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1 Technical Abstract 
In this final technical report for the phase I Air Force STTR contract FQ8671-9901279, we summarize the technical 
objectives, work accomplished, results, and technical feasibility. The primary objective of this research is to develop 
methodology and software for the analysis of atmospheric turbulence and related data. Turbulence data are challenging 
because they are inherently non-stationary across a range of scales. Because the discrete wavelet transform is a natural 
tool for use with non-stationary and scale-dependent data, we investigated the efficacy of a variety of wavelet-based 
techniques including approximate maximum likelihood and least squares estimators. These estimators were adapted 
to work effectively in the presence of (i) slow variations in the power-law parameters, (ii) large scale stochastic trends 
and (iii) small scale non-turbulent events. The statistical properties of (most) wavelet-based power-law parameter 
estimators were examined and confidence intervals created. We assessed the efficacy of power-law models (which are 
proposed capture the salient features in actual turbulence measurements) by studying the variability in the wavelet 
coefficients at particular scales and comparing it to the variability that would occur if a time-varying power-law model 
were an adequate description. We also investigated the relevance of nonlinear deterministic modeling of wavelet sub- 
bands and used the technique for short-term prediction. All software was implemented in MathSoft's next generation 
S+WAVELETS module. 

2 Introduction: Team Members and Phase I Publication Summary 

2.1    Project Members 
Principal Investigator: William L. B. Constantine, Research Scientist 
Data Analysis Products Division of MathSoft, Inc., Seattle, WA 

Dr. Constantine is in charge of all aspects of the project including software design, development and implementation. 
His expertise is in digital signal processing (with an emphasis in wavelets) and nonlinear dynamics. 

Investigator: Donald B. Percival, Senior Mathematician 
Data Analysis Products Division of MathSoft, Inc., Seattle, WA 

Dr. Percival is an integral member of the phase I team and is an expert in wavelet theory, time series modeling, and 
spectral analysis techniques. 

Investigator: Z. Q. John Lu, Research Scientist 
Data Analysis Products Division of MathSoft, Inc., Seattle, WA 

Dr. Lu is in charge of the development of (novel) deterministic modeling and prediction algorithms for the phase I 
contract. His principal area of expertise is in multivariate nonlinear regression, nonlinear time series analysis, and 
statistical modeling of fractal geometry. 

Consultant: Per G. Reinhall, Professor 
Department of Mechanical Engineering, University of Washington, Seattle 

Dr. Reinhall is the lead investigator for the phase I academic partnership with the University of Washington. His 
area of expertise is in nonlinear dynamics and time series analysis, modeling of biological systems, vibrations and 
manufacturing. 

Consultant: James Bassingthwaighte, Professor 
Department of Bioengineering and Biomathematics, University of Washington, Seattle 

Dr. Bassingthwaighte has played a supporting role in the development of new fractal time series algorithms and is 
considered an expert in biomedical fractal time series analysis. 

Academic Researcher: Peter Craigmile, Ph.D. Candidate 
Department of Statistics, University of Washington, Seattle 

Peter has played a pivotal role in the development of stochastic modeling techniques for fractal (turbulence) time 



series. His Ph.D. is focused on stochastic modeling of long memory processes. 

2.2    Published Material 
We made significant progress in our phase I research which has lead to the following publications: 

• P. Craigmile, Percival, D.B. and Guttorp, P. (2000), "Wavelet-Based Parameter Estimation for Trend Contaminated 
Fractionally Differenced Processes," Technical Report for National Research Center for Statistics and the Environ- 
ment, University of Washington. 

• P. Craigmile, Percival, D.B. and Guttorp, P. (2000) Decorrelation Properties of Wavelet Based Estimators for 
Fractionally Differenced Processes. Proceedings of the 3rd European Conference of Mathematics: Birkhäuser Verlag. 

• P. Craigmile, Percival, D.B. and Guttorp, P. (2000), "Assessing Non-linear Trends using the Discrete Wavelet 
Transform," Technical Report for National Research Center for Statistics and the Environment, University of Wash- 
ington. 

• Peter F. Craigmile (2000) Wavelet Based Estimation for Trend Contaminated Long Memory Processes. Ph.D. 
Dissertation: University of Washington, Department of Statistics. 

• W. Constantine, D.B. Percival, P.G. Reinhall, (2000). "Modeling Aerothermal Turbulence using Fractionally Differ- 
enced Processes," to be submitted to Physical Review E after approval from AFOSR Public Affairs. 

• D. B. Percival and A. T. Waiden (2000) Wavelet Methods for Time Series Analysis. Cambridge University Press. 

These publications were fully or partially supported by this phase I contract. 

3    Technical Objectives 
The primary phase I research and development objectives are as follows. 

1. Review of models for non-stationary and multi-scale turbulence data. Using actual turbulence measurements, we 
will evaluate the relative merits of three models for handling such data. The first is a stochastic model based 
directly on the octave-band decomposition given by the discrete wavelet transform (DWT), in which we seek to 
model each subband series in the decomposition using traditional time series methods (e.g., autoregressive models 
and generalizations thereof). The second is also a stochastic model and was used recently by Papanicolaou et 
al. [20]. This model treats turbulence as a time-evolving power law process whose exponent obeys a first order 
autoregressive model. The third model is based on the idea of representing turbulence as a deterministic multi- 
scale fractal process. 

2. Development of estimators for stochastic and deterministic fractal processes. For the two stochastic models 
to be considered, we will investigate the relative merits ef approximate maximum likelihood and least squares 
estimators of the relevant model parameters. We will investigate the effect on parameter estimation due to 
the wavelet that is chosen to form the DWT (the choice of wavelet is particularly important because, while 
it is tempting to use the Haar wavelet because of its inherent simplicity, we have found in working with other 
turbulence data [21] that the Haar wavelet does not work well for powers laws fa with a < -2.5 or for power laws 
observed in the presence of significant large scale stochastic or deterministic trends). For deterministic chaotic 
modeling of turbulence data, we will assess the applicability of nonlinear dynamic measures such as generalized 
fractal dimensions, Lyapunov exponents and approximate entropy. 

3. Development of analysis strategy. We will develop an overall strategy for analyzing multi-scale fractal processes. 
This strategy will help guide the non-expert in their work and will influence the software design. 

4. Integration of methods into a user-friendly software environment. We will implement the software needed for 
model evaluation and model estimation into MathSoft's next generation S+WAVELETS software. 



4    Technical Approach and Accomplished Work 
The last three decades have seen a rapid advance in the mathematical modeling of turbulence data. Encouraged partly 
by the fact that complex, seemingly random, behavior can be well modeled by simple low dimensional deterministic 
nonlinear systems, many researchers have hypothesized that turbulence can be modeled using chaos theory. Early 
experiments in Rayleigh-Bernard thermal convection [19], Taylor-Couette flow between cylinders [24], closed loop 
thermosiphons [3], turbulent boundary layers for open flow over a wall [1], and surface wave propagation in a saltwater 
medium [12], have in part verified this hypothesis. However, there is a lack of such clear proof in other experiments 
and in data collected from uncontrolled environments such as in aerothermal data. More recent efforts in turbulence 
modeling have shown chaos theory to be useful in interpreting local phenomenon and flow stability. Chaos is now 
generally considered to have an important (yet limited) role in the modeling of turbulence but not as a theory capable 
of describing turbulent flow in detail. Even if the turbulence is viewed as a deterministic event, the high degrees of 
freedom (dimension) of the flow makes the use of chaos theory impractical. Hence, the treatment of turbulence as a 
stochastic process prevails and (like low dimensional chaotic models) is well-matched for handling a prevalent notion 
about turbulence, namely, that it has certain 'self-similar' or 'fractal' properties. Loosely speaking, this property means 
that certain measures of turbulence data are invariant upon rescaling the data, but the measures are quite different 
for stochastic and deterministic models (e.g., invariance in distributional properties in the former and invariance in 
space-filling properties in the latter). Both approaches are capable of generating simulated series that mimic some 
properties of actual turbulence, but there is much work yet to be done to ascertain which class of models or combination 
thereof is the best to use to answer questions of practical importance. 

Most deterministic and stochastic approaches assume homogeneity in time across all scales of interest. In this 
report, we discuss methods that can be used for turbulence with time-varying properties. As we show below, there 
is strong evidence to support the notion that turbulence exhibits time varying power law behavior over finite ranges 
of scale. Because of the temporally localized and scale dependent nature of wavelet transforms, wavelet techniques 
provide a natural framework for the analysis of physical phenomena that exhibit variations across time and within a 
finite range of scales. This is a departure from techniques that assume a priori either a self-similar structure across 
all scales in the data or stationarity in fractal measures as a function of time. While a wavelet decomposition of a 
turbulence time series, say {Xt}, is based on using self-similar analysis tools (i.e., wavelets), it does not make an a 
priori assumption that {Xt} is evolving in a self-similar manner. By making a careful study of each scale as it evolves 
in time and of the relationships of the scales to each other, we can then evaluate how reasonable it is to use models 
that postulates a tight coupling across scales, e.g., a time-evolving power-law processes. 

In our effort to address these issues, we use a stochastic fractal time series model known as a fractionally differenced 
process (FDP) [4]. An FDP has a clear advantage over similar models such as fractional Brownian motion (fBm) and 
fractional Gaussian noise (fGn) for the following reasons: 

• UNLIMITED POWER LAW EXPONENT RANGE. Both fBm and fGn are stochastic power law processes in that their 
spectral density functions are approximately proportional to |/|Q where a is the power law exponent. However, 
an fBm is limited to an exponent range of -3 < a < -1 while a fGn is limited to -1 < a < 1. An FDP is also 
a stochastic power law process, but it has no such limitation on its exponent range and is theoretically valid for 

aeR. 
• MODEL CONTINUITY. Because fBm and fGn jointly cover power laws ranging from -3 up to 1 (which is 

adequate to model some - but not all - turbulent phenomena), it is tempting to select between fBm and fGn 
to model various turbulent series; however, at a = -1 (which is known as 1//, pink, or flicker noise), there 
is a discontinuity between the fGn and fBm models at high frequencies, which can lead to problems in model 
selection. Unfortunately, many real world phenomena exhibit 1// noise [2]. An FDP has no such discontinuity. 

• TRACTABLE SDF AND ACVS. In contrast to the fBm and fGn models, an FDP has tractable forms for both 
its spectral density function (SDF) and (when stationary) corresponding autocovariance sequence (ACVS). 

• MODEL FLEXIBILITY. Both autoregressive (AR) and moving average (MA) components can be added to an 
FDP to provide more flexibility in modeling high frequency spectral content. High end frequencies are typically 
contaminated by exogenous noise sources, and thus flexible modeling of these regions is appropriate. The fBm 
and fGn models are not readily amenable to such additions as it further complicates the SDF and ACVS functions. 

In this report, we use recently developed wavelet techniques to estimate the parameters of FDP models applied to 
aerothermal turbulence data. There are a number of advantages in using the discrete wavelet transform (DWT) on 
turbulence data: 



• DECOMPOSITION BASED ON SCALE. Turbulence is known to exhibit fluctuations at various spatial scales, and 
hence the DWT is a natural analyzer. 

• DECORRELATION OF TIME SERIES.  This is crucial for obtaining viable approximate maximum likelihood esti- 
mates of FDP parameters [6] (see Sec. 5.3.3 for details). 

• LOCALIZED TIME AND SCALE CONTENT. Each wavelet coefficient is localized in time, allowing us to track changes 
in the characteristics of a time series at a particular scale as a function of time. 

• SEPARATION OF NONLINEAR TRENDS FROM NOISE. The wavelet coefficients are inherently "blind" (invariant) 
to nonlinear polynomial trend contamination in the original time series [8, 7]. 

4.1    Theoretical Developments and Background 

Here we develop the background and theory for the models and corresponding estimators used to analyze aerothermal 
turbulence data. 

4.1.1 Fractionally Differenced Processes 

An FDP is used to model data with a slowly decaying autocovariance function, a hallmark of long memory dependence. 
The process was originally proposed by Granger and Joyeux [10] and Hosking [11] as an extension to APJMA(0,J,0) 
models to allow^or fractional values of S. 

Definition 2.1 Let 6 € E and a\ > 0. We say that {Xt}tez is an FDP(ö,a2
€) if it has a spectral density func- 

tion 

S^« = 1^W'    i"<1/2' (1) 

where cr^ is the innovation variance, and 6 is the fractional difference parameter. 

When -1/2 < 6 < 1/2, an FDP is stationary with autocovariance sequence 

a*r(l-26)r(T + 6) () 
Sx'T ~       ITT(T + 1-6)      - K ' 

By inspection of Eq. 1, an FDP(<5,^) process approximately obeys a colored noise process (Sx oc |/|Q) at low 
frequencies with a = -25 (the error in this approximation is quite small for |/| < 1/8). This is an excellent model 
for data exhibiting power law behavior in both the stationary (6 < 1/2) and nonstationary (<5 > 1/2) regimes. For 
6 > 1/2 in Eq. 1, we obtain a class of nonstationary FDP that is stationary if {Xt} is differenced [6 + 1/2J times 
More generally, an FDP is closed under differencing operations, i.e. an FDP(J,<r2) that has been subjected to a Bl 

order differencing operation, yields an FDP(J - B,a2
c). A pure power law process subjected to the same differencing 

operation will not yield another pure power law process, thus making an FDP a more flexible and robust model. 

4.1.2 The Discrete Wavelet Transform 

Consider a uniformly sampled time series {Xt}^ with N divisible by 2J for J € N. For L an even positive integer, 
let (Mfjc)1 be a Daubechies [9] wavelet filter with squared gain function 

L/2-1 

(3) ^,L(/)EE2sinV/)  E   (L/2  ,1 + ')cos2W). 

Equation 3 does not uniquely define a wavelet filter, and an additional phase criterion, such as extremal or least 
asymmetric phase, must be imposed to do so. Let {gi}^1 be a scaling filter, defined by the quadrature mirror filter 
(QMF) relation 

gl = (-l)l+1hL-1.l. (4) 



The squared gain function for a Daubechies scaling filter is given by 
L/2-1 

^(/^cosV/)  £   (L/2  ,1 + 'WW). 
1=0     ^ ' 

(5) 

The wavelet and scaling filter are used in a "pyramid" algorithm [18] to transform {Xtj into a collection of wavelet 
coefficients Wj}t and scaling coefficients Vitt that can be grouped by physical scale Tj = 2J~1At for j = 1,... , J, where 
At is the sampling time between contiguous observations in {Xt} (for simplicity, we set At to unity throughout this 
report for the mathematical derivation of FDP parameter estimators). The collection of coefficients W, given by 

W = (W1,W2l...,Wj,Vj) (6) 

where Wj are the Nj = N/2j wavelet coefficients and Vj are the N/2J scaling coefficients, represents the discrete 
wavelet transform of {Xt}. Implementation of the DWT begins by defining the zeroth level scaling coefficients to be 
the original time series: V0,t = {Xt}^1. The level j wavelet coefficients Wj<t and scaling coefficients Vjit are then 
formed by 

L-\ L-l 

Wjtt = £ hivj-ifit+i-i modJVj_i and Vj>t = 2_j9iVj-i,2t+i-i modWj-, (7) 
1=0 1=0 

where t = 0,... ,Nj-l. The pyramid algorithm represented by Eq. 7 can also be interpreted as a series of cascade filter 
bank operations since the wavelet filter used to create the Wjit is an approximate bandpass filter with nominal pass- 
band / G [1/4TJ, 1/2TJ] while the corresponding scaling filter used to create the Vjtt is a low pass filter with nominal 
pass-band / G [0, l/4r,]. Figure 1 shows the squared gain responses for a 20-tap Daubechies wavelet filter rlj^oif) 
and scaling filter Gj,2o(f) for j = 1,... ,4 and illustrates the filter bank perspective. When considering the statistical 

,6n 
«w» 

A 

Figure 1: The squared gain functions for Daubechies least asymmetric 20-tap wavelet filter for levels j = 1,... ,4. For 
simplicity, the sampling period was set to unity to create the frequency axis and establishes the Nyquist frequency at 
1/2. The dotted vertical lines identify the octave bands over which the wavelet and scaling filters are associated. The 
scaling of the left (right) ordinate is representative of the DWT (MODWT) squared gain function. 

properties of DWT coefficients, it is useful to divide the wavelet and scaling coefficients into boundary and interior 
coefficients. Boundary coefficients are those subject to change if the 'mod' operator were to be dropped in Eq. 7. 
These boundary coefficients must be ignored (for example) when calculating unbiased wavelet variance estimates ^see 
Sec. 4.1.5 for details). The number of DWT boundary coefficients is given by mm{Lj,Nj} where Lj = f(L-2)(l-2 J)] 
(for large j, Lj = L - 2). The remaining DWT coefficients, of which there are Mj = Nj - mm{Lj,Nj}, make up 
the set of interior coefficients. Figure 2 shows a DWT transform of a small segment of aerothermal data. A physical 
interpretation of the DWT based upon Daubechies' class of compactly supported wavelet filters is that the Wjtt measure 
the difference (centered at a particular time) between adjacent weighted averages of {Xt} at scale TJ. Large values 
for the Wj,t indicate that {Xt} tends to have large variations over time scales of length Tj. Similar to the wavelet 
coefficients, the scaling coefficients are weighted averages of {Xt} on a scale of r,. 
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Figure 2: DWT of aerothermal data segment using Daubechies 8-tap least asymmetric filters. The number in the curly 
brackets next to each subband represents the amount of circular shift imposed to adjust the coefficients to approximate 
zero phase. A negative shift value implies an advance, or left circular shift, of the coefficients. 

4.1.3    Maximum Overlap Discrete Wavelet Transform (MODWT) 

Despite its popularity, the DWT has a few practical limitations: 

• DYADIC LENGTH REQUIREMENT: The DWT can be adapted to accommodate arbitrary length sequences via 
polynomial extensions of the scaling coefficients. However, selecting an appropriate number of end points to fit 
or the order of fit is not a trivial task. Other, less complicated techniques may be used, but generally involve 
either a lot of bookkeeping or are too simple to accurately portray the dynamics of the scaling coefficients. 

• LACK OF SHIFT INVARIANCE: The decimation operation makes the DWT a non shift-invariant transform. 

• INAPPROPRIATE FOR INSTANTANEOUS TIME DEPENDENT MEASURES. The DWT coefficients represent too coarse 
of a "slicing" in the time domain to provide instantaneous FDP parameter estimates. 

As an alternative, we can use a nondecimated form of the DWT, known as the maximum overlap DWT (MODWT) 
that has two main advantages: (1) it handles arbitrary length sequences inherently and (2) the MODWT coefficients 
can be circularly shifted to form an approximate zero phase projection of {Xt} if the wavelet filter is approximate linear 
phase (as is the case for Daubechies least asymmetric and Coiflet filters). Additionally, the number of coefficients in 
each scale is equal to the number of points in the original time series. This refined slicing of the data in combination 
with the zero phase property allows us to calculate instantaneous statistical measures of the data across scale. 

As in the DWT, implementation of the MODWT begins by defining the zeroth level scaling coefficients to be the 
original timeseries: V0,t = {Xt}^1. Let hi = hi/y/2jad g = gi/y/2 for I = 0,... ,L - 1. The MODWT wavelet 

coefficients Wj<t and corresponding scaling coefficients Vjit are formed by 

__ L_1 ~        L_1 

Wjtt = "Y^hiVj-u-v-u modjv and Vjit = "^giVj-i^-a-n modN (8) 
1=0 i=o 

where j = 1,... , J and t = 0,... , N - 1. The collection of coefficients W, given by 

W-CW^wV.^W^Vj) (9) 

where W,- are the N wavelet coefficients at scale Tj and Vj are the N scaling coefficients at scale TJ, represents the 
MODWT of {Xt}. The number of boundary coefficients is Lj = {2j - 1)(L - 1) + 1. Figure 3 shows a MODWT of 
aerothermal data using Daubechies 8-tap least asymmetric filters. 



If the sample size N is a power of two, the MODWT coefficients and DWT coefficients are related by 

Wj,t = 2^2Wj,2i(f+1)_1. (10) 

The DWT can thus be seen as a scaled and subsampled version of the MODWT. This relation can be visualized, jor 
example, by comparing the DWT scaling coefficients V6,t in Fig. 2 with the corresponding MODWT ^coefficients V6,t 
in Fig. 3. Using Eq. 10, the MODWT squared gain functions are defined as H(f) = 2-JH{f) and £(/) = 2~J£(/) 
(see Fig. 1). 
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Figure 3: MODWT of aerothermal data segment using Daubechies 8-tap least asymmetric filters. 

4.1.4 Time independent wavelet variance 

4.1.5 MODWT wavelet variance 

Since the SDF for the MODWT interior wavelet coefficients is given by HjtL{f) Sx(f), the variance of var{Wiit} can 
be expressed as 

,1/2 

{Wj:t}= UjMSxif) df. (11) 
J-l/2 

var 
1/2 

Using the approximation that WJVL(/) is an ideal bandpass filter over |/| 6 [l/2*+1,1/2^'] and taking into consideration 
the even symmetry of SDFs, an approximation to the wavelet variance is given by 

__ rll2i 

var{Wj,t}«2/ Sx(f) df. (12) 
J1/23 + 1 

For fractional difference processes, we have 

^^"»C-ps^P*- (13) 

When j > 3, so that sin7r/ ss irf, Eq. 13 can be approximated by 

^.v{Wj,t}~olZ{6)Tf-\ (14) 

where c{6) = 7r_25(l - 22<5"1)/(1 - 25).   Equation 14 suggests that a direct means of estimating 6 is to fit ajeast 
squares line to the log of the estimated wavelet variance. The slope of the line, say ß, that best fits log(var{Wj|t}) 



versus logfo) in.a least squares sense is related to the FDP parameter by S = (ß+1)/2 and the pure power law (PPL) 
exponent by a = -(ß + 1). 

For finite length time series, MODWT-based estimates of the wavelet variance are given by 

Biased: P& = 1 ]T^, (15) 

and 

N-l 

Unbiased: ^ = i   V   W?t (16) 

t=L,-l 

where Mj = N - Lj + 1 is the number of MODWT interior wavelet coefficients. As a caveat, it should be noted that 
the wavelet variance estimates are somewhat sensitive to the order L of the wavelet filter used in the analysis. In 
particular, studies by one of us [22] have shown that there can be a significant bias in the slope of the (2-tap) Haar 
wavelet variance estimates in log-log space due to a spectral leakage phenomenom. The leakage is attenuated as the 
filter order is increased, and the wavelet variance estimates typically stabilize for L > 8, as is true for all analyses 
presented in this report. 

4.2    Development of fully-functional commercial-grade software 

4.2.1    Enhancement of MathSoft's S+WAVELETS module 

We have developed wavelet-based software written entirely in MathSoft's S-PLUS language to estimate parameters of 
a fractional difference (FD) process as a model for turbulence data. These functions will be incorporated directly into 
the S+WAVELETS module built for S-PLUS on UNIX platforms. The main functions developed thus far for the phase 
I contract are: 

• WAVFDPMLE: Maximum likelihood (ML) estimation of FD parameters. This function optimizes a maximum 
likelihood functional to provide estimates of the FD parameter 6 and innovation variance. The ML functional is 
approximated using discrete wavelet transform (DWT) coefficients and an internally defined FD spectral density 
function. This function has the ability to operate in detrending mode (nonlinear and nonstationary trends in 
the data are excluded) and recentering mode (the sample mean is removed from the data as a preprocessing 
measure). The user also has the option to choose a faster but slightly less accurate means of approximation 
(numerical integration of the spectral density function (SDF) is replaced by a band pass approximation scheme). 
Finally, the user is allowed to select the wavelet subbands over which the estimates are made. 

• WAVFDPMLETIME: Time dependent ML estimation of the FD parameter S. This function calculates the local 
ML estimate of <5 using MODWT coefficients. Biased and unbiased versions are available. 

• WAVFDPWLSE: Weighted least squares estimate (WLSE) of the FD parameter 5. This function calculates the 
weighted least squares power law exponent of MODWT -wavelet variance estimates and converts it to <5. The 
weights are calculated based on an assumption of a chi-square distribution. Biased and unbiased versions are 
available. The variance of the estimated S is also returned. 

• WAVFDPLSETIME: Time dependent least squares estimate of the FD parameter 8. This function calculates the 
least squares instantaneous power law exponent of MODWT wavelet variance data and converts it to S. Biased 
and unbiased versions are available. The variance of the instantaneous S estimates is also returned. 

In addition to the above functions, the following helper functions were developed explicitly for (or greatly enhanced 
as a result of) the current phase I contract: 

• WAVBOUNDARY: wavelet transform boundary coefficient separation. 

• WAVCOVARIANCE: time (in)dependent (un)biased wavelet covariance estimation. 

• WAVFDPBAND: mid-octave spectral density function evaluation using band-pass approximation. 

• WAVFDPSDF: FDP spectral density function definition. 
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• WAvFDPTlMElNPUT: preprocessing function for time dependent FDP parameter estimation functions. 

• WAVGAIN: general wavelet squared gain function development. 

• WAVGAINDAUBECHIES: Daubechies wavelet squared gain response function. 

• WAVHOMO: homogeneity of variance test. 

• WAVlNDEX: identification of wavelet boundary coefficients and zero-phase shift factors. 

• WAVMODWT: maximum overlap discrete wavelet transform. 

• WAVMODWTLONG: efficient MODWT for "large-scale" time series. 

• WAVPERMUTE: permutation function for vector sequences. 

• WAVSHIFT: wavelet zero phase shift function. 

• WAVTITLE: extraction of series name for multiple classes. 

• WAVVARIANCE: time (in)dependent (un)biased wavelet variance estimation. 

• WAVVARIANCEINPUT: preprocessor for wavelet variance function. 

• WAVZEROPHASE: calculation of zero phase shift indices for Daubechies' Coiflet and symmlet filters. 

The functions are designed to take advantage of the object oriented nature of the S-PLUS language.   Each of the 
functions listed above can accept input from a variety of classes including 

• DWT: Discrete wavelet transform class. 

• MODWT: Maximum overlap discrete wavelet transform class. 

• MODWTLONG: Maximum overlap discrete wavelet transform class (long time series form). 

• WAVEBOUND: Class containing wavelet transform coefficients separated into boundary and interior coefficients. 
The boundary coefficients are those subject to circular filtering operations and are excluded for unbiased and 
detrended FD parameter estimates. This class handles both DWT and MODWT class data 

• WAVECOV: Wavelet covariance class. 

• WAVEVAR: Wavelet variance class. 

• TS: The S-PLUS language time series class. 

• SIGNALSERIES: The S-PLUS language signal series class. 

• NUMERIC: A vector of numeric data. 

New classes are being developed for the functions described as well as plot, print, and summary methods which uniquely 
display the data in a way that is most relevant to the researcher. 

5    Results 

5.1    Aerothermal data collection 
In this section we examine a uniformly sampled 7.5 million point aerothermal turbulence data set. Aerothermal 
data is a temperature (related) time series gathered by an aircraft flying at a constant elevation and constant speed. 
The measurement system is a cold-wire probe, externally attached to the aircraft, that senses fluctuations in local 
temperature by means of a proportional change in wire current. The data spans a total distance of 137.3 km with a 
spatial resolution of approximately 1.83 cm. For time dependent estimates of the FDP parameters, this large data set 
was divided into contiguous nonoverlapping 10,000 point blocks and the series in each block analyzed. Figure 4 shows 
the aerothermal data smoothed with a moving average filter. 
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Figure 4: Moving average of the aerothermal data taken over 100 point nonoverlapping blocks. 

5.2    Wavelet variance estimates 
A time dependent wavelet variance estimator was used to assess the validity of power law scaling in turbulence data. 
Figure 5 shows an example of unbiased wavelet variance estimates for one 10,000 point block of aerothermal data. 
Multiscale linear trends in wavelet variance plots suggest the presence of spectral power law behavior. However, these 
trends appear only over finite ranges of scale. For the example shown in Figure 5, a different power law behavior is 
seen over scales T\ - r4, r5 - r7, and T8 - TW. These patterns change with different blocks, indicating time varying 
power law behavior. 
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Figure 5: The unbiased MODWT wavelet variance v2
x{

Tj) of sample aerothermal data using Daubechies least asym- 
metric 8-tap wavelet filters. The confidence intervals are based on a chi-square distribution assumption where the 
equivalent degrees of freedom (EDOF) are calculated (1) using a large sample approximation to the mean and variance 
of v\(jj) for scales Ti,... ,r5 and (2) under an assumption that the spectral density function is flat over the nomi- 
nal passbands in which the wavelet coefficients are associated for r6,... ,T10. See [22] for details of wavelet variance 
confidence intervals and their development. 

To better illustrate these pattern fluctuations, scatter plots of the wavelet variance estimates are shown in the lower 
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triangle of Fig. 6. We define VJiP = log(i% „(r,)) for j = 1,... , 9, with the index p = 1,... ,P representing the p 
10,000 point nonoverlapping block in a uniform partition of the 7.5 million point aerothermal time series described in 
Sec. 5.1. A scatter plot tfj,* is produced by plotting VjiP versus Vfc,p for j ^ k. Inspection of Fig. 6 reveals a gradual 
spread in the wavelet variance estimates as we transverse scale from *i)2 to *8,9 off the main diagonal. This spread 
is proportional to the variation in 6 over time. We can better characterize the spread in the scatter plots under the 
hypothesis that the var{WJ-,t} obeys a FDP(<5, a2

e). Taking the logarithm of Eq. 14, we obtain 

V,- « log(a£
2) + log(c(5)) + (j - 1){26 - 1), 

that can be further simplified since log(c(<5)) closely follows the tri-linear curve 

\og(c(6)) 
-1.60-2.90 <5 
-0.95 - 2.30 6 
-2.10- 1.70 6 

ii5< -1, 
if-l<<5<2, 
if S > 2. 

(17) 

(18) 

-1 < 5 < 2), we 

(19) 

As most physical power law processes are in the exponent range of -4 < a < 2 (corresponding to 
can use a least squares linear approximation of log(c(<5)) to reduce Eq. 17 to 

Vj    »    [log(^) + 0.05 - j] + 2(j - 2.15) 5 

=   rrij + bjSj 

This approximation of V, yields insight into the clustering of the data in the scatter plots. Any variation of the 
innovation variance or FDP parameter, for example, will cause estimates of V,- to migrate in the scatter plots. Hypo- 
thetically, if rrij « mk is constant and bj = bk is allowed to vary over time, the points in the scatter plot will migrate 
at a slope bk/bj = (jfc - 2.15)/(j - 2.15). This behavior can be seen for example in *6i7, *7,8 and vE^g of Fig. 6. The 
lines in the lower triangle of Fig. 6 are drawn for reference with a slope of bk/bj (under an FDP model, these lines 
are valid only for j,k > 3). If bj grows at a different linear rate than does bk for a fixed innovation variance, then 
the scatter plot will follow a curved path. These curved paths are particularly evident in #5,6 and *5)7. Finally, if 
neither nij nor bj vary much over time, the result is a small cluster of points in the scatter plot. This tightly coupled 
clustering can be seen, for example, in the upper triangle of Fig. 6 covering scales Ti~n. An important implication of 
the scatter plots is to show that no single FDP can adequately model the turbulence data over all scales. Secondly, it 
is apparent that in many of the scatter plots for adjacent scales (*J,J±I) there is a convergence towards a linear trend 
at slope bj/bj±i, which is consistent with a power law coupling across those scales. 

DIFFERENTIAL PLOTS 

Figure 6: Scatter plots and differential scatter plots of log(i%i6(Tj)) estimates for j = 1,... , 9 and p = 1,... , 420. For 
purposes of comparison, all axes are uniformly scaled. See text for details. 

We can also calculate "differential plots" fljjk to gain insight on the coupling and variability of the estimated slope 
of the Vj relative to that of the Vfc.   Define %„ = Vj+i,p - VjtP to be a gross approximation of the (log) wavelet 
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variance slope between scales r, and TJ+1 for j = 1,... , J - 1 in the pth data block for p = 1,... , P. The differential 
scatter plot Ü, k is produced by plotting the statistic dj>k,P = %P/B>fc,P - 1 versus the block number p. The üj<k 

qualitatively track the coupling of the slopes Bj and O* as the block number (time) varies and are plotted in the upper 
triangle of Fig. 6. If djXp = 0, then the slopes are tightly coupled and suggests that a power law model is appropriate 
over the corresponding scales. An example of this behavior is seen in plots Qi,2, ^i,3 and fi2,3 as they all fall close to 
the reference zero line. If djtk,P ^ 0 consistently over all blocks, then the two slopes are not consistent with a power law 
relationship. This behavior' is seen, for example, in plots üjA and 0,,5 for j = 1,... ,3. To quantify the distribution 
of the data in the üjtk, each plot is overlaid with a boxplot whose thick-lined center represents the mean while the top 
and bottom of the box spans an estimate of 2 sample standard deviations about the mean. 

Using the results shown in Fig. 5 and 6, we propose to fit separate FDP models to the aerothermal turbulence 
data over 4 finite ranges of scales: n - T3, r2 - r4, r5 - r7, and r8 - T10. The overlap of the first two scale ranges is 
purposely set to explore the apparent periodicities appearing in scales r3 and r4 (see fi2,3 for example in Fig. 6). In 
what follows, we discuss wavelet-based time independent and dependent estimates for the FDP parameters via least 
squares and maximum likelihood techniques. 

5.3    Estimating FDP parameters with wavelets 

5.3.1     Block dependent weighted least squares estimator 

Here we develop a weighted least squares estimator for 6 based upon the unbiased MODWT-based wavelet variance 
estimator VX{TJ) at scales r,-. The distribution for VX{TJ) is approximately that of a chi-squared random variable 
x2 j)2 (TJ)/^, where rjj is the equivalent degree of freedom (Sec. 8.4 of [22] discusses three methods for determining 

r)j, the simplest of which is to set r)j = max{Mj/2J, 1}). Define 

Y(rj) = log(4(Tj))-V'(f)+log (20) 

where ip(-) is the digamma function. We can now formulate a linear regression model Y(TJ) = 7 + /31og(r7) + ej where 
e, = \og(i>x(TJ)/UX{TJ)) - </>(V2) + togfai/2) is an error term with zero mean and vaFiance ^'(Vj/Z) (^'(0 is the 
trigamma function) [22]. The weighted least squares estimate (WLSE) of the slope term ß is 

A E"J 2>j logMYiTj) - I>j log(r3-) E^YJTj) (21) 

^Wlse E^E^log2^) - (E^logCr,-))2 

where Wj = [^'(^)]_1- All sums in Eq. 21 are over j = J0, ■ • • , J\. The weighted least squares estimate of the FDP 
parameter is then 

Llse = \{ßwlse + l)- (22) 

 £>i  (23) 
£ uj E »j log^x,-) - (E »i log(^))2 

Furthermore, the variance of ßwise is 

var{ßwise} 

and thus the variance of the 6wise estimate is found by 

var{Swise} = -var{ßwlse}. (24) 

Figures 7 and 8 show the weighted least squares estimates of a for the segmented turbulence data set described 
in Sec. 5.1. The power law exponent was estimated over finite ranges of scale, commensurate with those deemed 
appropriate by inspection of the wavelet variance estimates (Fig. 5 for example) and corresponding scatter plots 
(Fig. 6). Due to the sampling variability present in the wavelet variance estimates, we smoothed all awue for scales Tj 
such that j > 5 with a moving average 20 point window with a 19 point overlap. For reference and simplicity, we define 
the term a, k to mean the estimated power law exponent over scales TJ,TJ+I,. .. , rfc. Figure 7 shows the estimates 
di 3, d2 4 and d5 7. An immediate observation of these results is the apparent wide range of a for various scales, 
spanning stationary blue noise to nonstationary red noise. This clearly suggests that a single (Kolmogorov) exponent 
is not an adequate description of this aerothermal turbulence data. Also apparent is a strong coupling between ah3 
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and &2 4, which share a similar baseline value falling between the theoretical Kolmogorov exponent (a =-5/3) and a 
random walk (a = -2), but differ greatly in the periodicities found in d2,4 (see also the fi2,3 plot of Fig. 6). These 
periodicities are suspected to be due to an exogenous factor unrelated to aerothermal turbulence such as a periodic 
autopilot correction, inducing a local vibration (and corresponding recorded temperature fluctuation) in the cold wire 
probe instrumentation. For a relatively small segment of data near 5.5 minutes, there is a close convergence of the 
&wUe indicating the presence of a PPL persistent over many scales. Figure 8 shows the long scale estimates d8,i0 

along with d5 7 for purposes of comparison. Here we see that the long scale trends are only moderately coupled, 
suggesting once again that different power laws govern different ranges of scale and that the power law exponent is 
time dependent. 

Time (min) 
4.17 5.56 6.94 

T -T : 1.93 cm - 7.32 cm 
T -t4: 3.66 cm - 14.64 cm 
T -T : 29.28 cm - 1.17 m (smoothed) 

0     18.33   36.67     55     73.33    91.67    110    12633   146.67 

Space (km) 

Figure 7: Weighted least squares estimates of the pure power law exponent a over scales TX - r7 for the turbulence 

data. 
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     T -t : 29.28 cm - 1.17 m (smoothed) 
     T8-T10: 2.34 m-9.37 m (smoothed) 

B.33   36.67    55    73.33   91.67    110   128.33  146.67 
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Figure 8: Weighted least squares estimates of a over scales T5 - TW for the turbulence data. 
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5.3.2    Block independent least squares estimator 

To form instantaneous least squares estimates of 6 we use only a single wavelet coefficient from each scale, i.e., we use 
Wt where U is the time index of the jth level MODWT coefficient associated with time t in {Xt}?=0

1- The time 
index t,- can be meaningfully determined only if (approximate) linear phase wavelet filters are used. Using only the 

Wjtt •, the time dependent form of Eq. 22 becomes 

. _ 1 / (Ji - Jo + 1) E logfaWfo) - E logfo) E Yt{Ti 
Wt ~~ 2 I (Jx-Jo + lJElogV.O-CElog^))2 

+ 1 (25) 

(26) 

where all sums are over j = Jo,--- ,J\ and 

Yt{r0) = log(W?tj) - ^(1/2) - log(2). 

To decrease the variability of the estimates, the level Ji is set to be as high as possible. 
Figure 9 shows the awlte t (smoothed with a moving average filter) for the entire turbulence time series over scales 

r5 - T7 The smoothed d„i',e t follow the same patterns exhibited by Q5,7 shown in Fig. 8 and 11 with a bit more 
variability in the estimates. These variabilities are not captured by the block dependent estimators and illustrates the 
importance of using time dependent estimators for a more accurate portrayal of the (turbulence) dynamics. 

Time (min) 
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Figure 9: Unbiased Lise.t for the entire 7.5 million point turbulence record. A moving average filter was used to 
smooth the results using nonoverlapping 10,000 point windows. 

5.3.3    Block dependent maximum likelihood estimator 

Wavelet-based maximum likelihood techniques can be used in harmony with an FDP model as another means of 
obtaining estimates for FDP parameters. Suppose X = {Xt}^1 can be regarded as a portion of a zero mean stationary 
FDP with unknown parameters S and a2 > 0. Assuming that X obeys a multivariate Gaussian distribution, we can 
estimate 6 and c^ by maximizing the likelihood function 

C(5,a2
c\X) 

(27r)^/2|Ex|1/2 
-XTE~1X/2 (27) 

where Ex is the covariance matrix of X, and |EX | is the determinant of Ex. Note that the dependence of the likelihood 
function on S and a2, is through Ex alone. In a practical setting however, evaluation of C(S,aj\X) is computationally 
expensive even for moderate N [4]. Secondly, numerical instabilities can occur when calculating the likelihood function 

C °An°approximation to the likelihood function can be calculated using DWT coefficients. Using the DWT is ad- 
vantageous in that it is known to decorrelate (long memory) FDP and related processes, forming a near independent 
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Gaussian sequence, and simplifying the statistics significantly [6].   The decorrelation property allows us to form a 
reduced log likelihood function without much computational burden: 

j 

where 

l(S,d2
£(S)\X) - N = N\og(ä*(ö)) + \og(C'J+1(6)) + Y,Nj l°g(C;(*)) (28) 

and C'{6) is the average SDF value at the mid-frequency of the band corresponding to DWT scale r, (see [22] for explicit 
details on the development of the reduced log likelihood function using the DWT coefficients). For our purposes, the 
mid-octave values are calculated using the SDF defined by Eq. 1. Minimizing Eq. 28, which is strictly a function of 6, 

yields the maximum likelihood estimates of o\mU and <5m;e- 
The variance of 6mle can be calculated as follows: let Wr be an M = £,. Mj point vector containing all of the 

interior DWT wavelet coefficients. Assuming that the coefficients in Wr are uncorrelated and that 6 G [-1/2, L/2], 
then for large N the estimator Smie is approximately Gaussian distributed with mean 6 and variance 

a1 «mil 

J n       /    J 

(30) 
j=l S'=l        ' 

where 

M 4g-     f1/2n ,mlog(2sin(7r/))df 

The term var{Wj,t} is the process wavelet variance defined as 

'1/2 fl/2 CT2 /•1/2 rv a* 
yai{Witt} = 2 j      UjtL{f)SxU) <V = 21     HilL(/)jj^^jp d/- 

(31) 

(32) 

In practice, the integrals in Eq. 31 and 32 can be approximated through numerical integration or, based on the view 
that the wavelet transform forms an octave band decomposition (see Fig. 1), through a Taylor series expansion about 
the mid-octave frequencies for levels j = 1,2 and direct integration using a small angle assumption for j > 2. There 
is generally a large increase in computational speed when using the bandpass approach with a relatively small loss of 
accuracy. , 

Figures 10 and 11 show the maximum likelihood estimates of a for the segmented turbulence data set described 
in Sec. 5.1. The dmIe compare quite well with the awUe (see Fig. 7 and 8) with the exception of the di,3 and a6,w 
estimates. The difference in &h3 is directly attributed to the difference in models. The weighted least squares estimates 
are based upon a pure power law model while the maximum likelihood estimates are based on an FDP whose SDF 
adheres to a power law for / < 1/8, but diverges from this behavior for 1/8 < / < 1/2, corresponding to wavelet 
scale n and, to a lesser extent, r2. Figure 12 demonstrates the departure of an FDP SDF from that of a pure power 
law process. The difference in Q8 10 estimates is mainly due to a high degree of sampling variability in the wavelet 
variance estimates at long scales. In particular, at scale r10 the number of DWT wavelet coefficients is diminished to 
A^io = 104/210 « 10, i.e. a very small set of coefficients to obtain the &mie- 

5.3.4    Block independent maximum likelihood estimator 

The MODWT coefficients can be circularly permuted to form an approximate zero phase decomposition using Daubechies' 
least asymmetric or Coiflet filters. Using the permuted coefficients Wj<tj, a reduced log-likelihood function can be min- 
imized to form an "instantaneous" MLE of the FDP parameter 5.   The reduced likelihood function consists of a 
collection of wavelet coefficients, one from each scale, that are colocated in time and is defined as 

it(S\X) = ^log(jE cp^i) + 5>g(C$(*)). (33) 
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Figure 10: Maximum likelihood estimates of the pure power law exponent a over scales n - T7 for the turbulence data. 
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Figure 11: Maximum likelihood estimates of a over scales r5 - r10 for the turbulence data. 

This approach is useful for processes that exhibit a variation in power law behavior over time. Figure 13 shows 
an example of unbiased SmUtt for a small segment of aerothermal turbulence data. The results indicate a modest 

fluctuation of Smie,t about a mean value of <5mie,t = 1.04 corresponding to a near-red noise Qmie,t = -2.08. The 
estimated density function (Fig. 13(b)) and quantile-quantile (Q-Q) plot with respect to a normal density (Fig. 13(d)) 
both indicate a near Gaussian distribution of the 6mie,t estimates. The "S" shape in the Q-Q plot implies that the 

density function of the <5m;e,t has longer tails than does a Gaussian. 

5.3.5    Discussion of FDP parameter estimations 

In this report we have introduced four wavelet based techniques to estimate FDP model parameters for aerothermal 
turbulence data: time (in)dependent weighted least squares estimators and time (in)dependent maximum likelihood 
estimators. For the time independent techniques, results were calculated for a 7.5 million point aerothermal data set 
taken in contiguous nonoverlapping 10,000 point intervals. The time independent results verify the presence of time 
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Figure 12: Spectral density functions for an FDP realization with 6 = 1 and a pure power law process with a 
The vertical lines represent the division in octaves corresponding to various wavelet scales. 
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Figure 13: Unbiased 6mu,t for a sample segment of aerothermal data. Only the scales n - T4 were used for this 
estimation. Shown in the figure are (a) Smu,t with 95% confidence intervals, (b) the corresponding estimated probability 
density, (c) a smoothed (low pass filtered) version of 6mle,t with confidence intervals and (d) a Q-Q plot of the 6mie,t 

with respect to a normal distribution. 

varying power law processes with a power law exponent spanning stationary blue noise to nonstationary red noise and 
applicable over finite and distinct ranges of scale. The time dependent results were calculated for a small (4096 point) 
aerothermal data segment. These "instantaneous" estimators are very useful for detection of changes in system whose 
dynamics fluctuate rapidly as a function of time or scale. For time independent estimates, we introduce methods for 
calculating the variance of FDP parameters, that, under a chi-squared distribution assumption made on the variance 
of the wavelet coefficients, can be related to confidence intervals. 

We showed in our research that in order to provide consistent results between maximum likelihood and weighted 
least squares estimates of the FDP parameter S, one needs to be aware of the divergence of the FDP spectral density 
function from that of a pure power law process at high frequencies (small scales). As a course of future research we 
intend to augment an FDP with an ARMA model for small scale variations, providing more flexibility than either a 
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pure power law or FDP model alone. 
The collection of results supports the efficacy and validity of using stochastic FDP models for aerothermal turbulence 

data. The use of wavelet techniques allows us to examine the apparent self-similar behavior of turbulence over distinct 
and finite ranges of scale, and, when used with approximate linear phase wavelet filters, provides an effective means 
of characterizing time varying power law processes. 

5.4    Wavelet-based forecasting for non-stationary multi-scale fractal processes 

5.4.1    Nonlinear deterministic modeling of wavelet subband processes 

To complement stochastic subband modeling, we assessed the efficacy of deterministic nonlinear modeling for aerother- 
mal turbulence data. Figure 14 suggests one possible path to take for modeling and prediction of subband processes 
via wavelet techniques. The original time series is fed into (a form of) the discrete wavelet transform to produce the 
subband processes Wjit. A portion of the Wjtt coefficients are used for training the prediction algorithm based on 
stochastic and deterministic models to produce a predicted set of coefficient. These predicted coefficients are then 
augmented with the training set and an inverse wavelet transform performed to yield a predicted time series. The 
hypothesis is that the inverted series will have better predictive power than those techniques based on the original 
series alone. This flexible scheme is relevant to analysis of turbulence data in three important ways: 

1. Wavelet transforms can be used to decompose a complex, possibly nonstationary and multi-scale series into a 
few crystals (a 'crystal' is a set of wavelet coefficients at a particular scale), each of which has its own dynamical 
and statistical behavior, and different prediction techniques can be applied separately to each crystal. 

2. The implicit differencing operations of wavelet filters can be used to analyze nonstationary sequences with 
stationary backward differences. The stationarity of the wavelet coefficients provides a means of generating 
useful statistics on the data. 

3. Using approximate linear phase wavelet and scaling filters, the nondecimated versions of the wavelet transform 
(MODWT, MODWPT) can be used to meaningfully colocate the wavelet coefficients with events in the original 
series (an important feature for the modeling of cross-scale components). 

Time Series 
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DWT 
MODWT 

Predicted Time Series 

Prediction Set 

Figure 14: Flow chart for subband modeling and prediction. 

or phase I, we implemented the scheme outlined in Fig. 14 using nonlinear dynamic models on preselected subbands of 
a MODWT decomposition. In nonlinear dynamics, a quick means of detecting deterministic structure in a time series 
is through lag plots, produced by plotting a time series versus a shifted version of itself. We refer to the data in these 
plots as being embedded. A "fuzzy" or cloudy clustering of points in the embedding suggests the presence of either a 
high dimensional deterministic structure or a stochastic structure in the data. Conversely, well defined patterns in the 
embeddings suggest an underlying deterministic structure. Figure 15 shows sample lag plots for three wavelet crystals. 
Deterministic structure can be seen in the embeddings of the d5 and d7 crystals while a stochastic clutter is seen in the 
embedding for d\\ illustrating the need for a combination of stochastic and deterministic modeling in the subbands. 

As a preliminary investigation, we applied the prediction technique outlined in Fig. 14 to a 3000 point sunspots 
series which is known to have strong deterministic components mixed with colored noise. We isolated the deterministic 
cyclical components from the noise via a MODWT of the data. We then hypothesized that the cyclical variations were 
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Figure 15: Time histories and phase plane embeddings of MODWT wavelet crystals dl, d5, and dl.  The data is a 
3000 point subset of the aerothermal turbulence data. 

well modeled by a nonlinear deterministic system and used a relevant nonlinear technique, the local Lyapunov exponent 
(LLE) prediction method developed by one of us [14, 15,13], to predict the latter third of the of the data using the first 
two thirds as a training set. The LLE technique was applied to crystals which displayed deterministic patterns in the 
phase plane. For prediction within each "stochastic crystal", the sample mean of training set was extended as an ersatz 
prediction of future values. This allowed us to independently test the prediction capabilities of the LLE in the context 
of wavelet subband processing. The predicted wavelet coefficients were augmented with the training coefficients, and 
the inverse MODWT applied. We refer to the predicted time series as a local Lyapunov wavelet synthesis (LLWS). 
For purposes of comparison, a commonly known nonlinear technique known as nearest neighbor (NN) prediction, was 
applied to the original time series. Preliminary results indicate that the LLWS approach achieves better prediction 
accuracy than the traditional NN algorithm as the magnitudes and phases of the sunspots series are better fit by the 
LLWS. The NN prediction of the original series (only) fails to predict the high amplitude sunspot variations (Fig. 16). 
The smoothness of the LLWS of sunspots data is simply due to the fact that a constant was used for the predicted 
coefficients in noisy subbands. An obvious improvement to the technique would be to apply a reasonable stochastic 
model to the noisy wavelet crystals. In phase II, we plan to refine the technique by testing an ensemble of stochastic 
and deterministic subband models during the remainder of the phase I contract. 

Based on the results shown in Fig. 15 and 16, we suggest that it is feasible to use nonlinear deterministic prediction 
in the context of wavelet subband modeling. The efficacy of the prediction is a direct function of the level of noise 
in the data. We therefore suggest that this technique would be most effective for large-scale variations present in 
turbulence time series. 

6    Estimates of Technical Feasibility 
In order to address the technical feasibility of our work in phase I, we summarize the relationship with future research 
and development, discuss the commercial potential of the product into the current S+WAVELETS module and a 
(possible) Matlab toolbox. We close with a company mission and product line and summarize our commercialization 
record. 

6.1    Relationship with Future Research and Development 
Our phase I research has resulted in new 'blocked' and 'local' schemes for estimating the parameters of a non-stationary 
multi-scale fractal process and for attaching confidence intervals to some - but not all - of these estimates. We have 
implemented our new methodolgy in the form of S-PLUS functions. We have used these functions to demonstrate the 
usefulness of this methodolgy for studying the time-varying properties of an aerothermal time series provided to us 
by our sponsors. Our phase I research has thus established the foundation for our phase II efforts, in which we will 
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Figure 16: Prediction results the sunspots data (dots) using LLWS prediction on selected wavelet subbands (solid 
thick lines) and nearest neighbor prediction on the original series (solid thin lines). 

extend the methodology to make it applicable to a wider range of problems and create a library of commerical-grade 
C routines. . 

Our phase II research will extend the phase I research by completing the statistical theory behind our wavelet- 
based estimators. In phase II we will also improve the computational efficiency, robustness and portability of our 
computer code by rewriting our algorithms as C routines. In addition we will create code for a much wider collection 
of algorithms that can be of use in modelling fractal processes. We will also provide our Air Force sponsors with code 
in whatever form they deem best to allow them to make use of our research results in their own work (most likely 
either in the form of a C library or as a MATLAB toolbox with an appropriate GUI to help guide the non-expert analyst 
on the use of the methodology). .    . 

The phase II research will lay the groundwork for the development of commercial-grade software toolkits in botn 
S-PLUS and MATHCAD for wavelet-based analysis of time series exhibiting fractal properties. In addition, the training 
course that we develop on analyzing non-stationary multi-scale fractal processes can be turned into documentation 
suitable for use with these toolbox. 

6.2    Commercial Potential 
A primary strength of this proposal is a realistic and credible commercial plan. The heart of the plan is develop state- 
of-the-art software products which will appeal to a broad audience of users. MathSoft is a market leader in wavelet and 
advanced statistical technology. MathSoft also has an impressive record on commercialization of Government funded 
rpsP/irch 

Here we present our specific commercialization plans (section 6.2.1), give background on our company (section 6.3) 
and its past record of commercializing government-sponsored research (section 6.4). 

6.2.1    Specific Commercialization Plans 

Our research will lead to phase III development of a user-friendly S-PLUS and MATHCAD toolboxes for analysis of frac- 
tal processes, a library of portable and reusable software tools, and short courses with an associated book/hypermedia 
document that will guide practitioners in the analysis of multi-scale fractal processes. In commercialization of the 
fractal processes toolkits, we will be guided by our experience in developing and marketing wavelets technology, 
which resulted in the S+WAVELETS module for S-PLUS, a MATHCAD Wavelets extension pack, a book published by 
Springer-Verlag, educational courses taught to industry and research laboratories, and consulting opportunities m 
industry (e.g., cellular telephone fraud detection). Because the underlying software will be based on a well organized 
set of C libraries, we will be able to incorporate these tools into more than one product. Marketing the toolkits on 
more than one platform is critical for successful commercialization since the toolkits individually target relatively small 

markets. 
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Our specific commercialization plans, roughly in order of priority, are as follows. 

S-Plus Fractal Processes Toolbox: The primary development that will follow in phase III from the proposed 
research will be a toolkit based on the collection of C routines developed in phase II. We will embed this toolkit within 
S-PLUS as a module for advanced fractal analysis. S-PLUS is an ideal platform for the proposed development, with a 
huge existing customer base including technically literate data analysts from a variety of disciplines. 
Fractal Processes Extension Pack: A second product which would naturally evolve from our research plans is a 
Fractal Processes extension pack for MATHCADA MATHCAD extension pack would have a lower price point than an 
S-PLUS toolbox and would leverage the large installed base of MATHCAD (currently over 1 million users). 
Books and Hypermedia: A key component to commercial success of our research will be the development of a book 
linking the practice and theory of fractal processes analysis. With the advent of multimedia technology and the World 
Wide Web, we can go beyond the traditional textbook format and provide a state-of-the-art interactive hypermedia 
book linked to the Fractal Processes Toolbox. The book will contain a rich collection of applications drawn from our 
phase II and other research efforts. We will also pursue more traditional outlets for publication. 
Other Vertical Markets: Full realization of our research goals will make analysis of fractal processes a standard 
part of signal processing. We see substantial opportunity to license our technology to specialized software systems 
dedicated to vertical markets where fractal signals are important, including biomedical engineering and finance. In 
addition, if we embed our C library within a MATLAB toolbox to meet the requirements of our sponsors, we will seek 
avenues for marketing this toolkit. 
Teaching and Consulting: To supplement the software products and books, we expect to offer related short courses 
and software training. Short courses in signal processing oriented towards industry and government are routinely 
offered by various groups. A large part of the Data Analysis Products Division's revenues results from training classes. 
The tuition for training classes and short courses typically exceeds $1,000 per participant. Our software and casebook 
will also serve as a magnet for recruiting consulting projects. The Data Analysis Products Division is rapidly expanding 
its consulting group, partly as a result of its high-end research efforts (e.g., in wavelet analysis). We will aggressively 
pursue related consulting, particularly in areas such as financial engineering. 

6.3    Proposing Company, Mission and Main Products 

The research and software development for this project will be done primarily at the facilities of the Data Analysis 
Products Division of MathSoft, Inc. MathSoft is a U.S. owned publicly traded small business (NASDAQ: MATH) 
that is based in Cambridge, Massachusetts, and specializes in mathematically oriented software. The Data Analysis 
Products Division (DAPD) specializes in statistical software products and includes the Research Department. Overall 
the company has 195 employees, with 95 of these being in the DAPD. 

The Research Department has over 36 employees of whom approximately 28 have Ph.D.'s in disciplines such as 
statistics, electrical engineering, mechanical engineering, physics, computer science and applied mathematics. Research 
staff actively collaborate with researchers at universities and other institutions. These connections are particularly 
strong with the University of Washington. 

The primary mission of the DAPD is to develop, market, and support cutting edge scientific computing software 
environments for high-interaction statistical and visual data analysis. The DAPD offers the S-PLUS and AxUM 
product line. S-PLUS is an interactive computing environment for graphics, data analysis, statistics and mathematical 
computing. S-PLUS is a super-set of the S object-oriented language and system designed by R. Becker, J. Chambers 
and A. Wilks at AT&T Bell Laboratories, Murray Hill, NJ, for which Chambers won the prestigious 1998 ACM 
Software System Award (this annual award carries a prize of $10,000 and has been given in the past to the developers 
of e g UNIX, TeX, PostScript, TCP/IP and the World Wide Web). The DAPD recently released S-PLUS 4.0, 
incorporating advanced, object-oriented graphics into the S-PLUS environment. S-PLUS 4.0 was recently given the 
Personal Computer World Editor's Choice Award. Our customer base represents almost every major industry, with 
particular strength in high-tech manufacturing, biotechnology, engineering, and finance. S-PLUS is available in UNIX 
and Windows versions. Our product STATSERVER supports distributed access to S-PLUS over internal and external 
networks. Web browsers and customized applications can submit S-PLUS expressions to a STATSERVER and retrieve 
the results, including graphics. STATSERVER 2.0 recently won a prestigious industry award, when it was named to the 
Crossroads A-list by Open Systems Advisors. 

The flagship product of MathSoft is MATHCAD, a numeric and symbolic mathematical analysis software package. 
MATHCAD combines natural notation equation manipulation, text and graphics into a single electronic document. 
MathSoft is also a strong played in the education market with its award-winning STUDY WORKS! software for building 
skills in mathematics and science for high school students. The company has more than one million users of its MATH- 
CAD, STUDYWORKS!, S-PLUS, STATSERVER and AXUM software worldwide.   Users include technical professionals 
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worldwide at more than 90% of the Fortune 1,000 companies and over 500 government installations, and students and 
faculty at over 2,000 colleges and universities. 

6.4    Commercialization Record 
The Data Analysis Products Division of MathSoft has an outstanding record in the commercialization of advanced data 
analysis technology. Our core product, S-PLUS, is a commercial version of the S language developed in the research 
environment of Lucent technologies. In fact, the DAPD would never have existed if it were not for our abilities to 
commercialize data analysis software. 

The DAPD has further established a record of commercializing advanced data analysis software developed partially 
using government funds under the SBIR program and the NASA EOCAP program. In the past four years, we have 
completed eight Phase II SBIR awards and one NASA EOCAP award. Partially supported by these awards, we have 
commercialized and shipped six products: S+WAVELETS, S+API, S+DOX, S-PLUS for ARC/INFO, S+SPATIAL, 
and S-PLUS for ArcView GIS. Additional products are under development based on SBIR-funded work in signal and 
image processing, group sequential analysis, and statistics for data with missing values. In addition, we have shipped 
a MATHCAD Wavelets function pack in 1998 based on technology developed for S+YVAVELETS. 

7    Summary 
Each of the objectives in Sec. 3 has been addressed in our research efforts for phase I. The feasibility of this project is 
estimated to be very high considering (i) the large number of functions written for the existing S+WAVELETS module, 
(ii) the promising results of these functions as applied to real aerothermal turbulence data, (iii) the commercialization 
record of MathSoft, Inc. and (iv) the demand for such tools in other areas such as in cardiodynamics, (internet) traffic 
modeling, and financial time series analysis to name a few. Through partial funding by this STTR phase I contract, 
our research has lead to (2) technical reports, (1) conference paper, (2) journal articles (pending acceptance), and (1) 
book on wavelet methods for time series analysis. 

We would like to thank our sponsors for funding this project and we look forward to our cooperative phase II 

effort. 
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