
Proceedings of the

2000 Monterey Workshop on

Modelling Software System Structures

in a fastly moving scenario

Santa Margherita Ligure, Italy
June 13-16, 2000

Co-sponsored by
ARO, NSF, ARL (European Research Office),

INDAM (GNIM), University of Genoa

Hosted by
DISI - University of Genoa, Italy

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

DTIC QUALITY INESSSSBD 4

20001026 083

Modelling Software System Structures in a fastly moving scenario
June 13-16,2000
Santa Margherita Ligure, Italy

Workshop Programme and Schedule

Monday June 12
17.00-18.00 Registration
18.00-19.30 Welcome Reception & Registration
19.30 Dinner

Tuesday June 13
9.00 Opening
9.15-10.00 Chair E. Astesiano
Manfred Broy Dynamics, Mobility, and System
Topology of Hardware/Software Nets: Towards a
Mathematical Model

10.00-10.30 Coffee break

10.30-12.00 Chair T. Maibaum
Cliff Jones Formal Methods and Dependability
Dave Robertson Experimental Analysis for
Large Agent Systems
12.00-12.30 Discussion

12.30-15.00 Lunch break

15.00-16.30 Chair M. Bidoit
Purushothaman Iyer Unfoldings of Infinite
State Systems
Aloysius K. Mok Tracking Real-Time Systems
Requirements

16.30-16.45 Coffee break

16.45-19.00 Chair C. Montangero
Mikhail Auguston Lightweight Semantics Mod-
els for Program Testing and Debugging Automa-
tion
Paola lnverardi Software Architectures and
Component Programming
Marco Bernardo Performance Evaluation of Ar-
chitectural Types: A Process Algebraic Approach

19.30 Dinner

Wednesday June 14

8.30-10.00 Chair Luqi
Jeffrey Tsai Compositional Approach for Model-
ing and Verification of Component-Based Soft-
ware Systems
Mike Reed Automated Formal Support for Com-
ponent-Based Systems: A Commercial Strategy

10.00-10.30 Coffee break

10.30-12.00 Chair P. lnverardi
Alex Wolf Middleware Component Frameworks:
A Challenge for Software Architecture Research
Heinrich Hussmann Towards Practical Support
for Component-Based Software Development
Based on Formal Specification
Carlo Montangero Specification and Composi-
tion of Software Components: Formal Methods
Meet Standards

16.45-20.01 Discussion on CBSE (all speakers;
A.Wolf chair)

12.30-15.00 Lunch break

15.00-16.30 Chair M. Cerioli
Christine Choppy Using CASL to Specify the
Requirements and the Design: A Problem Spe-
cific Approach
Oleg Sokolsky Comparative Analysis of Design
Alternatives in Embedded Systems

16.30-16.45 Coffee break

16.45-20.00 Free time for a visit to
Portofino

20.30 Banquet

Modelling Software System Structures in a fastly moving scenario
June 13-16, 2000
Santa Margherita Ligure, Italy

Workshop Programme and Schedule

Thursday June 15
8.30-10.15 Chair P.Iyer
Insup Lee Run-time Monitoring and Steering
based on Formal Specifications
Nikolaj Bjoerner How to Write your Specifica-
tion, Synthesize your Program and Execute it too
Doug Lange A Formal Model of System and
Software Engineering Experience

10.15-10.30 Coffee break

10.30-12.45 Chair D. Bj0rner
Connie Heitmeyer Formal Analysis of Software
Requirements: Integrating Different Techniques
Zohar Manna Verification Diagrams: Logic +
Automata
Dan Berry Appliances and Software: The Im-
portance of the Buyer's Warranty and the Devel-
oper's Liability in Promoting the Use of Formal
Methods

12.45-15.00 Lunch break

"Up-
15.00-16.45 Chair JL. Fiadeiro
Dines Bj0rner Domain Engineering
stream" from Requirements Engineering
Armando Haeberer An Alternative Approach
for Specification-Based Functional Verification
Testing
Valdis Benins Static Analysis for Program Gen-
eration Templates

Friday June 16
8.30-10.00 Chair H. Hußmann
Maritta Heisel Toward an Evolutionary Software
Technology
Jose Fiadeiro Coordination: the Evolutionary
Dimension

10.00-10.30 Coffee break

10.30-11.55 Chair D. Berry
Du Zhang Applying Machine Learning Algo-
rithms in Software Development

11.55-13.00

Final discussion & Closing
(Luqi, Broy, Zavada, Astesiano)

13.00 Lunch

16.45-17.00 Coffee break

17.00-18.10 Chair M. Broy
Gianna Reggio JTN: A Java Targeted Formal
Visual Notation for the Design of Reactive Sys-
tems
Werner Damm Breathing Life into Message Se-
quence Charts

18.10-19.00

Panel/discussion

Emerging Technologies in the Practice: UML and
the Like (Broy chair, Damm, Ciancarini, Reggio,
Reed)

19.30 Dinner

List of Participants

Egidio Astesiano

Mikhail Auguston

Marco Bernardo

Daniel Berry

Valdis Berzins

Michel Bidoit

Nikolaj Bj0rner

Dines Bj0rner

Manfred Broy

Maura Cerioli

Christine Choppy

Paolo Ciancarini

Werner Damm

Jose L. Fiadeiro

Nicolas Guelfi

Armando Haeberer

Maritta Heisel

Constance Heitmeyer

Heinrich Hußmann

Paola Inverardi

Purushothaman Iyer

Cliff Jones

Doug Lange

Insup Lee

Luqi

Tom Maibaum

Zohar Manna

Aloysius Mok

Carlo Montangero

Anna Philippou

Mike Reed

Gianna Reggio

David Robertson

Oleg Sokolsky

Jeffrey Tsai

Alex Wolf

John Zavada

Du Zhang

University of Genova, Italy

New Mexico State University, USA

University of Torino, Italy

University of Waterloo, Canada

Monterey Naval Postgraduate School, USA

Ecole Normale Superieure de Cachan, France

Kestrel Institute, USA

Technical University of Denmark, Denmark

Technical University of Munich, Germany

University of Genova, Italy

Universite Paris Nord, France

University of Bologna, Italy

Univ. of Oldenburg, Germany

University of Lisbon, Portugal

Luxembourg Univ. of Appl. Science, Luxenbourg

Oblog Software SA, Portugal

University of Magdeburg, Germany

Naval Research Laboratory, USA

Dresden University of Technology, Germany

University of l'Aquila, Italy

North Carolina State University, USA

University of Newcastle, UK

SPAWAR, USA

University of Pennsylvania, USA

Monterey Naval Postgraduate School, USA

King's College London, UK

Stanford University, USA

University of Texas, USA

University of Pisa, Italy

University of Cyprus, Cyprus

Oxford University, UK

University of Genova, Italy

University of Edinburgh, UK

University of Pennsylvania, USA

University of Illinois, USA

University of Colorado, USA

ARO/ERO - US Army, USA

California State University, USA

Workshop Chairs
Egidio Astesiano, Manfred Broy and Luqi

Programme Committee
Egidio Astesiano

Manfred Broy

Luqi
Carlo Ghezzi

Zohar Manna

Steering Committee
David Hislop
Frank Anger

Valdis Berzins
Purushothaman Iyer

Organization Committee
Gianna Reggio (Chair)

Maura Cerioli
Egidio Astesiano

Acknowledgement

The organizers of this workshop would like to thank the spon-
sors of the workshop: Army Research Office (ARO), National
Science Foundation (NSF), Army Research Laboratory (ARL
European Research Office), INDAM (GNIM) and the University

of Genoa.

List of Participants

Egidio Astesiano University of Genova, Italy

Mikhail Auguston New Mexico State University, USA

Marco Bernardo University of Torino, Italy

Daniel Berry University of Waterloo, Canada

Valdis Berzins Monterey Naval Postgraduate School, USA

Michel Bidoit Ecole Normale Superieure de Cachan, France

Nikolaj Bj0rner Kestrel Institute, USA

Dines Bj0rner Technical University of Denmark, Denmark

Manfred Broy Technical University of Munich, Germany

Maura Cerioli University of Genova, Italy

Christine Choppy Universite Paris Nord, France

Paolo Ciancarini University of Bologna, Italy

Werner Damm Univ. of Oldenburg, Germany

Jose L. Fiadeiro University of Lisbon, Portugal

Nicolas Guelfi Luxembourg Univ. of Appl. Science, Luxenbourg

Armando Haeberer Oblog Software SA, Portugal

Maritta Heisel University of Magdeburg, Germany

Constance Heitmeyer Naval Research Laboratory, USA

Heinrich Hußmann Dresden University of Technology, Germany

Paola Inverardi University of 1'Aquila, Italy

Purushothaman Iyer North Carolina State University, USA

Cliff Jones University of Newcastle, UK

Doug Lange SPAWAR, USA

Insup Ixe University of Pennsylvania, USA

Luqi Monterey Naval Postgraduate School, USA

Tom Maibaum King's College London, UK

Zohar Manna Stanford University, USA

Aloysius Mok University of Texas, USA

Carlo Montangero University of Pisa, Italy

Anna Philippou University of Cyprus, Cyprus

Mike Reed Oxford University, UK

j Gianna Reggio University of Genova, Italy

David Robertson University of Edinburgh, UK

Oleg Sokolsky University of Pennsylvania, USA

Jeffrey Tsai University of Illinois, USA

Alex Wolf University of Colorado, USA

John Zavada ARO/ERO - US Army, USA

Du Zhang California State University, USA

Table of Contents

Foreword
Egidio Astesiano l

SAT-solving the Coverability Problem for Unbounded Petri Nets
P. A. Abdulla, S. P. Iyer and A. Nylen l

Evolution by Contract
Luis Filipe A. Andrade and Jose Luiz L. Fiadeiro 11

"Lightweight" Semantics Models for Program Testing and Debugging Automation
Mikhail Auguston

Static Analysis for Program Generation Templates
Valdis Berzins

Domain Engineering
"Upstream" from Requirements Engineering and Software Design
Dines Bj0rner

The Partial Spechilada
Nikolaj S. Bj0rner

Dynamic Distributed Systems. Towards a Mathematical Model
Manfred Broy

23

Performance Evaluation of Architectural Types: A Process Algebraic Approach
Marco Bernardo, Paolo Ciancarini, Lorenzo Donatiello 32

Appliances and Software:
The Importance of the Buyer's Warranty and the Developer's Liability in
Promoting the Use of Systematic Quality Assurance and Formal Methods
Daniel Berry 38

55

64

74

86

A formal approach to specification-based black-box testing
Maria Victoria Cengarle and Armando Martin Haeberer 98

Using CASL to Specify the Requirements and the Design. A Problem
Specific Approach
Christine Choppy and Gianna Reggio 119

JTN: A Java-Targeted Graphic Formal Notation for Reactive and
Concurrent Systems
Eva Coscia and Gianna Reggio XJy

Towards an Evolutionary Software Technology

Maritta Heisel 160

Run-time monitoring and Steering based on Formal Specifications
S. Kannan, M. Kim, Insup Lee, Oleg Sokolsky and M. Viswanathan 167

Towards Practical Support for Component-Based Software Development

Using Formal Specification
Heinrich Hussmann

A Formal Model of System and Software Engineering Experience

Douglas S. Lange and Valdis Berzins

A Risk Assessment Model for Evolutionary Software Projects

Luqi and J. Nogueira

Dependability of Computer-Based Systems
Cliff B.Jones

Verification Diagrams: Logic + Automata
Zohar Manna and Henny B. Sipma

Tracking Real-Time Systems Requirements
Aloysius K. Mok

Specification and Composition of Software Components: Formal

Methods Meet Standards
Carlo Montangero and Laura Semini

Exploiting formal methotds in the real world: a case study of an

academic spin-off company
G. M. Reed

Experimental Analysis for Large Agent Systems
Dave Robertson

Compositional Approach for Modeling and Verification of
Component-Based Software Systems
Jeffrey J.P. Tsai and Eric Y.T. Jaun

Applying Machine Learning Algorithms in Software Development

Du Zhang

178

On the analysis of Dynamic Properties in Component-Based Programming

Paola Inverardi and Alexander L. Wolf l ö

198

208

Comparative Analysis of Design Alternatives in Embedded Systems
James E. Hilger, Insup Lee, Oleg Sokolsky 216

221

226

238

249

256

261

267

275

Foreword

The Workshop on Modelling Software System Structures in a fastly moving scenario

was sponsored by the Army Research Laboratory European Research Office, U.S.

Army Research Office, National Science Foundation, Istituto Nazionale di Alta Mate-

matica/GNIM and Universitä di Genova.

This workshop is the 7th in a series of Software Engineering workshops, called "Mon-

terey Workshops" from the Monterey Naval Postgraduate School, where they originated

under the initiative of prof. Luqi.

The general aim of these workshops is formulating and advancing software engineering

models and techniques, with the fundamental theme of increasing the practical impact

of formal methods. Previous workshops have been devoted to "Real-time & Concurrent

Systems", "Software Merging and Slicing", "Software Evolution", "Software Archi-

tecture", "Requirements Targeting Software", and "Engineering Automation for Com-

puter Based Systems".

A major goal for this series of workshops is to help to focus the software engineering

community on issues that are vital to improving the state of software engineering prac-

tice, bringing together American and European leading scientists actively engaged in

the area.

The context for the workshop initiative is nicely set up in the words from the PITAC
(the USA President's Information Technology Advisory Committee) 1998 Interim Re-

port.

"The demand for software has grown far faster than the resources we have to

produce it. The result is that desperately needed software is not being developed.

Furthermore, the nation needs software that is far more usable, reliable, and

powerful than what is being produced today."

"...it has become clear that the processes of developing, testing, and maintaining

software must change. We need scientifically sound approaches to software de-

velopment that will enable meaningful and practical testing for consistency of

specifications and implementations."

Unfortunately, as the same interim report emphasizes, "current support (for re-

search) is taking a short-term focus, looking for immediate returns, rather than

investigating high-risk long-term technologies".

As a consequence, there is a danger of even widening the gap between fundamental re-

search and current (not always best-) practice. Indeed, together with long standing

problems, such as the quest for software reliability, we are facing the need and partly

the emergence of radically different ways of producing software.

The 7th Workshop, continuing the effort to bring together pragmatic and foundational

research in software engineering, has primarily focused the attention on the major issues

characterizing the new and rapidly evolving scenario of software development, such as

the emphasis on high-level architectural aspects and the component-based and web-

based software development.

Together with proposing new concepts and techniques, another major achievement of

the workshop has been the demonstration that the wealth of past foundational research

in SE can be uplifted to handle some, if not all, of the new problems posed, among oth-

ers, by the different level of component and system granularity, the heterogeneity of

components, the use of distribution and communication and the request for appropriate

human-interface support.

The participation was well balanced, considering that the event took place in Italy: we

had 38 participants, 15 from USA, 15 from Europe, 7 from Italy (including 3 local peo-

ple) and 1 from Canada.

Altogether there have been 29 talks and two panels, each with five participants.

There has been a nice mix of technical talks and talks surveying/proposing hot topics.

The discussion was quite alive and reached high peaks, especially in the discussions

centered around Component based SE and the emergence of UML.

To mark the importance of the event, on Wednesday, at the official banquet, we have

been honored by the presence of the President of the University of Genova, who wel-

comed us, also reacting positively to a nice dinner speech by Manfred Broy, who pre-

sented the motivation for the Workshop within the worldwide fastly moving scenario

shaped by the IT explosion.

Dr. John Zavada also spoke at the banquet presenting the goals of the research support

provided by his office and expressing the opinion that this kind of meeting
USA/EUROPE should be more frequent, because they offer the opportunity of merging

different cultures. The difference in cultures was indeed clearly visible at the workshop,

which however was already showing some remarkable convergence in attitude.

I think it is fair to summarize the overall feeling, saying that, as result of the workshop,

everybody really got a picture of a fastly moving scenario and the many problems we

have to face rapidly to cope with the pace in software development, as it was summa-

rized by Luqi and Manfred Broy in the closing session and discussion and in the words

of a postworkshop message by Dr John Zavada (ARL/ERO): "I enjoyed the workshop

and the discussions that we had. I think that I now have a better understanding of the

issues facing software development."

Egidio Astesiano

DISI - University of Genova

Via Dodecaneso, 35, 16146 Genova
ITALY

u

SAT-solving the Coverability Problem for Unbounded Petri Nets

Parosh Aziz Abdulla S. Purushothaman Iyer*
Dept of Computer Systems Dept of Computer Science

Uppsala University North Carolina State University
Uppsala, Sweden - Raleigh, NC 27695-7534

paroshOdocs.uu.se purush@csc.ncsu.edu

Aletta Nylen
Dept of Computer Systems

Uppsala University
Uppsala, Sweden

aletta@docs.uu.se

Abstract

Verifying systems using net unfoldings to represent the state space is a process containing two steps:
generation of the unfolding and reasoning about the unfolding. In a recent paper [AINOO] we generalized
the notion of unfoldings to unbounded Petri nets and showed how to capture a symbolic representation
of the state space of these nets, thus completing the first of the two steps discussed above. We now
continue with our experimentation and show how to reason with the unfolding obtained. In particular,
we show how to use a SAT-solver to solve the coverability problem for unbounded Petri nets. The results
of our experiments show that the use of unfoldings, in spite of the two-step process, has better time and
space characteristics than an implementation that does not use unfoldings. In effect, we provide the first
evidence for the conjecture that the two step process based on unfoldings could be better than a single
step verification process that considers all interleavings.

1 Introduction

Model checking has had a great impact as an efficient method for algorithmic verification of finite-state
systems A limiting factor in its application is the state space explosion problem, which occurs since the
number of states grows exponentially with the number of components in the system. Therefore, much
effort has been spent on developing techniques for reducing the effect of state space explosion in practical
applications. One such a technique is that of partial orders which is based on the observation that not all
interleavings of a given set of independent actions need to be explored during model checking. Several criteria
for independency has been given, e.g., stubborn sets [Val90], persistent sets lG™]™amplesets ^.
A method which has drawn considerable attention recently is that of unfoldings [McM95, fcKVJfc, UJtayj.
Unfoldings are occurrence nets: unrollings of Petri nets that preserve their semantics. Although unfoldings
are usually infinite, it is observed in [McM95] that we can always construct a finite initial prefix of the
unfolding which captures its entire behavior, and which in many cases is much smaller than the state space
of the system. Unfoldings have been applied to n-safe (i.e., finite-state) Petri nets, and moreRecently-to
other classes of finite-state systems such as synchronous products of finite transition systems ILB99, UJ199J.

There has also been numerous efforts to extend the applicability of model checking to the domain of infinite-
state systems. This has resulted in several highly nontrivial algorithms for verification of timed automata,

♦Supported in part by US ARO under grant P-38682-MA and by STINT

lossy channel systems, (unbounded) Petri nets, broadcast protocols, relational automata, parameterized
systems etc. These methods operate on symbolic representations, called constraints each of which may
represent an infinite set of states. However, in a manner similar to finite-state verification, many of these
algorithms suffer from a constraint explosion problem limiting their efficiency in practical applications As
the interest in the area of infinite-state systems increases, it will be important to design tools which limit
the impact of constraint explosion.

With this in mind we showed how the unfolding technique can be made to work in the context of infinite state
systems [AINOO] by adapting an algorithm described in [ACJYK96] for backward reachability analysis which
can be used to verify general classes of safety properties. More precisely, we presented ant»Wdi fj^^
for symbolic verification of unbounded Petri nets. Where previous approaches [McM95, ERV96, ER99, LB99]
worked on individual markings of the net, we instead let our unfolding algorithm operate on constraints
representing (potentially infinite) upward closed sets of markings. We start from a constraint describing
a set of "final" markings, usually representing configurations that are undesirable during the execution of
the net From the set of final markings we unroll the net backwards, generating a Reverse Occurrence Net
(RON). The algorithm computes a finite postfix of the RON, which gives a complete characterization of the
set of markings from which a final marking is coverable.

Given that net unfoldings represent the state space in a distributed, implicit manner the verification process
is a two step process: generation of the unfolding and reasoning about the unfolding. This contrasts with
traditional approaches where the verification problem is done in a single step. In his seminal work McMil-
lan [McM93l showed that deadlock detection on complete prefix of a 1-safe petri net is NP-complete. Since
the deadlock problem on petri nets is PSPACE-hard it is generally conjectured that the two step process
will yield savings (in time and space) provided the unfoldings are small.

We now show how to reason with unfoldings of unbounded Petri nets by reducing the problem of deciding
whether a final marking is coverable from some initial marking to satisfiability of a Pr0P0Sltl0"^°™-
Based on the postfix algorithm, we have implemented a prototype, which we have used together with PROVER
a satisfiability checker based on the Stälmark Method [SS98], to verify safety properties for a number of
examples. The main contribution of this work is an end-to-end comparison of the time and space required
for the coverabihty problem. The comparison pits on one hand a combination of the unfolding construction
and the use of PROVER for reasoning and on the other a backward reachability algorithm, which considers all
interleavings. Our main conclusion is that the space and time required for reasoning based on unfoldings is
significantly lesser than the space and time required for reasoning based on consideration of all interleavings.

Outline In the next section we give some preliminaries on Petri nets. In Section 3 we introduce Reverse
Occurrence Nets (RONs) and unfoldings. In Section 4 we describe how the coverabihty problem can be
reduced to a satisfiability problem which can be solved using the SAT-solver PROVER which ^cribed^n
Section 5 In Section 6 we describe the implementations used in our experimentation and in Section I the
results are reported. Finally, in Section 8 we give some conclusions and directions for future research.

2 Preliminaries

Let N be the set of natural of numbers. For a, b € N, we define a G b to be equal to a - b if a> b, and equal
to 0 otherwise. A bag over a set A is a mapping from A to N. Relations and operations on bags such as <,
+, -, e, etc, are defined as usual. We use \S\ to denote the size of the set S.

A net is a triple (P,T,F) where P is a finite set of places, T is a finite set of transitions, and FC (P x
T) U (T x P) is the flow relation. By a node we mean a place or a transition. The preset x ot a node
x is the set {y I (y,x) e F}. The postset *• is similarly defined. A marking M is a bag over P We say
that a transition t is enabled in a marking M if 't < M. We define a transition relation, -> ori he se^of
markings where M1 —> M2 if there is a t £ T which is enabled in Mx and M2 = Mi - t + t . We let—>
denote the reflexive transitive closure of —>. We say that a marking M2 is coverable from a marking Ml if

Ml ^ M'2, for some M'2>M2. A net system is a tuple N = (P,r, F, Minit, Mfin), where (P,T,F) is a net
and Minit,Mfin are markings, called the initial and the final marking of N respectively. In this paper, we

consider the coverability problem defined as follows.

Instance A net system (P,T,F,Minit,Mfin)-

Question Is Mfin coverable from Minn?

Using standard methods [VW86, GW93], we can reduce the problem of checking safety properties for Petri

nets to the coverability problem.

To solve the coverability problem, we perform a backward reachability analysis. We define a backward
transition relation [ACJYK96], such that, for markings Mx and M2 and a transition t, we have M2yt Mi
if Mi = (M2 0 f) + **. Observe that, for each marking M2 and transition t, there is a marking Mx with
M2 ~>t Mu i.e., transitions are always enabled with respect to ~>. The following result justifies the use of

backward reachability:

Lemma 2.1 [ACJYK96]

I if Mi —► Mi and M'2 < M2 then there is M[< Mi such that M^ ~» M[.

2. If M2 ~» Mi and M[> Mi then there is M'2 such that M'2 > M2 and M[—► M'2.

3 Reverse Occurrence Nets and Unfoldings

A Reverse Occurrence Net (RON) corresponds to a backwards "unrolling" of a net. Formally, a RON R is

a net (C, E, F) satisfying the following conditions

(i) \c'\ < 1 for each ceC.

(ii) there is no infinite sequence of the form ClFeiFc2F • - •. This condition implies that there are no cycles
in the RON, and that there is a set max(F) of nodes which are maximal with respect to F.

(iii) max(F) C C.

In a RON the places and transitions are usually called conditions and events respectively. A set of events
UCEis considered to be a configuration if for every event e', if there is an event e G E with eF e then
e' G E. Intuitively, a configuration captures a set of events that could have been fired.

Consider a net system N = (P,T, F, Minit, Mfin) and a RON (C, E, F), and let » : C U E -> P U T such that
a(c) E P if c € C and /x(e) G T if e € E. For C C C, we define #C to be a marking such that, for each place
p the value of #C(p) is equal to the size of the set {c G C \ //(c) = p). In other words #C(p) is the number
of conditions in C labeled with p. We say that (C, E, F, M) is a facfaooni; «n/o/din5 of N if the following two

conditions are satisfied:

(i) #max(F) = Mfin, i.e., the set of conditions which are maximal with respect to F correspond to the

final marking; and

(ii) \i preserves F, viz., if (x,y) G F then (fi{x),fj.(y)) G F.

For a configuration E, we define Cut(E) to be the set ({«e | e G £} U max(F)) - {e' \ e G £}• We define

the marking mark(E) - #(Cut(E)).

In Figure 1, we show a net system N with seven places, Pl>... ,p7, and four transitions, tu... ,t4- We
also show an unfolding1 f/ of JV, assuming a final marking (pi,p7). Examples of configurations in U are
Ei = {e2,e4} with mark{Ei) = (pi,p2,p3), and E2 = {61,62,63,64} with mark{E2) = (pi,P2,P2,P3).

iTo increase readability, we show both names and labels of events in the figure, while we omit names of conditions.

N U

Figure 1: A net system and one of its unfoldings

Remark In [McM95, ERV96], configurations are required to be conflict free, i.e., for all events e, e2 € E
we have *ex D 'e2 = 0. Notice that this property is always satisfied by our configurations, since we demand
that |c*| < 1 for each condition.

3.1 Postfix of an unfolding

Our definition of unfolding does not preclude the fact that it could be an infinite (backward) unrolling. In
practice, we wish to construct a finite postfix of the unfolding and reason with it. The construction of the
finite postfix critically depends upon certain events that are called cut-off events. Intuitively, by backward
firing cut-off events we would only be generating states that are already represented in some other part of

the net.
For every event e we define its downward closure 4 to be {e' \ e P e'}. Clearly 4 is a configuration and has
a marking associated with it. We say that a configuration E1 covers a configuration E2, written formally
as E, ■< E2 iff lEil < \E2\ and mark^) < mark(E2). From Lemma 2.1 it is easy to see that markings
backward re'achable from E, are also reachable from E1. Consequently, it does not make any sense to explore
states reachable from E2. The importance of the size restriction comes from the fact that there could be
multiplicity of tokens in a place (concurrently) and one can not be ignored for the sake of others.

An event e is a cut-off event in U if there is a configuration E in U such that E -< 4-

In Figure 2, an algorithm which generates an unfolding U = (C,E,F,„) of a given net system N =
(P TF MiniUMfin) in an incremental way is presented. In a manner similar to [ERV96], the unfolding
s rep'resentS as a list of objects corresponding to conditions and events in the underlying RON An event

e is represented as an object (C,t) where t is the label „(e) of e and C is its set c' of poj^to^A
condition c is represented by an object (e,p) where p is the label »(c) of c, and e is its (single) post-event
c\ We observe that the flow relation F and the labeling function /i are included in the encoding.

Consider a set of conditions C of U to be i-enabled provided there exists a configuration £ such that
C C Cut(E) and 0 < #C < f, i.e., there is a configuration E such that C CCut(E and all the ^diUons
in C are in the postset of t. We will write Et(C) to denote that C is t-enabled. We define Xtnd(U) to be
the set of events by which U can be extended, formally defined as follows:

Xtnd(U) = {(C,t) | Et(C) and (C,t) $ U}

Observe that the definition implies that there are no redundancies in the unfolding. In other words we will

Input: net system N = (P,T, F, Minu,Mfin), where Mfin = (pi, -. - ,Pn)-
var UN: unfolding of N; X: set of events.
begin

UN:=fa.,Q),..-,(Pm,9)
X — Xtnd{UN)
while {X # 0) do

Pick and delete e = (C, t) from X
Add etoU
If ->cut-off{e) then Vp € *f add a new condition (p,e) to t/jv
X := X U Xtnd{UN)

end

Figure 2: Unfolding Algorithm

not have two different events both having the same label and the same postcondition.

If the algorithm, given above, does not terminate then there would be an infinite sequence of events {e^i
such that for every pair of distinct events et and e,- we would have mark^l) and mark{e^) are incomparable,
which is not possible according to Dickson's Lemma [Dicl3]. Consequently, we are assured that the unfolding
construction does terminate leaving behind a structure to reason with. Note that Mfin is coverable from a
marking Minit if and only if there is a configuration EinU such that mark(E) < Minit.

4 Checking Coverability using SAT-solvers

The problem of checking coverability from a marking M once an unfolding U has been generated is, as
stated in Section 3, the problem of finding a configuration E such that mark(E) < M. Since the number of
configurations of U could be very large (|7>(E)| in the worst case) a brute force method based on computing
the set of all configurations is not practical. We, consequently, propose to use a SAT-solver, in our case
PROVER, to carry out the task. This depends upon encoding the coverability problem as one of checking
satisfiability of a propositional formula.

By the definition of configurations we know that for each configuration E the following holds:

(i) if an event eeE then for all events e' s.t. eFcFe' we have e' € E.

(ii) a condition c e Cut(E) if and only if c' C E and for all events ee*c,e<£E.

Finally, a configuration E satisfies mark(E) < M, for a marking M, provided for each place p we have

#Cut{E)(p) < M(p)

Given a net system JV - {P,T,F,Minit,Mfin) and an unfolding U = (C,E,F,/i) of N we can construct a
formula T, where each node x in U is represented by a variable vx, according to the following

1. For each event eeE, add a conjunct ve =► vei A ••• A vCn where {ei,... ,en} is the set
{e, | 3c € C : eFcFei}

2. For each condition c € C, add a conjunct vc «• vCp A -.«ei A • • • A -^vSn where {ep} = c" and
{e1;... ,en} is the set {d | efFc}

3 For each place p e P, add a conjunct LTEk(k,[vCl,... ,vCn}) where k = MinU(p), and {Cl, ,c^}
is the set {a | fi(ci) = p}. Furthermore, the predicate LTEk(k, [vu... ,«„]) is true exactly when the
number of propositions in the set {vu... ,vn} that are assigned true is lesser than or equal to k.

Now a model of T is an assignment of variables corresponding to a configuration E in the following way

•

•

For each event e, e € E iff ve

For each condition c, ce Cut(E) iff vc

• mark(E) < Minu

The problem of checking coverability has now been reduced to the satisfiability of the prepositional formula
?, i.e., T is satisfiable if and only if Mfin is coverable from Minit.

The formula T is, of course, a simple prepositional formula except for the third set of conjuncts, those
containing LTEk. These formulas can be encoded in prepositional logic; however, the naive translation
would involve an exponential blow up. The SAT-solver used in this work, PROVER, has support for such

predicates, which comes to our aid.

5 PROVER

To determine satisfiability we use a commercial tool, PROVER, a proof procedure for prepositional logic
augmented with finite domain integer arithmetic and enumerated types. The theorem prover underlying
PROVER is an implementation of the Stälmarck Method [SS98] which is based on a system for natural
deduction The proof procedure has been know to be versatile and has been used with prepositional formula
containing as much as 350,000 connectives. PROVER deals with formulas involving all the usual logical
connectives, conjunction, disjunction, implication, equivalence and negation. In addition, it also provides
a number of predicates of the form LTEk(fc, [h, ■ • - , U)) which are statements about how many of the n
formulas /, . , /„ that are true, in this case the number of true formulas is less than or equal to *. Inese
predicates can be defined using the basic connectives, but the naive way to do so results in a number of
connectives which grows as a fc-order polynomial in n, whereas the calls in PROVER use approximately

2*k*(n- k) connectives.

PROVER also deals with the arithmetic connectives, addition, subtraction, multiplication, division, remainder

and negation.

6 Implementation

In our experimentation, we have compared two implementations of the unfolding algorithm and an imple-
mentation of a backwards reachability algorithm.

The implementation of the backwards reachability algorithm is a straightforward rendition of the abstract
algorithm in [ACJYK96] and is as given in Figure 3. Note that this algorithm does not make use of
partial-order techniques, and, therefore, considers all possible interleavings.

A technical point to note in the algorithm above is that the set Min, at the end of the ktk iteration, maintains
the minimal elements of the set {M\Mfin -* M}. Given that these minimal elements denote upward closed
sets of markings, we are, again, guaranteed termination by Dickson's Lemma [Dicl3]. More importantly, we
wish to point out that if a marking that is smaller than Minit is generated then the algorithm terminates
immediately without generating the entire set of minimal elements of the backward reachable set This
contrasts with our unfolding algorithm where we have to build the whole prefix before checking whether
Minit is represented in the unfolding.

Issues in the unfolding algorithm: The implementation of the unfolding algorithm is a straight-forward
rendition of the abstract algorithm given in Section 3. There were, however, two issues that need explanation;

Input: net system N = (P,T, F, Minit,Mfin).
var Min : Set of minimal markings, Q : Queue of markings to be considered
begin

Min := 0;
Q := {Mfin};
while (Q ^ 0) do

Pick and delete a marking M from Q
If M < Mmit then return "yes"
If 3M' € Min such that M' < M then continue;
Add M to Min while removing any M' € Min such that M < M'
Add to (3 all M' such that M ~> M'.

end
Return "No";

end

Figure 3: Backward Reachability Algorithm

computation of Xtnd and checking of termination. In the computation of Xtnd we maintain a queue of sets
of conditions, where each set denotes a set of conditions that could hold concurrently and can, consequently,
be the postset of an event. As new conditions are generated we check whether a new condition can be added
to a set of conditions that is already under consideration. It is in this way that a seemingly combinatorial
problem is converted to one of carrying out depth-first searches.

The two implementations that we will report upon, Unfolding 1 and Unfolding 2, use the same abstract
program and the same strategy for calculating Xtnd. They, however, differ, on how the termination conditions
are checked In Unfolding 1 when a new event e is generated we compute mark{e%) and \e 11 for all events
e' in the current unfolding. Clearly, there is a lot of wasted time with this design choice but it does save on
space. With Unfolding 2 with each event e' we maintain both mark{e\) and \e'\. |.

7 Experimental Results

The thesis of our experimental work is that although analysis with unfoldings is is done in two steps,
constructing the unfolding and reasoning about it, the time and space required is less than for an interleaving
based backward analysis for the coverability problem of unbounded Petri nets.

We will now show three examples which, in spite of being small2, illustrates convincingly that unfoldings
provide significant savings in space and time. In each case, we give the size of the Petri net in terms of
the number of places, \P\, and the number of transitions, \T\. We compute (a) the maximum number of
markings that need to be maintained for the traditional backward analysis [AJ98] and (b) the total number
of nodes generated by the unfolding algorithm. Given that the storage requirements of a node is bounded
by the storage required for a marking, comparing the number of markings from backwards analysis against
the total number of nodes in an unfolding is appropriate. Furthermore, we also report on the time taken for
using both the prover and the generation of the unfolding.

Example 1: The first example we consider, presented in Figure 4, is that of a simple token ring consisting of
a number of processes. As we increase the number of processes the number of places and transitions increase
too. Note, however, that the Minit and Mfin where so chosen that they have the same total number of tokens
in each case, and, furthermore, the Mfin is not coverable from Minit. Consequently, the backwards analysis
algorithm would have to compute the basis for the entire backward reachability set.

'Unfortunately, no large examples of unbounded petri nets are available. We checked the Petri net list's repository without

much luck. Any suggestions are welcome.

A process

A token ring of processes

processes 1^1 \T\
Unfolding 1 Unfolding 2 Backward

Time
xl0~2 sec

Space Time
xl0~2 sec

Space Time
xl0~2 sec

Space

2 4 6 3 14 1 20 1 37

4 8 12 14 30 7 44 10 147

8 16 24 79 62 26 92 284 550

16 32 48 596 126 134 188 12124 2006

Figure 4: A Simple Token Ring Network

Example 2: This is a slightly more complicated version of Example 1 designed with the aim of introducing
more branching (see Figure 5). In this case, though the number of processes was changed (and thus the size
of the petri net changed) the Mfin was kept the same. However, the initial marking was changed with every
instance. Finally, in all of these cases too Mßn was not coverable from the Minit.

Example 3: In this example, of a buffer process, from Figure 6, the original Petri net was kept the same
while the number of tokens in Mfin was changed with each instance while the Minit was kept the same.
Furthermore, in all of the instances Mfin is coverable from Minit.

There are several conclusions that can be drawn from these experiments:

. Unfolding 2 is a better algorithm than Unfolding 1. While it uses approximately 1.5 times the memory
that Unfolding 1 uses, the savings in time is indeed significant. The time falls by much more than a

factor of 1.5.

. Both Unfolding 1 and Unfolding 2 are better than a traditional backward analysis, which uses inter-

leaving semantics.

• The cost of using PROVER to reason about the unfolding is insignificant compared to the time, and
space, needed to compute the unfolding.

• Unfoldings do offer great savings in time and space.

8 Conclusions and Future Work

We have shown how safety properties can be verified for infinite state systems modeled by unbounded
Petri nets by using a combination of the unfolding technique presented in [AIN00] and a SAT-solver,

A process

A token ring of processes

tokens
& processes

1^1 \T\

Unfolding 1 Unfolding 2 Backward

Time
xlO-2 sec

Space Time
xlO-2 sec

Space Time
xlO-2 sec

Space

2 8 8 18 30 7 42 20 197

4 16 16 56 54 18 78 3053 1700

8 32 32 313 102 70 150 553324 14637

16 64 64 2611 198 409 294 *

non-termin ation aft »r a reasonab le amouii it of time.

Note: * implies

Figure 5: A more complicated token ring network

PROVER [SS98]. We have compared this two-step process with an implementation of a single step veri-
fication that does not use unfoldings and found that it is more efficient both concerning time and space.

Since the cost of using PROVER to reason about unfoldings is insignificant compared to the cost of creating the
unfolding an important direction of future research is the design of efficient data structures for implementation
of the unfolding algorithm. It is also important to study the performance of the algorithm on more advanced
examples.

References

[ACJYK96] Parosh Aziz Abdulla, Karlis Ceräns, Bengt Jonsson, and Tsay Yih-Kuen. General decidability
theorems for infinite-state systems. In Proc. ll"1 IEEE Int. Symp. on Logic m Computer
Science, pages 313-321, 1996.

[AIN00] Parosh Aziz Abdulla, Purushothaman Iyer, and Aletta Nylen. Unfoldings of unbounded petri
nets. To appear in Proc. CAV'2000, 12th Int. Conf. on Computer Aided Verification, 2000.

[AJ98] Parosh Aziz Abdulla and Bengt Jonsson. Ensuring completeness of symbolic verification meth-
ods for infinite-state systems, 1998. To appear in the journal of Theoretical Computer Science.

[Dicl3] L. E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with n distinct
prime factors. Amer. J. Math., 35:413-422, 1913.

[ER99] J- Esparza and S. Römer. An unfolding algorithm for synchronous products of transition sys-
tems. In Proc. CONCUR '99, 9th Int. Conf. on Concurrency Theory, volume 1664 of Lecture
Notes in Computer Science, pages 2-20. Springer Verlag, 1999.

tokens
Unfolding 1 Unfolding 2 Backward

Time
xl0~2 sec

Space Time
xlO-2 sec

Space Time
xl0~2 sec

Space

2 4 20 3 30 2 36

4 18 40 9 60 14 130

8 105 80 26 120 526 723

16 708 160 95 240 78733 6068

Figure 6: A buffer process

[ERV96]

[GW93]

[LB99]

[McM93]

[McM95]

[Pel93]

[SS98]

[Val90]

[VW86]

J Esparza, S. Römer, and W. Vogler. An improvement of McMillan's unfoldmg algorithm In
Proc TACAS '96, 2th Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems, volume 1055 of Lecture Notes in Computer Science, pages 87-106. Springer Verlag,

1996.

P. Godefroid and P. Wolper. Using partial orders for the efficient verification of deadlock freedom
and safety properties. Formal Methods in System Design, 2(2):149-164, 1993.

R Langerak and E. Brinksma. A complete finite prefix for process algebra. In Proc. ll"1 Int.
Conf. on Computer Aided Verification, volume 1633 of Lecture Notes in Computer Science,
pages 184-195. Springer Verlag, 1999.

K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

K.L. McMillan. A technique of a state space search based on unfolding. Formal Methods in
System Design, 6(l):45-65, 1995.

D Peled All from one, one for all, on model-checking using representatives. In Proc. bth Int.
Conf. on Computer Aided Verification, volume 697 of Lecture Notes in Computer Science, pages
409-423. Springer-Verlag, 1993.

M Sheeran and G. Stälmarck. A tutorial on stälmarck's proof procedure for prepositional
logic. In Formal Methods in Computer-Aided Design, volume 1522 of Lecture Notes m Computer
Science, pages 82-99. Springer Verlag, 1998.

A. Valmari. Stubborn sets for reduced state space generation. In Advances in Petri Nets, volume
483 of Lecture Notes in Computer Science, pages 491-515. Springer-Verlag, 1990.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification.
In Proc. 1st IEEE Int. Symp. on Logic in Computer Science, pages 332-344, June 1986.

10

Evolution by Contract

Luis Filipe A. Andrade Jose Luiz L. Fiadeiro
Oblog Software SA LabMAC & Department of Informatics

Alameda Antonio Sergio 7 - 1 A Faculty of Sciences, University of Lisbon
2795 Linda-a-Velha, Portugal Campo Grande, 1700 Lisboa, Portugal

landrade@oblog.pt jose@fiadeiro.org

Abstract The volatility of business requirements is putting an increasing emphasis on the ability for systems to
accommodate the changes required by new or different organisational needs with a minimum impact on the im-
plemented services. We propose a discipline for software development centred around the Separation between
what in systems are the basic service-providers (objects) and the mechanisms (contracts) through which the be-
haviour of these objects is coordinated to fulfil business requirements. We show how this separation can be sup-
ported in platforms for component-based development, making it possible for systems to evolve by adding, re-
moving or replacing contracts without having to change the rest of the system.

1 Introduction

The problem addressed and the solutions proposed in this paper result from our experience in the last five
years in conceiving, developing and applying methods and tools for modelling banking applications. In
banking, like in many other business activities, the pace of market evolution and the volatility of requirements
have a very deep influence on organisations and their information systems. More and more, large organisa-
tions face two important problems in this respect:
- How to conceive and develop information systems in order to support the continuous evolution of the

core business and the evolution of system technology?
- How to make development and evolution scalable in the context of highly volatile business domains?

For better or for worse, such organisations seek answers to these problems in the context of object-oriented
development techniques, of which the UML [7] is now, de facto, a standard. In spite of poor support from
formal methods, one has to recognise that the construction of software has become more scalable and con-
trollable thanks to mechanisms like encapsulation, clientship and inheritance. Even if the promised land of
software component markets is not exactly around the comer, increased levels of reusability can be recog-
nised in today's development practices.
However our experience has shown that the benefits that object-oriented techniques have brought to software
construction cannot be extended directiy to software evolution. Even if object-oriented techniques make it
easier to build systems by putting together components in a way that reflects interactions that take place in the
application domain, changes on the implemented systems that result from the need to accommodate new
business rules cannot be performed in such a modular way. This is because interactions are too often "hard-
wired" in the code that implements the participating objects, making it difficult to change or introduce new
interactions without having to change the implementation of the objects as well. Even worse, because such
changes may result in new interfaces for the participating objects, a cascade of changes throughout the im-
plementation of the system may well be triggered to account for the other interactions in which the objects
participate.
As a consequence, the evolution of an object-oriented system, understood in terms of the need to perform
changes on the system after it is released, cannot be supported in a compositional way. In other words, to
some extent, object-oriented development is still producing legacy systems as far as evolution is concerned.
Yet time-to-market and other business constraints require that information systems be able to accommodate
new practices and rules with minimal impact on the core services that are already implemented, thus prompt-
ing the need for modelling techniques that enable evolution to be directly compositional over the architecture
of the information system.
Our purpose in this paper is to contribute to the solution of this problem by means of a modelling primitive -
that we call contract - and a design pattern that enables contract-based models to be implemented, in a com-

11

positional way, over component-based development frameworks like CORBA, EJB and COM.
The rationale for contracts is the realisation that, in highly volatile business domains like banking, one can
distinguish between two different kinds of "entities" as far as evolution is concerned. On the one hand, we
have classes of objects like account, client, etc, that correspond to core business entities that are relatively
stable in the sense that the organisation would normally prefer not to have to touch them, often because they
really constitute legacy assets that are important to preserve. On the other hand, we have all the business
products like account packages (different types of savings accounts, credits, etc) that keep changing because
they determine the competitive edge of the organisation. These products require a layer of coordination to be
established over the functionalities of the business entities so that the overall behaviour desired for the system

can emerge.
When systems are conceived as collections of interacting objects, the problems that we have just identified
require that we be able to express, and make available as first-class citizens, the constraints and the rules that
capture the business requirements of the application domain. Because business rules determine the way ob-
ject behaviour and interaction needs to be coordinated, it is necessary that these coordination aspects be avail-
able explicitly in the system models so that they can be changed, as a result of modifications that occur at the
level of the business requirements, without having to modify the basic objects that compose the system. The
purpose of contracts, as used in this paper, is to provide mechanisms for that layer of coordination to be mod-
elled and implemented in a compositional way. In [4], we have emphasised the static modelling aspects of
the concept and shown how contracts can be introduced as an extension of the UML [7]. In this paper, we
focus on the dynamic aspects and present contracts as a means of structuring the evolution of systems.

2 An example
We will use an example from banking in order to motivate the notion of contract that we are proposing. The
notation that we use in the examples is a shortened version of the Oblog language [http://www.oblog.com]
that we have been developing for object-oriented modelling. An example of a class specification is given

below for bank accounts.
class Account
operations

class
Create(client:Customer,iAmount:Integer)

object
Deposit(amount:Integer)
Withdrawal(amount:Integer)
Balance!) : Integer;
Transfer(amount:Integer, target:Account);

body
attributes

number : Integer;
balance : Integer := 0

methods
Deposit is set Balance := Balance+amount
Withdrawal is set Balance := Balance-amount
Transfer is { call target.Deposit(amount!;

call self-Withdrawal(amount) }

end class .
In Oblog a class specification includes a section in which the interface operations are declared. We distin-
guish between class and object operations: the former are used for managing the population of the class as a
whole and the latter apply to each specific instance. Each operation is declared with a list of input and output
parameters and a specification of its required behaviour in terms of pre/post cond.t.ons (omitted in the exam-
ple for simplicity). In the case of the bank account, the operations that were chosen are self-explanatory.

The body section of a class specification identifies the attributes that define the state of the instances as well
as the implementations of the operations (called methods). Methods can be guarded with state-conditions ike
in Dijkstra's guarded commands. In fact, one may wonder why a guard has not been specified for with-
drawal restricting this method to occur in states in which the amount to be withdrawn can be covered by the
balance. The answer to this question is a good motivation for contracts.

12

Assigning the guard Balance>amount to withdrawal can be seen as part of the specification of a business
requirement and not necessarily of the functionality of a basic business entity like account. Indeed, the cir-
cumstances under which a withdrawal will be accepted can change from customer to customer and, even for
the same customer, from one account to another depending on its type.
One could argue that, through inheritance, this guard could be changed in order to model these different
situations. However, there are two main problems with the use of inheritance for this purpose. On the one
hand it views objects as white boxes in the sense that adaptations like changes to guards are performed on the
internal structure of the object. From the point of view of evolution, this is not desirable. On the other hand,
from the business point of view, the adaptations that make sense may be required on classes other than the
ones in which the restrictions were implemented. In the example above, this is the case when it is the type of
client, and not the type of account, that determines the nature of the guard that applies to withdrawals.

Hence it makes more sense for business requirements of this sort to be modelled explicitly outside the classes
that model the basic business entities. Our proposal is that guards like the one discussed above should be
modelled as contracts that can be established between clients and accounts. In fact, we will provide mecha-
nisms for such contracts to be superposed on existing implementations of clients and accounts, considered as
black boxes, so that contracts can be added and deleted in a flexible way (plug and play), reflecting the evo-
lution of the business domain.
The example given above motivates the advantage of modelling, as first-class entities, the mechanisms that
control the usage of given objects (contracts as controllers). The example below aims at illustrating cases in
which a layer of coordination among different objects is required that is active in its own right.
One of the latest products to appear in the banking area can be called "the flexible package". This is a mecha-
nism via which automatic transfers are made between a checking account and a savings account of the same
client: from savings to checking when the balance goes below a certain threshold, and from checking to sav-
ings when the balance goes above a certain threshold.
Like before, the application of traditional object-oriented techniques for adding this new feature to the system
would probably raise a number of problems. The first one concerns the decision on where to place the code
that is going to perform the transfers: the probable choice would be the checking account because that is
where the balance is kept. Hence, the implementation of account would have to be changed. The "natural
solution would be to assign the code to a new association class between the two accounts but, again, current
techniques for implementing association classes require the implementations of the participating classes to be
changed because the associations are implemented via attributes.
Another problem is concerned with the handling of the synchronisation of the transfers. If the transfers are
not coded in the methods of the accounts, there is no way in which the whole process can be dealt with atomi-
cally as a single transaction. Again, what is required is a mechanism via which we can superpose a layer of
coordination that is separate from the computations that are performed locally in the objects. This is exactly
the purpose of contracts as detailed in the next section.

3 Contracts

From a static point of view, a contract defines an association class in the sense of the UML (i.e. an associa-
tion that has all the attributes of a class) but the way interaction is established between the partners is more
powerful: it provides a coordination role that is closer to what is available for configurable distributed sys-
tems and software architectures in general.
Another useful analogy is with architectural connectors [2]. A contract consists, essentially, of a collection of
role classes (the partners in the contract) and the prescription of the coordination effects (the glue m the ter-
minology of software architectures) that will be superposed on the partners.

In Oblog, contracts are defined as follows:
contract <name>

partners <list-of-partners>
invariant <the relation between the partners>
constants
attributes
operations . .
coordination <interactions-with-partners> behaviour < behaviour being superposed

end contract

13

The instances of the partners that can actually become coordinated by instances of the contract are determined
through a set of conditions specified as invariants. The typical case is for instances to be required to belong to
some association between the partners.

Each interaction under "coordination" is of the form
when <condition>
do <set of actions>
with <condition>

The name of the interaction is necessary for establishing an overall coordination among the various interac-
tions and the contract's own actions. This is similar to what happens in parallel program design languages
like Interacting Processes [14]. The condition under "when" establishes the trigger of the interaction. Typical
triggers are the occurrence of actions in the partners. The "do" clause identifies the reactions to be performed,
usually in terms of actions of the partners and some of the contract's own actions. Together with the logger,
the reactions of the partners constitute what we call the synchronisation set associated w.th the interact.™.
Finally, the "with" clause puts further constraints on the actions involved in the interaction, typically further

preconditions.
The intuitive semantics (to be further discussed in the following sections) is that, through the "when" clause,
the contract intercepts calls to the partners or detects events in the partners to which it has to react. It then
checks the "with" clause to determine whether the interaction can proceed and, if so, coordinates the execu-
tion of the synchronisation set. All this is done atomically.
An example can be given through the account packages already discussed. The traditional package, by which
withdrawals require that the balance be greater than the amount being withdrawn, can be specified as follows:

contract Traditional package
partners x : Account; y : Customer;
invariants Towns(x,y)=TRUE;
coordination

tp: when y.calls!x.withdrawal(z))
do x.withdrawal(z)
with x.Balance!i > z;

end contract

Notice that, as specified by the invariant, this contract is based on an ownership association that must have
teen previously defined. This contract involves only one interaction. It relates calls placed by the customer
for withdrawals with the actual withdrawal operation of the corresponding account. The customer is the: trig-
ger of the interaction: the interaction requires every call of the customer to synchron.se with the withdrawa
operation of the account but enables other withdrawals to occur outside the interactions e.g. by other joint
owners of the same account. The constraint is the additional guard already discussed. Notice hat the con-
straint applies only to the identified pair of customer and account, meaning that other owners of the same ac-
count may subscribe to different contracts.
The notation involving the interaction in this example is somewhat redundant because the fact that the trigger
is a eall from the customer to an operation of the account immediately identifies the reaction to be performed.
In situations like this, Oblog allows for abbreviated syntactical forms of interaction However, in the paper
we will consistently present the full syntax to make explicit the various aspects involved in an interaction. In
particular, the full syntax makes it explicit that the call put by the client is intercepted by the «»tract and the
reaction, which includes the cal. to the supplier, is coordinated by «he contract Again, we f^ **«**
interactions are atomic, implying that the client will not know what kind of coordination is being superposed.
From his point of view, it is the supplier that is being called.
As already explained, the purpose of contracts is to externalise the interactions between objects, making them
explicit in the conceptual models, thus reflecting the business rules that apply in the current state. Hence
ontracts may change as the business rules change, making system evolution compositional -th respect to

the evolution of the application domain. For instance, new account packages may be introduced that relax the
conditions under which accounts may be overdrawn:

contract VIP package
partners x : Account; y : Customer;
constants CONST_VIP_BALANCE: Integer;
attributes Credit : Integer;
invariants

Towns(x,y)=TRUE;
x.AverageBalanceO >= CONST_VI P_BALANCE;

14

coordination
vp: when y.calls(x.withdrawal(z))

do x.withdrawal(z)
with x.Balance (} + CreditO > z;

end contract

Notice that on the one hand, we have strengthened the invariant of the contract, meaning that only a restricted
subset of the population can subscribe to this new contract. On the other hand, the contract weakens the guard
imposed on withdrawals, meaning that there are now more situations in which clients can withdraw money

from their accounts.
In general we allow for contracts to have features of their own. This is the case of the contract above for
which an attribute and a constant were declared to account for the credit facility. It is important to stress that
such features (including any additional operations) are all private to the contract: they cannot be made avail-
able for interaction with objects other than the partners. Indeed, the contract does not define a public class.

Our last example models the flexible package that we have already motivated.
contract Flexible package

partners c, s : Account;
attributes min, max : Integer;
invariants c.owner=s.owner;
coordination

putfunds:when calls(c.Deposit(z))
do { if c.Balancei)+z > max then {

c.Deposit(z) ; c.Transfer(c.Balance!)-max,s)} }

getfunds:when calls(c.Withdrawal(z))
do { if c.Balance!)-z < min then {

s.Transfer(min-c.Balance!),c) ; c.Withdrawal(z) })

end contract

4 Semantical aspects

The intuitive semantics of contracts can be summarised as follows:
. Contracts are added to a system by identifying the instances of the partner classes to which they apply;

these instances may belong to subclasses of the partners; for instance, in the case of the flexible package,
both partners were identified as being of type account but, normally, they will be applied to two sub-
classes of account: a checking account and a savings account. The actual mechanism of identifying the
instances that will instantiate the partners and superposing the contract is outside the scope of the paper.
In Oblog, this can be achieved directly as in languages for reconfigurable distributed systems [20], or im-
plicitly by declaring the conditions that define the set of those instances.

. Contracts are superposed on the partners taken as black-boxes: the partners in the contract are not even
aware that they are being coordinated by a third party. In a client-supplier mode of interaction, instead of
interacting with a mediator that then delegates execution on the supplier, the client calls directly the sup-
plier- however, the contract "intercepts" the call and superposes whatever forms of behaviour are pre-
scribed; this means that it is not possible to bypass the coordination being imposed through the contract
because the calls are intercepted;

. The same transparency applies to all other clients of the same supplier: no changes are required on the
other interactions that involve either partner in the contract. Hence, contracts may be added, modified or
deleted without any need for the partners, or their clients, to be modified as a consequence;

. The interaction clauses in a contract identify points of rendezvous in which actions of the partners and of
the contract itself are synchronised; the resulting synchronisation set is guarded by the conjunction of the
guards of the actions in the set and requires the execution of all the actions in the set;

. The effect of superposing a contract is cumulative; because the superposition of the contract consists, es-
sentially of synchronous interactions, different contracts will superpose their coordinating behaviour,
achieving a cumulative effect. For instance, in the example of the flexible package, the transfers can also
be subject to contracts that regulate the discipline of withdrawals for the particular account and client.

Contracts, as motivated in the previous sections, draw from several mechanisms that have been available for
sometime in Software Engineering, which further clarifies the rationale for the semantics that we gave above:

15

. Contract-based development is based on the idea of separating computation from coordination, i.e. of
making clear what components in a system provide the functionalities on which services are based, and
what mechanisms are responsible for coordinating the activities of those components so that the desired
behaviour emerges from the interactions that are established. This idea has been promoted by researchers
in the area of Programming Languages who have coined the term "Coordination Languages and Models'

[e.g. 16].
. The importance of having these coordination mechanisms available as first-class entities and as units of

structure in system models and designs was inspired by the role played by connectors in software archi-
tectures [23]. This is why in [4] we proposed contracts as a semantic primitive enriching the notion of as-

sociation class.
. The ability for objects to be treated as black-box components and, hence, for contracts to be dynamically

added or removed from a system without having to recompile the partners, is achieved through the
mechanism of superposition (or superimposition) developed in the area of Parallel Program Design

[9,14,18].
It is important to state that the contribution of superposition techniques for component adaptation in a black-
box style has also been recognised in [8]. The relationship between coordination languages and software ar-
chitectures has also been recognised by several authors, to the point in which joint workshops are now organ-
ised by the two communities. Our main contribution has been to integrate these three aspects into a primitive
that can be used very effectively for developing and evolving systems in a way that is compositional with
respect to the evolution of the business rules in the application domain.
In fact our contribution has gone a step further in that, over several years, we have developed a mathematical
semantics that brings all these aspects together: coordination, superposition, and architectures. The presenta-
tion of this semantics is outside the scope of this paper. Please consult [11] for the formahsation of different
kinds of superposition that lead to the identification of different kinds of architectural connectors (regulators,
monitors etc)- [12] for a formahsation of architectural connectors based on the previous formahsation of su-
perposition which includes the semantics of instantiation of the partners (roles); [13] for the coordination
aspects as related to superposition and the application to software architectures; [25] for the application to
dynamic reconfiguration, including the definition of algebraic operations on architectural connectors that are
directly applicable to contracts; and [4] for the first formahsation of contracts as presented herein, and their

relationship to the UML.

5 The contract design pattern

As already explained in the previous sections, a contract works as an active agent that coordinates the contract
partners In this section, we are concerned with the way these coordination mechanisms can be implemented^
When defining an implementation, we need to have in mind that, as motivated in the introduction we should
be able to superpose a contract to given objects in a system and coordinate their behaviour as intended without
having to modify the way these objects are implemented. This degree of flexibility is absolutely necessary
when the implementation of these objects is not available or cannot be modified, as in legacy systems. It is
also a distinguishing factor of contracts when compared with existing mechanisms for modelling object inter-
action, and one that makes contracts particularly suited in business domains where the ability to support the
definition and dynamic application of new forms of coordination is a significant market advantage.

Different standards for component-based software development have emerged in the last few years, among
which CORBA JavaBeans and COM are the current trend in industry. However, none of these standards
provide a convenient and abstract way of supporting superposition as a first-class mechanism. Because of
this we propose our solution as a design pattern. This pattern exploits some widely available properties of
object-oriented programming languages such as polymorphism and subtyping, and is based on other well
known design patterns, namely the Broker, and the Proxy or Surrogate [15].

16

Subjectlnterfac
<<abstract>>

ReauesETT

ibstractSubjet t-i

I

Request]J

PartnerConnecto. --j

I
Subject-i

Request (X

PartnerConnectc r-i

fleguestff*

implementation

ÄeaJSubject-

Request 0
Requesto

^L
RealSubject-:

implementation

The class diagram below depicts the proposed pattern. In what follows, we explain, in some detail, its basic
features, starting with the participating classes.
Subjectlnterface-i - as the name indicates, it is an abstract class (type) that defines the common interface of
services provided by AbstractSubject-i and Subject-i.
Subject-i - This is a concrete class that implements a broker maintaining a reference that lets the subject dele-
gate received requests to the abstract subject (AbstractSubject-i) using the polymorphic entity proxy. At run-
time, this entity may point to a RealSubject-i if no contract is involved, or point to a PartnerConnector-i that
links the real subject to the contracts that coordinate it.
AbstractSubject-i - This is an abstract class that defines the common interface of RealSubject-i and Partner-
Connector-i. The interface is inherited form Subjectlnterface-i to guarantee that all these classes offer the
same interface as Subject-i (the broker) with which real subject clients have to interact.
RealSubject-i - This is the concrete domain class with the business logic that defines the real object that the
broker represents. The concrete implementation of provided services is in this class.
PartnerConnector-i - This class maintains the connection between contracts and the real object (RealSubject-
i) involved as a partner in the contract. Adding or removing other contracts to coordinate the same real object
does not require the creation of a new instance of this class but only of a new association with the new con-
tract and an instantiation link with the existing instance of PartnerConnector-i. This means that there is only
one instance of this class associated with one instance of RealSubject-i.
Contract - This is a coordination object that is notified and takes decisions whenever a request is invoked on
a real subject or when it change its state.
If there are no contracts coordinating a real subject, the contract pattern can be simplified and only the classes
that are not dimmed in the figure become necessary. The introduction of a contract implies the creation of
instances for the dimmed classes and associations. The following is a possible object diagram when no coor-
dination contract is defined, which means that there are no Contract and no PartnerConnector instances.

cli
.-Client

(1)
Withdrawal

->
checkingAcc
:Account

(2)
withdrawal ai

-^ .-Account Implementation

In this scenario, where object checkingAcc of type Account is not under coordination, the only overhead im-
posed by the pattern is an extra call from the broker to the real object (Accountimplementation). Introducing
a new contract to coordinate interaction with objects of type Account implies only modifications on the object
that plays the role of broker, i.e. in the object checkingAcc, making its proxy become a reference to the object
that plays the role of a contract partner connector, i.e. the object ace of type Accountconnector, as seen m the
following interaction diagram. Doing only this minor modification, neither the code of clients (e.g. object
cli) nor the code of the broker checkingAcc and the real object ai need to be modified in order to accom-

17

modate the new behaviour established by adding the contract ape of type AccountPackage.
The new behaviour introduced by contract aPc is described in the object interaction diagram below. This
diagram shows how the contract superposes a new behaviour when requests of type withdrawal {) are in-
voked on an object Of type Account.

ape
: Account Package

(4)

Trans fe:

savingsAcc
■.Account

(5)
Transfer

e

\L

cli
-.Client

(3)
get funds

ace
:AccountConnector

(6)
ft (2)

Withdrawal drpi«

(1)
Withdrawal

checkingAcc
:Account

:AccountImplementation

In this diagram we can see that once withdrawal 0 is sent to the object broker checkingAcc, it delegates its
execution on the proxy reference (in this case on ace instead of checkingAcc, as seen on the previous figure).
In ace the implementation of subject services has the following format

Request!) IS
IF (a coordination guard holds)
THEN Execute the coordination do code
ELSE Execute the original code of Request

That is to say before the partner connector ace gives rights to the real object implementation ai to execute
the request, it intercepts the request and gives right to the contract ape to decide if the request is valid and
perform other actions. This interception allows us to impose other contractual obligations on the interact.on
between the caller and the callee. This is the situation of the first model discussed in section 3 where new pre-
conditions were established between Account withdrawals and their customers. On the other hand, it allows
the contract to perform other actions before or after the real object executes the request. This is the situation
of the the coordination equation named getf unds established by the contract Flexible package in section 3.
Only if the contract authorises can the connector ask the object implementation ai to execute and commit, or
undo execution because of violation of post-conditions established by the contract.
As stated at the beginning of this section, current component-based technology does not provide a convenient
way for coordinating components. The benefit of having this form of coordination available as a primitive
construction when specifying components and their interactions is that it avoids the burden of having to code
such a pattern. In the meanwhile, tools which, like Oblog, provide automatic code generation from high level
specifications, must hide the implementation complexity of coordination, allowing the developer just to spec-

ify the contract itself.

6 Contract-based development

The object technology market is growing very rapidly, increasing the offer of low-level tools and technologies
for the fine-grain parts of information system development - development in the small. However, the current
practice of object-oriented software development methods in what concerns the large-grain parts, namely ar-
chitectures - development in the large - still involves the sequential use of analysis and design techniques
and tools. For most large-scale systems, this is quite a wasteful process to follow because it ignores the exis-
tence of software components, design models and environment frameworks.
A new trend is emerging in software development that is based on a growing belief that analysis and design
should be based on predefined frameworks of skeletal applications, components, and design patterns that can
be easily customised and integrated. The only hope for organisations to be able to face the challenges of the
very fast market evolution that we are already witnessing is, clearly, to adopt such a strategy. Therefore, it
seems clear that the integration and coordination of the different parts of information systems, at all levels of
granularity, is one of the major challenges that software development needs to face.
We believe that a good basis for meeting this challenge can be provided by adopting a development strategy
based on three subprocesses:

18

1. the construction of individual components implementing the domain objects;
2. the construction of contracts that play the roles of coordination agents responsible for implementing the

configurable business rules for specific domains;
3. the construction of generic component connectors for specific architectures.
Given that contracts can be dynamically superposed on existing components, the word 'construction' above
can be replaced by 'identification'. Indeed, because contracts treat the partner instances as black-boxes, this
approach promotes reuse at all levels. Moreover, it facilitates the integration of third-party, closed compo-
nents, namely legacy systems.
The advantages that we have identified above in terms of supporting evolution apply, as stated in the intro-
duction, to changes that are triggered by the evolution of the business rules that apply to the system at hand.
As we all know, changes to the system can be triggered by many other factors. Our experience has shown that
implementing an information system involves making decisions that may be decomposed according to three
different dimensions, as depicted in the figure below.
- domain of the problem being solved - this dimension is concerned with the description of the problem

at hand, leading to an ideal model, free from any details concerning implementation. This model is de-
fined using a specification language.

- system architecture description - this dimension is concerned with the way the system is structured in
terms of components and interconnections. Modules are vital for dividing large specifications into parts,
and to specify these parts with sufficient precision that one can construct each part knowing only the
specification of the other parts, which points to a component-based approach [24]. The nature of the
components that are needed, and the form in which they need to be interconnected, are influenced by ln-
frastructural constraints like the distribution strategy or the type of interaction with the environment;

- software chosen for the implementation - this dimension is concerned with the technology used to im-
plement the business problem according to the chosen architecture.

Ideally, a choice taken with respect to one of these dimensions should not interfere with the decisions related
to the other. This independence enables designers to change a previous decision in one of the dimensions
without having to reconsider the decisions taken in the other, thus achieving a significant degree of flexibility.

Domain
Specification

n

Architecture

As part of future work, we intend to study the way a contract-based approach can influence development and
evolution not only along the Domain Specification, but also the Architecture dimension. For that purpose, we
can capitalise on work already done in using notions similar to contracts at these lower levels of development.
In the next section, we identify some of these approaches.

7 Related work

Several authors have already made similar observations about the need to make explicit and available, as first-
class citizens, the rules that govern the behaviour of systems, namely in [19], which became the subject matter
of the ISO General Relationship Model (ISO/DEC 10165-7). The notion of contract that we proposed in the
paper is in the spirit of this work but adds to it the evolutionary aspects that it inherits from the architectural

19

approaches, and the concurrency and synchronisation aspects that it inherits from the notion of superposition
as used for parallel program design.
In section 4, we have also mentioned, and gave evidence to the effect, that our approach capitalises on a num-
ber of proposals that have been made in the areas of Programming Languages (coordination languages and
models), Parallel Program Design (superposition), and Software Engineering (software architectures). In fact,
we view the notion of contract as a synthesis of these three aspects which, together with the experience that
we have gathered in information system development, justify an investment in methodologies and tools for
supporting contract-based development.
Having acknowledged the sources on which our proposal is grounded we must, nevertheless, emphasise that
other approaches can be found in the literature that, in many ways, are similar in spirit or capture some of the
intuitions that we had when developing contracts.
We should start by saying that the term 'contract' itself has been quite overloaded:
- there are of course, contracts in the sense of Meyer [21]; their purpose is to support the development of

object methods in the context of client-supplier relationships between objects. Therefore, they apply, es-
sentially to the construction of systems. In fact, in what concerns evolution, Meyer's contracts are at the
origin of some of the problems that we have identified in the introduction and which made us point out
that even object-oriented development techniques are producing legacy systems: by adopting cl.entship
as the basic discipline for object interconnection, a bias is introduced in the way business rules get coded
up assigning to the supplier side the reponsibility for accommodating changes that, from the point of
view of the business rules, belong to the client. This was the case of the flexible withdrawals for VIP
customers: by placing the contract on the supplier side (the account), the new rules are more easily mod-
elled as specialisations of account whereas, in the application domain, they reflect specialisations of the
client. In [4] we have discussed this matter with more detail. In summary, our opinion is that Meyers
notion of contract does not scale up to system evolution.

- A notion of contract that applies to behaviours and not to individual operations or methods is the one de-
veloped in [17] The aim of contracts as developed therein is to model collaboration and behavioural re-
lationships between objects that are jointly required to accomplish some task. The emphasis, however, is
in software construction, not so much in evolution.

- A notion of contract can also be found in [5] that emerged in the context of the action-systems approach.
Like in our approach, it promotes the separation between the specification of what actors can do in a
system and how they need to be coordinated so that the computations required of the system are indeed
part of the global behaviour. The architectural and evolutionary dimensions are not explored as such.

Besides these related notions of contract, other approaches can be found in the literature that explore the use

of architectures in evolution:
- The importance of architectures for run-time software evolution has been recently pointed out [22]. The

authors highlight the role of architectural connectors in mediating and governing interactions among
components, which is essential for facilitating system evolution in the sense that we motivated in the pa-
per However the authors concentrate too much in presenting design and implementation solutions in the
form of a tool set for a Java-C2 combination, missing the abstraction power that superposition provides
as a general technique for enabling contract (or connector) based evolution, and the setting-up of seman-
tic primitive which, like contracts, can be used in conjunction with general languages for object-oriented

development like the UML.
- Another recent architectural-approach to evolution that is important to mention is the one developed by

[10] in which a notion of contract is explicitly developed for managing exchanges between units of evo-
lution. These units, called zones, encapsulate processes, objects and types at design and run-time so that
the contents of one zone can be evolved without affecting the code in another zone. Contracts make the
inter-relationships and communication between zones explicit by providing mechanisms - "change ab-
sorbers" - for transforming calls made on a pre-evolution type from outside the zone into a call onto the
evolved type The emphasis is, therefore, very much on "lower-level" aspects of managing change dur-
ing run-time evolution which, nevertheless, is a good indication of the importance of architecture-based
approaches for all levels of evolution.

We have also mentioned already that we share with [8] the belief that superposition (or superimposition) is
the enabling technique for a truly "black-box", "plug-and-play" approach to evolution. A basic difference
between the proposed models is that, whereas our purpose is to support connectors, i.e. mechanisms for inter-

20

connecting components, the goal in [8] is to adapt software components. It results that [8] proposes a layered
model of wrappers reflecting the successive adaptations to which the component is subjected. Instead, our
proposal does not rely on wrappers but on proxys and brokers that facilitate the dynamic reconfiguration of
the context in which the component is being used.
To summarise, it is clear that, by bringing to bear techniques from Coordination Languages and Models,
Software Architectures, and Parallel Program Design, the notion of contract-based software evolution that we
proposed in this paper shares many of the advantages of similar approaches that have been proposed in the
literature exploring some of these combinations (but not all of them). The experience that we have gathered
in applying the concept in real-world projects suggests that contracts are not only an effective mechanism for
enabling a flexible evolution of business products, but also a powerful modelling primitive that analyst find
useful at the earlier stages of domain modelling, at least in the business areas that we have already mentioned.

8 Concluding remarks

In this paper, we presented a discipline for software development and evolution centred around the notion of
contract Contracts were motivated by the need that we have experienced, when developing and applying
tools in business areas, to separate the domain concepts (objects) from the business rules that regulate their
behaviour. This separation recognises that there are two different dynamics in system evolution: changes to
the way components operate and changes to the way components are interconnected. The former requires a
"white box" view of components and is supported by object-oriented techniques like inheritance. The latter
requires a "black box" view of components and, so far, has been lacking adequate support. The aim of con-
tracts, as proposed in the paper, is to support this latter view towards more flexible ways of system evolution.

Contracts bring to bear techniques developed in the area of Coordination Languages and Models, Reconfigur-
able Distributed Systems, Software Architectures and Parallel Program Design. More precisely, contracts
promote the separation of the coordination aspects that regulate the way objects interact in a system, from the
way objects behave internally; they fulfil a role similar to architectural connectors in the sense that they make
available these coordination features as first-class citizens. Contracts are based on superposition mechanisms
for supporting forms of dynamic reconfiguration of systems. These mechanisms enable contracts to be added
or replaced without the need to change the objects to which they apply.
As a consequence, we can claim that new levels of flexibility have been added to the development process,
promoting plug and play, and a better integration and coordination of third-party, closed components (e.g.
legacy systems). This, we believe, will bring us one step closer to a real industry of software components.

References

1. G.Agha, ACTORS: A model of Concurrent Computation in Distributed Systems, MIT Press 1986.

2. R.Allen and D.Garlan, "A Formal Basis for Architectural Connectors", ACM TOSEM, 6(3), 1997, 213-

249.
3 L F.Andrade, IGouveia, P.Xardone and J.Camara, "Architectural Concerns in Automating Code Gen-

eration", in Proc. TC2 First Working IFIP Conference on Software Architecture, P. Donohoe (ed), Klu-
wer Academic Publishers.

4. L.F.Andrade and J.L.Fiadeiro, "Interconnecting Objects via Contracts", in UML'99 - Beyond the Stan-
dard, R.France and B.Rumpe (eds), LNCS 1723, Springer Verlag 1999, 566-583.

5. RJ.Back, L.Petre and I.Paltor, "Analysing UML Use Cases as Contracts", in UML'99 - Beyond the Stan-
dard, R.France and B.Rumpe (eds), LNCS 1723, Springer Verlag 1999, 518-533.

6. L. Bass, P.Clements and Rick Kasman, Software Architecture in Practice, Addison Wesley 1998
7. G.Booch, LRumbaugh and I.Jacobson, The Unified Modeling Language User Guide, Addison-Wesley

1998.
8. J.Bosch, "Superimposition: A Component Adaptation Technique", Information and Software Technol-

ogy 1999
9. K.Chandy and J.Misra, Parallel Program Design - A Foundation, Addison-Wesley 1988.

21

10. H.Evans and P.Dickman, "Zones, Contracts and Absorbing Change: An Approach to Software Evolu-
tion", in Proc. OOPSLA'99, ACM Press 1999,415-434.

11. J.L.Fiadeiro and T.Maibaum, "Categorical Semantics of Parallel Program Design", Science of Computer
Programming 28, 1997, 111-138.

12. J.L.Fiadeiro and A.Lopes, "Semantics of Architectural Connectors", in TAPSOFTV7, LNCS 1214,
Springer-Verlag 1997, 505-519.

13. J.L.Fiadeiro and A.Lopes, "Algebraic Semantics of Coordination, or what is in a signature?", in
AMAST98, A.Haeberer (ed), Springer-Verlag 1999

14. N.Francez and I.Forman, Interacting Processes, Addison-Wesley 1996.
15. E.Gamma, R.Helm, R.Johnson and J.Vlissides, Design Patterns: Elements of Reusable Object Oriented

Software, Addison-Wesley 1995.
16. D.Gelernter and N.Carriero, "Coordination Languages and their Significance", Communications ACM

35, 2, pp. 97-107,1992.
17 RHelm I Holland and D.Gangopadhyay, "Contracts: Specifying Behavioral Compositions in Object-

Oriented Systems", in Proc. OOPSIAVO/ECOOP'90, ACM Press 1990,169-180

18. S.Katz, "A Superimposition Control Construct for Distributed Systems", ACM TOPLAS 15(2), 1993,

337-356.
19. H.Kilov and J.Ross, Information Modeling: an Object-oriented Approach, Prentice-Hall 1994.

20. J.Magee and J.Kramer, "Dynamic Structure in Software Architectures", in 4th Symp. on Foundations of
Software Engineering, ACM Press 1996, 3-14.

21. B.Meyer, "Applying Design by Contract",ffi££ Computer, Oct.1992,40-51.
22. P.Oreizy, N.Medvidovic and R.Taylor, "Architecture-based Runtime Software Evolution", in Proc.

ICSE'98, IEEE Computer Science Press 1998.
23. D.Perry and A.Wolf, "Foundations for the Study of Software Architectures", ACM SIGSOFT Software

Engineering Notes 17(4), 1992, 40-52.
24. C. Szyperski, Component Software: Beyond Object-Oriented Programming, Addison Wesley 1998
25 M Wermelinger and J.L.Fiadeiro, "Towards an Algebra of Architectural Connectors: a Case Study on

Synchronisation for Mobility", in Proc. 9th International Workshop on Software Specification and De-
sign, IEEE Computer Society Press 1998,135-142.

22

"Lightweight" Semantics Models for Program
Testing and Debugging Automation

(Extended Abstract)

Mikhail Auguston

Computer Science Department, New Mexico State University,

Las Cruces, NM 88003, USA
mikau@cs.nmsu.edu

http://www. cs. nmsu. edu/~mikau

1 Introduction

We suggest an approach to the development of software testing and debugging automation tools based on precise
program behavior models. The program behavior model is defined as a set of events (event trace) with two basic
binary relations over events -- precedence and inclusion, and represents the temporal relationship between actions. A
language for the computations over event traces is developed that provides a basis for assertion checking, debugging
queries, execution profiles, and performance measurements.

The approach is nondestructive, since assertion texts are separated from the target program source code and can be
maintained independently. Assertions can capture both the dynamic properties of a particular target program and can
formalize the general knowledge of typical bugs and debugging strategies. An event grammar provides a sound basis
for assertion language implementation via target program automatic instrumentation. Event grammars may be
designed for sequential as well as for parallel programs. The approach suggested can be adjusted to a variety of pro-
gramming languages. We illustrate these ideas on examples for the Occam and C programming languages.

Dynamic program analysis is one of the least understood activities in software development. A major problem is
still the inability to express the mismatch between the expected and the observed behavior of the program on the level
of abstraction maintained by the user [9]. In other words, a flexible and expressive specification formalism is needed
to describe properties of the software system's implementation. Program testing and debugging is still a human activ-
ity performed largely without any adequate tools and consuming more than 50% of the total program development
time and effort [8]. Debugging concurrent programs is even more difficult because of parallel activities, non-deter-
minism and time-dependent behavior.

One way to improve the situation is to partially automate the debugging process. Precise model of program behav-
ior becomes the first step towards debugging automation. It appears that traditional methods of programming lan-
guage semantics definition don't address this aspect. In building such a model several considerations were taken in
account. The first assumption we make is that the model is discrete, i.e. comprises a finite number of well-separated
elements. This assumption is typical for Computer Science methods used for static and dynamic analysis of programs.
For this reason the notion of event as an elementary unit of action is an appropriate basis for building the whole
model. The event is an abstraction for any detectable action performed during the program execution, such as a state-
ment execution, expression evaluation, procedure call, sending and receiving a message, etc.

Actions (or events) are evolving in time and the program behavior represents the temporal relationship between
actions. This implies the necessity to introduce an ordering relation for events. Semantics of parallel programming
languages and even some sequential languages (such as C) don't require the total ordering of actions, so partial event

23

ordering is the most adequate method for this purpose [11].

Actions performed during the program execution are at different levels of granularity, some of them include other
actions e g a subroutine call event contains statement execution events. This consideration brings to our model inclu-
sion relation. Under this relationship events can be hierarchical objects and it becomes possible to consider program
behavior at appropriate levels of granularity.

Finally the program execution can be modeled as a set of events (event trace) with two basic relations: partial
ordering and inclusion. The event trace actually is a model of program's behavior temporal aspect. In order to specify
meaningful program behavior properties we have to enrich events with some attributes. An event may have a type and
some other attributes, such as event duration, program source code related to the event, program state assoaated with
the event (i.e. program variable values at the beginning and at the end of event), etc.

The next problem to be addressed after the program behavior model is set up is the formalism specifying properties
of the program behavior. Since our goal is debugging automation, i.e. a kind of program dynamic analysis that
requires different types of assertion checking, debugging queries, program execution profiles, and so on, we came up
with the concept of a computation over the event trace. It seems that this concept is general enough to cover all the
above mentioned needs in the unifying framework, and provides sufficient flexibility. This approach implies the
design of a special programming language for computations over the event traces. We suggest a particular language
called FORMAN [1], [3], [10] based on functional paradigm and the use of event patterns and aggregate operations

over events.

Patterns describe the structure of events with context conditions. Program paths can be described by path expres-
sions over events. All this makes it possible to write assertions not only about variable values at program points but
also about data and control flows in the target program. Assertions can also be used as conditions in rules which
describe debugging actions. For example, an error message is a typical action for a debugger or consistency checker.
Thus, it is also possible to specify debugging strategies.

The notions of event and event type are powerful abstractions which make it possible to write assertions indepen-
dent of any target program. Such generic assertions can be collected in standard libraries which represent the general
knowledge about typical bugs and debugging strategies and could be designed and distributed as special software

tools.

FORMAN is a general language to describe computations over program event trace that can be considered as an
example of a special programming paradigm. Possible application areas include program testing and debugging, per-
formance measurement and modeling, program profiling, program animation, program maintenance and program
documentation [5]. A study of FORMAN application for parallel programming is presented in [4]

2 Events, Event Traces, and the Language for Computations Over Event Traces

FORMAN is based on a semantic model of target program behavior in which the program execution is represented
by a set of events. An event occurs when some action is performed during the program execution process. For
instance, a message is sent or received, a statement is executed, or some expression is evaluated. A particular action
may be performed many times, but every execution of an action is denoted by a unique event.

Every event defines a time interval which has a beginning and an end. For atomic events, the beginning and end
points of the time interval will be the same. All events used for assertion checking and other computations over event
traces must be detectable by some implementation (e.g. by an appropriate target program instrumentation.) Attributes
attached to events bring additional information about event context, such as current variable and expression values.

The model of target program behavior is formally defined through a set of general axioms about two basic rela-
tions which may or may not hold between two arbitrary events: they may be sequentially ordered (PRECEDES), or
one Of them might be included in another composite event (IN). For each pair of events in the event trace no more

24

than one of these relations can be established.

There are several general axioms that should be satisfied by any events a, b, c in the event trace of any target pro-

gram.

1) Mutual exclusion of relations.

a PRECEDES b => not (a IN b) and not (b IN a)

a IN b => not(a PRECEDES b) and not (b PRECEDES a)

2) Noncommutativity.

a PRECEDES b => not(b PRECEDES a)

a IN b => not(b IN a)

3) Transitivity.

(a PRECEDES b) and (b PRECEDES c) => (a PRECEDES c)

(a IN b) and (b IN c) => (a IN c)

Irreflexivity for PRECEDES and IN follows from 2). Note that PRECEDES and IN are irreflexive partial order-

ings.

4) Distributivity

(a IN b) and (b PRECEDES c) => (a PRECEDES c)

(a PRECEDES b) and (c IN b) => (a PRECEDES c)

(FOR ALL a IN b (FOR ALL c IN d (a PRECEDES c))) => (b PRECEDES d)

In order to define the behavior model for some target language, types of events are introduced. Each event belongs
to one or more of predefined event types, which are induced by target language abstract syntax (e.g. execute-state-
ment, send-message, receive-message) or by target language semantics (rendezvous, wait, put-message-m-queue).

The target program execution model is defined by an event grammar. The event may be a compound object and the
grammar describes how the event is split into other event sequences or sets. For example, the event execute-assign-
ment-statement contains a sequence of events evaluate-right-hand-part and execute-destination. The evaluate-nght-
hand-part in turn, consists of an unique event evaluate-expression. The event grammar is a set of axioms that describe
possible patterns of basic relations between events of different type in the program execution history, it is not intended
to be used for parsing actual event trace.

The rule A : : (B C) establishes that if an event a of the type A occurs in the trace of a program, it is necessary
that events bände of types B and C, also exist, such that the relations b IN a, c IN a, b PRECEDES chold.

For example, the event grammar describing the semantics of a PASCAL subset may contain the following rules.
The names, such as execute-program, and ex-stmt denote event types.

execute-program :: (ex-stmt *)

This means that each event of the type execute-program contains an ordered (w.r.t. relation PRECEDES)

25

sequence of zero or more events of the ty pe ex - s tmt.

ex-stmt:: (label? (ex-assignment | ex-read-stmt | ex-write-stmt |

ex-reset-stmt | ex-rewrite-stmt | ex-close-stmt | ex-cond-stmt |

ex-loop-stmt | call-procedure))

The event of the type ex-stmt contains one of the events ex-assignment, ex-read-stmt, and so on.
This inner event determines the particular type of statement executed and may be preceded by an optional event of the
type label (traversing a label attached to the statement).

ex-assignment :: (ex-righthand-part destination)

The order of event occurrences reflects the semantics of the target language. When performing assignment state-
ment first the right-hand part is evaluated and after this the destination event occurs (which denotes the assignment
event itself). The event grammar makes FORMAN suitable for automatic source code instrumentation to detect all

necessary events.

An event has attributes, for instance, source text fragment from the corresponding target program, current values of
target program variables and expressions at the beginning and at the end of event, duration of the event, previous path
(i.e. set of events preceding the event in the target program execution history), etc.

FORMAN supplies a means for writing assertions about events and event sequences and sets. These include quan-
tifiers and other aggregate operations over events, e.g., sequence, bag and set constructors, boolean operations and
operations of target language to write assertions on target program variables [2] [3]. Events can be described by pat-
terns which capture the structure of event and context conditions. Program paths can be described by regular path

expressions over events.

The main extension for the parallel case [4] consists of the introduction of a new kind of composite event - "snap-
shot" which can be considered an abstraction for the notion "a set of events that may happen at the same time The
"snapshot" event is a set of events each pair of which is not under the relation PRECEDES, this makes it possible to
describe and to detect at run-time such typical parallel processing faults as data races and deadlock states.

3 Examples of Debugging Rules and Queries

In general, a debugging rule performs some actions that may include computations over the target program execu-
tion history The aim is to generate informative messages and to provide the user with some values obtained from the
trace in order to detect and localize bugs. Rules can provide dialog to the user as well. An assertion is a boolean
expression that may contain quantifiers and sequencing constraints over events.

Assertions can be used as conditions in the rules describing actions that can be performed if an assertion is satisfied
or violated. A debugging rule has the form:

assertion SAY (expression sequence)

ONFAIL SAY (expression sequence)

The presence of metavariables in the assertion makes it possible to use FORMAN as a debugger query language.
The computation of an assertion is interrupted when it becomes clear that the final value will be False, and the current
values of metavariables can be used to generate readable and informative messages.

The following examples have been executed on our prototype FORMAN/PASCAL assertion checker [2], [3]. The

26

PASCAL program reads a sequence of integers from file XX.TXT.

program el;

var X: integer;

XX: file of text;

begin

X:= 7;

(* initial value is assigned here *)

reset (XX, 'XX.TXT');

while X<>0 do

read(XX, X)

end.

The contents of the file XX.TXT are as follows:

11 5 3 7 8 9 3 13 2 3 45 8 754 45567 0

Example of a Query 1. In order to obtain the history of variable X the following computation over event trace can
be performed. The rule condition is TRUE, and is shown as a side effect the whole history of variable X.

TRUE

SAY ('The history of variable X is:'

[D: destination IS X FROM execute_program APPLY VALUE(D)])

The [...] construct above defines a loop over the whole program execution trace (execute_program
event). All events matching the pattern destination IS X are selected from the trace and the function VALUE is
applied to them. The resulting sequence consists of values assigned to the X variable during the program execution.

When executed on our prototype the following output is produced:

Assertion #1 checked successfully...

The history of variable X is: 7 11 5 3 7 8 9 3 13 2 45 8 754 45567 0

Example of an Assertion 2. Let's write and check the assertion : "The value of variable X does not exceed 17."

FOREACH *S: ex_stmt CONTAINS (D: destination IS X) FROM execute_j?rogram

27

VALUE(D) < 17

ONFAIL

SAY('Value ' VALUE(D) 'is assigned to the variable X in stmt ')

SAY(S)

SAY('This is record #' CARD[ex_read_stmt FROM PREV_PATH(S)] + 1 'in the

file XX.TXT')

We check the assertion for all events where the value of X may be altered. These are events of the type destina-
tion which can appear within ex_assignment_stmt or ex_read_stmt events. In order to make error mes-
sages about assertion violations more informative we include the embracing event of the type ex_stmt.
Metavariables S and D refer to those events of interest. When the assertion is violated for the first time, the assertion
evaluation terminates and current values of metavariables can be used for message output. The value of a metavariable
when printed by the SAY clause is shown in the form:

event-type:> event-source-text

Time= event-begin-time .. event-end-time

Event begin and end times in this prototype implementation are simply values of step counter.

Since we expect the assertion might be violated when executing a Read statement, it makes sense to report the
record number of the input file xx. txt where the assertion is violated. The program state does not contain any vari-
ables which values could provide this information. But we can perform auxiliary calculations independently from the
target program using FORMAN aggregate operations. In this particular case the number of events of the type
ex_read_stmt preceding the interruption moment is counted. This number plus 1 (since the violation occurs when
the read statement is executed) yields the number of an input record on which the variable X was first assigned the

value exceeding 17.

Assertion # 2 violation!

Value 45 is assigned to the variable X in stmt

ex_stmt :> Read(XX , X) Time= 73 .. 78

This is record # 11 in the file XX.TXT

Example of a Query 3. Profile measurement. In order to obtain the actual number of statements executed, the fol-

lowing query can be performed:

TRUE

SAY('The total number of statements executed is:'

CARD[ALL ex_stmt FROM execute_program])

The ALL option in the aggregate operation indicates that all nested events of the type ex_stmt should be taken

28

into account.

Assertion #3 checked successfully...

The total number of statements executed is: 18

Example of a generic assertion which must be true for any program in the target language.

"Each variable has to be assigned value before it is used in an expression evaluation."

FORE ACH * S: ex_stmt FROM execute_program

FOREACH * E: eval_expression CONTAINS (V: variable) FROM S

EXISTS D: destination FROM PREV_PATH(E) SOURCE_TEXT(D) = SOURCE_TEXT(V)

ONFAIL

SAY('In event' S)

SAY('in expression evaluation')

SAY(E)

SAY('uninitialized variable' SOURCE_TEXT(V) 'is used')

For the following PASCAL program our prototype detects the presence of the bug described above,

program e2;

var X,Y: integer;

begin Y: = 3 ;

if Y < 2 then begin

X:= 7; Y:= Y + X

else Y:= X - Y (*** here the error appears: X has no value! ***)

end.

Assertion #4 violation!

In event ex_stmt :> If (Y < 2) then X : = 7 ; Y : = (Y + X) ;

else Y := (X - Y) ; Time= 10 .. 35

in expression evaluation

eval_expression :> (X - Y) Time= 20 .. 29

uninitialised variable X is used

29

Debugging rules can be considered as a way of formalizing reasoning about the target program execution --

humans often use similar patterns for reasoning when debugging programs. For example, if the index expression of an

array element is out of the range, the debugger can try a rule for eval-index events that invokes another rule about

wrong value of the event eval-expression, which in turn will cause investigation of histories of all variables included

in the expression.

Yet another application of generic assertions and debugging rules may be for describing run-time constraints

(sequences of procedure calls, actual parameter dependences, etc.) for nontrivial subroutine packages, e.g. for the

MOTIF package for GUI design. A library containing assertions and debugging rules relevant to such a package may

be useful for writing C programs calling subroutines from the package.

4 Conclusions

In brief, our approach can be explained as "computations over a target program event trace." We expect the advan-

tages of our approach to be the following:

• The notion of an event grammar provides a general basis for program behavior models. In contrast with previous

approaches, the event is not a point in the trace but an interval with a beginning and an end.

. Event grammar provides a coordinate system to refer to any interesting event in the execution history. Program

variable values are attributes of an event's beginning and end. Event attributes provide complete access to each

target program's execution state. Assertions about particular execution states as well as assertions about sets of

different execution states may be checked.

. The PRECEDES relation yields a partial order on the set of events, which is a natural model for parallel program

behavior.

. The IN relation yields a hierarchy of events, so the assertions can be defined at an appropriate level of granularity.

. A language for computations over event traces provides a uniform framework for assertion checking, profiles,

debugging queries, and performance measurements.

. The access to the complete target program execution history and the ability to formalize generic assertions can be

used in order to define debugging rules and strategies.

• The fact that assertions and other computations over target program event trace can be separated from the text of

the target program allows accumulation of formalized knowledge about particular programs and about the whole

target language in separate files. This makes it easy to control the amount of assertions to be checked.

According to [7] and [12] approximately 40-50% of all bugs detected during the program testing are logic, struc-

tural, and functionality bugs, i.e. bugs which could be detected by appropriate assertion checking similar to the dem-

onstrated above.

30

References

[1] M. Auguston, "FORMAN -- A Program Formal Annotation Language", Proceedings of the 5:th Israel

Conference on Computer Systems and Software Engineering, Gerclia, May 1991, IEEE Computer

Society Press, 149-154.

[2] M. Auguston, "A language for debugging automation", Proceedings of the 6th International

Conference on Software Engineering and Knowledge Engineering, Jurmala, June 1994, Knowledge

Systems Institute, pp. 108-115.

[3] M. Auguston, "Program Behavior Model Based on Event Grammar and its Application for Debugging

Automation", in Proceedings of the 2nd International Workshop on Automated and Algorithmic

Debugging, Saint-Malo, France, May 1995.

[4] M. Auguston, P. Fritzson, "PARFORMAN - an Assertion Language for Specifying Behavior when

Debugging Parallel Applications", International Journal of Software Engineering and Knowledge

Engineering, vol.6, No 4, 1996, pp. 609-640.

[5] M. Auguston, A. Gates, M. Lujan, "Defining a program Behavior Model for Dynamic Analyzers",

Proceedings of the 9th International Conference on Software Engineering and Knowledge

Engineering, SEKE'97, Madrid, Spain, June 1997, pp. 257-262

[6] P. C. Bates, J. C. Wileden, "High-Level Debugging of Distributed Systems: The Behavioral

Abstraction Approach", The Journal of Systems and Software 3, 1983, pp. 255-264.

[7] B. Beizer, Software Testing Techniques, Second Edition, International Thomson Computer Press,

1990.

[8] F. Brooks, The Mythical Man-Month, 2nd edition, Addison-Wesley, 1995.

[9] B. Bruegge, P. Hibbard, "Generalized Path Expressions: A High-Level Debugging Mechanism", The

Journal of Systems and Software 3,1983, pp. 265-276.

[10] P. Fritzson, M. Auguston, N. Shahmehri, "Using Assertions in Declarative and Operational Models

for Automated Debugging", The Journal of Systems and Software 25, 1994, pp. 223-239.

[11] L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed System", Communications of

the ACM, vol. 21, No. 7, July 1978, pp. 558-565.

[12] S. L. Pfleeger, Software Engineering, Theory and Practice, Prentice Hall, 1998.

31

Performance Evaluation of
Software Architectural Types:
A Process Algebraic Approach

Marco Bernardo1, Paolo Ciancarini2, Lorenzo Donatiello2

^niversitä di Torino, Dipartimento di Informatica
Corso Svizzera 185, 10149 Torino, Italy

E-mail: bernardo@di.unito.it
2Universita di Bologna, Dipartimento di Scienze dell'Informazione

Mura Anteo Zamboni 7, 40127 Bologna, Italy
E-mail: { cianca, donat }@cs.unibo.it

The software architecture level of design allows to cope with the increas-
ing size and complexity of software systems during the early stage of their
development [7, 8]. To achieve this, the focus is turned from algorithmic
and data structure related issues to the overall architecture of the system.
The architecture is meant to be a collection of computational components
together with a description of their connectors, i.e. the interactions between

these components.
As software architecture emerges as a discipline within software engineer-

ing, it becomes increasingly important to support architectural development
with languages and tools. It is widely recognized that suitable architec-
tural description languages (ADLs for short) should be devised to formalize
software architectures instead of using informal box-and-line diagrams, and
related tools should be implemented to support the automatic analysis of
architectural properties in order to allow the designer to make principled

choices.
As far as we know, almost all the existing languages and tools deal only

with functional aspects of software architectures. However, designers are of-
ten faced with the problem of choosing among different software architectures

32

which are functionally equivalent. This choice is thus driven by nonfunctional
factors, and mostly by performance requirements. In general, as recognized
in [9], performance analysis should be integrated into the software develop-
ment process, starting from the earliest stages and continuing throughout

the whole life cycle.
In order to create a framework where the functional and performance

properties of formally represented software systems can be automatically
evaluated at the architectural level, we need a suitable theory which provides
the necessary underpinnings to the architectural concepts of component and
connector. This is witnessed e.g. by the fact that a well known ADL like

WRIGHT [1] is based on CSP [5].
In the field of computer and communication system modeling and anal-

ysis, several formal description techniques have been proposed in the last
two decades which account for both functional and nonfunctional aspects of
systems. Among such formal description techniques, there are stochastically
timed process algebras (see, e.g., [2]). Their key feature is compositionality.
First of all, like classical process algebras, they allow for compositional model
construction because they are algebraic languages endowed with a small set
of powerful operators, such as parallel composition, sequential composition,
and alternative composition, which allow descriptions to be systematically
built from their components. Unlike classical process algebras, stochasti-
cally timed process algebras come equipped with the capability of express-
ing activity durations by means of exponentially distributed random vari-
ables, so that the underlying performance models turn out to be Markov
chains which can thus be exploited to effectively derive performance mea-
sures. Second, stochastically timed process algebras allow for compositional
model manipulation. This is achieved by means of equivalences which relate
terms possessing the same functional and performance properties. When-
ever such equivalences are congruences, i.e. they are substitutive w.r.t. the
algebraic operators, they permit to replace algebraic components with equiv-
alent (smaller) ones without altering the overall system properties. Third,
stochastically timed process algebras allow for compositional model solution
whenever the underlying Markov chain meets certain conditions.

Since the compositionality of stochastically timed process algebras seems
to be well suited for the architectural level of design, we propose their adop-
tion for the development of an ADL aiming at predicting the performance
of software systems and comparing the performance of several software ar-

33

chitectures designed for the same system. Such an ADL has been called
/EMPA [3] as it is based on the process algebra EMPA [2].

A description in /EMPA is an architectural type:
archLtype (name and parameters)

archi_cc_types (architectural component/connector types)
archLtopology (instances and attachments)
archLinteractions (architectural interactions)

end ,
Each architectural type is defined as a function of its component and con-
nector types, its topology, its interactions, and its generic parameters. A
component/connector type is in turn defined as a function of its behavior,
specified as a family of EMPA sequential terms, and its interactions, speci-
fied as a set of EMPA action types. The architectural topology consists of a
set of component/connector instances related by a set of attachments among
their interactions. Architectural interactions are interactions of component
instances which support hierarchical architectural modeling. Finally, generic
parameters are basically values for parametric rates and weights.

For the sake of ease of use, the textual notation above is accompanied by
a graphical notation inspired by the flow graphs of [6], as they may provide a
visual help to the development of architectural descriptions. A flow graph is a
network of nodes each equipped with a set of ports; two ports of two different
nodes are linked together if the two nodes can interact. Given an /EMPA
description, each component/connector type can be represented as a node
(depicted as a rounded box) with its behavior textually reported inside the
node and its interactions labeling the ports (depicted as black circles, or white
squares in the case they refer to the whole architecture). We then create an
instance of a node for each instance of the component/connector type it refers
to. Finally, nodes are linked together according to the specified attachments.
In case of hierarchical architectural modeling, a node can contain a flow
graph whose architectural interactions are linked (through dashed lines) to

the ports of the node.
The concept of architectural type, proposed in [4], is an abstraction of the

concept of architectural style. Given an architectural style, the set of com-
ponent and connector instances and their internal behavior can vary from
architectural instance to architectural instance, but the structure of the over-
all interconnection of component and connector instances and their internal
behavior w.r.t. interactions is fixed. Because of the presence of two degrees

34

of freedom (variability of the set of component and connector instances and
variability of their internal behavior), investigating the properties which are
common to all the instances of an architectural style is not an easy task.
To make such a task manageable, architectural types are advocated in [4]
because they constrain the set of component and connector instances to be
fixed. The instances of a given architectural type are then generated by let-
ting the behavior of component and connector types vary. In other words,
the component/connector types specified in an architectural type are viewed
as being formal, so one can call for an architectural type and pass to it actual
component/connector types.

The formal semantics for JEMPA is given by translation into EMPA by es-
sentially exploiting the parallel composition operator. Given that the seman-
tics of a component/connector type is the family of EMPA sequential terms
expressing its behavior and that the semantics of a component/connector
instance is the semantics of the related type, the semantics of an architec-
tural type is obtained by composing in parallel the semantics of the compo-
nent/connector instances according to the specified attachments. Once the
corresponding family of EMPA terms has been generated, the analysis of the
architectural properties can be carried out by means of existing tools. In par-
ticular, it is possible to verify functional properties (like deadlock freedom
and mutually exclusive use of resources) through model checking, equiva-
lence checking, and preorder checking. Likewise, it is possible to evaluate
performance measures (such as system throughput and user response time)
via exact or approximate Markovian analysis or simulation.

We observe that, from the process algebra perspective, creating an ADL
can be viewed as an attempt to force the designer to model systems in a
more controlled way, which in particular elucidates the basic architectural
concepts of component and connector and hopefully enhances the usability
of process algebras. However, this syntactic sugar alone is not enough to cre-
ate a useful ADL. It must be accompanied by suitable techniques to verify
the well formedness of architectural descriptions, such as the architectural
compatibility and conformity checking. The purpose of the former check is
to ensure that an architectural type is well connected, in the sense that every
pair composed of a component instance and a connector instance attached
to each other interact in a proper way. This is formalized by requiring that
the functional behavior of the two instances, when projected on the inter-
actions involved in the related attachments, is the same. The latter check,

35

instead, aims at guaranteeing that the actual parameters are consistent with
the formal ones in case of architectural type invocation. This is formalized
by requiring that the actual parameters do not alter the functional seman-
tics of the architectural type w.r.t. component and connector interactions,
i.e. the functional behavior of the architectural type when projected on such
interactions. Technically, both checks are carried out by means of the weak
bisimulation equivalence [6], a purely functional equivalence whose major
feature is its ability to reason about the functional behavior of process terms
when projected on certain actions, i.e. when abstracting from unimportant
actions. It is worth observing that the architectural conformity checking can
be compositionally conducted parameter by parameter as the weak bisimu-
lation equivalence is a congruence w.r.t. the parallel composition operator.

We conclude by mentioning the fact that we are now in the process of
implementing a software tool for the functional and performance analysis
of well formed architectural types specified with the textual or graphical
notation of iEMPA. Such a tool will rely on the EMPA based software tool
TwoTowers [2] and will allow us to conduct some case studies to assess the
adequacy of our approach. For the time being, we are using a prototype of
the tool to investigate the properties of several load distribution algorithms
for replicated web services in different architectural scenarios.

Acknowledgements

This research has been funded by Progetto MURST Cofinanziato SALADIN: "Ar-
chitetture Software e Linguaggi per Coordinare Componenti Distribuite e Mobili".

References
[1] R. Allen, D. Garlan, "A Formal Basis for Architectural Connection", in

ACM Trans, on Software Engineering and Methodology 6:312-249, 1997

[2] M. Bernardo, "Theory and Application of Extended Markovian Pro-
cess Algebra", Ph.D. Thesis, University of Bologna (Italy), 1999
(http://www.di.unito.it/"bernardo/)

[3] M. Bernardo, P. Ciancarini, L. Donatiello, "JEMPA: A Process Algebraic
Description Language for the Performance Analysis of Software Architec-
tures", to appear in Proc. of the 2nd ACM Int. Workshop on Software and
Performance (WOSP 2000), ACM Press, Ottawa (Canada), 2000

36

[4] M. Bernardo, P. Ciancarini, L. Donatiello, "On the Formalization of Archi-
tectural Types with Process Algebras", to appear in Proc. of the 8th ACM
Int. Symp. on the Foundations of Software Engineering (FSE-8), ACM

Press, San Diego (CA), 2000

[5] C.A.R. Hoare, "Communicating Sequential Processes", Prentice Hall, 1985

[6] R. Milner, "Communication and Concurrency", Prentice Hall, 1989

[7] D.E. Perry, A.L. Wolf, "Foundations for the Study of Software Architec-
ture", in ACM SIGSOFT Software Engineering Notes 17:40-52, 1992

[8] M. Shaw, D. Garlan, "Software Architecture: Perspectives on an Emerging

Discpline", Prentice Hall, 1996

[9] C.U. Smith, "Performance Engineering of Software Systems", Addison-

Wesley, 1990

37

Appliances and Software: The Importance of
the Buyer's Warranty and the Developer's Liability

in Promoting the Use of
Systematic Quality Assurance and Formal Methods

Daniel M. Berry

Computer Science Department
University of Waterloo

Waterloo, Ontario N2L 3G1, Canada

dberry @ csg.uwaterloo.ca

Abstract

A vexing question is why systematic quality assurance and formal methods, despite all their advantages,
are not used routinely in software development. Other engineering disciplines use their systematic quality
assurance and formal methods in producing routinely reliable products. Perhaps the difference between the
other engineerings and software engineers lie in the warranties producers must give for the products and the lia-
bilities suffered by the producers for malfunctioning products. It is argued that software engineers would be
more likely to use formal methods more routinely if they or their employers had to guarantee their software and
could be sued for damages caused by their malfunctioning software.

1 Introduction

Formal methodologists continue to bemoan the failure of practicing software engineers to employ forma
methods in their daily software development work [15,30,17,8,9,12,22,23,21,11]. Early attempt by formal
methodologists to convince software engineers to use formal methods focused on the benefits to software qual-
ity that would accrue if formal methods were to be used regularly in software development [20,14,11 12].
Surely once a software practitioner understood the benefits, he or she would start to use formal methods
enthusiastically. To fail to do so would be illogical! Illogical or not, software engineers by and large ignored
formal methods, and when forced to use formal methods, they resist and sometimes actively subvert the appli-
cation of formal methods to do meaningless busy work. When the project fails, partially due to the subversion
they gleefully blame the formal methods for the failure. Successful experimental applications of formal
methods to real projects [21,18,10,7,13,1,2,5,31,3,19,4] failed to convince most software engineers of the
effectiveness of formal methods. The perception is that the project team got lucky or had other strengths going
for it or that the project had special security or safety needs that could not be handled with ordinary methods,

needs that are not found in normal software.

Formal methodologists began exploring ways to make formal methods more attractive. Most of these
were technical solutions aimed at making the formal language, the method, the tools, etc. more palatable, more
easily used, more powerful, more automatic, less ambitious, more realistic, more incremental, and even more
fun [18 10 7 13 11 1 2 5 31,3,19,4]. Each paper about one of these new approaches bemoans the lack ot
general use of formal methods! diagnoses the lack as the result of some particular problem in the use of formal
methods, and offers a new approach that avoids, mitigates, or solves the identified problem. However, none ot
these has had any real effect on the extent to which formal methods are used. Others try educational, sociologi-
cal, and managerial approaches [12,23,26,6], and they too have failed to produce the desired bandwagon.

Even non-formal, but systematic methods for ensuring software quality suffer the same lack of use.
Advocates of software inspection [16,29] note the empirical evidence of inspection's effectiveness at finding
faults before execution, an effectiveness exceeding that of traditional testing. They also note the reluctance of
many organizations to use inspection and the varied, creative excuses given for not using inspection, even when

they know its effectiveness.

38

2.

Yet when we look at other engineering disciplines, we see that they all have their systemat.c quality
assurance (QA) and formal methods. Civil engineering has mathematical models of load and stress and these
allow calculating, on the basis of only a paper design for a bridge, whether the proposed bridge will support the
required weight, and then some. Electrical engineering has mathematical models of circuitry that allow calcu-
lating on the basis of only a circuit diagram, whether the proposed circuit will behave as required, will not
overheat etc. We see that engineers in these disciplines routinely apply their formal methods with no com-
plaints of being overburdened with useless work, no complaints of their creativity being stifled, and no com-
plaints of having to use the dull, dreaded mathematics in another field.

The questions to ask are:

1. what makes the engineers in the other, more traditional engineerings, apply their systematic QA and

formal methods routinely, and

can whatever does the trick in these other engineerings be used to get software engineers to use
software engineering's systematic QA and formal methods in their daily software development?

This paper explores the quality of different engineering products, some electromechanical, some electronic and
some software, and notes key differences in the warranties offered with these products and the liabilities borne
by their developers. Perhaps these differences account for the differences in the willingness of the various
engineers to apply their engineerings' systematic QA and formal methods.

2 Recent Experience with Purchased Appliances and Software

In the last two years (as of November, 1999), I have bought* four appliances and four pieces of software.
I am still using all the appliances but I have yet to get the two of the programs running, one of these is gathering
dust on my shelf and the other has been returned for a refund. The other two programs are working. The four

appliances are

1. Sharp Carousel Microwave Oven,

2. RCA Color Television,

3. Toshiba Video Cassette Recorder, and

4. Hoover Futura Vacuum Cleaner.

The four programs are

1. Adobe Illustrator 7.0,

2. Adobe Acrobat Exchange 3.0,

3. Microsoft Office '97, and

4. Languageforce Deluxe Universal Translator.

These eight personal experiences amount to a case study giving anecdotal evidence in support of a popular per-
ception that consumer software is of considerably poorer quality than consumer appliances.

.Strictly speaking, one does not buy software; he or she licenses software. However, common usage is "to buy software".

39

Observe that all the software in this list is developed by their producers for sale to the mass market of
consumers and is different from bespoke software developed by one producer under a specific negotiated con-

tract for a specific client.

2.1 Appliances

I assembled the vacuum cleaner according to directions provided in the package and then plugged it in. It
worked immediately and has given no problem. I would quibble with the design of the cord wrap-around knobs.
It is impossible to turn the machine on when any of the wire is wrapped around the knobs since the on-off
switch doubles as a knob. However, I have no real complaints about the machine or its brief instructions.

To get the microwave oven working, I had to set a timer according to directions provided in the package.
It took less than 10 minutes to read the entire manual to see what features it had and to decide which ones I
would use. I set the clock with no problem and the oven has worked fine ever since. Unfortunately, the oven has
no battery back up. Consequently, whenever there is a power hiccup, the oven resets and I have to reset the
timer to get the overn to work again. Apart from this minor nuisance, I have no complaints about the oven or its

documentation.

The television required a set up. The procedure was well explained, step-by-step, in the user's manual,
and the set worked immediately. The set-up procedure had as its main goal to allow the television set to find all
the channels in the antenna, cable, or cable box connected to the set. In my current situation, I had cable, and
the set found some 50 channels. Two years earlier, in another country, I had bought a television to use with a
cable box. That television set was also an RCA. Since the cable box mapped all cable channels to television
channel 3, the set-up was trivial, and the television worked immediately.

Among the appliances, the video cassette recorder offered the most trouble. The manual seemed quite
clear in that I could read step-by-step procedures, and I could see what functions I wanted to use. What I did
not know was that the manual neglected to mention that it was necessary to undo one set up if you want to
change to a different set up. The set up has as its purpose to find all the available channels coming in from the
antenna cable, or cable box. It went smoothly according to what the manual appeared to say. The record and
play worked immediately. When I tried to program my first timed record, I saw that I had overlooked an impor-
tant step that is to be done before the set up and that I had done the wrong set up. I did the important step, and
the correct set up, and then tried to program a timed record again. It still did not work. Fortunately, I had paid
for a warranty that provided in-house service. I called and arranged for service. At first, they wanted me to
bring the set in. I told them that I had paid for in-house service. They said that it is better if I bring it in. I said
that if they did not honor the service agreement immediately, I would return the set for a refund and tell every-
one at the University of Waterloo not to shop at the store to whose service department I was speaking. They
sent a technician out who walked through the set up with me after telling me that I had to undo the first set up. It
seems that without undoing the first set up, I was leaving elements of the old set up in the computer and it was
creating an inconsistent program that caused the whole programmed record to freeze. After the technician left,
the programmed record worked perfectly and I have had no complaints since then. I did offer as a project in my
graduate requirements engineering seminar the job of rewriting the user's manual.

2.2 Software

Contrast these appliance experiences with my software experiences. The difference is sobering.

I was still in Israel when I bought the copy of Adobe Illustrator 7.0 for Windows from a local supplier.
Normally I like to read the manual for software before doing any installation both to see ahead of time where
the problems might be and to learn what features I was likely to use. I verified that my computer had more than
the minimum of all the resources required. I followed the installation procedure described in the manual sup-
plied with the software, doing what the install program asked me to do and answering its questions about the
features I wanted. In answering these, I tended to include a feature that I was not sure about just to be sure that I
got a minimal working set of features. The installer reported that Illustrator was successfully installed. I tried to
start up the program, but it froze during its start up phase, never getting beyond the product name announce-
ment screen. I figured that I had too many other programs running and killed them all. I started up Illustrator

40

again and it froze again. Each time it froze, I could not get the computer and Windows unstuck and had to ton
the machine off and then on without going through the proper shut down procedure. I called the local supplier
and was told that this program and other Adobe products do not work on the Hebrew version of Windows or
even the Enabler version that allowed switching between Hebrew and English. I had to use a pure American
version of Windows. I was upset at the local supplier for not telling me this little detail when I bought the pro-

gram.

I changed my operating system to pure American Windows. Since I did all my work in English, it was
no real problem not to have Hebrew or the ability to switch to Hebrew. I could use a departmema, mac^tune in
the very rare occasion in which I needed Hebrew Windows. Installation appeared to succeed illustrator, how-
ever still froze when I tried to run it, even when no other programs were running. Figuring that maybe my PC
was too small, I put the software away for my planned move to Canada, at which time I would get a larger PC.

Once settled at the University of Waterloo in Canada, I arranged for a large machine. Of course the Win-
dows on it was purely American. I installed Illustrator on that machine. Illustrator still froze the machine as it
Zed u^ I ended up deinstalling the program only after copying the large set of PosrSc^r Type 1 fonts
Illustrator 7.0 provides; I decided to install them for use with troff on my UNIX platform. By this t.me it was too

late to return the software for a refund.

When the software had failed to work, I tried to get help from Adobe. I could not find in the list of
reported problems at the web site any solutions that I had not tried. Adobe provided an 800 phone number to
aCstmer service. However, fronLerseas, 800 numbers are not free. Also, I do not hear-weU.an *e phone.

I could find no button that sends e-mail for help. So, I sent e-ma.l to ^PP0«®3^™"'
webmaster@www.adobe.com, and postmaster@www.adobe.com, explainmg that I could not find my
problem solved at their web site and I cannot hear on the telephone. I got no reply. The program sits unused on
my bookshelf. I did get a nice set of fonts out of it, and Illustrator costs less than the sum of the costs of the
mdivTdual fonts, but I feel that I threw out money, and I have no operating Illustrator. In^a" ^ess^.t ,s not
clear where the fault lies; the problem could be in the Windows operat.ng system on which I tried to run Illus-

trator.

I bought a copy of Adobe Acrobat Exchange 3.0 for Windows. This software comes with a hard copy
manual describing only installation. The general user's manual is a PDF document readable by the software
once the software is installed. The Acrobat Exchange 3.0 package consists mainly of two programs,
AcroExch and Distiller, which manipulate PDF files and create PDF files from POSTSCRIPT files, respectively
They installed with no problem. I was able to print a hard copy of the user's manual. I read it and decided what
featuresTHed to use and how. I have been using both to prepare slide shows of the ^generated POST-

ScTrTof lecture slides. I use Distiller to convert «he troff-generated POSTSCRIPT into PDF and then I use
AcroExch to rotate and crop pages and to make hypertext links between items in the shdes for festernegation
during a lecture. Given my past experience with an Adobe product, it was a pleasant surprise that this Adobe
product installed and works so well. I wish that all mass-produced software worked as well.

Even as I write this paper, the system guru for my Sun workstation is not able to get the publically down-
loadable Adobe Acrobat Reader 4.0 working on my workstation. It freezes up at the start up window, for-
tunately it does not freeze up the machine. A control-C to the invoking window kills the program^ Again, I am
unable to find my problem discussed in the trouble shooting section of Adobe's web pages, Adobe has shut
down the user's forum, and they do not answer my e-mail cries for help even when I explain that I cannot use

the telephone.

I normally do not use any program in Office '97.1 use troff for formatting, vi for editing, troff and Acro-
bat Distiller for slide shows, and vi and awk for spread sheeting. However, people tns.st on sending me Word,
PowerPoint, and Excel documents. So I bought Office '97.1 bemoaned the lack of a real hard-copy manual,
the manual provided with Office '97 consists only of a tutorial for each program in the collection. I msta leeI the
Toftware. TL installation went well, the only problem being a lack of good information about what feature
eally needed. The programs seem to work well on 95% of the Word, PowerPoint and Excel doc«m-ts

receive. However, occasionally I get a document which when printed leaves a lot of characters unpnnteI. see
each of these characters on the screen, but on the paper, there is only whrte space m place of the character. 1

41

found a section of Help that described this problem. It said that the problem was that the fonts selected for the
missing text is not resident in the printer and that the solution was to request downloading of all fonts. Unfor-
tunately when I went to the right menu to request full downloading, I found that the option was already in
force An examination of the POSTSCRIPT file generated by Word showed that definitions for all the selected
fonts were included in the file and that the missing text was not even in the POSTSCRIPT file. No wonder this
text did not print! Occasionally, I ended up printing an image of the Word window to get hard-copy output. The
most annoying thing about Word, apart from its very deficient editing capability and its abominable typesetting
with irregular spacing between words and lack of ligatures, is the fact that I am asked when I am exiting Word,
if I want to update the changes to I made to PDFWRITE.DOT. Of course not, since I did not make any
changes to it as far as I am concerned, having done nothing with PDF in the document. However, once
answered too quickly and clicked the "Yes" button. Word would not work properly after that. I had to remstal
Word from the beginning. It has happened several times, when I have accidentally hit the wrong button and I

had to reinstall Word each time.

I get documents in languages other than English, e.g., in Hebrew, French, Spanish, Portuguese, and Ger-
man I can read these, but occasionally need a dictionary to fill in holes in my understanding. When I saw this
new program Languageforce's Universal Translator, that offered multiple language dictionary functionality, I
decided to buy it. It offered a way to avoid the necessity to keep a half dozen dictionaries on hand and to avoid
the tedium of flipping pages to find a word. At first, I was really happy about the software. It had a real user s
manual It consisted of a set of scenarios for set up and various different ways of using the software including
as a dictionary. The manual even showed pictures of the screen that the user is supposed to receive after various
steps in the scenarios. However, this joy was short lived. As I was following the set up procedure, I saw that a
number of the screen pictures were either wrong or out of date. In any case, the installation program reported a
successful installation. Then I tried to run the program. It simply would not run. It gave no explanation. I sent
e-mail to Languageforce's support group to the address given in the user's manual. I never got any reply. How-
ever I know that someone received the e-mail, because to this day, I get announcements of exciting new
enhancements from the sales department. Even a message from me telling them that they have some nerve
offering enhancements to me when they have not answered my request for help has failed to get these messages
turned off. Needless to say, I took the program back for a full refund.

2.3 Software Released Too Early

After these experiences, I started to wonder what can be done to improve the use of quality assurance
methods in the development of consumer software. After all, methods and technology do exist to do a better job
with software. However, they are not being used in the rush to get software out to the market. In this rush, it
appears that software is being released before it is ready. Software is going out for sale to consumers before it is
certain that it will run and with the documentation woefully inadequate and even incorrect. Moreover, the
manufacturers seem unprepared and even unwilling to service their shoddy merchandise. It might even be that
the merchandise is so shoddy that the service people are overwhelmed and the shoddy service is a direct result
of this overload. On the other hand, appliances for sale generally work with no trouble and continue to work
and when they need service, the manufacturers stand behind the product and do service the products in a rea-

sonable time. Once serviced, the problems seem to be solved.

A major reason that software is released before it is ready is the pressure on the producer to be first on
the market with the product. Whoever is first usually gets and keeps a vast majority of the market. The second
to the market usually gets very little market and fails as a business unless its product is perceived as at least an
order of magnitude better than that of the first.* Therefore, there is a high incentive to release software early.
Moreover, since customers accept shoddy software merchandise, there is very little incentive to delay release to
improve the product. Any solution to this problem will have to reverse the incentives.

* Of course, there are the exceptions that make the rule. For example Apple's Macintosh system beat Microsoft's Windows system to the

market by several years, but Microsoft nearly drove Apple out of business.

42

3 Analysis of Differences Between Software and Appliance Productions

What are the differences between appliances and software that might account for this observed difference

in quality?

Certainly software is more complex and has more states than do vacuum cleaners. However, a television
and a video cassette recorder are systems of moderate complexity matching that of many programs. Indeed,
these machines probably implement some of their functionality with a computer and software.

Certainly the environment on which software runs is more varied than that on which appliances run.
Software must run on a variety of CPUs and operating systems and flavors thereof. Appliance environments are
far simpler, consisting of an electrical outlet and the television signals coming through a cable wire or over die
air However, in my case, all my PCs had very standard configurations. I bought them strictly for use of the
Office programs that were not available on the Sun workstation, on which I do all my real work. I left them in
their original, delivered, presumably standard, configurations. I would have expected the software to have been

tested for running on my configurations.

In my opinion, one key difference is the difference in the warranty that comes with appliances and with
software. An appliance is forced by law in most locales in the U.S. and Canada to have a warranty of fitness for
its purpose That is, the product is guaranteed to function as what it is. If I buy a television set, the manufachirer
guarantees that it functions as a television set and as a television set as understood by the man in the street
Mass-produced software, however, traditionally comes with a shrinkwrapped license that says that the
manufacturer warrants almost nothing about the behavior of the software. The manufacturer does warrant the
medium on which one buys the software, the diskettes or the CD ROM. In other words die manufacturer
refuses to guarantee that Illustrator program actually allows the user to draw pictures, that Word actually for-
mldocuments, that PowerPoint actually makes slide shows, and that Un.versal Translator actually
translates The software manufacturers refuse to make these guarantees, because they are not required to by
law, as are appliance manufacturers, and the software customers let them get away with it. What manufacturers

are not required to do, they do not do, and the customers suffer.

Another key difference is the difference in liability borne by the producers of appliances and software.
Appliance manufacturers are liable for damages caused by correctly used or ^"7^/^"
Software producers disclaim almost all liability in their shrinkwrapped licenses, accepting liability only up to
the cost of the software. Thus, software developers do not have to be as careful with their mass-market products

as appliance manufacturers do.

3.1 Warranties

This section examines some warranties supplied with the software products and appliances described in
Section 2. Each warranty's text is quoted in a sans serif font, allowing the quotation to be distinguished from
comments that interrupt the quotation just after the sentences they discuss.

3.1.1 Software Warranties

Adobe's and Microsoft's End User License Agreement (EULA) are almost identical. Therefore, only one

is quoted here. Adobe's EULA says:

5. Limited Warranty. Adobe warrants to you that the Software will perform substan-

tially in accordance with the Documentation

Who gets to decide how large the deviation from the documentation-described behavior is allowed and the
software is still considered to perform substantially in accordance with the documentation?

for the ninety (90) day period following your receipt of the Software.

The warranty applies for only 90 days, as if the software decays and might start to perform differently after 90
days It sounds like this warranty provision was written to get mostly computer-and-software-.ll.terate legisla-
tors off the producer's back and mimics the warranty given with products that can decay and go bad after a

43

period of use Ninety days would seem a reasonable amount for the producer to stand behind such a decaying
product. I am quite sure that some computer-and-software-illiterate people think that software decays.

[missing details dealing with fonts that are translated to other formats; the warranty does not

apply to these other formats.]

To make a warranty claim, you must return the Software to the location where you
obtained it along with a copy of your sales receipt within such ninety (90) day period.
If the Software does not perform substantially in accordance with the Documentation,
the entire and exclusive liability and remedy shall be limited to either, at Adobe's
option, the replacement of the Software or the return of the license fee you paid for

the Software.

The producer gets to choose the remedy, not the customer. Moreover, The producer is permitted to replace the
software as if a different copy of the software will behave differently. Here again, it sounds like this provision
is written to get naive legislators off the producer's back with something that makes it appear that the producer
is really trying to get to the user something that works. I hope that the customer can force the supplier to adopt
the money-back remedy when it is clear that another copy of the same program is going to perform exactly the

same as the non-conforming copy.

ADOBE AND ITS SUPPLIERS DO NOT AND CANNOT WARRANT THE PERFOR-
MANCE OR RESULTS YOU MAY OBTAIN BY USING THE SOFTWARE OR DOCU-
MENTATION THE FORGOING STATES THE SOLE AND EXCLUSIVE REMEDIES
FOR ADOBE'S OR ITS SUPPLIER'S BREACH OF WARRANTY. EXCEPT FOR THE
FORGOING LIMITED WARRANTY, ADOBE AND ITS SUPPLIERS MAKE NO WAR-
RANTIES EXPRESS OR IMPLIED, AS TO NONINFRINGEMENT OF THIRD
PARTY RIGHTS, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR

PURPOSE.

In any case, the producer denies, and shouts this denial of, any warranty for what really matters, in particular
for merchantability and for fitness for any purpose, including for the very purpose of the software. Note that a«
non-software products are warranted by law in the U.S. and Canada for merchantability and for fitness for their

stated and implied purposes.

Some states or jurisdictions do not allow the exclusion of implied warranties or limita-
tions on how long an implied warranty may last, so the above limitations may not
apply to you To the extent permissible, any implied warranties are limited to ninety
(90) days This warranty gives you specific legal rights. You may have other rights
which vary from state to state or jurisdiction to jurisdiction. For further warranty infor-
mation, please contact Adobe's Customer Support Department.

The reality is that very few places do not allow exclusion of implied warranty for software products.

Elsewhere in the license, it is written:

This package contains software ("Software") and related explanatory written materi-

als ("Documentation").

Adobe Illustrator 7.0 and Microsoft Office '97 come with reasonably good, descriptive manuals describing
some typical scenarios the users might wish to do. Therefore, it might appear that the software is being war-
ranted to behave as the manual says it does. However, the warranty specifies only substantial compliance with
the written documentation, not complete compliance. Who decides how much compliance is substantial
enough'? In addition, it might be that the software can do all the scenarios that are descnbed in the manual, as
these were the test cases. Certainly the developer had to get these examples running to get the pictures of the
screen that are shown in the manual. However, the software does nothing more general, because the manual
describes all the test cases. In other words, the documentation means only what it says and not what the average

reader generalizes it to say.

44

The only written material I find in many packages these days is a manual describing only installation.
Given the typical EULA as described above, perhaps the producer is warranting only that the installation and
not necessarily the program, will perform substantially, but not necessarily completely, in accordance with the
documentation provided. Of course, there is the help system providing documentation, but if the software does
not run and the help system does not work, does that mean that the software is effectively not documented or
that if the user cannot get to the documentation, any behavior is allowed for the software because it is undefined

in the documentation?

Clearly, the warranty accompanying software is next to useless except for getting one's money back if

the software does not work.

3.1.2 Appliance Warranties

The Hoover vacuum cleaner comes with a warranty that says:

Full One Year Warranty (Domestic Use)

Your HOOVER® appliance is warranted in normal household use, in accordance with
the Owner's Manual against original defects in material and workmanship

The warranty covers all defects in what comes from the manufacturer. There is no concept of performing only
substantially as a vacuum cleaner. The appliance must perform completely as a vacuum cleaner from the begin-

ning.
for a period of one full year from date of purchase. This warranty provides, at no cost
to you, all labor and parts to place this appliance in correct operating condition during

the warranted period.

Hoover is saying that it will make the appliance work, by replacing whatever is necessary and doing whatever
work is necessary to get it running. Presumably, Hoover could replace all parts together as a unit, that is, pro-

vide a whole new vacuum cleaner.

This warranty applies when the appliance is purchased in the United States including
its territories and possessions, or in Canada, or from a U. S. Military Exchange. Appli-
ances purchased elsewhere are covered by a limited one year warranty that covers

the cost of parts only.

While a customer might not be covered for labor costs outside the U.S. and Canada, the parts and presumably a
replacement are covered. Also, if Hoover has built the vacuum cleaner well enough to be sold in the U.S. and
Canada, the vacuum cleaner will in all probability not need any such repair. Thus, the lack of a full warranty is

not disturbing.

This warranty does not apply if the appliance is used in a commercial or rental appli-

cation.

Hoover is covering only normal household use, not heavy-duty use.

Warranty service can only [sic] be obtained by presenting the appliance to one of the
following authorized warranty service outlets. Proof of purchase will be required

before service is rendered.

1. Hoover Factory Service Centers.

2. Hoover Authorized Warranty Service Dealers (Depots),

[details on servicing omitted]

This warranty does not cover pick up delivery, or house calls; however, if you mail
your appliance to a Hoover Factory Service Center for warranty service, transporta-

tion will be paid one way.

45

While this warranty gives you specific legal rights, you may also have other rights
which vary from state to state.

The contrast is striking. For the vacuum cleaner, I got a full, unlimited warranty, and I did not need it. More-
over I still have a fully functioning vacuum cleaner. For Illustrator, I got a limited warranty, and needed a full
warranty, as the limited warranty did not provide a useful remedy. A new copy would behave as the one I had
and my money back would leave me with no Illustrator.

The Sharp microwave oven comes with a warranty that says:

SHARP LIMITED WARRANTY

Consumer Electronics Products
Congratulations on your purchase!

Sharp Electronics of Canada Ltd. (hereinafter called "Sharp") gives the following
express warranty to the first consumer purchaser for this Sharp brand product, when
shipped in its original container and sold or distributed in Canada by Sharp or by an
Authorized Sharp Dealer:

Sharp warrants that this product is free, under normal use and maintenance, from any
defects in material and workmanship. If any such defects should be found in this pro-
duct within the applicable warranty period, Sharp shall, at it's [sic] option, repair or
replace the product as specified herein.

The product must perform completely as a microwave oven, and there is no concept of behaving only substan-
tially like a microwave oven. Also, Sharp is guaranteeing that the customer will have a microwave oven
somehow, and that he or she will never have to settle for money back and no microwave oven.

This warranty shall not apply to; [sic]

(a) Any defects caused or repairs required as a result of abusive operation, negli-
gence, accident [sic] improper installation or inappropriate use as outlined in the
owner's manual;

(b) Any Sharp product tampered with, modified, adjusted or repaired by any party
other than Sharp, Sharp's Authorized Service Centres or Sharp's Authorized Servic-

ing Dealers;

(c) Damage caused or repairs required as a result of the use with items not specified
or approved by Sharp, including but not limited to, head cleaning tapes and chemical

cleaning agents.

(d) Any replacement of accessories, glassware, consumable or peripheral items
required through normal use of the product, such as earphones, remote controls, AC
adaptors, batteries, temperature probe, stylus, trays, filters, etc.

(e) Any cosmetic damage to the surface or exterior that has been defaced or caused
by normal wear and tear.

(f) Any damage caused by external or environmental conditions such as liquid spillage

or power line voltage, etc.

(g) Any product received without appropriate model and serial number identification

and/or CSR markings.

(h) Any consumer products used for rental or commercial purposes.

Sharp is careful to exclude causes of damage that are not its fault or are the fault of the customer or normal

46

wear and tear. Notice that nothing for which the customer would really expect Sharp to be responsible has been

excluded.

Should this Sharp product fail to operate during the warranty period, service may be
obtained upon delivery of the Sharp product together with proof of purchase to an
Authorized Sharp Service Center or an Authorized Sharp Servicing Dealer.

[details on servicing omitted]

This warranty constitutes the entire express warranty granted by Sharp and no other
dealer, service center or their agent or employee is authorized to extend, enlarge or
transfer this warranty on behalf of Sharp.

The period of the microwave warranty is denned elsewhere in a table.

WARRANTY PERIODS

Microwave Oven 2 years (magnetron 3 additional years part warranty only)

The limited warranty period is a recognition that an appliance decays and that it cannot operate like new for-

ever.

Basically for appliances, manufacturers warrant that there are no defects, that the appliance behaves as it
is specified, and'that they will make the appliance run if the customer finds a defect within the warranty penod.

It is my belief that if laws were changed forcing software manufacturers to guarantee fitness for purpose
or functionality, their procedures would change so that software is released only after the same kind of quality

control that appliances are subjected to.

3.2 Liability

This section examines the liabilities borne by the producers of the software products and appliances
described in Section 2. Appliance manufacturers are held liable for damages caused by their appliances, e.g.. if
» appSice blows up, catches fire, etc. Furthermore, if it can be shown that the manufacturer *******
accepted quality control procedures for the engineering disciplines involved in the manufacture, the manufac-
Ter can I judged willfully negligent and can be assessed punitive damages. Consequently an apphance
manufacturer applies whatever methods are available for predicting behavior and *»«^ «^'*"*£
ducts including testing and modeling. It also arranges for independent verification and validation (IV&V), for
example by I Underwriters' Laboratory, as part of the process of determining the cost of its hab.l.ty

insurance.

The Hoover vacuum cleaner warranty has no limitation of liability whatsoever. The Sharp microwave

oven warranty has a limitation of liability.

To the extent the law permits, Sharp disclaims any and all liability for direct or indirect
damages or losses or for any incidental, special or consequential damages or loss of
profits resulting from a defect in material or workmanship relating to the product
including damages from loss of time or use of this Sharp product. Correction of
defects in the manner and period of time described herein, constitute complete
fulfillment of all obligations and responsibilities of Sharp to the purchaser with respect
to the product and shall constitute full satisfaction of all claims, whether based on con-
tract, negligence, strict liability or otherwise.

In many places, the law does not permit Sharp to disclaim all liability, particularly of damages or loss caused by
a functioning or malfunctioning product. In other words, if a correctly used microwave oven explodes, Sharp ,s

liable for the damages and loss caused by the explosion.

47

Software developers suffer no such liability. There are few laws specifying their liability. Furthermore,
they usually write into their shrinkwrap, mass market licenses a disclaimer for liability for damages beyond the
cost of the software itself. Adobe's EULA shouts out a very strong limitation on liability; Microsoft's EULA

has a very similar shouted limitation on liability.

6 Limitation of Liability. IN NO EVENT WILL ADOBE OR ITS SUPPLIERS BE
LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAM-
AGES INCLUDING ANY LOST PROFITS OR LOST SAVINGS, EVEN IF ADOBE
REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES, OR FOR ANY CLAIM BY ANY THIRD PARTY. Some states or jurisdictions
do not allow the exclusion or limitation of incidental, consequential or special dam-
ages, so the above limitation may not apply to you.

In most jurisdictions, the producer has no liability whatsoever for any damages caused by the software's inabil-
ity to do its function or for any damage done by malfunctioning software. The consumers accept the useless
warranty and the limitation of liability. More than that, consumers accept the poor quality software and keep
paying for upgrades, which are often little more than corrections of flaws in a product that they already paid for.

It is my belief that if laws were changed forcing liability on software developers, their procedures would
change to use all available methods for assuring quality, including inspections, testing, IV&V, and even formal
methods. They will do anything to stave off a claim of willful negligence in the event of damages from the exe-

cution of their software.

3.3 Mass-Market vs. Bespoke Software and Negotiating Power

Note again that I am talking about consumer software developed at a producer's own expense and risk
for the mass market. For bespoke software, especially for systems with high reliability and safety concerns such
as in aircraft, automobiles, telecommunications, and process control, the producer warrants the product and is
subject to liability as a result of the contract negotiated face to face between the client and producer. Here, the
client has the power to force the producer to warrant the product and accept liability, because the client can
always go to another producer. In the consumer market, in which there is no face-to-face negotiation of a con-
tract a contract warranting nothing and limiting the producer's liability is foisted on the consumer through the
shrink-wrap mechanism. Because for a given function, there is often only one product that runs on a customer s
system or that all those interacting with the customer can use, the customer is forced to accept this product and
its license- the producers have the power to force consumers to accept an agreement that strongly favors the
producers'Perhaps this imbalance of power is the reason that consumers accept the poor quality of software
and the unfavorable terms of the shrinkwrap consumer software license agreement.

3.4 Wrap Up

This discussion of warranty and liability is best concluded by examining a letter written by Justus Pen-
dleton of Somerville, MA to IEEE Computer, January 1999 [28]. The letter was written ostensibly to to point
out that it is no easier to verify fitness for use of normal commercial shrinkwrapped software than of open-
source software. He was replying to an earlier letter to the same journal that claimed that open-source software
offers full protection only if the user has the resources to conduct a full inspection. Pendleton wrote:

There is a fitness-for-use disclaimer in virtually all software that usually says something to the
effect "this [information, computer program] is being provided with all faults, and the entire
risk as to satisfactory quality, performance, accuracy, and effort is with the user." The buyer
of shrinkware as to either take the vendor's word that the software is fit to use or subject it to
black-box testing (the results of which cannot be published without the vendor's explicit and
prior permission), which is arguably more difficult that a thorough inspection of source code.
... These are the same vendors that tell us the next version, which is due out next month
sometime, will fix all the problems we are having.

48

4 Quality Assurance Methods and Warranties and Liabilities

In a number of engineering disciplines, there are systematic and sometimes formal procedures for
verification and validation that are to be followed while the product is in design stage. Electrical engineers rou-
tinely apply mathematical models of electronics to determine if their designs will function correctly and will
meet safety requirements. Civil engineers and architects routinely apply mathematical models of structures to
verify that the structures they are designing will support the load to which they will be subjected and that they
will withstand the environmental forces that may push on them. The reason that these engineers routinely apply
their QA procedures is that if they do not and the product does not work as it is supposed to, their employers
may be inundated by customer complaints, may suffer massive returns with refunds, and may, in the worst case,
be sued for damages. The employers may then take disciplinary and, in some cases, job action against the
engineers responsible for the malfunctioning product. Also, if these engineers do not apply their QA procedures
and the product causes damages, the failure to apply the QA procedures in the construction of the product may
subject the manufacturer to a negligence claim and punitive damages beyond the just the base cost of the dam-

ages.

In these engineering disciplines, the manufacturers establish procedures to be followed during design,
development, and manufacturing. These procedures include a variety of tests, ranging from inspection of docu-
ments, through actual usage of prototypes of and samples of the developed products, to exercising mathematical
models The manufacturers require employees to follow these procedures and to document that they have fol-
lowed the procedures. The documentation may be subpoenaed in a damages lawsuit. Failure to follow these
procedures subjects the offending employee to disciplinary action and, in some cases, job terminaüon. These
procedures and penalties for failure to follow the procedures is the manufacturer's best defense against a negli-

gence claim.

The professional requirements for a medical doctor or physician are instructive. A physician is held to
the standard of care in his or her community. Failure to provide at least the current standard of care may sub-
ject the physician to a negligence complaint and to malpractice action. The definition of this standard varies

and depends on

1. what is taught at medical school,

2. the results of recent medical research, and

3. what the physicians in the community regularly do, given the resources available.

The community standard of care is determined case-by-case in malpractice cases from the testimony of

expert witnesses, usually other physicians*.

In medicine, the standard of care for a community is a baseline and may not be all that close to the state
of the medical art. It consists of what the doctors in the community consider to have been demonstrated as
effective treatment, modulo the facilities and resources available to carry it out. While it is not required for a
physician to apply the latest treatments, which may be only experimental, it is not an acceptable defense m a
malpractice suit to say that the applied out-of-date treatment is what the physician learned in medical school.
The physician is required to keep up to date and learn new treatments that have been demonstrated effective
against diseases in his or her specialty. The standard of care for a community evolves continually with new

treatments established by research as effective.

Anyone with a duty to be careful in a treatment is considered negligent and is liable for damages if he or
she has not applied the accepted standard of care, the care causes damages, and there was no independent, inter-
vening cause of the damages. The standard of care is higher for a relevant professional than for others. For a
non-physician, the standard of care for medical treatment is what the reasonable person-m-the-street would do
in the circumstances. For the professional physician, not to apply the community's standard of care for

♦These expert witness doctors are paid by one side or another in the case. Thus, it is not hard to find doctors who, for a fee, will testify that
another doctor's care was not up to the standard of care for the community. It is also not hard to find other doctors who, for a fee, w.ll test.fy
to the exact opposite. In the end the judge or the jury have to decide if the care was up to the standard.

49

physicians is considered malpractice.

In medicine, the standard of care does not require using not-yet-widely used treatments and, in fact, may
require not using them, especially if they are as yet unproved. However, in other areas, one might be expected
to use a new technology even it is not yet widely used. In such a case, the standard of care drives adoption ot
new techniques. There was a famous case from the 1920s or 1930s in which the operators of a tugboat, the T. J.
Hooper were held liable for the boat's sinking in a storm because there was no radio on board with which to
listen tö weather reports. The operators were held liable even though, at the time, most boats did not have
radios. This case spurred the adoption of radios as standard equipment on board boats.

5 Loss of Exclusion of Warranty and Liability

What will happen if warranty and liability limitations for software producers are brought in line with
those of other manufactured products, and software producers become as accountable for product quality as
other manufacturers. Please allow me to speculate. I believe that the software producers will have to start
applying community and professionally accepted standards of care, both to produce more reliable software and
to serve as a defense against liability should products cause damages despite the care. They will need to estab-
lish procedures that must be followed during specification, design, development, and deployment. These pro-
cedures will include a variety of tests, ranging from inspection of documents, through uses of prototypes and
production code in runs against test data, to formal model checking and verification. They will require the
software engineers working for them to follow these procedures and to document that they have done so.
Finally, they will provide for disciplinary action and even job termination for failure to follow these procedures.

Similar procedures are established by many software producers in order to obtain CMM or ISO 9000
certification [27]. Because of the artificial imposition of the procedures that have no observable direct positive
impact and seem to mire a project in process, many employees doubt the effectiveness of the procedures and
may even subvert their imposition. Moreover, many software manufacturers, with no chance for or interest in
government contracts, simply do not bother with certification at all. Loss of warranty and habihty limitation
will force all software producers to adopt systematic QA procedures, possibly those suggested by CMM or IS(X
In addition, the effect of failure to follow the procedures will be felt more directly and swiftly, m the form ot
job and legal actions, thus encouraging better compliance by employees.

Indeed here we may have the solution to the inexorable pressure of the rush to market that give a high
incentive to premature release of software. The loss of warranty and liability limitation changes the economics
of early release. Early release may increase exposure to warranty and liability claims, which can be very costly.
Thus, there would be a higher incentive to slowing down to release higher quality SW. It would become a tra-
deoff of exposure to warranty and liability claims versus loss of market.

These procedures will become the accepted standard of care against which all work will be compared,
particularly if the work has led to a substandard product or one which has caused damages. Of course, in
software development, the standard of care will vary depending on the product. The more cntical the product,
the higher the standard of care for its development. For software driving a system on which lives depend, the
standard of care will be considerably higher than for software driving a recreational game. For some hfe-cntical
systems the standard of care would likely include formal methods such as model checking and possibly even
formal verification. For a program to play solitaire, the standard of care would be considerably lower, probably

including only inspection and basic testing.

The standard of care for software development will depend on

1. what is taught in software engineering degree programs,

2. the results of recent software engineering research, and

3. what software engineers in the community regularly do, given the resources available and the domain

of the software.

50

Quite likely software engineering will be judged to be a field in which new techniques, not yet widely

adopted, will be expected to be used when the situation warrants it.

Where are formal methods in all of this? Formal methods are taught in software engineering degree pro-
grams formal methods are explored in software engineering research, formal methods are used in the most crit-
ical projects. Finally, formal methods, while not widely adopted, have been shown to be of benefit m develop-
ment of critical software. Therefore, it seems clear that formal methods will be part of the standard of care for
some software developments and that the exposure of software producers to liability will drive them to adopt
formal methods for the development of critical software, and possibly, of some less than critical software.

6 The Software Engineering Profession

There is a move to make software engineering a full-fledged engineering profession [24,25]. Just as the
practitioners of other professions, engineering, medicine, or others, are expected to apply the profession s stan-
dard of care in their work or face malpractice action, so will the software engineer be expected to apply
software engineering's standard of care. After all, an engineer's responsibilities include making sure products
he or she produces are fit for use, contrary to what current software warranties claim. If this standard of care
includes formal methods, software engineers would be compelled to apply formal methods ,n appropriate cir-
cumstances. The software engineer who does not apply this standard of care would find himself out of a job or

facing legal malpractice action.

Normally the company that produces a product is liable for the product and the individual employees are
not However, an individual licensed engineer assumes liability for those products whose fitness he or she has
guaranteed with his or her signature. This liability borne by the licensed engineer who signs off on a product is
scary and probably accounts for the resistance of many current software developers, who call themselves
"software engineers", to licensing of software engineers under standard engineering charters. The engineer can
lose his or her profession and face severe legal consequences if a product he or she develops and guarantees

fails.

7 Conclusion

Once product warranty and liability applies to software products, a producer of software will be com-
pelled not to release software until it can guarantee that it behaves as it is supposed to, for fear of consequences
such as a flood or complaints, having to refund lots of buyers, having to recall the product, having to stand
behind a faulty product, and possibly even paying damages if the product causes damage as a result of not
behaving as it is supposed to. I believe that to meet the required level of quality, software producers will be
force to establish systematic QA procedures. They will be forced to put teeth into the procedures in order to
force employees, the software engineers, to comply with these procedures. The software engineers wil face
disciplinary action and possible termination for failure to follow the procedures. The procedures will likely

include formal methods for certain classes of critical systems.

Perhaps one day, commercially available software will be as reliable as commercially available appli-
ances. While appliances are by no means pefect, they are a whole lot more reliable than software. I could live

with software being as good as my microwave oven!

8 Added in Proof

Just as I was preparing this paper for submission, an extremely relevant article authored by Joseph Menn,
a Times staff writer, appeared in the newspapers on 4 February 2000. It also appeared in the WWW at

http://www.latimes.com/
business/updates/lat_rights000204.htm.

The article at the web site is titled "Software Makers Aim to Dilute Consumer Rights" with a subtitle of 'Tech-
nology: Companies push legislation at state level that would dramatically alter contract law in their favor.

Microsoft Corp. and other powerful software companies are quietly pushing state

51

legislation across the nation that would dramatically reduce consumer rights for indivi-
duals and businesses who buy or lease software and database information.

The push comes as software companies are beefing up their lobbying effort to pass
favorable laws while their industry is at peak popularity among politicians who want to
keep their local economies booming, consumer groups say.

"[This] is an example of newly powerful software giants using the promise of high-tech
jobs to push through legislation that restricts consumer and business-customer
rights," said James Tierney, former Maine attorney general, who opposes the effort.

The tech bills spring from a proposal with an arcane name, the Uniform Computer
Information Transactions Act (UCITA). Should states pass this legislation, the impact
on consumers would be dramatic:

But in dozens of ways, large and small, the bills tip the balance of power toward
software companies, according to law professors, consumer groups, more than 20
state attorneys general and some corporate software buyers that are beginning to
organize an opposition to the UCITA campaign.

If these UCITA-sponsored bills pass, "it will dramatically change the law," said Her-
schel Elkins, head of the California attorney general's consumer department. He said
the legislation would put buyers into a legal comer with little way out. "It's pay first,
find out what you bought later," he said. "The refund right disappears when you click

twice on 'I agree.'"

"It's very difficult to understand," [Temple University law professor Amy] Boss said of
the bill Under the legislation, customers who install software in their computers have
already lost some of their basic rights, she said. The tech bill "gives the consumer no
way to disagree with the terms," she said.

Microsoft's [Rick] Miller declined to discuss some of the complex bill's provisions.
Other supporters of the legislation said its critics misunderstand the effect of the

measure.
It can be even worse than I thought. In Section 3.3,1 observed that the public seems to accept software produc-
ers' claims of no warranty and no liability. However, it is not clear that the courts would accept these claims it
enough members of the public were to sue. The courts would likely apply standards for normal consumer pro-
ducts if for no other reason than judges and juries really do not understand software. UCITA however, would
override any such court decision by explicitly legislating the provisions of no warranty and no liability found m

most shrink-wrapped licenses.

Acknowledgments

I thank Connie Heitmeyer and Dino Mandrioli for bibliographical references and comments and sugges-
tions that led to improvements in the paper. I thank David Kay for an e-mail discussion about standards of care
for medical doctors. Finally, I thank Egon Boerger, Martin Feather, and three anonymous reviewers for then-
sharp criticisms of a previous version of this paper. These criticisms led to a ^0^^n^f^l^S

supported in parts by a University of Waterloo Startup Grant and by NSERC grant NSERC-RGPIN227055-00.

52

References

[1] IEEE Computer 23(9) (September 1990), Special Issue.

[2] IEEE Software 7(5) (September 1990), Special Issue.

[3] Proceedings of the Workshop on Industrial-Strength Formal Specification Technics. IEEE Computer Society, Boca

Raton (April 1995).

[4] Proceedings of the Fourth NASA Langley Formal Methods Workshop, NASA Conference Publication 3356, Hampton,

Virginia (September 1997).

[5] Journal Systems and Software 40(3) (March 1998), Special Issue.

161 Berry D M "Formal Methods, the Very Idea, Some Thoughts on Why They Work When They Work/' Electronic

m Rh^Hwai R and Heitmever C "Applying the SCR Requirements Method to a Simple Autopilot," in Proceedings of m TF1::I'NAZä äW^, NASA a**«-« ****** 3356, «**«, ***** <&*.
tember 1997).

[8] Bowen, J.P. and Hinchey, M.G., "Seven More Myths of Formal Methods," Technical Report PRG-TR-7-94, Oxford

University Computing Laboratory (1994).

[9] Bowen, J.P. and Hinchey, M.G., 'Ten Commandments of Formal Mcthc^" Technical Report, Oxford University

Computing Laboratory and University of Cambridge Computer Laboratory (1995).

(September 1997).

8(1), p-79-113 (January 1999).

Society, Boca Raton, FL (April 1995).

[13] Easterbrook, S. and Callahan, J.. "Formal Methods for Verification and Validation of Partia. Specifications: A Case

Study," Journal Systems and Software 40(3), p. 199-210 (March 1998).

[14] Gerhart S.L., "Program Verification in the 1980s: Problems, Perspectives, and Opportunities," ISI/RR-78-71, USC

Information Sciences Institute, Marina Del Rey, CA (August 1978).

[15] Gerhart, S.L., "Applications of Formal Methods," IEEE Software 7(5), p.6-10 (September 1990).

[16] Gilb, T. and Graham, D., Software Inspection, Addison Wesley, Wokingham, UK (1993).

[17] Hall A "Seven Myths of Formal Methods," IEEE Software 7(5), p.11-19 (September 1990).

[18] Heimdahl, M.P.E. and Leveson, N.G., "Completeness andI Consistency[in He,rarchica, State-Based Requirements,"

IEEE Transactions on Software Engineering SE-22(6), p.363-377 (June 1996).

[19] Hinchey, M.G. and Liu, S., Proceedings of First International Conference on Formal Engineering Methods, IEEE

Computer Society, Hiroshima, Japan (November 1997).

[20]Hoare, C.A.R., "An Axiomatic Basis for Computer Programming," Communications of the ACM 12(10),

p 576-580,585 (October 1969).

[21] Jackson, M„ "Formal Methods and Traditional Engineering," Journal of Systems and Software 40(3), p.191-194

(March 1998).

Hiroshima, Japan (November 1997), Invited Lecture.
,LirnI r, rihHpMS and Nakano LG., "Why Are Formal Methods Not Used More Widely," pp.

1231 SiÄllÄÄlÄ*; NA/A C„toe NU. 3356, H-,,0, V**
(September 1997).

53

[24] McConnell, S. and Tripp, L., "Professional Software Engineering: Fact or Fiction?," IEEE Software 16(6)

(November/December 1999).

[25] Parnas, D.L., "Software Engineering: An Unconsummated Marriage," Communications of the ACM 40(9), p.128 (Sep-

tember 1997).

[26] Parnas, D.L., ""Formal Methods" Technology Transfer Will Fail," Journal Systems and Software 40(3), p.195-198

(March 1998).

[27] Paulk, M.C., Curtis, B., Chrissis, M.B., and Weber, C.V., "Key Practices of the Capability Maturity Model," Technical
Report, CMU/SEI-93-TR-25, Software Engineering Institute (February 1993).

[28] Pendleton, I., "Shrinkwrap Is No Safer," IEEE Computer 32(1), p.9 (January 1999).

[29] Pressman, R, "Software According to Niccolö Machiavelli," IEEE Software 12(1), p.101-102 (January 1995).

[30] Wing, J.M., "A Specifier's Introduction to Formal Methods," IEEE Computer 23(9), p.8-24 (September 1990).

[31] Woodcock, J.C.P. and Larson, P.G., FME'93 Industrial-Strength Formal Methods, Springer, LNCS 670 (1993).

54

Static Analysis for Program Generation Templates

Valdis Berzins
Naval Postgraduate School
Monterey CA 93943 USA

Abstract

This paper presents an approach to achieving reliable cost-effective software via automatic program
generation patterns. The main idea is to certify the patterns once, to establish a reliability property for all
of the programs that could possibly be generated from the patterns. We focus here on properties that can
be checked via computable static analysis. Examples of methods to assure syntactic correctness and
exception closure of the generated code are presented. Exception closure means that a software module
cannot raise any exceptions other than those declared in its interface.

1. Introduction

Our goal is to provide cost effective means for creating reliable software. We are addressing the
issue by improving the technology for automatic software generation, with particular attention to
reliability issues.

We take a domain specific view of this process: a domain is a family of related problems addressing
a common set of issues. A domain analysis identifies the problem and issues, formulates a model of these,
and determines a corresponding set of solution methods. Users of the proposed computer-aided software
generation system describe their particular problem using a domain specific problem modeling language
that provides concrete representations of problems in the domain. The system then automatically
determines which solution methods are applicable, customizes them to the specific problem instance
described using the modeling language, and then automatically generates a program that will solve the
specified problem.

We seek to provide tool support for the above process that can be applied to many different problem
domains, and that can generate code in any programming language. Therefore we seek uniform and
effective methods for generating software generators of the type described above, given definitions of the
problem modeling language, the target programming language, and the roles for synthesizing solution
programs. A simple architecture for this process is shown in Figure 1.

The specific goals of this paper are: (1) to provide a simple example of a language for expressing
software patterns that are specific enough to be used as synthesis rules and (2) to provide examples of
static rules in this language. We address the problems of certifying that all programs which can be
generated from a given set of rules: (1) are syntactically correct and (2) will not raise any exceptions other
than those explicitly specified in an interface description.

This is a step towards a coordinated system of static and dynamic checks, to be performed on
program synthesis rules. Our hypothesis is that the most cost effective way to improve software quality is
to systematically improve and certify the rules used to generate a domain-specific software generator.
This approach directly addresses the issue of correctly implementing given software requirements. It also
indirectly addresses the issue of getting the right requirements, because it should eventually enable rapid
prototyping of product quality systems by problem domain experts, who need not be software experts. If
the requirements are found to be inappropriate, the domain experts will simply update the problem models
and regenerate a new version of the solution software.

We will refer to the software generation patterns as templates. Our rationale for the claim of cost
effectiveness is that the benefits of quality improvements to the templates can be extended to all past and
future applications of the generators - by regenerating the generator using the improved templates and
then regenerating the past applications. The regeneration process can be completely automated, thereby
reducing labor costs, eliminating a source of random human errors, and speeding up the process of
repairing a known fault throughout a large family of software systems.

1 This research was supported in part by the U. S. Army Research Office under contract/grant number
35037-MA and 40473-MA, and in part by DARPA under contract #99-F759.

55

The relation to the theme of this workshop is that fast moving scenarios can be addressed by
automatically generating new variants of the software that reflect changing issues in the problem domain.
Our approach should reduce the explicit quality assurance efforts needed each time the software is
changed By amortizing the quality assurance effort applied to the template over many applications of the
same templates, we can reduce quality assurance costs. The benefits increase with the number of systems
generated from the same templates.

Rule
Language

Model

Problem
Statement
Language

lenerator-
Jenerator

imrnim

Language-

Program Generator

Software
Solution

Target
Implementation
Language

Figure 1. Model-Based Software Generator Architecture

This paper focuses on static checks that can be completely automated. Our research is also addressing
testing and debugging of program synthesis rules and proofs of rule properties that require human
assistance with deeper reasoning. These efforts are outside the scope of the current paper, which is
organized as follows:

• Section 2 formalizes software generation patterns and defines a uniform construction to
obtain a template language for any target programming language.

• Section 3 describes methods for statically certifying syntactic correctness generated code,
and gives an example.

• Section 4 does the same for analysis of exceptions.
• Section 5 contains comparisons to previous work
• Section 6 presents conclusions.

2. Template Languages

The purpose of a template language is to define software synthesis patterns for a given target
language We create such languages based on a functional object model of code generation templates. We
take a functional (i.e. side-effect-free) approach because this simplifies the algebraic basis of the approach
and supports effective static analysis methods such as those presented in Section 3 and 4.

56

We view template languages as extensions of the corresponding target programming languages.
Because many different programming languages are created, we will need many different template
languages. However, all of these can be defined at once by providing uniform construction such as that
shown in Figure 2.

This is a very simple construction, but it is very expressive. In addition to providing substitution of
actual values for generic parameters, as in the generic units of Ada and the templates of C++, our
construction includes conditionals that are evaluated at code generation time, and the ability to invoke
other templates. Recursion is included.

Templatejanguage = {template, formal_def, templateexpression}

DEF_TEMPLATE(id[template], type, seq[formal_def], template_expression):
template - where type I e targetjanguage

DEF_FORMAL(template_parameter, type): formaldef
- declares the type of a formal parameter

template_parameter < {id[any], templateexpression}
IF(template_expression,template_expression,template_expression):

templateexpression
APPLY(id[template], seq[template_expression]): templateexpression

templateexpression < targetjanguage

Figure 2. Template Abstract Syntax

The construction depends heavily on the use of inheritance in object-oriented modeling of
programming languages. The situation is illustrated in Figure 3.

Figure 3. Generic Template Language

In object-oriented modeling, class-wide types2 are viewed as open and extensible. Specifically, each
time we add a subclass with a new constructor, we add more instances to the class-wide type, thus
extending its value set.

We model the abstract syntax of a language using a type for each kind of semantic entity. In a
properly constructed abstract syntax, there should be one such type for each non-terminal symbol. Each
constructor of these types corresponds to a production of the grammar. Subclass relationships, denoted by
"<", specify that every instance of the subclass is also an instance of the parent class. Multiple inheritance
is allowed For example, in line 6 of Figure 2 says that every template parameter is a kind of identifier,
and also is a kind of template expression. This kind of subclass relationship is used to incorporate
reusable types in a library of programming language building blocks, such as identifiers, and to specialize
reusable concepts to the application, such as template expression. If T is a type and S is a set of types,
T<S means T is a subclass of each element of S. This represents multiple inheritance.

2 This is Ada 95 terminology. The instances of a class wide type include its direct instances and those of
all its subclasses, transitively.

57

Subclassing is also used to interface between a target programming language and its extensions. In
Figure 2, "target-language" denotes the set of types comprising the abstract syntax of the target language.
Figure 4 shows a very simple example of a target language that illustrates how this works.

targetlanguage = (stmt, exp)

assign(var, exp): stmt
if(exp, stmt, stmt): stmt

integer < exp - integer literals
var < {id[any], exp} -- program variables
apply(id[function], seqfexp]): exp -- operations

subtype rule: x < y ==> id[x] < id[y] where x, y e type

Figure 4. Example: Micro Target Language

The example in Figure 5 defines a code generation pattern that embodies Newton's method for
polynomial evaluation, which is optimal in terms of number of evaluation steps needed. This is a very
simple example of a code generation pattern that is nevertheless realistic, because it embodies a solution
method The example also illustrates the use of all the constructs in the template language. We use infix
syntax for the exp constructors * and + to improve legibility (e.g. x*y is short for the term apply(, x, y)).

An additional benefit of considering the abstract syntax to be an algebra rather than a tree is that we
can used well-studied transformation rules. In particular we can associate equational axioms with the
programming language types that define normal forms. Figure 5 illustrates the use of such axioms as
rewrite rules that simplify the code produced by the generator in a follow-on normalization process. This
is one way to incorporate optimizations into the program generation process, which is useful tor
unconditional transformations.

TEMPLATE eva!uate_polynomial (v: var, c: seq[integer]): exp
- c contains coefficients of a polynomial, lowest degree first
IF not (is_empty (c)) - use operations of boolean and seq
THEN v * (evaluate_poIynomia! (v, rest(c))) + first (c)
ELSEO

END TEMPLATE

Template application evaluate-polynomial(x, [1,2,3J) generates
x * (x * (x * 0 + 3) + 2) + 1

Normalization with integer rules i * 0 = 0, i + 0 = i reduces to
x * (x * 3 + 2) + 1

Figure 5. Example: Generation Pattern

Code generation using the template language is a very much like evaluation in a functional
programming language with call-by-value semantics. Analysis of templates can take advantage of
equational reasoning, substitution, and structural induction. The limitation to primitive recursion
facilitates the latter. The recursion in the example is structural because rest is a partial inverse for the
sequence constructor add (i.e. rest(add(x, s)) = s).

3. Syntactic Correctness of Generated Code

We treat the abstract syntax structures of the target language as the values of the abstract data types
representing the programming language. We require these types to provide a pretty printing operation that
outputs such objects as text strings according to the concrete syntax of the target language with a
readable format. Establishing correctness of these pretty printing operations is straightforward, and in tact
their implementations can be generated from an appropriately annotated grammar for the concrete syntax.

Given trusted pretty printing operations for the object model of the target language, syntactic
correctness of the output reduces to the type-correctness of the ground terms generated by the evaluation

58

of the templates. This can be checked using a simple type system for the template language and
conventional type checking methods. Note that we are referring to the types associated with the signatures
of the constructors in the object model of the target programming language, rather than the types within
the target programming language, which may not even be a typed language. The process is illustrated
Figure 6. The computed type annotations are shown in italics. The type annotations associated with the
implicit induction step, where the type signature of the template itself is used, is highlighted in bold
italics. The indentations of the type annotations reflect the structure of the derivation.

TEMPLATE evaluate_polynomial (v: var, c: seq[integer]): exp
IF not (is_empty (c : seq[integer]): boolean): boolean
THEN + (* (v •" var>

evaluate_poIynomiaI
(v : var,

rest(c: seq[integer]): seq[inteser]): exp
) : exp

first (c: seqpnteger]) : integer
) :exp

-term form of v* evaluate_polynomial (v, rest(c)) + first (c)
ELSEO -.integer

END TEMPLATE

Types conform because integer < exp and var < exp

Relevant signatures: +(exp, exp) :exp, *(exp, exp) :exp,
first(seq[T]): T, rest(seq[T]): seq[T],
is_empty(seq[T]): boolean, not(boolean): boolean

Figure 6. Example: Syntactic Correctness of Generated Code

Note that induction has been carried out implicitly, as a routine step of the type checking calculation.
This is sufficient to establish partial type correctness of the templates, which implies syntactic correctness
of all code that could be generated by the template, it does not automatically guarantee total correctness,
because we still have the possibility that evaluation of the template might fail to terminate.

Total correctness is established by the type check if we check that all recursions are primitive. The
example satisfies this condition because rest is a partial inverse of the compound sequence constructor;
rest(add(x,s)) = s. This means that the induction is in fact structural, and hence that evaluate_polynomial
is total. Thus the template will produce syntactically correct code for all input values that conform to the
type signature of evaluate_polynomial.

We note that given declarations of the target language constructors that define the abstract syntax and
the corresponding partial inverse operations, it is straightforward to automatically check that all recursive
calls are primitive with respect to any given parameter position. This implies that structural induction can
be applied uniformly and completely automatically in this context. Furthermore, our experience suggests
that structural recursions are sufficient to define the code generation templates needed in practice, and that
template designers can live within the restriction to structural recursions without undue hardships.

4. Exception Closures for Generated Code

One common source of software failure is unhandled exceptions. This section explains a method for
certifying that all programs generated from a given template cannot generate any unhandled exceptions
when placed in a context that handles a specified set of exceptions.

Our approach is to refine the type system to record the set of exceptions that might be raised by the
evaluation of any expression of the target language. A similar structure can be used to analyze the set of
exceptions that might be raised by execution of a statement of the target language.

59

The refinement replaces the single target language type exp with a parameterized family of types
exp[set[exception]]. The intended interpretation of this type structure is that evaluation of an expression
of type exp[S] might raise an exception e only if ee S. Since we do not require all exceptions in S to be
producible, this family of types has a rich subclass structure defined by the following relation:

SlcS2 => exp[Sl]<exp[S2]

The type signatures of an operation are specified explicitly for argument expression type that cannot
raise any exceptions, and are extended to all other types by the following rule, which describes the
essential pattern for propagating exceptions:

F(exp[0]): exp[Sl] => f(exp[S2]): exp[Sl u S2]

The rule for operations with multiple arguments is similar. Similar rules apply to language constructs
representing exception handlers. Exception handlers follow rules of the form

(TRY exp[Sl] CATCH e USE exp[S2]): exp[(Sl-{e}) u S2].

Figure 7 shows the exception analysis for our running example. The parts added to the version in
Figure 6 are underlined.

TEMPLATE evaluatejpolynomial (v: var, c: seq[integer]): exp [{ovfl}]
IF not (is_empty (c: seqpnteger]): boolean): boolean

THEN +(*(v: var,
evaluate_polynomial(v: var,

rest(c: seqfinteger]): seq[integer]): exp [{ovfl}],
first (c: seqpnteger]): integer): exp [{ovfl}]

- term form of v * evaluatejpolynomial (v, rest(c)) + first (c)
ELSE 0: integer

END TEMPLATE

Types conform because integer < exp[0] < exp [{ovfl}] and
var < exp [0] < exp [{ovfl}]

Relevant signatures: +(exp, exp): exp [{ovfl}], *(exp, exp): exp [{ovfl}],
first(seq[T]): T, rest(seq[T]): seq[T], is_empty(seq[T]): boolean,, not(boolean): boolean

Figure 7. Exception Closure of Generated Code

Note that we require the author of the template to specify in the type declaration of a template the set
of exceptions the generated expression is allowed to raise. This acts as an induction hypothesis in our
exception analysis, which is used when analyzing the recursive call of evaluate-polynomial. It also
provides useful information for the user of the generated code.

The analysis shown in the figure establishes a partial exception closure: it guarantees that all
expressions generated by the template can at most raise only the exception ovfl represent.ng integer
overflow.

To establish a total exception closure, we have to address clean termination of the template expansion
at program generation time. The primitive recursion check explained in the previous section guarantees
there will be no infinite recursions, so that termination is guaranteed. However, for clean termination, we
must also check that evaluation of the template will not raise any exceptions at program generation time.

Note that the analysis in Figure 7 addresses run-time exceptions. When viewed as constructors of the
abstract syntax, + and * are total operations. Overflow exceptions can occur only when those expressions
are evaluated, not when they are constructed.

60

The sequence operators first and rest are different: they are partial query methods of the abstract
syntax, not total constructors. If applied to an empty sequence, they raise a sequence underflow exception.
However, this can occur only at program generation time, not at run time.

To certify clean termination of template at program generation time requires a type refinement to
record sets of possible exceptions and an additional kind of type refinement to record domains of partial
methods such as first and rest. We can introduce a subtype nseq[T, S] < seq[T, S] consisting of the
nonempty sequences, and refine the signatures of the partial sequence operations first and rest as follows.

first(nseq[T, 0]): T[0], rest(nseq[T, 0]): seq[T, 0]
first(seq[T, 0]): T[seq_underflow], rest(seq[T, 0]): seq[T, {seq_underflow}]

Type analysis requires a bit of inference in this case, because we have to use the guard of the
template language conditional IF together with the rule

s : seq[T, S] and not is-empty (s) => s: nseq[T, S]

This inference is easy because the guard matches the subtype restriction predicate for nseq[T].

This match did not occur by accident - the purpose of the guard is precisely to ensure that the
operations first and rest are used only within their domain of definition. In the interests of being able to
produce certifiably robust code, we claim that it would not be unduly burdensome to require that template
designers associate domain predicates with all partial operations, and use those domain predicates
explicitly in guards whenever they are needed to ensure the partial operators are used within their proper
domains of definition. For example, first could be associated with a domain predicate

first-ok (seq[T]): boolean where
first-ok (s) = not (is-empty (s)).

This would enable a fast and shallow analysis of guard conditions to certify absence of exceptions in
cases like this. Some such restriction is necessary for practical engineering support because the problem
of checking whether an unconstrained guard condition implies the domain predicates of arbitrary guarded
partial operations is undecidable.

An alternative is an exception analysis that includes exceptions in the closure even in cases where the
guard condition ensures they will never arise. We suggest that it is more practical to handle a common
subset of efficiently recognizable forms, and to ask designers to work within the constraints of those
recognizable forms. We believe this would be less burdensome than the alternative of manually analyzing
the cases where a type check insensitive to guard conditions would nominate exceptions that cannot in
fact occur, and that it would lead to a more robust software by making it practical to do complete analysis
of exception closures. For example, we could require the example of Figure 7 to be written in a stylized
form that looks like the following:

IF first-ok (c) and rest-ok (c)
THEN... first (c)... rest (c)...

A similar type check would have to be applied to the implementations of first and rest to ensure that they
would in fact terminate cleanly whenever the domain predicates are true.

5. Comparisons to Previous Work

One of our contributions has been to formalize and abstract the idea of a program generation pattern,
to make it independent of the details of the target programming language and the process of instantiating
the patterns. The purpose of this was to create context in which systematic analysis of program
generation patterns becomes possible and in some cases becomes decidable.

Program generation patterns have been evolving for a long time. Macros are an early form of the
idea. However, macros are notoriously difficult to analyze, partially because they traditionally operate on
uninterpreted text. This makes the connection between macro definitions and the behavior they
ultimately denote complicated and potentially very indirect. The macros in LISP are an improvement
because they are based on abstract syntax trees rather than characters. However, in this context a second
source of complexity becomes apparent: a macro can expand to produce another macro, and the number

61

of expansion steps before the generated source code actually appears is potent»!ly unbounded.Th s
makes the system very difficult to analyze. At the other extreme are the generic units of Ada. These are
Wrongly Jed clear^ connected to the abstract syntax of the language, and the results of instantiating
hem are easy to analyze. However, they do not allow conditional decisions at instantiation time, and are
restricted in the sense that the abstract syntax trees of all possible instantiations have exactly the same
shape up to substitution for the formal parameters of the pattern. A language-.ndependent vers.on of the
idea c'an be found in [5], although this appears to be largely text-based.

Another aspect of our approach is to model languages as algebras rather than as abstract syntax trees
A hint of this idea appears in [4], although it is not exploited there for enabling analys.s to any s.gn.ficant
deg ee The work of the CIP group [1] develops this idea further and takes advantage of the reasoning
structures that come with the algebraic modeling approach, such as term rewriting and genera lon

induction principles. This suggests extension to a full object-oriented v.ew, which includes inhertance.
The Refine system is the earliest context we know of where grammars are treated as object models w.th
Potential inheritance structures, although the documentation does not give any hurt about the significance
tfS capability. In this paper we demonstrate the usefulness of algebraic models of syntaxwith
Sheritance for defining language extension transformations that can be applied to all possible target

languages.

Another theme is lightweight inference [2]. We have demonstrated that some useful types of static
analysis for program generation patterns can be performed via computable and indeed reasonably
effiden methods8 The processes described here can be implemented using technologies typically used in
compilers, such as object attribution rules, they terminate for all possible inputs, and do so '" Polynom.a
tkne We believe this approach will scale up to large applications, and are currently working out the

details to support a tight analysis of the efficiency of the process.

This paper has explored static analysis of meta-programs to check syntactic correctness and
exception closure of the generated code. Another kind of static analysis in this family, type checking of
metaprograms to ensure the type correctness of the generated code, is considered by another paper in this

proceedings [3].

6. Conclusions

We believe that formal models of program generation templates can support a variety of quality
improvement processes that can help achieve cost-effective software reliability. This paper has Presented
a simple example of such a formal model and two such quality improvement processes, certification of
syntactic correctness and freedom from unexpected exceptions for all programs that can be generated
from a given program generation pattern. We expect the greatest advantages of his approach to be
eaHzed when it Is applied to realize flexible and reliable systems in a product line approach. Th.

appoach should be augmented with systematic methods for domain analysis that culminates in h
development of a domain-specific library of solutions embodied in a domain-specific software
architecture that is populated with components produced by model-based software generators. When the
SnTgy matures it should become possible for problem domain experts to specify their problem
rnstances8In terms of familiar problem domain models, and to have reliable software solutions to their
problems automatically generated, without direct involvement of computer experts.

The economic advantage of this approach comes from the ability to automatically reap the benefits of
each quality improvement for all past and future instantiations of the template (if past applications are
regenerated) We believe that it will be profitable to explore methods for lifting many known program
analysis techniques from the level of individual programs to the level of program generation patterns^
This should be explored for a variety of issues that range from certifying absence of references to
uninitialized variables, absence of deadlock, and many others, perhaps ultimately to template-based proof
of post conditions and program termination for generated programs.

To make this vision practical, many engineering issues must be addressed, including presentation
issues, methods for lightweight inference [2] and support for transforming and enhancing complex sets ot
analysis rules. Other issues include systematic methods for dynamic analys.s, testing, and debugging of
program generation rules. It is not reasonable to expect progress to occur in an instantaneous quantum
leap to perfection. A realistic process is a gradual one, where simple sets of program generation rules a e
deployed, and gradually tuned, improved, certified, and extended. A key issue ,s enabling rule
enhancement and exception closure extension without invalidating all previous effort on analysis and

certification of the previous versions.

62

The difference between the program generation approach proposed here and current compiler
generation tools is the associated static analysis capabilities for the program generation rules. It is
possible that in the future, ultra-reliable compilers will be built using techniques derived from those
introduced in this paper.

REFERENCES

1. F. Bauer, H. Ehler, A. Horsch, B. Moller, H. Partsch, O. Paukner and P. Pepper, The Munich Project
CJP. Vol. 2: The Program Transformation System CIP-S, Springer, Berlin, 1987.

2 V. Berzins, "Light Weight Inference for Automation Efficiency", Proceedings of the 1998
ARO/ONR/NSF/DARPA Monterey Workshop on Engineering Automation for Computer Based
Systems, Monterey California, 1999.

3. N. Bjorner, "Type Checking Meta Programs", Proceedings of the Workshop on Modeling Software
System Structures in a Fastly Moving Scenario, Santa Margherita, Italy, 2000.

4. T. Reps, Generating Language-Based Environments, Doctoral Dissertation, August 1982.

5. D. Volpano, R. Kieburtz, "Software Templates", CS/E 85-011, Department of Computer Science
and Engineering, Oregon Graduate Center, 1985.

63

Domain Engineering
"Upstream" from Requirements Engineering and Software

Design

Dines Bj0rner
Department of Computer Science & Technology

Technical University of Denmark
DK-2800 Lyngby, Denmark

E-Mail: db@it.dtu.dk

August 22, 2000

Abstract

Before software can be developed its requirements must be stated. Before requirements
can be expressed the application domain must be described. In this report we outline some
of the basic facets of domain engineering.

Domains seem, it is our experience, far more stable than computing requirements, and
these again seem more stable then software designs. Perhaps a way in which to more
rapidly develop trustworthy software from believable requirements is to secure compre-
hensive domain theories.

An brief example will be given on the basis of which we briefly discuss, in this report,
the notions of: domain intrinsics, domain support technologies, domain management &
organisation, domain rules & regulations, domain human behaviour, etc. We show else-
where how to "derive" requirements from domain descriptions: domain requirements:
by domain projection, instantiation, extension and initialisation; interface requirements:
multi-media, dialogue, etc.; and machine requirements: performance, dependability (re-
liability, availability, accessability, safety, etc.).

1 Background

The workshop for which this modest contribution is drawn up takes it departure point in
the US President's Information Technology Advisory Committee (PITAC) 1998 interim report:
Need for software outstrip development resources. Desparately needed software is not being
developed. Software must be made far more usable, reliable and powerful. Current devel-
opment, test and maintenance processes must change. Scientifically sound software develop-
ment approaches are required: Enabling meaningful and practical testing for consistency of
specificsations and implementations. The current document, based on [1, 2, 3, 4, 5, 6, 7, 8, 9]
immodestly suggest that a stronger emphasis need be put, in future, on domain engineering

as one means of reaching the PITAC goals.

64

2 Example: Resource Management

2.1 Synopsis and Narrative

The scope is that of resources and their management. The span is that of strategic, tac-
tical and operations management and of actual operations. Strategic resource management
is about acquiring ("expansion, upgrading") or disposing ("down-sizing, divestiture") of re-
sources: Converting one form of resource to another. Tactical resource management is about
allocating resources spatially and scheduling them for general, temporal availability. Oper-
ations resource management is about allocating resources to tasks and scheduling them for
special, time interval deployment. These three kinds of resource management reflect rather
different perspectives: Strategic resource management is the prerogative and responsabihty of
executive management. Tactical resource management is the prerogative and responsabihty
of line ("middle level") management. Operations resource management is the prerogative and

responsabihty of operations (ie. "ground level") management.

2.2 Formalisation: Resources and their Handling

2.2.1 Formalisation: Resources

type R, Rn, L, T, E, A
RS = R-set
SR = T ,* RS, SRS = SR-infset
TR = (TxT) ^ R ^ L, TRS = TR-set
OR = (TxT) ^ R «*> A

A = (Rn ^ R-set) 4 (Rn ^ R-set)

value
srm: RS -* ExE 4Ex (SRS x SR)
trm: SR -> ExE 4Ex (TRS x TR)
orm: TR -»• ExE 4ExOR

ope: OR -> TR -> SR -> (ExExExE) -> E x RS

p: E -> Bool

srm trm and orm are the strategic, tactical and operations management functions, ope is
the actual operations function, p is a predicate which determines whether the enterprise can
continue to operate (eith its state and in its environment, e, or not.

2.2.2 Resource Formalisation — Annotation

R L, T, E and A stand for resources, spatial locations, times, the enterprise (with its estimates,
service'and/or production plans, orders on hand, etc.), respectively tasks (actions). SR, TR
and OR stand for strategic, tactical and operational resource views, respectively, srm, trm and
orm stand for strategic, tactical, respectively operations resource management. To keep our
model "small", we have had to resort to a "trick": Putting all the facts knowable and needed

65

in order for management to function adequately into E ! E, besides the enterprise itself, also
models its environment: That part of the world which affects the enterprise.

There are, accordingly, the following management functions: Strategic resource man-
agement, srm(rs)(e,e"")=(e\(srs,sr)), proceed on the basis of the enterprise (e) and its cur-
rent resources (rs), and "ideally estimates" all possible strategic resource possibilities (srs),
and selects one, desirable (sr). The "estimation" is heuristic. Too little is normally known
to compute sr algorithmically. We refer to [5] for details. Tacticai resource management,
trm(sr)(e,e"")=(e",(trs,tr)), proceed on the basis of the enterprise (e) and one chosen strategic
resource view (sr) and "ideally calculates" all possible tactical resource possibilities (trs), and
selects one, desirable (tr). As for strategic resource management, we refer to [5] for details.
Operations resource management, orm(tr)(e,e"")=(e"',or), proceed on the basis of the enter-
prise (e) and one chosen tactical resource view (tr) and effectively decides on one operations
resource view (or). We refer to [5] for details. Actual enterprise operation, ope, enables, but
does not guarantee, some "common" view of the enterprise: ope depends on the views of
the enterprise its state and environment, as "passed down" by management; and ope applies,
according to presecriptions kept in the enterprise state, actions, a, to named (rn:Rn) sets of

resources.

2.2.3 Formalisation: Resource Handling

The above account is, obviously, rather "idealised". But, hopefully, indicative of what is going
on. To give a further abstraction of the "life cycle" of the enterprise we "idealise" it as now

shown:

value
enterprise: RS -^ E A Unit
enterprise (rs)(e) =

if p(e) then
let (e',(srs,sr)) = srm(rs)(e,e""),

(e",(trs,tr)) = trm(sr)(e,e""),
(e'",or) = orm(tr)(e,e""),
(e"",rs') = ope(or)(tr)(sr)(e,e,,e",e'") in

let e"'":E • p'(, e"", e'"") in
enterprisers')^'"") end end

else stop end

The enterprise re-invocation argument, rs', a result of operations, is intended to reflect the
use of strategially, tatctically and operationally acquired, spatially and task allocated and
scheduled resources, including partial consumption, "wear & tear", loss, replacements, etc.

An imperative version of enterprise could be:

value
enterprise: E -> RS -* Unit
enterprise(e)(rs) =

variable ve:E := e;
while p(ve) do

let (e',(srs,sr)) = srm(rs)(ve,e""),

66

(e",(trs,tr)) = trm(sr)ve,(e""),
(e'",or) = orm(tr)(ve,e""),
(e"",rs') = ope(or)(tr)(sr)(ve,e',e",e'") in

lete,"":E.p,(e"",e'"")in
ve := e'"" end end end

ope: OR -> TR -> SR -> (ExExExE) -> E x RS

Only the program flow of control recursion has been eliminated. The let e'"":E • p'(e"",e'"")

in ... shall model a changing environment.

2.2.4 Resource Handling — Annotation

There are two forms of recursion at play here: The simple tail-recursive, next step, day-to-
-day recursion, and the recursive "build-up» of the enterprise state e"". The latter is the
interesting one. To solve it, by iteration towards some acceptable, not necessarily minimal
fixpoint, the three levels of management and the "floor" operations change that state and
«pass it around, up-&-down" the management "hierarchy". The operate function unifies
the views that different management levels have of the enterprise, and influences their decision
making. Dependence on E also models potential interaction betwen enterprise management
and, conceivably, all other stake-holders. We remind the reader that we are "only modelling

the domain — with all its imperfections !

3 Discussion

The model just presented is, obviously, sketchy. But we believe it portrays important facets

of domain modelling.
We are modelling a domain with all its imperfections: We are not specifying anything

akorithmically; all functions are rather loosely deined, in fact only their signature is given.
This means that we model well-managed as well as badly, sloppily, disastrously managed
enterprises. We can, of course, define a great number of predicates on the enterprise state and
its environment (e:E), and we can partially characterise intrinsics - facts that must always
be true of en enterprise, no matter how well or badly it is managed. But if we «programme-
-specified" the enterprise then we would not be modelling the domain of enterprises, but a
specifically "business process engineered" enterprise. And we would be into requirements
engineering - we claim. So let us take now, a closer view of the kind of things we can indeed

model in the domain !

4 Stake-holder Perspectives

There are several kind of domain stake-holders: Enterprise stake-holders: (i) owners, (ii)
management: (a) executive, (b) line, and (c) "floor", managers, (iii) workers, (iv) families of
the above. Non-enterprise stake-holders: (v) clients (customers), (vi) competitors, resource
providers: (a) IT resource providers, (b) non-IT/non-finance resource providers, ^and(c)
financial service providers, (vii) regulatory agencies, (viii) politicians, and (ix) the public
at-large" For each stake-holder there usually is a distinct domain perspective: A partial

67

specification. The example shown earlier illustrated, at some level of abstraction, the inter-
action between, hence the perspectives of, enterprise managers and workers, and, at a higher
level of abstraction, interaction with the environment, incl. all other stake-holders.

5 Domain Facets

We shall sketch the following facets:
Domain intrinsics: That which is common to all facets.
Domain support technologies: That in terms of which most other facets (intrinsics, man-

agement, organisation, and rules & regulations) are implemented.
Domain management and organisation: That which constrains communication between

enterprise stake-holders.
Domain rules & regulations: That which guides the work of enterprise stake-holders as well

as their interaction and the interaction with non-enterprise stake-holders.
Domain human behaviour: The way in which domain stake-holders despatch their actions

and interactions wrt. enterprise: dutifully, forgetfully, sloppily, yes even criminally.

We shall briefly characterise each of these facets.

5.1 Intrinsics

The intrinsics of a rail switch is that it can take on a number of states. A simple switch
(C| Y'J) has three connectors: {c, c{, c/}. c is the connector of the common rail from which one

can either "go straight" c\, or "fork" c/.

" : { O,
{{c,ci)},{(^c\),{c\^)}>{(c\^)}'
{(c.^U^c/Mc/^MCc/.c)},

Nothing is said about how a state is determined: Who sets and resets it, whether determined
solely by the physical position of the switch gear, or also by visible signals up or down the

rail away from the switch.
The intrinsics of a domain is a partial specification:

type
r_i, Ei, Syntax, VALA

value
I: Syntax -* TJ -4 EA 4- Ei
V: Syntax -4 T A 4- Ei 4- VAL
E: Syntax -> T j 4 S j 4 E j x VAL A
D: Syntax -> TA -4 EA 4 VA X Ei
C: Syntax -> TA 4- Ei 4 TA x EJ x VALJ

Intrinsics descriptions emphasise looseness and non-determinism.

5.2 Support Technologies

An example of different technology stimuli: A railway switch, "in ye olde days" of the "child-
hood" of railways, was manually "thrown"; later it could be mechanically controlled from a

68

distance by wires and momentum "apliücation"; Again later it could be electro-mechanically
controlled from a further distance by electric signals that then activated mechanical controls;
and today switches are usually controlled in groups that are electronically interlocked.

An aspect of supporting technology includes the recording of state-behaviour in response
to external stimuli. Figure 1 indicates a way of formalising this aspect of a supporting

technology.

Figure 1: State Switching

sw/1-psd-esd sw/pss

di/pdd di/1-pds-eds

Input stimuli:
sw: Switch to switched state

di: Revert to direct state

Probabilities:
pss: Switching to switched state from switched state

psd: Switching to switched state from direct state

pds: Reverting to direct state from switched state

pds: Reverting to direct state from direct state

esd: Switching to error state from direct state

edd: Reverting to error state from direct state

ess: Switching to error state from switched state

eds: Reverting to error state from switched state

Probabilities: 0 <= p.. <= 1
States:

s: Switched state

d: Direct (reverted) state

e: Error state

Support technologies "implement" contexts and states: 7i : T;, <r; : Si in terms of "actual"

contexts and states: ya : Ta, aa : Ea

type
Syntax,
ri.Ei, VALJ,
T-a, E_a, VAL-a,
ST = Tj X Ei 4 T-a x E.a

value
sts:ST-set
I: Syntax -4 T_a -4 E -4 E_a
V: Syntax -4La4S4 VAL_a
E: Syntax -> T_a 4 E 4 E_a x VAL_a
D: Syntax ->La4S4 T.a x E_a
C: Syntax -> r.a 4 E 4 T_a X E.a X VAL.a

Support technology is not a refinement. Support technology typically introduces considera-
tions of technology accuracy, failure, etc. Axioms, not shown, characterise members of the

set of support technologies sts.

5.3 Management and Organisation

People staff the enterprises, the components of infrastructures with which we are concerned:
For which we develop software. The larger these enterprises, these infrastructure components,

69

are, the more need there is for management and organisation. The role of management is
roughly, for our purposes, twofold: To make strategic, tactical and operational policies and
see to it that they are followed, and to react to adverse conditions: Unforeseen situations,

and decide upon their handling.
Policy setting should help non-management staff operate normal situations — for which

no management interference is thus needed, and management "back-stops" problems: Takes
these problems off the shoulders of non-management staff. To help management and staff
know who's in charge wrt. policy setting and problem handling, a clear conception of the
overall organisation is needed: Organisation defines lines of communication within manage-
ment and staff and between these. Whenever management and staff has to turn to others for
assistance they follow the command line: The paths of organigrams — the usually hierarchical

box and arrow/line diagrams.
Management is a set of predicates, observer and generator functions which parameterise

other, the operations functions, that is: determine their behaviour. Organisation is a set of

constraints on communication behaviours.

A Hierarchical Organisation

Figure 2: Organisational Structures

A Matrix Organisation

Stafll SUB2 Staff?

Board

Diwcta*

Ac
1 ._

Mn. Ad
mag« 1*

Imin. *
1
magar

°" hWnagW
-«-I IMI ~TH

°" Manager
-A Und

V

-*■ Unit Lfi
kbnager

L-°\ Unit -o Unit

type
Msg, *, E

channel
{ ms[i]:Msg| i:Sx }

value
sys: Unit ->■ Unit
mgr: * ->• in,out { ms[i] | i:Sx } Unit
stf: i:Sx -►£->■ in.out ms[i] Unit

sys() = || { stf(i)(icr) | i:Sx } || mgr(^)

mgr(^) =

70

let V' = -
(||{ms[i]!msg|i:Sx}...)

D
(W { let msg' = ms[i]? in ... end | i:Sx })

... in mgr(V'') end

stf(i)(<r) =
let a' - ...

(let msg = ms[i]? in f(msg)(<r) end)

D
(... ms[i]!msg'...) ... in stf(CT') end

5.4 Rules & Regulations

In China arrival and departure of trains at, respectively from railway stations are subject to
the following regulation: In any three minute interval at most one train may either arrive or

depart. .
In many countries railway lines (between stations) are segmented into blocks or sectors.

The purpose is to stipulate that if two or more trains are moving — obviously in the same
direction - along the line, then there must be at least one free sector (ie. without a train)

between any two such trains.
In the United State of America personal checks issued in any one state of the union must

be cleared by the sending and receiving banks, if within the same state, then within 24 hours,
and else within 48 or 72 hours, depending on certain further stipulated relations between the

states.

type
RR = Syntax -> T -> E -> Bool
RRS = RR-set

value
valid: RRS -> T -f E -> Bool
valid(rrs)(7)(<r) =

V rr:RR • rr G rrs => rr(7)(«r)

5.5 Human Behaviour

Some people try their best to perform actions according to expectations set by their colleagues,
customers, etc. And they usually succeed in doing so. They are therefore judged reliable
and trustworthy, good, punctual professionals (b.p) of their domain. Some people set lower
standards for their professional performance: Are sometimes or often sloppy (bs), make
mistakes, unknowingly or even knowingly. And yet other people are outright delinquent
(b_d) in the despatch of their work: Could'nt care less about living up to expectations of their
colleagues and customers. Finally some people are explicitly criminal (b.c) in the conduct
of what they do: Deliberately "do the opposite" of what is expected, circumvent rules &
regulations, etc. And we must abstract and model, in any given situation where a human
interferes in the "workings" of a domain action, any one of the above possible behaviours .

71

We model the "arbitrariness", the impredictability, of human behaviour by internal non-

determinism:

... b_P n b-s n b_d n b.c...

The above shows just a fragment of a formal description of that part which reflects human
behaviour. The exact, possibly deterministic, meaning of each of the b's can be separately

described.

5.6 Discussion

6 Conclusion

6.1 Acknowledgements

I am grateful for the inspiration drawn from the work of Michael Jackson on requirements
and software specification. I am grateful to my colleagues in IFIP WG 2.2 for like inspiration.
And I am grateful to my students: Kristian Asger Eir, Ths. Hede Nielsen, M. Kaising, et al.

6.2 Thanks

Thanks are due to US/ARO, US/NSF, US/ARO-Europe, and INDAM (GNIM) for their
co-sponsorskip of this workshop. Thanks are due to Manfred Broy, LuQi, Carlo Ghezzi and
Zohar Manna for co-chairing the PC. But very special and deeply warm and appreciative
thanks are due to: Gianna Reggio and Egidio Astesiano of, and the University of Genoa for
their indefatigable work and support in bringing us all together.

7 Bibliographical Notes

This document being a very preliminary draft lacks proper citations.
I do, however, strongly confess my delight in having studied Jackson's [10, 11, 12, 13, 14].
To support the implied claims made in the present document we refer to the following

own reports and publications: [1, 2, 3, 4, 5, 6, 7, 8, 9].

References

[1] Dines Bj0rner. Domain Engineering, Elements of a Software Engineering Methodology —
Towards Principles, Techniques and Tools — A Study in Methodology. Research report,
Dept. of Computer Science & Technology, Technical University of Denmark, Bldg. 343,
DK-2800 Lyngby, Denmark, 2000. One in a series of summarising research reports [2, 3].

[2] Dines Bj0rner. Requirements Engineering, Elements of a Software Engineering Method-
ology — Towards Principles, Techniques and Tools — A Study in Methodology. Research
report, Dept. of Computer Science & Technology, Technical University of Denmark, Bldg.
343, DK-2800 Lyngby, Denmark, 2000. One in a series of summarising research reports

[1, 3].

72

[3] Dines Bj0rner. Software Design: Architectures and Program Organisation, Elements of
a Software Engineering Methodology — Towards Principles, Techniques and Tools —
A Study in Methodology. Research report, Dept. of Computer Science & Technology,
Technical University of Denmark, Bldg. 343, DK-2800 Lyngby, Denmark, 2000. One in

a series of summarising research reports [1, 2].

[4] Dines Bj0rner, Souleymane Koussoube, Roger Noussi, and Gueorgui Satchok. Jackson's
Problem Frames: Domain, Requirements and Design. In Shaoying Liu, editor, Interna-
tional Conference on Formal Engineering Methods: ICFEM'97, Washington D.C., USA,
12-14 November 1997. IEEE Computer Science Press; IEEE sponsored conference, Hi-

roshima, Japan.

[5] Dines Bj0rner. Domain Modelling: Resource Management Strategics, Tactics & Op-
erations, Decision Support and Algorithmic Software. In J.C.P. Woodcock, editor,
Festschrift to Tony Hoare. Oxford University and Microsoft, September 13-14 1999.

[6] Dines Bj0rner. Pinnacles of Software Engineering: 25 Years of Formal Methods. Annals

of Software Engineering, 2000. Eds. Dilip Patel and Wang Yi.

[7] Dines Bj0rner. A Triptych Software Development Paradigm: Domain, Requirements
and Software. Towards a Model Development of A Decision Support System for Sus-
tainable Development. In ErnstRüdiger Olderog, editor, Festschrift to Hans Langmaack.

University of Kiel, Germany, October 1999.

[8] Dines Bj0rner. Where do Software Architectures come from ? Systematic Development
from Domains and Requirements. A Re-assessment of Software Engneering ? South

African Journal of Computer Science, 1999. Editor: Chris Brink.

[91 Dines Bj0rner and Jorge R. Cuellar. Software Engineering Education: Roles of for-
mal specification and design calculi. Annals of Software Engineering, 6:365-410, 1998.

Published April 1999.

[10] Michael A. Jackson. Problems, methods and specialisation. Software Engineering Jour-

nal, pages 249-255, November 1994.

[11] Michael A. Jackson. Software Requirements & Specifications: a lexicon of practice, prin-
ciples and prejudices. ACM Press. Addison-Wesley Publishing Company, Wokingham,
nr Reading, England; E-mail: ipc@awpub.add-wes.co.uk, 1995. ISBN 0-201-87712-0; xiv

-f 228 pages.

[12] Michael A. Jackson. Problems and requirements (software development). In Second IEEE
International Symposium on Requirements Engineering (Cat. No.95TH8040), pages 2-8.

IEEE Comput. Soc. Press, 1995. .

[13] Michael A. Jackson. The meaning of requirements. Annals of Software Engineering,

3:5-21, 1997.

[14] Pamela Zave and Michael A. Jackson. Four dark Corners of Requirements Engineering.
ACM Transactions on Software Engineering and Methodology, 6(l):l-30, January 1997.

73

The Partial Spechilada

Nikolaj S. Bj0rner
bj orner@kestrel.edu

Kestrel Institute

1 Introduction

This paper examines different ways to represent and validate core program
transformations. As the leading example, we take finite differencing, and sub-
ject it to alternative encodings. Our first encoding is to represent finite differ-
encing equationally, and appeal to rewrite based simplification to apply it. The
second encoding is to represent the transformation as a library refinement and
use diagram pushouts to apply it. Finally we consider an encoding as a meta-
program that works on the abstract syntax tree of Specware terms. While meta-
programming allows finegrained control over the transformations it may be less
declarative than object level axiomatization, and often less transparent. The
assurrance problem for meta-programs becomes an issue when having to rely
on a dynamically growing set of transformations, in a fastly moving scenario.
While this can be recast as a compiler correctness problem, we shall discuss
type based partial correctness criteria, an even more interestingly, frameworks
for automatic inference of meta-typeability: the meta programs transform well
typed programs into well typed programs.

The exposition is technical, although we only present elementary concepts and
examples to ease the readability. The high points of this paper can be summa-
rized as equation (4) and Figure 9.

2 Specware and Designware

Kestrel has for a number of years been developing and researching tools for pro-
gram specification and synthesis. The Kestrel Institute Development System,
KIDS, is a stable program transformation system. While highly effective at its
design goals, it does not support data type refinement. The more recent tool
Specware is based on concepts from category theory and addresses this point,
while in itself does not deal with program transformation. On top of Specware
we are developing program transformation capabilities. This extension is called

Designware.

74

3 Transformations as Equations

Finite differencing, or strength reduction, is a program transformation that
incrementally computes intermediate values in loops. A simple example is the

function

sosq(n : Nat, m : Nat) = if n > m then 0 else n2 + sosq(n + 1, m) (1)

that when supplied with arguments n and m computes the sum of squares from

n to m — 1. Since
(n + l)2 = n2 + 2 • n + 1

it is possible to avoid computing (n + l)2 by remembering the value of n2 and
then adding 2 • n + 1, which itself can be computed using a left shift and a

bitwise or with 1. Thus, the program

sosq(n: Nat,m: Nat) = sosq'(n2,n,m) (2)

sosq'(ns„n,m) = if n > m then 0 else
nsq + sosq'(nsq + lshift(n) + 1, n + 1, m) (3)

avoids multiplication entirely in the main loop. We can also make sosq' tail-
recursive in a further optimization based on the fact that + is commutative. Of
course, this example is inherently artificial since sosq is computable by a closed
term involving cubes. Nevertheless, not every loop is reducible in this way, and
finite differencing has a distinguished place as a useful program transformation.

3.1 An equational characterization of finite differencing

The use of finite differencing is pervasive in program transformation systems
such as KIDS, Hylo, RAPS, and Designware, among others.

In essence, finite differencing adds extra arguments to a recursive function that
pre-calculate selected subterms. Finite differencing improves the program if the
new arguments are less expensive to update in recursive calls than the old ones.

We can apply finite differencing in three steps:

1. Select a subterm to be replaced by an induction variable.

2. Generate the finitely differenced version of the recursive function.

3. Simplify the resulting function using constraints on the induction variable.

Using higher-order functions, we can characterize steps 1 and 2 using a single

equation:

75

VX, Y . fix(A/ a. X (Y a) f a) = (4)

Aa.fix(A<? {b,c).X c(\d.g (d, Y d)) b) (a, Y a) '

With type annotations, this equation reads:

VX : 7 -> (a -> 0) -» a ->• 0,
V7 : a -»• 7

fix(X(Ya)fa) - (5)

/ Aff:aX7-»/3, (6,c):aX7. ^ /. y a\
Aa:a.fix^ X c (A d : a. 5 (d, F d)) 6 J (°' ^ ö)

where fix is the fixpoint operator of type Va . (a -» a) -> a and satisfies

fix / = /(fix /).

In fact, we will use subtypes to strengthen the right hand side with the addi-
tional information that the A-bound c satisfies the invariant c= (Y b). Thus,

the right hand side takes the form

. (\g:6-4ß, (b,c):S. \ (a Y a)
Xa.a.Rx^ X c (X d : a. g (d, Y d)) b) <fl' Y ü)

where 8 = {{b,c) | Y b = c}

Notice, however, that we have left the subtype coercions implicit, as these can
be inferred and checked automatically.

3.2 Calculating sosq'

Returning to the sum of squares example, we present the original program in a

form suitable for applying equation (5):

„ / Asosq : Nat x Nat -> Nat, (n,m) : Nat x Nat. A (R.
sosq = fix^ x<ya)fa) W

/if n > m then 0 else \ ,„,
X = \nsq. Asosq. A(n,m) . ^ „„+ sosq(n +l,m)) [<)

Y = A(n,m).n2 (8)

After rewriting using equation (5), we have

A(n,m) : Nat x Nat . sosq' ({n,m), n2)

where

76

sosq = fix
Asosq', ((n,m), nsq).

X nsq (Ad . sosq' (d, Y d)) (n,m)
(9)

Simplifying the inner expression, we obtain precisely the version of sosq' from

equation (3):

Xnsq (Ad. sosq' (d, Yd)) (n,m) (10)

= {by ß expansion}

if n>m then 0 else nsq + sosq' ((n + 1,m), (n + l)2) (11)

{by the rewrites (x + l)y = xy + y, x(y + 1) = zy + x}

if n > m then 0 else nsq + sosq' ((n + 1, m), (n2 + 2 • n + 1)) (12)

= {by applying the subsort property on nsq}

if n > m then 0 else n5(? + sosq' ((n + l,m), (na, + 2 • n + 1))(13)

Specware has a rewrite-based simplification engine that uses higher-order match-
ing. When simplifying terms in context, subtype information, such as nsq : {x :
Nat | n2 = x^ is used t0 supply the rewrite engine with auxiliary rewrites (in
our example n2 = nsq). Thus, when given the equalities (7) and (8), and the
hint that (n + 1)2 = n2 + 2n + l, the rewrite engine rewrites (10) into (13). This

is illustrated later in Figure 7.

3.3 Applying finite differencing

Similarly, the higher-order rewrite engine can perform finite differencing by
matching a term against the left hand side of equality (5) and replacing it with
the right hand side of (5). In this connection, X and Y act as meta variables
that can be bound to arbitrary closed subterms, as in equations (7) and (8).

Unfortunately, a single application of higher-order matching may return several
matching substitutions. Thus, we need to consider how to choose which substi-
tution to use. Of course, in our example, there is only one other substitution,
and it is not very interesting: Y' = A(n,m) . n and X' is X except that we

replace nsq by n2
sq.

To show the correctness of the equational presentation of finite differencing, we
simply need to verify equation (5). The proof uses fixpoint induction and the
monotonicity properties of C. In this context, fixpoint induction is the rule:

M1CJV
VZ . M ZQN
fixMCJV

=» M (M Z)QN

For example:

77

(A/ a. X (Y a) f a) J_

{by ß reduction}

Aa. X (Y a) 1 a

{since ± C X for every X}

Aa. X (Y a) (A d. G (d, Y d)) a

{by folding with the definition of fix}

Aa. fix(Ao (6, c).X c {X d. g (d, Y d)) b\ (a, Y a)

(A/ a. X (F a) / a) ((A/ a. X (F a) / a) Z)

{by ß contraction}

Aa.X (Y a) ((A/ a. X (Y a) / a) Z)a

{by the induction hypothesis}

Aa.X {Y a) (Aa .G(a,Y a))a

{by abstracting a and Y a}

Aa.(A(fc,c) . X c (Aa .G(a,Y a))b)(a,Y a)

{by folding the definition of G}

Aa. fix(Ao (6, c).X c (X d. g (d, Y rf)) b)^ (a, Y a)

4 Transformations as pushouts

In this section, we describe Designware's framework for program transforma-
tion. Designware is a system developed at Kestrel that uses category theory
as a tool for organizing program development. In Designware, transformations
on specifications (and, in particular, programs) are realized using pushouts.
Naturally, we use finite differencing as an example to illustrate pushouts.

4.1 Specifications

Consider the two specifications FD-Source and FD-Target below in Figure 1

and 2.

4.2 Morphisms

We can relate FD-Source and FD-Target using a morphism. For this discus-
sion, we define a morphism as a mapping from sort symbols in the source to sort
terms in the target and from op symbols in the source to (closed) op terms in

78

spec FD-Source =
sort c*,/3,7
op X : 7 -> (a -»• ß) -> a -» 0
op V : a ->■ 7
def/(o) = X(y a)/o

end-spec

Figure 1: Finite differencing source

spec FD-Target =
sort a, ß, 7
op X : 7 -> (a -> /3) -> a ->)8
op y : a -» 7
def/'(6,c) = Xc(Ad./'(rf,>rrf))6

def/(a) = /'(a,y a)
end-spec

Figure 2: Finite differencing target

the target. Thus, a morphism shows how to translate sorts and operations from
one specification to another. Furthermore, the resulting translation is required
to map axioms in the source to theorems in the target. Morphisms are also
called refinements; a morphism from theory A to theory B shows how B is a

refinement of A.

In our example, we can relate FD-Source to FD-Target using the morphism

OHO, ß^ß, 7 ^ 7, X^X, Y^Y, / i-> /

The source specification contains one axiom, namely the equality f(a) = X (Y a) f a.
This equality is provable using the definitions in the target, as we saw in Sec-

tion 3.3.

This morphism can be stored in a library and (re) used to apply finite differenc-

ing. In our example, we begin with this specification:

spec Sosq =
def sosq(n,m) = if n>m then 0 else n2 + sosq(n + l,m)

end-spec

Figure 3: Sum of squares

Then, using higher-order matching, we construct a morphism from FD-Source
to Sosq. The morphism we are interested in is not surprisingly characterized

by equations (7) and (8).

79

4.3 Pushouts

Given the morphism from FD-Source to FD-Target and the morphism from
FD-Source to Sosq, we perform a pushout to compute SosqFP, the finitely

differenced sum of squares:

Library
refinement

FD-Source

FD-Target

Sosq
Thread of
refinement

SosqFZ?

Simplified- S osqF£>

The resulting specification SosqFZ) contains equation (3). The pushout oper-
ation computes SosqFjD and the two dashed morphisms into it automatically.
In fact, SosqFr) is the least constrained specification that admits morphisms
from FD-Target and Sosq and that makes the above square commute.

After applying finite differencing, we can apply additional simplification steps to
construct a simplified specification Simplified-SosqFL) and a morphism from

SosqFÜ to it.

spec Simplified-Sosq-FD =
def sosq(n, m) = sosq'((n, m),n2)
defsosq'((n,m),n5(j) = if n > m then 0 else

nsq + sosq'((" + l,m),nsq + 2 x n + 1)

end-spec

Figure 4: Finitely differenced, simplified, Sum of squares

4.4 Summary

This section presented the basic concepts of the Designware framework: spec-
ifications, morphisms, and pushouts. Designware uses morphisms to represent
both program transformations and data type refinements. To verify a trans-
formation, we check that the morphism representing it indeed sends axioms to
theorems. To apply a transformation, we first find a morphism from the source
of the transformation morphism to the specification to be transformed using
higher-order matching or witness finding. Then we compute the pushout of
this morphism and the transformation morphism. The pushout operation can
be implemented efficiently using the standard algorithm for union-find.

80

5 Transformations as Meta Programs

So far, we have examined two approaches to applying program transformations.
The first approach applied transformations using a rewriter based on higher-
order matching. The second approach applied transformations by pushout in
the category of specifications and morphisms. Both styles required higher-order
matching to determine where to apply the transformation.

Common transformations may be encoded more conveniently using meta pro-
grams, that is, as programs that manipulate other programs. For example,
in the actual Designware implementation, finite differencing is performed by
a specialized tactic. The user selects a subterm occurring in some definition,
and the tactic creates a new definition with the subterm added as an extra
argument. This process does not require any higher-order matching or pushout
computation. Instead, the finite differencing transformation is hardwired as a

meta-program.

The effect of applying the finite differencing tactic, followed by simplification is

illustrated in Figures 5, 6, and 7.

n. tM ft—M .1 I Tff.CW v*-r «I"«!'.' " '.••.■ • ■ tg^^y*!

spec Sosq =
op sosq : Nat * Nat -> Nat ,
def sosq (n. m) = if n >= m then 0 else (n * n) + sosqCn + 1. «0
alU *VtJmes-n = fa(n : Nat) C(n + 1) * (n + 1» - C(Cn * n) + (2 n)) + 1)

end-spec

~^m^em:SV*s^a^är^:^r(S^(^^:fo1^'^^^^- =3

Figure 5: Original sum of squares specification.

M,UtJni~m*m HxaMMt f^^>
i ■ Mj'atml

P
spec Sosq-1 =
op sosq : Nat * Nat -> Nat
def sosq (n, m) = sosqOCCn, np. " * ,"■> »..,.,, * „>, fA\n -> Nat
op sosqO : {CCn. m), f dV) : (Nat * Nat) * Nat I (n n) = fdV} -> Nat
def sosqO ((n. m), fdV) =

if n >= m
then 0

else fdV + flcase (n + 1. «Ö
of Cn. m) -> sosqOCCn, m), n * n))

axio« " n-times-n = faCn : Nat) CCn + 1) * (n + D) = CCCn n) + (2 n)) + 1)
end-spec
^^«f^6mac^;r^Spec^re^^':;tCCSrecWRE^I%nt)—^11^-4----^^-^^-^^-—~"~~^d

Figure 6: Finitely differenced sum of squares specification.

Before presenting the meta program, let us re-examine FD-Target:

deff'(b,c)=Xc(Xd. f'(d,Yd))b

81

I Specware Interaction J

He E«. Trawtiriw*» Tjp« Owe* S9**p Sf»*ca»cM \
Mp;onc«f

l-j Jp'ec Sösfl-2 =
op sbsq : Nat * Nat -> Nat
def sosq (n. m) = sosqOCCn, no, n * n) ■
op sösqO : IG(n, m), fdV) : (Nat * Nat) * Nat I (n *.n) = fdV} -> Nat
def sosqO (Cri,""nö. fdV) = , „ v

if n >= m then 0 else fdV + sosqOCCn + 1. m), (fdV + (2 * n)) +1)
axio* * n-tiraes-n = faCn : Nat) ((n + T) * (n + 1)) = CCCn * n) * C2 * vn)) + 1)

I end-spec _^ __ _ .
XEmacs: *Specware* (SPLCTAP.E Tont)—-AU — s=i

Föritifying 'Specware*,,. done.

Figure 7: Simplified sum of squares specification.

deff(a) = f'{a,Ya)

In this context we can rewrite the definition of /', first by a-renaming, then by

folding with the definition of /.:

f'{a,c) = Xc(Xa.f'{a,Ya))a (14)

= X (Ya){Xa. f'(a,Y a)) a (15)

= X (Y a) f a (16)

Apparently we have obtained nothing, as this is almost the original definition of
/, without the induction variable c. On the other hand, this equation suggests
a simple way to implement finite differencing: introduce an auxiliary function
/' with an argument c that satisfies Ya = c, make the body of /' be the body
of / and let / call /' as done in FD-Target. In the resulting specification,
replace every use of / by Xa. f{a,Y a) (this corresponds to unfolding / by its
immediate definition). We can also simplify the body of /' using the rewrite

Y a = c.

This yields Specware's actual implementation of finite differencing. Specifically,
suppose that we have selected a subterm AT in a definition /(o) = Mofa
specification spc. We pass f,a,N,M and spc as arguments to the following
finite differencing transformation.

def fd(/, a, N,M, spc) =
let

/' = fresh()
6 = fresh()
spc = spc f [/ ^ \Xa.f'(a, N)]) \ [/' -> \X(a, b).M]]
unfold = Xx . if x = f then \\a. /'(a,iV~)l else x

in

mapSpec unfold spc

Figure 8: A meta program for finite differencing

82

In this tactic, we use Quine brackets to distinguish object from meta-level terms.
The auxiliary function mapSpec maps the function unfold across every subterm
occurring in the specification, and the map update function f overrides spc with

a new definition.

5.1 Type correctness

Ideally, we would like to derive the above meta program for finite differencing
automatically from equation 5. However, for the moment, we are willing to
settle for an automatic proof that the above meta program does not introduce
type errors into the programs it transforms. It turns out that we can provide
this guarantee by type checking the meta program in an expressive, two-level

type system.

Ordinarily, meta programs represent all object terms, independent of their ob-
ject type, as values of a single meta type Term. That is, a term of object type
Nat is represented as a value of meta type Term, and similarly for a term of
object type String. The obvious solution is to split the single meta type Term
into a family of meta types Term[s] indexed by their object level types. Thus,
an object term of type Nat is represented as a value of meta type Term[Nat]. We
also introduce types Var[s] and opSorts to represent variables and operations.

Using this type system, which can be embedded into the system LF, we can
type the finite differencing meta program as shown in Figure 9.

def fd(/ : Op[a -> ß],a : Var[a], JV : Term[7],M : Term[0],spc) =

let
/' : Op[{(a, b) : a x 7 | N = b} -> ß] = fresh()
6 : Var[7] = fresh()
spc = spc] [f H+ \Xa.f'(a,N)]} t [/' ■-» \X(a,b).M])
unfold : Va . Term [a] ->■ Term [a]

= Xx . if x = / then \Xa.f'(a, N)] else x

in
mapSpec unfold spc

Figure 9: A type annotated meta program for finite differencing

Let's examine the typing of the map operator. Map f t applies / to each subterm
of t. If object terms are formed using the constructors App, Lam, Var and Op,

we can define map as:

map f (App MN) = /(App (map f M) (map f N))
map f (Lam v.M) = /(Lam v. map f M)
map f (Varu) = /(Varu)
map f (Op5) = /(Op3)

83

Map then has the interesting type:

(Va . Term[a] -> Term[a]) -»• (V/3 . Term[/3] -> Term[/3]) .

This type is not expressible in the standard Hindley-Milner polymorphic type
system since the scope of the type variables a and ß is not the whole term.
However, this type is expressible in the system of rank-2 bounded polymor-
phism. Type inference for rank-2 bounded polymorphism is decidable until we
allow recursive functions, such as map, at which point it becomes undecidable.
On the other hand, this example applies rank-2 polymorphism to an interesting
problem; it isn't contrived or pathological in the least. For further technical

details, see [1].

In this connection, a noteworthy approach that allows more declarative style
meta-programming by adding higher-order matching is described in [2].

5.2 Bound and free variables

A fundamental limitation of the above approach is that the typing M : Term[s]
tells us nothing about the free variables of M. For example, the finite dif-
ferencing transformation only makes sense if the only free variable in N is a.
The above type system still allows us to type check meta-programs that expose
bound variables and capture free variables.

Fortunately, this problem is solved in [3], which presents a calculus that includes
automatic a-renaming of bound variables. The calculus forces a-renaming into
the language implementation but in return provides a type system for checking
that programs do not expose bound variables or capture free variables. Our
example can with a few modifications be fed to this system and thus certified
to be safe with respect to the standard variable scoping rules. The challenge
remains to develop a type system that handles variable scoping without building

in a-renaming.

6 Conclusion

We used the finite-differencing program to expose different ways to encode
program transformation tactics. While the framework of Designware is general
enough to accomodate tactics such as finite differencing as a declaratively given
library refinement, we, at least in practice, are not making use of this, but
instead encode it using a hardwired tactic written as a meta-program. The
validation problem for meta-programs involves reasoning at two levels, which is
clearly more complicated than proving theorems that only deal with one level.
Luckily, unguided support for, partial correctness, such as meta-type safety, can
be addressed using rank-2 polymorphism.

Acknowledgements I would like to thank the workshop organizers for giving
me an opportunity to summarize thoughts otherwise not possible in my daily

84

work. I would also like to thank my colleagues at Kestrel Institute for a joy-
full environment. Without David Espinosa, we would not have had the most
elegant category theory-based bootstrapped synthesis system (this is a highly
competitive field). He translated this paper from Danish to English. Many
thanks also to Cordell Green for his subtle humor and to Dusko Pavlovic for his
equally unsubtle personality. Doug Smith's steady, consistent, and always en-
ergetic drive stands out as the most stimulating source for new, interesting and
challenging, projects. John Anton is always around to give his support and do
the heavy lifting. As usual, this note had not been written without a good dosis
of Richard Waldinger's favorite Dark Roasted French Sumatra coffee. His 24
hour feedback service on using SNARK in connection with Specware is simply

amazing.

References

[1] N. Bj0rner. Type checking meta-programs. In LFM'99: Proceedings of
Workshop on Logical Frameworks and Meta-languages, 1999.

[2] Z. Hu and M. Takeichi. Calculation carrying programs. Technical Report
METR 99-07, University of Tokyo, September 1999.

[3] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with
bound names modulo renaming. In R. Backhouse and J. N. Oliveira, editors,
Mathematics of Program Construction, MPC2000, Proceedings, Ponte de
Lima, Portugal, July 2000, volume ? of Lecture Notes in Computer Science,

pages ?-? Springer-Verlag, Heidelberg, 2000.

85

Dynamic Distributed Systems*
Towards a Mathematical Model

Extended Abstract

Manfred Broy
Institut für Informatik, Technische Universität München

D-80290 München, Germany

Abstract. This paper aims at a mathematical foundation of flexible information
processing architectures that support the mobility and dynamics of systems by a

formal system model.

Index terms. Software Engineering, System Models, Formal Methods, Mobility,

Dynamic Systems

1. Introduction
In this paper we work out a theoretical foundation for dynamic systems architectures. For
information processing systems of today and of tomorrow dynamics and mobility are key
issues. We are aiming at a formal model in this paper that allows us to give precise definitions
for key notions that arise in this context the dynamics of nets and the dynamics of distributed
systems We are interested in a precise definition, description and in the mathematical foundation
of these notions and, moreover, in modeling the following technical key concepts in system

structures:

• a net models a distributed system of components interacting in parallel and connected by
communication channels,

. a component is called dynamic, if it can change its (syntactic) interface consisting of its active

input and output channels,

• a net is called dynamic if it changes its structure (its set of existing components and its set of
channels) during its lifetime, otherwise it is called static,

In the following we formalize the notions introduced above. We give a mathematical model that
allows us to capture the mentioned aspects.

2. Component Models: Interface Models by Streams
A (system) component is an active information processing unit that communicates with its
environment through a set of input and output channels. This communication takes place in a

(discrete) time frame.

*) Part of this work was carried out within the Forschungsverbund ForSoft, sponsored by the Bayerische
Forschungsstiftung.

86

As a basic model for the behavior of system components we use relations on timed streams .
We model the time flow in systems by a sequence of time intervals. Let M be a set of elements
called messages. Timed streams model communication histories for communication channels by
an infinite sequence of finite sequences of messages (for a rigorous treatment see [Broy 95]).
Each finite sequence represents the sequence of messages communicated within a particular time
interval. On the basis of this simple model we are able to introduce a quite flexible notation that
we will use throughout this paper in specifications and for our models.

By M°°we denote the set of infinite sequences of elements of the set M, which can be
represented by functions N\{0} -> M, by M* we denote the set of finite sequences of elements
from M. Using this notation, by

(M*)°°

we denote the set of infinite sequences of finite sequences, which can be represented by
functions 1N\{0} -» M*, also called streams of finite sequences of elements of the set M.

x,:T,
f

y.:T,
W

x„:Tn Ym:Tn
► ►

Fig. 1 Graphical representation of a component as a data flow node with input channels x„ ..., x„ and output
channels y„ ..., ym and their respective types

Let I be the set of input channels and O be the set of output channels. Formally a channel is
nothing but an identifier. With every channel in the channel set I u O we associate a data type
indicating the type of messages sent on that channel. For simplicity, in the following we use
uniformly only one set of messages denoted by M representing the data types for the messages
on the channels to keep the mathematics more readable. Our approach, however generalizes to
individually typed channels in a straightforward way.

By the pair (I, O) the syntactic interface of a system component is represented. A graphical
representation of a component with its syntactic interface and individual channel types is shown
in Fig. 1.

We describe the black box behavior of a component by an 1/O-function. It represents a
relation between the input streams and the output streams of a component that fulfills certain
conditions with respect to their timing. An I/O-function is a set-valued function on valuations of
the input channels by timed streams. The function yields a set of histories for the output
channels for every input history. This way, an I/O-function is a function

F: (I -> (M*)°°) -> p(0 -> (M*)°°)

which fulfills the following timing property. The timing property axiomatises the time flow and
reads as follows:

'> Another option is to use nontimed streams, especially, when dealing with systems where time is not an issue.
However, even for these systems it is often convenient to be able to talk about time, especially, when
combining such systems with time dependent components.

87

xlt = zit => {ylt+1: y e F(x)} = {yit+1: y e F(z)}

For a stream s, sit denotes the sequence that is the prefix of the stream s and contains t finite
sequences. In other words, sit denotes the communication history of s until time t. This
operation is extended to histories in C -^ (M*)~. where C is a set of channels, pointwise. The
timing property expresses that the set of possible output histories for the first t+1 time intervals
only depends on the input histories for the first t time histories. In other words, the processing
of messages in a component takes at least one tick of time. This way causality between input and
output is guaranteed. We call functions with this property time-guarded or strongly causal.

By COM[I, O] we denote the set of all strongly causal I/O-functions with the syntactic
interface (I, O), that is, with the set of input channels I and the set of output channels O. For each
F e COM[I, O], In(F) = I denotes its set of input channels and Out(F) = O denotes its set of
output channels.By COM we denote the set of all strongly causal I/O-functions, also called data
flow behaviors.

3. A Mathematical Model of Data Flow Nets
We model distributed systems by data flow nets. Let K be a set of identifiers for components"
(represented by data flow nodes) and O be a set of output channels. A distributed system (v, O)
in the form of a data flow net with the syntactic interface (I, O) is represented by the mapping

v: K -> COM
that associates with every node labeled by the identifier k 6 K a component behavior (an
interface behavior given by an I/0-function)2). In principle, we can think about the component
associated with an identifier as its type (or its class). This way we are very close to object
orientation.

The set

I = (O u {c e In(v(k)): k e K})\{c e Out(v(k)): k e K}

denotes the set of input channels of the net. As a well-formedness condition we require that for
all component identifiers k, j 6 K (with k * j) the sets of output channels of the components
v(k) and v(j) are disjoint. This is formally expressed by the equation Out(v(k)) n Out(v(j)) - 0.
In other words, each channel has a uniquely specified component as its source (including the
environment as a source). We denote the set of K (identifiers for the) nodes of the net by

Nodes((v, O))

We denote the set of all the channels of the net by Chan((v, O)) specified by the equation

Chan((v, 0)) = Ou{ce In(v(k)): keK}u{ce Out(v(k)): k e K}

The channels in the set

{c e Out(v(k)): k e K}\0

are called internal. Recall that the mapping v associates with every node its behavior in the form
of an I/O-function.

» The fact that we use component identifiers gives components their unique identity over the lifetime of a
system. One may think of object identifiers.
2> We assume that the input and output arcs of each node labeled by an identifier k e N are determined exactly by
In(v(k)) and Out(v(k)) respectively.

A data flow net seen from the outside describes an I/O-function. This I/O-function is called
the black box view of the distributed system that is described by the data flow net. It defines an
abstraction of the distributed system that is represented by the data flow net (v, O) leading to its
black box view by mapping it to a component in COM[I, O]. Here I denotes the set of input
channels and O denotes the set of output channels of the data flow net. This black box view is
represented by the I/O-function F(v, 0) 6 COM[I, O] specified by the following formula:

F(v 0) (x) = {y|0: yd = x A V k e K: y|0ut(v(k))e v(k)(y|In(v(k))) }

Here we use the notation of function restriction. For a function g: D -> R and a set T c D we
denote by g|T: T -> R the restriction of the function g to the domain T.

The formula essentially expresses that the output history of a data flow net is the restriction
of a channel evaluation for all the channels of the net that is a fixpoint1* for all the net equations

to the output channels.

4. Dynamic Systems
The dynamics of information processing systems is not so easy to grasp. On one hand universal
programmable computer systems show a very dynamic behavior by definition. They gam their
flexibility by the fact that they can be programmed to compute any computable task. However,
this form of dynamics is rather specific: it requires human interaction by the programmer. In
contrast to this we are interested in this paper in dynamic systems with a dynamics that is part of
the programmed system behavior.

A crucial question here is to find the appropriate level of abstraction of computing systems to
study their dynamics. On the machine level, where only bits and bytes are processed and even
the difference between data and instructions disappears it is quite difficult to capture the notion
of dynamics of systems. At this level computers process bit streams. Only at higher levels of
abstractions dynamics becomes explicit. On very high levels of abstraction, however, in many
cases the dynamics may no longer be explicitly visible.

Another crucial issue for an information processing system and its description is the balance
between statics and dynamics. In a world without types, for instance, any behavior can be
encoded (see 7t-calculus [Milner 91]). Types introduce restrictions on the system behavior and
this way restrict the dynamics of systems. Obviously, it is crucial to find the right balance
between static aspects including types and dynamic aspects. In system development, we want to
associate a number of properties, structure, and views with a system model. Due to the dynamics
of a system, some of these views may change.

A distributed, interactive system is called dynamic, if it changes its set of components or
channels, its distribution structure, its topology and/or its channel connection structure during its
lifetime. This means that it may change step by step

• its set of existing components,
• the locations of its components,
. its set of communication links and its interconnection structure (internal and external

channels).

» According to the fact that we consider only time-guarded I/O-functions it can be shown that if the V^function
is deterministic, there is always a fixpoint and the fixpoint is unique. Due to time guardedness, the recursive
equations are sufficient to characterize this fixpoint and the idea of a least fixpoint is not needed.

89

Along these lines we can even speak in the case of black box views of dynamic systems and of
dynamic components, if components change their syntactic interface over their lifetime. Of
course state transition machines where the set of components and channels is a part of their state
easily model dynamic systems. In such models, however, the distribution structure is rather
implicit. Moreover, it is difficult to arrive at modular system models that way with clean and
simple composition operators. We are, however, interested in models which present and deal

with the distribution structure more explicitly.

4.1 Dynamic Nets and Mobility
A dynamic net typically changes its set of components and its channels during its lifetime.
Speaking in more general terms, a dynamic system changes its component structure (its
architecture) over its lifetime. In principle, these changes are not very difficult to model. If we
model a system by a state transition machine we may describe the connection network as a part
of the state. By state transitions the state may change and so may the network. This way we may
describe state transition steps with radical changes of the system structure. However, for most
applications we are not interested in radical changes of the network structure within one step
Rather we are interested in very specific, small, relatively local changes where in one step most of
the net structure remains unchanged and only

• one component is added or deleted, or
. one channel is added to or deleted from a component or its source and/or target is changed.

This leads to the idea of evolving networks along the lines of the 7i-calculus (see [Milner 91],
[Milner et al. 92]) or the ambient calculus (see [Cardelli 95]) where the steps of changes are
captured by rewriting rules. In fact, in 7i-calculus the meaning and behavior of dynamic networks
is specified in a purely operational way, which does not lead to a clear notion of an interface nor
to a denotational model of a dynamic system. We are interested in the following in a
denotational model and its modularity as a basis of specification and design techniques.

Fig. 2 Static Network of Central C, Stations SI, S2 and Mobile Phones Tl, T2, T3

4.1.1 Dynamics of Structure, Interface, and Behavior

We start with an example to illustrate the applications, notions, and goals of mobility and

dynamics.

Example: Mobile Telephone
Let us discuss the different options to deal with dynamic systems by a rather simple, well-known
example namely that of a mobile telephone system comprising two switching stations, one
central telephone exchange, and up to three mobile phones.

90

As shown in Fig. 2, the system consists of a network which contains as components a
telephone central C, two switching stations SI and S2 and three mobile phones Tl, T2, and T3.

Fig. 3 Dynamic Network with Three Active Mobile Phones (Inactive Channels in Grey)

In this network the component C is static (its set of active channels never changes) as long as
both stations are always active while the components SI, S2, Tl, T2, and T3 are dynamic since
their set of active channels may change.

Fig. 4 Dynamic Network with Three Active Mobile Phones and Changed Connection

We may model the case that mobile phones exchange their stations as illustrated by the Fig. 2 to

5.

Fig. 5 Dynamic Network with Two Active Phones and One Active Switching Station

Fig 2 gives the static network of all possible components and all possible connections. These
are all the connections and components that may exist over the lifetime of the system. Fig. 3
shows a system configuration where each phone is active and connected to exactly one station.
Fig 4 shows the result of changing the connection for telephone T2 from station S2 to station
SI. Fig. 5 shows a configuration where telephone T2 and station S2 are inactive. In this case the
central C is a dynamic component, too.

91

L 11 Tl | T2 13

i r

i. —i r
. ' r .

1 Ether 1

V

| M |2 1
^

C / r
Fig. 6 Dynamic Network with an Ether Connection

Fig 6 shows a solution where a transmission component called Ether is introduced that acts as a
communication bus. In this case, the system structure is static and no dynamic behavior occurs
explicitly since the channel and message switching is done by the component Ether and
therefore the net appears static.

Note that there are two options to give a behavior to the component Ether. Either the
component Ether is a merge component (also called a multiplexer) that merges all its input
message streams and forwards them to all its output channels (broadcasting) or it is a switch that
connects certain inputs with certain outputs or it is a combination of a filter and a merger. As a
special case Ether can be described as a switching network that has a state indicating exactly
which channels are connected. This state reflects the net structure as it is shown in Fig. 3 to 5

explicitly.

In a network of the characteristics introduced in the example above the structure of the system,
the set of existing components and connections of the components may change during the
lifetime of the system. In fact, the example shows only two essential aspects of dynamics, the
dynamics of the interface (in Fig. 5 the switching station SI has only two (active) channel
connections to mobile phones while in Fig. 4 it has three) and the dynamics of the connections
and sets of components of a system. In fact, we are also interested in components that change
their functionalities by offering modified or additional services.

To model the dynamics of a system we can describe a sequence of states of a system by
snapshots. In each snapshot the system distribution and communication connection structure
may change. We believe that it is important to keep track of the individual objects (components)
during the lifetime of dynamic systems. This is achieved by a particular notion of identity for
each of the components. This identity is captured easily with the help of unique component
identifiers such as in object orientation or in the Internet by the IP addresses. In dynamic
systems we are interested to keep track of the individual components. If we compare two
snapshots of the system showing the subnet of active components and channels we obtain two
different nets, in general. Which of the components of these nets represent the same computing
entity can be determined only by the identifiers associated with the components.

4.1.2 Mobility

Interesting aspects in dynamic systems that we did not mention explicitly in our example so far
are the individual steps by which the number of components changes. Examples are the melting
of components (making one component from several ones), the cloning of components (creating
a second copy of a component), or their split (dividing a component into two). These patterns of

92

system behaviors can be seen as special cases of system dynamics that are achieved by naming
conventions and/or hierarchical networks. We are interested to treat, in addition to the dynamics
of systems, a hierarchical partitioning of networks. We explain this idea again by an example
showing the dynamic reconfiguration of systems.

Example: Reconfiguration
We give a very simple syntactic example for reconfiguration. A reconfiguration collects and
encapsulates different sets of components into locations. Each of the locations contains a set of
components. These sets are forming again components. As a result we get partitions of a system
that may change dynamically.

n^d
r^

i r
I I
I I
I I.

I 1
I I

i r •
i i
i i
i i

.%
i

I lN HI
I I
I I

. I L.

r

■',,

i
i '

^Hi

i r •
i i

11
11

Fig. 7 Four Examples of Configuration of a Simple Net

Fig 7 shows four different configurations of a simple net. Each corresponds to a particular
partition of the set of components. We could also study configurations with nondisjoint sets of
overlapping subsystems. We can think about steps of reconfiguration of a system where such

changes appear.
The idea of partitions gives us, in particular, one handle to speak about component mobility. By
partitions where the elements of the partitions are identified by identifiers called locations we can
speak about system state changes where one component moves from one partition to the other.

Configurations define system topologies and their neighborhoods for systems. We may ask
in such a system model if two components are in the same set of the partition ("are in the same
environment"). This can be used to allow, for instance, additional ways of interactions for
components that are in the same set of the partition. Those aspects are modeled in the ambient
calculus (see [Cardelli 95]).

4.2 A Formal Model for Dynamic Systems

To keep our discussion simple we restrict our discussion to deterministic components and
systems in the following. An extension to nondeterministic systems is possible along the lines
of Focus [Broy 98], too.

93

Let I be throughout this section a (possibly infinite) set of input channels and O be a

(possibly infinite) set of output channels.

4.2.1 Dynamic Streams

A dynamic stream represents the history of a channel that may become active and inactive several
times through its lifetime. Given a type M (which in our setting is simply a set of data elements
used as messages) we define the set of dynamic streams over the set M by the set of ^streams
over M U {@, ©} as follows: s is a dynamic stream over M and we write s G M if the

following formula holds:

V 16 IN\{0}: (-na(s).t => s.t = <> v s.t e {@} x M*)

A (cc(s).t => s.t e M* v s.t e M* x {©})

where the function

a :((Mu {@,©})T-> (IN->B)

is an auxiliary function with the meaning a(s).t expresses that the stream s is active at the
beginning of time interval tec is specified by the equations

cc(s).0 = false

<X(s).t+l = (CC(s).t A -i© 6 S.t) V (-,CC(s).t A @ = ft(s.t+l))

This definition essential defines the patterns of activation and deactivation signals and thus
expresses the rules of activating and deactivating a channel. Note that a channel can either be
activated and deactivated in one time interval of the system.

Streams on dynamic channels may carry activation and deactivation messages. Therefore the
type of a channel indicates whether the channel is dynamic. Here we assume for simplicity that
the channels are active or inactive always during complete time intervals. So at the beginning of
each time interval (say at time t) we have a set of active channels that stay active over the entire
time interval and the other channels stay inactive throughout the entire time interval . For
simplicity, all dynamic channels are inactive at time 0.

We introduce a type function for sets of channels C:

type:C->T

where T is the set of all types each type in T is a set. By

C

we denote the set of all channel valuations. A channel valuation x e C is a mapping

x: C -» (M*)°°

where M = u {t: 16 T} is the universe of all messages. We require for a channel valuation that

x.c G (t*)°°

if type(c) = t. Furthermore, if we have {@, ®} c type(c) then we require that x.c G M@ that

means that x.c is a dynamic stream.

» Note that only due to our model of time we speak so easily about the "state" of the system w.r.t. the activity
of channels.

94

4.2.2 Dynamic Components

A dynamic component (deterministic behavior) with the syntactic interface (I, O) corresponds to

an I/O-function

F: I -> Ö

where some of the channels in I u O are dynamic. The function F models the input/output
behavior of the component. On this basis we are able to define a function

a: {xit: t e IN A X e 1} -> p(I u O)

The function a yields for every initial segment xit of an input history x at time t a snapshot that
represents the set of active channels. Only if a channel is active communication may take place
along it. The only exceptions are the activation messages (see above). The set a(x40) yields the
set of channels that are active initially, which are the static channels.

The set of dynamic components is denoted by DCOM. The set of dynamic components with

the syntactic interface (I, O) is denoted by DCOM [I, O]
Note that we did not make any assumptions about the cardinality of the channel sets tor a

component Of course, the set of dynamic channels of a component can be infinite. Whether we
are interested in and allow for components with an infinite number of active channels is another
question. Certainly, for particular applications components with an unbounded set of active

channels are of major interest.

4.2.3 Dynamic Nets

Let DCOM be the set of dynamic components. We work with a function that assigns behaviors
to component identifiers. A dynamic net consists of a (possibly infinite) set of nodes K

(identifiers for components) and a mapping

v. K -> DCOM

where DCOM is the set of dynamic components. Let I be the set of input channels of the net. To
model activation and deactivation of the components in the net, we define a mapping

ß: {xik: kElNAxe I}-> p(K)

This mapping indicates which components of the net are active at a given time. The channels that
are active in the network are the active channels of the active components.

For simplicity we assume that a component is inactive, if and only if all its channels are
inactive. We define the activity function ß as follows:

ß(x).t={ke K:3yeC: y|I = x

A V k £ K: y|0ut(v(k))e v(k)(y|In(v(k)))

A (3 c e In(v(k)) u Out(v(k)): a(y.cit))}

At a first glance for some readers it may look strange to work in our system model with a set
consisting of all the components and of all the channels that might become active during the
lifetime of a system. However, this is not so difficult and unusual as it may seem at a first
glance In object-oriented systems the set of object identifiers determines the set of potentially
active objects And the syntactic structure of the methods (where in the body of a method a
method of another class is called) determines together with the links between the objects the
possible connection structure. According to this model at each time there exists a uniquely

95

defined network of active components and channels. Moreover, we may assume an infinite set of
object identifiers for each class. Therefore each class represents an infinite set of components
most of which being inactive in a particular state (time) of the system.

Also in other systems it is quite common that the set of potentially active components is
determined (and bounded) by a set such as the set of potentially active components. An example
is the Internet with its finite number of IP-addresses.

5. Conclusions
It is the main goal of this paper to demonstrate that the methods, notations, and concepts used in
practice for the modeling and description of digital systems including dynamics can well be
scientifically based on the more foundational and theoretical work created so far in computing
science. This way we obtain a mathematical basis for powerful system modeling languages as
well as software and system engineering methods.

The benefits of such a mathematical foundation are quite obvious. In particular, we obtain this

way:
• A deeper understanding of the methods leading to helpful "Gedankenmodelle" based on

the mathematical models.
• Better description techniques for dynamic systems.
• The conceptual consistency of description and development methods for developing

dynamic and mobile systems.
• The mathematical basis that can help as a guideline for the definition of development

methods for dynamic and mobile systems.
• Advanced tool support for specification as well as consistency checking, prototype

generation, simulation, and verification of dynamic systems with a firm basis.

Apart from these more direct benefits of a mathematical foundation of software engineering
methods a scientific foundation is badly needed as a step toward a more systematic study of
methods for dealing with dynamic and mobile systems. Only if we manage to develop general
common criteria to compare the expressive power and quality of software engineering methods
we will be able to free our discipline from dogmatic view points and marketing-based judgments
and thus prepare the ground for scientifically justified and practically tractable systems and

software engineering methods.

Acknowledgment

The thoughts presented above have benefited greatly from discussions within the SysLab team

and the Forsoft I Project Al research group.

References

M.rBroy! Advanced Component Interface Specification. In: Takayasu Ito, Akinori; Ycnrajja
(Eds.). Theory and Practice of Parallel Programming, International Workshop TPPP 94 Sendaj
Japan, November 7-9, 1994, Proceedings, Lecture Notes in Computer Science 907, Springer

1995'

96

MBmr Compositional Refinement of Interactive Systems Modelled by Relations In: W.-P.
de Roever, H. Langmaack, A. Pnueli (eds.): Compositionality: The^Significant Difference.
LNCS State of the Art Survey, Lecture Notes in Computer Science 1536,1998,1JU-149

R.Cardelli: A Language with Distributed Scope. ACM Trans. Comput. Syst. 8, 1 (Jan.), 27-59.
Also appeared in POPL 95.

KbenThe polyadic rc-calculus: A tutorial. Technical Report ECS-LFCS-91-180, University
of Edinburgh, 1991.

R Müner L Parrow, D. Walker: A calculus of mobile processes. Part i + ii, Information and
Computation, 100:1 (1992) 1-40,41-77

97

A formal approach to specification-based black-box testing"

Maria Victoria Cengarle Armando Martin Haeberer

Institut für Informatik Oblog Software S.A.

Ludwig-Maximilians-Universität München haeberer@oblog.pt

cengarle@informatik.uni-muenchen.de

1 Introduction

This paper introduces an initial account of a formal methodology for specification-based black-box

verification testing of software artefacts against their specifications, as well as for validation testing of

specifications against the so-called application concept [14].

When testing software process artefacts we have three actors. The first is & posit we make on the

real world, whether it be a software artefact reified from a specification or a software artefact to be,

i.e., the application concept, the hypothetical posit we imagined and whose behaviour the specification

should capture. In both cases we obtain evidence from such a posit—if it is a real software artefact

by executing it; if it is a hypothetical posit by producing instances of its hypothetical behaviour.

The second actor is the specification, which is a theory supposedly explaining the behaviour of the

posit. Actually, when testing the relation between a posit and its specification what we test is the

'correctness' of such an explanation. In case the posit is a hypothetical one, we talk about validation

testing, i.e., the testing activity aims at answering the question 'are we constructing the correct thing?'.

In the case the posit is a software artefact, we talk about verification testing and the testing activity

aims at answering the question 'are we constructing this thing correctly?'. Finally, the third actor is

the property we are testing, which is a hypothesis we make about the posit and which should be tested

using the whole specification as a background theory. In other words, this hypothesis will be true if

»The research reported in this paper was developed with the support of the DAAD (German Academic Exchange Ser-

vice), the CNPq (Brazilian National Research Council), the Ludwig-Maximilians-Universität München, the EPSRC (Engi-

neering and Physical Sciences Research Council, UK), the Imperial College of Science, Technology and Medicine, London,

and PUC-Rio (Pontiffcia Universidade Catölica do Rio de Janeiro, Brazil).

98

(and hopefully 'only if) the specification correctly 'explains' the hypothetical posit (validation), or if

the software artefact is 'correct' with respect to the specification (verification).

This setting resembles very closely the one of testing of scientific theories, i.e., of testing the

'correctness' of the explanation a particular scientific theory supports about certain phenomena. As

soon as we investigate the relation between the two settings, its resemblance is compelling (see [12,

5]). The specification corresponds to the scientific theory, whilst the posit the specification describes

corresponds to the phenomenon the scientific theory explains.

Let us denote by T* the specification (or background theory),1 H the hypothesis under test, and

E the evidence produced by the posit. The problem of relating the evidence emerging from a phe-

nomenon with the theory explaining it, i.e., the problem of logically explaining how some evidence,

which is a piece of observation, can refute or confirm a hypothesis on the basis of a theory2 explain-

ing such a phenomenon (both stated in a theoretical language), was one of the major issues of the

Philosophy of Science (Epistemology) of the Twentieth Century.

In Fig. 1 the two major strategies to relate theory and evidence are depicted. The most popular

one is illustrated on the right-hand side of the figure. There, from the theory T U {H} a predic-

tion EP about the evidence E is derived using the logic underlying both the so-called theoretical and

observational segments of T* U {//}. (We will succinctly discuss these segments below.) Then, the

experiment consists in comparing the predicted evidence EP with the one produced by the posit, i.e., E.

The experiment is successful if the prediction holds, unsuccessful otherwise. This strategy is called in

the epistemological jargon the hypothetico-deductive strategy (in the sequel abbreviated to HD); after

proposing a hypothesis about the posit, and in the presence of a background theory V = T\ a pre-

diction of an evidence is deduced from the two together and then compared with the actual evidence.

As we show below, certain conditions should hold for this strategy to be sound.

The left-hand side of Fig. 1 pictures an alternative strategy, which is also intuitive. This strategy is

called the bootstrap strategy in the epistemological jargon. Again, the purpose is to test a hypothesis H

about a posit on the basis of a background theory, this time T* = {T* U {//})* .3 From an evidence E

produced by the posit and by means of a set of functions {fa,} derived from f (using its underlying

logic), obtain a valuation a for the variables {x} of H. Then, the experiment consists in determining if

•Theory presentations are denoted by T. T. etc.; theories obtained from those presentations (i.e., presentations closed

under inference) are denoted by 7"\ T*, etc.
2In Epistemology literature it is usual to read "on the background of a theory" instead.

3By abuse of notation we also write T* = T* U {//}.

99

the valuation a makes H valid, in which case the experiment is successful, otherwise it is unsuccessful.

As in the case of HD, certain conditions on the derivation of the set {frj must hold for the strategy

to be sound. The bootstrap strategy (as well as HD) is based on Carnap's ideas; in Glymour's words,

Whenever our evidence is stated in terms narrower than those of our theory, [one of Carnap's ideas]

contains a stratagem for making the connection between evidence and theory: use [the background

theory] to deduce, from the [evidence], instances of [the hypothesis].

According to which

kind of testing we are per-

forming, after applying

any of the above strate-

gies, modus tollens dic-

tates the course to fol-

low. In the case of veri-

fication testing of a soft-

. ,, ware artefact against its

specification, if the exper-

ts

g

i. u

1
Q

i. z o

1

BOOTSTRAP STRATEGY V
£ •£/■

ft
HYPonrHETico-DEDUcnvE iment was unsuccessful,
STRATEGY , , , _ , t
u,.,,!*.,™.,*,,-.^«™ then the software artefact

"iff £t=i>
must be revised. In the

posit under
scrutiny

Figure 1: Testing strategies

case of validation testing

of a specification against

a hypothetical posit, if

the experiment was un-

successful, then the specification must be revised. In both cases, if the experiment was successful, the

only information we have is exactly that. Transforming this information into a confirmation means ei-

ther performing infinitely many experiments or introducing some kind of uniformity hypothesis about

the domain of the evidence enabling a finite partition of it into uniform subdomains such that it is suf-

ficient to test one representative of each one of these subdomains. This paper will not deal with this

last problem; its purpose is to introduce the bootstrap strategy as an appropriate one for specification-

based black-box testing, and to show why HD is woefully inadequate.

In this paper we denote a theory by T* to emphasise the fact that a theory is the closure of

100

a (usually finite, modulo axiom schemata) theory presentation (or axiomatisation) <TL by means of

the inference rules of the underlying logic L. Notice that we have here another potentially infinite

dimension for testing. Whatever strategy we use, we should test infinitely many hypotheses to cover

the whole theory. However, if we have a finite theory presentation (modulo axiom schemata), we can

use it instead of the whole theory, i.e., use its axioms as hypotheses.

Notice that evidence E is stated in a different language than theories and hypotheses. For express-

ing the former, a restricted language denoting observables and with a restricted logic suffices. For

instance, the property 'this brick is red' denotes a directly observable fact, i.e., the redness of this

particular brick. Moreover, the sentence 'all the bricks I am talking about are red' is a generalised

(finite) conjunction of atomic sentences. In other words, the universal quantifier of the logic accom-

panying the language of observables must be finite, as we cannot observe infinitely many properties.

The notion of direct observation can be relaxed to those things observed via 'accepted' instruments, a

microscope when observing cells, or an oracle when observing software artefact behaviours.

In contrast, the language in which theories and hypotheses are stated must be rich enough to

capture concepts, be they observable or not. Moreover, the accompanying logic must provide infinite

quantifiers, modalities, etc. For instance, if the domain of the quantifiers were not infinite, a scientific

theory would be transformed into an empirical generalisation.

The existence of these two sublanguages and their accompanying logics with different expressive

and deductive power, is the root of the problem of testing alluded to above. In Glymour's words [11],

/...] how can evidence stated in one language confirm hypotheses stated in a language that outstrips

the first? The hypotheses of the broader language cannot be confirmed by their instances, for the evi-

dence, if framed in the narrower tongue, provides none. Consistency with the evidence is insufficient,

for an infinity of incompatible hypotheses may obviously be consistent with the evidence [...].

All these problems were deeply studied by the so-called logical-empiricist philosophers, in par-

ticular by the members of the Vienna Circle. Rudolf Carnap formally introduced the observational-

theoretical dichotomy by means of a theory known today as The Statement View of Scientific Theories

(in short The Statement View) in the 38 years between 1928 [2] and 1966 [3].

In the context of the Statement View, whenever we have an empirically interpreted theory 7* we

have two disjoint subtheories of it, a theoretical one, whose presentation is TT = (Z?",AK?), and a

purely observational one, whose presentation is % = VlMl related by a set of correspondence

rules C1, which provides the only empirical interpretation of TT. Therefore, we have two languages

101

generated by the vocabulary of T, the theoretical one (which we will call xf) and the observational

one (which we will call 1$). Observable facts are stated in £%. We will refer to such observable

facts as evidence. The requirement that the set of correspondence rules provide the only empirical

interpretation of the theoretical subtheory preserves the safeness of observational consequences. That

is, some theoretical symbols are given empirical interpretation, by the correspondence rules, in terms

of the observational symbols. The theoretical symbols whose meaning is not definitionally given

by the correspondence rules are not interpreted further. Their properties are given by relating them

with the already interpreted theoretical symbols by means of the deduction mechanisms provided by

the underlying logic. This means that there are more theoretical symbols than observational ones.

Therefore, it is easy to see that Xf outstrips L* in expressive power. This difference is due, on the

one hand, to the above mentioned 'difference in size' of the corresponding vocabularies, and on the

other, to the logic underlying the theoretical and the observational segments of the theory.

Outline In Sect. 2 we present the hypothetico-deductive strategy in detail and discuss its flaws. In

Sect. 3 we introduce in detail the bootstrap strategy for deterministic evidence and, in Sect. 4, we

apply it to the verification testing of a toy deterministic program. In Sect. 5 the bootstrap strategy is

adapted to non-deterministic evidence, whilst in Sect. 6 its application to the verification testing of a

toy non-deterministic program is presented.

2 The hypothetico-deductive strategy

Let us recall Fig. 1. In the HD strategy the hypothesis H and the theory T* are used to derive a

prediction EP, and then some actual evidence E is used to determine whether or not the prediction is

true, i.e., if E \= EP. The hypothesis H is stated in the theoretical language; the background theory T*

is an interpreted theory containing its theoretical part, its observational part, and its correspondence

rules; finally, the prediction must obviously be stated in the observational language. In order to derive

the prediction from the union of the theory and the hypothesis, the theoretical terms appearing in the

latter must have a direct (by means of some correspondence rules) or indirect (by means of inference

and some correspondence rules) empirical interpretation.

A HD schema is a triple {T\H,EP) where T\ H, and EP are as in our scenario above, and the

following three conditions hold:

(i) T* U {H} is consistent

102

(ii) HJ*\-Ep

(iii) T*¥EP

Then, as we said before, E\=EP does not refute H w.r.t. T*, whilst E £ EP refutes H w.r.t. T\

Let us analyse these conditions. The first one is obvious; if T U {//} were inconsistent, then

any prediction could be derived from it. The second condition is the essence of the HD strategy.

Finally, the third condition prevents us from affirming that H is tested in the case that T* suffices

for predicting EP. Notice that we are using T* instead of T: the reason is the necessity of stating

condition (iii). Therefore, when using the HD strategy, we should consider T* U {//} as the theory

explaining (making an appropriate prediction EP) for E, but H can only be confirmed w.r.t. some T\

i.e., w.r.t. a subtheory of T*.

The outstanding problems of the HD strategy are the following. First, E can never refute or

confirm (for the precise meaning of confirmation recall the discussion of page 3 in the introduction)

w.r.t. 7* any consequence of tf* itself; notice, however, that, if H is a consequence of T, then

it can be confirmed with respect to H -» T\ i.e., w.r.t. a subtheory of the original theory T such

that conjoining it with the hypothesis is logically equivalent to T (see [10]). Second, if EP is not a

tautology, E \= EP, and L is any consistent sentence such that EP V- L, then L is confirmed by E w.r.t. a

true theory (namely L -> EP). Third, if H is confirmed by E w.r.t. T\ then so is H A K, where K is any

sentence whatsoever that is consistent with H and T*. (Recall the property known as reinforcement of

the antecedent of classical proportional logic.) The first difficulty might be tolerated were it not for

the other two; together, they make the HD account untenable.

There were different attempts to save the HD strategy. Let us consider, for instance, Merrill's

attempt to overcome the third difficulty (see [15]). Additionally to the above listed three conditions,

we should corroborate the fact that there do not exist sentences K, L, and M such that:

(iv) Y-H^KM (viii) LVH (viii) YM^L

(y)KPH (\x)MYH (ix) K,M,T*\-EP

(x) T* U {K,M} is consistent

which in English means that if H is a conjunction, then no one of its conjuncts L (or any M equivalent

to L) suffices for deriving EP.

Unfortunately, Glymour showed (see [10]) that this addition leads to circular reasoning, i.e., EP h

H. The proof can be sketched as follows. Assume that T\ H, and EP satisfy (i), (ii), and (iii) above.

103

Suppose that h(H« (T* <- EP)), then (T* <- £P) h // by the deduction theorem and, given that

Ep y. (r <_ Ep), then EP h H. Suppose now that Y- (H f* (r* «- EP)), then we let K be (r* <- £p),

L be ((T* <- £P) <- #)> and M be any tautology. In this case, and using the deduction theorem and

modus ponens, as well as reasoning by reductio ad absurdum, it can be shown that K, L, and M satisfy

(ivMx). Thus if Ep is a prediction by means of the hypothetico-deductive strategy, then necessarily

\- (H o (T* <- £p)) as in the first case above, which means that EP h H.

Moreover, Glymor has proved in [10] that another suggested attempt to save the HD strategy by

adding additional constraints does not help. Even a late attempt to lend credibility to hypothetico-

deductivism by using relevance logic (see [16]) instead of classical logic was not successful, since

relevance logic itself was not yet well accepted.

Because of the failure of the HD strategy, specification-based black-box testing methods based on

it (or on rudimentary versions of it), for instance the method proposed in [7, 8, 9] (for its criticism on

the basis of this setting see [5]), have inherent and insurmountable problems. This problem led us to

the consideration of the bootstrap strategy as an alternative basis for a methodology for specification-

based black-box verification testing of software artefacts and for validation testing of specifications

against the application concept.

3 The bootstrap strategy for deterministic evidence

We present here the bootstrap testing strategy for the case of theories over existential (in)equational

logic EEQ+ (called simply EEQ if inequalities are not involved), i.e., the logic underlying systems of

n (in)equations with m unknowns. For the sake of simplicity, we assume that there is no a-conversion.

Let 21 = (A, <) be an algebra with a natural order. Let T* be a theory, let H be an equation (or

inequality), and let both be mutually consistent. Let E = {e; :/'€/} be a set of variables, and let

E = {£,: ej G A and j G /} be a set of values for the variables in E (these variables and their values

belong to the observational language), which once lifted by the set of correspondence rules C1' are

consistent with H and T*.

Bootstrap testing schemata are three place relations <T*,H,£), where T* is a theory, H the hy-

pothesis to be tested with respect to this theory, and E the evidence which can refute H with respect to

T*. In general, to be considered a bootstrap testing schema, <T*, H, E) must satisfy a set of conditions

such as (i) to (iv) below. Of the bootstrap schemata we introduce only one. All of them coincide in

104

satisfying conditions (i), (ii) and (iv) below; the difference between them resides in the requirement

stated by each one's condition (iii).

We begin by stating the Schema I for the deterministic case. In order to do so, we need to introduce

some concepts and notation. A subtheory of a theory T* is a theory %* such that T h T,*; two

theories are equivalent if each one is a subtheory of the other. A variable is essential to an (in)equation

K if it occurs in every (in)equation equivalent to K; the set of essential variables of K is denoted by

Evar(K). (Recall that we do not have oc-conversion.)

The Schema I of bootstrap testing is defined as follows. Given (T,H,E), for each x 6 Evar{H)

let T*x be a subtheory of T* such that:

(i) 1*x determines (the value of) x as a function of a set of variables indexed by lx,

which is a subset of the evidence E = {e,: j € J},

denoted by x = fr^C*'(e; : / e /, A /, C J))-4

(ii) The set of values for the variables in Evar{H)

given by x = fo>X<?' (£/: 7' € /, A /, C /))

satisfies H.

(iii) There is no (in)equation K with Evar(K) C Evar(H)

such that H, &T* I- K and K, &T* h H.5

(iv) For all x e Evar(H), there is no (in)equation K with Evar(K) C EvarCT*,)

suchthatr-//AT*xo{/f}.

If conditions (i) to (iv) above are met, E is said to provide a positive test of H with respect to T*.

The motivation for the conditions above is as follows:

Condition (i) The requirement that a value be determined for each quantity occurring essentially in

H reflects a common prejudice against theories containing quantities that cannot be determined from

the evidence. Given (T*,//,£), when values for the basic quantities occurring in H have not been

determined from the evidence E using some theory f, then E and the relevant fragment of f do not

of themselves provide reason to believe that those basic quantities are related as H claims them to be.

4We denote by /n the function (determined by subtheory Tx) which assigns a value to the essential variable x as a

function of the {e;: j 6 h A /* C /} translated by the set of correspondence rules Cf1 .
5&T* =f (UreEwfH)'1'*)*- Notice that if <r* is Presen,ed bv an axiomatisation %, then &T* = (lUEvaKH)'7'*) • In

this latter case we denote by &T the axiomatisation \Jx&Evar(H)^-

105

Condition (ii) Obvious.

Condition (Hi) Suppose there exists an (in)equation K such that Evar{K) C Evar(H), H,&T\-K

and £,&T h H. Let y e £var(#), y $ Evar(K). This means that y is essential to H, but not

to ff in conjunction with &T. In other words, y could take any value, independent of the ev-

idence {ey: j e ly A /, C J}. Therefore, the evidence E = {e,: ey € A and j 6 7} and the method

{x = fy (C"1* (e •: j € 4 A /, C /))} of computing quantities in Evar(H) from the evidence

would fail to test the constraints H imposes on y. Thus, a significant component of what H says

would go untested.

Condition (iv) Consider the theory presentation T : {* = y, c = <*} and the hypothesis H : x = y with

£ = {x,y,c,d}.6 For simplicity, and because the theoretico-observational distinction is not relevant

for this discussion, let us suppose that the correspondence rules are, in this case, identity functions,

therefore, we identify observational and theoretical variables. The set Evar(H) is {x,y}, and a positive

test of H w.r.t. T is any set E = {x,y,c,d \ x = y}, because, applying conditions (i) to (iv), (i.e., the

schema above), % : x = x and % : y = y. This means that whatever values c and d take, the hypothesis

H:x = y will not be refuted with respect to theory T provided the evidence satisfies x = y. Notice that

a<r'x:x = y+(c-d)is rejected by condition (iv) because there exists K:y = y+c-dwiüi Evar{K) =

{y,c,d} included in Evar(<Tx) = {x,y,c,d} such that I- H A <I'X+> K. If we eliminate condition (iv)

and, merefore, accept ^: x = y + (c - J), then the evidence £ = fey, c,rf U = y Ac ^ ^} will refute

H:x = y although T does not establish any link between variables x and y, on the one hand, and c

and d, on the other.

4 Bootstrap testing of a deterministic program

In this section we apply the Schema I of bootstrap testing presented above to an example. First, let

us recall that the way of declaring our intention of what is observable and what is not, is by stating

appropriate correspondence rules relating the evidence with the theory (that is, observables can be

single quantities and not necessarily a whole sort).

Let SPEEQ be the specification (or theory presentation) over the logic EEQ of a program with

input {xux2,x3M and output xw given at the top of Fig. 2, where AxBA is the set of axioms of

6We denote by L: {<p,,..., <?„} a system named L consisting of the formulae <p,,..., <p„. This is abbreviated to L: (p if

the system consists of just one formula.

106

Boolean algebra. Suppose we want to verify the integrated circuit at the bottom of Fig. 2 against the

specification SPEEQ. The evidence is obviously constituted by sets E = {ei^e^es} of values for

variables ei, £2, £3. £4. and £5.

Assume that the values of £,, e2, £3, U, and £5 in CH0106 are related, respectively, to the variables

xi, x2, x3, x4, and xw in SPEEQ as detailed in Fig. 2. Notice that the values £; for £,■ (i - 1,2,3,4,5)

can be either OV or 5V (where V stands for volts), whilst variables xx, x2, xiy x4, and JC,0 in SPEEQ can

only take values 0 and 1.

The set C57* of correspondence rules is there-

fore constituted by five rules:

• four correspondence rules Cf , Cfp , Cf ,

and Cf, describing the procedure for intro-

ducing into the pins labelled £1, £2, £3. and

£4 of the integrated circuit CH0106, an ap-

propriate signal (0V or 5V) corresponding

to a particular valuation (0 or 1) for variables

x\,x2, xj, and x4, as well as

• a correspondence rule Cf^* describing the

measurement procedure to be applied to the

output pin labelled E5 of CH0106 for assign-

ing to variable xi0 its corresponding value (i.e., 0 or 1).

»«B = (2*',Ax»)
ZSF = {{Bool),F)
F= {0,1: Bool,

+, •: Bool x Bool -t Bool]

Axsr = Ax" U {V*i,*l,*j,H 3*s,^,It<H,*9,*i»
X} =jri+X2 A

Figure 2: A testing setting

In order to verify the circuit against the specification, we have to derive a set of experiments. Each

one of these experiments tests the circuit against a particular hypothesis H on the basis of the (theory

generated by the) specification (theory presentation) SPEEQ. The set of chosen hypotheses must cover

SP*. Therefore, a natural choice for the hypotheses are the axioms of the presentation SPEEQ. Let us

test, for instance, H : x-] = x$ • x^.

At this point let us emphasise that, as is the case in this example, we can do this, even when the

essential variables of the hypothesis are not related to any symbol of the observational vocabulary by

any correspondence rule.

In the general case, what the test can do is to refute our theory or, at best, not to refute it. In this

particular case, since the observable variables range over the Booleans, i.e., the set {0,1}, there is a

107

finite set of possibilities for the evidence, i.e., each one of the combinations of valuations of eb e2, e3,

£4, and e5 with the set {0V,5V}. Therefore, we can exhaustively test H with respect to SPEEQ. Thus,

in this particular case, we can confirm H.

Given that Evar{H) = {x5,x6,Xl}> three subtheories SP%, SP*X6, and SP% of SP* should be de-

rived for determining the values for the variables in Evar(H) as functions of Csr (£), where Csp' (E)

is the evidence E 'seen' through the set of correspondence rules Csp .

First attempt

For instance, we can present the subtheories as follows:

SPX5 :x5=xi+X2

SPx(, :X6=X2»X3,

SPxl:x1 = {xi+x2)»x2»x3

Therefore, we have

H,&SP: <

program PI
var vi, »2, v3, w4:Bool
function +M,(x,y:Bool) :HBool
function +|ttH(X:HBool;y:Bool):HBool
function +JM (X:HBool,-y:Bool) :Bool
function -m» (X:HBool;y:HBool) :HBool
function -BB» (x:Bool,-y:Bool) -.HBool
function a(x,y,z,t:Bool):HBool

return x +BBH y
function b(x,y,z,t:Bool) :HBool

return y -BB« Z
function c(x,y,z,t:Bool):HBool
return a(x,y,z,t) m b(x,y,z,t)
function d(x,y,z,t:Bool):HBool
return btx.y^^t) -hraa t
function e(x,y,z,t:Bool) :HBool
return c(x,y,z,t) ,,« d(x,y,z,t)
function z(x,y,z,t:Bool):Bool
return e(x,y,z,t) +U, t
begin

input (wi, w2, w3, »«)
output (z (vt, w2, »3. "i))

end _„

X-j =x5»X6

X5 =X\ +X2

X6=X2»Xi

X-] = {xi+X2)»X2»X-i

Notice that &SP t- H, and therefore condition (iii) is violated

because there exists K, namely K:xi=xi, with Evar{K) =

{Xl} C Evar(H) = {x5,x6,Xl} and both H,&SP r- K and

K, &SP h H (in fact, K could be any tautology with fewer variables than H).

What has violated condition (iii)? We have used a misleading way of calculating a value for the

essential variable x7, i.e., a biased value calculated by using only the 'input evidence' E\ {£5} instead

of a value calculated involving the measurement Cg<5(£) of the whole 'input/output' evidence E.

What was wrong in this first attempt? The choice of &SP*.

Figure 3: A possible implementation

Second attempt

So, we must obtain a more appropriate set of subtheories SP%. Notice that, from SPEEQ, we can derive

108

X\o =Xg+X4

= (XT»XS)+X4

= (XT{X6+X4))+X4

= (*7 • {(x2 *X3) +Xl)) + *4

= (X7+X4) • {(X2 • *() +X4+XA)

= (XT+X4)»({X2»X3)+X4)

= (XT»X2»Xl)+X4

multiplying both sides by M,

*10»*4 = {xTX2»XT,»M) + {xi»Xl)

=zX-]»X2»X-i»X4

which functionally determines a value for xn iff x2 • x3 • xj = 1, i.e., iff x2 = 1 = *3 and *4 = 0.

Therefore, we present

SPX1 : *io = *7

From SPX1, H, and 5F££Ö, one can derive

Xl0=Xs»X(,

= {xl+x2)»x2»x3

= x2»x3

which is the so-called representative of H.

Notice that

X5 = JCl + x2

x6=x2»x3

X10=JC7

and there is no K that could violate condition (iii).

Hence, given the restriction xi = 1 = £3 and xA = 0 to the valuation of variables xu x2, x3, x4,

and xl0 imposed by the subtheories SP\5, SP\6, and SP%, the set of test cases is reduced to the two

instances obtained by setting JC, to 0 and observing if the value of xw is 0 or 1, and repeating the same

observation after setting xx to 1. In order to do this, we should use the procedures described in the

correspondence rules Cf\ Cf*. Cf*, and Cf" for applying the correct signals to the input pins e,,

H,&SP: -

109

program P2
var wi,w2,w3,w4:Bool;count: Int

begin
input (vifv2,v3ftf«)
if w4 then output(true)
else count:=0

if wj then count:=count+1 endif
if u3 then count:=count+1 endif
if count>l then output(true)
else output(false)

endif
endif

end

e2, e3, and e4; and the procedure described in CS
5
P' for measuring the output value in the pin e5. Notice

that the evidence will provide a positive test of H with respect to SP* only in the cases in which the

value of x\o is 1, i.e., when e5 is measured to be 5V.

A possible implementation of SP* is the functional pro-

gram PI in Fig. 3. Notice, however, that 'an intelligent'

programmer or an optimising transformation system (for in-

stance) could have produced the imperative program P2 in

Fig. 4. In this alternative implementation there are no Boolean

functions at all; nevertheless hypothesis H : xn = x5 »X6 can

still be tested because SPEEQ also explains the behaviour of

P2. This example shows the power of the bootstrap strat-

Figure 4: An alternative implementation egy in performing black-box testing taking into account only

the specification structure, the property under test, and the in-

put/output relation of the program implementing the specification. In [5] we show that P2 would

be rejected by the approach of [9], simply because the P2 does not implement every axiom of the

specification.

5 The bootstrap strategy for non-deterministic evidence

Bootstrap schemata for deterministic evidence provide means for determining whether or not some

evidence provides a positive test of a hypothesis with respect to a theory, where a hypothesis is either

an equation or an inequality. However, even the latter option of the hypothesis being an inequality

does not fully account for the application of bootstrap testing to non-deterministic sets of evidence

(as for example the one generated by a non-deterministic program), since the subtheories T*x must

functionally determine a valuation for x £ Evar{H). (In the simplest case, they explicitly describe

functions.) For making bootstrap testing fully applicable to the case of non-deterministic sets of

evidence, we need to generalise the setting by allowing the subtheories to (non-vacuously) include

inequalities so as to allow the variables to become set valued. (In the discussion below, given a

function /: D -)• / and given E C D, we let f(E) denote the set {f{d): d € £}.)

Now suppose that, in a setting such as that for schemata for deterministic evidence above, for

each j G J, the evidence e,- takes its values from a set A/. Then, for each x £ Evar{H) we have five

110

possibilities, namely:

1. if x = /^(CT'(Ej :./ G /, A/, c J)),

then we let x = faJiC?' (Ay: ;' G /, A /, C 7)).

2. Ifx> h^C^iej: jeIxMxQJ)),

then we let * = {a : if fe G /V-JC2" (Ay: 7 € /, A /, C J)), then a > £>}.

(An alternative is to make x = {a : there exists fr G /^(^(Ay : y G /, A /, C J)) s.t a > *}•)

3. If JC</r-jC7"(ey : j" G /, A /, C J))>

then we valuate x analogously to the preceding case.

4. If x < faiCTitj : 7 G /, A/, C 7)),

then the value of x is calculated as the union of the set values given by cases 1 and 3.

In casex > faiC*'(ey: j G /, AIx C J)), we proceed analogously.

5. If the value of x G Evar{H) is determined by a collection of inequalities, then the (set-value) of

x is the intersection of the sets given by those inequalities separately.

Now, evidence E = {Ay : ; G J} provides a positive test of a hypothesis H with respect to a theory

T* according to the bootstrap schemata for deterministic evidence, if on the one hand, for each x e

Evar(H) there exists a value in x such that these values satisfy H in the usual way, and on the other

hand, the other conditions of the schema in use are met.

The reader might be disturbed by the requirement that a single value of x for each x G Evar{H)

satisfying H suffices. This seems to mean that a non-deterministic program is considered correct when

at least the value produced in one of its executions satisfies H. What about the values x produced in

other executions not satisfying H, should they be accepted? However, we must recall that the defini-

tion of the bootstrap schemata requires that E be consistent with H and T, and therefore, both pre-

and postconditions of the program must be satisfied for the evidence £ to be able to provide a positive

test of H w.r.t. T. This requirement on the evidence E stands for an universal quantification overriding

the troublesome existential one above for all input/output (observable) variables. Therefore, the weak

existential condition above applies only to internal (non-observable) variables.

6 Bootstrap testing of a non-deterministic program

111

C0W££2+=(SC0W,A(
CC"'V)

£«wv = ({«}, F)

F={+,-,-,/-«x«-+«3}
Ax"""" = {Vmi,«!,m2,«2 3"'3.«3,Jt,3' I 0< mi < m2

—mii7+mT(n2—ii|

A

1« mi-mi

/12<"1 A

m3<0 A

y<mi*+ni A

y>m2X + "2 A

y<m3*-f 03 A

*>0 A

>>0)

Figure 5: The specification CONVEEQ+

Let us now apply the variant of Schema I

for theories containing inequalities and set-

valued variables to the verification of a non-

deterministic program.

Consider the specification CONVEEQ+ over

the logic EEQ+ given in Fig. 5. (We as-

sume that the universally quantified variables

are sorted by the correspondence rules in such a

way that their constraints, i.e., those conditions

involving only those variables and perhaps con-

stants, are satisfied.)

A geometrical interpretation of this specification is the one depicted in Fig. 6, where the surface

filled with the parallel vertical line pattern represents the convex polygon defined by the inequalities

y < mx + nu y > m2x + n2, y < m3x + n3, x> 0, andy > 0. (That is, the polygon enclosed by the

lines L, :y = mlX + nu L2:y = m2x + n2, L3:y = m3x+n3, and the coordinate axes.) Notice that

the convex polygon in Fig. 6 satisfies the conditions 0 < mx < m2 and m3 < 0 in CONVEEQ+. Notice
. . . ., r i m?ni-min2+m3(n2-"i) „i„^

as well that the point fo.yb) exists because mi ? m2, and that therefore, * = ^z^ ^so

exists. Finally, notice that the convex polygon in Fig. 6 also satisfies conditions 0 < n, < n3 < * and

n2<rn in CONVEEQ+.

As is the case with any specification,

CONVEEQ+ can specify many programs, in par-

ticular the non-deterministic program Pnondet k = "w~"^^""'^j

whose input/output diagram is the one depicted

in Fig. 7. We will consider that the corre-

spondence rules are identity functions, there-

fore for the sake of simplicity we will use

the set {munum2,n2,x,y} as the evidence,

instead of using the actual evidence E =

{61,62,63,64,65,66} and the set of correspon-

dence rules. Here, we assume that the univer-

sally quantified variables are sorted by the cor-

Figure 6: A geometrical interpretation of CONV*

112

respondence rules in such a way that constraints imposed on them by CONVEEQ+ are satisfied. In

other words the data {mi,m,«2,52} with which program Pnondet is fed is such that 0 < mi. <

m2An2</nA0<n^.
The informal description of the intended seman-

tics of the program Pnondet is as follows: each time

a set of values {^,«1,^2,^2} is fed int0 Pnondet,
ccow

• £5 f-*X

Figure 7: The input/output diagram of Pnondet

1. it randomly chooses suitable values m and «3

for m3 and n3, respectively, satisfying the con-

ditions imposed on them by CONVEEQ ;

2. then, it chooses, also randomly, any pair (x,y) of coordinates for a point lying inside the convex

polygon defined by the constraints y < mx+nu y > rngx+rig, y < mx + «3, x > 0, and v > 0

also imposed by CONVEEQ+;

3. finally, it outputs the values x and y.

Thus, Pnondet has an obviously non-

deterministic behaviour, since, after ran- Y

domly choosing values for the coefficients of

the straight line y = m3x + n3, (thus defining

a particular convex polygon), it produces as

output an also randomly chosen pair (x,y) of

coordinates defining a point lying inside this

convex polygon.

Now, let us suppose we fed Pnondet 21

consecutive times with values m± = 0.5, n± =

4, m2 = 2, and «2 = -8. As we said above,

each time (i.e., in each execution), Pnondet

will first randomly choose values m and 53, thus defining a particular convex polygon.

In each one of these 21 executions, Pnondet produces an output pair of values {x,y) defining

the points depicted in Fig. 8 (see also in the table in Fig. 9, columns mum, m2, «2, x, and y, which

exhibit the input/output relation defined by the 21 executions of Pnondet in question).

«12 -«I

Figure 8: Output generated by 21 executions of Pnondet

113

Hi : m, < 0 Hi : nj < * <°>

The purpose of this example is to test (using the variant of Schema I for non-deterministic pro-

grams) whether or not the behaviour of Pnondet satisfies its intended semantics (and, therefore, if it

is correct with respect to CONVEEQ+). Thus, what we should do now is to test each one of the axioms

of CONVEEQ+ (on the basis of CONV"), using the input/output relation produced by the 21 executions

of Pnondet as evidence. To do this, we need to derive, for each one of the essential variables z of

each one of these axioms, an appropriate CONV\. However, it will suffice as an example to analyse

only the testing of Hi : m3 < 0 and H2-n3< k.

So, let us begin with Hi : m3 < 0. It is ob-

vious that it has just one essential variable, i.e.,

m3. Therefore, we need to derive only a sub-

theory CONV*m. Notice that for this deriva-

tion, we can use all the axioms of CONVEEQ

with the exception of m3 < 0 itself, because

we would otherwise violate condition (iii) of

Schema I. To see why, suppose we allow the

use of m3 < 0 in the derivation of CONV*m,

then it is obvious that &CONV \- Hx. This leads

to the violation of the said condition (iii) be-

cause for any ground tautology K in CONV*,

since K has no variables and hence Evar(K) C

Evar{Hx) = {m3}, obviously &CONV,K h Hi

and &CONV,Hi h K holds.

Then, let us use the inequalities

m2«i - m\n2 + m^{n2 — n\)

input

mi

m
I
B
I B
I
B
B
B II
£ I
i

(a) with k =
mini -m1n2 + m3(n2—n i)

mi— mi n\ < nj < m2-mi

Figure 9: Data for the testing of hypotheses Hi and Hz

114

From them we obtain that

min\-m\Ti2+mi(ni-n\)
"1 < m2-m,

that is,

(m2-m\)ni < m2n\ -min2 + m3{n2-ni) since m2-mi >0

m2n\-m\ti\ < m2n\ -miti2 + m3(n2-ni)

m\ti2 — m\n\ <m3(n2-n\)

m\{n2-n\) <m3{n2-n\)

m\> mj, since n2 — nx < 0

CONVm :m3<mi

which is a presentation of CONV*m.

In the table of Fig. 9 we have one column under the key Hx : m3 < 0. Notice that CONVm is of

the type referred to in case 3 (on page 14). Therefore m = (—,0.5] and the W, : m3 < 0 is satisfied

since there exists a value in m^ smaller than 0.

Let us now test the hypothesis H2 : n3 < k= ->".-^fa-) on the basis of CONT. The set

Evar(Hz) of essential variables of H2 is {munum2,n2,m3,n3}. Given that mi, m, m2, «2 are part of

the evidence, their corresponding subtheories can functionally determine them. So, we set

CONVm : »I! = mi

CONVni : «i = «i

CONVm2:m2 = m2, and

C0WV„2 :n2 = n2

From y < m3jc+n3, and given that, according to CONV, n3 as well as x are positive and m3 negative,

we can deduce that y < n3. The subtheories for m3 and n3 are then:

CONVm : m3 < 0, and

CONVni :y<n3

Recall that a subtheory T*z must constrain the value of z using only the evidence. Therefore, in the

case of m3, we cannot use the inequality y < m3x+n3, since we cannot eliminate n3, even using other

parts of CONV.

In the table of Fig. 9 we have three columns, now under the key H2:n3<k giving bounds for the

values of n3, of m3, and of &.

115

Notice that CONVHi is of the type referred to in case 2 (on page 14). Therefore 53 = (8.35,°°)

and H2 : m < k is not satisfied since there exists a value in m that makes k smaller than 8.35. (See

column 'k lower bound using m3 = 0,' calculated using the least upper bound 0 for m3.) This is due

to the point number 21 (labelled with A both in Fig. 8 and in the table in Fig. 9), which is obviously

outside any possible convex polygon.

Therefore, Pnondet is not correct with respect to CONV*.

If we analyse the table of Fig. 9, we can consider the upperbound calculated for m3 in the test of

HX : m3 < 0 to be too coarse, because for any point i in Fig. 8, the least upperbound for m3 -not even

considering in its calculation the hypothesis Hx- will be 0. Since the point i will obviously be inside

the convex polygon limited by Lu hi, the coordinate axes, and the line given by y = yh m3 = 0 will

be a finer upperbound. However, we are testing Pnondet against the whole theory. Thus, we should

also consider that for this point i, we have a greatest lowerbound for n3 namely n3 = yh Therefore, the

line limiting the minimum polygon in which the point i lies will be L : y = rrvc + n with m < mx and

n > yr, this line L is y —)>,-.

7 Conclusions

What we have presented is a very promising and powerful approach to specification-based verification

and validation testing of software process artefacts (i.e., software artefacts as well as specifications).

We have shown that the approach is useful for both deterministic and non-deterministic programs and

specifications.

This approach was developed using the general epistemological background sketched in Sects. 1,

3, and 5. We would like to emphasise that in doing this, as theoretical computer scientists, we pro-

ceeded more like epistemologists than as logicians or mathematicians in conducting our quest.

On the same basis, in Sect. 2 we have also discussed the flaws of the best known alternative to

the bootstrap strategy, namely the hypothetico-deductive strategy. These flaws prevent its use for

sustaining testing methodologies.

Whether in the framework of verification testing, it is worth noting the similarity between the

bootstrap core idea and the notion of implementation relation defined by refinement. Recall in Fig. 1

the valuation a induced by E, that has to be such that a |= H; in other words, the bootstrap strategy

requires that evidence provide instances of the hypothesis under test. Refinement requires that the

116

relation defined by (the semantics of) a program be contained in the set of relations defined by (the

semantics of) a specification; see [1]. Thanks to the deduction theorem, both just mean that evidence

resp. program implies the specification.

As we said in the introduction, 'exhaustive' testing has two different dimensions. One is the 'cov-

erage' by the test of the whole specification to be tested. The other is the 'exhaustion' of the test

w.r.t. the (possibly infinite) domain of interpretation of the symbols in the specification. It seems that

our approach takes care of the first of these dimensions. However, we have presented it just for the-

ories over an existential (in)equational logic. Then, the bootstrap-strategy-based approach should be

extended to deal with theories over other logics of interest (e.g., classical first-order, temporal, deontic,

and dynamic logics) and with various kinds of semantics (for instance, transition systems). This is a

must if we intend to turn the approach to a practical one. Also the bootstrap testing of structured spec-

ifications and systems must be considered. The second dimension (which is the problem addressed by

Gaudel with her 'uniformity hypotheses') must be studied, for instance, in the light of Carnap's and

Hintikka's results on inductive logic and the general methodology of (scientific) induction [4,13].

Comparing the bootstrap strategy with real software testing developments is a crucial issue. This

comparison should begin by an exhaustive analysis of the current testing methods in the light of

the epistemological framework here presented. A starting point could be, for instance, the method

reported in [6], whose similarity with this strategy was pointed out by C. Heitmeyer.

References
ril M Bidoit M V Cengarle, and R. Hennicker. Proof systems for structured specifications and their re-

finements.' In E. Astesiano, H.-J. Kreowski, and B. Krieg-Briickner, editors, Algebraic Foundations of
Systems Specification. Springer-Verlag, 1999.

[2] R. Carnap. Der logische Aufbau der Welt. Weltkreis-Verlag, Berlin, 1928.

[3] R. Carnap. Philosophical foundations of physics. Basic books, New York, 1966.

[4] R. Carnap. Logical Foundations of Probability. Univ. of Chicago Press, Chicago-Illinois, 1977. 2nd rev.

edition, 1962.

[51 M V. Cengarle and A. M. Haeberer. Towards an epistemology-based methodology for verification and
validation testing. Technical Report 0001, LMU München, Inst, für Informatik, Jan. 2000. 71 pages.

[61 A Gargantini and C. Heitmeyer. Using model checking to generate tests from requirements specifications.
In O. Nierstrasz and M. Lemoine, editors, Proc. ofESEC/FSEV9, volume 1687 of WCS. Springer-Verlag,

May 1999.

[7] M -C Gaudel. Testing can be formal, too. In P. D. Mosses, M. Nielsen, and M. I. Schwartzbach, editors,
Proc. ofTAPSOFT'95, volume 915 of LNCS, pages 82-96. Springer-Verlag, May 1995.

[8] M.-C Gaudel and P. R. James. Testing data types and processes, an unifying theory. In 3rd ERCIM on
FMICS'98.Cm, May 1998.

117

[9] M.-C. Gaudel and P. R. James. Testing algebraic data types and processes: a unifying theory. Formal
Aspects of Computing, 1999. To appear.

[10] C. Glymour. Hypothetico-deductivism is hopeless. Philosophy of science, 47:322-325,1980.

[11] C. Glymour. Theory and Evidence. Princeton Univ. Press, New Jersey, 1980.

[12] A M Haeberer and T. S. E. Maibaum. The very idea of software development environments: A conceptual
architecture for the arts environment. In B. Nuseibeh and D. Redmiles, editors, Proc. ofASE'98, pages

260-269. IEEE CS Press, 1998.

[131 J Hintikka. Toward a theory of inductive generalization. In Y. Bar-Hillel, editor, Proceedings of the 1964
Congress for Logic, Methodology, and the Philosophy of Science, pages 274-288, Amsterdam, 1962.
Stanford Univ. Press.

[14] M. M. Lehman. Program Evolution - Processes of Software Change. Academic Press, New York, 1985.
ISBN 0-12-442441-4.

[15] G. H. Merrill. Confirmation and prediction. Philosophy of science, 46:98-117,1979.

[16] C.K. Waters. Relevance logic brings hope to hypothetico-deductivism. Philosophy of science, 54:453-

464,1987.

118

Using CASL to Specify the Requirements and
the Design: A Problem Specific Approach

Christine Choppy1 and Gianna Reggio2

1 LIPN, Institut Galilee - Universite Paris XIII, France
2 DISI, Universitä di Genova, Italy

Abstract. In [11] M. Jackson introduces the concept of problem frame
to describe specific classes of problems, to help in the specification and
design of systems, and also to provide a framework for reusability. He
thus identifies some particular frames, such as the translation frame (e.g.,
a compiler), the information system frame, the control frame (or reactive
system frame), Each frame is described along three viewpoints that
are application domains, requirements, and design.
Our aim is to use CASL (or possibly a sublanguage or an extension of
CASL if and when appropriate) to formally specify the requirements and
the design of particular classes of problems ("problem frames"). This
goal is related to methodology issues for CASL, that are here addressed
in a more specific way, having in mind some particular problem frame,
i.e., a class of systems.
It is hoped that this will provide both a help in using, in a really effective
way, CASL for system specifications, a link with approaches that are
currently used in the industry, and a framework for the reusability.
This approach is illustrated with some case studies, e.g., the information
system frame is illustrated with the invoice system.

1 Introduction

It is now well established that formal specifications are required for the develop-
ment of high quality computer systems. However, it is still difficult for a number
of practitioners to write these specifications. In this paper we address the general
issue of how to bridge the gap between a problem requirements and its speci-
fication. We think this issue has various facets. For instance, given a problem,
how to guide the specification process? Often people do not know where to start,
and then are stopped at various points. Another facet is, given a specification
language, how to use it in an appropriate way? We address these facets here
through the use of M. Jackson's problem frames (successfully used in industry),
which we formalize by providing the corresponding specification skeletons in the

CASL language ([12,13]).
A Jackson problem frame [11] is a generalization of a class of problems, thus

helping to sort out in which frame/category is the problem under study. The
idea here is to provide a help to analyse software development problems and to
choose an appropriate method for solving them (with the assumption that there

119

is no "general" method). Then, for each problem frame, M. Jackson provides its
expected components together with their characteristics and the way they are
connected. The problem frame components always include a domain description,
the requirements description, and possibly the design description. The domain
description expresses "what already exists", it is an abstraction of a part of
the world. The requirements description expresses "what there should be", that
is what are the computer system expected concepts and facilities. The design
description deals with "how" to achieve the system functions and behaviours.
The problem frames identified are the translation (JSP), the information system,
the reactive system (or control frame), the workpiece, and the connection frames.
While these cover quite a number of applications, it may also be the case that

some problems are "multiframe".

While Jackson problem frames may be used to start understanding and
analysing the system to be developed, they have no formal underpinning. Our
idea here is to still rely on them while providing the corresponding "specification
frames". We thus provide a methodological approach to write problem specifi-
cations using the problem frames that importantly gives guidelines to start and
to do the problem analysis and specification; combining these two "tools" yields
a powerful approach to guide the problem understanding and the specification

writing.
The issue of the choice of a formal specification language is non trivial [2].

We think that algebraic specification languages offer an adequate degree of ab-
straction for our needs, so we chose the latest and more general one, CASL, the
Common Algebraic Specification Language ([12,13]) developed within the Com-
mon Framework Initiative (CoFI), to express our proposed formal underpinning
for problem frames. While CASL was developed to be "a central, reasonably ex-
pressive language for specifying conventional software", "the common framework
will provide a family of languages" [12]. Thus, restrictions of CASL to simpler
languages (for example, in connection with verification tools) will be provided
as well as extensions oriented towards particular programming paradigms, e.g.,
reactive systems. While dealing with the translation frame (Sect. 2 and 3), CASL

complies with our needs, but when moving to dynamic systems that may occur
within the information system frame (Sect. 4 and 5), we propose an extension of
CASL with temporal logic, named CASL-LTL [15], based on the ideas of [3] and
[7], that may be more appropriate (and will be shortly presented when used).
Since the design of CASL was based on a critical selection of constructs found
in existing algebraic frameworks, the reader familiar with these may feel quite
"at home", while CASL offers for these convenient syntactic combinations. In
this paper,'we use some CASL constructs, that we introduce when they appear.
While the CASL syntax and semantics are completed, some tools (e.g., parsers,
libraries, ...) are being developed. In what follows we shall rely on the available

library for basic data types [16].

This paper is organised as follows. In Sect. 2 and 3, we describe the translation
problem frame, provide a a method to formalize it using CASL, and illustrate
it on a short example that is the Unix grep utility. In Sect. 4 and 5, we work

120

similarly on the information system problem frame and illustrate it with the
invoice case study. The information system frame raises various issues, since we
are dealing with bigger reactive systems. The size issue leads us to clearly identify
sets of properties that need to be expressed and also to search for a legible way
to present large specifications of this kind. For lack of room, we cannot report
here the complete specifications of the considered case studies, they can be found

in [6].

2 Translation Frame
Source Programs

Compiler
Language and

Computer Semantics

Executable Programs

Design Domain Requirements

The translation frame we consider here is a simple frame that is quite useful
for a number of case studies [5] (it is close to the JSP frame where inputs and
outputs are streams). The translation frame domain is given by the Inputs and the
Outputs, the requirements are described by the input/output relationship, I/O
Relationship, and the design is the Machine. An example of a translation frame
problem is a compiler, where the Inputs are the source programs, the Outputs
are the executable programs, the I/O Relationship is given by the language and
computer semantics, and the Machine is the compiler. In the following, we shall
provide the skeletons for the CASL formal specifications of Inputs, Outputs, the
I/O Relationship, and the Machine, as well as conditions for correctness of the
Machine as regards the I/O Relationship. This will be shortly illustrated on a case

study (the Grep utility) in Sect. 3.

2.1 Domain and Requirements

To capture the requirements in this case means:
- to express the relevant properties of the application domain components, i.e.,

Inputs and Outputs;
- to express the I/O Relationship.
Let us note that this often yields to specify also some basic data that are required
by the Inputs, the Outputs and/or by the I/O Relationship.

To use the CASL language to specify the above requirements means to give
three CASL specifications of the following form:

121

spec INPUTS = sPec ICLRELATIONSHIP =
INPUTS and OUTPUTS then
pred 10.re/ : InputxOutput

spec OUTPUTS = axioms

where the IO_RELATIONSHIP specification extends (CASL keyword then) the
union (and) of the INPUTS and OUTPUTS specifications by the IO-rel predicate.
The axioms in CASL are first-order formulas built from equations and defined-
ness assertions. We can here add some suggestions on the way the axioms of
IO-RELATIONSHIP should be written. The IO.rel properties could be described
along the different cases to be considered and expressed by some conditions on
the Input and Output arguments. This approach has the advantage that the spec-
ifier is induced to consider all relevant cases (and not to forget some important
ones). Therefore the axioms of IO_RELATIONSHIP have the form

either IO-rel(i,o) => cond(i,o)
or cond{i,o) A def i A def o => IO.rel(i,o).

where i and o are terms of appropriate sorts and cond is a CASL formula.

2.2 Design

To design a solution of the problem in this case means to define a partial function
(or a sequential program or an algorithm) transl that associates an element of
Outputs with an element of Inputs. To use CASL to specify the above design
means to give a CASL specification of the following form:

spec MACHINE =
INPUTS and OUTPUTS then

free { %% this CASL "free" construction requires that no additional feature occurs
op transl : Input -»? Output %% the translation function
axioms
%% transl domain definition

%% transl definition

 }

The axioms for transl should exhibit both (i) when is transl-defined (transl
domain definition), and (ii) what are transl results (transl definition).

Again here, we suggest a case analysis approach which yields for the transl

domain definition axioms of the form

cond(i) =>■ def transl(i)
and for the transl definition axioms of the form

cond(i,o) A def (transl(t)) A def o => transl(i) = o
where i and o are terms of the appropriate sorts, and cond is a positive con-
ditional formula. Let us note that, in order to provide a more concise/readable
presentation of the axioms, the def (transl(t)) A def o part may be left implicit.

122

2.3 Correctness

Here we add some notion of correctness which is not explicited in Jackson's pre-
sentation, and which we can deal with thanks to the formalization we provide.
It may now be relevant to state under which conditions the MACHINE designed
implements the IO_RELATIONSHIP. We propose below three conditions and in-
troduce the following specification, requiring that the predicate 10.rd does not
belong to the MACHINE signature.

spec TRANSLATION = IO_RELATIONSHIP and MACHINE

MACHINE is correct w.r.t. IO-RELATIONSHIP iff

1. MACHINE is sufficiently complete and hierarchically consistent w.r.t. INPUTS

and OUTPUTS.
2. TRANSLATION |= V i : Input, o : Output, transl{i) = o =» IO.rel(i, o)
3. TRANSLATION (= V i : Input, o : Output, IO.rel(i, o) =>

3 o' : Output * transl(i) = o'

Condition 1 requires that MACHINE does not introduce some new elements or
properties in the specified descriptions of "what already exists" (the application
domain), i.e., INPUTS and OUTPUTS. Condition 2 requires that, whenever trans/
is defined for a given t and yields o, then IO_RELATIONSHIP relates i and o, in
other words, it ensures that the produced translation is correct. Finally, condition
3 expresses that whenever IO-RELATIONSHIP relates i with some o (recall IO.rd
is just a relationship not a function), then transl applied to i must yield some
o', in other words, it requires that the translation produces an output when
appropriate given the requirements.

3 Case Study: The Grep Operation

Pattern regular expressions
and text files

For each line printed
there is an occurrence

of the pattern regular expression

Lists of lines where
the pattern occurs

Design Domain Requirements

In the previous section, the translation frame was presented with the typical
compiler example. Here, we illustrate it with the grep utility that is provided by
Unix and we sketch the corresponding specifications (see [6] for the full ones).
The grep utility searches files for a pattern and prints all lines that contain that
pattern. It uses limited regular expressions to match the patterns.

123

3.1 Domain and Requirements

In order to provide a specification of the domain, we need to specify the inputs,
which are regular expressions and files, the outputs, which are lists of lines, and
also the basic data that are required, which are characters, strings and lists.

Basic Data To specify the basic data we use some specifications provided in
[16] eg., CHAR and STRING. For example the specification for strings of [16]
is an instantiation of the generic specification LIST[ELEM] together with some
symbol mapping (•->■) for sort names:

spec STRING = LIST[CHAR]

with sorts List[Char] H* String

Inputs We sketch below the specifications of the Inputs which are regular ex-

pressions and files.

spec GREP JNPUTS = REGULAR-EXPRESSION and FILE

The CASL construct free type allows one to provide for the RegJlxpr type
constants {empty and A), operations (_+ _ and _*), and also to state that any
character may yield a RegJSxpr.

spec REGULAR-EXPRESSION = CHAR then
free type RegJExpr :: =

empty \A\-+-i (Reg.Expr Reg.Expr) | _* : {RegJExpr) | sort Char ;

spec FILE = STRING then
free type File ::= empty | : (Char ; File);

ops first .line : File -¥? String;
dropJine : File ->? File;

%% with the corresponding axioms

Outputs is a list of lines, that is a list of strings.

spec GREP-OUTPUTS = LIST[STRING]

with sorts List[String] t-t Grep.Output

I/O Relationship The I/O Relationship between the Inputs and the Outputs is
sketched in the following specification, where the gnpJO.nl predicate properties
are expressed by means of the predicates is.gen (stating when a string matches
a regular expression) and appears.in (stating when a string is a substring of

another one).

spec GREP-IO-REL = GREPJNPUTS and GREP_OUTPUTS

then preds grepJO.rel : RegJ£xpr x File x Grep.Output;
__ is.gen .. : String x Reg.Expr;
_ appears.in _ : String x String;

vars reg : Reg.Expr; ol, ol' : Grep.Output; f : File;

124

axioms
grepJO.rel(reg, empty, ol) •#• ol = nil;
-i f = empty =>
(grepJO-rel(reg,f,ol) <=>

({3 s, is-gen (reg,s) A s appearsJn first Jine(f) A
grepJO-rel{reg, dropJine(f), ol') A ol = firstJine{f) :: o/')
V (-1 3 A . is-gen (reg,s) A s appears-in first Jine(f) A
grepJO.rel(reg, dropJine(f), ol)));

%% axioms defining appears.m and «s.pen

3.2 Design

The MACHINE yields an Grep-Output given a RegJExpr and a Fife.

spec GREP.MACHINE = GREP.INPUTS and GREP.OUTPUTS

then op ffrep-trans/ : Reg-Expr x Fife -* Grep.Output;
pred matc/i : Reg-Expr x String;
vars regr : Reg-Expr; f : Ft'/e;
axioms

grepJransl(reg, empty) — empty;
-i (/= empty) A match(reg,firstJine(f)) =*■
grepJransl(reg,f) = firstJine(f) :: grepJransl(reg,dropJine(f));
-,(f = empty) A -• match(reg, firstJine(f)) =>
grepJransl(regJ) = grep Jransl(reg, drop Jine(f));

%% axioms defining matcft

3.3 Correctness

To express correctness we need to introduce the following specification, requiring
that the predicate grepJO-rel does not belong to the GREP-MACHINE signature.

spec GREP.TRANSLATION = GREP.IO.REL and GREP.MACHINE

GREP .MACHINE is correct w.r.t. GREP_IO.REL iff

1. GREP .MACHINE is sufficiently complete and hierarchically consistent w.r.t.
GREP .INPUTS and GREP .OUTPUTS.

2. GREP.TRANSLATION \= V / : File, reg : RegJExpr, ol : Grep-Output,
grep-transl(reg,f) = ol =» grepJO-rel(reg,f,ol)

3. GREP.TRANSLATION \= V / : Fi/e, reg : Reg-Expr, ol : Grep-Output, ^
grepJO-rel(reg,f, ol) => 3 ol' : Grep-Output » greP-transl(reg,f) = ol

4 Information System Frame

The information system frame domain description is given by the Real World, the
Information Requests and the Information Outputs, the requirements are described
by the Information Function, and the design is the System. To quote [11], "In its
simplest form, an information system provides information, in response to re-
quests, about some relevant real-world domain of interest." The Real World may

125

be a static domain (e.g., if the system provides information on Shakespeare's
plays), or a dynamic domain (e.g., "the activities of a currently operating busi-
ness" [11]). Here we consider information system frames with a dynamic domain,
so "The Real World is dynamic and also active'' [11].

System

Design

Real World

Information
Requests

Information
Outputs

Domain Requirements

4.1 Domain and Requirements

To capture the requirements in the case of the Simple Information System means:

- to find out the relevant properties of the Real World;
- to determine the Information Requests and the Information Outputs;
- to determine the Information Function.

To use CASL-LTL [15] to specify the above requirements means to give four
specifications corresponding to the four parts respectively, as follows.

We consider the case where the Real World is a dynamic system, thus is spec-
ified using CASL-LTL by logically specifying an Its (a labelled transition system)
that models it. A labelled transition system (shortly Its) is a triple (S,Z,,->),
where S and L are two sets, and -*C Sx Lx 5 is the transition relation. A triple

(s / s') G_). is said to be a transition and is usually written s —> s'. Using the
dsort construction introduced in CASL-LTL is a way to declare the Its triple
(S, L, -0 at once and to provide the use of temporal logic combinators in the

axioms (as defined in CASL-LTL).
Given an Its we can associate with each s0 € S the tree {transition tree) whose

root is so, where the order of the branches is not considered, two identically
decorated subtrees with the same root are considered as a unique subtree, and

if it has a node n decorated with s and s -U s', then it has a node n' decorated
with s' and an arc decorated with / from n to n'.

We model a dynamic system D with a transition tree determined by an Its
(S L, -0 and an initial state s0 € S; the nodes in the tree represent the in-
termediate (interesting) situations of the life of S, and the arcs of the tree the
possibilities of S of passing from one situation to another. It is important to

note here that an arc (a transition) s -U s' has the following meaning: D in

126

the situation s has the capability of passing into the situation s' by performing
a transition, where the label / represents the interaction with the environment
during such a move; thus / contains information on the conditions on the en-
vironment for the capability to become effective, and on the transformation of
such environment induced by the execution of the transition.

We assume that the labels of the Its modelling the Real World are finite sets
of events, where an event is a fact/condition/something happening during the
system life that is relevant to the considered problem. So we start by determining
which are the events and by classifying them with a finite number of kinds, then
we specify them with a simple CASL specification of a datatype, where any kind
of event is expressed by a generator.

spec EVENT =
... then
free type Event ::= ...

At this stage it is not advisable to precisely specify the states of the Its modelling
the Real World; however, we need to know something about them, and we can
express that by some CASL operations, called state observers, taking the state as
an argument and returning the observed value. Finally we express the properties
on the behaviour of the Real World along the following schema:

• Incompatible events: Express when sets of events are incompatible, i.e.,
when they cannot happen simultaneously.

• Relationships between state observers and events For each state ob-
server obs express (i) its initial value, (ii) its value after E(...) happened,
for each kind of event E modifying it.

• Event specific properties For each kind of event E express the
- preconditions properties on the system state and on the past (behaviour

of the system) required for E(...) to take place
- postconditions properties on the state and on the future (behaviour of

the system) that should be fulfilled after E{...) took place
- liveness properties on the state under which E(...) will surely happen

and when it will happen.

Then the specification of the Real World has the following form (the specification
FINITESET has been taken from [16]).

spec REAL_WORLD =
FINITESET[EVENT fit Elem i-> Event] ... then
dsort State %% dsort is a CASL-LTL construction
free type Label-State ::= sort FinSet[Event];
pred initial: State %% determines the initial states of the system
%% State observers
op obs : Statex ...—¥...

axioms
%% Incompatible events

%% Relationships between state observers and events

127

%% Event specific properties

The postconditions and the liveness properties cannot be expressed using only
the first-order logic available for axioms in CASL, thus CASL-LTL extends it with
combinators from the temporal logic ([7]) that will be introduced when they will

be used in the case study.
The Information Requests and the Information Outputs are two datatypes that

are specified using CASL by simply giving their generators.

spec INFORMATION_REQUESTS = spec INFORMATION-OUTPUTS =
... then ■•• then

free type InfoJlequest ::= ... free type Info.Output :.- ...
We assume that the Information Function takes as arguments, not only the in-
formation request, but also the history of the system (a sequence of states and
labels), because it contains all the pieces of information needed to give an answer.

The Information Function is specified using CASL-LTL by defining it within a
specification of the following form.

spec INFORMATIONJFUNCTION =
INFORMATION-REQUESTS and INFORMATION.OUTPUTS and REAL.WORLD then

free {
%% histories are partial system lifecycles
type History ::= init(State) | (History; Label State; State)?;
op last : History -» State;
vars st : State; h : History; I : Label-State;

. def (h I st) <=> last{h) -U st %% is partial

. last(init(st)) = st
def (h I st) => last(h I st) = st

op inf.fun : Historyx InfoJlequest ~» Info.Output;
axioms
%% properties of infjun ...

where the properties of inf.fun are expressed by axioms having the form
def (h) A def {i-req) A def (i.our) A cond(h, i.req, i.out) =*

inf-fun(h, i.req) = i.out
and cond is a conjunction of positive atoms.

In many cases the above four specifications share some common parts, by
using the CASL constructs for the declaration of named specifications, such parts
can be specified apart and reused when needed. These specifications are collected
together and presented before the others under the title of basic data.

4.2 Design

To design an "Information System" means to design the System, a dynamic
system interacting with the Real World (by detecting the happening events),
and with the users (by receiving the information requests and sending back the

information outputs).
We assume that the System:

128

- keeps a view of the actual situation of the Real World,
- updates it depending on the detected events,
- decides which information requests from the users to accept in each instant,
- answers to such requests with the appropriate information outputs using its

view of the situation of the Real World.

We assume also that the System can immediately detect in a correct way any
event happening in the Real World and that the information requests are handled
immediately (more precisely the time needed to detect the events and to handle

the requests is not relevant).
The design of the System will be specified using CASL-LTL by logically spec-

ifying an Its that models it. The labels of this Its are triples consisting of the
events detected in the Real World, the received requests and the sent out infor-

mation output.

spec SYSTEM =
SITUATION and FINITESET[EVENT fit Elem i-> Event] and
FINITESET[INFORMATION_REQUESTS fit Hem ■-)■ Info .Request] and
FINITESET[INFORMATION_OUTPUTS fit Elem i-> Info.Output] then

free {
dtype

System ::= sort Situation;
LabeLSystem ::= (FinSet[Eveni\;

FinSet[InfoJiequest];FinSet[Info .Output]);
ops update : SituationxFinSet[Event] -¥ Situation;

inf.fun : Situations Info Jiequest ->■ Info-Output;
pred acceptable : FinSet[InfoJiequest];
axioms

i.reqs = {i.reql}LS...U{i.reqn} A acceptable(i.reqs) A
i.outs = {inf.fun{sit, ijreqx)} U ... U {inf.fun{sit, i.reqn)} =>

sit evs '-rcqs '-0"'5) update(sit, evs);
%% axioms denning update, acceptable and inf.fun

}

where SITUATION specifies a data structure describing in an appropriate way
(i.e., apt to permit to answer to all information requests) the System's views of

the possible situations of the Real World.
Thus to specify the design of the System it is sufficient to give:

- the specification SITUATION;
- the axioms defining the operation update describing how the System updates

its view of the Real World when it detects some events;
- the axioms defining the predicate acceptable describing which sets of requests

may be accepted simultaneously by the System;
- the axioms defining the operation inf.fun describing what is the result of

each information request depending on the System's view of the the Real

World situation.

129

4.3 Correctness

We introduce the following specification:

spec INFORMATION-SYSTEM =
INFORMATION_FUNCTION and SYSTEM then
pred Imp : History* Situation
axioms

SYSTEM is correct w.r.t. INFORMATION-FUNCTION iff

1. SYSTEM is sufficiently complete and hierarchically consistent w.r.t. EVENT,
INFORMATION-REQUESTS and INFORMATION-OUTPUTS.

2. INFORMATION-SYSTEM \= V st : Situation, ijreq : InfoJtequest,
i.out : Info-Output, infjun(st, ijreq) = i.out =>
3 h : History , Imp{h, st) A inf.fun{h, i.req) = i-out

Notice that the proof has to be done in the realm of the first-order logic, and
not require to consider the temporal extenxion of CASL-LTL, in this frame the
temporal combinators are used only to express the properties of the Real World,

i.e., of the application domain.

5 Case Study: The Invoice System

5.1 The Invoice System

Performance Requests-
questions about the working
of the company to support ~
the management decisions

Company: /company:
a trading company buying

 products from producers
Real World ~J""i selling them to clients

CompanylS:
the company
information system

Performance Function:
the performance information
depends on the past
behaviour of the company

Design

Performance Info:
the required information
on the company performance

Domain Requirements

This case study, the invoice system, is inspired from one proposed in [1]. The
problem under study is an information system for a company selling products
to clients to support the management decisions. The clients send orders to the
company, where an order contains one and only one reference to an ordered
product in a given quantity. The status of an order will be changed from "pend-
ing" to "invoiced" if the ordered quantity is less or equal to the quantity of the

130

corresponding referenced product in stock. New orders may arrive, and there
may be some arrivals of products in some quantity in the stock. We also con-
sider that this company may decide to discontinue some products that have not
been sold for some given time (e.g., six months). An order may be refused when
the product is no more traded, or when the quantity ordered is not available
in the stock and a decision was taken to discontinue the product; this refusal
should take place within one month after the order was received. We take the
hypotheses that the size of the company's warehouse is unlimited and that the

traded products are not perishable.
The picture above shows how the invoice system matches the IS frame.

Due to lack of space, the complete specifications of the requirements and the
the design part will not be given here but they are available in [6].

5.2 Domain and Requirements

As explained in Sect. 4, to specify the requirements in this case means to provide
four specifications corresponding to the four parts of the frame, which are re-
ported in the following subsections. Some specification modules are quite large,
thus, for readability sake, we provide some "friendly" abbreviated presentation
of them. The domain and requirements specifications share some common data
structures, and by using the CASL construct for the declaration of named speci-
fications, we have specified them apart and collected together under the title of

basic data.

Basic Data Some obvious basic data are the codes for products, orders, and
clients, and the quantities. We need also a notion of time encoded into a date
(day/month/year). The components of an order are the date when it is received,
the product ordered (referenced by its code), the quantity ordered, the client
who issued the order (referenced by its code), and an order code. Moreover to
specify the invoice system, we need also to use the elaboration status of an order
and the trading status of a product.

spec CODE =
sorts Product-Code, Order-Code, Client-Code
%% codes identifying the products, the orders and the clients

spec QUANTITY =
sort Quantity %% the quantities of the considered products
ops 0 :-¥ Quantity;

_+ _ : Quantityx Quantity -4 Quantity, comm, assoc, unit 0;
_- _ : Quantityx Quantity -»? Quantity, unit 0 ;

pred _ < _ : Quantityx Quantity;

spec DATE =
NAT then

free {

131

type Date ::= -/-/..(Nat; Nat; Nat); %% dates as day/month/year
pred — < _ : Datex Date;
op initial-date :—> Date;

spec ORDER =
CODE and QUANTITY and DATE then
free type Order ::= mk.order(product : Product-Code; quantity : Quantity;

date : Date;code : Order-Code; client : Client-Code)

spec STATUS =
free types

Product Status ::= traded \ not-traded;
Order-Status ::= pending | invoiced \ non-existing \ refused;

%% elaboration statuses of products and trading statuses of orders

Real World To specify the Real World component of the application domain,
we have to express the relevant properties of its behaviour, following the schema
introduced in Sect. 4.1; thus, we first determine the "events" and the "state
observers", and then we look for the "incompatible events", the "relationships
between state observers and events", and for the "event specific properties". We
provide below the abbreviated presentation and a sketch of the corresponding
CASL-LTL specification (see [6] for the full specification).

Events We present the events by listing the generators (written using capital
letters) with their arguments and a short comment.

- RECEIVE-ORD(Order) to receive an order
- SENDJNVOICE(Order) to send the invoice for an order
- REFUSE (Order) to refuse an order
- RECEIVE JPROD(Product.Code; Quantity)

to receive some quantity of a product
- DISCONTINUE(Product.Code) to discontinue a product
- CHANGE(Date) to change the date

State Observers We simply present the state observers by listing them with
the types of their arguments and result, dropping the standard argument of the
dynamic sort State. We use the notation convention that sort identifiers start
with capital letters, whereas operation and predicate identifiers are written using

only lower case letters.

- product.status(Product.Code) : Product .Status trading status of a product
- order.status(Order.Code) : Order Status elaboration status of an order
- available.quantity (Product.Code) : Quantity

available quantity of a product in the stock

- date : Date actual date

With the corresponding formal specification (see [6] for the full specification):

132

spec STATE-OBSERVERS =
ORDER and STATUS then
sort State
ops product status : Statex Product.Code -> Product Status
%% trading status of a product

Incompatible Events We simply present the incompatible events by listing

the incompatible pairs.

• All events referring to two orders with the same code are pairwise incompati-

ble.
- RECEIVE-ORD(o), SENDJNVOICE(o') s.t. code(o) = code{o)
- RECEIVE-ORD(o), REFUSE{o') s.t. code{o) = code{o')
- SENDJNVOICE{o), REFUSE{o') s.t. code(o) = code(o')
- RECEIVE-ORD(o), RECEIVE.ORD(o') s.t.

code(o) = code(o') A -> (o = o')
- SENDJNVOICE{o), SENDJNVOICE{o') s.t.

code(o) = code(o') A -> (o = o') f

- REFUSE(o), REFUSE(o') s.t. code(o) = code(o') A ^(0 = 0)
• All events referring to the same product are pairwise incompatible.

- RECEIVE.PROD(p,q),SENDJNVOICE{o) s.t. product(o) = p
- RECEIVE.PROD(P,q),DISCONTINUE(p') s.t. p = p'
- SEND JNVOICE(o), DISCONTINUE^) s.t. product(o) = p
- RECEIVE.PROD(P,q),RECEIVE.PROD{p,q') s.t. -.« = «'

• All change date events are pairwise incompatible.
- CHANGE{d), CHANGE(d') s.t. -. d = d'

In the corresponding CASL specification (see [6]) each pair corresponds to an

axiom, e.g., the first two axioms below.
st _!> st' A RECEIVE_ORD{o) € 1 A SENDJNVOICE(o') e / =>

-■ (code(o) — code(o'))

st J^ st' A RECEIVE-ORD(o) £ I A REFUSE{o') e / =»
-> (code(o) = coc/e(o'))

Relationships between State Observers and Events We simply present
the relationships between state observers and events by listing for each state
observer its initial value, which events modify it and how. This last part is given
by stating which is the observer value after the happening of the various events.
Notice that such value could be expressed by using also the observations on the
state before the happening the event. Thus "after RECEIVE J>ROD{p,q) is
available-quantity{p) + q" below means that the new value is the previous one
incremented by q.

- product^tatus(p)
initially is traded
after DISCONTINUE^) is notJraded
not changed by other events

- available-.quantity(p)
initially is 0

133

after SENDJNVOICE(o) s.t. product{o) = p
is available J)uantity(p) - quantity(o)

after RECEIVE-PROD{p, q) is availableJiuantity(p) + q
not changed by other events

— order status(oc)
initially is non-existing
after RECEIVE.ORD(o) s.t. code(o) = oc is pending
after SENDJNVOICE(o) s.t. cocfe(o) = oc is mwoJced
after REFUSE(o) s.t. corfe(o) = oc is re/used
not changed by other events

- date
initially is initial-date
after CHANGE{d) is d
not changed by other events

Below, as an example, we report the complete axioms expressing the rela-
tionships between the state observer product status and the events.

initial(st) => product jstatus(st, p) - traded

st J4 st' A DISCONTINUE^) € / => product status(st',p) = notJraded

st J-> st' A DISCONTINUE(p) & I =>
prodoct_sta«u5(st',p) = product status(st,p)

Event Specific Properties We present the event specific properties by listing
for each event the properties on the system state necessary to its happening
(preconditions), the properties on the system state necessary after it took place
(postconditions), and under which condition this event will surely happen. The
system state before and after the happening of the event are denoted by st and
st' respectively. It is recommended to provide as well for each event a comment
summarizing its properties in a natural way. We give below the presentation of

RECEIVE-ORD.

RECEIVE-ORD(o)
Comment: If the order o is received, then the product referred in o was traded,
no order with the same code of 0 existed, the date of o was the actual date, and
in any case eventually o will be either refused or invoiced.

before
product status(st, product (o)) = traded,
order■jstatus(st,code(o)) = non-existing and date{o) = date{st)

after
order status (st', code (o)) spending and
in.any-case(st', eventually state-Cond(x .
order status {x, code {0)) = refused V order status (x, code (o)) = invoiced))

uin-any-case(st', eventually state-Cond{x))" is a formula of CASL-LTL

built by using the temporal combinators. "in-any-case(s,n)" can be read "for
every path a starting in the state denoted by s, TT holds on <r", where a path is
a sequence of transitions having the form either (1) or (2) below:

134

(1) S0 l0 8l hs2l2 ... (infinite Path)
(2) so lo sih s2h ■■■ sn

n t °

where for all i (i > 0), s{ -S- si+1 and there does not exist I, s' such that

sn —> s'.
"eventually state.cond{x . F)n holds on a if there exists 0 < i s.t. F holds

when x is evaluated by s,-.

Now we can give the formal specification of Real World for the invoice case,

i.e., the company.

spec INVOICE_REAL-WORLD =
... then

%% RECEIVE.ORD(o)

st J_> st' A RECEIVE-ORD{o) e / =>
product^tatus(st, product(o)) = traded A
order_status(st, code(o)) = non-existing A
date(o) = date(st) A order_status(st', code(o)) = pending A
in-.any-case(st', eventually state-Cond(x •

order_status(x, code(o)) = refused V
order.status(x, code(o)) = invoiced))

Information Requests We present the information requests by listing their
generators with the types of their arguments; similarly for the information out-

puts.

- available.quantity.of?{Product.Code)
what is the available quantity of a product in the stock?

- quantity.of Product-Code sold.in Date - Date?
what is the quantity of a product sold in the period between two dates?

- last.time.did Client.Code ordered?
what is the last time a client made some order?

Information Outputs

- the.available.quantity.of Product.Code is Quantity
- error : prod .not .traded the product appearing in the request is not traded
- error : wrong.dates the dates appearing in the request are wrong
- the.quantity.of Product.Code soldJn Date - Date is Quantity
- Client.Code ordered .last.time.at Date

Information Function Recall that the inf.fun, in this case named
invoice.inf.fun, takes as arguments an information request and a history (a
partial system lifecycle), defined as a sequence of transitions, i.e., precisely a
sequence of states and labels. We simply present invoice Jnf .fun by showing its

135

results on all possible arguments case by case; each case is presented by starting
with the keyword on, followed by the list of the arguments.

on available-quantity-of?(p), h
if product status (last (h),p) = traded returns

the.available-quantity-of p ts available-.quantity (last(h), p)
if product status{last{h),p) = not-traded returns error : prod-not-traded

on quantity-of p soldJn d\ — d2?, h
if -. (di < d2 and d2 < date{last(h)) returns error : wrong-dates
if di < d2 and d2 < date(last(h)) returns

the .quantity-of p soldJn dx - d2 is sold.aux(p, dt, d2,h)
on last-time-did cc ordered?, init(st) returns initial-date

on last-time-did cc ordered?, h I st
if RECEIVE-ORD(o) G / and client(o) = cc returns

cc ordered-last-time-at date(st)
if -. (3 o : Order , SEND-INVOICE(o) G / and client(o) = cc) returns

invoiceJnf-fun(last-time-did cc ordered?,h)

The auxiliary operation sold-aux returns the quantity of a product sold in a
certain time interval, for its complete definition see [6].

As an example, we show below the complete CASL axioms corresponding to

the definition of invoice-inf-fun for the first case.
product status(last(h),p) = traded =S>

invoice Jnf .fun(available .quantity -of?(p), h) =
the-available jquantityjof p is available jjuantity{last(h), p)

product status(last(h),p) = notjraded =>
invoice Jnf-/unavailable jjuantity-of ?(p),h) = error : prod jnot-traded

6 Conclusions and Future Work

While it is clear that methods are needed to help developing formal specifications,
as extensively advocated in [4], this remains a difficult issue. This problem is
addressed in [9,10] that define the concept of agenda used to provide a list
of specification and validation tasks to be achieved, and apply it to develop
specifications with Statecharts and Z. [14] also uses agendas addressing "mixed"
systems (with both a static and a dynamic part), and provides some means to
generate parts of the specification. [5] is the first work we know ofthat provides
a formal characterisation of M. Jackson problem frames. Along this approach,
we provide here a formalization of the translation frame and of the information
system frame using the CASL language together with worked out case studies.
Being in a formal framework lead us to add to the issues addressed by problem
frames, the issue of correctness.

Following the approach proposed in this paper to use formal specifications in
the development process of real case studies becomes an "engineering'^ kind of
work. Indeed, for each frame we propose an operative method based on "normal"
software engineering (shortly SE) concepts (inputs, outputs, events, ...) and not

136

on mathematical/formal ones (existence of initial models, completeness, ...).
Moreover, working with large case studies lead us to provide some legible pre-
sentations of the various parts of the specifications removing/"abstracting from"
some conventional mathematical notations/overhead (while the corresponding
complete specifications may be easily recovered from these) as for example, in

Sect. 5.2.
We have based our work on some well established SE techniques and con-

cepts (as the clear distinction supported by Jackson among the domain, the
requirements and the design) that, for what we know, are not usually very well
considered in the formal method community ([5] beeing an exception). Previous
algebraic specifications of the case studies considered in this paper made by the
authors themselves, without considering the SE aspects, were quite unprecise
and perhaps also wrong. In the grep case everything was considered as "require-
ments" and then realized in the design phase, and so we had implemented also
the regular expressions and the files. Instead, for the invoice case the old speci-
fications were confused as regards what should be the responsibilities of system
that we have to build (e.g., the information system was responsible to guaran-
tee that an order eventually will be either invoiced or refused instead of simply
taking note of when an order is invoiced).

Let us note that, while the selection of the correct frame and the specification
of the requirements and the design are essential, specifying the domain part is
necessary to produce sensible requirements, and may also be needed to discuss
with the clients, or to check about possible misunderstandings with the domain
experts (most of the worst errors in developing software systems are due to wrong

ideas about the domain).
Another relevant aspect of our work is clearly "reuse": but here we reuse

what can be called, by using a current SE terminology, "some best practices",
not just some specifications. The ways to handle particular problem frames that
we propose encompass the practice on the use of algebraic specifications of the
authors; and so our work may be considered in the same line of the use of
"patterns" ([8]) for the production of object oriented software. The most relevant
difference between [8] and the work presented here is the scale: we consider as
a reusable unit a way to solve a class of problem, the patterns of [8] consider,
instead, something of much smaller (pieces of the design).

Acknowledgements We would like to thank the anonymous referees for their

careful reading and helpful comments.

References

1. M. Allemand, C. Attiogbe, and H. Habrias, editors. Proc. of Int. Workshop "Com-
paring Specification Techniques: What Questions Are Prompted by Ones Particu-
lar Method of Specification". March 1998, Nantes (France). IRIN - Universite de

Nantes, 1998.
2. E. Astesiano, B. Krieg-Bruckner, and H.-J. Kreowski, editors. IFIP WG 1.3 Book

on Algebraic Foundations of System Specification. Springer Verlag, 1999.

137

3. E. Astesiano and G. Reggio. Labelled Transition Logic: An Outline. Technical
Report DIS1-TR-96-20, DISI - Universitä di Genova, Italy, 1996.

4. E. Astesiano and G. Reggio. Formalism and Method. T.C.S., 236, 2000.
5. D. Bj0rner, S. Kousoube, R. Noussi, and G. Satchok. Michael Jackson's Prob-

lem Frames: Towards Methodological Principles of Selecting and Applying Formal
Software Development Techniques and Tools. In M.G. Hinchey and Liu ShaoYing,
editors, Proc. Intl.Conf. on Formal Engineering Methods, Hiroshima, Japan, 12-14

Nov. 1997. IEEE CS Press, 1997.
6. C. Choppy and G. Reggio. Using CASL to Specify the Requirements

and the Design: A Problem Specific Approach - Complete Version. Tech-
nical Report DISI-TR-99-33, DISI - Universitä di Genova, Italy, 1999.
ftp://ftp.disi.unige.it/person/ReggioG/ChoppyReggio99a.ps.

7. G. Costa and G. Reggio. Specification of Abstract Dynamic Data Types: A Tem-

poral Logic Approach. T.C.S., 173(2), 1997.
8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.
9 W. Grieskamp, M. Heisel, and H. Dörr. Specifying Safety-Critical Embedded Sys-

tems with Statecharts and Z: An Agenda for Cyclic Software Components. In
E. Astesiano, editor, Proc. FASE'98, number 1382 in LNCS. Springer Verlag,

Berlin, 1998.
10. M. Heisel. Agendas - A Concept to Guide Software Development Activities. In

R. N. Horspool, editor, Proceedings Systems Implementation 2000. Chapman &

Hall, 1998.
11. M. Jackson. Software Requirements & Specifications: a Lexicon of Practice, Prin-

ciples and Prejudices. Addison-Wesley, 1995.
12. P.D. Mosses. CoFI: The Common Framework Initiative for Algebraic Specification

and Development. In M. Bidoit and M. Dauchet, editors, Proc. TAPSOFT '97,

number 1214 in LNCS, Berlin, 1997. Springer Verlag.
13 The CoFI Task Group on Language Design. CASL The Common Algebraic Spec-

ification Language Summary. Version 1.0. Technical report, 1999. Available on
http://www.brics.dk/Proj ects/CoFI/Docunents/CASL/Summary/.

14 P Poizat, C.Choppy, and J.-C. Royer. From Informal Requirements to COOP:
a Concurrent Automata Approach. In J.M. Wing, J. Woodcock, and J. Davies,
editors, FM'99 - Formal Methods, World Congress on Formal Methods in the De-
velopment of Computing Systems, number 1709 in LNCS. Springer Verlag, Berlin,

1999.
15. G. Reggio, E. Astesiano, and C. Choppy. CASL-LTL: A CASL Ex-

tension for Dynamic Reactive Systems - Summary. Technical Re-
port DISI-TR-99-34, DISI - Universitä di Genova, Italy, 1999.
ftp://ftp.disi.unige.it/person/ReggioG/ReggioEtA1199a .ps.

16. M. Roggenbach and T. Mossakovski. Basic Data Types in CASL. COFI Note L-12.
Technical report, 1999. http://www.brics.dk/Projects/CoFI/Notes/L-12/ .

138

JTN: A Java-Targeted Graphic Formal Notation
for Reactive and Concurrent Systems *

Eva Coscia and Gianna Reggio

DISI, Universitä di Genova - ITALY
e-mail: {coscia,reggio}@disi.unige.it - fax: 39-010-3536699

Abstract. JTN is a formal graphic notation for Java-targeted design
specifications, that are specifications of systems that will be implemented

using Java.
JTN is aimed to be a part of a more articulated project for the pro-
duction of a development method for reactive/concurrent/distributed
systems. The starting point of this project is an existing general method
that however does not cover the coding phase of the development pro-
cess. Such approach provides formal graphic specifications for the system
design that are too abstract to be transformed into Java code in just one
step, or at least, the transformation is really hard and complex.
We introduce in the development process an intermediate step that trans-
forms the above abstract specifications into JTN specifications, for which
the transformation into a Java program is almost automatic and can be
guaranteed correct. In this paper we present JTN on a simple toy exam-

ple.

Introduction

In this paper we present a part of a more articulated project we are currently
working on: a development method for reactive/concurrent/distributed systems
(shortly systems from now on) that are finally implemented in Java. Such devel-
opment process should be supported by formal tools and techniques, whenever
possible, and by a set of user guidelines that describe in detail how to perform
the various tasks. The formal bases and the main ideas come from previous work
of one of the authors about the use of formal techniques in the development of
systems that, however, did not ever considered the final coding step, see, e.g., [1,
2,10,11]. We chose Java as the implementation language since it is 00, widely
accepted for its simplicity and, at the same time, for its richness. It is considered
a language for the net, for its portability, but also a language for concurrency
and distribution. Moreover, there exists a precise, even if informal, reference [4]

for the semantics of the core language.
[11] presents a general method for giving formal graphic design specifications

of systems, but such specifications are too abstract to be transformed into Java
code in just one step, or at least, the transformation is really hard and complex.

* Partially funded by the MURST project: Sistemi formali per la specifica, l'analisi,
la verifica, la sintesi e la trasformazione di sistemi software.

139

For example, following [11] you can specify systems with n-ary synchronous
communications, where the components can exhibit any kind of non-determinism
and can be coordinated by complex scheduling policies, which cannot have a
direct implementation into Java.

Moreover, the complexity of this transformation into Java does not allow to
check the correctness of the generated code, and there is no way to automatize it.
Furthermore, [11] does not take into account the relevant, good characteristics

of Java, as the 00 features.
We think that it is useful to introduce an intermediate step in the devel-

opment process that transforms an abstract design specification into a Java-
targeted one, whose transformation into a Java program is really easy.

(AUTOMATIC)
GUIDELINES ,.„.,,„„. TRANSLATION

Abstract \ JAVA targeted -^. JAVA code
design specification ^ ^ design specification (2)

Step (2) can be automatized and guaranteed correct whereas step (1) cannot be
automatized, but we are working to give a rich set of guidelines for helping the

user in such task.
Here we present JTN, a graphic formal notation for the Java targeted de-

sign specifications, obtained by targeting [11] to Java, that is by modifying the
specification language to take into account the features and the limitations of

Java.
JTN is graphic because every aspect of system (e.g., components, global archi-

tecture and behaviour) is described only by diagrams. But it is formal, because
the diagrams composing the specifications are just an alternative notation for
logic specifications as in [11] (the formal semantics of JTN is presented in [3]).

We think that JTN, with the associated method and software support tools,
could help the development of reliable systems implemented in Java.

- We can describe the system design graphically, and that is helpful to grasp
the system characteristics. However, the JTN graphic specifications are struc-
tured and that avoids one of the possible drawbacks of graphic notations: to
handle very large diagrams that could be not understood.

- The level of the JTN descriptions is not too low; the designer avoids to specify
too much details and the drawings are simple enough; for example, in JTN
there are user defined data-types and abstract communication mechanisms,
as synchronous and asynchronous channels.

- JTN specifications are formal, with the usual advantages to use formal meth-
ods without bothering the specifiers with too much formalities.

- The automatizable translation to Java reduces the time to a working system
and also gives a prototyper for such specifications.

There are neither theoretical nor practical problems to realize a full tool-set for
supporting the use of JTN using the current technology (e.g., interactive editor,
static checker, hyper-textual browser, translator to Java, debugger); it is possible
to realize them within a reasonable amount of time, we just need some human

resources.

140

Here, for lack of room, we consider only a rich subset of JTN applied on a toy
running example and give some ideas about its translation into Java; a detailed
presentation of JTN and further examples are in [3]. In Sect. 6 we present the
relations with other works as well as some hints on our future work.
The running example We specify the design of a Java program simulating a
pocket calculator that computes and interacts with a keyboard, a display and a
printer; think, for example, of a small application simulating a calculator on the
desktop of a computer. The functionalities of the calculator are quite obvious:
it can receive, by the keyboard, numbers and simple commands for performing
operations (addition and multiplication) and for printing the display content.

1 JTN

In this section we first describe the main features of the abstract design specifi-
cation technique of [11]; then we describe how to target it to Java and give an
overall presentation of the JTN notation.

1.1 Abstract design specifications

The specification technique of [11] distinguishes among the data-types, the pas-
sive and the active components of a system, because these components have a
different conceptual nature and play a different role within the systems.

The data-types are static structures used by the other components, with no
idea of an internal state changing over time. The passive components have an in-
ternal state that can be modified by the actions of other active components. The
active components have an internal state, but they are also able to act on their
own (possibly by interacting among them and with the passive components).

We can completely describe a data-type by giving its values and the oper-
ations over them, whereas we describe the passive components by giving their
states and the actions that can be performed over them, which obviously can
change such states. We want to remark this difference. Data-types define stateless
elements (essentially, values) that are used by (active and passive) components.
Instead, the passive components are actual components of the system, having an
internal state that can be updated by the active components. Finally we describe
the active components by giving the relevant intermediate states of their lives
and their behaviours, which are the possible transitions leading from one state
to another one. Every transition is decorated by a label abstractly describing the
information exchanged with the external, w.r.t. to the component, world. No-
tice that many transitions can have the same source, and that allows to handle

nondeterminism.
Let us consider, for simplicity, a system having a database inside. The database

is a passive component whose internal state is modified by the operations it sup-
plies outside; the data managed and exchanged by the database are data-types;
and the processes using the database are the active components of the system.

141

The activity of a system results by describing how its components cooperate,
i.e., to say which transitions of the active components and which operations
over the passive components have to be performed together, and which is the
exchange of information with the external (w.r.t. the whole system) world.

A system, in turn, can be seen as an active component of another system,
and so we can specify systems with a multi-level architecture.

The underling formal model for an active component (and thus for a system)
is a labelled transition system (LTS), that is triple consisting of a set 5 of ele-
ments (intermediate states), a set L of the labels (interactions with the external
world) and a ternary transition relation, a subset of S x L x 5 (transitions). The
passive components and the data-types are modelled by first-order structures.

The graphic specifications of [11] follow the system structure; thus they con-
sist of diagrams for the data-types, for the components (the behaviour of the
active components is represented as a kind of finite automata) and for the coop-
eration among them. Formally, these diagrams correspond to an algebraic/logic
specification having LTS's as models, see [11]. Note that the specification lan-
guage of [11] has neither concepts nor mechanisms related to 00, nor features
of some particular programming language, as handshake communications and
asynchronous channels; instead it allows the specifier to directly define any fea-
ture of the system by describing the corresponding behaviours and cooperation.

1.2 Java-Targeting

We designed JTN by adapting the technique presented in Sect. 1.1 to the features

and to the limitations of Java.
We want to keep distinct, at this more concrete level too, the concepts of

data-types, passive and active components of a system. In our opinion, it is
useful to have this distinction to avoid confusion and to make the specification

more readable.
Then, we introduce the new 00 concepts of class and instance and provide an

explicit representation of the relevant relationships among them, as inheritance
and use; but in JTN we have three kinds of classes, one for each kind of entities
that we consider: data-types, passive and active components.

The data-types are described at an abstract level by giving their constructors
and by defining the associated operations, without considering an 00 perspec-
tive; however it is easy to transform them into Java classes.

The passive components are seen as objects, whose state is given by a set of
typed fields and the operations to modify them are methods. The transformation
of such object specifications into Java classes is immediate.

The active components are seen as processes, with a state, an independent
activity and communication channels to interact with other active components
and with the external world. In this case, the natural implementation is given
by Java threads. We chose to use communication among processes via channels,
rather than via method calls. In this way, a process does not offer methods out-
side and we do not have to manage method calls while the process is performing
its activity (in Java, there is no built-in mechanism to disable method calls).

142

As Java objects and threads communicate by method calls and streams, the
main typologies of cooperation are: between a process and an object, by means
of a call to an object method, and among a set of processes by communication
along asynchronous and synchronous channels. The asynchronous channels are
rendered by streams, and the synchronous ones are implemented by particular

additional objects.
Java supports only system architectures of at most two levels. The first level

corresponds to multi-threaded Java programs, and the second corresponds to
distributed Java applications consisting of programs possibly running on different
machines. For lack of room, in this paper we do not consider the second level.

For the same reason, here we consider simple objects and processes, i.e., with-
out sub-objects and sub-processes, so calls to methods of other objects cannot
appear in a method body. Moreover, we do not consider the dynamic creation
of process and objects: we assume to start with an initial configuration of the
system where all the components have been already created in the initial state.

Using the JTN concepts we model the running example as follows. The cal-
culator has four active components: the keyboard driver reading keys from the
keyboard, the computing unit performing the computations, the display driver
echoing inputs and results to the display, and the print driver printing the dis-
play content. All such processes use an object, which records the content of the
display, and three different types of data: digits, lists of digits and commands.

The keyboard driver receives the keys by an asynchronous channel from the
keyboard (the external world); the display driver and the print driver send their
outputs to, respectively, the display and the printer by two other asynchronous
channels. The communications and the synchronizations among the active com-
ponents are realized by some synchronous channels.

1.3 Overall structure of the JTN specifications

We factorize a system specification into several diagrams showing different as-
pects or parts of the system. Thus the diagrams are not too large and compli-
cated, and so really useful. For example, some diagrams focus on the behaviour
of the components and other focus on the architectural structure of the system.

Class Diagram The class diagram captures the classes of the system components
and their relationships. We consider three different kinds of classes: data-types,
object classes (for passive components) and process classes (for active compo-
nents), graphically represented by different icons.

All the information about a class is given by two complementary diagrams:
interface and body. The first one describes which are the services (different for
each kind of class) that the class offers outside. The latter defines such services
and can be given apart from the class diagram. The forms of the two diagrams
depend on the class kind and are described in deeper details in Sect. 2.

In an 00 perspective, stand-alone classes are not so meaningful; most of
them are related to accomplish more complex functionalities. Thus, we complete
the class descriptions with the relevant relationships among them.

143

Inheritance between classes of the same kind, it states that a class is a special-
ization or an extension of another one.

Usage states that a class (of any kind) uses the data defined by a data-type.
Clientship states that a process class assumes the existence of an object class,

as it can use its methods.

JTN defines the operations, the methods and the process behaviours inside the
body diagrams by ordered lists of conditional rules, with a uniform presentation,
just a general form of "guarded commands". The alternatives of a command are
evaluated in order and the first one having a satisfied guard is chosen. The guards
are partly realized by a boolean condition and partly by pattern matching (as
in ML [6]) over the parameters of the operation, of the method call and over
the state of the process respectively. The use of pattern matching is useful to
make shorter and more readable the whole definitions. Let us remark that we
avoid problems with overlapping patterns and conditions by explicitly ordering

the guards.

Architecture Diagram The architecture diagram describes which are the compo-
nents of the system, and how they interact (by which communication channels

and by which method calls).

Sequence Diagram A sequence diagram is a particular form of message sequence
chart (see [8]) that describes a sequence of actions occurring in a (possibly par-
tial) execution of the system and involving some components. The represented
actions are communications over channels and method calls. We introduced these
diagrams because they are used in the most widely accepted specification tech-
niques in the field of Software Engineering, such as UML.

The class diagram (with the possibly separated body diagrams) and the
architecture diagram fully describe a system. The sequence diagrams are an
additional way to present information on the system that is very intuitive and

easy to be understood.

2 Class Diagram

There is one global class diagram for the whole system, representing the classes
of all its constituents. It is a graph, where the nodes represent classes and the
arcs class relationships. The icons for a data-type, an object class and a process

class are, respectively,' J >* u U=J.
For each class there are two diagrams, interface and body, both with a slot

with the name of the class, i.e., the type of its elements. The interface diagrams
are always in the class diagram, whereas the body ones can be given separately.

The contents of the interface and of the body diagrams vary with the kind of
the class and in the following subsections we present them and the relationships
among classes. In fig. 1 we report the class diagram for the calculator example.

144

Data-type We chose to describe a data-type by giving its constructors and
defining the associated operations by means of conditional rules with pattern
matching a la ML (see [6]).

The interface diagram for a data-type contains the list of its visible construc-
tors and operations, and the body diagram contains the the private constructors
and the definition of the visible and private operations. The body diagram is
divided into many slots, separated by dashed lines, each one containing the def-
inition of an operation, by conditional rules.

The most common data-types, either basic (e.g., NAT) or parametric (e.g.,
LIST), are predefined and implicitly used by all the classes, so we do not report
them in the class diagram. Moreover, data-types defined by combinations of
predefined ones can be renamed and grouped together. In fig. 1 DIGIT is a
renamed subrange of CHAR and KEY is the union of DIGIT and COMMAND.

The APPLY data-type, defined in fig. 1 by inheriting from the others, con-
tains some operation definitions, one public, Apply, and two private, Code and
Decode. It implicitly uses NAT. Decode is defined by using the pattern matching:
given an actual parameter a, if a matches the pattern Empty (i.e., a- Empty,
Empty is a constant constructor), then it returns 0; if a matches d::dl (i.e.,
a - e ::l, :: is the list constructor adding an element to a list), then it returns

(Ord(e)-Ord('O')) + 10 * Decode^)-

Object Class An object is a passive component of the system, which has an
internal state but it does not perform an independent activity. Objects cooperate
with other components by offering services (i.e., methods) that the processes can
call to complete complex functionalities.

Here, for lack of room, we do not present the complete version of the object
classes with sub-objects and local methods.

Interface Diagram The interface diagram of an object class contains the list of
the public methods with their names, the types of their parameters and of the
returned values (if any). The DISPLAY class (fig. 1) has two methods, Write and
Add, with one parameter of type DIGIT-LIST, and Read, with no parameter,
that returns a DIGIT-LIST value.
Body Diagram The object body diagram is divided into two slots, containing:

- the fields; in JTN there are only private fields that can be accessed only by
methods. For each field we give the name and the type plus its initial value
(see field Cont in fig. 2);

- the definition of public and private methods.

Using JTN, we define the methods by conditional rules with pattern matching.
A method M{TTlt ..., ITk): OT is defined by an ordered list of conditional

rules whose form is

145

DIGIT = 'IT .. '9'

COMMAND ='+' | '*'

KEY = DIGIT | COMMAND

DIGIT_LIST = USTfDIGIT)

•P'|'N A-

DISPLAY

Write(DIGIT_UST)

Add(DIGIT_UST)

ReadQ: DIGIT_UST

"7K~

APPLY "N
Apply: DIGIT_UST, COMMAND, DIGIT_UST -> DIGIT_UST

Code: NAT-> DIGITUST
(ki and i<10 => Char(i+OrdC0')):: Empty

10 =< i => Char((i Mod 10)+OrdC0')):: Codc(i Div 10) Code(i):

Decode: DIGITJJST -> NAT

Decode(Emply) = 0
Decode(d::dl) = (Ordtd^OrdCO')) + 10 * Decode(dl)

Apply(dI,V,dl') = Code(Decode(dl)+Decode(dl'))

Apply(dl,'*',dr) = Code(Decode(dI)*Decode(dl'))

AppIy(<D,c,dr) = Empty

< COMPUnNG_UNIT

! Show()
? Pass(COMMAND)

DISPLAY_DRIVER

!OUT(CHAR)

? Show()

! Take()

ZE
PRINT.DRIVER

? Newline()

KEYB0ARD_DR1VER \

? INK(KEY)

! Show()
! Pass(COMMAND)

?Take()

! Print()

! Newline()

Fig. 1. Calculator: Class Diagram

DISPLAY

Cont: DIGITJLIST = Empty

Add(dl) [Cont = dl & Cont

Write(dl) [Cont =dl

ReadO [res = Cont

Fig. 2. Calculator: DISPLAY body diagram

146

M(ir

if condj { assignementjisf

if cond { assignementjis^

where: for each h (1 < h < k) ih is a pattern, i.e., an expression of type ITh built
only by constructors and variables; for each j (1 < j < n) condj is a boolean
expression over the variables in ii,..,ik and the object fields; assignmentJistj is
a list of assignments of form either "f = e" or "res = e", with e an expression
over the variables in u,..,^ and the object fields, f a field name and res a special
variable of type OT denoting the result returned by the method.

A method call is executed as follows. We find the first, w.r.t. the ordering,
rule whose pattern matches with the parameters of the call and with a condition
that holds. If none matches, then we have an error. Then, the corresponding
assignments are performed. The value returned by the method (if any) is the
final value of the variable res. Trivial examples of method definitions are in the
body of the class DISPLAY in fig. 2 (& is the operation for appending lists).

Process Class In our approach, processes are different from objects and their
description cannot be given in the same way. First note that processes are active
components that behave independently and do not offer methods outside. Their
behaviours are not sequential, instead they run concurrently and cooperate by
message exchange with those of the other processes. So, the process interface di-
agram does not contain methods, but the communication channels, synchronous

and asynchronous.
The body diagram describes the behaviour of the process, by presenting its

interesting intermediate states, each one characterized by a name and typed
parameters, and its transitions, precisely from every intermediate state, some
conditional rules define all the states it can reach by interacting with the external
world (i.e., the labelled transitions of [11]). In the general method of [11], there is
no restriction on the form of the external interactions, which are just described
by labels. In JTN, a process can communicate with the external world only by
calling the object methods or by using the communication channels.

We give a graphic presentation of the behaviour that naturally depicts what
a process does, by showing all the possible transitions starting from any state.

Interface diagram JTN processes use two kinds of channels: synchronous and
asynchronous; both kinds of channels are distinguished into input and output
ones. Thus the interface diagram for a process class has two slots containing
the asynchronous and the synchronous channels, respectively, with their names,
their directions (described by ! and ?) and the types of exchanged values (if

any).
For example, the DISPLAY-DRIVER interface diagram in fig. 1 declares two

synchronous channels Show and Take used only for a synchronization purpose

147

(no value exchanged), and an asynchronous one, OUT, on which an instance of

DISPLAY-DRIVER sends a char outside.

COMPUTING-UNIT

Init(Empty .'=')<■
Init(dl,'=') <
Init(dll.cl) •«

Init(dl.c) |~L

! Show()

CompI(dl,c,dll,cl) I

<£>

Show(dl) P—
->-Show(Apply(dl,c,dll))

c.cl: COMMAND dl.dll: DIGIT.LIST

Fig. 3. Calculator: Computing Unit behaviour graph

Behaviour Graph J (process body diagram)
The behaviour of a process of a class is described by a graph, whose arcs represent

"generic" labelled transitions, whose form is
1

SCptj.-.pt^) [cond(ptr...,ptn) ■ —>S'(e,,.-,ej)

where S, S' are state constructors, pti, ...,ptn are patterns for the state param-
eters, 1 is a pattern for the external interaction and ei,..,ek are expressions over

the variables in 1 and pti,... ,ptn.
The label 1 can have six different forms, depending on the kind of interaction

that is performed with the external world:

- ?ACH(x), !ACH(e): input from/output to an asynchronous channel;

- r = oe.m(Xl, ..., xn) (or oe.mfo, xn) if m has no return type): object

method invocation;
- ?sch(xi,... ,xk),!sch(ei,... ,ek): input from/output to a synchronous channel;

- r: internal activity, usually omitted.

1 The behaviour graphs of JTN play the same role of the UML state diagrams.

148

All the sources and targets of transition representing state patterns of the same
kind are grouped together into a node of the behaviour graph, avoiding repe-
titions. Thus each state pattern is written once, and the conditions are listed
aside the corresponding state pattern to form an alternative, as below

cond,
h

SftV-Ptn) cond

cond

The arrows leaving a condition are ordered. Thus, inside a node of the graph we
have an ordered list of alternatives plus state patterns that are only targets of

transitions. . .
The interpretation of the behaviour graph is as follows. When a process is in

a state K(args), we consider in order all the alternatives inside the node for the
K states, until we find one whose pattern matches args. Then, inside the chosen
alternative, we look for the first true condition. Finally we consider the labels on
the arrows leaving the condition, trying to determine the first one that can be
executed (recall they are ordered). If no matching pattern with a true condition
is found, then the process is definitively stopped.

Not all choices of labels {h,..,h) are meaningful; the admissible cases are as
follows, and for each of them we explain how to select the one to execute:

1. h = 1 and h is a method call or an output on an asynchronous channel or
an internal transition; the corresponding transition can be executed.

2 h > 1 and for each i (1< i < h) li = !schi(...) or 1; = ?schi(...): all syn-
chronous channels seh; are checked in the order; if the communication on
schi cannot be executed, then the following one is checked. If no communica-
tion can be executed, the process is suspended until the last communication

completes.
3 h > 1 and for each i (1 < i< h) 1; = ?ACHi(. ..)=«« asynchronous channels

ACH; are continuously tested in the order, until an available message is

found.

In cases 2 and 3 we can add an arrow labelled with "else" with the meaning that
whenever no other transition can be executed, such escape will be performed as
an internal action, leading to another state from which the activity continues. An
else label can be used in case 2 when no communication is immediately available,
to return to the same state and start again the polling procedure. See e.g., the
state Taking in fig. 4, where KEYBOARD-DRIVER can perform a synchronous
communication on channel Take; otherwise KEYBOARD_DRIVER moves to
another state (by else transition) in which it tries to read a character from the
asynchronous input channel INK, and, if nothing is available, by another else
transition, then it will come back to the state Taking.

Instead of explicitly declaring in a behaviour graph each state constructor
with the type of its parameters, we add a slot for declaring the types of the used
variables; obviously each state constructor must be typed consistently.

149

KEYBOARD DRIVER

& Init • c DlSPLAY.Write(Empty) <?

Check(k)
IsDIGIT(k)

bCOMMANDOO,
k=/='P'andk=/='N'

IPrintO —o DISPLAY.Add(k::Empty) /• _ ?ShowO

DISPLAY.Add(dl),
*-Taking(Empty)

-J~] Taking(dl)

Taking(k::dl)

L »Check-frd!)

(dl,k) \<r-
?Take()

fc KEY dl:DIGIT_LIS

IsDIGITOO

IsCOMMAND(k)

f
PRINT DRIVER

->{^rV|
ebe\|

C3 o

t; c

o *
Z
e--

r1
b v_

DISPLAY DRIVER

dl = DISPLAY.RcadO,

d: DIGIT dl: DIGIT_LIST

Fig. 4. Behaviour graphs

150

In fig. 3 and 4 we omit the name of a state every time it is not relevant; in
such a case, the icon is empty, or just contains the list of the arguments.

An arrow with neither starting state nor label enters in the initial state of
the system (see the upper left arrow in fig. 3)

Class Relationships Here we briefly illustrate the relationships among classes
that we can put in the class diagram.
Inheritance {<P) states that a class extends another one. It is restricted to classes
of the same kind. What really the word "extends" does mean, depends on the
particular kind of class. With regard to data-types, inheritance is used to add
new operations. An example is APPLY, that adds the operation Apply. When
considering an object class, inheritance is a mechanism for adding new methods
and fields; finally, when considering a process class, inheritance adds transitions
(i.e., behaviour) and new communication channels.

In our example, the PRINT_DRIVER class inherits from DISPLAYJDPJVER:
its interface diagram is the one of DISPLAY-DRIVER with a new synchronous
channel Newline; the behaviour graph of class PRINT_DRIVER depicts only the
new transitions (see fig. 4), implicitly assuming those described in the behaviour
graph of DISPLAY-DRIVER. More precisely, the transitions starting from states
of the same kind are merged together; the new alternatives for a given state, as
well as new transitions associated with an existing condition, are added at the
end of the list, as they represent alternatives to be considered after the existing
ones (we are currently studying more suitable mechanisms to describe how to
re-order these alternatives).

The three different inheritance relations define three hierarchies over, respec-
tively, data, object and process types (i.e., classes).
Usage («_) states that a data-type is used by another class. It is represented
by an arrow from the used data-type class to the using class. If all the system
components use a data-type, then the usage relation is omitted.
Clientship («) states that a class assume the existence of another one, because
it calls its methods. In our example, the process of all classes call the methods
of the DISPLAY class.

In this paper we do not consider structured objects, calling other object
methods, so clientship relates only process classes with the classes of the objects

whose methods they call.

3 Architecture diagram

The architecture diagram describes the structure of the system showing its com-
ponents and how they cooperate. The icons for the process and the object in-
stances are slightly different from the corresponding ones for the classes; they

are single boxes or single boxes with rounded corners: I 1 I J.

151

/ \
Take

5 o
\
c

g o

>

■a o

V

\

DISPLAY KEYBOARD DRIVER
A- INK

<i
Add.Wntc

\
\l]/ z 0

*
^^ '' .< \, , -1

r>'
COMPimNG UNIT Show ^1

J

*

Read
' c

DISPLAY.DRIVER

\
O

Fig. 5. Calculator: Architecture diagram

An instance icon contains only the instance identifier with the name of the
corresponding class, separated by colons; the identifier is omitted if there is only

one instance for such class, as in fig. 5.
The architecture diagram is a hyper-graph whose nodes are class instances

that represent the components, and whose hyper-arcs represent how they coop-
erate Let us remark that in this work we consider neither creation/deletion of
components nor architectures having a generic number of components.

We can distinguish three kinds of hyper-arcs, representing:
method call: a process calls a method of an object; the icons of the two instances
are linked by an arrow decorated with the method name; the arrow is oriented
from the caller process to the called object.
asynchronous communication: fig. 6a) describes the connection of some asyn-
chronous channels; OAC; are output channels and IACi are input channels of
the processes attached to the hyper-arc. The type of the exchanged message is
the same for all the channels. Moreover, the channel types and versus must be
in accord with the interfaces of the classes of the connected processes.

We can distinguish some cases. If n = l,m = 0 or n = 0,m = 1, then the icon
describes a channel for a process that communicates with the external world (e.g.,
the OUT channel associated with the DISPLAY.DRIVER in fig. 4). If n > 0 m >
0 a message sent on a generic OAC; will be replied on all IACi,..,IACm. If n -
l' m = 1 the channel connects two processes or it is used to rename a channel,
as we can see in fig. 5, where channel OUT of PRINT-DRIVER is renamed as
OUT.P to avoid name clash with the same channel of DISPLAY.DRIVER.

152

(a)

Fig. 6. Connectors for asynchronous and synchronous channels

synchronous communication: fig. 6b) describes the connection of some syn-
chronous channels. We always have n > 0, m > 0, because synchronous channels
cannot be used for communication with the external world. Again, the chan-
nel types and versus must be in accord with the interfaces of the classes of the

connected processes.
The synchronous communication always involves two processes at a time: one

process connected on a generic OSCJ acting as a sender, and one connected on a
generic Isc; acting as a receiver. Thus, the drawing can be interpreted as a short-
cut for a set of channels connecting pairwise all sending to all receiving processes.
An example is channel Show in fig. 5 that connects KEYBOARD-DRIVER,
COMPUTING-UNIT (senders) and DISPLAY-DRIVER (receiver).

4 Sequence Diagram

A sequence2 diagram is a kind of Message Sequence Chart [8] that gives a (possi-
bly partial) description of a (possibly partial) execution of the system. Sequence
diagrams are of particular interest because introduce in a specification formalism
a technique that is used in the most widely accepted methods and notations in
the Software Engineering field (such as UML).

A sequence diagram graphically represents some components taking part in
a partial system execution and the ordered sequence of interactions among them
and with the external world performed during such execution. The considered
interactions are communications over channels and calls to object methods. The
graphic presentation enlightens relevant aspects of the temporal ordering among
interaction occurrences. Moreover, the diagram can be annotated with informa-
tion about the state of the components, so it is possible to represent effects or
conditions of action occurrences on single components.

The class and the architecture diagram supply complementary information
about the system, whereas the sequence diagrams are just a different way to
visualize information that has been already specified by the other diagrams.
Several sequence diagrams may be presented for the same specification, to cover,
e.g., the description of some interesting use cases of the system.

Sequence diagrams are not valuable for their information content (because
it is already present in the other diagrams) but mainly from a methodological
point of view and can be used for different purposes, for instance:

2 In this case we use the same terminology of UML, since our sequences and the UML
ones are rather similar; we can analogously define a form of collaboration diagram.

153

to give a more natural and clear representation of the developed system to
a client (e.g., to show how the calculator performs the addition);
to show that the behaviour of the system specified by the class and the
architecture diagrams is, in particular circumstances, the expected one. For
example, by a sequence diagram we can show that if the user does not digit
an "=" at the end of the operation, then the calculator does not return the
result. From our experience, the construction of sequence diagrams, also if
"by hand", helps to control the quality of the proposed design and allows to
detect errors and omissions in the specification.

(KEYBO ARDJ5RI VER) (DISPLAY.DRIVERJ | DISPLAY | (COMPUTING.UNnJ

'<= -A
"7

INK \

•'•=7

AddCl':: Emply)

Showfl

TaM)

OUT

Add(-2':: Empty)

ShowQ -^

TiltcO

^ INK \

4=

OUT

Con! = Empty

-oi

MiffEmpty. '=')

■l'::Eropty = Re*d() ,

k*
-t>i

'2'::Empty = Re»d() £>:

ShowO

T»teO

OUT

RmtQ'^Einply) SLo

T::Empty = RodQ

WrileOEmpty)

<1-
kl-

•2'::Emply = Read()

WrileC3'::Eroply)

Fig. 7. Calculator: a sequence diagram for the computation of 1 + 2

Sequences diagrams are forms of message sequence charts, thus there are vertical
lines representing the lives of the components involved in the execution. We use
a dashed line to represent objects and a continuous line to represent processes.
The horizontal lines describe the interactions occurring among the components
or with the external world (i.e., communications on a channel, and method calls).
Lines are put from top to bottom with respect to the temporal ordering of

happening.
We use different icons for asynchronous communication (a double arrowj,

synchronous communication (a single arrow) and method call (a single arrow
with outlined head) as we can see in fig. 7.

An asynchronous communication with the external world is just an incoming
or outcoming double arrow, labelled by the channel name and by the exchanged
data An asynchronous communication between two processes is represented by

154

two broken arrows. The part representing the start of the communication (send)
is over the other one. They are separated by vertical dots and the data exchanged
is annotated over both the two parts. Other actions may occur between the two
phases of the asynchronous communications. A synchronous communication is
decorated by the name of the channel and by the exchanged message. A method
call is decorated by the name of the method and the parameters.

At any point of the vertical lines it is possible to put conditions on the value
of the fields, for an object, and on the state and its arguments, for a process.
The starting state of the execution may be described by such annotations, on
the top of the corresponding vertical lines (see fig. 7).

Note that the elimination of a component and of its interactions returns
another sequence diagram. If we drop DISPLAY-DRIVER in fig. 7, then we
have a sequence diagram concerning only the updating of DISPLAY.

As sequence diagrams can erroneously depict executions that are not coherent
with the rest of the specification, we must define when a sequence diagram
is consistent with the information supplied by the class and the architecture

diagrams.
Once we fixed the starting state of each instance, we can easily trace out how

the system evolves. The object body diagrams describe how a method execution
changes the state of an object. The behaviour graphs describe which communi-
cations or which method calls a process can perform from a given state and thus
is the corresponding new state. The architecture diagram presents the topology
of both the external as well as the inter-process communications. Thus, when we
know which are the values arriving on the input asynchronous channels from the
external world, we can find which actions the system components can perform
and consequently which states the system can reach.

So, given a sequence diagram, we can determine the starting state of the
system and then whether the depicted interactions can happen in the depicted

order.
This consistency idea can be precisely defined, remembering that JTN is a

formal specification language (the semantics of class plus architecture diagrams is
an LTS) and that each sequence diagram corresponds to a formula in a branching
time temporal logic saying that, from the starting state there exists a sequence of
transitions where the depicted communications happened in the depicted order.

5 Implementation of main mechanisms

Here we briefly sketch out the implementation in Java of some of the JTN mech-
anisms. Obviously, the resulting Java program manages the classes and the in-
stances shown in the diagrams, and also some auxiliary ones that are the stan-
dard implementation for synchronous and asynchronous channels and predefined

data-types. . . .
The predefined data-types are mostly obtained by combining Java primitive

data (e.g., integer) and by extending some Java standard classes (e.g., Vector).
The user-defined data-types have a standard translation: the constructors and

155

their arguments are implemented as instance private fields; the component ex-
tractors operating on the data are trivial methods returning the value of the
corresponding fields. The operations are translated into methods, whose code
implements the guarded commands and the pattern matching used to define

them.

The object classes are implemented as Java classes. The private fields im-
plement the fields, initialized to the value represented in the body diagram; the
methods are the direct encoding of the corresponding methods specified in the

body diagram.

The process classes are implemented as Java thread classes and the interme-
diate states, described by constructors in the behaviour graph, are implemented
by the fields of the class; the unique method is run, whose code is determined by
the behaviour graph of the class.

class DisplayDriver extends Thread{
private String state = "Init"; // state constructor implementation
private List.Digit the_dl; // digit list;
private Display the_d; // the display;

private Synch.Sign Show; // synchronous communication channels
private Synch_Sign Take;
private FileOutputStream Out; // asynchronous communication channel

DisplayDriver(Synch_Sign s, Synch.Signt, Display dH
super();
Show = s;

...II initialization part continues

}
public void run(){
while(true){
Show.getQ; // receives a signal
Take.putO; // sends a signal
the_dl= the_d.Read(); // reads the Display content
state = "Dis"; // changes its state
while (!the_dl.isEmpty()){
Out.pr int In (the_dl.He ad());
the.dl = the.dl.TaiK);

}}}

Fig. 8. Java implementation of DISPLAY.DRI VER

The communication channels of a process are fields referencing particular
objects. A synchronous channel is implemented by using a special object that
act as a "synchronizer". When a process PI tries to synchronize with P2, it
accesses the synchronizer to check whether P2 is ready for the synchronization^
If P2 is not ready, then PI is suspended. When P2 is ready, PI is resumed and

156

reads or writes the exchanged data. To ensure that only one process at a time
gains the access to a channel method, as well as to suspend-resume processes we
use the synchronized and the wait-notify mechanisms of Java.

The asynchronous channels are trivially implemented by Java streams. In
the particular case of asynchronous communication among process, we use the
specialized stream classes for pipeline communication. Moreover, if the commu-
nication among processes involves m writers and n readers, a particular object
implements the connector in fig. 6(a) that continuously reads a data from anyone
among the input channels and replicate it on each one of the output ones.

6 Conclusions and Related Works

We think that JTN could help to design complex systems using Java, even if in
this paper we have used it on a really toy example, for the following reasons:

- it is strongly visual; we have tried to visually render the process behaviours,
the system architecture, the way the components cooperate, as well as the
definition of data operations and of object methods;

- the complexity and the intricacies of the systems is mastered by keeping
separated data-types, objects and processes, and allowing to design such
entities at the most abstract level compatible with a direct implementation
in Java; for example, data-types are not objects and the user can define her
data with the constructors of her choice to represent them. For example, if
we want to concatenate two lists LI and L2, we do not have to create two
objects realizing LI and L2 respectively, and then call the concatenation
method on LI (or L2); instead, we just apply the concatenation operation
to terms representing LI and L2 respectively.

- there is a direct correct encoding of the specification into a Java program
that it is possible to make automatic by the use of some tool.

JTN is not purely 00, as it only includes some 00 concepts, precisely those
that are useful to model the features of the considered systems. We use classes
and instances, plus inheritance and other relationships, to model the three kinds
of constituents of the systems (data-types, passive and active components). The
interactions among processes via shared memory is modelled by objects and
method calls; encapsulation allows to control how processes access the objects

in the shared memory.
Although JTN is Java-targeted, it is not useful only to produce Java code;

indeed it can also be fruitfully used to model and design systems implemented
by using another programming language, as ADA.

Note that JTN is not addressed to real-time systems, because the abstract
specification method of [11] and the features of Java do not adequately support

real-time programming.
It is possible to produce a full set of software tools to support the use of JTN:

from interactive graphic editors to a static checker including the consistency
check of the sequence diagrams with respect to the other diagrams, to browsers

157

enhancing the hyper-textual aspects of the diagrams composing the specifica-
tions, to the translator into Java. We are considering also a form of debugger
obtained by using a variant of the translation into Java. The execution of the
modified program produces an output that can be transformed in a sequence
diagram and so we can have a graphic presentation of the execution. The under-
lined required technology for the realization of such tools is easily available. At
the moment we are looking for human resources to realize them.

Our future work will consider how to complete JTN; we want to investigate
the structuring of processes and objects by introducing sub-components, a mech-
anism for the packaging of classes when one global class diagram is too large,
other communication mechanisms, the notation for the description of the dis-
tribution level of the architecture and so on. The notion of inheritance for the
process class requires further investigations too, with the determination of an

associated type hierarchy.

To fully take advantage of JTN we need to propose a method for passing
from the abstract specifications of [11] to the more detailed JTN ones, that is
guidelines and hints that help the user to perform this task.

We are not aware of other "Java targeted" specification languages/notations
for systems in the literature, even if there exit tools for generating Java code
from generic object-oriented specifications (e.g., ROSE for UML).

To relate our proposal to other approaches we must first recall that JTN is
not an 00 specification language, but it is intended for reactive/concurrent/
distributed systems; this is the reason why it uses ingredients as processes
strongly different from objects, system architecture and channels. However JTN
encompasses a few 00 concepts, for example, "object" as a way to encapsulate
shared memory and "class" (for objects and processes) with inheritance as a way
to modularly define "types" of objects and processes.

The JTN specifications are both graphic and formal, and in this respect JTN is
similar to SDL [7] and Statecharts [5]; the differences with these two notations lay
in the way the processes cooperate and in the paradigm followed for representing
the process behaviour.

What said above shows also the differences/relationships with UML [9]: UML
is 00 JTN is concurrency oriented; UML is a notation that can be used by
many different development processes at different points, JTN is for Java targeted
design of systems (companion formal/graphic notations for abstract design and
requirement specifications have been developed, see [11,10]); UML is semi-formal
(precise syntax including well-formed conditions, semantics by English text),
JTN is fully formal (it has a complete formal semantics because it can be easily
transformed into a graphic-formal specification of [11], see [3]).

The use of data-types with constructors and of pattern matching in guarded
commands come from ML [6], because we think that in many case that could be
a compact and clear way to represent the data-types and their operations.

158

References

1 E. Astesiano and G. Reggio. Formally-Driven Friendly Specifications of Concurrent
Systems: A Two-Rail Approach. Technical Report DISI-TR-04-M, DIS -^Univer-
sitä di Genova, Italy, 1994. Presented at ICSE'17-Workshop on Formal Methods,

2 I!tte^o ITC. Reggio. A Dynamic Specification of the RFC-Memory Prob-
lem. In Forma/ System Specification: The RPC-Memory Specification Case Study,

number 1169 in LNCS. Springer Verlag, 1996.
3. E.Coscia and G.Reggio. JTN: the Reference Manual. Techmcal report, DIS1 -

Universitä di Genova, Italy, 1999.
4 Gosling Joy, and Steele. The Java Language Specification. Addison Wesley, 1996.
5'. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of

Computer Programming, 8, 1987. . , „o . vrq
6. R. Harper, D. MacQueen, and R. Milner. Standard ML. Technical Report ECS-

LFCS-86-2, LFCS-University of Edinburgh, 1986.
7. ITU. Z.100 ITU Specification and Description Language (SDL). Techn.cal report,

ITU, Geneva, 1993. Q„
8 ITU Z 120: Message Sequence Chart (MSC). Technical report, ITU, Geneva 1993
9. RATIONAL. UML Notation Guide Version 1.1. Available at

httn-//uwv rational.com/uml/htBl/notation/, 1997.
10 G Co A Method to Capture Formal Requirements: the INVOICE Case Study.

' In Int Workshop Comparing Specification Techniques. Universite de Nantes, 1998.
11 G Reggio and M. Larosa. A Graphic Notation for Formal Specifications ofDy-

„amicfystems. In Proc. FME 97, number 1313 in LNCS. Springer Verlag, 1997.

159

Toward an Evolutionary Software Technology

Maritta Heisel
Fakultät für Informatik
Universität Magdeburg

D-39016 Magdeburg, Germany
Fax: (49)-391-67-12810

heisel@cs.uni-magdeburg.de

Extended Abstract

1 Motivation
Existing software engineering techniques usually treat the case where a new software system has to
be built All documents are developed from scratch, without any reference to existing documents.
However, this situation is no longer realistic, because in more and more software projects, no new
systems are constructed, but existing systems are evolved and adapted to new requirements. Hence,
a task that becomes more and more important is to engineer existing software. Methods for an
evolutionary software technology are still missing, even though object orientation and component-
based software engineering enhance the possibility to re-use existing software.

This paper does not present finished results but explores some paths that lead to a software

technology tailored for the evolution of existing systems.

2 Basic Principles
Every software product is made up of several documents, for example requirements documents,
code, user manuals, etc. An important question for an evolutionary software technology is the
choice of an appropriate basis for system evolution. Which documents should be the starting point

of evolution strategies? . Tw^f™-« r,nP
In the end, the evolution of a software system leads to changing its code. Therefore, one

possible approach is to base software evolution strategies on the code. However, this approach is

not advisable for the following reasons:

. The motivation for changing the existing system are additional or changed requirements.
Hence the requirements must be taken into account when evolving a system. A situation
where the code is changed without any explicit reference to a requirements or specification

document is unacceptable, even if it may common practice today.

. Before changing the system, the consequences of the change should be analyzed. It may be
the case that new requirements interfere with old requirements. Such an analysis is highly
non-trivial, even if it is performed on a high-level representation of the system. Trying
to perform it on the code, which is the most low-level document representing the software

system, would make the task even more difficult.

. The different documents that make up the software system, such as requirements, specific»-
tion, and code, must be kept consistent. An evolution strategy that is based on code will
almost certainly lead to neglecting the other documents. The result would be an undocu-

mented and hence unmaintainable system.

We conclude that system evolution strateg.es should be based on ab ^^descriptionsMrfsaftj
ware systems, i.e., requirements or specifications. Usually, these are informal documents expressed
in natural language. To obtain semantical^ well-founded and automatable system evolution strate-
gies however, one should choose formal documents as a starting point. It follows that evolutionary

software technology needs two phases:

160

1. Specification of existing systems
This phase establishes the prerequisites for a systematic evolution of the system.

2. Systematic system evolution
This phase deals with how to evolve a system in a systematic manner.

In the following sections, we sketch an approach how to tackle these two tasks.

3 Phase 1: Specification and Structuring of Existing Soft-

ware
In his article "Software Aging" [Par93], Parnas describes how the structure of a software system
is gradually destroyed by changes that are made when evolving or «maintaining" the system. For
an evolutionary software technology, it is of utmost importance to preserve that structure when
changes are made. This task is much easier when the structure, i.e., the software architecture

[SG961, is made explicit. .
We already mentioned that using the requirements and the code is indispensable for systematic

software system evolution. With the architectural description, we have identified a third impor-
tant document. This leads us to the idea to construct different representations of the system and
mappings between them. On the one hand, we have the requirements of the system, which are its
most abstract representation. On the other hand, there is the executable code, which is the most
concrete representation of the system. In between the two, there are the specification and the

architecture, as shown in Figure 1.

Requirements Specification Architecture Code

R1 Vtr-.Tr...
call => press

—preSS-

teatura

pn»s(b: button) I«

Figure 1: Representations and mappings

Having decided to use several different documents as the basis for system evolution, the tasks
to be performed in the first preparatory phase of evolutionary software engineering consist in
constructing different (formal) representations of the software system and mappings between these
representations. The mappings, shown as arrows in Figure 1, constitute traceabil.ty links between
the different parts of the various documents. For example, the mapping between the ^ements
and the specification shows for each requirement where it is reflected m the specification. Of course
the traceability links should be bi-directional. This means, for example, that it should not only be
possible to find out how a requirement is distributed over the specification, but also to ask which

requirements influenced the different parts of the specification.
Figure 1 just shows examples of possible intermediate representations of a system. One could

also try to use fewer documents, for example do without the specification, or use more docu-
ments, for example the results yielded by reverse engineering tools as an additional ^Presentation
between the architecture and the code [HK95]. The optimal number and nature of intermedi
ate representations is still an open question. Too few intermediate representation result in very
complex mappings, whereas too many documents result in an organizational ova™*^

Another open question is how to construct the different representations and the™PP^A
promising idea is to work from both ends, i.e., on the one hand from the requirements to the more
concrete representations and on the other hand from the code to the more abstract representations.
Both the requirements and the code should be available at the beginn.ng of the first phf\

To validate the different representations and mappings, consistency criteria should be developed

that help to detect errors early in the construction process. rrl„tf,rhirnl «vie
If ever possible, the architectural description of the system should follow an^architectural style

[SG96]. Architectural styles characterize classes of systems that are structured according to the

161

same principles. Architectural styles and concrete architectural descriptions although usually
represented as informal diagrams, can be formalized. In contrast to informal ,d»^J?™£
architectural descriptions have a precise meaning. This makes it possible to define en en a for
a concrete architecture to belong to an architectural style [HL97] and to define operations on
architectures that accommodate the changes that are necessary during system evolution.

In practice, a legacy system will hardly be an instance of an architectural style, and it will also
have other flaws. Hence, the first phase will not only consist in constructing additiona documents,
but it will lead to a first revision of the system in order to make it amenable to systematic evolution.

The first phase of evolutionary software engineering, as sketched in this section, should not
depend on the languages that are used to express the various documents. Instead, our goal is to

develop a methodology that is representation independent.

4 Phase 2: System Evolution
Once a software system is represented in the way sketched in Section 3, its evolution car_be
performed in a systematic way. First, the new requirements must be expressed. They can either
feolce old requirements or be additional requirements that enhance the functionality of the system.

Next, the consequences of adding or replacing requirements should be analyzed. The new re-
quirements could be incompatible with the already existing requirements. Such a situation is called

an tnteraction. This term was originally coined in telecommunications and ^^^^
tures a customer can subscribe to. A feature interaction occurs when combining *«««* ^J
leads to undesired or unexpected behavior or logical contradiction. Hence, we call the analysis of
the consequences of adding new requirements to an existing system tnterachon "«J^

If interactions between requirements are detected, they should be resolved before proceed ng
with the system evolution. Resolution can either be achieved by changing (usually weakening) the
new requirements, or by revising existing requirements. This process is an iterative one and must

be repeated until no more interactions are found. rpnn;rP
Once the set of requirements has stabilized, i.e., all interactions are resolved the new require-

ments must be incorporated in the system. If existing requirements are repace' ^«^^
we can follow the mappings constructed in the first phase and change the intermediate documents
one by one. The mappings show the places where changes must be made. In this case, the overall
structure of the system is not likely to change. .,.„„,„

The situation is more complicated if the system functionality is enhanced by adding new re-
quirements. Then, the mappings between the different documents no longer indicate theplaces
where changes have to be made, and the present architecture of the system might no longer be

appropriate. Methods are needed to

. exploit the mappings as far as possible also for new requirements.
A possible approach is to classify the requirements, for example requirements that have to
do with the user interface, or the update of data, etc. If a new requirement belongs to a class
of requirements already present in the system, one could try to use the mappings belonging

to that class.

. incorporate entirely new requirements into the system that have no similarity with existing

I^eemTthat this activity has something in common with the first phase of evolutionary
software engineering. We must work from an updated set of requirements and incorporate

new requirements into all of the following more concrete documents.

• change a software architecture in a systematic way.
The change can either lead to a different architecture adhering to the same architectural
style, or even entail a change of the architectural style of the system. To change .software
architectures, operators that work on architectural descriptions should be developed. These

operators should also help to change the code.

So far, we have presented a general approach to evolutionary software engineering and have
pointed out concrete'research questions suggested by that approach. In the rest o.the paper we
present a piece of work that is more mature than what was discussed before and that makes up an
rmPortantPpart of evolutionary software technology. That work is a heuristic »^^^etect
interactions in requirements. Such an algorithm is necessary for systematic softwa- -° utlon.
because the consequences of a system change must be analyzed before actually executing it.

162

4.1 Analyzing Requirements for Interactions
Given a set of already accepted requirements and a new requirement, the algorithm we present in
the following calculates a set of candidate requirements with whom there might be an interaction.
The algorithm is heuristic, which means that we cannot guarantee that all existing interactions are
indeed detected. A heuristic algorithm is appropriate, because the notion of interaction can hardly
be formalized. It covers more phenomena than just logical inconsistency1. Striving for a provably
correct and complete algorithm would necessitate a formal and decidable notion of interaction.
However, it is questionable if such a definition is possible or even desirable.

The algorithm determines a set of candidates to examine. It does not prove that there really is
an interaction between the new constraint and each candidate. It is up to the stakeholders of the
system to decide if the combination of the new requirement with the candidates yields an unwanted

behavior or if it even is contradictory.
This algorithm was not developed specifically for software evolution, but as part of a require-

ments engineering method [HS99]. For analyzing interactions, however, it does not make any
difference whether some of the requirements are already implemented or not. Hence, the algorithm

is just as useful for the evolution of systems as it is for new systems.

System view.

We take the following view of a system: the system is started in some state Si. When event ey

happens at time tu then the system enters state S2, and so forth:

Ol > <J2 y - • • On 1 On
t.

+1

An event can either come from the environment of the software system and be detected via
sensors, or it can be the call of a system operation by a user. Hence, this view of a system is valid

for both reactive and transformational systems.

Formalization of requirements.

Our requirements engineering method proposes to express requirements as constraints over the set
Tr of admissible system traces, using event and predicate symbols.

We recommend to express - if possible - constraints as implications, where either the precondi-
tion of the implication refers to an earlier state or an earlier point in time than the postcondition,
or both the pre- and postcondition refer to the same state, i.e. we have an invariant of the system.

Example. We consider an elevator. A possible requirement is: «When the lift passes by floor k,

and there is a call from this floor, then the lift will stop at floor k".

Vtr:Tr;k: Floor • V i : dorn fr | t ^ #tr •
passes.by(tr{i).s,k) A call(tr{i).s,k) => tr{i + l).e = stop{k))

The symbols passes.by and call are predicate symbols, whereas the symbol stop is an event
symbol. For each trace fr and each i-th element fr(i) of the trace which is not the last one
(i ± #fr), we require that if the predicates passes-by and call are true of the state tr(t).s and the

floor Jfc, then the next event tr(i + l).e will be stop.

Schematic expressions.

The algorithm to determine interaction candidates uses schematic versions of formalized con-

straints. These schematic expressions have the following form:

xi o x2 o . • • o xn ~» j/i o Vi o ■ ■■ o JJk

where the *„ y3 are literals (i.e., either predicate or event symbols or their negations) and each o
denotes conjunction or disjunction. The symbol - separates the precondition from the postcon-

dition.

'Example: In the case study of an access control system [SHOOb], we had the foH°wi"8 ^'^t^or S
door is unblocked it will be re-blocked after 30 seconds" and "when a person has entered the building, the door will
br^blocked" These requirements interact, because it is intended to block the door ™^J^hJ££E
has entered and not only after 30 seconds. Logically, however, the two requirements are not contradictory. It would
suffice to re-block the door after 30 seconds, no matter if the person has entered or not.

163

For transforming a constraint into its schematic form, we abstract from quantifiers and from
parameters of predicate and event symbols. This results in a (deliberate) o^ of »formation For
LamS * A *s are no longer contradictory, because , could refer to a different argument than

"^Note that a detailed formalization of a requirement is not strictly necessary to set up the
schematic expressions. The schematic constraint could also be obtained directly from the natural-

language requirement.

Example. The above requirement has the schematic form passes.by A call ~> stop

Semantic relations.

Because the set of interaction candidates is determined completely automatically the algorithm
cannot be based on syntax alone. We also must take into account the semantic relations between
the different symbols. To that end, we construct three tables of semantic relations:

1. Necessary conditions for events. If an event e can only occur if predicate literal pi is true,

then this table has an entry pi <~ e.
Example. The event stop can only occur if the elevator is not halted: - halted <~ stop

2. Events establishing predicates. For each predicate literal pi, we need to know the events e

that establish it: e ~> pi

Example. The predicate halted is established by the event stop: stop - halted

3. Relations between predicate literals. For each predicate symbol p, we determine:

• the set of predicate literals it entails: p^ = {q : PLit | p =>• q)
Example, halted^, - {at, -> passes.by)

• the set of predicate literals its negation entails: - p=> = {q ■ PLit | - p =>• q)
Example. -> halted^ = {passes-by, ~< at]

Determining interaction candidates.

Two constraints are interaction candidates for one another if they have ^^^^
but incompatible postconditions, as is illustrated in Flgure 2. "Incompatible does not necessanly
mean "logfcally inconsistent"; it could also mean «inadequate" for the purpose of the system.

Figure 2: Interaction candidates

Our algorithm to determine interaction candidates consists of two parts: precondition interac-
tion an Jy sis determines constraints with preconditions that are neither exclusive nor ^depend^
of each other This means, there are situations where both constraints might apply. Their post

ndHion^have to be checked for incompatibility. Postcondition ^f-»^^^
hand determines as candidates the constraints with incompaüble postconditions. If in such a case

the preconditions do not exclude each other, an interaction occurs.

Precondition interaction candidates. If two constraints' * ~ y and u ^ * have common
literals in their precondition (x n u # 0), then they are certainly interaction ^.datee

But the common precondition may also be hidden. For example if r conta n the event e u
contains the predicate literal pi, and e is only posS1ble if pi holds {pi ~ e), then we also

detected a common precondition between the two events. PxamDle x
The common precondition may also be detected via reasoning on predicates. If, for exampe £

contains the predLte literal pi, u contains the predicate literal ,, and there 1S a predicate literal

w with pi => io and g^w, then w is a common precondition.
2 Underlined identifiers denote sets of literals.

164

Figure 3 shows how to calculate interaction candidates Cpre(c', far) by a precondition analysis
for a new constraint c' with respect to the set far of facts, assumptions, and requirements already

defined.

Pi'

Pt>
*0

7
PU

W
1

1
pre

e
plVy^e pi' pi e

pre

post post i_„

^e
cefar

Figure 3: Determining interaction candidates by precondition analysis

Postcondition interaction candidates. To find conflicting postconditions, we compute the set
of predicate literals that are entailed by the postcondition of the constraints under consideration
For an event e contained in the postcondition of a constraint, all predicate literals pi with e ^ pi
must be considered, too. If the postcondition of the new constraint entails a predicate literal whose
negation is entailed by the postcondition of an already accepted constraint, these constraints are
interaction candidates for each other. Figure 4 illustrates the definition.

pre
e

post
pTX^e pl

Pt> -
?

tf
c' - e

\»

- P>=>

pl've

pre

post

3 c e far

Figure 4: Determining interaction candidates by postcondition analysis

The algorithm is explained in more detail in [HS98b]. There, also the formal definitions of the

candidate sets are given.

Example. To briefly illustrate the algorithm, we consider a new requirement: «The lift gives

priority to calls from the executive landing", whose schematic form is

call ~+ next stop M-executive „floor

This requirement interacts with the one previously given: if there is a call from the executive floor,
the elevator will not necessarily stop at the floor it currently passes by, even if there is a call tor
that floor. The algorithm correctly identifies the previously given requirement as an interaction

candidate for the new one via the common precondition call.

The algorithm has been validated in several case studies. Besides the elevator [HS98a], we
have treated a microwave oven, an automatic teller machine, a simple telephone system, an access

control system [SHOOb] and a light control system [SHOOa].

5 Conclusions
In this paper, we have presented a general approach to evolutionary software engineering. This
approach must be refined, and the research questions raised need further investigation. In summary,

we consider the following points as important:

• Mastering systematic software evolution becomes more and more important.

. Software evolutions strategies should not be based on code, but on more abstract represen-

tations of the software system.

. These abstract representations will usually not exist for legacy systems. Hence, the first task
to perform before systematic software evolution is possible is to construct these representa-

tions.

. Several representations of a system on different levels of abstractions seem to be useful.
Bi-directional traceability links must be established between these representations.

165

. Before a system is changed, it should be analyzed if the new requirements do not interact in
an undesirable way with the rest of the system. We have presented a heuristic algorithm to

support this task.

. Once the new requirements have stabilized, the system can be changed in a systematic way,
making use of the mappings constructed in the first phase. This task is more difficult when
the new requirements make a re-structuring of the system necessary.

• Re-structuring a system should be supported by architectural operators.

. In connection with the mapping from the architectural description to the code the architec-
tural operators should help in changing the code according to the architectural changes.

References
[HK951 Maritta Heisel and Balachander Krishnamurthy. Bi-directional approach to modeling

architectures. Technical Report 95-31, Technical University of Berlin, 1995.

Maritta Heisel and Nicole Levy. Using LOTOS patterns *<*»»*^ mCSUU
styles. In M. Bidoit and M. Dauchet, editors, Proceedings TAPSOFT 97, LNCS 1214,

pages 818-832. Springer-Verlag, 1997.

Maritta Heisel and Jeanine Souquieres. Detecting feature interactions - a heuristic ap-
proach. In G. Saake and Can Türker, editors, Proc. of the first FIREworks Workshop,
Preprint 10/98, pages 30-48, Fakultät für Informatik, 1998. Univ. Magdeburg.

[HS98b] Maritta Heisel and Jeanine Souquieres. A heuristic approach to detect feature interactions
1 in requirements. In K. Kimbler and W. Bouma, editors, Proc. 5th Feature Interaction

Workshop, pages 165-171. IOS Press Amsterdam, 1998.

Maritta Heisel and Jeanine Souquieres. A method for requirements eUdtation and formal
specification. In Jacky Akoka, Mokrane Bouzeghoub, Isabelle Comyn-Wattiau and Ehsa-
beth Metais, editors, Proceedings 18th International Conference on Conceptual Modeling,

ER'99, LNCS 1728, pages 309-324. Springer-Verlag, 1999.

D. L. Parnas. Software Aging. In Proceedings International Conference on Software

Engineering. ACM Press, 1993.

Mary Shaw and David Garlan. Software Architecture. IEEE Computer Society Press, Los

Alamitos, 1996.

[HL97]

[HS98a

[HS99]

[Par93]

[SG96]

rSHOOal Jeanine Souquieres and Maritta Heisel. A method for systematic ^u^e^d^ion:

1 J Application to the light control system. Technical Report A00-R-090, LORIA, Nancy,

France, 2000.

[SHOOb] Jeanine Souquieres and Maritta Heisel. Une methode pour Felicitation <ta
besoins: application au Systeme de controle d'acces. In Yves Ledru, edi-
tor, Proceedings Approches Formelles dans ('Assistance au Development de Logi-
ciels - AFADL'2000, pages 36-50. LSR-IMAG, Grenoble, 2000. http://www-
lsr.imag.fr/afadl/Programme/ProgrammeAFADL2000.html.

166

Run-time Monitoring and Steering based on Formal
Specifications*

Sampath Kannan, Moonjoo Kim, Insup Leet,
Oleg Sokolsky, and Mahesh Viswanathan

Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA, U.S.A

August 30, 2000

Abstract

We describe the Monitoring-aided Checking and
Steering (MaCS) framework that assures the cor-
rectness of software execution at run-time. Check-
ing is performed based on a formal specification of
system requirements to ensure that the current sys-
tem behavior is in compliance with these require-
ments. When the system behavior violates these
requirements, steering is invoked to correct the sys-
tem. Our framework bridges the gap between for-
mal verification and testing. The former is used
to ensure the correctness of a design specification
rather than an implementation, whereas the latter
is used to validate an implementation. The pa-
per presents an overview of the framework and the
three scripting languages, which are used to spec-
ify what to observe from the running program, the
requirements that the program should satisfy, and
how to steer the running program to a safe state.
An important aspect of the framework is clear sepa-
ration between the implementation-dependent de-
scription of monitored objects and the high-level
requirements specification. Another salient feature
is automatic instrumentation of executable code for
monitoring and steering. This paper also describes
our current prototype implementation in Java.

*This research was supported in part by ARO DAAG55-
98-1-0393 ARO DAAG55-98-1-0466, NSF CCR-9619910,
NSF CCR-9988409, and ONR N00014-97-1-0505 (MURI).

♦POC: lee@cis.upenn.edu

1 Introduction

The design analysis and verification of distributed
and real-time systems has become an important re-
search topic over the past two decades. Important
results have been achieved, in particular, in the area
of formal verification [4]. Formal methods of system
analysis allow developers to specify their systems
using mathematical formalisms and prove proper-
ties of these specifications. These formal proofs
increase confidence in correctness of the system's
behavior. Complete formal verification, however,
has not yet become a practical method of analysis.
The reasons for this are twofold. First, the com-
plete verification of real-life systems remains infea-
sible. The growth of software size and complexity
seems to exceed advances in verification technology.
Second, verification results apply not to system im-
plementations, but to formal models of these sys-
tems. That is, even if a design has been formally
verified, it still does not ensure the correctness of
a particular implementation of the design. This is
because an implementation often is much more de-
tailed, and also may not strictly follow the design.

One way that people have traditionally tried to
overcome this gap between design and implementa-
tion has been to test an implementation on a pre-
determined set of input sequences. This approach,
however, fails to provide guarantees about the cor-
rectness of the implementation since not all possible
behaviors can be tested. For mobile code, testing
may not even be possible, especially if such code
is downloaded on demand for execution. Conse-

167

quently, when the system is running, it is hard to
guarantee whether or not the system is executing
correctly.

Computer systems are often monitored for per-
formance measurement, evaluation and enhance-
ment as well as to help debugging and testing [24].
Lately, there has been increasing attention from the
research community to the problem of designing
monitors that can be used to assure the correct-
ness of a system at runtime [1, 5, 23, 19, 22,17, 15].
These systems, however, tend to be based on infor-
mal specifications, require manual instrumentation,
or depend much on the specificity of target systems.
Our goal is to develop the monitoring, checking and
steering framework based on formal specifications,
which supports automatic instrumentation and iso-
lates the implementation-dependency of the target
system.

The overall structure of the Monitoring, Check-
ing and Steering framework is shown in Figure 1.
The user specifies the requirements of the system,
which are expressed in terms of a sequence of ab-
stract events, or trace. A monitoring script de-
scribes the mapping from observations to abstract
events. The Monitor use this script to decide when
and how to observe the system to extract abstract
events needed by the checker. The Checker veri-
fies the sequence of abstract events with respect to
the requirements specification, detects violations of
requirements and generate a meta-event as the re-
sult. The Steerer uses the sequence of meta-events
to decide how to adjust the system dynamically to
a safe state through control events.

In the next section, we decribe the framework. In
keeping with the design philosophy of the frame-
work, we have developed three languages in our
prototype implementation. The Meta-Event Def-
inition Language (MEDL) is used to express re-
quirements. MEDL is based on an extension of a
linear-time temporal logic. It allows us to express a
large subset of safety properties of systems, includ-
ing real-time properties. MEDL is described in Sec-
tion 3 Monitoring scripts are expressed in the Prim-
itive Event Definition Language (PEDL). PEDL
describes primitive high-level events and conditions
in terms of system objects. PEDL, therefore, is
tied to the implementation language of the moni-
tored system in the use of object names and types.
MEDL is independent of the monitored system.
The Steering Action Definition Language (SADL)

is used to specify how a system is affected by steer-
ing actions. Section 4 describes the prototype im-
plementation for Java as well as PEDL and SADL.

2 Overview of the Framework

The Monitoring, Checking and Steering (MaCS)
framework specifies components that are necessary
to perform run-time correctness monitoring of a
system. It is independent of the system implemen-
tation. Of course, any concrete implementation
of the framework will have to interface with the
system to ensure proper exchange of information
between the system and the monitor. In describ-
ing the framework, we carefully separate system-
dependent components from system-independent
ones. System-dependent components are presented
in the context of an existing prototype implemen-
tation of the framework.

The overall structure of the MaCS framework
is shown in Figure 1. The user specifies the re-
quirements of the system in a formal language.
Requirements are expressed in terms of high-level
events and conditions (see Section 3). In addition,
a monitoring script relates these events and condi-
tions with low-level data manipulated by the sys-
tem at run time. Based on the monitoring script,
the system is automatically instrumented to deliver
a stream of observations to the monitor. Obser-
vations are low-level data such as values of vari-
ables, method calls, etc. The monitor, also gen-
erated from the monitoring script, transforms this
low-level data into abstract events. Since detection
of abstract events is the primary function of the
monitor, we also refer to it as the event recognizer.

The reason for keeping the monitoring script
distinct from the requirements specification is to
maintain a clean separation between the system it-
self, implemented in a certain way, and high-level
system requirements, independent of a concrete
implementation. Implementation-dependent event
recognition performed by the monitor insulates the
requirement checker from the low-level details of
the system implementation. This separation also
allows us to perform monitoring of heterogeneous
distributed systems. A separate event recognizer
may be supplied for each module in such system.
Each event recognizer may process the low-level
data in a different way, and all deliver high-level

168

Figure 1: The Monitoring, Checking and Steering Framework

events to the checker in a uniform fashion. 3 Logic for Events and Condi-
tions

The abstract events recognized by the monitor
are delivered to the run-time checker. The run-
time checker verifies the sequence of abstract events
with respect to the requirements specification and
detects violations of requirements. When a viola-
tion is detected, the checker raises an alarm. Be-
sides the identification of the violation, the checker
may be able to provide diagnostic information to
the user, based on the data collected during moni-
toring. Because of the rich content, the outputs of
the checker are called meta-events.

Run-time monitoring and checking effectively de-
tects violations of system requirements and raise
an alarm when a violation happens. The question
is what to do when such a violation is detected,
especially for those systems that cannot be reset
and restarted. For such systems the run-time state
can be adjusted to steer the system to a safe state
through feedback from the checker to the monitored
system. The design philosophy of steering follows
the general idea of the framework, namely, that the
system is mostly correct, except for a few subtle
cases. Therefore, the steerer should not try to take
over the control of the system, but help the system
to recover from the detected violation by tuning
parameters of the system. This approach captures
the limitations of control that can be performed by
a loosely coupled component such as the checker.

The framework provides an architecture for ana-
lyzing systems formally and flexibly using runtime
information. In order to specify safety properties
that are being ensured, we distinguish observations
into events and conditions as in SCR [10]. Events
occur instantaneously during the system execution,
whereas conditions are predicates that hold for a
duration of time. The distinction between events
and conditions is very important in terms of what
the monitor can infer about the execution based on
the information it gets from the filter. The checker
assumes that truth values of all conditions remains
unchanged between updates from the monitor. For
events, the checker makes the dual assumption,
namely, that no events (of interest) happen between

updates.
Since events occur instantaneously, we can assign

to each event the time of its occurrence. Times-
tamps of events allow us to reason about timing
properties of monitored systems. A condition, on
the other hand, has duration, an interval of time
when the condition is satisfied. There is a close con-
nection between events and conditions: the start
and end of a condition's interval are events, and
the interval between any two events can be treated
as a condition. This relationship is made precise in

the logic [14].

Based on this distinction between events and
conditions, we have a simple two-sorted logic. The
syntax of conditions (C) and events (E) is as fol-

169

lows:

<C> ::= c
| [<E>, <E>)
I ! <C>
| <C> kk <C>
I <C> II <C>
| <C> => <C>

<G> ::= <E> -> <Statements>

<E> ::= e
I start(<C>)
I end(<C>)
| <E> kk <E>
I <E> II <E>
| <E> when <C>

Here e refers to primitive events that are reported
in the trace by the monitor; c is either a primitive
condition reported in the trace or a boolean con-
dition defined on the auxiliary variables. Guards
(G) are used to update auxiliary variables that may
record something about the history of the execu-

tion.
The models for this logic are similar to those for

linear temporal logic, in that they are sequences of
worlds. The worlds correspond to instants in time
at which we have information about the truth val-
ues of primitive conditions and events. Each world
is, therefore, labeled by the time instant it corre-
sponds to and the set of primitive conditions and
events that are true at that instant. Intuitively,
these worlds correspond to the times when the mon-
itor adds something to the trace.

The intuition in describing the semantics of
events and conditions based on such models, is that
conditions retain their truth values in the duration
between two worlds, while events are present only
at the instants corresponding to certain worlds.
The labels on the worlds give the truth values of
primitive conditions and events. The semantics for
negation (!c), conjunction (cl kk c2), disjunction
(cl 11 c2) and implication (cl => c2) of condi-
tions is defined naturally; so ! c is true when c is
false, cl kk c2 is true only when both cl and c2
are true, cl II c2 is true when either cl or c2
is true, and cl => c2 is true if c2 is true when-
ever cl is true. Conjunction (el kk e2) and dis-
junction (el II e2) on events is defined similarly.
Now, since conditions are true from some time until

just before the instant when they become false, two
events can naturally be associated with a condition,
namely the instant when the condition becomes
true (start (c)) and the instant when the condi-
tion becomes false (end(c)). Any pair of events
define an interval of time, and forms a condition
[el, e2) that is true from event el until e2. The
event e when c is true if e occurs and condition c
is true at that time instant. Finally, a guard e ->
stmt, is executed when event e is true; the effect of
the execution is to update the values of the auxil-
iary variables according to the assignments given in
stmt. The formal semantics for this logic is given

in [13, 14].
Notice that some natural equivalences hold m

this logic. For example, for any condition c, c = [
start(c), end(c)). This allows one to identify
conditions with pairs of events. Also, for conditions
cl and c2, and event e, e when cl when c2 = e
when cl kk c2.

3.1 Meta Event Definition Language
(MEDL)

The safety requirements that need to be moni-
tored are written in a language called MEDL. Like
PEDL, MEDL is also based on the logic for events
and conditions. Primitive events and conditions in
MEDL scripts are imported from PEDL monitor-
ing scripts; hence the language has the adjective

"meta".

Auxiliary Variables. The logic described
earlier has limited expressive power. For example,
one cannot count the number of occurrences of
an event, or talk about the ith occurrence of an
event. For this purpose, MEDL allows the user to
define auxiliary variables, whose values may then
be used to define events and conditions. Auxiliary
variables must be of one of the basic types in Java.
Updates of auxiliary variables are triggered by

events. For example,
RaisingGate -> {t = time (RaisingGate);}

records the time of occurrence of event
RaisingGate in the auxiliary variable t. Ex-

pression
el -> {count_el = count.el +1;}

counts occurrences of event el. A special auxiliary
variable currentTime can be used to refer to the

170

current time of the system. It is set to be the
timestamp of the last message received from the

filter.

Defining events and conditions. The primi-
tive events and conditions in MEDL are those that
are defined in PEDL. Besides these, primitive con-
ditions can also be defined by boolean expressions
using the auxiliary variables. More complex events
and conditions are then built up using the various
connectives described in Section 3. These events
and conditions are then used to define safety prop-

erties and alarms.

Safety Properties and Alarms. The correct-
ness of the system is described in terms safety
properties and alarms. Safety properties are con-
ditions that must always be true during the execu-
tion. Alarms, on the other hand, are events that
must never be raised. Note that all safety proper-
ties [16] can be described in this way. Also observe
that alarms and safety properties are complemen-
tary ways of expressing the same thing. The reason
we have both of them is because some properties
are easier to think of in terms of conditions, while
others are easier to think of in terms of alarms.

The checker, which is generated automatically
from the MEDL script, evaluates the events and
conditions described in the script, whenever it reads
an element from the trace. The evaluation of in-
dividual events and conditions is fairly standard
based on the semantics of the logic. However, there
are dependencies between different events and con-
ditions. For example, an event el that is defined
in terms of an auxiliary variable that is updated by
event e2, must be evaluated after e2 and the vari-
able have been updated. Hence, the checker must
evaluate the events and conditions in a consistent
order. In our implementation we use a DAG data
structure that implicitly encodes this dependency
and has additional information that allows for fast
evaluation of the events and conditions. Details of
this algorithm can be found in [13].

Example. We illustrate the use of MEDL using
a simple but representative example. The exam-
ple is inspired by the railroad crossing problem,
which is routinely used as an illustration of real-
time formalisms [9]. The system is composed of a

import event OpenGate, CloseGate;
import condition Gate_Down;
//Declaration of auxilliary variables

var float lastClose;
var float currentTime;

//Safety properties
property GateClosing =

[CloseGate when !Gate_Down,
OpenGate II start(Gate_Down))

=> lastClose + 30 > currentTime;
//Rules for updating auxilliary variables

CloseGate ->
{lastClose = time(CloseGate) ; }

Figure 2: A sample MEDL script

gate that can open and close, taking some time to
do it, trains that pass through the crossing, and
a controller that is responsible for closing the gate
when a train approaches the crossing and opening it
after it passes. The common specification approach
is to assume an upper bound on the time necessary
for the gate to open or close. In reality, however,
mechanical malfunctions may result in unexpect-
edly slow operation of the gate. A timely detection
of such a violation lets the train engineer stop the
train before it reaches the crossing. In this exam-
ple, we monitor the controller of the gate, using
the requirement that the gate is down within 30
seconds after signal CloseGate is sent, unless signal
OpenGate is sent before the time elapses. Precisely,
we check that if there is a signal CloseGate, not fol-
lowed by either signal OpenGate or completion of
gate closing, is present in the execution trace, then
the time elapsed since that signal is less than 30.

The correctness requirement for the gate is given
in the MEDL script shown in Figure 2. The time of
the last occurrence of event CloseGate is recorded
by the auxiliary variable lastClose. The require-
ment uses the events and conditions imported from
the monitoring script and states that if there was
a CloseGate event at the time when the gate was
not down, which was not followed by either event
OpenGate or condition Gate_Down becoming true,
then the time allotted for gate closing has not

elapsed yet.

171

4 Java MaCS

A prototype of the framework has been imple-
mented and tested on a number of examples.
The prototype is targeted towards monitoring and
checking of programs implemented in Java. Java
has been chosen as the target implementation lan-
guage because of the rich symbolic information that
is contained in Java class files, the executable for-
mat of Java programs. This information allows us
to perform the required instrumentation easily and
concentrate on the more fundamental aspects of the
monitoring and checking framework implementa-
tion. Figure 3 shows the overall structure of the
Java-based MaCS prototype.

The PEDL language of the prototype allows the
user to define primitive events in terms of the
objects of a Java program: updates of program
variables (fields of a class or local variables of a
method) and method calls. Automatic instrumen-
tation guarantees that all relevant updates are de-
tected and propagated to the event recognizer.

The prototype uses interpreters for PEDL and
MEDL. Each interpreter includes a parser for the
respective language and works on a parsed version
(the abstract syntax tree) of a script. The MEDL
interpreter is the run-time checker. It accepts prim-
itive events sent by the event recognizer and, af-
ter each primitive event, re-evaluates all events and
conditions described in the MEDL script that may
be affected by this event and raises alarms if nec-
essary. If a steering action is invoked in response
to an alarm, the run-time checker sends the corre-
sponding message to the system. The PEDL inter-
preter is the event recognizer. It accepts the low-
level data sent by the instrumented program and,
based on the definitions in the monitoring script,
detects occurrence of the primitive events and de-
livers them to the run-time checker. In addition,
the PEDL interpreter produces the instrumenta-
tion data that is used to automatically instrument

the system.
The MaCS instrumentation is based on JTREK

class library [12], which provides facilities to ex-
plore a Java class file and insert pieces of bytecode,
preserving integrity of the class. During instrumen-
tation, the instrumentor detects updates to moni-
tored variables and calls to monitored methods and
inserts code to send a message to the event recog-
nizer. The message contains the name of the called

method and its parameter values, or the name of
the updated variable and its new value. Each mes-
sage contains a time stamp that can be used in
checking of real-time properties. In addition, if
steering is to be performed, the instrumentor in-
serts the additional code at the positions prescribed
by the steering conditions. The code tests the flag
for action invocations and makes calls to the injec-
tor to execute the action.

The parser for SADL produces two components:
1) a list of actions together with their conditions
in the form that can be used by the instrumentor;
2) a new class, Injector, which is responsible for
communication with the run-time checker. When
the system is started, the injector is loaded into the
virtual machine of the monitored system. At run
time, when a steering action happens, the injector
receives a message from the checker and sets a flag
to indicate that the steering action has happened.
The bodies of the steering actions are also repre-
sented in the prototype as methods of the Injector

class.
During system start-up, the interpreters for

PEDL and MEDL are run together with the sys-
tem, either on the same computer or elsewhere on
the network. Connections between the system and
the interpreters are established during the system
initialization.

We give a brief overview of the three languages,
PEDL, MEDL, and SADL, used to describe what
to observe in the program, the requirements the
program must satisfy, and how to steer the running
program, respectively. These languages are based
on the logic for events and conditions described in

Section 3.

4.1 Primitive Event Definition Lan-
guage (PEDL)

PEDL is the language for writing monitoring
scripts. The design of PEDL is based on the fol-
lowing two principles. First, we encapsulate all
implementation-specific details of the monitoring
process in PEDL scripts. Second, we want the pro-
cess of event recognition to be as simple as possible.
Therefore, we limit the constructs of PEDL to allow
one to reason only about the current state in the
execution trace. The name, PEDL, reflects the fact
that the main purpose of PEDL scripts is to define
primitive events of requirement specifications.

172

Steering script
(SADL)

Program
(Java byte code)

Monitoring script
(PEDL)

Requirements
(MEDL)

Instrumentation

data

Instrumentation

data

MristriimenWr

Java virtual

MaCware

run-tune
dataflow

compile-time
dataflow

machine

Instrumented
Program

Injector

=&

parsed
PEDl

Event
V lecognizcr y' V!

parsed
MEDL

Checker

n
Figure 3: Java-based MaCS prototype

Monitored Entities. PEDL scripts can refer to
any object of the target system. This means that
declarations of monitored entities are by necessity
specific to the implementation language of the sys-
tem. In the current prototype which is based on
Java, values of fields of an object, as well as of lo-
cal variables of a method, and method calls can be
monitored. Examples of monitored entities' decla-
rations are given in Figure 5.

Defining Conditions. Primitive conditions in
PEDL, are constructed from boolean-valued ex-
pressions over the monitored variables. An example
of such condition is

condition TooFast =
Train.PositionO.speed > 100.

In addition to these, we have primitive condition
InM(f). This condition is true as long as the ex-
ecution is currently within method f. Complex
conditions are built from primitive conditions us-
ing boolean connectives.

Defining Events. The primitive events in PEDL
correspond to updates of monitored variables, and

calls and returns of monitored methods. Each event
has an associated timestamp and may have a tuple

of values.
The event update(x) is triggered when variable

x is assigned a value. The value associated with
this event is the new value of x. Events StartM(f)
and EndM(f) are triggered when control enters to
and return from method f, respectively. The value
associated with StartM is a tuple containing the
values of all arguments. The value of an event EndM
is a tuple that has the return value of the method,
along with the values of all the formal parameters
at the time control returns from the method. Be-
sides these three, we have one other primitive event
which is IoM(f). This is also triggered when con-
trol returns from a method f, but has as its value a
tuple that contains the return value of the method,
and the values of the arguments at the time of
method invocation. This event allows one to look
at the input-output behavior of a method, and is
needed if one wants to program check some numer-
ical computation. Notice that event IoM(f) is the
only event to violate our second design principle,
namely that the operation of the event recognizer
is to be based only on the current state.

173

class GateController {
public static final int GATE_UP = 0;
public static final int GATE.DOWN = 1;
public static final int INJTRANSIT = 2;
int gatePosition;
public void openO { — }
public void close0 { ... }

};

Figure 4: Implementation of the gate controller

All the operations on events defined in the logic
can be used to construct more complex events from
these primitive events. In PEDL, we also have two
attributes time and value, defined for events. As
mentioned in Section 3, events have associated with
them attribute values, and the time of their oc-
currence, and these can be accessed using the at-
tributes time and value, time(e) gives the time
of the last occurrence of event e, while value (e)
gives the value associated with e, provided e oc-
curs, time (e) refers to the time on the clock of the
monitored system (which may be different from the
clock of the monitor) when this event occurs.

Example. Continuing with the railroad cross-
ing example, we illustrate the use of PEDL. Fig-
ure 4 shows a fragment of the gate controller im-
plemented as a Java class. The state of the gate
is represented as variable gatePosition, which
can assume constant values GATEJUP, GATEJNDVN,
or INJTRANSIT. The controller controls the gate by
means of methods openO and close(). For sim-
plicity, we assume that there is only one instance
of class GateController in the system.

We need to observe calls to methods openO
and close(), and the state of the gate. The fol-
lowing PEDL script introduces high-level events
OpenGate, CloseGate and condition GateJDown.

4.2 A Language for Steering Actions
(SADL)

Steering scripts let the user specify steering actions
and control the moment when a steering action is
executed, ensuring its effectiveness. This is done by
means of steering conditions associated with each
action. After a steering exception is raised by the

export event OpenGate, CloseGate;
export condition Gate.Doun;

//Monitored Methods
monmeth void GateController.openO ;
monmeth void GateController.closeO ;

//Monitored variables
monent int GateController.gatePosition;

//Definition of conditions
condition Gate_Down =

(GateController.gatePosition ==
GateController.GATE.DOWN);

//Definition of Events
event OpenGate =

StartM(GateController.open());
event CloseGate =

StartM(GateController.close());

Figure 5: A sample PEDL script

checker, its execution is delayed until its condition
is satisfied. Steering conditions can be either static
or dynamic. Static conditions are fully evaluated
during instrumentation, while dynamic conditions
depend on run-time information. Dynamic condi-
tions provide for finer control of action invocations.
On the other hand, additional effort to evaluate the
conditions at run time can adversely affect perfor-
mance of the system. In the current prototype, only
static conditions are implemented.

To specify steering actions, we designed a spe-
cial scripting language SADL (Steering Action
Definition Language). The steering scripts writ-
ten in SADL specify how the system objects are
affected by a steering action. Figure 6 shows a sam-
ple script, taken from a study in steering of artificial
physics algorithms [8]. In the example, a pattern
of particles is being formed by applying forces of
attraction and repulsion between the particles. If a
problem is discovered, the checker steers the system
by manipulating the force of repulsion.

The script consists of two main sections: declara-
tion of steered objects (that is, system objects that
are involved in steering) and definition of steering
actions where the declared objects are used. Since
steering is performed directly on the system ob-
jects, SADL scripts are by necessity dependent on
the implementation language of the target system.
Since the MaCS prototype implementation aims at
systems implemented in Java, SADL scripts used
in the prototype are also tied to Java.

174

steering script mav

steered objects
Air MAV: air;
Point MAV:position;

ReqSpec mav

import action controlRepulsion(boolean);

alarm noPattern = ...;

steering action controlRepulsion(boolean tf) noPattern -> { invoke controlRepulsion(true); >

= { call (MAV:air).setRepulse(tf); }

before write MAV:position; end

end

Figure 6: A sample steering script

Steering entities. The entities involved in steer-
ing can be fields and methods of Java classes as
well as local variables of methods. In the example,
the steered entity is the Air object, a repository of
the algorithm parameters shared by all particles.
In addition, the variable representing position of a
particle is used in the specification of the steering

action.

Defining steering actions. The second section
of the steering script defines steering actions and
specifies steering conditions. An action can have a
set of parameters that are computed by the checker
and passed to the system together with the action
invocation. The body of an action is a collection
of statements, each of which is either a call to a
method of the system or an assignment to a system
variable. In the example, the steering action calls a
method that controls repulsion between particles,
and is allowed to happen every time the position of
a particle is about to be updated.

Invocation of steering actions in MEDL
scripts. In addition to a steering script, the re-
quirement specification language is extended to
provide for invocation of steering actions. An ac-
tion is invoked in response to an occurrence of an
event or an alarm. Figure 7 presents a fragment
of the MEDL script of the artificial physics exam-
ple. It shows the declaration of the steering ac-
tion controlRepulsion, imported from the steer-
ing script, and the alarm noPattern that is raised
by the checker when it detects a violation of the
pattern formation. The definition of the alarm is

Figure 7: Action invocation in the MEDL script

rather complex and is omitted for clarity. When
the alarm is raised, the steering action is invoked
with the true value of its parameter, which sus-
pends repulsion between particles and triggers the
process of restoring the pattern.

5 Related Work

The "behavioral abstraction" approach to monitor-
ing was pioneered by Bates and Wileden [1]. Al-
though their approach lacked formal foundation, it
provided an impetus for future developments. Sev-
eral other approaches pursue goals that are similar
to ours. The work of [5] addresses monitoring of a
distributed bus-based system, based on a Petri Net
specification. Since only the bus activity is moni-
tored, there is no need for instrumentation of the
system. [20] generates a monitor for real-time re-
active system based on a tabular requirement spec-
ification. The monitor watches over a pair of input
and output of the system. The authors of [23] also
consider only input/output behavior of the system.
In our opinion, the instrumentation of key points
in the system allows us to detect violations faster
and more reliably, without sacrificing too much per-
formance. The test automation approach of [19]
is also targeted towards monitoring of black-box
systems without resorting to instrumentation. In
contrast, we aim at using the MaCS framework be-
yond testing, during real system executions. Sankar
and Mandel have developed a methodology to con-
tinuously monitor an executing Ada program for
specification consistency [22]. The user manually
annotates an Ada program with constructs from
ANNA, a formal specification language. Mok and
Liu [17] proposed an approach for monitoring the

175

violation of timing constraints written in the speci-
fication language based on Real-time Logic as early
as possible with low-overhead. The framework we
describe in this paper does not limit itself to any
particular kind of monitored properties. In [15],
an elaborate language for specification of moni-
tored events based on relational algebra is pro-
posed. Instrumentation of high-level source code is
provided automatically. Collected data are stored
in a database. Since the instrumentation code per-
forms database queries, instrumentation can signif-
icantly alter the performance of a program.

A large body of related research work concen-
trates on automated generation of test oracles from
the requirements. A general methodology for doing
this is discussed in [21], together with examples in
Real Time Interval Logic (RTIL) and Z. In [2] a
trace analysis tool for LOTOS requirements is de-
scribed, while [7] describes a similar tool for Estelle
requirements. Generating test oracles for Graphi-
cal Interval Logic (GIL) is discussed in [6, 18]. An
equivalent problem for a safe fragment of Linear
Temporal Logic is put forth in [11]. This fragment
is expressively similar to MEDL. We note that the
MaCS framework gives more than just a test oracle
for a given specification. Its ability to generate di-
agnostic information and provide feedback the the
system in case of requirement violations makes it a
more general tool.

The simulation and monitoring platform MT-
Sim [3], based on the graphical real-time specifi-
cation language Modechart, is similar in its intent
to MaCS, however, we are not as tied to a fixed
specification formalism.

6 Conclusions

This paper describes the Monitoring-aided Check-
ing and Steering (MaCS) framework which is de-
veloped to assure the correctness of execution at
run-time and to perform dynamic correction of sys-
tem behavior by steering actions. Monitoring and
checking is performed based on a formal specifica-
tion of system requirements, and is use to detect
violations of safety properties in the observed ex-
ecution of the monitored system. Steering is in-
tegrated with monitoring and checking to put the
system back to a safe state. The MaCS framework
is a step towards bridging the gap between verifi-

cation of system design specifications and valida-
tion of system implementations in a high-level pro-
gramming language. The former is desirable but
yet impractical for large systems, while the latter
is necessary but informal or incomplete.

There are several issues that need further work.
For example, we would like to understand bet-
ter the theoretical basis for steering; in particular,
what problems can be resolved by means of steer-
ing, what is the right way to reason about steering,
to convince ourselves that steering will have the de-
sired effect. The current prototype system for Java
is available at www.cis.upenn.edu/"rtg/macs,
and will serve as an important vehicle in exploring
the possibilities and shortcomings of our approach.
We are currently conducting several case studies in
monitoring and steering of systems, and we expect
to gain much experience from them. We also plan
to extend the prototype implementation to support
distributed systems written in Java.

References

[1] P.C. Bates and J.C Wileden. High-level
debugging: The behavioral abstraction ap-
proach. J. Syst. Software, 3(255-264), 1983.

[2] G.v. Bochmann, R. Dssouli, and J.R. Zhao.
Trace analysis for conformance and arbitration
testing. IEEE Transactions on Software Engi-
neering, 15(11):1347-1356, November 1989.

[3] Monica Brockmeyer, Farnam Jahanian, Con-
stance Heitmeyer, and Bruce Labaw. A flex-
ible, extensible environment for testing real-
time specifications. In Proceedings of the IEEE
Real-Time Technology and Applications Sym-

posium (RTAS), 1997.

[4] Edmund M. Clarke and Jeannette M. Wing.
Formal methods: State of the art and fu-
ture directions. ACM Computing Surveys,
28(4):626-643, December 1996.

[5] Michel Diaz, Guy Juanole, and Jean-Pierre
Courtiat. Observer - a concept for for-
mal on-line validation of distributed systems.
IEEE Transactions on Soßware Engineering,
20(12):900-913, December 1994.

176

[6] Laura K. Dillon and Q. Yu. Oracles for check-
ing temporal properties of concurrent systems.
In Proceedings of the 2nd ACM SIGSOFT
Symposium on Foundations of Software Engi-
neering (SIGSOFT94), volume 19, pages 140-
153, December 1994. Proceedings published as
Software Engineering Notes.

[7] S.A. Ezust and G.v. Bochmann. An automatic
trace analysis tool generator for estelle speci-
fications. Computer Communication Review,
25(4):175-184, October 1995. Proceedings of
ACM SIGCOMM 95 Conference.

[8] Diana Gordon, William Spears, Oleg Sokol-
sky, and Insup Lee. Distributed spatial con-
trol and global monitoring of mobile agents.
In Proceedings of the IEEE International Con-
ference on Information, Intelligence, and Sys-
tems - ICIIS'99, to appear, November 1999.

[9] C. Heitmeyer and D. Mandrioli, Eds. Formal
Methods for Real-Time Systems. Number 5 in
Trends in Software. John Wiley & Sons, 1996.

[10] Constance Heitmeyer, Alan Bull, Carolyn
Gasarch, and Bruce Labaw. Scr*: A toolset
for specifying and analyzing requirements. In
Proceedings of COMPASS, 1995.

[11] L. J. Jagadeesan, A. Porter, C- Puchol, J. C.
Ramming, and L.G.Votta. Specification-based
testing of reactive software: Tools and ex-
periments. In Proceedings of the Interna-
tional Conference on Software Engineering,

May 1997.

[12] Java Technology Center, Compaq Corp.
Compaq JTrek . Online documentation:
http://www.digital.com/java/download/jtrek/.

[13] Moonjoo Kim, Mahesh Viswanathan, Hanene
Ben-Abdallah, Sampath Kannan, Insup Lee,
and Oleg Sokolsky. A framework for run-
time correctness assurance of real-time sys-
tems. Technical Report MS-CIS-98-37, Uni-
versity of Pennsylvania, 1998.

[14] I. Lee, S. Kannan, M. Kim, 0. Sokolsky, and
M. Viswanathan. Runtime assurance based on
formal specifications. In Proc. Int. Conf. on
Parallel and Distributed Processing Techniques

and Applications^ 1999.

[15] Yingsha Liao and Donald Cohen. A spec-
ilicational approach to high level program
monitoring and measuring. IEEE Transac-
tions on Software Engineering, 18(11):969-

979, November 1992.

[16] Z. Manna and A. Pnueli. The Temporal Logic
of Reactive and Concurrent Systems. Springer-

Verlag, 1992.

[17] Aloysius K. Mok and Guangtian Liu. Efficient
run-time monitoring of timing constraints. In
IEEE Real-Time Technology and Applications

Symposium, June 1997.

[18] T.O. O'Malley, D.J. Richardson, and L.K.
Dillon. Efficient specification-based test ora-
cles. In Second California Software Symposium

(CSS'96), April 1996.

[19] J. Peleska. Test automation for safety-critical
systems: Industrial application and future de-
velopments. In FME'96: Third International
Symposium of Formal Methods Europe, vol-
ume 1051 of LNCS, pages 39-59, 1996.

[20] D. K. Peters and D. L. Parnas. Requirements-
based monitors for real-time systems. In IS-
STA'OO: International Symposium on Soft-
ware Testing and Analysis, 2000.

[21] D.J. Richardson, S. Leif Aha, and T.O.
O'Malley. Specification-based oracles for reac-
tive systems. In Uth International Conference
on Software Engineering, May 1992.

[22] Sriram Sankar and Manas Mandal. Concur-
rent runtime monitoring of formally specified
programs. In IEEE Computer, pages 32 -41,

March 1993.

[23] T. Savor and R. E. Seviora. An approach
to automatic detection of software failures in
real-time systems. In IEEE Real-Time Tech-
nology and Applications Symposium, pages 136

-146, June 1997.

[24] Beth A. Schroeder. On-line monitoring: A tu-
torial. In IEEE Computer, pages 72 - 78, June

1995.

177

Towards Practical Support for Component-Based Software
Development Using Formal Specification

- - Position Statement - -
Heinrich Hussmann

Dresden University of Technology
Department of Computer Science

Email: h.hussmann@computer.org

Abstract

Starting from an analysis of the situation of a software
developer using pre-fabricated components, it is investigated in
which form techniques and formalisms from the area of formal
specification can provide practical aid in development. Several
different dimensions of precise component specification are
identified. While formal specifications can be helpful for
several of these dimensions, it is argued that the most relevant
application area may be a flexible mechanism for creating
different but consistent views on a complex system. Ideas for
concrete tool support based on the Object Constraint Language
(OCL) are sketched.

1 Introduction
Building software from pre-fabricated components has been discussed since a long time
(e.g. [McIlroy68, Cox90] as the ultimate breakthrough towards industrial production of
software. It took until the end of the 90s that a number of technologies have appeared,
mainly based on object-oriented principles, which make the component-based
construction of complex software practically viable. A good overview of the current
state of the art is given in [Szyperski97]. The term "component" is used in several
variants. For this paper, we are concentrating on those approaches to component-based
software development, where (relatively small) components are designed and produced
with the explicit and sole purpose of later composition to applications. Examples of
important recent technologies of this kind are Java Beans [JavaBeans97], Delphi
Components, Enterprise Java Beans [Monson-Haefel99], or CORBA components

[CC99].
The normal working situation of an application developer in component-based
programming is to place a number of components on a graphical design surface, to
configure them by setting property values and to interconnect them by event
mechanisms. Designing an application becomes very similar to drawing a diagram with
a special software tool. Of course, the range of possible applications that can be
produced in this way is limited by the possibilities for component configuration, i.e. the
properties (parameters) of the pre-fabricated components and the foreseen support for
creating events and reacting to events in a component.

It is relatively easy to deal with software components in this style as long as these
components mirror concrete elements of the user interface (so-called visual
components). So for the realisation of Graphical User Interfaces (GUIs), component-
based approaches are already accepted as a standard technology and are supported by

178

many commercial software development tools (e.g. JBuilder, Delphi, NetBeans). As
soon as non-visual components are used, developers often feel less at ease with the
component-based approach. Components acting as an information source for visual
components (e.g. access to a database) are still relatively easy to integrate (and
frequently used in practice). For most other kinds of components, in particular so-called
business components representing facts and procedures of real-life businesses,
significant effort has to be spent on learning the concepts that are behind the given
components. However, the technology is mature enough to cover also server-side
components, including issues of persistence, transaction and security (e.g. in Enterprise

Java Beans).
As a starting point for the further discussion, let us analyse the situation of a software
developer using the above-mentioned new technologies. The following observations can

be made:
• When a specific use case is to be realised, the developer has to find the appropriate

components to achieve the desired effect. In a large and sophisticated component
library, the effort for finding an appropriate component and learning its use is quite
high, often comparable to the effort to be spent for a direct implementation of the
functionality. Search engines for component libraries can provide some help here.
However, tools can never really save the effort that has to be spent on learning the
actual application domain of the components and the conceptual ideas behind the
components being on offer. Moreover, once a potentially suitable component has
been found, it is extremely important to get precise information on the preconditions
under which one can assume the component or a specific method of a component to
work properly.

• The resulting network of interconnected components is not easy to understand.
There is no obvious overall structure of the application "program". The design is
created interactively, and is often produced in a series of iterations. The graphical
tools are not sufficient for showing the logical structure: Showing all
interconnections graphically tends to give the optical impression of a bowl of
spaghetti. Not showing the interconnections makes it difficult to trace the
dependencies among components.

• One of the main motivations for using components is an economic one. Based on
component technology, the evolution of a market is expected where third-party
software developers offer components to application developers. One of the crucial
issues in this model is the contractual situation. A component somehow provides a
contract stating that it delivers some functionality when the environment meets
certain preconditions. But how can a software developer trust the quality of the
software components he is buying and using, when these contracts are not made

explicit?
As can be seen from the list above, the main problems in dealing with components lie in
the adequate specification of components, in particular regarding their interaction. In the
remainder of this text, this topic is discussed further. In section 2, it is claimed that
formal specification techniques are a relevant technology for improving component
technology. Section 3 contains seven theses on the way how some of the well-
developed techniques from formal specification may be applied to bring practical aid tor
component-based software development. Section 4 sketches potential tool support
following the ideas from section 3.

179

2 Formal Specification and Components

Extensive research in formal specification languages (i.e. specification languages
providing a formal syntax with a mathematical semantics) has been carried out now for
several decades. Interestingly, the effect of this research on practical software
development has been low up to now. [Meyer97] argues that the main reason is that the
effort spent on a precise specification does not pay back appropriately in the current
market situation where software is produced with very high time pressure, relatively
low quality standards and a very limited extent of reuse. He claims that the situation
will change completely when component-based development is applied on a large scale.

• For component developers and component users, an urgent need exists to rely on
precise contracts about the functionality of the software. To protect the component
developers, software components are usually delivered as compiled code, so the
source code cannot be used for clarifying issued about the detailed functionality. It
is a clear strength of formal specification techniques to describe software as a "black
box", but with absolute precision. So it seems logical to have a formal specification
of a component (system) as part of the contract.

• For component developers, high investments into quality of the components pay
back, since they can expect high-quality components to sell in very large quantities.
So it may be economically feasible to spend extra effort on formal specification and
even verification.

These ideas have led to the formation of an informal group of persons interested in
high-quality components, the "Trusted Components Initiative" [TCI]. However,
compared to the fast development of software technology (in particular in object-
oriented and component-based approaches), it is astonishing that only relatively little
progress has been made in this area during the last three years.

Further attempts to establish a precise component specification language have been
made also by people from a less theoretical background, for instance the "BOCA"
(Business Object Component Architecture Initiative) [Digre98]. BOCA aimed at
defining a standardised component definition language where the semantics of
components can be precisely specified by making reference to an underlying semantic
model of the problem. This initiative somehow was torn apart by competing forces in
the OMG standardisation process (the BOCA approach was rejected by OMG m
summer 1998).
So altogether one can state that precise specifications for components have not yet taken
up a role as a driving technology, despite of the potentially good perspective. One
reason for the relatively slow progress may lie in the "fastly moving scenario" which is
referred to in the motto of this workshop. The main reason for using components is to
shorten development time and to ease application adaptation, but without introducing
new (potentially time-consuming) technologies for quality assurance.

So it seems that simply specifying the behaviour of components with existing formal
specification approaches is too naive an approach for being applied in practice. Below,
we try to discuss more sophisticated and restricted ways how formal specification can
be of practical help, keeping the "fastly moving scenario" in mind.

3 Seven Theses on the Practical Usefulness of Formal
Specification for Components

In the following, a number of theses are put together regarding the potential of formal
specification techniques for component specification.

180

3.1 Thesis 1: Components cannot be considered in isolation.

At a first look it may seem logical to consider a component as an entity that is
JÄrS^edby its (formally specified) interface. However, oomg^^dto
be tied together in specific groups quite closely. As an example from GUI components
(I kT Java Swing), MenuBars are closely tied to Menultems, Separators and othe
components In business objects, an order processing component has to know about
Products and customers, which are most probably dealt with m other c™^-**
when talking about precise specification of components, one is always talking about
join!^ specification "of a group of components (a component-based apphcaUon

framework).
The idea that was used in the BOCA approach seems to be logical here: A specification
of a component system consists of a specification of the semantic domain plus
individual contracts for components using the terms of the semantic domain.

3.2 Thesis 2: Full formal specification of business domain semantics is

too much.
Based on the idea of a semantic domain specification, it seems to be necessary to fully
fp'Tfy th application domain of a group of specified components. Howeve,- thi,; turn
out as an extremely complex task, which is not needed in all circumstances^ So for
Stance specifying the exact behaviour of GUI components requires extensive
SSo^f AeUnetiy of windows. However, many of the operations are just
SÄ in their semantics, like an action being called when a button is pushed
TS Lno doubt about the required functionality here so formal specifioaJon of*««
aspects would not enhance the quality of component description. A similar situation
S^taSsin^s objects, where many rules and algorithms, e.g. for accounting, are
Sfincd «Sds'of the business domain, so the only contract for the component
needed is to refer to these (mostly informal) standards.

When considering the evolution of reuse in programs for a specific business ■domain
there an increase in abstraction levels can be observed (see e.g [Pree 97]). In he
tegmnTngsolutions for individual problems of the application domain are implemented
Specified) In a later stage, libraries for frequently needed functions are designed,
Lading eg to object-oriented application frameworks. When such a framework !S
matoe enough it is possible to design a group of components for this application
Cam "such a ways that its adaptation to individual problems does not require any
ZZlng language code anymore. This means that the components are mtrodu ed
alevd where the application domain is very well understood and where the
fomponentslemselves Snor very closely the concepts of the application domain. So a
elXTy mall semantic gap remains between the business domain andI the componen

framework The need for a formal specification on this level disappears mostly, since
me coneys are thoroughly understood by the contract partners. There is no need for
n tanc^cTpS^ts ta^eted at accounting systems to formally specify algorithms
S^iSatiTiilh interest rates, since the relevant algorithms are well known to
SÄÄ in this area and can just be referenced by using the appropriate term

used in the business domain.
As explained above, there are two strong forces that prohibit the full formal
fpecfi I of a business domain: the sheer effort required to do so, and the hm.t
usefulness in a well-known business domain. However, some aspects of a system in
p rticulaco ordination aspects, require formal specification see below. Forprac .ca
application, it seems in most cases sufficient to give a semi-formal specification of the

181

full business domain. This means to define e.g. UML class diagrams plus a number of
informal explanations. On such a basis, it is also possible to specify selected important
conditions formally, which have to be enforced as part of the contract. Examples are
invariants regarding security conditions or mission-critical consistency conditions. So
formal rigour can be applied just to a few selected aspects of the domain.

3.3 Thesis 3: Specification of execution semantics is too much.

In the literature, some approaches can be found which map component architectures and
concrete components into formal specifications. The focus is here on concurrent
processes and event processing. This kind of work is of course very important in order
to develop an overall understanding of the semantic concepts in various programming
paradigms. Nevertheless, it is not directly helpful for the work of a component
developer or a software developer using components. These developers usually have a
quite clear understanding of the operational semantics of the component architecture
they are working in. The problem is not so much to define the semantics of the
component architecture but to understand the co-ordination and co-operation issues in a
given component configuration.

3.4 Thesis 4: Critical component co-ordination issues require precise
specifications.

The last two theses left the impression that there is not much to be achieved by formal
specification techniques, which is of practical relevance. However, the demand for
precise specifications still exists even when we rule out the aspects mentioned in the
preceding two theses. When configuring components to an application, there are many
questions of the following kinds:

Questions to be answered about the static component configuration:

• In order to make use of component X, which other components have to exist and
how are they to be connected to X?

• When configuring the properties of the component X, which rules have to obeyed in
order to keep the component working properly? Which dependencies exist to
property values of other (connected) components?

Questions to be answered at design time, but related to effects appearing at run time:

• In order to invoke some operation of a component, which preconditions have to be

ensured?
• When having executed an operation of a component, which changes to the

preconditions of other operations can be inferred?

In general, questions about the right configuration of components are important for
practical usage of components. So a contract for a component may be rather sloppy on
the specification of the actual algorithms contained in the component (as long as these
algorithms are well known and do not need further explanation). But a contract has to
be very explicit about the constraints that have to be obeyed in the configuration of
components and in interconnecting the components.

More generally speaking, there are different aspects of a specification for a business
domain One aspect is the detailed description of all details and functions, which was
considered less important in thesis 2 above. Another aspect is the system of rules
governing the co-ordination and configuration of the components. Component co-

182

ordination languages are also subject of recent related research work (see e.g.[MS00]
from this workshop).
It is important to see that precise specification of configuration and co-ordination of
course requires some degree of precise specification of the business domain and of the
component runtime semantics (which looks like a contradiction to theses 2 and 3
above) However, it is sufficient to provide these specifications on a much simpler
abstraction level where much of the detail information is left out. This abstraction saves
time and effort, and contributes to economic viability.

3.5 Thesis 5: Non-functional requirements are important.

The arguments above were essentially restricted to the functional requirements for a
software system. In fact, there are several other dimensions of requirements that have to
be taken into account in specification of software components.

The purely functional aspect of component specification (which effect is achieved when
I invoke some operation?) can be separated into two aspects, as it was indicated above
in thesis 2: "Functional essence" of the application domain, which is in many cases of
limited relevance, and selected, particularly critical aspects.

Besides the functional aspects, several non-functional aspects are relevant for the
practical usability of a component:
. What are the resources needed by the component (e.g. memory, hardware/software

platform)?
. What is the (average, maximum) response time of the component to an input event?

. Which error rate is guaranteed for the component (based on a classification of error

types)?
. Which security/confidentiality properties are guaranteed by the component (e.g.

encryption and authentication in communication with other components)?

The above-mentioned aspects of a component belong to a practically useful component
specification. The specification has the form of a rely/guarantee contract, i.e. depending
on the non-functional properties of the container a component is allocated to. A close
integration with the (critical) functional aspects is possible (e.g. performance or
confidentiality dependent in individual parts of the functionality).

In the remainder of this text, we will not stress further the issues of non-functional
requirements, in order to keep to a limited scope.

3.6 Thesis 6: Formal specifications may provide a flexible mechanism for
browsing/viewing component configurations.

When considering the situation of a developer who is configuring a concrete set of
components to create an application, and assuming that the components are specified
along the lines sketched above, the following opportunities appear:

• Some of the formally specified conditions on component configurations can be
checked directly (e.g. presence of some required other components), and feedback
can be given immediately to the developer.

. For many other conditions, general consistency rules (like runtime preconditions
and invariants) can be instantiated according to the current component
configuration. If a formal language with a precise logical semantics is used, the

183

instantiated rules can be simplified automatically. These more specific versions of
the rules are easier to understand for a developer.

• Since components are interconnected in a complex way, the investigation e.g. of a
precondition of an operation may span over several components. So the
instantiation, composition and simplification of formal component specifications
leads to a dynamic creation of textual explanations for the current component
configuration, based on some developer-given query. The idea is here to provide a
"semantics-directed browser" of the current component configuration.

3.7 Thesis 7: Formal specifications shall be interpreted by machines and
still be readable for human beings.

This last thesis is of a very general nature. As it can be seen from the relatively well-
functioning system of laws and justice, natural language is in most cases sufficient for
establishing contracts. The advantage of using a mathematically precise specification
language for contracts is that the specification becomes machine-processable. So it is
possible to monitor at runtime whether the contract is fulfilled, it is possible to use
sophisticated browsers as mentioned above and it should be possible to automatically
create appropriate tests whether a component fulfils its contract.

4 Ideas for Tool Support

4.1 Tool Functionality

Basically, advanced tool support based on formal specifications should be integrated
into support tools that follow the state of the art of component-based development. This
means that components are represented graphically and special browsers (inspectors)
are used to deal with the formal specification of a component in the same way as normal
properties are adjusted. So the formal specifications are stored as local parts of the
component and packaged together with the component.

Typical examples for formal component constraints in the sense of the discussion above
may be, in the context of an order processing system:
• An OrderProcessing component assumes that its local properties

customerManagement and productManagement are set to defined components (of

the correct type).
• The CustomerManagement component can only deal with Customer components

which have a customerNumber and customerStatus attribute.
• A precondition for the local method createOrder of the OrderProcessing

component is that the customerManagement has checked the respective customer
status (whether he/she pays his /her bills, for instance).

These examples show that besides constraints rooted in the business domain, there are
also many constraints that are of a more syntactical nature and therefore can be checked
mechanically. A support tool can help the developer in many different ways here:
. By documenting and maintaining the constraints (which helps to understand the

configuration rules);
. By instantiating the constraints according to the current configuration of component

instances and applying static simplifications; (For instance, the constraint that the
customerManagement property is defined can be removed as soon as it is fulfilled in
the current configuration.);

• As a generalisation of the above-mentioned functionality, by providing a flexible
browser for the interdependences among the components;

184

. By providing an intelligent help function in resolving open issues regarding the
component configuration; (e.g. providing a checklist of unresolved constraints);

. By compiling those constraints, which cannot be resolved statically, into dynamic

runtime checks.

So the overall functionality envisaged here is not related to verification or any other
advanced use of logical calculi. Instead, the focus is on such constraints, which can
mechanically evaluated during the application design and testing process. According to
the theses from above, it is this kind of support which is most helpful for the developer.

4.2 Specification Language
For the design of support tools, an important question is the concrete choice of the
specification language. A language is need with the following properties:
• easy to understand and learn for software developers;
. well integrated with the object-oriented paradigm underlying component

technology; .
. compatible with object-oriented business domain models, described e.g. in UML,
• compatible with the emerging Component IDL for CORBA;
. applicable in the level of business models as well as on the level of meta-models

(for description of component configurations);
• fully machine-executable.

A suitable starting point for the choice of a language with these properties is the Object
Constraint Language (OCL) [WK99], which is part of the UML. OCL is able to express
various kinds of constraints on objects, including constraints on meta-level (using a
reflection mechanism). OCL is explicitly designed for fully automatic mecharuca
checking of the constraints. First tools exist which evaluate OCL expressions at object
configuration time and at runtime [HDFOO, RGOO].

5 Conclusion and Outlook
In this position statement, it has been argued that there is a clear need for precise
semantic component specification. However, a specific approach has been suggested
which carefully distinguishes between separate aspects of component specification. Ine
suggested approach does not aim at a general specification of the application domain for
a set of components, but tries to give support for understanding the complex interactions
of components. It has been stressed that non-functional properties are as least as
relevant as functional properties for components.

Some of the ideas mentioned in this paper are currently explored further in research
projects at Dresden University of Technology. So an initiative exists for investigating
non-functional aspects of components in a co-operation of several computer science
disciplines. Moreover, first building blocks for tool support using OCL exists already, in
the form of an OCL parser, typechecker and OCL-to-Java compiler [DOCL00]

Acknowledgement: I would like to thank Klaus Bergner, 4Soft München, for interesting

email discussions.

185

References
[CC99] OMG, CORBA Components, Joint revised submission, OMG TC document
orbos/99-02-05, 1999
[Cox90] B. Cox, Planning the software industrial revolution. IEEE Software (7)6,
November 1990.

[Digre98] T. Digre, Business component architecture, IEEE Software (15)5,
September/October 1998, 60-69.

[DOCL00] F. Finger, B. Demuth, H. Hussmann, Dresden OCL Compiler, see
http://www-st.inf.tu-dresden.de/ocl

[HDFOO] H. Hussmann; B. Demuth, F. Finger: Modular Architecture for a Toolset
Supporting OCL, to appear in Proceedings «UML»2000, Conference, October 3-6,

2000, York, UK

[JavaBeans97] Sun Microsystems, JavaBeans specification,
http://java.sun.com/beans/doc/spec.htm

[McIlroy68] M. D. Mcllroy, Mass produced software components, Proc. Nato Software
Eng. Conf., Garmisch, Germany (1968) 138-155.

[Meyer97] B. Meyer, The next software breakthrough, IEEE Software (30)7, July 1997,

113-114.
[Monson-Haefel99] R. Monson-Haefel, Enterprise JavaBeans, O'Reilly 1999.

[MSOO] C. Montangero, L. Semini, Specification and composition of software
components: formal methods meet standards, Proc. Monterey Workshop 2000, part of
this volume.
[Pree 97] W. Pree, Komponentenbasierte Softwareentwicklung mit Frameworks, dpunkt

1997.
[RGOO] M. Richters, M. Gogolla, Validating UML Models and OCL Constraints, to
appear in Proceedings «UML»2000, Conference, October 3-6, 2000, York, UK.

[Szyperski97] C. Szyperski, Component software, Addison-Wesley 1997.

[TCI] The Trusted Components Initiative, see http://www.trusted-components.org

[WK99] J. Warmer, A. Kleppe, The Object Constraint Language, Addison-Wesley

1999.

186

On the Analysis of Dynamic Properties in
Component-Based Programming

Paola Inverardi1 and Alexander L. Wolf2

1 Dip. di Matematica, Universit'a dell' Aquila, 1-67010, L'Aquila, Italy
2 Dep. of Computer Science, University of Colorado, Boulder, Colorado USA

In recent years important changes have taken place in the way we pro-
duce software artifacts. The emerging market of commercial off-the-shelf
(COTS) components and the increasing spread of component integration
technologies such as CORBA, Java/RMI, and COM are determining a
completely new way of building distributed systems. Although integration
technologies and development techniques assume rather simple architec-
tural contexts (usually distributed, with simple interaction capabilities),
they face a critical problem that poses a challenging research issue: un-
derstanding if system components correctly integrate.
Component assembly can result in architectural mismatches when trying
to integrate components with incompatible interaction behavior, leading
to system deadlocks, livelocks, or failing to satisfy desired general func-
tional and non-functional system properties. The approach we present
in this paper is focused on preventing and detecting dynamic integra-
tion errors in a component-based development setting. We describe a
method for deadlock detection that takes a novel approach based on com-
ponent assumptions and provides a conservative checking algorithm with
a state-space complexity significantly lower than comparable approaches.
Although the focus in the present paper is on deadlock freedom of fully
synchronized components, we believe the method can be generalized to
support other composition mechanisms such as asynchronous communi-
cation and other properties such as general Uveness and safety properties.

1 Introduction

In recent years important changes have taken place in the way we produce soft-
ware artifacts. On one side, software production is becoming more and more in-
volved with distributed applications running on heterogeneous networks. On the
other, emerging technologies such as commercial off-the-shelf (COTS) products
are becoming a market reality for rapid and cheaper system development [17].
Although these trends may seem independent, they actually have been bound
together with the widespread use of component integration technologies such as
CORBA, Java/RMI, and DCOM. Distributed applications are being designed as
sets of autonomous, decoupled components, allowing rapid development based

187

on integration of COTS and simplifying architectural changes required to cope
with the dynamics of the underlying environment.

Although integration technologies and development techniques assume rather
simple architectural contexts, usually distributed, with simple interaction capa-
bilities, they face a critical problem that poses a challenging research issue:
understanding whether system components integrate correctly.

There is a growing interest on this topic, both in industrial and military
contexts. For example, consider this quote from a recent US Defense Department

briefing:

"A major theme of this year's demonstrations is the ability to build
software systems by composing components, and do it reliably and pre-
dictably. We want to use the right components to do the job. We want
to put them together so the system doesn't deadlock. "x

While for type integration and interface checking, type and subtyping theo-
ries play an important role in preventing and detecting some integration errors,
interaction properties remain problematic. Component assembly can result in
architectural mismatches when trying to integrate components with incompati-
ble interaction behavior [1,5], resulting in system deadlocks, hvelocks, or failing
to satisfy desired general functional and non-funtional system properties.

The work we present in this paper represents one step in our general goal of
preventing and detecting dynamic integration errors in component-based devel-
opment Within this setting, our aim is twofold. First we want to analyze systems
in a component-wise manner, that is, we wish to use information providable at a
component level to verify system properties. This makes sense m a component-
based world: components are bought as is, so if we understand what information
component makers should provide, better systems (i.e., ones that have the de-
sired global system properties) can be constructed. Second, we want to be able
to verify dynamic properties. This means providing tractable methods that can
manage real scale applications even at the cost of completeness. This is what at
present type checking provides for a whole class of static correctness properties^

So far existing techniques for detecting dynamic integration errors are based
on behavioral analysis [3,11] of the composed system model. The analysis is
carried on at the system level, possibly in a compositional fashion [6], and has
serious problems with state explosion. Our approach [9,8] is based on enriching
component semantics with additional information and performing analysis at
a component level without building the system model. Additional information
is provided by means of assumptions, which are the requirements a component
puts on its environment in order to guarantee a certain property in a specific

composition context.
The method we formulate starts off with a set of components to be integrated,

a composition mechanism (e.g., full sychronization), and a property to be verified
(e g deadlock freedom). We represent each component with an actual behavior
graph (AC). An assumption graph (AS) for proving deadlock freedom is derived

1 http://www.dyncorp-is.com/darpa/meetings/edcs99jun/

188

from each AC graph. Our checking algorithm processes all AC and AS graphs
trying to verify if the AC graphs provide the requirements modeled by all the
AS graphs. The algorithm works by finding pairs of AC and AS graphs that
match through a suitable partial equivalence relation. According to the match
found, arcs of the AS graph that have been provided for (covered arcs) are
marked, and root nodes of both AC and AS graphs are updated. The algorithm
repeats this process until all arcs of all AS graphs have been covered or no
matching pair of graphs can be found. The former implies deadlock freedom
of the system while the latter means that the algorithm cannot prove system
deadlock freedom. Consequently, our algorithm is not complete (i.e., there are
deadlock free systems that the algorithm fails to recognize), which is the price
we must pay for tractability.

Summarizing, the contributions of our approach are a broader notion of com-
ponent semantics based on assumptions and a method for proving deadlock
freedom in a component based setting that is vey efficient in terms of space
complexity. While the space complexity of our approach is polynomial, existing
approaches have exponential orders of magnitude. In this paper we give an infor-
mal description of the steps of our approach and we illustrate the method on a
simple example. Complete presentations of the approach in the scope of two dif-
ferent specification contexts, namely CHAM and CCS, can be found elsewhere [8,
9].

2 Related Work

In order to obtain efficient verification mechanisms in terms of space complexity,
there has been much effort to avoid the state explosion problem. There are two
approaches: compositional verification and minimizations. The first class verifies
properties of the individual components, and properties of the global system
are deduced from these [12,14,18]. However, as pointed out by Grumberg and
Long [14], when verifying properties of the components it may also be necessary
to make assumptions about the environment, and the size of these assumptions
is not fixed. Our approach shares the same motivation but it verifies properties
of the component context, represented as fixed size AS graphs, in order to ensure
a global system property.

The compositional minimization approach is based on constructing a mini-
mal semantically equivalent representation of the global system. This is managed
by successive refinements and use of constraints and interface specifications [6,
7]. However, these approaches still construct some kind of global system repre-
sentation, and therefore are subject to state explosion in the worst case.

Binary Decision Diagrams [2] are used in many implementations for coding
system states. Although it has been proved to be an efficient approach in many
cases, it still suffers from space complexity problems.

From the perspective of property checking in large software systems, work in
the area of module interconnection and software architecture languages can be
mentioned, however the focus is not on efficient property verification of dynamic

189

properties nor is the specific setting of component-based programming taken

into account [9].
There are other attempts at proving partial deadlock freedom statically.

Kobayashi and Sumii [10,16] propose a type system that ensures certain kinds of
deadlock freedom through static checking. Their approach is based on including
the order of channel use in the type information and requiring the designer to
annotate communication channels as reliable or unreliable. As in our work they
use behavioral information to enhance the type system, however part of the ad-
ditional information must be provided by users and is related to channels rather
than components. In our approach, additional information is derived from the
property to be proved and the communication context. Besides, the derived in-
formation extends component semantics, thus integrating well with the current
direction that software development has taken, based on component integration

technologies and commercial off-the-shelf products.

3 Property Checking Using Assumptions

We represent component behavior (and component assumptions later on) using
directed, rooted graphs. We define the notion of actual behavior (AC) graph
for modeling component behavior. The term "actual" emphasizes the difference
between component behavior and the intended, or assumed, behavior of the
environment. AC graphs model components in an intuitive way. Each node rep-
resents a state of the component and the root node represents its initial state.
Each arc represents the possible transition into a new state where the transition

label is the action performed by the component.
In this section we present the various steps upon which our approach is based,

i e how component assumptions can be derived and used for proving deadlock
freedom in a system composed of a finite number of components that commu-
nicate synchronously. Following a common hypothesis in automated checking of
properties of complex systems [11], behavior of all components can be finitely

represented.

3.1 Deriving Assumptions for Deadlock Freedom

We wish to derive from a component behavior the requirements on its environ-
ment that guarantee deadlock freedom. A system is in deadlock when it cannot
perform any computation, thus in our setting, deadlock means that all compo-
nents are blocked waiting for an action from the environment that is not possi-
ble Our approach is to verify that no components under any circumstance will
block This conservative approach suffices to prove deadlock freedom exclusively
from component assumptions. The payback is efficiency, while the drawback is

incompleteness.
Let us consider a context in which components are combined together, com-

posing them in parallel and forcing them to synchronize whenever possible, where

190

synchronization is obtained when they offer at the same time complementary ac-
tions [8]. In this context, a component will not block if its environment can always
provide the actions it requires for changing state. Thus, we can define the notion
of component assumption in the context of parallel composition and deadlock
freedom as a sort of complementary graph of the AC graph, that is, a graph that
is structurally identical to the AC graph but whose labels are complementary
with respect to the corresponding labels in the AC graph. We call this graph the

assumption graph (AS).

3.2 Checking Assumptions

Once component assumptions have been derived, we wish to verify if these as-
sumptions are satisfied by the environment, which, intuitively, is the rest of the
components in the given context. This satisfaction relation reduces to proving
if the component environment is equivalent to the component assumption by
means of a suitable notion of equivalence. The idea behind the definition of
equivalence we use is that the graphs can always imitate each other. If a graph
performs an action I, the other graph can also perform I and, no matter what in-
ternal choices it may make, it will be able to continue imitating the other graph.
However, our notion of equivalence is more restrictive than the notion of weak
bisimilarity [13], since we need to assure that a given behavior must be provided
by all the branches that provide the matched portion.

We verify the equivalences between AS graphs and environments without con-
structing the whole environment behavior. The main idea is to allow a portion of
a component behavior to provide a portion of another component assumption.
For this we need to provide a notion of partial equivalence that preserves equiva-
lence in a conservative way. Once a partial equivalence has been established, the
assumption graph has been satisfied to some extent and therefore some marking
mechanism is necessary in order to record it.

Partial Equivalence A partial equivalence between an AC and an AS graph
allows the equivalence relation to be defined up to a certain point in the graphs.
The AC and AS graphs are not required to be completely equivalent; their root
nodes must be equivalent, the nodes reachable from root nodes too, and so on
until a set of nodes called stopping nodes is reached. Stopping nodes represent
the points where the actual behavior will stop providing the assumption's re-
quirements, hence there should be another AC graph capable of doing so from

then on.

Checking Algorithm and an Example Application The checking algo-
rithm is very simple. It iteratively finds partial equivalencies between AC and
AS graphs, marks all the fulfilled assumptions, and changes the roots of both
graphs. Iteration stops when all assumptions are completely marked. An impor-
tant point is that partial equivalences guarantee that the matched portions of

191

assumptions cannot be matched in any other way, therefore the order in which
partial matches are applied does not affect the correctness of the algorithm.

We now apply the algorithm to the Compressing Proxy example [4,9]. To
improve the performance of UNIX-based World Wide Web browsers over slow
networks, one could create an HTTP (Hyper Text Transfer Protocol) server that
compresses and uncompresses data that it sends across the network. This is the
purpose of the Compressing Proxy, which weds the gzip compression/decompression
program to the standard HTTP server available from CERN.

The main difficulty that arises in the Compressing Proxy system is the correct
integration of existing components. The CERN HTTP server consists of filters
strung together in series executing in one single process, while the gzip program
runs in a separate UNIX process. Therefore, an adaptor must be created to
coordinate these components correctly (see Figure 1).

function-Mil int.rfai

k UNIX pip« int«rf«e«

Fig. 1. The Compressing Proxy.

However, the correct construction of the adaptor requires a deep understand-
ing of the other components. Suppose the adaptor simply passes data on to gzip
whenever it receives data from the upstream filter. Once the stream is closed by
the upstream filter (i.e., there are no more data to be compressed), the adaptor
reads the compressed data from gzip and pushes the data toward the down-

stream filter.
At a component level, this behavior makes sense. But at a global system level

we can experience deadlock. In particular, gzip uses a one-pass compression
algorithm and may attempt to write a portion of the compressed data (perhaps
because an internal buffer is full) before the adaptor is ready, thus blocking.

192

With gzip blocked, the adaptor also becomes blocked when it attempts to pass
on more of the data to gzip, leaving the system in deadlock.

A way to avoid deadlock in this situation is to have the adaptor handle the
data incrementally and use non-blocking reads and writes. This would allow the
adaptor to read some data from gzip when its attempt to write data to gzip is

blocked.
We represent partial equivalences with dotted lines for related nodes and

crosses for stopping nodes. In Figure 2, the upstream filter matches successfully
with the adaptor. Once the successful match has been made, both graphs are
modified. The new state of the adaptor can be seen in Figure 3.

(&-•

fcf

Fig. 2. Successful Match of Upstream Filter AC Graph against Adaptor AS Graph.

Figure 3 shows how a partial match can be established between the gzip AC
graph and the adaptor AS graph. However, it is possible to see that there is no
way of extending the relation in order to cover the edge labeled es. Hence, the
algorithm, after all possible attempts, terminates, indicating that the proposed
configuration is presumably not deadlock free.

Fig. 3. Unsuccessful Match of gzip AC Graph against Adaptor AS Graph.

Notice that the mismatch occurs precisely where the deadlock in the system
appears: gzip may attempt to output the compressed file {z) while the adaptor
is expecting to be synchronizing with a component, inputting an end of source

(es) before the compressed file is output.
The adaptor must be modified to prevent system deadlock. In Figure 4, the

partial equivalence that covers the es edge allows the modified adaptor's AS

193

graph to be updated, and Figure 5 finishes covering the AS graph completely.
The algorithm goes on matching AC and AS graphs until all arcs of all AS graphs
are covered. Thus, the checking algorithm finally returns true, meaning that the

proposed system is deadlock free.

Fig. 4. Successful Match of gzip AC Graph against a Modified Adaptor AS Graph.

(£r
S<3

fcR>
Fig. 5. Successful Match of Downstream Filter AC Graph against a Modified Adaptor

AS Graph.

4 Method Assessment

Up to now we have informally introduced a method for checking deadlock free-
dom that trades off completeness for efficiency. We now briefly comment on the
completeness and complexity of our approach. A detailed discussion of all the
hypothesis and implications on the complexity, completeness, and correctness of

our approach can be found elsewhere [8].

4.1 Complexity

The algorithm we sketched above offers a partial solution to the state explosion
problem. In our approach, deadlock freedom is proven without building the entire
finite-state model of the system. We only construct finite representations of each
component individually: an actual behavior graph and an assumed behavior

graph of its context.

194

In standard aproaches, using reachability analysis, the complete state space
of the system is built. If we consider a concurrent system composed of JV compo-
nents of comparable size, whose finite state representation is of size 0{K), then
the composed system state space is 0{KN). Although there are many techniques
for reducing the state space, such as automata minimization and "on the fly"
algorithms, the worst case still requires the whole state space to be analyzed,

leading to a time complexity of 0(KN).
In our approach only two copies of each component are built, AC and AS

graphs Thus, following the same considerations as before, the state space com-
plexity is radically improved to 0{KN). On the other hand, in terms of time
complexity, the worst case of our algorithm is 0(N3KHog(K)), which is compa-
rable to the worst case of standard reachability. The time complexity results from
the following: Establishing a partial equivalence relation between two graphs can
be considered a variation of the standard bisimulation checking. Thus, the up-
per bound on its complexity would be 0(K2log(K)) [15]. However, the partial
equivalence must be established for a pair of graphs. Thus, all possible pairs must
be checked (Comb(N,2)), leading us to 0(N2(K2log(K))). Finally, considering
the worst case in which each partial match only covers a single arc of the NK
possibilities. We get 0(K2N3(K2log(K))), which reduces to 0(N3KHog(K)).

4.2 Completeness

The approach presented in this paper may be considered incomplete in two
different ways: firstly, some restrictions on the systems for which the method
can be used are necessary, and secondly, because the checking algorithm may
not be able to conclude deadlock freedom for some deadlock-free systems.

The first restriction on the system requires components to be able to per-
form each computation an infinite number of times, but does not affect the
completeness of out approach. The goal of this restriction is only for the sake
of simplicity of the formal presentation. The second restriction is more serious.
We do not accept that more than two components have shared channels. If a
communication channel can be used by more than two components, there is
a potential nondeterminism in the overall system behavior. A component may
have the possibility of synchronizing with one of several components leading to
a nondeterministic choice. In terms of our approach, this means that one can-
not commit to which AC graph will provide the AS graph requirements. As the
matching process guarantees that the matched arcs of the AS graph will always
be provided by the AC graph, no matching can be done. The nondeterminism
introduced by shared channels is similar to the nondeterminism that makes our

algorithm incomplete.
Having discussed the restriction imposed on components, the incompleteness

of the checking algorithm remains. Our approach is intrinsically incomplete. First
of all, we attempt to prove a global property such as deadlock in terms of local
properties of each component. Second, we verify equivalences between the con-
text and component assumptions in sucessive partial steps so as to not construct

195

a complete model of the component context. As a consequence, the characteris-
tics of our setting lead to the following situation: Given a deadlock-free system,
the algorithm may not be able to conclude that it is deadlock free. What hap-
pens is that the algorithm reaches a state in which it cannot do further matches
between AC and AS graphs. However, the main reason for the incompleteness of
our approach is nondeterminism. When there is a nondeterministic choice in a
component's behavior, when a component can interact with one of two different
components, there cannot be a unique mathing that guarantees how the system
will evolve. In these situations the algorithm stops without obtaining AS graphs
completely matched, and therefore not giving a conclusive answer. Incomplete-
ness is the price that must be paid to make analysis tractable. Our method may
apply only to a subset of problems, but it lowers the complexity of the solution
from exponential order to a polynomial one.

5 Conclusions and Future Work

In this paper we have informally illustrated a preliminary space-efficient ap-
proach to proving dynamic properties of component-based systems. The ap-
proach assumes a broader notion of component semantics based on assumptions
and a method for proving deadlock freedom in a component-based setting. This
method is based on deriving assumptions (component requirements on its en-
vironment in order to guarantee a certain property in a specific composition
context) and checking that all assumptions are guaranteed through a partial
matching mechanism. The method is considerably more efficient than methods
based on system model behavior analysis, since its space complexity is polyno-
mial while existing approaches have exponential orders of magnitude. It is not
complete, but it allows the treatment of systems whose synchronization patterns

are not trivial.
Ongoing and future work is proceeding in two directions. First, to validate

the proposed framework through experimental results, we are currently working
on an implementation of the algorithm, and considering other coordination con-
texts such as non-fully synchronized or asynchronous ones. Second, to extend
the approach to deal with other properties, such as general liveness and safety
properties, we are thinking of general safety properties expressed with property
automata, such as in the Gas Pump example [11] that may be decomposed into
component assumptions or specific component assumptions such as particular
access protocols for shared resources.

We believe that assumptions are a good way to extend component semantics
in order to verify properties more efficiently. The approach presented in this
paper is an example of how this can be achieved.

Acknowledgements

We would like to thank Sebastian Uchitel and Daniel Yankelevich for discussions
and common work on the subject of the paper.

196

References

1. B. Boehm and C. Abts. COTS Integration: Plug and Pray? IEEE Computer,

32(1), January 1999. 0 , ..
2 J R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.J. Hwang. Symbolic

model checking : 1020 and beyond. Information and Computation, 98:142-170,

June 1992.
3 R Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: a seman-

tics based tool for the verification of concurrent systems. ACM Transactions on
Programming Languages and Systems, 15(l):36-72, January 1993.

4 D Compare, P. Inverardi, and A.L. Wolf. Uncovering Architectural Mismatch in
Dynamic Behavior. Science of Computer Programming, 2(33):101-131, February

1999
5. D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mismatch: Why Reuse is

so Hard. IEEE Software, 12(6), November 1995.
6 D Giannakopoulou, J. Kramer, and S.C. Cheung. Analysing the Behaviour of

Distributed Systems using Tracta. Automated Soßware Engineering, special issue
on Automated Analysis of Soßware, 6(l):7-35, January 1999.

7 S Graf, B. Steffen, and G. Lüttgen. Compositional minimisation of finite state
systems using interface specifications. Formal Aspects of Computing, 8(5), 1998.

8 P Inverardi and S. Uchitel. Proving Deadlock Freedom in Component-Based Pro-
gramming. Technical report, Universita' dell'Aquila, Italy, November 1999

9 P Inverardi A.L. Wolf, and D. Yankelevich. Static Checking of System Behaviors
Using Derived Component Assumptions. ACM Transactions on Soßware Engi-

neering and Methodology, 2000. To appear. ,„,,„,
10 N Kobayashi. A partially deadlock-free typed process calculus. ACM Transactions

on Programming Languages and Systems, 20(2):436-482, March 1998.
11 J Kramer and J.C. Cheung. Compositional reachability analysis of finite-state

' distributed systems with user-specified constraints. In SIGSOFT95: 3rdliner-
national Symposium on the Foundations of Soßware Engineering, pages 140-150,

Washington D.C., October 1995.
12 K Laster and O. Grumberg. Modular model checking of software. In International

Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS'98), Lisbon, March 1998.
13 R Milner. Communication and Concurrency. Prentice Hall, New York 1989.
14. O.Grumberg and D.E.Long. Model checking and modular verification. ACM Trans-

actions on Programming Languages and Systems, 16(3):843-871, May 1994^
15. R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM Journal

on Computing, 16(6):973-989, 1987.
16 E Sumii and N. Kobayashi. A generalized deadlock-free process calculus. In

3rd International Workshop on Hish-Level Concurrent Languages, volume 16 ot
Electronic Notes in Theoretical Computer Science. Elsevier, September 1998.

17. Clemens Szyperski. Component Soßware. Beyond Object Oriented Programming.

Addison Wesley, Harlow, England, 1998.
18 G Winskel. Compositional checking of validity on finite state processes. In Work-

shop on Theories of Communication, CONCUR, volume 458 of LNCS, 1990.

197

A Formal Model of System and Software Engineering
Experience

Douglas S. Lange
SPAWARSYSCEN

D44207
53118 GATCHELL RD RM 426C

San Diego, CA 92152-7420
dlange@.computer.org

Valdis Berzins
Naval Postgraduate School

Computer Science Dept. Code CS/Bv
833 Dyer Road

Monterey, CA 93943-5118
berzins@.cs.nps.naw.mil

Abstract
This paper describes some of the issues involved in formalizing a previously fuzzy aspect
of software development - the use of experience. This paper reports the status of work in
progress and raises some issues for thought.

Introduction and Motivation
Software and systems engineering organizations need to improve their performance from
project to project. Such improvement can only come about from understanding and
analyzing the experience gained during past projects. Since organizations often outlast
the membership of individuals within that organization, and since collaboration among
many individuals is often required, automated storage, retrieval, and decision support
should be useful. Efforts to develop engineering experience bases in the literature focus
on databases of artifacts, preserving free text correspondence, and developing structured
metadata for lessons learned documents. Our position is that these are not sufficient
models for an engineering experience base because they do not capture the semantics of
the experiences at a level that can be effectively used by decision support algorithms.

The field of artificial intelligence has provided approaches that can be used to associate
the conditions that led to previous decisions, the decisions themselves, and the measured
and analyzed results. Similarly through applications of modal logic, elements of
experience that seemingly contradict each other can coexist in an experience base and
provide useful insight to decision makers. We propose that a more formal logic-based
model is essential in order to build an experience base that can provide substantive
computer aid to support engineering process improvement.

Background
This section surveys and assesses relevant previous work.

198

Organizational Memory
Organizations can be seen as functionally resembling information-processing systems
that process information from the environment. As such, organizations exhibit memory
that is similar in function to that of individuals. The components of the system include:

[WalUng91]

■ Sensors, which act to receive information

■ A processing capability that processes information using defined symbols

■ A memory where information is sent for storage and from which it can be
retrieved.

Individuals in problem-solving and decision-making activities acquire information.
Organizational memory comes about due to the sharing of information among individuals
in different ways. Organizational memory is stored information about a decision stimulus
and response from an organization's history that the organization can use to help make
present decisions. [WalUng91] This definition points out a critical factor in defining
organizational memory that has been missed by experience base researchers. Without
information about the decision stimulus, the "why" of an organizational response cannot
be determined. Walsh and Ungson argue that only if the decision stimulus is retained can
the experience be used to meet the requirements of more novel situations, and that
without it one is likely to promote deleterious decision making.

Continuous Process Improvement
IEEE 1220 is among the standards available for system engineering concerns to use in
defining their engineering process. According to the standard, within the policies and
procedures of the project, the continuous improvement of products and processes must be
addressed. Among the activities recommended by the standard for accomplishing
continuous improvement of processes are:

■ Maintaining a self-assessment program to determine the maturity of the
enterprises systems engineering practices, and

■ Capturing the lessons learned on each project and incorporate them into enterprise
training courses, as appropriate, to improve the application of the SEP.

IEEE 1220 goes on to state that in order to be compliant and perform systems
engineering at a standard industry level, one must have a means to capture the
experiences generated by undertaking projects. [IEEE 1220] The issue we wish to
explore is what kinds of formal models would be appropriate for that purpose.

Experience Bases
Software and systems engineering experience base research can be divided into three
categories. First are previous efforts to improve the use of largely unstructured lessons
learned artifacts. A second category uses the tools available in free-text applications such
as email and chat capabilities. Third are database applications. These are either based on
relational or object databases.

199

Lessons Learned
Lessons learned documents are among the least structured objects in which experience
can be preserved. It is not surprising therefore that research in improving the management
of lessons learned documents would seek to impose some structure on them. Birk and
Tautz describe a process for packaging lessons learned that has as its basis a quality
control mechanism and a structuring of the document [BirTau98]. The structure used
divides a lesson-learned document into four sections.

Object The software artifact that the lesson is concerned with. It can be
a tangible product, or something less tangible such as a process
or method.

Context Describes the situation within which the problem and solution
are relevant.

Problem The problem that is being solved. This along with the solution
is the core of the lesson learned.

Solution The solution to the problem. This along with the problem is the
core of the lesson learned.

Birk and Tautz go on to classify types of lessons learned through a semantic network of
presupposed relationships among the types of lessons learned and their relationship to
situations and artifacts. Other studies support the importance of classifying lessons in
order to impose a structure that allows lessons to be retrieved. Statz creates elements for
lessons, each of which can have multiple attributes [Sta99]. These form the equivalent of
facets for searching a lessons learned database.

Free-Text Applications
There is no faster, less intrusive way to capture experience than to record the
conversations of the people involved in an effort. At its simplest, this approach can take
on the form of a running logbook. An example of this approach uses a distributed running
diary as the experience base. The diary serves to allow process participants to record
problems and solutions in free text form. Search facilities allow users to go back and look
at previous entries [Rob+00].

Another approach to capturing free text is found in the Answer Garden [Ack98]. Answer
Garden attempts to augment organizational knowledge in two ways. First, Answer
Garden makes answers to common questions available through structured and
unstructured user interactions. Second, it provides information about who in an
organization is considered an expert in a particular area. Answer Garden provides a
hierarchical structure to help users find the answers to frequently asked questions. The
user interface asks a series of questions. The answers drive the user along a tree structure
towards an answer. If the problem to be solved is new and an answer cannot be found, the
application prompts the user to describe the problem and it is sent to an expert. The
expert answers the question and can then place it and the answer into the hierarchy so that
future users can find it. Free text search engines also allow the user to find answers

directly.

200

Database Applications
Databases provide a natural platform on which to store the experiences of an
organization. When designing an experience base using such a tool, the foci of the effort
are on what types of information will be collected and how will a user find the
information needed to solve a particular problem [Alt+99] [BroRun99] [Wan+99]. The
primary deficiency of database applications for experience bases is that they store only
artifacts and data. These can either be the results of the project or the results of the
packaging of experience in the form of new process definitions. The rationale and the
reasoning behind the experience is missing. This makes it difficult for the recipient to
generalize and determine whether or not the experience is applicable. The contributions
of these research efforts are mostly in the area of information retrieval.

Assessment

The common weakness of all three approaches to experience bases is that they passively
store data and rely on the users to perform all interpretation, analysis, and adaptation.
Better formal models that can support some aspects of the intended use of this data are

needed.

Evolution Control Systems
Evolution control systems provide a hint at a path to provide better formal modeling and
decision support. All of the standards mentioned above require that projects keep track of
information that allows them to adequately control their processes. Such information

includes:

■ Requirements,

■ Schedules,

■ Defects,

■ Process descriptions, and

■ Process metrics.

The configuration management process [SEI99] requires that a project be able to
establish and track baselines, manage changes to baselines, and be able to perform audits
tracing changes to and from engineering decisions.

The current state of the practice in this area involves using configuration management
tools to help manage this information. Similar practices exist for other process areas. The
state of the research involves the use of formalized process definitions that allow more
powerful automated evolution control systems to be developed. These systems can form
the basis around which tools supporting

As defined in the Relational Hypergraph Model of Software Evolution (RHMSE)
software evolution consists of two main sub-processes. First is the software prototype
evolution process and second is a software production generation process [Har+99]. The
figure below illustrates the evolution lifecycle. Throughout the prototyping process, the
elements communicated are requirements, software prototypes, demonstrations, and user

criticisms [Ber+97].

201

S-C1.2

S-C2.3

<^)-
-s-11.2

C2.3

--S-P1.2 { M1.2 V S-M1.2 f S1.2

S-S2.3

S-R2.3 ^ '
~v' S-R2.3

S-S1.2 ^-v

S-S2.3

 S-M2.3 S2.3

„* primary-'mput-ch'tven step

..? Seconclary-input-cfriven step

Components:
r Santa* pioWjp* P**?Ian*
C CrHfcfcnw

Steps
<-C Saftftore p«*V* *"*o

f-K R«qtH«m«it»alfCif
(-S specMcarttotdefQi

S SpecMcaflotc
M Modikx
O opllntcatoi*
M Samuare prodtctprogtar«

(-M Module MpfeiMiMoi
(-» program h*gra*>i
f-O sotluoK prodictdemo
f-Cd SoUuare pwd^ct tnpttme ktittoi

Figure 1. Software Evolution Hypergraph

Several of the elements necessary for experience bases can come directly from an
evolution control system. The information tracked as well as the semantic network
representation of the evolution history provide context points to which problems and
solutions can be attached.

Why a Formal Model?
Process improvement is by nature an act of inference. In order to determine how to
improve a process, an analyst must use knowledge of the previously employed processes,
information about the environment in which the process has been executed, and the
measurements taken during execution. Problems and their solutions figure highly not
only in revising documented processes, but also in solving unanticipated problems as
they arise. For organizational memory to be used in novel situations, decision makers
must be able to generalize from previous experience to encompass the current problem,
as they perceive it.

Perception too argues against simple collections of artifacts. Not only must the
experience base be able to present experience in light of different environments, but the
beliefs of the engineers about the environment and the results of their efforts must be
modeled. Two engineers may come to different conclusions based on their differing
beliefs and these differences can in themselves provide valuable insight.

The ultimate argument for a formal model is to make automation of information
collection and knowledge inference possible. Information vital to an experience base is

202

difficult to collect. It is time consuming and does not directly relate' *^JJJ*
enrineers feel is the job at hand. By representing experience in a formal model and in
paSar one'tSt J be represented by a semantic network a linkage to an evolutionary
control system such as the one described above becomes possible.

Expected Characteristics
The following characteristics are expected to drive the form of the model being

developed.
- Experience is a collection of beliefs about what has happened in the past and what

fhe s«on were that were relevant to the outcomes. Modal operators wrt be
neces^ Modality should allow assumptions of monotonic behavior within
each moility) to be accepted. Without modality, non-monotomc examples are

likely.
- More than one point of view may exist about what the situations or results were

concerning a previous project. One, both, or neither may be correct. ^ Points of
Xw must be linked to the corresponding supporting evidence to support
judgments of which point of view is most relevant to a given problem.

- Generalization cannot be done without the beliefs concerning the environment
that existed during previous projects.

. Time mav ot may not be relevant to the results experienced. One may not know
Temcr hTsTeTevan. until attempting to generalize or compare to a current
situation. Temporal operators will be necessary.

. Vital eomponents of the experience base will be directly >™~**^ j££

demonstration plans, and user feedback in the form of criticisms.
- The use of a semantic network for the model rather than linear logic descriptions

will allow easier integration with a human computer interface.
. The use of modal logic will allow easier integration with a standard agent

architecture [FIPA].

Tssucs
The following issues are expected to arise during the model's development.

■ Experience can change one's beliefs about past situations. This will likely cause a

problem.

SralÄÄ stuTy. However statistical data that shows
values within two standard deviations might be a useful result.

203

Example
To examine the rationale behind our belief that a logic-based model of experience is
needed, the expected characteristics of the model, and the issues anticipated, the
following scenario is analyzed.

Scenario
A test team is putting together a test plan and procedures to support version three of a
large software project. Two years of modest fixes and updates occurred between versions
one and two, and two years have also occurred since version two was released. The last
test plan was written nearly three years ago.

When version one was tested, a large effort was made to exhaustively examine the
application programmer interface (API) set of the major server components in the system.
Many third party applications as well as large parts of the software being tested make use
of these services and it was felt that this was an important risk reduction strategy. When
version two was tested, no API testing was conducted.

No members of the version three team were part of the API test effort. Neither were any
of them part of the decision processes that resulted in testing the API in version one and
not testing them in version two.

A Database Solution with Case Based Reasoning for Information Retrieval

Two test plans are in the experience base. Based on the solution offered by [Wan+99],
there is information of the following nature associated with each test plan.

Attribute

Organization

Staff size

Application domain

Improvement goal

Programming Language

Software System Size

Test Plan for Version 1

C2 Systems Engineering

15

Command and Control

Reliability

2000 KLOC

Test Plan for Version 2

C2 Systems Engineering

10

Command and Control

Reliability

2500 KLOC

Table 1. Attribute Data for Artifacts

Which should be retrieved? Using [Wan+99], this would depend on our goals. Our goal
is to create a new test plan. Our current staff size is eight, and the current system size is
3000 KLOC, so version 2 will come out as the closest match. Was this the right decision?
There may be an artifact in the system that is a lesson's learned document describing the
decision process if somebody wrote one. This would take us to the approach in
[BirTau98] with retrieval being case based.

204

control system. The dec.s.ons made are represen ed msu y ^

assignments ^.'^-^'S^Ä^Ä«. «• -* • ^ra

requirements managed [Ber+97]. ™^™™ ' te rela,ionships ,„ pos«, affects,

^ä^E A — **»•and *•Mppor,ing
information must be recorded

■*u tu» c^rvirp«; the following criticisms would oe

content of the information nodes.
User 1, poses, Criticism 1

Criticism!, affects, Version!

Userl, poses, Criticism!

Criticism!, affects, Version!

User2, poses, Criticism^

Criticism3, affects, Version!

As cnticisms are entered, analysts - ^J^^^^J^Z
issues and requirements to the criticisms. ^*j£ ^ ^ ex^ence base can
find among them are recorded ^^°^1

<ffiii^^Lflung about
use them beyond requirements tracing. Each W<s ™ A { ü decides that

their beliefs concerning ^g*W££^^£^ » ^ *f
the services and their associated API are not wei g ^ tQ ^
associates all of the criticisms that she be eves ^ jmp irements that created
issue. Further analysis indicates that the «we is related to the req
the services in question and their related API.

Criticism!, affects, Issue!

Criticism2, affects, issue!

Criticism!000, affects, Issue!

Issue!, affects, Requirement

Issue!, affects, Requirements

rr^SÄÄÄ

205

are having with the services form part of the rationale for the project manager to create a
requirement for full API testing.

StepState223, updates27, StepStatel56

updates27, reason3, rationalel5

updates27, supports3, Issue 1

The experience base adds decision nodes (among others) to the features tracked by the
evolution control system. The decision to create a requirement for API testing follows
from the support created by the large set of criticisms all relating to a single issue and by
the schedule slips that have been associated to the same issue.

In version two of the system, the defects did not appear, because no new service creation
requirements were assigned. Basically reuse of the services with a few repairs was the
decision. Therefore no requirement to test the API set in version two was created.

It is now time to plan the testing for version three. New requirements similar to those in
version one are created. The experience base agents infer that these new requirements
that also include interface components could also support the belief that API testing is an
important feature for the test plan. If no new interface requirements were added to the
system the inference would not be supported and the agent would not recommend the

API testing.
In order for this inference to occur, a basic model of features and relationships of
software engineering projects must be present in an ontology service available to the
agents Information such as interface requirements being a special form of requirement
will need to be "known" by the agents. The semantics of the relationships will need to be
defined in more detail than currently used by evolution control systems, but their current
relationships will map into the ontology without affecting their capabilities.

Conclusions
Through a more formal model of software engineering experience, human and automated
inference can be improved in support of engineering decision-making. An equally
important benefit will be the ability to link the experience base to an evolution contro
system. In this way, the collection of experience becomes a side effect of the normal

management decision process.

References
[Ack98] Ackerman, M., "Augmenting organizational memory: a field study of

answer garden", ACM Transactions on Information Systems, Vol. 16.
Issue 3, 1998.

206

[Alt+99] Althoff, K., Birk, A., Hartkopf, S., Müller, W., Nick, M., Surmann, D.,
and Tautz, C, "Managing Software Engineering Experience for
Comprehensive Reuse", Proceedings of the Eleventh International
Conference on Software Engineering and Knowledge Engineering,
Kaiserslautern, Germany, 1999.

[Ber+97] Berzins, V., Ibrahim, O., Luqi: "A Requirements Evolution Model for
Computer Aided Prototyping", Proceedings of the 9th International
Conference on Software Engineering and Knowledge Engineering,
Madrid, Spain, 1997.

[BirTau98] Birk, A. and Tautz, C, "Knowledge Management of Software Engineering
Lessons Learned", Proceedings of the Tenth International Conference on
Software Engineering and Knowledge Engineering, San Francisco Bay,
California, USA, 1998.

[BroRun99] Broome, M. and Runeson, P., "Technical Requirements for the
Implementation of an Experience Base", Proceedings of the Eleventh
International Conference on Software Engineering and Knowledge
Engineering, Kaiserslautem, Germany, 1999.

[FIPA] Foundation for Intelligent Physical Agents, http://www.cselt.stet.it/fipa/.

[Har+99] Harn, M., Berzins, V., and Luqi, "Computer-Aided Software Evolution
Based on a Formal Model", Proceedings of the 13th International.
Conference on Systems Engineering, Las Vegas, NV, USA, 1999.

[IEEE 1220] IEEE Std 1220-1998, IEEE Standard for Application and Management of
the Systems Engineering Process, Institute of Electrical and Electronics
Engineers, 1998.

[Rob+00] Robinson, M., Kovalainen, M., and Auramäki, E., "Diary as Dialogue in
Papermill Process Control", Communications of the ACM, Vol. 43, No. 1,
January 2000.

[SEI99] Software Engineering Institute, Capability Maturity Model®-Integrated-
Systems/Software Engineering: Staged Representation - Volume 1,
Version 0.2b, 1999.

[Sta99] Statz, J., "Leverage Your Lessons", IEEE Software, Vol. 16. No. 2, IEEE,

1999^

[WalUng91] Walsh, J. and Ungson, G, "Organizational Memory", Academy of
Management Review", Vol. 16., No. 1, January 1991.

[Wan+99] Wangenheim, C, Althoff, K, and Barcia, R., "Intelligent Retrieval of
Software Engineering Experienceware", Proceedings of the Eleventh
International Conference on Software Engineering and Knowledge
Engineering, Kaiserslautem, Germany, 1999.

207

A Risk Assessment Model for Evolutionary Software Projects

Luqi, J. Nogueira
Naval Postgraduate School
Monterey CA 93943 USA

Abstract

Current early risk assessment techniques rely on subjective human judgments and
unrealistic assumptions such as fixed requirements and work breakdown structures. This is a
weak approach because different people could arrive at different conclusions from the same
scenario even for projects with a stable and well-defined scope, and such projects are rare. This
paper introduces a formal model to assess the risk and the duration of software projects
automatically, based on objective indicators that can be measured early in the process. The
model has been designed to account for significant characteristics of evolutionary software
processes, such as requirement complexity, requirement volatility and organizational efficiency.
The formal model based on these three indicators estimates the duration and risk of evolutionary
software processes. The approach supports (a) automation of risk assessment and, (b) early
estimation methods for evolutionary software processes.

1. Introduction

Software applications have grown in size and complexity covering many human activities of
importance to society. The report of the President's Information Advisory Committee calls
software the "new physical infrastructure of the information age". Unfortunately, the ability to
build software has not increased proportionately to demand [Hall, 1997. pp xv], and shortfalls in
this regard are a growing concern. According to the Standish group, in 1995 84% of software
projects finished over time or budget, and $80 billion - $100 billion is spent annually on
cancelled projects in the US. Developing software is still a high-risk activity.

There have been many approaches to improving this situation, mostly focused on increasing
productivity via improvements in technology or management. Although better productivity is
certainly welcome, closer examination shows that these efforts address only half of the problem.
A project gets over time or over budget if actual performance does not match estimates. Current
estimation techniques are far from reliable, and tend to systematically produce overly optimistic
estimates. More accurate early estimates could help reduce wasted resources associated with
overruns and cancelled projects in two ways: if costs are known to be too high at the outset, the
scope of the project could be reduced to enable completion within time and budget, or it could
be cancelled before it starts, and instead the resources could be used to successfully complete

other feasible projects.

This paper therefore focuses on improved risk assessment for software projects. We address
project risks related to schedule and budget, and focus mostly on completion time of the project.
Current risk assessment standards are weak because they rely on subjective human expertise,
assume frozen requirements, or depend on metrics difficult to measure until it is too late. This
paper describes a formal risk assessment model based on metrics and sensitive to requirements
volatility. Further details can be found in [Nogueira 2000]. The model is specially suited for
evolutionary prototyping and incremental software development.

Section 2 defines the problem we are addressing. Section 3 analyzes relevant previous work.
Section 4 presents and evaluates our project risk model. Section 5 outlines how systematic risk
assessment fits into iterative prototyping. Section 6 concludes.

1 This research was supported in part by the U. S. Army Research Office under contract/grant number
35037-MA and 40473-MA, and in part by DARPA under contract #99-F759.

208

2. The Problem

As the range and complexity of computer applications have grown, the cost of software
development has become the major expense of computer-based systems [Boehm 1981],
TKarolak 19961. Research shows that in private industry as well as in government environments,
schedule and cost overruns are tragically common [Luqi 1989, Jones 1994, Boehm 1981].
Despite improvements in tools and methodologies, there is little evidence of success in
improving the process of moving from the concept to the product, and little progress has been
made in managing software development projects [Hall, 1997]. Research shows that 45 percent
of all the causes for delayed software deliveries are related to organizational issues
rvanGenuchten 19911. A study published by the Standish Group reveals that the number ol
oftware projects that fail has dropped from 40% in 1997 to 26% in 1999. However the

Percentage of projects with cost and schedule overruns rose from 33% ,n 1997 to 46% in 1999

[Reel 1999].

Despite the recent improvements introduced in software processes and automated tools, risk
assessment for software projects remains an unstructured problem dependent on human
expertise [Boehm 1988, Hall 1997]. The acquisition and development communities, both
governmental and industrial, lack systematic ways of identifying, communicating and resolving
technical uncertainty [SEI 1996].

This paper explores ways to transform risk assessment into a structured problem with
systematic solutions. Constructing a model to assess risk based on objectively measurable
parameters that can be automatically collected and analyzed is necessary. Solving the risk
assessment problem with indicators measured in the early phases would constitute a great
benefit to software engineering. In these early phases, changes can be made with the least
impact on the budget and schedule. The requirements phase is the crucial stage to assess risk
because- a) it involves a huge amount of human interaction and communication that can be
misunderstood and can be a source of errors; b) errors introduced at this phase are very
expensive to correct if they are discovered late; c) the existence of software generation tools can
diminish the errors in the development process if the requirements are correct; and d)
requirements evolve introducing changes and maintenance along the whole life cycle.

Part of the problem is misinterpreting the importance of risk management. It is usually and
incorrectly viewed as an additional activity layered on the assigned work, or worse, as an
outside activity that is not part of the software process [Hall 1997, Karolak 1996]. One of the
goals of our research is to integrate a risk assessment model with previous research on CAPb at
NPS [Ham 99] This integration is required in order to capture metrics automatically in the
context of a modern evolutionary prototyping and software development process This should
provide project managers with a more complete tool that can enable improved risk assessment
without interfering with the work of a project's software engineers.

A second source of problems in risk management is the lack of tools [Karolak 1996]. The
main reason for this lack of tools is that risk assessment is apparently an unstructured problem
To systematize unstructured problems it is necessary to define structured processes. Structured
processes involve routine and repetitive problems for which a standard solution exists.
Unstructured processes require decision-making based on a three-phase method (intelligence,
design choice) [Turban et al 1998]. An unstructured problem is one in which none of the three
phases'is structured. Current approaches to risk management are highly sensitive to managers
perceptions and preferences, which are difficult to represent by an algorithm. Depending on the
decision-maker's attitude towards risk, he or she can decide early with little information, or can
postpone the decision, gaining time to obtain more information, but losing some control.

A third source of risk management problems is the confusion created by the informal use of
terms. Often, the software engineering community (and most parts of the project management

2 CAPS stands for Computer Aided Prototyping System [Luqi 1988].

209

community [Wideman 1992]) uses the term "risk" casually. This term is often used to describe
different concepts. It is erroneously used as a synonym of "uncertainty" and "threat [SEI 1996
Hall 1997 Karolak, 1996]. Generally, software risk is viewed as a measure of the likelihood of
an unsatisfactory outcome and a loss affecting the software from different points of view:
project process, and product [Hall 1997, SEI 1996]. However, this definition of risk is
misleading because it confounds the concepts of risk and uncertainty. In general, most parts of
decision-making in software processes are under uncertainty rather than under risk. Uncertainty
is a situation in which the probability distribution for the possible outcomes is not known.

In this paper the term "risk" is reserved to indicate the probabilistic outcome of a succession
of states of nature, and the term "threat" is used to identify the dangers that can occur. We
define risk to be the product of the value of an outcome times its probability of occurrence. This
outcome could be either positive (gain) or negative (loss). This abstraction permits one to
address not only the classical risk management issue, but also to discover opportunities leading
to competitive advantage.

We address the issue of risk assessment by estimating the probability distribution for the
possible outcomes of a project, based on observed values of metrics that can be measured early
in the process. The metrics were chosen based on a causal analysis to identify the most
important threats and a statistical analysis to choose the shape of the probability distribution and
relate its parameters to readily measurable metrics.

3. Related Work

There are three main groups of research related to risk:

• Assessing Software Risk by Measuring Reliability. This group follows a probabilistic
approach and has successfully assessed the reliability of the product [Lyu 1995,
Schneidewind 1975, Musa 1998]. However, this approach addresses the reliability of the
product not the risk of failing to complete the project within budget and schedule
constraints These approaches could be used to assess risks related to failures of software
projects, which are outside the scope of the current paper. A concern with these approaches
is that the resulting assessments arrive too late to economically correct possible faults,
because the software product is mostly complete and development resources are mostly
gone at the time when reliability of the product can be assessed by testing.

• Heuristic approaches: Other researchers assess the risk from the beginning, in parallel
with the development process. However, these approaches are less rigorous, typically
subjective and weakly structured. Basically these approaches use lists of practices and
checklists [SEI, 1996, Hall 1997, Charette 1997, Jones 1994] or scoring techniques [Karolak
1996]. Paradoxically, SEI defines software technical risk as a measure of the probability and
severity of adverse effects in developing software that does not meet its intended functions
and performance requirements [SEI, 1996]. However, the term "probability" is misleading
in this case because the probability distribution is unknown.

• Macro Model Approaches: A third group of researchers uses well known estimation
models to assess how risky a project could be. The widely used methods COCOMO
[Boehm 1981], and SLIM [Putnam, 1980] both assume that the requirements will remain
unchanged, and require an estimation of the size of the final product as input for the models
[Londeix 1987]. This size cannot be actually measured until late in the project.

The standard tools used to control all types of projects, including PERT, CPM, and Gantt
do not consider coordination and communication overhead. Such models represent sequential
interdependences through explicit representation of precedence relationships between activities
This simplified vision of a project cannot address the dynamics created by reciprocal
requirements of information in concurrent activities, exception management, and the impact of

210

actor interactions. Since the missing factors increase time requirements, the estimates resulting
from these generic project estimation models are overly optimistic.

These issues are addressed by ViteProject [Levitt 1999, Thomsen et al. 1999]. ViteProjectis
applicable to projects in which a) all activities in the project can be predefined; b) the
organization is static, and all activities are pre-assigned to actors in the static organization; c) the
exceptions to activities result in extra work volume for the predefined activities and are carried
out by the pre-assigned actors; and d) actors are assumed to have congruent goals. The model is
well suited for simulating organizations that deal with great amounts of information processing
and coordination. Such characteristics are extremely relevant in software processes [Boehm,
19811 However, this approach requires a fixed work breakdown structure, and therefore does
not apply at the early stages when requirements are changing and the set of tasks comprising the
project are still uncertain.

By using informal risk assessment models, using estimation models based on optimistic
assumptions that require parameters difficult to provide until late, and using optimistic project
control tools, project managers condemn themselves to overrun schedules and cost.

4. The Proposed Project Risk Model

Our approach is based on metrics automatically collectable from the engineering database
from near the beginning of the development. The indicators used are Requirements Volat.hty
(RV), Complexity (CX), and Efficiency (EF).

Requirement Volatility (RV): RV is a measure of three characteristics of the requirements: a) the
Birth-Rate (BR), that is the percentage of new requirements incorporated in each cycle or the
evolution process; b) the Death-Rate (DR), that is the percentage of requirements dropped in
each cycle; and c) the Change-Rate (CR) defined as the percentage of requirements changed
from the previous version. A change in one requirement is modeled as a birth of a new
requirement and the death of another, so that CR is included in the measured values of BR and
DR. RV is calculated as follows: RV = BR + DR.

Complexity (CX): Complexity of the requirements is measured from a formal specification A
requirements representation that supports computer-aided prototyping, such as PSDL [Luqi
1996], is useful in the context of evolutionary prototyping. We define a complexity metric
called Large Granularity Complexity (LGC) that is calculated as follows: LGC - O + D + 1,
where for PSDL O is the number of atomic operators (functions or state machines), D is the
number of atomic data streams (data connections between operators), and T is the number ot
abstract data types required for the system. Operators and data streams are the components of a
dataflow graph. This is a measure of the complexity of the prototype architecture, similar m
spirit to function points but more suitable for modeling embedded and real-time systems The
measure can also be applied to other modeling notations that represent modules, data
connections, and abstract data types or classes. We found a strong correlation between the
complexity measured in LGC and the size of PSDL specifications (correlation coefficient R.-
IZ) Most important, we also found a strong correlation (R = 0.898) between the complexity
measured in LGC and the size of the final product expressed in non-comment lines of Ada code,
including both the code automatically created by the generator and the code manually
introduced by the programmers.

Efficiency (EF): The efficiency of the organization is measured using a direct observation of the
use of time EF is calculated as a ratio between the time dedicated to direct labor and the idle
time- EF = Direct Labor Time / Idle Time. We found that this easily measurable quantity was a
good discriminator between high team productivity and low team productivity in a set ot
simulated software projects [Nogueira 2000].

211

We validated and calibrated our model with a series of simulated software projects using
ViteProject. This tool was chosen because of the inclusion of communications and exceptions in
its project dynamics model, and because it has been extensively validated for many types of
engineering projects, including software engineering projects. The input parameters for the
simulated scenarios were RV, EF and CX, and the observed output was the development time.
Given that the proposed model uses parameters collected during the early phases and given that
ViteProject requires a complete breakdown structure of the project, which can be done only in
the late phases, there was a considerable time gap between the two measurements. This time gap
is less than for a post-mortem analysis, but it is sufficient for model calibration and validation

purposes.

The simulation results were analyzed statistically, with the finding that the Weibull
probability distribution was the best fit for all the samples. A random variable x is said to have a
Weibull distribution with parameters a, ß and Y (with a > 0, ß > 0) if the probability distribution
function (pdf) and cumulative distribution function (cdf) of x are respectively:

[0, X<Y
pdf:f(x;a,ß,Y)= \

{ (oc/ßa) (x -yr exp(-((x - Y)/ßA x > Y

[0, X<Y
cdf:F(x;oc,ß,Y)= \

U-exp(-((x-Y)/ß)a) X^Y-

The random variable under study, x, can be interpreted as development time in our context.
The shape parameter a controls the skew of the pdf, which is not symmetric. We found that this
is mostly related to the efficiency of the organization (EF). The scale parameter ß stretches or
compresses the graph in the x direction. We found that this parameter is related to the efficiency
(EF) requirements volatility (RV), and complexity (CX) measured in LGC. The shifting
parameter y is shifts the origin of the curves to the right. We found that it is mostly related to the

complexity measured in LGC.

Based on best fit to our simulation results, the model parameters can be derived from the

project metrics using the following algorithm:

If (EF > 2.0) then a = 1.95;
Y = 22 * 0.32*(13*ln(LGC)-82);
ß = Y /(5.71+(RV-20)*0.046);

else a = 2.5;
Y = 22 * 0.85*(13*ln(LGC)-82);
ß = Y /(5.47-(RV-20)*0.114);

end if;

The model estimates the following cumulative probability distribution for project completion on

or before time x:

P(x) = 1 - exp(-(((x - Y>/ß)a>> // where x is time in dayS

This equation can be inverted to obtain the schedule length needed to have a probability P of
completing within schedule, with the following result.

l/a
x = Y + ß(-lnd-P))

The probability P can be interpreted as a degree of confidence in the ability of the project to
successfully complete within a schedule of length x. Applying the above equation to estimate
the development time needed for a 95% chance of completion within schedule for 16 different

212

scenarios simulated using ViteProject, we observed a standard error of 22 days. The worst case
was an error of 60 days for a project of 520 days (12%). The comparison of estimated time and

simulated time is shown below.

X)

u
0

■a o

o

X)
<u

e
Vi

700

603

500

400

300

200

100

0

*x
t= durst ion

estimated

0 100 200 300 400

Simulated project completion time, days

500 600 700

5. Integrating Risk Assessment into Prototyping

The model presented in the previous section is designed to support an iterative prototyping
and software development process. In this process, an initial problem statement, a prototype
demo or problem reports from a deployed software product trigger an issue analysis, followed
by formulation of proposed requirements changes, and specification of a proposed adjustment to
the software requirements, which can be initially empty. At this point in each cycle, the project
manager should perform a risk assessment step. The results of the risk assessment step guide the
degree of detail to which requirements enhancements are demonstrated, and the set ot
requirements issues to be considered in the next prototyping cycle, if any.

REQUIREMENTS
ANALYSIS

STEP

SPECIFICATION
DESIGN
STEP

RISK
ASSESSMENT

STEP

ISSUE
ANALYSIS

STEP

PRODUCT
IMPLEMENT.

STEP
MODULES

PROTOTYPE/
PRODUCT

DEMO STEP
PROGRAMS

PROGRAM
INTEGRATION

STEP

213

The first measurement-based risk assessment step can be performed after specification of
the first version of the prototype architecture, based on the requirements volatility, LGC and
efficiency measurements from the steps just performed.

In cases where risk assessments are required even earlier, before any prototyping has been
done estimates of team efficiency and requirements volatility can be based on measurements of
simil'ar past projects, and initial complexity estimates can be based on subjective guesswork ol
the kind currently used in the macro model approaches. This kind of estimate may be less
reliable than those based solely on measurements, but it can provide a principled and reasonably
accurate basis for deciding whether or not to start a prototyping process to determine the
requirements for a proposed development project. Thus parts of our approach can be used truly

at the very beginning of the process.

If a prototyping effort is approved, early measurements of the process could be used to
refine the initial estimates of the model parameters using Bayesian methods, thus providing a
balanced and systematic transition from subjective guesswork, coded as an a priori distribution,
to assessments increasingly based on systematic measurement. Such an approach also supports
incorporation and systematic refinement of measurements from previous cycles of the iterative

prototyping process.

The results of risk assessment can provide guidance on the degree to which the project can
afford to explore requirements enhancements requested by the customers. It can also help
customers or marketing departments to decide how much they really want possible
improvements, in the context of the resulting time and cost estimates. Systematic cost/benefit
analysis becomes possible only with the availability of reasonably accurate estimates.

The risk assessment step can thus provide a balancing force to stabilize the requirements
formulation process. In the absence of information on how much potential enhancements will
cost stakeholders are prone to unrealistic requirements amplification - of course they would
always like to have a better system, no matter how good the existing one is, if you do not ask
them to pay for the improvements. The proposed risk assessment steps can provide a realistic
basis for incorporating time and cost constraints and cost/benefit tradeoffs early in the process,
when the situation is fluid and many options are open.

This process refinement provides some additional insight into the dynamics of iterative
prototyping- the iterative process should stop when the customers have determined what
requirements they can afford to realize, and which of many possible improvements they will be
willing to pay for, if any. It is not necessarily the case that the set of criticisms elicited by the
final round of prototype demonstrations is empty - that is true only in an idealized world with

adequate budgets and patient customers.

6. Conclusion

This paper introduces a formal risk assessment model for software projects based on
probabilities and metrics automatically collectable from the project baseline. The approach
enables a project manager to evaluate the probability of success of the project very early in the
life cycle, during an iterative requirements formulation process, based on well-defined
measurements rather than just guesswork or subjective judgments.

For more than twenty years, estimation standards have been characterized by a common
limitation- the requirements should be frozen in order to make estimates. This model presented
in this paper removes this important limitation, facing the reality that requirements are

inherently variable.

The model is perfectly suited for any evolutionary software process because it follows the
same philosophy. The risk assessment and estimation steps are conducted at each evolutionary
cycle with increasing knowledge and decreasing variance. The research formalizes an

214

improvement in the evolutionary software process, introducing a risk assessment step that can
be automated, and that can help shape the planning of the project in the early stages when there
is still substantial freedom to allocate available time and budget.

References

[Boehm 1981]
[Boehm 1988]

[Charette 1997]

[Gilb 1977]
[Hall 1997]

[Harn 1999]

[Jones 1994]

[Karolak 1996]

[Levitt 1999]

[Londeix 1987]

[Luqi 1988]

[Luqi 1989]

[Luqi 1996]

[Lyu 1995]

[Musa 1998]

[Nogueira 2000]

[Putnam 1980]

[Reel 1999]

[SEI 1996]

[Schneidewind 1975]

[Turbanetal 1998]

[vanGenuchten 1991]

[Wideman 1992]

B Boehm, Software Engineering Economics, Prentice Hall, 1981.
B. Boehm, A Spiral Model of Software Development and
Enhancement, Computer, May 1988.
R. Charette, K. Adams, & M. White, Managing Risk in Software
Maintenance, IEEE Software, May-June, 1997.
T. Gilb, Software Metrics, Winthrop Publishers, Inc., 1977.
E. Hall' Managing Risk, Methods for Software Systems Development,

Addison Wesley, 1997. .
M Harn, V. Berzins, Luqi, Computer-Aided Software Evolution
Based on a Formal Model, Proceedings of the Thirteenth
International Conference on Systems Engineering, Las Vegas,
Nevada, August 9-12,1999, pp. CS: 55-60.
C. Jones, Assessment and Control of Software Risks, Yourdon Press

Prentice Hall, 1994.
D. Karolak, Software Engineering Management, IEEE Computer

Society Press, 1996.
R. Levitt, The ViteProject Handbook: A User's Guide to Modeling
and Analyzing Project Work Processes and Organizations, Vite" ©

1999- B. Londeix, Cost Estimation for Software Development, Addison-

Wesley, 1987.
Luqi, M. Ketabchi, A Computer Aided Prototyping System, IEEE
Software, Vol. 5, No. 2, p. 66-72, March 1988.
Luqi, Software Evolution Through Rapid Prototyping, IEEE

Computer, May 1989.
Luqi, Special Issue: Computer-Aided Prototyping Journal of Systems
Integration, Vol. 6, Nos. 1-2, March 1996.
M. Lyu, Software Reliability Engineering, IEEE Computer Society

Press. 1995.
J. Musa, Software Reliability Engineering: More Reliable Software,
Faster Development and Testing, McGraw-Hill, 1998.
J. Nogueira, A Formal Risk Assessment Model for Software Projects,
Ph.D. Dissertation, Naval Postgraduate School, 2000.
L. Putnam, Software Cost Estimating and Life-cycle Control: Getting
the Software Numbers, IEEE Computer Society Press, 1980.
J. Reel, Critical Success Factors in Software Projects, IEEE
Software, May - June 1999.
Software Engineering Institute, Software Risk Management,
Technical Report CMU/SEI-96-TR-012, June 1996.
N. Schneidewind, Analysis of Error Processes in Computer Software,
Proceedings of the International Conference on Reliable Software,
IEEE Computer Society, 21-23 April 1975, p 337-346.
E. Turban and J. Aronson, Decision Support Systems and Intelligent
Systems, Prentice Hall, 1998.
M van Genuchten, Why is Software Late? An Empirical Study of the
Reasons for Delay in Software Development, IEEE Transactions on
Software Engineering, June, 1991.
R. Wideman, Risk Management: A Guide to Managing Project Risk
Opportunities, Project Management Institute, 1992.

215

Comparative Analysis of Design Alternatives in Embedded
Systems*

James E. Hilger1 Insup Lee,2 Oleg Sokolsky2

1 US Army CECOM Night Vision h Electronic Sensors Directorate
2 Department of Computer Science, University of Pennsylvania

June 9, 2000

Abstract
The paper addresses the problem of analysis of al-
ternatives in the design of distributed real-time sys-
tems. In the design of such a system, a hardware
architecture needs to be chosen; then the system
algorithm must be mapped onto the chosen archi-
tecture. As a result, the design space is very large,
and evaluation of alternatives is very expensive. We
propose an approach to an approximate analysis of
alternative design decisions, which allows to elimi-
nate infeasible solutions faster.

1 Introduction

Following the advances in processing and sensor
technologies, more and more powerful tasks can
be implemented by embedded real-time systems.
Operational requirements, especially timing con-
straints, for such systems become ever more strin-
gent. Parallel and distributed processing has to be
used in order to meet these requirements.

Because of this, design and implementation of
embedded systems is a very challenging task. With
multiple processors in a system, the number of
alternative implementations of an algorithm that
have to be considered by designers increases dra-
matically. On the one hand, a hardware architec-
ture has to be selected along with a target platform.
On the other hand, the algorithm has to be mapped
onto the chosen architecture, which can be done in
several ways. All of these choices can have dramatic

•This research was supported in part by NSF CCR-
9619910, ARO DAAG55-98-1-0393, ARO DAAG55-98-1-
0466

impact on the system performance, which may be
hard to estimate in advance. It would be, of course,
prohibitively expensive to implement several alter-
natives and evaluate them later. System analysis
techniques have to be used in order to estimate per-
formance of each alternative.

The most commonly used technique currently in
use is simulation [2]. Simulators capable of very
detailed modeling of an algorithm mapped on a
distributed system are available, and allow design-
ers to achieve highly accurate estimates. Unfor-
tunately, detailed simulation is a very lengthy pro-
cess. It would be infeasible, timewise, to analyze all
design alternatives by simulation. Complete simu-
lation of just one alternative can take months to
complete. Therefore, there is a need for an alter-
native analysis technique that would yield results
fast, even if these results would have less precision
than simulation.

This paper proposes, as an alternative to sim-
ulation, an analysis methodology based on formal
methods. Formal methods, a collection of specifi-
cation and analysis techniques based on a mathe-
matical description of a system, provide a rigorous
way of exploring behavior of a system specification.
Numerous tools are available to help the user in this
exploration.

In the proposed approach, an algorithm is parti-
tioned into a set of tasks. Each task can be run on
a single processor, competing for processing time
with other tasks assigned to the same processor.
The user specified the amount of processing time
necessary for the completion of the task, and the
interconnection between tasks - that is, the size of
data elements exchanged between tasks and the fre-

216

quency of exchanges. Data is exchanged between
processors along communication channels. Several
tasks may have to share a channel.

Based on this description, a formal specification
of the system is constructed and analyzed by a for-
mal methods tool. The specification is formed by a
number of building blocks, each representing a sys-
tem component: a processor running a certain task
or set of tasks, a communication channel shared
by a set of tasks, a queue for temporary storage
of data, etc. Each of these components is repre-
sented by a parameterized specification, which can
be instantiated according to the description of the
algorithm. Since we are interested in an approx-
imation of the system behavior, the specifications
do not have to be detailed and their analysis can
be performed fast, compared to simulation.

As a case study of the possibilities of this
methodology, we performed analysis of an auto-
matic target recognition (ATR) system for an Army
ground vehicle. The tool used for analysis is
PARAGON [3], a toolset for formal specification
and analysis of real-time systems.

2 The Problem

Many mappings of an algorithm onto a multipro-
cessor system are usually possible. Simulation is
traditionally used to evaluate different mappings
and choose those that meet timing requirements
for the system. However, simulation of a multipro-
cessor system is a laborious task, and the number
of alternatives precludes us from evaluating all of
them within the design cycle. Performance differ-
ences between implementations resulting from dif-
ferent mappings can be very significant. It is there-
fore important to identify those mappings that may
yield feasible solutions early in the design cycle.

We approach this challenging problem by means
of high-level modeling of the embedded system.
Models of the system implementations are con-
structed and analyzed for their parameters, such
as the number of processors necessary to meet the
timing requirements. This analysis yields very ap-
proximate results, which nevertheless allow us to
identify and discard infeasible solutions early in the
design cycle.

The algorithm of the embedded system is mod-
eled as a collection of tasks, each task assigned to

a certain processor. A task corresponds to a step
of the algorithm applied to a fraction of the input
data. A task interacts with other tasks by sending
results of its computation to the processor respon-
sible for the subsequent round. Interaction between
tasks is performed by communication channels on
the processor board, or by inter-board channels.
These channels are modeled to reflect their latency
and transmission times. In addition, data trans-
mitted between tasks has to be buffered to allow
each task to proceed at its own speed.

The specification of an embedded system is con-
structed from a set of building blocks that represent
commonly occuring system components. When
modeled in this way, an embedded system is rep-
resented as a parallel composition of a number of
similar processes. We were able to categorize the
several kinds of processes involved in this kind of a
specification. As mentioned above, commonly used
kinds of processes are (1) computation tasks as-
signed to a processor, that consume inputs from
one channel and produce outputs on another chan-
nel; (2) communication channels that transmit data
between processors; (3) shared channels that can
carry data from multiple sources to multiple desti-
nations; (4) queues or buffers for temporary storage
of data.

For each of these types of data, we defined a
parameterized process template that can be easily
reused in many specifications by modifying its pa-
rameters. Parameters of a template depend on the
kind of a process it represents. For example, com-
putation tasks are parameterized by the duration
of the task and the processor resource that runs
the task; communication channels are parameter-
ized by their latency and bandwidth; buffers have
their capacity as parameters.

This categorization of the specification compo-
nents allowed us to try different system configura-
tions quickly. Indeed, to construct a specification of
a new system configuration, we just need to instan-
tiate appropriate process templates and describe
their interconnections. The process templates are
organized in a library, and an intuitive user inter-
face for instantiating and connecting templates can
be provided. This turns a general-purpose formal
analysis tool into a framework for analysis of em-
bedded system designs.

217

3 Application

3.1 System description

We tested the described methodology in a case
study involving an implementation of a specific em-
bedded system. The algorithm used in this study
is an Army Research Laboratory (ARL) sponsored
ATR algorithm named the ATR Relational Tem-
plate Matching (ARTM) algorithm [1]. At a high
level, the ARTM algorithm operates on input im-
ages looking for edges and boundaries which, when
combined, have the shapes of targets. Initial tar-
get templates are used to look for gross shapes to
separate target-like regions from clutter regions. As
the algorithm progresses, the target templates used
are refined to separate target classes and eventu-
ally individual targets. The ARTM algorithm con-
sists of six stages, referred to as Rounds. Rounds
0 and 1 are for screening potential target pixels
from background clutter pixels (target screening).
Rounds 2 and 3 perform operations on pixels that
pass Rounds 0 and 1. Rounds 2 and 3 are designed
to converge on a specific target pose (target separa-
tion) while Round 4 verifies the target pose (target
verification). The last Round performs proximity
completion, i.e. a nonlinear form of spatial inte-
gration, and outputs a final target designation list
for the input image. Algorithm control flow from
Round 0 to Round 4 proceeds irregularly along a
conditionally branching target hypothesis tree for
each pixel in the input image. Control passes to
the next Round only if the latest Rounds' results
exceed the threshold, else it terminates. If control
terminates, the pixel under test is no longer consid-
ered as a potential target pixel. Proper threshold
design permits each Round to operate on progres-
sively fewer pixels. The image pixels included in all
of these computations vary in location depending
on the particular target template. The total num-
ber of operations necessary to process a single 1315
pixel by 480 pixel image according to the ARTM al-
gorithm is approximately 8,500 million. It should
be noted that this operation count includes each
addition necessary to address a particular pixel lo-
cation as well as operations necessary to perform
mathematical computations.

The operational scenario sets overall require-
ments such as frequency of results, which input
data, and the ultimate format of the output data.

The primary function of the ATR in this case is
to cue the human operator as to the location and
presence of potential targets. This aids the human
operator in the fatiguing task of manual search and
detection. This is also necessary to meet the short
timelines of target detection. It is the responsibil-
ity of the human operator to identify and prioritize
targets among multiple target cues. For this study,
the input data are digital InfraRed (IR) images that
have 480 rows of 1315 pixels with each pixel rep-
resented by 12 bits. The input frame rate is 10
frames per second. This translates into a latency
of 100 ms which represents the total time allotted
to process the frame according to the algorithm.

In order to satisfy the stringent timing require-
ments, an implementation of the ATR system must
be distributed across several processing compo-
nents. The target multiprocessor system of this
case study is based on 6U VME boards by Mercury
Computing Systems, each containing four 400MHz
PowerPC 750 processors. All integer instructions
are taking 1 clock cycle, except multiplication (5
clock cycles) and division (19 cycles). Memory
writes take 2 cycles. For this series of experiments,
it is assumed that the superscalar integer unit of
the processor allows it to execute, on the average,
1.5 integer instructions per clock cycle. The impact
of cache misses degrades performance by 1.5. The
bandwidth of the communication channels on the
board is 160 Mbytes/s.

3.2 Analysis

The specification of the ATR system was con-
structed using the specification and verification
toolset PARAGON [3]. PARAGON provides the
means to write formal specifications and explore
their behaviors. Analysis of the ATR algorithm was
undertaken for several system configurations, fea-
turing one, two and three processor boards. A sam-
ple two-board configuration is shown in Figure 1.
One processor is responsible for distributing pixel
data to processors on both boards. Five proces-
sors (three on board 1 and two on board 2) handle
Round 0, one processor is dedicated to Roundl, and
all remaining rounds are processed on the last pro-
cessor. While transmissions of data between pro-
cessors on the same board can be carried out con-
currently, inter-board transmissions all go through
the same channel and are serialized. For simplicity,

218

all transmissions between the boards are assumed
to take the same amount of time, described below.

The same hardware architecture has been ana-
lyzed with a different mapping of the tasks to pro-
cessors: six processors were assigned to Round 0,
while Round 1 was bundled on the same processor
with all other rounds.

3.3 Analysis results

Each configuration has been applied to images of
different sizes and analyzed to determine the frame
rate that can be achieved by the configuration. Re-
sults of the experiments are summarized in Fig-
ure 2, showing the frame rate as a function of the
number of processors dedicated to Round 0.

Conclusions
Work

and Future

• Additional case studies need to be performed
to gain more experience, which will allow us to
improve the technique further.

References

[1] T. Kipp et al. ATR Relational Template Match-
ing, Phase 1 Final S & T, Report, Army Re-
search Laboratory, Alliant Techsystems, Inc.,
and Mathematical Technologies, Inc. Contract
DAAB07-90-C-F427, 1990.

[2] J. E. Hilger. Adaptive computing technology:
An enabling processing technology for advanced
sensor systems. In Proceedings of IEEE Inter-
national Conference on Systems, Man and Cy-
bernetics, October 1998.

[3] 0. Sokolsky, I. Lee, and H. Ben-Abdallah. Spec-
ification and analysis of real-time systems with
PARAGON. Annals of Software Engineering,
1999. Accepted for publication.

We presented an approach to a rapid approximate
analysis of alternatives in the design of safety-
critical real-time systems. The goal of analysis is
to obtain estimates of the computational resources
needed to implement the system, and to eliminate
infeasible alternatives. Alternatives that survive
this approximate analysis are then evaluated in
more detail using more precise - and more expensive
- techniques. Preliminary results obtained through
the case study suggest that this approach will be
helpful in design of large safety-critical embedded
systems.

Our future research on this topic will pursue sev-
eral directions in order to make this approach more
helpful and easy to use.

• An intuitive front-end to the analysis tool will
be designed, to shield the user as much as pos-
sible from the low-level details of the specifica-
tion and analysis techniques.

• The set of process templates will be enlarged
and refined. The goal of this is twofold: on the
one hand, new types of templates are needed
to enlarge the scope of this technique; on the
other hand, templates need to be made more
flexible to allow different degrees of precision
during analysis.

219

Cin

C12

Processor 1

Data In

Processor 1

Round 0

C13

Processor 2

Round 0

Processor 2

Round 0

C24

C14

Processor 3

Round 0

Processor 3

Round 1

C34

Processor 4

Round 0

Processor 4

Round 2-5

C34

Figure 1: Sample ATR architecture

40 ■

12000 -
24000 -
36000,-

35 ■

Figure 2: Frame rate as function of Round 0 processors

220

Dependability of Computer-Based Systems

Cliff B Jones

Department of Computing Science,
University of Newcastle

NE1 7RU, UK
e-mail: cliff.jones@ncl.ac.uk

Abstract. This paper sets out a programme of work in the area of
dependability. The research is to be pursued under the aegis of a six-
year Inter-Disciplinary Research Collaboration funded by the UK Engi-
neering and Physical Sciences Research Council. The research considers
computer-based systems which comprise humans as well as hardware and
software. The aim here is to indicate how formal methods ideas, coupled
with structuring proposals, can help address a problem which clearly also
requires social science input.

EXTENDED ABSTRACT

Reasoning about interference

This section summarises earlier work on formal development methods for con-

current systems.
The essence of concurrency is interference: shared-variable programs must

be designed so as to tolerate state changes; communication-based concurrency
shifts the interference to that from messages. One possible way of specifying
interference is to use rely/guarantee-conditions (see [Jon83, Sti88, St09O, Xu92,

Col94, Din99]).
Programming language designers have proposed a series of increasingly so-

phisticated constructs to control interference; the case for using object-oriented

constructs is set out in [Jon93].

Faults as interference

The essence of this section is to argue that faults can be viewed as interference in
the same way that concurrent processes bring about changes beyond the control
of the process whose specification and design are being considered. Without yet
proposing notation for each case, a range of motivating examples are considered.

The first example is one that re-awakened this author's interest in consider-
ing faults as interference. Faced with the task of specifying a traffic light system,
many computer scientists would confine themselves to the control system and
specify the signals which must be emitted. Michael Jackson (see [JacOO]) consid-
ers the wider issues of the correct wiring of the control system to the physical

221

lights and the initial state of these lights units. One could widen the specification
to address the overall light system (at one level the requirement is that at least
one light must always be red) and record assumptions (as rely-conditions) which
state that emitting a signal implies that the light unit changes state. Recording
such a rely-condition does not itself result in a dependable system but it en-
sures that the assumptions are recorded and use of proof rules for development
of concurrency should ensure that there are no further hidden assumptions. In
fact, one could take this example further by specifying that the real requirement
is to reduce the probability of a crash to a certain level and then record proba-
bilities that drivers behave in certain ways when faced with red lights (see, for
example, [MMS96] for ways of reasoning about probabilities in design).

A second -trivial- example should again illustrate the shift of view in doc-
umenting assumptions. Rather than specifying a control system in terms of
the readings delivered by measuring devices, it might be preferable to spec-
ify the overall system in terms of the actual temperature etc. and provide a
rely-condition which records the acceptable tolerance on the measuring device.
Here again, the message is to expose the assumptions.

A more realistic example can be given in the same domain: it would be
common for such sensors to be deployed using "triple modular redundancy".
The viewpoint of recording the assumptions would suggest that a rely-condition
should state that two roughly equal measurements are far less likely to be in
error than one which is wildly different (or is perhaps some distinguished error
value). .

As well as the primary message that exposing assumptions will force their
consideration, there is the clear advantage that checking that such rely-conditions
are adequate to prove that a system will meet its overall specification will check
for any missed assumptions.

Fault containment and recovery

Significant work has been done on designing architectures for fault-containment
and recovery - see for example [Ran75, XRR+99].

Human errors and their containment

The work in the Dependability Interdisciplinary Research Collaboration on which
we are embarking will address not just dependable computer systems but will
also consider wider systems where the role of the humans involved is seen as crit-
ical to overall system dependability. The need for this is emphasized by [Mac94]
which reports a large number of computer related accidents which resulted in
death and notes that in the majority of cases the key problem related more to the
interaction between people and computers than a specific hardware or software
malfunction.

There are of course many examples of where a program tries to guard against
inadvertent errors of its users: the check in many operating systems asking a

222

user to confirm the request to delete files or the need to retype a new password
(being invisible there is no other check) are trivial instances. More interesting is
the architecture of the overall system known as Pen& Pad [HRH+90] in which
software is programmed to warn against possible misprescription of drugs by
doctors: no attempt was made to automate prescription but the system would
check against dangerous cocktails or specific drugs which might not be tolerable
to some other condition that is indicated on the patient's record.

The logical extension of the work outlined in the two preceding sections on
purely computer systems is to aim for a more systematic treatment of human
errors. Fortunately the work of psychologists like Reason (see [Rea90]) in cat-
egorising human errors offers the hope of describing and reasoning about the
sort of human errors against which a system is designed to guard. The objective
would be to minimise the risk of the errors of the computer system and (groups
of) humans "lining up" in the way indicated in [Rea97].

Further research

There are many further areas of research related to the themes above. For ex-
ample:

- Both pre and rely-conditions can record assumptions but if they become
complex they might be a warning that an interface has become too messy
(cf. [CJOO]) - ways of evaluating interfaces and architectures are needed
(see [SG96]).

- The idea of using rely-conditions to record failure assumptions occurred to
the author in a connection with a control system some years ago. One reason
for not describing the idea more publicly was that there often appears to be
a mismatch of abstraction levels between the specification and the error
inducing level. There needs to be more research on whether this can be
avoided.

- The role of malicious attacks is being considered in the IST-funded MAFTIA
project.

- A key area of system "misuse" is where the user has an incorrect model of
what is going on inside the combined control/controlled system - minimizing
this risk must be an objective.

- Progress in modelling the human mind (e.g. [CS94]) should be tracked.

Acknowledgements

There is of course related research and the work of Michael Harrison and his
colleagues (who are within the IRC) and John Rushby (see [Rus99]) has influ-
enced the thinking so far. One particular stimulus for this paper was the talk
that Michael Jackson gave at the Munich meeting of IFIP's WG2.3 last year -
more generally discussions at this working group on Programming Methodology
have acted as a sounding board and encouragement to the author. This extended

223

abstract was published earlier in the proceedings of MPC2000. Evolving details
of the Dependability IRC can be found at www.dirc.org.uk.

224

References

[CJOO] Pierre Collette and Cliff B. Jones. Enhancing the tractability of
rely/guarantee specifications in the development of interfering operations.
In G. D. Plotkin, editor, Proof, Language and Interaction, chapter 10, pages

275-305. MIT Press, 2000.
[Col94] Pierre Collette. Design of Compositional Proof Systems Based on

Assumption-Commitment Specifications - Application to UNITY. PhD the-

sis, Louvain-la-Neuve, June 1994.
[CS94] Patricia S Churchland and Terrance J Sejnowski. The Computational Brain.

MIT Press, 1994.
[Din99] Jürgen Dingel. Systematic Parallel Programming. PhD thesis, Carnegie

Mellon University, 1999.
[HRH+90] T J Howkins, A L Rector, C A Horan, A Nowlan, and A Wilson. An

overview of PEN& PAD. Lecture Notes in Medical Informatics, 40:73-78,

1990.
[JacOO] Michael Jackson. Problem Frames: Structring and Analysing Soßware De-

velopment Problems. Addison-Wesley, 2000.
[Jon83] C. B. Jones. Specification and design of (parallel) programs. In Proceedings

ofIFIP'83, pages 321-332. North-Holland, 1983.
[Jon93l C B Jones. Constraining interference in an object-based design method.

In M-C. Gaudel and J-P. Jouannaud, editors, TAPSOFT93, volume 668 of
Lecture Notes in Computer Science, pages 136-150. Springer-Verlag, 1993.

[Mac94] Donald MacKenzie. Computer-related accidental death: an empirical explo-
ration. Science and Public Policy, 21:233-248, 1994.

[MMS96] Carroll Morgan, Annabelle Mclver, and J W Sanders. Refinement-oriented
probability for CSP. Formal Aspects of Computing, 8(6):617-647, 1996.

[Ran75] B. Randell. System structure for fault tolerance. IEEE Transactions on
Software Engineering, SE-l:220-232, 1975.

[Rea90] James Reason. Human Error. Cambridge University Press, 1990.
[Rea97] James Reason. Managing the Risks of Organisational Accidents. Ashgate

Publishing Limited, 1997.
[Rus99] John Rushby. Using model checking to help discover mode confusions and

other automation surprises. In Proceedings of 3rd Workshop on Human

Error, pages 1-18. HESSD'99, 1999.
[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on an

Emerging Discipline. Prentice Hall, 1996.
[Sti88] C. Stirling. A generalisation of Owicki-Gries's Hoare logic for a concurrent

while language. TCS, 58:347-359, 1988.
[St09O] K. St0len. Development of Parallel Programs on Shared Data-Structures.

PhD thesis, Manchester University, 1990. available as UMCS-91-1-1.
[XRR+99] J. Xu, B. Randell, A. Romanovsky, R. J. Stroud, A. F. Zorzo, E. Canver,

and F. von Henke. Rigorous development os a safety-critical system based
on coordinated atomic actions. In Proc. of 29th Int. Symp. Fault-Tollerant
Computing. IEEE Computer Society Press, 1999.

[Xu92] Qiwen Xu. A Theory of State-based Parallel Programming. PhD thesis,

Oxford University, 1992.

This article was processed using the tfTßX macro package with LLNCS style

225

Verification Diagrams: Logic + Automata

Zohar Manna and Henny B. Sipma *

Computer Science Department
Stanford University

Stanford, CA. 94305-9045
{manna,sipma}0cs.Stanford.edu

Abstract. We use automata on infinite words to reduce the verification
of linear temporal logic (LTL) properties over infinite-state systems to
the proof of first-order verification conditions and an algorithmic lan-
guage inclusion check. The automaton serves as a temporal abstraction
of the system, preserving a subset of both safety and liveness proper-
ties The first-order verification conditions prove that the abstraction is
conservative; the algorithmic check verifies that the abstraction satisfies
the property. Automata precisely separate the combinatoric from the
logic part of the proof, such that the combinatoric part can be handled
completely by algorithmic methods.

1 Introduction

Verification diagrams cleanly separate combinatorics, handled by the underlying
automata, from logic, represented by first-order verification conditions, in the
proof that a reactive system satisfies a temporal specification. Automata are
ubiquitous in program verification. However, all of their use has been in model
checking [Kur94,VW86], the combinatoric part of the proof: both the system
and the negation of the property are represented as a finite-state automaton and
property satisfaction is checked by means of a decidable emptiness check of the
product automaton. In this paper we show that automata can also successfully
be used in the verification of infinite-state systems in the form of verification
diagrams [MP94]. These diagrams are temporal abstractions of the system that
preserve liveness properties: the acceptance condition of the automaton restricts
the infinite behavior of the abstract system [BMS95,MBSU98].

To show that a system S satisfies a temporal property <p, a verification dia-
gram g is constructed such that the language inclusion (where the language of
a diagram is similar to that of the underlying automaton)

C(S) C C(G)

* This research was supported in part by the National Science Foundation under
grant CCR-98-04100 and CCR-99-00984 ARO under grants DAAH04-96-1-0122 and
DAAG55-98-1-0471, ARO under MURI grant DAAH04-96-1-0341, by Army contract
DABT63-96-C-0096 (DARPA), and by Air Force contract F33615-99-C-3014.

226

can be proved by first-order verification conditions, and the language inclusion

C(G) C CW)

can be proved algorithmically, thus separating the deductive and algorithmic
parts of the proof, and eliminating the need to perform any deductive temporal

reasoning. .
Construction of the diagram may be an iterative process, starting with the

diagram based on the automaton for the property and refining this diagram until
all first-order verification conditions can be proved. In this case the diagram is
guaranteed to satisfy the property. The verification diagram is a true abstraction
of the system in the same domain: it over approximates the set of computations

of the system.
Like in model checking one can also start with a diagram based on the au-

tomaton for the negation of the property. The resulting fabification diagram
[SUM99] over approximates the set of computations of the system that do not
satisfy the property. The goal is now to refine the diagram, justified by first-order
verification conditions, until it is empty, proving that no computation satisfies
the negation of the property. This process is called Deductive Model Checking.

Both verification diagrams and falsification diagrams take as starting point
a nondeterministic ^-automaton [Tho88] for the (negation of the) property. The
size of the automaton is worst-case exponential in the size of the property, which
is undesirable, since the number of first-order verification conditions is propor-
tional to the size of the automaton. Recently we have investigated alternating
automata, which are linear in the size of the property, as the basis for diagrams

and verification rules [MSOO].
In this paper we will give an overview of the use of diagrams in verification.

The remainder of the paper is organized as follows. Section 2 provides the pre-
liminaries: our computational model of fair transition systems, our specification
language of linear temporal logic (ML), and the basics of w-automata. Section 3
presents verification diagrams, separated in the logic part and the combinatonc
part Sections 4, 5 and 6 introduce alternating automata, and show how they can
be used to reduce the proof of an ML property to a set of first-order venficat.on

conditions.

2 Preliminaries

2.1 Computational Model: Fair Transition Systems

The computational model used for reactive systems is that of a transition system

[MP95] (TS), S = (V,6s,T), where v k a finite set of variab,es' es ,s *" mltial

condition, and T is a finite set of transitions. A state s is an interpretation of V,
and E denotes the set of all states. A transition r € T is a function r : E i-> 2 ,
and each state in T(«) is called a r-successor of s. We say that a transition r
is enabled on s if r{s) / 0, otherwise r is disabled on a. Each transition r is
represented by a transition relation /»,(«,«'), an assertion that expresses the

227

relation between the values of V in a and the values of V (referred to by V) in

any of its T-successors s'.
A run of 5 is an infinite sequence of states such that the first state satisfies

6s and any two consecutive states satisfy a pT for some r 6 T- A state s is

called <S-accesstb/e if it appears in some run of S.
Transitions can be marked as just or compassionate. Just (or weoMy Jwr)

transitions cannot be continuously enabled without ever being taken. Compas-
sionate (or strongly fair) transitions cannot be enabled infinitely often without
being taken. Every compassionate transition is also just. A computation * a run
that satisfies these fairness requirements. The set of all computations of S is

denoted by C(S).

2.2 Specification Language: Linear Temporal Logic

The specification language studied in this paper is «near temporal logic. We
assume an underlying assertion language which is a first-order language over
interpreted symbols for expressing functions and relations over some concrete
domains We refer to a formula in the assertion language as a state formula or
assertion. A temporal formula is constructed out of state formulas to which we
apply the boolean connectives and the temporal operators shown below.

Temporal formulas are interpreted over a model, which is an infinite sequence
of states a : s0,su.... Given a model a, a state formula? and temporal formulas
v and V, we present an inductive definition for the notion of a formula y> holding

at a position j > 0 in <r, denoted by {a, j) 1= ip.
For a state formula:

(ff, j) tP iff si •= P' that is' p holds on State Sj'

For the boolean connectives:

(<r, j) *= <t> A </> iff (ff> i) * <t> and (ff' •?') •= ^
(o-,j) 1= </>V i> iff (<r.j) M or (<r,j) M
l<T,j) N-.^ iff (<M')H<£-

For the future temporal operators:

(a,j)t=0<£ iff (ff.i + 1)t=^
(<M")t=D<A iff (<v) M for all » > j

(<r, j) >= O «A iff (a> *) ^ ^ for some * - J

{<?, j) t<t>Uip iff (ff.fc) 1= V" for some k > j,
and (<r,i) 1= 0 for every i, j < i < fc

(a, j) 1= <£W V iff (°"> J) M^V" or (<r, j) M D0 •

For simplicity of the presentation, we will omit the past temporal operators in
this paper. However both verification diagrams and the alternating automata
are applicable to LTL formulas that include past operators. An infinite sequence
of states o- satisfies a temporal formula <f, written a t= *, if (a, 0) 1= *. The set of
all sequences that satisfy a formula <p is denoted by C(V), the language of V.

228

*o;n<; only state formulas,
, la is a future formula if it «^" "JJ» a formula is a

if it holds over

SfP

all computations of 5.

, 3 Nondeterministic ^-automata Automata are

path « is ««P"nS. «Si to *= m""°a,°^f leaving tte **■ ,,„.

■>* ™;"',„'„,«e of A «*»»' «•*'•
in .A sucn i"<" — - ..

path no, m > • • • r A written A-*) - called the language of A

3 Verification Diagrams t0 firSt-order reason-

Verification diagram ^ ^ticna! node ^^ So,Sl,.. • *

The Logic Par*

229

Initiation Every initial state of S must be able to be mapped onto some initial
state of the diagram. This holds if the following condition holds:

0 -* /*(Wo)

where fi{S) with S = {m,. -. ,nt} C N stands for

/i(S)d=/i(ni)V...V/i(n*)

It states that every run of S can start at some initial node of Q.

Consecution For every node n £ N and for every state s 1= /z(n) every successor
state of s must be able to be mapped onto a successor node of n. This holds it

the following condition holds for every node n 6 N:

H(n) A pT -> /A«"«^))

where succ(n) stands for all successor nodes of n.

Acceptance The acceptance condition of the automaton eliminates from the dia-
gram language all sequences of states all of whose paths end up in a nonaccepting
SCS We have to show that none of these sequences correspond to a computation
of the system. We say that an SCS S is transient if every computation of <5 with
a path ending in S has a way of leaving S. To show that every computation
has at least one accepting path in the diagram it suffices to show that every
nonaccepting SCS is transient[SiP99]. An SCS can be shown to be transient in

one of the following three ways:

Just exit An SCS S has a just exit, if there is a just transition r such that the
following verification conditions hold for every node m e S:

H(m) -¥ enabled(r)

and
fi(m) A pT -* p-'(succ(m) - S)

The first condition states that r is enabled on every node, and the second
condition ensures that the computation can leave the SCS at every node.

Compassionate exit An SCS has a compassionate exit, if there is a compas-
sionate transition r such that the following conditions hold for every node

m£ S:
p{m) -> -ienabled{T)

p,(m) A pr -* n'{succ{m) - S)

and for some node n e S, r is enabled at n:

ß(n) -» enabled(r)

This states that for eveyr node in S either r is disabled or r can lead out of
S, and there is at least one node n where T can indeed leave S.

230

Well-founded SCS An SCS S : {nu... ,nk} is well-founded if there exist

ranking functions {Su • •■ ,<M, where each J* maPs the system stateS "^
elements of a well-founded domain (D, V), such that the following verification
conditions are valid: there is a cut-set1 E of edges in S such that for all edges

(ni,n2) e E and every transition r,

fi{ni) ApT A At'(«2) -> <*i >" S2 >

and for all other edges (nun2) <£ E in 5 and for all transitions r,

/*(«i) Apr A/i'(n2) -> 6"i >;d"2 -

This means that there is no computation that ends up in 5: it would have
to traverse at least one of the edges in E infinitely often, which contradicts

the well-foundedness of the ranking functions.

In addition, we need to show that the language of the diagram is included in
the language of the underlying automaton of the diagram, that is

C{S) C C(0A)

This holds if the following first-order verification holds for every node n in Q:

ß(n) -> p{n) .

Thus, if the above verification conditions hold it is ensured that every compu-
tation of the system is represented in the language of the underlying automaton

of the diagram.

3.2 Verification Diagrams: The Automata Part

Having shown £(5) C C(GA) it remains to show that all models of the underlying
automaton of the diagram satisfy the property, that is

C(GA) C C(V) ■

This check can be performed using a straightforward abstraction and standard

w-automata model checking.
Let B - {61,..., &„} be the set of first-order atomic formulas appearing in

the property <f> to be proven. Abstracting both the automaton for the negation
of the property and the underlying automaton of the diagram with the abstrac-
tion function that in each node labeling replaces each atomic formula with the
corresponding proposition of the boolean algebra over B, we obtain two finite-
state w-automata, Q\ and A"(^), and we can check the language inclusion
C{g<X) C CWfr)) by checking C(G% x -A"("•¥>)) for emptiness.

1 A cut-set of an SCS 5 is a set of edges E such that every loop in S contains some
edge in E (that is, the removal of E disconnects S).

231

It is easy to show that the abstraction function and its corresponding con-
cretization function (which replaces in each node labeling every proposition with
the corresponding assertion) form a Galois insertion, and thus from

C{Q<X) C C(Aa{v))

we can conclude
C(GA) C C(A(tp))

as required.

3.3 Verification Diagrams: Semi-Automatic Generation

As mentioned in the Introduction one can take the automaton for the property as
a starting point for the verification diagram. The task at hand is now to refine
the diagram by splitting nodes and strengthening the assertions labeling; the
nodes until the verification conditions associated with the d.agram hold. If the
diagram is refined in this manner, the combinatoric check becomes redundant,
since the diagram is guaranteed to satisfy the property.

The disadvantage of this approach is that the diagram may get very large,
since the size of the automaton is worst-case exponential in the size of the prop-
erty In the next section we introduce alternating automata, which are linear in
the size of the property, to alleviate this problem to a certain extent.

4 Alternating Automata

Alternating automata are a generalization of nondeterministic automata^Non-
deterministic automata have an existential flavor: a word \"^f*"
accepted by some path through the automaton. On the other hand V-automata
[MP871 have a universal flavor: a word is accepted if it is accepted by all paths.
Alternating automata combine the two flavors by allowing choices along a path

to be marked as either existential or universal.
An alternating automaton A is defined recursively as follows:

A .— eA empty automaton
| {v,5,f) single node
I A/\A conjunction of two automata
1 Ay A disjunction of two automata

where v is a state formula, «5 is an alternating automaton expressing the next-
state relation, and / indicates whether the node is accepting (denoted by +) or
rejecting (denoted by -). We require that the automaton be finite

The set of nodes of an alternating automaton A, denoted by X{A) is formally

defined as ,,, . fl

A/XM,/» = M,/>UAT(<5)
M{A^A2) = M(Ai)oN(A2)
V(AVA) = N{A1)UJ^{A2)

232

A path through a regular w-automaton is an infinite sequence of nodes. A
"path" through an alternating w-automaton is, in general, a tree. A tree is defined
recursively as follows:

T ::= €j empty tree
I T - T composition
| {node,T) single node with child tree

A tree may have both finite and infinite branches.
Given an infinite sequence of states a : s0, su ■ ■ ■> a tree T is called a run of

a in A if one of the following holds:

A = t£ and T - er
A = n and T = {n,T') and 50 ^«'(") and

V is arun of si,s2,... in <5(n)
A = Ai*A2 and T = TlT2,

Ti is a run of Ai and T2 is a run of A2

A = AiV A2 and T is a run of Ai or T is a run of A2

A run T is accepting if every infinite branch contains infinitely many accepting
nodes An infinite sequence of states a is a model of an alternating automaton
A if there exists an accepting run of a in A. The set of models of an automaton
A, also called the language of A-, is denoted by C(A).

5 Translating LTL formulas into Alternating Automata

It has been shown that for every LTL formula y> there exists an alternating
automaton A such that C(<p) = C{A) and the size of A is linear in the me
of <p [Var97] In [Var97] a construction method is given for such an automaton
with propositions labeling the edges. Since we prefer to label the nodes with
propositions (or, in our case, state formulas), we present a slightly different
procedure. In the remainder of this paper we assume that all negations have
been pushed in to the state level (a full set of rewrite rules to accomplish this is
given in [MP95]), that is, no temporal operator is in the scope of a negation.

Given an LTL formula <p, an alternating automaton A{<p) is constructed, as

follows.
For a state formula p:

A[p) = (p,CA,+) ■

For temporal formulas (p and ifi:

A(V/\ip) = A(v)AA(r!>)
AfrViP) = A&)VAW
A(0<P) = (true,A(<p),+)
Aia<fi) = (true,.4(D<?)>+> A-4(v)
A(Ov) = <*rue, .4(0 ¥»).-> V^fe»)
4(yZ/V) = A(i/>)V ({true,A(<pUil>),-) *A{<p))
A(yWip) = AU>)V((true,A(<pWil>)1+)KA<P))

233

MUv) MQv)

MM) A{(pm)

Fig. 1. Alternating automata for the temporal operators D, O. U> W

The constructions for the temporal formulas are illustrated in Figure 1.
In [MSOO] it is shown that for a future temporal formula <p, C{<p) - HMV))-

6 Temporal Verification Rule for Future Safety Formulas

Alternating automata can be used to automatically reduce the verification of an
arbitrary safety property specified by a future formula to first-order verrfteatoon
conditions, where a safety property is defined to be a property <p, such that rf
a sequence a does not satisfy <p, then there is a finite prefix of a such that <p is

false on every extension of this prefix-
We define the initial condition of an alternating automaton A, denoted by

0A(A), as follows:

<U(<u) = true

9A((u,5,f)) = *
0A{Ai A A2) = 0A{Ai) A 6A{Ai)
eA(AlwA2) = eA{Ai)y9A{Ai)

Intuitively, the initial condition of an automaton characterizes the set of initial

states of sequences accepted by the automaton.

Basic Rule

Following the style of verification rules of [MP95] we can now present the basic
temporal rule B-SAFE, shown in Figure 2. In the rule we use *« *™ £*£
notation {p}r {</}, which stands for PApT -> <?'■ The notat.on {p}T{q} stands

for {p} T {q} for all r 6 T.

234

For a future safety formula ip and TS S : (V, 0s, T),

Tl. 0s -» M>t(v))

T2. {»(")} T {M*("))} for n e ^M(v))

SNp

Fig. 2. Basic temporal rule B-SAFE

Premise Tl, the Initiation Condition, requires that the initial condition of 5
implies the initial condition of the automaton A(V). Premise T2, the Consecution
Condition, requires that for all nodes, n € Jf{A(<p)), and for all transitions
T € T, T, if enabled, leads to the initial condition of the next-state automaton

of n.

General Rule

As is the case with the rules B-INV and B-WAIT in [MP95], rule B-SAFE is hardly
ever directly applicable, because the assertions labeling the nodes are not induc-
tive- they must be strengthened. To represent the strengthening of an automa-
ton we add a new label fx to the definition of a node, {p, v, 5, /), where /i is an
assertion, and we change the definition of 6A for a node into

M(/«.M,/» = /* •

Using these definitions, Figure 3 shows the more general rule SAFE that allows

strengthening of the intermediate assertions.

For a future safety formula <p, TS S : {V, 0s, T),
and strengthened automaton A(<p)

TO. /i(n) -> "(")

Tl. 0s -> OAAv))

T2. {/i(n)} "HM^")))

for n e tf(A(<p))

for n e M{A{<p))

Fig. 3. General temporal rule SAFE

235

Note that terminal nodes, that is, nodes with 6 = eA, never need to be
strengthened. This is so, because consecution conditions from terminal nodes
are all of the form M(n) Ap,-4 true, since MM) - *n.e, and thus trivially

In fMSOO] we show that rule B-SAFE is sound, that is, for a TS S and future
safety formula <p, if the premises Tl and T2 of rule B-SAFE are 5-state valid then

St tp.

7 Implementation

Verification diagrams have been implemented in STeP, the Stanford Temporal
Prover, a verification tool that supports algorithmic and deductive verification
of reactive systems (BBC+95.BBC+00]. We are currently implementing support
for interactive refinement and heuristics for automatic generation of verification

^te rule SAFE based on alternating automata has also been implemented in
STeP obviating the need for any specialized verification rules for safety proper-
ties However, the strengthenings still have to be provided by the user.

Both verification diagrams and rule SAFE have been convenient m the proof
of temporal properties, especially in proving properties of modular systems.

References

fBBC+951 N.S. Bj0rner, A. Browne, E.S. Chang, M. Colon, A. Kapur, Z Manna,
HB Sipma, and T.E. Uribe. STeP: The Stanford Temporal Prover,
User's Manual. Technical Report STAN-CS-TR-95-1562, Computer Sci-
ence Department, Stanford University, November 1995. available from
http://wro-step.stariford.edvi/.

[BBC+OO] N.S. Bj0rner, A. Browne, M. Colon, B. Finkbeiner, Z. Manna^ H.B. Sipma,
and T E Uribe. Verifying temporal properties of reactive systems: A STeP
tutorial. Formal Methods in System Design, 16(3):227-270, June 2000.

[BMS95] A. Browne, Z. Manna, and H.B. Sipma. Generalized temporal verification
diagrams In 15th Conference on the Foundations of Soßware Technology
and Theoretical Computer Science, vol. 1026 of Lecture Notes in Computer
Science, pages 484-498. Springer-Verlag, 1995.

[BMS96] A. Browne, Z. Manna, and H.B. Sipma. Hierarchical verification usmg, ven-
fication diagrams. In 2»* Asian Computing Science Con/., vol. 1179 of Lec-
ture Notes in Computer Science, pages 276-286. Springer-Verlag, December

[Kur94] R P Kurshan. Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press, 1994.

[MBSU98] Z. Manna, A. Browne, H.B. Sipma, and T.E. Uribe. Visual abstractions
for temporal verification. In A. Haeberer, editor, Algebraic Methodology and
Software Technology (AMAST'98), vol. 1548 of Lecture Notes in Computer
Science, pages 28-41. Springer-Verlag, December 1998.

236

[MP871 Z Manna and A. Pnueli. Specification and verification of concurrent pro-
grams by V-automata. In B. Banieqbal, H. Barringer, and A. Pnueli, ed.tors,
Temporal Logic in Specification, number 398 in Lecture Notes in Computer
Science, pages 124-164. Springer-Verlag, Berlin, 1987. Also in Proc. Hth
ACM Symp. Princ. of Prog. Lang., Munich, Germany, pp. 1-12, January

1987- . T W XI • A
IMP94] Z. Manna and A. Pnueli. Temporal verification diagrams. In M. Hagiya and

J C. Mitchell, editors, Proc. International Symposium on Theoretical Aspects
of Computer Software, vol. 789 of Lecture Notes in Computer Science, pages
726-765. Springer-Verlag, 1994.

[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

IMS001 Z. Manna and H.B. Sipma. Alternating the temporal picture for safety In
U Montanari, J.D. Rolim, and E. Welzl, editors, Proc. 27th Intl. Colloq.
Aut. Lang. Prog., vol. 1853, pages 429-450, Geneva, Switzerland, July 2000.
Springer-Verlag.

fSip99l H B Sipma. Diagram-based Verification of Discrete, Real-time and Hybrid
Systems. PhD thesis, Computer Science Department, Stanford Uruvers.ty,
February 1999. To appear as STAN-CS Technical Report.

rSUM99l H B Sipma, T.E. Uribe, and Z. Manna. Deductive model checking. Formal
1 Method, in System Design, 15(l):49-74, July 1999. Preliminary version

appeared in Proc. 8th Intl. Conference on Computer Aided Verification,
vol. 1102 of LNCS, Springer-Verlag, pp. 208-219, 1996.

[Tho88l W Thomas. Automata on infinite objects. Technical Report 88-17,
RWTH Aachen, 1988. In Handbook of Theoretical Computer Science, North-

Holland. .
rVar97l M Y Vardi. Alternating automata: Checking truth and validity for temporal

logics. In Proc. of the Ulh Intl. Conference on Automated Deduction, vol.
1249 of Lecture Notes in Computer Science. Springer-Verlag, July 1997.

[VW861 M Y Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proc. First IEEE Symp. Logic in Comp. Sei., pages

332-344, June 1986.

237

Tracking Real-Time Systems Requirements

Aloysius K. Mok'
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712
mok@cs.utexas.edu

Abstract

One of the hard problems in maintaining real-time systems requirements is to keep track
of the impact of resource usage on the applications. Often times, it is not sufficient to
keep track of upper bounds since some requirements such as jitter are also sensitive to the
lower bounds and the resource scheduling algorithm employed. In the case of non-pre-
emptive scheduling, real-time requirements can be missed when resource utilization is
decreased as in a CPU upgrade, even though there are no jitter constraints. In this paper,
we define the notion of robustness for real-time performance requirments and discuss the
tracking of sensitivity of real-time application requirements with respect to resource
usage by formal method. We shall draw as an example the performance requirements ot
the avionics software of the Boeing 777 aircraft.

1. Introduction

A problem in engineering large complex software systems is the sensitivity of a
design to changes in the requirements. If we view each step of the design process as a
mapping from a requirements space to an (abstract) design space, the sensitivity problem
may be viewed as a relation, let us call it the tracking relation between some appropri-
ately defined differnce metric in the requirements space and the corresponding difference
metric induced in the design space, where the difference metric measures the magnitude
of some aspect of a change in the requirement/design space. There are some properties of
the tracking relation that are obviously desirable. For example, the tracking relation
should preserve locality: differences confined to a locality in the requirements space
should induce differences confined to a locality in the design space, and scalability: a
small difference in the requirements space should induce a small difference in the design
space Of course, how a difference metric is defined should reflect the aspect of require-
ments capture under consideration. For example, the difference metric meant to capture
locality in the requirements space may reflect the number of functionalities/components
that are affected by a change in the requirement, and the difference metric meant to cap-
ture scalability in the requirements space may reflect the increase in system load in a
requirements change. The idea of tracking relation is illustrated in the following figure.

f^^earh reported here is'supported partially by a grant from the Office of Naval Research under
contract number NOOO14-98-1-0704.

238

Want||Y'-X'||~||Y-X||

Figure 1. Tracking Relation

In the following, we shall illustrate the tracking relation concept by considering a
specific aspect of real-time systems design, specifically, the relation between a change m
the real-time performance requirement and the schedulability of the design solution. Intu-
itively if we make the real-time performance requirement of an application less stringent,
we should expect the design solution to require at most the same amount of computing
resources. A mapping from requirment to design is robust if a less demanding require-
ment will not cause a performance failure in the design. We shall formalize the concept of
robustness in the context of real-time scheduling theory. The schedulability problem for
preemptive schedulers was first discussed in [Liu&Layland 73]. We include below our

own proofs for theorems 3 and 4.

2. Some Definitions
Let us first define some terminology. We shall assume that time is discrete and all

timing parameters are integers. A slight modification is needed for the discussion below

to apply to continuous time.
A sporadic task is charcterized by a pair: T^C^d, where each request for service

of T, requires C, units of CPU time to satisfy and two successive requests of Tt must be

239

separated by at least P, time units. Suppose M is a set of n sporadic tasks {(C,, P,), -,
(C P)) where Ch P, are respectively the computation time and the minimum separation
between successive requests for sporadic task T, A preemptive fixed-priority (PFP)
scheduler is used to schedule tasks in M. A PFP scheduler always selects for execution
the task that has the highest priority. Unless otherwise stated we shall adopt the conven-
ts that task T, is assigned a higher priority than task T, iff i < j. In ^^^
talk about schedules for M that are produced by a PFP scheduler. We call these schedules

PFP schedules.
Suppose r is a request for a task Tt that occurs at time * in a schedule s. Then the

response time of r is defined to be f -1 where t' is the time at which r is satisfied by the
completion of the instance r, in , corresponding to r. Given a priority assignment, a task
is scheduleable iff all of its requests have response time no bigger than its minimum sepa-
ration in every PFP schedule. A feasible schedule is one in which every task in the task

set is scheduleable.
We can now define the robustness property as follows. The requirements space is the

set of sporadic task sets. A design is a priority assignment to the tasks in a sporadic task
set Suppose we reduce the computation time or increase the minimum separation of a
task in a given task set, we should expect the same design to work In other words a pri-
ority assignment that results in all the tasks in a task set being schedulab le should pre-
serve schedulabüity if the computation time is reduced or minimum separation.increased
for some task in the task set. We say that a priority assignment is.robust if this i indeed
the case. We shall see that the RMA priority assignment (defined below) is robust for the

PFP scheduler.

3. The Robustness of PFP Priority Assignment

A task T,. is said to have an outstanding computation at time t in a schedule s iff a request
ffor T, occurs at time,', f < t, and r has not been satisfied at time t. Unless every request
[s satisfied before the arrival of the next request, it is possible for a task to have multiple

outstanding computations at a time instant.
For a schedule ,, a task T, and time values t, ?, define N(i,s,t,t') to be Ae number

of requests of T,- that appear in the interval [t,t') in ,. Notice that N(i,s,t,t) is bounded
from abot by \<f - ml and is exactly equal to [(f - ^1 if a request for r, occurs at t
and Ti issues a request every P, time units thereafter.

Lemma 1
Suppose s is a schedule such that there is no outstanding computation for any task at

time h, for some t0 > 0. Suppose a request r for task T„ occurs at t0 in ,, and r is satisfied
at time tx. Then the assertions (II), (12) below must hold.

(Il)V*o<'<'i. Cn+E CrN(i,s,t0,t)>t-tQ
1<I<7J

(12) C„+ S Ci ■ N(i, s, t0, tO = tl-t0
\<i<n

240

Proof:
Since there are no outstanding computations at time t0 and the scheduler does not

idle the processor whenever there is an outstanding computation, a simple induction on *
shows that C„+ 2 C, • N(i,s,t0,t) is the amount of computation time that is needed to

satisfy the request rf Tn at t0 plus the requests for all the higher priority tasks in the inter-
val [t0, t) in s. QED

Lemma 2
Suppose s is a schedule such that there is no outstanding computation for any task at

time *0, for some t0 > 0, and a request r for task Tn occurs at r0. Let s' be a schedule in
which there are no outstanding computations at time *0, all tasks request simultaneously
at time t0, and all tasks request at their maximum rates thereafter. If the request r in s has
a response time = u and the request for task Tn at time t0 in s' has a response time = «',
then «' > u.

Proof:
Let the completion times of the requests for Tn that occur at time t0 in s and s' be

respectively tx and t\. Assume the contrary: u < u, i.e., t\ < tx.
By applying assertion (II) of lemma 1 to schedule s and assuming t\<tx, we have

C„+ 2 CrN(i,sj0,t\)>t\-t0
l<i<n

Bounding N(i, s, t0, t\) by \{t\ - /0)/P,-1 we have
C„+ 2 Cf- - r(*i - /oV* I > *i - 'o

\<i<n

Since all tasks request at their maximum rate from time t0 in schedule s',
V l<i<n, N(i,s\ t0, t\) = \{t\ - to)IP[\

Substituting N(i, s', t0, t\) for \{t\ - tQ)IP^\ we have
C„+ 2 CrN{i,s',t0,t\)>t\-t0

l<i<n
However, by applying assertion (12) of lemma 1 to schedule s* where t\ is the completion
time for the request at t0, we have

Cn+ 2 CiN(i,s',t0,t'1) = t\-to
l<i<n

Thus we have a contradiction. QED

Let M be a set of sporadic tasks. Let s be a PFP schedule of M in which all tasks
request simultaneously at time 0, and all tasks request at their maximum rates thereafter.
A task T in M is said to pass its critical - instant test if the response time of the request for
T at time 0 in the schedule s is no bigger than its minimum separation parameter.

Suppose s' is a schedule in which there are no outstanding computations at time t0,
for some /0 ^ 0. all tasks request simultaneously at time f0, and all tasks request at their
maximum rates thereafter. Since the schedule s and the suffix of s' after t0 are identical,
the response time of the request for a task T at time t0 in / does not exceed T's minimum
separation parameter iff T passes its critical instant test.

241

Theorem 3 ([Liu&Layland 73])
If a task T passes its critical-instant test, then T is scheduleable by a PFP scheduler.

Proof:
Suppose T has the n* highest priority (i.e., T is Tn and has a lower priority than

tasks r, T ,) We need to show that every request of Tn must have a response time
no bigger than P„ in any PFP schedule. Let , be a PFP schedule. Without loss of general-
ity we shall disregard the scheduling of the tasks {T(\i > «}, i.e., we consider only the n
highest priority tasks. For any time value t0 such that: (PI) there is no outstanding com-
putation for Tn at time .0 in s, and (P2) there is a request for Tn at t0, we shall show that
the request at t0 must have a response time < P„.

Let t be the biggest time value, 0<tx<t0 such that there is no outstanding computa-
tion for any task at time tx. Since there is no outstanding computation at time 0, r must
exist Notice that if tx*t0, then the processor cannot idle in the interval [tx,t0] and only
tasks with priority higher than „ are executed in [tx, t0]. Now consider a schedule , such
that there are no requests for the tasks T„...,r-i before tx in •, and the requests for
these tasks at or after tx in s' occur at the same time as those in s. Also let the first request
for T in s' occur at time tx. By construction of 5', the response time of this request is
equafto t0 - tx plus the response time of the request for Tn which occurs at t0 in schedule
s Since there are no outstanding computations for Tlt..., Tn at tx in /, and Tn passes its
critical-instant test, the response time of the first request of Tn in s' must be at most Pn by
lemma 2, and therefore the request for Tn at t0 in s must have a response time not exceed-

ing Pn-
The arrival time of the first request of Tn trivially satisfies (PI) and (P2), and hence

the first request must have response time < Pn. Suppose the first « requests of T have
response time < Pn. Then the i +1* request must satisfy (PI) and (P2), since the i and
i + Ith requests are separated by at least Pn time units. Hence the «+ Ith request must also

have response time < Pn. QED

Given a task set M and a priority assignment, let s be the PFP schedule of M such
that all tasks request simultaneously at time 0, and all tasks request at their maximum
rates thereafter. We call s the critical schedule of M.

Corollary
If every task in a sporadic task set M meets its first deadline in the critical schedule

of M, then M is scheduleable by a PFP scheduler.

Proof: Immediate.

The Rate Monotonie Assignment (RMA) of priorities:

Suppose M = {(CX,PX), ..., (Cn,Pn)} is a set of n sporadic tasks, and task 7,- has
higher priority than task Tj if i < j. Then the priority assignment of tasks in M is consis-

tent with RMA if P,- < Pj, l<i, j ^ «•

242

Theorem 4 ([Liu&Layland 73])
Suppose M is a set of tasks whose priority assignment is consistent with RMA.

Then M is scheduleable iff its critical schedule is feasible.

Unless otherwise stated, we shall refer to the critical schedule of a task set as one
corresponding to a RMA-consistent assignment of priorities. For preemptive schedulers,
reducing the computation time of a task in a scheduleable task set will not cause the
resulting task set to be unscheduleable. To see this, suppose T has the nth highest priority
in the task set. Let the response time of the first request of T be x in s, the critical sched-
ule and let its response time be y in s', the critical schedule after the computation time of
a higher priority task Tk has been reduced by some 8 > 0. If y > x, then applying assertion
(II) of lemma 1 to the critical schedule s' yields

C„+(2 C{ ■ [x/Pi\) + (Ck-S)- [x/Pk~] > x
l<i<n

Rewriting this inequality,
Cn+ I Cr[x/Pi]-S-[x/Pk\>x

l<i<n
However, applying assertion (12) to the critical schedule s yields

C„+ 2 Ci-[x/Pi~\ = x
l<i<n

which is a contradiction.
Similarly, it can be shown that increasing the period of any task in a scheduleable

task set will not cause the resulting task set to be unscheduleable by a PFP scheduler.
Thus, we have the following theorem.

Theorem 5
The RMA assignment of priorities for the PFP scheduler is robust.

In general, it can be seen that any feasible priority assignment for the PFP scheduler
is robust. Unfortunately, this is not the case if the scheduler is non-preemptive.

4. Loss of Robustness in Non-preemptive Schedulers
In real-life systems, such as the Boeing 777 Integrated Airplane Information Man-

agement System (AIMS), not all tasks can be scheduled preemptively. The AIMS system,
running on the ARINC 659 platform, requires high resource utilization and performance
guarantees while providing strict partitioning of functions on a multiprocessor platform.
The scheduling problem involves pre-scheduling of both computational and communica-
tion resources and involves both deadline and jitter requirements. A typical real-time
requirement AIMS takes the form:

[Data] from <process> ([which runs at] <rate> <duration>) to <process>
of aggregate data transmission length <xfer duration> with minimum
latency <latency bound>.

243

Maximum latency <latency bound> means that the time from the start of execution of he
sendmg process to the end of execution of the receiving process must not be less end than
the specified bound. A +-500 usec jitter requirement (deviation from ideal period) across
the board can be assumed, to both data and process start and end times.

Each of the above type of requirements involves three tasks, one application task for
the sending process, one application task for the receiving process and one communica-
tion task for the transmission of data over the bus connecting the processors executing the
apphcation tasks. In total, there are 155 applications tasks and 951 communications

between these tasks.
Whereas the application tasks may be preemptively scheduled on a processor, the

communication tasks are inherently non-preemtpive as limited by the minimum size of a
message If we view the scheduling of messages on the bus as a single resource schedul-
ing problem, a PEP scheduler is inappropriate for the communication resource. A non-
preemptive fixed priority (NPFP) scheduler is one that always selects among all ready
tasks the one that has the highest priority for execution until completion i.e. once a ask
starts execution no preemption is allowed, where a task is ready at time t if it has a
reruesrwhTarrives no lL than time t and which has not been allocated execution
time We now show that the RMA priority assignment of NPFP is not robust.

Consider the following task set with 3 tasks: {r, =0,5),T2 = (2,10) r3 = (4,20)1
With the RMA assignment, this task set is schedulable by a non-preemptive fixed priority
Xiuler as is shown by the timing diagram in the figure 2. 1 o-r^ aS^
becomes unschedulable if we reduce the execution time of T2 from 2 to 1. Hence, NIW
scheduler is not robust with respect to reduction of execution time requirement of a task.

Next, consider the task set with 3 tasks: {TA = (1,4),TB = (3,8), Tc = (6,16)}. Again
with the RMA assignment, this task set is schedulable by^ non?reemptxve fixed pnonty
scheduler as is shown by the timing diagram in the figure 3. However, 'thetask set
Zornes unschedulable if we increase the period of TA from 4 to 5 Hence, NPFP sched-
uler is not robust with respect to reduction of execution frequency of a task.

Lastly, consider the following task set with 3 tasks:
|I\ =(30 50) T2 = (20,100),r3 = (40,200)}. With the RMA assignment, this task set is
chedulable by a non-preemptive fixed priority scheduler as is shown by the timing; «£

gram in the figure 4. However, the task set becomes unschedulable if we reduce the
Sektion times of all three tasks by 10%. Hence, NPFP scheduler is not robust with

respect to improvement in CPU speed.

The above three counter-examples establishes

Theorem 6
The RMA assignment of priorities for the NPFP scheduler is not robust.

244

Tl

T2

T3

0 5 10 15

Tl=(3,5), T2=(2,10), T3=(4,20)

20

Tl

T2

T3

0

Tl misses deadline

5 10 15
T1=(3,5),T2=(1,10),T3=(4,20)

20

REDUCING C2 FROM 2 TO 1 CAUSES DEADLINE MISS
Fisure 2 LOSS OF ROBUSTNESS WITH RESPECT TO
Hguie z. ^I^REASED COMPUTATION TIME

245

Ta

Tb

Tc
j i

0 5 10 1516

Ta=(l,4), Tb=(3,8), Tc=(6,16)

Ta

Tb

Tc

Ta misses deadline

J i

J i

0 5 10 1516
Ta=(l,5), Tb=(3,8), Tc=(6,16)

INCREASING Pa FROM 4 TO 5 CAUSES DEADLINE MISS
Figure 3 LOSS OF ROBUSTNESS WITH RESPECT TO

g INCREASED PERIOD

246

Tl

T2

T3

5Ö~ 100 150

Tl=(30,50), T2=(20,100), T3=(40,200)

200

Tl

T2

T3

27

45

Tl misses deadline
at time=100

50 81 100 150

Tl=(27,50), T2=(18,100), T3=(36,200)

200

FASTER CPU CAUSES Tl TO MISS DEADLINE
ALL EXECUTION TIMES DECREASED BY 10%

Figure 4. LOSS OF ROBUSTNESS WITH RESPECT TO
g IMPROVED CPU SPEED

247

The real-time scheduling solution adopted by the Boeing 777 AIMS relies on the
use of cyclic executives which require the precomputation of static schedules which are
then repeated at run time. In [MTR 96], we describe in detail a tool which^automates the
computation of the cyclic executives for requirements such as the Boemg 777 AIMS.

5. Conclusion
The robustness property discussed above is an example of the tracking relation in

mapping requirements to design. Whereas the lack of robustness with respect to real-time
performance requirements can be overcome by design automation tools such as the
MSP.RTL tool described in [MTR 96], the more challenging problem is to achieve other
properties such as locality and scalability simultaneously with performance robustness.

Bibliography

[Liu&Layland 73] C. L. Liu and James W. Layland, "Scheduling Algorithms for Multi-
L programming in a Hard-Real-Time Environment," Journal of ACM, vol. 20, no. 1,

nuTP QST"K Mok Duu-Chung Tsou and R. C. M. de Rooij, "The MSP.RTL Real-
lMTR TimtsfheS Synthesis fool," Proceedings of the 17th IEEE Real Urne Systems

Symposium, December 1966, pp. 118-128.

248

Specification and Composition of Software Components:
formal methods meet standards

CARLO MONTANGERO AND LAURA SEMINI

Dipartimento di Informatica
Universitä di Pisa

{monta,semini}@di.unipi.it
www.di.unipi.it/ ~{monta,semini}

Abstract. We describe how to use a combination of formal methods and standard middle-
ware to approach COP with a coordination based attitude. Separating coord!naUon from
functional^, we foster the independent implementation of speofic coordinate templates
on he midSeware of interest. We discuss how a specific formal approach can be explo ted
to derive the interoperability skeleton in CORBA and C++ of the most common mteract.on

template, i.e. client-server.

1 Introduction

Like in many other situations in software design, also in COP it is useful to divide and
conquer, and both the component developer and the component integrator can gain from
this attitude. The concerns to be separated are functionality and coordination. Indeed,
coordination [1,3] defines the ways components interact to reach the common goals when
they are composed in a larger system, and can be largely independent from the specific
functionalities of a given application. The separation is useful both at the high specifi-
cation) level and at the middle (interoperability) level. At the specification level, where
the component integrator operates, separating functionality and coordination helps inun^
demanding how to compose the components at hand. Indeed, there are well estabh shed
coordination patterns, that can be studied per se, and lessen the needed cognitive load
when attacking a new composition. On the other side, i.e. when developing components,
coordination defines the structure that the middleware must implement to allow the com-
ponents to interoperate correctly. Separating coordination from functionality, we foster the
Independent implementation of specific coordination templates on the middleware of inter-
est For instance, coordination may lead to the definition of skeletons in some middleware,
like CORBA, to be completed by the code implementing the component functionalities.
More in general, we can say that coordination defines the implementation of the mterop-

erabilitv level of a framework.
Formal methods can play a major role in COP. Precisely because the actors are pro-

srammatically independent, they need to have reliable ways to share precise knowledge of
the artifacts they use or produce, independently of the particular technology (program^
ming languages, middleware, ...) they are using. Formal methods offer exactly this kind
of indepeSndegnce and precision, since they provide abstract models to share when ■opiat-
ing with components. For instance, they provide ways to understand the potentialities and
limitations of a coordination pattern, without the need to consider the specific ^dleware
in use. Also, they can provide ways to make precise the specifications of the components
and of their contextual dependencies, and to prove in advance global properties of a given
composition, i.e. that the composition will meet the specifications it addresses

An ideal world would see a unique universal middleware for m^™^n^
In the real world the situation is muddier, but a number of standards (CORBA COM,
DCOM) are emerging, and it is natural to consider them as targets of component devel-

°PmThis paper describes how we are using a combination of formal methods and standard
middleware to approach COP with the coordination based attitude described above. We

249

discuss how a specific formal approach, Oikos-adtl [4], can be exploited to derive the
interoperability skeleton in CORBA and C++ of the most common interaction template,

i.e. client-server.
We first briefly present the abstract computational model and the temporal logic sys-

tem to reason on abstract computations. We then outline how components and coordina-
tion template can be specified and verified. Finally, we sketch how the skeleton middleware
can be systematically derived and justified from the logical specification.

2 Background: Oikos-adtl and composition templates

Oikos-adtl is a specification language for distributed systems based on asynchronous com-
munications. The language is designed to support the composition of specifications. It
allows expressing the global properties of a system in terms of local properties and of com-
position templates. The former are properties exposed by a single component, the latter
describe the approach taken to control the interactions of the components. Oikos-adtl is
based on an asynchronous, distributed, temporal logic, which extends Unity [2] to deal

with components and events.

The Computational Model. A system TM is characterized by a list of components M =
M,N,0..., and a set T of state transitions. A computation is a graph of states like the

one in the figure below.

. transition: ^ transition: r@jV >

N
wnteq -o -o, r >

Syntax and Semantics. A specification shapes M:« T », where M is a set of component
names and T is a set of formulae. Formulae describe computations relating state formu-
lae which express properties of single computation states. Formulae are built using the
temporal operators CAUSES.C, CAUSES, NEEDS, BECAUSE.C, BECAUSE, WHEN, and those of Unity.

They shape like:

M:p WHEN C CAUSES S:q \l)

S:q WHEN C BECAUSE (S:r A M:p) (2)

M :p@0 CAUSES.C O.p W

With event p we mean that property p becomes true. (1) reads: event p in M when c holds
causes condition q in S and states that any state of M in which c holds and p becomes
true is eventually followed by a state of S satisfying q, as in the computations to the ett,
below Formula (2) states that event g can occur in S when c holds only if previously r
and p have hold in S and M, respectively, like in the computation to the right, below.

M : >c,-ip-*c,p ^ - »■ M : >P *" :r >

s 3 ^ q ^ S : > r > c, -*q-*c,q >

The state formula M : p@0, means that component M wants to send p to O: (3) is an
axiom for Oikos-adtl. It says that messages are immediately sent and are guaranteed to
arrive. Suffix c stands for closely: for instance, in (3), CAUSES.C requires messages to be sent
immediately. Operator BECAUSE.C requires that the condition enabling the event happened
in the same or in the previous state, NEEDS requires a condition to hold when an event

occurs.

250

Composition Templates. To specify and prove the global coordination properties of a
distributed system is often a complex task. A coordination template defines a composition
schema for a set of components: the global properties of their parallel composition can be

obtained as theorems. Templates shape:

M1,...^:«^'» ||Mi+\ ...,M":«^">>

The schema above shows the typical structure of our composition theorems, and reads:
the parallel composition of any pair of systems T'M^ M^ and TMi+1>_M„ satisfying r

and T" resp., satisfies T. A system satisfies the set of formulae T iff all its computations

are models of all the formulae in T.
The proofs are sequences of applications of composition templates, and show a general

pattern: first (reading them bottom-up) lift local properties to the global level, and then
apply transitivity or other composition rules.

A large set of composition rules are available to reason on Oikos-adtl specifications.
To give a flavor, we list the most useful ones. (5) is a lifting rule for BECAUSE.C : the new
component can be an unforeseen cause for A. (4) is a transitivity result for CAUSES .

HMM:ACAUSESO:C \~M O: C CAUSES iV: i? \~M O: C BECAUSE M: A

\-M M : A CAUSES N : B

V-M M : A BECAUSE-C N : B

\-0,M M:A BECAUSE_C (N:B V O : A@M)

(4)

(5)

3 Using Composition Templates

A simple example of composition template is the client-server template, which is still one
of the most common approaches to component composition: we used it to try^out _our
approach. The template shows the local descriptions of client C and server 5, and derives

the properties of their interaction:

C,S : < C : req{X) CAUSES C : ans{X, V)
C : ans{X, V) BECAUSE S : f(X, V)
C : ans{X, V) BECAUSE C : req{X) »

C: «C: INV serw(S),
C : req{X) WHEN server{S) CAUSES_C C : sender eq[X,G)®b,

(6)
(7)
(8)

(9)
(10)

C : sendjreq{X, C)@S NEEDS req(X), J J
C : ans{X,V) NEEDS false,
C : f{X, V)@S NEEDS false >

S: < S : sendjreq(X, C) CAUSES_C S : ons(X, y)@C,
5 : ans{X, V)@C BECAUSE 5 : f(X, V),
S : f{X,V) BECAUSE S : send-req{X,C),
S : sendjreq{X, C) NEEDS false >

251

(12)
(13)

(14)
(15)
(16)
(17)

Following [5], a server component is characterized by the fact that a request to the server
carries explicitly the name of the client, in order to deliver correctly the response The
client knows the server (9), sends it its requests (10, 11), and does not produce 12) or
compute (13) on its own answers to the requests. Computations of the client look like:

req(X) send_req(X,C)@S

The server answers the requests of the client (14). Answers are produced after computing
some value V (15), and this is done only upon a request (16). Finally, servers do not

produce requests (17). Computations of the server look like:

sendjreq(X,C) f (X,V),ans(X,V)@C

The local specifications fix the interface of the server, and the most abstract functional
constraint, i.e. that a value has to computed by the server before answering.

The components can be developed independently, since the pattern, having fixed the
interactions, projects on each component its responsibility. Besides, the pattern proves in
advance that the interaction between client and server satisfies some global properties:
requests will receive an answer (6); answers respect the values computed by the server
(7) and are received only upon request (8). The following picture shows a computation

satisfying these properties.

req(X) ans(X.V)

C : > I :::::/;•;

S: ^:*K
f(X,V)

;*l

Our case study is taken from the CORBA documentation, and considers a simple Stock
Exchange. The system is composed of a Quoter and a set of clients Ci. Clients interact
with the Quoter to be informed on the values of some stocks at the Stock Exchange In
particular, the generic client Ci interacts with the Quoter if interested in the value of stock
X (Stock.value(X)). The Quoter computes the current value V for X {{current(X,V)),

and sends the data to the client (quote{X,V)).

Quoter, Ci : < Ci : stock.value{X) CAUSES Ci : quote{X, V),
Ci : quote(X, V) BECAUSE Quoter : current{X, V),
Ci : quote{X, V) BECAUSE Ci : stock.value{X) >

The example shows a client-server interaction among the clients and the Quoter. We thus
instantiate the client-server template and obtain the following local specifications, where

get.quote(X, Ci) encodes the request of Ci:

Quoter : < (for all i) (18) Quoter : get^quote(X, Ci) CAUSES_C Quoter : quote{X, V)@Ci,
Quoter : quote(X, V)@Ci NEEDS current{X, V), (19)
Quoter : current{X, V) NEEDS get.quote{X, Ci), (20)
Quoter : get-quote{X,Ci) NEEDS false > (21)

252

Ci :-€.Ci: INV server (Quoter),
Ci : Stock Jvalue(X) WHEN server {Quoter) CAUSES_C

Ci : get-quote{X,Ci)@Quoter,
Ci : get-quote(X,Ci)@Quoter NEEDS Stockjvalue(X),

Ci : quote{X, V) NEEDS false,
Ci : current(X, V)@Q NEEDS false >

(22)

(23)
(24)
(25)
(26)

4 Implementing a coordination template

The abstract coordination template described above can be ^»»^^.^^ f
concrete interaction skeleton in a standard middleware. We exemplify this with CORBA
and C++. Given that our logic setting is asynchronous, we use the recent specification of

CORBA asynchronous method invocation (AMI, [6]).

stock_value(X) - -

geLquote(X,Ci)@Q

quote(X,V)

get_quote(X,Ci)

J Lpurrent(X,V)

quote(X,V)eCi

Fig. 1. Correspondence template-CORBA

AMI has been conceived so that no changes are needed, with respect to he ^^T
case on the side of the callee (the server side). Is is up to the caller (the client) and to he
ORB to cope with the differences with synchronous invocations. This is apparent in the
ZL sequence diagram in Fig. 1: the interactions on the left side (^«J«
complex than those on the right side (ORB-server). The figure uses the Stock Exchange
example to illustrate the correspondence between the computation template and CORBA.

The server interface

interface Quoter {
double get„quote(in string X);

}

253

can be derived systematically from the logical specification. The CORBA compiler gener-

ates also a skeleton class implementing the server:

class Quoter_i : public virtual P0A::Quoter {

public:

CORBA::Double get_quote(const char* X) {

CORBA::Double V;
\\ insert here the code to compute V,
\\ such that current(X, V) holds

return V;

};
};

As the superposition of the client-server template on the sequence diagram in Fig. 1 should
make clear, what is left on the server side is the implementation of the server functionality,

as specified by predicate current.
From interface Quoter, the CORBA compiler generates also a stub C++ class, which

exports a method void sendc_get.quote(AMI.QuoterJIandler, char*) that the client
Zto invoke the Quoter method get_quote(char*) remotely via the ORB. The second
argument of the asynchronous call is the C++ transposition of the original argument
to get quote, and is delivered to the server by the ORB, via the server method The
firsf argument is a callback handler created by the client. This object exports a method
get quote (double) that the ORB exploits to return the answer asynchronously.

The skeleton of the callback handler can also be generated from the specification:

class Handler : public POA::AMI_Quoter_Handler {

private:
CORBA::X_type X ;
// initialized to the original argument to get_quote

public:
void req(CORBA::V_type V) {
// insert here the continuation code of the client:

// quote(X,V) has been established

};

>;

The client is not blocked, and uses the ORB methods work-pending 0 and perf orm_work()

to control when to receive the answer via the handler.

The destructor of the client object can be defined to toP^'^7^^^
that is necessary, according to the AMI specificaüon, to force the ORB to dehv r the
answer from the server, when available. In the simplest cases, this allows the client code
o tlrmlrTe immediately after the asynchronous call, and let the handler complete he

computation, once the answer is available. This is suggested by the comment in thcode
above. In other cases, e.g. when the client has to exploit several answers, it may be neces
sary to split the code between the client and the handler: this may require »™f°T«?
steps, to decide how to proceed. How much of these refinements can be standardized is

still a matter of investigation.

254

5 Conclusions

We think that our approach shows that formal methods can play an essential role in
characterizing component coordination at the abstract level, identifying the interactions
between components and their context, to a point where standard skeletal implementa-
tions can be rigorously derived, for a large set of standard middleware. This can liberate
component oriented programming from the burden of repetitive tasks, leaving space to
more ingenious activities, related to the specifics of the problem at hand.

Acknowledgements

This work was partly supported by the ESPRIT W.G. 24512 COORDINA and the Italian
MURST project SALADIN. R. Dolfi experimented with CORBA. D.C. Schmidt and T.
Flagella offered helpful support (remotely and locally, respectively).

References

1. N. Carriero and D. Gelernter. Coordination Languages and their Significance. Communications of the

2. K^C?andy"l0d j'Misra. Parallel Program Devgn: A Foundaüon. Addison-Wesley, Reading Mass.,

3 p98Ciancarini and A. Wolf, editors. Proc. 3nd Int. Conf. on Coordination Models and Languages
' COORDINATION 99, volume 1594 of Lecture Notes in Computer Science, Amsterdam, April 1999.

4 C Mo^gtoand L. Semini. Composing Specifications for Coordination In [3], pages 118-133.

5 C Montangero and L. Semini. Refining by Architectural Styles or ***^***°^*
L Vidal, A Finkelstein, G. Spanoudakis, and A.L. Wolf, editors, 2nd International Software Archüecture
Workshop, Proceedings of the SIGSOFT '96 Workshops, Part 1, pages 76-79, San Franasco, CA, Oct

6. OMG ACORPBTSMessaging Joint Revised Submission. Technical Report orbos/98-05-05, Object Man-

agemnet Group, Pramingham, MA, 1998.

255

Exploiting formal methods in the real world: a case
study of an academic spm-off company

G. M. Reed

Oxford University and Formal Systems

There have many academic spin-off companies set up over the past decade to exploit

fundamental research in formal methods. Very few of these companies ^^^
even fewer have made significant profits. In this paper, as co-founder and doctor of one
such company, I will give a brief history of the company, and discuss the challenges and

opportunities involved.

1 Formal Systems

Formal Systems (Europe) Ltd was founded in Oxford in 1989 to exploit the research on
CS"ndYZ done at Oxford University in the 80', This research had high mternauonal
recognition, and very strong links to UK industry. There is a very pilous UK award
the Queen's Award for Technological Achievement) which is essentially an institutional
"knighthood" In 1990, Oxford University and Inmos Ltd won this award for the devel-

opment of formal methods in the specification and design of ^^T^t 7of
involved CSP and the occam programming language. The award cited that the use of
Cal methods had reduced the development time of the IMS T800 TVansputer by 12
months. In 1992, Oxford University and IBM won the award for the use of formal meth-
ods - notations, theories, and processes, and specifically the use of the Z notation - m
Z production of the CICS transaction processing software. The award «*^^
methods had reduced the development cost by an estimated half million dollars _Fo each
of these two awards, the Oxford team leaders (Bill Roscoe and Jim Woodcock) became
directorsTf Formal Systems, and several of the team members became full-time employees
(in particular, Michael Goldsmith became managing director).

During the early 90's, Formal Systems developed the FDR model-checker for concurrent
finite state machines. FDR was developed as a result of collaborative work between Forma
Systems and Inmos Ltd as a tool for verifying VLSI designs. It was used extensively in he
design of the T9000 transputer and the C104 routing chip. Subsequently it was usedI in the
design and verification of a fault-tolerant processing system for a high-rehabüity embedded
conL system in conjunction with Draper Laboratories in the US. FDR found previoushy
undetected faults in the prototype developed by Draper, and was used * a «designi o the
software. This redesign was proved correct, and the final code was reduced 75 percent from

that of the original.

Given the above start, it was assumed that Formal Systems would quickly grow into a large
profitable company. Although successful, this growth has not yet happened. I wül^indicate
below some of the lessons we have learned, and indicate some new commercial strategies.

256

2 Problems

2.1 Marketing problems with customers

• reluctance to use new notation

• confusion over multitude of formal methods

. level of ability and experience needed to understand and design models simply too

high

. correctness of software not crucial; post-prodnction errors can be patched over inter-

net

. formal methods seen as cansing unacceptable delay in the development process

. contact with customer is via their research department which comes to view you as

a competitor for resources

2.2 Technical problems

• methods often do not scale

• state-explosion in model-checking

. difficult to make tool support usable for practitioners

2.3 Internal problems

. good researchers are often not good at marketing

• resistance of academics to a change of culture

. temptation to become subdepartment of university

3 Some solutions

3.1 Simplify notations and combine methods

Most of the current work at Formal Systems ^~^^ ^Ä^

user with only one notation to master.

257

It is clear that some system properties are best described in terms of state changes and
others in terms of communications. It is also clear that automated verification, if pos-
sible is sometimes more efficient via theorem-provers and sometimes more efficient via
model-checkers ([RSR],[RSG]). Using action systems, it is possible to glve a state-based
approach within the semantics of CSP ([B],[M]), and thus use FDR to check state-based
properties. Recent work in [RS] gives a technique for coupling specification and verifica-
tion of components within a system using state-based specification and theorem-proving
on some components and event-based specification and model-checking on others. This
work is based on the theory of refinement in the semantic models of CbP.

Recent work [OR] has also shown how the semantics of (real-time) Timed CSP [RR] can be
translated into a discrete timed model for CSP in which properties can be model-checked
on FDR. Hence, it is now possible to specify and verify temporal behaviour within the

same notation.

3.2 Attack state-explosion and scaling problem

New compression techniques developed by Formal Systems over the past few years together
with increased processing power has significantly raised the number of states which can
be explored. It is now practical to explore O(108) states at 107 per hour on standard
hardware. However, this is still not sufficient for many real-world problems.

Real advances to the problem are coming from the work in ([Rl][SRe],[SRo]) on data
independence and induction. The work in [RL] gives methods to calculate automatically
thresholds for model parameters such as size of data types, number of nodes, etc. If a
model is instantiated with parameters of at least the size of the thresholds and a property
is proved correct, then the property is established correct for all values of ^e parameter^
New induction techniques in [SRe] and combined with data-independence results in [SRo
are also proving powerful techniques in the reduction of the state space. These techniques
allow FDR to formally establish properties of arbitrary branching networks.

3.3 Identify the most advantageous problem domain

As mentioned above, the original application domains for Formal Systems and FDR were
in the design and verification of VLSI and embedded control systems. It was only when
noticing that a large percentage of the audience at an industrial course offered by Formal
Systems in Boston were from "security" agencies, that it became evident it might be benefi-
cial to produce applications in the domain of computer security. The resulting applications
to security protocols and information flow developed by Roscoe and Woodcock have since
achieved an almost benchmark status for applying model-checkers.

Currently, eighty percent of Formal System's contracts are in the domain of computer
security and are funded by UK and US agencies. We are now moving into the commercial

security market.

258

3.4 Hide the formal methods from the customers

As noted, there is considerable resistance to the use of formal methods by potential cus-
tomers. One strategy is to hide the pain and only show the benefits.

In collaboration with GrammaTech Inc., and with funding from the US Office of Naval
Research Formal Systems is engaged in a two-year project aimed at property-checking in
the UML context. The goal is to exploit state-machines which are created by the Ratio-
nal/ObjecTime Rose RealTime tool [RSC]. Such state-machines are currently relegated to
a documentary role. By applying FDR behind the scenes, it is possible to provide valuable
information to the user without reguiring their explicit knowledge of FDR IWRGj.

Formal Systems is also currently negotiating with Motorola and Telelogic in the joint
development of a verification tool with SDL as the specification language with a translation
compatible to FDR. Such a tool would be of considerable use in telecommunications.

Gavin Lowe has developed the tool Casper [L] which allows security protocols to be specified
in the usual ASCII-fied script found in the security literature, and then be translated into
a script for verification by FDR. Hence, security protocols can be verified by people with

no previous experience of model-checking.

A new commercial strategy in the use of formal methods by Formal Systems is to establish
a "bank" for verified software. Software in the bank has been specified in conjunction
with its owner and (to the state-of-the-possible) verified by Formal Systems. It is held
for reusability, updating, and legal proceedings. It is not necessary for the owner to know
formal methods. Once software is in the bank, it becomes available as a component to
be used with only the necessity of verifying the connections between other components.
The use of formal methods is completely hidden from the customer, but provides a clear

benefit.

3.5 Bring in the suits

Finally, it is probably necessary to take on venture capital, buy in management and mar-
keting, and become greedy capitalists. Once over the culture shock, we can talk about the
good old innocent days while drinking margueritas in the Caribbean.

4 Acknowledgements

Much of the technical background for this paper was taken from [G] and [Z]. The reader

should consult these papers for more detail.

259

5 References

[B] M.J. Butler, A CSP approach to action systems, DPhil thesis, Oxford Univer-

sity, 1992.

fCRel S Creese and J.N. Reed, Verifying end-to-end protocols using CSP/FDR, Pro-
ceedings of IPPS/SPDP Workshop on Parallel and Distributed Processing,

LNCS 1586, Springer, 1999.

fCRol S Creese and A.W. Roscoe, Formal verification of arbitrary network topologies,
Proceedings of PDPTA'99, CSERA Press, 1033-1039.

M. Goldsmith, Challenges to process-algebraic property-checking, Proceedings

of PDPTA'99, CSREA Press, 273-278.

G Lowe, Casper: a compiler for the analysis of security protocols, Proceedings
of the 10th IEEE Computer Security Foundations Workshop, 1997.

[LR1 R Lazic and A.W. Roscoe, Data indepencence with generalised predicate sym-
bols, Proceedings of PDPTA'99, CSREA Press, 319-325.

C C Morgan, Of wp and CSP, Beauty is our business: a birthday salute to
Edsger W. Dijkstra, editors: D. Cries, W.H.J. Feijen, A.G.M. van Gasteren,

and J. Misra, Springer-Verlag, 1990.

[G]

[L]

[M]

[OR]

[R]

[RR]

[RS]

J Ouakine and G.M. Reed, Model-checking temporal behaviour in CSP, Pro-
ceedings of PDPTA'99, CSREA Press, 295-304.

A.W. Roscoe, The Theory and Practice of Concurrency, Prentice Hall, 1998.

G.M. Reed and A.W. Roscoe, The timed failures-stability model for CSP, The-

oretical Computer Science 211 (1999), 85-127.

J.N. Reed and J.E. Sinclair, Bicompositional refinements of loosely coupled

specifications, submitted for publication.

[RSG1 J N. Reed, J.E. Sinclair, and F. Guigand, Deductive reasoning versus model
checking: two formal approaches for system development, Proceedings of Inte-

grated Formal Methods 99, 1999.

fRSRl J N Reed, J.E. Sinclair, and G.M. Reed, Routing: a challenge to formal meth-
ods, Proceedings of PDPTA'99, CSERA Press, 305-311.

fWRGl P Whittaker, G.M. Reed, and M. Goldsmith, Formal methods adding value
behind the scenes, Proceedings of PDPTA'2000, CSERA Press.

[Z] I. Zakiuddin, Current limits for exploiting automated verification, Proceedings

of PDPTA'99, CSERA Press, 319-326.

260

Experimental Analysis for Large Agent Systems

Dave Robertson
Division of Informatics, University of Edinburgh

D.Robertson@ed.ac.uk

This extended abstract gives a basic introduction to the aims of a new project, funded by
the European Commission, on the experimental analysis of large multi-agent systems. The
project involves the University of Edinburgh (Anderson, Fourman, Robertson, Sannella,
Vasconcelos, Walton), the Instute for Artificial Intelligence in Barcelona (Agusti, Sabater,

Sierra) and the University of Liverpool (Parsons, Wooldridge).

Engineers working on large, distributed, multi-agent systems face a problem which differs
from conventional software engineering. They build software systems which must coexist
with other systems about which little may be known, yet we wish the overall behaviour of
the population of systems to be predictable in certain ways depending on the domain of
application. There is a loose analogy to the biosciences, where the scientific response to the
problem of understanding population behaviour has been to build mathematical models
at various different levels of granularity of detail and use these to help form hypotheses
about the driving forces in very complex ecological systems. We are beginning to follow a

similar path in analysing multi-agent systems.
Two technical prerequisites for solving this problem are a framework within which to design
and run experiments on models of large agent systems and clear software engineering
methods which allow the results of experimental analyses to be related to agent design
choices These currently do not exist. There are numerous agent deployment systems
but no convincing systems for modelling agent populations and their evolution. There are
numerous software engineering methods but none of these translate easily to agent design.
Providing a combination of analysis and design in this area must therefore be a ground-up
exercise, drawing upon fragments of research from related areas.

Section 1 gives an overview of what we hope to achieve by the end of the project. Section 2
gives a flavour of the sort of analysis by working through a basic example constructed in

the first weeks of the project.

1 What we Hope to Achieve

An overview of our proposed framework is shown in Figure 1. In the centre of the diagram
is a laboratory system in which experiments are run on multi-agent models. Two major
processes surround the laboratory. To the left is the design of agents which is constrained
by design rules (determining key features agents can have) and hazard analyses (warnings
of threats created by design choices). These controls on design are extended and revised
in the light of analyses from laboratory experiments, allowing us to feed empirical results
relating to system behaviour back into the definition of design controls - a "virtuous cycle
of design -> experiment -> redesign. The second major process (to the right) develops
an overall theory, for our experimental systems, of the response of ecosystem properties
to design decisions. This influences the conduct of subsequent experimental analyses,
which are used to reinforce and extend the experimental theory. It is also compared to
case studies from real-world systems which either confirm the experimentally observed
behaviour or generate exceptions to it. These exceptions prompt theory revision, giving
a second "virtuous cycle" of experiment -> theorise -» validate -» re-theon se -> re-

experiment.

261

Hazard analysis

Figure 1: Conceptual overview of the project

Our aim is to innovate in the design lifecycle and validate with respect to ecosystem
lifecycles. We are interested in relating the methods we use to design ecosystem inhabitants
to aggregate behaviours observed at the ecosystem level.

2 Introductory Example

The purpose of this section is to give a straightforward example of analysing a rudimentary
agent system. First we describe the system to be modelled; then describe the model itself;
then perform some experiments with the model; and finally show how a potential threat

occurring in the model may be countered.

2.1 The System to be Modelled

In the financial industries we now find systems where some centrally held resource cannot
in practice be distributed directly from the centre but must be distributed via mediators.
To allow consumers of the resource to be dealt with promptly, each mediator has its
own system of bookkeeping and authority from the centre to decide which consumers to
supply. Messages passed back to the centre allow the overall pattern of resource use to be

monitored.
An example of this type of system is in bank account transactions. The resource in this
case is the money in the bank. Its consumers are customers with bank accounts, lhe
mediators are the points of contact for account withdrawals: at a branch, through a
telephone call centre or via an internet site. Each of these points of contact may keep its
own database of customer account details and these frequently will be reconciled with one

or more central accounts databases.

262

2.2 The Model

The agents in the model and their potential interactions are illustrated in Figure 2. We
can have any number of central resource agents (labelled R on the illustration). Each
of these has some number of mediators (labelled M) and we shall assume for simplicity
that this number is the same for each central resource. There can be any number of
consumers (labelled C) and each may interact with one or more groups of mediators (in
the illustration, Cl and C2 interact with the mediators for Rl while C3 interacts with the

mediators for Rl and R2).

Consumers

Mediators

Central resources

Figure 2: Overall architecture of the model

The only messages which are passed between agents (corresponding to the arcs in Figure 2)

are as follows:

• A consumer can request a quantity of resource from a mediator.

• A mediator can credit a consumer with some quantity of resource.

. A mediator can inform its central resource that it has supplied a quantity of resource
to a given consumer, along with the status of the resource account for that consumer

at the time of supply.

. A central resource can give one of its mediators updated account information for a

customer.

In the absence of consumers the central resource tends to increase (if the resource is money
then this increase is due to returns on investments of the fund). We assume that this is
proportional to the total amount in the fund. Consumers lose resource at what we assume
is a fixed rate over time (if the resource is money this loss is through personal expenditure).
If the funds remaining in a central resource or consumer reduce to zero that agent dies.

Consumers can employ different strategies for acquiring resources. We model two of these:

. A "careful" strategy in which a consumer applies to a single appropriate mediator
each time it wants resource and waits until it has received credit for the resource

before looking for more.

. A "greedy" strategy in which a consumer applies as often as possible for a given
quantity of resource to all the mediators, with the aim of obtaining as much resource

as it can as soon as it can.

This allows us to run the model with different settings for various parameters including
the following (a range is given where we varied the parameter during analysis) :

263

Parameter

The initial number of resources.
The initial number of consumers.
The number of mediators per central resource.
The percentage of consumers allowed to interact with each
central resource (the choice of individuals being a random
subset of the total pool of consumers chosen according to

this percentage).
The percentage of greedy consumers in the total consumer

population.

Setting

100 - 400

25%

0-100%

2.3 Experimenting with the Model

A property of interest in this system is the ability of its central resources to be sustained
under exploitation by different proportions of greedy consumers. We investigate this by
fixing the initial level of central resource and running the model with different initial num-
bers of consumers. These runs are replicated with three different proportions of greedy
consumers: 100%, 50% and 0%. The results are shown in Figure 3. The higher curves in
each of the three diagrams are for runs with lower numbers of consumers, since these de-
plete the central resource less. The topmost curve of each graph, at 100 initial consumers,
shows that at this population size the central resource recovers quickly from initial ex-
ploitation. The effects of having more greedy consumers appear most strongly at around
300 initial consumers, where the central resource diminishes to zero almost immediately
when all or even half the agents are greedy, whereas it recovers after coming close to zero

if no agents are greedy.

All agents greedy 50% greedy agents No greedy agents

Figure 3: Central resource variation in response to proportion of greedy consumers.

The consumers in this model have a basic strategy of claiming resource whenever they can
(modulo the greedy or careful strategy) which means that they exhaust their allocations
around midway through the simulation and then slowly die of starvation. This gives
the pattern of sharp resource increase followed by slow tail-off shown m the graphs ol
Figure 4 (each of which gives the consumers' view of the corresponding simulation run in
Figurefigrbasicexptl). The peak is, unsurprisingly, most accentuated with greedy agents.

2.4 Counteracting a Threat

A surprising feature of the graph in Figurefigrbasicexptl)involving greedy agents is that
the central resource can be depleted to below zero. This is a side effect of having more than
one mediators autonomously distributing the same resource because greedy consumers will
attempt to collect resource from all mediators simultaneously. Each mediator, however
has its own separate knowledge of how much resource each consumer is allocated. Although

264

All agents greedy 50% greedy agents No greedy agents

Xv \y -

am

k-
Figure 4: Consumer resource variation in response to agent mixture

this initially is consistent with the central resource it becomes inconsistent if more than
one mediator simultaneously agrees to a release of resource for the same consumer, and
this can cause more resource to be promised than the central resource has available^ For
instance if the resource allocated by Rl to Cl in Figure 2 is 10 units then Ml and M2
may simultaneously allow Cl to borrow 10 units. Rl now has to honour a commitment of
20 units although only 10 were intended. This phenomenon is known to occur m banking
systems, where it is possible to withdraw more money than you have in your account by
making multiple withdrawals through different mediators.

We would like to be able to counteract this threat but we cannot assume the easy solution
of synchronising central resources and mediators each time a mediator is deciding whether
to allocate resource to a consumer. An alternative is to create a new type of agent, call it
an auditor which at regular intervals asks a mediator and its central resource what they
think is the unused allocation for a given consumer. If there is a discrepancy it broadcasts
a warning message to all mediators who can then block further requests for resource
from that consumer, ensuring that it starves to death. The arrangement is illustrated in
Figure 5, where auditor Al queries Ml and Rl about (say) C3 and finds a discrepancy so

broadcasts a warning to Ml, M2, M3 and M4.

Figure 5: An auditor (Al) interacting with the resource system

To investigate whether this has a significant effect on the resilience of the resources against
attack by greedy consumers simulations were run with 300 consumers, 50% of which were
greedy, with first 0 auditors (as before) then 100 auditors; then 200 auditors. We can
see the results of this in Figure 6. At 0 auditors the resource collapses to zero. With
greater numbers of auditors it recovers quickly after an initial dip, as the warnings about
greedy consumers exclude those consumers from the resources. We have not gone on to
analyse whether there is an optimum number of auditors at which adding more gives lower
increases in protection to the system but this seems likely to be the case.

265

To»-MOO-30(M-2*7MS-tO-»2000_»r' -
■toO-M0(K»<M-M(»TSO5-10-2O-200O_lt' -
1oo-M00O0O-»-2-200-7^05-10-2D-2000_f»* -.

Figure 6: Shift in carrying capacity in response to auditing

266

Compositional Approach for Modeling and Verification
of Component-Based Software Systems

Jeffrey J.P. Tsai and Eric Y.T. Juan
Department of Electrical Engineering and Computer Science

University of Illinois, Chicago
851 S. Morgan St., Chicago, IL 60607

Email: tsai@eecs.uic.edu

Abstract
With the rapid growth of networking and high-computing power, the demand of larger and

morcomplex sofLre systems has increased dramatically. To deal with the complexity m de-
SSÄ^ implex software systems, the concept of component-based software design
banned popularity recently. However, in pursuing a component-based approach to «e ob-
^lIsTteovercL. One of them is the state-explosion problem in the formal verification
of h^ge scde component-based systems. In this paper, we introduce a modeling **^»*
Condensation «Veories to model and verify component-based software systems. Ouir conden-
sation theories are much weaker than current theories useful for the compositional venficaüon^
Mo"sfg.ificantly, our new condensation theories can eliminate the interleaved behaves caused
^rhronously sending actions. Therefore, our technique provides a much more powafid
ZJs for the compositional verification of asynchronous processes. ^J^Se^S
ciently analyze several state-based properties: deadlock state and reachable state. The expen
me2 results show a significant improvement in the analysis of large-scale component-based

systems.

1 INTRODUCTION
With the rapid growth of networking and high-computing power, the demand of larger and

mo™ mpl x sofrware systems has increased dramatically. Examples include web-based sys-
^multimedia systems! telecommunication systems, intelligent agents ^*££"£
systems, patience monitoring systems, robotics, virtual reahty systems, and so on. Howeve the
development of large-scale and complex software systems is much more difficult anem*£»•
This is due to the fact that techniques and tools for assuring the correctness and reliability of soft-
llsysLs lag far behind the increasing growth of size and complexity of software systems.
ThTrllts are unreliable and poorly performing applications, delayed projects and consider
able cost overruns. In order to improve the usability and «liability of large-scale systems, the
supporting techniques and development tools need to be greatly enhanced.

Formal verification is rapidly becoming accepted as a promising and automated method to
verify the correctness of software systems. Despite many works in the area of formal venfication
one of main bottlenecks so far is the state explosion problem. When the size of a software

267

system increases linearly, the analysis complexity of the system could grow exponentially. The
capability and performance of current techniques still can not efficiently verify typical large-scale

software systems in practice.
A technique "compositional verification", which is considered more suitable for analyzing

well-defined subsystems, such as component-based systems, has been proposed by researchers
to deal with the state-explosion problem of large-scale systems. However, current compositional
verification techniques are efficient only for verifying event-based properties of synchronous pro-
cesses In this paper, we introduce a modeling technique and two condensation theories to model
and verify component-based software systems. Our condensation theories are much weaker than
current theories useful for the compositional verification. More significantly, our new condensa-
tion theories can eliminate the interleaved behaviors caused by asynchronously sending actions.
Therefore, our technique provides a much more powerful means for the compositional veri-
fication of asynchronous processes. Our technique can efficiently analyze several state-based
properties: deadlock state and reachable state. The experimental results show a significant im-
provement in the analysis of large-scale component-based systems.

2 THE MODEL .
This section introduces a model, namely multiset labeled transition systems (MLTSs in the

sequel) MLTSs are closely related to labeled transition systems (LTSs for short) which are
intensively used as a state-space model in the family of process algebras. There are three dis-
tinguishing features between MLTSs and traditional LTSs. First, the label of a transition is a
multiset of actions in MLTSs instead of one action in LTSs. Second, we make a clear distinc-
tion between synchronously communicating actions and asynchronously communicating actions.
Third the composition of traditional LTSs is for synchronous processes only, while the composi-
tion of both synchronous and asynchronous processes can be achieved in MLTSs. These features
of MLTSs promise the development of a new mechanism for compositional verification. With the
use of the new mechanism, the high analysis complexity of large-scale systems can significantly

be reduced.

SERVER
""•A. ._ Receive-Req ^_

Ready«, '» Retrieve-data
Send-data

Figure 1: MLTS specification of a server.

The behavior of a process can be modeled by an MLTS. An MLTS consists of states, transi-
tions actions, and one initial state. In graphical representation of MLTSs, a state is denotedbya
shaded circle, and a transition by a solid arrow labeled with actions. The initial state is pointed

out by a dotted arrow. ,
A state in MLTSs could be interpreted as a condition. The states of an MLTS describe the

possible conditions of a process. For instance, Figure 1 gives an MLTS which specifies a server.
The condition of SERVER is either ready to accept a request (state Ready) or busy in retrieving
data (state Retrieve-data). The state of an MLTS is changed by the execution of f^-^f
SERVER performs the action of receiving request (Receive-Req), the condition of SERVER is

268

chaneed from slate Ready to state Retrieve-data. The condition of SERVER returns to state
RX^SETER sen* on. data (notion MM An initial «ate is the eondttton a. the

beginning The initial state of SERVER is Ready.
The Itionship of states and actions is represented by —*, A tranken con anrs^a
^»* a**, one or more oclto«, and an ending state. For example, transits> (M, ***" -

C^v^a) indicates that state ****** is reachaUe f™*£^*^
cution of action Receive-Req. In the following, we first give the formal definition of MLTSs.

Definition 2.1 Multiset Labeled Transition Systems (MLTSs)

. A multi-set MS consists of a set DMS and a mapping MS: DMS^N where * = {1,2,3 } is
the set of positive integers. MS is said to be a multi-set of a set S iff (if and only if) DMS Q S.

• A MLTS is a quadruple (S, ST, T, sin), where
1 ^ «I ic a <;pt of states- Sin is the initial state; .
2 S whth isTset' factions (transition labels), comprises invisible (or mtenial) acüon r)
and communicating actions E, where £ consists of Ssyn (synchronously communicatmg ac-
tilrCrasynchronously sending actions), and Ear (asynchronously recemng actions),

3)T C S x MSr x S is a set of transitions such that V (s, ms, s') € T: ms is a non-empty

multiset of ET.
In MLTSs, a transition is labeled with a multiset of actions. A multiset consists of count-

able objects This means that an action can have multiple instances in a transition label. We
^sttcZnous communication and/or asynchronous conmunication as ^ P-iüvemeans o
communication between processes. Synchronously commumcanng actons (S) in MLTS^e
used to specify unbuffered mode of synchronous communication which is usually referred to
a handshSng or rendezvous communication. Synchronous communication between processes

"rmfd Lugh a simultaneous execution of actions which ^^~^»££
channel. In other words, actions which read from or wnte to a shared channel, have to take place

3t 'TheTmanlcs of asynchronous interaction of MLTSs is essentially the same as asynchronous
message passing used in NIL [5] and PLITS [2]. In asynchronous communication, a sending
n^ess is not blocked to wait for its communicating partners. Once a message is read* the
p"e free to perform its asynchronously sending action. Messages which have not been
reeved by receives are stored in the buffers of channels. In MLTSs, the channel buffers of
rnenronous communication have unbounded capability. An asynchronously receiving proce ,
asTn L case of synchronous communication, may be blocked in order to wait for messages.
No" mat channels for synchronous communication have no buffer for the storage of messages,
since synchronous communication between processes has to take place at the same time.

3 DEADLOCK STATE AND REACHABLE STATE

In this section we focus on the properties of deadlock states and reachable states A state is
sJäTLr^hable in an MLTS if the state can be reached from the initial state via directed
edges Recall that a state in MLTSs could be interpreted as a condition. Thus, a reachable state
can be considered as a possible condition that a process or system can reach.

269

A system is said to be deadlocking if the system has reached a condition (state) such that
the system cannot do anything. In practice, a deadlock state reflects a failure or successful
termination of a system. In order to distinguish failure from successful termination, we preserve
the conditions of deadlocking systems, i.e., deadlock states. From the inspection of deadlock
states we can easily determine whether a deadlocking system fails or successfully terminates
In addition, a deadlock state, which provides detailed conditions of the whole system, is useful
for debugging and modifying an improper system design. The following defines reachable states

and deadlock states in MLTSs.

Definition 3.1 (Reachable States)
Let (S, Er, T, Si„) be an MLTS. A state s is reachable in (S, ET, T, s,n) iff

l)s = Sin or
2)3(s0,m1,s1)...(s„-i,mn,sn)suchthat
i) n > 1, ii) 5o = sin, i") sn = s, and iv) V 1 <j < n: (Sj-i, m,-, s,-) G I.

Definition 3.2 (Deadlock States)
Let (S ET, T, Sj„) be an MLTS. A state s is a deadlock state of (S, !.„ 1, *„) lit
1) 5 is mieAaNe in (S, ST, T, sin) and 2) ?(s, m, s') eT(s has no outgoing transition).

4 CONDENSATION THEORIES FOR MLTSs
This section presents our newly derived congruence theories for the compositional verification

of deadlock states and reachable states. We call our congruence theories IOT-failure equivalence
and IOT-state equivalence. IOT-failure equivalence preserves the property of deadlock states
while IOT-state equivalence preserves the property of reachable states. We will explain these

two congruence theories using simple examples.

4 1 Paths and Input/Output-Traces (IO-Traces)
The computation of an MLTS can be described in terms of paths. A path is an alternating

sequence of states and transitions in MLTSs. For example, MLTS P7 in Figure 2 has a path
a7 = {so, (s0, Ch, Sl), si, (5!, Ch2 !, s2), s2, (*2, Ch .', s3), s3, (s3, Ch, s4), *4}.

For simplicity, we also write path a7 as
{so, Ch, 5i, Ch2 ■', s2, Ch3 !, s3, Chi, s4}.

Similarly, MLTS P7-c in Figure 2 has a path
<j7_C = {so, (Ch, Ch2 .', Ch3 •'), s3, Ch4, s4}.

Path a7 means that if the local condition of MLTS P7 is state s0, then P7 is ready to sequen-
tially execute actions {Ch, Ch2 !, Ch ■'. Ch} and to sequentially reach states {si, s2 s3, s4}.
However, the execution along path <r7 may fail due to some condition outside MLTS P7, i.e.,
the environment condition of P7. In other words, for the occurrence of a path to be successful
we need to consider the global condition which consists of a local condition and an environment

condition. ,. . . , c .. „
We use IO-traces in order to deduce and compare the global conditions required for the oc-

currences of paths (actions). IO-traces are derived from paths by removing some details which
are irrelevant to the success of paths' occurrences. Based on IO-traces, we have developed IOT-
failure equivalence and IOT-state equivalence as presented in the following sections.

270

Ch5j>5 P7-C rhl Ch2' Ch3'
P7^ Chl Ch2!Ch3!/^ *«-. Chl,Ch2.,Ut».

•—• *• ?C o 3,
0

Ch4"»4

«.. Chl x Ch4 M-C-,. Chl ,Ch4|t

;• 'i i •i • 2 3
Ch2in=0, Ch3in=0, Ch5in=l

Figure 2: Example of paths and IO-traces.

An IO-trace consists of i) a starting state, ii) an ending state, and iii) a sequence of multisets

of actions. Informally speaking, an IO-trace is derived from a path by
1) removing intermediate states,
2) replacing a transition with two ordered elements (multisets), i.e., i) its environment pre-

condition and then ii) its environment post-condition,
3) removing empty multisets of actions, and
4) summing up adjacent multisets of environment post-conditions.
The environment pre-condition of a transition consists of synchronously communicating ac-

nost-condition of a transition is represented by asynchronously sending actions labeted on the
£ The execution of invisible actions does not interact with the envu-onment. Therefore,
ZSbZactions are not included in IO-traces. Let us consider MLTSs m Figure 2 as an exam-

Jtl that Chl and C*. are synchronous communication !™*^£?£
and P8 It is clear that the environment pre-condition of transition (s0, Ch *i Ms JC/n), me
iVonmL porf-omÄi™ of transition (*, C*lt *) is null. Now let us denve me IO-trace for
ZZo'w CÄx, -I, Cft, /, *, Cfca /. *. Cfc4, ,4} in MLTS P7 above. After 1) removing
mterm^Se sites si,s2 and „, and 2) replacing a transition with its environment pre-condition

and then its environment post-condition, we get

After that, w<!IKLJ.empty multisets of actions and sum up adjacentmultiseti.of environment
post-conditions (or asynchronously sending actions). As a result, the IO-trace of path a7 *

IOToj = so, {Ch}, {Ch2 !, Ch3 !}, {Ch4}, s4.
Similarly, we can derive the IO-trace of path a7_c = K (CÄi, C*2 /, C/>3 /), s3, Ch„ ,4} m

MLTS P7-c above as
/ora7_c = So, {Chi}, {Ch2 ■', Ch -'}, {CM, 54- .

From paths a7 and OY-C we can see that two different paths might have an identicali IO-trace.
IO-traces are useful for predicting the successful occurrences of paths (or actions). Based oilO-
traces, IOT-failure equivalence and WT-state equivalence will be presented m the following

sections.

271

4 2 IO-Trace Failures (IOT-Failures)
' In order to efficiently analyze a large-scale system, it is desirable to eliminate data which are ir-

relevant to the verification of interesting properties. Our IOT-failureequivalence is developedTo
L compositional verification of deadlock states. This means that IOT-failure equivalent MLTSs

are interchangeable in the compositional verification of MLTSs without ^««»£^
state. IOT-failure equivalence is very useful for reducing the size (complexity) of MLTSs when

we focus on the property of deadlock states. ,.*,„, , ^^^
Informally speaking, an IOT-failure for an MLTS is a pair consisting of i) an IO-trace /starting

from the iniL state L ii) the set of environment pre-conditions for the outgoing transits of
the ending state of /. In addition, the ending state of the IO-trace t above should be stable.

A state 5 is said to be stable iff s does not have any out-transition whose environment pre-
condition is empty; otherwise , is non-stable. In other words, only stable states are candidates
forte construction of deadlock states, because a non-stable state has at least one out-transit,on

which is guaranteed to be executable in any condition of the environment.
Let us consider MLTS P7 in Figure 2 as an example. In MLTS P7, both transitions (*, Ch2

> s>) and (S2 Ch3 !, s3) have an empty environment pre-condition because they execute neither
Ä communicate action nor asynchronously receiving action^ ™-^~
and s2 are non-stable. In contrast, states *, .3, «, and s, are stable. These stable states are
reached from the initial state s0 via the following 10-traces respectively:

IOTao = so,(f>,so,
lOTo3 = so, {Ch}, {Ch2 !, Ch3 .'}, s3,
IOTa4 = s0, {Chi}, {Ch2 .', Ch3 .'}, {Ch4}, s4, and
IOTvs = so, {Ch}, {Ch2 .', Ch3 .'}, {Ch5 ?}s,

From these stable states and IO-traces, we get four IOT-failures in MLTS P7.
IOTF0 = (IOTao, {Chx}),
IOTF3 = (IOTa3, {{Chi}, {Ch5 ?}}),
IOTFA = (IOT0-4, <f>), and
IOTF5 = (IOTas, 4>Y t t

IOT-failures IOTF4 and IOTF5 have an empty set of environment pre-conditions since states
,4 and 55 have no out-transition. State s3 has two out-transitions (s3, Ch4, s4) and (*,, Cft5 •, ss).
Transition (s3, Ch4, s4) has an environment pre-condition {Ch4}, and transition (s3, Ch5. *)
ZTL environment pre-condition {Ch5 ?}. Therefore, the set of environment pre-conditions of

IOT-failure IOTF3 is {{Ch4}, {Ch5 ?}}■
Two MLTSs Lr and L2 are said to be IOT-failure equivalent^ U and L,haveMhe same **

of WW For instance, P7_c in Figure 2 also has four IOT-failures lOTFo, I0^lOTF4

and ZOTF5. Thus, MLTSs P7 and P7_c in Figure 2 are 707tfiä«ii equivalent. Similarly, MLTSs

P« and P» r in Figure 2 are IOT-failure equivalent as well.
''/A* «*L« is a congruence in terms of deadlock states. *^£*£.
e^uivoL MLTSs are interchangeable in the compositional verification of MLTS^^
of any deadlock state. For example, from the MLTSs in Figure 2, we can compose two MLTS
as shown in Figure 3. Without verifying these two MLTSs in Figure 3, we can guarantee that

they have the same set of deadlock states, i.e., S(5,2,i,i,o) and s(4,3,i,i,i)-

272

P7IIP8 (Ch2in=0, Ch3in=0, Ch5in=l)

^ (1,1,0,0,1) (2,1,1,0,1) (3,1,1,1,1)

(0,0,0,0?1) Chi '1 Ch2! '1 Ch3!

I Ch3! Ch2

(1,2,0,0,1) (2,2,1,0,1) (3,2,1,1,1)
(4,3,1,1,1)

P7-C || P8-C (Ch2in=0, Ch3in=0, Ch5in=l)

(0,0,0,0,1) ^-^_Chl, Ch2 !, Ch3 !

(3,2,1,1,1)

Figure 3: Deadlock-state equivalent MLTSs.

(4,3,1,1,1)

4.3 IO-Trace States (IOT-States) ..,.,. ÄT1
WT-state equivalence is developed for the compositional verification of:reachable £*es An

IO-trace state (IOT-state) is an 10-trace starting from the initial state. Two MLTSs are said
TZoT-state equivalent if they have the same set of lOT-states. IOT-state equ^ence,
a congruence in terms of reachable states. This means that IOT-state equivalent MLTS are
nSTgeable in the compositional verification of MLTSs without loss of any reachable state.

P9^ Chi x Ch2
-+* ►• ►•

P9-C

|5 l ChlL
. Chl Ch2

-+•
0 1

2
3

Figure 4: Example of lOT-states and IOT-state equivalent MLTSs.

As a simple example, let us consider MLTSs P9 and P9_c in Figure 4. Assume that Chx and
CA2 are synchronous communication channels. States *, *2, and s3 in MLTS P9 are concisely
represented by a macro state in MLTS P^c- We can see that MLTSs P9 and P^c are /OTaia*

equivalent because they have the same set of IOT-states:
IOTS0=S0,(I>,SQ,

/OrSi=s0,{C/ii}'5i'
/Or52=so,{C/ii},52,
IOTS3=s0, {Chi}, s3, and
ZOr54=5o,{CAi},{C/i2}^4-

273

5 CONCLUSION
This paper presents a new modeling technique and two new condensation theories to re-

duce the state explosion problem of asynchronous processes as well as synchronous processes
in component-based software systems. Our condensation technique has reasonable complex-
ity (polynomial in the numbers of states and transitions). From the experimental results, our
technique promises a much more efficient analysis, especially for asynchronous processes m
distributed systems. The condensation theories can be applied to Petri nets model too [6]. The
current version of our technique focuses on the analysis of deadlock states and reachable states.
Nevertheless, we believe that a more elaborated extension can be used to verify many other
important safety and liveness properties of distributed systems, such as accessibility and event
sequences. An extension of our work is currently under study.

6 ACKNOWLEDGMENTS
This research was supported in part by NSF and DARPA under Grant CCR-9633536.

References
[1] S. Brookes, C. Hoare, and A. Roscode, "A theory of communicating sequential processes," ACM

31,3, pp. 560-599,1984.

[2] J.A. Feldman, "A programming methodology for distributed computing (among other things),"

Communication ACM 22, pp 353-368,1979.

[3] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood Cliffs, N.J., 1985.

[4] R Milner "Operational and algebraic semantics of concurrent processes," Handbook of theoretical
computer science, ed. J. van Leeuwen, Elsevier Science Publisher B.B., 1990.

[5] R.E. Strom and N. Halim, «A new programming methodology for long-lived software systems,"

IBMJ. Res. Devel. 28, pp. 52-59,1984.

f61 Y. T Juan J. J. P. Tsai, and T. Murata, "Compositional Verification of Concurrent Systems Using
Petri-Nets-Based Condensation Rules," ACM Transactions on Programming Languages and Sys-

tems, Vol. 20, No. 5, pp. 917-979, Sept. 1998.

274

APPLYING MACHINE LEARNING ALGORITHMS
IN SOFTWARE DEVELOPMENT

Du Zhang

Department of Computer Science
California State University

Sacramento, CA 95819-6021
zhangd® ecs. csus. edu

Abstract

Machine learning deals with the issue of how to build programs that improve their
performance at some task through experience. Machine learntng algorithms have proven
to he of great practical value in a variety of application domains. They are particular^
useful for (a) poorly understood problem domains where little knowledge exists for the
humans to develop effective algorithms; (b) domains where there are large databases
containing valuable implicit regularities to be discovered; or (c) domains where programs
mustaJpt to changing conditions. Not surprisingly, the field' oj'software' engineers
turns out to be a fertile ground where many software developme*^*™"*
formulated as learning problems and approached in terms of learning fonth^h^
paver we first take a look at the characteristics and applicability of some frequently
ItUized machine learning algorithms. We then provide formulations of some software
development tasks using learning algorithms. Finally, a brief summary is given of the

existing work.

Keywords: machine learning, software engineering, learning algorithms.

1. The Challenge

The challenge of modeling software system structures in a fastly moving scenario gives
rise to a number of demanding situations. First situation is where software systems must
dynamically adapt to changing conditions. The second one is where the domains involved
may be poorly understood. And the last but not the least is one where there may be no
taowledge (though there may be raw data available) to develop effective algorithmic

solutions.
To answer the challenge, a number of approaches can be utilized [1 12]. One such
approach is the transformational programming. Under the transformational P^gr—S,
software is developed, modified, and maintained at specification level, and then
automatically transformed into production-quality software through automatic program
svnthesis [5] This software development paradigm will enable software engineering to
become the discipline of capturing and automating currently undocumented domain and
design knowledge [10]. Software engineers will deliver knowledge-based application
generators rather than unmodifiable application programs.

In order to realize its full potential, there are tools and methodologies needed for the
various tasks inherent to the transformational programming. In this paper we.take^a look
at how machine learning (ML) algorithms can be used to build too s ^ software
development and maintenance tasks. The rest of the paper is organized as follows. Section
2 provides an overview of machine learning and frequently used learning algonthms
Some of the software development and maintenance tasks for which learning algonthms
^applicable are given in Section 3. Formulations of those tasks in terms of the learning

275

algorithms are discussed in Section 4. Section 5 describes some of the existing work.
Finally in Section 6, we conclude the paper with remarks on future work.

2. Machine Learning Algorithms

Machine learning deals with the issue of how to build computer programs that improve
their performance at some task through experience [11]. Machine learning algorithms have
been utilized in: (1) data mining problems where large databases may contain valuable
implicit regularities that can be discovered automatically; (2) poorly understood domains
where humans might not have the knowledge needed to develop effective algorithms; and
(3) domains where programs must dynamically adapt to changing conditions [11].
Learning a target function from training data involves many issues (function
representation, how and when to generate the function, with what given input, how to
evaluate the performance of generated function, and so forth). Figure 1 describes the

dimensions of the target function learning.

Major types of learning include: concept learning (CL), decision trees (DT), artificial
neural networks (ANN), Bayesian belief networks (BBN), reinforcement learning (RL),
genetic algorithms (GA) and genetic programming (GP), instance-based learning (IBL),
inductive logic programming (ILP), and analytical learning (AL). Table 1 summarizes the
main properties of different types of learning.

Not surprisingly, machine learning methods can be (and some have already been) used in
developing better tools or software products. Our preliminary study identifies the software
development and maintenance tasks in the following areas to be appropriate for machine
learning applications: requirement engineering (knowledge ehcitation, prototyping);
software reuse (application generators); testing and validation; maintenance (software
understanding); project management (cost, effort, or defect prediction or estimation).

3. Software Engineering Tasks

Table 2 contains a list of software engineering tasks for which ML methods are applicable.
Those tasks belong to different life-cycle processes of requirement specification, design,
implementation, testing and maintenance. This list is by no means a complete one. It only
serves as a harbinger of what may become a fertile ground for some exciting research on
applying ML techniques in software development and maintenance.

One of the attractive aspects of ML techniques is the fact that they offer an invaluable
complement to the existing repertoire of tools so as to make it easier to rise to the
challenge of the aforementioned demanding situations.

4. Applying ML Algorithms to SE Tasks

In this section, we formulate the identified software development and maintenance tasks as
learning problems and approach the tasks using machine learning algorithms.

Component reuse

Component retrieval from a software repository is an important issue in supporting
software reuse. This task can be formulated into an instance-based learning problem as

follows:

276

277

Table 1. Major types of learning methods1.

Type Target
function

Target
function

generation

Search Inductive
bias

Algorithm3

AL Horn clauses Eager,
supervised,

D + B

Deductive
reasoning

B + set of
Horn clauses

Prolog-EBG

ANN ANN Eager,
supervised,
D (global)

Gradient
descent guided

Smooth
interpolation
between data

points

Back-
propagation

BBN Bayesian
network

Eager,
supervised,
D (global),
explicit or

implicit

Probabilistic,
no explicit

search

Minimum
description

length

MAP.BOC,
Gibbs, NBC

CL Conjunction of
attribute

constraints

Eager,
supervised,
D (global)

Version Space
(VS) guided

CG H Candidate_
elimination

DT Decision trees Eager,
supervised,
D (global)

Information
gain (entropy)

Preference for
small trees

ED3, C4.5,
Assistant

GA
GP

Bit strings,
program trees

Eager,
unsupervised,

noD

Hill climbing
(simulated
evolution)

Fitness-driven Prototypical
GA/GP

algorithms

D3L Not explicitly
defined

Lazy,
supervised,
D (local)

Statistical
reasoning

Similarity to
NN

K-NN, LWR,
CBR

ILP If-then rules Eager,
supervised,
D (global)

Statistical,
general-to-

specific

Rule accuracy,
FOIL-gain,

shorter clauses

SCA, FOIL,
inverse

resolution

RL Control
strategy n*

Eager,
unsupervised,

noD

Through
training
episodes

Actions with
max. Q value

Q,TD

1 The classification here is based on materials in [11].
2 The sets D and B refer to training data and domain theory, respectively.
3 The algorithms listed are only representatives from different types of learning.

278

Table 2. SE tasks and applicable ML methods.

SE tasks

Requirement engineering

Rapid prototyping

Component reuse

Cost/effort prediction

Defect prediction

Test oracle generation

Test data adequacy

Validation

Reverse engineering

Applicable type(s) of learning

AL, BBN, LL, DT, ILP

GP

EBL (CBR4)

IBL (CBR), DT, BBN, ANN

BBN

AL (EBL3)

CL

AL

CL

1. Components in a software repository are represented as points in the n-dimensional

Fuclidean soace (or cases in a case base).
2 ELin a component can be divided into indexed and unindexed information

atuTutes). Indexed information is used for retrieval purpose and unmdex d
mformation is used for contextual purpose. Because of the curse of dimenstonahty
nroblem fill, the choice of indexed attributes must be judicious.

3. QuerieTto the repository for desirable components can be represented as constraints on

4 "y met:" for the nearest neighbors of the desirable component can be based
onThe Jndard Euclidean distance, distance-weighted measure or symbolic measure^

5 T^e possible retrieval methods include: K-Nearest Neighbor, tnducnve retrieval,

« rSÄfTSSved component for the task at hand can be _,
Ipplytg adaptation rules directly to the retrieved component), ordenvaüonal
(reusin^adaptation rules that generated the original solution to produce a new

solution).

Rapid prototyping
Raoid orototvping is an important tool for understanding and validating software
St^H^ticn. software prototypes can be used for other purposes such as user
SmTTnd system testing [18]. Different prototyping techniques have been developed for
To72ZXälroW-alay prototypings. The existing techniques can be augmented by
including a machine learning approach, i.e., the use of genetic programming.

In GP a computer program is often represented as a program tree where the internal nodes
on^spondtoa J o/functions used in the program and the external nodes (terminal
ndlate variables and constants used as input to functions. For a given problem, GP starts
with an initial population of randomly generated computer programs The evolution
procesTofgenerating a final computer program that solves the given problem hinge on
Tme sort of fitness evaluation and probabilistically reproducing the next generation of the

4 CBR stands for case-based reasoning.
5 EBL refers to explanation-based learning.

279

program population through some genetic operations. Given a GP development
environment such as the one in [8], the framework of a GP-based rapid prototyping

process can be described as follows:

1 Define sets of functions and terminals to be used in the developed (prototype) systems.
2 Define a fitness function to be used in evaluating the worthiness of a generated

program. Test data (input values and expected output) may be needed in assisting the

evaluation.
3 Generate the initial program population.
4. Determine selection strategies for programs in the current generation to be included in

the next generation population. .
5. Decide how the genetic operations (crossover and mutation) are earned out during

each generation and how often these operations are performed.
6. Specify the terminating criteria for the evolution process and the way of checking for

termination.
7. Translate the returned program into a desired programming language format.

Requirement engineering

Requirement engineering refers to the process of establishing the services a system should
provide and the constraints under which it must operate [18]. A requirement may be
functional or non-functional. A functional requirement describes a system service or
function whereas a non-functional requirement represents a constraint imposed on the
system How to obtain functional requirements of a system is the focus here. The situation
in which ML algorithms will be particularly useful is when there exist empirical data from
the problem domain that describe how the system should react to certain inputs. Under this
circumstance, functional requirements can be "learned" from the data through some

learning algorithm.
1. Let X and C be the domain and the co-domain of a system function/to be learned. The

data set D is defined as: D = {<x„ ck>\ x,,e X A ck e C}.
2 The target functions/to be learned is such that Vx, e X and Vc* e C,fixi) = ck.
3 The learning methods applicable here have to be of supervised type. Depending on the

nature of the data set D, different learning algorithms (in AL, BBN, CL, DT, ILP) can
be utilized to capture (learn) a system's functional requirements.

Reverse engineering

Legacy systems are old systems that are critical to the operation of an organization which
uses them and that must still be maintained. Most legacy systems were developed before
software engineering techniques were widely used. Thus they may be poorly structured
and their documentation may be either out-of-date or non-existent. In order to bring to
bear the legacy system maintenance, the first task is to recover the design or specification
of a legacy system from its source or executable code (hence, the term of reverse
engineering, or program comprehension and understanding). Below we describe a
framework for deriving functional specification of a legacy software system from its

executable code.

1. Given the executable code p and its input data set X, and output set C, the training data

set D is defined as: D = {< xit p{xt)>| x, e X A p(x,-) € C}.
2 The process of deriving the functional specification / for p can be described as a

learning problem in which/is learned through some ML algorithm such that
\/xieX[fixi)=p(xi)l

3. Many supervised learning methods can be used here (e.g., CL).

280

Validation
Verification and validation are important checking processes to make sure that
Lplemented software system conforms to its specification. To check a software
Jll against taspccification, we assume the availably of both a speaftcaüon
and an executable code. This checking process can be performed as an analytic learning

task as follows:
1. Let X and C be the domain and co-domain of the implementation (executable code) p,

which is defined as: p: X —> C.
2 The training setD is defined as: D = {<*,-, p(x,)>| ** G X }.
3. The specification for p is denoted as B, which corresponds to the domain theory in the

analytic learning.
4. The validation checking is defined to be: p is valid it

V<X,-, p(Xi)> G D [B A Xi; I- p(xdl
5. Explanation-based learning algorithms can be utilized to carry out the checking

process.

Test oracle generation

Functional testing involves executing a program under test and examining the output from
the program. An oracle is needed in functional testing in order to determine if the output
from a program is correct. The oracle can be a human or a software one [13]. The
apToachw? propose here allows a test oracle to be learned as a function from the
specTfication and fsmall set of training data. The learned test oracle can then be used for

the functional testing purpose.
1. Let X and C be the domain and co-domain of the program p to be tested. Let B be the

specification for p.
2. Define a small training set Das: D= {<xu p(xd>\ x,e X AX ^

XA
^

6
^-

3. Use the explanation-based learning (EBL) to generate a test oracle G (O: X -► C) iovp

fromBandD. ,,
4. Use 9 for the functional testing: V* e X [output of p is correct if p(xt) = 9(*dJ.

Test adequacy criteria
Software test data adequacy criteria are rules that determine if a software product has been
adequately tested [21]. A test data adequacy criterion j is a function. C- P *j SI x T -M*ue,
false} where P is a set of programs, S a set of specifications and T the class of tes sets.
Uv s t) = true means that t is adequate for testing program p against specification s
according to criterion C- Since C is essentially a Boolean function, we can use a strategy
such as CL to learn the test data adequacy criteria.

1. Define the instance space X as: X = { <Pi, sjt h>\ p; e P A Sj e S A tke T}.
2. Define the training data set D as: D = {<*, C(*)>| x e X A «*) * V}, where V is

defined as: V = {true, false}. , fum ;„ rT tn
3. Use the concept of version space and the candidate-elimination algorithm in CL to

learn the definition of £.

Software defect prediction

Software defect prediction is a very useful and important tool to gauge the likely^hvered
quality and maintenance effort before software systems are deployed [4]. Predicting
deft ts requires a holistic model rather than a single-issue model that hinges on elfter s z
or complexity, or testing metrics, or process quality data alone. It is argued in [4] that all

281

these factors must be taken into consideration in order for the defect prediction to be

successful.
Bavesian Belief Networks (BBN) prove to be a very useful approach to the software
defect prediction problem. A BBN represents the joint probability distribution for a set of
variables. This is accomplished by specifying (a) a directed acyclic graph (DAG) where
nodes represent variables and arcs correspond to conditional independence assumptions
Causal knowledge about the problem domain), and (b) a set of local conditional
probability tablef (one for each variable) [7, 11]. A BBN can be used to infer he
probability distribution for a target variable (e.g., "Defects Detected"), which specifies the
probability that the variable will take on each of its possible values (e.g., very low
"low" "medium", "high", or "very high" for the variable "Defects Detected") given he
observed values of the other variables. In general, a BBN can be used to compute the
probability distribution for any subset of variables given the values or distributions for any
subset of the remaining variables. When using a BBN for a decision support system such
as software defect prediction, the steps below should be followed.

1 Identify variables in the BBN. Variables can be: (a) hypothesis variables for which the
' user would like to find out their probability distributions (hypothesis variable are either

unobservable or too costly to observe), (b) information variables that can be observed
or (c) mediating variables that are introduced for certain purpose (help reflect
independence properties, facilitate acquisition of conditional probabihues, and so
forth) Variables should be defined to reflect the life-cycle activities (specification,
design, implementation, and testing) and capture the multi-facet nature of software
defects (perspectives from size, testing metrics and process quality). Variables are
denoted as nodes in the DAG.

2 Define the proper causal relationships among variables. These relationships also
should capture and reflect the causality exhibited in the software hfe-cycle processes.
Thev will be represented as arcs in the corresponding DAG.

3 Acquire a probability distribution for each variable in the BBN. Theoretically well-
' founded probabilities, or frequencies, or subjective estimates can all be used in the

BBN The result is a set of conditional probability tables one for each variable. The
full joint probability distribution for all the defect-centric variables is embodied in the
DAG structure and the set of conditional probability tables.

Project effort (cost) prediction
How to estimate the cost for a software project is a very important issue in the software
project management. Most of the existing work is based on algorithmic models of effort
[17 A viable alternative approach to the project effort prediction is stance-based
learning. BL yields very good performance for situations where an.algorithmic model for
the prediction is not possible. In the framework of IBL, the prediction process can be
carried out as follows.
1 Introduce a set of features or attributes (e.g., number of interfaces, size of functional

requirements, development tools and methods, and so forth) to characterize projecte
The decision on the number of features has to be judicious, as this may become the
cause of the curse of dimensionality problem that will affect the prediction accuracy.

2 Collect data on completed projects and store them as instances m the case base.

3' Define similarity or distance between instances in the case base according to the
' symbolic representations of instances (e.g., Euclidean distance in an n-dimensiona

space where n is the number of features used). To overcome the potential curse of

282

dimensionality problem, features may be weighed differently when calculating the
distance (or similarity) between two instances.

4 Given a query for predicting the effort of a new project, use an algorithm such as K-
' Nearest Neighbor, or, Locally Weighted Regression to retrieve similar projects and use

them as the basis for returning the prediction result.

5. Existing Work

Several areas in software development have already witnessed the use of machine learning
SsTto section, we take a look at some reported results. The list is definitely not a
complete one. It only serves as an indication that people realize the potential of ML
techniques and begin to reap the benefits from applying them in software development and

maintenance.

Scenario-based requirement engineering

The work reported in [9] describes a formal method for supporting the process of inferring
location's of system goals and requirements inductively from Meraction scenano
provided by stakeholders. The method is based on a learning algorithm that takes
scenarios as examples and counter-examples (positive and negative scenarios) and

generates goal specifications as temporal rules.

A related work in [6] presents a scenarios-based elicitation and validation assistant that
^TmZrnJ engineers acquire and maintairi a specification co^Mj^
scenarios provided. The system relies on explanation-based learning (EBL) to generalize

scenarios to state and prove validation lemmas.

Software project effort estimation

Instance-based learning techniques are used in [17] for predicting the software project
Sfor new projects The empirical results obtained (from nine different industrial data
"hng 275 projects) indicate that cased-based reasoning offers *"f^™*
to the existing prediction and estimations techniques. A related CBR application in

software effort estimation is given in [20].

Decision trees (DT) and artificial neural networks (ANN) are used in [19] to help predict
" development effort. The results were competitive ^<^^^
such as COCOMO and function points. The mam advantage of DT and ANN based
estimation systems is that they are adaptable and nonparametnc.

The result reported in [3] indicates that the improved predictive performance can be

SÄÄieuse of Bayesian analysis-Additional research on ^b
effort estimation can be found in [2,14,15,16].

Software defect prediction
Bayesian belief networks are used in [4] to predict software defects. Though the system
reported is only a prototype, it shows the potential BBN has in mcorporatmg multiple
perspectives on defect prediction into a single, unified model.

Variables in the prototype BBN system [4] are chosen to represent the life-cycle processes
Xedfi "ton"design and implementauon, and testing (Problem-Complexity, Deaga-
EffSDeuUize, Defects-Introduced, Testing-Effort, Defects-Detected Defects-
Sy-A -Testing, Residual-Defect-Count, and Residual-Defect-Density). The proper
^^ationshiS among those software life-cycle processes are then captured and

reflected as arcs connecting the variables.

283

A tool is then used with regard to the BBN model in the following manner For given facts
abouT Design-Effort and Design-Size as input, the tool will use Bayes,an inference to
f^T^mty distribution, for Defects-Introduced, Defects-Detected and Defect-

Density.

6. Concluding Remarks

In this paper, we show how ML algorithms can be used in tackling software engineering
prob ems ML algorithms not only can be used to build tools for software development
Td maintenance tasks, but also can be incorporated into software products to make them
adaptive and self-configuring. A maturing software engineenng discipline will definitely

be able to benefit from the utility of ML techniques.

What lies ahead is the issue of realizing the promise and potential ML techniques have to
offer in the circumstances as discussed in Section 4. In addition; expanding the frontier of
ML application in software engineering is another direction worth pursuing.

References

1 B Boehm, "Requirements that handle IKIWISI, COTS, and rapid change," IEEE

Computer, Vol. 33, No. 7, July 2000, pp.99-102.
2 L Briand, V. Basili and W. Thomas, "A pattern recognition approachifor software

engineering data analysis," IEEE Trans. SE, Vol. 18, No. 11, November 1992, pp.

931-942.
3. S. Chulani, B. Boehm and B. Steece, "Bayesiari analysis «"^"g™

engineering cost models," IEEE Trans. SE, Vol. 25, No. 4, July 1999, pp. 573-583.

4. N. Fenton and M. Neil, "A critique of software defect prediction models," IEEE Trans.

SE, Vol. 25, No. 5, Sept. 1999, pp. 675-689.
5. C. Green et al, "Report on a knowledge-based software assistant, ^Read^

Artificial Intelligence and Software Engineering, eds. C. Rich and R.C. Waters,

Morgan Kaufmann, 1986, pp.377-428.
6 R J Hall "Systematic incremental validation of reactive systems via sound scenario

' generalization," Automatic Software Eng., Vol.2, pp.131-166, 1995.

7 F V Jensen, An Introduction to Bayesian Networks, Springer, 1996.

8*. M. Kramer, and D. Zhang, "Gaps: a genetic programming ^^^.^f
International Conference on Computer Software and Applications (COMPSAC 2000).

9 van Lamsweerde and L. Willemet, "Inferring declarative requirements specificaüon
f„rational scenarios," IEEE Trans. SE, Vol. 24, No. 12, Dec. 1998, pp.1089-

10. M. Lowry, "Software engineering in the twenty first century", AI Magazine, Vol.14,

No.3, Fall 1992, pp.71-87.

11 T Mitchell, Machine Learning, McGraw-Hill, 1997.
12 D Pamas, "Designing software for ease of extension and contraction," IEEE Trans.

SE, Vol. 5, No. 3, March 1979, pp. 128-137. ?

13 D Peters and D. Pamas, "Using test oracles generated from program documentation,
IEEE Trans. SE, Vol. 24, No. 3, March 1998, pp. 161-173.

14 A Porter and R. Selby, "Empirically-guided software development using metric-based
' classification trees," IEEE Software, Vol. 7, March 1990, pp. 46-54.

284

15 A Porter and R. Selby, "Evaluating techniques for generating metric-based
' classification trees," J. Systems Software, Vol. 12, July 1990, pp. 209-218.

16 R. Selby and A. Porter, "Learning from examples: generation and evaluation of
decision trees for software resource analysis," IEEE Trans. SE, Vol. 14, 1988,
pp. 1743-1757.

17 M Shepperd and C. Schofield, "Estimating software project effort using analogies ,
IEEE Trans. SE, Vol. 23, No.12, November 1997, pp. 736-743.

18.1. Sommerville, Software Engineering, Addison-Wesley, 1996.
19 K Srinivasan and D. Fisher, "Machine learning approaches to estimating software

' development effort," IEEE Trans. SE, Vol. 21, No. 2, Feb. 1995, pp. 126-137.
20 S Vicinanza, M.J. Prietulla, and T. Mukhopadhyay, "Case-based reasoning in

' software effort estimation," Proc. 11th Int'l. Conf. On Information Systems, 1990,
pp.149-158.

21 H Zhu "A formal analysis of the subsume relation between software test adequacy
' criteria" IEEE Trans. SE, Vol.22, No.4, April 1996, pp.248-255.

285

AD NUMBER DATE

1. REPORT IDENTIFYING INFORMATION

A. ORIGINATING AGENCY

Un/u'usUf dt\U^'JMM ctt ^gt'^
X7>1^y

B. REPORT TITLE AND/OR NUMBER JT^WML

C. MONITOR REPORT NUMBER Ü

D. PREPARED UNDER CONTRACT NUMBER

2. DISTRIBUTION STATEMENT

HPPROUED FOR PUBLIC HELEHSE

OISTRIBUTION UNLIM.TED

PROCEEDINGS

DTIC ACCESSION
UATIAC

Bi

1.
i

2. C

3. /

4. L

5. I

Dl

1.,

2. i

S EDITIONS ARE OBSOLETE

