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Progress Report 
N00014-98-1-0070 

"Modelling Swell High Frequency Spectral and Wave Breaking" 

Principal Investigator, V.E. Zakharov 

1 October 1999 - 30 September 2000 

In 2000 research in framework of the grant N000 14-98-1 0070 was performed by Dr. V. 
E. Zakharov in collaboration with Dr. A. Pushkarev and Dr. A. Dyachenko. A part of the work 
was done in collaboration with our French colleague Dr. F. Dias and his graduate student P. 
Guyenne. The results of the research are summarized in five articles. Three of them are accepted 
for publication. The results were reported on five international conferences. Research was 
performed in the following directions: 

1. Constants of motion in the SNL models. 

The most solidly justified approach to the description of nonlinear interaction of sea 
waves is the use of the kinetic equation for the spectral density of wave action first derived by K. 
Hasselmann in 1962. Since this time several codes for the numerical solution of the kinetic 
equation were developed. Different codes give qualitatively similar but quantitatively slightly 
different results. So far there was no universal test making it possible to estimate a quality of a 
given numerical code. We offer such a test based on the use of four conservative quantities 
preserved by the kinetic equation: wave action, energy and two components of momentum. 

Using this constant of motion is not a trivial problem. The SNL is a complicated 
nonlinear integral operator, describing the nonlocal interaction of waves in the K-space. Due to 
this nonlocality there is a "leakage" of the motion constant outside of any finite domain of 
integration. We made estimates of this leakage and found that if the domain of integration is 
bounded by the wave number K, the leakage is going to the extended domain bounded by the 
wave number 3/2K. This result creates the theoretical foundation for development of the "clean" 
universal test for examination of different codes for solution of the kinetic equation. The results 
are summarized in the articles [1,2] and to be reported in the Workshop of Wave Prediction in 
Monterey (November 6-10 2000). 

2. Nonlocal diffusion models of SNL. 

In 1999 we offered a simple euristic model of SNL making it possible to speed up its 
computer simulation in four orders of magnitude. This model is based on the use of a simple 
nonlinear diffusion operator. It works very well for broad in angle spectra but fails for narrow in 
angle spectral distribution. To fix this point we offered an array of nonlocal diffusion models 
including averaging the spectrum over angle. The new model includes seven fitting constants 
which can be found by an optimal way as soon as we will have a "paragon" exact numerical 
model of the SNL. These results were reported on the workshops of wave modeling in 
Delft(March 2000), Reykjavik June 2000) and are to be reported in Monterey (November 2000). 
The article on this subject is in preparation. 
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3. New approach to the problem of wave breaking. 

In collaboration with A. Dyachenko we developed a completely new approach to the 
description of the dynamics of an ideal fluid with a free surface. The new exact equation 
describing the fluid dynamics are suitable for analytical study and numerical simulatuion. The 
first results of their numerical solution are very promising. We hope by the use of the new 
approach to soon develop a solidly justified analytical and numerical model of wave breaking. 

One article is accepted for publication, another one is in preparation. The result will be 
reported on the workshop on singularities in classical, Quantum and Magnetic fluids. 20-23 
October, 2000 in Warwick, UK. 

4. One-dimensional model of wave turbulence in deep water. 

In collaboration with Dr. F. Dias and P. Guyenne we performed a detailed analytical and 
numerical study of the MMT(Maida, McLaughlin and Tabak) model of wave interaction in one 
dimenstion. We established a fundamental role of the localized wave group(quasisolitons) in this 
turbulence. These results can be used for the explanation of the formation of the "rogue waves" 
dangerous for coastal construction. 
They were reported on the Conference of Wave Turbulence(June 2000, Massachusetts) 
Two articles are accepted for publication. 
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Turbulence of one-dimensional weakly nonlinear dispersive 
waves 

V. E. Zakharov, P. Guyenne, A. N. Pushkarev, and F. Dias 

ABSTRACT. The turbulence of weakly nonlinear dispersive waves is studied by 
numerically integrating a three-parameter one-dimensional model equation. In 
particular the validity of weak turbulence theory is assessed. The predicted 
power-law solutions are explicitly determined and then compared with the 
numerical results. For both signs of nonlinearity, it is shown that the weakly 
turbulent regime is strongly influenced by the presence of coherent structures. 
These are wave collapses and quasisolitons. 

1. Introduction 

The weak turbulence theory developed by Zakharov [8] is a tool for obtaining 
the shape of frequency spectra in problems dealing with weakly nonlinear dispersive 
waves. The applications of this theory range from water waves in hydrodynamics 
to ion-acoustic waves in plasma physics. The weak turbulence theory is based on a 
hamiltonian formulation of the problem where only resonant interactions between 
weakly nonlinear waves are taken into account. It is then possible to derive approxi- 
mate equations by performing perturbation expansions in terms of the nonlinearity 
parameter. Although the theory was developed more than thirty years ago, few 
proofs, either experimental or numerical, have been given to assess its validity (e.g. 
[7]). Recently, Majda et al. [5] proposed a one-dimensional model equation as a 
basis to check the validity of weak turbulence theory. Numerical computations on 
this model have been reported in [1], [3], [5] and [9]. In this paper we summarize 
the most important numerical results on this equation, which depends on three 
parameters, and show that the weakly turbulent regime is strongly influenced by 
the presence of coherent structures, namely wave collapses and quasisolitons. 

1991 Mathematics Subject Classification. Primary 76F55; Secondary 60H15. 
Key words and phrases, weak turbulence, Kolmogorov spectra, water waves, wave collapse, 
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2.  One-dimensional model equation 

The following three-parameter nonlinear dispersive equation was proposed by 
Majda et al. [5]: 

(2.1) i -^- = uki>k + / Ti23fc 4>i4>2'<l>3 S(ki + k2-k3-k) dkxdk2dk3. 

In equation (2.1), which has been written in Fourier space, $* denotes the fc-th 
component in the Fourier decomposition of the complex wave field ip(x,t) and 
(*) stands for complex conjugation. Equation (2.1) depends on three parameters. 
The first parameter, a, is related to the linear frequency uk = \k\a. The second 
parameter, ß, is related to the interaction coefficient 

(2.2) T123k = A \hk2k3k\ßlA . 

The third parameter, A, which also appears in the interaction coefficient (2.2) and is 
equal to ±1, governs the balance between dispersive and nonlinear effects. One can 
use the terminology focusing for A = — 1 and defocusing for A = +1. The system 
possesses two important first integrals, the Hamiltonian 

H =  / uk\xpk\2dk +-     T123kM2^3i>l s(ki + k2-k3-k) dkxdk2dk3dk 

and the wave action (or number of particles) 

N = [\4>k\2dk. 

Equation (2.1) describes four-wave resonant interactions satisfying 

(2.3) h + k2    =    k3 + k 

(2.4) ui+u2    —    u3 + u)k- 

It can be shown that when a < 1 the system (2.3)-(2.4) has nontrivial solutions 
and that dominant interactions occur between four waves. In all computations 
the parameter a has been set equal to 1/2. This case mimics gravity waves in 
deep water, whose dispersion relation is given by uk = {gk)ll2, where g is the 
acceleration due to gravity. Computations for A = +1 were performed by Majda et 
al. [5]. Computations for A = ±1 were recently performed by Cai et al. [1] and by 
Zakharov et al. [9]. 

3.  Kolmogorov-type spectra 

For a weak nonlinearity, Zakharov's theory [10] leads to a kinetic equation for 
the two-point correlation function nk = (|^*|2): 

U^k I i2 
-0—    =    4TT / |Ti23*|  [nin2n3 + nin2nk - nin3nk - n2n3nk 

x  6(ui +u2-u3- uk) 8(k1 +k2-k3- k) dkxdk2dk3 . 

The two main hypotheses for deriving the kinetic equation are the assumptions of 
gaussianity and of random phases. The stationary Kolmogorov-type solutions are 
given by 

(3.1) nk    =   a1|g|1/3fc-W3-1W3 

(3.2) nk    =   a2|P|1/3fc-W3-1 
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TABLE 1. Slope and flux sign for the Kolmogorov-type solutions 
(3.1)-(3.2). The dispersion parameter a is equal to 1/2. 

ß -1 -3/4 -1/2 -1/4 0 +3 

power of A; in (3.1) -1/6 -1/3 -1/2 -2/3 -5/6 -17/6 

sign of Q + + 0 - - - 

power of k in (3.2) -1/3 -1/2 -2/3 -5/6 -1 -3 

sign of P - 0 + + + + 

and are associated respectively with a particle flux Q and an energy flux P. The 
coefficients ai and a? denote the dimensionless Kolmogorov constants. It is impor- 
tant to emphasize that these solutions do not depend on the sign of nonlinearity 
A. Such solutions can be written for all values of ß and a < 1. But there is a 
physical argument which plays a crucial role in deciding the realizability of the 
Kolmogorov-type spectra. Suppose that pumping is performed at some frequencies 
around Wfc = uij and damping at ui/, near zero and w^ ^> wj. Weak turbulence the- 
ory then states that the energy is expected to flow from wj to higher w^'s (direct 
cascade with P > 0) while the particles mainly head for lower w^ 's (inverse cascade 
with Q < 0). Accordingly, we need to evaluate the fluxes in order to select, among 
the rich family of power laws (3.1) and (3.2), those which are likely to result from 
numerical simulations of equation (2.1) with damping and forcing. Only the cases 

ß < -3/2   and   ß > 2a - 3/2 

i.e. 
ß < -3/2 and ß > -1/2 if a = 1/2 

are relevant because they correspond to a particle flux towards large scales (Q < 0) 
and to an energy flux towards small scales (P > 0). The signs of the fluxes are shown 
in Table 1 for a = 1/2 [9]. Computations are performed in the range ß > -1/2, 
which includes the case of simple cubic nonlinearity (ß — 0) and the case of gravity 
waves (ß = 3). 

4.  Solitons, collapses and quasisolitons 

The numerical results presented below show that the weakly turbulent regime 
is strongly influenced by the presence of coherent structures. These are solitons, 
quasisolitons or collapses. The existence of solitons depends on the parameter A. 
Looking for soliton solutions of (2.1) of the form 

M*) j{n-kv)t 4k 
with ft and V constant leads to 

1 
(4.1)        4>k = 

ft / 
Tl23k ^1^203 ö(ki + k2- k3- k) dkidk2dk3 . 

■kV + Uk 

Fora < 1, the condition Cl-kV+\k\a / 0,Vfc £ R, implies that the propagating 
speed V is zero. Rewriting equation (4.1) in variational form: 

8{H + ftAT) = 0 
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one can conclude that 'stationary' solitons can exist only if A = — 1. In that case an 
equilibrium between nonlinear and dispersive effects is possible. As for nonlinear 
Schrödinger-type equations, the linear stability criterion for solitons is given by 
dN/dCl > 0 [4]. In our case this gives 

ß<a-l 

i.e. 
ß < -111   if   a = 1/2. 

Therefore the solitons are unstable in the regime of interest. 
In view of this result, it is natural to look at the formation of collapses. They 

are typically described by self-similar solutions of the form 

Mt) = (to-t)p+icx((i) 
where 

£ = k (to — t)1'a,    p = ,    e = arbitrary constant. 

An analysis of the convergence of the Hamiltonian and of the wave action integral 
as t —)• to shows that necessary conditions for collapses to exist when a = 1/2 are 
ß > —1/2 for A = —1, which coincides with the soliton instability criterion, and 
ß > 0 for A = +1. In spectral space, the self-similar solution behaves at t — to like 

(4.2) nk ~ k-P+a-2 

which is analogous to Phillips spectrum for deep water gravity waves [6]. 
In the case A = +1, quasisolitons can exist. These are approximate solutions of 

equation (4.1) which look like envelope solitons. In the limit of a narrow spectrum 
centered at k = km, such as Q — kmV + k^ ^ 0, these quasisolitons are given by 

1>{x, t) ~ 4>{x - Vt) e^mkm{x-vt) 

with 4, ^ and V given by 

^) = (t°+2COShM'      K = \k-km\«km 

O = -(1 - a) fe- -\a(l- a) k^K2 ,    V = a k^1. 

When K/km is small, the quasisolitons look almost like true solitons and can persist 
for a long time. They can play an important role in weak turbulence. When KJkm 

is large, the quasisolitons can become unstable and develop into wave collapse. 

5. Numerical results 

The numerical computations are performed by adding to equation (2.1) a source 
term in a narrow spectral band as well as a damping term containing a wave action 
sink at large scales and an energy sink at small scales: 

(5-1)     i-^-    =   ojk^>k+ I Tl23ki>ii>2^3Hh+k2-k3-k)dk1dk2dk3 

+ i{Fk+Dk)^k 

with 

Fk = J2hS(k ~ ki)    and    D* = -v~ \k\~d~ ~ v+ \kf . 
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FIGURE 1. Level of nonlinearity as a function of time. The param- 
eters are a = 1/2,ß — 0 and A = +1 (solid line); A = —1 (dashed 
line). 

5000    5500   6000   6500    7000    7500    8000    8500    9000    9500   10000 

A pseudospectral code is used to integrate equation (5.1). Details can be found 
in [9]. 

5.1. Numerical results for ß — 0,A = ±1. The study is restricted to the 
direct cascade. Typical initial conditions are given by random noise. Simulations 
are run until a quasi-steady regime is established which is characterized by small 
fluctuations of the energy and the number of particles around some mean value. 
Then time averaging begins and continues for a length of time which significantly 
exceeds the characteristic time scale of the slowest harmonic from the inertia! range 
(free of the source and the sink). In turn, the time-step of the integration has to 
provide, at least, accurate enough resolution of the fastest harmonic in the system. 
As our experiments show, one has to use an even smaller time-step than defined 
by the last condition: the presence of fast nonlinear events in the system requires 
the use of a time-step At = 0.005, which is 40 times smaller than the smallest 
linear frequency period. Time averaging with such a small time step leads to a 
computationally time-consuming procedure despite the one-dimensionality of the 
problem. Figure 1 shows the time evolution of the average nonlinearity e, which 
is defined as the ratio of the nonlinear part to the linear part of the Hamiltonian. 
each part being calculated over the whole field. Of course, this definition does not 
really make sense when external forces are applied but it provides a relatively good 
estimation of the level of nonlinearity once the system reaches the steady state. The 
mean values of e are 0.4 when A = +1 and 0.2 when A = -1. They are relatively 
small. Thus, the condition of small nonlinearity required by the theory holds for 
both systems. However the theory cannot explain the difference in the values of e, 
since the same forcing is imposed in both systems. 

The difference between the focusing and the defocusing cases is even more 
obvious when one looks at the dissipation rates of particles and quadratic energy 
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TABLE 2. a — 1/2,/? = 0. Time-averaged values of the wave 
action, quadratic energy and corresponding fluxes in the stationary 
state. 

A N E Q- Q+ P~ P+ 

+1 3 19 0.1957 0.0090 0.276 0.258 

-1 1 9 0.0098 0.0478 0.014 1.430 

for small wavenumbers: 

Q- =2 /       i/-|Jfc| 
Jk<kf 

and for large wavenumbers 

-<r \i>k\2dk, 
= 2/ Jk 

-d~ 

k<kf 

v   |*|       uk\i>k\~dk 

Q+ = 2  f      u+\k\d+ \$k\2dk,    P+=2 [      v+ftf wk\$k\2dk 
Jk>kt Jk>k, k>k; 

where */ is the characteristic wavenumber of forcing. Their time-averaged values 
in the stationary state are collected in Table 2. 

The stationary isotropic spectra of turbulence are displayed in Figures 2 and 3. 
Again the results depend on the value of A. For both cases the theoretical spectrum 
provides a higher level of turbulence than the observed one. In the focusing case 
(A = —1) this difference is almost of one order of magnitude but the slope fits 
the predicted value —1 well. For A = +1, the observed spectrum almost coincides 
with the weak turbulence one at low frequencies and then decays faster at higher 
wavenumbers. In this range, the slope is close to —5/4 as found in [5]. Note that 
a new derivation of the Majda et al.'s spectrum is proposed in [9]. 

Comparison of the turbulence levels and fluxes of particles Q+ for both signs 
of nonlinearity leads to a paradoxal result. At A = — 1 the total number of particles 
is three times less than at A = +1, while the dissipation rate of particles is higher 
by one order of magnitude. It can be explained only by the presence in this case 
of a much more powerful mechanism of nonlinear interactions, which provides very 
fast wave particles transport to high frequencies. In our opinion, this mechanism is 
wave collapse. Sporadic collapsing events developing on top of the weak turbulence 
background could send most of particles to high wavenumbers without violation 
of energy conservation, because in each self-similar collapse structure the amount 
of total energy is zero. Such a collapsing event is shown in Figure 4. Note that 
the contribution of collapses to the high-frequency spectrum is weak because they 
produce a Phillips-type spectrum which decays very fast as * -»• +oo. In our case, 
equation (4.2) becomes 

nk ~ k~3/2. 
Hence, only the weakly turbulent component *_1 survives at large wavenumbers. 
The coexistence of wave collapse and weak turbulence was also observed in [2] for 
the nonlinear Schrödinger equation. 
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FIGURE 2. ß = 0,A = — 1. Stationary and isotropic spectra rik 
vs. wavenumber. We compare the computed spectrum with the 
predicted one of Kolmogorov-type rij, = ck~x with c = c^P1/3 

(straight line). 

e'V 

101 

FIGURE 3. ß = 0,A = +1. Stationary and isotropic spectra n^ 
vs. wavenumber. We compare the computed spectrum with the 
predicted one of Kolmogorov-type n*. = ck~l with c = a2P

1^3 

(straight line). 
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FIGURE 4. ß = 0,A = — 1.  Evolution towards collapse at x ~ 1 
between t = 4999.980 and t - 5000.205. 

5.2. Numerical results for ß — 3, A = +1. At A = +1 the picture of turbu- 
lence matches the weak turbulence prediction both quantitatively and qualitatively. 
Meanwhile, the spectrum at high k's is steeper than the theoretical one. So far we 
cannot give a consistent explanation of this fact. We can just guess that it is some- 
how connected with quasisolitons. As an illustration, Figure 5 shows the evidence 
of the presence of quasisolitons. More precisely, the system is first separated into 
several soliton-like structures and low-amplitude quasi-linear waves. Processes of 
mutual interactions slowly redistribute the number of waves in a way leading to the 
growth of initially bigger quasisolitons and the decay of initially smaller quasisoli- 
tons. The final state then consists of one big quasisoliton moving in a sea of small 
quasi-linear waves. This phenomenon is similar to the 'droplet' effect observed in 
the non-integrable nonlinear Schrödinger equation [11]. The soliton solution turns 
out to be a statistical attractor for the system: long time evolution leads to the 
condensation of the number of particles into a single soliton which minimizes the 
Hamiltonian. 

6.  Conclusions 

In conclusion, the numerical results show two types of localised coherent struc- 
tures: collapses in the focusing case (A = -1) and quasisolitons in the defocusing 
case (A = +1). Their role in the statistical properties of the system can be seen 
in the spectra. It leads to a discrepancy between numerics and theory. The fact 
that weak turbulence is not reached may be due to the sparsity of resonances in 
one dimension and to the numerical discretization. Four-wave interactions are not 
as efficient, while localised structures become dominant. Therefore equation (2.1) 
is not such a good model to assess the validity of weak turbulence theory. 



TURBULENCE OF ONE-DIMENSIONAL WEAKLY NONLINEAR DISPERSIVE WAVES       9 

FIGURE 5. ß — 3, A = +1. Snapshot of a quasisoliton at x ~ 3.7 
and t = 10880. 
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On the dynamics of an ideal fluid with the free 
surface 

A.I.Dyachenko 
Landau Institute for Theoretical Physics, 2 Kosygin str. Moscow, 117334, Russia 

Abstract 

Exact cubic equations are derived for two-dimensional flows of fluid with 
the free surface. The equations involve inverse derivative of conformal mapping 
of the domain occupied by fluid to the lower half-plane, and complex velocity 
of the fluid. They are hydrodynamic-type equations and describe transport of 
singularities of conformal mapping in the upper half-plane. 

PACS codes: 47.10.+g, 47.15.Hg, 03.40.G, 02.60.Cb 

1    Physical (natural) variables 

The irrotational motion of an incompressible inviscid fluid with a free surface is a 
very basic problem in fluid dynamics. The equations describing the motion were first 
formulated by Stokes in 1845. In this article two-dimensional flows on the plane are 
considered, that allows to apply conformal mapping theory. 

The velocity potential cj) of the fluid satisfies the equation 

in the domain occupied by fluid.  The domain is bounded by the free surface y = 
r)(x,t) with the boundary conditions for velocity potential and moving free surface: 

dri 
-fo     +    Vx<i>x = (t>y (1.1) 

at y = r](x, t) and 



— = 0,y^ -oo, 
oy 

^ = 0,|s|-xx>. (1.2) 

Here g is the gravity acceleration and P - constant pressure at the surface (Let 
P = 0). The system (1.1) and (1.2) is a Hamiltonian one with the Hamiltonian 

\    roo l"n{x,t) 1     fOO 
n = -       dx \V<f,\%  + gV

2(x,t)dx (1.3) 
Z J—oo        J—oo L J—oo 

and canonically conjugated variables 
tp(x,t) = (f)(x,r)(x,t),t) and r](x,t) ( see [1] ): 

dr\ dU 
■ ■■■             — ■ 

at dip' 
d^ dU 
at drt 

(1.4) 

Along with the Hamiltonian there are three more integrals of motion, amount of 
fluid: 

d   f°° 
-^J_ooV(x,t)dx^0, (1.5) 

and vertical and horizontal momenta: 

roo fn{x,t) 
/     dx I        <j)ydy   =   0, 

J—oo        J—oo Ol J—oo        J—oo 
8    f°° fV(x,t) 

diLdxL *»dy = °- ^ 
The equations (1.1) and (1.2) are functionally nonlinear and can be hardly stud- 

ied. The most important known solutions were derived by Dirichlet in 1960, and 
they are ellipsoid (or ellipse in 2D case), hyperbola and parabola. Dirichlet solutions 
are described in detail in [2]. 

2    Conformal variables 

To simplify the equations (1.1) and (1.2) let us perform conformal mapping (see[3]) of 
the domain in z-plane occupied by fluid to the lower half-plane of a complex variable 
w = u + iv 

—oo < u < oo, —oo < v < 0. 



Now the shape of the surface is given parametrically by real and imaginary parts of 
conformal mapping given on real axis: 

y = y(u,t),     x = x(u,t) = u + x(u,t), (2.7) 

here x(u, t) and y(u, t) are related through Hubert Transformation 

y = Hx, x = -Hy, H2 = -1 

and 
1   f°° f(u')du' H(f(u)) = P.vA[    i^. 
IT J-oo    U' u 

After conformal mapping <j>(x, y, t) -»• <f>(u, v, t). Let *(u, t) = <fi{u, 0, t), the potential 
on the surface. It was shown in[3] that y(u,t) and ^(u,t) obey the following system 
of equations: 

yt = (yuH-xu)-—^ (2.8) 

here g is gravity acceleration, and 

J = xl + y2
u = l + 2xu + x2

u + y\. (2.10) 

Another form of the equation (2.8) and (2.9) (see[3]) be 

Vtxu - xtyu   =   -HVU, 
■$txu-xtVu + gyxu   =   H(qtyu-ytVu + gyyu) (2.11) 

The integrals of motion acquire the following form: 

VIWudu  +   | /     y2xudu, 
-00 Z  J — OO /oo 
yxudu, 

-00 
/oo 

^!xudu, 
-00 

/oo 

*y«du. (2.12) 
-oo 

When dealing with conformal mapping z(w, t) and velocity potential it is conve- 
nient to write down instead the real equations (2.8) and (2.9) the complex equations 
for z(w,t) and complex velocity potential $(w,t). One can get these new equations 
applying projector operator P 

P(f) = \(l + iH)(f) 



to the equations (2.8) and (2.9): 

zt   =   iUzu, 

$t   =   iU$u-P(}^-) + ig(z-u). (2.13) 
\Zu\ 

Here U is a complex transport velocity: 

It occurs that equations (2.13) can be simplified just by changing variables. In- 
deed, let us introduce instead of z(w,t) and $(w,t) another functions R(w,t) and 
V(w, t) in a following way 

A- i 
Zu °io 

$w   =   -iVzw. (2.14) 

(V is just iff, i.e. complex velocity). Note, that because of z(w,t) is conformal 
mapping, its derivative does exist in lower half-plane and does not have zeroes in 
there. Thus function R(w, t) is analytic in the lower half-plane and has the following 
boundary condition: 

R(w,t)->1, \w\ ->■ oo, Im(w) < 0. 

It is obvious that boundary condition for V is: 

V(tu,t)->0,    |tü|->oo,   lm(w)<0. 

Then for these analytic functions equations acquire very nice form: 

Rt   =   i{UR'-U'R), 
Vt   =   i(UV'-RP'(VV)) + g(R-l). (2.15) 

Here 
U = P(VR + VR). 

The equations are cubically nonlinear and include linear integral operator. They are 
similar to hydrodynamics type equations, but given in the complex plane. Important 
role there plays complex transport velocity U. It conveys zeroes of R(w,t), which 
are singular points of conformal mapping z(w,t). Possible types of zeroes need to 
be study in the next article. Here it should be just mentioned that in the numerical 
simulations only ,/w branch points are observed. 



It is easy to include surface tension in the equations (2.15), one has just to replace 
the second equation by 

Vt = i(UV - RP'(VV) + g(R - 1)) - 2aRP'(Q'Q - Q'Q), 

where a is surface tension coefficient, and Q = \fR. 
Equations (2.15) keep the same form for other boundary conditions. Instead of 

boundary conditions (1.2) one can consider periodic boundaries as well as fluid of 
the finite depth. 

Note that equations include now only derivatives of conformal mapping and com- 
plex velocity potential. As regards integrals of motion they acquire more complicated 
form. But if one restores complex velocity potential 

$ = -i I —dw 
R I 

then Hamiltonian is equal to 

/oo 
Re{$)Im{&) 

-oo 

and momenta 

/OO 1 /-CO 1 

Re($)Re(-)du,   Px = /     Re($)Im{-)du. 
-oo K J-oo R 

3    Conclusions 

The main statement of the article is the following. The well-known equations for 
flows of fluid with the free surface (1.1) are equivalent to the cubic equations (2.15) 
written for the inverse derivative of the conformal mapping R(w,t) = l/z'(w,t) 
and fluid velocity V(w,t). These equations are of hydrodynamic-type and describe 
transport of singularities of conformal mapping in the upper half-plane. And moving 
singularities define the shape of the surface. 

Author thanks Prof. V.E. Zakharov for helpful discussion. This work was par- 
tially supported by INTAS-96-0413 Grant, by ONR Grant # N00014-98-1-0070, by 
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00-15-96007. 
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On conservation of the constants of motion in the models of 
nonlinear wave interaction. 

A.Pushkarev, V.Zakharov 

1. Introduction 

One of the central problem of the development of the operational models for sea-wave prediction is an 
adequate description of nonlinear wave interaction. So far, the most solidly justified approach to this 
description is the use of the kinetic equation for the spectral density of wave action first derived by 
K.Hasselmann in 1962. Since this time, several codes for numerical simulation of nonlinear wave 
interaction were developed (Webb 1978, Masuda 1980, Hasselmann and Hasselmann 1981, Resio and 
Perrie 1991, Polnikov 1994, Lavrenov 1998, Komatsu and Masuda 1996, Van Vledder 1999, etc). 

Nonlinear wave interaction is described by a complicated nonlinear integral operator and its 
numerical simulation is a tricky problem. All existing algorithms for its simulation are cumbersome and 
time consuming. So far, they are too slow to be directly used in practical operational models of wave 
prediction. Therefore, the development of faster approximate models of the nonlinear wave interaction is a 
very urgent problem. 

The mostly common approximate model is DIA (Discrete Interaction Approximation), known also 
as the WAM method. Hasselmann and Hasselmann offered it in 1985. In this model, the integral operator in 
S ni is replaced by a sum consisting of few discrete terms. Zakharov and Pushkarev proposed quite another 
approximate model, based on the use of the nonlinear diffusion operator in 1999. 

To estimate the quality of an approximate model one should compare its prediction with the results 
of numerical simulation in the framework of the "exact" kinetic equation. To make this comparison reliable 
on should be sure that the " exact" model is good enough to be a paragon for such test. Actually, the real 
criteria for examination of quality of such models are absent. 

Different schemes for numerical solution of the Hasselmann kinetic equation give qualitatively 
similar, but quantitatively slightly different results, and there was no so far a standard way for estimation of 
their reliability. This circumstances makes the problem of construction of fast approximate models of 
nonlinear wave interaction difficult and uneasy. One cannot believe in an approximate model if one cannot 
compare it with a real good standard for calibration. 

Meanwhile there is a natural way for examination of numerical method for solution of the wave 
kinetic equation. This is the control of conservation of the basic constants of motion - wave action, energy, 
and two components of momentum. Similar approach is widely used in applied mathematics in the case 
when physical situation is described by conservative ordinary or partial differential equations. 

In the case of nonlinear wave interaction, the situation is more complicated. It is described by not 
differential, but by the integral operator, which is non-local in the k-space. Any scheme of numerical 
integration of the kinetic equation operates in some finite domain of this space, always bounded in 
frequency and sometimes limited in angle. Integrals of motion, contained in any bounded domain are not 
conserved; the non-linear wave interaction carries them out of the domain. Due to non-locality of the 

Snl operator, this leakage cannot be interpreted just as a flux through a boundary of the domain. The loss 

of the motion constants from finite domains is not a mathematical abstraction. Its is a real and a very strong 
physical effect. In many cases, the transport of motion constants is the major mechanism defining shape of 

spectra. For instance, a typical asymptotic behavior of energy spectrum at large frequency E, °c f4 js 

the result of constant transport of wave energy to the large frequency region. 
In this article, we propose a modified method of calculation of conservation of the motion constant 

in finite domain making possible to take into consideration the leakage outside a domain. We call it "clean 



test", which allows accurate estimation of the quality of any algorithms for numerical solution of the wave 
kinetic equation. 

2. Are the constants of motion really conserved? 

In the absence of pumping from the wind and dissipation the Hasselmann equation reads: 

dn    c 
^ = Snl (2.1) 

Snl = JI r„,Mj I2 S(k + kl-k2-k3)S(0)k + Q)ki + 0)ki +0)ki)X 

KVfc +nknk,nh -nknk,nk2 ~nknkn  )dk,dk2dkz 

(2.2) 

It is considered that equation preserves the following constants of motion 

N = \ndk - Wave action (2.3) 

E=\ COknkdk - Energy (2.4) 

M = \knkdk -Momentum (2.5) 

Are these constants really constant? To prove conservation of these integrals, one must prove validity of 
following identities: 

— = $SnIdk=0 (2.6) 

dE     r 
= \o)kSnldk=0 (2.7) 

dt 
dM 
dt 

= jkSnldk=0 (2.8) 

These identities are trivial if one can change the order of integration by different ki. If this operation is 
possible, one can transform, for instance, the expression (2.7) to the form 

\wkSnldk=Ucok +aki +o)k2 +cok)S(k + kl -k2-k3) 
(2 9) 

8{cok +aki+0)k2 +ö)t3)n,n,2nt3^1^2^3 

As it is known from the classical calculus, the operator of change of the integration order in improper 
integrals is allowed if the integrand decays fast enough at infinity. Let us consider this question in detail. 

In equation (2.2), as well as in formulae (2.3)-(2.9), the integration is going on the infinite domain. 
In reality, both in experiment and in computer modeling the domain of integration is finite. Thus to check 
the identities (2.6)-2.8) we should first consider a finite domain. This is a quite nontrivial procedure. 
Suppose that the domain of integration is finite 

\k\<p (2.10) 



One can denote 

[nk, I k k p 
[0,\kt> p 

By plugging Dk instead of Dk into S n one get by definition Sn —> S^f1. Apparently integrand in S^f 
has bounded support and change of order of integration is permitted at any value of p. Hence 

\s<
nfdk = jslfdk+ jslfdk = o 

m<p \k\>p 

jcoXfdk =  jo)kS
(fdk + \(OkS[fdk = 0 (2.12) 

M<p \k\>p 

jkS(fdk= jkwkS
(fdk+ jkS{fdk = 0 

\k\<p \k\>p 

Let us denote 

Np = jndk,   E" = \coknkdk,   Mp = jknkdk 
\k\<p likp \k\<p 

Now one can find balance of the motion constants in the domain \k k p 

^ = ^ \nkdk= \s(fdk = -\sifdk = -Q{p) 

Ar- = -T l^n.dk =  \(OkS
(fdk = - \a>kS

lfdk = -P(p) (2.13) 
m        °* m<P \k\<p m>p 

^7T = i \^dk= jkS^dk = -\kS^dk = -K(p) 
01 m\k\<p Krkp \k\>p 

Last integrals in (2.13) can be calculated by the use of identity (2.11). In (2.13) Q, P and K are the values 

of the "losses" of the constants of motion. One can present Snl in the following form 

S„,(k) = Fk-yknk (2.i4) 

p
k = j1 r«lMi \28{wk + coh + (oki + ah )S(k+kl+k2+k3)x 

nk1
nk2

nkidkldk2dk3 

7k =\\TkkMi \2S(cok+o)ki +Q)k2 +(0^)0$ + ^ +k2 +k3)x 

(\nk2 +«*,»*, -n.n^dk^dk, 

(2.15) 

(2.16) 



By definition 

S^k) = Fk
w-rlP)np

k (2.17) 

FkP) =       J'^3 \2S(o)k +o)ki +0)k2 +a>kj6{k+kx +k2 +k3)x 
\kx\<pjk2\<p,\kj<p (2.18) 

nk nk nk dkxdk2dk3 

rlP)=       JI Tkkihki \26{(ok + wki + 0)ki + o)ki )S(k + kl+k2+k3)x 
i^kp.i^kp.fcjkp (2.19) 

(nk nk +nknk - nk nk )dkldk2dk3 

One should mention that Sp, (k) & 0 at I k l> p. As far as nk = 0 at I k l> p, one has: 

Snl(k) = Fk
p,\k\>p (2.20) 

Formula (2.20) is extremely important. It expresses the following clear physical fact: the income term Fk 

is nonzero far beyond the domain of I k k p where the wave spectrum is concentrated. Meanwhile 

Fk   ^ 0 only in a finite domain. Indeed, vector k satisfies the conditions 

k = k2 + k3-k] (2.22) 

0}k=ü)k2+ü)k3-COki (2.23) 

and     I kx l< p, I k2 k p , I k3 k p. 

Conditions (2.22), (2.23) can be satisfied only for 

1 ^ k Pmax (2.24) 

Here Pmax = f(P) - some uPPer limit depending on a shape of COk . One can get some apriori estimate for 

pmm . From (2.22) one can get 

Pmax < 3P (2.25) 

From (2.23) one obtains 

a)P~<2a>P (2.26) 

More accurate estimate for pmm is defined by CDk and depends on the depth. On the infinite depth 

mk = 4&k and Pmax is achieved if 



k2 = k3, kx = —k2, I k21= p (2.27) 

In this case 

9 
Pmax=-P (2-28) 

3 
Ct)D     =-0)B (2.29) 

Pmax 1        P V ' 

Introducing polar coordinates in k -pane, we have the following expressions for losses (rates of leakage) of 
the constants of motion from the domain \k\> p 

Q(p)= J pdp\Fp(p,d)dd 
p o 

Pmax It 

P(P)= J pO)pdpJFp(p,0)d6 
p o 

Kx(p)= J p2dpJFp(p,6)cos8dd 
p o 

Pmax 2A- 

£y(p)= J p2dpJFp(p,e)smOdO 

p o 
(2.30) 

Pmax 27T 

I 
p o 

Pmax 2lT 

3. Clean test for integrals conservation 

Now we can answer the question about real conservation of the integrals. If the domain is finite, they are 
never preserved. It is obvious from (2.30) that in all cases 

Q(p)>0, P(p)>0 (3.1) 

Thus, wave action and energy always leak out of the domain I k l< p . In most cases, wave spectrum is 

7t 7C 
concentrated in the right half-plane - — < 0 < —, COS 6 > 0. In this situation Kx (p) > 0, the sign of 

Ky (p) can be arbitrary. 

Suppose again that 

nk=0,\kt>p (3.2) 

We showed that 

^ = tf>(*) = F<'>(*)>0 (3.3) 



Hence, from physical viewpoint condition (3.2) is artificial. If it is satisfied in the initial moment of time, it 
will be immediately violated. In the close moment of time dt 

n = n0+S%(k)-ä (3.4) 

n becomes positive in the whole domain I k k pmsK. 

Anyway, the consideration we performed is useful. It can be used as a foundation for a "clean" test 
for all codes for numerical solution of the kinetic wave equation. 

If condition (3.2) is satisfied 

f-o ifi^/>n (3.5) 

Hence 

dt, 
jS'dk = 0 

f=0 

y   \wkS
p

nldk 
dt 

M<Pm 

= 0 
f=0 

-   jkS'dk 
dt 

l*l<Pm 

= 0 

(=0 

(3.6) 

Conditions (3.6) can be rewritten in polar coordinates as 

Pmax 2ff d P'- - j pdP\s[fdO 
dt 

0 

= 0 
f=0 

In -\   Pmax 

- j a>,pdp\spde 
dt 

= o 
f=0 

2x ~\   Pmax 

— j p^pjs^cosede 
dt 0 

"max 

o 

2K 

= 0 
t=0 

— j p2dpjS(f sin Odd 
dt 

= 0 
r=0 

(3.7) 

Condition (3.7) can be relatively easily checked for any numerical code used for solution of the kinetic 

equation. To check the quality of the code one should put the initial data nh > 0  at I k k D 
c • r u    • fmax • 
bxpansion of the integration domain is the price to be paid for nonlocality of the four-wave interactions. 



Relations (2.13) can be generalized to the case when there is the interaction with wind and 
damping. Now kinetic equation (2.1)-(2.2) reads 

■^ = Sn,+pknk (3.9) 

where   ßk is growth-rate of the instability or the damping depending on the sign. Equations (2.6)-(2.8) 
now should be replaced by the following relations: 

-^ = \°>kßknkdk (3.10) 

dM 
dt 

= jkßknkdk 

Relations (3.10) are formal and for a finite domain should be deciphered in a proper way. To do that one 
can assume 

ßk=-A,A^>°o,\k\>p 

OH 
In the domain I k l> p one can neglect the time derivative — and put 

dt 

Snl-ßknk=Fk"-(7k+A)nk=0 

As far as yk «A, one can consider approximately (I k l> 1) 

Ft"' 
"*-— (3.11) 

By plugging (3.11) into (3.10) one notice that the value of A is cancelled from the equations, taking the 
form 

dNp e 
-r- = -]ßknkdk-Q 

01 i*i<p 

oEp f      _ 
■ = - )°>kßknkdk-P (3.12) 

dt \k\<p 

■ = - \kßknkdk-K 
\k\<p 



Equations (3.12) are the balance equations which also could be used to control numerical codes. One should 

either specially program the calculation of the losses Q,P,K or extend the integration domain to 

4. Estimates for integral losses. 

Suppose that spectral density of wave action n(k) has the maximum at k ~ k0 and p»kQ. Let us 

estimate in this limit the losses Q, P and K. Integrals (2.30) consist of two parts. One part is given by 

integration in a small domain p'= p + Sp, öp < k0. In this domain, integration by &;, k2 is performed 

over the vicinity of the spectral maximum k0. Thus 

ß = ß(1)+ß(2) 

p-pW +p(2) 

—       —(1)       —(2) 
K = K    +K 

(4.1) 

Here 

Qm = 
n(p)n2(k0) 

co(k0) P.*o.P.*o 

p(DsM/,)./„N„2 
O)(k0) 

Kw=    P 

co(k0) 

n{p)n (k0) 

n{p)n\k)- 

P*0,p,k0 

P^0,p,k0 

k6 
(4.2) 

Other part of contribution in (4.1) is given by integration in the domain p = p . In this case, all wave 
vectors in (2.18) have the same order of magnitude. Hence 

)(2) Q(Z,= 

)(2) 

n\p) 
co(p) 

= n\p)\Tp, 

I  P.P.p.p   P 

P'P.pl (4.3) 

K«^-JL-n\p) 
Q)(p) 

T        \  n6 

p.p.p.p\ P 

We consider now the case of deep fluid. In this case 0)(p) = g1/2p^2 

T(P>P,P,P) = P3 

k0« p 
T(p,kQ,p,k0) = k2p 

We will consider that n(k) is a powerlike function 

(4.4) 



n(k) = k * (4.5) 

Comparing Qm and Qm one see that for the case S > 19/4      Qm « Q(2). The same is correct for 
other constants of motion. Finally, one obtains 

P = P12-3S (4.6) 
K^p25/2-3s 

Now we can answer the question about real conservation of the motion constants. All motion constants 
conserve if 

n{k) < Ck~25/6 at k -> oo (47) 

5. Kolmogorov spectra and their experimental confirmation. 

It is known since 1966 (Zakharov, Filonenko) that the stationary equation 

Snt=° (5.1) 

has isotropic powerlike solutions 

n?=Ck-23'6 
k   =<-iK (5.2) 

(2) _ r  1,-4 
k    ~ c2k (5.3) 

The physical meaning of this solution becomes clear after plugging (5.2) into (4.6). For s = 23/6     Q is 
the constant while P and K grow in time. Hence, (5.2) is a Kolmogorov spectrum, corresponding to constant 

flux of wave action from large to small wavenumbers. For such type of asymptotic neither N, E or M are 
"real" constants of motion. 

If s = 4 Q = p~V2 . In this case Q -» 0 at p -» oo, and wave action is "a real" constant of 
motion. Meanwhile, in this case P = const. Hence, (5.3) is a Kolmogorov spectrum describing permanent 
leakage of energy to large wavenumbers. In terms of spectral density of energy spectra (5.2)-(5.3) read 

pW _ n ^1/3-11/3 
^oi   -ate   CO (54) 

£(2) _       pl/3,.,-4 £a   -a2f   a (55) 

Here    ax, a2  are unknown Kolmogorov constants. One can formulate a conjecture that a general 
physically relevant solution equation 

»,=P»*-F(fi(«*)™£«t)-'«) (5.6) 



where F is an unknown function of two variables. It can be found explicitly in heuristic "diffusive" model of 

Snl (Zakharov, Pushkarev 1999). 

The spectrum CO has the long history. Zakharov and Filonenko found it analytically as a well- 
hidden exact solution of equation (5.1) in 1966. Both authors lived in the USSR and were not allowed to 
travel abroad and report their results on international conferences. That was one reason why the paper of 
Zakharov and Filonenko, published in the leading Russian scientific journal (Doklady Academii Nauk) was 
almost not noticed. 

There was another reason too. In 1958, O.Phillips offered that the spectrum of wind-driven waves 
is defined completely by wave breaking and has a universal form 

ea tag1 cor* (5.7) 

Here OC is the dimensionless "Phillips constant". 
The very idea of Phillips was seminal and productive. A we understand now, situations when 

spectra of wave turbulence are defined completely by local singularities is rather common (see, for instance, 
Zakharov, Dias, Pushkarev, Guyenne 2000). 

According to original idea of Phillips, spectrum (5.7) is automatically established at CO > CO0, 

where COQ is a characteristic frequency of the spectral maximum. All spectral dynamics is just evolution 

^o = ®o(0 —* 0 at t ~* °° •In sPite of its elegance and simplicity, the initial conjecture of Phillips is not 
confirmed by experiments. By definition 

jeüldco = (r]2) = H2 (5.8) 

0 

By integration of (5.7) one obtain 

Hi „ ~d2 z    Qg2    T 

Acor    M^icy 

or 

r/ocl2 

(5.9) 

Here T — 2;r/670 - characteristic period of energy containing waves. 

Relation (5.9) can be checked experimentally. It was Yoshiaki Toba who did it. In 1972-73, he 
published a set of articles, summarizing his long-time experiments on the wind-wave channel in Sendai 
University. He found that, instead of (5.9), another relation holds: 

H~T3/2 (5.10) 

Moreover, the Phillips constant, supposed to be universal and not depending on the wind velocity, happened 

to be proportional to the " friction velocity" w., characterizing the momentum transfer from air to sea. 

These facts can be naturally explained if one assume that instead of (5.7), the spectrum has a form 

£m=ßgutCO~4 (511) 



Here ß is another dimensionless constant (Toba's constant). Toba made careful measurements of the 

spectrum tale and found that formula (5.9) describes the spectral asymptotic very well. He found 
experimentally that the value of ß is: 

y0 = 6.2 1(T2 (5.12) 

We must stress that Toba was completely unaware about the paper of Zakharov and Filonenko. 

After pioneering works of Toba experimental confirmation of 0)~4 spectrum are mounted. Just a 
list of authors who observed this asymptotic is impressive: among them Kawai at al. 1977, Kahma 1981, 
Forristall 1981, Battjes at al 1986, Donelan, Hamilton and Hui 1985, Donelan and Pierson 1987. In 1985 
O.Phillips, summarizing all experimental data, criticized his early theory (which, in our opinion, is still a 

sample of outstanding scientific intuition) and agreed that CO'4 is a reality. 

Another approach for confirmation of the CO spectrum is the numerical experiment. Several 
groups (see Masuda and Komatsu 1980, 1996; Resio and Perrie 1991; Polnikov 1994, 2000) observed a 

universal effect. If the initial data in equation (2.1)-(2.2) decay like C0~5, very soon its asymptotic behavior 

changes to CO    . 
In this connection, we would like to mention especially works of the group of D.Resio. They did 

not only follow formation of the CO spectrum, but also calculated fluxes of energy at k —> °o and 

checked that for CO     the flux is constant in CO. 

In conclusion, one can say that the spectrum CO'4  is definitely confirmed now by both many 

experiments as well as many numerical simulation arguments. The spectrum fiT11'3 also is confirmed quite 
well, but this point is beyond the scope of this article. 

5. Why co-4 not aT5? 

The battle between CO     and CO"   could look strange for a person outside of a narrow community of 

Snl experts. Nevertheless, this argument makes a serious sense. It is enough to compare the value of the 

energy loss P in (4.6) for both spectra. For £ö = fiT4 and s = 4, P is the constant. . For £a = CO'5 

s = 9/4, P = p~3/2 -> 0 at p -> oo. 

Another words, for £m = CO" the energy in the wave ensemble is conserved, while in the case 

£m = CO it leaks out with a constant rate. This is a very critical difference. Just an elementary analysis of 

the observational data contradicts the idea that both wave action and energy are conserved. Indeed, all 
experiments show that the spectral maximum moves in the process of "maturing " to the low wave numbers. 

At the same time, the spectrum in the asymptotic area CO » C00 stays almost constant. As far as quanta of 

waves loose their energy, moving from high to low frequency region, the outlined facts are compatible with 
the fact of permanent loss of wave energy, existence of the constant flux of energy to high CO and, as a 

result, to the Of4 asymptotic at CO —> oo . 

Summarizing the facts, one can say that the asymptotic £a = C0~5 in the weak turbulent regime is 
a contradiction to the energy conservation law. 

Said Aristotle: "You are friend Plato, but the truth is more valuable". We can say 
" You are a friend Dr.... but the conservation of energy is more important". 
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Abstract 

A two-parameter nonlinear dispersive wave equation proposed by Majda, McLaughlin 
and Tabak is studied analytically and numerically as a model for the study of wave turbu- 
lence in one-dimensional systems. Our ultimate goal is to test the validity of weak turbulence 
theory. Although weak turbulence theory is independent on the sign of the nonlinearity of 
the model, the numerical results show a strong dependence on the sign of the nonlinearity. 
A possible explanation for this discrepancy is the strong influence of coherent structures - 
wave collapses and quasisolitons - in wave turbulence. 

1    Introduction 

A wide variety of physical problems involve random nonlinear dispersive waves. The most 
common tool for the statistical description of these waves is a kinetic equation for squared 
wave amplitudes, the so-called kinetic wave equation. Sometimes this equation is also called 
Boltzmann's equation. This terminology is in fact misleading because the kinetic wave equation 
and Boltzmann's equation are the opposite limiting cases of a more general kinetic equation 
for particles which obey Bose-Einstein statistics like photons in stellar atmospheres or phonons 
in liquid helium. It was first derived by Peierls in 1929 [1]. In spite of the fact that both 
the kinetic wave equation and Boltzmann's equation can be derived from the quantum kinetic 
equation, the kinetic wave equation was derived independently and almost simultaneously in 
plasma physics and for surface waves on deep water. This was done in the early sixties while 
Boltzmann's equation was derived in the nineteenth century! The derivation for surface waves 
is due to Hasselmann [2] (see also Zakharov [3]). 

Once the kinetic wave equation has been derived, the shape of wave number spectra can 
be predicted by the so-called weak turbulence (WT) theory. It is called weak because it deals 
with resonant interactions between small-amplitude waves. Thus, contrary to fully developed 
turbulence, it leads to explicit analytical solutions provided some assumptions are made. So 
far, there have been only a few studies to check the results of WT theory. Recently, Pushkarev 
and Zakharov [4] numerically solved the three-dimensional dynamical equations for the free- 
surface elevation and the velocity potential in the case of capillary water waves. They obtained 
an isotropic spectrum close to the theoretical power-law found by Zakharov and Filonenko 
[5]. Majda, McLaughlin and Tabak [6] (hereafter referred to as MMT) considered four-wave 
interactions by introducing a one-dimensional model equation. This equation can be integrated 
numerically quite efficiently on large inertial intervals. They examined a family of Kolmogorov- 
type solutions depending on the parameters of the equation. The validity of several theoretical 



hypotheses was then assessed numerically. Namely, MMT confirmed the random phase and 
quasi-gaussian approximations. They also showed the independence of the solutions on the 
nature of forces, initial conditions, and the size and level of discreteness of the computational 
domain. However, their simulations surprisingly displayed spectra steeper than the predicted 
ones. They explained the discrepancy by proposing a new inertial range scaling technique which 
seems to yield the appropriate exponents. More recently, Cai, Majda, McLaughlin and Tabak 
[7] revisited their earlier results and found some results which agree with WT theory as well.1 

They considered two kinds of Hamiltonians: Hamiltonians which are the sum of a quadratic 
term and a quartic term (positive nonlinearity), as in [6], and Hamiltonians which are the 
difference between a quadratic and a quartic term (negative nonlinearity). For either sign of 
nonlinearity, they found agreement with MMT theory in some cases and agreement with WT 
theory in some other cases. Since their computations were performed with a dispersion relation 
in which the frequency varies like the square root of the wave number, one can see an analogy 
with deep water waves. Incidentally, the WT theory was recently developed for shallow water 
waves by Zakharov [8]. 

As in many other fields, numerical modeling leads to some difficulties, especially when one 
wants to compare with the theory. Most of these difficulties are related to finite-size effects, i.e. 
the domain is discretized into a grid of points in computations whereas one assumes an infinite 
medium in theory. We can mention the bottleneck phenomenon [9] which tends to flatten the 
slope of the inertial range at small scales. It is commonly observed in problems with a dissipative 
cutoff. In addition, Pushkarev [10] revealed the phenomenon of frozen turbulence at very low 
levels of nonlinearity. In this situation, the resonance conditions have very few solutions (or 
may not be fulfilled at all!) because of the discrete values of wave numbers. As a consequence, 
there is no energy flux due to the lack of resonating wave vectors. The power-law regime only 
takes place at moderate levels of nonlinearity where quasi-resonant interactions come into play. 
Pushkarev concluded that weak turbulence in bounded systems combines the features of both 
frozen and Kolmogorov-type turbulence. The beauty of the MMT model equation is that the 
above mentioned difficulties can be controlled completely. 

After introducing the model equation, the paper is divided into two parts. In the first 
part, the MMT equation is studied analytically. A weak turbulence description of the equation 
is provided (see [6]). We find the Kolmogorov solutions of the kinetic equation and determine 
the set of parameters for which such solutions can be realized. Then we discuss the coherent 
structures which can compete with weak turbulence. The most simple coherent structures are 
solitons similar to the soliton solutions of the Nonlinear Schrödinger Equation (NLS). 

Solitons for the MMT equation exist only if nonlinearity is negative. In the cases of 
interest, they are shown to be unstable (see Section 7) and cannot play an important role in 
the wave dynamics. 

As an alternative to soliton coherent structures, there are wave collapses described by 
self-similar solutions of the MMT equation. These solutions can exist in a certain parameter 
regime for both signs of nonlinearity. Theoretically speaking, both solitons and collapses can 
coexist with weak turbulence. 

Another type of coherent structures are quasisolitons, or envelope solitons. They were 
discussed recently by Zakharov and Kuznetsov [11]. In the MMT model quasisolitons exist at 
positive nonlinearity only. Their stability remains an open question. 

The main new theoretical results of the first part are a careful tabulation of the signs 
lThese three papers were kindly given to us when the present manuscript was essentially completed. Some 

of the results are similar to ours, but their interpretation is different. 



of the fluxes for the MMT model equation, the existence and possible role of quasisolitons for 
positive nonlinearity, and an analogy with Phillips spectrum associated with the formation of 
collapses. 

In the second part, we describe the results of the numerical study of the MMT equation. 
We find that the wave turbulence described by the MMT equation is different both quanti- 
tatively and qualitatively for both signs of nonlinearity. Since the predictions of WT theory 
are identical for both signs of nonlinearity, WT theory can be applied at best for one sign of 
nonlinearity. Our analysis of the results leads to somewhat contradictory results. 

For positive nonlinearity the balance of energy and particle fluxes as well as the level of 
turbulence are in good agreement with WT theory. Meanwhile the slope of the spectrum in the 
window of transparency is steeper than predicted by WT theory. 

In the case of negative nonlinearity the picture of turbulence is quite different from the 
WT predictions, both qualitatively and quantitatively. First of all, the turbulence is stabilized 
on a level which is one order of magnitude less than predicted by WT theory. Then the sign 
of the flux of particles is opposite to the one predicted by WT theory. Both these facts lead to 
a conjecture on the existence of a strong and essentially nonlinear mechanism which competes 
successfully with WT quartic resonances. In our opinion, this mechanism is the wave collapse, 
described by self-similar solutions of the MMT equations. At the same time, the high-frequency 
tail of the spectrum has a slope which coincides exactly with the slope predicted by WT theory. 
This leads to the conclusion that in spite of the presence of wave collapses, the high-frequency 
asymptotics of spectra is governed by the WT processes which are responsible for carrying only 
a small part of the energy. The coexistence of wave collapses and weak turbulence was already 
described in the context of the 2D NLS [12]. 

Wave collapse is an example of an essentially nonlinear coherent structure arising in 
wave turbulence under certain conditions. As said above, another important type of coherent 
structures are quasisolitons or envelope solitons living for a finite time. Such structures can 
arise in the MMT model in the case of positive nonlinearity. We believe that these structures 
are responsible for the deviation of the spectra from the ones predicted by WT theory. 

2    Model equation 

We investigate the family of dynamical equations 

dt 
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dx 
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tp + X 

d 
dx 

ßß ( d 
dx 

ßß 
4 

2 
d 

dx 

ß/4 

v» A = ±l. (2.1) 

where ip(x,t) denotes a complex wave field and a,ß are real parameters. 
If A = +1, one exactly recovers the MMT model which was treated in [6]. Note that 

our parameter ß is the opposite of the parameter ß in MMT. The extension A = ±1 in Eq. 
(2.1), which was also treated in [7], raises an interesting problem because the balance between 
nonlinear and dispersive effects may change according to A. 

Besides the Hamiltonian 

H = HL + HNL 
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the system (2.1) preserves two other integrals of motion: wave action and momentum, respec- 
tively 

N = f\+\*d*       and       M=\j^-fr)dX. 
As usual, it is convenient to work in Fourier space. Let us write Eq. (2.1) as 

dt 
i -TT- = u{k)^k + / Ti23fc i>ii>2i>3 S(h + k2-k3-k) dkxdk2dk3 , (2.3) 

where ipk - i>(k,t) denotes the fc-th component in the Fourier decomposition ofi/>(x,t) and (*) 
stands for complex conjugation. 

In this form, Eq.    (2.3) looks like the so-called one-dimensional Zakharov's equation 
determined by the linear dispersion relation 

w(Jfe) = |&r,    a>0, (2.4) 

and the simple interaction coefficient 

Tmfe = T(ku k2, k3, k) = \ \k!k2k3kf/A . (2.5) 

One easily sees that the kernel Ti23fc possesses the symmetry required by the Hamiltonian 
property 

2~123fc = ^213fc = Ti2kS — T3ki2 . (2.6) 

Moreover, the absolute values in Eqs (2.4) and (2.5) ensure the basic assumptions of isotropy 
and scale invariance. In other words, w(k) and T\23k are invariant with respect to rotations 
(k -> -k) and they are homogeneous functions of their arguments with degrees a and ß 
respectively, i.e. 

Tm,Zk2,Zk3,(k)=ZßT(kuk2,k3,k),    £>0. (2.7) 

Following MMT, we fix a = 1/2 by analogy with gravity waves whose dispersion relation reads 
as to — (gk)ll2 (g being the acceleration due to gravity). The power ß takes the value +3 if 
the analogy is extended to the nonlinear term but we will consider a wider range of values for 
ß. 

Eq. (2.3) describes four-wave interaction processes obeying the resonant conditions 

h + k2   =   k3 + k, (2.8) 

w\ + w2   =   CJ3 + u!. (2-9) 

For a > 1 these equations only have the trivial solution k3 — fci, k = k2 or k3 = k2, k = k\. For 
a < 1 there is also a nontrivial solution. Note that in this case the signs of ki must be different. 
For instance, k\ < 0 and k2,k3,k > 0. If a — 1/2, Eqs (2.8)-(2.9) can be parametrized by two 
parameters A and £ 

kx = -A2e,    k2 = A2{l + Z + Z2)2,    k3 = A2(l + 02,    k = A2£2(l+02. (2.10) 

In the case a = 2 and ß — 0, Eq. (2.1) becomes the NLS equation 

dtp        d2if) 
~dt=~dx2 ig-S+w* e-«> 

(note here that |^|2 = - J-?). 
Positive nonlinearity A = +1 corresponds to the defocusing NLS, while negative nonlin- 

earity corresponds to the focusing NLS. 



PART I: THEORY 

3    Weak turbulence description of the model equation 

If one only considers small nonlinear effects, then the statistical behavior can be mainly de- 
scribed by the evolution of the two-point correlation function 

(i>(k, t)i>* (k', t)) = n{k, t)8{k- k'), 

where brackets denote ensemble averaging. We introduce also the four-wave correlation function 

<^(fcl,*)^(fc2,t)^*(fc3,*)^*(*,*)> = Jl2Zk5(k1+k2 -h-k). (3.1) 

On this basis, WT theory leads to the kinetic equation for n(k, t) and provides tools for 
finding stationary power-law solutions. For details, see [6]. Here we explain the main steps of 
the procedure applied to our model. 

The starting point is the original equation for n(k,t). From Eq. (2.3), we have 

dnk 

dt 
= 2 / Im J123fc Ti23fc S(h +k2-k3-k) dkldk2dkz. (3.2) 

Due to the Quasi-Gaussian Random Phase approximation 

Re Ji23fc =s nin2 [Sfa - k3) + S{ki - k)] . (3.3) 

The imaginary part of J123*; can be found through an approximate solution of the equation 
imposed on this correlator. The result is (see [13]) 

Im Jnsk - 2 7T Tx*23fc 6(ui + u2 - w3 - w) (nin2n3 + nxn2nk - nin3nk - n2n3nk).        (3.4) 

This gives 

-g-   =   47T / |Ti23fe|2 (nin2n3 + n\n2nk - nin3nk - n2n3nk) (3.5) 

x    <5(wi + W2 - w3 - w) S(ki + k2 - k3 - k) dk\dk2dk3 . 

Since the square norm cancels the sign of Ti23fc, it is clear that the WT approach is independent 
on A. Here we point out that MMT mistakenly wrote a factor 127T instead of 4ir in Eq. (3.5) 
and the right hand side of Eq. (3.5) with the opposite sign. This fact is particularly important 
when determining the fluxes of wave action and energy. 

Assuming that n(-fc) = n(k) (similarly to an angle averaging in higher dimensions), one 
gets 

m 
dN{w) 4n  f ß/3-c+i 

- -4  / (wi^vau)     <*       (nin2n3 + nin2nw - nin3nu - n2n3nu) 
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+ o(-wi<* + w2<* - u3<* -w«)   du>idu)2dw3, (3.6) 



where Af{uj) = n (k(uj)) dk/dw, nw stands for n {k{w)) and w is given by Eq. (2.4). 
The next step consists in inserting the power-law ansatz 

n(v) a w-7 , (3.7) 

and then performing the Zakharov's conformal transformations [6, 12, 13]. Finally, the kinetic 
equation becomes 

™MK „-»-■,(«, ft 7), (3.8) 

where 

J(a,/?,7)   =   ^/"(666)fi/|ti-1"7(i + 67-ei7-67)^i + 6-6-6) or JA 

x 6(^ + &± + &± - 1) (1 + &» - hy - by) d^dfrdb , (3.9) 

with 

2/3 + 3 
A = {0<£i<l,0<6<l,£i + 6>1}    and   y = 37 + l a 

The nondimensionalized integral 7(a, ß, 7) is obtained by using the change of variables Wj —► 
u£j    (j = 1,2,3). 

The ansatz (3.7) makes sense if the integral in (3.6) converges. It could diverge both at 
low and high frequencies. The condition of convergence at low frequencies coincides with the 
condition of convergence of the integral in (3.9) and can be easily found. It reads 

0 + 4. 
21<-1 + ^—. (3.10) 

The condition of convergence at high frequencies can be found after substituting (3.7) into (3.6). 
Omitting the details, we get the result 

ß + a-l 
1>- . 3.11 a 

In all the cases discussed in this article, both conditions (3.10) and (3.11) are satisfied. 
For the case a = 1/2, one can transform Eq. (3.6) into the form 
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This equation can be used for the numerical simulation of weak turbulence. 

4    Kolmogorov solutions 

The aim is to look for stationary solutions of the kinetic equation.  Prom Eq.  (3.8) we easily 
find that the solution 

dJ\f{u) 

at = 0 4=*   J(a,/?,7)=0, (4.1) 

is satisfied only for 7 = 0,1 and y = 0,1. 
In terms borrowed from statistical mechanics, the cases 7 = 0,1 represent the thermody- 

namic equilibrium solutions 

n(cu) — c, (4.2) 

where c is an arbitrary constant and 

n(w) oc a; 1 oc \k\  Q, (4.3) 



which stem from the more general Rayleigh-Jeans distribution 

nRj(u>) = -4- • (4-4) 
C2 + CJ 

They correspond respectively to equipartition of particle number N and quadratic energy E 

N   =    In{k)dk = IM{w)dui, (4.5) 

E   =     f w{k)n{k)dk = f u}tf{u))duj. (4.6) 

The cases y — 0,1 give the non-equilibrium Kolmogorov-type solutions, respectively 

n(W) oc u-
2ß'3ll+a'3 oc ||fc|-2"/3-i+a/3 , (4.7) 

and 

n(«) oc u-2-^ oc \k\-W3-1, (4.8) 

which exhibit typical dependence on the parameter ß of the interaction coefficient. The latter 
solutions are more interesting since realistic sea spectra are of Kolmogorov-type by analogy. 

For the case a = 1/2 and ß = 0, the Kolmogorov-type solutions are 

n(w)oc   w-5/3   oc|fcr5/6, (4.9) 
n(w) oc     uT2     oc |fc|_1 • (4-10) 

Both exponents satisfy the conditions of locality (3.10)-(3.11). 

5    Nature and sign of the fluxes 

The stationary non-equilibrium states are related to fluxes of integrals of motion, namely the 
quantities N and E in our four-wave interaction problem. We define the flux of particles (or 
wave action) and energy as, respectively 

m   .   -f ^M*A (M) 

m _ -p^a«w. (5.2) 
Here, Eq. (4.7), resp. Eq. (4.8), is associated with constant flux Q0, resp. P0, of particles, 
resp. energy. Let us now mention a physical argument which plays a crucial role in deciding the 
realizability of the Kolmogorov-type spectra. A more detailed justification is provided below 
in Section 11 - see also [6] and [13]. Suppose that pumping is performed at some frequencies 
around u = w/ and damping at w near zero and w » w/. Weak turbulence theory then states 
that the energy is expected to flow from wf to higher w's (direct cascade with P0 > 0) while 
the particles mainly head for lower w's (inverse cascade with Q0 < 0). Accordingly, we need to 
evaluate the fluxes in order to select, among the rich family of power laws (4.7) and (4.8), those 
which are likely to result from numerical simulations of Eq. (2.1) with damping and forcing. 



By inserting Eq. (3.8) into Eqs (5.1) and (5.2), we obtain 

w~y uj-y+1 

Qo oc lim 1,   PQ OC lim I, 
j/->0   y y-4i 1-y 

which become 

Qo oc 
dl_ 
dy 

r, 91 ,   P0oc — 
j,=o dy 

(5.3) 

(5.4) 
y=i 

Using Eq. (3.9), the derivatives in Eq. (5.4) can be expressed as 

|5(6,6,6)(i + 67-£i7-67)«(i + 6-6-6) 

'6 

di_ 
dy y=o 

[i6\ 
6; 

x in { sg£ ) <j(6ä + 6« +6- - l)<*6d6d6, 

£7 
dy =   f 5(6,6,6) (i + 67 -67 -67) «(1 + 6-6-6 

z=i JA 

x [6 In (1/6) + 6 In (1/6) - 6 In (1/6)] 

x «(6» + 6« + 6« - l) ^6^6^6, 

with 

5(6,6,6) = ^(666)fiZ=±i-1-7- 

The sign of each integral above is determined by the factor (see [12]) 

/(7) = i + 67-67-67- 

It is found that f(j) is positive when 

7 < 0   or   7 > 1. (5.5) 

For the same values of ß as those considered by MMT and the additional value ß = +3, Table 
1 displays the corresponding frequency slopes from Eqs. (4.7), (4.8) and the signs of Q0, P0 

according to the criterion (5.5). 

ß -1 -3/4 -1/2 -1/4 0 +3 
IQ 1/3 2/3 1 4/3 5/3 17/3 

sign of Qo + + 0 - - - 

IP 2/3 1 4/3 5/3 2 6 
sign of PQ - 0 + + + + 

Table 1: Signs of the fluxes for the Kolmogorov-type solutions. 

Our calculations show that WT theory should work most successfully for ß - 0 (instead 
of ß = -1 in [6]) at which they yield both Q0 < 0 and P0 > 0. Incidentally, MMT reported 
the smallest difference between numerics and theory for ß = 0. The cases with spectral slopes 



less steep than the Rayleigh-Jeans distribution (i.e. 7 < 1) are non-physical. At best, a 
thermodynamic equilibrium is expected in the conservative regime. Hence, we cannot strictly 
rely on the Kolmogorov-type exponents for ß = —1, -3/4 to compare with the numerical results 
in forced regimes. Note that for ß — —1/2, although we find Po > 0, a pure thermodynamic 
equilibrium state (i.e. 7 — 1) is predicted instead of the inverse cascade. This is however not 
valid because of the necessity for a finite flux of particles towards w — 0. The direct cascade 
may then be influenced one way or another, possibly making the theory not applicable to the 
whole spectrum. Using both criteria (5.5), we deduce that the fluxes of particles and energy 
simultaneously have the correct signs in the region of parameter 

ß<-\    and   0>2a-|, (5.6) 

or 

ß<-\    and   ß>~    if   a=i. (5.7) 

Since the strength of nonlinearity decreases with ß, the case ß < -3/2, which is close to a 
linear problem, is not that interesting from a general viewpoint and may raise some difficulties 
in numerical studies. 

Restricting again to a = 1/2 and ß = 0, one has for the spectrum 

n(uj)^aP^3u}-2, (5.8) 

where P is the flux of energy towards high frequencies and 

is the Kolmogorov constant. Numerical calculations give for a 

a = 0.376. (5.10) 

An important question is the stability of the stationary spectra. This question was studied 
by Balk and Zakharov in [14] from a general point of view. The particular situation discussed in 
the present paper requires an additional study based on the work [14]. However, one should note 
that instability of the present spectra is unlikely. The reason is that the stationary spectra are 
solutions of the kinetic equation, which is not sensitive to changing the sign of the nonlinearity 
in the dynamical equation. In other words, if the Kolmogorov solution was unstable, it would be 
unstable in both cases. Since we observe the Kolmogorov spectrum in the numerical simulation 
for one of the signs of nonlinearity, instability is unlikely. 

6    Solitons and quasisolitons 

Besides random radiative waves, solitons are the most interesting features of nonlinear Hamil- 
tonian models such as the focusing NLS. These localized coherent structures can naturally 
emerge and persist as the result of the stable competition between nonlinear and dispersive 
mechanisms. It is known that they act as statistical attractors to which the system relaxes and 
they can influence the dynamics in a substantial way. 
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Equally important coherent structures are quasisolitons. They could be defined as solitons 
having finite but long enough life time. Solitons and quasisolitons can be compared with stable 
and unstable elementary particles. Formally, both solitons and quasisolitons are defined as 
solutions of Eq. (2.3) of the form 

Mt) = J{tl-kV)tfa- (6-1) 
Here Cl and V are constants. In the x-space, 

i>(x,t) = eint£{x-Vt), (6.2) 

where £(x) is the inverse Fourier transform of fa and V is the soliton velocity. The amplitude 
fa satisfies the integral equation 

1 r        ... 
fa = ~fi_kv + u;(k) / Tl23fc ^2^ S(kl +k2~h-k) dk1dk2dk3 . (6.3) 

The "classical" or "true" soliton is a localized solution of Eq. (6.3). In this case, 

|£(x)|2 -»•0,    as \x\ ->oo. (6.4) 

This implies that fa is a continuous function which has no singularities for real k. Thus the 
denominator in Eq. (6.3) should not vanish on the real axis 

Q-kV + cj{k) ^0,   -oo<fc<+oo. (6.5) 

For w(k) = \k\a and a < 1, the last condition is violated for any V ^ 0. So "true solitons" can 
exist only if V — 0. 

Next we show that "true" solitons can only exist for A = — 1. Eq. (6.3) can be rewritten 
in the variational form 

8{H + QN) = 0. (6.6) 

Obviously, ft > 0 should hold (otherwise, the denominator (6.5) has zeroes). Since 

Ti23fc = A|&i&2*3fc|/J/4,  A = ±l, (6.7) 

the Hamiltonian is positive for A = +1 and the condition (6.6) can be achieved only if ^ = 0. 
There are no solitons in this case. Meanwhile, solitons can exist for A = — 1. A rigorous proof 
of existence is beyond the frame of this article. 

Quasisolitons are a more sophisticated object. Let us allow the denominator (6.5) to have 
a zero at k = fco and suppose that fa is a function which is sharply localized near the wave 
number k = km. Let the width of fa near k = km be K. One can introduce 

T{k) = JTnsk fafafc 5{h +k2-h-k) dkxdk2dh ■ (6.8) 

We might expect that 

T(fco) a e-c^=^ \fakm)\2fakm). (6.9) 

In other words, fa has a pole at k = k0 but the residue at this pole is exponentially small. 
It means that the soliton (6.2) is not exactly localized and goes to a very small-amplitude 
monochromatic wave with wave number k = fco as x -» -co. 

If one eliminates the pole from fa, one gets a quasisoliton, which is a stationary solution 
of (2.3) only approximately. Such a quasisoliton lives for a finite time. If this time is long 
enough, the quasisoliton could become the basic unit of wave turbulence. This is what we 
believe may happen in the MMT model with positive nonlinearity. 

11 



7    Soliton stability and collapse 

Coherent structures can play a role in wave turbulence only if they are stable. For A = — 1, a 
soliton satisfies the equation 

(n + |fc|a) fa = I \kik2kzk\ßli fafofo S(ki +k2-h-k) dhdhdh . (7.1) 

The free parameter fi can be eliminated by the scaling 

4,!l-^x(fi-^), (7.2) 

where x(£) satisfies the equation 

(1 + KD X(0 = I m2&t\ßß X1X2X3 «5(^1 + & - 6 - 0 d£i<«3 • (7.3) 

= [\$k\2dk = n-e=?1No, (7.4) 

Let us calculate the total wave action in the soliton 

N ■ 

where 

N0 = J\x\2dt. (7.5) 

The stability question can be answered by computing dN/dSl. As is well-known (see 
[15]), a soliton is stable if dN/dü > 0. In our case, 

dN _     (ß-g+l\N 
M " " l~^J n • (7-6) 

The soliton is stable if 

ß < a - 1, (7.7) 

otherwise the soliton is unstable. For a = 1/2, the condition of soliton instability reads 

ß>~\- (7-8) 

This condition is satisfied in all the cases we studied. 
The soliton instability leads us to guess that the typical coherent structure in the case of 

negative nonlinearity is a collapsing singularity. Typically, the formation of such singularities 
is described by self-similar solutions of the initial equations. Eq. (2.3) has the following family 
of self-similar solutions 

yj>{k, t) = (t0 - ty+ü x [k(to - t)-] , (7.9) 

where p = /3~2°+2 and e is an arbitrary constant. x(£) satisfies the equation 

i (P + ic) X + ^ e X' + ier X + A j Ifc&^r4 X1X2X3 <H£i + 6-6-0 dZxdhdb = 0. 

(7.10) 
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The soliton (7.9) should stay finite when t -»to- This requirement imposes the following 
asymptotic behavior on x(0 

X(£)->C£=^, £->0. (7.11) 

At time t — to, Eq. (7.9) turns to the powerlike function 

i>k^Ck~\    v=
ß-« + 2 . (7.12) 

In reality, the self-similar solution is realized in x-space in a finite domain of order L. Hence 
the solution (7.12) should be cut off at k ~ 1/L. In fc-space, Eq. (7.9) represents the formation 
of a powerlike "tail" (7.12). The wave action concentrated in this tail must be finite. Therefore 
the integral 

/■OO 

/     \i>k?dk, (7.13) 
Jo 

should converge as k —> oo. It leads to the condition on parameters 

ß>a-l, (7.14) 

which coincides with the condition for soliton instability. 
Let us plug (7.9) into the Hamiltonian in Fourier space 

H   =        u(k) \ipk\2dk + / Ti23k V»i^2^3$fe S(h + k2-k3-k) dkidk2dk3dk, 

B-2a+l 
=   (t0-t)B-^-H0, 

where 

Ho = J \t\a \X\2 d^ + xj \Zit2&t\P/A X1X2X3X* *(Ci +6-6-0 «id&d&de •      (7.15) 

If a — 1 < ß < 2a — 1, then H —> oo as t —> to, unless 

HQ = 0. (7.16) 

Apparently, this condition can be satisfied only for A = -1 (negative nonlinearity). The condi- 
tion (7.16) imposes implicitly a constraint on the constant e. In fact, it can be realized only at 
one specific value of e, which is an eigenvalue of the boundary problem (7.10) with the boundary 
conditions 

x(o->cr^, £->o, 
X(0->oo>   |f | ->oo. 

In the case /?> 2a-l,if-»0 as *-*■£<)• There is no limitation on the value of H0 and the 
singularity can take place for either sign of A. If u < 1 in Eq. (7.15) ora-1 < ß < a, a collapse 
is the formation of an integrable singularity in z-space. If v > 1 or ß > a, the singularity is the 
formation of a discontinuity of the function ^(x) or its derivatives. 

The formation of singularities leads to the formation in A;-space of a powerlike spectrum 

nk ~ \i>k\2 ~ \k\-2u ~ \k\-ß+Q~2. (7.17) 

For a = 1/2 and ß — 0, one obtains 

nfc ~ |fe|_3/2 ~ o;~3. (7.18) 

This spectrum can be called Phillips spectrum by analogy to the well-known "w-5 spectrum" 
for deep water waves. As w -> oo, it decays faster than Kolmogorov spectra. 
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8    More on quasisolitons 

Let us consider again the case of negative nonlinearity A = -1 and denote 

F = -n + kV - w{k) = -n + W - |it|a . (8.1) 

If V = 0 and ti > 0, \F\ has a minimum at k — 0. The Fourier transform of the solution fa is 
concentrated near this minimum in a domain of width 

K ~ fi1/a . (8.2) 

Assuming that the soliton is smooth in x-space, fa decays very fast outside of the domain (8.2). 
So far we assumed that V — 0. Let now V be positive but very small. Then the denominator 

i 
F has a zero at k = ko ~ V<*-1. For small V, the wavenumber &o is much larger than K and 
this zero occurs very far from the domain which supports the soliton. This means that fa has 
a pole at k = ko, but the residue at this pole is very small. The presence of this pole means 
that the stationary solution (6.3) looks in the x-space like a soliton, which is not completely 
localized. As x -¥ +oo, it becomes a monochromatic wave with wave number ko and negligibly 
small amplitude. 

If this "wave tail" is cut off in the initial data, one has a "quasisoliton" which slowly 
decays due to radiation of energy in the right direction. If V is small enough, the lifetime of 
the quasisoliton is very long and its shape is close to the shape of "real" solitons. 

It is unlikely that quasisolitons play an important role in wave turbulence at negative 
nonlinearity. If V is not small, their lifetime is too short; if V is small, they are unstable like 
real solitons. Quasisolitons are more relevant in the case of positive nonlinearity A = +1. 

Let us choose an arbitrary k = km > 0 and plug in Eq. (6.3) 

V = ak^,    f> = _(l-a)A;«-Ia(l-a)C-V. (8.3) 

Then 

F = k%-\k\a + ak%rHk-km)+1-a(l-a)k%l-
2q2. (8.4) 

Note that if a < 1 then F has a zero at k — ko < 0 for any km. Hence, l/F always has a pole 
on the negative real axis, and the soliton (6.3) cannot be a real soliton. But if q2 < A;°, l/F 
has a sharp minimum at k ~ km. Introducing 

one has approximately 

K = |A;-A;m|, (8.5) 

F^l-a{l-cc)k^2[K2 + q2} , (8.6) 

and one gets for the width of the maximum 

K^q. (8.7) 

If K < |&o|, one can construct a quasisoliton which is supported in fc-space near km.  In the 
general case, \k0\ ^ km. If a = 1/2 and q = 0, one can easily find 

k0 = -(V2-l)2km. (8.8) 
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The quasisoliton moves to the right direction with the velocity V(km) and radiates back- 
ward monochromatic waves of wavenumber ko- The shape of the quasisoliton can be found 
explicitly in the limit q -> 0. Now K < km and one has approximately 

/' 
(8.9) \kik2k3k\ß^ 4>i(j>2<i>3 S(ki + k2-k3-k) dkidk2dk3 

-km       0102#J 8{KI + K2- K3- K) dK\dK2dK3 . 

Taking into account Eq. (8.6), one can rewrite Eq. (6.3) as 

- a (1 - a) km~2(n2 + q2) $K = km / fafafa <*(«i + «2 - «3 - «) dKidn2dn3 . (8.10) 

With the help of inverse Fourier transform, one can transform (8.10) into the stationary NLS 

-a{\-a)k\ Q-2 
TO 

which has the soliton solution 

<j>(x) 

d2<t> 2 1 

ja(l -a)      q 

km\t\2c/>, 

km~a+2 cosiLqx' 

It gives the following approximate quasisoliton solution of Eq. (2.1) with A = +1: 

rl>{x,t)   =   cß(x - Vt)eim+ikm^x-vt\ 

Jl   =    -{l-a)k^-l-a{l-a)km-2q2, 

a-l 

(8.11) 

(8.12) 

(8.13) 

V   =   aft;.. 

The quasisoliton (8.13) is an "envelope soliton", which can be obtained directly from Eq. (2.1). 
Simply inject 

V>(x, t) = U{x, t) e-i(i-«)*&tH*m(*-Vt) j (814) 

and use the binomial expansion 

a 
dx 

0ikx Tj __ Akx 

wf+-i*r'l->s),7+5e(e-1)i*irf(-|5)' u + 

(8.15) 

Plugging Eq. (8.15) into Eq. (2.1) with A = +1, one obtains a differential equation of infinite 
order 

.fdU     TrdU\ 
L2U + L3U + < (8.16) 

V ak, a-l 

Here 

L2U   =    -a(l-a)k a-2 a2u 
dx2 + km\U\2U, 

L3U   =   i 

L4U   =   • 

a(a-l)(a-2)C-3§-/3*TO-W^ dx3 
dU 
dx 

(8.17) 

(8.18) 

(8.19) 
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Taking into consideration only the first nontrivial term L2 U, one gets the nonstationary NLS 

It has a soliton solution 

U(x, t) = <f>(x - Vt) e-5^(i-«)*Ä"J9a*. (8.21) 

To find the shape of the quasisoliton more accurately, one should keep in the right hand side of 
Eq. (8.15) a finite (but necessary odd!) number of terms. The expansion in Eq. (8.16) runs in 
powers of the parameter q/km. Note that one cannot find the lifetime of the quasisoliton. The 
lifetime grows as e^ko^q and its calculation is beyond the perturbation expansion. 

As a matter of fact, the parameter 

e = X (8.22) vra 

is crucial for quasisolitons. The smaller it is, the closer the quasisoliton is to a "real soliton". 
The amplitude of a quasisoliton is proportional to e. Quasisolitons of small amplitude satisfy 
the integrable NLS and are stable. It is not obvious for quasisolitons of finite amplitude. One 
can guess that at least in the case ß > 0, when collapse is not forbidden, there is a critical 
value of the amplitude of a quasisoliton ec such that for e > ec it is unstable and generates a 
singularity at a finite time. Our numerical experiments confirm this conjecture for ß — +3. 

Quasisolitons move with different velocities and collide. If the amplitudes of the quasisoli- 
tons are small and their velocities are close, they obey the NLS and their interaction is elastic. 
One can guess that the same holds for small-amplitude quasisolitons even if their velocities are 
quite different. This is not obvious for quasisolitons of moderate amplitude. One can think 
that their interaction is inelastic and leads to the merging and formation of a quasisoliton of 
larger amplitude. 

9    Nonlinear frequency shift 

Let us consider one more important nonlinear effect. In a linear system, the harmonic of 
wavenumber k oscillates with the frequency wk. In the presence of nonlinearity, the frequency 
changes due to the interaction with other harmonics. In a weakly nonlinear system, the fre- 
quency is modified by a functional depending linearly on the spectrum 

«(&) -4 «(&) + I Tlk ni dfci. (9.1) 

It is easy to show that Tik can be expressed in terms of the coefficient Tnzk in Eq. (2.3) as 

Tik = 2Tlklk. (9.2) 

For the MMT model, 

Tlk = 2\(hk)0'2. (9.3) 

For ß = 0, 

Tlfc = 2A = ±2, (9.4) 
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and 

u±(k) = u{k)±2N, (9.5) 

where N = J |^.|2dA: is the total number of particles. 
In the general case ß ^ 0, renormalization of the frequency leads to modified resonance 

conditions (2.8)-(2.9). But in the particular case ß — 0, renormalization terms in Eq. (2.9) 
cancel and the resonance conditions in the first nonlinear approximation remain unchanged. At 
the same time, the difference of frequencies for different signs of nonlinearity has the form 

w+(k)-u-(k) = 4N. (9.6) 

In our case, it does not depend on the wave number. 

10    On the MMT model spectrum 

In [6], MMT found that in the case of positive nonlinearity the spectrum of wave turbulence is 
well described by the formula (MMT spectrum) 

rifc^Ar^-1. (10.1) 

They checked this result for a = 1/2 and different values of ß. Our experiments are in agree- 
ment with (10.1). In [7], it was found that the MMT spectrum can appear for either sign of 
nonlinearity. So far there is no proper theoretical derivation of the MMT spectrum. In this 
section, we offer some heuristic derivation of (10.1). 

Assuming formula (3.2) to be exact, the problem of closure for the equation on particle 
number lies in the expression of Im Jusk in terms of n^. This expression should a priori satisfy 
the conditions of symmetry 

Im Ji23fe = Im J2i3fc = Im J^kz = -Im Jzkn ■ (10.2) 

Moreover, one can assume that the nonlinearity is weak and that the wave energy is roughly 

E~     cj(k)nkdk. (10.3) 

Prom conservation of energy, one obtains 

Tu3k (wi + u2 - W3 - LJ) Im J123fc dkidk2dk3dk = 0. (10.4) 

Hence one must have 

Im Ji23fc - <J(wi + w2 - w3 - u). (10.5) 

For Gaussian wave turbulence, the real part of J^*; is given by Eq. (3.3) and dimensional 
analysis gives 

n2 

/: 

ReJi23fc^^. (10.6) 
k 
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Up to this point, our consideration was more or less rigorous. Now we present a heuristic 
conjecture. We suppose that the imaginary part of the four-wave correlator has the same 
scaling as the real part. In other words, it is quadratic in nk- 

If one takes into account the necessary conditions (10.2), (10.4) and the scaling (10.6) for 
Im Ji23fc, there are not that many possibilities for the construction of Im Jusk- We offer the 
following closure 

Idux     du)2     dwz     du\ .. w . /,„„\ 
ImJi23fc = a( l^T + ä/T + 9ÄT + öfc / + W2 ~ W3 ~ 2 ~ U        ' 

where a <C 1 is a dimensionless constant. The closure leads to the kinetic equation 

-of   =   ^/^.(n^-nan,)^—+ —+ —+ -j (10.8) 

x    6 (wi + ui2 — W3 - w) 8 (ki + k2 - ks — k) dk\dk2dkz . 

It is easy to check that the Kolmogorov solution of Eq. (10.8) leads to the MMT spectrum. 
Eq. (10.8) resembles the Boltzmann's equation for interacting particles. Apparently, it can make 
sense only if aTi23fc > 0. Otherwise, the /f-theorem and the second law of thermodynamics will 
be violated. We must stress that the formula (10.7) is heuristic and has no rigorous justification. 

11    Particle and energy balance 

In the presence of damping and linear instability, Eq. (2.3) can be written in the form 

if^ + izWÄ, (ii.D 

where 

H = I u{k) \i>k\2dk + - jTn3k^li>2'<P^kS(ki + k2-k3 - k) dkidk2dkzdk , (11.2) 

is the Hamiltonian, D(k) is the damping or the growth rate of instability depending on its sign. 
Let N = f \^k\2dk be the total number of particles in the system. From (11.1), one can 

obtain the exact equation for the particle balance 

dN 
dt 

After averaging, one has 

d(N) 
dt 

= Q = 2 fD(k)\i>k\2dk. (11.3) 

= 2 f D{k)nkdk = (Q). (H.4) 

The flux of particles Q is a linear functional of nk at any level of nonlinearity. 
For the energy flux, one has the exact identity 

dH f 
=    — = 2jw(k)D(k)\4,k\2dk 

+   \ J [D{h) + D(k2) + D{k3) + D{k)] T123fc j>Mt$t 

x    &{ki +k2-k3-k) dkidk2dk3dk. (11.5) 
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For the averaged density of energy, one has 

(P)   =   2 fw{k)D(k)nkdk 

+   \ j [D(h) + D(k2) + D(k3) + £>(&)] T123fc Re Jl23k 

x   5{ki + k2 — k3 - k) dk\dk2dk3dk. (11-6) 

Assuming that Gaussian statistics holds, one can write 

Re im/t =i nm2 [5{h - k3) + 8{ki - k)] , (11.7) 

and one obtains after simple calculations 

(P) = 2 fw(k)D(k)nkdk, (11.8) 

where ui(k) = uj(k) + fTik n\ dk\ is the renormalized frequency. 
In the case ß = 0 and T\k = ±2, 

<P) = 2 [u(k)D(k)nkdk + 2\N(Q). (11.9) 

In the stationary state, (Q) — 0, (P) = 0 and the balance equations are 

I D{k)nkdk   =   0, (11.10) 

/ w{k)D{k)nkdk   =   0. (H-H) 

In this particular case, renormalization of the frequency does not influence the balance equa- 
tions. 

The balance equations (ll.lO)-(ll.ll) can be rewritten as 

Qo   =   Q+ + Q~, (11.12) 
Po   =   P+ + P~, (11.13) 

where Po and Qo are the input of particles and energy in the area of instability w ~ UQ. Q+ 

and P+ are the sinks of particles and energy in the high frequency region w ~ UJ
+

. Q~ and P~ 
are the sinks in the low frequency region w ~ CJ~ . 

Roughly speaking, 

P0   ~   woQo, (11.14) 
P+   ~   u+Q+, (n.15) 

P~   ~   w-Q-, (11.16) 

and the balance equations can be written as 

Qo   =   Q+ + Q-, (11.17) 
w0Qo   ^   w+Q+ + o;~Q-. (11.18) 
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Hence 

Q+ _ wo - w-      P+ _, w+ wo - w~ 
Q~     w+ - wo '     P~     w~ w+ — wo 

For w~ ~ wo < w+, one has 

Q^^wo-ur     P+^c^-or 
Q- w+     '     P- w- y        ' 

In other words, if WQ <C W
+

, almost all particles are absorbed at low frequencies. The amounts 
of energy absorbed in both ranges have the same order of magnitude. These conclusions are 
valid only under the hypothesis of approximate Gaussianity of wave turbulence. 
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and for the quadratic part of energy 

2 

E=   Y,   w(MhM2- (12-5) 

The linear frequency term is treated exactly by an integrating factor technique, removing 
it from the timestepping procedure. As emphasized by MMT, we thus avoid the natural stiffness 
of the problem as well as possible numerical instabilities. Consequently, we do not need to 
shorten the inertial interval by downshifting the cutoff of ultraviolet absorption (as in [4]). The 
nonlinear term is calculated through the Fast Fourier Transform by first transforming to real 
space where a multiplication is computed and then transforming back to spectral space. For 
the multiplication operation, twice the effective number of grid points are required in order to 
avoid aliasing errors. A fourth-order Runge-Kutta scheme integrates the conservative model in 
time, giving a solution to which the diagonal factor 

e[F(k)+D(k)]At 

is applied at each time step At. 

13    Numerical results for ß = 0, A = ±1 

A series of numerical simulations of Eq. (12.1) with resolution up to 2048 de-aliased modes has 
been performed. We choose the case ß — 0 as the candidate for testing weak turbulence in our 
experiments. Both cases A = ±1 are examined, providing an additional test of the theory, and 
the study is focused on the direct cascade. Forcing is located at large scales and the inertial 
interval is defined by the right transparency window !;/«{;< ^ (where kf and kd are the 
characteristic wave numbers of forcing and ultraviolet damping respectively). As displayed in 
Table 1, the theoretical spectrum which can be realized in this window is 

rifcOcAT1. (13.1) 

Typically, initial conditions are given by the random noise in the spectral space. Simulations 
are run until a quasi-steady regime is established which is characterized by small fluctuations of 
the energy and the number of particles around some mean value. Then time averaging begins 
and continues for a length of time which significantly exceeds the characteristic time scale of 
the slowest harmonic from the inertial range (free of the source and the sink). In turn, the 
time-step of the integration has to provide, at least, accurate enough resolution of the fastest 
harmonic in the system. As our experiments show, one has to use an even smaller time-step 
than defined by the last condition : the presence of fast nonlinear events in the system requires 
the use of a time-step At = 0.005, which is 40 times smaller than the smallest linear frequency 
period. Time averaging with such a small time step leads to a computationally time-consuming 
procedure despite the one-dimensionality of the problem. 

From now on, we will present numerical results in the specific situations v~ = 196.61 (A = 
±1), i/+ = 5.39 x 10-48 (A = +1) or i/+ = 2.16 x lO"47 (A = -1), and /,• = 0.2, nonzero only 
for kj £ [6,9] (A = ±1). 

The numerical simulations clearly display the development of dynamical chaos and sta- 
tistically uniform turbulence. Both the amplitude and the phase of each harmonic fluctuate 
independently of each other. Fig. 1-4 show the behavior of the seventh and eighth harmonics. 
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Fig. 5-8 show the behavior of the real and imaginary parts of the amplitude of the 
harmonic k — 200. One sees amplitude-modulated oscillations with carrying frequency close to 
the corresponding linear frequency of the harmonic w ~ 14. 

Fig. 9-12 represent Fourier transforms in time of the evolution of the harmonic k = 200 
from the previous pictures. One can see that the maximum of the spectra corresponds to the 
linear frequency shifted in accordance with the nonlinearity sign A = ±1. 

Fig. 13-14 demonstrate the behavior of the fourth and sixth-order moments as functions 
of the second-order moment. They fit the Gaussian laws very well. They provide a justification 
of the initial conjecture that the statistics of the turbulence is close to Gaussian. 

Fig. 15 represents the time evolution of the quadratic energy E for A = ±1 with the 
same amplitude of forcing. The curves are plotted over the interval t £ [5000,10000] where 
the time averaging actually takes place. One obviously sees that the systems have already 
reached the steady state. Their energies moderately fluctuate about mean values which are 
Em ~ 19 (A = +1) and Em ~ 9 (A = -1). This significant difference with respect to the sign 
of A is quite unexpected from the viewpoint of the WT theory since the same rate of forcing is 
imposed in both systems. We can make the same remarks about the evolution of the number 
of particles N. In Fig. 16, the mean values stay near Nm ~ 3 (A = +1) and Nm ~ 1 (A = -1) 
so that their relative difference is even bigger than for E. Fluctuations also spread much more 
in the case A = +1. 

In Fig. 17, the stationarity as well as the gap between both signs of A are verified again 
in the time evolution of the average nonlinearity e. We define the average nonlinearity in the 
system as the ratio of the nonlinear part to the linear part of the Hamiltonian e = \H^L/HL\, 

each part being calculated over the whole field. Of course, this definition does not really 
make sense when external forces are applied but it provides a relatively good estimation of the 
level of nonlinearity once the systems reach the steady state. Note here that the mean values 
em ~ 0.4 (A = +1) and em ~ 0.2 (A = -1) are relatively small. Thus, the condition of small 
nonlinearity required by the theory holds for both systems. This conclusion is also supported 
by comparing Fig. 10 and Fig. 12. It is seen that the difference of frequencies caused by 
nonlinearity is relatively small. We point out that in our numerical experiments e could not be 
taken too small (that is, e < 10-3) for two reasons. First, the nonlinear turnover time grows 
longer and the energy flux is too weak to act effectively. Second, one may catch the undesirable 
frozen turbulence [10] due to the disappearance of quasiresonances. One should note that, in 
general, frozen turbulence arises more easily in one-dimensional problems due to fewer degrees 
of freedom than in higher-dimensional problems. 

The difference between the cases A = ±1 is especially conspicuous if one considers the 
dissipation rates of particles and quadratic energy in the left transparency window 

Q- = 2 f f u-\k\~d~ \i>k\2dk    ,    P~ = 2 [fv-\k\-d~ w(k)\i>k\2dk, 
Jo Jo 

and in the right transparency window 

Q+ = 2/ u+\kf\^k\2dk    ,    P+ = 2/ u+\k\d+ w(k)\i,k\2dk, 
Jkf Jkf 

where kmax corresponds to the highest mode in the spectrum. Fig. 18-21 represent the time 
evolution of these quantities and their time-averaged values are collected in Table 2. 

One can see that the case A = +1 quantitatively fits WT theory. Indeed, in this case 
Q+/Q- ~ 0.046 < 1 and P+/P~ ~ 0.94. But in the case of negative nonlinearity A = -1 the 
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A N E Q- Q+ P- P+ 
+1 3 19 0.1957 0.0090 0.276 0.258 
-1 1 9 0.0098 0.0478 0.014 1.430 

Table 2: Time-averaged values of the wave action, quadratic energy and corresponding fluxes 
in the stationary state. 

situation is opposite. In this case Q+/Q~ — 4.9 and P+/P~ ~ 102 which means that most of 
both quadratic energy and particles are transported to high frequencies. 

Comparison of the turbulence levels and fluxes of particles Q+ for both signs of nonlin- 
earity leads to a paradoxal result. At A = — 1 the total number of particles is three times less 
than at A = +1, while the dissipation rate of particles is higher by one order of magnitude. 
It can be explained only by the presence in this case of a much more powerful mechanism of 
nonlinear interactions, which provides very fast wave particles transport to high frequencies. 
In our opinion, this mechanism is wave collapse, studied theoretically in Section 7. Sporadic 
collapsing events developing on top of the WT background could send most of particles to high 
wavenumbers without violation of energy conservation, because in each self-similar collapse 
structure the amount of total energy is zero. 

We observed such collapsing events in our numerical experiments. Fig. 22 displays the 
collapse event taking place at the point x — 1.006 at time t = 5000.19. One can conjecture that 
the collapses are described by self-similar solutions. For such solutions H = 0. It means that 
the collapse can carry particles to high frequencies, without carrying any energy at that timel 
As far as the Hamiltonian is the difference of quadratic and quartic terms and both of them go 
to infinity, it becomes possible to explain the apparent contradictions of the dissipation rates. 

The hypothesis related to the prevailing role of collapses at A = —1 is corroborated by 
the following facts: 
1. Intermittency in dissipation rates of quadratic energy and particles for A = -1 is much higher 
than for A = +1 in the region of large wave numbers. This intermittency can be explained by 
outbursts of dissipation when wave collapses occur. 
2. The analysis of time Fourier transforms of separate harmonics (we take k — 200) shows the 
presence of two components, see Fig. 9. The peak at w ~ 13 corresponds to a linear wave with 
a moderate nonlinear shift of frequency. This is the "weak turbulence" component of the wave 
field. Another component is roughly symmetrical with respect to the reflection w -> —CJ with 
the maximum slightly below w = 0. This is certainly a strongly nonlinear component which 
could be associated with wave collapses. 

Another indication of the difference of the wave dynamics in the cases A = +1 and A = -1 
follows from the following experiment. Fig. 23-24 show the early stages in the conservative 
evolution of the same isolated initial condition 

ip[x) = ipo e~ 
x-ir)* 
~2^~ (j = 0.5. 

In the case A = -1, a sufficiently large initial condition collapses into a sharp spike, while in the 
case A = +1 it decays. This experiment could serve as an evidence of the finite-time singularity 
formation for the case A = — 1. 

Now we discuss the stationary isotropic spectra of turbulence which are displayed in Fig. 
25-28. We plotted on the same pictures the Kolmogorov spectra calculated by putting either 
P = P+ = 1.430 (A = -1) or P = P+ = 0.258 (A = +1) and o = 0.376 in Eq.  (5.8). In Fig. 
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27-28, one can see that for both cases this spectrum provides a higher level of turbulence than 
the observed one. For A = -1 this difference is almost of one order of magnitude. For A = +1, 
the observed spectrum almost coincides with the weak turbulence one at low frequencies and 
then decays faster at higher wave numbers (approximately as MMT spectrum in Fig. 26). 

It is interesting that for A = -1 the high frequency asymptotics is fairly close to the 
one predicted by WT theory (Fig. 25). One can explain this fact as follows. In this case, the 
turbulence is the coexistence of collapsing events and weak turbulence. Collapses carry most 
of the fluxes of particles and quadratic energy to high frequencies. But their contribution to 
the high-frequency part of the spectrum is weak, because they produce Phillips-type spectra, 
decaying very fast as k -> oo. In our case, this spectrum is 

nk ~ AT3/2 . (13.2) 

Hence as k -> oo, only the WT component survives. Even P ~ 10-2 P+ is enough to provide 
an observable tail in the WT Kolmogorov spectrum. 

We should stress out again that at A = +1 the picture of turbulence matches the WT 
prediction both quantitatively and qualitatively. Meanwhile, the spectrum at high fc's is steeper 
and closer to the MMT formula. So far we cannot give a consistent explanation of this fact. 
We can just guess that it is somehow connected with quasisolitons. As an illustration, Fig. 29 
shows the conservative evolution of the initial quasisoliton (8.13) with parameter q/km = 0.1, 
which is small enough to justify the Taylor expansion used in its derivation. As expected, we 
observe that the solution propagates and persists over a relatively long time. This similarity 
between quasisolitons and real solitons is verified even better in Fig. 30-33 where two initial 
quasisolitons with q/km — 0.2 for the smaller one and q/km — 0.25 for the bigger one collide 
almost elastically. Note here that the solution with smaller amplitude moves with a greater 
velocity. 

14    Numerical results for ß = +3 and A = +1 

Another series of experiments has been performed for the case ß = +3 and A — +1. This case 
is especially attractive due to the fact that the intensity of interaction grows with characteristic 
wavenumber in Fourier space and one can expect reduced "frozen" turbulence effects compared 
to the case ß = 0. Another motivation is the fact that the scaling of the interaction kernel 
reproduces the kernel for gravity water waves. Therefore, Eq. (12.1) with a = 1/2, ß — +3 can 
be considered as a model of turbulence of the ocean surface. 

The numerical simulation of Eq. (12.1) was performed on a grid of 2048 points in the 
real space domain of length 2ir. Parameters of the forcing are defined by 

F(k\ _ / °-001   if 30 < fc < 42, 
\ 0 otherwise, 

and parameters of damping in the "hyperviscosity" form by 

{-0.05(fc - 4)8     if0<fc<4, 
-0.1(fc - 824)2   if 824 < k < 1024, 
0 otherwise. 

Aliasing effects were not of concern due to the run-time control of the fastness of the spectrum 
decay toward high wavenumbers. 
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The time-step of integration was equal to ^ of the inverse fastest linear frequency in 
the problem. Such a small value was chosen due to the fact that the time dependence of the 
individual Fourier harmonics corresponding to intermediate range wavenumbers showed the 
presence of processes of time scale smaller than the smallest linear time in the system. This 
observation was an initial indication of the significant role of nonlinearity in the problem under 
consideration. 

Equation (12.1) was integrated numerically over long times for different kinds of initial 
conditions: low level random noise and single harmonic excitation (k = 30) initial conditions. 
While initial stages of computations were quantitatively different, the later stages of evolution 
were strikingly similar. Starting from big enough times, the wave system was separated into 
several soliton-like moving structures and low-amplitude quasi-linear waves. Processes of in- 
teraction of solitons and waves slowly redistributed the number of waves in a way leading to 
the growth of initially bigger solitons and the collapse of initially smaller solitons. Finally the 
system was clearly separated into a state with one moving soliton and quasi-linear waves. 

We interpret the observed phenomenon as similar to the "droplet" effect observed earlier 
in non-integrable NLS equation [16]. The soliton solution turns out to be the statistical attractor 
for nonlinear non-integrable wave systems: long time evolution leads to the condensation of the 
integral of total number of waves into the single soliton which minimizes the Hamiltonian. 

Fig. 34-35 show snapshots of the final state of the system: the single soliton is moving 
with constant speed on the background of quasi-linear waves. A quantitative comparison shows 
that the parameters of the observed object are close to the parameters of the quasisoliton 
solution (8.13). 

One should emphasize that there is a difference between the situation observed in the 
present work and former observations of "droplet" effects in non-integrable NLS equations. 
Solitons observed in [16] were exact stable solutions of the corresponding NLS equation. Solitary 
solutions observed in the present work are "quasisolitons" which are unstable at least in a certain 
range of parameters. 

In Fig. 36 the initial condition is the quasisoliton (8.13) with parameter q/km =0.1. Here 
again, it behaves as the soliton should: it moves without any detectable change of shape. Fig. 
37 shows the evolution for q/km = 0.3. One can interpret such initial condition as a "deformed" 
quasisoliton. This initial condition rapidly develops moving singularity collapsing, presumably, 
in finite time. 

15    Conclusion 

The MMT model with a < 1 and either sign of nonlinearity exhibits coherent structures. In 
the case of negative nonlinearity these structures are weak collapses. These collapses are a 
powerful mechanism of energy dissipation, which dominates in all our numerical experiments. 
Weak turbulence coexists with collapses, and is responsible for the formation of Kolmogorov- 
type tails of wave spectra. But it carries to high wave numbers just a small part of the energy 
(less than 5%). 

One may hope to get "pure" weak turbulence by decreasing the level of nonlinearity. But 
to achieve an adequate modeling of the continuous medium, one should take a very fine mesh (at 
least 104 harmonics) and apply forcing in a broad range (say 10 < jfc < 100). Otherwise effects 
of "frozen turbulence" will blur the picture. Such experiments would be very time-consuming. 

The case of positive nonlinearity is less clear. In this case the picture of turbulence is 
qualitatively similar to weak turbulence, but the slope of the spectrum fits better the MMT 
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spectrum. So far we do not have a satisfactory explanation of this phenomenon. Probably it 
could be explained by the presence of interacting quasisolitons. In this case again, experiments 
with a larger number of harmonics could give a result closer to WT predictions. 

The relative "suppression" of weak turbulence in the MMT model can be explained by 
a peculiarity of the resonant conditions. In the one-dimensional case with a = 1/2, only well- 
separated waves interact. Indeed, one can see from (2.10) that 

Q+i+*)' £>o' (15.1) 

and therefore min | fc2/fcx I = 9 is reached at £ = 1. This phenomenon can be called "sparsity of 
resonances". Due to this sparsity, four wave resonances easily lose the competition with coherent 
structures - collapses and quasisolitons. In this sense the MMT model is not an optimal object 
for checking the validity of WT theory. We can offer the following model, which includes the 
interaction of two types of waves 

H   =     /"|fcr(|afc|
2 + s|6fc|

2)dfc 

+     / \kkrk2k3f
/4 (4a*a203 + 2pi a*kb\a2h +P2 tf.b\b2h) 

x   6(k + k\ - k2 - kz) dkdkidk2dks . (15-2) 

If a > 1 and ß < 2a — 1, the corresponding dynamical system does not describe any 
coherent structures which could compete with four-wave resonances. Meanwhile, for s ^ 1, it 
describes nontrivial resonant interactions for different waves propagating in the same direction. 
The system (15.2) looks like a possible object for the simulation of wave turbulence. In the 
special case a = 2 and ß = 0, it describes coupled NLS equations. 
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3000     3010     3020     3030     3040     3050     3060     3070     3080     3090     3100 

Figure 1: ß = 0, A = —1. Amplitude of the mode k = 7 vs. time. 
n 1 1- _, j- 

3000 3010 3020 

Figure 2: ß = 0, A = -1. Amplitude of the mode k = 8 vs. time. 
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Figure 3: ß = 0, A = — 1. Time evolution of the real part of the amplitude for the mode k 
0-41 1 1- ~1 r 

3000 3010 3020 3030 3040 3050 3060 3070 3080 3090 3100 

Figure 4: ß = 0, A = -1. Time evolution of the imaginary part of the amplitude for the mode 
Jfe = 8. 
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3000 3002 3004 3006 300B 3010 3012 3014 3016 3018 3020 

Figure 5: ß — 0, A = — 1. Time evolution of the real part of the amplitude for the mode k — 200 
(time resolution r = 0.015). 

3000 3002 3004 3006 3008 3010 3012 3014 3016 3018 3020 

Figure 6: ß = 0, A = +1. Time evolution of the real part of the amplitude for the mode k = 200 
(time resolution r = 0.015). 
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Figure 7: ß = 0, A = — 1. Time evolution of the imaginary part of the amplitude for the mode 
k = 200 (time resolution r = 0.015). 

3000 3002 3004 3006 3008 3010 3012 3014 3016 3018 3020 

Figure 8: ß = 0, A = +1. Time evolution of the imaginary part of the amplitude for the mode 
k = 200 (time resolution r = 0.015). 
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Figure 9: ß = 0, A = —1. Square amplitude of the Fourier transform for the mode k = 200 vs. 
frequency (time resolution r = 0.015). 

Figure 10: ß = 0, A = — 1. Same as before but with a zoom on a smaller frequency window. 
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Figure 11: ß — 0, A = +1. Square amplitude of the Fourier transform for the mode k = 200 vs. 
frequency (time resolution r = 0.015). 

Figure 12: ß = 0, A = +1. Same as before but with a zoom on a smaller frequency window. 
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Figure 13: ß = 0, A = +1. Fourth (crosses) and sixth-order (circles) moments as functions of 
the second-order moments. The straight lines are the fitted Gaussian laws. 

Figure 14: ß — 0, A = -1. Fourth (crosses) and sixth-order (circles) moments as functions of 
the second-order moments. The straight lines are the fitted Gaussian laws. 
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Figure 15: ß = 0. Quadratic energy vs. time. A = +1 (solid line), A = -1 (dashed line). 
5r 
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Figure 16: ß = 0. Number of particles vs. time. A = +1 (solid line), A = -1 (dashed line). 
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Figure 17: ß — 0. Average nonlinearity e = \HNL/HL\ VS. time. A = +1 (solid line), A 
(dashed line). 

= -1 
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Figure 18:  ß — 0, A = -1 (left), A = +1 (right).   Dissipation rate of particles at low wave 
numbers vs. time. 
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Figure 19: ß = 0, A = -1 (left), A = +1 (right).  Dissipation rate of particles at high wave 
numbers vs. time. 
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Figure 20: ß = 0, A = —1 (left), A = +1 (right). Dissipation rate of energy at low wave numbers 
vs. time. 

5500   6000   6500   7000   7500   8000   8500   9000   9500   10000     5000   5500   6000   6500   7000   7500   6000   8500   9000   9500   10000 

Figure 21:  ß = 0, A = -1 (left), A = +1 (right).   Dissipation rate of energy at high wave 
numbers vs. time. 
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Figure 22:   ß  =  0,  A  =   -1.    Evolution of a single collapsing peak at x   ~   1.006 at 
t = 4999.98,5000.19,5000.295 and t = 5000.4 from left to right and from top to bottom. 
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Figure 23: ß — 0, A = —1. Evolution towards a collapsing peak of the isolated solution for the 
initial amplitude ^o = 2. Dotted line t — 0, dashed line t = 0.55, solid line t = 1.1. 
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Figure 24:  ß = 0, A = +1.   Evolution towards decay of the isolated solution for the initial 
amplitude tp0 = 2. Dotted line t = 0, dashed line t - 1.65, solid line t = 3.85. 
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Figure 25: ß = 0, A = — 1. Computed spectrum vs. wave number. The theoretical slopes are 
shown as well (Ar1 for WT and AT5/4 for MMT). 

Figure 26: ß — 0, A = +1. Computed spectrum vs. wave number. The theoretical slopes are 
shown as well (Ar1 for WT and AT5/4 for MMT). 
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Figure 27: ß = 0, A = — 1. Computed spectrum and WT spectrum vs. wave number. The WT 
spectrum (straight line) is given by n(k) = ck~l with c = aP1^ ~ 0.42. 

Figure 28: ß = 0, A = +1. Computed spectrum and WT spectrum vs. wave number. The WT 
spectrum (straight line) is given by n(k) = ck~l with c = aPll3 ~ 0.24. 
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Figure 29: ß = 0,\ = +1. Evolution of the initial quasisoliton for q/km = 0.1. Solid line t = 0, 
dotted line t = 1250, dashed line t - 2500. 

44 



Figure 30: ß = 0, A = +1. Interaction of two initial quasisolitons at t = 0.  The smaller and 
bigger ones correspond to q/km — 0.2 and 0.25 respectively. 
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Figure 31: ß = 0, A = +1. Interaction of two initial quasisolitons at t = 37.5. 
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Figure 32: ß — 0, A = +1. Interaction of two initial quasisolitons at t = 50. 

Figure 33: ß = 0, A = +1. Interaction of two initial quasisolitons at t = 100. 
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Figure 34: ß = 3,X = +1. Single moving soliton, t = 6915. 
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Figure 35: ß = 3, A = +1. Single moving soliton, t = 10880. 
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Figure 36: ß = 3, A = +1. Evolution of the initial quasisoliton for q/km = 0.1. Solid line t — 0, 
dotted line t = 23.6, dashed line t - 47.1. 
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Figure 37: ß = 3, A = +1. Evolution of the initial quasisoliton for q/km = 0.3. Solid line t = 0, 
dotted line t = 23.6, dashed line t = 47.1. 
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