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INTRODUCTION: 

As proposed in the original grant, in order to determine whether the effects of GDNF and 
Bcl-2 delivered by HSV-mediated gene transfer might be additive, we examined whether 
delivery of the genes coding for GDNF and bcl-2 using two different recombinant 
genomic HSV-based vectors together would increase the survival of SN neurons after 6- 
OHDA administration. The results are detailed in the manuscript which is attached, and 
are summarized here. [The figures are included with the manuscript in the appendix]. 

BODY: 

Transgene expression in vivo. We previously reported the expression of human bcl-2 
RNA in the SN of rats injected with vector THZ/S-bcl2. GDNF expression in vector- 
injected rat SN was examined by immunocytochemistry using an antibody against human 
GDNF. Rats injected with DHGD in the SN exhibited numerous GDNF-IR neurons 
around the injection site, indicating that human GDNF transgene protein was expressed 
until the time of 6-OHDA lesioning (Figure 2). Control vector-injected rats showed no 
GDNF immunoreactivity (Figure 2). 

THZ/S-bcl2 vector, DHGD vector and coinfection with those two vectors reduce 
amphetamine-induced ipsilateral rotational behavior. Rats were injected with D- 
amphetamine (5 ma/kg body weight i.p.) 14 days after 6-OHDA lesioning (21 days after 
vector or control administration) and their behavior recorded for 90 min. Amphetamine- 
induced release of DA causes animals with a unilateral lesion of nigrostriatal DA system 
to turn toward the lesioned striatum. In control lesioned rats injected with either PBS of 
the lacZ-expressing vector DHZ, ispilateral rotational behavior (approximately 5 
turns/min) towards the lesioned hemisphere was observed. Rats injected with THZ/S- 
bcl2, DHGD, or both vectors together exhibited a significant reduction in ipsilateral 
behavior compared with control groups (Figure 3). 

Both THZ/S-bcI2 and DHGD vectors protect DA neurons from 6-OHDA toxicity. 
The protection of the nigral DA neurons was evaluated by counting the numbers of TH- 
IR and FG-labeled cells in the SN bilaterally. In the control animals (PBS- and DHZ- 
injected), intrastriatal injection of 6-OHDA (5 ul) resulted in the loss of more than 70% 
of FG-labeled neurons compared to the contralateral unlesioned side. The loss of TH-IR 
cell bodies (approximately 40%) compared to the uninjected contralateral side was not as 
great as the loss of FG-labeled neurons. This reflects the fact that while all the terminals 
of FG-labeled cells were exposed to 6-OHDA which was injected at the same coordinates 
a week after the FG, TH-IR cells include a population that project to uninjected (i.e. 
unlesioned) regions of striatum, and were therefore not affected by 6-OHDA. Injection 
of the THZ/S-bcl2 vector 1 wk prior to lesioning resulted in a 30% increase in the 
number of surviving FG-labeled cells in lesioned striatum, which represents almost a 2- 
fold increase in cell survival (Figures 4 and 5). Injection of the GDNF-expressing vector 
DHGD similarly increased the number of surviving FG-labeled cells by 30% (Figures 4 
and 5). 



Injection of the bcl-2 expressing vector THZ/S-bcl2 increased the number of surviving 
TH-IR neurons by 20%, representing a 1/3 increase compared to control (PBS or lacZ- 
vector injected SN), and injection of the GDNF-expressing vector increased the number 
of surviving TH-IR neurons by 27%, which represents an increase of 1/2 compared to 
control animals (Figures 6 and 7). These experiments are in agreement with previous 
reports using other vectors to deliver and express GDNF and our own results using an 
HSV vector to deliver and express Bcl-2. 

HSV-mediated co-delivery of Bcl-2 and GDNF was more effective than either Bcl-2 
or GDNF alone in protecting SN neurons form 6-OHDA toxicity. Injection of both 
THZ/S-bcl2 and DHGD simultaneously resulted in a 30% increase in the number of 
surviving FG-labeled cells in the SN compared to animals injected with either the 
THZ/S-bcl2 alone, or with vector DHGD alone (Figures 4 and 5). Co-inoculation of the 
THZ/S-bcl2 and DHGD vectors resulted in a an increase (20% compared to bcl-2, 10% 
compared to GDNF) in the number of surviving TH-IR cells compared to animals 
injected with either vector alone (Figures 6 and 7). The comparison to bcl-2 was 
statistically significant, while the comparison to GDNF alone failed to achieve statistical 
significance. 

KEY RESEARCH ACCOMPLISHMENTS: 

• Construction of LAP2-HCMV: GDNF vector in a highly defective vector background 
for evaluation of long-term gene expression in brain. 

• Evaluation of recombinant latency promoters driving reporter gene expression have 
been extensively studied in neuronal cell culture models and in the peripheral nervous 
system. These studies revealed that the combination of LAP2 with the HCMV 
promoter produced enhanced long-term levels of transgene product. 

• Combined GDNF and Bcl-2 vectors were more effective in inhibiting substantial 
nigral nerve degeneration in a rat Parkinson's disease model than either gene alone. 

REPORTABLE OUTCOMES: 
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CONCLUSIONS: 

The results of our studies show that the two factors, GDNF and Bcl-2, acting together are 
more effective than either factor alone in blocking 6-OHDA toxicity, and thus supports 
the possible utility of a combination therapy in the treatment of Parkinson's disease. 
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Abstract 

Previous studies have demonstrated that either the neurotrophin glial derived neurotrophic factor (GDNF) 

and the anti-apoptotic peptide Bcl-2 delivered into striatum by a viral vector protect dopaminergic neurons 

of the substantia nigra in vivo from degeneration induced by the administration of the neurotoxin 6- 

hydroxydopamine (6-OHDA). In this study we used recombinant, replication incompetent, genomic herpes 

simplex virus (HSV)-based vectors to deliver the genes coding for Bcl-2 and GDNF into rat substantia 

nigra (SN) one week prior to 6-OHDA injection into the striatum. Vector mediated expression of either 

Bcl-2 or GDNF alone each resulted in a doubling in cell survival as measured by retrograde labeling with 

fluorogold (FG), and a 50% increase in tyrosine hydroxylase immunoreactive (TH-IR) neurons in the 

lesioned SN compared to the unlesioned side. Gene transfer of Bcl-2 and GDNF were equivalent in this 

effect. Co-administration of the Bcl-2-expressing vector with the GDNF-expressing vector improved the 

survival of lesioned SN neurons as measured by FG labeling by 33%, and by the expression of TH-IR by 

15%. These results suggest that the two factors delivered together act in an additive fashion to improve DA 

cell survival in the face of 6-OHDA toxicity. 
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Intrastriatal injection of 6-OHDA to cause progressive loss of the dopaminergic terminals of SN neurons 

(37, 38) is widely used to model the degeneration of neurons of the SN in Parkinson's disease (PD). 

Several different treatments are effective in protecting these neurons from toxin-induced degeneration. 

Glial cell line-derived neurotrophic factor (GDNF) was originally identified by its ability to support the 

survival of dopaminergic neurons of the SN in vitro (26). It is a member of a family of related neurotrophic 

factors in the transforming growth factor-ß (TGF-ß) family of basic, dimeric secretory proteins with a 

cysteine knot structure (2). The receptor complex consists of a GDNF-specific binding component, the 

GDNF-family receptor al (GFRa-1) (42) and a transmembrane Ret receptor tyrosine kinase (16, 43) that 

triggers several intracellular signaling pathways including the Ras-MAPK (48), phosphoinositol-3-kinase 

(PI3K) (45), Jun N-terrninal kinase (JNK) (45) and PLCy (7) dependent pathways. Recombinant GDNF 

administered by direct injection or continuous infusion protects DA neurons of the SN from 6-OHDA 

toxicity (4, 20, 22, 39, 41). Alternatively, transfer of the gene coding for GDNF using a recombinant 

adenovirus- (5, 6, 11, 12), or adenoassociated virus- (23, 28, 29) based vectors, and implantation of 

encapsulated GDNF-producing cells (27) have been demonstrated to protect DA neurons from 

degeneration following 6-OHDA administration. The specific mechanisms involved in the prr   .    <■• ,,; 

SN neurons against 6-OHDA toxicity have not been defined, but may involve protection fro    both 

apoptosis and necrosis. 

Evidence suggests that death of DA cells caused by 6-OHDA proceeds at least in part tin.       -■■.thways 

with features of apoptosis. 6-OHDA administration results in cell death with morphologic characterises 

of apoptosis in vivo (30) and in PC12 cells in vitro (46, 47). Dopamine-induced apoptosis of PC12 cells 

can be inhibited by overexpression of the anti-apoptotic peptide Bcl-2 (33), and primary cultures of SN 

neurons derived from transgenic mice that overexpress Bcl-2 are resistant to 6-OHDA toxicity in vitro (32). 

Using a recombinant genomic HSV vector we recently demonstrated that delivery and expression of the 

gene coding for bcl-2 protects dopaminergic neurons of the SN from death induced by 6-OHDA 

administration, and at the same time preserved the neurotransmitter phenotype of the lesioned cells (50). 

These results are similar to those reported in the l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) 
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model of PD, in which transgenic mice overexpressing bcl-2 were demonstrated to be resistant to MPTP 

toxicity(32,51). 

Bcl-2 is one member of a large family of proteins homologous to the nematode protein CED-9 that plays a 

critical role in inhibiting apoptosis in the face of a wide variety of cytotoxic insults (1), It forms a 

heterodimer with pro-apoptotic members of the same family, acting to prevent mitochondrial membrane 

permeabilization and consequent release of cytochrome c from mitochondria (25) thus averting the 

subsequent activation of the effector caspases that cleave a variety of intracellular peptides including major 

structural elements of the cytoplasm and nucleus that result in the Stereotypie morphologic and biochemical 

changes that characterize apoptotic cell death (17). 

In order to determine whether the effects of GDNF and Bcl-2 may be additive, we examined whether 

delivery of the genes coding for GDNF and bcl-2 using two different recombinant genomic HSV-based 

vectors together would increase the survival of SN neurons after 6-OHDA administration. 

Materials and methods 

Viral constructs. The THZ/S-Bcl2 vector was constructed as previously described (50). The Oik)]') 

vector was constructed by first cotransfecting an ICP4", ICP27" virus with the p41ICP0Lac7 piasmid as 

previously described (24). This piasmid contains the E. coli lacZ gene flanked by Pad sves and U, 41 

sequences. Recombinant viruses containing the lacZ gene in the UL41 locus were selec X ,ua i 

staining; the LacZ reporter was then removed by Pad digestion. The digested viral DNA was 

cotransfected with a piasmid containing the human GDNF gene construct flanked by UL41 sequences. 

Recombinants containing the GDNF transgene in place of the lacZ reporter gene were identified from 

among clear plaque producing viruses by Southern blot analysis. A schematic illustration of the viral 

constructs is shown in Figure 1. 

Animals. Female Sprague-Dawley rats (250 - 300 g) were randomly divided to receive an injection of 

either 4 ul of phosphate buffered saline (PBS, n=7), 4 ul of DHZ (n=8), 4 ul of THZ/S-bcl2 (n=7) or 4 ul 
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of DHGD (n=7), or a co-infection of 4 p.1 of THZ/S-bcl2 and 4 jal of DHGD (n=6), 7 days before 6- 

OHDA lesioning. 

Surgical procedures. Surgeries were performed according to the protocol of Sauer and Oertel (38). 

Under chloral hydrate anesthesia (400 mg/kg i.p.), rats received bilateral striatal injections (coordinates 

anterior-posterior +1.0, medial-lateral 3.0, dorsal-ventral -5.0 relative to the bregma using the atlas of 

Paxinos and Watson (34)) of fluorogold (3 ul of 2% FG in 0.9 % saline; Fluorochrome, Denver, CO) to 

retrogradely label a subpopulation of dopaminergic neurons within the SN that project to the site of the 

lesion. At the same time, rats were injected unilaterally into the region of the substantia nigra (SN) (AP - 

4.0, ML -2.0, DV -8.0) with either THZ/S-bcl2 and/or DHGD vectors or the DHZ control vector at a rate of 

1 ul/min. Seven days after FG labeling and vector inoculation the rats were reanesthetized and injected 

with 6-OHDA (20 ug of free base, 4 ug/ul in 0.02% ascorbic acid) unilaterally into striatum using the same 

coordinates as the FG injection, ipsilateral to the vector injection into SN. Fourteen days after 6-OHDA 

lesioning, the rats were injected with D-amphetamine (see below) to examine amphetamine-induced 

rotational behavior. Two hours following amphetamine injection, the rats were deeply anesthetized with an 

excess dose of chloral hydrate and perfused through the heart with PBS followed by 300 ml of 

buffered formalin phosphate. The brains were removed and post-fixed with 10% buffered fr: sialm 

phosphate overnight, cryoprotected with 30% sucrose in PBS for 3 days, and 40-um sectir :*. mourned 

directly for examination of FG-labeled cells or processed for tyrosine hydroxylase (TH) 

immunocytochemistry. 

Behavioral testing. Rats were injected with D-amphetamine sulfate (5 mg/kg body weight i.p., Sigma, St. 

Louis, MO) and placed in a rotometer (Coulbourn Instrument) where the number of clockwise and counter- 

clockwise turns was counted for 90 min. The rotation score is expressed as the number of net rotations per 

minute in the lesioned (ipsilateral) direction. 

Immumocytochemistry and cell counting. Floating sections were preincubated with 5% normal goat 

serum (NGS), incubated with a rabbit anti-TH antibody (1:500, Chemicon) overnight at room temperature, 

followed by a secondary antibody conjugated to biotin (1:200, Vector Laboratories) for 2 hr and detected 
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with diaminobenzidine by using a commercial kit (Vectastain ABC kit; Vector laboratories). The number 

of surviving FG-labeled and TH-immunoreactive cells through the SN (four to seven sections per animal 

for each technique) was counted by an observer blinded to the treatment group. The number of surviving 

(FG-positive) or TH-immunoreactive cells was expressed as a percentage of the similar cells counted on the 

intact (unlesioned, contralateral) side. The statistical significance of the difference was determined by 

ANOVA (StatView, SAS Institute), using Bonferroni's correction for the multiple comparisons employed. 

Transgene expression. Transgene expression of GDNF was examined by immunocytochemistry. 10 urn 

frozen sections of the SN obtained from rats injected 7 days prior to sacrifice with 4 ul of DHGD were 

mounted on gelatin-coated slides. After fixing for 15 min with 4 % paraformaldehyde in 0.1 M phosphate 

buffer, sections were preincubated with 5 % normal horse serum (NHS), incubated overnight at room 

temperature with goat anti-GDNF antibody (2 ug/ml, R&D Systems), followed by a secondary antibody 

conjugated to biotin (1:500, Vector Laboratories) for 2 hr and detected with diaminobenzidine by using a 

commercial kit (Vectastain ABC kit; Vector laboratories). 

Results 

Transgene expression in vivo. We have previously reported the expression of human bcl-2 V \ s  . ::K 

SN of rats injected with vector THZ/S-bcl2 (50). GDNF expression in vector-injected rat F\ was 

examined by immunocytochemistry using an antibody against human GDNF. Rats injec   d with DHGD *■ 

the SN exhibited numerous GDNF-IR neurons around the injection site, indicating that n.        'iDNF 

transgene protein was expressed until the time of 6-OHDA lesioning (Figure 2). Control vector-inject 

rats showed no GDNF immunoreactivity (Figure 2). 

THZ/S-bcl2 vector, DHGD vector and coinfection with those two vectors reduce amphetamine- 

induced ipsilateral rotational behavior. Rats were injected with D-amphetamine (5 ma/kg body weight 

i.p.) 14 days after 6-OHDA lesioning (21 days after vector or control administration) and their behavior 

recorded for 90 min. Amphetamine-induced release of DA causes animals with a unilateral lesion of 

nigrostriatal DA system to turn toward the lesioned striatum. In control lesioned rats injected with either 

PBS of the lacZ-expressing vector DHZ, ispilateral rotational behavior (approximately 5 turns/min) 
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towards the lesioned hemisphere was observed. Rats injected with THZ/S-bcl2, DHGD, or both vectors 

together exhibited a significant reduction in ipsilateral behavior compared with control groups (Figure 3). 

Both THZ/S-bcl2 and DHGD vectors protect DA neurons from 6-OHDA toxicity. The protection of 

the nigral DA neurons was evaluated by counting the numbers of TH-IR and FG-labeled cells in the SN 

bilaterally. In the control animals (PBS- and DHZ-injected), intrastriatal injection of 6-OHDA (5 ul) 

resulted in the loss of more than 70% of FG-labeled neurons compared to the contralateral unlesioned side. 

The loss of TH-IR cell bodies (approximately 40%) compared to the uninjected contralateral side was not 

as great as the loss of FG-labeled neurons. This reflects the fact that while all the terminals of FG-labeled 

cells were exposed to 6-OHDA which was injected at the same coordinates a week after the FG, TH-IR 

cells include a population that project to uninjected (i.e. unlesioned) regions of striatum, and were therefore 

not affected by 6-OHDA. Injection of the THZ/S-bcl2 vector 1 wk prior to lesioning resulted in a 30% 

increase in the number of surviving FG-labeled cells in lesioned striatum, which represents almost a 2-fold 

increase in cell suvival (Figures 4 aned 5). Injection of the GDNF-expressing vector DHGD similarly 

increased the number of surviving FG-labeled cells by 30% (Figures 4 and 5). 

Injection of the bcl-2 expressing vector THZ/S-bcl2 increased the number of surviving TH-IB   •      ^ ::, 

20%, representing a 1/3 increase compared to control (PBS or lacZ-vector injected SN), anc* :>!ii..-ai<;,'\ of m 

GDNF-expressing vector increased the number of surviving TH-IR neurons by 27%, whi-., represent;; an 

increase of 1/2 compared to control animals (Figures 6 and 7). These experiments are '     ••er;)H>m wit!. 

previous reports using other vectors to deliver and express GDNF (5, 11, 23, 29) and our own resu,.       ag 

an HSV vector to deliver and express Bcl-2 (50). 

HSV-mediated co-delivery of Bcl-2 and GDNF was more effective than either Bcl-2 or GDNF alone 

in protecting SN neurons form 6-OHDA toxicity. Injection of both THZ/S-bcl2 and DHGD 

simultaneously resulted in a 30% increase in the number of surviving FG-labeled cells in the SN compared 

to animals injected with either the THZ/S-bcl2 alone, or with vector DHGD alone (Figures 4 and 5). Co- 

inoculation of the THZ/S-bcl2 and DHGD vectors resulted in a an increase (20% compared to bcl-2, 10% 

compared to GDNF) in the number of surviving TH-IR cells compared to animals injected with either 
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vector alone (Figures 6 and 7). The comparison to bcl-2 was statistically significant, while the comparison 

to GDNF alone failed to achieve statistical significance. 

Discussion 

The principal finding of the experiments reported in this communication is that GDNF and bcl-2 appear to 

act synergistically in protecting DA neurons of the SN from the neurotoxic effects of 6-OHDA. While 

HSV vectors expressing either bcl-2 or GDNF alone were effective in protecting those cells from 6-OHDA 

toxicity, both the survival of DA neurons as measured by the number of retrogradely labeled FG-positive 

cells and the number of TH-immunoreactive neurons, was greater in animals injected with both vectors 

simultaneously compared to either vector alone. The additive effect appears more robust when measured 

by survival of FG-labeled neurons. In part, this reflects the greater selectivity of FG-labeling for neurons 

that are exposed to the neurotoxin, which also accounts for the survival of only 20% of the FG-labeled 

neurons, in contrast to the survival of 60% (compared to the unlesioned contralateral side) 

GDNF was initially identified as a factor secreted from a glioma cell line that was capable of supporting 

embryonic ventral midbrain neurons survival in culture (26), although it is not required for survival «f tv,ese 

neurons during development (18). GDNF produces its effects through activation of Ret, a r& . p:o;  \ o-.; 

kinase (2, 9). The Ras-MAPK pathway activated by Ret appears to be necessary for the su ■ sva) and 

neurite growth-stimulating actions of GDNF and related members of the GDNF family ( :», 44 49) 

Signaling through the phosphatidylinositol 3-kinase pathway is required for the differenuc.        ' cult;,: 

mesencephalic DA neurons in vitro (35), and the same pathway has been implicated in the formation oi 

lamellopodia in other systems (44,45), a function that may be related to the extension of neuntes. GDNF 

has also been reported to activate the c-Jun N-terminal kinase (JNK) pathway through phosphorylation of 

Rho/Rac-related small GTPases (10). GDNF binding to the GDNF receptor may also activate a 

cytoplasmic Src family tyrosine kinase resulting in phosphorylation of mitogen-activated protein kinase 

independent of Ret-mediated signaling pathways (36). 

6-OHDA exerts its neurotoxic effects on catecholaminergic neurons through the generation of hydrogen 

peroxide, Superoxide, and cytotoxic hydroxyl radicals which directly cause damage to the cells (14). Other 
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effects including alterations of mitochondrial calcium homeostasis (19) and direct inhibition of 

mitochondrial complexes I and IV (21) have been described. Several independent lines of indirect support 

the hypothesis that 6-OHDA-induced death of DA neurons proceeds through apoptotic pathways, and we 

previously demonstrated that expression of bcl-2 in SN from an HSV vector protected SN neurons from 6- 

OHDA neurotoxicity in vivo (50). GDNF also has anti-apoptotic effects, and has been shown to inhibit 

apoptotic cell death of DA neurons of the SN in culture (8, 13). 

There are many paths through which apoptosis may be activated (17), and Bcl-2 plays a critical role in 

many of these pathways by directly or indirectly preventing the release of cytochrome c from mitochondria, 

thereby inhibiting activation of procaspase-9 and the effector caspase cascade leading ultimately to the 

proteolytic cleavage of essential structural and functional cellular proteins and resulting in cell death (1, 

17). Bcl-2 resides on several intracellular membranes including the cytoplasmic face of the mitochondrial 

outer membrane, the endoplasmic reticulum, and the nuclear envelope, so that in order to be effective 

expression must be achieved in the affected cell. Unlike other neurotrophic factors such as nerve growth 

factor (NGF) or ciliary neuronotrophic factor CNTF (3) which have been clearly demonstrated to function 

in part through the block of apoptotic pathways, a direct intersection of GDNF activated pathways ar-H the 

caspase cascade has not previously been demonstrated. 

How might the pathways activated by overexpression of GDNF and the apoptotic pathwa' - blocked by 

overexpression of bcl-2 overlap? One possibility is the independent activation of down "earn effectors 

through alternate pathways.   In another model for instance, GDNF has been shown to prevent c^ 

induced apoptosis in a GDNF-responsive neuroblastoma cell line; this effect correlates with a block of 

ethanol induced phosphorylation of JNK, but does not block phosphorylation of the extracellular signal- 

regulated kinases (ERKs) that are known to effect cell survival (31). Another possibility is that GDNF may 

directly increase expression of antiapoptotic peptides or otherwise modulate upstream effectors in the 

caspase cascade. In mesencephalic neurons in culture it has recently been demonstrated that GDNF 

provides neuroprotection against both bleomycin (BLM) and L-bumionme-[S,R]-sulfoximine (BSO) 

induced apoptosis; an effect that could be blocked by caspse-3 inhibition (40). In that system, GDNF 

upregulated expression of bcl-2, and the anti-apoptotic effect of GDNF was prevented by inhibition of 



Natsume et al, page 11 

RNA or protein synthesis.   GDNF also phosphorylated Akt, but that effect was temporally unrelated to the 

antiapoptotic effect in the model system employed (40). 

Further studies will be required to define the mechanisms through which GDNF and bcl-2 act together to 

prevent 6-OHDA neurotoxicity to DA neurons. However, the results reported show that the two factors 

acting together are more effective than either factor alone in blocking that toxicity, and thus supports the 

possible utility of a combination therapy in the treatment of Parkinson's disease. 
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Figure Legends 

Figure 1. Viral constructs. Schematic representation of THZ/S-bcl2 andDHGD. 

Figure 2. GDNF transgene expression in SN. Seven days after injection of 4 ul of vector DHGD into the 

SN, GDNF-immunoreactivity could be detected in neurons of the SN (left). A control injected with a 

similar vector carrying only the E coli ß galactosidase (lacZ) transgene showed no immunoreactivity. 

Figure 3. Amphetamine-induced rotation. Fourteen days after unilateral striatal injection of 6-OHDA 

behavior was examined after injection of D-amphetamine. Rats that had been injected with THZ/S-bcl2 

(bcl2) or DHGD (GDNF) and those receiving co-injection of those vectors (bcl2 + GDNF) displayed a 

significant reduction in induced ipsilateral rotation compared with PBS-injected or control vector (DHZ)- 

injected rats. Unlesioned animals showed no clear rotation (-0.5 + 0.7 turns/min, data not shown). 

*p<0.01 compared with bcl2, GDNF or bcl2 + GDNF; +p<0.05 compared with bcl2, GDNF or bcl2 + 

GDNF. All values are means + SEM. 

Figure 4. FG-labeled cells in lesioned/vector-injected and intact SN 14 days after 6-OHDA injection. 

Representative photomicrographs from animals injected into SN with DHZ (control), THZ/S-' 

DHGD (GDNF) and coinjected with THZ/S-bcl2+DHGD (bcl2 + GDNF). Right (lesioned ■  •,■; - M 

with 6-OHDA into striatum and vector into SN. Left (intact) show contralateral unlesior ,1■uninjecse.: 

sections from the same animal. 

Figure 5. Counts of FG-labeled neurons in lesioned SN 14 days after 6-OHDA injection. *p<0.005 

compared with bcl2, GDNF and bcl2+GDNF. +p<0.01 compared with bcl2, GDNF and bcl2+GDNF; 

#p<0.01 compared with bcl2 and GDNF. All values are means + SEM. 

Figure 6. TH-IR cells in lesioned/vector-injected and intact SN 14 days after 6-OHDA injection. 

Representative photomicrographs from animals injected into SN with DHZ (control), THZ/S-bcl2 (bcl-2), 

DHGD (GDNF) and coinjected with THZ/S-bcl2+DHGD (bcl2 + GDNF). Right (lesioned) were injected 

?**'■ 
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with 6-OHDA into striatum and vector into SN. Left (intact) show contralateral unlesioned/uninjected 

sections from the same animal. 

Figure 7. Survival of TH-IR DA neurons in SN 21 days after the vector injection. *p<0.05 compared with 

bcl2, GDNF and bcl2+GDNF. +p<0.05 compared with bcl2, GDNF and bcl2+GDNF; #p<0.05 compared 

with bcl2. All values are means + SEM 
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