
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

COMMERCIAL OFF-THE-SHELF (COTS)/LEGACY
SYSTEMS INTEGRATION ARCHITECTURAL DESIGN AND

ANALYSIS

by

Thomas M. Nguyen

September 2000

Thesis
Second

Advisor
Reader:

■ Mantak Shing
Luqi

Approved for public release; distribution is unlimited.

JUJ ?mms) 4 20001030 146

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
Commercial Off-The-Shelf (COTS)/Legacy Systems Integration
Architectural Design and Analysis

6. AUTHOR(S)
Thomas M. Nguyen

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The nature of COTS products often falls short of achieving the unique requirements of
the Department of Defense(DoD). The focus of this thesis is on the use of distributed
component middleware technology within the framework of integrating COTS/Legacy system
architecture. One of the main problems facing distributed computing is software
component integration. There is no single, standardized framework for achieving
component integration. However, technologies such as Common Object Request Broker
Architecture (CORBA) and Microsoft's Component Object Model (COM) are emerging as
solutions to component integration. These methodologies provide a sort of software
communications bus for components, supporting platform and language independency. A
case study developed within the Navy Integrated Tactical Environmental System I (NITES
I) architecture was used to show the integration and communication of COTS/Legacy
software components using distributed component technology. This resulted in a
distributed object architecture supporting location, platform, and programming language
transparencies ■
14. SUBJECT TERMS
Commercial-Off-The-Shelf(COTS), Legacy System, Distributed Components,
Middleware, Heterogeneous System Integration

1?. NUMBER OF
PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI-CATION
OF ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

TJL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited

COMMERCIAL OFF THE SHELF (COTS)/LEGACY SYSTEMS INTEGRATION
ARCHITECTURAL DESIGN AND ANALYSIS

Thomas M. Nguyen

Space and Naval Warfare Systems Center, San Diego

B.S., University of Missouri-Rolla, 1992

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 2000

Author: Al
Thomas M. Nguyen

Approved by:
<£

Manfeak Shing, Thesis Advisor

Lugi, Second Reader

Dan Boger, Chairman
Department of Computer Science

111

IV

ABSTRACT

The nature of COTS products often falls short of

achieving the unique requirements of the Department of

Defense(DoD). The focus of this thesis is on the use of

distributed component middleware technology within the

framework of integrating COTS/Legacy system architecture.

One of the main problems facing distributed computing is

software component integration. There is no single,

standardized framework for achieving component integration.

However, technologies such as Common Object Request Broker

Architecture (CORBA) and Microsoft's Component Object Model

(COM) are emerging as solutions to component integration.

These methodologies provide a sort of software

communications bus for components, supporting platform and

language independency. A case study developed within the

Navy Integrated Tactical Environmental System I (NITES I)

architecture was used to show the integration and

communication of COTS/Legacy software components using

distributed component technology. This resulted in a

distributed object architecture supporting location,

platform, and programming language transparencies.

v

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. SCOPE AND ORGANIZATION 1

II. DISTRIBUTED COMPUTING ARCHITECTURE OVERVIEW 3

A. CLIENT/SERVER COMPUTING 3

1. Database Protocols 4

B . MIDDLEWARE 5

1. Database Middleware 7

2. Application Middleware 7

3. Message-Oriented Middleware 8

C. DISTRIBUTED-TRANSACTION PROCESSING 8

III. DISTRIBUTED OBJECTS COMPUTING 11

A. COMPONENTS AND DISTRIBUTED OBJECTS 11

B. COMPONENT OBJECT MODEL/DISTRIBUTED COM (COM/DCOM) . 12

1. Distributed Component Object Model (DCOM) 15

2 . COM Server Access 16

C. COMMON OBJECT REQUEST BROKER ARCHITECTURE (CORBA) . 19

1. OMA-Object Management Architecture 2 0

2. Object Request Broker (ORB) 21

3. Object Services (OS) 22

4. Common Facilities (CF) 22

VI1

5. Application Object (AO) . 23

6. Interface Definition Language (IDL) 23

7. CORBA Communications Model 24

8 . CORBA Object Model 25

9. Stubs and Skeletons 26

10. CORBA Interface Architecture 26

11. Client Interface 27

12 . IDL Stubs 27

13. Dynamic Invocation Interface (DU) 27

14. ORB Interface 2 8

15. IDL Skeleton 28

16. Dynamic Skeleton Interface (DSI) 28

17. Generic InterORB Protocol (GIOP) 29

18. Object Adapter (OA) 29

19. ORB Core 30

20 . Repositories 30

21. Performance 32

D. JAVABEANS 34

1. Enterprise JavaBeans (EJB) 35

2 . Java RMI 36

E. EXTENSIBLE MARKUP LANGUAGE (XML) 37

1. Elements 37

2 . Attributes 3 8

3. Entity References 3 8

viii

4 . Comments 39

5. Processing Instructions 7 39

6. CDATA Sections 4 0

7. Document Type Declarations 41

8. Benefits of XML 42

F. TRANSACTION PROCESSING MONITORS (TPM) 45

1. Microsoft Transaction Server (MTS) 46

IV. NITES INTEGRATION DESIGN AND SPECIFICATIONS 51

A. INTRODUCTION 51

B. NITES I SYSTEM OVERVIEW 51

C. DISTRIBUTED COMPONENTS ARCHITECTURE DESIGN 56

V. NITES INTEGRATION CASE STUDY . . 59

VI. CONCLUSIONS 69

A. RESULTS OF THE CASE STUDY 69

B. SUMMARY OF THE THESIS RESEARCH 69

C. CONCLUSIONS 70

APPENDIX A: SOFTWARE REQUIREMENTS SPECIFICATION FOR AN

ARCHITECTURAL FRAMEWORK OF DOD COTS/LEGACY SYSTEM 73

APPENDIX B OMF DATA AND DOCUMENT TYPE DEFINITIONS 81

APPENDIX C: CBWRAPPER/CONTROLLER/GLUE SOURCE CODE Ill

LIST OF REFERENCES 127

ix

LIST OF ACRONYMS 129

INITIAL DISTRIBUTION LIST 131

LIST OF FIGURES

FIGURE 1: COM INTERFACE TO FUNCTION POINTERS 15

FIGURE 2: COM's TRANSPARENT LPC AND RPC MECHANISM 17

FIGURE 3: OBJECT MANAGEMENT ARCHITECTURE (OMA) 21

FIGURE 4: THE STRUCTURE OF CORBA INTERFACES 26

FIGURE 5: INTEGRATING TP MONITORS WITH ORBS 46

FIGURE 6: MTS APPLICATION ARCHITECTURE 47

FIGURE 7: NITES I SYSTEM ARCHITECTURE DIAGRAM 53

FIGURE 8: NITES I DATA FLOW 54

FIGURE 9: COMPONENT INTEGRATION ARCHITECTURAL DIAGRAM 57

FIGURE 10 : CONTINUOUS BRIEF COMPONENT INTEGRATION DIAGRAM 60

FIGURE 11: IMAGERY UPDATES SEQUENCE DIAGRAM 66

XI

ACKNOWLEGEMENT

The author wishes to thank Dr. Mantak Shing and Dr. Luqi

for their guidance and support in this endeavor.

xix

I. INTRODUCTION

A. BACKGROUND

Traditional hierarchical organizational structures are

being replaced by networked organizations with emphasis on

personal and organizational communication, flexibility,

responsiveness, decentralized decision-making, and

interoperability. Many systems developed for the

Department of Defense (DoD) in the past were not designed

for joint operation and interoperability. As organizations

within the DoD work towards migrating to a distributed

computing environment, communications services and decision

support systems are becoming important aspects of the

information technology infrastructure. The objective of

this thesis is to identify and analyze the distributed

software components and object middleware technology, which

can be used to integrate computing systems and applications

together in a distributed computing architecture.

B. SCOPE AND ORGANIZATION

The scope of this thesis is to develop and analyze

distributed software component technology in researching

how to achieve interoperability between software systems.

The overall goal in respect to the DoD is interoperability

1

throughout the Department of Defense as well as with our

international allies. This thesis is the result of a joint

group effort in researching and designing an architectural

framework, which integrates Commercial-Off-The-Shelf (COTS)

component and application technology with aging legacy

systems. It focuses on the distributed components and

middleware technology within the architectural framework.

Topics such as security, wrappers, and overall framework

are outside the scope of this thesis and they are covered

elsewhere in conjunction to this report [Gee][Tran].

We will start with an overview of the Distributed

Computing Architecture, and then discuss component Object

Request Broker (ORB) technology and how to achieve

interoperability among objects. Chapter IV identifies the

Communications Requirements and Specifications in reference

to the Legacy Systems Integration's Architectural Framework

Analysis and Design. Chapter V describes how we applied

distributed computing concepts covered in this research to

solve problems associated with integrating a current

Department of Defense (DoD) legacy integration project

called the Navy Integrated Tactical Environmental Support

System I (NITES I).

II. DISTRIBUTED COMPUTING ARCHITECTURE OVERVIEW

A. CLIENT/SERVER COMPUTING

The basic concept for communication between a client

and server consists of a request from a client to a server

and a response from the server back to the client. One way

to implement this is by utilizing Interprocess

Communications (IPC) such as messaging and Remote Procedure

Call (RPC). The client/server applications provide a

method to transparently and most efficiently access the

information the user needs from a network of resources.

Various application components or tasks are distributed

between client and server platforms, which cooperate to

perform the desired application functions. Communications

between the client and server can be viewed as interactions

between interconnected components of the client/server

architecture. Each component provides an interface through

which it communicates with other components. Two distinct

classes of components can be defined as:

• Process components: Typically, these are software
components that actively perform some functions.

• Resource components: These provide the services
requested by process components.

Client/server interactions can be separated from the

interprocess communications and network protocols by

utilizing a set of common interfaces and run-time

facilities, which will allow client/server interaction to

be developed and performed totally transparent to the

programmers and end users. Since these common interfaces

and run-time facilities are architecturally layered between

clients and servers, they are widely known as middleware.

Designing an efficient client/server application can be

challenging, the goal is to evenly distribute execution of

tasks between processors while making optimal use of

available resources.

1. Database Protocols

The X/Open Call Level Interface (CLI) specification

provides an interface to Relational Database Management

Systems (RDBMS) using Structured Query Language (SQL).

Microsoft's Open Database Connectivity (ODBC) Application

Programming Interface (API) is the best known

implementation of the CLI standard. Sun Microsystems' Java

Database Connectivity (JDBC) API is a new implementation of

the CLI standard specifically for Java applications.

The CLI architecture are perhaps the most commonly

envisioned usage of client/server computing, in most cases,

allowing applications written using the standard to operate

independent of the database to which they are connected.

The drawback is that it does not provide access to some of

the more advanced features that differentiate RDBMS

products.

The API presented by the specification varies in

appearance from a thinly-veiled messaging interface to an

RPC interface. The message-like components of the

interface expose a hybrid synchronous/asynchronous mode of

operation wherein initial results are returned

synchronously while processing may continue asynchronously

at the server. This allows the client to continue

processing as soon as the server is able to provide an

initial set of results; further results are queued by the

server and returned to the client as they are requested.

The RPC components are used for control purposes and

operate synchronously.

B. MIDDLEWARE

Although middleware comes in many different forms, its

basic function is to enable interprocess communication.

Conceptually, it is the glue that holds together the

disparate systems in a distributed computing environment.

Architecturally, middleware functions as a layer of the

5

client/server architecture that resides between the client

and the server. In addition, it supports multiple

communication and data access protocols and interfaces, and

enables run-time client/server interactions. Middleware

integrates application programs and other software

components in a distributed environment which can be

characterized by:

• Distribution of processing among multiple systems
• Interactions between dissimilar systems
• Ability to share resources between individual

interconnected systems
• Multiple specialized and heterogeneous nodes and

networks [Berson]

As a software layer, middleware designed to be a

common software component that sits between clients and

servers on top of the communication protocols and frees

client applications from the need to know low-level

communication protocols. It is not designed to replace

communication protocols. In order to integrate

applications in a distributed environment and to take

advantage of the functionality provided by communication

networks, middleware provides an abstraction layer that, at

a minimum, should enable:

• Node, service, and data location transparency
• Seamless interactions between application components

via a set of common APIs
• Scalability and Extensibility

Reliability and Availability
Vendor, platform, operating system, and networking
protocol independence. [Berson]

1. Database Middleware

Most two-tier client/server applications are built

using proprietary database middleware supplied by a DBMS

vendor. The middleware ships SQL requests over the network

to a relational DMBS and returns data to the client

application. The database gateway represents another

example of database middleware. This database system

supports remote database access to more than one database

engine using an ODBC API.

2. Application Middleware

Application middleware differs from database

middleware in a significant way. Database middleware lets

user-written components talk to supplied database engines

or web browsers. The developer has very little design

flexibility, because the software vendor has already

defined most of the rules for the communication.

Application middleware, in contrast, is more like a

general-purpose programming language. It allows two user-

written components to communicate in any way that suits the

application designer and developer. The choice of

communication style is a key application design decision,

particularly with regards to the question of whether to

implement synchronous or asynchronous connections.

3. Message-Oriented Middleware

Message-oriented middleware hides the network from

applications and programmers. In addition, it supports

asynchronous communications. Message-queuing software has

traditionally been used in transaction processing. For

this purpose, message-queuing software has transactional

functionality such as database commits and roll backs,

where the stored messages are persistent. The difference

between traditional and modern client/server message-

queuing software is that traditional message-queuing

software had proprietary interfaces and was tied to

proprietary network, operating systems, and hardware. In

contrast, modern message-queuing software is network,

operating-system, and hardware independent. In addition,

the interfaces are published and available to other vendors

for use with their applications.

C. DISTRIBÜTED-TRANSACTION PROCESSING

Distibuted-transaction processing (DTP) allows an

organization to distribute transactions and transaction

data across multiple, geographically dispersed, autonomous

nodes in such a way that a node anywhere in a network can

initiate or process a transaction on any one or more

network nodes. The location of the transaction manager

that manages a transaction, and the data required for the

transaction, are transparent to users and applications.

DTP requires specialized standardized transaction

processing interfaces, protocols, and formats to allow the

different parts of the DTP system to communicate with one

another. DTP in the form of Transaction Processing

Manager/Monitor (TPM) will be discussed in more detail in

the next section.

THIS PAGE INTENTIONALLY LEFT BLANK

10

III. DISTRIBUTED OBJECTS COMPUTING

COMPONENTS AND DISTRIBUTED OBJECTS

Distributed object technology is extremely well-
suited for creating flexible client/server
systems because the business logic are
encapsulated within objects, allowing them to be
located anywhere within a distributed system.
[Orfali]

Orfali contends that objects and components are

revolutionizing the way we assemble our client systems.

Because distributed objects such as Common Object Request

Broker Architecture (CORBA), Java, and Component Object

Model (COM) provide information about themselves,

applications and visual tools are able to know the object's

interfaces, events and property instantaneously. Thus

distributed objects are able to:

1. Allow granular components to interoperate across

networks.

2. Run on different platforms.

3. Coexist with legacy applications through object

wrappers.

4. Manage themselves and the resources they control.

Like well-designed procedural APIs, implementation

details are hidden from the user of the object. Unlike

11

traditional APIs, however, object architectures limit

access to the invocation of methods defined for the object.

In addition, methods are invoked on the objects indirectly,

via references to the objects, eliminating the need for

local instances of the objects. This near-complete

implementation hiding allows distributed object

architectures to support location, platform, and

programming language transparency. These transparencies

come at a price (e.g. cost of extra overhead).

One of the main problems facing distributed computing

is software component integration. There is no single,

commercially available, widely recognized, and standardized

approach and framework for achieving this integration. Two

infrastructures (also referred to as Object Request Broker

(ORB) technology) are competing to provide a communications

software bus for components: CORBA/JavaBeans and COM.

B. COMPONENT OBJECT MODEL/DISTRIBUTED COM (COM/DCOM)

Microsoft's solution to distributed middleware

technology is the Component Object Model (COM). It

originated as a document structuring technology called

Object Linking and Embedding (OLE), and was later evolved

into an object-oriented architecture. COM, also known as

ActiveX, is referred to as an object-based programming

12

model and a set of related system services designed to

provide software interoperability. The primary goal of COM

is to provide a means for client objects to make use of

server objects, regardless of programming languages or who

developed the objects. In order to achieve

interoperability, COM defines a binary standard, which

specifies how an object is laid out in memory. A COM

object, like other objects, is an instantiation of a

particular defining class at run-time. The difference is

that instead of using a man-readable name to identify

itself, a COM object uses a unique Class Identifier (CLSID)

to uniquely identify the object classes. CLSIDs are part

of a special group of identifiers called Globally Unique

Identifiers (GUIDs). GUIDs are 128-bit values that are

statistically guaranteed to be unique across time and

space.

A COM object is defined in terms of the individual

interfaces that it supports. Interfaces are essential to

COM programming because they are the only way to interact

with a COM object. An interface is identified by a unique

identifier, usually called an Interface Identifier (IID).

A COM client obtains a pointer to a particular interface to

gain access to the functions defined as part of that

particular interface. To support interface navigation,

13

every interface uses a special Querylnterfa.ee and IUnknown

interface function call. QueryTrtterface contains two

parameters, one to specify the desired interface's IID, and

the other to receive the interface pointer. The defining

factors of an interface are:

• The number of supported functions

• The function prototypes of each supported function

• The order in which the function prototypes are listed

Because the interfaces are the only way to access a

COM object, changing any of these factors effectively

changes the interface. Architecturally, an interface is a

pointer to a virtual function table (VTBL). The VTBL

contains pointers to functions that provide that actual

implementation defined by the interface. Figure 1 shows

that an interface is actually a pointer to a VTBL of

function pointers. [Redmond]

14

COM Client

pISomelnterface

ISomelnterface

COM Object

Vitual Function
Table (VTBL)

function 1

> pVTBL &function 1

&function 2

&function 3

function 2

function 3

Figure 1: COM Interface to Function Pointers

1. Distributed Component Object Model (DCOM)

DCOM expands Microsoft's COM architecture to support

communication of distributed objects in a networking

environment. Microsoft based its DCOM protocol on Remote

Procedure Call (RPC) standards developed for the

Distributed Computing Environment (DCE) standards. Called

Object RPC (ORPC), it can use Transmission Control Protocol

(TCP) for guaranteed connectivity or User Datagram Protocol

(UDP) for connectionless transfer. [Carr]

DCOM enables clients to transparently communicate with

server objects, regardless of where these objects are

running. Clients are not aware of where the server objects

15

are located. To a client, all server objects are accessed

through interface pointers.

2. COM Server Access

A COM server provides the necessary structure around

an object to make it available to clients. It is usually a

block of code in the form of a Dynamically Linked Library

(DLL) or an executable (EXE). COM servers implemented as

DLLs, also known as in-process servers, loads a copy of the

server code directly into each client application's own

address space. This is because DLLs do not maintain their

own address space, so the server creates an instance of a

class using the IclassFactory interface. A copy of all

global resources is created on the client. COM servers

created as stand-alone EXEs maintain their own address

space and are also known as out-of-process servers. Out-

of-process servers that execute on the same machine with a

client are referred to as Local Servers. A client process

uses DCOM's Lightweight RPC (LRPC) to access a local

server. COM Servers running on a separate machine from its

client are called remote servers. Figure 2 shows COM's

transparent LRPC and RPC mechanism. [Orfali]

16

Client Process

Client
Application

Local Object
Proxy

■ 'it&PsbcGsk ■SeryezT';

Local Object
Proxy

Local Object
Proxy

Local Server Process

^
Local Object I Stub

TKXH
~£0-g § &~ß?:^'\"l¥^*S'&?-M |

ipieTCte.,Ma>cSine;5

Remote Server Process

O
Remote
Object

Figure 2: COM's Transparent LPC and RPC Mechanism

As mentioned earlier, DCOM allows clients to access

server objects transparently through the use of interface

pointers. Any call to an interface function must first go

to an in-process piece of code referred to as a proxy.

Clients of local out-of-process objects communicate with an

in-process proxy, which communicates with a stub loaded

into the address space of the object via LRPCs. Clients of

remote objects communicate with an in-process proxy, which

communicates with a remote stub via RPCs. The DCOM proxy

and stub mechanism uses similar concepts to that of CORBA's

implementation of static stubs on the client side and

interface skeletons on the server side.

17

In a report sponsored by the Defense Information

System Agency (DISA) , the following were their

recomendations for using COM/DCOM:

• Consider DCOM mostly for experimental use aimed at
pure Windows 2000 networks. Any impact that DCOM has
on the middleware market is most likely to appear
first in pure Windows 2000 networks, which will
provide stronger DCOM support and also make more
extensive use of DCOM within the operating system
itself. DCOM will also benefit greatly when Active
Directory technology in Windows 2000 becomes widely
available. Using DCOM thus may be appropriate for
projects that will run only Windows 2 000 when it
becomes available.

• Avoid DCOM as the only middleware product for
heterogeneous networks. Current levels of support for
DCOM on non-Windows operating systems do not easily
justify the use of DCOM for heterogeneous networks.
The current (early 1998) relative immaturity of the
distributed communication features of DCOM also works
against it for use in complex network environments
that require multi-vendor support and a high level of
adaptability to unique circumstances. (Note: This is
a rapidly-changing area, and new products and changes
to DCOM may make heterogeneous use of DCOM or its
future incarnations such as COM+ easier in the future
- e.g., sometime in 1999 or 2000. At present,
however, both pure CORBA and bridging between
middleware products appear to be more viable
middleware approaches for heterogeneous networks that
require the use of both Unix and Windows.)

• Avoid using DCOM to integrate legacy systems (except
for DCE legacy systems). As of early 1998, DCOM does
not have the flexibility or range of platform
implementations needed to make it appropriate for
integrating legacy (e.g., Cobol, Ada, or C++) software
into new network applications. In contrast, CORBA is
a much better choice for such integration activities
because of its broad platform and vendor support, and
because of its cleaner and more understandable object
model. One important exception to this general rule

18

is that when the legacy system already uses DCE and
the new portion of the network application consists of
Windows-based PCs, DCOM may provide easier integration
of the DCE components into the new Windows-based
platforms than would CORBA in the same situation.
This is possible because DCOM uses a communication
protocol that is very close to that of DCE, so that a
minimum of new software development should be needed
to bridge between the two. Even in this case the
tradeoffs of using CORBA versus DCOM for the
integration should be carefully considered, however,
especially if the new components of the system include
both Unix and Windows operating systems.

Consider bridging in heterogeneous networks that
require the use of DCOM. When DCOM is required for
the NT portions of a heterogeneous network, the
possibility of using a middleware bridge should be
considered strongly. The alternative of attempting to
use DCOM across a heterogeneous network is much less
attractive and in many cases may simply not be
feasible. Also, the trend of CORBA vendors towards
providing good bridges to COM has accelerated, with
many new products likely in 1998. [DISA]

C. COMMON OBJECT REQUEST BROKER ARCHITECTURE (CORBA)

The Common Object Request Broker Architecture

(CORBA) is a distributed object architectural

framework developed by the Object Management Group

(OMG) in 1989. CORBA allows applications to

communicate with one another no matter where they are

located or who designs them. The OMG approach to

distributed computing are:

To adopt interface and protocol specifications
that define an object management architecture
supporting interoperable applications based on
distributed interoperable objects.

19

The specifications are to be based on existing
technology that can be demonstrated to satisfy
OMG's Technical Objectives. [Bloor]

CORBA objects are components that can be anywhere on a

network, that clients can access via method invocations.

Both the language and location used to create server

objects are totally transparent to the clients. It can be

in the same process or on a different machine on a network.

1. OMA-Object Management Architecture

The OMG has developed a conceptual model, know as the

core object model, and a reference architecture, called the

Object Management Architecture (OMA) upon which

applications can be constructed. [Yang]

The OMA consists of four components: Object Request

Broker (ORB), Object Services (OS), Common Facilities (CF),

and Applications Objects (AO) as shown in Figure 3.

20

Application Interface

o
Domain Interface

o
i 1

Common Facilities

Q

Object Request Broker (ORB)

Legend

Application Objects

O D
ö ö ü ö ö

Object Services

Figure 3: Object Management Architecture (OMA)

2. Object Request Broker (ORB)

ORB is the fundamental part of the Common Object

Request Broker Architecture. The primary responsibility of

the ORB is to resolve requests for object references,

enabling application components to establish connectivity

with each other. When an application component wants to

use the services of another application component, it sends

a request call to the ORB. The ORB interprets the call and

tries to find references to an object that can perform the

service. The ORB then passes the parameters along to the

object where the component can call the methods of the

application and return the result.

21

3. Object Services (OS)

Object services provide fundamental object interfaces

necessary for building object-oriented distributed

applications. The operations provided by Object Services

are specified in the Interface Definition Language (IDL).

These are domain-independent interfaces that are used by

many distributed object programs. For example a service

providing for the discovery of other available services is

almost always necessary regardless of the application

domain. Two examples of Object Services that fulfill this

role are:

• The Naming Service - which allows clients to find

objects based on names.

• The Trading Service - which allows clients to

find objects based on their properties.

4. Common Facilities (CF)

Common Facilities provide standardized interfaces to

common application services. Like Object Service

interfaces, these interfaces are also horizontally-

oriented, but unlike Object Services they are oriented

towards end-user applications. An example of a common

facility is the Distributed Document Component Facility

(DDCF), a compound document Common Facility based on

22

OpenDoc. DDCF allows for the presentation and interchange

of objects based on a document model, for example,

facilitating the linking of a spreadsheet object into a

report document.

5. Application Object (AO)

Application Objects are interfaces developed

specifically for a given application. AOs are not

standardized because they are application specific, and

because the OMG does not develop applications, only

specifications.

6. Interface Definition Language (IDL)

Another fundamental part of the CORBA architecture is

the Interface Definition Language (IDL). IDL is a standard

language used to specify the interfaces used between CORBA

objects. IDL specification is responsible for ensuring

that data is properly exchanged between dissimilar

languages. Because interfaces described in IDL can be

mapped to any programming language, CORBA applications and

components are independent of the languages used to

implement them. For example, a client written in C++ can

communicate with a server written in Java, which in turn

23

can communicate with another server written in COBOL, and

so on.

Because IDL is not an implementation language, you can

not write applications in IDL. The main purpose for IDL is

to define interfaces, implementating the interfaces is

performed using some other language.

7. CORBA Communications Model

When a component of an application wants to access a

CORBA object, it first obtains an Interoperable Object

Reference (IOR) for that object. Using the IOR, the

component (called a client of that object) can then invoke

methods on the object (called the server in this instance).

In CORBA, a client is simply any application that uses

the services of a CORBA object; that is, an application

that invokes a method or methods on other objects.

Likewise, a server is an application that creates CORBA

objects and makes the services provided by those objects

available to other applications. As previously mentioned,

CORBA ORBs usually communicate using the Internet Inter-ORB

Protocol (HOP) . Other protocols for inter-ORB

communication exist, but HOP is fast becoming the most

popular, first of all because it is the standard, and

second because of the popularity of Transmission Control

24

Protocol/Internet Protocol (TCP/IP) (the networking

protocols used by the Internet), a layer that HOP sits on

top of. CORBA is independent of networking protocols,

however, and could (at least theoretically) run over any

type of network protocols.

8. CORBA Object Model

In CORBA, all communication between objects is done

through object references, these are known as Interoperable

Object References(IORs). Visibility to objects is provided

only through passing references to those objects, this

means that remote objects in CORBA remain remote, there is

currently no way for an object to move or copy itself to

another location. Another aspect of the CORBA object model

is the Basic Object Adapter (BOA), a BOA provides the

common services available to all CORBA objects. In CORBA,

a component can act as both a client and as a server. A

component is considered a server if it contains CORBA

objects whose services are accessible to other objects.

Likewise, a component is considered a client if it accesses

services from some other CORBA object. [Rosenberger]

25

9. Stubs and Skeletons

A client stub is a small piece of code that allows a

client component to access a server component. This piece

of code is compiled along with the client portion of the

application. Similarly, server skeletons are pieces of

code that is provided when you implement a server. The

client stubs and server skeletons are generated when you

compile IDL interface definitions.

10. CORBA Interface Architecture

The CORBA specification defines an architecture of

interfaces consisting of three specific components: client-

side interface, object implementation side interfaces, and

ORB Core, as shown in Figure 4.

Client

1
Dynamic

Invocation
Client
IDL

Stubs

ORB
Interface

Object Implementation

Static
IDL

Skeletons

Dynamic
Skeleton
Invocation Obj ect

Adapt ei- Implementation
Repository

Figure 4: The structure of CORBA interfaces

26

11. Client Interface

Looking at the structure of the CORBA interface, the

Client Interface may either use the Dynamic Invocation

Interface (DII), or call a statically defined IDL Stub to

make a request to the object.

12. IDL Stubs

An IDL stub includes functions generated from IDL

interface definitions and linked into the client program.

This is the static invocation interface, representing a

language mapping between the client language and the ORB

implementation, providing the static interfaces to object

services. The stub contains code that encodes and decodes

the operation and its parameters into message formats that

can be sent to the server. This process is called

marshaling.

13. Dynamic Invocation Interface (DII)

Dynamic Invocation Interface (DII) is generated at run

time. It is used when the object interface is not known at

compile time. Using DII, an object is accessed by a call

to the ORB or by a series of calls to the ORB in which the

object, method, and parameters are specified. The client

27

has the responsibility of specifying the types of

parameters and expected results.

14. ORB Interface

The ORB Interface is the interface that goes directly

to the ORB which is the same for all ORBs and does not

depend on the object's interface or object adapter.

Because most of the functionality of the ORB is provided

through the object adapter, stubs, skeleton, or dynamic

invocation, there are only a few operations that are common

across all objects. These operations are useful to both

clients and implementetation of objects.

15. IDL Skeleton

The IDL Skeleton, also referred as Server IDL Stub, is

created using an IDL compiler and resides on the server

side.

16. Dynamic Skeleton Interface (DSI)

DSI provides a run time binding mechanism for servers

to deliver request from an ORB to an object implementation

that does not have compile-time knowledge of the type of

the object. The dynamic skeleton inspects the parameters

of an incoming request to determine a target object and

28

method. When a client on one ORB calls a server on another

ORB, the DSI transmits the request to the target ORB, and

then the bridge uses the dynamic invocation interface to

invoke the target object on that ORB. The DSI can receive

either dynamic or static invocation from clients.

17. Generic InterORB Protocol (GIOP)

The Generic InterORB Protocol (GIOP) is the base

protocol (in terms of messages) for official interORB

communication. This can include vendor-specific

proprietary communication, so GIOP must be able to map to

any connection-oriented medium. The OMG specifies three

parts to GIOP:

• The Common Data Representation (CDR)

• The various GIOP message formats

• The message transport assumptions

The CDR is essentially a low-level transfer syntax

that maps between OMG IDL types and low-level raw data

types for use between network agents and processes.

18. Object Adapter (OA)

The Object Adapter sits on top of the ORB Core

communication services, accepting requests for service to

the requested objects. The object implementation accesses

29

most ORB services and the ORB Core through the Object

Adapter. It provides the run-time environment for

instantiating server objects, passing requests to them, and

assigning object references to them.

An object adapter is the primary way that an object

implementation accesses services provided by the ORB.

Services provided by the ORB through an Object Adapter

often include: generation and interpretation of object

references, method invocation, security of interactions,

object and implementation activation and deactivation,

mapping object references to implementations, and

registration of implementations.

19. ORB Core

The ORB Core provides a mechanism for a client to

transparently communicate with objects without the client

having to know the details of the method invocations. This

makes the client requests appear to be local procedural

calls.

20. Repositories

The interface repository provides another way to

specify the interfaces to objects. Interfaces can be added

to an Interface Repository service which defines operations

30

for run time retrieval of information from the repository.

Using an interface repository, a client should be able to

locate an object unknown at compile time, enquire about its

interface, and then build a request to be forwarded through

the ORB. The interface repository allow you to obtain the

interface and modify the descriptions of all the component

interfaces during initialization. In addition, using the

information in the Interface Repository, it is possible for

a program to come across an object which is unknown at

compiled time, but still be able to dynamically determine

what operations are valid on the object and make an

invocation on it.

The implementation repository contains information

that allows the ORB to locate and activate implementations

of objects. Although most of the information in the

Implementation Repository is specific to an ORB or server

object, the Implementation Repository is where all the

information about the classes a server support is stored.

In CORBA version 1.1, interoperable object applications was

not totally achieved because the OMG left the

implementation of the ORB core to vendor preferences. This

only resulted in some level of component portability, but

not interoperability. CORBA 2.0 fixed the interoperability

problem by specifying a mandatory Internet Inter-ORB

31

Protocol (HOP) . HOP specifies how ORBs communicate over

TCP/IP, using the internet as the backbone through which

other ORBs can bridge to.

21. Performance

There are three main factors that reduces throughput

when using CORBA in comparison to TCP sockets. The first

factor is increased message overhead caused by Generic

InterORB Protocol (GIOP) and Common Data Representation

(CDR). CDR adds padding into data structures to maintain

alignment. GIOP header can add to the message size. The

header begins with a 12-byte field providing version and

message type information.

The second cause of CORBA overhead is marshaling. For

data structures, the sending ORB must collect the data from

different location in memory and copy it into a transmit

buffer. If a parameter is declared with the generic type

in IDL, the sending ORB must include specific type data

whenever the parameter is marshaled.

The third cause is reduced throughput via dispatching.

The sending application calls the client-side stub, which

calls the ORB to perform the remote operation. On the

receiver, the ORB calls an adapter interface, which

performs an up call to the server. Overhead can be

32

significant if the stubs are implemented inefficiently, or

cause unnecessary copying.

The general rule is; for distributed applications

where bandwidth and latency requirements are below what is

available at the transport layer, CORBA is the ideal

solution. However, for applications requiring high

performance, developers should carefully consider the

tradeoffs before committing to CORBA development.

The following are recommendations from DISA for using

CORBA to build applications:

• Use CORBA. The de facto position of CORBA as the most
widely distrbuted and used middleware product for
Internet-connected PCs makes it an excellent choice
for low end Windows platforms. Furthermore, its broad
availability and support on other platforms such as
Unix makes it useful for integrating legacy software
is further enhanced by its clear, well-defined, and
internationally standardized interface description
language for specifying the interfaces to software
components. The maturity of the object-oriented
features of CORBA also make it well-suited to the
current trend towards more dynamic distributed
software that whose relationship to the underlying
network can change in real time.

• Use only one CORBA vendor unless interoperability can
be verified. The greatest current weakness of CORBA
is the slow pace of its efforts to make CORBA products
from different vendors interoperate with each other.
There has been significant progress in this area in
the last couple of years, but at present the safest
strategy for using CORBA is still to pick a single
vendor and use that vendor consistenly for a given
application.

• Use wgang of three" (CORBA/Internet/Java) CORBA
products whenever possible. At present, the most

33

promising overall path for broad integration of
applications using the Internet appears to-be joint
use of CORBA (especially HOP), Internet technologies,
and Java. CORBA provides integration of legacy-
systems, broad platform interoperability, object-
oriented interfaces, and a well-defined path (the ORB)
for implementing various forms of network
transparency. This support is likely to become
increasingly important as part of an overall industry
thrust to make distributed applications more scalable,
robust, and portable. The Internet provides a robust
universal network for hosting distributed
applications, and Java provides a dynamic programming
"glue" that can be used to develop new interfaces into
older legacy systems more rapidly and more
effectively. While all CORBA 2.0 and 2.1 products are
required to support HOP, the way in which HOP is
supported can vary significantly from vendor to
vendor. The best implementations make good use of
features that increase efficiency and reduce needless
overhead for operations such as communication with
Java objects.

For networks that include NT, use CORBA with good COM
bridges. DCOM will be an important force in the
upcoming release of Windows NT 5.0. However, for now
(early 1998) an approach that relies on CORBA for the
network side of distributed applications and CORBA-TO-
COM bridges for the Windows NT and Windows 95 side is
more likely to product robust, reliable distributed
applications. Support for CORBA-to-COM bridges should
increase in 1998, as demonstrated by the early 1998
release of products such as the IONA OrbixCOMnet
Desktop. [DISA]

D. JAVABEANS

JavaBeans is the most recent of the three

specifications of component architecture for building

applications as reusable components. The JavaBeans

architecture is where Java extends from a simple

development language to component model technology like

34

CORBA and COM. JavaBeans allows Java developers to create

replaceable code within applications, and applications can

be componentized so that the individual elements can be

reused within other application systems without re-coding.

These components are designed to work within any Java

application builder tool and execute within anything that

has a Java Virtual Machine (JVM), including web browsers.

Beans can be manipulated and customized through their

property tables and customization methods. In addition,

multiple beans can be combined to create more sophisticated

applets, applications, or other JavaBeans.

1. Enterprise JavaBeans (EJB)

Extending behind the client-side based JavaBeans

model, Enterprise JavaBeans is a Java-based cross-platform

component architecture for the development and deployment

of multi-tier, distributed, scalable, server-based, object-

oriented Java applications. EJB simplifies writing

business applications as components by providing a set of

automatic services to support scalable transactional

application server components.

35

2. Java RMI

Java Remote Method Invocation (RMI) is a set of

packages included in the JDK which allow for Java-to-Java

communication between distributed application components.

The following are Java RMI goals:

• Support remote invocation on distributed Java objects.

• Support callbacks from servers to applets.

• Distributed object model integration into Java.

• To differentiate between the distributed object model

and local Java object model.

• Simplify writing reliable distributed applications.

• Preserve the security attributes in the Java runtime

environment.

Java/RMI uses a protocol called the Java Remote Method

Protocol (JRMP), which relies on Java Object Serialization,

allowing objects to be distributed as a stream. Each

Java/RMI Server object defines an interface which can be

used to access the server object outside of the current

Java Virtual Machine (JVM) and on the other machine's JVM.

The interface reveals the services that is offered by the

server object.

36

E. EXTENSIBLE MARKUP LANGUAGE (XML)

Another increasing popular trend is web-based

applications. The Extensible Markup Language (XML), an

extension to the Hypertext Markup Language (HTML), has

become a powerful tool for web development. Both HTML and

XML may appear the same in a browser, but the XML data is

"smart" data. HTML tells how the data should look to the

browser, but XML tells the browser what it means. With

XML, the developer can create their own tags to describe

what they want the data to mean. This essentially makes it

a smart document. XML is used to put data in a format that

is computer-readable code so that we can use the computer

to process or store the data.

XML documents are composed of markup and content.

There are six kinds of markup that can occur in an XML

document: elements, entity references, comments, processing

instructions, marked sections, and document type

declarations. The following sections introduce each of

these markup concepts.

1. Elements

Elements are the most common form of markup. Delimited

by angle brackets, most elements identify the nature of the

content they surround. Some elements may be empty, as seen

above, in which case they have no content. If an element

37

is not empty, it begins with a start-tag, <element>, and

ends with an end-tag, </element>.

2. Attributes

Attributes are name-value pairs that occur inside

start-tags after the element name. For example,

<div class="preface"> is a div element with the attribute

class having the value preface. In XML, all attribute

values must be quoted.

3. Entity References

In order to introduce markup into a document, some

characters have been reserved to identify the start of

markup. The left angle bracket, <, for instance,

identifies the beginning of an element start- or end-tag.

In order to insert these characters into your document as

content, there must be an alternative way to represent

them. In XML, entities are used to represent these special

characters. Entities are also used to refer to often

repeated or varying text and to include the content of

external files. Every entity must have a unique name. In

order to use an entity, you simply reference it by name.

Entity references begin with the ampersand and end with a

semicolon. For example, the It entity inserts a literal <

38

into a document. So the string <element> can be

represented in an XML document as < element;-.

A special form of entity reference, called a character

reference can be used to insert arbitrary Unicode

characters into your document. This is a mechanism for

inserting characters that cannot be typed directly on your

keyboard. Character references take one of two forms:

decimal references, ℞,-, and hexadecimal references,

℞. Both of these refer to character number U+211E

from Unicode.

4. Comments

Comments begin with <!-- and end with -->. Comments

can contain any data except the literal string --. Comments

can be placed between markup anywhere in a document.

Comments are not part of the textual content of an XML

document. An XML processor is not required to pass them

along to an application.

5. Processing Instructions

Processing instructions (Pis) are an escape hatch to

provide information to an application. Like comments, they

are not textually part of the XML document, but the XML

processor is required to pass them to an application.

39

Processing instructions have the form: <?name pidata?>.

The name, called the PI target, identifies the PI to the

application. Applications should process only the targets

they recognize and ignore all other Pis. Any data that

follows the PI target is optional, it is for the

application that recognizes the target. The names used in

Pis may be declared as notations in order to formally

identify them. PI names beginning with XML are reserved

for XML standardization.

6. CDATA Sections

In a document, a CDATA section instructs the parser to

ignore most markup characters. Consider a source code

listing in an XML document. It might contain characters

that the XML parser would ordinarily recognize as markup (<

and &, for example). In order to prevent this, a CDATA

section can be used.

< ! [CDATA[

*p = &q;

b = (i <= 3) ;

]]>

Between the start of the section, <![CDATA[and the

end of the section,]]>, all character data is passed

directly to the application, without interpretation.

40

Elements, entity references, comments, and processing

instructions are all unrecognized and the characters that

comprise them are passed literally to the application.

The only string that cannot occur in a CDATA section is

]]>.

7. Document Type Declarations

A document type definition (DTD) is a series of

deinitions for element types, attributes, entities and

notations. It declares which of these are legal within the

document and in what places they are legal. A large

percentage of the XML specification deals with various

sorts of declarations that are allowed in XML. One of the

greatest strengths of XML is that it allows you to create

your own tag names. But for any given application, it is

probably not meaningful for tags to occur in a completely

arbitrary order. So, if the document is to have meaning,

there must be some constraint on the sequence and nesting

of tags. Declarations are where these constraints can be

expressed.

Additionally, declarations allow a document to

communicate meta-information to the parser about its

content. Meta-information includes the allowed sequence

and nesting of tags, attribute values and their types and

41

defaults, the names of external files that may be

referenced and whether or not they contain XML, the formats

of some external (non-XML) data that may be referenced, and

the entities that may be encountered.

8. Benefits of XML

The following are benefits of XML:

• Simplicity - Information coded in XML is easy to read

and understand, plus it can be processed easily by

computers.

• Openness - XML is a W3C standard, endorsed by software

industry market leaders.

• Extensibility - There is no fixed set of tags. New

tags can be created as they are needed.

• Self-description - In traditional databases, data

records require Schemas set up by the database

administrator. XML documents can be stored without

such definitions, because they contain meta data in

the form of tags and attributes. XML Provides a basis

for author identification and versioning at the

element level - Any XML tag can possess an unlimited

number of attributes such as author or version.

42

• Contains machine readable context information - Tags,

attributes and element structure provide context

information that can be used to interpret the meaning

of content, opening up new possibilities for highly-

efficient search engines, intelligent data mining,

agents, etc. This is a major advantage over HTML or

plain text, where context information is difficult or

impossible to evaluate.

• Separates content from presentation - XML tags

describe meaning not presentation. The look and feel

of an XML document can be controlled by XSL style

sheets, allowing the look of a document (or of a

complete Web site) to be changed without touching the

content of the document. Multiple views or

presentations of the same content are easily rendered.

• Supports multilingual documents and Unicode - This is

important for the internationalization of

applications.

• Facilitates the comparison and aggregation of data -

The tree structure of XML documents allows documents

to be compared and aggregated efficiently element by

element.

43

• Can embed multiple data types - XML documents can

contain many data types - from multimedia data (image,

sound, video) to active components (Java applets,

ActiveX).

• Can embed existing data - Mapping existing data

structures like file systems or relational databases

to XML is simple. XML supports multiple data formats

and can cover all existing data structures.

• Provides a 'one-server view" for distributed data -

XML documents can consist of nested elements that are

distributed over multiple remote servers. XML is

currently the most sophisticated format for

distributed data - the World Wide Web can be seen as

one huge XML database.

• Rapid adoption by industry - Software AG, IBM, Sun,

Microsoft, Netscape, DataChannel, SAP and many others

have already announced support for XML. Microsoft

will use XML as the exchange format for its Office

product line, while both Microsoft's and Netscape's

Web browsers support XML. SAP has announced support

of XML through the SAP Business Connector with R/3.

Software AG supports XML in its Bolero and Natural

product lines and provides Tamino, a native XML

database. [Software AG]

44

F. TRANSACTION PROCESSING MONITORS (TPM)

Transaction Processing Monitors (TPM) used as

middleware solutions can support transaction routing,

execution of remote functions, and transparent access to

remote data, transaction integrity, manageability, and

recoverability. TP monitors first appeared on mainframes

to provide run-time environments that could support large-

scale On-Line-Transaction-Processing (OLTP) applications

such as airline reservations, banking and stock-brokerage

systems. Since then, TPM have been combined with ORBs into

Object Transaction Monitors (OTMs) to better manage CORBA

and DCOM objects. Most TPMs now provide C++ class

libraries to access their services. TPMs like Encina,

CICS, Tuxedo, and Top End, allow CORBA clients to call

their services using CORBA IDL interfaces and HOP. OTM

are capable of managing millions of objects, coordinating

their interactions across the network. Figure 5

illustrates the use of OTMs to manage various ORB

components. Instead of coordinating procedural services, ■

an OTM manages server-side components such as CORBA Beans

and Enterprise JavaBeans. Microsoft's version of an OTM is

the Microsoft Transaction Server (MTS), which is an

ActiveX-based component coordinator. OTMs provide an open

45

and "highly-toolable" application platform for the middle-

tier. [Ofali]

fflss
Forms

View Objects

CORBA,

OM

EJBs

OTM

ActiveXs

Server Objects

DBMS

Legacy
Applications

Figure 5: Integrating TP Monitors with ORBs

1. Microsoft Transaction Server (MTS)

Microsoft Transaction Server (MTS) provides a server-

centric environment for developing and deploying three-

tiered applications based on Microsoft's COM technologies.

As shown in Figure 6, the MTS architecture allows

application logic components to run under the control of

MTS on servers.

46

Presentation

Application Logic

Clients Clients

Presentation

IIS/ASP «TOO»

m

MTS

pfcdatföä

Analysis I
iQuersg*

Windows NT Server P

Data and Resources CICS/
IMS

Oracle
Unix

MSMQ SQL
Server

Figure 6: MTS Application Architecture

MTS applications are invoked by the presentation-

centric components running on clients via COM technologies.

Application logic components can access a number of

different databases, message queuing servers, CICS and IMS

applications. Access to databases and resources is done

through MTS Resource Dispensers that perform services such

as connection pooling automatically. MTS also supports

automatic transactions so that access to data and resources

is done with all-or-nothing protection. A simple MTS

application might consist of three processes running on the

same computer: an Excel spreadsheet, which is calling

47

methods in an MTS component, which in-turn accesses a SQL

Server database.

Within the MTS architecture, programmers build

presentation and application logic components with any tool

or programming language that can generate COM-compliant

DLLs. Microsoft specifies the following rules for

components to work with MTS:

• Components must create a reference to their MTS
Context Object by making a simple API call. Creating
the reference enables the component to take advantage
of MTS services such as transaction and security
support.

• Do not save state information across transaction
boundaries within components (e.g., in local or global
variables). Components that save state are less
scalable, because MTS cannot recycle their resources
when they finish executing. State should be kept in
databases or in the Shared Property Manager (SPM) in
MTS and retrieved by components when needed.

• When a component completes execution successfully, it
must call the SetComplete method on the MTS Context
Object. This tells MTS that this component wishes to
commit any work it has performed when all components
involved in the transaction finish executing. Calling
SetComplete also tells MTS that it can recycle any
resources held by the component.

• If a component cannot complete executing successfully,
it must call the SetAbort method on the MTS Context
Object. This tells MTS that it should abort the
current transaction and roll back all changes made by
components involved in the transaction. Calling
SetAbort also tells MTS that it can recycle any
resources held by the component. [Microsoft]

48

When components follow the rules listed, applications

can take advantage of MTS benefits such as enhanced

scalability, performance, and management with no additional

development.

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

IV. NITES INTEGRATION DESIGN AND SPECIFICATIONS

A. INTRODUCTION

In developing an architectural framework for

Commercial Of-The-Shelf (COTS)/Legacy Systems Integration,

we developed the Software Requirements Specification (SRS)

referenced in Appendix A. The Naval Integrated Tactical

Environmental System I (NITES I) was used as a basis of the

requirements for the architectural framework. The Client

workstations were developed under Windows NT platform.

Because of this constraint, we chosed to used DCOM. We

found that DCOM was more suited for Microsoft-centric

environment.

This section focuses on a high-level design of a

distributed components architecture for COTS/Legacy Systems

Integration.

B. NITES I SYSTEM OVERVIEW

The NITES I project is a Space and Naval Warfare

(SPAWAR) sponsored project within the DoD. The driving

force of the NITES I project is the integration of existing

legacy systems with the latest industry-based COTS and

Government-Off-the-Shelf (GOTS) technology. This includes

the use of personal computers and COTS components.

51

The purpose of NITES I system is to provide

integration of METOC data with the necessary tools to

support the war fighter in the field. Basically, NITES I

acquire and assimilate various METOC data for access by the

US Navy and Marine Corps. The NITES I system is the

primary METOC data fusion platform and principal METOC

analysis workstation, intended to be operated on both a

classified and unclassified network environment by METOC

personnel. The system receives, processes, stores, and

disseminates METOC data and provides analysis tools to

render products for application to military operations.

Data and information are stored in a unified METOC database

on the Joint Command, Control, Communications, Computers,

Information, Surveillance and Reconnaissance (C4ISR)

network and are available to local and remote users.

Figure 7 displays an overview of the components of the

overall NITES architecture.

52

Broadcast,
Local, Remote

Sensor Obs —►
RADAR —>■

JMCOMS —*- Comms
Data

Ingest

Satellite

Data Acquisition

Data Assimilation

METOC Database

I
Weather

Forecasting
& Analysis

Comms

t

_ir

Decision
Aids

Satellite
Analysis &

Viewer

Briefing
Support

Data Application

Data Distribution

? T
CCTV Large

JMCOMS Screen

Display

Figure 7: NITES I System Architecture Diagram

These components are grouped by functionality into:

1) Data Acquisition:
The NITES I system has to be able to receive
various data from many different sources. Data
types include point data, line data, surface or
level data, volume data, imagery data, and text
data.

2) Data Assimilation:
The NITES I system has to be able to process the
data received and store them in the METOC
database.

3) Data Application:
The METOC database can be accessed by
applications software. Additionally, the User
has visualization tools and a briefing package

53

that allow them to turn METOC information into
useful products for the Customer.

4) Data/Product Dissemination:
Numerical analysis and forecast model products
and data, and forecaster generated METOC products
and data are made available to Customers via Web
technology, Closed-Circuit Television (CCTV),
Local Area Network (LAN), or JMCOMS. [SPAWAR]

~^r>

METOC Data

Notify

Data Ingest
&

Data Decode

store/
Update

o

NITES I Applications

Data
Maintenance
& Archive

Retrieve/
Delete/
Update

METOC Database

Retrieve/Store

Data METOC
Distribution Data

Figure 8: NITES I Data Flow

NITES I is intended to provide the user with METOC

data required to access and forecast the environment. Its

backbone is the seamless transfer of METOC information from

raw data through regional centers to the warrior. One of

the functions is to turn METOC data into useful products.

Table 1 shows the NITES data formats.

54

CO
ß
o

-H
4-> a
-H

U
CD
CD
P

(0
■P
fO
Q

M

CO
w
EH
H

d)

(0
E-t

ca
to
Q

o
CU

W 3

w
s
V
s
l>
s-

ea

©

2 &•
O Q.

O co
— cl>
^* (-.
£3 4>
O OT

■— u

B E
00 \3

>-■
o rt

1*1

>> CO

■n o. -o
-o CO
co B o

•n o x>
C '£3 u.
en CO
£ CO o

o

ca
o

fe CQ

-O
co

CM
co

oo
s

ca
c
o

'5b
o>

Crf

o o
o
CN

i o
o
oo

<§
CU
h-H

Z CO

t> s
s Ü

O
P-I
>—1 2
</j i—»

la U

.2 5!
v Z

MS »7
r- £ 5 «
+ J2.25
h » 2 o
•^ U CO ^^

CN ^

CO
B
O

«> > —
2 *- « cS s^>

co O O

o \o
o

(L> >

erf

D
CQ
O

O a

+ »

o

CO
O
'ft

ca >
i— .—i
<L> ca

-1
CO o

X> o
co O _l

ca T3

> I
o ;*;
E o

ca

Ü

2 o

.2 2

XI
to
i>
O.

co
J3
00

S
_o
"5b
co

erf

ca ffl

D. o
CO

l-t

•u 3

-o O
i-. c
ca o o o

xi
■>-* e. ■4—*

o J^ o
eu U

o
o

o

ca
u

a> S
Ja 2

•a
cu
co
a
vy

ao
s

erf

P

CB
B
o
5b
<o

erf

fe PQ

O
T3
ca
2

CQ
u
w
E
•o u u
p.

tyr
j=
£50

B
o ; '. ea
CO B
g O
0> OO

cu
erf

oo
O
O

CO
>^

■O (>

D co

— co
— co

ll
4^ r, fi n

t- ."B
3 u o

eu

O

ca
oo
> ca
ca ca
Z Q

55

C. DISTRIBUTED COMPONENTS ARCHITECTURE DESIGN

The distributed components architectural design is

based on a three-tiered architecture consisting of the

presentation layer, logic layer, and database. In order to

integrate COTS/Legacy systems with the existing

architecture, we used wrappers. Wrappers allow next-

generation systems to interact with wrapped legacy systems

by modifying its interface. Once wrapped, legacy systems

can participate in distributed object environment using

object request brokers (ORBs). The following is a generic

architecture containing the following: an Application

object, Controller component, Application Wrapper

component, Glue component, and the Database. The

Application Wrapper transforms each COTS application into

COM component interfaces, which may reside on external NT

machines. Each application requires a wrapper object to

handle the specific type of file that the application uses.

The controller object monitors the application startup and

references the appropriate wrapper component. The wrapper

component will then translate the data accordingly so that

the "glue" component may be able to store/retrieve data

to/from the database.

56

Application

Application
Wrapper

^ Controller
^

A it

^
Glue

Component p

Database

Figure 9: Component Integration Architectural Diagram

The following are generic functional descriptions of the

various components:

Application

This is the COTS/Legacy Application to be wrapped to

be able to interact with the rest of the components within

the system.

System Controller

It manages the communications between the wrapper

component and glue component. It signals events to all

57

components within the system.

Application Wrapper

This is the front-end proxy component, which provides

the methods interface of a particular application. It

reads data specific to application and formats data to be

stored to database. Wrappers are unique to specific

application based on the data types and how they are

referenced to the database. Remote legacy components are

encapsulated using their APIs (if available) to interact

with other components.

Glue Component

This is the data type management layer, which stores

and retrieves data to/from database using the provided

database APIs. It hides all the communications management

from the programmer.

In the next section we will adapt our generic design

to integrate an application with the NITES I system

architecture.

V. NITES INTEGRATION CASE STUDY

Our goal in this section is to utilize the basis of

the design presented in the previous section to integrate

COTS/Legacy applications within the NITES subsystem

architecture. The purpose is to interface with the

application and distribute data to and from a relational

database. The prototype developed for this case study

focuses on distribution of imagery data (i.e. Jpg, Mif, Nif

file formats). Our goal is to integrate the Continuous

Brief Application to the NITES database architecture. The

continuous brief application is in PowerPoint Slide Show

format, presenting images on a continual basis. Figure 10

shows the diagram of the following objects: Continuous

Brief Wrapper, Glue component, Local Imagery Directory, and

System Controller.

59

CB App CB App(n)

HTTP MIS) . DCOM (ActiveX control)

CBWrapper

^\

CBWrapper n

Notify image
updates

Provides
Data

System
Controller

retrieves stores

1
Database

IMAGE
EDITOR

Store New
Image Files

polls Local Image
Directory-

Retrieve New
Image Files

Figure 10: Continuous Brief Component Integration Diagram

60

Image Editor

Image Editor is an application which edits and saves

an imagery file to the local image directory.

Local Image Directory

The local image directory was created to hold imagery

files, which could be added by other external components.

Continuous Brief Wrapper (CBWrapper)

The Continuous Brief wrapper (CBWrapper) is an ActiveX

component that accepts user inputs such as image type,

images size, number of images, and display time interval.

The CBWrapper registers with the system controller so that

it will be notified of imagery updates. The Controller

component uses the UpdateBrief event to notify the

CBWrapper when to update the image brief. The CBWrapper

uses the following PowerPoint APIs to display and update

imagery data in a slide show fashion:

• Presentations.Add - Creates a presentation. Returns a

Presentation object that represents the new

presentation.

• Slides.Add - Creates a new slide and adds it to the

collection of slides in the specified presentation.

Returns a Slide object that represents the new slide.

61

• SlideShowTransition - Contains information about how

the specified slide advances during a slide show.

• SlideShowSetting - Represents the slide show setup for

a presentation.

• Shapes.AddPicture - Creates a picture from an existing

file. Returns a Shape object that represents the new

picture.

• Shapes.PictureFormat - Contains properties and methods

that apply to pictures and OLE objects. The LinkFormat

object contains properties and methods that apply to

linked OLE objects only. The OLEFormat object contains

properties and methods that apply to OLE objects

whether or not they are linked.

System Controller

The System Controller consist of a Controller object

and a Monitor object. The Controller is a COM object

programmed to notify the CBWrapper and signals the

wrapper(s) to update the brief(s). The Controller also

passes information (image type) to the Glue component for

storing data to the database. The Monitor object polls the

local image directory for new imagery files. The Monitor

object will raise an event to notify the controller object

when new imagery files (by image type) arrive at the local

62

image directory. The controller object will then notify-

all wrapper objects registered for updates to update their

briefs from the database. In the case where the components

are on separate machines, the DCOMCNFG utility is used to

set the location of each of these COM-based components and

user account assigned to the components. The automation

data types are used to make marshaling and un-marshaling of

data transparent to each component, thus supporting a

distributed objects environment.

Glue Component

The glue component, also referred to as the image

wrapper, is a type of data wrapper when triggered, stores

and retrieves imagery data from the database using

appropriate database ActiveX Data Objects (ADO) calls. ADO

2.0 supports events, which are notifications that certain

operations are about to occur or have occurred. There are

two families of events: ConnectionEvent and RecordsetEvent.

The Connection object issues ConnectionEvent events, and

the Recordset object issues RecordsetEvent events. Events

are processed by event handler routines, which are called

before certain operations start or after such operations

conclude. The following is a Visual Basic ADO connection

example:

63

Dim WithEvent connEvent as Connection
Dim conn as New Connection
set connEvent = conn 'Turn on event support.
conn.Open (...)

set connEvent = Nothing 'Turn off event support.

Private Sub connEvent_ConnectComplete(ByVal err as ADODB.Error,
adStatus as ADODB.Eventstatus, ByVal pConnectionas
ADODB.Connection)
'Check the error object only if adStatus equals
adStatusErrorsOccurred.

End Sub

ADO creates a connection object, but does not assign that

object to an object variable. If multiple Recordset

objects are created over the same connection, each

connection object should be created and opened; this

assigns the Connection object to an object variable. If

the object variable is not used when opening the Recordset

objects, ADO will create a new Connection object for each

new Recordset, even the same connection string is passed.

Once the data is committed to the database, the glue

component disconnects and terminates the remote connection

to the database. The Glue component will then raise the

event to notify the Controller that it is done with the

data storage.

Figure 11 shows the sequences of events when a new

image file arrives in the image directory.

1. When a new imagery file arrives in the imagery

directory.

64

2. The system controller notifies the glue

component.

3. The glue Component stores the imagery data to the

database.

4. The glue component notifies the system controller

when the data is added to the database.

5. The controller notifies the CBWrapper of the

update.

6. The CBWrapper sends a request to the glue

component for the data.

7. The glue component retrieves the data from the

database and passes it to the CBWrapper,

8. The CBWrapper automatically updates the

Continuous Brief with new imagery data.

65

Image
Directory

New file
arrives

System
Controller

Poll app for new
files

M

CB
application

Retrieve new
file

Notify wrapper
of new file
update

CBWrapper

Notify
controller new
file added to
database

Notify
controller new
file added to
database

Updates
Continuous
Brief Display

Glue
Component

Pass request
for new images
to glue
component
 ►

Pass request
for new images
to CBWrapper

Database

Connect to
database

Store image to
database
 H
Disconnect
from database

Connect to
database

Retrieve image
from database
 M
Return
requested
images

Disconnect
from database

Figure 11: Imagery Updates Sequence Diagram

66

For non imagery data, the glue component uses XML-

based format called Weather Observation Markup Format (OMF)

for database storage and retrieval. METOC has developed

APIs for automatic data storage and retrieval to support

XML-based formats. [SPAWAR PMW-185]

The OMF contains the following elements:

• Reports - defines a group of weather observation

reports

o METAR for a single METAR report

o SPECI for single SPECI report

o UAR for a combined Rawinsonde and Pibal
Observation report

o BTSC for ocan profile data (temperature,
salinity, current)

o SYN for a surface synoptic report from a land
or sea station

• Advisories - defines a collection of weather hazard
warnings

o SIGMET - SIGnificant METeorological Information

• Forecasts - defines a set of weather forecasts

o TAF - Terminal Aerodrome Forecasts

• Messages - defines a set of plain-text bulletins.

The OMF data descriptions are shown in Appendix B tables 1-

1 through 1-16.

67

THIS PAGE INTENTIONALLY LEFT BLANK

68

VI. CONCLUSIONS

A. RESULTS OF THE CASE STUDY

The integration of the Continuous Brief Application

demonstrated the use of Microsoft's COM/DCOM to communicate

between components, the use of wrappers to support

COTS/Legacy components, and database access via API calls

in COTS/Legacy systems integration. The user was able to

select the number of images to be displayed in PowerPoint

Slideshow format. In addition, new imagery files arriving

in the image directory were updated in the Continuous

Briefing display.

We found that DCOM was more suited for Microsoft-

centric environments. Although a third party vendor,

Software AG, has released a version of DCOM for Solaris

UNIX, DCOM is best implemented as a solution where the

environment is based on Microsoft products. Since the

implementation was done under Windows NT this was not an

issue.

B. SUMMARY OF THE THESIS RESEARCH

The Software Requirements Specifications and Software

Design Specification were developed to support integration

of COTS/Legacy software. Various distributed computing

69

technologies were researched to identify their capabilities

and limitations. Because ORBs are relatively new, and

considering the rapid evolution of software development,

developers should determine whether the added cost of using

ORB is acceptable for the given application, and whether

the difficulty of learning and using ORBs is offset by the

development time saved by not having to implement a subset

of its features. This was a significant reason why we

chose to use DCOM over CORBA, in addition to the

realization that DCOM was better suited for the Microsoft

platform environment.

C. CONCLUSIONS

The Information Technology for the 21st Century (IT-21)

directive will continue to be the driving force for the

Navy and DoD to transition monolithic legacy systems to

heterogeneous distributed systems. Distributed ORB

technology such as COM/DCOM, and CORBA/JavaBeans are new

solutions based on distributed objects which will provide

software engineers and developers a method to manage

communication and data exchange between objects. ORBs

promote interoperability of distributed objects systems

because they allow developers to build systems based on

objects from different vendors independent of how it is

70

implemented. However, due to the unique requirements of

the DoD, developers should have a thorough understanding of

the ever-increasing industry-accepted solutions to

distributed computing before implementing its architecture.

As time goes by, and as the competition between different

ORB technology increases, the shortcomings (i.e.,

performance and ease of use) of each methodology will be

improved upon. This will allow developers to work towards

reaching the goal of interoperability and global data

distribution, so that war fighters in the theater can

access mission-critical data anywhere around the world and

with different platforms.

71

THIS PAGE INTENTIONALLY LEFT BLANK

72

APPENDIX A: SOFTWARE REQUIREMENTS SPECIFICATION FOR

AN ARCHITECTURAL FRAMEWORK OF DOD COTS/LEGACY

SYSTEM

GENERAL DESCRIPTION

This appendix contains the Software Requirements

Specification extracted from the SRS for An Architectural

Framework of the COTS/Legacy System, which was developed as

a framework for integrating COTS products with existing DoD

legacy systems.

ARCHITECTURE GOALS

Integration

The architecture shall provide seamless integration of

COTS components.

The architecture shall support middleware approach to

bind data, information and COTS components.

Because evolution and upgrade of COTS components are

outside the control of the system integrators, the

architecture of the COTS/Legacy system shall have an

adaptable component configuration to reduce the effort of

testing and reintegration when upgrades or new COTS

packages are introduced to the system.

73

Interoperability

COTS and legacy systems reside on multiple platforms.

This architecture shall address both UNIX and PC-based

platforms.

In order to achieve and maintain information

superiority on the battlefield, the architectural framework

for DoD COTS/Legacy systems shall have the capability to

share, receive and transmit on heterogeneous networks and

hardware devices.

The data displayed on each desktop must have a common

view.

The exchange of data between two systems shall be with

no loss of precision or other attributes, in an unambiguous

manner, in a format understood by both systems, and in such

a way that interpretation of the data is precisely the

same.

The architecture shall support standard application

program interfaces (APIs) to communicate.

Adopted Framework Technology

Java/C++, web technologies, open systems, application

program interfaces, common operating environment, object

and component technology, commercial products and standards

are all important to the COTS/Legacy system architecture.

The COTS/Legacy system architecture shall adopt the Object

74

Management Group (OMG) object model as well as OMG

standards for object and distribution management.

The COTS/Legacy system shall adopt Interface

Definition Language (IDL) as the language for expressing

the syntax of the framework services.

The COTS/Legacy system architecture shall be expressed

as UML class and package diagrams, with detailed component

descriptions using IDL with English narrative to provide

semantics.

Security

DoD tactical systems are normally classified to some

security level. In building this architectural framework,

the architecture shall address the DoD Trusted Computer

System Evaluation Criteria (TCSEC) to at least the B2

security level.

The architecture shall include discretionary access

control (DAC). Only single level classification systems

shall be supported in this architecture (i.e. no multi-

level security).

Network Security

The trend in DoD is for networked systems vice

standalone monolithic systems and because most systems have

some level of classification, this architecture shall

address network security.

75

The architectural framework shall support a secure

network.

The architectural framework shall support the network

security mechanisms specific to the target architecture,

including firewalls, routers, encryption, and proxy

services.

Network Communications

The architectural framework shall support different

network protocols (e.g. TCP/IP) and topologies dependent on

the target architecture.

The application layer shall be able to execute a

variety of data management commands without having

knowledge of the data location, database, file type,

operating system, network protocol, or platform location.

Development Language

The architectural framework shall support any

development language that is supported by the legacy system

as well as any development language that supports platform

independence for newly developed code in the target

architecture.

Assumptions and Dependencies

Assumption 1: Legacy systems are monolithic and not

modifiable.

76

Assumption 2: Legacy systems have some existing mechanism

for interaction.

Assumption 3: There are varying degrees of COTS. To be

considered COTS, the component cannot be modified.

Assumption 4: Reliability, performance, safety and

security must be weighed in the target architecture.

TARGET ARCHITECTURE FUNCTIONS

Database

COTS software applications, which handle data, tend to

have their own mechanism and structure for the storage of

the data internal to the COTS application. The

architectural framework shall support the central storage

of data vice allowing each COTS application to store its

own data.

The architecture shall support remote access to the

database.

The COTS/Legacy architecture shall support a

distribution mechanism (i.e. Common Object Request Broker

Architecture (CORBA)) to store and share data in a

distributed environment.

The architecture shall ensure updates in one set of

data are consistently made throughout the rest of the

database.

77

Security-

Discretionary Access Control (DAC) COTS applications

for the commercial market do not normally address security.

Because this architecture applies to DoD software systems,

in accordance with DoD security standards, the architecture

shall support the display of the system's security

classification (up to and including SECRET classification)

on each of the display monitors as well as on all

printouts.

The displayed classification shall be editable by the

operator.

Graphical User Interface (GUI)

The target architecture shall include a GUI style

guide. If a GUI style guide does not exist for the target

architecture, UNIX platforms shall adhere to the MOTIF

standard and PC platforms shall adhere to the X-windows

standard.

ARCHITECTURE ATTRIBUTES

Performance Requirements

The architecture shall optimize the database access

over a network. The architecture shall allow concurrent

access of the database to multiple users.

78

Reliability Requirements

The target architecture shall use standard fault-

tolerance technologies. COTS components shall be

replicated to maintain the reliability and availability

requirements of DoD systems.

While the data traverses throughout various

applications, to different platforms, through the network

and to/from database, it must remain consistent and not

suffer any degradation.

Design Constraints

Because many existing legacy systems reside on UNIX

platforms and the DoD has made a commitment to move towards

PC architecture, the architectural framework shall be

platform independent, supporting both UNIX and PC platforms

with the goal of moving towards a pure PC architecture. It

is not required that all COTS/Legacy system components be

executable on both platforms but the data must be able to

be shared by components on different platforms.

79

THIS PAGE INTENTIONALLY LEFT BLANK

80

APPENDIX B OMF DATA AND DOCUMENT TYPE DEFINITIONS

Table 1-1. Basic Attributes of an Observation in OMF

Attribute Brief
Description

Format Description

TStamp Time Stamp unsigned integer UTC time in seconds since
the Epoch, 00:00:00 Jan 1,
1970 UTC. This is the value
returned by a POSIX
function time(2).

Example:
Tstamp='937507702'

TRange Time Interval a string of form Timestamps are in seconds
"aaa, bbb", since the Epoch, 00:00:00
where aaa and Jan 1, 1970 UTC. These are
bbb are unsigned the values returned by a
integer numbers POSIX function time(2).
specifying the
beginning and Example:
the end Trange='937832400,
timestamps of 937915200'
the interval.

LatLon Specification A string of a The latitude and.
of a point on form "aaa.bbb, longitude, respectively, of
the globe ccc.ddd", where a point on the globe, in

aaa.bbb and whole and fractional
ccc.ddd are degrees. The numbers are
signed floating positive for Northern
point numbers latitudes and Eastern

longitudes, and negative
for Southern latitudes and
Western longitudes.

The range of the numbers is
[-90.0, 90.0] for
latitudes, (-180.0, 180.0]
for longitudes.

Example:
LatLon='32.433, -99.850'

81

Table 1-1. Basic Attributes of an Observation in OMF

(Cont.)

Attribute Brief
Description

Format Description

LatLons Specification a string of a A sequence of pairs of
of a sequence form "latl. numbers, each pair giving
of points on lonl, lat2, the latitude and longitude

the globe lon2, latn, of a single point in the
lonn" where each sequence, in whole and
pair (latl, fractional degrees.
lonl, etc.)
are signed See the LatLon attribute
floating point above for more details.
numbers

Example:
LatLons='38.420, -111.125,
36.286, -111.492, 36.307, -
112.630, 37.700, -113.223,
38.420, -111.125'

Bbox Bounding box, A string of a Specification of the
which tells form Wlat-N, bounding box for an area of
the latitudal lon-W, lat-S, interest. Here lat-N is the
and the lon-E", where latitude of the Northern-
longitudal the lats and most point of the area,
spans of an Ions are signed lat-S is the latitude of
area of the floating-point the Southern-most point,

globe numbers, in lon-W is the longitude of
degrees the Western-most point of

the area, and lon-E is the
Eastern-most longitude.
It is required that lat-N
>= lat-S. The left-Ion
(lon-W) may however be
greater than the right-Ion
lon-E). For example, a
range of longitudes [-
170,170] specifies the
entire world but Indonesia.
On the other end, the range
[170, -170] includes
Indonesia only. By the same
token, [-10,10] pertains to
a 21-degree longitude strip
along the Greenwich
meridian, while [10,-10]
specifies the whole globe
except for that strip.
Example:
Bbox='60.0, -120.0, 20.0, -
100.0'

Bid Station Unsigned integer WMO Block Station ID, or
identification other identifier for buoy
group or ship

82

Table 1-1. Basic Attributes of an Observation in OMF

(Cont.)

Attribute Brief
Description

Format Description

SName Call sign and
full name of
an observing
station

A string of the
form "ccccc,
name", where
ccccc are the
call letters of
the station
(ICAO station
id: 4 or 5
upper-case
letters, may be
omitted), name
is an arbitrary
string
describing the
station

The observing stations
ICAO, aircraft, or ship
call sign, plus a plain-
text station name (e.g.
"KMRY, Monterey CA Airport"

Example:
Sname='KYNL, YUMA (MCAS)'

Elev Elevation A non-negative
integer, or
omitted if
unknown.

Station elevation relative
to sea level, in meters.
This attribute may specify
a surface elevation of an
observation station, or an
upper-air elevation for
an upper-air report.

Example:
Elev='16'

83

Table 1-2. OMF Attributes for METAR and SPECI Reports

Attribute Brief
Description

Format Description Req'd
•>

TStamp Time Stamp < see Tab Yes

LatLon Station
latitude and
longitude

< see Tab Yes

Bid Station
Identification
Group

Unsigned integer WMO Block Station
ID

Yes

SName Call sign and
full
name of an
observing
station

< see Tab Yes

Elev Station
elevation

< see Tab No

Vis Visibility- a number of meters,
omitted, or a
special
token "INF"

Horizontal
visibility in
meters

No

Ceiling Ceiling a number of feet,
omitted, or a
special
token "INF"

Ceiling in feet No

84

Table 1-3. OMF Attributes for the SYN Element

Attribute Brief
Description

Format Description Reg'd

TStamp Time Stamp < see Table 1-1- Yes
LatLon Station

latitude and
longitude

< see Table 1-1- Yes

Bid WMO Block
Station
Number

String For a buoy or other
observation
platform, this id is
a combination of a
WMO region number,
subarea number (per
WMO Code Table
0161) , and the buoy-
type and serial
number. This
information is
reported in Section
0 of a synoptic
report.
If Section 0
contains a call sign
rather than a
numerical id (as
typical with FM 13
SHIP reports), the
Bid attribute is
computed as
itoa (1000009 + he)
% 2*30, where he is
a
numerical
representation of
the call letters
considered as a
number in radix 36
notation. For
example, "0000"
hashes to 0, and
"ZZZZ" hashes to
1,679,615. Note this
formula makes the
Bid
attribute a unique
numeric identifier
for the station.

Yes

SName Call sign and
full name of
an observing
station

-See Table 1-1 > Yes

Elev Station
elevation

-See Table 1-1 > No

85

Table 1-3. OMF Attributes for the SYN Element (Cont.)

Attribute

Title

Stype

Brief
Description

Report title

Station type

Format

String

String

Description

Title defining type of
report: AAXX (FM-12),
BBXX (FM-13), or ZZYY
(FM-18)

Type of station:
automated (AUTO) or
manned (MANN); defaults
to MANN

Req'd
•>

Yes

No

86

Table 1-4. OMF Attributes for the SYG Element

Attribute Brief
Description

Format Description Req'd
•?

T Air
Temperature

positive, zero,
or negative
number

Air temperature in
degrees Celsius

No

TD Dew point
Temperature

positive, zero,
or negative
number

Dew point temperature
in degrees Celsius

No

Hum Relative
humidity

non-negative
number

Relative humidity in
per cent

No

Ttam Extreme
temperatures
over the last
24 hours

a string of a
form "mmmm,
MMMM" or omitted

Minimum and maximum
temperatures (degrees
Celsius) over the last
24 hours

No

P Station
pressure

positive number Atmospheric pressure at
station level, in
hectoPascals

No

PO Sea level
pressure

positive number Atmospheric pressure at
station, reduced to sea
level, in hPa

No

Pd Pressure
tendency

String of form
"dddd", or
omitted

Pressure tendency
during the 3 hours
preceding the
observation

No

Vis Visibility
Number of
meters,
omitted, or a
special token
"INF"

Horizontal
visibility in
meters

Horizontal visibility
in meters

No

Ceiling Ceiling Number of feet,
omitted, or a
special token
"INF"

Ceiling in feet No

Wind Wind speed and
direction

String of form
"nnn, mm" or
omitted

nnn is a true direction
from which the wind is
blowing, in degrees, or
VAR if " the wind is
variable, or all
directions or unknown
or waves confused,
direction
indeterminate." This is
an integer number
within [0,360), with 0
meaning the wind is
blowing from true
North, 270 stand for
the wind blowing from
due West. Normally this
number has a precision
of 10 degrees,
mm is the wind speed in
meters per second.

No

87

Table 1-4. OMF Attributes for the SYG Element (Cont.)

Attribute Brief
Description

Format Description Req'd?

Wx Past and
present
weather
conditions and
phenomena

String of four
digits, "NOSIG",
or omitted

See WMO-3 06, Code
tables 4677 and 4561
for the meaning of the
four digits. This
attribute is coded as
"NOSIG" if there is no
significant phenomenon
to report. The
attribute is omitted if
not observed or data is
not available (see ix
indicator, Code table
1860).

No

Prec Precipitation
amount

String of form
"nnn, hh" or ""
or omitted

nnn is the amount of
precipitation, which
has fallen during the
period preceding the
time of observation.
The precipitation
amount is a non-
negative decimal
number, in mm. hh is
the duration of the
period in which the
reported precipitation
occurred, in whole
hours. This attribute
is encoded as "" if no
precipitation was
observed. The attribute
is omitted if unknown
or not available (see
iR indicator, Code
table 1819). Sea
stations typically
never report
precipitation.

No

Clouds Amounts and
types of cloud
cover

String of five
symbols "tplmh"
or omitted

The first digit is the
total cloud cover in
octas (Code table
2700). The second digit
is the cloud cover of
the lowest clouds, in
octas. The other three
symbols are types of
low, middle, and high
clouds, resp. See WMO-
306 Code tables for
more details.

No

88

Table 1-5. OMF Attributes for the SYSEA Element

Attribute Brief
Description

Format Description Req'd?

T Sea surface
temperature

Positive, zero,
or negative
number

Sea surface temperature
in degrees Celsius

No

Wave Sea wave
period and
height

String of form
"pp, hh" or
omitted

pp is the period of
wind waves in seconds.
hh is the height of
wind waves, in meters.
If a report carries
both estimated and
measured wind wave
data, the instrumented
information is
preferred.

No

SDir Ship's course
and speed

String of form
"nnn, mm" or
omitted.

nnn is a true direction
of resultant
displacement of the
ship during the three
hours preceding the
time of observation.
The number is in
degrees, or VAR if
"variable, or all
directions or unknown
or waves confused,
direction
indeterminate." This is
an integer number
within [0,360), with 0
meaning the ship has
moved towards the true
North; 270 means the
ship has moved to the
West. Normally this
number has a precision
of 45 degrees, mm is
the average speed made
good during the three
hours preceding the
time of observation, in
meters per second.

No

89

Table 1-6. OMF Attributes for the UALEVEL Element

Attribute Brief
Description

Format Description Req'd?

Ref Reference to
sounding Part

String - "TTAA",
"TTBB", etc.

Reference to the part
of the sounding from
which the level data
were derived

Yes

P Pressure positive number Atmospheric pressure at
sounding level, in
hectoPascals

Yes

H Geopotential
height

Non-negative
number of
geopotential
meters, or
'SURF' for
surface, 'TROP'
for tropopause,
'MAXW for level
of maximum
winds, 'MAXWTOP'
for maximum wind
level at the top
of the sounding,
or omitted

Geopotential height of
the reported level, or
a special height
indicator

No

T Air
Temperature

positive, zero,
or negative
number

Air temperature in
degrees Celsius at the
reported level

No

DP Dew point
temperature

positive, zero,
or negative
number

Dew point temperature
in degrees Celsius at
the reported level

No

90

Table 1-6. OMF Attributes for the UALEVEL Element (Cont.)

Attribute Brief
Description

Format Description Req'd?

Wind Wind speed
and direction

String of form
"nnn, mm" or
"nnn, mm bbb" or
"nnn, mm ,aaa"
or "nnn, mm bbb,
aaa" or omitted

nnn is a true direction
from which the wind is
blowing, in degrees, or
VAR if " the wind is
variable, or all
directions or unknown
or waves confused,
direction
indeterminate." This is
an integer number
within [0,360), with 0
meaning the wind is
blowing from true
North, 270 stands for
the wind blowing from
due West. Normally this
number has a precision
of 10 degrees,
mm is the wind speed in
meters per second.
If specified, bbb
stands for the absolute
value of the vector
difference between the
wind at a given level,
and the wind 1 km below
that level, in meters
per second. The number
aaa if given is the
absolute value of the
vector difference
between the wind at a
given level, and the
wind 1 km above that
level, in meters per
second.

No

91

Table 1-7. OMF Attributes for the BTSC Element

Attribute Brief
Description

Format Description Req'd?

TStaxnp Time Stamp < see Table 1-1 > Yes

LatLon Latitude and
Longitude of
observation

< see Table 1-1 > Yes

Bid Station
identifier
group

positive
integer

For a buoy or other
observation platform, this
ID is a combination of a
WMO region number, subarea
number (per WMO-306 Code
Table 0161), and the buoy
type and serial number. This
information is reported in
Section 4 of a BTSC report.
If Section 4 contains a call
sign rather than a numerical
id, the Bid attribute is
computed as itoa(1000009 +
he), where he is a numerical
representation of the call
letters considered as a
number in radix 36 notation.
For example, "0000" hashes
to 0, and "ZZZZ" hashes to
1,679,615.
Note this formula makes the
Bid attribute a unique
numeric identifier for the
station.

Yes

SName Call sign string Ship's call sign, if
reported

Yes

Title Report type string "JJYY" - FM 63 X Ext. BATHY
report "KKXX" - FM 64 IX
TESAC report "NNXX" - FM 62
TRACKOB report

Yes

Depth Water depth positive
number

Total water depth at point
of observation

No

92

Table 1-8. OMF Attributes for the BTID Element

Attribute Brief
Description

Format Description Req'd?

DZ Indicator for "7" or "8" or Indicator for method of No
digitization omitted digitization used in the

report (kl field). See
WMO-306 Code Table 2262.
Required for BATHY and
TESAC reports

Rec Instrument
type code

5-digit code Code for expendable
bathythermograph (XBT)
instrument type and fall
rate (WMO-3 06 Code Table
1770)

No

WS Wind speed
units code

" 0 ", " 1" ,
"2", "3",
or omitted

Indicator for units of
wind speed and type of
instrumentation (iu
field). See WMO-306, Code
Table 1853.

No

Curr-s Method of "2", "3", Indicator for the method No
current speed
measurement

"4", or
omitted

of current measurement (k5
field). See WMO-306 Code
Table 22 66.

Curr-d Indicators for
the method of

3-digit
numerical

Indicators for the method
of subsurface current

No

subsurface
current

code measurement (K6k4k3
codes). See WMO-3 06, Code

measurement Tables 22 67, 22 65, and
2264.

AV-T Averaging
period for sea
temperature

" 0 ", " 1" ,
H 2 » "3"

or omitted
(if no sea
temperature
data are
reported)

Code for the averaging
period for sea temperature
(mT code). See WMO-306,
Code Table 2604

No

AV-SAL Averaging
period for
salinity.

ii 0 it f H ! i, r

"2", "3",
or omitted
(if no
salinity data
are reported)

Code for the averaging
period for sea salinity
(mS code). See WMO-306,
Code Table 2604

No

AB-Curr Averaging
period for
surface
current

II 0 H t II x ■■ f

"2", "3",
or omitted
(if no

Code for the averaging
period for surface current
direction and speed (mC
code). See WMO-306, Code

No

direction and current data Table 2604
speed are reported)

Sal Method of
salinity/depth
measurement

"1", "2",
"3", or
omitted (if
no salinity
data are
reported)

Code for the method of
salinity/depth measurement
(k2 code). See WMO-306,
Code Table 22 63.

No

93

Table 1-9. OMF Attributes for the BTAIR Element

Attribute Brief
Description

Format Description Req'd?

T Air
temperature

Positive,
zero, or
negative
number, or
omitted

Air temperature just above
the sea surface, in
degrees Celsius.

No

Wind Wind vector String of
form
"nnn,mm", or
omitted

Here nnn is a true
direction from which the
wind is blowing, in
degrees, or VAR if " the
wind is variable, or all
directions or unknown or
waves confused, direction
indeterminate."
This is an integer number
within [0,360), with 0
meaning the wind is
blowing from the true
North,-, 2 70 means the wind
is blowing from the West.
Normally this number has a
precision of 10 degrees,
mm is the wind speed in
meters per second.

No

94

Table 1-10. OMF Attributes for the BTLEVEL Element

Attribute Brief
Description

Format Description Req'd?

D Depth Non-negative
number

Depth of the level in
meters.

Yes

T Water
temperature

Positive,
zero, or
negative
number, or
omitted

Water temperature at the
reported level.

No

S Salinity Positive
number, or
omitted

Salinity at the reported
level, in parts
per thousand.

No

C Current vector
String of form

"nnn,mm", or
omitted

nnn is the true direction
toward which the sea
current is moving, in
degrees, or VAR if "the
current is variable, or
all directions or unknown,
direction indeterminate."
This is an integer number
within [0,360), with 0
meaning the current flows
toward true North; 270
means the current is
flowing toward the West.
Normally this number has a
precision of 10 degrees,
mm is the speed of current
in meters per second.

No

Table 1-11. OMF Attributes for the TAF Element

Attribute Brief
Description

Format Description Req'd?

TStamp Time Stamp < See Table 1-1 > Yes
LatLon Latitude and

Longitude of
observation

< See Table 1-1 > Yes

Bid Block Station
ID

positive
integer

WMO Block Station ID of
the reporting station

Yes

SName Call sign string Ship's call sign, if
reported

Yes

95

Table 1-12. OMF Attributes for the SIGMET Element

Attribute Brief
Description

Format Description Req'd?

class SIGMET type "CONVECTIVE",
"HOTEL",
"INDIA",
"UNIFORM",
"VICTOR" ,
"WHISKEY"

Identifier for the type of
SIGMET message

Yes

id Identifier for
a
particular
advisory-

String Identifier for the
advisory; value
depends on the advisory
class.

Yes

TStamp Time Stamp < Yes

BBox Bounding box
for advisory-
area

< See Table 1-1 > Yes

Table 1-13. OMF Attributes for the EXTENT Element

Attribute Brief
Description

Format Description Req'd?

Shape Type of area "AREA", Type of area shape Yes
specification "LINE",

"POINT"
specified

LatLons List of Positive, Control points (vertices) Yes
latitudes and zero, or for a polygon/polyline
longitudes negative representing the affected
defining the numbers in area
area lat/lon

pairs

96

Table 1-14. OMF Attributes for the MSG Element

Attribute Brief
Description

Format Description Req'd?

id Message
identifier

A NMTOKEN, a
four-to-six-
character
string of a
form
T1T2A1A2Ü

Designator for the message
type and subtype (T1T2),
area (A1A2), and sequence
code (ii) of the message,
as described in WMO-386.

Yes

Type Message type 2-letter
string
(T1T2)

Designator for the message
type and subtype (T1T2) as
specified in WMO-386,
Tables A and Bl through B6

Yes

TStamp Time Stamp < gee Table 1-1 > Yes
SName Originating

station name
String String containing the

identification of the
station that originated
the message (normally its
ICAO call sign)

Yes

BBB Annotation
group

3-character
string

So-called "BBB groups"
from the abbreviated
message line. They
indicate that the message
has been delayed,
corrected or amended. A
BBB group can also be used
for segmentation. See the
WMO-386 for more detail.

No

Descr Description String Keywords and other
information describing the
message.

No

BBox Bounding box < No

97

Table 1-15 Layer Parameter Codes

Layer Description Example

adiabatic-cond Adiabatic condensation
level (parcel lifted from
surface)

(layer adiabatic-cond)

atm- top Level of the top of the
atmosphere

(layer atm-top)

cloud-base Cloud base level (layer cloud-base)

cloud-top Cloud top level (layer cloud-top)

conv-cld-base Level of bases of
convective clouds

(layer conv-cld-base)

conv-cld-top Level of tops of
convective clouds

(layer conv-cld-top)

entire-atm Entire atmosphere (layer entire-atm)

entire-ocean Entire ocean (layer entire-ocean)

height Height above ground
(meters)

(layer height 1500)

height-between Layer between two heights
above ground in hundreds
meters (followed by top
and bottom level values)

(layer height-between 50
30) for layer between 5000
and 3 000 meters above
ground

height-between-ft Layer between two heights
above ground, in feet
(followed by top and
bottom level values)

(layer height-between-ft
15000 10000)

height-ft Height above ground
(feet)

(layer height-ft 50)

high-cld-base Level of high cloud bases (layer high-cld-base)

high-eld-top Level of high cloud tops (layer high-cld-top)

hybrid Hybrid level (followed by
level number)

(layer hybrid 1)

hybrid-between Layer between two hybrid
levels (followed by top
and bottom level numbers)

(layer hybrid 2 1)

isobar Level of an isobaric
surface (followed by the
isobar value of the
surface in hectoPascals
(hPa) (1000, 975, 950,
925,900,850,800,750,700,
650,600,550,500,450,400,
350,300,250,200, 150,100,
70, 50,30, 20,10)

(layer isobar 500)

isobar-between Layer between two
isobaric surfaces
(followed by top and
bottom isobar values in
kPa, separated by a
space)

(layer isobar-between 50
100) for layer between 500
and 1000 hPa

98

Table 1-15 Layer Parameter Codes (Cont.)

Layer Description Example
isobar-between-mp Layer between two

isobaric surfaces, mixed
precision (followed by
pressure of top in kPa
and 1100 minus pressure
of bottom in hPa)

(layer isobar-between-mp
50 100) for layer between
500 and 1000 hPa

isobar-between-xp Layer between two
isobaric surfaces, extra
precision (followed by
top and bottom isobar
values expressed as 1100
hPa-isobar level,
separated by a space)

(layer isobar-between 600
100) for layer between 500
and 1000 hPa

isotherm-0 Level of the zero-degree
(Celsius) isotherm (or
freezing level)

(layer isotherm-0)

land-depth Depth below land surface
in centimeters

(layer land-depth 5.0)

land-depth-between Layer between two depths
in ground (followed by
the depth of the top of
the layer and the depth
of the bottom of the
layer centimeters)

(layer land-depth-between
0 30) for layer from ground
surface to 30 cm depth

land-height-cm Height level above ground
(high precision)
(followed by height in
centimeters)

(layer land-height-cm 50)

land-isobar Pressure above ground
level in hPa

(layer land-isobar 500)

land-isobar-between Layer between two isobars
abive levels (followed by
top and bottom isobaric
levels in hPa)

(layer land-isobar-between
500 1000)

low-cld-base Level of low cloud bases (layer low-cld-base)
low-eld-top Level of low cloud tops (layer low-cld-top)
max-wind Level of maximum wind (layer max-wind)
mid-cld-base Level of middle cloud

bases
(layer mid-cld-base)

mid-eld-top Level of middle cloud
tops

(layer mid-cld-top)

msl Mean sea level (layer msl)
msl-height Height above mean sea

level (in meters)
(layer msl-height 50)

msl-height-between Layer between two heights
above mean sea level in
hundreds of meters
(followed by top and
bottom height values)

(layer msl-height-between
10 5) for layer between
100 0 and 500 meters above
ground

msl-height-ft Height above mean sea
level (in feet)

(layer msl-height-ft 5000)

sea-bottom Bottom of the ocean (layer sea-bottom)

99

Table 1-15 Layer Parameter Codes (Cont.)

Layer Description Example

sea-depth Depth below the sea
surface (meters)

(layer sea-depth 50)

sigma Sigma level in 1/10000 (layer sigma 9950) for
sigma level .995

sigma-between Layer between two sigma
surfaces (followed by top
and bottom sigma values
expressed in 1/100,
separated by a space)

(layer sigma-between 99.5
100.0) for layer between
.995 and 1.0

sigma-between-xp Layer between two sigma
levels (followed by top
and bottom sigma values
expressed as 1.1-sigma)

(layer sigma-between-xp
.105 .100) for layer
between .995 and 1.0

surface Earth's surface (layer surface)

theta Isentropic (theta) level
(followed by potential
temperature in degrees K)

(layer theta 300)

theta-between Layer between two
isentropic surfaces
(followed by top and
bottom values expressed
as 475-theta in degrees
K)

(layer theta-between 150
200)

tropopause Level of tropopause (top
of troposphere)

(layer tropopause)

100

Table 1-16 PowerPoint API Function Description Table

Method Description Example
Application Represents the entire

Microsoft PowerPoint
application.

MyPath = Application.Path

ActivePresentation Returns a Presentation
object that represents
the presentation open
in the active window.
(Read-only)

Application
.ActivePresentation.SaveAs MyPath

Presentations Returns a Presentation
object that represents
the presentation in
which the specified
document window or
slide show window was
created. (Read-only)

firstPresSlides =
Windows(1).Presentation.Slides.Count
Windows(2).Presentation.PageSetup _

.FirstSlideNumber =
firstPresSlides + 1

Presentations.Add Creates a
presentation. Returns
a Presentation object
that represents the
new presentation.

This example creates a presentation,
adds a slide to it, and then saves
the presentation.
With Presentations.Add

.Slides.Add 1, ppLayoutTitle

.SaveAs "Sample"
End With

Slides A collection of all
the Slide objects in
the specified
presentation.

Use the Slides property to return a
Slides collection:
ActivePresentation.Slides.Add 2,
ppLayoutBlank

Slides.Add Creates a new slide
and adds it to the
collection of slides
in the specified
presentation. Returns
a Slide object that
represents the new
slide.

This example adds a blank slide at
the end of the active presentation.
With ActivePresentation.Slides

.Add .Count + 1, ppLayoutBlank
End With

Shapes A collection of all
the Shape objects on
the specified slide.
Each Shape object
represents an object
in the drawing layer,
such as an AutoShape,
freeform, OLE object,
or picture.

Use the Shapes property to return
the Shapes collection. The following
example selects all the shapes on
myDocument.
Set myDocument =
ActivePresentation.Slides(1)
myDocument.Shapes.SelectAll

Shapes.AddPicture Creates a picture from
an existing file.
Returns a Shape object
that represents the
new picture.

Set myDocument =
ActivePresentation.Slides(1)
myDocument.Shapes.AddPicture
"c:\microsoft office\" & _

"clipart\music.bmp", True, True,
100, 100, 70, 70

101

PowerPoint API Function Description Table (Cont.)

Method Description Example
Shapes.PicturePormat Contains properties

and methods that apply
to pictures and OLE
objects. The
LinkFormat object
contains properties
and methods that apply
to linked OLE objects
only. The OLEFormat
object contains
properties and methods
that apply to OLE
objects whether or not
they're linked.

Set myDocument =
ActivePresentation.Slides(1)
With
myDocument.Shapes(1).PictureFormat

.Brightness = 0.3

.Contrast = 0.7

.ColorType = msoPictureGrayScale

.CropBottom = 18
End With

SlideShowTransition Contains information
about how the
specified slide
advances during a
slide show.

With

ActivePresentation.Slides(1).SIideShowTransition

.Speed = ppTransitionSpeedFast

End With

SlideShowSetting Represents the slide
show setup for a
presentation.

WithActivePresentation.SlideShowSettings

.RangeType = ppShowSlideRange

End With

102

The Complete OMF DTD

<!-- <!DOCTYPE OMF SYSTEM "OMF.dtd" [-->

<!-- Weather Observation Definition Format DTD -->

<!-- This is the OMF XML DTD. It can be referred to using the

formal public identifier

-//METNET//OMF 1.0//EN

For description, see OMF.html

$Id: OMF.dtd,v 3.8 1999/10/25 18:18:31 oleg Exp oleg $

-->

<!-- Weather Observation Definition Format -->

<!-- Basic attributes -->

<!ENTITY % TStamp-type "NMTOKEN">

<!ENTITY % TRange-type "CDATA">

<!ENTITY % TStamp "TStamp %TStamp-type; #REQUIRED">

<!ENTITY % TRange "TRange %TRange-type; #REQUIRED">

<!ENTITY % LatLon "LatLon CDATA #REQUIRED">

<!ENTITY % LatLons "LatLons CDATA #REQUIRED">

<!ENTITY % BBOX-REQD "BBox CDATA #REQUIRED">

<!ENTITY % BBox-OPT "BBox CDATA #IMPLIED">

<!ENTITY % Bid "Bid NMTOKEN #REQUIRED">

<!ENTITY % SName "SName CDATA #REQUIRED">

<!ENTITY % Elev "Elev NMTOKEN #IMPLIED">

<!-- Basic elements -->

<!ELEMENT VALID (#PCDATA)>

<!ATTLIST VALID %TRange;>

<!-- A collection of weather observation reports -->

<!ELEMENT Reports (METAR | SPECI | UAR | BTSC | SYN)*>

103

<!ATTLIST Reports %TStamp;>

<!-- Common report attributes -->

<!ENTITY % ReportAttrs

"%TStamp; %LatLon; %BId; %SName; %Elev;

Vis NMTOKEN #IMPLIED

Ceiling NMTOKEN #IMPLIED

">

<!-- METAR and SPECI reports -->

<!ELEMENT METAR (#PCDATA)>

<!ATTLIST METAR %ReportAttrs;>

<!ELEMENT SPECI (#PCDATA)>

<!ATTLIST SPECI %ReportAttrs;>

<!-- A collection of weather hazard advisories -->

<!ELEMENT Advisories (SIGMET | AIRMET | WW)* >

<!ATTLIST Advisories %TStamp;>

<!-- A SIGMET advisory -->

<!ELEMENT SIGMET (VALID, AFFECTING?, EXTENT, BODY) >

<!ATTLIST SIGMET

class (CONVECTIVEl HOTEL| INDIA| UNIFORM| VICTOR| WHISKEY) #REQUIRED

id NMTOKEN #REQUIRED

%TStamp;

%BBox-OPT;

>

<!ELEMENT AFFECTING (#PCDATA)>

<!ELEMENT EXTENT (#PCDATA)>

<!ATTLIST EXTENT

Shape (AREA] LINE| POINT) #REQUIRED

%LatLons;

104

<!ELEMENT BODY (#PCDATA)>

<!-- A collection of weather forecasts -->

<!ELEMENT Forecasts (TAF)* >

<!ATTLIST Forecasts %TStamp;>

<!-- A Terminal Aerodrome Forecast -->

<!ELEMENT TAF (VALID, PERIOD+) >

<!ATTLIST TAF

%TStamp; %LatLon; %BId; %SName;

>

<!ELEMENT PERIOD (PREVAILING, VAR*)>

<!ATTLIST PERIOD

%TRange ,-

Title NMTOKEN #IMPLIED

>

<!ELEMENT PREVAILING (#PCDATA)>

<!ELEMENT VAR (#PCDATA)>

<!ATTLIST VAR

%TRange;

Title CDATA #REQUIRED

>

<!-- Rawinsonde and Pibal Observation reports -->

<!ELEMENT UAR (UAPART+, UAID*, UACODE*, UALEVELS) >

<!ATTLIST UAR

%TStamp; %LatLon; %BId; %SName; %Elev;

>

<!ELEMENT UAPART (#PCDATA)>

<!ATTLIST UAPART

id NMTOKEN #REQUIRED

105

<!ENTITY % UARef "Ref NMTOKEN #REQUIRED">

<!ELEMENT UAID (#PCDATA)>

<!ATTLIST UAID %UARef; >

<!ELEMENT UACODE (#PCDATA)>

<!ATTLIST UACODE %UARef; >

<!ELEMENT UALEVELS (UALEVEL)*>

<!ELEMENT UALEVEL (#PCDATA)>

<!ATTLIST UALEVEL

%UARef;

P NMTOKEN #REQUIRED

H NMTOKEN #IMPLIED

T NMTOKEN #IMPLIED

DP NMTOKEN #IMPLIED

Wind CDATA #IMPLIED

>

<!-- Bathythermal, Salinity and Ocean Currents Observations -->

<!ELEMENT BTSC (BTID, BTCODE?, BTLEVELS) >

<!ATTLIST BTSC

%TStamp; %LatLon; %BId; %SName;

Title (JJYY I KKXX | NNXX) #REQUIRED

Depth NMTOKEN #IMPLIED

>

<!ELEMENT BTID (#PCDATA)>

<!ATTLIST BTID

DZ (7 | 8) #IMPLIED

Rec NMTOKEN #IMPLIED

WS (0|l|2|3) #IMPLIED

Curr-s (2 | 3 | 4) «IMPLIED

Curr-d NMTOKEN «IMPLIED

106

AV-T (0|1|2|3) «IMPLIED

AV-Sal (0|1|2|3) «IMPLIED

AV-Curr (0|l|2|3) «IMPLIED

Sal (1|2|3) «IMPLIED

>

<!ELEMENT BTCODE («PCDATA)>

<!ELEMENT BTLEVELS (BTAIR?, (BTLEVEL)*)>

<!ELEMENT BTAIR («PCDATA)>

<!ATTLIST BTAIR

T NMTOKEN «IMPLIED

Wind CDATA «IMPLIED

>

<!ELEMENT BTLEVEL («PCDATA)>

<!ATTLIST BTLEVEL

D NMTOKEN «REQUIRED

T NMTOKEN «IMPLIED

S NMTOKEN «IMPLIED

Curr CDATA «IMPLIED

>

<!-- Surface Synoptic Reports from land and sea stations -->

<!ELEMENT SYN (SYID, SYCODE?, SYG?, SYSEA?) >

<!ATTLIST SYN

%TStamp; %LatLon; %BId; %SName; %Elev;

Title (AAXX | BBXX | ZZYY) «REQUIRED

SType (AUTO | MANN) "MANN"

>

<!ELEMENT SYID («PCDATA)>

<!ATTLIST SYID

WS (0 1113|4) «IMPLIED

107

<!ELEMENT SYCODE (#PCDATA)>

<!ELEMENT SYG (#PCDATA)>

<!ATTLIST SYG

T NMTOKEN #IMPLIED

TD NMTOKEN #IMPLIED

Hum NMTOKEN #IMPLIED

Tmm CDATA #IMPLIED

P NMTOKEN #IMPLIED

PO NMTOKEN #IMPLIED

Pd NMTOKENS #IMPLIED

Vis NMTOKEN #IMPLIED

Ceiling NMTOKEN #IMPLIED

Wind CDATA #IMPLIED

WX CDATA #IMPLIED

Prec CDATA #IMPLIED

Clouds CDATA #IMPLIED

>

<!ELEMENT SYSEA (#PCDATA)>

<!ATTLIST SYSEA

T NMTOKEN #IMPLIED

Wave CDATA #IMPLIED

SDir CDATA #IMPLIED

>

<!-- Plain-text WMO Meteorological messages -->

<!ELEMENT Messages (MSG)* >

<!ATTLIST Messages %TStamp;>

<!ELEMENT MSG ANY >

<!ATTLIST MSG

108

id NMTOKEN #REQUIRED

Type NMTOKEN #IMPLIED

%TStamp;

%SName;

%BBox-OPT;

BBB CDATA #IMPLIED

Descr CDATA #IMPLIED

109

THIS PAGE INTENTIONALLY LEFT BLANK

110

APPENDIX C: CBWRAPPER/CONTROLLER/GLUE SOURCE CODE

'# File: Webinterface.ctl
'# Date Author History-
's 5/31/2000 Tarn Tran Created.

Option Explicit
i***

f

1 The Continuous Brief wrapper (CBWrapper) is an ActiveX
' Control that represents the Graphical User Interface
' (GUI) via the Web browser (Internet Explorer). It allows
' an user to select the type of images that he/she wants
' to view. Also, it allows the user to set the number of
' images, the size, and the duration for the display.

i***

Private mControllerConnector As ControllerConnector
Private mMonitor As Monitor
Private mMonitorConnector As MonitorConnector
Private WithEvents mController As Controller
' Get reference to Application object from the PowerPoint API.
Public myPPT As PowerPoint.Application
Public AppRunning As Boolean
Private BriefStarted As Boolean
Private downloadFolder As String
Private cfgFolder As String
Private ServerURL As String

Reset the Continuous Brief GUI to its default values.
Set slide show to fullscreen size.
Set number of images to 24
Set duration of the slide show to 0.

**
Private Sub Default_Click()

ImageType.Text = "Select an image type"
ImagesText.Text = "24"
HeightText.Text = "540"
WidthText.Text = "720"
DurationText.Text = "0"

End Sub

**

Update the brief.
Use the GetlmageDir method from the Controller object
to get the location of the files.
Use the Controller_UpdateBrief method to update the brief.

**
Private Sub Start_Click()

Dim imageloc As String

111

BriefStarted = True
Call mController_UpdateBrief(ImageType.Text)

End Sub

********** **

Stop the slide show.
Terminate the background running PowerPoint application.
Free up the un-used object.
Reset the AppRunning flag to false.

**

Private Sub Stop_Click()
If AppRunning Then

myPPT.ActivePresentation.Close
myPPT.Quit
Set myPPT = Nothing
AppRunning = False
BriefStarted = False

End If
End Sub

,**

' Initialize references to the Monitor and Controller objects.
i

,**
Private Sub UserControl_Initialize()

Set mControllerConnector = New ControllerConnector
Set mController = mControllerConnector.Controller
Set mMonitorConnector = New MonitorConnector
Set mMonitor = mMonitorConnector.Monitor
AppRunning = False
BriefStarted = False

1 Add image types to the drop-box in the Continuous Brief GUI
Dim intFile As Integer ' FreeFile variable
Dim inputStr As String
Dim cfgFile As String
Dim typeStr As String
Dim locationStr As String
Dim virtualDirStr As String
Dim tmpFolderStr As String
Dim tmpFileStr As String
Dim downloadFileStr As String

■ Set values for the URL, download folder, and a temporary filename
■ %%%%%%%%%%%%%%%%%%%%%%

' Change config here:
ServerURL = "http://isdsclient/" '"http://tampc.spawar.navy.mil/"
' %%%%%%%%%%%%%%%%%%%%%%
cfgFile = "cbdata.cfg"
downloadFolder = Environ("TEMP") & "\cbdownload"
cfgFolder = downloadFolder & "\cbdata"
tmpFileStr = cfgFolder & "\" & cfgFile
downloadFileStr = ServerURL & "/" & cfgFile

112

' Create a temporary directory for downloading data
Call createFolder(downloadFolder)
Call createFolder(cfgFolder)
Call downloadFile(downloadFileStr, tmpFileStr)

intFile = FreeFileO
Open tmpFileStr For Input As #intFile
Do While Not EOF(intFile)

Line Input #intFile, inputStr
Call linelnfo(inputStr, typeStr, locationStr, virtualDirStr)
ImageType.Addltem typeStr

Loop
Close #intFile

End Sub

**
Receive Controller event to do the update for the brief.
Parameters:

in: DataType - the data (images) type
in: imageDir - the directory where to find the images.

**
Private Sub mController_UpdateBrief(DataType As String)

1 Check for the right type of data that the CBWrapper is showing.
If (StrCompdmageType.Text, DataType, vbTextCompare) = 0) And

BriefStarted Then
Dim virtualDir As String
Dim fileListName As String
Dim tmpFileStr As String
Dim tmpURLStr As String
Call mController.GetlmagelnfodmageType.Text, Images Text .Text,

~~ virtualDir, fileListName)
1 Local variables declarations
Dim myArrayO As String
Dim myPres As Presentation
Dim fs, f, fc, fl, i, j, k
Dim s As Slide
Dim LeftVal As Long
Dim TopVal As Long
Dim imageW As Long
Dim imageH As Long
Dim ImgFile As String
Dim intFile As Integer
Dim inputStr As String

' Download the list of image filenames from server
tmpURLStr = ServerURL & virtualDir & "/CB_listfile/" &

fileListName
tmpFileStr = cfgFolder & "\" & fileListName
Call downloadFile(tmpURLStr, tmpFileStr)

' Download image files from server
intFile = FreeFileO

113

Open tmpFileStr For Input As #intFile
Do While Not EOF(intFile)

Line Input #intFile, inputStr
tmpURLStr = ServerURL & virtualDir & "/" & inputStr
tmpFileStr = downloadFolder & "\" & inputStr
Call downloadFile(tmpURLStr, tmpFileStr)

Loop
Close #intFile

' Get reference to the PowerPoint Application object.
On Error Resume Next
Set myPPT = GetObject(, "PowerPoint.application")
If Err.Number <> 0 Then

Set myPPT = CreateObject("PowerPoint.application")

End If

' Set the AppRunning flag so that it will be
■ checked when the STOP button is clicked.
AppRunning = True

' Stop the current running slide show (if any)
If myPPT.Presentations.Count <> 0 Then

myPPT.ActivePresentation.Close
End If

1 Create new presentation with the new update data
Set myPres = myPPT.Presentations.Add(True)

1 Create a FileSystemObject for manipulating the file system
Set fs = CreateObject("Scripting.FileSystemObject")
Set f = fs.GetFolder(downloadFolder)
Set fc = f.Files
i = 1
k = 1

1 Store all filenames from the image directory
1 to an array for sorting purpose.
ReDim myArrayd To fc.Count)
For Each fl In fc

myArrayd) = fl.Name
i = i + 1

Next
' Sort the array.
Call mMonitor.dhBubbleSort(myArray)

' Calculate the positions and dimensions for the images.
Call GetDimensions(LeftVal, TopVal, imageW, imageH)

' Add the images to the PowerPoint presentation.
For j = (fc.Count - ImagesText.Text + 1) To fc.Count

ImgFile = downloadFolder & "\" & myArray(j)
myPres.Slides.Add k, ppLayoutBlank
myPres.Slides.Item(k).Shapes.AddPicture ImgFile, True,

True,
LeftVal,

TopVal, imageW, imageH
k = k + 1

114

Next
'Free up the FileSystemObject when done
Set fs = Nothing
Set f = Nothing
Set fc = Nothing

' Configure the slide show properties and run the show
For Each s In myPPT.ActivePresentation.Slides

With s.SlideShowTransition
.AdvanceOnTime = True
.AdvanceTime = DurationText.Text

End With
Next

With myPPT.ActivePresentation.SlideShowSettings
.StartingSlide = 1
.EndingSlide = ImagesText.Text
.AdvanceMode = ppSlideShowUseSlideTimings
.LoopUntilStopped = True
.Run

End With

' Delete the images when done creating the brief
For i = 1 To fc.Count

If fs.FileExists(downloadFolder & "\" & myArray(i)) Then
Set f = fs.DeleteFile(downloadFolder & "\" & myArray(i),

True)
End If

Next
End If

End Sub

**
The GetDimensions subroutine calculates the positions
(Left, Top), and the dimensions (Height, Width)
for the images.
Parameters:

in/out: L - - the Left value
T - - the Top value
W - - the Width value
H - - the Height value

**
Private Sub GetDimensions(L As Long, T As Long, W As Long, H As Long)

' Local variables declarations
Dim Deltax As Long
Dim DeltaY As Long

DeltaX = myPPT.ActivePresentation.PageSetup.SlideWidth -
WidthText.Text

DeltaY = myPPT.ActivePresentation.PageSetup.SlideHeight -
HeightText.Text

If DeltaX <= 0 Then
L = 0

Else

115

L = DeltaX / 2
End If
If DeltaY <= 0 Then

T = 0
Else

T = DeltaY / 2
End If
W = WidthText.Text
H = Height Text .Text
If W > 720 Then W = 720
If H > 540 Then H = 540

End Sub
Private Sub lineInfo(searchStr As String, k As String, D As String, V

As String)
Dim istart As Integer
Dim istop As Integer
istart = 1
istop = 0
istop = InStr(istart, searchStr, "=", vbTextCompare)
' Get the key string
k = Mid(searchStr, istart, istop - 1)
istart = istop + 1
istop = InStr(istart, searchStr, "|", vbTextCompare)
' Get the directory string
If istop > istart Then

D = Mid(searchStr, istart, istop - istart)
istart = istop + 1
'Get the location string
V = Mid(searchStr, istart)

Else
D = Mid(searchStr, istart)
V = ""

End If
End Sub
Private Sub downloadFile(URLStr As String, saveFile As String)

Dim bDataO As Byte ' Data variable
Dim intFile As Integer ' FreeFile variable
intFile = FreeFile() ' Set intFile to an unused file.

' The result of the OpenURL method goes into the Byte
• array, and the Byte array is then saved to disk.
bDataO = Inetl.OpenURL(URLStr, icByteArray)
Open saveFile For Binary Access Write As #intFile
Put #intFile, , bDataO
Close #intFile

End Sub
Private Sub createFolder(path As String)

Dim fs, f
Set fs = CreateObject("Scripting.FileSystemObject")
If Not fs.FolderExists(path) Then

Set f = fs.createFolder(path)
End If
Set fs = Nothing
Set f = Nothing

End Sub
Private Sub deleteFolder(path As String)

Dim fs, f

116

Set fs = CreateObject("Scripting.FileSystemObject")
If fs.FolderExists(path) Then

fs.deleteFolder path, True
End If
Set fs = Nothing

End Sub

Private Sub UserControl_ReadProperties(PropBag As PropertyBag)
ServerURL = PropBag.ReadProperty("ServerURL", Nothing)
■Debug.Print cfgFile & " " & ServerURL

End Sub

Private Sub UserControl_Terminate()
1 Delete the download folder
deleteFolder downloadFolder

End Sub

**

The Controller component uses this UpdateBrief event to
notify the Continuous Brief wrapper (CBWrapper) for
updating the brief.
Event's parameters:

imageType: the type of images
imageLoc: the location where to find the images.

The Glue component will raise the event to notify the
Controller when it's done with storing data.

The Monitor component will raise the event to notify the
Controller when the new data come in.
WithEvents causes the component(s) which raise the event(s)
to run asynchronously.
MonitorConnector component allows multiple connections to
single Monitor object.

**
Event UpdateBrief(imageType As String)

Public WithEvents mGlue As Glue
Private WithEvents mMonitor As Monitor ' Get Monitor events
Private mMonitorConnector As MonitorConnector

i**

' Connect to the Monitor component
i

i**

Private Sub Class_Initialize()

Set mMonitorConnector = New MonitorConnector
Set mMonitor = mMonitorConnector.Monitor

End Sub

i**

117

Receive the notification from the Monitor component
The Controller passes the information to the Glue component
for storing data to the database.
Event's paramenter:

DataType: the data (images) type

**
Private Sub mMonitor_NewData(DataType As String)

Set mGlue = New Glue
Call mGlue.StoreData(DataType)

End Sub

************ **

Receive the notification from the Glue component
The Controller notifies the CBWrapper(s) and passes the
information for the wrapper(s) to update the brief(s).
Event's paramenter:

DataType: the data (images) type

**
Private Sub mGlue_GlueDone(DataType As String) ' Asynchronous glue
component is done

Set mGlue = Nothing ' Free the Glue object

1 Notify the CBWrapper for updating the brief
RaiseEvent UpdateBrief(DataType)

End Sub

Public Sub GetlmagelnfodmagelD As String, fileCounts As Integer,
virtualDir As String, fileListName As String)

Dim i As Integer
For i = 1 To UBound(gCfgArray)

If (StrCompdmagelD, gCfgArray(i) .key, vbTextCompare) = 0) Then
virtualDir = gCfgArray(i).virjpath
fileListName = "CBJDATA.LST"
Call makeFileList(fileCounts, gCfgArray(i).path,

fileListName)
End If

Next
End Sub

Private Sub makeFileList(fileCounts As Integer, path As String,
filename As String)

Dim fs, f, fc, fl, i, j, a
Dim myCount As Integer
Dim listfileStr As String
Dim myArrayO As String

' Create a FileSystemObject for manipulating the file system.
Set fs = CreateObject("Scripting.FileSystemObject")
Set f = fs.GetFolder(path)
Set fc = f.Files
myCount = fc.Count
i = 1

118

' Store the name of the files to an array for sorting purpose
ReDim myArrayd To myCount)
For Each fl In fc

myArrayd) = fl.Name
i = i + 1

Next

' Sort the array
Call mMonitor.dhBubbleSort(myArray)
listfileStr = path & "\" & "CB_listfile"
createFolder listfileStr
Set a = fs.CreateTextFile(listfileStr & "\" & filename, True)
For j = (myCount - fileCounts + 1) To myCount

a.WriteLine (myArray(j))
Next
a.Close
' Free up the objects, which are no longer be used.
Set fs = Nothing
Set f = Nothing
Set fc = Nothing
Set a = Nothing

End Sub
Private Sub createFolder(path As String)

Dim fs, f
Set fs = CreateObject("Scripting.FileSystemObject")
If Not fs.FolderExists(path) Then

Set f = fs.createFolder(path)
End If
Set fs = Nothing
Set f = Nothing

End Sub

119

'# File: Glue.els
'# Date Author History
'# 5/31/2000 Tarn Tran Created.

Option Explicit
i**

i

1 The Glue component uses this event to notify the
' Controller when done with its task.
1 Event's parameter:
' DataType: the data (images) type.
i

i**

Event GlueDone(DataType As String)

**

Notify the Controller when done storing data.

**
Public Sub StoreData(DataType As String) ' Start glue task

1 <Insert glue task here>
i

RaiseEvent GlueDone(DataType)
End Sub

120

'# File: Monitor.els
•# Date Author History
'# 5/31/2000 Tarn Tran Created.

Option Explicit
i**

' The VISStamDate, IRStampDate, and VAPORStampDate variables
' store the created date of the latest stored data.
i

' WithEvents causes the component(s) which raise the event(s)
' to run asynchronously.
' Event's parameter:
' DataType: the data (images) type
i

' The Monitor component will raise the event to notify the
1 Controller when the new data come in.
i**

Private VISStampDate As Date
Private IRStampDate As Date
Private VAPORStampDate As Date

Private mTiming As Timing
Private WithEvents mClock As Timer

Event NewData(DataType As String)

An array that holds the StampDate data type
**

The tasks done when a new Monitor object is created.

**
Private Sub Class_Initialize()

' Start Monitor Timer and create instance of form
Set mTiming = New Timing
Load mTiming

1 Connect timers' events to associated event procedures in Monitor
Set mClock = mTiming.Clock

1 Get the config information from the configuration file
Call GetConfig

End Sub

i**

' The tasks done when the Monitor object is terminated.
T

1**

Private Sub ClassJTerminate() ' Terminate Monitor

' Free up the timer object.
Set mClock = Nothing

121

1 Unload and free up the form.
Unload mTiming
Set mTiming = Nothing

End Sub

******** **

Process Timer Event.
This timer event causes the Monitor to poll the storage
directories for new data.
The Monitor will raise the event(s) if it found a new data.

**
Private Sub mClock_Timer()

Dim i As Integer
For i = 1 To UBound(gCfgArray)

If IsNewFile(gCfgArray(i).path, i) Then
RaiseEvent NewData(gCfgArray(i).key)

End If
Next

End Sub

********* ***

The IsNewFile function is used to determine whether or
not a new data exists.
Paramenters:

in: StrDir - the directory where to check for
new data,

in: StampDate - the created date of the latest
data from the previous checked,

return: TRUE if there's new data, and FALSE otherwise.

**
Private Function IsNewFile(StrDir As String, arraylndex As Integer) As
Boolean

' Local variables declarations.
Dim fs, f, fc, fl, i
Dim myStamp As Date
Dim myArrayO As String

' Create a FileSystemObject for manipulating the file system.
Set fs = CreateObject("Scripting.FileSystemObject")
Set f = fs.GetFolder(StrDir)
Set fc = f.Files
i = 1

1 Store the name of the files to an array for sorting purpose
ReDim myArrayd To fc.Count)
For Each fl In fc

myArrayd) = fl.Name
i = i + 1

Next

■ Sort the array
Call dhBubbleSort(myArray)

122

1 Check for new file based on the file's created date.
myStamp = f s .GetFile (StrDir & "\" & myArray(fc.Count)_) .DateCreated
If (DateDiff("s", gCfgArray(arrayIndex).stampdate, myStamp) <> 0)

Then
gCfgArray(arrayIndex).stampdate = myStamp
IsNewFile = True

Else
IsNewFile = False

End If

' Free up the objects, which are no longer be used.
Set fs = Nothing
Set f = Nothing
Set fc = Nothing

End Function

' Standard bubblesort.
' DON'T USE THIS unless you know the data is already
' almost sorted! It's incredibly slow for
1 randomly sorted data.

' There are many variants on this algorithm.
' There may even be better ones than this.
' But it's not even going to win any
' speed prizes for random sorts.

' From "Visual Basic Language Developer's Handbook"
' by Ken Getz and Mike Gilbert
' Copyright 2000; Sybex, Inc. All rights reserved.

• In:
' varlterns:
1 Array of items to be sorted.
' Out:
' Varltems will be sorted.

Public Sub dhBubbleSort(varltems As Variant)

Dim blnSorted As Boolean
Dim lngl As Long
Dim IngJ As Long
Dim lngltems As Long
Dim varTemp As Variant
Dim IngLBound As Long

lngltems = UBound(varltems)
IngLBound = LBound(varltems)

' Set lngl one lower than the lower bound,
lngl = IngLBound - 1
Do While (lngl < lngltems) And Not blnSorted

blnSorted = True
lngl = lngl + 1
For IngJ = IngLBound To lngltems - lngl

If varltems(IngJ) > varltems(IngJ + 1) Then
varTemp = varltems(IngJ)

123

varltems(lngJ) = varltems(IngJ + 1)
varltemsdngJ + 1) = varTemp
blnSorted = False

End If
Next IngJ

Loop
End Sub
**

The linelnfo subroutine parses a line input from the
configuration file (cbdata.cfg). It separates the
image type value, and the location value from the input.

**
Private Sub linelnfo(searchStr As String, K As String, D As String, V
As String)

Dim istart As Integer
Dim istop As Integer

istart = 1
istop = 0
istop = InStr(istart, searchStr, "=", vbTextCompare)
' Get the key string
K = Mid(searchStr, istart, istop - 1)
istart = istop + 1
istop = InStr(istart, searchStr, "|", vbTextCompare)
1 Get the directory string
If istop > istart Then

D = Mid(searchStr, istart, istop - istart)
istart = istop + 1
■Get the location string
V = Mid(searchStr, istart)

Else
D = Mid(searchStr, istart)
V = ""

End If
End Sub
**

The GetDateArraylndex function returns an index of the
dateArray, where the specified image type (ID) is stored.

**
Public Function GetArrayIndex(key As String) As Integer

Dim tmplnfo As cfglnfo
Dim bFound As Boolean
Dim i As Integer
bFound = False
i = 1
Do While Not bFound

tmplnfo = gCfgArray(i)
If (StrComp(tmplnfo.key, key) = 0) Then

GetArrayIndex = i
bFound = True

End If
i = i + 1

Loop

124

End Function
**

The GetConfig subroutine reads information stored in
the configuration file, and adds them to the link list.

**

Private Sub GetConfig()

Dim cfgpath As String
Dim inputStr As String
Dim keyStr As String
Dim dirStr As String
Dim virDirStr As String
Dim intFile As Integer
Dim tmplnfo As cfglnfo

' Initialize the size the gCfgArray
ReDim gCfgArray(0)

' Get the path for the configuration file
cfgpath = Environ("CB_HOME") & "\cbdata.cfg"

1 Store the configured info to the array
intFile = FreeFileO
Open cfgpath For Input As #intFile
Do While Not EOF(intFile)

Line Input #intFile, inputStr
Call lineInfo(inputStr, keyStr, dirStr, virDirStr)
With tmplnfo

.key = keyStr

.path = dirStr

.virjpath = virDirStr

.stampdate = -1 ' initialize the date to before Dec.
30, 1899

End With
ReDim Preserve gCfgArray(UBound(gCfgArray) + 1)
gCfgArray(UBound(gCfgArray)) = tmplnfo

Loop
Close #intFile

End Sub

125

THIS PAGE INTENTIONALLY LEFT BLANK

126

LIST OF REFERENCES

1) [Berson] Client/Server Architecture, Alex Berson,
McGraw-Hill, 1996.

2) [Bloor] The Object Management Architecture Guide.
Robin Bloor, Butler Bloor Ltd., Challenge House, April
1992.

3) [Carr] CORBA and DCOM: How Each Works, David F. Carr,
http://internetworld.com/print/l997/03/24/software/cobr
a.html

4) [DISA] Recommendations for Using DCE, DCOM, and CORBA
Middleware, DU COE Distributed Application Series,
David Diskin, DISA/MITRE Corporation, April 1998.

5) [Gee] An Architectural Framework for Integrating
COTS/GOTS/Legacy Systems, Karen Gee, Master's Thesis,
Naval Postgraduate School, Monterey, CA, June 2000.

6) [Microsoft] Transactional Component Services,
Microsoft Corporation,
http://www.microsoft.com/com/mts-f.htm, 1998.

7) [NPS] Interoperability Technology Assessment for Joint
C4ISR Systems, Technical Report Number NPSCS-00-001,
Naval Postgraduate School, 1999.

8) [OMG] CORBA Overview, & The OMA Reference Model, OMG,
http://www.infosys.tuwien.ac.at/Research/Corba/OMG/arch
2.html, 1995.

9) [Orfali] Client/Server Survival Guide, Robert Orfali,
Dan Harkey, Jeri Edwards, Wiley Computer Publishing,
1999.

10) [Quoin] What is Java, Technical Report, QUOIN, 1998.

11) [Redmond] DCOM: Microsoft Distributed Component Object
Model, Frank E. Redmond III, IDG Books, 1997.

12) [Rosenberger] Teach Yourself CORBA in 14 Days, Jeremy
Rosenberger, SAMS Publishing, 1996-1999.

127

13) [Software AG] XML- The Benefits, Software AG,
http://www.softwareag.com/xml/about/xml_ben.htm, 2 000.

14) [SPAWAR] Performance Specification (PS) for the
Tactical Environmental Support System/Next Century TESS
(NC) (AN-UMK-3) (NITES version I and II) , SPAWARSYSCOM

METOC PMW-185, 1998.

15) [SPAWAR PMW-185] Programmer's Guide for Data Retrieval
via METCAST, SPAWARSYSCOM PMW-185, 1999.

16) [Tran] Interoperability and Security Support for
Heterogeneous COTS/GOTS/Legacy Component-Based
Architecture, Tarn Tran and James Allen, Master's
Thesis, Naval Postgraduate School, Monterey, CA, June
2000.

17) [Wallace] Learn Microsoft Transaction Server
Development Using Visual C++ 6.0, Nathan Wallace,
Wordware Publishing, 1999.

18) [Yang] CORBA: A Platform for Distributed Object
Computing, Technical Report, Zhonghua Yang and Keith
Duddy, 1997.

128

LIST OF ACRONYMS

ADO ActiveX Data Object
AO Applications Objects
API Application Program Interface
BOA Basic Object Adapter
CF Common Facilities
CLI Call Level Interface
CLSID Class Identifier
COM Component Object Model
CORBA Common Object Request Broker
COTS Commercial-Off-The-Shelf
ORB Object Request Broker
C4ISR Command, Control, Communications, Computers,

Information, Surveillance and Reconnaissance
CCTV Closed-Circuit Television
CDR Common Data Representation (CDR)
DCE Distributed Computing Environment
DCOM Distributed Component Object Model
DDCF Distributed Document Component Facility
DISA Defense Information System Agency
DLL Dynamically Linked Library
DoD Department of Defense
DoN Department of the Navy
DTD Document Type Definition
EJB Enterprise JavaBeans
EXE Executable
GIOP Generic InterORB Protocol
GOTS Government-Of-The-Self
GUID Globally Unique Identifiers
IDL Interface Definition Language
HOP Internet Inter-ORB Protocol
I OR Interoperable Object Reference
IPC Interprocess Communications
JDBC Java Database Connectivity
JVL Java Virtual Language
LAN Local Area Network
LRPC Lightweight Remote Procedure Call
METOC Meteorological and Oceanographic
MTS Microsoft Transaction Server
NITES I Navy Integrated Tactical Environmental Support

System I
NT New Technology
ODBC Open Database Connectivity
OLE Object Linking and Embedding
OMA Object Management Architecture
OMF Observation Definition Format

129

OMG Object Management Group
ORPC Object Remote Procedure Call
OS Object Services
OTMs Object Transaction Monitors
PI Processing instructions
RDBMS Relational Database Management System
RPC Remote Procedure Call
SPAWAR Space and Naval Warfare
SQL Structured Query Language
SRS Software Requirements Specifications
TCP/IP /Internet Protocol
UDP User Datagram Protocol
VFTL Virtual Function Table

130

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5100

3. Dr. Dan Boger, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5118

4. Dr. Luqi, CS/Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5118

5. Dr. Mantak Shing, CS/Sh
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

6. Thomas Nguyen
SPAWARSYSCEN Code D871
53560 Hull Street
San Diego, CA 92152-5001

131

