18 AUG 1992

ARMY ARMAMENT R.D.&.E. CENTER SCHENTIFIC AND TECHNICAL INFORMATION DIVISION

No AD #

291

E

Sponsored AMERICAN DEI PREPAREI ASSOCI

U.S. ARMAMENT RESE DEVELOPMEN ENGINEERING CE

> PICATINNY ARS NEW JI

> > 19-21 NOVEMBE

Jean-Paul

4QU99-12-2019

CALCULATED PERFORMANCE OF GUN PROPELLANT COMPOSITIONS CONTAINING HIGH NITROGEN INGREDIENTS

Dr. B. A. Zentner and Dr. R. Reed Naval Weapons Center China Lake, California

ABSTRACT

The performance of typical ball powder gun propellants has been calculated using a thermodynamic code (the Blake code) and compared with the calculations for HMX and high nitrogen compound mixtures. These ingredients (binder, plasticizer, and high nitrogen compound) were selected for their high enthalpy release and the ability to vary the ratios of ingredients to achieve the desired operating temperature and minimize combustion gas average molecular weight. The mixtures exhibit higher calculated energies than ball powder, and the combustion temperature can be tailored by formulation changes. Comparisons are made between the nitrocellulose/nitroglycerin formulations and the proposed formulations of higher energy.

INTRODUCTION

Gun propellant formulations have been based for many years on nitrocellulose/nitroglycerin (NC/NG) combinations. When a higher energy was sought in this system, it was achieved at the expense of a higher combustion temperature, leading to increased erosion by the hot gases. Both gun and rocket propellants exhibit this direct relationship between an increase in temperature and an increase in available energy.

An inverse relationship exists for both gun and rocket propellants between the average molecular weight of the combustion gases and the energy released. A lower molecular weight corresponds to an increase in the number of moles of gas per unit mass of propellant. Formulation of gun propellants with lower average molecular weight gases is possible while maintaining temperatures in a reasonable operating range.

The NC/NG gun propellants limit the extent to which combustion gas average molecular weight can be decreased by H_2 , since higher energies in these propellants are achieved by replacing C-H bonds with C-ONO₂ or other oxidizers. Gun propellants with lower gas molecular weight, contributed by higher H_2 content, can be devised using azido binders, azido and nitrato plasticizers, nitramines, and high nitrogen tetrazole compounds. Comparisons are made concerning the temperature, energy, and gas molecular weight of these two types of propellant.

DISCUSSION

The ingredients used in the ball powder and the proposed formulations are shown in Table I, along with their densities and heats of formation. The proposed gun propellant ingredients are chosen to maximize enthalpy release while minimizing gas molecular weight. The high nitrogen compounds that are added will decrease gas molecular weight and lower flame temperature with a minimum loss of energy (impetus).

Approved for public release; distribution is unlimited.

20001103 011

DTIC QUALITY INCREMED 4

IV-278

AQU99-12-2019

TABLE I. Gun Propellant Ingre	Density, g/cm ³	∆Hf, cal/g
Compound BAMO/NMMO Copolymer of 3,3-bis(azidomethyl) and 3-nitrom		
$\begin{bmatrix} CH_2N_3 \\ -CH_2CCH_20 - \\ H_2N_3 \end{bmatrix} = \begin{bmatrix} CH_20N0_2 \\ -CH_2CCH_20 - \\ H_2N_3 \end{bmatrix} = \begin{bmatrix} CH_2CH_20 - \\ -CH_2CCH_20 - \\ H_3 \end{bmatrix} = \begin{bmatrix} CH_2N_3 \\ -CH_3 \end{bmatrix} = \begin{bmatrix} CH_2N_3 \\ -CH_3 \end{bmatrix}$	1.30	330
NC Cellulose trinitrate $CH_2OX OX OX OX OX OX OX OX $	1.55	-617
PGNPolyglycidyl nitrate $\begin{bmatrix} CH_2 0N0_2 \\ -CH_2 CH0 - \end{bmatrix} n$	1.45	-57
BTTN 1,2,4-Butanetriol trinitrate $0N0_2$ $0N0_2$ H_2C - CH - CH_2 - CH_2 $0N0_2$	1.52	-386
GAP-AzideAzide-terminated glycidyl azide $N_3 - \begin{bmatrix} CH_2N_3 \\ -HCH_20 \end{bmatrix} \begin{bmatrix} CH_2N_3 \\ - TCH_2CHN_3 \end{bmatrix}$	1.27	533

No. of Concession, Name

h

TABLE I. Gun Propellant Ingredients.

-	Compound	Density, g/cm ³	∆Hf, cal/g
NG 0N02 0N02 H2CCHCH2 0N02	Glyceryl trinitrate	1.60	-400
TMETN CH2ONO2 H3C-C-CH2ONO2 CH2ONO2	Trimethylolethane trinitrate	1.49	-415
нмх	Cyclotetramethylenetetranitramine		
$ \begin{array}{c} $	CII ₂ N-N0 ₂ -CH ₂	1.90	61
ANT $ \begin{array}{c} \oplus \\ H_4N \end{array} $ $ \begin{array}{c} N \\ \Theta \\ N \end{array} $ $ \begin{array}{c} N \\ N \end{array} $	Ammonium 5-nitraminotetrazole	1.49	222
TAGNAT ⊕ HN—NH2 II H2N—NH—C—NH-I	Triaminoguanidinium nitraminotetrazole NH ₂ $N \rightarrow 0$ CNHNO ₂	1.49	207

TABLE I. Gun Propellant Ingredients (continued).

19 (² ² ² ¹

ŧ

.

BINDERS

Nitrocellulose¹ makes up the major portion of typical ball powder mixtures, usually about 80% by weight. It also provides the bulk of the energy. In the proposed mixtures, the binder is used at about 10% by weight, with the bulk of the energy supplied by the other compounds. Manser² has prepared several variations of azido and nitrato polyoxetanes in recent years (e.g. BAMO/NMMO). Stewart and Golding³ and Willer⁴ have recently prepared polyglycidyl nitrate. Both BAMO/NMMO and PGN are prepared with hydroxy-terminated chains to facilitate polymerization with isocyanate to make urethane bonds. The order of decreasing energy release of the binders is: NC>PGN>BAMO/NMMO.

The calculated energy, flame temperature, and molecular weight of the binders as monopropellants is listed in Table II. Beside each is a listing of the gases produced by combustion, but before expansion and equilibrium shift, which would change gas percentages. NC produces a hot gas mixture (3320 K) with CO and H₂O as the major components, with high average gas molecular weight (25.5). PGN produces a much cooler gas (2344 K) with higher H₂ content and lower gas molecular weight (20.1). BAMO/NMMO combustion is also cooler (2334 K) with substantial N₂ and high H₂ to decrease the molecular weight (17.1).

The BAMO/NMMO and PGN binders, with their low content in the propellants (10%), contribute only a portion of the low temperature properties and low gas molecular weight. This illustrates the limitations imposed by the high content of NC in ball powder mixtures. Additives can lower its temperature only marginally before the ball powder suffers a loss in energy.

Compound	Impetus, J/g	Temp., K	Gas avg. molecular weight			Combu	istion g	as proc	lucts, %	5	
BAMO/NMMO	860.7	2334	17.09	H ₂ ,	38.8	N ₂ ,	39.0	CO,	12.8	CH ₄ ,	5.9
NC	1083.7	3320	25.474	co,	40.3	H ₂ O,	24.4	CO ₂ ,	14.1	N ₂ ,	11.9
PGN	971.3	2344	20.06	CO,	46.2	H ₂ ,	27.4	H ₂ O,	13.5	N2,	8.3
BTTN	1287.8	4047	26.126	H ₂ O,	31.6	CO,	25.0	CO ₂ ,	18.3	N ₂ ,	15.8
GAP-Azide	892.7	2339	17.552	H ₂ ,	37.1	N ₂ ,	37.4	CO,	16.3	СН4,	5.6
NG	1149.8	4001	29.001	H ₂ O,	28.5	CO ₂ ,	27.8	N ₂ ,	17.6	co,	10.5
TMETN	1255.1	3492	23.134	CO,	36.4	H ₂ O,	27.0	N ₂ ,	13.5	H ₂ ,	13.4
НМХ	1386.5	4060	24.35	N ₂ ,	32.6	CO,	25.1	H ₂ O,	23.2	H ₂ ,	8.6
ANT	1157.6	2932	21.061	N ₂ ,	50.0	H ₂ ,	22.1	H ₂ O,	13.3	CO,	13.2
TAGNAT	864.4	2015	19.377	N ₂ ,	49.1	H ₂ ,	30.3	co,	12.7	H ₂ O,	3.3

TABLE II. Monopropellant Calculations.

PLASTICIZERS

Nitrate ester and low molecular weight azide plasticizers are used to enhance the processibility of gun and rocket propellants by lowering viscosity during mixing and increasing the mobility of polymer chains for improved elasticity. These energetic plasticizers also improve the energy release and burning rate of propellants. The order of decreasing chemical energy release for the selected plasticizers is: NG>BTTN>TMETN>GAP-AZIDE.

The plasticizers have different characteristics which make them suitable for different applications. NG as a monopropellant is overoxidized, which would be useful for C-H bond combustion, especially with inert binders and inert fillers. BTTN is less sensitive and less volatile than NG and has residual H₂ to contribute to lower gas molecular weight (26.1, versus 29.0 for NG). TMETN has a higher H₂ content and a lower CO₂ content than NG or BTTN, contributing to a lower gas molecular weight (23.1). This compound produces a favorable energy release in the mixtures while keeping the flame temperature lower than NG or BTTN.

GAP-AZIDE is a relatively new plasticizer, not yet available in large quantities. It creates a substantial cooling effect while releasing large quantities of N_2 and H_2 , producing a low gas molecular weight (17.6). This plasticizer is preferred if higher solid energetic nitramine content is desirable, thus lowering the amount of tetrazole filler necessary to lower temperature.

ENERGETIC NITRAMINE

The nitramine HMX provides the major source of enthalpy release for the proposed gun propellants, partly from the weak N-N bonds. HMX as a monopropellant is a high-impetus, high-temperature material. The gas molecular weight (24.4) is reasonably low, with CO_2 at a low level and some H_2 also present. Its high density allows for better processibility with the binder material, lowering the viscosity during mixing.

MOLECULAR WEIGHT DEPRESSANTS

Compounds with high hydrogen and low carbon content contribute to lower gas molecular weight. The high positive heats of formation of some tetrazoles allow for a minimum loss of enthalpy release in compositions where they are used to lower flame temperature. Both ANT⁵ and TAGNAT⁶ decompose as monopropellants to produce half their output gases as N_2 . TAGNAT is a more effective compound, producing more H_2 than ANT and lowering temperature more effectively. However, the lower temperature comes with some expected loss of impetus.

COMPOSITIONS

The temperature and energy values are plotted for ball powder^{7,8} and some proposed formulations (Figure 1). The ball powder calculations have energies of about 1000 J/G, and the points plotted (for example, WC-870, WC-872, WC-890) are arranged in a line. Extrapolating a line through some of the points for the proposed propellants suggests a 15% increase in energy is available at the same temperature.

The enhanced energy of the high nitrogen mixtures over ball powder is achieved by lower molecular weight gases (Table III). A typical ball powder generates almost half of its gases as CO, with low amounts of N₂ and H₂ (average gas molecular weight, 23.0). Compositions using BTTN as plasticizer generate substantially more N₂ and have increased amounts of H₂. TMETN formulations are similar, with lower gas molecular weights (average, 20.5). Both TMETN and BTTN are sufficiently energetic to prevent the use of ANT for reducing the temperature to the desired operating range.

FIGURE 1. Calculations of Gun Propellant Compositions

Compositio	on, %	Temp., K	Impetus, J/g	Gas avg. mol. wt.			Combu	istion g	as pro	ducts, %	Ď	
NC, NG,	80 11	2817	1006	23.273	CO,	45.8	H ₂ O,	19.7	H ₂ ,	15.6	N ₂ ,	10.6
PGN, GAP-Azide HMX, TAGNAT,	10 30 45 15	2643	1120	19.623	CO,	33.6	H ₂ ,	30.9	N ₂ ,	30.2		
PGN, TMETN, HMX, TAGNAT,	10 30 15 45	2718	1104	20.477	N ₂ ,	32.1	co,	27.0	H ₂ ,	24.9	H ₂ O,	13.5
PGN, BTTN, HMX, TAGNAT,	10 30 10 50	2829	1127	20.871	N ₂ ,,	34.2	co,	25.0	H ₂ ,	22.8	H ₂ O,	15.3

TABLE III. Results of Sample Calculations.

The plasticizer GAP-AZIDE is highly effective in yielding low gas molecular weight (average, 19.8). The gaseous products are almost evenly divided between CO, N_2 , and H_2 . The mixtures are cool, even with HMX levels of 50% (2635 K), but have energies higher than those of ball powder (e.g., 1103.8 J/G). Both TAGNAT and ANT are effective coolants with GAP-AZIDE, and their cumulative effects with the binders PGN and BAMO/NMMO are apparent in the low temperatures and low gas molecular weights.

CONCLUSIONS

Gun propellants can be formulated to produce flame temperatures in the same range as some typical ball powders, but which have energies 10-15% greater than those of the nitrocellulose/nitroglycerin base propellants. Energetic binders, plasticizers, and tetrazole salts are available which produce large quantities of nitrogen and hydrogen upon combustion. Energetic nitramines provide the enthalpy release for driving the combustion reactions. Combinations of these compounds produce propellants which are high in energy, have moderate flame temperatures, and produce low molecular weight gases.

It should be noted that all calculations were done using the Blake code⁹ at a density of 0.2 g/cm³.

REFERENCES

- 1. T. L. Davis. The Chemistry of Powder and Explosives, John Wiley and Sons, Inc., December 1959, New York, p. 256.
- 2. G. E. Manser. "The Development of Energetic Oxetane Polymers," 2nd International Annual Conference of the Fraunhofer Institute Fur Chemische Technologie, The Technology of Polymer Compounds and Energetic Materials, 3 July 1990, Karlsruhe, Federal Republic of Germany, paper 50.
- 3. Malcolm J. Stewart, Eamon Colclough, Peter Golding, Ross Millar, and Norman Paul. "Novel Energetic Monomers, Polymers, and Plasticizers Prepared Using Dinitrogen Pentoxide Chemistry," Proc. Joint International Symposium on the Compatibility of Plastics and Other Materials With Explosives, Propellants, Pyrotechnics, and Processing of Explosives, Propellants, and Ingredients, 1989, p. 234.
- 4. R. L. Willer and R. Day. "Poly(Glycidyl Nitrate) Revisited." Proc. Joint International Symposium on the Compatibility of Plastics and Other Materials With Explosives, Propellants, Pyrotechnics, and Processing of Explosives, Propellants, and Ingredients, 1989, P. 257.
- 5. W. M. Ayers and R. A. Henry. "Gas Generator Compositions Containing a Nitrogen Rich Compound and a Catalyst." U. S. Patent 3,677,841.
- 6. M. Tremblay, Can. J. Chem. 43, 1230 (1965).
- 7. G. R. Cox. "Spherical Smokeless Powder Grains." U. S. Patent 2,715,574.
- 8. J. J. O'Neill. "Ball Powder," Armament Technology, September-October 1956, p. 365.
- 9. Ballistics Research Laboratory. Blake—A Thermodynamics Code Based on Tiger: Users' Guide and Manual, by Eli Freedman. Aberdeen Proving Ground, Md., BRL, July 1982. (ARBRL-TR-02411, UNCLASSIFIED.)

	Calculated perfors Compositions Contains	nance ix Hiz	Lon Gus	Propelland Brigriedust			
	Report Availability (Please check one box)This report is available. Complete sections 2a - 2f.This report is not available. Complete section 3.		Number of bies Forwarded	2b. Forwarding Date			
DoD	Distribution Statement (Please check ONE box) Directive 5230.24, "Distribution Statements on Technical E cribed briefly below. Technical documents MUST be assigned			n distribution statements, as			
ø	DISTRIBUTION STATEMENT A: Approved for p	ublic release	e. Distribution is u	nlimited.			
	DISTRIBUTION STATEMENT B: Distribution au	thorized to L	J.S. Government /	Agencies only.			
	DISTRIBUTION STATEMENT C: Distribution au contractors.	thorized to U	J.S. Government	Agencies and their			
	DISTRIBUTION STATEMENT D: Distribution au DoD contractors only.	thorized to L	J.S. Department o	f Defense (DoD) and U.S			
	DISTRIBUTION STATEMENT E: Distribution au components only.	RIBUTION STATEMENT E: Distribution authorized to U.S. Department of Defense (DoD) onents only.					
	DISTRIBUTION STATEMENT F: Further dissen indicated below or by higher authority.	JTION STATEMENT F: Further dissemination only as directed by the controlling DoD office below or by higher authority.					
	DISTRIBUTION STATEMENT X: Distribution au individuals or enterprises eligible to obtain expor Directive 5230.25, Withholding of Unclassified T	t-controlled t	technical data in a	ccordance with DoD			
2d.	Reason For the Above Distribution Statement	t (in accordanc	e with DoD Directive :	5230.24)			
	Reason For the Above Distribution Statement Controlling Office	t (in accordanc		5230.24) ibution Statement			
2e.			2f. Date of Distr Determination	ibution Statement			
2e. 3.	Controlling Office	g reasons. (2f. Date of Disti Determination Please check appropr	ibution Statement			
2e. 3. □	Controlling Office This report is NOT forwarded for the following	g reasons. (2f. Date of Distr Determination Please check appropr and the AD numbe	ibution Statement			
2e. 3.	Controlling Office This report is NOT forwarded for the following It was previously forwarded to DTIC on	g reasons. (2f. Date of Distr Determination <i>Please check appropr</i> and the AD numbe known.	ibution Statement			
2e. 3.	Controlling Office This report is NOT forwarded for the following It was previously forwarded to DTIC on It will be published at a later date. Enter approxions In accordance with the provisions of DoD Directions because:	g reasons. ((date) imate date if ve 3200.12,	2f. Date of Distr Determination Please check appropr and the AD numbe known. the requested door	ibution Statement			
2e. 3.	Controlling Office This report is NOT forwarded for the following It was previously forwarded to DTIC on It will be published at a later date. Enter approxional lin accordance with the provisions of DoD Direction	g reasons. ((date) mate date if ve 3200.12, Signature	2f. Date of Distr Determination Please check appropr and the AD numbe known. the requested door	ibution Statement			

.