 [8 33] Bl

Y3 [9 32] B2

GND [10 31] B3

Y4 [11 30] Vcc

Y5 C 12 29] B4

Y6 [13 28] B5(TA2)

Y7 C 14 27] B6(TA1)

Vcc [15 26] B7(TA0)

A70UT [16 25] GND

BSEL [17 24] THRESH

PSEL C 18 23] MENABLE

ASEL [19 22] TOUT

FSEL [20 21 JAENABLE

Figure 3.3: Pinout of the Test Chip

nature. The select inputs for the MUX, TAO, TA1, and TA2, are also B5, B6, and

B7, respectively. This is an acceptable re-use of these inputs since the processor can

be halted by negating the AENABLE and MENABLE signals. The output of the

MUX is sent to the dedicated output TOUT. By cycling TA0-TA2 and monitoring

TOUT the output of the ROM can be monitored. This allowed for selection of the

THRESH analog input to the ROM sense amplifiers during testing.

Extensive testing of the device determined that the device performed as expected.

Testing included complete coverage of each arithmetic and memory function. Com-

44

Figure 3.4: ASAP Test Chip in Test Fixture

plete coverage of the test vectors was aided by the design which allowed each logic

element to be tested in isolation.

3.2 Detailed Architecture Description

3.2.1 Synchronous static RAM

The synchronous SRAM consists of a 256 x 8 static RAM, an address input register,

data input register, data output register, and command input register. A block

diagram of the memory is shown in Figure 3.6. The registers are clocked by the

system clock and are enabled by RAMEN. The write enable (WE) signal is active

high while the read enable (RE*) signal is active low. The WE signal must be asserted

and clocked into the command register in order for a write to execute. Likewise, the

45

Zero Detect

MENABLE

PSEL

0 u

B

Zero Detect

<A+B>M.,

FSEL

AENABLE _

0

Li
^o 1

Reg'ster

Register

Exponentiation
ROM

Force Zero 4

Register

ASEL_5T~a

<A+B>„

3>

Register

BSEL

Figure 3.5: Block Diagram of Modular Multiplier/Adder/Accumulator Arithmetic
Element

RE* signal must be asserted and clocked into the command register in order for a

read to execute.

The operation of the synchronous SRAM is summarized in Table 3.2. Note that

the pipeline is essentially two levels deep for both reads and writes. For example,

in a write operation an address, data, and a write command are presented to the

RAM's inputs. On the first rising clock edge the address, data input and command

are clocked into the registers. The write is not complete such that the data is available

CLK

AR

A7-0

V

RAMEN

256x8

Static

RAM

CR

>

46

DIR
V

DOR

V

DQ7_o

WE RE*

Figure 3.6: Block Diagram of Synchronous SRAM

Table 3.2: Synchronous SRAM Command Effects
CLK RAMEN WE RE* Effect

X X L X DOR -» DQ7_0

X L H X —

T H L X A7_o—► AR
DQ7_o- -+ DIR
SRAM(AR-) -> DOR

T H H H A7_o ► AR
DQ7_o- -> DIR
DIR- -> DOR
DIR+ -» SRAM(AR+)

T H H L A7_0- -> AR
DQ7_o- -» DIR
SRAM(AR-) -> DOR

'he +/- indicate signal status after/before the clock edge.

for reading until the next clock edge. Likewise, for a read operation, the address and

read command are presented before the first clock edge. The data is clocked into

47

the data output register (DOR) on the next (second) clock edge, after which it is

externally available.

3.2.2 Data switch

Connections between processor inputs and outputs, memories, and the external

data I/O bus are performed by the data switch array. This array consists of four

eight bit wide four-to-one MUXes connecting the four RAM blocks with the A and

B processor bus inputs, Y processor shift register output, and the external data I/O

bus. The configuration of this switch is controlled by the elements of the command

and configuration register. A block diagram of the data switch is given in Figure 3.7.

DB YSO

_L
AB

J_
BB

_L
RDBO
RDB1
RDB2
RDB3

DSELli0 YDSEL1(0 ABSEL1)0 BBSELli0

Figure 3.7: Data Switch Block Diagram

3.2.3 Command and configuration register •

The operation of the ASAP device is controlled by an internal configuration regis-

ter. This command register is a thirty-two bit write-only register that is connected to

the data bus I/O lines. Write is enabled to this register by asserting the CMDREN

signal. The command register controls the configuration of the RAM interconnec-

tion and the connection of the individual processor elements to the 'A' and 'B' shift

registers.

48

Table 3.3: Command Register Map
Signal Register Signal Register Signal Register Signal Register

DA7

DA3

BDSELO
BDSEL2

DA6

DA2

ADSELO
ADSEL2

DA5

DAX

BDSELl
BDSEL3

DA4

DAo
ADSELl
ADSEL3

DB7

DB3

BDSEL4
BDSEL6

DB6

DB2

ADSEL4
ADSEL6

DB5

DBi
BDSEL5
BDSEL7

DB4

DBo
ADSEL5
ADSEL7

DC7

DC3

YDSELl
ABSELO

DC6

DC2

YDSELO
ABSEL1

DCs
DCX

DSEL1
BBSELO

DC4

DCo
DSELO

BBSEL1
DD7

DD3

BDSEL8
BDSEL10

DD6

DD2

ADSEL8
ADSELIO

DD5

DDX

BDSEL9
BDSEL11

DD4

DDo
ADSEL9
ADSEL11

The A and B shift registers are controlled by the ADSELn_o and BDSELn_o

elements of the command register. A one in the register causes that element of the

A or B shift register to take input from the A or B bus (respectively) while a zero

causes that element to take an input from the previous element of the shift register.

The ABSELi_o, BBSELx-o, DSELi_0, and YDSELx_o signals control the oper-

ation of the switch between memory banks, the processors, and the external data

I/O interface. These selects should not be placed into contention, although the most

egregious contentions are precluded by design.

3.2.4 LRNS correlator processor

Twelve LRNS arithmetic elements are arranged with input operands that come

from shift registers that shift in the opposite direction, thus allowing correlation and

convolution operations to be executed. Results are shifted out of the arithmetic

elements using another shift register. This architecture is detailed in Figure 3.8.

Each register in the input shift registers can take inputs either from the preceding

register in the shift register or from an external bus. This arrangement allows the

processor to easily be configured as a variable length correlator, thus reducing the

pipeline start delays associated with short length correlations such as those used in

the Rader prime DFTs that are components of the Good-Thomas DFT. The registers

49

BB

BDSELO_

BDSEL1_

BDSEL2_

BDSEL3^

BDSEL4_

BDSELj^

BDSEL6_

BDSEL7_

BDSEL8_

BDSEL9_

BDSELIO^

BDSEL11

ENABLE

ASEL

BSREN AB ASREN

SR ADSELO

SR

SR

SR *

SR

SR

SR *

ADSELl

ADSEL2

ADSEL3

ADSEL4

ADSEL5

ADSEL6

SR

SR

SR

SR

SR

ADSEL7

ADSEL8

ADSEL9

„_^DSEL10

._A.DSEL11

SR

SR

SR

SR

SR

SR

SR

SR

SR *

SR

SR

SR

BSEL

PSEL

YSREN YDSEL

LRNS PE

I I 1

LRNS PE

I I I

LRNS PE
I I I

LRNS PE

I I I

LRNS PE

LRNS PE

LRNS PE

LRNS PE

I I I

LRNSPE

I I I

LRNS PE

I I I

LRNS PE

I I I

LRNS PE

YSO

J_
SR

SR

SR

SR

SR

SR *

SR

SR

SR

SR

SR

SR

Figure 3.8: LRNS Correlator Processor

50

in the output shift register either take their inputs from the LRNS processor elements

in parallel or from the previous register in the shift register chain. The data I/O and

control signals for the correlator are given in Table 3.4.

Table 3.4: Correlator Data I/O and Control Signals
Signal Description

AB7_o A shift register input bus.
BB7_o B shift register input bus.

YSOT-O Y shift register output.

ADSELu-o A shift register data source select. One selects the AB bus
while zero selects the previous shift register. These sig-
nals come from the command and configuration register.

BDSELn_o B shift register data source select. Operates like ADSEL.
YDSEL Y shift register data source select. One selects the LRNS

processor element output while zero selects the previous
shift register.

ASREN A shift register enable.
BSREN B shift register enable.
YSREN Y shift register enable.

3.2.5 LRNS processor element

A detailed block diagram of the implemented LRNS arithmetic unit is depicted

in Figure 2.2. A simplified version of the same block diagram is shown in Figure 3.9.

The simplified version of the diagram is adequate to describe the functional operation

of the LRNS processor element to the user of the ASAP device.

The processor element is controlled by three select signals and one enable signal

that enables the pipeline. The use of the three select signals is summarized in Ta-

ble 3.5. Referring to Figure 3.9, it would appear that certain combinations of select

inputs might be useful but are marked as invalid operations in Table 3.5. To under-

stand why these are invalid operations one must turn to the detailed block diagram

of the LRNS processor element given in Figure 2.2.

51

PSEL

ASEL

ENABLE

BSEL

Figure 3.9: Simplified Block Diagram of Modular Multiplier/Adder/Accumulator
Arithmetic Element

Table 3.5: LRNS Control Signals and Operations
PSEL ASEL BSEL Operation

0X0 Invalid Operation
0 0 1 Vector Additions (A + B -* Y)
0 1 1 Vector Accumulate (B + Y -► Y)
1 0 0 Vector Multiply {AB -> Y)
1 X 1 Invalid Operation
1 1 0 Multiply Accumulate {AB + Y -► Y)

Depending upon the operation being performed, the length of the pipeline is

either one or two registers: when the multiplier is used the length is two registers,

and when the multiplier is not used the length of the pipeline is one register. In

some circumstances an extra cycle might need to be inserted before switching from

one operation type to another. For example, to switch from vector multiplication

to vector addition an extra cycle between the last data for the vector multiplication

Input
Registers

A Input Bus

A Shift Register

B Input Bus

B Shift Register

52

Modular
Adder

Pipeline
Registers

LRNS Function
ROM

Modular
Adder

Accumulator
Register

Modular
Adder

Y Output
Shift Register

Figure 3.10: Annotated Die Photograph of LRNS Processor Element

53

must be executed so as to allow the final vector multiplication result to propagate

through the pipeline.

The LRNS processor element does not have an explicit "reset" signal. Instead the

processor must be reset programatically. Whether a reset operation is required will

depend upon the operation being performed: vector addition and multiplication do

not require initialization of the processor; while vector accumulation and multiply-

accumulate do require initialization. Initialization is accomplished by setting the data

input and control signals according to Table 3.6. The signals listed must be asserted

for two clock cycles so that the initialization can propagate through the pipeline.

Computation can begin immediately after the initialization.

Table 3.6: LRNS Processor Initialization Inputs
A OT.RNR
B OT.RNS

ASEL 0
BSEL 0
PSEL 1

ENABLE 1

3.3 Execution of Basic Algorithms

This section describes the execution of some basic algorithms on the ASAP corre-

lation processor. The algorithms shown are processor initialization, vector addition,

vector accumulation, vector multiplication, vector multiply-accumulation, and con-

volution. These operations are the algorithmic building blocks of many DSP appli-

cations.

3.3.1 Initialization

The exact command sequence for processor initialization to a reset state is given in

Table 3.7. Note that the values given for AB and BB in the table are actual encoded

LRNS values (FFi6 is an encoded LRNS zero), not hexadecimal equivalents.

54

Table 3.7: Processor Initia ization Sequence
N AB ABS ASREN | BB BBS BSREN ENABLE ASEL | BSEL PSEL YDS YSREN YSO

0 FF FFF 1 | FF FFF 1 X X 1 X X X X u
l XX XXX 0 XX XXX 0 1 0 0 1 X X u
2 XX XXX 0 XX XXX 0 1 0 | 0 1 X X u

3.3.2 Basic vector operations

The vector operations are characterized by using only one processor in the pro-

cessor chain. The vector multiplication and vector addition operations do not re-

quire that the processor be initialized while the vector accumulate operation and

multiply-accumulate operation both require that the processor be initialized before

the computation begins.

Vector multiplication of length N + 1 vectors a and b to produce the length

N + 1 vector y is given as t/,- = a,-6,- for all i € {0,1,2,... ,N}. The command

sequence for a vector multiplication is illustrated in Table 3.8. The total pipeline

delay exhibited in this operation is four cycles: one due to the input register, two

due to the LRNS processor element in vector multiplication configuration, and one

due to the output shift register. The pipeline operation of a vector multiplication is

illustrated in Figure 3.11.

r Cable 3.8: Vector Multiplication Procedure
N AB ABS ASREN BB BBS BSREN ENABLE ASEL BSEL PSEL YDS YSREN YSO

0 «0 001 fr 001 X X X X X X U
1 "1 001 h 001 0 0 X X b
2 o2 001 *? 001 0 0 X X u
3 «3 001 ft 001 0 0 u
4 «4 001 *>4 001 0 0 yo
5 «5 001 »S 001 0 0 »i
6 " " M " " "
7 «JV 001 1 te 001 1 0 0 »JV-4
8 XX XXX X XX XXX X 0 0 VN-3
9 XX XXX X XX XXX X 0 0 VN-2
10 XX XXX X XX XXX X X X X X VN-1
11 XX XXX X XX XXX X X X X X X X VN

Vector addition of length N + 1 vectors a and b to produce the length N + 1

vector y is given as y,- = a,- + 6,- for all i € {0,1,2,..., N}. The command sequence

for a vector addition is illustrated in Table 3.9. The total pipeline delay exhibited

in this operation is three cycles: one due to the input register, one due to the LRNS

55

Resource

Input SR 10 11 12 13 14 15 16 17

Multiplier

Mult Reg

Adder

Accum

Output SR O0 01 02 03 04 05 06 07

0 ' 1 ,2l3,4l5,6,7,8,9'lo'lll

Figure 3.11: Pipeline Operation for Vector Multiplication

processor element in vector addition configuration, and one due to the output shift

register. Pipeline operation of vector addition is illustrated in Figure 3.12.

Table 3.9: Vector Addition Pi •ocedu re
N AB ABS ASREN BB BBS BSREN ENABLE ASEL BSEL PSEL YDS YSREN YSO

0 «0 001 *n 001 X X X X X X U

1 «1 001 *i 001 0 0 X X u
2 oj 001 h 001 0 0 1 Ü

3 «3 001 ft 001 0 0 1 »0
4 «4 001 *i 001 0 0 1 »1
5 «■5 001 bs 001 0 0 1 »2
6 » " " " " **
7 aN 001 1 *>N 001 1 0 0 1 VN-3
8 xx XXX X XX XXX X 0 0 1 »W-2
9 xx XXX X XX XXX X 0 0 1 VN-1
10 XX XXX X XX XXX X X X X X X X Vw

Resource

Input SR

Multiplier

Mult Reg

10 11 12 13 14 15 16 17

Adder

Accum

Output SR OO 01 02 03 04 05 06 07

0 1 i '2*3 '4' ö'e'T's'ö'io1

Figure 3.12: Pipeline Operation of Vector Addition

The vector accumulate and multiply-accumulate operations require that the pro-

cessor element be initialized to zero. The procedure to accumulate an N + 1 element

vector b is given as y = YliLo &»' anc^ *s illustrated in Table 3.10. The initialization

56

of the accumulator spans steps zero through two, although the dataflow may start

at step two. The total pipeline delay incurred in this operation is three cycles: one

due to the input shift register, one due to the LRNS processor element, and one due

to the output shift register. Note that the data input must be presented to the B

broadcast bus, BB. Also note that the Y shift register is only programmed to sample

the final result so the Y shift register is not committed until the final step of the

computation. Consequently data from a previous operation may be shifted out of

the processor while an accumulate operation is underway. Alternatively, the Y shift

register can sample the LRNS processor element's Y output on each cycle allowing

intermediate results to be monitored on YSO. An example of the pipeline's operation

is given in Figure 3.13.

Table 3.10 : Vector Accum ulate Procedure
N AB ABS ASREN BB BBS BSREN ENABLE ASEL BSEL PSEL YDS YSREN YSO

0 FF 001 1 FF 001 1 X X X X X X u
1 XX XXX 0 XX XXX 0 1 0 0 1 X X u
2 XX XXX 0 to 001 1 1 0 0 1 X X u
3 • XX XXX X fc1 001 1 1 1 1 0 X X Ü
4 XX XXX X ^ 001 1 1 1 1 0 X X u
5 " " " " " " " " " " " "
6 XX XXX X bN 001 1 1 1 1 0 X X Ü
7 XX XXX X XX XXX X 1 1 1 0 X X u
8 XX XXX X XX XXX X X X X X 1 1 u
9 XX XXX X Xx XXX X X X X X X X y

Resource

Input SR FF 10 11 12 13 14

Multiplier

Mult Reg

Adder 1 1
Accum 1 1

)utput SR [Ö]
O'I^'SU'S'G'T'S'Q1

Figure 3.13: Pipeline Operation of Vector Accumulate

The vector multiply-accumulate procedure is very similar to the vector accumulate

procedure described above. A procedure to multiply-accumulate two length N + 1

57

vectors a and b to produce a scalar result y =]Cfcoa«'^« *s given m Table 3.11. The

total pipeline delay incurred in this operation is four cycles: one cycle for the input

operand shift registers, two cycles for the LRNS processor element, and one cycle for

the Y shift register. The comments about the Y shift register in the vector accumulate

operation also apply for the vector multiply-accumulate operation. An example of

the pipeline operation of a multiply-accumulate operation is given in Figure 3.14.

Table 3.11 : Vector Mu tiply-Accumu ate Procedure
N AB ABS ASREN BB BBS BSREN ENABLE ASEL BSEL PSEL YDS YSREN YSO

0 FF 001 1 FF 001 1 X X X X X X u
1 XX XXX 0 XX XXX 0 1 0 0 X X Ü
2 «0 001 1 *n 001 1 1 0 0 X X Ü
3 «1 001 1 001 1 1 1 0 X X u
4 »2 001 1 *2 001 1 1 1 0 X X b
5 " n " " M " " " •*
6 «W XXX X in 001 1 1 1 0 X X Ü
7 xx XXX X XX XXX X 1 1 0 X X u
S XX XXX X XX XXX X 1 1 0 X X u
8 XX xxx X XX XXX X X X X X 1 1 u
10 XX XXX X XX xxx X X X X X X X V

Resource

- Input SR |FF| 10 11 12 13 14

Multiplier 1 1
Mult Reg 1

Adder 1 1
Accum 1 1

Output SR S
O'I^'SU'S'ö'T'S 9 «IG1

Figure 3.14: Pipeline Operation of Multiply-Accumulate Operation

3.3.3 Convolution

There are two types of discrete convolution that can be performed using the

ASAP device: linear convolution and circular convolution. The linear convolution of

a discrete sequence a;,- of length M (x,- is zero for all t < 0 or i > M) and y,- of length

58

N (y,- is zero for alii < 0 or i > N) is given as

M+N-l
(x * y)(n) = ^ XiVn-i,

«=0

(3.1)

for all n € {0,1,2,..., M + N — 1}. The circular convolution of two finite discrete

sequences of length N, x,- and y,- for i € {0,1,2,..., N — 1}, is given as

N-l

E
t=0

(xoy)(n) = ^ *iy<n-i)w- (3.2)

First, consider the problem of mapping linear convolution to the ASAP device.

Let M = N■ — 3 for purposes of illustration. Table 3.12 shows the sums of products

necessary to compute (x * y)(n) for n € {0,1,2,3,4}. Each column of the table

contains the product terms that must be accumulated to compute (x * y)(n) for each

n. In each row of the table the index of the sequence x,- is fixed: in the top row, Xo

is used for all of the product terms, in the next row, xi is used for all of the product

terms, and in the final row X2 is used for all of the product terms. From row to row

the y.'s are seen to shift. Since y,- = 0 for i £ {0,1,2}, several of the product terms

are zero.

Table 3.12: Linear Convolution for M = N = 3
n = 0

xoyo
0
0

(x*y)(0)

n = \

x0yi
xiy0

0

(s*y)(i)

n = 2

x0y2

x2yo

(**y)(2)

n = 3

0
xiy2

x2y\

(* * y)(3)

n = A

0
0

x2y2

(x*y)(4)

The linear convolution computation must begin with all accumulators used ini-

tialized to zero. One set of input shift registers must be initialized with the sequence

{yo,y1,y2,0,0}. Next, Xo is broadcast, multiply-accumulate is enabled, and the bus

containing the y operands is shifted right with the shift input being zero. This pro-

59

cess continues for X\ and x-i. After the appropriate pipeline delay, the results may be

sampled using the Y output shift register and shifted out of the array. The procedure

for linear convolution is illustrated in Table 3.13.

Table 3.13 : Linear Convolution Procedure for N : = 3
N AB ABS ASREN BB BBS BSREN ENABLE ASEL BSEL PSEL YDS YSREN YSO

0 FF 001 1 FF 001 1 X X X X X X u
1 XX XXX 0 XX XXX 0 0 0 X X u
2 FF FFF »2 001 0 0 X X u
3 FF FFF y\ 001 0 X X u
4 *0 FFF wo 001 0 X X u
5 *1 FFF FF 001 0 X X u
6 *2 FFF FF 001 0 X X u
7 XX XXX X XX xxx X 0 X X ü
e XX XXX X XX XXX X 0 X X u
9 XX xxx X XX XXX X X X X X 1 u
10 XX XXX X XX XXX X X X X X 0 *0
11 XX XXX X XX XXX X X X X X 0 *1
12 XX XXX X XX XXX X X X X X 0 n
13 XX XXX X XX XXX Je X X X X 0 »3
14 XX XXX X XX xxx X X X X X X X z*

The linear convolution procedure illustrated in Table 3.13 consists of three parts:

initialization, computation, and recovery of results. In steps zero and one initialization

occurs. Data for the computation is shifted in steps two through six. Pipeline delays

associated with the completion of the computation occur over steps seven and eight.

Results are recovered in steps nine through fourteen. The pipeline operation of two

M = N = 3 linear convolutions is illustrated in Figure 3.15. The total computational

latency for linear convolution is 2(M+N)+2 cycles from initialization to final output,

however, multiple linear convolutions maybe pipelined so that a sustained throughput

of one linear convolution every M + N + 1 cycles can be achieved.

Now, consider the problem of mapping circular convolution to the ASAP device.

Let N = 3 for purposes of illustration. Table 3.14 shows the steps necessary to

compute (x o y)(n) for n € {0,1,2}. Each column of the table contains the product

terms that must be accumulated to compute (x o y)(n) for each n. In each row of

the table the index of the sequence y,- is fixed: in the top row y0 is used for all of the

product terms, in the next row t/i is used for all of the product terms, and in the last

row y2 is used for all of the product terms. Each row uses each x,- for i € {0,1,2}

60

Resource

Input SR

Multiplier

Mult Reg

Adder

Accum

Output SR

10 CO 11 Cl

10 CO 11 Cl

10 CO 11 Cl

10 CO 11 Cl

OutO

Out=Data Output

C=Computation

I=Initialization

10 CO II Cl

Outl

1 0 ' 1 ' 2 ' 3 ' 4 ' 5 ' 6 ' 7 ' 8 ' 9 ' 10 ' 11 ' 12 ' 13 ' 14 ' 15 ' 16 ' 17 ' 18 ' 19 ' 20 ' 21

Figure 3.15: Pipeline Operation of Linear Convolution Operation for M = N = 3

exactly once. From row to row the x,'s are seen to circularly shift one column to the

right.

The circular convolution computation must begin with all accumulators used ini-

tialized to zero. Likewise the shift registers must also be initialized to zero. The

computation can begin by shifting x2 into a shift register (the B shift register, for ex-

ample) and broadcasting t/i to all processor elements (via the A shift register). Next

x\ is shifted and y2 is broadcast, then XQ is shifted and y0 is broadcast, then zero is

shifted and y\ is broadcast, and a final zero is shifted and y2 is broadcast. The actual

dataflow in this circular convolution implementation is illustrated in Table 3.15. After

the appropriate pipeline delays the result of the circular convolution can be shifted

out of the output shift registers. The procedure for this is illustrated in Table 3.16,

and the step numbers correspond to those in Table 3.15.

Tab: e 3.14: Circular Convo!
n = 0

£o2/o
x2yi

QEQ3/)(0)

n = l

xiyo
x0yi
xjyi

(zoj/)(l)

ution for iV = 3
n = 2

S22/0

gQt/2

(a°y)(2)

61

Table 3.1 5: Actual Dataflow for Circular Co nvolution fo
Processor n = 0 n = l n = 2

Step 2 zolto 0 0
Step 3 z2yi x0yi 0
Step 4 xiy2 v-iVi XoJ/2

Step 5 0 X\Vo X2t/0

Step 6 0 0 x\V\
Sums (xoy)(0) (xoy)(l) (*oy)(2)

Table 3.16: Circular Convolution Procedure for N = 3
N AB ABS ASREN BB BBS BSREN ENABLE ASEL BSEL PSEL YDS YSREN YSO

0 FF 001 1 FF 001 1 X X X X X X U
1 XX XXX 0 XX XXX 0 0 0 X X Ü
2 »1 FPF *2 001 0 0 X X Ü
3 »2 FFF *1 001 0 X X u
4 »0 FFF *0 001 0 X X u
5 »1 FFF FF 001 0 X X b
6 1/2 FFF FF 001 0 X X to
7 XX XXX X XX XXX X 0 X X u
8 XX XXX X XX XXX X 0 X X Ü
9 XX XXX X XX XXX X X X X X 1 1 to
10 XX XXX X XX XXX X X X X X 0 1 *0
11 XX XXX X XX XXX X X X X X 0 1 *i
12 XX XXX X XX XXX X X X X X X X *2

The circular convolution procedure illustrated in Table 3.16 consists of three parts.

The initialization part begins with the shift registers in step zero and goes into the

LRNS processor in steps one and two. The computation portion begins in step two

with data input to the shift registers, and is finished with the shift registers in step

six, and with the LRNS processor in step eight. A snapshot of the output results is

captured via the assertion of YDS and YSREN in step nine. The results are shifted

out from YSO in steps ten, eleven, and twelve.

It is clear from examining Table 3.16 that the circular convolution operation is

amenable to pipelining. Resource usage versus time steps for two circular convolution

operations with N = 3 (as in Table 3.16) is shown in Figure 3.16. The total computa-

tional latency from first initialization input to final output is 3N + 4 cycles, however,

multiple circular convolutions can be pipelined so that a sustained throughput of one

circular convolution every 2N + 1 cycles can be achieved.

62

Resource

Input SR

Multiplier

Mult Reg

Adder

Accum

Output SR

10 CO 11 Cl Out=Data Output

10 CO 11 Cl C=Computation
10 CO 11 Cl I=Initialization
10 CO 11 Cl

10 CO 11 Cl

OutC) Outl

0 ' 1 ' 2 ' 3 ' 4 ' 5 ' 6 ' 7 ' 8 ' 9 ' 10 ' 11 ' 12 ' 13 ' 14 ' 15 ' 16 ' 17 ' 18 ' 19

Figure 3.16: Pipeline Operation for Circular Convolution

Comparing the linear and circular convolution procedures given in Tables 3.13

and 3.16 it is seen that the two procedures are nearly identical. The primary difference

is that the linear convolution procedure produces two more results than the circular

convolution procedure, thus, requiring two additional cycles to shift the results. This

does not impact pipelining, as can be seen by comparing pipelined operation of the

linear and circular convolutions as illustrated in Figures 3.15, and 3.16.

3.4 ASAP Test Fixture

The ASAP test fixture is a solder-wrapped prototype card. The card was designed

for direct connection to a Hewlett-Packard 16500A logic analysis mainframe populated

with 16510B 100/35 MHz logic analyzer cards and 16520A 50 MHz pattern generator

cards. The fixture provides buffering of the TTL (transistor-transistor logic) levels

of the pattern generator to the 5V CMOS levels required by the ASAP chip's I/O

ring. All address, data, and command signals except the read/write control signals

are sampled by the logic analyzer with the comparator voltage threshold adjusted to

2.5V from the TTL preset so as to improve the analyzer's noise margin in the face

of the full-swing (0V to 5V) CMOS logic levels used by the ASAP device and its

data buffers. Provision is made for clocking the pattern generator, logic analyzer and

ASAP chip with either a canned oscillator fed through a tapped delay line or a strobe

63

provided by the pattern generator, also fed through the same tapped delay line. The

tapped delay line is formed with a CMOS buffer and is provided to allow the skew

of the I/O to be controlled with respect to the ASAP clock. A block diagram of the

card is shown in Figure 3.17. A photograph of the ASAP device in the test fixture is

shown in Figure 3.18.

D3 A5 C5 D4 C6 C4

A6

A3

H H

0 RA2 DD
P | RA3

B2[pjR/W

P RAO
RA1 DA

H

DC Cmd

VccO

GndO

DB C

H

H

Dl

C3

D2 A4 A2 D5 Al

L=LSA Output P=Pattern Generator Input

Figure 3.17: Block Diagram of ASAP Test Fixture

The pattern generator and LSA (logic state analyzer) are connected to the test

board according to Table 3.17, which references Figure 3.17. The two command bytes

from the pattern generator (H,L) are sampled by LSA pod Dl according to Table 3.18.

Table 3.17: Pattern Generator Pod Mapping
Pod Signals Pod Signals

A6 RA37-o A5 RA27_o
A4 RAl7_o A3 RAO7-0
C5 DD7_o C6 DC7_o
A2 DA7-o Al DB7_o
C4 Command(H) C3 Command(L)
B2 R/W Control

64

Figure 3.18: Photograph of ASAP Test Fixture with Device Under Test

65

Table 3.18 : Command Signals to LSA Dl Poc
Pin Signal Pin Signal

15 NC 7 BSEL
14 NC 6 ASEL
13 NC 5 ENABLE
12 NC 4 YSREN
11 NC 3 BSREN
10 RAMEN 2 ASREN
9 YDSEL 1 CMDREN
8 PSEL 0 DRW

Mapping

3.5 ASAP Testing

The planned testing procedure consisted of three basic steps:

1. static or IDDQ testing,

2. low speed functional verification, and

3. speed verification.

The initial static test was successful in eliminating those devices with fatal manufac-

turing defects from consideration for functional verification.

The low-speed functional verification was performed using a clock speed of 20 MHz

so as to prevent any critical path timing considerations from confounding the func-

tional verification. Functional tests were attempted using the various procedures de-

veloped previously. Using the available set of ASAP devices a basic functional test of

the device was performed that verified that the processor core works. Unfortunately,

full device characterization was not possible due to some errors that were uncovered

during testing. With some simple modifications of the device, full characterization of

the device should be possible.

66

3.6 Summary

While the fabricated ASAP device passed preliminary functional verification, full

characterization of the device was not possible. Simulation indicates that the expected

clock rate of the 0.8 /xm device should exceed 100 MHz. Estimated performance

metrics of the LRNS implementations in various MOSIS technologies (and beyond)

are summarized in Table 3.19.

Table 3.19: Estimated Performance of LRNS MAC Cell in MOSIS Technologies,
Where Available

Technology

Area (mm2)

Clock Freq (MHz)

2.0 /xm 1.0 /xm 0.8 /xm 0.6 /mi 0.35 /tm
(Orbit) (HP) (HP) (HP)

1.568 0.312 0.200 0.112 0.038

40 80 100 133 230

Given the performance metrics of Table 3.19 it is reasonable to project that LRNS

based signal processing solutions can span a range of arithmetic performance reaching

up to 105 million (or more) arithmetic operations per second using currently available

technology and conventional die sizes. Performance figures for arrays of thirty-two bit

LRNS processors implemented in various technologies as described in Table 3.19 are

summarized for both real and complex arithmetic in Table 3.20. The "equivalent real

MAC rate" indicates the performance required of a conventional processor to match

the quoted MAC rate.

Table 3.20: Estimated Performance of an LRNS Array of Thirty-Two Bit MACs on
a 1 cm2 Die for Real and Complex Arithmetic

Technology
2.0/xm
(Orbit)

1.0 /xm
(HP)

0.8/xm
(HP)

0.6 /xm
(HP)

0.35 /xm

Num 32b MACs 16 80 125 223 658

Real MAC Rate (million) 640 6400 22300 87514 151340

Complex MAC Rate (million) 320 3200 11150 43757 75670
Equivalent Real
MAC Rate (million)

1280 12800 44600 175028 302680

67

The performance estimates given in Table 3.20 are dependent upon adequate data

I/O to prevent the processors from stalling. In practice, it is likely that it will only

be possible to achieve such high performance figures for applications that are "highly

processed." In other words, the data I/O requirements must be substantially less

than the available computational bandwidth. To appreciate the impact of the I/O

limitation consider the following scenario. The current upper limit for the number

of pins on an integrated circuit is about 500 pins. Suppose that 256 of these pins

could be used for operand inputs and that the inputs could be operated at 200 MHz.

This means that eight thirty-two bit operands could enter the device per cycle, with

200 million cycles per second for an aggregate data input rate of 1.6 billion operands

per second. Given that a MAC operation consumes two operands per computation

cycle and assuming that one operand is stored on-chip, a 0.35 pm device as suggested

in Table 3.20 would have a compute budget of nearly one hundred operations per

input operand! Having said this, the number of pins that could be dedicated to input

on a 1 cm2 die (as premised in Table 3.20) is probably overstated as is the data input

frequency. It likely that an actual compute budget would range into the hundreds of

multiply-accumulate operations per cycle.

CHAPTER 4
VERY LONG INSTRUCTION WORD DIGITAL SIGNAL PROCESSORS

4.1 VLIW Processor Overview

The distinguishing feature of VLIW processor architecture is that each processor

instruction may cause micro-operations to be issued to multiple functional units.

The functional units operate in lock-step, with no additional requirements for micro-

operation scheduling hardware. As a consequence, there is no run-time operation

scheduling requirements. The entire burden for scheduling instructions and micro-

operations occurs at the time of software compilation.

A VLIW processor for digital signal processing requires multiple functional units.

These units include

• instruction fetch, decode, and issue,

• arithmetic/logic units,

• data address and fetch units, and

• operand memories.

It may also be useful to include DMA controllers as an additional functional unit

to manage off-processor data transfers. This is particularly true for many digital

signal processing applications where large arrays of data are processed. Autonomous

DMA processors that are able to perform asynchronous transfers can greatly simplify

access to external memories that have variable access times and transfer rates. A

68

69

block diagram illustrating general structure of a candidate VLIW DSP processor is

shown in Figure 4.1.

Instruction Fetch and Branch Controller

I
Instruction Decoder and Issue Unit

Conventional Arithmetic Unit DTU

Conventional Arithmetic Unit DTU

Conventional Arithmetic Unit DTU

Residue Arithmetic
CorrelatorA/ector Unit

DTU

Residue Arithmetic
CorrelatorA/ector Unit

DTU

Residue Arithmetic
Conversion Unit

DTU

|

CO

.5
(0
Q

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Instruction
Cache

2^6

DMA
Controller

Figure 4.1: VLIW Machine Architecture Block Diagram

o
E
I
To

I ■2

The architecture shown in Figure 4.1 has several distinguishing features. First, all

of the arithmetic functional units are coupled to local (on-chip) memory blocks via

a switch. Arithmetic operations are performed only using operands obtained from

these local memories. The motivation for this restriction is to isolate computations

from the long, possibly variable (certainly unknowable at compilation time) delays

associated with external (off-chip) memory accesses. If external memory access time

is unknown or variable then allowing programmed access to external memory could

result in processor stalls or possibly gross code expansion. The impact of either

of these consequences would be application dependent. The architecture shown is

essentially a load-store architecture, except rather than using register files for storage

70

as in general purpose processors, much larger memories are used. A substantial benefit

of the load-store architecture presented here is that the many address arithmetic units,

embedded in the DTUs (data-transfer units) shown in Figure 4.1, are substantially

smaller than they would be if they were required to be capable of addressing the

relatively vast external memory space.

Since the majority of processing in DSP applications is performed upon arrays

of data, a DMA controller is provided to transfer data between internal and exter-

nal memories. An independent DMA controller may be employed to perform block

memory transfers, isolating the processor from the impact of variable memory ac-

cess times. Synchronization of block transfers performed by an independent DMA

controller is substantially less expensive than the word-by-word synchronization that

would be required by programmed data transfers.

The local memory blocks depicted in Figure 4.1 would take form of small SRAMs

with one or more read/write ports. The optimal size of the on-chip memories is

application dependent. Access to the memories is mediated by a data switch. For

a small processor with few functional units a single-level monolithic switch is ideal,

however, for a large-scale processor a hierarchical switch architecture may offer bet-

ter performance and lower cost by partitioning data traffic between the arithmetic

functional units and their associated local memories between non-dependent parallel

micro-operation streams. This possibility is explored in a more quantitative manner

in Section 5.3.1.

The instruction fetch and branch decoder depicted in Figure 4.1 must be capable

of dealing with variable length instructions due to instruction compaction that must

occur in order to manage instruction bandwidth. Instruction fetch from external

memories should be mediated by an instruction cache; the value of an instruction

71

cache is, in many cases, even greater for DSP applications than for those applications

typically executed on general purpose computers.

The functional units required for a VLIW DSP processor are explored in greater

detail in the next section.

4.2 VLIW Processor Functional Units

This section describes the features associated with each of the major functional

units illustrated in Figure 4.1.

4.2.1 Instruction fetch and decode unit

The instruction fetch and decode unit in a VLIW architecture is potentially some-

what more complicated than that found in traditional RISC and CISC processors.

The source of this complication stems from the immense instruction bandwidth re-

quired by a VLIW processor: on each instruction cycle there may be a micro-operation

issued for each functional unit. In contrast, in a traditional RISC or CISC architec-

ture only a small number of micro-operations may be issued each instruction cycle.

To provide the requisite number of micro-operations for a VLIW architecture, an

extremely long instruction word (e.g., 256 bits could, conceivably, be required for a

four-way VLIW architecture) may be required. As suggested in Section 3.6, the input

bandwidth of any implementation is limited, so it is important to address the issue

of instruction bandwidth.

An extremely long instruction word produces at least two significant challenges.

First, since it is unlikely that each functional unit will be issued a non-NOP (no-

operation) micro-instruction on each instruction cycle, a reasonable means of com-

pacting the instruction must be determined. In other words, many VLIW instructions

may be inherently low-entropy, and therefore, the required raw instruction bandwidth

will be much greater than that required by a processor with a high-entropy instruc-

72

tion stream (e.g., a CISC instruction stream). The second problem is raised by the

first. Assume that some form of instruction compaction is introduced to increase

the entropy of the stored instructions. Then the instructions are inherently variable

length. If the instructions have variable length and are significantly compacted then

instruction decoding is complicated. A complicated instruction format may cause

instruction decoding to become a performance bottleneck. To address this problem

a balance must be struck between instruction compaction efficiency and fetch and

decoding efficiency.

The easiest way to achieve the balance between compaction efficiency and decod-

ing simplicity is to include with each instruction one bit per encoded micro-instruction

indicating whether that micro-instruction is an NOP [24]. If the micro-instruction is

flagged as an NOP then it is not included in the instruction word. The instruction

decoder must then expand the instruction based upon the NOP flags. This method

of compaction is illustrated in Figure 4.2. The fetch unit must be capable of fetch-

ing compacted instructions the cross memory word boundaries. The fetch unit may

determine the number of machine words that must be fetched to assemble one com-

pacted instruction by decoding the NOP flags. It is important that the individual

micro-instruction have fixed length. Additional NOP flags may, however, be used to

indicate micro-instruction extensions, such as immediate operands.

4.2.2 Address arithmetic unit

Address arithmetic for DSP is more complicated than that found in general pur-

pose microprocessors. In addition to linear array indexing, modular (circular) and

bit-reversed array addressing modes are desirable in DSP. Furthermore, many ex-

isting DSP microprocessors use dedicated address registers with dedicated address

73

Func. Unit 0 Func. Unit 1 Func. Unit 2 Func. Unit 3

non-NOP NOP non-NOP NOP
Long Instruction

Word

0 1 0 1 non-NOP non-NOP
NOP Flags Func. Unit 0 Func. Unit 2

Figure 4.2: Example of VLIW Instruction Compaction

Compacted Long

Instruction Word

arithmetic units capable of supporting these operations. A block diagram of an ad-

dress arithmetic unit suitable for DSP operations is shown in Figure 4.3.

The structure shown in Figure 4.3 can support the set of addressing modes sum-

marized in Table 4.1. This structure is the primary component of the DTU shown in

Figure 4.1. The structure includes a register file, which is used either directly or in-

directly to store the address arithmetic parameters (index, modulus, stride, and base

Figure 4.3: Block Diagram of an Address Arithmetic Unit

74

address). At least two arithmetic units would be required to support sum-of-products

operations. Vector operations (e.g., point-wise addition) would require at least three

address arithmetic units unless the result is overwriting a vector operand.

Table 4.1: Addressing Modes Supported by Address Arithmetic Unit
Addressing Mode Address Computation

AR Indirect (TAR)
AR Indirect Indexed (TAR+IND)
AR Indirect Indexed,
Linear Index Post-Incremented

(TAR+IND)
IND <- IND + STD

AR Indirect Indexed,
Circular Index Post-Incremented

(AR+IND)
IND <- IND + STD mod MOD

AR Indirect Indexed,
Bit-reversed Index Post-Incremented

(AR+IND)
IND «- IND + STD

4.2.3 Conventional arithmetic unit

Conventional arithmetic functional units for a VLrW DSP processor take the same

form found in traditional DSP microprocessors — namely, multiplier-accumulator

units. Both fixed-point and floating-point units are appropriate for use in VLIW DSP

processors. Subdivisions of large datapaths into smaller (word length) datapaths that

are operated in a SIMD manner on packed data (e.g., two sixteen bit words packed

into a thirty-two bit word) are also appropriate for DSP applications.

4.2.4 Residue arithmetic units

Residue arithmetic multiplier-accumulator. A block diagram of an en-

hanced version of the multiplier-accumulator in the ASAP device is shown in Fig-

ure 4.4. This extended arithmetic unit offers two significant features that were not

present in the arithmetic unit used in the ASAP device, namely a logic unit and a

second accumulator.

A standalone RNS multiplier-accumulator unit probably offers little advantage

over a conventional arithmetic multiplier-accumulator as a functional unit for a VLIW

75

Figure 4.4: Extended RNS MAC Architecture

digital signal processor where conventional arithmetic units are present. The advan-

tages of RNS processors can be best exploited in a functional unit that uses multiple

devices, such as a convolver or correlator.

Residue arithmetic vector unit. A significant problem that was identified

in the ASAP implementation was the long length of the correlator structure. Since the

76

lengths of the convolutions that had to be performed to support the desired transform

length varied widely, overall processor utilization was not optimal. To increase overall

processor utilization for shorter convolution lengths, a shorter correlator structure is

proposed in Figure 4.5.

Operand Inputs

ioga ioga

I
SR

T
SR

T
SR

J
SR

Data Outputs

A
accumulator

^

GERNSEMAC

GERNSMAC

GERNSMAC

GERNSMAC

SR

I
SR

I
SR

SR

Y T
GCA/Ung Chaining Outputs

Figure 4.5: Next Generation Vector Unit

By itself, the four multiplier-accumulator vector unit shown in Figure 4.5 can

easily be used to perform a Rader prime DFT of up to length five. To support

greater correlation lengths, chaining may be used to append adjacent vector units

to form a larger vector unit. For example, in the case of a Good-Thomas FFT of

length 3x7x11 = 231, the constituent Rader prime DFTs may be performed using

one (unchained) vector unit for those transforms of length three, two chained vector

77

units for those transforms of length seven, and three chained vector units for those

transforms of length eleven.

The advantages of this correlator structure are fairly obvious. Supplying one

or two operands per operation cycle, the unchained unit shown in Figure 4.5 can

achieve up to four multiply-accumulate operations. Therefore, the vector unit pro-

vides a means of achieving relatively high arithmetic bandwidth versus the number of

operands supplied per operation cycle. With chaining, even higher operation band-

widths may be achieved without increasing the operand bandwidth.

Residue arithmetic data conversion unit. Residue arithmetic conversion

is a necessary function in a DSP processor environment that includes residue arith-

metic elements. There are two possible approaches to meeting this need. The first

is to place forward conversion elements on the inputs to the arithmetic elements,

and backward conversion elements on the outputs of the arithmetic elements. This

may be inefficient because residue arithmetic data may be recirculated, resulting in

unnecessary backward/forward conversion steps. Another reason why transparent

data conversion may be undesirable is because it may result in unnecessary repetitive

conversion of fixed coefficient data.

An alternative to transparent conversion of RNS data is to convert the data by

explicitly using a separate or loosely integrated conversion function unit. The advan-

tage of this approach is that conversion is only performed when required. This may

substantially reduce the amount of conversion performed, and may reduce the min-

imum required number of conversion units compared to the case where transparent

conversion is performed. The disadvantage of this approach is precisely its advantage,

the conversion must be explicitly managed in the the instruction stream.

78

4.3 On-Chip Memories

On-chip, processor-local memories are a critical component of a VLIW digital

signal processor. The reasons for this are manifold; compared to on-chip memories,

off-chip chip memories have

• much lower bandwidth,

• long access latencies, and

• possibly variable access latencies.

A further incentive to minimize off-chip memory accesses is the greater energy re-

quired to access an off-chip memory. Not only does wasted power impact battery life

in mobile applications, but it may also substantially increase packaging expenses.

In general purpose processors, local memories take the form of register files and

cache memories. As previously stated, since DSP applications operate on arrays of

data, it is more useful to supply processor-local data memory instead of register files

or cache memories. This is, in fact, consistent with classic vector supercomputers

with vector registers [2].

On-chip memories may be arranged in two formats. One possible means of ar-

ranging on-chip memories is in one global memory block with multiple banks or ports

and access mediated either through a non-blocking or blocking switch or bus resource.

In this model, generally referred to as a uniform memory access (UMA) model, all of

the memory is uniformly accessible by all functional units. The UMA model provides

maximal flexibility and the simplest possible resource scheduling.

An alternative to the UMA model is a non-uniform memory access (NUMA)

model. In the NUMA model some memories are preferentially associated with specific

processor resources. The advantage of the NUMA model is that it allows for greater

scalability (i.e., more functional units) with greater theoretical peak performance

79

and lower cost compared to the UMA model. The disadvantage is that scheduling

processor resources in an NUMA environment is more difficult than in an UMA

environment due to the memory access constraints implied by the NUMA model.

CHAPTER 5
VERY LONG INSTRUCTION WORD COMPILER TECHNOLOGY

5.1 Introduction

Since VLIW processors have no hardware instruction scheduling capabilities, it is

incumbent upon the compiler to perform instruction scheduling. The advantages of

performing instruction scheduling at compilation time are substantial. First, there is

no recurring (i.e., per processor) cost for instruction scheduling. Instructions sched-

uled at compilation time should be more efficiently scheduled than possible at run-

time since the compiler has more complete information about the program than the

processor has — both in the sense of having access to the program source code, and

having a complete view of the object code for final instruction scheduling.

Since VLIW processors have multiple functional units they can be expected to

be able to exploit opportunities for instruction-level and block-level parallelism. Op-

portunities for block-level parallelism can be exploited on any processor architecture.

Exploitation of block-level parallelism has always occurred at compilation time, not

run-time. On the other hand, opportunities for instruction-level parallelism may be

identified both at compile-time and run-time. In fact, many general purpose micropro-

cessors dynamically reschedule instructions at run-time to best exploit opportunities

for instruction-level parallelism.

To support the paradigm of a custom configured VLIW processor it is necessary

to insulate the software engineer from detailed knowledge of the hardware. To do

this, a new programming language has been defined: Gj)sp • The Qj)sp language

80

81

is significant in that like its namesake, C, Gßgp is a high-level assembly language

for DSP applications that are executed on DSP microprocessors.

5.2 The Cpsp Programming Language

The Cj)SP programming language is a high-level assembly language for DSP ap-

plications that are executed on DSP microprocessors. Its suitability transcends VLIW

DSP processors; its semantic features closely match the architectural features found

in many common DSP microprocessors. A detailed description of the language, in

the form of a language reference manual, is contained in Appendix A. The language

reference manual contains a complete description of the language, including the con-

stituent productions of a LALR grammar for the language.

5.2.1 Motivation

To support a program first, select hardware last system integration paradigm it

is necessary to allow processor independent software development. The means of

achieving processor independence is to select a high-level language that can be tar-

geted to any likely processor implementation. The high-level language of choice for

high-performance application development is C. The C language provides excellent

performance when used to develop applications for many general purpose computers.

However, this isn't true when C is used to develop DSP applications for DSP micro-

processors. The reason that the C language produces such good executable object for

general purpose processors and such poor executable object for DSP microprocessors

is that the language has syntactic and semantic elements that reflect the architecture

of general purpose microprocessors, not DSP microprocessors. For this reason, the

C language is considered to be a "high-level assembly language51 for general purpose

processors.

82

What is needed is a "high-level assembly language" for DSP microprocessors.

The C language can be modified, adding language elements that reflect the needs of

DSP applications and the architecture of DSP microprocessors, and removing those

language elements that interfere with the emission of efficient executable object for

DSP microprocessors. To this end, the Cpgp language has been created.

5.2.2 Differences between C and Cpgp

This section describes the significant differences between the C and Cßgp lan-

guages. There are some features that are defined in the Cpgp language that are not

found in the C language. In particular, the Gj)ßp language has support for array

operations and defines new operators for common DSP operations. The Cjygp lan-

guage also lacks some of the features of the C language such as pointers and dynamic

memory allocation.

Parallel looping. Since the Cpgp language was defined to allow efficient DSP

application code generation for DSP microprocessors with multiple functional units,

supporting both block level and instruction level parallelism, the standard parallel

looping construct, dopar, is implemented in the Cjrjgp language. The dopar state-

ment implements an efficient fork-join mechanism that is particularly useful for appli-

cations such as parallel computation of matrix multiplications. The dopar statement

is discussed in detail in Section A.9.5.

Elimination of unneeded features. The Cpgp language does not have the

struct feature found in the C language. For some DSP microprocessors, full support

of the struct may cause some difficulty because the DSP microprocessor's address-

ing capabilities are highly optimized for operation upon simple arrays of data, not

arrays of nested structs. If arrays of structs are required they may be efficiently

83

implemented using multiple arrays where each array corresponds to one element of

the structure.

The switch statement found in the C language is not found in the Cpcjp lan-

guage. For the most part, the behavior of the switch statement can be emulated

with the if-else statement. The switch statement is not found in Cßgp primarily

to simplify compiler construction. Since most DSP applications are loop intensive,

and not selection intensive, the switch is unlikely to be greatly missed.

The double intrinsic type is not found in the Cpgp language. The justification

is that most floating-point DSP microprocessors do not have support for more than

one floating-point format. Therefore, the float type is the only intrinsic type defined

for floating-point representations.

Unlike the C language, the Cjygp language does not allow recursive function

calls. This is done primarily for performance reasons and to simplify the Compile-

time dynamic memory allocation management problem. Furthermore, type types of

computations required for DSP applications are generally more efficiently executed

using loops rather than recursive functions. A more detailed discussion of these issues

is found in Section A.4.1.

Elimination of pointers. The Cpfgp language eliminates the pointers found

in the C language. Pointers are a useful machination for many applications executed

on general purpose computers, however, they interfere with dependence analysis nec-

essary to re-order and parallelize code. This is primarily due to the fact that it is

difficult to determine the value of a pointer at compile-time.

By eliminating pointers, dynamic memory allocation as found in the C language

is eliminated. While dynamic memory allocation is an important element of many

applications executed on general purpose computers, it is not needed for basic DSP

84

applications. Since DSP applications are generally single tasks that are executed on

embedded processors memory is usually statically allocated.

Elimination of pointers in the Cpgp language also impacts the mechanism of

passing arrays of data to functions. In the C language arrays are passed to functions

by reference, i.e., using pointers. The Cjygp language maintains the passing of

arrays by reference, however, since unrestricted pointers are not allowed, the actual

parameter for any particular function call may be determined at compile time, even

if it is passed through multiple functions.

Semantics of the increment and decrement operators. DSP applications

operate primarily upon arrays of data. Arrays of data are accessed using indexes. In

DSP applications arrays are frequently accessed using non-unit stride indexes. Many

DSP microprocessors include hardware support for non-unit stride array indexing,

modular axray indexing, and bit-reversed array indexing. To provide direct support

for these hardware features, the C^gp language adds a new intrinsic type, index,

and changes the semantics of the increment and decrement operators when acting on

variables of type index. In particular, when using the index type the stride does not

have to be unity, automatic modular indexing, and bit-reversed indexing may be per-

formed without complicated conditional processing required on most general purpose

computers, and in the C language. The details of the semantics of the increment and

decrement operators in the Cp^gp language are detailed in Section A.6.2.

Array expression operators. The Cjjgp language modifies the semantics

of most of the arithmetic operators to allow operation on array operands. Most of

the binary operators have been modified so that they may operate on array operands

with compatible geometry, as well as scalars and arrays. The mixing of scalar and

array operands is accomplished by acting as if the scalar operand were actually a

85

constant array with the same geometry as the array operand and the same value in

each element as the value of the scalar. The operators with array operand support

are described in detail in Sections A.6.3, A.6.4, A.6.6, A.6.7, A.6.8, A.6.11, A.6.12,

A.6.13, and A.6.17.

The Cjjcp language also has several new operators to support linear and circular

convolution and sums-of-products. These operations are the cornerstones of digital

signal processing. Consequently, the presence of these operators has great value to the

programmer, as well as to the compiler writer. For the programmer this means that

these operations can be expressed very compactly. For the compiler writer, the convo-

lution and sum-of-products operators enable the emission of compact, efficient object

code. The details of the operation of these operators are detailed in Section A.6.5.

Sub-array expressions. Since it is sometimes necessary to perform arithmetic

operations on sub-arrays, a means of addressing sub-arrays without explicitly copying

out the sub-array is required. To support this requirement, Cpfgp has an index range

notation similar to that commonly found in other languages. This range notation is

described in detail in Section A.6.2. Sub-arrays determined using index range notation

are equivalent to full arrays with geometry determined by the size of the index set in

each dimension.

5.2.3 Results

The Cpgp language has been carefully tuned to allow succinct expression of

DSP algorithms, and to allow efficient emission of object for DSP microprocessors in

general, and VLIW DSP microprocessors in particular.

The Cßgp language effects compact algorithm expression primarily by the ad-

dition of array operators to the language. Other differences between the Gpgp and

C languages that effect not only the compactness of expression of DSP algorithms, but

86

also the performance of the compiled code on a DSP microprocessor are index range

notation for the specification of sub-arrays, the index type, which is intended for in-

dexing arrays, and the modified semantics of the increment and decrement operators

when operating upon the index type.

The C ncp language aids in the automatic generation of parallel code by elimi-

nating language features that hinder automatic parallelization, such as unrestricted

pointers, and adding parallel looping constructs such as the dopar statement. While

an obvious casualty of the elimination of unrestricted pointers is dynamic memory

allocation, the need for dynamic memory allocation on single task, embedded DSP

microprocessors is somewhat less than on multi-tasking general purpose computers.

Furthermore, the availability of the automatic storage class (auto) in the Gpgp lan-

guage mitigates the lack of dynamic memory allocation.

The definition of the Gßgp language is significant in that it is a high-level lan-

guage designed for embedded DSP applications executed on DSP microprocessors. It

is also significant in that it is designed to enable the compiler to exploit every reason-

able opportunity for block level and instruction level parallelism. The Ojjgp lan-

guage is successful as a "high-level assembly language," enabling development of

efficient DSP applications for embedded DSP microprocessors. This, in turn, allows

the application to be coded before the target architecture is selected. This opens the

option of tailoring the processor to just fit the application. The implications of the

ability to use a processor with no more hardware than absolutely required to meet

the needs of the application are profound.

5.3 Algorithm Analysis

This section analyzes the cornerstone algorithm of DSP, convolution (and its ap-

plications to filtering), as well as the discrete Fourier transform, and the QR decompo-

87

sition. These algorithms are analyzed to quantify their amenability to parallelization

by exploitation of available opportunities for block level and instruction level paral-

lelism. This information is significant in that it determines how much benefit can be

expected from VLIW digital signal processors.

5.3.1 Convolution and the finite impulse response filter

The finite linear convolution sum, used for FIR filtering, has the form

N-l

Vn = Y^ öfcZn-Jfc, (5.1)
fc=0

where the finite sequence {ao, «i, ct2,.. •, a/v-i} is generally a fixed set of coefficients,

{xn} is an input data sequence, and {yn} is the output data sequence. This finite

sum of products on the right hand side of Equation 5.1, whether an actual convo-

lution sum or not is the cornerstone operation in digital signal processing. As a

consequence, it must be highly optimized in any processor implementation intended

for DSP applications.

In a VLIW processor implementation the sum in Equation 5.1 may be partitioned

among L processor elements, with a final accumulation of L partial sum-of-products

taken as a final step in forming the convolution sum. Suppose that L = 2 and L \ N

(L divides N). Then Equation 5.1 may be partitioned into the sum

yn = yn,o + yn,\, (5.2)

where
w/2-1

Vnfl -]C akxn-k, (5.3)
fc=0

88

fixed(short,15) fA[41], fX[41] ;
fixed(short,10) fY;
index iN,iM;
int iCount;

/* Assume that fA is initialized somewhere. */
iN.ind=iN.base=0; iN.mod=41; iN.stride=l;
iM.ind=iM.base=0; iM.mod=41; iM.stride=l;

while (1) {
fA[iN++]=read(); /* Get new datum. */

/* Compute filter output (convolution sum). */
for(fY=0, iCount=0; iCount<41; ++iCount)

fY+=fA[iM++]*f X[iN++]

write(fY); /* Write filter output. */

Figure 5.1: C^gp Source for Convolution Sum

and
N-l

lfn,l =]C ak%n-k-
k=N/2

(5.4)

This is the obvious partitioning strategy and leads to an implementation that is

illustrated in Figure 5.2.

Datapath Datapath

i r i r

Memory

Xn-N/2+l

Memory

ao ~ aNll-\ aN/2 ~aN-l

Xn+l y —v __. . X —X
W n n -N/2+l n-Nii n-n+i

Figure 5.2: Data Distribution and Flow for Two Processor Convolution Sum

89

The partitioning strategy illustrated in Figure 5.2 shows that before each filter

cycle, the newest datum, x„+i, must be written into a local data memory and a

datum must be transferred from one local memory to another. Final accumulation

of the partial sums-of-products is not illustrated here.

There exists another approach to partitioning the sum of products in Equation 5.1.

Again, suppose that L = 2 and L \ N. Then Equation 5.1 may be decomposed into

the sum

yn = y'n,o + y»,i> (5-5)

where

and

JV/2-1

y'n,0= 2 a2fc+{„)2X„_2fc,
k=a

N/2-1

y'n,\ = J2 «2fc+l+<n)2Zn-2fc-l-
fc=0

(5.6)

(5.7)

This leads to the implementation illustrated in Figure 5.3.

Datapath Datapath

^ ' * r

Memory Memory

a0~aN-l
ao~aN-i

Xm > Xm-2»*m-4 > • •" > Xm-N+2
Xm-l» Xm-3 » Xm-S *"•> Xm-N+1

i k

n i = 2\nl '2}
t i

*m+2 vm+l

Figure 5.3: Data Distribution and Flow for Two Processor Convolution Sum Using
Interleaved Data

90

In the implementation illustrated in Figure 5.3, each local memory contains a

complete set of the coefficients {a0,. ..,ajv-i}, but only half of the data sequence

{xn} (either the even indexed or the odd indexed elements). The differences between

the implementations shown in Figures 5.2 and 5.3 are similar to a decimation-in-

time versus a decimation-in-frequency fast Fourier transform implementation. The

advantage of this second implementation approach is that there are no inter-local

memory data transfers required so the overall global memory traffic per filter cycle is

reduced. The disadvantage of this implementation strategy is the need to store all of

the coefficients in each local memory.

The implementation strategies described above can be generalized to L processors.

In general, suppose that L \ N. Without loss of generality, if L jfN then the sequence

{a0,...,apj-i} can be padded with (N)L zeros so that L | N. Then the sum in

Equation 5.1 can be decomposed into the sum of partial sums of products

L-l

Vn =]C yn,P (5.8)
p=0

where
(P+1)\N/L\-1

Vn,P = 2 akXn-k- (5.9)
k=p\N/L\

The data distribution for this multiprocessor convolution sum is illustrated in Fig-

ure 5.4.

The cost parameters associated with performing a convolution sum in the manner

suggested in Figure 5.4 are

^MAC = -^(mternal MAC cycles), (5.10)

A^acc = L — 1 (final partial sum accumulation), (5-H)

■^xfer = L — 1 (global data transfers), (5.12)

91

Processor/?

Datapath

Memory
atfN/L] ~a(p+l)[N/Lyi

Xn-p[NILh-l
Xn-p\NIL~[Xn-{p+l)\NIL\¥l

Xn-{p+l)\NIL\
w

\ /

L Processors

Figure 5.4: Data Distribution for an L Processor Convolution Sum

■^coef = \NIIA(coefficient storage per processor), and (5.13)

■^data = \N/IA (data storage per processor). (5-14)

The execution time is given by the weighted sum

Ncyc = «MAC \NIL~\ + <*acc(£ - 1) + o^L - !)• (5.15)

The L — 1 factor of the aacc(-£ — 1) term represents a worst case scenario for the ac-

cumulation of the partial sums of products. Depending upon the global data transfer

resources it may be possible to reduce this term to <*acc log2 L. The total memory

consumption used by this approach is minimal,

^memory = NCoef + iVdata = 2JV. (5.16)

The second generalized approach, based upon the two processor case illustrated

in Figure 5.3 decomposes the convolution sum shown in Equation 5.1 into the sum of

partial sums

where

L-l

Vn = /—I Vn,pi
p=0

yn,p — 2-, akL+p+{n)pXn-kL-p-
fc=0

92

(5.17)

(5.18)

The data distribution suggested by Equation 5.18 is illustrated in Figure 5.5.

Processor/?

Datapath

v

Memory
ao~aN-i

Xm-p'Xm- -L-p»Xm-2L-pf''»Xm-<$NIL\-l)L-p

\

m = L\nlL\
Xm+L-p

/

L Processors

Figure 5.5: Data Distribution for an L Processor Convolution Sum Using Interleaved
Data

The performance metrics for this approach are the same as those listed previously,

except for

^xfer = 1. (5-19)

and

*coef=^- (5.20)

The total execution time for this approach is given the by the weighted sum

N'CyC = aMAC \N/L] + a&cc(L - 1) + <*xfer, (5.21)

93

where, eis before, it may be possible to improve «acc(£ — 1) towards the limit

aacc log2 L. The total memory consumed by this approach is

Armory = LNcoei + NdaU = (L + 1)/V. (5.22)

If N is large then the interleaved data approach may be overly memory intensive,

however, the additional memory usage is mitigated by the reduction in global memory

traffic compared to the direct, non-interleaved approach. The relative cost of the

block decomposition versus the interleaved decomposition is dependent upon the fine

architectural details which are lumped into the weights shown in Equations 5.15

and 5.21. Among the issues that impact the value of these weights and execution

time are

• the number of ports and banks in each processor-local memory block,

• interconnection resources,

• L, and

• N.

The whole point of distributing a sum of products computation among multiple

processors is to obtain a speedup. Without identifying a specific architecture a best

case speedup (versus a single processor) is given by

SpeedUI> = WIUlog^minWL))- (5-23)

where N is the filter order and L is the number of processors used. The results

of this equation for TV € {5,10,15,20,25,30,35,40} and L <E {1,2,3,... ,20} are

shown in Figure 5.6. From the graph it can be seen that the application of additional

94

processors can produce a speedup — up to a point. After the maximum speedup is

achieved, additional processors can actually reduce the speedup. The reduction in

speedup caused by the additional processors is a result of increased time spent in

accumulating the final sum of the partial sums of products. It is also clear from the

plot that the maximum speedup is highly dependent upon the filter order, increasing

as the filter order increases.

S
P
e
e
d
u
P

Filter Order # Processors

Figure 5.6: VLIW Filter Speedup Versus Filter Order and Number of Processors,
Best Case

To highlight the negative impact that too many processors may have, consider

modifying Equation 5.23 to make interprocessor communication more expensive,

Speedup
N

\N/L]+mm(N,L)-l
(5.24)

The results of this over the same values of N and L as used to create Figure 5.6

are shown in Figure 5.7. The impact of applying too many processors is even more

95

pronounced in this case. It is also worth noting that the maximum speedup that can

be achieved for any particular filter order is significantly lower than that suggested

by Equation 5.23.

Filter Order
Processors

Figure 5.7: VLIW Filter Speedup Versus Filter Order and Number of Processors,
Worst Case

If one assumes that the likely values of N are bounded then it is clear from the

data shown in Figures 5.6 and 5.7 that there is an upper bound, much less than N, to

the number of processors that can usefully applied to a particular sum of products.

This suggests that given a large number of processor elements, a hierarchical NUMA

architecture with three or more levels of access would provide worthwhile benefits.

For instance, the data in Figure 5.6 suggests that not more than eight processors

can be efficiently applied to a sum of products. Therefore, it would make sense to

96

take a block of eight processors with local memories, add a processor-memory switch

that is confined to that group and a global switch. This is illustrated in Figure 5.8.

The LI interconnect is a direct connection between a single processor and a single

memory. The L2 interconnect is a switch that allows direct access between processors

and memory within the group (i.e., intra-group connectivity). The L3 interconnect

is a global switch that allows connection of processors and memories outside not in

the same group (i.e., intergroup connectivity).

o
co
CO u u
2

L3

L2

L1^ffi

o
CO
CO u
U

ffi¥

O

§
2

I
&

ffi

Local

i

Global Switch

I

u o
CO
CO
U
O

Group Switch

ÜSL .TTT, .TTT

O
a

o
CO
CO
U
Ü

£

a
s

I

1
&

Figure 5.8: Group of Processor Elements with Three-Level Hierarchical Proces-
sor/Memory Switching

The optimal granularity of grouping in a three or more level hierarchical inter-

connect scheme would be highly dependent upon the number of functional units in

the processor and the characteristics of the anticipated applications. To evaluate the

effects of a three level hierarchical NUMA scheme, Equation 5.24 may be modified

to reflect parallel local interprocessor communications and serial intergroup commu-

nications by

Speedup =
N

\N/L] + min(N, L, G) + [mm(N, L)/G\'
(5.25)

97

where G is the processor grouping factor (i.e., the number of processors bound by an

L2 interconnect, see Figure 5.8 where G = 8). In particular, the first denominator

term reflects the parallel computation of a sum of products, the second term reflects

intragroup (L2) communication, and the third term reflects intergroup (L3) commu-

nication. Evaluating Equation 5.25 over the same values of N and L used to create

Figures 5.6 and 5.7 with grouping factors G = 4 and G = 8 produces the results

shown in Figure 5.9.

The speedup curves, are similar to those produced assuming global non-blocking

communications shown in Figure 5.6, although the peak speedup is not as great.

However, the speedups are greater than that shown in Figure 5.7. In Figure 5.9, the

results for G = 4 are seen to result in greater peak spedup than those shown for

G = 8. This is balanced by the fact that global interconnect is used with twice the

frequency when G = 4 compared to when G — 8. Clearly, a balance must be struct

between intragroup and intergroup communications.

5.3.2 Discrete Fourier transform

The discrete Fourier transform is one of the most significant DSP functions. Real-

time, high-speed implementations of the DFT are increasingly important, driven by

new applications in video processing (compression) and communications (digital sub-

scriber loop technologies). The Good-Thomas and Rader prime DFTs are described

here since these algorithms lead to efficient hardware implementations, specifically,

the ASAP device was designed to execute these algorithms, performing 256 x 256-class

DFTs at video rates.

Good-Thomas DFT. The Good-Thomas DFT [7, 9] is an efficient algorithm

for computing the DFT of a sequence of length M where M is composite. Let M =

n£=i Pi where gcd(p,-,pj) = 1 for all i,j € {1,2,3,..., L} and i ^ j. Define m,- = M/pi

98

15

Filter Order 5

of Processors

(a)

Filter Order
of Processors

(b)

Figure 5.9: VLIW Filter Speedup Versus Filter Order and Number of Processors
Using NUMA Interconnect with (a) G = 4, and (b) G = 8

99

and let mjl denote the multiplicative inverse of m,- in ZPi, that is, rriimj1 = 1

(mod pi). The Chinese remainder theorem describes an isomorphism

4>: ZM —► ZPl x ZP2 x ZP3 x • • • x ZPL (5.26)

where <£(X) = (xi, x2, x3,..., xL), and each x; = X (mod pt) for all e G {1,2,3,..., L}.

The inverse mapping is given as

<ß-1({x1,X2,x3,...,xL)) = (j2mi{m^1Xi)Pi\ . (5.27)
\t=l / M

The DFT of an M point sequence {xn} is given as Xk = E^ö* ^w"* where

a; = c"j2,r/M. By the CRT, let <£(«) = («i,n2,n3,...,UL). Define a mapping

$: ZM —► ZPl x ZP2 x ZP3 x • • • x ZPL (5.28)

with

k — ^(fa, k2, k3,..., k£) = (miki + m2k2 + m3k3 H h mLkL)M- (5.29)

Substituting into the DFT produces

M-l

^«^ *,)) = £ x^-*-1«*»**^» (5.30)
n=0

— Z-r Zv ^ 1((ni>n2.n3.-.»I,))u'
ni=0 nx,=0

Since u is of order M (it is the Mth primitive root of unity in C),

w*_1((ni n^-1«*!.-.^)) = wEf=,("l'<"ir1»<>p,)('".'=.). (5.31)

100

As each mt- = M/pi and io = e -»2,r/M,

^(m^ni, 1Ti«>P,)("lifct) _ e-i2irm?(mr1n,-)pifci/Af

__ e-i2irmjmt
-1n,fci/pi

_ p-ilnnikilpi

= (jm«n«^«

(5.32)

(5.33)

This leads to

Pl-l PL-l

^(WA^)) = E • • • E ^-MK.n.na,..^))^1"^^-^"^ (5.34)
ni=0 nt=0

Pl-l
W

ni=0

= y^ ,.,miniki
Tl£=0

This is clearly an L-dimension DFT and may be computed in M Ylf=iPi complex

multiply-accumulates.

The result shown in Equation 5.35 appears to be quite complicated. In fact, its

application is relatively simple. To illustrate this, consider an M — 3 x 5 = 15 Good-

Thomas FFT. The permutations described by Equations 5.27 and 5.29 for px = 3 and

p2 = 5 produce the permutation maps shown in Figure 5.10.

The significance of the permutation maps shown in Figure 5.10 are that they

show the way to an efficient implementation. If the sequence to be transformed is

{x0,Xi,x2,...,xi4}, then the first step is to map this sequence into a two dimen-

sional array according to the map shown for <f>~1. While the map for <£-1 appears

complicated, in fact, by tracing the locations of the sequence {0,1,2,..., 14} a simple

pattern is apparent. The result of this mapping is shown in Figure 5.11. Once the

101

n2\ 0

0

1

2

3

4

<f> 1(nx,n2)

1 2

0 10 5

6 1 11

12 7 2

3 13 8

9 4 14

M
h\ 0

0

1

2

3

4

1 2

0 5 10

3 8 13

6 11 1

9 14 4

12 2 7

Figure 5.10: Good-Thomas FFT Permutation Maps for M = 3 x 5 = 15

input sequence is mapped to the two-dimensional array, length three DFTs may be

performed on each row followed by length five DFTs on each column (or vice versa).

<f> 1(ni,n2)

n2 \ 0 1 2

0 XQ ZlO x5

1 #6 Xl xu
2 Xi2 x7 x2

3 X3 #13 X8

4 Xg X4 X14

k2\ 0 1 2
0 X0 x5 X10

1 x3 Xs ^13

2 X6 Xxx Xi

3 x9 X\4 xA
4 Xu x2 x7

Figure 5.11: Good-Thomas FFT Input/Output Sequence Permutation for M = 15
Computation

After performing the row-wise and column-wise DFTs, the final results may be

recovered according to the permutation map for ^>-1, with the locations of the results

in the two-dimensional array illustrated in Figure 5.11. As before, the permutations

required to recover the results appear complicated, but are relatively simple. By

following the locations of the elements of the sequence {XQ, XI, X2,..., X14} in order,

a simple pattern is apparent.

A C ncp function to implement the Good-Thomas FFT for a fifteen element real

array is given in Figure 5.12. The function takes two arrays as parameters — one

102

containing the real input data. Both arrays are used to return the real and imag-

inary parts of the result. The function begins by permuting the original real data

into a three column by five row array. Next, five length three DFTs are performed

on the rows of the array followed by three length five DFTs that are performed on

the columns of the array. The DFTs are done within two dopar loops, taking advan-

tage of the Cpsp language's mechanism for allowing the programmer to identify

opportunities for parallelism. The form of the DFTs shown is that of a direct DFT

computed by matrix multiplication with a twiddle matrix. A more efficient means of

computing the prime length DFTs required for the Good-Thomas FFT is the Rader

prime DFT. The Cjjgp function shown in Figure 5.14 demonstrates the Cjygp code

that would be inserted into the Good-Thomas FFT function of Figure 5.12. The final

step in the Good-Thomas FFT function is to extract the results.

The Good-Thomas FFT is attractive for VLSI implementation due to the efficient

way in which the required small prime block length DFTs can be computed using

the Rader prime DFT discussed in the following section. Using just the primes in

{2,3,5,7,11,13} Good-Thomas FFTs of fifty different composite lengths between six

and 30030 can be computed. These lengths are summarized in Table 5.1.

Rader prime DFT. While the radix-two FFT is well known for efficient op-

eration, the butterfly structure introduces unnecessary complexity in a VLSI imple-

mentation. An alternative algorithm known as the Rader prime algorithm [10, 7] is

available. The Rader prime algorithm performs the DFT using cyclic convolution

which is very amenable to a full custom VLSI implementation.

Let the block length of the DFT be p, a prime. Then there exists some a such

that a generates GF(p) \ {0} (i.e., a is a primitive element of GF(p)). Define a

103

const fixed(long,10)fT5R[5][5]={

Insert twiddle matrix denned by Re(Wm,„) = Re(e-J'2,rmn/5).

};
const fixed(long,10)fT5I[5][5]={

Insert twiddle matrix defined by Im(WTO,n) = Im(e-
J'2irmn/5).

};
const fixed(long,10)fT3R[3][3]={

Insert twiddle matrix defined by Re(Wm,n) = Re(e-J'2xmn/3).

};
const fixed(long,10)fT3I[3][3]={

Insert twiddle matrix defined by Im(Wm,n) = Im(e~^mn^).

};

void GTFFT(fixed(long,10)fXRe[15], fixed(long,10)fXIm[15])
{ fixed (long, 10) f XMRe [5] [3] , fXMIm[5] [3] , fDR[5] , fDI[5];

index iM.iN; int iL;

/* Permute original real data. */
iM.mod=5; iM.stride=l; iM.base=0;
iN.mod=3; iN.stride=l; iN.base=0;
for (iM.ind=iN.ind=iL=0; iL<15; iM++, iN++, iL++) {

fXMRe [iM][iN]=fXRe[iL];
fXMIm[iM][iN]=0.0; /* Original data is assumed real. */

}

/* Perform length 3 DFTs on rows. */
dopar (iM.ind=0; iM<5; ++iM) {
for (iN.ind=0; iN<3; ++iN) {

fDR[iN]=fXMRe[iM][0:2]$$fT3R[iN][0:2];
fDI[iN]=fXMRe[iM][0:2]$$fT3I[iN][0:2];

}
f XMRe [iM] [0:2] =f DR [0:2]; f XMIm [iM] [0:2] =f DI [0:2];

}

Figure 5.12: CDSp Function for an iV = 15 Good-Thomas FFT

104

/* Perform length 5 DFTs on columns. */
dopar (iN.ind=0; iN<3; ++iN) {

for (iM.ind=0; iM<5; ++iM) {
fDR[iN]=fXMRe[0:4] [iN]$$fT5R[0:4] [iN]-

fXMIm[0:4][iN]$$fT5I[0:4][iN];
fDI[iN]=fXMRe[0:4] [iN]$$fT5I[0:4] [iN] +

fXMIm[0:4] [iN]$$fT5R[0:4] [iN] ;
}
fXMRe[0:4][iN]=fDR; fXMIm[0:4][iN]=fDI;

}

/* Extract results. */
iM.st ide=2; iN.stride=2;
for (iM.ind=iN.ind=iL=0; iL<15; ++iM, ++iN, ++iL) {

fXRe[iL]=fXMRe[iM] [iN] ; fXIm[iL]=fXMIm[iM] [iN] ;
}

}

Figure 5.12 - continued

permutation

4>{n) = <*n, (5.35)

for all n G {1,2,3,... ,p — 1}. The DFT of a sequence /„ is given as

Fn = FJ2fke-j2™k/p (5.36)
Jk=0

= fo + J2fke-j2™k/p-
Jt=i

Substituting in the permutation rule of Equation 5.35 produces

p-i

FH,-Hn)) = fo + Ef^-H^~J2^ {n)m m,P (5-37)

105

Table 5.1: Product of All Combinations of Two or More Primes in {2,3,5,7,11,13}
Primes Product Primes Product

2,3 6 3,5,13 195
2,5 10 2,3,5,7 210
2,7 14 3,7,11 231
3,5 15 3,7,13 273
3,7 21 2,11,13 286
2,11 22 2,3,5,11 330
2,13 26 5,7,11 385
2,3,5 30 2,3,5,13 390
3,11 33 3,11,13 429
5,7 35 5,7,13 455
3,13 39 2,3,7,11 462
2,3,7 42 2,3,7,13 546
5,11 55 5,11,13 715
5,13 65 2,3,11,13 858
2,3,11 66 7,11,13 1001
2,5,7 70 3,5,7,11 1155
7,11 77 3,5,7,13 1365
2,3,13 78 2,3,5,7,11 2310
7,13 91 2,3,5,7,13 2730
3,5,7 105 2,3,5,11,13 4290
2,5,11 110 5,7,11,13 5005
2,5,13 130 2,3,7,11,13 6006
2,7,11 154 2,5,7,11,13 10010
3,5,11 165 3,5,7,11,13 15015
2,7,13 182 2,3,5,7,11,13 30030

p-l

/o + E fH*-HW-i2M*~1{n)+*~Hk))/p,
jt=i

for n € {l,2,3,...,p-l}, with F0 = Efc=o/fc- Let q = ^_1(n) and r = p - ^(k).

Then

fc=i

= /o+E n{P-r)^i2T4,{q-r)lp-

(5.38)

106

Now, set F' = F^g) and f'T = U(P-r)- Then

v-i

^ = /o + E/r^J2^(p"r)/p, (5.39)
r=0

which is clearly the form for circular convolution. A block diagram of an architecture

to perform the Rader prime DFT is shown in Figure 5.13. A Matlab function, rpdft,

is provided in Section B.l.l, which computes the DFT of a prime length sequence

using the Rader prime algorithm.

Data ' »

\ ■ In /

<4T I ,3 u\7 uj

' ■

+
xm. 5 m X(

17

Figure 5.13: Rader Prime DFT Circular Convolution Engine, p = 17

A Cjjsp implementation of a p = 5 Rader prime DFT is shown in Figure 5.14.

The function starts by permuting four elements of the two parameters by direct

assignment. Next, the circular convolution required for the DFT is performed using

predefined permuted twiddle factor arrays. Finally, the X0 component is compiled

and the results of the circular convolution are permuted and placed into the parameter

arrays in natural order. There are some limited opportunities for parallelism in this

function, primarily in the computation of the circular convolution operations and

the X0 term. A VLSI implementation of a DFT may see benefits from the RNS.

In particular, Zelniker and Taylor [12], have demonstrated that an RNS based VLSI

implementation of the Rader prime DFT can be easily achieved.

107

const fixed(long,10) fTR[4]={

Insert {Re(w6
1),Re(a;|),Re(wt),R«K)}.

};
const fixed(long,10) fTI[4]={

Insert {Im(wJ),Im(w|),Im(a;|),Im(wf)}.

>;

void RPDFT5(fixed(long,10)fXR[5], fixed(long,10)fXI[5])
{ fixed (long, 10) fYR[4] , fYI[4], fZR[4] , fZI[4];

/* Permute input data. */
fYR[0]=fXR[l]
fYR[l]=fXR[2]
fYR[2]=fXR[4]
fYR[3]=fXR[3]

fYI[0]=fXI[l]
fYI[l]=fXI[2]
fYI[2]=fXI[4]
fYI[3]=fXI[3]

/* Rader prime DFT circular convolution. */
fZR=fXR[0]+(fYR G f TR - fYI © fTl);
fZI=fXI[0] + (fYR <8 fTI + fYI Q fTR);

/* Compute X_0 and permute results. */
fXR[0]=l$$fXR; fXI[0]=l$$fXI;

fXR[l]=fZR[0]
fXR[2]=fZR[l]
fXR[4]=fZR[2]
fXR[3]=fZR[3]

fXI[l]=fZI[0];
fXI[2]=fZI[l];
fXI[4]=fZI[2];
fXI[3]=fZI[3];

Figure 5.14: Cjygp Implementation of a p = 5 Rader Prime DFT

108

5.3.3 QR decomposition

The QR decomposition [5] is an important tool in digital signal processing, particu-

larly in spectrum estimation, adaptive filtering, and beamforming applications [6, 36].

The QR factorization theorem is stated as follows.

Theorem 5.1 (QR factorization) If A e C"Xn is of rank n, then A can be fac-

tored into a product QR where Q € CnXn is a matrix with orthonormal columns, and

R 6 ClXn is upper triangular and invertible.

The QR decomposition enables the robust solution of linear algebraic equations

of the form

Ax = b. (5.40)

Approaches such as Gaussian elimination are not as robust as the QR decomposition.

The author has previously developed the implementation requirements for a QR

decomposition in a vector processing residue arithmetic environment [37]. There are

essentially two basic implementation strategies for the QR decomposition: one re-

lies upon Householder reflections while the other relies upon Givens rotations. The

Householder reflection approach is preferred by those using vector machines while

the Givens rotation approach is preferred by those using parallel machines. A VLIW

DSP has attributes of both vector processors and parallel processors, however, the

Givens rotation approach requires a substantial number of square root and division

operations [5, p. 202]. In contrast, the Householder reflection is multiply-accumulate

intensive with only one square root and one scalar-vector division per row or col-

umn to be zeroed. The division found in the Householder reflection may be easily

reformulated as a scalar-vector product. Since the division and square root opera-

tions are very expensive to compute, the Householder reflection is preferred over the

109

Givens rotation. An example of a Householder-based QR decomposition is given in

Figure 5.15.

#define N 5
void QRHouse (float fA[N][N])
{ float fV[N], fT[N], fMu, fBeta;

int iJ, iN, iM;

for (iJ=0; iJ<N-l; ++iJ) {
fV[0:N-iJ-l]=fA[iJ:N-l][iJ]; /* Extract column to zero. */

fT[0:N-iJ-l]=fV[0:N-iJ-l]*fV[0:N-iJ-l]; /* Calc. 2-norm of fV. */
fMu=sqrt(1.0 $$ fT[0:N-iJ-l]);

if (fMu>0.0) { /* Compute Householder vector. */
if (fV[0]>0.0) fBeta=1.0/(fV[0]+fMu);
else fBeta=1.0/(fV[0]-fMu);

fV[1:N-iJ-l]=fBeta*fV[1:N-iJ-l];

}
fV[0]=1.0;

/* Apply Householder vector to original matrix. */
fBeta=-2.0/(fV[0:N-iJ-l] $$ fV[0:N-iJ-l]); /* Scale factor. */
for (iN=0; iN<N-iJ-l; ++iN) /* update vector. */

fT[iN]=fBeta*(fA[iJ:N-l][iJ+iN] $$ fV[0:N-iJ-l]);
for (iN=0; iN<N-iJ-l; ++iN) /* Apply outer product update. */

for (iM=0; iM<N-iJ-l; ++iN)
fA[iJ+iM]CiJ+iN]+=fV[iN]*fT[iM];

fA[iJ+l:N-l][iJ]=fV[l:N-iJ-l]; /* Save Householder vector. */
}

}

Figure 5.15: Cßgp Function for QR Decomposition

The QR decomposition implementation shown in Figure 5.15 is designed to com-

pute the QR decomposition of a square matrix of fixed size. The underlying algorithm

is derived from algorithms presented in Golub and Van Loan [5]. It should be noted

110

that the self-contained Cßgp source is substantially more compact than a compara-

ble self-contained C implementation. Not only is the Cjjgp implementation compact,

but many of the Cncp semantic extensions to the C language used in the function

map directly into efficient DSP microprocessor code.

Opportunities for block level parallelism can be explored by breaking the algorithm

down into its three main algorithmic components, which are

• computation of the Householder vector,

• computation of the update vector, and

• computation of the outer product update to the original matrix.

These components are applied to iteratively to successively smaller sub-matrices of

the original matrix to produce the QR decomposition. Within each iteration of the

outer-most loop, it can be seen that the computation of the update vector is dependent

upon computation of the Householder vector, and that the computation of the outer

product update is dependent upon the computation of the update vector. Due to

the overlapping outer product updates between iterations of the outer-most loop,

it is not possible to parallelize the individual iterations of the loop. However, by

examining the computation of the update vector and the computation of the outer

product update it can be seen that there is an opportunity for parallelism between

these computations. The impact that can be achieved by exploiting this opportunity

for block level parallelism is illustrated in Figure 5.16.

5.3.4 Results

The algorithms explored in this section are among the cornerstones of digital signal

processing. The algorithms were demonstrated to have opportunities for parallelism

that could be exploited by a VLIW DSP processor. Exploiting the opportunities

Ill

Iteration #

Householder
Vector

-— o —► 1 ►

1 1

— 2—

J
D

- 3-

J

D Update Vector

Outer rroduct
Update

Time

Figure 5.16: Diagram of Execution Timing and Exploitable Block Level Parallelism
for Householder QR Decomposition

for parallelism illustrated in Sections 5.3.1, 5.3.2, and 5.3.3 does not require special

effort on the part of the programmer in the VLTW/Cjjgp programming environ-

ment described herein. Methods of performing dependency analysis and performing

instruction scheduling are well-known [47, 48]. The significance of these results are

that VLIW architecture allows relatively inexpensive parallel computing while the

defined Cnep language allows rapid, efficient implementation of parallel processing

software.

CHAPTER 6
CONCLUSIONS

6.1 Summary

Digital signal processing applications frequently demand high arithmetic band-

width; small, inexpensive packaging; low power consumption and dissipation; and

low cost. These attributes are generally interrelated and at odds with one another.

The implementation technology of choice for digital signal processing applications

is the DSP microprocessor. Semiconductor technology has progressed to the point

where multiprocessing DSP solutions can be constructed, however, existing solutions

have been less than satisfactory. Very long instruction word architectural techniques

have great promise for enabling high-speed DSP multiprocessing with superior power,

packaging, and cost factors compared to existing DSP multiprocessing solutions.

Chapter 2 introduces the residue number system and describes the existing state

of the RNS theory. Chapter 3 describes the Athena Sensor Arithmetic Processor,

an application specific SIMD digital signal processor that uses the RNS. The ASAP

device achieves peak performance of 1.2 billion thirty-two bit multiply-accumulate

operations per second using less than 20 mm2 of die area when fabricated in the

MOSIS 0.8 ^m CMOS process. The ASAP device demonstrates a one to two order

of magnitude speed-area advantage over conventional arithmetic implementations,

depending upon the computation performed. The ASAP technology provides mo-

tivation for pursuing a VLIW DSP microprocessor architecture in that it makes an

ideal functional unit for such a processor. In turn, the VLIW DSP microprocessor

112

113

offers balance not found in previously reported RNS implementations in the form of

conventional arithmetic units that are able to perform those operations for which the

RNS is poorly suited.

In Chapter 4 the architectural elements required for VLIW digital signal processing

are explored. The architectural elements include conventional arithmetic units, RNS

arithmetic units and supporting functional units, local memories connected to func-

tional units by a switch, and a DMA controller to handle transfers between on-chip

and off-chip memories. The architecture described is a block load-store architecture

with block load and store operations performed by the DMA controller under pro-

grammed direction. Providing global switched access to the local memory resources

limits the architecture due to the geometric growth of the expense of the switching el-

ements with respect to the number of functional units and local memories. This leads

to the conclusion that a hierarchical non-uniform memory access model is required

to linearize the resources consumed by the switching elements versus the number of

functional units and local memories.

VLIW digital signal processing presents a substantial problem, namely program-

ming the VLIW DSP microprocessor. Writing VLIW machine code directly is similar

to writing horizontal microcode: the smallest functions require Herculean program-

ming efforts. Even a micro-instruction oriented assembler with automatic instruction

scheduling would present a difficult working environment to the application program-

mer. Furthermore, in either of these models, porting applications to architectural

variants of the same processor would require substantial re-engineering of the appli-

cation.

To address the problems associated with programming a VLIW DSP processor,

a high-level assembly language, Cjjgp , has been defined. The Gßgp language is

optimized for DSP applications that will be executed on VLIW DSP microproces-

114

sors. The Cpcp language provides excellent programmer productivity and code

portability is aided by the ability to retarget the application to a new processor by

recompilation. Not only is the Cjjgp language optimized for DSP applications, it

is also optimized for automatic parallelization of DSP applications, particularly for

VLIW DSP processor architectures. A significant benefit realized by using a high-level

language for parallel DSP compilation is the additional information that is available

to the compiler compared to that available to an assembler.

In Chapter 5, the impact of the Cjjgp langauge and parallelism in the VLIW

DSP environment were examined in the context of three cornerstone DSP algorithms:

convolution and FIR filtering, discrete Fourier transforms, and the QR decomposi-

tion. In all three cases CfiSP implementations were shown and opportunities for

parallelism within these implementations were demonstrated.

6.2 Contributions

The main contibutions made in this dissertation were:

• Demonstrated an LRNS processor capable of up to 1.2 billion operations per

second, with a one to two order of magnitude speed-area advantage over pro-

cessors fabricated using conventional technologies.

• Developed a high-level programming language, Cj)SP > f°r VLIW DSP. The

Cnop language is highly optimized both for digital signal processing appli-

cations and for parallel computing, a synergism that makes it ideal for VLIW

DSP.

• The C ncp language enables selection of a processor to just fit an application

by allowing the application to be written before the target hardware is selected.

115

• The practical limits of iV-way VLIW have been explored. The conclusion was

that full, globally switched interconnect between functional units for large N is

impractical (expensive) and undesirable (not needed by likely applications).

• To scale VLIW to very large numbers of functional units, a three level NUMA

processor-local memory switch architecture has been designed. This architec-

ture allows individual, unrelated threads of execution to be executed on separate

processor groups without causing contention for global switch resources.

6.3 Future Work

There are a number of problems that remain to be solved in the area of VLIW DSP

processors. The analysis presented in this dissertation was based upon a high-level

description of a VLIW DSP microprocessor. Since this research began, at least one

two-way VLIW DSP microprocessor has become available as a standard part (Texas

Instruments' C6200). While this is significant, it is still quite far from a large N-

way VLIW DSP microprocessor. With the explosive growth of ASIC implementation

methodologies, there is clearly a potential need for a customizable VLIW DSP mi-

croprocessor core for ASICs. Whether that core is hard or is synthsizable it is clearly

desirable to be able to specify no more microprocessor than is required to solve the

problem at hand.

The RNS functional units described in this dissertation demonstrate that an appli-

cation accelerator can have great value in a microprocessor environment. In an ASIC

environment where the population of the processor's functional units is configurable

by the user, the development of more application specific accelerator functional units

is clearly desirable. For example, a VLIW DSP processor that is intended for video

processing applications would greatly benefit from an 8 x 8 discrete cosine transform

accelerator.

116

The current status of the Cj)Sp compiler is that it is a compiler front-end, imple-

mented with standard compiler construction tools (YACC, LEX, etc.). Completion of

Cncp compiler and targeting of the compiler at configurable VLIW DSP micropro-

cessor would allow more quantitative architectural studies to be performed. Since the

Cncp language is optimized for DSP microprocessors, it would also be valuable to

target the compiler to standard DSP microprocessors and quantitate its performance

versus C compilers and assembly language for those standard processors. Ultimately,

given the weight of experience the Cpgp language should be revised to correct any

significant oversights and to add capabilities that would benefit unforeseen architec-

tural feature and applications.

APPENDIX A
CDSP LANGUAGE REFERENCE

A.l Introduction

This document is the language reference manual for the Gjjgp programming lan-

guage for digital signal processors. The Cjjgp language is based upon the principals

of the C programming language; principally that the Cjjgp language is a high-level

assembly language for digital signal processors. In particular, this manual is derived

from the ANSI C standard [49]. Why not just use C? The original C language was,

in fact, a high level assembly language for the DEC PDP-11 [50] and its successors.

In fact, many of the PDP-ll's successors, particularly the RISC microprocessors that

dominate the desktop workstation market, are designed so that C is an effective

high-level assembly language. Digital signal processors are not designed to allow C

compilers to generate optimal code for signal processing. In fact, digital signal pro-

cessors that are optimum hardware for running signal processing algorithms can only

be supported in a marginal sense by C compilers — usually via hand coded assembly

language libraries and idiomatic translation.

A.2 Notation

This manual formally defines a grammar for the Cj)gp language using a series

of rules, or productions. The format used for these productions is a modified Backus-

Naur form (BNF).

Terminals in the grammar are denoted using a monospaced font, for example,

"if." Non-terminals are denoted using italics, for example, "expression." Optional

117

118

terminals and non-terminals are enclosed in square brackets, for example, "[optional\.v

When a choice between more than one terminal or non-terminal is required those

choices are separated by a vertical bar (|), for example, "choicel\choice2." A non-

terminal that is used in a production outside of the section where it is defined will

be tagged with its defining production number. Subsequent references to that non-

terminal will not, however, be tagged with a reference to the defining production.

The non-terminal defined by a production appears to the left of the symbol "::="

while the matching rules of the production appear to the right.

Regular expressions that are used to match terminals are defined using the usual

Unix regular expression syntax.

A.3 Lexical Elements

A.3.1 Character set

The only characters used in the Cßgp language are defined in Table A.l. All

defined characters are members of the ISO seven-bit standard character set (ISO 646-

1983) and their representations in this manual are the ASCII defined representations.

Table A.l: The GpgP Character Set
(1) alphabetic characters
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkl mnopqrstuvwxyz

(2) digits
0 123456789

(3) special characters

[]() = + -*/{}.
(4) space
(ANSI space character)

Source programs may be contain any of the characters defined in Table A.l plus

the usual whitespace formatting characters: horizontal tab, vertical tab, carriage

return, line feed, and form feed.

119

A.3.2 Abstract literals

There are three defined classes of abstract literals: integers, reals, and strings.

These abstract literals are defined in the following discussion

Integer literals. An integer literal may take several forms. In particular, an

integer literal may be expressed in base ten (decimal), base eight (octal), or base

sixteen (hexadecimal). Integral values may also be specified with a character literal.

A decimal literal may begin with a unary negation (-) to indicate that the number

is negative. After the unary negation the literal may only contain the digits zero

through nine and may only start with zero if the literal is identically zero. An octal

literal is always interpreted as an unsigned value. The octal literal must begin with

the digit zero and is subsequently followed by one or more digits in the range of

zero through seven. Like the octal literal, the hexadecimal literal must always be

interpreted as an unsigned value. The hexadecimal literal must always begin with

either of "Ox" or "OX" and must be followed with one or more digits in the range of zero

through nine or alphabetic characters in the range "a" through "f," whether in upper

or lower case. Finally, an integral literal may be expressed using a character literal.

A character literal is a "single" character enclosed in single quotation marks. Note

that the single character may be an escape sequence that begins with a backslash.

These literals and the regular expressions that match them are given in Table A.2.

Table A.2: Regular Expressions for Integral Literals
Literal Type Regular Expression

octal 0[0-7] +
decimal -?[0-9] +
hexadecimal 0(x|X)[0-9A-Fa-f]+
character '\\?.'

120

Escape sequences. It is desirable to allow any character to be represented in

a string or character literal. Within the allowable character set for source programs

(see Section A.3.1) it is not possible to directly place any character in a character

or string literal. In fact, few terminals will even allow a programmer to enter any

possible character. Therefore it is necessary to provide a mechanism that allows

the programmer to enter "special" characters in character and string literals. The

mechanism to allow this to be done is called an escape sequence. Escape sequences

may only be found in character and string literals and always begin with a backslash

followed by one or more characters that may have significance.

Table A.3: Escape Sequences for Character and String Literals
Escape

Sequence Description

\n Newline.

\t Horizontal tab.

\r Carriage return.

\v Vertical tab.
\a Alert or bell.

\f Form feed.
\0YYY A character with the octal value YYY.

From one to three octal digits must follow
the leading zero.

\xYY A character with hex value YY. One or two
hex digits must follow the "x."

V Single quote.

V Double quote.

w Backslash.

\o Null character

Floating-point literals. Floating-point literals may assume the usual forms,

namely

1. Fixed-point format (e.g., "3.5"). At least one digit must occur both before and

after the radix point.

121

2. Scientific notation format (e.g., "3. 5e2"). The previous rules for the fixed-point

format govern the mantissa portion of this literal format. The letter "e" may

be either uppercase or lower case. After the letter "e" there may be a unary

plus or minus, but neither is required. Finally, a decimal integer follows. The

usual interpretation of this format applies (i.e., 3.5e2= 3.5 x 102).

The regular expression to match a floating-point literal in either of the above cases is

given in Table A.4.

Table A.4: Regular Expression for Floating-Point and Fixed-Point Formats
Literal Type Regular Expression

floating-point [0-9] +\. [0-9] + ([eE] [-+]?[0-9]+)?

String literals. String literals in Cpgp take the usual form found in the C

language. The rules for the formation of a string literal follow.

1. String literals are delimited with a double quote (""").

2. String literals may contain the direct representation of any ANSI alphabetic,

numeric, or punctuation character.

3. String literals may not directly span a newline. In order to span a newline a

string literal must be closed with a """ and restarted with another """. The

only intervening symbols allowed in the source file are whitespace characters.

String literals may contain the escape sequences defined in Table A.3.

A.3.3 Comments

Comments in Cpgp use the ANSI C form for comments. Comments may begin

at any point (except in a string or character literal) and end at any point. Comments

start with the two character sequence "/*" and end with the two character sequence

122

"*/". Comments may span multiple lines in the source file. The C++ single line com-

ment "//" is not supported. Comments do not in any way effect the code generation

or execution of code in a CßSP Pr°gram-

A.3.4 Identifiers

Identifiers are used to name storage objects, functions, labels, and user defined

types. Identifiers in the Cjjgp language must conform to the following rules:

1. Identifiers may be composed of uppercase and lowercase alphabetic characters,

digits, and the underscore character.

2. Identifiers may not begin with a digit.

3. All reserved words are identifiers and may not be used in an explicit declaration.

4. The interpretation of identifiers is case sensitive (e.g., "if is not the same as

"If").

5. Only the first thirty-one characters of an identifier are required to be considered

significant within a translation unit (see Section A.4). Implementations may

elect to consider more characters. When linking translation units the number

of significant characters is implementation defined.

Identifiers generally have limited visibility or scope. An identifier is never in scope

until after it is declared or defined. Function identifiers are in scope from the initial

point of declaration (prototype) or definition to the end of the translation unit.

Storage elements and user defined types that are declared or defined outside of the

body of functions are also in scope to the end of the translation unit. Storage objects

that are declared outside the body of functions is said to be global. A storage object

that is declared or defined within the body of a function or a compound statement is

123

in scope only to the end of the containing function or compound statement, however,

type definitions defined within a function have global scope. A storage object that

is declared or defined in the body of a function or compound statement is said to

be local. The identifier for a global storage object or type definition may not be

redefined with global scope, however, a local storage object may be defined using the

same identifier as that used for a global or in a containing local scope. If the identifier

for a storage object is redefined within a local scope, the newly defined storage object

takes precedence over that associated with the containing scope.

Labels only have scope within the function and are in scope for the entire function.

A.3.5 Reserved words

The Gjjgp reserved words are listed in Table A.5. All reserved words are low-

ercase and permutations on the case of the reserved words will not be matched as

reserved words (see Section A.3.4).

Table A.5: Cpgp Reserved Words
auto break char const continue
do dopar else extern fixed

float for if index int
long return short signed static

unsigned void volatile while

A.4 Translation Unit

A Cj)gp source file is known as a translation unit. A translation unit may be

either empty of contain declarations and definitions. Declarations and definitions may

be given for both functions and storage (variables, constants). The productions that

define a translation unit are given below.

(A.l) file ::= e \ translation-unit

124

(A.2) translation-unit ::= external-declaration \

translation^unit external-declaration

(A.3) external-declaration ::= function-definition(AA) \

declaration(A.27)

A.4.1 Function definitions

The production for a function definition is given below. In Kernighan and Ritchie

C [51] (sometimes referred to as "K&R C), a declarationJist(A.51) was placed be-

tween the declarator and the compound-statement to allow the types of the elements

parameter list to be defined. ANSI C preserved this as an "old style" function header

to support migration of legacy Kernighan and Ritchie-style code, however, that option

does not exist in Gßgp since there is no legacy Gjjgp code to support.

(A.4) function-definition ::= [declarationspecifiers(A.28)] declarator{A.35)

compoundstatement(A.50)

A function definition must contain a declarator and a compound-statement. If

declaration-specifiers are not explicitly given then the function definition has a default

type of int.

Cjjgp functions do not use a stack for storage. All local storage uses statically

determined locations. There are many advantages to this approach. First, by using

statically determined storage locations code generation is simplified since dynamic

storage does not have to be managed. Furthermore, in a multi-threaded execution

environment, the stack-based memory allocation method preferred for automatic stor-

age is difficult to implement, particularly since many DSP microprocessors lack a stack

for data storage. Using statically determined storage locations for storage also elimi-

nates the storage linkage operations usually performed upon entering and exiting any

block where local storage is allocated.

125

While all functions in the C programming language are recursive, functions in the

CßSP programming language are not recursive. Recursion is easy to support when

a stack model is used for automatic storage (auto), however, since the Cncp ex-

ecution environment does not use a stack, supporting recursion would be difficult.

Furthermore, the dynamic memory usage requirements of recursive functions cannot

be predicted and are, therefore, impossible to schedule at compilation time. Recursion

is a very useful programming technique for some applications, such as transversing a

tree structure, however, DSP applications do not usually have many complicated data

structures. Recursion can also be used for numerical computations, however, such im-

plementations of numerical computations are often grossly inefficient, expending the

majority of their execution time in the function call and return processes. In either

event, recursion can always be simulated.

^DSP functions are not reentrant. Reentrancy, like recursion, presents special

implementation challenges. For instance, any static storage associated with a func-

tion must be managed with a mutually exclusive (MUTEX) lock. This is particularly

difficult as hardware support for a MUTEX lock cannot be assumed in a multiple DSP

microprocessor execution environment. Automatically allocated storage must also be

separately managed, presenting a difficult dynamic memory allocation problem.

A.4.2 External object definitions

Global storage objects and function objects may be defined in external translation

units. Access to externally defined objects is mediated by a linker. The operation of

the linker is not defined in this document. A global object (storage or function) that

is defined with the static storage class are not in scope outside of the translation

unit where it is defined.

126

A.5 Conversions

The Cnep language, like its namesake, is loosely typed. That is, expressions

involving operands of mixed type are allowed. In order to support operations in-

volving operands of mixed type it is necessary to automatically convert operands

of mixed type to a common type so that the operation can be performed. Oper-

ations where operands are automatically converted to compatible types are said to

employ "automatic type conversion." The implicit conversion of operands discussed

here is contrasted with the explicit conversion accomplished using cast operators (see

Section A.6.4).

Automatic type conversion in the CßßP language is value preserving. In other

words, when an automatic type conversion is to be performed, the resulting type will

capable of representing the value to be converted. Table A.6 shows the direction of

automatic type conversion of intrinsic scalars in the Cjjgp language; automatic type

conversions will only convert a value to a type that is lower in the list in Table A.6.

Conversions of signed values are sign-preserving (i.e., sign-extension is performed).

Table A.6: Direction of Automatic Type Conversions
char least precedence

unsigned char I
short i

unsigned short i
int i

unsigned int i
long i

unsigned long 1
fixed I
float greatest precedence

The fixed type may have up to four sizes char (eight bits), short (sixteen bits),

int (between sixteen and thirty-two bits), and long (thirty-two bits). Automatic type

conversion of an integral type versus a fixed will result in a fixed representation

127

of the same size as the integral type if the fixed value is smaller than the integral

value. For example, a fixed (char) multiplied by a short will produce a result of

type fixed (short). Type resolution and automatic type conversion of operands of

differing fixed sizes will likewise result in a fixed size equal to the larger of operands.

Conversions of integral and fixed values to floating-point values will result in a

floating-point value that is as close as possible for the given implementation.

Forced conversions (casts) from the floating-point representation to a fixed repre-

sentation will map the floating-point value according to the parameters of the fixed

representation. Mapping of floating-point values to integral representation results in

the truncation of all fractional bits in a normalized representation. If the floating-

point value is too large to be represented given the chosen fixed or integral type then

the result is an undefined value. Conversions from fixed representations to integral

representations results in the truncation of all fractional bits. The conversion of a

fixed to integral type proceeds as if the fixed value were first converted to an inte-

gral version of its "container" type (e.g., fixed (char) to char) and then an integral

to integral conversion is performed, if necessary.

Integral conversions from larger to smaller types are performed by truncating the

high-order bits of the larger type. If the original value were in the range of the target

type then this conversion will be value preserving. However, if the original value is

not in the range of the target type then the resulting value will be undefined.

A.6 Expressions

A.6.1 Primary expressions

A primary expression is either a constant, a string literal, a parenthesized expres-

sion (Production (A.25)), or an identifier. An identifier may be a primary expression

if and only if it has been previously declared or defined as a variable, constant, or

128

function.

(A.5) primary-expression ::= identifier \

constant \

string-literal \

(expression(A.25))

A.6.2 Postfix operators

A postfix expression followed by a set of square brackets " []" enclosing an ex-

pression (Production (A.25)) is an array element reference (i.e., a subscript). The

subscripting expression must have a scalar integral value. A postfix expression fol-

lowed by a parenthesized argument expression list (possibly empty) is a function

reference providing the function has been previously defined or declared.

Sub-arrays may also be specified using colon notation. In the first case a range of

indexes may be specified using the notation

start: stop

where start and stop are expressions and stop is greater than or equal to start. This

notation specifies all indexes from start to stop, inclusive. Sub-arrays with non-unit

index stride may be specified with the notation

start: stop: stride

where start and stop are non-negative expressions, and stride is a non-zero expression.

If stride is positive then stop should be greater than or equal to start, while if stride

is negative then stop should be less than or equal to start. If A is the starting index,

B is the stopping index, and S is the stride, then let

129

Given L, then the ordered set of indexes specified by the notation A: B: S is

{A,A + S,A + 2S,...,A + (L-1)S}. (A.2)

From this it is clear that the set of indexes does not pass B.

The application of index range notation to arrays is equivalent to the formation of

a new array with elements selected from the original array according to Equation A.2,

producing an ordered mapping to the index set

{0,1,2,...,ü-l}. (A.3)

The post-increment "++" and post-decrement "—" operators operate only on

scalar integral types. They operate in the usual way (incrementing or decrement-

ing by one) when operating on any scalar type except the index type. The operation

of the increment and decrement operators upon the index type is controlled by the

attributes supplied with the dot operator discussed below.

(A.6) postfix-expression ::= primary-expression \

postfix-expression[.expression(A.25)] \

postfix-expression[expression: expression] \

postfix-expression [expression: expression: expression] \

postfix-expression(.[argument-expressionJisi\) \

postfix-expression .mod |

postfix-expression. stride |

postfix-expression .bitrev |

postfix-expression.ba.se |

postfix-expression. ind |

130

postfix-expression++ \

postfix-expression—

(A.7) argument-expressionJist ::= as$ignment-expression(A.23) |

argument-expression Jist, assignment-expression(A.23)

The rules for postfix.expression. {mod | stride | bitrev | base | ind} are provided

for the index variable type which, under normal operation has state information be-

sides the current value of the index. The "." operator is used in the C language to

support member access of structs. Since structs do not exist in the Cpgp lan-

guage, the "." operator has been appropriated to identify index attributes.

The various attributes of a variable of type index are illustrated in Figure A.l.

The . ind attribute is the basic index value of the index type and is a signed integral

scalar. The . ind attribute is the one that is changed when the increment and decre-

ment operators are applied to the index (i.e., iN, not iN.ind). The .mod attribute

controls the modulus used with increment and decrement operations on the index

and is an unsigned integral scalar. If the value of the the .mod attribute is zero then

no modulus operation is performed when incrementing or decrementing the index.

The . stride attribute is a signed integral scalar that is the value that is added to

the index when it is incremented (or subtracted when it is decremented). If the .mod

attribute is non-zero then the absolute value of the . stride attribute should be less

than the .mod attribute for a particular index value, otherwise the effects of an incre-

ment or decrement operation are undefined. The .base attribute of an index value is

an offset, allowing the use of modular addressing within a sub-array of a larger array.

The semantics of the increment and decrement operators and the impact of the

attributes of an index iN are given as follows.

1. The value of iN is a signed integral scalar equal to iN.base+iN.ind.

131

Value after decrementing index

Value after incrementing index

0

\— .stride-*

■ ind ++

zlzz ••
.base k .mod

I 1 1 I I 1 I I 1 I 1 1 I I 1 I I I I I I ++ + ++
0 '

.base+.ind

Figure A.l: Semantics of index Attributes

2. If iN.mod is zero then the increment (decrement) operator applied to iN (either

++iN or iN++) results in iN.ind<—iN.ind+(—)iN.stride.

3. If iN.mod is greater than zero then the increment (decrement) operator applied

to iN results in iN.ind«—(iN.ind+(-)iN.stride) mod iN.mod.

The . bitrev attribute is an integral scalar. If the value of . bitrev is zero then the

semantics of the index value under increment and decrement operators are as given

above. If .bitrev is non-zero and .mod is non-zero then the semantics of the index

value under the increment and decrement operators is undefined. If .bitrev is non-

zero and .mod is zero then the semantics of the increment operator are to cause the

following action: iN.ind«—iN.ind+iN.stride, where -f indicates binaxy addition

with reversed carry propagation. For example, HO2+IOO2 = OOI2. If .bitrev is non-

zero and .mod is zero then the semantics of the decrement operator are undefined.

A.6.3 Unary operators

The pre-increment and pre-decrement operators operate only on scalar integral

types. As previously discussed, these operators work in the usual way with integral

scalar types, and with the special semantics described in the previous section for

values of type index.

132

(A.8) unary-expression ::= postfix-expression \

++unary-expression |

—unary.expression |

unary-operator cast-expression(A.10) \

sizeof unary.expression \

sizeof (type-name)

(A.9) unary-operator ::= & | + | - | " | !

The sizeof operator produces a constant (since it is evaluated at compile time)

unsigned integral scalar and may be used to evaluate a type either by referencing the

type name or an expression.

The unary operators are the "address-of" operator (&), the unary plus (+), the

unary minus (-), the bitwise NOT (~), and the logical NOT (!). The unary plus,

minus, bitwise NOT and logical NOT operators operate upon scalar and array values.

The unary plus and minus operations work in the usual way. The bitwise NOT

operation causes the negation of each bit of the operand.

The logical NOT operation produces a result of zero (false) if the value of the

operand is non-zero (true) and one (true) if the value of the operand is zero (false).

The type of the result of the logical NOT operation is always int, regardless of the

type of the operand.

A.6.4 Cast operators

A cast may be applied to an expression by placing a valid type name in parenthesis

in front of the expression to be converted. A conversion of an expression to a "larger"

type will preserve the value of the expression converted. A conversion to a "smaller"

type (e.g., int to char) will preserve the value of the expression converted if the

value of the original expression is in the range of the new type, otherwise the value

133

resulting from the conversion is undefined. A cast may be applied to both scalar and

array expressions.

(A.10) cast-expression ::= unary-expression(A.S) \

(type-name(AA2)) cast-expression

A.6.5 Convolution and sum of products operators

The convolution operators are linear convolution ($) and circular convolution (@).

These operators operate on array operands. If either operand is a scalar then the

operation is reduced (and equivalent to) a scalar multiplication.

(A.11) convolution-expression ::= cast-expression(A.10) \

convolution-expression $ cast-expression \

convolution-expression @ cast-expression

convolution-expression $$ cast-expression

Linear convolution operands must have the same dimensionality, unless one operand

is a scalar, in which case the operation is interpreted as a multiplication. The linear

convolution is computed in the usual way, with the size of the result in each dimension

equal to sum of the operand sizes in that dimension minus one.

Circular convolution may be performed using array operands of differing sizes,

however, the operands must have the same dimensionality. The circular convolution

will be computed as if the operand with the smaller size in a particular dimension is

zero padded in that dimension to match the size of operand with the larger size in

that dimension. For instance, the circular convolution of a 3 x 2 array with a 2 x 3

array will cause the computation to proceed as if each had been zero padded to 3 x 3

elements, producing a 3 x 3 result.

The $$ operator is the sum of products operator. The sum of products operator

is an array operator. The sum of products operands must have the same geometry,

134

unless one operand is a scalar, in which case it will be taken as an array with the

same geometry as the array operand and each element of the array has the scalar's

value.

The means used to perform convolution and sum of products computations are

not specified and are implementation dependent.

A.6.6 Multiplicative operators

The multiplicative operations are multiplication (*), division (/), and the remain-

der or modulus operation ('/,). All three of these operators operate both upon scalars

and arrays. If both operands are array operands then the arrays must have identical

geometry. If one operand is a scalar and the other is an array then the computation

will be performed as if the scalar operand were actually an array with the same geom-

etry as the actual array operand with all elements having the same value as the scalar

operand. Before the operation is performed, if one of the operands is of a smaller

type than the other then it will be converted to the larger type before the operation

is performed, with the result taking the larger operand type.

(A.12) multiplicative-expression ::= convolution-expression(A. 11) |

ultiplicative-expression * convolution-expression \

multiplicative-expression I convolution-expression \

multiplicative-expression '/, convolution-expression

mul

mi

mi

If the results of a multiplication operation overflow the capacity of the type used

for the multiplication and undefined result is produced. Multiplication of arrays

proceeds element by element rather than using the matrix multiplication algorithm.

The division operation is undefined if the second operand has a value of zero.

When division is performed using integral operands of the same sign the quotient will

135

be truncated towards zero,

x/y = q + r, (A.4)

where q is an integer and r € [0,1). When the signs of the operands are different

the direction of truncation (towards zero or away from zero) are implementation

dependent. That is, if sign(x)^sign(?/), then q is an integer as before and either

re [0,1) orr e (-1,0].

The modulus or remainder operation is only defined over the integral types and

only if the second operand is non-zero. The value produced by the modulus operation

is defined by the relationship (x/y)*y+x'/y is equal to x. As a result, the value

produced when one of the operands has a negative value will depend upon the quotient

produced by the division operation and is, therefore, implementation dependent.

A.6.7 Additive operators

The rules for the automatic type conversion of operands of the additive operators

are given in Section A.6.6. The addition and subtraction operations work in the usual

way. If the results of an additive operation overflow the capacity of the type used to

perform the expression then the result is undefined. If one or both operands are arrays

then the addition or subtraction operation will be performed element-by-element, as

described in Section A.6.6.

(A.13) additive-expression ::= multiplicative-expression(A.12) \

additive-expression + multiplicative-expression \

additive-expression - multiplicative-expression

A.6.8 Bitwise shift operators

The shift operators are used to perform logical shifts of integral values. The result

of either shift operation is undefined if either of the operands is not integral, or if the

136

second operand is negative or greater than the width (in bits) of the first operand

minus one. The type of the result will be the same as the type of the first operand;

the type of the second operand does not impact the type of the result.

(A.14) shift-expression ::= additive-expression(A. 13) |

shift-expression « additive-expression \

shift-expression » additive-expression

The left shift operation («) shifts the first operand left the number of bits specified

by the second operand. The right shift operation (») shifts the first operand right

the number of bits specified by the second operand. In the case of the left shift, the

number given by the second operand of the least significant bits is set to zero, while

in the case of the right shift, the number given by the second operand of the most

significant bits is set to zero. In other words, in both cases zeros are shifted into the

new value. The bits shifted out are not preserved. Furthermore, these shifts are not

arithmetic (sign preserving).

If one or both operands are arrays then the operation will be performed element-

wise as described in Section A.6.6.

A.6.9 Relational operators

The relational operators, less-than (<), greater-than (>), less-than-or-equal (<=),

and greater-than-or-equal (>=), take scalar operands and produce int results. The

value of the expression will be zero if the relational operation evaluates to be false,

and one if the relational operation evaluates to be true. As in Section A.6.6, the

operands will be automatically converted to compatible types before the comparison

occurs.

(A.15) relational-expression ::= shift-expression(A.14:) \

relational-expression < shift-expression |

137

relational-expression > shift-expression \

relational-expression <= shift-expression \

relational-expression >= shift-expression

A.6.10 Equality operators

The equality operators, equality (==) and inequality (! =), take scalar operands and

produce int results. The value of the expression will be zero if the operation evaluates

to be false and one if the expression evaluates to be true. As in Section A.6.6, the

operands will be automatically converted to compatible types before the comparison

occurs.

(A.16) equality-expression ::= relationaLexpression(A.15) \

equality-expression -= relational-expression \

equality-expression ! = relational-expression

Note that all comparisons are exact, therefore, these operations probably have

limited utility when non-integral types are used.

A.6.11 Bitwise AND operator

The bitwise AND operation is performed on each bit of the operands. The bitwise

AND operation is only defined if both operands are integral. As in Section A.6.6, the

operands will be automatically converted to compatible types before the operation

occurs.

(A.17) AND-expression ::= equality-expression{ A. 16) |

AND-expression & equality-expression

If one or both operands are arrays then the operation will be performed element-

by-element as described in Section A.6.6.

138

A.6.12 Bitwise exclusive OR operator

The bitwise exclusive OR operation is performed on each bit of the operands.

The bitwise exclusive OR operation is only defined if both operands are integral. As

in Section A.6.6, the operands will be automatically converted to compatible types

before the operation occurs.

(A.18) exclusive-OR-expression ::= AND-expression(A.17) \

exclusive-OR-expression ~ AND-expression

If one or both operands are arrays then the operation will be performed element-

by-element as described in Section A.6.6.

A.6.13 Bitwise inclusive OR operator

The bitwise inclusive OR operation is performed on each bit of the operands.

The bitwise inclusive OR operation is only defined if both operands are integral. As

in Section A.6.6, the operands will be automatically converted to compatible types

before the operation occurs.

(A.19) inclusive.OR-expression ::= exclusive.OR-expression(A.18) \

inclusive.OR-expression I exclusive-OR-expression

If one or both operands are arrays then the operation will be performed element-

by-element as described in Section A.6.6.

A.6.14 Logical AND operator

The logical AND operation will produce zero (false) if one or the other operand

(or both operands) is zero (false), and will produce one (true) if both of the operands

are non-zero (true). If the first operand is zero (false) then the second operand will

not be evaluated. The logical AND operation is only defined for scalar operands. The

result of the logical AND operation is a value of type int.

139

(A.20) logicaLAND-expression ::= inclusive-OR-expression(A.l9) \

logicaLAND-expression kk. inclusive-OR-expression

A.6.15 Logical OR operator

The logical OR operation will produce zero (false) if both operands are zero (false),

and will produce one (true) otherwise. If the first operand is non-zero (true) then the

second operand will not be evaluated. The logical OR operation is only defined for

scalar operands. The result of the logical OR operation is a value of type int.

(A.21) logicaLOR-expression ::— logicaLAND-expression(A.20) \

logicaLOR-expression 11 logical-AND-expression

A.6.16 Conditional operator

The conditional operation is performed using a ternary operator. The operands

must be scalars. If the first operand is non-zero (true) then the value of the operation

is given by the second operand-expression, while if the first operand is zero (false) then

the value of the operation is given by the third operand-expression. The operand-

expression that is not selected is not evaluated.

(A.22) conditional-expression ::= logicaLOR-expression(A.21) \

logicaLOR-expression ? expression : logical-AND-expression

A.6.17 Assignment operators

The assignment operator (=) is a right associative operator that takes any expres-

sion as its second operand (usually called the rvalue for right-hand side) and assigns

it to the location specified by the first operand (usually called the lvalue for left-hand

side). The rvalue may be any expression, however, the lvalue must specify a valid

storage location. The lvalue and rvalue must both be scalars. If the type of the

rvalue is of a smaller type than the lvalue then it will be automatically converted to

140

the type of the lvalue, however, in the case of the opposite conditions, the value of

the assignment is undefined. All assignment operations also produce a value, namely

the value assigned to the lvalue.

(A.23) assignment-expression ::= conditionaLexpression(A.22) \

unary-expression assignment-operator assignment-expression

(A.24) assignment-operator ::= = | *= | /= | '/.= | += | -= | «= | »= | &= | ~= | 1 =

The remaining assignment operators are referred to as compound assignment op-

erators because they result in an operation and an assignment. Each compound as-

signment operator has an equivalent expression using other operators; the previously

stated restrictions regarding the type of the lvalue and rvalue hold for the compound

assignment operations, as well as additional restrictions that are the restrictions on

the original operations. The compound assignments and their equivalents are sum-

marized in Table A.7.

Table A.7: Compound Assignment Operations and Equivalent Assignments
Compound Assignment Equivalent Assignment

x*=y x=x*y
x/=y x=x/y
x'/.=y x=x'/,y
x+=y x=x+y
x-=y x=x-y
x«=y x=x«y
x»=y x=x»y
x&=y x=x&y
x-=y x=x~y
x|=y x=x|y

If the lvalue of an assignment operator is an array then the rvalue must also be

an array with the same geometry. The compound assignment operators also support

array operands according to the rules for array operands for the parent operation. If

141

one or both operands are arrays then the operation will be performed element-by-

element as described in Section A.6.6.

A.6.18 Comma operator

The comma operator may be used to separate expressions in a single statement.

The left operand of the comma operator is evaluated first, then the right operand. The

result of the comma expression has the type and value of the last operand evaluated

(i.e., the right operand). The comma operator is left associative.

(A.25) expression ::= assignment-expression{A.23) |

expression , assignment-expression

A.7 Constant Expressions

A constant expression is any expression, down to a conditional expression, that

may be evaluated to be a constant value at compile time. All constant expressions

are evaluated at compile time.

(A.26) constant-expression ::= conditionaLexpression(A.22)

A.8 Declarations

Declarations in C nop are used to declare variables, functions, user defined types,

and external references. If the declaration creates storage for the object (a variable

or a function) then it is also known as a definition. Declarations are defined by the

following productions.

(A.27) declaration ::= declaration-specifiers [init-declaratorJist] ;

(A.28) declaration-specifiers ::= storage-classspecifier[A.Sl) [declaration-specifiers] \

typespecifier(A.Z2) [declarationjspecifiers] \

type-qualifier(A.33) [declarationjspecifiers]

142

(A.29) init.declaratorJist ::= iniLdeclarator |

init-declaratorJist , iniLdeclarator

(A.30) init-declarator ::= declarator(A.35) |

declarator = initializer(AA6)

Declarations may include initializers (see Section A.8.7) that provide the initial

value of the storage element if it has local linkage (i.e., an initializer may not be

provided for a variable with the extern storage-class specifier). Objects with global

scope will be initialized only upon program entry if there is an initializer. Objects

with local scope but a static storage-class specifier will also be initialized only upon

program entry if there is an associated initializer. However, if there is an initializer

then objects with local scope and an auto storage-class specifier will be initialized

every time the containing scope is entered.

A.8.1 Storage-class specifiers

Storage-class specifiers are used to define the type of storage used for a declared

storage object. The typedef storage-class specifier is used to define new types and

does not allocate any run-time storage. All typedef ed identifiers have scope limited

to the translation unit. All identifiers that are defined by a typedef have scope for

the remainder of the translation unit.

The extern storage-class specifier indicates that the storage for a particular stor-

age object is defined outside of the current translation unit or later within the current

translation unit. If the identifier is not defined within the current translation unit

then all references to that object must be resolved during the link phase. If the

extern storage-class specifier is used but the declaration has an initializer then the

declaration will be considered a definition. If the identifier is not defined within the

143

current translation unit then storage will not be allocated in association with the

current translation unit.

The static storage-class specifier has two meanings. When applied to a storage

object with global scope, it indicates that the object will not be made available to

other translation units during the link phase. When applied to a storage object with

local scope, the object retains its value between successive entries of the containing

scope.

The auto storage-class specifier indicates that storage for a particular object will

be acquired upon entry to the containing scope, and that the storage will be released

for reuse upon exiting from the containing scope. Consequently, the storage object

may not retain the stored value between successive entries of the containing scope.

The auto storage-class specifier may not be used for objects with translation unit

scope.

(A.31) storage-classspecifier ::— typedef |

extern |

static |

auto

A.8.2 Type specifiers

The intrinsic type in Cjjgp are index, char, short, int, long, fixed, and float.

The char, short, int, long, and index types are interpreted as integral types. The

index type has multiple attributes which are discussed in detail in Section A.6.2.

(A.32) typespecifier ::= void |

index |

char |

short I

144

int I

long I

fixed({char | short | int | long}, constant) \

signed |

unsigned|

float |

typedef-name(AA5)

are

The size of the attributes of the index type are defined to be whatever is appropriate

for the target machine architecture. The size of the remaining integral types ar

defined the same as in the ANSI C standard: char is eight bits (-128 to 127), short

is sixteen bits (-215 to 215 -1), long is thirty-two bits (-231 to 231 -1), and the int

is an implementation defined size between short and long, inclusive.

The signed and unsigned attributes may be applied to any of the integral types

except index. By default, all of the integral types are signed, therefore the signed

attribute has the effect of a comment. The unsigned attribute changes the interpre-

tation of the value from the range [-2iV~1,2iV-1 - 1] to the range [0,2" - 1].

The fixed type is a quasi-integral type that is based upon the integral types but

is understood to have an implied radix point. The size of the word is derived from

one of the existing integral types. The number of fractional bits is user defined. The

fixed type is a signed type: one bit of the representation is always used as a sign bit.

The maximum number of fractional bits for a fixed value is one less than the size

of the parent integral type. The minimum number of fractional bits is zero, in which

case the fixed representation would be equivalent to its parent type.

The float type is a floating-point number with an implementation dependent

representation.

145

User defined types may be formed using the typedef storage class specifier. These

types are constructed from the intrinsic types and may be used in the same way as

an intrinsic type once defined.

A.8.3 Type qualifiers

There are two type qualifiers: const and volatile. The const qualifier indi-

cates that the identifier being declared cannot be modified. In order for the const

type qualifier to be meaningful, it is necessary for there to be an initializer in the

declaration.

The volatile qualifier indicates that the storage object is subject to asynchronous

modification by outside sources. Therefore, each access to a storage object declared

with the volatile qualifier must actually perform the implied access.

(A.33) type-qualifier ::= const |

volatile

(A.34) type-qualifier Jist ::= type-qualifier \

type-qualifierJist type-qualifier

A.8.4 Declarators

(A.35) declarator ::= direct-declarator

(A.36) direct-declarator ::= identifier \

(.declarator) \

direct-declarator[.[constant-expression(A.26)\] \

direct-declarator ([parameterJypeJist])

(A.37) parameterJypeJist ::= parameterJist \

parameter-list , ...

146

(A.38) parameterJist ::= parameter-declaration |

parameterJist, parameter-declaration

(A.39) parameter-declaration ::= declarationspecifiers(A.28) declarator \

declaration-specifiers [direct-abstract-declarator(AA4:)]

Practical implementation of the function declarator right-hand side elements of

the production (A.36) requires that the function declarator be split. To this end, the

following productions are used.

(A.40) direct-declarator ::= function-declarator [parameterJypeJist])

(A.41) function-declarator ::= direct-declarator (

The result of substituting productions (A.40) and (A.41) into production (A.36) will

be to execute an action associated with the reduction of production (A.41) before any

reductions associated with the optional non-terminal parameter-typeJist can occur.

A.8.5 Type names

(A.42) type-name ::= specifier-qualiferJist [direct-abstract-declarator]

(A.43) specifier-qualifierJist ::= typespecifier(k.Z2) [specifier-qualifierJist] \

type-qualifier(A.33) [specifier-qualifierJist]

(A.44) direct-abstract-declarator ::= (direct-abstract-declarator) \

[direct-abstract-declarator] l[constant-expression(A.26)]~\ \

[direct-abstract-declarator] ([parameterJypeJist(A.37)])

A.8.6 Type definitions

Type definitions may occur in the global scope or within a sub-scope, however,

all typedef ed types have global scope. Local identifiers may not be declared with the

same identifier as that used for a typedef'ed type.

147

(A.45) typedef-name ::= identifier

A.8.7 Initialization

Initializers provide for the initialization of variable and constant data storage

objects within the declaration. All initializers take the form of a declared lvalue, an

assignment operator, and the value to use for initialization on the right. The value

(or values) used in an initializer must be a constant expression.

(A.46) initializer ::= assignmenLexpression(A.23) \

{initializer-list} |

{initializer-list, }

(A.47) initializer-list ::= initializer \

initializer-list, initializer

Array initializers may be created using comma-separated lists enclosed in braces.

Array initializers should be the same size as or smaller than the array to be initialized;

initializers that are larger than the array to be initialized are not allowed. If an array

initializer is present but it is smaller than the array being initialized, the remainder

of the array will be set to zero.

A.9 Statements

Statements are the elements of the translation unit that are used to generate

object code. Statements are executed in sequence except where flow is explicitly

altered by branching. All statements are found in the bodies of functions. While

the Cncp language, like its namesake, supports a restricted goto statement, its

use is discouraged since it tends to make code both less manageable for the human

programmer and the compiler. A structured programming style is encouraged by the

148

rich control flow statement options and the structuring of all Cj)gp programs as lists

of functions.

(A.48) statement ::= labeledstatement(A.49) \

compoundstatement(A.bO) \

expressionstatement(A.bZ) |

selectionstatement(A.b4) \

iterationstatement(A.bb) \

jumpstatement(A.b6)

A.9.1 Labeled statements

Labels are identifiers that are prepended to statements using a colon to delimit

the identifier from the labeled statement. These labels are used as targets for the

goto statement (see Section A.9.6). The scope of a labeled statement is local; the

label is not visible from outside of the containing function.

(A.49) labeled-statement ::= identifier : statement(AA8)

A.9.2 Compound statements

Compound statements are groupings of statements that may be used anywhere a

single statement may be used. Compound statements may contain declarations and

executable statements per Production (A.50), although neither is required.

(A.50) compound-statement ::= {[declarationJist][statementJist]}

(A.51) declarationJist ::= declaration(A.,27) |

declaration-list declaration

(A.52) statement-list ::= statement(AA8) \

statement-list statement

149

A.9.3 Expression statements

Expression statements are statements that only contain expressions. All expres-

sion statements are terminated by a semi-colon. An expression statement may be

empty, denoted by the required terminating semi-colon. Such an empty statement is

referred to as a null statement. A null expression may be used anywhere a statement

is required.

(A.53) expression-statement ::= [expression(A.25)] ;

A.9.4 Selection statements

The if and if-else statements are used to evaluate expressions and execute code

depending upon the result of the evaluated expression. The if statement (Produc-

tion (A.54)) first evaluates the expression contained in parentheses. The expression

must be a scalar. If the expression evaluates to be true (non-zero) then the target

statement is executed, otherwise, if the expression evaluates to be false (zero) then

the target statement is not executed. In the case of the if-else statement, the

first statement is executed if the expression evaluates to be true (non-zero) otherwise

the second statement executes. The control flow for the if and if-else selection

statements is shown in Figure A.2.

(A.54) selection-statement ::= if (,expression(A.25)) statement(AA8) \

if (.expression) statement else statement

The target statements for the if and if-else selection statements may be any

statement, including another if or if-else statement. This capability introduces

an ambiguity whose resolution is not apparent from Production (A.54), namely the

problem of the dangling else. In particular, in the structure if-if-else it is not

clear whether the else associates with the first or second if. By definition, the else

will always associate with the closest if.

statementS

o

150

statementl

Figure A.2: Control Flow For the if and if-else Statements

A.9.5 Iteration statements

The iteration statements are the Gpgp statements that are used for looping con-

structs.

(A.55) iteration-statement ::= while (expression(A.25)) statement(AAS) \

do statement while (.expression) ; \

for ([expression]; [expression]; [expression]) statement \

dopar ([expression]; [expression]; [expression]) statement

The while statement is the only looping statement that is needed to implement

all sequential looping constructs. The expression in the parentheses is evaluated and

151

if it is true (non-zero) then the target statement is executed. The flow of execution

of the while statement is illustrated in Figure A.3.

o
statement

Figure A.3: Control Flow For the while Statement

The do-while statement is similar to the while statement except that it executes

its statement before evaluating the conditional expression that controls looping. A

flow diagram of the do-while statement is shown in Figure A.4.

6
statement

Figure A.4: Control Flow For the do-while Statement

The for statement has the classic elements of the for-loop structure. There is an

expression that is evaluated upon entry that serves to initialize any needed iteration

control variables, a condition expression that is tested once per iteration, a statement

that is executed once per iteration that serves as the "payload" of the loop, and a final

152

expression that is evaluated after the statement is executed to update the iteration

variables. The for statement in the C[)sp language works like its C equivalent. A

flow diagram of the execution of a for statement is given in Figure A.5.

expression!

6 expressions

statement

Figure A.5: Control Flow For the for Statement

The dopar statement is a parallel loop statement. The dopar statement is defined

to execute as if each iteration has a separate copy of all data objects that will be

accessed within the loop. Therefore, there is no flow dependence between iterations

of the dopar loop. If there is a data access conflict between iterations then the

resulting behavior is undefined. As such, it is best to avoid data access conflicts

between iterations. There should be no data dependencies from the body of the loop

to the iteration variable(s). The dopar loop executes as if the iteration variables

are all computed first, and each loop "iteration" (statement) begins execution with a

separate copy of the iteration variable(s), that is, each iteration is forked. The dopar

executes as if when all iterations have completed a join is performed. A block diagram

illustrating the flow of a dopar statement is given in Figure A.6.

Since Cjjgp functions are not reentrant, any function calls within a dopar loop

will result in sequential execution of the loop statement. In a future revision of the

language, it would be worthwhile to provide either function reentrancy or function

153

statement

Compute

Iteration

Variable Set

Copy All

Dependent

Variables

statement

Figure A.6: Control Flow For the dopar Statement

locking (so that only one thread of execution may be in the function at any time) to

simulate function reentrancy.

A.9.6 Jump statements

The jump statements are used to alter program flow outside of the normal appli-

cation of the structured iteration statements. The goto jump statement is used to

branch to another statement within the the local scope of a function. It is provided

primarily as a porting aid; many legacy applications are highly dependent upon an

unrestricted goto. The availability of the goto allows manual translation and even

machine translation of existing code.

154

The continue and break statements are used to alter the flow of control within

an iteration statement. The break statement simply causes the loop to exit directly

when the break statement is encountered. In the case of nested loops, the break

statement does not cause all of the loops to be broken but rather the one directly

containing the break statement.

The continue statement causes the currently executing iteration of a loop to exit

and causes the program flow to proceed to the next iteration. Outside of loops the

break and continue statements have no effect upon program control flow.

The return statement causes the current function to exit and the control of the

program to return to the calling program. The return statement may be given with

or without an optional expression. If the expression is not empty then the function

will return the value computed in the expression. The type of this returned value

must be consistent with the declared return type of the containing function.

(A.56) jump-statement ::= goto identifier ; |

continue ; |

break ; |

return [expression(A.25)] ;

APPENDIX B
M-FILES

B.l DFT Code

B.l.l rpdft.m
V. Rader Prime DFT Function.
*/, Author: Jon Mellott
•/. Date: 10-18-93
% Description:
'/, This function performs the Rader Prime DFT on a complex data
'/, sequence. Circular convolution is performed by multiplying the
'/. fit's of the sequences of interest.
7.
'/. Modified 5/25/94W. Indexing bug fixed.

7, Arguments:
7% ex — Complex input data.
V, dftl — Length of dft; must be prime.
7. pelmt — Primitive element of GF(dftl).

function V = rpdft(ex,dftl,pelmt)
y. Prepare to do Rader prime DFT
V, Create permutation matrix to scramble input data.
Pin=zeros(dftl-1);
Pout=Pin;
for I=0:dftl-2
Pin(I+l,rem(pelmt~(rem(dftl-I-1,dftl-1)),dftl))=1;
Pout(1+1,rem(pelmt"I,dftl))=1;
end;
% Generate circular convolution sequence.
F=zeros(dftl-l,l);
for I=0:dftl-2
F(I+l)=exp(-i*2*pi*rem(pelmt~I,dftl)/dftl)-l;
end
% Prepare to do circular convolution using products of DFTs.
F=fft(F);
'/ Do Rader prime DFT.
V=ifft(fft(Pin*cx(2:dftl)).*F);
'/, Unscramble the output.
V=Pout.'*V;
y. Add the DC term.
V=sum(cx(l:dftl))+[0;V];
end

B.1.2 gtdft.m
*/, Good-Thomas DFT Function.
V, Author: Jon Mellott
'/. Date: 6-2-94
'/, Description:
'/.
'/, Arguments:
'/, x — data
'/, cf — CRT configuration matrix.

155

156

function X=gtdft(x,cf)
*/, Extract the number of primes.
[L t]=size(cf); '/. We only care about L.

'/, Extract the vector length from CRT configuration matrix.
M=prod(cf(:,l));
% For each p_{i>, take all DFT's of length p_{i} for GT-DFT.
for i=i:L , . ^ .

'/, Compute prime list/crt configuration permutation matrix.
P=zeros(L);
for j=l:i-l

P(j.j)=l;
end
for j=i+i:L

P(j-i,j)=l;
end
P(L,i)=l;
'/, Permute the CRT configuration matrix.
cfp=P*cf;
V. Establish an index vector of length L-l.
I=zeros(L-l,l);
'/, Set the done flag to zero.
bDone=0;
7. Perform DFT's
while (bDone==0)
% Create an index set for the data vector.
J=zeros(cfp(L,l),l);
for j=0:cfp(L,l)-l

J(j+i)=crt([I;j],cfp)+l;
end
V, Perform a DFT along the elements of x indexed by J.
x(J)=fft(x(J));
V, Increment the index vector.

bDone2=0;
while (bDone2==0)
Kj)=Kj)+i;
if (I(j)==cfp(j,D)
Kj)=0;
if (j>=L-l)
bDone=l;
bDone2=l;

end
else
bDone2=l;

end '/. End If-Else
j=j+l;

end % End While
V, Done incrementing the index vector!

end
end
'/. Permute transformed vector to correct order.
X=zeros(M,i);

°X(rem(rem((i-l)*ones(L,l),cf(:,l)).'*cf(:,2),M)+l)=x(i);
end
end

B.2 CRT Code

B.2.1 crtconf.m
*/, CRT Configuration Function.
'/. Author: Jon Mellott
*/. Date: 10-18-93
'/, Description:
*/, This function computes the m_{i> and m_{i}"-C-l} factors need

157

y, for the CRT. The results are arranged in a matrix where the
V, first column is the prime list, the second column is the
'/ list of m {i}'s, and the third column is the list of m_{i}"-C-l}'s.
'/.
*/. Modified 5/31/94T:
*/ A fourth output column has been added, a list of the generators
7, of each GF(p_{i»YCO}. This is useful for GE/LRNS and the Rader prime
'/, DFT, especially when used in the Good-Thomas DFT.

V, Arguments:
7. plist — Prime list vector.
function C=crtconf(plist)
*/, Compute the product of the prime list.
M=prod(plist);
'/, Compute mi=M/pi list.
m=M*ones(max(size(plist)),l)./plist;
'/, Compute the inverses of each mi in Zpi.
mi=zeros(max(size(plist)),1);
for I=l:max(size(plist))

J=i;
while (rem(J*m(I),plist(I))-=l)

J=J+1;
end
mi(I)=J;

end
7, Compute the generators for each pi.
gi=zeros(max(size(plist)),1);
for I=l:max(size(plist))

gi(I)=gen(plist(I));
end
7, Build CRT configuration matrix.
C=[plist m mi gi];
end

B.2.2 gen.m
7, Generator Function.
% Author: Jon Mellott
'/. Date: 5-31-94
'/, Description:
'/, This function finds a generator for GF(p)\{0}.
y.
7, Arguments:
7, p — Prime number.
function alpha=gen(p)
7» Initialize done flag to zero.
bDone=0;
'/ Initialize generator.
a=l;
7, Search until done.
while (bDone==0)

7t Increment generator.
a=a+l;
*/, Initialize ones count.
iCount=0;
7, Initialize exponent.
x=a;
7, Search for a generator.
for i=2:p-l

x=rem(x*a,p);
if (x==l) "/. increment ones count.

iCount=iCount+l;
end

end
'/, Check for found generator.
if (iCount==l)

158

bDone=l;
alpha=a;

'/ Check for non-existence of generator,
if (a==p-l)
bDone=l;
alpha=0;

end
end

end
end

B.2.3 crt.m
'/, CRT Function.
*/, Author: Jon Mellott
•/. Date: 10-18-93
V, Description:
'A This function converts a residue n-tuple to an integer using the
'/. CRT.
'/.
V, Arguments:
V, ntuple — The residue vector to be converted.
'/, confmat — The configuration matrix produced by the function confmat.
function X=crt(ntuple,confmat)
X=rem(sum(confmat(:,2).*rem(confmat(:,3).*ntuple,confmat(:,1))),prod(confmat(:,1)));
end

APPENDIX C
TYPOGRAPHICAL NOTES

Preparation of the thesis is one aspect of the training in the mature
and responsible scholarship expected of the candidate. Time devoted to
careful attention to form, style, and mechanics should not be regarded
as time wasted in mechanical compliance with administrative regulations.
The thesis is a public and permanent record of the candidate's professional
attainment and reveals the quality and standards of his or her workman-
ship.

From the University of Florida Record, 1960-1961

This dissertation was produced using lAT^X version 2.09. The primary typeface

used in this dissertation is Computer Modern. Certain mathematical fonts used in this

dissertation were obtained from the American Mathematical Society. Figures in this

dissertation were produced using a combination of CorelDRAW!, Corel Photo-Paint,

Adobe Illustrator, and xfig. The photographs were scanned with a Hewlett-Packard

ScanJet 4C/T, at a resolution of 600 dots per inch (dpi) by 256 gray levels. The

photographs were manipulated and converted to 600 dpi black and white images

using Corel Photo-Paint. This document was printed using dvips to generate Adobe

PostScript that was sent to a Hewlett-Packard LaserJet 4SiMX with a resolution of

600 dpi.

The University of Florida's dissertation formatting requirements are clearly de-

signed for a typewritten dissertation. In recent years some slight modifications to

the formatting requirements have been made, finally allowing the use of bold text for

headings and a monospaced font for computer listings. Despite these small steps, the

double spaced format is inefficient, wasting paper and shelf space, and aesthetically

159

160

unattractive. To the author it seems ironic that the quotation given above is displayed

in the University of Florida's Guide for Preparing Theses and Dissertations.

REFERENCES

[I] G. D. Hutcheson and J. D. Hutcheson, "Technology and economics in the semi-
conductor industry," Scientific American, vol. 274, pp. 54-62, Jan. 1996.

[2] H. S. Stone, High Performance Computer Architecture. Reading, Massachusetts:
Addison-Wesley, 2nd ed., 1990.

[3] S. E. Schuster, "Multiple word/bit line redundancy for semiconductor memories,"
IEEE Journal of Solid-State Circuits, vol. SC-13, pp. 698-703, Oct. 1978.

[4] A. V. Oppenheim and R. W. Schäfer, Digital Signal Processing. Englewood
Cliffs, New Jersey: Prentice-Hall, 1975.

[5] G. H. Golub and C. F. van Loan, Matrix Computations. Baltimore: Johns
Hopkins University Press, 2nd ed., 1989.

[6] S. L. Marple, Digital Spectral Analysis with Applications. Englewood Cliffs, New
Jersey: Prentice-Hall, 1987.

[7] R. E. Blahut, Fast Algorithms for Digital Signal Processing. Reading, Mass.:
Addison-Wesley Publishing Company, 1985.

[8] J. Cooley and J. Tukey, "An algorithm for machine calculation of complex Fourier
series," Mathematical Computation, vol. 19, pp. 297-301, 1965.

[9] I. Good, "The relationship between two fast Fourier transforms," IEEE Trans.
Computers, vol. C-20, pp. 310-317, Mar. 1971.

[10] C. M. Rader, "Discrete Fourier transforms when the number of data samples is
prime," Proceedings of IEEE, pp. 1107-1108, 1968.

[II] F. J. Taylor, "An RNS discrete Fourier transform implementation," IEEE Trans,
on Acoustics, Speech, and Signal Processing, vol. 38, pp. 1386-1394, Aug. 1990.

[12] G. S. Zelniker and F. J. Taylor, "Prime blocklength discrete Fourier transforms
using the polynomial residue number system," in Proc. Twenty-Fourth Asilomar
Conf. on Signals, Systems, and Computers, 1990.

[13] J. D. Mellott, M. Lewis, and F. J. Taylor, "ASAP - a 2D DFT VLSI processor
and architecture," in Proc. IEEE International Conf. on Acoustics, Speech, and
Signal Processing, (Atlanta), 1996.

161

162

[14] J. D. Meilott, M. Lewis, and F. J. Taylor, "ASAP - a 2D DFT VLSI proces-
sor and architecture," in Proc. IEEE International Symposium on Circuits and
Systems, (Atlanta), 1996.

[15] Texas Instruments, TMS320C50 User's Manual. Dallas: Texas Instruments,
1993.

[16] Motorola, DSP56000/DSP56001 User's Manual. Phoenix: Motorola, 1990.

[17] J. L. Hennessy and D. A- Patterson, Computer Architecture: a Quantitative
Approach. San Francisco: Morgan Kaufmann Publishers, 2nd ed., 1996.

[18] A. Smith and J. Lee, "Branch prediction strategies and branch-target buffer
design," Computer, vol. 17, pp. 6-22, Jan. 1984.

[19] H. M. Levy and R. H. Eckhouse, Computer Programming and Architecture: the
VAX. Digital Press, 2nd ed., 1989.

[20] J. Fisher and B. Rau, "Instruction-level parallel processing," Science, vol. 253,
pp. 1233-1241, Sept. 1991.

[21] M. Gokhale and W. Carlson, "Introduction to compilation issues for parallel
machines," Journal of Supercomputing, vol. 6, pp. 283-314, Dec. 1992.

[22] G. Blanck and S. Krueger, "The SuperSPARC microprocessor," in Proc. IEEE
Computer Society International Conference, pp. 136-141, 1992.

[23] D. F. Snelling and G. K. Egan, "Comparative study of data-flow architectures,"
in IFIP Transactions A: Computer Science and Technology, vol. A-50, 1994.

[24] R. P. Colwell, R. P. Nix, J. J. O'Donnel, D. B. Papworth, and P. K. Rodman, "A
VLIW architecture for a trace scheduling compiler," IEEE Trans. Computers,
vol. 37, pp. 967-979, Aug. 1988.

[25] M. A. Schuette and J. P. Shen, "Instruction-level experimental evaluation of the
Multiflow TRACE 14/300 VLIW computer," Journal of Supercomputing, vol. 7,
pp. 249-271, May 1993.

[26] J. Gray, A. Naylor, A. Abnous, and N. Bagherzadeh, "VIPER: A VLIW integer
microprocessor," IEEE Journal of Solid-State Circuits, vol. 28, pp. 1377-1382,
Dec. 1993.

[27] A. Abnous and N. Bagherzadeh, "Pipelining and bypassing in a VLIW proces-
sor," IEEE Transactions on Parallel and Distributed Systems, vol. 5, pp. 658-664,
June 1994.

[28] J. A. Fisher, "Trace scheduling: A technique for global microcode compaction,"
IEEE Trans. Computers, vol. 30, pp. 478-490, July 1981.

163

[29] J. Mick and J. Brick, Bit-Slice Microprocessor Design. New York: McGraw-Hill,
1980.

[30] C. Babcock, "Silicon marriage: HP/Intel venture," Computerworld, vol. 28, p. 6,
July 1994.

[31] W.-M. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Change, N. J. Warter, R. A. Bring-
mann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and
D. M. Lavery, "The superblock: An effective technique for VLIW and superscalar
compilation," Journal of Supercomputing, vol. 7, pp. 229-248, May 1993.

[32] E. Arnould, H. T. Kung, 0. Menzilcioglu, and K. Sarocky, "A systolic array
computer," in Proc. IEEE International Conf. on Acoustics, Speech, and Signal
Processing, 1985.

[33] H. T. Kung et al., "iWarp: An integrated solution to high-speed parallel com-
puting," IEEE Trans. Computers, vol. 38, pp. 330-339, Sept. 1988.

[34] R. Simar, "The TMS320C40: A DSP for parallel processing," in Proc. IEEE
International Conf. on Acoustics, Speech, and Signal Processing, vol. 2, pp. 1089-
1092, 1991.

[35] R. Weiss, "TI multiprocessor chip peaks at 2 billion operations/sec," EDN,
vol. 39, pp. 67-68, Mar. 1994.

[36] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, New Jersey: Prentice-Hall,
2nd ed., 1991.

[37] J. D. Mellott, "The Gauss machine: A GEQRNS DSP systolic array," Master's
thesis, University of Florida, 1993.

[38] J. D. Mellott, J. C. Smith, and F. J. Taylor, "The Gauss machine — a Galois-
enhanced quadratic residue number system sysotlic array," in Proc. IEEE 11th
Symposium on Computer Arithmetic, (Windsor, Ontario), pp. 156-162, 1993.

[39] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A Systems
Perspective. Reading, Mass.: Addison-Wesley Publishing Company, 1985.

[40] W. K. Jenkins, "The design of error checker for self-checking residue number
arithmetic," IEEE Trans. Computers, vol. 32, pp. 388-396, Apr. 1983.

[41] J. V. Krogmeier and W. K. Jenkins, "Error detection and correction in quadratic
residue number systems," in 26th Midwest Symposium on Circuits and Systems,
1983.

[42] S. Y. Kung, "VLSI array processors," IEEE ASSP Magazine, pp. 4-22, July
1985.

164

[43] M. Griffin, F. J. Taylor, and M. Sousa, "New scaling algorithms for the Chi-
nese remainder theorem," in Proc. 22nd Asilomar Conf. on Signals, Syst., and
Computers, 1988.

[44] M. Griffin, M. Sousa, and F. J. Taylor, "Efficient scaling in the residue number
system," in Proc. IEEE International Conf. on Acoustics, Speech, and Signal
Processing, 1989.

[45] G. Zelniker and F. J. Taylor, "A reduced complexity finite field ALU," IEEE
Trans, on Circuits and Systems, vol. 38, pp. 1571-1573, Dec. 1991.

[46] F. J. Taylor, J. Mellott, J. Smith, and G. Zelniker, "The Gauss machine — a
DSP processor with high RNS content," in Proc. IEEE International Conf. on
Acoustics, Speech, and Signal Processing, (Toronto), 1991.

[47] M. Wolfe, High Performance Compilers for Parallel Computing. Reading, Mas-
sachusetts: Addison-Wesley, 1996.

[48] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and
Tools. Reading, Massachusetts: Addison-Wesley, 1986.

[49] A. N. S. Institute, ed., Programming Languages: C. New York: American Na-
tional Standards Institute, 1990.

[50] D. M. Ritchie, "Unix time-sharing system: A retrospective," The Bell System
Technical Journal, vol. 57, pp. 1947-1969, July/August 1978.

[51] D. M. Ritchie, S. C. Johnson, M. E. Lesk, and B. W. Kernighan, "The C pro-
gramming language," The Bell System Technical Journal, vol. 57, pp. 1991-2019,
July/August 1978.

INDEX

addressing modes, 12, 72

arithmetic

fixed-point, 15

floating-point, 83

arrays

expressions, 84

multiplication, 134

sub-arrays, 85, 128

ASAP, 37

command and configuration regis-

ter, 47

convolution, 57

convolution, circular, 59

pipeline operation fig, 62

convolution, linear, 58

initialization, 53

LRNS processor, 50

memory, 44

moduli, 38

performance, future estimated, 66

photo, 40

test fixture, 62

fig, 63

testing, 65

vector accumulate, 55

vector addition, 54

vector multiplication, 54

vector multiply accumulate, 56

character set, 118

table, 118

Chinese remainder theorem, 26, 99

code, 156

comments, 121

conversions, 126

convolution, 87

dataflow processors, 18

declarations, 141

definitions, 141

initializers, 142, 147

discrete Fourier transform, 11

Cooley-Tukey, 11

Good-Thomas, 11, 37, 76, 97

code, 155

165

166

Rader prime, 37, 76, 102

code, 155

fig, 106

escape sequence, 120

table, 120

expressions, 127

constant, 141

fast Fourier transform, see discrete Fourier

transform

filter, finite impulse response, 10

filtering, finite impulse response, 87

functions

definitions, 124

recursive, 125

reentrant, 125, 152

Gaussian integers, 27

Givens rotations, 108

Householder reflections, 108

identifiers, 122

initializers, 147

array, 147

instruction scheduling, 19

literal

escape sequence, 120

literals, 119

floating-point, 120

regular expressions, table, 121

integer, 119

character, 119

decimal, 119

hexadecimal, 119

octal, 119

regular expressions, table, 119

string, 121

memory

cache, 5, 70

virtual, 6

operators

additive, 135

AND

bitwise, 137

logical, 138

assignment, 139

cast, 132

comma, 141

compound assignment, 140

table, 140

conditional, 139

convolution, 133

167

divisions, 134

equality, 137

exclusive OR

bitwise, 138

inclusive OR

bitwise, 138

logical, 139

modulus, 135

multiplication, 134

multiplicative, 134

relational, 136

shift, 135

sum of products, 133

unary, 131

sizeof,132

pipelines, exposed, 15

pointers, 83

QR decomposition, 108

reserved words, 123

table, 123

residue number system, 25

complex RNS, 27

Galois enhanced RNS, 29

logarithmic RNS, 31

quadratic RNS, 28

statements, 147

compound, 148

expression, 149

iteration, 150

jump, 153

labeled, 148

selection, 149

subarrays, 128

superpipelining, 17

superscalar, 18

translation unit, 123

types

integral, 143

intrinsic, 143

VLIW

functional units, 68

conventional arithmetic, 74

residue arithmetic, 74

BIOGRAPHICAL SKETCH

Jonathon D. Mellott was born on November 20th, 1968. He graduated from the

University of Florida in 1990 with a Bachelor of Science in Electrical Engineering with

a minor in mathematics. He obtained a Master of Science in electrical engineering

from the University of Florida in 1993. He has been a consultant to industry, a

computer and information science instructor at Santa Fe Community College, has

held a Martin Marietta Corporate Scholarship, and is a member of Eta Kappa Nu, the

Institute of Electrical and Electronic Engineers, and the Association for Computing

Machinery.

168

I certify that I have read this study and that in my opinion it conforms to accept-
able standards of scholarly presentation and is fully adequate, in scope and quality,
as a dissertation for the degree of Doctor of Philosophy.

Fred J. Taylor, Chairman
Professor of Electrical and

Computer Engineering

I certify that I have read this study and that in my opinion it conforms to accept-
able standards of scholarly presentation and is fully adequate, in scope and quality,
as a dissertation for the degree of Doctor of Philosophy.

Donald G. Childers
Professor of Electrical and

Computer Engineering

I certify that I have read this study and that in my opinion it conforms to accept-
able standards of scholarly presentation and is fully adequate, in scope and quality,
as a dissertation for the degree of Doctor of Philosophy.

Jose C. Principe
Professor of Electrical and

Computer Engineering

I certify that I have read this study and that in my opinion it conforms to accept-
able standards of scholarly presentation and is fully adequate, in scope and quality,
as a dissertation for the degree of Doctor of Philosophy.

Jian Li
Associate Professor of Electrical

and Computer Engineering

I certify that I have read this study and that in my opinion it conforms to accept-
able standards of scholarly presentation and is fully adequate, in scope and quality,
as a dissertation for the degree of Doctor of Philosophy.

Rick L. Smith
Associate Professor of Mathematics

This dissertation was submitted to the Graduate Faculty of the College of En-
gineering and to the Graduate School and was accepted as partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

December, 1997
Winfred M. Phillips
Dean, College of Engineering

Karen A. Holbrook
Dean, Graduate School

Appendix B: Wireless Local Area Network and Channel
ftäeliitg at&4GHz

WlAN SIMULATION AND MOOBJNG AT 2.4 GHZ

WIRELESS LOCAL AREA NETWORK & CHANNEL

MODELING AT 2-4 GHz

WfoTTBiBYGAB. CHMTfON, WBJJAMAGASSOUNON, & STUARTLOHOA

AGASSOUNON, CHAMPION, & LOPATA

WLAN SMUIATION AND MOOQJNG AT2.4 GHz

ACKNOWLEDGEMENT

We would like to thank DrFredJ. Taylor Director of the High Speed
Digital Architecture Laboratory of the University of Florida for all the means

he gave us to achieve this work.

Dr David Chester, Dr William Hortos, Dr Clay Frace and all the staff of
the wireless LAN research department of Ham's Semiconductor at

Melbourne (Florida) for all the equipment and the hardware they provided
us with and their advice.

Dr Uwe Meyer-Baese, Dr Iztok Koren, of the HSDA lab.

Mr. Hicham Bouzekriofthe L 1ST lab.

AGASSOUNON, CHAMPION, & LOPATA

WLAN S»*JlATIONANDMO0aJNGAT2.4 GHZ

TABLE OF CONTENTS

ABSTRACT.

ACKNOWLEDGEMENT 3

TABLE OF CONTENTS 4

TABLE OF ILLUSTRATIONS 5

INTRODUCTION 6

PROPAGATION PATH LOSS MODELING 7

1. INTRODUCTION 7
2. EXPERIMENTAL CONDITIONS • 8
3. PATH LOSS PREDICTION MODELS. 9

A. Propagation with Line Of Sight LOS) 10
B. Propagation throughfloors: Floor Attenuation Factor (FAF) 12
C. Wall attenuation factor model 13

4. CONCLUSION 16
5. SUMMARY 17

A. Propagation with line of sight (LOS) 17
B. Propagation through floors 17

1) Propagation through 1 floor 17
2) Propagation through 2 floors: 18

C. Propagation through obstacles (on the same floor) 18

SPREAD SPECTRUM TECHNOLOGIES 19

1. FHSS 19
2. DSSS 20
3. PROCESSING GAIN 20
4. COMPARISON BETWEEN BOTH SS TECHNOLOGIES 21

HARRIS PRISM CHIPSET PRESENTATION 23

1. INTRODUCTION 23
2. THE PRISM PCMCIA CARD 23

A. Presentation 23
B. Architecture 24

3) Transmit processing— 25
4) Receive processing — 25

THE SIMULATION 26

1. FEATURES AND GOALS 26
2. PROGRAM STRUCTURE 26
3. NOISE CALCULATION 28
4. THE USER INTERFACE AND THE CONFIGURABLE PARAMETERS 29

5. RUNNING THE SIMULATION 31
A. Displayed figures 31
B. Results 36
C. Conclusion and realism 37

CONCLUSION 38

REFERENCES. 39

AGASSOUNON, CHAMPION, &LOPATA 4

WUAN SIMULATION AND MOOEUNG AT 2.4 GHz

TABLE OF ILLUSTRATIONS

(1) CHANNEL MODELING EXPERIMENTAL CONDITIONS 8

(2) PROPAGATION WITH LOS PATH LOSS PREDICTION 11

(3) PATH LOSS FOR PROPAGATION THROUGH 1 FLOOR 13

(4) PATH LOSS FOR PROPAGATION THROUGH 1 WALL 15

(5) PATH LOSS FOR PROPAGATION THROUGH 2 WALLS 16

(6) FHSS ILLUSTRATION . 19

(7) FHSS SPECTRUM.. .. 20

(8) DSSS SPECTRUM 20

(9) ILLUSTRATION OF THE DSSS PROCESSING GAIN 21

(10) PRISM PCMCIA CARD SYNOPTIC 24

(11) VffiW OF THE WINDOW USER INTERFACE 29

(12) SI SPECTRUM AFTER DSSS 31

(13) D7 SPECTRUM BEFORE FILTERING 32

(14) RFFFT BEFORE FL6 FILTER 32

(15) RFFFT AFTER FL7 AND FL6 FILTERING 33

(16) RECErVED IF SPECTRUM AFTER FL3 33

(17) FFT SYMMETRIES ILLUSTRATION 34

(18) RECEIVED D7 SPECTRUM AFTER FL4 34

(19) COMPARISON BETWEEN TRANSMITTED AND RECEIVED SI BEFORE DETECTION....35

(20) COMPARISON BETWEEN TRANSMITTED AND DETECTED RECEIVED SI AND SQ 35

(21) COMPARISON BETWEEN THE TRANSMITTED AND RECEIVED BINARY SEQUENCES36

AGASSOUNON, CHAMPION, & LOPATA

WLAN SIMULATION AND MODELING AT 2.4 GHz

INTRODUCTION

Nowadays, wireless communications systems are growing up faster and faster in
order to match the work and people mobility. Internet also gave people the
opportunity of discovering at home what is located elsewhere, everywhere in the
world.

The current technology, which looked like science fiction 15 year ago, needs
more mobility if they can wireless phone, they are, most of the time, still obliged to
connect their computer to a networi< in order to get an outdoor access. As you
keep your cellular phone always with you, what about moving with your laptop
without loosing any connection to your LAN (Local Area Netwon\)?

Here is the challenge that many telecommunications companies are trying to
achieve. For the moment, almost all the wireless applications were low speed
transmission, just in order to transport voice sampled under 10 KBPS. The
problem was that to get a comfortable network connection, people really need
more speed and a larger bandwidth.

That is why many WLAN products are now proposed by a few companies with
high bit rate up to several MBPS. Most of them use the 2.4 GHz of the ISM band
(Industrial/Science/Medical band) like Harris Corporation which developed a
complete PCMCIA Card WLAN solution (this is the object of this study).

Indeed, this band - whose one main advantage is to be unlicensed - is very
sensitive to fading and multipath. Moreover, this was for the moment almost not
used (except by microwave ovens) and that is why it is still there are not a lot of
modeling yet

Hence, a complete simulation of such a transmission including a channel
modeling (for the main conditions of propagation) can be very useful in order to
get an idea of the best locations of the transceivers and of the number of
repeaters eventually required.

Lastly, these new communications systems are based on Spread Spectrum
technologies in order to reduce interference with other systems at the same
frequency. That is why, a part of this report is also dedicated to this increasingly
used technology.

AGASSOUNON, CHAMPION, & LOPATA

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

PROPAGATION PATH Loss MODELING

1. Introduction

Much work has been done to statistically characterize multipath propagation inside
building in the 800 MHz to 5.8 GHz frequency range (See references [1]-[11]). Buildings
vary greatly in size, shape, and type of construction materials. The statistics of propagation
measurements vary greatly from building to building and only conclusion related to a
particular building type can be made.

The purpose of this work is to model propagation losses within buildings at UHF
frequencies. Specifically, it presents results of measurements taken at 2.4 GHz mainly in
the new engineering building of the University of Florida, and it elaborates an empirical
attenuation model based on these measurements.

A statistical model of the simplest form relates the average path loss to the log of distance.
The distance between the transmitter and receiver measured in three dimensions, and n
the mean path loss exponent, indicates how fast path loss increases with distance (n=2
for free space).

Work in [2] shows that in multifloored buildings, more accurate prediction is possible when
the parameter n is viewed as a function of the number of floors between transmitter and
receiver.

The path loss model developed in [1] to predict attenuation in multifloored building is used.
For measurement when the transmitter and receiver are located on the same floor, we
developed an alternative path loss model ((3)) to quantify the additional path loss caused
by walls (concrete and soft obstructions) between the transmitter and receiver.

This paper is organized as followed. Section II deals with the measuring equipment and
the experimental site. Section III presents the measurements data and associates the
measured path losses to simple algebraic relationship of the type y=a+blogiox and gives
an overall view of the mean RMS delay spread of each location measurements. The
maximum delay time spread is the total time interval during which reflections with
significant energy arrive. The RMS delay spread is the standard deviation value of the
delay of reflections, weighted proportional to the energy of the reflected waves. It is given
by the mean of the square root of the second central moment of the power delay spread
profile and is calculated by the matlab code delay.m described in annex. A threshold is set
at 40 dB below the peak path loss in the time domain to define the noise floor. Section IV
presents a summary of the path loss and RMS delay spread of different measurements.
Section V is devoted to discussion and conclusions and to an evaluation of how well the
modeling fit the data.

AGASSOUNON, CHAMPION, & LOPATA

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

2. Experimental conditions

The experiments have been conducted with a continuous wave emission at a central
frequency of 2.4 GHz in a bandwidth of 110 MHz. A transmit power of 10 dBm for most
measurements was used and 15 dBm for the experiments between two floors. The source
was incorporated in the network analyzer that was also used as receiver, and this
permitted measurements down to a threshold of -110 dBm.

The wave is transmitted by an omnidirectional half-wave dipole antenna (MACOM) with
1.9 dB gain.

The analyzer can instantaneously measure signal strength between 0 and -110 dBm over
a 110 MHz bandwidth. This is on the order of the maximum dynamic range expected for
emerging Personal Communication Network (PCN) which will be deployed within buildings
the next several years.

Most of the measurements have been taken in the Electrical Engineering department at
the fourth floor of the new engineering building of the University of Florida (see blueprint).
That building offers a mixture of offices, laboratories and classrooms and dates back to
1997. The floors are in reinforced concrete. Internal walls are made of lightweight concrete
and materials about 13 cm thick. The external walls are made of heavy concrete and
bricks. Each floor is 4.5 m high with drop soft ceiling at 3.8 m.

The equipment:

The transmitting and receiving antennas are set as described in fig.1. The cable is a coax
of 100 feet long, the LNA and the power amplifier are both of Mini-Circuits of 10 and 20 dB
gain respectively.

V Tx V Rx

Power Amp.
G=20dB

100' coax cable

Network
Analyzer ■o

LNA
G=10dB

(1) Channel modeling experimental conditions

AGASSOUNON, CHAMPION, & LOPATA 8

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

3. Path loss prediction models

A model used in works in [1]-[6], [8], [9], [12] indicates that mean path loss increases
exponentially with distance. That is, the mean path loss is a function of distance to the n
power.

 f
PL(d\dB]a

d_
do

Equation (1)

where:

■ PL is the mean path loss

■ n is the mean path loss exponent which indicates how fast path loss increases with
distance

■ do is a reference distance

■ d is the transmitter-receiver separation distance.

When plotted on a log-log scale, the power-distance relationship resembles a straight line.

Absolute mean path loss, in decibels, is defined as the path loss from the transmitter to the
reference distance do, plus the additional path loss described by [1] in decibels.

PL (d\dB] = PL (do \dB] + 10 x n x log 10 do

Equation (2)

For our measurements, a one meter reference distance was chosen and we measured
PL(do)=40dB.

In [1], [2] path loss is shown to have a log-normal distribution. Assuming this distribution
for our data, we determined the mean path loss exponent n and standard deviation <r(in
decibels), which are viewed as parameters that are a function of building type and number
of floors between transmitter and receiver.

The standard deviation provides a quantitative measure of the accuracy of the model used
to predict the path loss for a given environment. The path loss at a T-R separation of d
meters is then given by:

PL(d\dB] = PL(d\dB] + Xa[dB]

Equation (3)

AGASSOUNON, CHAMPION, &LOPATA g

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MOOEUNG

where XJs a zero mean log-normally distributed random variable with standard deviation
<rin decibels.

Linear regression was used to compute values of the parameters n and o-in a Minimum
Mean Square Error (MMSE) sense for the measured data.

The data are grouped by propagation types to provide some insight on how the path loss
changes based according to the environment. Effective groupings will usually bring about
smaller deviations given by:

= jri (pLi -PLi (di))2

Equation (4)

where:

■ PLi is the measured path loss

■ PLi (di) is the predicted path loss

■ N is the number of values computed.

A. Propagation with Line Of Sight LOS)

Table I

Environments, Txlocations

(see blueprint)

n o[dB] Mean RMS

Delay spread

(ns)

Number of

measurements

All locations 1.6 3.75 60 632

TxinA1(499B) 1.55 3.08 87 64

TxinB1(499B) 1.85 2.31 92 64

TxinC(499B&499G) 1.65 3.57 31 64

TxinA2(499B) 1.4 2.52 59 64

TxinA3(499B) 1.55 2.93 55 64

TxinB2(499B) 1.55 2.73 74 63

TxinB3(499B) 1.65 2.58 59 63

TxinA4(499B) 1.45 4.21 41 93

Tx in D (in 599G) 2 3.12 46 93

Table I summarizes the mean path loss exponents, standard deviations about the mean
for different LOS environments. The table also includes the mean delay spread and the
number of measurements.

AGASSOUNON, CHAMPION, & LOPATA 10

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

From Table I, it can be seen that the parameters for path loss prediction with LOS in the
building are n=1.6 and o=3.75. This value of ais typical for data collected from different Tx
positions, it is influenced by the size of the walls and hallways that decide the Fresnel
zone. The standard deviation indicates that about 82% of actual measurements are within
J5 dB of the predicted mean path loss.

Scatter plot of path loss versus T-R separation distance for propagation with LOS is given
in fig.2. The dashed line indicates the best mean path loss model in a MMSE sense for the
data presented in the scatter plot. This figure shows that the mean path loss increases
with distance at the 1.6 power with a standard deviation of 3.75 dB for the propagation
with LOS in the building, while model is accurate to within d5 dB for more than 82% of all
measurements.

This path loss exponent (n=1.6) is less than 2 (the free space path loss exponent)
because of the extra gain caused by multiple reflections indoor. In the following, we
assume this exponent (n=1.6) is the indoor propagation path loss exponent as log as no
obstacles lie between the transmitter and receiver.

Metallic doors at the end of hallways 499B.499G, 599B and 599G have an important
effect on the RMS delay spread as shown by Table I. When the transmitter and receiver
are located away from these doors, the delay spread is unaffected by them.

comparison of measured and predicted path loss

Propagation v*h LOS

70 l-Z.4Ghz

65 ■ slgma-37SdB * j^ «'*£*

_60 •
MffiP K

.?S5 - _ 1«* %?i*H3ß&&i £L
■6 «
a.

SO

45

!
y% i im

r *

m

m K K

ss
<I

10" 10'
dstance(m)

(2) Propagation with LOS path loss prediction

B. Propagation through floors: Floor Attenuation Factor (FAF)

Floors in the new engineering building of the University of Florida are made from
reinforced concrete. Each floor is 4.4 m high with a suspended soft ceiling at 2.4 m in the
hallway and 3 m in the rooms.

In this section, the path loss in multifloored environments is predicted using the model

AGASSOUNON, CHAMPION, & LOPATA 11

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

developed in [2]. This model uses a mean path loss exponent that is the same for the
building and a constant floor attenuation factor (FAF) that is a function of number floors
and the building type. This factor gets added to the mean path loss predicted by the
previous model (2):

PLid\dB] = PL(do\dB] +1 ° x n(same_ floor) x log10

Equation of model (2)

where:

■ d is in meters

■ PL(cfoj=40dBat2.4GHz

■ n =1.6 (path loss exponent for the building)

Table II (with n=1.6)

(d\

Locations FAF[dB] o[dB] Mean RMS

delay spread (ns)

Number of

measurements

All locations 23 5.06 37 358

Tx in 3A & Rx in 499B 28 1.34 38 32

Tx in 3B & Rx in 499B 26 1.88 42 32

Tx in 3A & Rx in 499C 27 1.92 55 32

Txin5A&Rxin499B

(fire blocker open)

23 6.55 32 64

Txin5A&Rxin499B

(fire blocker shut)

22 5.77 36 64

Tx in 5B & Rx in 499B 19 2.71 29 37

Tx in 5C & Rx in 499B 20 3.40 34 56

Txin5B&Rxin499C 21 3.00 26 41

Through 2 floors:

Tx in 3D & Rx in 599G

40 2.97 93 30

Table II gives the floor attenuation factors, the standard deviation (in decibels) of the
difference between the mean path loss measured and predicted path loss, the mean
RMS. Delay spread (in nanoseconds) and the number of discrete measurement locations
used to compute the statistics. The same floor exponent (determined above with LOS) is
found to be 1.6. One can notice that the FAF is not a linear function of the number of floors
between the transmitter and receiver.

AGASSOUNON, CHAMPION, & LOPATA 12

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

For propagation through 1 floor, the average FAF is found to be 23 dB and 40 dB for
propagation through 2 floors. As shown in [1], different floors cause different amount of
path loss. Many factors, including multiple reflections from surrounding materials near the
transmitter and receiver, affect the path loss.

It is unclear what causes the differences between the FAFs for the propagation from the
fifth to the fourth floor and the propagation from the third to the fourth floor. There may be
other factors relative to the ceiling or the roof of the building since the fifth floor is the top
one of the new engineering building of the UF.

Moreover, work in [2] showed that for indoor propagation, the reciprocity T-R is not always
observed. In fact, in free space, propagation losses are identical if one interchanges
receiver and transmitter locations while in indoor, each transmitter and receiver
surrounding environment influences differently the propagation losses.

However, considering the RMS delay spreads, we can assume the received signal from
the third floor is the result of more reflections which result in greater path loss.

100

OS

00

85

80

70

85

comparison of measured and predicted path loss

FAF model Through 1 loor

(-Z.4GHZ

slgma-5£6 dS

10°
dstance (m)

(3) Path loss for propagation through 1 floor

C. Wall attenuation factor model

This model will include site specifications in addition to the T-R separation and number of
floors taken in account in the previous models. That will lead to a more accurate
propagation prediction.

For indoor propagation, there are often obstructions between the transmitter and receiver
even when the terminals are on the same floor. We consider the path loss effects of
concrete walls and soft obstructions (i.e. office furniture, bookcase). For this model, we
assume path toss increases with distance as in propagation with LOS (n = 1.6) as long as

AGASSOUNON, CHAMPION, & LOPATA 13

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

there are no obstructions between the transmitter and receiver. Then we include
attenuation factors for each soft obstruction and concrete wall that lie between transmitter
and receiver. In the model developed in [1], the authors assumed the propagation in
building without obstacles behaves like a free space propagation taking the n = 2.
However, we think that propagation in buildings without obstructions is rather equivalent to
propagation with LOS. That is why we are considering using the LOS result of n = 1.6.

The mean path loss predicted by this model is then given by:

Plld\dB]=Plido\dB]+\Oxnx\ogJ — \ + pxAFwall + qxAFsoft

Equation of model (3)

where:

■ p is the number of concrete walls between Tx and Rx

■ q is the number of soft obstructions between Tx and Rx

■ d, do and PL(do) are as defined above

■ AF is the attenuation factor

For each measurement, we recorded the number of soft obstructions(i.e. office furniture:
bookcase,...) and concrete walls that lie between the transmitter and receiver then we
computed the difference between the path loss measured and the predicted path loss. We
also used a linear regression in a MMSE sense to find the best fit to (3).

Table III

Locations AFsoft AFwall o[dB]
Mean RMS
delay spread (ns)

Number of
measurements

Through 1 wall:
All locations

5.5 2.68 29 204

Tx in 4A
& Rx in 408

6 2.21 NA 40

Tx in A (409)
& Rx in 499C

5 2.45 27 54

Tx in B (409)
& Rx in 499C

4 3.61 27 54

TxinA(499F)
& Rx in 470

6 1.84 27 28

TxinB(499F)
& Rx in 470

6.5 2.19 33 28

AGASSOUNON, CHAMPION, & LOPATA 14

HARRIS PRISM 2.4 GHz SIMULATION ANO CHANNEL MODELING

Through 2 walls:
All locations

0.30 6 2.86 39 97

Tx in 436
& Rx in 499A

0.30 5 2.96 NA 36

Txin409
& Rx in 408

0.30 6.5 1.82 40 32

Tx in 409
& Rx in 403

0.15 5 2.82 38 29

Table III summarizes the mean path loss attenuation factor for soft obstructions and
concrete walls, the standard deviation (in decibels) relative to the model, the mean RMS
delay spread and the number of measurements in different locations.

From this table, we can see that the mean AF (soft obstructions) was found to be as small
as 0.30 dB and the mean AF (concrete walls) to be 5.5 dB.

When each soft obstructed environment is considered separately, the attenuation factors
range from 0.15 to 0.30 dB according to the amount of books in each bookcase or
whether it is a board or not. In this case, our model is accurate to within 5 dB for as much
as 91% of measurements. The attenuation factors for soft obstructions found here
correspond to the results in [3] where it has been shown that nonmetallic furniture had little
effect on attenuation.

The absence of notable high reflecting obstacles has resulted in a mean RMS delay
spread as low as 38 ns for propagation through 2 walls.

comparison of measured and predated path loss

65

60-

40

 *
Through 1 wal *A *
l-MGhz

*
stgma-Z£8dB (ii

t *
v4^** .

>**«* *
/*■*^ *

J(%#*
y* ■

/ * »

X

10'
distance (m)

10*

(4) Path loss for propagation through 1 wall

AGASSOUNON, CHAMPION, & LOPATA 15

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

comparison of measured and predicted path loss

7S-
m

Trough Z walls

Ft '
M.4Ghz

slflma-Z.86 dB

-,/f
*/ *
* * * * *

* * * <

10
distance (m)

10*

(5J Paffi /oss for propagation through 2 walls

4. Conclusion

Different path loss models have been presented for propagation at 2.4 GHz in the new
engineering building of the University of Florida. The models are based on a simple
algebraic relationship of the type PL=a+10*n*log (d). For propagation without any
obstacles between the transmitter and receiver, this exponent is found to be 1.6 and is still
close to 2 (the free space path loss exponent). That is a result of the effects of multiple
reflections inside building. The floor attenuation factor model is appropriate to predict the
effects of the number of floors between the transmitter and receiver.

When additional site specifications (i.e. number of concrete walls, soft obstructions
between the transmitter and receiver) are used in the attenuation factor model, we can get
a more accurate path loss prediction of indoor propagation with obstacles.

The resulting standard deviations prove the models to be accurate for 82% of the LOS
measurements, 62% of the floored attenuated propagation measurements and 92% of the
obstructed propagation measurements to within 5 dB. Thus, it seems the method used
above can offer an improvement in indoor communication system design and installation.

One method of characterizing wide-band multipath channels is by calculating their RMS
delay spread (oti). For indoor propagation, when there are high reflecting obstacles in the
transmitter surrounding environment, it is likely the RMS delay spread increases. That has
been observed in several of the above measurements. Even if Fung and Rappaport have
shown that delay spread alone does not determine the actual bit error rate at any instant, it
does indicate the length of the channel matched filter and the necessary modulation
dependent architecture.

As Theodore S. Rappaport said:" Models that allow a system designer to predict path loss

AGASSOUNON, CHAMPION, & LOPATA 16

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

contours for all types of buildings without measurements would be extremely cost-effective
and time-efficient." The influence of different building materials and the great variability in
architectural configurations limit the accuracy of any model and its applicability to a
prediction method for signal attenuation within buildings. That's why, more and more
measurements are needed from different buildings and environments and at different
frequencies in order to develop these models.

5. Summary

A. Propagation with line of sight (LOS)

do.
PLid\dB] = PL{do\dB] + lOx n x log10

With do=1 m it comes,

PL(d\dB]= 40+ 16xlogl0(d)

crd = 60 ns

aPL = 3.15 dB

probability = 82%

(within 5 dB)

B. Propagation through floors

PL(d\dB] =PL(do)dB + lOxnx\oglo{d)+FAF

1) Propagation through 1 floor

^U]=16xl°gioW+63

<jd = 31ns

<jPL = 5.06dB

probability = 62%

(within 5 dB)

AGASSOUNON, CHAMPION, &LOPATA \J

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

2) Propagation through 2 floors:

PL(d\dB]= 16 xlog10(«/)+ 80

ad = 93n5

aPL = 2.91 dB

probability = 93%

(within 5 dB)

C. Propagation through obstacles (on the same floor)

PL{d\dB] = PL{do\dB] + lOx n x log10(rf)+/> x AFwM +qx AFsoft

PL(d\dB]=40 + l6xlogl0(d)+px5.5 + qx030

crdl = 29ns

crd2 = 39ns

crPL = 2.1 dB

probability = 92%

(within 5 dB)

Where:

■ p is the number of concrete walls

■ q is the number of soft obstructions (furniture: bookcase,...)

The standard deviations are obtained with the transmitter in rooms or hidden from metallic
doors.

AGASSOUNON, CHAMPION, & LOPATA 18

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

SPREAD SPECTRUM TECHNOLOGIES

The WLANs often use an unlicensed frequency like the 2.4 GHz in the ISM band. Hence,
to avoid interference with other systems, different alternatives have been required.

One possibility is to simply use a very low transmitting power but this is not possible for
most of the applications that require more speed and more range. The other possibility is
to use a Spread Spectrum (SS) technology. Two different SS technologies already exist
and are:

• The DSSS (Direct Sequence Spread Spectrum)

• The FHSS (Frequency Hoping Spread Spectrum)

In both technologies, the goal is the same: spreading the transmitting power into a larger
band instead of concentrating it in a single narrow frequency band.

1. FHSS

FHSS principle is to transmit a short burst of the signal on one frequency, hopping to
another frequency for another short burst and so on. Both the transmitter and the receiver
must be synchronized in order to be on the same frequency at the same time.

Moreover, the hopping pattern (frequency and order in which they are used) and dwell
time (time at each frequency) must be known by the source and the destination of the
signal. The Federal Communications Commission (FCC) requires at least 75 frequencies
and a dwell time of 400 ms. If interference occurs on one frequency, the data is
retransmitted on a subsequent hop on another frequency.

By using different orthogonal hoping sequences, more than one channel can be used at
the same time.

Bit Stream

IB IIH4
Bft Stream

Tvo non-ovetl&pping channels

(6) FHSS illustraüon

AGASSOUNON, CHAMPION, & LOPATA 19

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

(7) FHSS Spectrum

2. DSSS

The principle is to increase the bandwidth while mapping each bit into a pattern of chips:
the spreading sequence. At the receiver, the chips are mapped back into bits to recreate
the original data. Synchronization between the transmitter and the receiver is also
required.

The ratio of chips per bit is called the "spreading ratio". A high spreading ratio increases
the resistance of the signal to narrowband interference. A low spreading ratio increases
the net bandwidth available to a user.

In practice, spreading ratios are quite small - often less than 20. The proposed IEEE
802.11 standard specifies a spreading ratio of at least 11. The FCC just requires that the
spreading ratio must be greater than 10.

(8) DSSS Spectrum

3. Processing gain

Processing gain (PG) is a term used to describe one of the unique properties of Spread
Spectrum waveforms. It helps to measure the performance advantage of spread spectrum
against narrowband waveforms.

AGASSOUNON, CHAMPION, &LOPATA 20

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

The PG for a FH systems is defined as the ratio between the instantaneous bandwidth of
each hop and the overall bandwidth of the transmission channel in dB. A DS system
defines the PG as the ratio between the chip rate and the bit rate in dB.Higher PGs in both
SS systems help reduce the amount interference the system will receive.

The PG is easy to see with a DS spectrum:

SIGNAL POWER

ORIGINAL
SIGNAL PROCESSING

GAIN

FREQUENCY

(9) Illustration of the DSSS Processing Gain

4. Comparison between both SS technologies

Those two technologies have the same goals but not the same principles. They were used
during a long time only for military applications in order to reduce the probability that the
communications may be understood by the enemy. Now, most of the wireless
communication systems makers try to use these technologies in civil applications. Hence,
it is quite hard to get an objective idea of what is the best technology.

Here are a few arguments found in different sources that present the main differences.

■ The frequency hopper is more difficult to synchronize because both the time and
frequency need to be in tune. While in a direct sequence radio, only the timing of the
chips needs to be synchronized. The frequency hopper will need to spend more time
to search the signal and lock to it Therefore, the latency time is usually longer, while a
direct sequence radio can lock in the chip sequence in just a few bits.

■ The frequency hopping technique does not spread the signal, as the DSSS does. The
processing gain of a DSSS system is the increase in power density when the signal is
despread and it will improve the received signal's S/N ratio. In other words, the
frequency hopper needs to put out more power in order to have the same S/N as a
direct sequence radio.

■ The frequency hopper, however, is better than the direct sequence radio when
dealing with multipath. This is because the hopper does not stay at the same
frequency and because a null at one frequency is usually not a null at another
frequency if it is not too close to the original frequency. So a hopper can usually
survive the multipath better than direct sequence radio.

AGASSOUNON, CHAMPION, & LOPATA 21

HARRIS PRISM 2.4 GHz SIMULATION AND CHANNEL MODELING

Frequency hopped signals will generally have better adjacent channel selectivity
compared to DS spread signals. However, FH radios must hop through 50 channels.
The ETSI requires this to keep spectrum usage uniform and random. Selective use of
channels is not allowed in frequency hopping. DS radio users have the freedom of
selecting the channels that have the least amount of traffic and interference in their
area.

DS spread radios also offer the opportunity for better power management than FH
radios. A DS radio can more easily rely on the wireless network access points to
determine when ft can shut down to conserve power. FH systems are forced to stay
on more of the time because of the need to constantly synchronize their hopping
sequence with that of the RF network access points. Therefore, battery life is
potentially longer with DS spread radios than it is with their FH counterparts.

AGASSOUNON, CHAMPION, &LOPÄTA 22

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

HARRIS PRISM CHIPSET PRESENTATION

1. Introduction

PRISM is a range of components that Harris Corporation developed for portable wireless
communications systems. The propagation frequency used is 2.4 GHz and one of the
most interesting features of this range is the use of Direct Spectrum Spread Sequence
(DSSS).

All the components designed under this name are highly integrated in order to allow
miniaturized systems such as the following:

■ Wireless Local Area Network (WLAN),

■ Point-to-point microwave communications systems,

■ Handheld data transceivers,

■ Telemetry...

This range is packed into five interoperable ICs and but also a complete solution for WLAN
within a PCMCIA PC card. This card is a complete wireless high-speed modem using the
PRISM DSSS Wireless Transceiver chip set. This is the easiest way to design a simple
WLAN, that is why it was the more interesting to simulate.

2. The PRISM PCMCIA card

A. Presentation

This card allows high bit rate until 2 MBPS and its specifications match the IEEE 802.11
Direct Sequence Specifications. Its propagation frequency is 2.4 GHz (unlicensed ISM
band: Industrial/Science/Medical band).

Its main features are:

■ Frequency range: 2.4 GHz-2.4835 GHz

■ Transmitter output power 20.5 dBm (with the built-in antenna)

■ IF Frequency (Intermediate Frequency): 280 MHz

■ Modulation type: DBPSK or DQPSK

■ Binary rate: 2 MBPS in DQPSK and 1 MBPS in DBPSK

■ Receiver sensitivity : -93 dBm at 1 MBPS and -90 dBm at 2 MBPS, both with a
frame error rate of 8 %

AGASSOUNON, CHAMPION, & LOPATA 23

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

Half duplex transmission

This is packaged into a PCMCIA Type II extended cover including a 2.5 dB integrated
microstrip antenna. Both Windows 3.x and Windows 95 support this WLAN solution.

The radio range depends on the environment and one of the goals of this simulator and
propagation modeling is to predict it.

ß. Architecture

XXIKX
SELECT ru

Hj

IN*
HFAJ4J4

MWUM*
RF POWER AMP

ANOTKRX
I SWTTCH FL6

FILTER CUTOFF
SELECT

BFAJ7S4
0 MODEM

QUADRATURE
DCMOO

QUADRATURE
MODULATOR

Q

RXI

RXQ

TJtl

Q
»TH ORDER

aie| eUTTERWORTH [MC
22MHI LOWPA33

FILTERS

MFA1624
WMIOYNTHESIZER

CCA

■jlADcl—
OE

SPREAD

»WMW
BASEBAKD

PROCESSOR

DE-
MOO

TX.'RCV
DATA H

10

MOO.'
ENCODE

CONTROL
TEST
to

□ATA

FLASH

TT
SRAM

u
AWtCIM
PCnet"»
MOBllf

WIRELESS
LAN
MAC

„TO HOST
'COMPUTER

CLK

(10) PRISM PCMCIA Card Synoptic

This card is designed around the following PRISM components:

■ The HSP3824 baseband processor

■ TheHFA3724Q-MODEM

■ The HFA3524 dual synthesizer

■ The HFA3624 RF/IF converter

■ The HFA3925 RF power amplifier and TX/RX switch

The other main component is the Media Access controller (MAC) which is mainly in
charge of the communications protocol within the WLAN. This is a PCnet AM79C930.

AGASSOUNON, CHAMPION, & L0PATA 24

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

3) Transmit processing

Once the MAC has sent the data to the baseband processor and after the latter had
encoded them (differentially coding), each bit is coded using the predetermined 11 chips
per bit Spreading Sequence. These logical data are then sent to the MODEM in order to
create an IF frequency (Intermediate Frequency) signal.

The MODEM modulates the data to an IF frequency of 280 MHz using BPSK or QPSK
modulation. In order to get the IF frequency, an output of the dual synthesizer is applied to
the LO input of the MODEM. As the MODEM divides the frequency by two, the frequency
applied to the LO is 2 x 280 = 560 MHz. Hence, the second LO output of the dual
synthesizer is chosen. The signal is then amplified and filtered before being transposed at
2.4 GHz via the IF/RF converter.

This last one mixes the input signal to the first output of the dual synthesizer to get the 2.4
GHz. Finally, the signal is amplified and filtered twice before entering the antenna. The
transmitted power is about 20.5 dBm.

4) Receive processing

The processing is almost the same as the transmit processing except that the signal is
amplified more significantly in order to recover the data whatever the conditions.

Following reception via antenna and then filtering, the signal is sent to a Low Noise
Amplifier (LNA) in order to reduce the Noise Figure (NF) of the whole reception. However,
in order to improve the input intercept point, a high attenuation may be required. A
compromise was found using both the LNA and 5-dB attenuator.

The signal is then down-converted by the RF/IF converter and filtered before being sent to
the input of the MODEM. First, the signal is limited twice with two 45-dB limiting amplifiers
in order to recover an adequate amount of power. The demodulation is then achieved like
the modulation in the transmit processing.

At this moment, the signal is still analog and the baseband processor has to sample it in
order to recover the binary sequence. This is made at twice the chip frequency (generally
44 MHz = 2x2 MBPS x 11 chips per bit). Then, the baseband processor correlates the
PN spreading (Spread Sequence) to recover the differential binary data. These data are
then decoded (differential to absolute values) before being sent to the MAC.

A transmit and receive processing detailed explanation is given in the annex in the
Ham's Application Note 9624.

AGASSOUNON, CHAMPION, &LOPATA 25

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

THE SIMULATION

1. Features and goals

The simulator is used to get a precise idea of what happens in all stages of the transmit
and receive processing. One of the first purposes is to let the user know exactly the shape
of the signal at each stage. In that sense, it is a pedagogic tool because the user can see
the importance of each component and may better understand why such an amplifier or
filter was chosen instead of another.

Then, the simulator allows us to predict the quality of the received signal depending of the
hardware and the channel characteristics (cf. Modeling part). Almost all the parameters of
the transmission can be chosen and even changed by the user who can get an idea of the
best way to use the transceivers: which kind of modulations, which spreading sequence
and so on...

The simulator takes into account each filter's transfer function, the gain, attenuation and
noise figure for each component and even the power of the signal at each stage. All of the
fundamental parameters such as the IF and RF frequency, the bit rate, the sampling
frequency, the constellation of the modulation, and the spreading sequences have been
carefully detailed.

The simulation was designed under MatJab not only because of its very powerful
mathematical functions but also because it's a current software and easy to use under
both MSDOS/Windows and UNIX operating systems. Moreover, the main parameters can
be simply chosen via a convivial user interface.

2. Program structure

The program is divided into 7 M-scripts and 7 functions in order to get an easy-to-
understand program.

The description of each of those files is given below:

■ Run i.m is the routine used to create the user interface.

■ Testm is the subroutine called by Runi.m. This describes the callback actions that
match the buttons pushed by the user.

■ Mainpris.m is the program used to choose all the main parameters of the simulation. It
is called by testm after the user choices have been done. Some of those parameters
are decided via the user interface but the others can simply be changed in this script.
This is the main script which is used to call the transmitter, the channel and then the
receiver routines. It also loads the filters taps defined in the filtrage.m script All the
parameters are then saved into the Variables/globalva.mat file.

AGASSOUNON, CHAMPION, &LOPATA 26

HARRIS PRISM Z4 GHZ SIMULATION AND CHANNEL MODELING

■ Emit.m is the script that matches the transmit processing. First, it creates a random
binary sequence using the gene bin.m function. Then, this sequence is used to
create a symbol sequence with genesym.m - each symbol has a length of two bits
for a QPSK modulation and a length of just one bit for a BPSK modulation. At that
point, the mapqam.m function creates the PSK Q and I signals that will be
differentially coded.

Next, both signals are correlated with the spreading sequence using the spread.m
function. After a first filtering, the signals are mixed up with a 280 MHz LO (Local
Oscillator) and then added together to create the IF modulated signal.

For the numerous filtering stages, the filtrenp.m function used to be called to
calculate the result of the filtering on the signal and on a pure signal without any noise.
This second signal is used as a reference to calculate the noise power of the real
signal which is the last output of this function.

When the signal meets an amplifier, two different functions can be called. The first one
gain nf.m calculates the result signal while taking in account both the gain and the
Noise Figure (NF) of the signal. The second one gain.m just takes in account the gain
of the amplifier and is just used to amplify the non-noisy reference signal.

The signal is of course also mixed to be up-converted at 2.4 GHz and the output of
this script is the radio-transmitted signal after the 2.5 dB antenna.

■ Channel.m is the second main script used to take in account the result of the
modeling (Cf. Modeling part) to attenuate the transmitting signal and add it -100 dBm
of noise which corresponds to the noise in the air.

■ Receiver.m is the biggest script. It matches all the receive processing but is also used
to display a comparison between the transmitted signals (binary sequence, I and Q
signals) and the received ones. It uses the same routines as emit.m except the first
one's used to create the binary sequences.

■ Genebin.m is used in emit.m to create a random binary sequence, it is a function
whose syntax is:

binary_sequence=gene_bin(N,pO) where binaryjsequence is the output binary
sequence obtained randomly, N its length and pO the probability to get a zero.

■ Gene_sym.m is used in emit.m to create a random binary sequence. It is a function
whose syntax is:

symb_sequence=gene_sym(binaty_sequence,M) where symbjsequence is the
output symbol sequence obtained using the input binaryjsequence. M is the number
of different symbols. M is 2 for a BPSK and 4 for a QPSK.

■ MapOAM.m is used in emit.m to create the I and Q signals that match the chosen
constellation and modulation. The syntax is:

[DI,DQ]=mapQAM(symb_sequence,M) where Dl and DQ are the output I and Q
signals (Q=0 for a BPSK), symbjsequence is the input symbol sequence calculated
with the previous function and M is the number of different symbols.

■ Fi/trage.m is a M-script used to calculate all the taps of the different filters used in both
AGASSOUNON, CHAMPION, & LOPATA 27

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

the transmit and the receive processing. Then, they are saved into the
Variables/globalva.mat file.

Spread.m is a function used to apply a pre-determined spreading sequence to both I
and Q signals. The syntax is:

[SI,SQ]=Spnead(DI,DQ,SS,fs,fbr,N,delay) where SI and SQ are the output spread
signals and Dl and DQ the input. Fs is the sampling frequency, for the binary rate, N
the number of points and a delay (number of samples) can be set before the spread
sequence is applied to the input signals (useful for the receive processing after the
numerous digital filters).

Gainnf.m is used to amplify a signal while taking in account the noise figure of the
component Its syntax is:

[outputjsig, out_noise_pwr] = gain_nf (inputjsig, dBjgain,dB_NF, inp_noise_pwr)
where output_sig is the amplified output signal with a noise increased to match the
NF. Out_noise_pwr is the noise power of the output signal, inputjsig is the input
signal, dB_gain is the gain in dB, dB_NF is the NF in dB and inp_noise_pwr is the
noise power of the input signal.

All noise powers are given in Watts. The gain is a power gain.

Gain.m is used to amplify a signal with a power gain. The syntax is:

output_sig=gain(input_sig,dBjgain) where outputjsig and inputjsig are the output
and the input signals respectively, dBjgain is the power gain in dB applied to the input
signal.

Filtre np.m is used to filter both a noisy signal and a non-noisy equivalent signal and
then to get the noise power of the output signal while comparing both output signals.
The syntax is:

[noisyj5igjDut,nnjsigjout,noisej3Wj3Ut]=filtr&jip(BA,signalJn,signaljnnJn)
where noisyjsigjout, nnjsigjout, signaljn and signal_nn_in are the output noisy
signal, the non-noisy filtered signal, the input noisy signal and the input non-noisy
equivalent input signal respectively, ß and A are the upper and lower filter taps (for an
IIR filter), respectively. Noisejpwrjout is the noise power of the noisy filtered signal.

3. Noise calculation

As the simulator is able to compute all the noise figures of all the components, we must
know exactly everytime what is the noise power of the signal. Indeed, we just know the
Noise figure (NF) of each component and:

NF_(S/N), _S, NQ_l N0 _ 1

(S/N)0 S0 N, G N, G

G.Nl+NA 1 NA = 1 + - ~
G.Nj

where Nh No, SbSo and G are the input and output noise power, the input and output

AGASSOUNON, CHAMPION, & LOPATA 28

HARRIS PRISM 2.4 GHz SIMULATION AND CHANNEL MODELING

signal power and the linear power gain respectively. NA is an additive noise due to the
component, which will be used to match the noise figure.

To create a noisy signal, at the beginning of the emit.m script, a random signal with a
power that corresponds to the noise power was added. Then, everytime the signal pass
through an amplifier, the new noise power is calculated using:

N0 = G.N,+NA

The noisy signal is doubled by the equivalent signal but without any noise. Each time a
filter appears, both signals are filtered so that to get the new noise power using this
formula:

1 T 2

N0=--j[S(t)-Snn(t)]dt

Where S(t) is the noisy filtered signal and Snn(t) the non-noisy corresponding signal.

As the whole program is under a loop that enables the user to choose the number of
points he wants to be processed, the filtering of the non-noisy signal is only made once
(when the first 100 bits are processed). Then, the noise power after each filtering is saved
under a reference variable such as ref_5. This reference will be used directly in the
computations for the noise power.

4. The user interface and the configurable parameters

When the program starts, a window appears to allow the user to set the main parameters
of the transmission. Those can be simply changed using the mouse and clicking the few
popup menus, the editable windows and then clicking OK to run the simulation.

HARRIS PRISM - 2.4 GHz SIMULATION

Modulation type Number of bits (N = 100 x A)

Spread Sequence: chips per bit

Propagation conditions

Q3^H ■j

OK

Distance in m

Gael Champion and William Agassounon -1998
University of Florida - HSDAL

(11) View of the window user interface

AGASSOUNON, CHAMPION, & LOPATA 29

HARRIS PRISM 2.4 GHz SIMULATION AND CHANNEL MODELING

The Modulation type is a popup menu use to select either a BPSK modulation or a
QPSK modulation. The default option is QPSK

The Number of bits is an editable text window used to fix the length in bits of the
binary sequence. You must choose an integer that is a multiple of 100. The default
option is 100.

The length of the Spread Sequence in chips per bit can be selected with a popup
menu. The possible choices are 11,13,15 or 16. The default option is 11.

The Propagation conditions are used to select the kind of propagation between the
transmitter and the receiver. The choices are LOS (line of sight), propagation through
one floor, through 2 floors, or through one or two walls on the same floor. The default
option is LOS.

The Distance in m is an editable text window used to select the distance (in meters)
between the transmitter and the receiver. The default option is 10 m.

The OK push button is just used to validate the user choice and to run the simulation.

Many other parameters can also be changed directly in the Mainpn's.m M-script Those
parameters are non-direcüy related to the setting parameters of the PRISM PCMCIA
cards but enable the user to test many other transmissions properties like:

■ Fc, which is the intermediate frequency. The PRISM components used to support a
frequency from 10 to 400 MHz. Default is 280 MHz

■ Fp, which is the propagation frequency. The user must be notified that the
propagation modeling has been done only for 2.4 GHz propagation. Hence, changing
this parameter will not match the channel modeling. The results should then be
wrong.

■ SS, which is the 16-chip or the 11-chip spreading sequence. A 13 or 15-chip
sequence is simply chosen by ignoring the last chips of the 16-chip sequence. Those
sequences can be changed easily. The 11-chip and the 13-chip sequence correspond
to a 11-bit and a 13-bit Barker code, respectively. If the length of the sequence is 11,
the default code is 05B8. If it is 13,15 or 16, the code is 1F35. These two sequences
have been chosen to give the best results.

■ DMdetap, which is the divide tap used to fix the binary rate. The binary rate is
calculated using this formula:

clock frequency
binary rate = ■

length(SS)Divide tap

Default is 2.

■ Vcc, which is the voltage used to represent a digital 1. Default is 3 Volts.

■ Attjair, which is used to set the noise floor in the air. Typically between -100 and -110
dBm. Default is -100 dBm.

AGASSOUNON, CHAMPION, & LOPATA 30

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

5. Running the simulation

A. Displayed figures

During the simulation, many figures (17) appear to present the signal at different stages of
the transmit and receive processing. The goal is to help the user figure out the purpose of
each component such as amplifiers or filters based on its spectrum. After receive
processing, the processed signal is compared to the transmitted sequence. Finally, the
received binary sequence is compared to the transmitted one and the familiar bit error rate
versus signal to noise ratio graph is displayed. The figures correspond to a 10000 Monte
Carlo simulations of 100 bits.

(12) SI Spectrum after DSSS

The figure 12 (number 1 in the simulation) shows the goal of the DSSS which is to
increase the bandwidth of the signal. The binary rate is 2 MBPS (default value) but the
width of each lobe is extended to 22 MHz (44 MHz for the first main lobe) with the 11-chips
per bit spreading sequence.

AGASSOUNON, CHAMPION, & LOPATA 31

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

(13) IF Spectrum before filtering

The figure 13 (number 2 in the simulation) shows the same spectrum but after the
modulation at the IF frequency. The result is the same but the spectrum is centered on
280 MHz, which was the IF frequency chosen.

(14) RF FFT before FL6 fitter

The figure 14 (number 4 in the simulation) shows the spectrum of the transmitted signal
after the RF mixing. The 280 MHz signal was mixed with a 2.12 GHz LO in order to
transpose the signal at 2.12 + 0.28 = 2.4 GHz. However, during the mixing, another
frequency is generated: 2.12 - 0.28 = 1.84 GHz. That is what appears on this figure.

AGASSOUNON, CHAMPION, & LOPATA 32

HARRIS PRISM Z4 GHz SiMUuvnoNANO CHANNEL MODELING

on ——

70

60

50

40

30

20

10

• !
"012345

Frequency in Hz x^

(15) RF FFT after FL7 and FL6 filtering

The figure 15 (number 6 in the simulation) shows the same spectrum but after FL6 and
FL7 filters whose goal is to remove the undesired frequency (1.84 GHz). The signal has
also been amplified and hence its amplitude is higher.

(16) Received IF Spectrum after FL3

The figure 16 (number 11 in the simulation) shows the spectrum of the received signal
mixed with a 2.12 GHz LO to recover the signal at the IF frequency (280 MHz). The main
lobe centered at 280 MHz is comparable to the transmitted IF spectrum.

Nevertheless, another frequency seems to appear at 120 MHz. This is due to the other

AGASSOUNON, CHAMPION, & LOPATA 33

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

frequency generated by the down conversion. Indeed, a 2.4 + 2.12 = 4.520 GHz
frequency is generated by the mixing. Indeed, the spectrum is calculated using an FFT
and an FFT is symmetric to every multiples of Fs/2 and gets repeated every Fs, where Fs
is the sampling frequency.

This is illustrated by the following picture.

3.Fs=3.3
GHz

7.Fs/2=3.85
GHz

4.Fs=4A
GHz

(17) FFT symmetries illustration

However, this undesired frequency of 4.52 GHz is attenuated by the use of the FL3 filter.

(18) Received IF Spectrum after FL4

The figure 18 (number 12 in the simulation) shows the same spectrum but after both a
limiting amplifier (which increases the power of the signal but also modifies a little bit the
shape of the spectrum) and another filtering due to FL4. The 4.52 GHz frequency
(represented at 120 MHz) is completely removed.

AGASSOUNON, CHAMPION, & LOPATA 34

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

(19) Comparison between transmitted and received SI before detection

The figure 19 (number 14 in the simulation) is just used to get an idea of the received
demodulated signal after despread but before detection. The figure number 15 of the
simulation is the same but for SQ.

Received SI after detection
1i

Error on SI
i

0.5

0

-0.5

.1

IllllllllllliillilllilHillilllllilllllllll

Received SQ Real SQ
i

0.5

0

-0.5

-1 umiLi—iu n nnm.,1

Error on SQ
i

0.5

0

-0.5

■llllll!l!li!lii;illillllllill!llllllllll

-1

(20) Comparison between transmitted and detected received SI and SQ

The figure 20 (number 16 in the simulation) is a comparison between the detected SI
and SQ and the transmitted SI and SQ. An error graph for both signals is also displayed.

AGASSOUNON, CHAMPION, & LOPATA 35

\

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

(21) Comparison between the transmitted and received binary sequences

The figure 21 (number 17 in the simulation) shows the transmitted and the received
binary sequence. A graph error is also displayed.

B. Results

As previously said, once the simulation is over, the binary error rate is displayed. This is in
the case that the reception of the signal is possible.

Indeed, the limiting amplifiers used in the HFA 3724 Q-MODEM cannot work with signals
whose power is below -84 dBm. This corresponds to the sensibility of this component In
that case, the limiting amplifier will not be able to work and so no signal will be detected.

Hence, the signal power is calculated in the receiver simulation at the stage that
corresponds to this component If the signal is not powerful enough, the simulation simply
stops while displaying this message:

•RECOVERING IMPOSSIBLE - THE SIGNAL IS NOT POWERFUL ENOUGH'

In both cases, the simulation stops while displaying this end message:

End of simulation

Use the Windows menu to view the different figures'

A sound is also emitted, as the simulation can be quite long. Indeed, it requires more than
ten minutes to compute a binary sequence of 500 bits with the default options on a
Pentium II 300 MHz with 64 MB of RAM.

AGASSOUNON, CHAMPION, & LOPATA 36

\

HARRIS PRISM 2.4 GHZ SIMULATION AND CHANNEL MODELING

CONCLUSION

A wireless communication simulator and a statistical distance-dependent
path loss prediction model are useful for understanding the propagation of
radio waves in Wireless Local Area Networks (WLANs).

The simulator was designed to keep as close as possible to the whole
Harris PRISM PCMCIA Card technology. Transmit and receive processing
are analyzed step by step so as to provide an accurate overall view and a
practical tool when designing wireless communications links. It can also be
of high interest for data transmission analysis when the Bit Error Rate
becomes a critical matter.

In addition to this qualitative work, a statistical propagation path loss
modeling gives both a theoretical and practical overall view of the
influences of indoor channels according to site specifications such as
floors, walls, soft obstructions, etc.

The integration of both the simulator and the modeling results into an
easy-to-use Matlab program with a convivial user interface gives a
complete solution in order to get an accurate idea of the real features of
your next WLAN.

AGASSOUNON, CHAMPION, & LOPATA 38

