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ABSTRACT

PDT may be an effective treatment for certain immune-mediated disorders. The immunomodulatory action of PDT is likely a
consequence of effects exerted at a number of levels including stimulation of specific cell signaling pathways, selective
depletion of activated immune cells, alteration of receptor expression by immune and non-immune cells, and the modulation
of cytokine availability. QLT0074, a potent photosensitizer that exhibits rapid clearance kinetics in vivo, is in development
for the treatment of immune disorders. In comparison to the well-characterized and structurally related photosensitizer
verteporfin, lower concentrations of QL.TO074 were required to induce apoptosis in human blood T cells and keratinocytes
using blue light for photoactivation. Both photosensitizers triggered the stress activated protein kinase (SAPK) and p38
(HOG1) pathways but not extracellularly regulated kinase (ERK) activity in mouse Pam212 keratinocytes. In cell signaling
responses, QLTO074 was active at lower concentrations than verteporfin. For all in vitro test systems, the stronger
photodynamic activity of QLT0074 was associated with a greater cell uptake of this photosensitizer than verteporfin. In
mouse immune models, sub-erythemogenic doses of QLT0074 in combination with whole body blue light irradiation
inhibited the contact hypersensitivity response and limited the development of adjuvant-induced arthritis. QL.T0074 exhibits
activities that indicate it may be a favorable agent for the photodynamic treatment of human immune disease.

Keywords: apoptosis, contact hypersensitivity, immunomodulation, keratinocytes, photodynamic therapy, photosensitizers,
psoriasis, signal transduction, T cells, verteporfin.

1. INTRODUCTION

The chlorin-like photosensitizer, benzoporphyrin derivative monoacid ring A, BPD-MA!? (its formulated product is termed
Verteporfin for Injection, VFI) has been extensively characterlzed for its mode of action and for assessing the influence of
photodynamic therapy (PDT) upon different immune parameters Of significance, VFI has been tested in clinical trials for its
activity against the human immune-mediated condition of psoriasis'®. In combination with activating light, VFI is photo-cytotoxic
at relatively low concentratlons in vitro. VFI combined with light irradiation can induce the apoptotic death of different tumor'"™?
and normal immune®® cell types. The marked capacity of PDT to induce apoptosis is believed related to the localization of certain
photosensitizers to the mitochondrion'*", a key site for the regulation of apoptosis-related stimuli'®, A gradient in cell responses
to PDT is evident. At high photosensitizer/light doses, cells may rapidly lose membrane integrity and viability without undergoing
apoptosis (necrosis). Necrotic cell death may promote the development of an inflammatory state at the treatment site. At lower,
yet still cytotoxic PDT doses, cells may undergo programmed cell death (apopt051s) Phagocytic cells efficiently take up and
dispose of cells dying by apoptosis without producing inflammation in the tissue'®. At sub-lethal levels, PDT may trigger cell
signaling events that may influence cell surface receptor expression, cytokine formation and/or growth kinetics. Mobilization of
stress activated protein kinase (SAPK) and p38/high osmolarity glycerol protein kinase (HOG1), but not extra-cellularly
regulated kinases (ERK) 1 or 2 was demonstrated for mouse Pam212 keratinocytes (KC) treated with VFI and red light®.
The full significance of these signaling events is still unclear. However, the relative levels of activation and overlap with
other signaling pathways may influence the function and/or survival of cells treated at an intensity of PDT less than that
required to induce rapid cell death.

Activated T lymphocytes are highly sensmve to photodynamic killing with VFIL. Mitogen-stimulated murine splenocytes
accumulated greater amounts of verteporﬁn and the activated cell populations were more vulnerable to photodynamic killing
than their non-activated counterparts Anti-CD3 activated mouse spleen T cells exhibited greater verteporfin uptake and
were more susceptible to PDT-induced apoptosis than resting T cells®. A tissue-specific depletion of activated T cells may be
a therapeutic goal for the treatment of immune-mediated disease with PDT.

The photosensitizer dose, as well as the dose and timing of light irradiation, can be adjusted so that immune-modulating
effects can be achieved without producing skin erythema or influencing the genera! immune status?'. This form of PDT, in
which a large body surface area is illuminated to generate a disseminated low-intensity PDT effect, inhibited the
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immunologically mediated contact hypersensitivity (CHS) response to the hapten dinitrofluorobenzene (DNFB) in mice’.
PDT with VFI was also tested upon the development of autoimmune adjuvant-induced arthritis of MRL/[pr strain mice®. Mice
given a series of three low-intensity, whole body 3photodynz:\mic treatments at 10-day intervals exhibited joint histologic and
clinical profiles similar to the untreated control mice”. The therapeutic effect achieved with PDT was comparable to that produced
by different agents with immunomodulatory activity*. Importantly, hematopoietic progenitor activity and spleen cell mitogenic
responses were preserved in PDT-treated mice®. PDT with VFI can dampen the immune response to a topically applied hapten’
and reduce disease severity in mouse autoimmune models>**,

The human immune-mediated condition of psoriasis is manifested in the skin. Patients with psoriasis exhibit
dramatically heightened KC proliferation leading to elevated plaque formation at various body sites. Psoriatic plaques contain
large infiltrates of activated T cells within the epidermal and dermal regions of the skin. The instigating factors for psoriasis
are not fully defined, although it is now evident that it is a T cell-mediated condition. Cytokines released by activated T cells
drive the altered proliferation and differentiation behavior of KC within the plaque. Treatments that deplete or impair the
activity of skin-infiltrating T cells can produce a beneficial clinical effect on psoriasis™?. Patients with psoriatic arthritis
(PsA) exhibit degenerative joint changes in association with psoriasis. In a recent clinical trial, PsA patients were
administered VFI systemically and treated with half or whole body-UVA light irradiation 3 hours later'®. The drug and light
dose combinations did not cause skin erythema. Four PDT treatments given one week apart produced a greater than 35%
improvement in total psoriasis area and severity index (PASI) scores in 5 of the 17 patients by the completion of the study’.
Importantly, few side effects were reported. Earlier studies indicated that PDT might be an effective psoriasis treatment®.

To achieve a beneficial clinical effect against psoriasis, PDT may imperil pathogenic T cell survival, modify APC
function and directly or indirectly alter KC proliferation within the psoriatic plaque. A photosensitizer, presently designated
QLTO0074, has been synthesized and formulated for possible use in the treatment of human immune-mediated conditions with
PDT. A series of characterization studies has now been performed with this photodynamic agent to reveal whether it has the
potential to serve as an anti-psoriasis drug.

2. MATERIALS AND METHODS

2.1. Photosensitizers

The A-ring of benzoporphyrin derivative (BPD) diethylene-glycol ester (QLT0074), a chlorin—type photosensitizer, was used
in a lipid formulation. Like verteporfin, QL'T0074 is derived from protoporphyrin IX. Lyophilized QLT0074 and VFI (QLT
PhotoTherapeutics, Inc., Vancouver, B.C.) were reconstituted in sterile, distilled water. For in vivo use, photosensitizers were
diluted with 5% dextrose while for in vitro studies, these preparations were diluted with culture medium. The molecular
structure of QLT0074 is provided below (Fig. 1).

Fig. 1. Molecular structure of
QLTO0074 (molecular weight = 792).

2.2. Isolation and activation of human blood T lymphocytes

Heparinized blood obtained from healthy laboratory personnel was diluted with RPMI 1640 medium with 5% fetal calf
serum (FCS) and antibiotics and fractionated by Ficoll Paque density gradient centrifugation. The
mononuclear cell fraction was passed over T cell immuno-affinity columns (R&D Systems, Minneapolis, MN). The eluted T
cell fraction comprised >98% T cells as indicated by their expression of CD3, determined by flow cytometric analysis (Fig.




2A). Of the isolated cells, approximately 2/3 were CD4% (helper T cells) and the remainder were CD8* (cytotoxic T cells)
(data not shown). Few of the purified cells expressed the T cell activation marker CD25 (interleukin-2 receptor, IL-2R).
Activation was elicited by culturing the cells at 0.5-1 x 10%mL in RPMI 1640 medium, 5% FCS in plastic microtiter plates
pre-coated with immobilized mouse monoclonal anti-CD3 (clone UCHT1, PharMingen, San Diego CA) and anti-CD28§
(clone CD28.2, PharMingen) antibodies. Plates were initially treated with antibodies at 5 ug/mL in phosphate-buffered saline
(PBS) for 3 h and then washed several times with PBS. Co-ligation of CD3 and CD28 surface structures triggers signaling
events that stimulate T cell activation and proliferation in the absence of antigen presenting cells (APC)*. Recombinant IL-2
(rIL-2, Amgen Biologicals, Thousand Oaks CA) at 100 U/mL was added to sustain T cell proliferation.

2.3. Photosensitization and determination of cell viability

All cell work with photosensitizer was carried out under light-attenuated conditions. Cells were incubated with photosensitizer at
37°C in the dark for 1 h. The blue light source was a light panel of 8 fluorescent tubes with an emission spectrum of 420 - 490
nm. Panel intensity was checked with a light meter before each experiment. Cell viability was assessed 24 h later with the MTT
(3-[4-,5-dimethylthiazol-2-yl]-2,4-diphenyl tetrazolium bromide, Sigma) colorimetric assay*’. Replicates of 3-6 were performed at
each photosensitizer concentration. Color development was terminated after 4 h at 37°C in the presence of MTT and read with an
automated microtiter plate reader (Dynatech, Hamilton VA) at a wavelength of 590 nm. Absorbance values for wells containing
medium alone were subtracted from the result obtained for wells containing cells. Results are given as a percentage of the
absorbance obtained for cells treated with light alone.

2.4. Detection of T cell apoptosis

During apoptosis, phosphatidylserine (PS) molecules migrate to the outer portion of the cell membrane. Apoptotic cells are
detectable by the binding of an Annexin-V-fluorescein isothiocyanate (FITC) conjugated probe (PharMingen) to PS®. Cell
membrane integrity was assessed in parallel by propidium iodide (PI) uptake studies. Cells were evaluated with an Epics XL
flow cytometer using two-color analysis and appropriate color compensation techniques. Cells with an intact plasma
membrane exclude PI. Annexin-V+/PI- cells are considered to be in the early stages of apoptosis while Annexin-V+/PI+ cells
may be in late stage apoptosis or are undergoing necrotic cell death.

2.5. PDT effects on normal human KC

Human neonatal foreskin KC (Clonetics, San Diego, CA) were maintained in serum-free keratinocyte growth medium
(Clonetics). These cells have a limited proliferative potential in vitro and were used in experiments at culture passages 2 or 3.
KC at 50-60% confluency were incubated with photosensitizer for 60 min at 37°C in medium containing 2% FCS and then
irradiated with blue fluorescent light. Whole cell lysates were prepared 3 h post-PDT''. These preparations were separated by
sodium dodecy! sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in 10% gels, transferred to nitrocellulose and
stained for apoptosis-related changes using antibodies to caspase-3, caspase-8, caspase-9 or the DNA repair enzyme
poly(ADP-ribose)polymerase (PARP) as described'""”. Blots were developed using chemiluminescence and autoradiography
techniques. For cell viability determinations, KC were maintained for a further 24 h after PDT and MTT assays were then
performed.

2.6. Imapct of PDT on cell signaling activity

The spontaneously transformed mouse Pam212 KC line was provided by Dr. Stephen E. Ullrich (University of Texas,
Houston TX). The cell line was initially established by culturing KC isolated from newborn Balb/c mice. Cells were
maintained in 22 ml of Dulbecco’s minimum essential medium (DMEM, Gibco) supplemented with heat-inactivated 5%
FCS, penicillin (100 U/mL) and streptomycin (100 pg/mL) in 100 x 20 mm Falcon 3003 polystyrene tissue culture dishes®.
Following PDT, cells were maintained at 37 °C in the dark for 45 min. The medium was aspirated, and the cells were washed
twice with ice-cold PBS containing 1 mM Na;VO,. The cells were lysed by scraping in 800 pl of ice-cold homogenizing
buffer (20 mM MOPS, pH 7.2, 5 mM EGTA, 1% (W/V) Nonidet P-40 (NP40), 1 mM dithiothreitol, 75 mM B-glycerol
phosphate, 1 mM Na;VO, and 1 mM phenylmethylsulfonyl fluoride). The mixture was transferred into a 1.7 mL micro-
centrifuge tube and sonicated at 4°C for 30 sec. Insoluble material was pelleted by centrifugation (10,000 x g) for 15 min at
4°C. The supernatant removed, divided into aliquots, quickly frozen in liquid nitrogen and stored at -70°C.
Immunoprecipitation of ERK1/2 was performed with 500 pg Pam 212 cell lysate by addition of 30 uL of protein A
Sepharose (1:1 slurry) and 5 pl (0.5 pg) of a 1:1 mixture of anti-ERK1 (C-16, rabbit IgG against C-terminal residues 352-
367; cat # sc-93 Santa Cruz, Biotechnology, Inc., Santa Cruz CA) and anti-ERK2 (C-14, rabbit IgG against C-terminal
residues 345-358; Santa Cruz cat # sc-154) antibody. Mixtures were rotated at 4°C for 3 h. Protein A-Sepharose beads were
pelleted by microfuge centrifugation at 4°C for 2 min and the supernatant discarded. Protein A-Sepharose beads were washed




with twice with 3% NP40 and NP40-free NETF buffer (100 mM NaCl, 5 mM EDTA, 50 mM Tris-HCl, pH 7.4, and 50 mM
NaF).

Suspensions of ERK1/2 immune complexes were incubated in a 60 gL reaction mixture containing 20 mM MgCl,,
25 mM §-glycerophosphate, 20 mM MOPS, 5 mM EGTA, 2 mM EDTA, 0.25 mM DTT, 5 mM f-methyl aspartic acid, 1 uM
of the cAMP-dependent kinase inhibitor (PKI), 50 uM [y-*P]JATP (2000 cpm/pmol) and 5 ug MBP. The reaction was
performed in 1.7 mL microcentrifuge tubes for 5 min and the reaction was terminated by the addition of 20 ul SDS sample
buffer. Full-length myelin basic protein (MBP, Sigma) was used for in vitro kinase assay of ERK1 and ERK2 activity. A
fusion protein consisting of GST and N-terminal residues 1-79 of c-Jun (Stressgen, Victoria, B.C.) was used to assay
SAPK/INK kinase activity. Full-length heat shock protein (HSP27) (Stressgen) was used to indirectly assess p38 HOG
activity”®. For the SAPK/INK and p38 assays, 50 ug of cell lysate was incubated as above in a 75 pL reaction mixture with
2.5 pg of either GST-c-Jun [1-79] or HSP27, respectively. The reaction was terminated after 15 min by the addition of 20 ul
SDS sample buffer. After boiling for 5 min, the samples were separated by SDS-PAGE. After electrophoresis, the proteins
were transferred to nitrocellulose membrane in 25 mM Tris, 192 mM glycine and 20% methanol) for 3 h at 4°C at 300 mA
with a TE Series Transphor Electrophoresis Unit (Hoefer Scientific Instruments). The membrane was stained for protein with
Ponceau S (Sigma), rinsed with distilled water and dried prior to exposing to autoradiography film (Kodak BioMax MR,
VWR). Following autoradiography, substrate bands on the nitrocellulose membrane were excised and counted by liquid
scintillation counting®.

2.7. Contact hypersensitivity (CHS) response

Female Balb/c mice were pre-treated with whole body PDT consisting of intravenous (i.v.) photosensitizer injection, followed by
whole body blue fluorescent light (15 J/em®) irradiation 1 h later. Twenty-four h later, CHS to dinitrofluorobenzene (DNFB,
Sigma Chemicals, St. Louis, MO) was initiated by applying a DNFB solution to a shaved flank region’. Control animals were
administered PBS and exposed to the light source. Five days later, the hapten was applied to the dorsal surface of the right ear. To
gauge its irritant effect, the delivery solvent alone was applied to the left ear. Non-sensitized mice were evaluated in parallel to
determine the effect of the DNFB challenge solution. The CHS response was gauged immediately before and 24 h after DNFB
application by measuring ear thickness with a dial caliper. Measurements were carried out in a blinded manner.

2.8. Adjuvant-induced arthritis

To induce arthritis, MRL/Ipr strain mice were immunized intra-dermally with complete Freund’s adjuvant (CFA)®. The
photodynamic treatment consisted of an iv. injection of photosensitizer followed 1 h later by whole body blue light
irradiation. PDT was given 3 times at 10-day intervals. Arthritis was evaluated every 5 days by measuring ankle width with a
micrometer.

3. RESULTS

3.1. PDT with QLT0074 or VFI induces apoptosis in T lymphocytes

The majority of purified human blood T cells incubated with immobilized anti-CD3 and anti-CD28 monoclonal antibodies
and rIL-2 for 5 days, exhibited a blast-like appearance and 50-60% expressed the CD25 activation antigen (Fig 2A).
Treatment with increasing amounts of QLT0074 or VFI and a constant level (2 J/cm®) of blue light lead to decreased cell
viability at nanomolar photosensitizer concentrations as determined by MTT assays (Fig. 2B). QLT0074 was phototoxic at
lower concentrations than VFI. Annexin-V-FITC binding assays indicated that QLT0074 produced apoptosis by 3 h post-
light irradiation in a larger proportion of T cells than VFI, when equimolar amounts of the photosensitizers were compared

(Fig. 2C).

3.2. Sensitivity of normal human KC to PDT

In the absence of light, neither VFI nor QLT0074 affected KC viability (Fig. 3A). For blue-light-irradiated (1 J/em®) cells.
QLTO0074 was marginally more potent against KC viability than VFI. As anticipated, increasing the amount of blue light
delivered to the cells lowered the concentration of photosensitizer required to elicit photodynamic killing of KC (data not
shown). Biochemical changes representative of apoptosis were evident in whole cell lysates prepared from KC 3 h after
treatment treated with VFI or QLT0074 and irradiation with blue light (Fig. 3B). At 100 nM, but not at 10 nM, both
photosensitzers produced evidence in light-irradiated KC of caspase-3, -8 and -9 processing and the degradation of the
caspase-3 substrate PARP. At 200 nM, caspase processing and PARP degradation was evident for light-irradiated KC treated
with VFI but not with QLT0074. Neither photosensitizer produced evidence of caspase processing or PARP degradation in
light-protected KC.
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Fig. 2. Activated human blood T cells are sensitive to photodynamic killing with VFI or QLT0074. (A) T cell purity was
assessed by staining the preparation with an FITC-conjugated monoclonal antibody against the pan-T cell marker CD3 (filled
area) or an IgGl isotype control reagent (gray area) and flow cytometric analysis. Staining with anti-CD25 monoclonal
antibody was performed to assess T cell activation status on day O and after 5 days in microtiter plate wells containing
immobilized anti-CD3 and anti-CD28 monoclonal antibodies and rIL-2. Staining with an FITC-conjugated IgGl isotype
control monoclonal antibody was performed in parallel. (B) Day 5 activated T cells were treated with increasing amounts of
VFI (@) or QLT0074 (O) and then exposed to blue light (2 J/cmz). Cell survival was determined 24 later by the MTT assay.
Results are given as a percentage of the MTT result (absorbance value at 590 nm) obtained for cells exposed to light alone (5
independent experiments). (C) Photodynamic induction of apoptosis with blue light irradiation occurs in activated T cells
with lower concentrations of QLT0074 than VFI. Annexin-V binding and PI uptake studies were performed 3 h post-PDT.
Early apoptotic cells (Annexin-V+, PI negative) are demarcated and this percentage is given.
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Fig. 3. PDT with QLTO074 or VFI and blue light irradiation reduces the viability of normal human KC and induces
apoptosis-related changes. Cells were incubated for 60 min with increasing amounts of photosensitizer and either light-
protected or irradiated with biue light. (A) Cell survival was determined 24 h later by the MTT colorimetric assay. For KC
treated with VFI () or