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Abstract 

Empirical equations were developed to describe the potential-time 
behaviors of polymer electrolyte membrane fuel cell (PEMFC) stacks 
at constant current discharge. When either ambient temperature or 
discharge current is too high, the experimental potential-time curves 
are inclined or have fallen rapidly within a short discharge time. 
Various experimental potential-time curves are fitted well with the 
empirical equations at different discharge current and ambient 
temperatures. The effect of parameters of the empirical equations on 
the shape of the potential-time curve is also analyzed. Mass transfer 
is likely a reason for the rapid falling of the potential, and polymer 
electrolyte dehydration is responsible for the inclination of the 
potential-time curves. Empirical equations are helpful for forecasting 
and explaining the long-term discharge performance of the PEMFC 
stacks. 
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1.   Introduction 

For cleaner air and less emitted pollution, fuel cells have been considered 
one of the most promising innovative energies for electric vehicles and for 
portable power sources. Among many kinds of fuel cells, polymer electro- 
lyte membrane fuel cells (PEMFCs) have received much attention in the 
last two decades [1-14] because of their light weight, compactness, high 
power, and low cost. To understand and improve the performance of 
PEMFCs, researchers have developed several models [8-13] to explain the 
behavior of potential variation with the discharge current for single cells 
and for fuel cell stacks. Kim et al [8] have modeled the potential-current 
curves for a single fuel cell using an empirical equation, including processes 
of activation, ohmic, and mass transfer. Amphlett et al [9-10] have tried to 
describe the relationship of the potential and current of the Ballard Mark IV 
fuel cell using mechanistic and empirical methods. Chu and Jiang [11-13] 
have described the potential-current behaviors of PEMFC stacks in the pres- 
ence of all electrode processes and mass transfer. However, modeling or 
description of the potential-current behaviors of PEMFCs alone is not enough 
to know or evaluate the overall performance of fuel cells or fuel cell stacks, 
because practical fuel cells have to be working for a long time at different 
ambient temperatures. 

During long-term operation of fuel cells, the temperature of a fuel cell stack 
may change with time. How to assess the effect of temperature and time 
changes on the performance of fuel cell stacks is a primary consideration 
when all electrode processes and mass transfer are present. This research is 
to study the long-term performance of PEMFC stacks at constant current 
discharge, instead of describing the potential-current behaviors only. 



2.   Experimental Setup 

We used a bipolar PEMFC stack that could provide about 50 W of output 
power in optimum condition. The open-circuit potential was about 42 V. 
The active electrode area was about 18 cm2, and the volume of the stack was 
about 250 cm3. The stack was humidified with water steam and initially run 
at 0.5 A for several hours to reach a stable performance before we used it to 
generate data. 

We also used a high purity of hydrogen (99.99%) as fuel and compressed air 
as oxidant. The ambient temperature was controlled with a Tenney Envi- 
ronment Chamber (model BTRC), which was programmed through a com- 
puter with Linktenn II software. An Arbin battery tester (model BT-2043) 
was used to program and control constant current discharge. A Hewlett- 
Packard electronic load (model 6050A) and a Hewlett-Packard multimeter 
were used to measure current and voltage when the stack voltage was greater 
than 35 V. A Matheson digital flowmeter (LFE 1000H) was used to measure 
the hydrogen flow. A hydrogen purger was used and set to a 10-s length per 
5-min period for all measurements. We adjusted the inlet hydrogen and air 
pressures to 3 and 5 psi, respectively. An electric fan (about 10 W) was placed 
toward the stack during stack evaluation for heat dissipation, and a ther- 
mocouple was used to measure stack temperature. 



3. Development of Empirical Equations 

The potential-time curves of PEMFC stacks are not always flat—they some- 
times incline slowly or decline rapidly. For example, when the discharge 
current is too high, the stack potential falls rapidly within a short discharge 
term. Figure 1 shows the potential-time curves of a 50-W bipolar fuel cell 
stack at an ambient temperature of 20 °C and at different discharge cur- 
rents. When the current is 1.0 or 1.5 A, the potential-time curve is only slightly 
inclined. However, when the current is equal to or higher than 2.0 A, the 
stack potential falls rapidly within about 35 min of constant current dis- 
charge. Figure 2 shows the potential-time curves of a 50-W bipolar fuel cell 
stack at constant current (1.0 A) discharge and at different ambient tem- 
peratures. When the temperature is equal to or higher than 30 °C, the 
potential-time curve is inclined slowly and then falls rapidly within about 
40 min. The origin of the inclined or declined potential-time curves will be 
explored in this report. Apparently, the discharge potential-time behavior 
of the PEMFC stack is affected by the variations of stack temperature and 
discharge time. All the previous models [8-13] were unable to explain or 
describe this phenomenon. We developed the following equations to solve 
the problem. 

For a fuel cell stack, the stack potential can be described as [11-13] 

F = F  — F     — F —F u      '-'o     Lact     ^ohmic     ^mass / 

E = E0-b log(z') - (R + AR) i - En 

(1) 

(2) 

Figure 1. Constant 
current discharge 
performance of a 
PEMFC stack at an 
ambient temperature of 
20 °C and at different 
discharge currents. 
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Here, E„ (V) is the open-circuit potential of the stack. Eohmjc (V) is the ohmic 
over potential of the stack, which is equal to the sum of the ohmic over 
potentials of all single cells linked in a series. Emass (V) is the over potential 
of the stack caused by mass transfer. The b value is the sum of Tafel slopes 
of all single cells linked by series, and R is the sum of ohmic resistances of 
all single cells linked by series. The AR is the incremental value of R because 
of temperature and relative humidity changes. 

At constant current discharge, the sum of E„ and activation over potential 
can be considered a constant if we neglect their variations with tempera- 
ture. However, the value of R may change appreciably with time, because 
the effects of stack temperature and polymer electrolyte membrane 
dehydration on stack ohmic resistance are significant. In addition, the stack 
temperature may increase with time at constant current discharge until 
reaching a steady state with the ambient. When stack temperature is too 
high, the fuel and air transfers may be blocked, interrupted, or unbalanced, 
causing an appearance of mass transfer over potential. For simplification, 
equation (2) is rewritten as 

E = E„ - AR i - E„ (3) 

Here, E„ (V) is the apparent potential of the stack at a specific current value, 
which is equal to the potential at the initial time of constant current dis- 
charge. By analyzing a large number of potential-time curves of PEMFC 
stacks at constant current discharge and at different ambient temperatures 
and relative humidity, we found that the Emass can be described as 

= iAexp[l/(Tm~T)) (4) 



Here, A (Q.) is a parameter that affects the rate of stack impedance jump at 
high temperatures because of mass transfer. Tm (°C) is the stack tempera- 
ture that is high enough to initiate mass-transfer over-potential appearance, 
and T (°C) is the stack temperature at any time. 

AR can be described as 

AR = i B exp[N (T - T0)/(Tb - T0)]. (5) 

Here, B (Q) is a parameter that affects the rate of ohmic resistance change 
with stack temperature, N is a function parameter that determines a curva- 
ture of selective functions with a different value for each kind of polymer 
electrolyte stack, Tb (°C) is the stack temperature at a steady condition with 
ambient, and T0 (°C) is the ambient temperature. 

Therefore, equation (3) can be rewritten as 

E = Ea-iA exp[l/(Tm - T)\ ± i B exp[N (T- T0)/(Tb - T0)]. (6) 

In equation (6), if an increase of stack temperature causes stack resistance to 
increase, such as polymer electrolyte dehydration at high temperature, the 
operator on the rightmost side should be minus and vice versa. Moreover, 
the stack temperature (T) is a function of time. To obtain the potential-time 
function of the stack, we need to find the stack temperature by experiments. 
Sometimes, we only know a few points of stack temperature from experi- 
ments in a long term of constant current discharge, which is not enough to 
describe the whole range of stack temperature. Therefore, we need to find a 
temperature-time function to calculate the other unknown points for the 
stack. 

Unfortunately, stack temperature variation is dependent on many factors, 
such as stack power, stack size, stack shape, stack-cooling styles, the value 
of discharge current, and heat dissipation coefficient. It is difficult to obtain 
an analytical solution. However, an empirical equation to describe the stack 
temperature-time behavior is obtained for PEMFC stack: 

T=T0 + (Tb-T0)t/(t + S), (S>0). (7) 

Here, T0, Tb, and T are described in equation (6), t (min) is discharge time, 
and S (min) is a time parameter that affects the rate of stack temperature 
change. At the beginning of discharge, the stack temperature change is the 
fastest. As time increases, the stack temperature change gradually becomes 
slower. 

With equations (6) and (7), we can calculate the potential-time curves of 
PEMFC stacks for all electrode processes and mass transfer. 



4.   Calculated Results 

To understand the physical meanings of the parameters described in equa- 
tions (6) and (7) more clearly, we have performed a series of calculations by 
varying one parameter only and keeping other parameters constant. These 
calculated results are summarized in the following sections. 

4.1 Effect of T.-T 
V 0 

4.2 Effect of S 

Figure 3(a) shows the calculated data of stack temperature versus time 
with the use of equation (7), which explain the effect of Th - T0 on the 
temperature-time curve at constant current discharge. The stack tempera- 
ture grows quickly at the beginning of the discharge, especially in the first 
20 min. Then the growth slows and the temperature-time curve gradually 
becomes flat. Through the increase of the value of Tb - T0 the plateau of 
the temperature-time curve becomes higher. 

Figure 3(b) also shows the calculated data of stack temperature versus 
time with the use of equation (7), which explain the effect of S on the 
temperature-time curve at constant current discharge. Through the increase 
of the value of S, the rate of stack temperature growth decreases, but the 
plateau of the temperature-time curve changes only a little. 

4.3 Effect of T  Value 

Figure 4(a) shows the calculated data of stack voltage versus time, which 
explain the effect of T„, value on potential-time behavior. With increasing 
time, the stack temperature gradually reaches the value of T„, and the stack 
potential begins to decline because of mass-transfer over-potential occur- 
rence. If stack temperature is smaller than the value of T„„ there is no mass- 
transfer occurrence and no potential falling phenomenon. Because the maxi- 
mum stack temperature is 43 °C in figure 4(a) (see the top x curve), the 
potential-time curve is falling only when the T,„ value is equal to or smaller 
than 43 °C. 

4.4 Effect of Parameter A 

Figure 4(b) also shows the calculated data of stack voltage versus time, which 
explain the effect of parameter A on potential-time behavior. With the in- 
crease of the value of parameter A, the rate of stack potential declination 
becomes more significant. 



Figure 3. Calculated 
curves of stack 
temperature versus 
time for a PEMFC 
stack at a constant 
current discharge 
with use of an 
empirical equation. 
Parameters used: 
(a)To = 20°C, 
S = 4.0 min, and 
different Tb - To 

values and 
(b) T0 = 20 °C, 
rfc-T0 = 25°C,and 
different S values. 
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4.5 Effect of Parameter B 

Figure 4(c) also shows the calculated data of stack voltage versus time, which 
explain the effect of parameter B on the potential-time behavior. Here, the 
symbol of the term on the rightmost side in equation (6) is considered mi- 
nus. By increasing the value of parameter B, no apparent effect is shown on 
the rate of the potential falling. However, the plateau of the potential-time 
curve becomes more inclined. 



Figure 4. Calculated 
curves of stack voltage 
versus time (solid lines) 
for a PEMFC stack at a 
constant current 
discharge with use of 
an empirical equation. 
Parameters used: (a) E 
= 33V,y4 = 0.2Q,B = d, 
i= 1.0 A, T;;-T,= 
14.1 °C, S = 4.0 min, 
To - 30 °C, and varying 
Tm values; (b) Efl = 33 V, 
Tm = 43 °C, B = 0, 
i = 1.0 A, 
Tb-T0 = 14.1°C, 
S = 4.0 min, T, = 30 °C, 
and varying A values; 
and (c) Ea = 33 V, 
Tm = 43 °C, A = 0.2 Q, 
» = 1.0 A, 
T„-T0 = 14.1°C, 
S = 4.0 min, T0 = 30 °C, 
N = 11, and varying B 
values. Top line is 
curve of stack 
temperature versus 
time. 
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5.   Experimental Results 

5.1 Temperature-Time Curve 

By using equation (7), we compare the stack temperatures experimentally 
recorded with the calculated data. Figure 5 shows the temperature-time 
curve obtained from a 50-W PEMFC stack at constant current discharge 
(1.5 A) and at a 20 °C ambient temperature. The points were experimental 
data, and we calculated the line using equation (7) (T0 = 20 °C, Tb-T0 = 19.5 °C/ 

and S = 4.0 min). As shown in the figure, the calculated curve fits well with 
the experimental points. In the following calculations for stack potential- 
time curves, we keep the term S constant (4.0 min) and use different T0 and 
Tb - T0 values. 

5.2 Potential-Time Curves 

Effect of Discharge Current: Figure 6 shows a series of potential-time curves 
at constant current discharge with different current values for a 50-W PEMFC 
stack. The points and lines were obtained from experiments and calcula- 
tions, respectively. As shown in the figure, all calculations fit with the ex- 
perimental points quite well. All the parameters used for the calculations 
are shown in table 1. With the discharge current increasing, the difference 
in stack temperature at steady state (T^,) and ambient temperature (T0) in- 
creases, and the stack apparent potential (Ea) decreases. However, the stack 
temperature that causes mass-transfer over-potential occurrence (Tm) re- 
mains unchanged when ambient temperature is kept constant at 20 °C. 

Figure 5. Variation of 
stack temperature 
versus time for a 
PEMFC stack at a 
constant current 
discharge (1.5 A) and 
an ambient tempera- 
ture of 20 °C. Points 
and line were 
obtained from experi- 
mental and calculated 
data, respectively. 
Calculation para- 
meters: T0 = 20 °C, 
Tb-T0 = 19.5 °C, 
and S = 4.0 min. 
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Figure 6. Constant 40 
current discharge 
performance of a 35 
PEMFC stack at an 
ambient temperature of 30 
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Table 1. Parameters 
used for calculations of 
potential-time curves 
for a 50-W bipolar 
PEMFC stack. 

T0(°C)      1(A)       E„(V)      A(Q)     ß(mfi)       T,„ (°C)     T6-T0(°C)     S (min) 

20 1.0 33.0 0.6 0.0 44.0 14.0 4.0 

20 1.5 31.0 0.7 0.0 44.0 20.0 4.0 

20 2.0 30.0 0.4 0.0 44.0 26.4 4.0 

30* 1.0 

3.0 

33.0 

24.5 

0.2 

0.1 

0.2 

0.0 

43.0 

38.0 

14.1 

53.6 

4.0 

4.0 

*For this calculation, the parameter N equals 11. 

Furthermore, at a low value (1.0 A) of constant current discharge, the 
potential-time curve is relatively flat. Increasing the discharge current value 
(1.5 A) causes the potential-time curve to become inclined. If the discharge 
current is too high (2.0 A), the potential-time curve is declined and falls 
rapidly until reaching zero voltage. 

Effect of Ambient Temperature: Figure 7 shows the effect of different ambient 
temperatures on the potential-time behavior for a 50-W PEMFC stack. The 
points and lines were obtained from experiments and calculations, respec- 
tively. The parameters used for calculations are shown in table 1. With the 
increase of the ambient temperature from 20 to 30 °C, the values of Ea, T„„ 
and Th- T0 do not seem to change significantly. However, the stack Ty value 
at an ambient temperature of 30 °C is about 10 °C higher than that at an 
ambient temperature of 20 °C when each has the same value of discharge 
current (1.0 A). Therefore, at a higher ambient temperature, the stack tem- 
perature reaches its T„, value (43 °C) faster. As expected, at T0 - 20 °C, the 
potential-time curve is relatively flat, but at T0 = 30 °C, it becomes inclined 
and falls rapidly to zero voltage within about 40 min. The plateau of 
potential-time curve is inclined slowly if the parameter B is not zero. There- 
fore, the parameter B indicates whether the polymer electrolyte membrane 
is dehydrated. 

10 



Figure 7. Constant 40 
current discharge 
(1.0 A) performance of 35 
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Origin of Potential Declining: Figure 8 shows a series of potential-time curves 
at constant current discharge for a 50-W PEMFC stack. All these potential- 
time curves are declined and their potentials fall to zero rapidly within 
different times. The points and lines in the figure were obtained from ex- 
periments and calculations, respectively. As shown in the figure, all calcu- 
lations fit with the experimental points quite well. All the parameters used 
for the calculations are shown in table 1. At -5 °C (ambient) and 3.0 A, the 
discharge current is too high (3.0 A), causing its potential to decline rapidly. 
At 30 °C (ambient) and 1.0 A, the ambient temperature is too high, causing 
its potential to fall in a short time. At 20 °C (ambient) and 2.0 A, the potential- 
time curve is also declined, because of a too-high internal stack tempera- 
ture caused by a long-term constant current discharge. Therefore, when ei- 
ther ambient temperature or discharge current is too high, which will cause 
stack internal temperature to increase rapidly, the fuel and air flows maybe 
blocked, interrupted, or unbalanced. Also, a mass-transfer problem may 
occur and cause a correspondent declination of the potential-time curve in 
a short time. Besides, when stack internal temperature is too high, the poly- 
mer electrolyte membrane may dehydrate, causing an inclination to the pla- 
teau of the potential-time curve. 

11 



Figure 8. Stack voltage 
dropping with time 
when either discharge 
current or ambient 
temperature was too 
high for a PEMFC stack 
at a constant current 
discharge condition. 
Points and lines were 
obtained from 
experimental and 
calculated data, 
respectively. 
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6.   Conclusions 

Several empirical equations are developed to describe the experimental stack 
temperature-time and the stack potential-time curves for PEMFC stacks at 
constant current discharge. The experimental stack temperature-time curve 
fits quite well with equation (7), which contains the parameters of ambient 
temperature (T0), stack temperature at a steady state (T;,), and time factor 
(S). The experimental potential-time curves at different discharge current 
and ambient temperatures are simulated with equation (6), which contains 
the parameters of stack internal temperature (T), stack mass-transfer tem- 
perature (Tm), and potential decreasing rate factor (A). All these experimen- 
tal potential-time curves fit quite well with the empirical equations. When 
stack temperature reaches the value of Tm, a mass-transfer problem occurs, 
and the potential-time curve is declined rapidly. If either ambient tempera- 
ture or discharge current is too high, the stack temperature will reach the 
Tm value and cause a mass-transfer problem. In addition, when the stack 
internal temperature is too high, the polymer electrolyte membrane will 
dehydrate, causing an inclination of the potential-time curve. 

The empirical equations (6) and (7) are helpful for stack design, because 
they are likely used for forecasting the stack's long-term performance. We 
may conduct calculations by setting different parameters for the empirical 
equations. For example, we may calculate a series of stack temperature- 
time curves to determine how fast the stack temperature will increase when 
obtaining a maximum stack power. Also, we may calculate a series of the 
stack discharge potential-time curves to decide what the stack performance 
will be, given a specific ambient temperature or discharge current. 
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