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Abstract  

The U.S. Army has a continuing interest in smart weapons systems. Among them are 
projectiles employing independent logic. Smart weapons use printed circuitry with chips 
supplying the smarts for the system's autonomic functions. Experience has shown that 
considerable thought is required to design circuits that remain effective when subjected to severe 
environmental conditions. Launch conditions can place a projectile's components under axial 
loads as high as 40,000 g's, with spin rates up to 270 r/s and balloting loads up to 2,000 g's. 
Although short in duration, these loads can break even the most robust design. Unfortunately, 
when failure occurs, it is not obvious that a loading mechanism caused the problem, hence, 
making it difficult to make design corrections. 

This report gives a simplified technique to determine if spin loading can break an internally 
housed chip. In particular, radial loading on the sense-and-destroy armor missile (SADARM) 
projectile's 68000 chip is examined. The methods employed here offer a quick means to eliminate 
potential problems, without employing sophisticated finite element techniques. Thin-plate theory 
is assumed adequate for determining stress levels in this chip, which is located off the rotation 
axis. Approximations for the chip's loading and boundary conditions are considered. 
Computational results are presented and examined. 
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1. Introduction 

A problem has surfaced with the 68000 ceramic (silicone) chip, found in the 155-mm 

sense-and-destroy armor missile (SADARM), breaking during or just after gun launch. The chip 

is a 2.4-cm square plate that is approximately 2 mm thick. Therefore, the plate length is 

relatively long in comparison to its thickness, having an aspect ratio of 12:1. Recent failures 

have been observed, where a fracture extends along the perpendicular bisector of one edge to the 

midpoint of the opposite edge. The chip is positioned in the projectile such that its geometric 

center is displaced approximately one-half radius from the projectile's symmetry axis. It is 

orientated so that its inner lateral face is parallel to this axis, with its bottom edge parallel to the 

projectile's base. Figure 1 depicts the loading as caused by projectile spin. 
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Figure 1. Spin Loading of Chip. 

This failure pattern and orientation cause one to suspect that inertial spin forces are causing 

the chip to break. For these reasons, a study was made of the deformation of this chip due to a 

uniform load on its inner lateral surface, which is equal in magnitude to the inertial loading. 

Treating the chip as a thin rectangular plate allows one to model the bending characteristics with 

closed-form solutions of the familiar biharmonic boundary value problem. Two kinds of 

solutions were considered. First, it is assumed that the plate (chip) is simply supported. This is 

called the hinged plate. Next, the built-in plate (chip), referred to as the clamped plate, is 

examined. Since the actual chip is held in place with the usual integrated circuit solder and wire 

connections, these two cases should at least bracket the behavior of the contained chip. Physical 

differences between the cases are brought into the model by enforcing different sets of boundary 



conditions.   These two solutions can then be used to make reasonable predictions about the 

deformation of the 68000 chip found in SAD ARM caused by inertial spin loading. 

A third cause would include an external pressure on the face of the chip from another 

structural component inside the projectile.* In this case, a uniform pressure has been included 

over half of the plate and the resulting stress levels have been calculated. The results from the 

previous analysis can be linearly combined with the new loading scenario, given that the chip is 

relatively brittle and that failure occurs near or at the yield point. This loading technique is 

graphically depicted in Figure 2. 
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Figure 2. Combination Loading of Chip. 

2. Mathematical Model 

The model used in this report describes the bending of a thin rectangular plate subject to 

uniform loading. In particular, this plate is assumed to be undergoing constant circular motion 

with a spin rate equal to the maximum spin rate that the SADARM projectile experiences after 

gun launch. If the chip's thickness is thin relative to its length, then it is reasonable to assume 

that a nearly uniform load, q, is induced on the plate due to the mass of the chip and its rotation 

rate. The mass of the chip per unit area equals pt, where p is the density of the chip and t is its 

thickness. The pressure load q is equal to the mass density times the acceleration, rco2, where r is 

It was postulated that another component was deforming and applying pressure on half of the plate's surface. This 
additional pressure could have caused the observed failures. 



the radius from the projectile's center of spin and (0 is the angular rate. Hence the resulting load 

is 

q = pt(02r. (1) 

Following Timoshenko and Woinowsky-Krieger (1959) by placing the (x,y) coordinate plane on 

the midplane of the plate allows the governing equation for small deflections, w, to be written in 

the normal z direction as 

VT4      d4w     .    34w       34w 
V w=—-+2—-—- +—r = q/d, (2) 

3x4 dx2dy2     By4     H 

where 

Et3 

d=      ht   . (3) 
12(l-v2) 

and V4 is called the biharmonic operator. Equation (3) contains the chip modulus of elasticity E, 

thickness t, and Poisson's ratio v. 

The two loading conditions (i.e., hinged plate and clamped plate) are modeled by two sets of 

boundary conditions applied to the solution of equation (2): 

(1) the hinged plate, which has boundary conditions 

w=0 

and 

32w 

dn2 = 0 (4) 

*The angular rate of 1,696 radians/s was used in all of the calculations in this report. It is understood that higher 
rates are possible, depending on the muzzle velocity of the projectile. 



on all sides (i.e., Ixl = a, lyl = a); and 

(2) the clamped plate, which has conditions 

and 

w = 0 

^ = 0 
dn 

(5) 

on |x| = a, lyl = a, where n is the coordinate normal to the boundary. (See Figure 3.) 

Figure 3. Chip Coordinate System. 

Since the primary interest is material failure, the following stresses are calculated for each 

case: 

Ox, = - 
Et       fd2w d2w^ 

2(l-v2) 
+ v- 

dx2 dy' 

and 

°xy = 
Et     d'- w 

2(l + v)8xay 
(6) 

The physical properties and loads used on the plate studied in this report are given in Table 1. 



Table 1. Physical Properties of the Ceramic Plate 

Description Value Used in Analysis 

Load, q 75 psi 

Spin Rate, 0) 1,696 r/s 
Plate Dimensions, a 2.4 cm 

Mean Radius, r 138.75 mm 
Elastic Modulus, E 15,000,000 psi 
Poisson's Ratio, v 0.23 
Plate Thickness, t 2 mm 

The boundary value problem (BVP) for the hinged plate is easily solved using a double 

trigonometric series (Timoshenko and Woinowsky-Krieger 1959). Plotted results of these 

calculations including the stresses a^ and oxy are given in Figures 4-6. 

0.01    0.01 

Figure 4. Displacement Function for the Hinged Plate. 

The BVP for the clamped plate presents more mathematical difficulties than found for the 

hinged plate. The root of these difficulties stems from the requirement that both the 

displacement and its first derivative must be zero on the boundaries. Timoshenko and 

Woinowsky-Krieger (1959) give a series solution for this BVP that involves solving a system of 

linear equations for the undetermined coefficients. As a check on this procedure, two other 

methods of solving the same BVP were used. The first check was a Galerkin method, with 

selected functions that satisfy the boundary conditions (Ugural 1981).    These calculations 
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Figure 5. Normal Stress a« Function for the Hinged Plate. 

Figure 6. Shear Stress <% Function for the Hinged Plate. 

produced a maximum displacement that was in good agreement with Timoshenko and 

Woinowsky-Krieger (1959), but, when the stresses were compared, their agreement was 

significantly less. This is not too surprising since higher derivatives associated with variational 

methods are generally suspect. 

The second method for checking the solution constructs a series solution to the BVP using a 

sequence of complex biharmonic functions. This method requires the eigenvalues, z, of 

sin(z) + z = 0, (7) 



which can be found numerically (Morley 1963). Calculations using this method agreed well with 

Timoshenko and Woinowsky-Krieger (1959), but Timoshenko's method was found to be easier 

to use. Therefore, all plots presented here are the Timoshenko clamped-plate calculations. 

Figures 7-9 show the plotted displacement calculations plus the stresses oxx and axy for the 

clamped plate. 
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Figure 7. Displacement Function for the Clamped Plate. 
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Figure 8. Normal Stress Oxx Function for the Clamped Plate. 

The BVP for the clamped plate with an additional constant pressure distributed over half of 

the plate's surface is considered next. The same BVP and boundary conditions (6) used in case 2 

describe this case. However, an additional uniform external pressure is now included on the 

right-hand side of equation (2), covering the region 0 < x < a and 0 < y < a/2.   It is further 



Figure 9. Shear Stress axy Function for the Clamped Plate. 

assumed that this additional pressure distribution is equal to the inertial spin distribution used in 

the previous two cases (see Figure 2 or Figure 10). 

q 

Figure 10. Clamped Plate With Pressure on Half of the Surface. 

This means that the right-hand side of equation (2) becomes 

q(l + 9(y-a/2))/d, (8) 

where 0 is the usual heavy-side step function. After expressing equation (8) as an appropriate 

trigonometric series, one can then use the previously discussed methods to solve this BVP. The 

calculations for this problem have the same functional shapes as those given for case 2, except 

that the magnitudes have changed, which reflects the additional half-plate pressure distribution. 

8 



In Figure 11, only the most important stress distribution, axx, is displayed for the problem 

addressed here. For completeness, as well as ease of calculation, Table 2 presents expressions 

for calculating the maximum deflection and maximum a^ for both the hinged and clamped 

square plate. 

Additional Load q on 0<x<a and 0<y<a/2 

Figure 11. Normal Stress a^ Function for the Clamped Plate With Added Load. 

3. Conclusions 

Inspection of the plots for both the hinged and clamped plate reveals that the most likely 

candidate causing the material failure previously described is the axx stress. In both cases, these 

calculations have the symmetry that best describes the centerline fractures most commonly found 

when the 68000 ceramic chip breaks. For clarification, the centerline oxx that passes through the 

maximum stress points for both the hinged and clamped plates is plotted in Figures 12-14. 

It is seen from these plots that the oxx centerline values range from 1,600 psi to 5,000 psi. It 

has further been suggested that other internal components of SAD ARM may be pressing on the 

inner surface of the 68000 chip, making the load q larger than what has been used here. In the 

event that this takes place, one will find that the oxx stress has the same general shape but that the 

magnitudes have increased. 



Table 2. Formula for the Plate Deflection and Stresses 

Item Plate Location Formula 

Maximum deflection for 
the hinged plate 

Center 
wCOO)-326«4' 

80249d 
Maximum deflection for 
the clamped plate 

Center 
w(0,0)= 2013«40 

1590899d 
Maximum stress for the 
clamped plate 

Center Et(26930950v+v26947553)q a2 

30569831000d(l-v2) 

Maximum stress for the 
clamped plate 

Edge ,_   ,„x        1189qa2     ^ aM (0, a/2) = M     , Et 
46354d(l-v2) 

Maximum stress for the 
hinged plate 

Center Et(3468514v+v34696743)q a2 

1883310818d(l-v2) 

Maximum deflection for 
the clamped plate with 
added load 

Center 
w(0,0)=243«4« 

72595d 

Maximum stress for the 
clamped plate with 
added load 

Center /n„x    Et(17077867v + vl8294720)qa2 

axx (0,U) = -  
342368032(1-v

2)d 

Maximum plate with 
added load 

Edge ,a m       457qa2Et 

2         4316(1-v2)d 
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Figure 12. Normal Stress a« Centerline Function for the Hinged Plate. 
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Figure 13. Normal Stress Oxx Centerline Function for the Clamped Plate. 

Figure 14. Oxx Centerline Function for the Clamped Plate With Added Load. 
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