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AN ANALYTICAL AND NUMERICAL INVESTIGATION 
ON FAILURE WAVES 

Abstract 

When a glass specimen is shocked near but below the apparent Hugoniot elastic 

limit, it may undergo elastic deformations at the shock wave front, and fail 

catastrophically at a later time. Because such a phenomenon looks different from usual 

inelastic waves, it has been interpreted as a failure wave. Based on the observation that 

the failure wave propagates with a degraded speed at some distance behind the elastic 

shock wave front, it has been proposed that the progressive percolation of microfissures 

into the material bulk governs the failure wave mechanisms. Stress concentration due to 

the defects and transient loading conditions on the impact surface has been assumed to be 

the origin for initiating the evolution of heterogeneous microdamage. To provide a 

general framework for modeling the impact response of certain materials, a three- 

dimensional continuum damage model is developed in this report, based on the 

assumption of shear-induced dilatancy. The essential component of the proposed model is 

that the deviatoric potential energy in the intact material is converted into the volumetric 

potential energy in the comminuted and dilated material during the time-dependent 

failure evolution process. The progressive percolation of microfissures is described by a 

nonlinear diffusion equation throughout the continuum body. The diffusion equation and 

wave equation are then solved via a staggered manner in a single computational domain. 

Numerical solutions are presented and verified with experimental data available. It 

appears that the essential feature of the failure wave phenomenon, as observed in shock 

experiments on glasses, can be predicted by the proposed approach. A very recent 

experimental study indicates that the dynamic failure evolution in mortar is a rather 

gradual process, in contrast to the well-defined failure wave front as observed in shocked 

glasses. However, the lack of a consistent set of experimental data does not warrant the 

revision of the proposed constitutive model to predict the failure wave in mortar. 

Although a considerable progress has been made in understanding the failure wave 

phenomenon since it was reported about 10 years ago, a combined experimental, 

analytical and computational effort is still needed to fully understand the physics 

involved in the dynamic failure behaviors of brittle solids under various impact loads. 



1. Introduction 

When a glass specimen is shocked near but below the apparent Hugoniot elastic 

limit (HEL), it may undergo elastic deformations at the shock wave front, and fail 

catastrophically at a later time. Because such a phenomenon looks different from usual 

inelastic waves, it has been interpreted as a failure wave. Since Brar et al. (1991) and 

Kanel et al. (1991) reported the formation and propagation of failure waves in a series of 

impact experiments with glass plates and bars, continued efforts have been made to 

explore this interesting physical phenomenon (Bless and Brar, 1994; Bourne et al., 1995; 

Chen and Xin, 1999; Clifton, 1993; Espinosa et al., 1997a and b; Feng, 2000; Grady, 

1995a and b; Grote et al., 2000; Raiser and Clifton, 1994; Raiser et al., 1994; Rosenberg 

et al., 1996; among others). However, no consensus can be made at the moment on the 

physics behind the failure wave phenomenon in brittle solids under impact loading. To 

set a stage for presenting the proposed damage model, the difference between a usual 

inelastic wave and the failure wave is first analyzed, based on the literature available, as 

below. 

The shock response of glasses beyond the HEL often displays a well-defined two- 

wave structure that has been interpreted as an inelastic response. Although the prompt 

microcracking across the compression wave front occurs if the glass specimen is shocked 

at or above the HEL, the macroscopic two-wave structure has suggested that the 

compressive failure might be suppressed by confining pressure at a shocked state beyond 

the HEL. The failure wave phenomenon of glasses, which occurs when the compressive 

shock stress is near but below the HEL, suggests that the HEL may not be an elastic limit, 

but rather, may be a transition in failure mechanisms. A possible transition is the one 

from a delayed kinetic-controlled failure process below the HEL to a prompt stress- 

controlled failure process above the HEL (Grady, 1995b). Another possibility is that the 

HEL may represent the stress level above which bulk glass undergoes permanent 

densification (Espinosa et al., 1997a). In other words, the density of glass rubble due to 

the failure below the HEL is different from that above the HEL. The signature feature 

that separates the failure wave from the usual inelastic shock wave in brittle solids is that 

only the lateral stress is changed significantly across the failure front, while the 



longitudinal stress is almost constant during the failure propagation (Brar et al., 1991; 

Kanel et al., 1991; Bourne et al., 1995; Espinosa et al., 1997a). Thus, the classical 

equation of motion governing the propagation of a longitudinal wave can not describe the 

propagation of a failure wave with the decrease in shear strength only, if other field 

equations are not invoked. 

Based on a detailed review of experimental, analytical and computational issues 

related to the failure wave phenomenon, attempts (Chen and Xin, 1999; Feng, 2000) have 

been made recently to answer the fundamental question: what is the physical mechanism 

behind the failure wave phenomenon? 

As indicated in the previous research, the jumps of certain kinematic field 

variables involved in a complete failure process can be identified based on the transition 

between different governing differential equations (Chen, 1996; Chen and Sulsky, 1995). 

By taking the initial point of material failure as that point where the type of the governing 

differential equations changes, i.e., a hyperbolic to an elliptic type for dynamic problems 

and an elliptic to another elliptic type for static problems, a moving material surface of 

discontinuity can be defined through the jump forms of conservation laws across the 

surface. Jumps in density, velocity, strain and stress can be accommodated on this 

moving surface of discontinuity between two material domains. Interestingly, the 

problems involving the type change of the governing differential equations, accompanied 

by certain jumps in field variables, also occur in other areas such as fluid mechanics 

(Chen and Clark, 1995) and thermal shock wave propagation (Tzou, 1989 and 1997). 

Mathematically speaking, three basic kinds of governing differential equations, 

namely, hyperbolic (wave), parabolic (diffusion) and elliptic (instantaneous response 

through the problem domain) equations, have been used to describe different physical 

phenomena. However, it is still an unsolved challenging problem how to represent the 

transition among these three different kinds of equations within a rigorous mathematical 

framework. If the transition from a hyperbolic one to an elliptic one is represented via a 

parabolic one, an analytical solution has been obtained for a dynamic softening bar with 

the use of a simple elastoplasticity model (Xin and Chen, 2000). The use of the jump 

forms of conservation laws, together with a simple elastodamage model, also yields a 

diffusing failure front (Chen and Xin, 1999). If the failure wave were really a "wave," its 

propagation speed should increase during the failure process because the material 



stiffness behind the failure front is weaker than that in front of it due to the evolution of 

microcracking in space. As observed in experiments, however, the time delay between 

the elastic shock wave front and the eruption of failure appears to increase with the 

distance into the material. From both experimental and analytical viewpoints, therefore, it 

appears that the evolution of a failure wave in space should be governed by a diffusion 

equation instead of a wave equation. Since it is still impossible to measure the real-time 

internal failure evolution, it is difficult to fully understand the physical mechanism 

behind the failure wave phenomenon. Based on the experimental data available, 

nevertheless, a micromechanics-based picture has been drawn to explain the physical 

mechanism of failure waves (Feng, 2000), as sketched as follows. 

Under plane shock wave loading, the material failure below the HEL occurs 

through simultaneous processes of heterogeneous microfissuring, shear dilatancy and 

void collapsing under very high confining stress, which results in an increase in the mean 

stress and a decrease in the deviatoric stress while all the longitudinal field variables 

remain unchanged. This particular form of failure initiates at the impact surface where the 

surface defects and transient loading conditions are conducive for such a process, and 

propagates into the material bulk through progressive multiplication of microfissures - a 

percolation process. As a result, the failure propagation is of diffusive nature. In analogy 

to the definition of permanent inelastic strain, the dilated volume of the damaged material 

at full release can be employed to measure the extent of microdamage, rendering an 

internal state variable approach for the constitutive modeling of failure waves. 

A recent experimental study on the failure response of mortar under impact 

loading indicates that a clearly defined failure front can not be observed, and instead, a 

gradual failure process occurs upon the arrival of the loading wave and propagates 

thereafter (Grote et al., 2000). The difference in the speed of failure eruption between 

glass and mortar materials seems to be related to the fact that virgin mortar is 

heterogeneous with many voids as compared with virgin glass. There would not be such a 

difference if the failure propagation is not of diffusive nature. To better understand the 

difference between different materials, however, well-designed experiments are still 

required to obtain a consistent set of experimental data. 

To provide a general framework for modeling the impact response of certain 

brittle solids, a three-dimensional continuum damage model is developed here, based on 



the assumption of shear-induced dilatancy. The essential component of the proposed 

model is that the deviatoric potential energy in the intact material is converted into the 

volumetric potential energy in the comminuted and dilated material during the time- 

dependent failure evolution process. The progressive percolation of microfissures is 

described by a nonlinear diffusion equation throughout the continuum body. The 

diffusion equation and wave equation are then solved via a staggered manner in a single 

computational domain. Numerical solutions are presented and verified with experimental 

data available to demonstrate the applicability of the proposed procedure. Future research 

is discussed based on the conclusion of the current work. 

2. Constitutive Modeling 

A direct notation is employed here with boldfaced letters denoting tensors of first 

or higher order. The Cauchy stress and velocity strain tensors are used to implement the 

proposed continuum damage model into the finite element program with an updated 

Lagrangian formulation, as discussed later in the next section. The thermal effects are not 

considered here for the purpose of simplicity. 

In the shocked intact material, the compressive mean stress can be expressed as 

with 

V = %-1 Ob) 
^     V 

where H is the Hugoniot mean stress response of the material, depending on the volume 

compression, \i, in the elastically shocked state where the dilated volume Vd of the 

damaged material is equal to zero In Eq. (lb), V and V0 denote the current and original 

specific volume, respectively. Once the failure wave is initiated, om and Vd start to 

increase with damage at a fixed value of fi. In other words, there is no macroscopic 

volume change during the failure evolution, and the uniaxial-strain condition is preserved 

at the macroscopic level for the plate impact problem. This failure response is modeled 

by assuming that 

om = Hfa) (2a) 



with 

^^.MZ-LJ. + M-l (2b) 

in which p and p0 represent the current and original mass density, respectively. 

Although Eq. (2) represents a phenomenological approximation, it is expected to be 

useful as long as the damaged material is sufficiently compressed. In fact, \it can be 

considered as the average solid volume compression of the damaged material. Based on 

the experimental data available, the Hugoniot mean stress response can then be described 

by a polynomial function of ße, namely 

Gn^We + Wl+Wl (3) 

while the pressure-dependent shear modulus can be defined in terms of a polynomial of 

CT/B,i.e., 

G=b0 + bpm+b2o
2

m+bp3
m (4) 

in which a, and bi are model parameters to be determined from shock experiments. The 

differential form of Eq. (3) can be written as 

da--i?dv+»;dv' (5a) 

with 

ÜSa ^  =-(a1 + 2a2ße+3a3^)^ (5b) 

dj*- = (a1 + 2a2»e + 3a3^ (5c) 

With sd=s-sv and ed=e-ev denoting deviatoric stress and strain tensors, 

respectively, the differential deviatoric stress-strain relationship takes the form of 

dsd=2G(ded-dea) (6) 

in which e'd is the inelastic deviatoric strain due to shear-induced dilatancy. With i being 

the second order identity tensor, sv = -aj and ev = emi represent the volumetric parts 

of stress and strain, respectively. The mean volumetric strain, em, is defined to be 

3em=ln^- = 3Ee
m+3ein O) 



Imagining that the material is compressed from an initial porous state (V0 + Vd) to the 

current state (V), the inelastic mean volumetric strain can be represented by 

V + V 
3e'm=lnlü±Iä. (8) 

It then follows from Eqs. (7) and (8) that the elastic mean volumetric strain can be found 

to be 3et = In . Please note that there is no permanent volume compression in the 
V0 + Vd 

kinematics of failure wave considered here. Damage evolution does not change the 

current volume, and instead, changes the material state at full unloading. In other words, 

the condition of Vd = 0 results in a null e'm. To calculate el
d, assume that there exists a 

limit surface given by 

f=Wt+Wj-c = 0 (9) 

where Wv
e and Wd are the volumetric and deviatoric parts of elastic potential energy, 

respectively, and c represents the limit state at which failure occurs. The corresponding 

consistency condition can be written as 

df = dWe
v+dWe

d=0 (10a) 

namely 

sv:de'v+sd:ded=0 (10b) 

The kinematics of failure wave under plate impact implies the condition of 

dev =ded = 0. In other words, the failure wave behind the shock wave front will not 

introduce any additional strain at the macroscopic level, as discussed before. As a result, 

the relationships between the elastic and inelastic parts of volumetric and deviatoric 

strains have the form of 

dV 
dee = -de' = ^—J (Ha) 

V 3(V0 + Vd) 

and 

ded = -de'd (lib) 

respectively. With the use of Eqs. (10) and (11), hence, it follows that 

^—dVd-sd:ded=0 (12) 
v0 + vd 

With the assumption of 



de'd = dhd (13) 

the substitution of Eq. (13) into Eq. (12) then yields 

(V0 + Vd)sd:sd 

because of dVd>0   with  the evolution of failure. Thus,  the differential  inelastic 

deviatoric strain tensor takes the form of 

dl= ,__     _"\ dVd>0 (14) 

de, = A     G"iSf dVd (15) 

The three-dimensional isotropic damage model with shear-induced dilatancy is now 

complete for the given strain state in shocked materials under plate impact. As can be 

seen from the above equations, the stress state depends on the value of Vd for the given 

strain state after material failure occurs behind the elastic shock wave. 

For each time increment At, the solution steps of a simple constitutive model 

solver can be summarized as follows: 
it 

1- ^-Zr^-iwithVj =Vj"   + AVd; 

2. am = a,He + a2^e + a&\ \ 
t 

3. G=b0 + b1am+b2al+bpll; 

4. Aed=-f ^f AVd; 
Vo+Vd\pi-''i 

5. Asd= 2G(Aed -Aed) with Aed = Ae-Aey and Aev = ev\ - ev\     ; and 

6. s\' = s\'~Al + As with As = Asd + (-Aom). and Aam = aj - aJ~A'. 

Please notice that Ae *0 and AVd = 0 in the elastic shock wave zone, while Ae = 0 and 

AVd > 0 behind the elastic shock wave if failure occurs. The value of Vd is obtained from 

the damage diffusion equation, as described later. 

To demonstrate the features of the proposed damage model, consider the changes 

of incremental stresses after a failure wave occurs in a plate impact problem. The 

incremental longitudinal and lateral stresses are given by 

Asu = (Asd)n-Aom (16a) 

and 



As22 = As33 = (Asd)22-Aom (16b) 

respectively. Because the macroscopic strain field is unchanged in the failure zone behind 

the elastic shock wave, it follows from Eqs. (5), (6) and (15) that 

As,,     =-2G(Ae>)n-^AVd 

4Gom (s„ - s22) a, + 2a,H, + 3a^2
e ^ (1?a) 

and 

>22 

3(V0+Vd)sd:sd V 

As33=-2G(Aed)22-^AVd 

_2Gam(s„-S22) a, + 2a,ß,+3ay   v <Q 

'3(V0 + Vd^d:sd     d V 
(17b) 

As can be seen from Eq. (17), a zero change in the longitudinal stress might result in an 

increase in the absolute value of lateral stresses for a suitable value of Vd (Note that 

s,, <s22 =s3i<0 in a plate impact problem). The effects of model parameters on the 

failure response will be demonstrated in Section 4. 

The above damage model describes only the evolution of damage with time at a 

given material point. The interactions among different material points in a continuum, 

which result in the evolution of damage in space, must be modeled through an 

appropriate manner. Higher order models, such as nonlocal integral or strain gradient 

models, have been used to predict the evolution of localized failure, as reviewed by Chen 

and Schreyer (1994). However, the use of higher order models yields higher order 

governing differential equations, in addition to the ambiguity of additional boundary 

conditions. Another approach is to apply the jump conditions to different material 

domains so that the classical governing differential equations are still valid to simulate 

the evolution of localization (Chen and Sulsky, 1995; Chen and Xin, 1999). In this report, 

a three-dimensional damage diffusion equation that is based on the physical mechanisms 

of failure waves is formulated, as elucidated next, to predict the evolution of damage in 

space through the value of Vd . Since both the wave equation and diffusion equation are 

still the 2nd order partial differential equations, an effective numerical procedure can be 

developed with parallel computing for large-scale model-based simulation. 



As indicated by Feng (2000), severe loading conditions at the impact surface, 

including the effect of impact tilt, may play the same role as the impact surface 

imperfection in initiating the failure wave in shocked glasses. If the plane of entering 

wave front is not exactly coincident with that of the material surface as it is usually the 

case in practice, the transient loading conditions on the surface involve a line of stress 

concentration sweeping across the surface. Because of the geometry, the confinement 

associated with this moving stress concentration is lower than that of the uniaxial strain 

and the loading rate can be significantly higher than that at the wave front inside the 

material. The combination of the severe loading conditions and inevitable surface 

imperfection may initiate isolated microcracking in the vicinity of the impact surface. 

Please note that the microscopic defects, if any, randomly distributed inside the specimen 

material should not be severe enough to initiate the failure wave, but will certainly speed 

up the failure evolution process inside the material. For the purpose of simplicity, 

however, the bulk of the material is assumed to be flawless so that the effect of randomly 

distributed microscopic defects is not considered here. Based on the above analysis, it 

appears to be reasonable to consider the impact surface as the only source for initiating 

the failure wave in shocked glasses. The formation of microcracks on the impact surface 

will in turn introduces local stress concentrations to the adjacent downstream material. 

Once these stress concentrations reach a certain threshold, microfissuring will be initiated 

there, and so on. Since the limitation of current computational capabilities does not allow 

a detailed modeling of the evolution of each individual microcrack, the failure 

propagation process can be described by a progressive percolation of microfissures in an 

average sense. Based on the physics involved, this process is macroscopically of diffusive 

nature, i.e., a diffusion process starting from a high concentration of microcracks to a low 

concentration of microcracks until a saturated state is reached in the continuum or 

discontinuous failure occurs. To activate the diffusion process, both microscopic 

heterogeneity and sufficient deviatoric strain energy are required as long as it is initiated. 

If either the heterogeneity or deviatoric strain energy is not large enough, the diffusion 

process will not be active or die out eventually. From a viewpoint of energy conservation, 

the evolution of a failure wave in space converts the deviatoric strain energy in the intact 

material ahead of the failure front into the volumetric potential energy in the comminuted 

10 



material behind the front. As a result, there is a decrease in the stress deviator and an 

increase in the mean stress in the uniaxial strain condition. 

It should be pointed out that even if the shock wave compression is along the 

longitudinal direction, the percolation of microfissures occurs three-dimensionally. 

Therefore, a three-dimensional diffusion equation must be formulated to govern the 

percolation of microfissures, which is measured in terms of the dilated volume, as 

discussed before. In a standard form, the diffusion equation in the three-dimensional 

space x with time t can be written as 

dv. 
a    =V.[Z)M-Wj (18) 
at 

where D(x,t) denotes the second order damage diffusivity tensor. Although the rate of 

percolation in the lateral direction is different in general from that in the longitudinal 

direction, the existing experimental data do not warrant the detailed formulation of 

D(x,t). If the microscopic details of percolation in different orientations are not pursued, 

it is reasonable to let D(x,t)= D(x,t)i with 

0 ifY<YTHDorVd=0 
Y-Y (19) 

JL-±L-±0   ifY>YTHDorVd>0 
YHEL ~rF 

D(x,t) = 

where d is the isotropic diffusion coefficient, and Y = A-sd : sd   (In a plate impact 

problem, Y =\su -s22\)> The parameters YHEL and YF represent the stress deviators in 

the intact material at the HEL and in the damaged material at the completion of failure 

process, respectively. As can be seen from Eq. (19), the diffusion is inactive if the stress 

deviator is below the threshold YTHD, or if the dilated volume is equal to zero. As long as 

Y > YTHD or Vd > 0, the diffusion process will start until Y = YF. Unloading occurs 

when Y<YF. Since certain time is required for the lateral microdamage percolation to 

finish at a given longitudinal location, introduce a time-dependent evolution function into 

Eq. (18), which is defined by 

Q(x,t)=
DMV'-V<'°7>0 (20) 

11 



with Vd0 being the threshold below which Q(x,t) is inactive, and Td denoting the 

characteristic time of the damage evolution at the longitudinal location. As a result, Eq. 

(18) then becomes 

^- = V.[D{x,t}7Vd]+Q(x,t) (21) 
at 

The effect of lateral percolation on the longitudinal percolation is reflected through the 

addition of Q(x,t). 

As can be seen from the above description, the proposed constitutive model 

includes the equations governing the strain-stress response at the local level, which 

mainly consists of Eqs. (2-4, 6, 15), and the equations governing the damage diffusion, 

namely, Eqs. (19-21). 

The propagation of a failure wave is simulated through the evolution in both 

temporal and spatial domains of the internal state variable, Vd . If a specimen is shocked 

beyond the threshold YTHD and an initial value of Vd (> Vd0) is assigned to the vicinity 

of the impact surface, a failure wave will propagate, behind the leading elastic shock 

wave, through the specimen that is assumed to be originally flawless (Vd =0). Although 

Vd increases during the damage diffusion, the specific volume of the compressed 

material, V, remains constant, and so do the macroscopic longitudinal stress and particle 

velocity. The increase of Vd results in the decrease of the deviatoric potential energy, as 

reflected through the increase of lateral stresses. In other words, the deviatoric potential 

energy in the intact material is converted into the volumetric potential energy in the 

comminuted and dilated material during the time-dependent failure evolution process. 

It is expected that the material parameters for describing the damage diffusion, 

namely, d, YTHD, YF, Vd0 and Td, can be evaluated via well-defined impact experiments 

that measure the damage evolution profile and the residual frictional strength of 

comminuted material. To solve both the usual equation governing the shock wave 

propagation and the proposed damage diffusion equation in a single computational 

domain, a simple numerical procedure is described in the next section. 

12 



3. Numerical Procedure 

The numerical procedures for conventional wave and diffusion equations can be 

found in the standard books (Belytschko and Hughes, 1983; Reddy and Gartling, 1994; 

among others). In this report, central-difference in space and forward integration in time 

are used to solve the diffusion equation, while constant stress elements in space and an 

explicit time integrator are employed to solve the wave equation. 

To implement the differential form of the proposed damage model into the shock 

wave code, the updated Lagrangian formulation is used so that the matrix equations of 

displacement-based finite elements can be written as 

[MM=W-{F};+M; (22) 

where [M] is the time-independent diagonal mass matrix,  {«}'  the vector of nodal 

accelerations at time t, {R}' the vector of externally applied nodal loads at t, {F}[ the 

vector of internal nodal forces at t measured with respect to the configuration at t, and 

{p}'t the vector of viscous damping nodal forces at t measured with respect to the 

configuration at t. Thus, the velocity strain tensor can be obtained in each time step to 

find the corresponding Cauchy stress tensor through the constitutive model. Based on the 

Cauchy stresses, the internal nodal forces can then be calculated with respect to the 

current configuration. To produce a sharp shock wave front, the viscous damping nodal 

forces are introduced into Eq. (22), which are obtained from element damping stresses. 

For each constant stress element e at time t, the damping stress takes the form of 

Ar 

if    P'e-Pe 

vlcHK+Vq-Z 
'e\ 

Pe^   ) 
i (23) 

>10   kg/m . In Eq.  (23),   vt   and  vq   are the linear and quadratic 

coefficients of artificial viscous stress, with v, =0.95 and vq = 1.0 being chosen for 

numerical demonstration in the next section. cl is the current longitudinal wave speed. 

The incremental mass density, the average mass density and the average area are defined 

by 

13 



4Pe = P'e-P'e-*' 

Pe^-U+P^' 

A? ~ ~Z Ae + Ae 

(24) 

The time step is estimated as follows: 

Att+Al' =mnfg.9Atl, max(l.2At', 0.035Att} (25.1) 

with 

Atl = At{l - 3vt i^vj+1 - v, 1 (25.2) 

in which At is the estimated time step without including the artificial viscosity in Eq. 

(22), and v, = 0.1 is chosen here. 

Although the wave and diffusion equations are coupled in terms of Vd after 

failure occurs, a simple procedure is adopted here to solve the wave and diffusion 

equations in a parallel (staggered) setting, with the time step satisfying both stability 

conditions in a single computational domain. 

* 

4. Demonstration and Verification 

To demonstrate and verify the proposed model and solution procedure, the shock 

experiments chosen by Feng (2000) will be considered here, which reveal most clearly 

the quantitative nature of the failure wave phenomenon, as compared with other existing 

data. 

It should be pointed out that there is no complete set of data in the open literature 

which could be used to verify the model parameters, although the failure wave 

phenomenon has been observed in several kinds of shocked glasses. In the recent 

experimental characterization of the failure response of mortar under impact loading 

(Grote et al., 2000), no data are available to evaluate Eqs. (3) and (4) because the elastic 

properties are assumed to be constant in the shock response. Hence, the experimental 

data, which have been collected from several sources in a way as consistent as possible 

(Feng, 2000), are used here to verify the proposed model. 
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Based on the wave profile measurements and mean stress response for a soda lime 

glass, the original mass density, longitudinal and shear sound speeds, and apparent HEL 

stress of the material are given by p0 = 2530kg/m3, cL = 5828m/s, cs = 3468m/s 

and aHEL = 5.95GPa, respectively. It follows from a Lagrangian analysis that Eqs. (3) 

and (4) become 

am = 45.36\ie -137.00pi] + 288.30p3 (26) 

and 

G = 30.43 pe + 1.49am -0.60a2
m -0.35a3

m (27) 

where the units of am and G are GPa. The stress deviators at the HEL and the threshold 

for initiating the failure wave are YHEL = 4.53GPa and YTHD = 2.24GPa (which 

corresponds to a shock stress of 3 GPa), respectively. The longitudinal and lateral gauge 

data on a shocked K-8 glass (Kanel et al., 1991) are used to compare with the model 

prediction. Since the shock stress in the experiment was close to the specimen material's 

HEL of about 8 GPa, which is significantly higher than that of the model material 

(aHEL =5.95GPa), a normalization procedure is used here to minimize the effects of 

inherent material property differences. It is assumed that the failure process would result 

in a 50% increase in the lateral stress, at which Y = YF so that D(x,t) = 0 in Eq. (19), in 

accordance with the experimental data. Both the experimental and numerical results are 

then normalized with respect to their respective lateral stresses ahead of the failure front. 

The original time correlation between the data profiles at different locations is unknown. 

For clarity, a time correlation based on a sound speed of 5828m/s is incorporated in the 

data. The model parameters related to damage diffusion, which match the data, are found 

tobe d = 12m2 /s, Td = 7.7xl0~9s and Vd0 = 2.0xl0~7 m3 / kg . As shown in Fig. 1, 

the model predicts the essential feature of the experimental data. The longitudinal stresses 

corresponding to the lateral stresses are shown in Fig. 2. As can be seen, there is almost 

no change in the longitudinal stress during the failure evolution. It should be pointed out 

that Feng (2000) used an ad hoc approach in 1-D modeling and simulation so that the 

longitudinal stress must be fixed to find the corresponding lateral stress. Without fixing 

the longitudinal stress, however, the 3-D damage model proposed here can predict the 

essential features of the observed failure wave phenomenon. The effects of model 
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parameters, which control the diffusion process, are illustrated in Figs. 3 and 4. The 

profiles of Vd and corresponding effective stresses with time are shown in Figs. 5 and 6, 

which are consistent with the model formulation. Due to the effect of lateral percolation, 

the effective stress is decreasing with the increase of Vd during the failure propagation. 

To simulate the transition from continuous to discontinuous failure modes in the 

future work, the Material Point Method (MPM), which was recently developed for those 

problems such as penetration, perforation, metal forming and cutting (Sulsky et al., 

1994), has been employed here to solve the failure wave problem. Figures 7-12 

demonstrate the numerical solutions obtained via the MPM, corresponding to Figs. 1-6. 

As can be seen, both the FEM and MPM yield the same solution features for the same 

problem, although the spatial discretization procedure used in the FEM is different from 

that in the MPM. It appears that the numerical dispersion of the MPM is more obvious 

than the FEM, a further discussion on which is beyond the scope of this report. 

5. Concluding Remarks and Future Research 

To provide a general framework for modeling the impact response of certain 

materials, a three-dimensional continuum damage model has been developed in this 

report, based on the assumption of shear-induced dilatancy. The essential component of 

the proposed model is that the deviatoric potential energy in the intact material is 

converted into the volumetric potential energy in the comminuted and dilated material 

during the time-dependent failure evolution process. The progressive percolation of 

microfissures is described by a nonlinear diffusion equation throughout the continuum 

body. The diffusion equation and wave equation are then solved via a staggered manner 

in a single computational domain. Numerical solutions, obtained via both the FEM and 

MPM, have been presented and verified with experimental data available. It appears that 

the essential features of the failure wave phenomenon, as observed in shock experiments 

on glasses, can be predicted by the proposed approach. 

Although a considerable progress has been made in understanding the failure 

wave phenomenon since it was reported about 10 years ago, well-defined experiments are 

still needed to provide a consistent set of experimental data to verify the constitutive 

modeling   and   solution   procedures.   A   combined   experimental,   analytical   and 
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computational effort is a necessity for us to fully understand the physics involved in 

formation and propagation of failure in impact problems. 
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