
AFRL-IF-RS-TR-2000-118
Final Technical Report
August 2000

WINWIN EXTENSIONS FOR THE
EVOLUTIONARY DESIGN OF COMPLEX
SYSTEMS

University of Southern California

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. D897

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

20001019 148
AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-118 has been reviewed and is approved for publication.

APPROVED:

ROGER J.DZIEGIEL
Project Engineer

FOR THE DIRECTOR: i/Lkf^
NORTHRUP FOWLER, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

WINWIN EXTENSIONS FOR THE EVOLUTIONARY DESIGN OF COMPLEX
SYSTEMS

Barry Boehm

Contractor: University of Southern California
Contract Number: F3 0602-96-2-0231
Effective Date of Contract: 18 July 1996
Contract Expiration Date: 30 June 2000
Short Title of Work: WinWin Extensions for the

Evolutionary Desian of Complex
Systems

Period of Work Covered: Jul 96 - Jun 00

Principal Investigator: Barry Boehm
Phone: (213)740-8163

AFRL Project Engineer: Roger Dziegiel
Phone: (315)330-3547

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Roger J. Dziegiel, AFRL/IFTD, 525 Brooks Road, Rome, NY.

REPORT DOCUMENTATION PAGE
OMB No. 0704-0188

hatersportingburdMfortlBcelactionofirrfMTnationtt
tha calaction of «formation. Sond camrnants regarding this burdtn tstinatt or any othtr aspact of this coaaction of information, ndudrng suggastions for raducing this burdan, to Washington Haarkniartsrs Sarviess, Diractorata for Information
Oparations and Rooms, 1215 Jaffamn Dim Highway, Sou 1204. Artngtoa VA 22202-4302. and to tha Offica of Managamnt and Budgat, Papararork Raduction Projact (070W188I. Washingtoa DC 20503.

1. AGENCY USE ONLY (Learn blank! 2. REPORT DATE

AUGUST 2000
3. REPORT TYPE AND DATES COVERED

Final Jul 96 - Jun 00
4. TITLE AND SUBTITLE

WINWIN EXTENSIONS FOR THE EVOLUTIONARY DESIGN OF COMPLEX
SYSTEMS

6. AUTHORIS)

Barry Boehm

5. FUNDING NUMBERS

C - F30602-96-2-0231
PE- 62301E
PR- D897
TA- 01
WU-01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of SouthemCalifornia
Center for Software Engineering
Los Angeles CA 90089-0781

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAMEISI AND ADDRESS(ES)

Defense Advanced Research Projects Agency Air Force Research Laboratory/IFTD
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2000-118

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Projects Engineer: Roger J. Dziegiel/IFTD/(315) 330-2185

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This research focused on formulation and development of process models and their support environments that will enable the
DoD and its contractors to shift from traditional fixed-contract models of software and systems engineering in general to
collaborative models of such processes, technology was developed to address DoD's increasing need for rapid,
user-responsive concept definition, prototyping, development, and life-cycle evolution of complex software-intensive
systems. The WinWin Spiral model uses Theory W (win-win) to develop software and system requirements, and
architectural solutions, as win conditions negotiated among a project's stakeholders (user, customer, developer, maintainer,
interfacer). The WinWin negotiation tool is a Unix workstation-based groupware support system that allows stakeholders to
enter win conditions, explore their interactions, and negotiate mutual agreements on the specifics of the new project being
contracted. The model and support system also feature a central role for quantitative tradeoff analysis tools such as
Constructive COst Model (COCOMO) - a tool which allows one to estimate the cost, effort, and schedule associated with a
prospective software development project). For additional information on WinWin and Easy WinWin OnLine visit University
of Souther California's Center for Software Engineering (USC/CSE) web page
http://sunset.usc.edu/research/WINWIN/index.html. This project was funded by AFRL/IF and DARPA/ITO under
Evolutionary Design of Complex Software (EDCS) Program.

14. SUBJECT TERMS

WinWin Spiral Model, Model-Based requirements Negotiation, Collaboration

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

108
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

 UL
Standard Form 298 (Rev. 2-89) (EG)
Prasctibad ay ANSI Stt 238.1«

' gParformPro.WHSni0D,0ctfM

TABLE OF CONTENTS

Project Overview
1.1 Win Win Requirements Tool and Rationale Capture Extensions
1.2 Win Win Spiral and MBASE Product-Process Integration
1.3 Software Architecture Extensions and Integration with Requirements

1.3.1 Architecture Analysis Tools and Requirements Integration
1.3.2 Domain Architectures for Satellite Ground Systems

1.4 Experimental Application of Research Results

1
1
2
2
2
4
4

Appendix A: Easy Win Win: Lesson Learned from Four Generations of Groupware for
Requirements Negotiation

Appendix B: Spiral Development: Experience, Primciples, and Refinements

Appendix C: Life Cycle Connectors: Bridging Models Across the Life-Cycle

Appendix D: Using the Win Win Spiral Model: A Case Study

List of Pulished Papers and Technical Reports

References

7

21

52

62

74

97

LIST OF TABLES

Table 1. MBASE Project Experience at USC/Columbia

1 Project Overview

1.1 WinWin Requirements Tool and Rationale Capture Extensions

On a previous DARPA contract, USC had developed two generations of an experimental
WinWin tool to enable system stakeholders (e.g., users, customers, developers, maintainers) to
negotiate a mutually satisfactory (win-win) set of system requirements [Boehm et al. 1995]. The
tool captured the time history of these requirements negotiations, which provided a promising
base for developing a Rationale Capture capability in support of the corresponding EDCS
program goal.

The WinWin tool was re-architected and restructured to accomplish this goal and to effect a
number of improvements identified in using the second-generation WinWin tool. These included:

• Development of a Rationale Graph linking the Win Conditions, Issues, Options, and
Agreements involved in WinWin requirements negotiations, and providing a GUI capability
to explore captured decision rationales by pointing and clicking on the Rationale Graph.

• Capturing rationale via Attachments, including architectural analyses, cost model tradeoffs,
negotiation videoclips, scenario-based analyses, and executing software.

• Experimenting with Rationale Agents, which could reopen negotiations upon sensing the
violation of an Agreement.

• Formulation and implementation of rigorous integrity conventions among negotiations, such
as locking artifacts involved in votes, and disallowing out-of-sequence artifact creation.

The resulting WinWin tool was used successfully in over 100 real-client requirements
negotiations at USC and Columbia U, and used experimentally by several DoD and contractor
organizations, including USAF Space and Missile Systems Center, Warner Robins Air Logistics
Center, AFRL/IFTD, Aerospace Corporation, TRW, Lockheed Martin, Northrop Grumman,
Litton, SPC, and MCC. However, the tool was not used in continuing practice for several
reasons:

• The rigorous integrity conventions made the tool too awkward to use in negotiation situations
requiring flexibility.

• The server was Unix-based, and most organizations were using Windows-based servers.
• Although an applications program interface was developed, it was still hard to interoperate

WinWin with other commercial groupware tools being used.
• The tool did not have a commercial support organization.

In the final year, with major contributions by Visiting Prof. Paul Gruenbacher, we entered a
strategic partnership with GroupSystems.com, a leading commercial groupware company, to
develop a commercial version of WinWin, called EasyWinWin, based on their groupware
infrastructure. The resulting tool has been used enthusiastically by commercial companies, has
been announced as a GroupSystems.com product, and is currently being introduced via a series
of USC-GroupSystems training courses. Further details are provided by the paper in Section 2.1,

"EasyWinWin: Lessons Learned from Four Generations of Groupware for Requirements
Negotiation," currently submitted for publication in IEEE Software.

1.2 WinWin Spiral and MBASE Product-Process Integration

On the previous DARPA contract (F30602-94-C-0195), USC had developed an experimental
WinWin Spiral process model which was used successfully to evolve the WinWin tool, but
which did not fully integrate process and product definitions [Boehm and Bose 1994].

The WinWin Spiral model was extended into a full system development approach called Model-
Based (System) Architecting and Software Engineering (MBASE) [Boehm and Port 1999b].
MBASE integrates not only a project's product and process models, but also its property and
success models, thus avoiding the model clashes found to underlay many large software project
failures [Boehm and Port 1999a].

USC has developed roughly 200 pages of product definition guidelines for MBASE and an
Electronic Process Guide based on the Software Engineering Institute (SEI)'s Electronic Process
Guide (EPG) tool [Kellner 1999]. The MBASE guidelines have also been used successfully on
over 100 real-client projects at USC and Columbia U. They have also been used by projects at
TRW, Litton, and several commercial companies. They and the WinWin Spiral Model were
identified as the spiral model version best suited for adoption for evolutionary acquisition of
command and control systems by the Air Force General Officers' Offsite on Spiral Development
in February 1999. WinWin Spiral and MBASE principles were adopted by the 1 January 2000
Air Force Instruction 63-123, "Evolutionary Acquisition of C2 Systems."

In February 2000, USC and SEI co-sponsored a workshop at USC on "Spiral Development
Experiences and Implementation Challenges," attended by leading spiral practitioners in DoD
and the aerospace and commercial sectors. The resulting conclusions and recommendations have
become part of the current Deputy Undersecretary of Defense/Science and Technology
(DUSD/S&T) initiative to provide technical infrastructure support for the software portions of
DoD's revised acquisition regulations DoDI 5000.1 and DoDI 5000.2. A follow on SEI-USC
workshop, "Spiral Development in the DoD," is being sponsored by the DUSD/S&T, Dr. Dolores
Etter, in September 2000.

Further details, along with a set of defining invariants and variants for the spiral model, are
provided by the paper, "Spiral Development: Experience, Principles, and Refinements,"
presented as the keynote for the February 2000 workshop, and currently being prepared for
publication as CMU/SEI-2000-TR-008.

1.3 Software Architecture Extensions and Integration with Requirements

1.3.1 Architecture Analysis Tools and Requirements Integration

Evolving system requirements into a viable software architecture is still mainly based on intuition
with little available guidance. Requirements and the system architecture emerge in an iterative
process involving multiple stakeholders with conflicting goals, needs, and objectives. An

important success-factor is thus to provide stakeholder-relevant views on the evolving
requirements and architecture models. We found that a better understanding of requirements and
architecture can significantly improve the quality and effort associated with software
development. We have developed useful research results in the following domains:

• Architectural Support for Commercial-off-the-Shelf (COTS) Development: Composing
software systems out of COTS components is becoming more popular but the risks of
undesirable side effects these components might have onto other components are becoming
increasingly severe. Although COTS components may run perfectly on their own, they may
not work anymore when used together. Our work on the AAA architectural mismatch
detection rules and tools assists in identifying potential problems early on to avoid software
composition problems.

• Consistent Refinement: The problem of consistently engineering large, complex software
systems of today is often a problem of transforming and validating requirements, architecture,
design, and implementation models. Each software model is intended to highlight a
particular view of a desired system. A combination of multiple models is needed to represent
and understand the entire system. Ensuring that the various models used in development are
consistent relative to each other thus becomes a critical concern. We have developed an
approach that integrates and ensures the consistency across an architectural and a number of
design models. The goal of our work is to combine the respective strengths of a powerful,
specialized (architecture-based) modeling approach with a widely used, general (design-
based) approach.

• MBASE Integration: Product models such as architecture and design have to be also seen in
context of other types of models such as property models, success models, or process models.
Our work on MBASE establishes criteria for evaluating development models in terms of key
system stakeholders' concerns. The Model-Based (System) Architecting and Software
Engineering (MBASE) approach enables consistent, concurrent definition of a system's
architecture, requirements, operational concept, prototypes, and life cycle plans.

• Software Connectors: Software connectors describe the interactions among architectural
components and support communication, coordination, conversion and facilitation needs of
components. Connectors can be used to describe interactions among components in family
architectures. Furthermore, improvements in many extra functional properties of a system can
be attributed to semantically rich connector mechanisms such as events, distributors and
arbitrators. Since connectors can be applied across problem domains, they have a high
potential for reusability. Connectors also significantly affect global system properties such as
availability, throughput, security and scalability.

• Model Connectors: Numerous notations, methodologies, and tools exist to support software
system modeling. While individual models may clarify certain system aspects, the large
number and heterogeneity of models may ultimately hamper the ability of stakeholders to
communicate about a system. The major reason for this is the discontinuity of information
across different models. In our work we found an approach for dealing with that
discontinuity. As such we built a set of extensible "connectors" to bridge models, both within

and across the activities in the software development lifecycle. While the details of these
connectors are dependent upon the source and destination models, they share a number of
underlying characteristics. We have illustrated our approach by applying it to a large-scale
system we are currently designing and implementing in collaboration with a third-party
organization.

1.3.2 Domain Architectures for Satellite Ground Systems

We organized a series of Ground System Architecture Workshops (GSAW), in 1997, 1998, and
1999. Presentations at the workshops included EDCS-funded projects highlighting relevant
research, Government policy and plan briefings and the contractors describing the state of the
practice as well as their research directions. All presentations at each GSAW have been posted
on the USC website and published in the Proceedings of GSAW 97, GSAW 98, and GSAW 99.

Before the first GSAW in 1997, there had been no regular forum for the SGS community to
exchange information, ideas, and issues relating to architectures for spacecraft ground systems.
By the time of GSAW 99, a regular following had already been built up. The EDCS-funded
series of workshops, GSAW 97, GSAW 98, and GSAW 99, has been extremely successful in
creating and establishing a community of satellite ground system practitioners committed to
investigating architecture technology and impact in the DoD and related Government and
commercial systems.

GSAW2000 was held the year following the last EDCS-funded GSAW, and was well attended by
both repeat participants, and new attendees. Like its predecessors, it was judged to be extremely
valuable, both for the content of the briefings and breakout groups, and for the contacts with
others in the coalescing spacecraft ground systems community. The workshops will be continued
beyond the completion of the EDCS contract, and will continue to both provide a forum for
technology transfer for DARPA and other researchers and also inform spacecraft ground system
practitioners of issues and advances in related technologies.

We developed several architectural models using the Stanford Architecture Definition Language,
Rapide. The architecture and the components that we modeled were drawn from an Aerospace
Technical Operating Report describing a proposed reference architecture for the Standard
Satellite Control Segment. This report was distributed within the DARPA community and
published on the USC website. The models served as the basis for several studies, which we
reported on in the Ground System Architecture Workshops. The evaluation criteria identified in
these studies and in other work were collected and published in a report on Evaluation Criteria
for Satellite Ground System Architectures, Aerospace Technical Report ATR-99(7470)-l.

1.4 Experimental Application of Research Results

During each year of the project, the evolving WinWin tools, MBASE guidelines, and selected
architecture capabilities were used and evaluated on sets of real-client digital library applications
at USC and related applications at Columbia U. The capabilities were strengthened and extended
based on the year's experience, and applied in the following year.

Table 1. MBASE Project Experience at USC/Columbia

Metrics use use use olumbia olumbia use
1996- 1997- 1998- U-grad. Grad. 99 1999-
1997 1998 1999 1999 2000

Fall Semester: LCA Package
Teams 15 16 20 20 13 21

Students 86 80 102 107 59 102

Applications 12 15 17 10 10 20

Teams failing LCO review 4 4 1 10 6 0
Teams failing LCA review 0 0 0 0 1 0
Pages, LCO package 160 103 114 124 116 TBD

Pages, LCA package 230 154 167 142 142 TBD

Client Evaluation (1-5, 5 best) 4.46 4.67 4.74 - - 4.55

Spring Semester: IOC Package Remained the
Teams 6 5 6 same since 8

Students 28 23 28 projects were only 39

Applications
Teams failing IOC acceptance review

8 5 6 one semester long 8
0 0 0 0 0 0

Applications satisfying clients (*teams) 5 5 6 20* 12* 8
Applications not overtaken by events 6 4 4 10 9 TBD

Applications continued 3 3 4 - - TBD

Applications used 1 3 3 10 5 TBD

Client evaluation (1-5, 5 best) - 4.15 4.3 4.44 4.21 TBD

* LCO: Life Cycle Objectives; LCA: Life : Cycle Arc hitectures; IOC: Initial Operational Capabilities

Table 1 summarizes the experience on these projects. It shows a strong general progression
toward successful passing of reviews, client satisfaction, and applications transitioning to
successful use.

More detailed analyses of particular experiences, such as the WinWin negotiations, have been
performed and documented in such papers as [Boehm and Egyed 1998] and [Egyed and Boehm
1999]. Further details on the digital library applications are provided by the paper in Section 2.4,
"Using the WinWin Spiral Model: A Case Study," published in IEEE Computer.

Research Area Summary Papers

Appendix A: Easy Win Win: Lesson Learned from Four Generations of Groupware for
Requirements Negotiation 7

Appendix B: Spiral Development: Experience, Primciples, and Refinements 21

Appendix C: Life Cycle Connectors: Bridging Models Across the Life-Cycle 52

Appendix D: Using the Win Win Spiral Model: A Case Study 62

EasyWinWin: Lessons Learned from Four Generations of
Groupware for Requirements Negotiation

Barry Boehm Paul Gruenbacher Robert O. Briggs

Computer Science Department GROUPSYSTEMS. COM
University of Southern California 1430 E. Fort Lowell Rd. #301,

941 W. 37th Place, Los Angeles, CA 90089-0781 Tucson, AZ 85719,
{boehm, gruenbac}@sunset.usc.edu bbriggs@groupsystems.com

1 Introduction and Motivation
There is no complete and well-defined set of requirements waiting to be discovered in system devel-

opment. Requirements emerge in a highly collaborative process that involves users, customers, managers,
domain experts, and developers. These stakeholders contribute incomplete, vague, and inconsistent state-
ments and ideas about their objectives, assumptions, and expectations. Requirements negotiation is there-
fore essential to achieve mutually satisfactory agreements and to elaborate complete, correct, and clear
specifications.

Collaborative technology supporting this process has to address the heterogeneity of stakeholders in
particular: Groupware systems are among the hardest of systems to get right. The rapidly moving tech-
nology of distributed interactive systems is a major challenge. However, even bigger is the challenge of
creating a system that works well with people of different backgrounds, in different places, and often at
different times.

Here we present the major lessons we have learned in developing four generations of a distributed
groupware system called WinWin. We also summarize the degree to which the current system, Easy-
WinWin, satisfies the original and evolving objectives for such a system, and demonstrate how it enables
and facilitates active participation and stakeholder collaboration.

What is the WinWin approach?
The WinWin approach evolved more or less independently as an interpersonal relations [16], success

management [7], and project management [1] approach. A reasonable common definition is:

The WinWin approach is a set of principles, practices, and tools, which enable a set of
interdependent stakeholders to work out a mutually satisfactory (win-win) set of shared
commitments.

The interdependent stakeholders can be either people or organizations. Their shared commitments can
be about information system requirements (the primary focus of the WinWin groupware system), but can
cover any continuing relationships in work and life. "Mutually satisfactory" generally means that people
do not get everything they want, but that they can be reasonably assured of getting what was agreed to.
"Shared commitments" are not just good intentions, but carefully defined conditions. If someone has a
conditional commitment, the condition needs to be made explicit, and understood as part of the agreement
by all stakeholders.

Why does WinWin work?
The alternatives don't work
In a requirements negotiation, nobody wants a lose-lose outcome. Win-lose may sound attractive to the

party most likely to win, but it usually turns into lose-lose. Table 1 shows three classic win-lose patterns

among the three primary system stakeholders - developers, customers, and users - in which the loser's
outcome usually makes the two "winners" into losers as well [2].

Table 1: Frequent Software Development Win-Lose Patterns (which usually turn into lose-lose situations)

Proposed Solution "Winner" Loser

Quick, Cheap, Sloppy
Product

Developer & Customer User

Lots of
"bells and whistles"

Developer & User Customer

Driving too hard a bargain Customer & User Developer

Building a quick and sloppy product may be a low-cost, near-term win for the software developer and
customer, but it will be a lose for the user (and the maintainer). Adding lots of marginally useful "bells
and whistles" to a software product on a cost-plus contract may be a win for the developer and users, but
is a lose for the customer. And "best and final offer" bidding wars imposed on competing developers by
customers and users generally lead to low-ball winning bids which place the selected developer in a los-
ing position.

Actually, nobody wins in the above situations. Quick and sloppy products destroy a developer's
reputation and have to be redone, inevitably at a higher cost to the customer. The "bells and whistles"
either disappear or (worse) crowd out more essential product capabilities as the customer's budgets are
exhausted. Inadequate low-ball bids translate into inadequate products, which again incur increased cus-
tomer costs and user delivery delays to reach adequacy.

WinWin builds trust and manages expectations
If you consistently find other stakeholders asking about your needs and acting to support them, you

will end up trusting them more. In addition, if you consistently find them balancing your needs with other
stakeholders' needs, you will have more realistic expectations about getting everything you might want.

WinWin helps stakeholders adapt to changes in the environment that effect requirements
Our traditional, adversarial, lawyer-oriented contracting mechanisms are no match for our current

world of increasing rapid change in technology, mergers, reorganizations, and personnel turnover. Instead
of rigorous requirements in ironbound contracts, doing business in Internet time requires stakeholders
with a shared vision and the flexibility to quickly renegotiate a new solution once unforeseen problems or
opportunities arise. A WinWin approach builds a shared vision among stakeholders, and provides the
flexibility to adapt to change.

WinWin helps to build institutional memory
The why behind the what, i.e., the decisions that led to a work result often vanish. By capturing stake-

holder negotiations WinWin supports long-term availability of the decision rationale and helps to build
institutional memory.

How does the WinWin System work?
The particular WinWin system we have evolved includes a negotiation model for converging to a

WinWin agreement, and a WinWin equilibrium condition to test whether the negotiation process has con-
verged: The negotiation model guides success-critical stakeholders in elaborating mutually satisfactory
agreements. Stakeholders express their win conditions. If everyone concurs, the win conditions become
agreements. When stakeholders do not concur, they identify their conflicted win conditions and register
their conflicts as issues. In this case, stakeholders invent options for mutual gain and explore the option
trade-offs. Options are iterated and turned into agreements when all stakeholders concur. Additionally, a

8

taxonomy is used to organize Win Win artifacts. Important terms of the domain are captured in a glossary.
The stakeholders are in a WinWin equilibrium condition when all of their win conditions are covered by
agreements, and there are no outstanding issues.

This negotiation model provided the basis of all four implementations of WinWin groupware systems.
We will present these implementations and will show how the current system, EasyWinWin, addresses
the shortcomings and lessons learned in the development of the previous systems. Our major lesson
learned is that collaborative technology for requirements engineering has to be based on a sound method-
ology and on proven collaboration and facilitation techniques that emphasize group dynamics. We have
been addressing these challenges in the EasyWinWin project: We will introduce the concept of thinkLets
and show how thinkLets are used in the EasyWinWin methodology. We will also present practical ex-
periences gained with EasyWinWin.

2 Four Generations of WinWin Groupware and Lessons Learned
The original motivation for a WinWin groupware system was the first author's frustration in using a

manual WinWin approach to manage large projects at DARPA. For example, WinWin management of
the $100 million DARPA STARS program was done primarily via monthly meetings of many STARS
stakeholders: 3 prime contractors and their 3 commercial counterparts; 3 user representatives from the
Army, Navy, and Air Force; DARPA customers, contract managers, and several research and support
contractors. Each meeting would end up with a WinWin agreement that felt like three steps forward.
However, by the next meeting, we would take two steps back, as the distributed stakeholders independ-
ently "reinterpreted" the agreements.

As a result, it took six months to achieve a shared vision documented by the prime contractor's success
plans. Our analysis at the time indicated that an "anytime, anyplace" WinWin groupware support system
could have reduced this to 1-2 months.

DARPA's maturing Internet technology looked like a good technology base for developing such a sys-
tem. USC's Center for Software Engineering, initially with its Affiliates' support, later with DARPA and
Air Force Research Labs' support and a grant by the Austrian Science Fund (second author), developed a
series of four WinWin groupware implementations. These reflect increasing understanding of what was
needed for successful WinWin groupware operations and technology support.

2.1 Generation 1: Initial Prototype
The first WinWin groupware implementation was a prototype developed in concert with Perceptronics'

CACE-PM® support system for concurrent engineering of multi-chip modules. CASE-PM® enabled us
to develop a useful rapid prototype, which was useful enough for demonstrations and for an initial ex-
periment. This involved the system's developers role-playing as future system developers, customers, and
users negotiating the requirements for a more robust version of WinWin. The main lessons learned from
this experiment were [2]:

- The WinWin approach helps bridge a previous gap in using the Spiral process model: how to
determine the next round of objectives, alternatives, and constraints. This led to the WinWin
Spiral Model extensions [2, 3], now used by several organizations.

- Software requirements negotiation required considerably more database and relationship
management than was needed for multi-chip modules. This led to a much more thorough
definition of WinWin artifacts and relationships, including the basic negotiation model dis-
cussed above.

- In exploring experimental use of the system by Affiliates, we found that the high cost of the
CACE-PM® license was a major disincentive (USC had a free academic license). This led us
to focus on a small-footprint USC-built system.

- Performing the WinWin negotiation gave us a strong, shared vision for the next version of the
system, validating its utility as a groupware capability.

2.2 Generation 2: Strong Vision, Not-So-Strong Architecture
The second-generation Win Win system used a Sun-UNIX client-server architecture, X/Motif GUI

support, and its own database server. It was used experimentally by some friendly industry users. Its main
value was to identify a number of inconsistencies in the negotiation model and the artifacts, among the
artifacts, and between GUI and the database server. We had underestimated how much detailed software
engineering was needed to get from a shared groupware vision to a groupware support system.

2.3 Generation 3: Muscle-Bound Architecture
The third-generation Win Win system had a formally analyzed negotiation model, uniform artifact look

and feel, carefully defined GUI-database interfaces, and rigorous enforcement of the negotiation model.
For example, one could not define Issues without Win Conditions as referents, or Options without Issues
as referents. When an Agreement was put to a vote, all of its associated Win Conditions, Issues, and Op-
tions were locked to preserve integrity of the voting process. The 3G WinWin also had a number of
amenities for voting, for attaching associated documents or analysis-tool runs, and for big-picture negotia-
tion visualization and navigation.

The 3G WinWin was sufficiently robust to have supported four years' work of 15-20 project negotia-
tions per year [3, 8]. These involved USC librarians and student teams negotiating the requirements for
operational USC digital library systems, which the student teams then built and transitioned to library use.
In the first year, we learned not to do the WinWin negotiations ahead of the prototype, as we rediscovered
the nOWISI (I'll know it when I see it) syndrome. Once the librarians saw the prototype, they wanted to
re-do all the negotiations. Still, we verified across over 100 requirements negotiations that 3G WinWin
was able to support rapid definition and development of unprecedented applications.

3G WinWin was also used experimentally by several industry and government organizations. How-
ever, this use did not lead to the system's crossing the chasm into mainstream use. The main reasons cited
by the mainstream users were:

- 3G Win Win's integrity rules were too rigorous. For example, to fix a typo in an artifact that
was locked for voting, users had to make all the locked artifacts inactive and copy their con-
tents into a new set of artifacts.

- The homebrew database server was very fragile and prone to lose people's work in crashes.
- 3G WinWin did not interoperate well with other groupware systems, even after we built an

applications program interface for it. One industry project successfully built and applied its
own WinWin overlay on top of the groupware system it was using, but did not try to develop
a more general capability.

2.4 Generation 4: EasyWinWin and thinkLets
These experiences turned USC more toward developing a version of WinWin based on a commercial

groupware infrastructure developed by GroupSystems.com in cooperation with the University of Arizona
[13]. Our current collaboration between USC and GroupSystems.com has led to a fourth-generation sys-
tem, EasyWin Win [11, 5], which is proving successful on mainstream industry applications. It is de-
scribed in the next sections.

3 thinkLets™ for stakeholder collaboration
Each of our first three generations of WinWin groupware was increasingly strict about enforcing mod-

eling conventions at the expense of group dynamics. The software got in the way of the human interac-
tions that are a critical part of negotiation. In the Easy WinWin project we relaxed modeling constraints
and focused instead on moving people through a comfortable process that focused their attention on just
the right subtask at just the right time. A decade of research revealed that the use of collaborative technol-
ogy could produce stunning gains in productivity (see [10] for a thorough review of Group Support Sys-
tems Research). However, the technology on its own was not sufficient to assure predictable, repeatable

10

success. Different teams using the same technology for the same task would develop dramatically differ-
ent group dynamics and would vary dramatically in their productivity based solely on differences in the
facilitation script - the directions given to the group at the beginning of a collaborative activity [15]. From
this experience, one of us (Briggs) developed the concept of thinkLets. A thinkLet encapsulates all the
intellectual capital required to create one predictable, repeatable pattern of group interaction.

A thinkLet has three components: A collaborative reasoning tool, a configuration, and a carefully
crafted and tested facilitation script. The first component of a thinkLet, a GroupSystems tool, seems sim-

ple on the surface:

Electronic Brainstorming: Team participants contribute comments to electronic pages and repeat-
edly exchange those pages to stimulate additional thoughts and comments (see Figure 2).

Categorizer: People drag-and-drop ideas into buckets and contribute to discussion pages attached
to each idea in order to organize their thoughts and elaborate on their concepts (see Figure 3).

Topic Commenter. This tool provides a stack of electronic cards, each with a different topic head-
ing. It encourages team members to explore a tightly bounded set of concepts in depth and
detail.

Group Outliner: The Group Outliner allows a team to build a tree structure of ideas and concepts
(see Figure 1 and Figure 4).

Vote: Team members vote a list of items using one of 10 different methods, or they create a cus-
tom voting method on the fly.

Alternative Analysis: Participants assess a list or tree of items against a set of criteria.
Survey: A team collects responses to many kinds of questions and analyzes the results.

Although the tools appear simple to the users, their design derives from cognitive and social research
findings and from extensive experience in the field with teams trying to accomplish meaningful work.

The second component of a thinkLet is the configuration of the collaborative reasoning tool. Each tool
in GroupSystems suite has 15 to 25 configurable features that may be varied independently, yielding more
than 9 million possible configurations. Each configuration has some subtle, yet powerful impact on group
dynamics. When designing a thinkLet, a methodologist can select an appropriate configuration to create
just the right dynamics for the task.

The third component of a thinkLet is its facilitation script. Any given tool and configuration can be
used in many ways by a team. The script explains how team members should respond to the tool before
them. Different scripts will produce very different results. For example, below is an excerpt from the
script for the GroupSystems FreeBrainstorming thinkLet, which encourages the participants to:

"...argue with one another, expand on one another's ideas, or be inspired to contribute
completely new ideas; contribute as many new ideas as you can in a short time."

Given that guidance, and the appropriately configured tool, a group tends to push quickly to the
boundaries of their problem space and discover new ideas that are outside familiar patterns of thinking.

The Point-Counterpoint thinkLet produces completely different dynamics with the same tool and con-
figuration. This thinkLet causes a group to find the middle ground when they have become polarized and
hit an impasse. The script excerpt below encourages the group to:

"... put in your strongest single argument in favor of your position. Now trade pages.
You should see somebody else's argument on your screen. Whether you agree with the
argument or not, type in the strongest counter argument you can against the first argu-
ment on the page. Now trade pages. You should see a strong argument and a mutually
exclusive counter argument. Now write an argument that bridges those seemingly irrec-
oncilable positions."

All three components of GroupSystems thinkLets - tool, configuration, and technique - emerge from
years of field experience and from more than a decade of cognitive, organizational, and social research

11

into the foundations of successful collaboration. Because each thinkLet produces a predictable, repeatable
pattern of interaction, a methodologist can assemble the thinkLets into a sequence of steps to guide a
group through a cognitively challenging task like requirements negotiation.

There are thinkLets for six different categories of group dynamics: Diverge, Converge, Organize,
Evaluate, Elaborate, and Agree. Each step in a group process requires some different pattern of interac-
tion. For example, a group working to solve a problem might diverge from customary thinking patterns in
search of new solutions. They may evaluate their options, converge on a workable solution, and elaborate
their plan. With each category, there are thinkLets to cause subtle yet powerful variations in the overall
pattern. Consider, these three examples of convergence thinkLets:

FastFocus causes a group to quickly extract a small set of the most important issues from a vast,
unstructured brainstorming transcript.

GoldMiner helps a team identify key issues while keeping the issues in the context from which
they emerged.

BroomWagon guides a group to take a set of ideas through multiple rounds of elimination until
only the most desirable ideas remain.

There are also thinkLets that cut across several categories. The Could-Be-Should-Be thinkLet, for ex-
ample, takes a group through a series of diverge/converge cycles. Each cycle produces a new layer of de-
tail.

We used and refined nine different thinkLets to implement a repeatable, reliable WinWin methodol-
ogy. The implementation is described in more detail in the next section.

4 The EasyWinWin methodology
This section describes the nine stages in the EasyWinWin methodology:

Elaborating the domain taxonomy
- Brainstorming stakeholder interests

Converging on win conditions
Capturing domain language
Prioritizing win conditions

- Elaborating conflicts and constraints
Elaborating options

- Negotiating agreements
- Mapping negotiation results to the taxonomy

Elaborating the domain taxonomy
Stakeholders tend to enter software development projects with vague and limited understandings of

what can and should be done. The first step in the EasyWinWin methodology is therefore to broaden then-
perspectives by asking them to elaborate, refine, and customize the domain taxonomy. The taxonomy
serves as both an organizing framework and a stakeholder checklist for WinWin negotiations. It becomes
a useful way to organize the hundreds of win conditions that emerge later in the project, and the resulting
requirements specification.

When used with the USC Model-Based (System) Architecting and Software Engineering (MBASE)
approach, the domain taxonomy corresponds to the Table of Contents of the requirements specification
[4]. MBASE defines the following sections: Application capabilities (system features and services), Inter-
faces (to the user as well as other software and hardware systems), System Properties ('non-functional'
requirements), Project & process constraints (cost, schedule, development tools, support), and Evolution
(most likely directions of requirements change and growth).

Stakeholders suggest modifications to the taxonomy to reflect their own interests and culture. Easy-
WinWin uses the Could-be/Should-be thinkLet: The taxonomy appears on the stakeholder's screens as a
shared outline (Figure 1). A double-click of any outline node opens a shared comment window for that

12

node. During the 'could be'-step, stakeholders add comments about what might be missing in the taxon-
omy, or what should be removed from the taxonomy. During the 'should be'-step a moderator reviews
these comments together with the group and modifies the outline itself.

$%&• F<#Jwt £<B .Oulfc«: group. fljUion*■ !#***• M*

IS r-1. Project Requirements

-1.1 Budget and Schedule

-1.2 Development Requirements

-1.3 Packaging Requirements

ä

;1.4 Implementation Requirements]

15 Support Requirements

2. Capability Requirements
1-2.1 Nominal System Requirements

I—2.2 Off-nomina! requirements

3. System Interface Requirements

-3.1 User Interface Requirements

-3.2 Communications '"'""'"'iji

-3.3 Other Software Intert^gJ-T"
4. Level of Service Require: 7/0

4.1 Dependability

4.2 Security

4.3 Interoperability

4.4 Usability ;~~

-4.5 Performance |.

■4.6 Adaptability

■4.7 Reusability :

■4.8 Availability ;j|rr

L5. Evolution Requirements ;

5.1 Capability Evolution F

-5.2 Interface Evolution R(;

Implementation Requirements

training f*68H"

9I^^^9^V^09IlJi^\-.-
user manuals? {#124} _

5.3 Technology Evolution Requirements
L5.4 Workload Evolution Requirements

■ Spti: ;| ;Pw^ou* I H* .]; Qw>f j.tWa j

Figure 1: Elaborate domain taxonomy

Brainstorming stakeholder interests
In this activity, stakeholders are encouraged to exhaustively explore their vested interests in the pro-

ject. Using the FreeBrainstorming thinkLet in the GroupSystems Electronic Brainstorming Tool, stake-
holders make anonymous contributions to a series of electronic pages that swap randomly among their
screens (Figure 2).

Figures 2, 3, and 4 show sample EasyWinWin sessions: The USC bookstore together with a consor-
tium of other university bookstores is developing a web-based portal for students. EasyWinWin was used
to negotiate requirements and to develop consensus about the elements and features of the portal.

Rapid, simultaneous, and anonymous interaction allows sharing different opinions and perspectives,
and exploiting the creative potential and experiences of the team. With this thinkLet, the group can hear
from all its members in less time that it would normally take to hear from just one or two people. Typical
sessions last between 30 and 60 minutes. In our experiences, the teams identified between 100 and 300
ideas during this phase. As contributions are anonymous at this point, people reveal interests that they
might be reluctant to discuss in an identified brainstorming session. The resulting collection of stake-
holder statements and ideas provides a starting point for building win conditions and defining important
terms of the domain.

13

Figure 2: Brainstorm stakeholder interests

Converging on win conditions
Brainstorming comments from stakeholders are usually unstructured, redundant, ambiguous, and

vague. The goal of this activity is to jointly craft a non-redundant list of clearly stated, unambiguous win
conditions by considering all ideas contributed in the brainstorming session. Stakeholders also organize
these win conditions into buckets that represent the top-level domain taxonomy elements.

The team uses the FastFocus thinkLet for converging on the list of win conditions. Each stakeholder
views a different electronic page containing twenty-to-thirty comments contributed by the group. The
moderator prompts each stakeholder in turn to orally frame a succinct statement of a win condition from
the list of comments. Typically, several brainstorming statements are merged into one win condition.
However, if a statement covers several aspects (e.g., it describes a system service and a system property),
it may result in several win conditions. The moderator types the win condition onto a publicly-viewable
list (see Figure 3), and the group discusses the statement to be sure all stakeholders understand its mean-
ing. The group is explicitly prohibited from arguing with or endorsing win conditions at this time. Once
each participant has had a chance to contribute a win condition, the system randomly swaps pages among
the participants. The moderator repeats the pattern, asking stakeholders to frame win conditions from the
screens before them. The process continues until no participant can find any new win conditions to add to
the list. The number of win conditions is typically about one third of the number of brainstorming ideas.

Ti^s^mmssmsss^m^^^^a^^m^m^^^mm^m^m
:ü x tv©.©'«■!'#>■ ■**«*;<% «*Sj

1. W01 Site management adds bookstore layout Information
(floor, location, type of material).

2. W03 The banner will provide a link to the university
bookstore

3. W04 Interface for advertisers

4. WÖ5 Default banner of bookst

S. WOS The site management m
dispalys banners

6. W07 Different kinds of adverti
hiring,' book signings, etc.

7. WOB Flexible text on banners

B. W09 Display address of the b
a picture of it.

FTOTTTf
£* Comment

2/0

i.Mj.iJi.ii.i.i.iiii.iiJiii.i.ii.uimuimiiiii« ^ IOM

W05 Default banner of bookstore if no other ±
events available

• The system should defauft to a generic banner
f the director does not have any planned for a
certain time frame

• The defauR banner should always be that of the
school hookstore

!■♦ fippend

3ubn*'"'|

|
•1

SDOI 1 PnviM | Next | Xb» | H«\p |

Figure 3: Converge on win conditions

14

Capturing domain language
As participants brainstorm, they use words that have special meanings within the context of a project

or a domain. During the convergence step, the moderator adds important terms to a shared list in the elec-
tronic brainstorming tool. The groupware then automatically organizes brainstorming comments contain-
ing these keywords (or synonyms of the keywords) on different discussion sheets. Each sheet shows how
a certain term is used in different statements and ideas. Stakeholders use this information to create and
jointly review definitions for these terms.

Prioritizing win conditions
Voting in EasyWinWin serves two major purposes: (1) Determining priorities of win conditions and

(2) revealing conflicts and different perceptions. The team evaluates the win conditions using the MultiC-
riteria thinkLet. Stakeholders rate each win conditions on a scale from 1 to 10 for each of two criteria:
Business importance shows the relevance of a win condition to project success; ease of realization indi-
cates perceived technical or economic constraints of implementing a win condition. In the voting process,
developers focus on technical issues, while clients and users rate the business relevance. The system
automatically tabulates the results and displays the win conditions in one of four categories:

"Low hanging fruits": Win conditions with a high business importance and low expected diffi-
culties.

"Important with hurdles ": High-priority win conditions that are difficult to implement.
"Maybe later": Low-priority win conditions that may be considered later because they will be

easy to execute.
"Forget them ": Unimportant win conditions that are difficult to achieve.

Elaborating Conflicts and Constraints
Stakeholders examine the results of the prioritization poll on their screens. The Crowbar thinkLet is

used to analyze patterns of agreement and disagreement. The system displays items with high consensus
in green, and items with low consensus in red. The moderator shows a graph of voting patterns for any
red item,' and asks the group to speculate why the disagreement exists as follows:

"Without telling me how you voted, what reasons might exist for rating this win condi-
tion as very important, and what reasons might exist for rating it as unimportant? "

As stakeholders try to explain why opinions may have differed, they discover and correct ambiguity in
their win conditions. They surface unspoken constraints, unrealized assumptions, and unshared informa-
tion. A scribe records these items as comments, Issues (and sometimes Options) for the win condition
under discussion.

Elaborating Issues
Conflict identification and resolution in the WinWin negotiation model is based on Issues, Options, and
Agreements. Stakeholders identify these artifacts in several iterations and organize them in the GroupOut-
liner (Figure 4). The moderator encourages the team members to read each win condition. If the win con-
dition raises any issue for the stakeholder, the stakeholder may type the issue as a sub-heading to the wm
condition. At this point, the participants may not argue about the issues they raise. They may only record
their issues. The deliverable is a tree with win conditions as main headings and issues as subheadings.

15

l.lolxl

Application Capabilities
W3 [LHF] The banner will provide a link to the university bookstore

-W5 [LHF] Default banner of bookstore if no other events available
-W6 [LHF] The site management must have a website which dispalys banners

■W7 [LHF] Different kinds of advertising, including sales, 'now hiring.' book signings. etc

-W8 [LHF] Flexible text on banners
W10 [LHF] Ads must be hyperiinked so that users can click on them to get more details

W11 [LHF] Link to bookstore site (incl book's prices)
W13 [LHF] Input of banner contents to admin via web based interface

W15 [LHF] Update links to physical bookstore site
'S'ÄöWrÄäW~cinnl>f¥e^
;o<^toresites_pnhisowntAdmmlsfratprl _ ;:..„_.. _ _ „..,„.. j
L-08 The information about changed links can be provided in an email to the

administrator [Administrator]

W17 [LHF] Track student information
W18 [LHF] Administrator can input the data in the banner database

-W2 [LHF] Integrate banner ads with email and chat
W4 [IWH] Interface for advertisers to select their schedule

8/0 ilsj
(I/O \ß
I/O jS
n/o \\s
i/o •Ja
;l/D IS
t/0 jH
1/0 m
Ota - jH

Figure 4: WinWin negotiation tree

Elaborating Options
The moderator encourages the stakeholders to read each issue. If the stakeholders can think of any op-

tions for addressing an issue, they may enter the option as a subheading to the issue. Participants are still
discouraged from arguing about issues or options at this phase. The deliverable is a tree with win condi-
tions, some of which will have issues as subheadings, some of which will have options as sub-
subheadings. This deliverable is called the WinWin tree.

Negotiating Agreements
Win conditions for which no issues have been raised are usually automatically declared agreements.

The group must negotiate a resolution to every issue in the WinWin tree. Often someone in the team has
already proposed an option that can be used to resolve the issue. These options typically become agree-
ments. Other issues cannot be resolved easily. These must be negotiated by the old-fashioned way -
horse-trading, persuasion, lobbying, inventing new options for mutual gain, or give-and-take. However,
because the lead-in process tends to be exhaustive, the discussion can be focused, and the available trade-
offs are explicit. Because stakeholders are likely to have several automatic wins early in the process, they
tend to be willing to make trade-offs with one another. The group continues to work until the WinWin
equilibrium is achieved and all issues and win conditions are covered by agreements.

Mapping negotiation results to taxonomy
This technique helps to organize the negotiation results and to test if all aspects in the taxonomy have

been sufficiently covered in the process. Stakeholders associate all WinWin artifacts with the domain tax-
onomy elements using the PopcornSort thinkLet: The moderator copies all the WinWin artifacts to a new
list. Next to this list is a set of electronic buckets, each labeled with a heading from the domain taxonomy.
Any team member may click-and-drag any artifact into any bucket. The process moves quickly; a team
can sort a list of 200-300 artifacts in less than five minutes. Using the BucketWalk thinkLet, the team then
reflects the contents of each bucket (taxonomy element) to decide whether any artifact should be moved
to a different bucket, and whether any item needs to appear in more than one bucket. The team also veri-
fies if all taxonomy elements have been thoroughly explored.

Figure 5 depicts the EasyWinWin activities and the artifacts connecting the activities. Solid lines show
artifacts that are passed between activities for further refinement. Dashed lines indicate artifacts that are
viewed in other activities without modification.

16

Elaborate domain
taxonomy

Brainstorm
stakeholder

interests

taxonomy elements

 L
Converge on win

conditions

statements and ideas statements and ideas

Capture domain
language

categorized win conditions

1
Prioritize win

conditions

categorized, priontized win conditions

1
Elaborate

conflicts and
constraints

glossary of terms

/ glossary of terms

glossary of terms

1^
issues

options

X

Elaborate issues
and options

-issues and options -

Legend:
Transfer of artifacts ►
Viewing of artifacts -*

Negotiate _
agreements

win conditions
issues

options
agreements

Map negotiation
results to
taxonomy

Figure 5: EasyWinWin activities

5 EasyWinWin experiences
EasyWinWin was validated in real-client projects. We applied the methodology in various domains

(e g digital libraries, e-Marketplace, collaboration technology) and thoroughly explored and refined dif-
ferent thinkLets with the goal of streamlining the negotiation protocols and the overall order and design of
process steps EasyWinWin has been used in various contexts of requirements definition: Examples in-
clude the development of a shared vision, requirements definition for custom development projects,
COTS acquisition and integration, transition planning, as well as COTS product enhancement and release
planning. Table 2 summarizes some projects and their characteristics.

Table 2: Project Characteristics

Project
Multimedia databases for
instruction and research

Business/reference
Q&A's question-

matching-answer strate-
gies for customer support

Virtual calendar

Email & student-to-
student chat capabilities

Ad management

Infrastructure for media
buying and selling

GroupSystems COTS
Product Planning

Domain (Customer)
Digital Library

(Center for Scholarly
Technology)
Digital Library
(USC Library)

Web Portal
(Bookstore Consortium)
Web Portal (Bookstore

Consortium)
Advertising

(Bookstore Consortium)
Media

(Mediaconnex)
Groupware

(GroupSytems.com)

System characteristics
Web-based information

system

Web-based information
system

Web-based information
system

Web-based collaboration
capability

Web-based information
system

Web-based infrastructure
for e-Marketplace

Commercial off-the-shelf
 product

Requirements context
Custom development

requirements definition

Development of shared
vision

COTS acquisition & inte-
gration

COTS acquisition & inte-
gration

Custom development
requirements definition
Web-Portal Definition

COTS Product En-
hancement

17

Easy Win Win experiences and benefits can be summarized as follows:

Repeatable process
The EasyWinWin process guide [9] describes how to use proven thinkLets in a requirements negotia-

tion process. Software engineers experience less variance in the quality of their deliverables and the suc-
cess of their engagements. Lower skilled or less experienced practitioners can accomplish more than
would be possible if they had to do straight stand-up facilitation.

Improved stakeholder involvement
EasyWinWin allows direct participation of more people and elicits more from everybody involved.

This leads to better buy-in as more interests can be accommodated earlier in the process. It also helps to
develop broader and deeper deliverables: We found that EasyWinWin results surpass G3 Win Win results
in terms of number of artifacts that are collected in a negotiation [8]. The higher number of issues identi-
fied and resolved helps to reduce risks early in a project and do not derail it later.

Velocity
We also found that EasyWinWin requires fewer stakeholder hours than previous WinWin generations.

Rapid stakeholder interaction reduces costs needed to execute the engagement. As fewer hours are re-
quired, higher-ups are more willing to be involved. People with the power to cut deals tend to be present
to cut the deals. This leads to improved decisions and a lower chance of expensive rework.

Institutional memory
Electronic transcripts providing a record of previously ephemeral content help to preserve the full deci-

sion rationale and avoid the drudgery of compiling meeting minutes after the engagement. Developers
and customers also benefit from instant availability of results. Customers see success much earlier in the
engagement. Decisions are more auditable and result in more detailed, accurate, and complete deliver-
ables.

Anonymity
Anonymous submission of win conditions and revelation of conflicts and constraints fosters candor.

People with power differentials can lay it on the line without threat to job, status, relationships, and politi-
cal position. Increased openness also helps to get to the root issues in a hurry. People up and down the
hierarchy can find out what is really going on thus avoiding the Abilene Paradox (people agree to an unat-
tractive option because they erroneously believe it will make the option-proposer happy) [12].

Mode of collaboration
Beyond same-time/same-place stakeholder interaction, we successfully included remote participants

into EasyWinWin workshops by utilizing the web-based capabilities of GroupSystems and additional use
of audio links. We are currently elaborating recommendations for geographically distributed teams in-
tending to adopt EasyWinWin activities in different time/different place setting.

6 Conclusions
We would single out five primary groupware lessons learned from the four generations of experience

with WinWin.
Build on facilitation and collaboration techniques
The first three generations of WinWin environments emphasized modeling constraints over group dy-

namics and collaboration support. ThinkLets adopted in EasyWinWin provide a mechanism to define re-
peatable patterns of group interaction.

Use the system to plan its own future
It provides both a good test of the current groupware system and a good way of achieving a shared vi-

sion of its future directions. Both USC's experience with IG WinWin and GroupSystems.com's experi-
ence with EasyWinWin substantiates this.

18

Make sure your stakeholders are representative, empowered, knowledgeable, collaborative, and com-
mitted

These characteristics came our of our critical success factor analysis of which digital library projects
have succeeded or failed in being actually used. It often involves pre-screening of stakeholder negotia-
tions, and shared-knowledge-building activities such as concurrent prototyping.

A similar conclusion holds with respect to the representativeness of the user base for which you are
building the groupware system. Once we had an annual set of USC projects to support with 3G WinWin,
we over-focused on USC users rather than our primary target of mainstream industry users.

When developing groupware. perseverance pays off
Do not overreact to initial negative experiences. Groupware systems must be carefully balanced to ac-

commodate the many needs of the many stakeholders. In the design of 2G and 3G WinWin, we reacted to
the IG WinWin experience with its high-priced commercial infrastructure by building homebrew infra-
structure. The 4G EasyWinWin overlay above GroupSystem's infrastructure has been much more suc-
cessful.

In the design of 3G WinWin, we also overreacted to some instances of artifact misuse by creating a
system whose rules were so rigorous that they turned off most users. 3G WinWin improved over 2G
WinWin with its well-defined architectural interfaces, but lost out because of its inflexibility for main-
stream stakeholder groups.

Relative to the "build it twice" guidance in Royce's initial waterfall-model article [14] and in Brooks'
Mythical Man Month book [6], one must also add Brooks' "second system syndrome:" that developers,
particularly for groupware, are likely to react over-ambitiously to experiences with initial prototypes or
systems. This leads to the final major lesson learned:

Plan to develop more than two iterations of groupware systems
With persistence and focus on your mainstream end users, you can develop groupware systems, which

both speed up the initial definition process and help stakeholders achieve a shared vision with lasting
value across their application's entire life cycle.

7 References
[I] Boehm B., Ross R., Theory W Software Project Management: Principles and Examples, IEEE Transactions on Software

Engineering, July 1989, pp. 902-916.
[2] Boehm B., Bose P., Horowitz E., Lee M.J., Software Requirements as Negotiated Win Conditions, Proceedings Intl. Conf.

Rqts. Engineering, IEEE April 1994.
[3] Boehm B., Egyed A., Kwan J., Port D., Shah A., Madachy R., Using the WinWin Spiral Model: A Case Study, IEEE Com-

puter, 7:33^4,1998.
[4] Boehm B., Port D., Escaping the Software Tar Pit: Model Clashes and How to Avoid Them, Software Engineering Notes,

Association for Computing Machinery, pp. 36-48, January 1999.
[5] Boehm B., Grünbacher P., Supporting Collaborative Requirements Negotiation: The EasyWinWin Approach, International

Conference on Virtual Worlds and Simulation, San Diego, SCS 2000.
[6] Brooks F.P., The Mythical Man-Month, Reading, Mass: Addison-Wesley, 1975.
[7] Covey S., The Seven Habits of Highly Effective People, Fireside Books, 1990.
[8] Egyed A.F., Boehm B., Comparing Software System Requirements negotiation patterns, Journal for Systems Engineering,

John Wiley & Sons, 1999.
[9] The EasyWinWin Process Guide: USC-CSE and GROUPSYSTEMS.COM.
[10] Fjermestad J., Hiltz S.R., An Assessment of Group Support Systems Research: Methodology, Journal of Management In-

formation Systems, Winter/Spring 1998-99.
[II] Gruenbacher P., Collaborative Requirements Negotiation with Easy WinWin, 2nd International Workshop on the Require-

ments Engineering Process, Greenwich London, IEEE Computer Society, 2000.
[12] Harvey J. B., The Abilene Paradox and Other Meditations on Management (San Francisco: Jossey-Bass, 1988). The original

publication of the Abilene Paradox appeared as: The Abilene Paradox: The Management of Agreement, in Organizational
Dynamics, 1974.

[13] Nunamaker, J. Briggs, R, Mittleman, D., Vogel, D., Balthazard, P., Lessons from a Dozen Years of Group Support Systems
Research: A Discussion of Lab and Field Findings, Journal of Management Information Systems, Winter 1996-97, 13(3),
163-207.

[14] Royce W.W., Managing the Development of Large Software Systems, Proceedings of IEEE WESCON, pp. 1-9, 1970.

19

[15] Shepherd M.M., Briggs R.O., Reinig B.A., Yen J., Nunamaker J.F., Jr. Invoking Social Comparison to Improve Electronic
Brainstorming: Beyond Anonymity, Journal of Management Information Systems. 12(3):155-170, 1995-96.

[16] Waitley D., The Double Win, Berkeley Books, 1985.

Acknowledgments
This research is sponsored by DARPA through Rome Laboratory under contract number F30602-94-C-0195, by the Austrian

Science Fund (Erwin Schrödinger Grant 1999/J 1764), and by the affiliates of the USC Center for Software Engineering: Aero-
space, Automobile Club of Southern California, C-Bridge, Chung - Ang U. (Korea), Draper Labs, Draper Labs, Electronic Data
Systems Corporation (EDS), Federal Aviation Administration (FAA), Fidelity, GDE Systems, Group Systems.Com, Hughes,
Institute for Defense Analysis (IDA), Litton Industries, Inc.,, Lockheed Martin Corporation, Lucent Technologies, Microsoft,
Motorola, Inc., Northrop Grumman Corporation, Rational Software Corporation, Raytheon/East, Raytheon/West, SAIC (Science
Applications International Corporation), Software Engineering Institute (SEI Carnegie-Mellon University), Software Productivity
Consortium (SPC), Sun Microsystems, Telcordia Technologies, The Boeing Company, TRW, Inc., U.S. Air Force Research
Laboratory, U.S. Army Research Laboratory, US Army TACOM, Xerox Corporation.

We also thank the defmers and developers of the first three versions of WinWin: Ellis Horowitz, Dan Port, Prasanta Bose,
Yimin Bao, Anne Curran, Alex Egyed, Hoh In, Joo Lee, Jure Lee, Mingjune Lee, and Jungwon Park; and users of the four Win-
Win systems: Frank Beltz (TRW), Garry Brannum (Northrop Grumman), Walter Green (Aerospace), Elizabeth Kean (AFRL),
Judy Kerner (Aerospace), Julie Kwan (USC), Andrew Landisman (TRW), Anne Lynch (USC), Ray Madachy (Litton), Azad
Madni (Perceptronics), Nikunj Metha (USC and MediaConnex), Steve Mosher (USC), Karen Owens (Aerospace), Arnold Pittler
(Motorola), and John Salasin (DARPA).

Trademarks
The following terms are trademarks of GroupSystems.com: thinkLet, BucketWalk, Could-Be-Should-Be, CrowBar, Free-

Brainstorming, FastFocus, Point-Counterpoint, PopcornSort.

20

IHM University of Southern California
C|5|.E| Center for Software Engineering

Spiral Development: Experience,
Principles, and Refinements

Barry Boehm, USC
Spiral Experience Workshop

February 9, 2000

boehm@sunset.usc.edu
http://sunset.usc.edu/MBASE

2/9/00 ©USC-CSE

This presentation opened the USC-SEI Workshop on Spiral Development*
Experience and Implementation Challenges held at USC February 9-11, 2000. The
workshop brought together leading executives and practitioners with experience in
transitioning to spiral development of software-intensive systems in the commercial,
aerospace, and government sectors. Its objectives were to distill the participants'
experiences into a set of critical success factors for transitioning to and successfully
implementing spiral development, and to identify the most important needs,
opportunities, and actions to expedite organizations' transition to successful spiral
development.

To provide a starting point for addressing these objectives, I tried in this talk to
distill my experiences in developing and transitioning the spiral model at TRW; in using it
in system acquisitions at DARPA; in trying to refine it to address problems that people
have had in applying it in numerous commercial, aerospace, and government contexts;
and in working with the developers of major elaborations and refinements of the spiral
model such that the Software Productivity Consortium's Evolutionary Spiral Process
[SPC, 1994] and Rational, he's Rational Unified Process [Royce, 1998; Kruchten 1999;
Jacobson et al., 1999]. I've modified the presentation somewhat to reflect the
experience and discussions at the Workshop.

*For the workshop, "development" was defined to include life cycle evolution of
software-intensive systems and such related practices as legacy system replacement
and integration of commercial-off-the-shelf (COTS) components.

21

■ ■HI University of Southern California
C|iS|£| Center for Software Engineering

Spiral Model and MBASE

•Spiral experience

• Critical success factors

•Invariants and variants

•Stud poker analogy

•Spiral refinements

•WinWin spiral

•Life cycle anchor points

•MBASE

2/9/00 ©USC-CSE

This chart includes the original spiral model figure published in [Boehm, 1988].
It captures the major spiral model features: cyclic concurrent engineering; risk driven
determination of process and product; growing a system via risk-driven experimentation
and elaboration; and lowering development cost by early elimination of nonviable
alternatives and rework avoidance. It indicates that the spiral model is actually a risk-
driven process model generator, in which different risk patterns can lead a project to use
evolutionary prototyping, waterfall, incremental, or other subsets of the process
elements in spiral model diagram.

However, the chart contains some oversimplifications that have caused a
number of misconceptions to propagate about the spiral model. These misconceptions
may fit a few rare risk patterns, but are definitely not true for most risk patterns. The
most significant misconceptions to avoid are: that the spiral is just a sequence of
waterfall increments; that everything on the project follows a single spiral sequence; that
every element in the diagram needs to be visited in the order indicated; and that there
can be no backtracking to revisit previous decisions.

The presentation tries to clarify these points by presenting a set of spiral model
critical success factors in terms of a set of invariants that should be true for every
successful spiral implementation, and in terms of a set of variants that can be
considered as alternative approaches to successful spiral implementation. This
presentation also shows how the spiral model can be used for a more cost-effective
incremental commitment of funds via an analogy of the spiral model to stud poker. It
then presents some experience-based refinements of the spiral model developed to
address spiral usage problems encountered over the years; the WinWin spiral model; a
set of spiral-compatible life cycle anchor points; and the Model-Based (System)
Architecting and Software Engineering (MBASE) approach. It concludes by
summarizing some "hazardous-spiral look-alikes" to avoid, and by identifying a wide
variety of projects which satisfied the spiral invariants and succeeded.

First, though, it begins with a simple overview definition to capture the essence
of the spiral model.

22

■ ■ ■ I University of Southern California
Cl5|.E| Center for Software Engineering

"Spiral Development Model:"
Candidate Definition

The spiral development model is a risk-driven process
model generator. It is used to guide multi-stakeholder
concurrent engineering of software-intensive systems.
It has two main distinguishing features. One is a cyclic
approach for incrementally growing a system's degree
of definition and implementation. The other is a set of
anchor point milestones for ensuring stakeholder
commitment to feasible and mutually satisfactory
system solutions.

2/9/00 ©USC-CSE

A process model answers two main questions:

•What should the project do next?

•How long should the project continue doing it?

The spiral model holds that the answers to these questions vary from
project to project, and that the variation is driven by risk considerations. It
emphasizes the importance of having all of the project's success-critical
stakeholders participate concurrently in defining and executing the
project's processes (it uses risk considerations to ensure that progress is
not overly slowed down by stakeholder overparticipation). It can be used
to integrate software, hardware, and systems considerations, but is most
important to use for software-intensive systems.

The cyclic nature of the spiral model was illustrated in Chart 2. The
anchor-point stakeholder-commitment milestones are discussed in
Charts 17-19.

23

|C|5|£|
University of Southern California
Center for Software Engineering

Spiral Inv
- Critic

ariants and Variants -1
,al success factor examples

Invariants Why Invariant Variants

1. Concurrent rather • Avoids premature
than sequential sequential commitments 1a. Relative amount of

determination of to Rqts, Design, COTS, each artifact developed in

artifacts (OCD, Rqts, combination of cost/ each cycle.

Design, Code, Plans) schedule performance
In each spiral cycle. -1 sec. response time 1b. Number of

concurrent mini-cycles In
each cycle.

2. Consideration In each • Avoids commitment to 2a. Choice of risk

cycle of critical- stakeholder- resolution techniques:

stakeholder objectives unacceptable or overly prototyping, simulation,

and constraints, risky alternatives. modeling, benchmarking,

product and process reference checking, etc.

alternatives, risk • Avoids wasted effort in
identification and elaborating 2b. Level of effort on

resolution, unsatisfactory each activity within each

stakeholder review alternatives. cycle.

and commitment to - Mac-based COTS

3. Level of effort on each • Determines "how much 3a. Choice of methods

activity within each Is enough" of each used to pursue activities:

cycle driven by risk activity: domain engr., MBASE/ WinWin, Rational

considerations. prototyping, testing, CM, USDP.JAD.QFD.ESP,...

- Pre-ship testing 3b. Degree of detail of

• Avoids overkill or artifacts produced in

belated risk resolution. each cycle.

2/9/00 ©USC-CSE

This chart summarizes the first three of the six identified spiral invariants:

1. Concurrent rather than sequential determination of artifacts.

2. Consideration in each spiral cycle of the main spiral elements:
critical-stakeholder objectives and constraints; product and process alternatives;
risk identification and resolution; stakeholder review and commitment to
proceed.
3. Using risk considerations to determine the level of effort to be devoted on
each activity within each spiral cycle.

Chart 13 summarizes the second three spiral invariants:

4. Using risk considerations to determine the degree of detail of each artifact
produced in each spiral cycle.
5. Managing stakeholder life-cycle commitments via three Anchor Point
milestones: Life Cycle Objectives (LCO), Life Cycle Architecture(LCA), and
Initial Operational Capability(IOC).
6. Emphasis on system and life cycle activities and artifacts rather than
software and initial development activities and artifacts.
Both this chart and Chart 13 summarize the invariants; critical-success-factor

reasons why they are essential invariants, and associated optional variants. The next
few charts elaborate each individual invariant.

24

IHM University of Southern Calrfomia
C|5|£| Center for Software Engineering

279/00

Spiral Invariant 1: Concurrent Determination of Key
Artifacts (Ops Concept, Rqts, Design, Code, Plans)

• Why invariant
- Avoids premature sequential commitments to system

requirements, design, COTS, combination of cost/
schedule/ performance
- 1 sec response time

• Variants
1a. Relative amount of each artifact developed in each
cycle.
1b. Number of concurrent mini-cycles in each cycle.

• Models excluded
- Incremental sequential waterfalls with high risk of

violating waterfall model assumptions

©USC-CSE

Spiral invariant 1 states that it is success-critical to concurrently determine a
compatible and feasible combination of key artifacts: the operational concept, the
system and software requirements, the system and software architecture and design,
key elements of code (COTS, reused components, prototypes, success-critical
components or algorithms), and plans.

Why is this a success-critical invariant? Because sequential determination of
the key artifacts will prematurely overconstrain, and often extinguish, the project's ability
to develop a system which satisfies the stakeholders' essential success conditions.
Examples are premature commitments to hardware platforms, to incompatible
combinations of COTS components [Garlan et al., 1995], and to requirements whose
achievability has not been validated. Chart 6 provides an example of the kinds of
problems that occur when high-risk requirements are prematurely frozen.

The variants 1a and 1 b indicate that the product and process internals of the
concurrent engineering activity are not invariant. For a low technology, interoperability-
critical system, the initial spiral products will be requirements-intensive. For a high-
technology, more standalone system, the initial spiral products will be prototype code-
intensive. Also.there is no invariant number of mini-cycles (e.g., individual prototypes
for COTS, algorithm, or user-interface risks) within a given spiral cycle.

This invariant excludes one model often labeled as a spiral process, but which
is actually a "hazardous spiral look-alike." This is the use of a sequence of incremental
waterfall developments with a high risk of violating the underlying assumptions of the
waterfall model described in Chart 7.

25

IcislEi University of Southern California
Center for Software Engineering

Sequential Engineering Buries Risk

$100M

$50M

Arch. A:
Custom
many cache processors

Arch.B:
Modified
Client-Server

Original Spec

-JSF—
After Prototyping rototyp

2/9/00

2 3

Response Time (sec)

©USC-CSE

In the early 1980s, a large government organization contracted with TRW to
develop an ambitious information query and analysis system. The system would
provide more than 1,000 users, spread across a large building complex, with powerful
query and analysis capabilities for a large and dynamic database.

TRW and the customer specified the system using a classic sequential-
engineering waterfall development model. Based largely on user need surveys and an
oversimplified high-level performance analysis, they fixed into the contract a
requirement for a system response time of less than one second.

Two thousand pages of requirements later, the software architects found that
subsecond performance could only be provided via a highly customized design that
attempted to anticipate query patterns and cache copies of data so that each user's
likely data would be within one second's reach. The resulting hardware architecture had
more than 25 super-midicomputers busy caching data according to algorithms whose
actual performance defied easy analysis. The scope and complexity of the hardware-
software architecture brought the estimated cost of the system to nearly $100 million,
driven primarily by the requirement for a one-second response time.

Faced with this unattractive prospect, the customer and developer decided to
develop a prototype of the system's user interface and representative capabilities to test.
The results showed that a four-second response time would satisfy users 90 percent of
the time. A four-second response time dropped development costs closer to $30 million
[Boehm, 2000]. Thus, the premature specification of a 1-second response time buried
the risk of creating an overexpensive and time-consuming system development.

26

II H University of Southern California
C|5|£| Center for Software Engineering

Waterfall Model Assumptions
1. The requirements are knowable in advance of

implementation.
2. The requirements have no unresolved, high-risk

implications
- e.g., risks due to COTS choices, cost, schedule, performance,

safety, security, user interfaces, organizational impacts
3. The nature of the requirements will not change very much

- During development; during evolution
4. The requirements are compatible with all the key system

stakeholders' expectations
- e.g., users, customer, developers, maintainers, investors

5. The right architecture for implementing the requirements is
well understood.

6. There is enough calendar time to proceed sequentially.

2/9/00 ©USCCSE

This chart summarizes the assumptions about a software project's state of
nature that need to be true for the waterfall model to succeed. If all of these are true,
then it is a project risk not to specify the requirements, and the waterfall model becomes
a risk-driven special case of the spiral model. If any of the assumptions are untrue, then
specifying a complete set of requirements in advance of risk resolution will commit a
project to assumptions/requirements mismatches that will lead the project into trouble.

Assumption 1 - the requirements are knowable in advance of implementation -
is generally untrue for new user-interactive systems, because of the IKIWISI syndrome.
When asked for their required screen layout for a new decision-support systems, users
will generally say, "I can't tell you, but I'll know it when I see it (IKIWISI)." In such cases,
a concurrent prototyping/requirements/architecture approach is needed.

The effects of invalidity in assumptions 2, 4, and 5 are well illustrated by the
example in Chart 5. The 1-second response time requirement was unresolved and
high-risk. It was compatible with the users' expectations, but not with the customer's
budget expectations. And the need for an expensive custom architecture was not
understood in advance.

The effects of invalidity in assumptions 3 and 6 are well illustrated by electronic
commerce projects. There, the volatility of technology and the marketplace is so high
that requirements and traceability updates will swamp the project in overhead. And the
amount of initial calendar time it takes to work out a complete set of detailed
requirements that are likely to change several times downstream is not a good
investment of the scarce time to market available to develop an initial operational
capability.

27

I University of Southern California

CI^I-EI Center for Software Engineering

Spiral Invariant 2: Each cycle does
objectives, constraints, alternatives, risks,

review, commitment to proceed

• Why invariant
- Avoids commitment to stakeholder-unacceptable or overly

risky alternatives.
- Avoids wasted effort in elaborating unsatisfactory alternatives.

- Windows-only COTS

• Variants
2a. Choice of risk resolution techniques: prototyping, simulation,

modeling, benchmarking, reference checking, etc.

2b. Level of effort on each activity within each cycle.

• Models excluded
- Sequential phases with key stakeholders excluded

2/9/00 ©USC-CSE

Spiral invariant 2 identifies the activities in each quadrant of the original spiral
diagram which need to be done in each spiral cycle. These include consideration of
critical-stakeholder objectives and constraints; elaboration and evaluation of project and
process alternatives for achieving the objectives subject to the constraints; identification
and resolution of risks attendant on choices of alternative solutions; and stakeholder's
review and commitment to proceed based on satisfaction of their critical objectives and
constraints.

If all of these are not considered, the project may prematurely commit itself to
alternatives that are either unacceptable to key stakeholders or overly risky. Or it can
waste a good deal of effort in elaborating an alternative that could have been shown
earlier to be unsatisfactory. Chart 10 provides a representative example.

Spiral invariant 2 does not mandate particular generic choices of risk resolution
techniques. However, there are risk management guidelines, e.g., [Boehm, 1989], that
suggest best-candidate risk resolution techniques for the major sources of project risk.
Invariant 2 also does not mandate particular levels of effort for the activities performed
during each cycle. This means, for example, that software cost estimation models
cannot be precise about the amount of effort and cost required for each cycle.

This invariant excludes another "hazardous spiral look-alike": organizing the
project into sequential phases or cycles in which key stakeholders are excluded.
Examples are excluding developers from system definition, excluding users from system
construction, or excluding system maintainers from either definition or construction (see
Chart 11).

28

IM am m University of Soufrem California
C|5|£| Center for Software Engineering

Windows-Only COTS Example:
Digital Library Artifact Viewer
Great prototype using ER Mapper
- Tremendous resolution
- Incremental-resolution artifact display
- Powerful zoom and navigation features

Only runs well on Windows
- Mac, Unix user communities forced to wait
- Overoptimistic assumptions on length of wait

Eventual decision to drop ER Mapper

2/9/00 ©USC-CSE

One of the current USC digital library projects is developing a web-based viewer
for oversized artifacts (e.g., newspapers, large images). The initial prototype featured a
tremendously powerful and high-speed viewing capability, based on a COTS product
called ER Mapper. The initial project review approved selection of this COTS product,
even though it only ran well on Windows platforms, and the Library had significant
Macintosh and Unix user communities. This decision was based on initial indicators that
Mac and Unix versions of ER Mapper would be available soon.

However, subsequent investigations indicated that it would be a long time
before such Mac and Unix capabilities would become available. At a subsequent
review, ER Mapper was dropped in favor of a less powerful but fully portable COTS
product, Mr. SID, but only after a good deal of wasted effort was devoted to elaborating
the ER Mapper solution. If a representative of the Mac or UNIX user community had
been involved in the early project decisions, the homework leading to choosing Mr. SID
would have been done earlier, and the wasted effort in elaborating the ER Mapper
solution would have been avoided.

29

■ Ill University of Southern California
Center for Software Engineering

Models Excluded: Sequential
Phases Without Key Stakeholders

User,
Customer

Customer,
Developer

Developer,
User, Maintainer

.A
Inception

Jk

Elaboration,
Construction Transition

2/9/00

High risk of win-lose even with spiral phases
- Win-lose evolves into lose-lose

Key criteria for IPT members (AFI 63-123)
- Representative, empowered, knowledgeable, collaborative, committed

©USC-CSE 10

Even though the phases shown in this chart may look like risk-driven spiral
cycles, this spiral look-alike will be hazardous because its exclusion of key stakeholders
is likely to cause critical risks to go undetected. Excluding developer participation in
early cycles can lead to project commitments based on unrealistic assumptions about
developer capabilities. Excluding users or maintainers from development cycles can
lead to win-lose situations, which generally evolve into lose-lose situations [Boehm-
Ross, 1989].

Projects must also guard against having the appearance but not the reality of
stakeholder participation by accepting an unqualified member of an integrated product
team (IPT). A good set of criteria for qualified IPT members described in [Boehm et al.,
1998] and adopted in [USAF, 2000] is to ensure that IPT members are representative (of
organizational rather than personal positions); empowered (to make commitments which
will be honored by their organizations); knowledgeable (of their organization's critical
success factors); collaborative, and committed.

30

■ ■ ■ ■ University of Southern Calrfomia
C|.S|£| Center for Software Engineering

2/9/00

Spiral Invariant 3: Level of Effort
Driven by Risk Considerations

Why invariant
- Determines 'how much is enough" of each activity:

domain engr., prototyping, testing, CM, etc.
- Pre-ship testing

- Avoids overkill or belated risk resolution.

Variants
3a. Choice of methods used to pursue activities:

MBASE/WinWin, Rational RUP, JAD, QFD, ESP,...
3b. Degree of detail of artifacts produced in each cycle.

Models excluded
- Risk-insensitive evolutionary or incremental

development

©USC-CSE 11

Spiral invariant 3 uses risk considerations to provide answers to one of the most
difficult questions for a project to answer: how much of a given activity (domain
engineering, prototyping, testing, configuration management, etc.) is enough? An
example of how this works for testing is provided in Chart 12. It shows that if you plot a
project's risk exposure as a function of time spent testing, there is a point at which risk
exposure is minimized. Spending significantly more testing time than this is an overkill
leading to late market entry and decreased market capitalization. Spending significantly
less testing time than this is an underkill leading to early market entry with products that
are so unreliable that the company loses market share and market capitalization.

Given that risk profiles vary from project to project, this means that the risk-
minimizing level of testing effort will vary from project to project. The amount of effort
devoted to other activities will also vary as a function of a project's risk profile, again
presenting a challenge for software cost models' ability to estimate a project's effort
distribution by activity and phase. Another variant is an organization's choice of
particular methods for risk assessment and management.

Hazardous spiral model look-alikes excluded by invariant 3 are risk-insensitive
evolutionary development (e.g., neglecting scalability risks) or risk-insensitive
incremental development (e.g., suboptimizing on increment 1 with a point-solution
architecture which must be dropped or heavily reworked to accommodate future
increments); or impeccable spiral plans with no commitment to managing the risks
identified.

31

■ ■ ■ ■ University of Southern California

C|t£|£| Center for Software Engineering

Pre-Ship Test Risk Exposure

Risk Exposure 8
RE =
Size (Loss) •
Prob (Loss) 5

RE (defect losses)

2/9/00

Amount of testing; Time to market

©USC-CSE 12

This chart shows how risk considerations can help determine "how much testing
is enough" before shipping a product. This can be determined by adding up the two
main sources of risk Exposure, RE = Probability (Loss) • Size (Loss), incurred by two
sources of loss: loss of profitability due to product defects, and loss of profitability due to
delays in capturing market share. The more testing the project does, the lower becomes
the risk exposure due to defects, as discovered defects reduce both the size of loss due
to defects and the probability that undiscovered defects still remain. However, the more
time the project spends testing, the higher are both the probability of loss due to
competitors entering market and the size of loss due to decreased profitability on the
remaining market share.

As shown in Chart 12, the sum of these risk exposures achieves a minimum at
some intermediate level of testing. The location of this minimum-risk point in time will
vary by type of organization. For example, it will be considerably shorter for a ".com"
company than it will for a safety-critical product such as a nuclear powerplant.
Calculating the risk exposures also requires an organization to accumulate a fair amount
of calibrated experience on the probabilities and size of losses as functions of test
duration and delay in market entry.

32

■ Ill Unwersity of Southern Calrfomia
Center for Software Engineering

2/9/00

Spiral Invariants and Variants - 2
Invariants Whv Invariant Variants

4. Degree of detail of artifacts
produced In each cycle
driven by risk
considerations.

• Determines "how much Is
enough" of each artifact
(OCD, Rqts, Design, Code,
Plans) in each cycle.

• Avoids overkill or belated risk
resolution

4a. Choice of artifact
representations (SA/SD,
UML, MBASE, formal
specs, programming
languages, etc.)

5. Managing stakeholder life-
cycle commitments via the
LCO, LCA, and IOC Anchor
Point milestones (getting
engaged, getting married,
having your first child),

• Avoids analysis paralysis,
unrealistic expectations,
requirements creep,
architectural drift, COTS
shortfalls and
incompatibilities,
unsustainable architectures,
traumatic cutovers, useless
systems.

5a. Number of spiral cycles or
increments between anchor
points.

5b. Situation-specific merging
of anchor point milestones.

6. Emphasis on system and
life cycle activities and
artifacts rather than
software and initial
development activities
and artifacts.

• Avoids premature
suboptimlzation on hardware,
software, or initial
development considerations.

6a. Relative amount of
hardware and software
determined in each cycle.

6b. Relative amount of
capability In each life cycle
Increment.

6c. Degree of productization
(alpha, beta, shrink-wrap,
etc.) of each life cycle
increment

©USC-CSE 13

This chart summarizes the second three spiral invariants:

4. Using risk considerations to determine the degree of detail of each artifact
produced in each spiral cycle.
5. Managing stakeholder life-cycle commitments via three Anchor Point
milestones: Life Cycle Objectives (LCO), Life Cycle Architecture (LCA), and
Initial Operational Capability (IOC).
6. Emphasis on system and life cycle activities and artifacts rather than
software and initial development activities and artifacts.
Both this chart and Chart 13 summarize the invariants, critical-success-factor

reasons why they are essential invariants, and associated optional variants. The next
few charts elaborate the second three invariants.

33

■ ■ ■ ■ University of Southern California
C|5|J?| Center for Software Engineering

Spiral Invariant 4:
Degree of Detail Driven by Risk Considerations
• Why invariant

- Determines "how much is enough" of each artifact
(OCD, Rqts, Design, Code, Plans) in each cycle.

• Screen layout rqts.

- Avoids overkill or belated risk resolution.

• Variants
- 4a. Choice of artifact representations (SA/SD, UML,

MBASE, formal specs, programming languages, etc.)

• Models excluded
- Complete, consistent, traceable, testable requirements

specification for systems involving significant levels of
GUI, COTS, or deferred decisions

2U9/00 ©USC-CSE 14

Spiral invariant 4 is the product counterpart of invariant 3: that risk
considerations determine the degree of detail of products as well as processes. This
means, for example, that the traditional ideal of a complete, consistent, treaceable,
testable requirements specification is not a good idea for a number of product
components, such as a graphic user interface (GUI). Here.the risk of precisely
specifying screen layouts in advance of development involves a high probability of
locking an awkward user interface into the development contract, while the risk of not
specifying screen layouts is low, given the general availability of flexible GUI-builder
tools (see Chart 15). Even aiming for full consistency and testability can be risky, as it
creates a pressure to prematurely specify decisions that would better be deferred (e.g.,
the form and content of exception reports). However, as indicated in Chart 15, some
risk patterns make it very important to have precise specifications.

Related spiral variants are the project's choices of representations for product
artifacts.

34

II M University of Southern California
C|5|£| Center for Software Engineering

Risk-Driven Specifications

If it's risky not to specify precisely, Do
- Hardware-software interface
- Prime-subcontractor interface

If it's risky to specify precisely, Don't
- GUI layout
- COTS behavior

2/9/00 ©USC-CSE 15

This chart gives further examples of when it is risky to overspecify software
features (GUI layouts, COTS behavior) and when it is risky to underspecify them (critical
interfaces with hardware or with externally developed software).

35

■ ■ ■ ■ University of southern Calrfomia
ClSi^l Center for Software Engineering

Spiral Invariant 5:
Use of LCO, LCA, IOC, Anchor Point Milestones

• Why invariant
- Avoids analysis paralysis, unrealistic expectations,

requirements creep, architectural drift, COTS shortfalls
and incompatibilities, unsustainable architectures,
traumatic cutovers, useless systems.

• Variants
5a. Number of spiral cycles or increments between anchor

points.
5b. Situation-specific merging of anchor point milestones

• Can merge LCO and LCA when adopting an
architecture from mature 4GL, product line

• Models excluded
- Evolutionary or incremental development with no life

cycle architecture
2/9/00 ©USC-CSE 16

A major difficulty of the original spiral model was its lack of intermediate
milestones to serve as commitment points and progress checkpoints [Forsberg et al.,
1996]. This difficulty has been remedied by the development of a set of anchor point
milestones: Life Cycle Objectives (LCO), Life Cycle Architecture (LCA), and Initial
Operational Capability (IOC) [Boehm, 1996].

Chart 17 describes the role of the LCO, LCA, and IOC milestones as
stakeholder commitment points in the software life cycle. Chart 18 provides details on
the content and pass/fail criteria for the LCO and LCA milestones. Chart 19
summarizes the content of the IOC milestone.

Appropriate variants include the number of spiral cycles of development
increments between the anchor points. In some cases, anchor point milestones can be
merged. In particular, a project deciding to use a mature and appropriately scalable
fourth generation language (4GL) or product line framework will have already
determined its choice of life cycle architecture by its LCO milestone, enabling the LCO
and LCA milestones to be merged.

The LCA milestone is particularly important, as its pass/fail criteria enable
stakeholders to hold up projects attempting to proceed into evolutionary or incremental
development without a life cycle architecture. Chart 20 summarizes other evolutionary
development assumptions whose validity should be verified at the LCA milestone.

Charts 21-25 summarize other aspects of the spiral model relevant to the
anchor point milestones, such as their support of incremental commitment and their
relation to the Rational Unified Process [Royce, 1998; Kruchten, 1998; Jacobson et al.,
1999] and the USC MBASE approach [Boehm-Port, 1999a; Boehm-Port, 1999b; Boehm
et al., 2000].

36

■ ■ ■ I University of Southern California
C|5[£| Center for Software Engineering

Life Cycle Anchor Points
Common System/Software stakeholder commitment
points
- Defined in concert with Government, industry affiliates
- Coordinated with the Rational Unified Process

Life Cycle Objectives (LCO)
- Stakeholders' commitment to support architecting
- Like getting engaged

Life Cycle Architecture (LCA)
- Stakeholders' commitment to support full life cycle
- Like getting married

Initial Operational Capability (IOC)
- Stakeholders' commitment to support operations
- Like having first child

2/9/00 ©USC-CSE 17

The anchor point milestones were defined in a pair of USC Center for Software
Engineering Affiliates' workshops, originally for the purpose of defining a set of common
reference points for COCOMO II cost model estimates of spiral model projects' cost and
schedule. One of the Affiliates, Rational, Inc., had been defining the phases of its
Rational Unified Process, and adopted the anchor point milestones as its phase gates.

The first two anchor points are the Life Cycle Objectives (LCO) and Life Cycle
Architecture (LCA). At each of these anchor points the key stakeholders review six
artifacts: operational concept description, prototyping results, requirements description,
architecture description, life cycle plan, and feasibility rationale (see next chart for
details).

The feasibility rationale covers the key pass/fail question: "If I build this product
using the specified architecture and processes, will it support the operational concept,
realize the prototyping results, satisfy the requirements, and finish within the budgets
and schedules in the plan?" If not, the package should be reworked.

The focus of the LCO review is to ensure that at least one architecture choice is
viable from a business perspective. The focus of the LCA review is to commit to a
single detailed definition of the review artifacts. The project must have either eliminated
all significant risks or put in place an acceptable risk-management plan.

The LCO milestone is the equivalent of getting engaged, and the LCA milestone
is the equivalent of getting married. As in life, if you marry your architecture in haste,
you and your stakeholders will repent at leisure. The third anchor point milestone, the
Initial Operational Capability (IOC), constitutes an even larger commitment: It is the
equivalent of having your first child.

37

icisfEi University of Southern California
Center for Software Engineering

Win Win Spiral Anchor Points
(Risk-driven level of detail for each element)

System Prototype(s)

Milestone Element

Definition of
Operational
Concept

Definition of System
Requirements

Definition of System
and Software
Architecture

Definition of Life-
Cycle Plan

Feasibility
Rationale

Life Cycle Objectives (LCO)
■ Top-imI systvn objectives «id scop*
-System boundary
- ftiwonmant p««n«are Hid assumptions
■ Evolution panmMHS

• Operational concept
- Operations and mMmenance SCMUTM» «id parent««*
■ OramtHtian»! Iiie-crel« ntsnonspilitics (stakeholders!

Exercise key usage scenarios

Resolve critical risks

> Top-level functions, interfaces, quality atfiibute levels,

including:
• Growth vectors and priorities

• Prototypes
■ Stakeholders' i-nnninenc» on essentials

■ Top4evel definition of at least one feasible architecture

• Physical and logical elements and relationships

- Choices ol COTS and reusable software elements

• Identification of infeasible architecture options

• Identification of life-cycle stakeholders

- Users, customers, developers, maintainers, mtoroperators,

general public others
- Identification of life-cycle process model

- Top-level stages, increments

• Top-level WWWWWHh" by stage

• Assurance of consistency among elements above
• via analysis, measurement, prototyping, simulation, etc.
- Business case analysis for requirements, feasible architectures

Life Cycle Architecture (LCA)
■ Elaboration of system objectives end scope of
- Elaboration of operational concept by increment

Exercise range of usage scenarios
Resolve major outstanding risks

- Elaboration of functions, interfaces, quality attributes,

and prototypes by increment
- Identification of TBD'sf (tfrbe-determined items)

- Stakeholders' concurrence on their priority concerns

- Choice of architecture and elaboration by increment

• Physical and logical component!, connectors,

configurations, constraints

• COTS, reuse choices
- Domain-architecture and architectural style choices

• Architecture evolution parameters

- Elaboration ol WWWWWHH- for Initial Operational

CapaMrryfJOC)
• Partial elaboration, identification of key TBD's for later

increments

- Assurance of consistency among elements above
• All major risks resolved or covered by risk management

plan

2/9/00

•WWWWWHH: Why, What, When, Who, Where, How, How Much
©USC-CSE 18

Here are the major features of the LCO and LCA milestones which distinguish
them from most current software milestones, which provide a rationale for their success-
criticality on projects, and which enable them to function successfully as anchor points
across many types of software development.
•Their focus is not on requirements snapshots or architecture point solutions, but on
requirements and architectural specifications which anticipate and accommodate
system evolution. This is the reason for calling them the "Life Cycle" Objectives and
Architecture milestones.
•Elements can be either specifications or executing programs with data (e.g.,
prototypes, COTS products).
•The Feasibility Rationale is an essential element rather than an optional add-on.

•Stakeholder concurrence on the milestone elements is essential. This establishes
mutual stakeholder buy-in to the plans and specifications, and enables a collaborative
team approach to unanticipated setbacks rather than an adversarial approach as in
most contract models.

A feature distinguishing the LCA milestone from the LCO milestone is the need
to have all of the system's major risks resolved, or at least covered by an element of the
system's risk management plan. For large systems, passing the LCA milestone is the
point at which the project will significantly escalate at its staff level and resource
commitments. Proceeding into this stage with major risks unaddressed has led to
disasters for many large projects. Some good guidelines for software risk assessment
can be found in [Boehm, 1989; Charette, 1989; Carr et al., 1993; and Hall, 1998].

A key feature of the LCO milestone is the need for the Feasibility Rationale to
demonstrate a viable business case for the proposed system. Not only should this
business case be kept up to date, butt also it should be used as a basis for verifying that
expected benefits will actually be realized (see chart 27).

38

■ ■I University of Soulhem California
C|5|^| Center for Software Engineering _

Initial Operational Capability (IOC)

• Software preparation
- Operational and support software
- Data preparation, COTS licenses
- Operational readiness testing

• Site preparation
- Facilities, equipment, supplies, vendor support

• User, operator, and maintainer preparation
- Selection, teambuilding, training

2/9/00 ©USC-CSE 19

Another distinguishing feature of the LCO and LCA milestones is that they are
the milestones with the most serious consequences if one gets any parts of them wrong.
At the other end of the development cycle, the milestone with the most serious
consequences of getting things wrong is the Initial Operational Capability (IOC).
Greeting users with a new system having ill-matched software, poor site preparation, or
poor users preparation has been a frequent source of user alienation and killed projects.

The key elements of the IOC milestone are:
.Software preparation, including both operational and support software with appropriate
commentary and documentation; data preparation or conversion; the necessary licenses
and rights for COTS and reused software, and appropriate operational readiness testing.

■Site preparation, including facilities, equipment, supplies, and COTS vendor support
arrangements.
»User, operator and maintainer preparation, including selection, teambuilding, training
and other qualification for familiarization, usage, operations, or maintenance.

As discussed on Chart 12, the nature of the IOC milestone is also risk-driven
with respect to the system objectives determined in the LCO and LCA milestones.
Thus for example, these objectives drive the tradeoff between IOC date and quality of
the product (e.g. between the safety-critical Space Shuttle Software and a market
window-critical commercial software product). The difference between these two cases
is narrowing as commercial vendors and users increasingly appreciate the market risks
involved in buggy products [Cusumano-Selby, 1995].

39

■ ■ ■ ■ University of Southern California

C|£|£| Center for Software Engineering

Evolutionary Development Assumptions

1. The initial release is sufficiently satisfactory to key
system stakeholders that they will continue to
participate in its evolution.

2. The architecture of the initial release is scalable to
accommodate the full set of system life cycle
requirements (e.g., performance, safety, security,
distribution, localization).

3. The operational user organizations are sufficiently
flexible to adapt to the pace of system evolution

4. The dimensions of system evolution are compatible
with the dimensions of evolving-out the legacy
systems it is replacing.

2/9/00 ©USC-CSE 20

All too often, an evolutionary development will start off with a statement such as,
"We're not sure what to build, so let's throw together a prototype and evolve it until the
users are satisfied." This approach is insensitive to several risks corresponding to the
set of assumptions for a successful evolutionary development summarized in Chart 20.

Without some initial attention to user needs, the prototype may be so far from
the users' needs that they consider it a waste of time to continue. As discussed on
Chart 16, it will be risky to proceed without a life cycle architecture to support evolution.
Another risk is "information sclerosis": the propensity for organizations to lock into
operational procedures making it difficult to evolve toward better capabilities [Boehm,
1988]. A final frequent risk is that legacy systems are often too inflexible to adapt to
desired directions of evolution. In such cases, a preferable process model is
incremental development, with the increments determined by the ease of evolving-out
portions of the legacy system to be replaced.

40

IM ■ ■ University of Southern California
C|5|.E| Center for Software Engineering

Spiral Model and Incremental Commitment:
Stud Poker Analogy

• Evaluate alternative courses of action
- Fold: save resources for other deals
- Ante: buy at least one more round

• Using incomplete information
- Hole cards: competitive situation
- Rest of deck: chance of getting winner

• Anticipating future possibilities
- Likelihood that next round will clarify outcome

• Commit incrementally rather than all at once
- Challenge: DoD POM process makes this hard to do

2/9/00 ©USC-CSE 21

A valuable aspect of the original application of the spiral model to the TRW
Software Productivity System was its ability to support incremental commitment of
corporate resources to the exploration, definition, and development of the system, rather
than requiring a large outlay of resources to the project before its success prospects
were well understood [Boehm, 1988].

Funding a spiral development can thus be envisioned in a way similar to the
game of stud poker. You can put a couple of chips in the pot and receive two hidden
cards and one exposed card, along with the other players in the game. If your cards
don't promise a winning outcome, you can drop out without a great loss. If your two
hidden cards are both aces, you will probably bet on your prospects aggressively
(although perhaps less so if you can see the other two aces as other players' exposed
cards). In any case, you can decide during each round whether it's worth putting more
chips in the pot to buy more information about your prospects for a win or whether it's
better not to pursue this particular deal, based on the information available.

One of the main challenges for organizations such as the Department of
Defense (DoD), is to find incremental commitment alternatives to its current Program
Objectives Memorandum (POM) process which involves committing to the full funding of
a program based on very incomplete early information.

41

■ Ill University of Southern California
Center for Software Engineering

Anchor Points and Rational RUP Phases

Engineering
Stage

Manufacturing
Stage

^nception=Elabqration]Constructic)n]^nsition;

Feasibility
Iterations

LCO LCA
Architecture

Iterations
Usable

Iterations

IOC
Product
Releases

IQrSi P I I ir-J
BSanagerri

3
ilanaaement

D rt:
E M
S IP

ManaqemS!

2/9/00
22

Versions of this chart are in the three main books on the Rational Unified
Process (RUP) [Royce, 1998; Kruchten, 1998; and Jacobson, et al., 1999]. It shows the
relations between LCO, LCA, and IOC milestones and the RUP Inception, Elaboration
Construction, and Transition phases. It also illustrates that the requirements, design,
implementation, and deployment artifacts are incrementally grown throughout the
phases. As indicated in Variant 3b on Chart 11, the size of the shaded bars will vary
from project to project.

42

■ Ill University of Southern California
Center for Software Engineering

Spiral Model Refinements

•Where do objectives,
constraints, alternatives come
from?

-Win Win extensions

•Lack of intermediate milestones

-Anchor Points: LCO, LCA, IOC

-Concurrent-engineering spirals
between anchor points

•Need to avoid model clashes,
provide more specific guidance

-MBASE

The WinWin Spiral Model

n«xt level objective»,
constraints, alternatives

2/9/00 ©USC-CSE 23

The original spiral model [Boehm, 1988] began each cycle of the spiral by
performing the next level of elaboration of the prospective system's objectives,
constraints and alternatives. A primary difficulty in applying the spiral model has been
the lack of explicit process guidance in determining these objectives, constraints, and
alternatives. The Win-Win Spiral Model [Boehm-Bose, 1994] uses the Theory W (win-
win) approach [Boehm-Ross, 1989] to converge on a system's next-level objectives,
constraints, and alternatives. This Theory W approach involves identifying the system's
stakeholders and their win conditions, and using negotiation processes to determine a
mutually satisfactory set of objectives, constraints, and alternatives for the stakeholders.

In particular, the nine-step Theory W process translates into the following Spiral
Model extensions:
•Determine Objectives. Identify the system life-cycle stakeholders and their win
conditions. Establish initial system boundaries and external interfaces.

•Determine Constraints. Determine the conditions under which the system would
produce win-lose or lose-lose outcomes for some stakeholders.

•Identify and Evaluate Alternatives. Solicit suggestions from stakeholders. Evaluate
them with respect to stakeholders' win conditions. Synthesize and negotiate candidate
win-win alternatives. Analyze, assess, and resolve win-lose or lose-lose risks.

•Record Commitments, and areas to be left flexible, in the project's design record and
life cycle plans.
Cycle Through the Spiral. Elaborate win conditions, evaluate and screen alternatives,
resolve risks, accumulate appropriate commitments, and develop and execute
downstream plans.

A further extension, the Model-Based (System) Architecting and Software
Engineering (MBASE) approach, [Boehm-Port, 1999a; Boehm-Port, 1999b], provides
more detailed definitions of the anchor point milestone elements [Boehm et al., 2000],
and a process guide for deriving them (see next charts).

43

IB m m University of Southern California

Cl^l^l Center for Software Engineering

MBASE Electronic Process Guide (1)
fh t* »■» 6° t—*«>«» S-h

HB;i',Tin

MBASE 577 Process Guide

IWF

' fftt* PlKtt EiptWW

2/9/00 ©USC-CSE 24

The MBASE Electronic Process Guide [Mehta, 1999] was developed using the
SEI's Electronic Process Guide support tool [Kellner et al., 1999]. It uses Microsoft
Access to store the process elements, using an Activities-Artifacts-Agents model, and
translates the results into hyperlinked html for web-based usage. Thus, for example,
when a user clicks on the "MBASE 577a Process" activity and the "Operational Concept
Definition" artifact, the tool displays the corresponding elements as shown in Chart 25.

These elements are also hyperlinked. Thus, for example, a user can access a
template for composing a project's Operational Concept Description by clicking on the
"Templates" entry in its left column.

44

IM M H University of Southern California
C|5|£| Center for Software Engineering

MBASE Electronic Process Guide (2)
» t* »— a- <■■»*— B* ■

MBASE 577 Process Guide

fafii'l—-fcssrtessrl ss l*sr Mä*'La==_

■HS

Q MMASt ST7m Proem*

°™^w ^ ^„„„.^^ ™ ?

n. WMW fH Mm I". *•<•■• •"'

:g^r™trrz^ii- ;
D™*****. j;

n. «*, w« tn. *-« - —~«" « *• <—>*

:J£T.;.'iÄ.- i
ActiwKv:
MSASE S77*
Process

Dmripdon

. ;T.!" n. u. >. t. HUM *™> w ■*»« •" »~—> *"

■JT*-.«: ";"■*'"
. ZSZ^ZShsJXT^*.** -4 *—.

Tsok «id TMMquM

«,„*.-...»..,»-.'."«**

äfx^-% "rü^H-i:*^"" '*"" "*'"""* !"a""
Plttah "

MBASE 577 Process GuifJG

Optrationil
Concept
Description

fv> 0»*«!*«»*/Concept Pe»xrf»*i*vi

_sä

2/9/00 ©USC-CSE 25

45

■ ■ ■ ■ University of Southern California
CfliSg-EI Center for Software Engineering

Spiral Invariant 6:
Emphasis on System and Life Cycle Activities and

Artifacts
• Why invariant

- Avoids premature suboptimization on hardware, software, or
development considerations.

• Scientific American

• Variants
6a. Relative amount of hardware and software determined in

each cycle.
6b. Relative amount of capability in each life cycle increment
6c. Degree of productization (alpha, beta, shrink-wrap, etc.) of

each life cycle increment.

• Models excluded
- Purely logical object-oriented methods

• Insensitive to operational, performance, cost risks
2,9/00 ©USCCSE 26

Spiral invariant 6 emphasizes that spiral development of software-intensive
systems needs to focus not just on software construction aspects, but also on overall
system and life cycle concerns. Software developers are particularly apt to fall into the
oft-cited trap: "If your only tool is a hammer, the world begins to look like a collection of
nails."

A good example is the Scientific American case study shown in the next chart.
The software people looked for the part of the problem with a software solution (their
"nail"), pounded it in with their software hammer, and left Scientific American worse off
than when they started.

The spiral model's emphasis on using stakeholder objectives to drive system
solutions, and on the life cycle anchor point milestones, guides projects to focus on
system and life cycle concerns. Its use of risk considerations to drive solutions enables
projects to tailor each spiral cycle to whatever mix of software and hardware, choice of
capabilities, or degree of productization is appropriate.

Models excluded by invariant 6 include most published object-oriented analysis
and design (OOA&D) methods, which are usually presented as abstract logical
exercises independent of system performance or economic concerns. For example, in a
recent survey of 16 OOA&D books, only 6 had the word "performance" in its index, and
only 2 had the word "cost" in its index.

46

|C|S|£|
University of Southern California
Center for Software Engineering

"Problems With Programming-Oriented
Top-Down Development

OLD SYSTEM
"SCIENTIFIC AMERICAN" SUBSCRIPTION PROCESSING

NON-ORDERS

INCOMING
MAIL

NEW SYSTEM

INCOMING .
MAIL

CASHIER'S
CAGE ORDERS

WORK STATIONS:
SORT. CODE. PUNCH,
VERIFY. BATCH

t
MINUTES

^ TAB
to BILLS. LABELS. REPORTS

»INVALID INPUTS

FIX BY EYEBALL. ^_
" KEYPUNCH

NON-ORDERS MASTER FILE -

CASHIER'S
CAGE

WORK
* STATIONS

ORDERS |SAM£|

CARD-TO
TAPE

IBM 3SOT0:
CHECK VALID INPUTS
UPDATE MASTER FILE
GENERATE SILLS.

LABELS. REPORTS

Results:
• MORE TRIVIAL ERRORS

• GREATER OELAYS
• POOR EXCEPTION-HANDLING

■ CUMBERSOME INPUT CONTROLS

• MORE LABOR-INTENSIVE

LOCATE DECKS
RECONCILE WITH FORMS t

KEYPUNCH AND REPLACE
CAROS

^NEW
►MASTER

BILLS.
► LABELS.

REPORTS

^INVALIO
wINPUTS

TRW

2/9/00 ©USC-CSE 27

Scientific American's objectives were to reduce their subscription processing
system's costs, errors, and delays. Rather than analyze the system's sources of costs,
errors and delays, the software house jumped in and focused on the part of the problem
having a software solution. The result was a batch-processing computer system whose
long delays put extra strain on the clerical portion of the system which had been the
major source of the costs, errors, and delays in the first place. As seen in the chart, the
business outcome was a new system with more errors, greater delays, higher costs, and
less attractive work than its predecessor [Boehm, 1981].

This kind of outcome would have happened even if the software automating the
tabulator-machine functions had been developed in a risk-driven cyclic approach.
However its Life Cycle Objectives milestone package would have failed its feasibility
review, as it had no system-level business case demonstrating that the development of
the software would lead to the desired reduction in costs, errors, and delays.

Had a thorough business case analysis been done, it would have identified the
need to re-engineer the clerical business processes as well as to automate the manual
tab runs Further, as shown by recent methods such as the DMR Benefits Realization
Approach [Thorp, 1998], the business case could have been used to monitor the actual
realization of the expected benefits, and to apply corrective action to either the business
process re-engineering or the software engineering portions of the solution (or both) as
appropriate.

47

|C|S|£|
University of Southern California
Center for Software Engineering

Summary: Hazardous Spiral Look-Alikes
Incremental sequential waterfalls with significant COTS,
user interface, or technology risks

Sequential spiral phases with key stakeholders excluded
from phases
Risk-insensitive evolutionary or incremental development

Evolutionary development with no life-cycle architecture

Insistence on complete specs for COTS, user interface, or
deferred-decision situations

Purely logical object-oriented methods with operational,
performance, or cost risks

Impeccable spiral plan with no commitment to managing
risks

2/9/00 ©USC-CSE 28

As with many methods, the spiral model has a number of "hazardous look-
alikes," which have been discussed in the previous charts.

Incremental sequential waterfalls with significant COTS, user interface, or
technology risks are discussed in Charts 6 and 7. Sequential spiral phases with key
stakeholders excluded from phases are discussed in Charts 8, 9, and 10. Risk-
insensitive evolutionary or incremental development is discussed in Charts 11,16, and
20, as is evolutionary development with no life-cycle architecture. Insistence on
complete specs for COTS, user interface, or deferred-decision situations is discussed in
Charts 14 and 15. Purely logical object-oriented methods with operational,
performance, or cost risks are discussed in Chart 26. Impeccable spiral plans with no
commitment to managing risks are discussed in Charts 11 and 23.

48

■ ■ ■ ■ University of Southern Calrfomia
C|£|£| Center for Software Engineering

2/9/00

Summary: Successful Spiral Examples

• Rapid commercial: C-Bridge's RAPID process
• Large commercial: AT&T/Lucent/Telcordia

spiral extensions
• Commercial hardware-software: Xerox Time-

to-Market process
• Large aerospace: TRW CCPDS-R
• Variety of projects: Rational Unified Process,

SPC Evolutionary Spiral Process, USC
MBASE approach

©USC-CSE 29

A number of successful spiral approaches satisfying the spiral model invariants
were presented at the workshop, often with supplementary material elsewhere. C-
Bridge's RAPID approach has been used successfully to develop e-commerce
applications in 12-24 weeks. Its Define, Design, Develop, and Deploy phases use the
equivalent of the LCO.LCA and IOC anchor point milestones as phase gates [Leinbach,
2000]. The large spiral telecommunications applications discussed in [Bernstein, 2000]
and [DeMiilo, 2000] use a complementary best practice at their anchor point milestones:
the AT&T/Lucent/Telcordia Architecture Review Board process [AT&T, 1993]. Xerox's
Time-to-Market process uses the anchor point milestones as hardware-software
synchronization points for its printer business line [Hantos, 2000].

Several successful large aerospace spiral projects were also discussed. The
best documented of these is the CCPDS-R project discussed in [Royce, 1998]. Its Ada
Process Model was the predecessor of the Rational Unified Process and USC MBASE
approach, which have been used on a number of successful spiral projects [Jacobson et
al., 1999; Boehm et al., 1998], as has the SPC Evolutionary Spiral Process [SPC, 1994].

49

References
(MBASE material available at http://sunset.usc.edu/MBASE)

[AT&T, 1993]. "Best Current Practices: Software Architecture
Validation," AT&T, Murray Hill, NJ 1993.
[Bernstein, 2000]. L. Bernstein, "Automation of Provisioning,"
Proceedings. USC-SEI Spiral Experience Workshop, February 2000.

[Boehm, 1988]. " A Spiral Model of Software Development and
Enhancement,"Computer. May 1988, pp. 61-72.
[Boehm, 1989]. "Software Risk Management", IEEE Computer
Society Press, 1989.

[Boehm, 2000]. B. Boehm, "Unifying Software Engineering and
Systems Engineering," IEEE Computer, March 2000, pp. 114-116.

[Boehm et al., 1997] "Developing Multimedia Applications with the
WinWin Spiral Model," Proceedings, ESEC/FSE 97. Springer
Verlag, 1997.
[Boehm et al., 1998]. "Using the Win Win Spiral Model: A Case
Study," IEEE Computer, July 1998, pp. 33-44.
[Boehm et al., 2000]. B. Boehm, M. Abi-Antoun, A.W. Brown, N.
Mehta, and D. [Port, 2000]. "Guidelines for the LCO and LCA
Deliverables for MBASE," USC-CSE, March 2000, http:
sunset.usc.edu/classes/cs577b_2000/EP/07/MBASE_Guidelines_for
_CS577v0.2.pdf
[Boehm-Ross, 1989]. "Theory W Software Project Management:
Principles and Examples" IEEE Trans. Software Engr.. July 1989.

[Boehm-Bose, 1994]. "A Collaborative Spiral Software Process
Model Based on Theory W," Proceedings. ICSP 3, IEEE, Reston, Va.
October 1994.
[Boehm-Port, 1999a]. "Escaping the Software Tar Pit: Model
Clashes and How to Avoid Them," ACM Software Engineering
Notes. January, 1999, pp. 36-48.
[Boehm-Port, 1999b]. "When Models Collide: Lessons from
Software Systems Analysis," IEEE IT Professional.
January/February 1999, pp. 49-56.
[Carr et al., 1993]. "Taxonomy-Based Risk Identification," CMU/SEI-
93-TR-06, Software Engineering Institute, 1993.
[Charette, 1989]. Software Engineering Risk Analysis and
Management. McGraw Hill, 1989.
[Cusumano-Selby, 1995] Microsoft Secrets. Free Press, 1995

50

[DeMillo, 2000]. R. DeMillo, "Continual Improvement: Spiral
Software
Development", Proceedings. USC-SEI Spiral Experience Workshop,
February 2000.
[Hall, 1998] Managing Risk, Addison Wesley, 1998.
[Hantos, 2000]. P. Hantos, "From Spiral to Anchored Processes: A
Wild Ride in Lifecycle Architecting", Proceedings. USC-SEI Spiral
Experience Workshop. February 2000.
[Forsberg et al., 1996]. K. Forsberg, H. Mooz, and H. Cotterman,
Visualizing Project Management. Wiley, 1996.
[Garlan et al., 1995]. D. Garlan, R. Allen, and J. Ockerbloom,
"Architectural Mismatch: Why Reuse Is So Hard," IEEE Software.
November 1995, pp. 17-26.
[Jacobson et al., 1999]. The Unified Software Development
Process. Addison-Wesley, 1999.
[J. Thorp, 1998]. The Information Paradox. McGraw Hill, 1998.

[Kellner et al., 1998]. "Process Guides: Effective Guidance for
Process Participants," Proceedings of the 5th International
Conference on the Software Process: Computer Supported
Organizational Work. 1998.
[Kitaoka, 2000]. B. Kitaoka, "Yesterday, Today & Tomorrow:
Implementations of the Development Lifecycles", Proceedings.
USC-SEI Spiral Experience Workshop. February 2000.
[Kruchten, 1999]. The Rational Unified Process. Addison-Wesley,
1998.
[Leinbach, 2000]. C. Leinbach, "E-Business and Spiral
Development", Proceedings. USC-SEI Spiral Experience Workshop.
February 2000.
[Mehta, 1999]. N. Mehta, "MBASE Electronic Process Guide," USC-
CSE, October 1999, http://sunset.usc.edu/classes/cs577a_99/epg

[Royce, 1998] Software Project Management: A Unified Framework.
Addison Wesley, 1998.
[SPC, 1994]. Software Productivity Consortium, "Process
Engineering with the Evolutionary Spiral Process Model," SPC-
93098-CMC, version 01.00.06, Herndon, Virginia, 1994.
[USAF, 2000]. U.S. Air Force, " Evolutionary Acquisition for C2
Systems," Air Force Instruction 63-123,1 January 2000.

51

Software Lifecycle Connectors: Bridging Models across the Lifecycle

Nenad Medvidovic Paul Gruenbacher Alexander F. Egyed Barry W. Boehm

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781
{neno,gruenbac,aegyed,boehm}@sunset.usc.edu

ABSTRACT
Numerous notations, methodologies, and tools exist to sup-
port software system modeling. While individual models
may clarify certain system aspects, the large number and het-
erogeneity of models may ultimately hamper the ability of
stakeholders to communicate about a system. The major rea-
son for this is the discontinuity of information across differ-
ent models. In this paper, we present an approach for dealing
with that discontinuity. We propose an extensible set of
"connectors" to bridge models, both within and across the
activities in the software development lifecycle. While the
details of these connectors are dependent upon the source
and destination models, they share a number of underlying
characteristics. We illustrate our approach by applying it to a
large-scale system we are currently designing and imple-
menting in collaboration with a third-party organization.

1 INTRODUCTION

The many and diverse stakeholders in a software project con-
stantly battle the problem of conveying their concerns to
other stakeholders in a manner that is understandable and
that will ensure the proper treatment of those concerns. To
deal with this problem, software engineering researchers and
practitioners have developed a plethora of models that focus
on different aspects of a software system. These models fall
into five general categories: domain, success, process, prod-
uct, and property models [3,6]. Numerous notations, meth-
odologies, and tools exist to support models in each category.
For example, within the last decade, the hightened interest in
software architectures has resulted in several product and
property models based on architecture description languages
(ADLs), architectural styles, and their supporting toolsets
[24,29,33].

However, this preponderance of models does not necessarily
solve the problem of enabling different stakeholders to com-
municate. On the contrary, the increased number of models
renders the ultimate goal of software engineering research—
developing dependable software—even more difficult in
many ways. The reason for this is the discontinuity of infor-
mation across different models. For example, a system's
requirements will often be described using use-case scenar-
ios and entity-relationship diagrams, while its design is cap-
tured in class, object, collaboration, and activity diagrams.
The problem, then, is twofold:
1. ensuring the consistency of information across models

describing the same artifact (e.g., class and collaboration
diagrams), and

2. ensuring the consistency of information across models
describing different artifacts (e.g., use-case scenarios and
class diagrams).

In both cases, each model provides (possibly different)
information in different ways, making it very difficult to
establish any properties of the modeled phenomena as a
whole.

In principle, this discontinuity among models can be dealt
with by employing synthesis and analysis. Synthesis enables
one to generate a new model (e.g., collaboration diagram)
from an existing model (e.g., class diagram), while analysis
provides mechanisms for ensuring the preservation of certain
properties across (independently created) models. Software
engineers extensively employ both kinds of techniques. For
example, program compilation involves both the analysis of
the syntactic and semantic correctness of one model (source
code) and the synthesis of another model from it (executable
image).

Synthesis and analysis techniques span a spectrum from
manual to fully automated. Manual techniques tend to be
error prone, while fully automated techniques are often infea-
sible [27]. Furthermore, in some cases one technique (e.g.,
analysis) is easier to perform than another (synthesis). For
this reason, one typically has resort to using some combina-
tion of synthesis and analysis techniques of varying degrees
of automation when ensuring inter-model consistency.

The focus of our previous work was on identifying and clas-
sifying different categories of models (domain, success, pro-
cess, product, and property [3,6]) and providing support for
specific models within each category (e.g., requirements
models [2,5], architecture models [23], and design models
[12]). This paper discusses a set of techniques we have
developed to bridge the information gap created by such het-
erogeneous models in the context of software development.

In many ways, we view this problem as similar to the one
that has recently generated much interest in the software
architecture community: a software architecture can be con-
ceptualized as a diagram consisting of "boxes," representing
components, and "lines," representing component relation-
ships (i.e., connectors); while we may have a more complete
understanding of the components, many of the critical prop-
erties of a software system are hidden within its connectors
[25,32]. Similarly, the individual models produced during a
software system's lifecycle comprise the "lifecycle architec-
ture" boxes; the properties of these individual models are
typically well understood. Much more challenging is the
problem of understanding and providing the necessary sup-
port for the lines between the boxes, i.e., the model "connec-
tors."

The work described in this paper has focused on providing

This research is sponsored by DARPA through Rome Laboratory under contract F30602-94-C-0195 and by the Affiliates
of the Center for Software Engineering

52

connectors for models traditionally associated with the
"upstream" activities in the software lifecycle: domain anal-
ysis/requirements, architecture, and design. One reason for
choosing this set of models is that, as alluded above, the
"downstream" models (e.g., implementation) are typically
more formal, and well-understood synthesis/analysis tech-
niques and tools for them exist (e.g., compilation). Further-
more, the downstream models involve more homogeneous,
technically savvy stakeholders (designers, developers,
testers); on the other hand, the upstream models involve a
broader set of more heterogeneous stakeholders (including
customers, users, managers, and architects) and thus more
heterogeneous models. In particular, we have devised a set of
techniques for bridging
1. requirements and architecture models,
2. architecture and design models, and
3. different design models, both the same level and across

levels of abstraction.

As this paper will demonstrate, each of these three categories
of model connectors introduces its own issues and chal-
lenges. Furthermore, for practical reasons, our investigation
has focused on a limited number of models. At the same
time, we have devised a set of shared principles and tech-
niques that are model-independent. As already discussed, we
use a combination of synthesis and analysis. Furthermore,
we classify the relationships among the elements of different
models as unrelated, complementary, redundant, and contra-
dictory. In each case, we use that classification to introduce
intermediate models, allowing the interpretation of one
model (e.g., requirements) in terms of another model's
vocabulary (e.g., architecture). Finally, we have provided a
common integration platform for the different models' nota-
tions and tools.

The remainder of the paper is organized as follows. Section 2
introduces the example application we will use for illustra-
tion throughout the paper. Section 3 briefly describes the
requirements, architecture, and design modeling techniques
(i.e., the modeling "components") we have used as the basis
of this work. Sections 4, 5, and 6 discuss the requirements-
to-architecture, architecture-to-design, and inter-design
model connectors, respectively. A discussion of lessons
learned and conclusions round out the paper. It is important
to note that our approach does not assume any particular life-
cycle model (e.g., waterfall or spiral) or software develop-
ment process. The sequential ordering of lifecycle activities
implied by the paper's organization (Sections 4, 5, and 6 in
particular) was adopted for presentation purposes only. It is
indeed possible (and often preferable [5]) to concurrently
develop, relate, and refine requirements, architecture, and
design models using our approach.

2 EXAMPLE APPLICATION

We use an example application to illustrate the concepts
introduced in this paper. The application is motivated by the
scenario we developed in the context of a U.S. Defense
Advanced Research Project Agency (DARPA) project dem-
onstration and recently refined in collaboration with a major
U.S. Department of Defense (DoD) software development
organization. The scenario postulates a natural disaster that

results in extensive material destruction and numerous casu-
alties. In response to the situation, a major international
humanitarian relief effort is initiated, causing several chal-
lenges from a software engineering perspective. These chal-
lenges include efficient routing and delivery of large
amounts of material aid; wide distribution of participating
personnel, equipment, and infrastructure; rapid response to
changing circumstances in the field; using existing software
for tasks for which it was not intended; and enabling the
interoperation of numerous, heterogeneous systems
employed by the participating countries.

We have performed a thorough requirements, architecture,
and design modeling exercise to address these concerns. We
have also provided a partial implementation for the resulting
system (referred to as "cargo router"). This implementation
is an extension of the logistics applications discussed in [23].
We are currently collaborating with the DoD organization
with the goal of further extending the current implementa-
tion to address a larger portion of the system's requirements
and include several legacy components.

3 SOFTWARE MODELING

Our previous work has focused on numerous aspects of mod-
eling software requirements, architectures, and designs.
Although the focus of this paper is on model connectors,
rather than the models themselves, a brief description of the
modeling approaches is needed to provide the necessary
background. Furthermore, this discussion will highlight the
issues we encountered in trying to bridge the different mod-
els, ensure the consistency among them, and properly facili-
tate their evolution.

3.1 Requirements

The success of a software project depends highly on the
involvement and interaction of important stakeholders at all
stages of the software lifecycle. Throughout the lifetime of a
project, and particularly during requirements engineering,
stakeholder needs and goals have to be gathered, communi-
cated, and negotiated to achieve a mutually satisfactory solu-
tion that takes into account all known objectives and
constraints. We have developed the Win Win approach for
collaborative requirements negotiation and successfully
applied it in over 100 real-client projects [2,5,5].

Win Win provides a negotiation model that defines a set of
artifacts to guide the negotiation process: stakeholder objec-
tives and goals are expressed as win conditions; known con-
straints, problems, and conflicts among win conditions are
captured as issues; options describe possible alternative solu-
tions to overcome the issues; if a consensus is achieved
among stakeholders, agreements are created. All WinWin
artifacts are organized in a domain taxonomy that defines the
negotiation space and typically covers application features,
system properties, interfaces, and project and process arti-
facts [3]. A glossary of terms is used in WinWin to capture
the domain language.

We have recently enhanced the WinWin approach and have
used a state-of-the-art COTS groupware environment as its
implementation substrate [17]. The result, "EasyWinWin,"

53

•HEBE Hü 1MIU.U«.!.W.'U ■ |Q|X|j

'■%& fofdeu £* OuMb« Qra* Qpäora Window Heb .*1SJ*J

^Agenta ; fl^PMVfe ; ^&*«ebo*d i f^Hmtouts I 4 <****! * ^ftapott | ^briefcase ' ^Leg i M

^ * ^ff^<»<% o h4 ta|
-W1 Optimize concurrent routing speed of high-priority cargo

delivery [Client]

W2 Support real-time communication from system to vehicle
pent]

ji'f BasS rig äsy^^r6n6us7evert:büs" arcHtec'EJre "(System I
:ofstect]._

J
[Cliei

Mm
m
1-01 Support bi-directional, RPC-based. real-time

communication between system and vehicle [System
Architect]

TStaaa jÄcowMrts

Figure 1. EasyWinWin negotiation tree.

aims at enhancing the directness, extent, and frequency of
stakeholder interaction in the requirements engineering pro-
cess [5,15]. EasyWinWin supports brainstorming, categori-
zation, and prioritization of win conditions; cooperative
development and refinement of domain taxonomies; shared
definition of terms; and negotiations and conflict resolution
following the WinWin negotiation model. A recent addition
to EasyWinWin is an interface to the Rational Rose CASE
tool, provided to support repository-based integration of
negotiation results and to allow further analyses, reports, and
traceability to other artifacts [16].

A team of stakeholders used the EasyWinWin methodology
and collaboration tools to gather, negotiate, and elaborate
requirements for the cargo router system. Figure 1 shows a
snapshot of the EasyWinWin negotiation tool: WinWin arti-
facts are organized in a tree and marked with type and stake-
holder/role tags.

3.2 Architectures

The architectural approach we are using in studying lifecycle
connectors is the C2 architectural style [23]. We have
selected C2 as a vehicle for exploring our ideas because it
provides a number of useful rules for high-level system com-
position, demonstrated in numerous applications across sev-
eral domains. C2 has been the basis of our previous work on
architecture-based software modeling, analysis, generation,
evolution, reuse, and heterogeneity [20,21,22,23,25].

An architecture in the C2 style consists of components, con-
nectors (software buses) [25], and their configurations. Each
component has two connection points, a "top" and a "bot-
tom." Components communicate solely by exchanging mes-
sages. The top (bottom) of a component can only be attached
to the bottom (top) of one bus. It is not possible for compo-
nents to be attached directly to each other: buses always have
to act as intermediaries between them. However, two buses
can be attached together.

The C2 architecture of a subset of the cargo routing applica-
tion is shown in Figure 2a. The Port, Vehicle, and Warehouse
component types are objects that keep track of the state of
delivery ports, transportation vehicles, and warehouses,
respectively. The CargoRouter component determines when
cargo arrives at a port, keeps track of available transport vehi-
cles at each port, and tracks the cargo during its delivery to a
warehouse. The Optimizer tries to maximize the system's effi-
ciency by determining the optimal distribution of vehicles at
the delivery ports, assignment of cargo to the vehicles, and
routing of vehicles to the warehouses. The Reporter compo-
nent allows runtime progress tracking of the system. Finally,
SystemClock provides consistent time measurement to inter-
ested components, while the Artist component renders the user
interface using a graphics toolkit (e.g., Java AWT).

C2-style architectures are modeled using an ADL—
C2SADEL [23]. C2SADEL allows modeling of a component
type's state, interface, and behavior expressed in first-order
logic. Furthermore, it allows modeling each connector type's
message routing policy (unicast, groupcast, multicast, broad-
cast), expressed in terms of message filtering (e.g., no filter-
ing denotes message broadcast). Finally, C2SADEL allows
the instantiation of components and connectors and the com-
position of those instances into a configuration. For illustra-
tion, an excerpt of a C2SADEL model of the cargo router
architecture is shown in Figure 2b, while a partial specifica-
tion of the Port component type is given in Figure 2c.

The C2 approach is supported by a family of development
environments [20,23]. Of particular significance to this work
is the DRADEL toolset for architecture modeling (in

(a)
Clock

\ Cloc tUonn

1 1
Port Warehouse Vehicle

1 1 !
I UommunicationConn

|
CargoRouter

1
1 ServicesConn

1
Optimizer Reporter

I ArtistGonn I
1

Artist

(") architecture CargoRouteSystem is {
componenMypes {

component Port is extern {Port.c2;}
component Artist is virtual {}

connectorjypes {
connector RegCcmn is {filter no_filter;} }

architecturaljopology {
component_instances {

aPort: Port;
Display: Artist;...}

connectorjnstances {
ClockConn, ArtistConn: RegConn;...}

connections {
connector Clock Conn {

top SimClock;
bottom aPort;}

connector ArtistConn {
top Optim, Report, ServicesConn;
bottom Display;}

\C) component Port is
subtype CargoRouteEntity (int \and beh) {

state {
Cargo: \set Shipment; selected: Integer;...)

invariant {(cap >= 0) \and (cap <= max_cap);
interface {

prov ip_selshp: Select(sel: Integer);
req ir_clktck: ClockTickO;...}

operations {
prov op_selshp: {

let num: Integer;
pre num<=#cargo;
post -selected = num;}

req or_clktck: {
let time:STATE_VARIABLE;
post ~time = time + 1;}

map {
ip_selshp -> op_selshp (sei -> num);
ir_clktck -> or_clktck 0;

Figure 2. (a) Architectural breakdown of the cargo routing system, (b) Partial cargo routing system architecture specified in C2SADEL.
(c) Partial Port component type specified in C2SADEL. Interface and operation labels (e.g., ip_selshp) are a notational convenience."~" denotes
the value of a variable after the operation has been performed, while "#" denotes set cardinality.

54

C2SADEL), analysis, implementation, and evolution [23].
Similarly to EasyWinWin (recall Section 3.1), DRADEL has
been recently integrated with Rational Rose [1]. As dis-
cussed in Section 5, the resulting tool suite, SAAGE, is used
to support the bridging of architectural models with require-
ments and design models.

3.3 Design

Our work on software requirements and architectures is
based on two research projects that have been on-going for
the last several years. Our support for software design, on the
other hand, leverages a large body of mainstream design
notations and methodologies, collected into the Unified
Modeling Language (UML) [8]. UML is a graphical language
that provides a useful and extensible set of predefined con-
structs, it is semi-formally defined, and it has substantial (and
growing) tool support. UML allows designers to produce sev-
eral models of a software system. Each such model
addresses a certain set of issues: classes and their declared
attributes, operations, and relationships; the possible states
and behavior of individual classes; packages of classes and
their dependencies; example scenarios of system usage
including kinds of users and relationships between user
tasks; the behavior of the overall system in the context of a
usage scenario; examples of object instances with actual
attributes and relationships in the context of a scenario;
examples of the actual behavior of interacting instances in
the context of a scenario; and the deployment and communi-
cation of software components on distributed hosts. UML
allows additional semantic constraints to be placed on its
modeling elements via the Object Constraint Language
(OCL), which is based on first-order predicate logic [8].

One drawback of UML is that it does not relate modeling
elements accross multiple UML models (i.e., diagrams).
This allows for inconsistencies to be introduced among
UML models with shared information. Our previous work
has remedied this problem: we augment UML to provide a
common, model-independent representation of a software
system [12]. This representation is used as the basis of our
inter-design connectors, discussed in Section 6.

4 REQUIREMENTS-TO-ARCHITECTURE
CONNECTOR

We have been investigating principled ways of connecting
requirements and architecture models in our effort to
improve the integration between EasyWinWin and SAAGE.
We faced several major challenges in developing this model
connector: (1) requirements and architecture models emerge
concurrently in an iterative process involving multiple stake-
holders with conflicting goals, needs, expectations, and
objectives; (2) the use of natural language leads to impreci-
sion and ambiguities of requirements models; and (3) there
is a semantic gap between high-level requirements and ele-
ments in a system architecture.

When viewing requirements and architecture models from a
software architect's point of view, a central matter is how to
systematically define a viable architecture that matches the
requirements. If we look at the models from the perspective
of a requirements engineer, the challenge is to effectively

employ architectural modeling and simulation to help com-
plete the requirements and assist in detecting their inconsis-
tencies and mismatches. Unfortunately, the large semantic
gap between high-level, often ambiguous requirements arti-
facts, such as those introduced during Win Win negotiations,
and the more specific software components and connectors,
such as those modeled in C2SADEL, often does not allow
one to establish meaningful links between the two models'
artifacts. This section proposes an approach that remedies
the problem and facilitates the bridging of the two models.

4.1 Model Connector

We have developed the CBSP (Component, .Bus, System,
.Property) approach that provides a model connector between
requirements and architectures [10,15]. CBSP artifacts refine
existing Win Win artifacts (e.g., win conditions, options) to
provide an intermediate model between the requirements and
architectural models. Each Win Win artifact is assessed for its
relevance to the system's architecture: its components, con-
nectors (i.e., buses), overall configuration (i.e., the system
itself or a particular subsystem), and their properties (e.g.,
reliability, performance, and cost). Based on their relevance
to one or more of the CBSP dimensions, the Win Win arti-
facts are refined such that the architectural concerns are
made explicit. For example, a win condition such as

W: The system should provide an interface to a Web browser.
can be recast into a component win condition

W_C: Netscape Navigator should be used as a component in
the system.

and a connector win condition
W_B: An off-the-shelf connector should be provided to
ensure interoperability with third-party components.

CBSP is a bi-directional connector; the resulting intermedi-
ate model facilitates synthesis of negotiation artifacts into
architectural elements and enables feedback from architec-
ture modeling and analysis. The CBSP dimensions include a
set of architectural concerns that can be applied to systemati-
cally classify and refine negotiation artifacts and to capture
architectural tradeoff issues and options. The six possible
CBSP dimensions are discussed below and illustrated with
examples drawn from the cargo router system negotiation.

C: artifacts that describe or involve a Component in an archi-
tecture. For example

W12 Allow customizable reports, generated on the fly.
is refined into

W12_C Report generator component.

B: artifacts that describe or imply a connector (Bus). For
example

W30 The system should have interfaces to related applica-
tions (vehicle management system, staff availability).

can be refined into
W30_B Connector to staff and vehicle management system.

S: artifacts that describe System-wide features or features
pertinent to multiple components and connectors. For exam-
ple

W3 Capability to react to urgent cargo needs.
is refined into

W3_S The system should deploy automatic agents to monitor
and react to urgent cargo needs.

55

CP: artifacts that describe or imply Component Properties.
For example

W44 The client UI component should run on a palm-top or
lap-top device.

is refined into
W44JCP The client UI component should be portable and
efficient to run on palm-top as well as lap-top devices.

BP: artifacts that describe or imply connector (Bus) Proper-
ties. For example

W42 Integration of third party components should be enabled
■without shutting down the system.

is refined into
W42_BP Dynamic, robust connectors should be provided to
enable "on the fly" component addition and removal.

SP: artifacts that describe or imply System Properties should
pertain to the entire architecture. For example

W6 Operators must be notified of subsystem failures within
three seconds.

is refined into
W6_SP The system should support real-time communication
and awareness.

The CBSP connector enables synthesis and analysis in sev-
eral ways, as discussed below.

Synthesis of architecture from requirements
Identify and classify the architectual relevance of negotiation
artifacts. CBSP is applied in a voting process involving mul-
tiple experts. The experts use the six criteria described above
to classify the architectural relevance of negotiation artifacts
on a scale adopted from [31]: unknown, not relevant, par-
tially, largely, fully.

Reveal incomplete and puzzling WinWin artifacts. We have
found that analyzing the vote spread of the experts is a useful
technique to improve the clarity and precision of require-
ments descriptions. Large discrepancies detected in the votes
when applying CBSP indicate potentially confusing WinWin
artifacts. Reframing these artifacts can help to avoid costly
errors and misunderstandings. Incomplete and puzzling Win-
Win artifacts often represent uncertainties about an architec-
ture's ability to satisfy a requirement and are sources of
potential risk. Such artifacts can be used to prioritize risk
resolution activities in a spiral solution approach [5],

Refine WinWin artifacts by splitting complex negotiation
artifacts into CBSP artifacts. When bridging models
expressed in a natural language with more formal

approaches, one has to handle imprecision and ambiguity.
CBSP provides a principled way of viewing and refining
WinWin artifacts from a software architect's perspective,
thus reducing ambiguity. This approach is similar to the soft-
goal interdependency graph that shows refinements of qual-
ity requirements [9].

Analysis of architecture for adherence to requirements
CBSP also supports feedback from architecture modeling to
the requirements negotiation.

Capture architecture mismatches. Problems detected in
architectural models and simulation can be captured as
CBSP issues, such as

I12_S Three seconds system response time not possible.

Capture architecture tradeoff decisions. Architectural
options and alternative solutions can be also described as
CBSP elements. For example

024_C Consider use ofOTS staff management component.
This capture of tradeoff decisions is similar to the ATAM
technique described in [10].

4.2 Application to the Cargo Router Example

CBSP artifacts provide an intermediate model connecting
the requirements and architecture models by providing com-
prehensible views accessible to both the requirements engi-
neer and the software architect. Figure 3 shows an example
of the use of CBSP; it depicts the relationships between par-
tial models taken from the cargo router example. The Negoti-
ation Rationale View shows a set of WinWin artifacts. The
C2 Architectural View is a possible architecture for the cargo
router example (recall Section 3.2). The CBSP model con-
nector comprises two views: the CBSP View, created by clas-
sifying and refining negotiation artifacts and the Minimal
CBSP View, created by eliminating replaced and merging
related CBSP artifacts.

In the example shown in Figure 3, win condition Wl was
voted as being fully component relevant, largely connector
(bus) relevant, and largely property relevant (i.e., CP and
BP). Win condition W2 and option 01 were voted as being
largely connector (bus) relevant and fully connector property
relevant. W3 was voted as being largely component relevant
and issue II was voted as being architecturally not relevant.
Upon further analysis, it is revealed that Wl describes multi-
ple architectural elements. The two middle diagrams in Fig-

/-"■ "x support for different
(W3) typed Öl c^rcjo1

Support real-time
communication f ^2
from system to Si

vehicle
/

/

system and vehicle

Negotation Rationale View

Figure 3. Synthesis of an architectural (C2) mode! from a requirements (WinWin) model.

56

ure 3 show the result of this process: Wl is divided into
several components, a connector, and a connector property.

4.3 Model Connector Characteristics

Connectors between requirements and architecture models
are heavily influenced by the ambiguity and imprecision of
natural language. For that reason, the CBSP dimensions sup-
port a manual but guided and expert-based refinement of
negotiation results. CBSP also supports analysis indirectly,
by capturing architectural tradeoffs and mismatches revealed
in the process of architectural modeling.

The approach highlights some of the often vague relation-
ships between requirements negotiation artifacts and ele-
ments of a software architecture. These relationships are
described in terms of our taxonomy of inter-model element
relationships, introduced in Section 1.
• The voting process emphasizes architectural relevance,

helping the architect to focus on the most relevant subset
of the negotiation results and to ignore unrelated artifacts
(e.g., a development schedule win condition may have no
bearing on a component property win condition).

• The approach allows identifying complementary model
elements in the requirements and architecture models by
improving traceability of artifacts (e.g., a performance win
condition may not be explicitly captured in an architec-
tural model but must be taken into account).

• The approach aims at reducing redundancy by minimizing
the CBSP view. At the same time, much of the same infor-
mation will be represented in a software system's require-
ments and its architecture (though in different ways).
CBSP highlights the relationships among such redundant
modeling elements, facilitating improved stakeholder
communication.

• CBSP artifacts also help to reveal contradictory elements
and detect mismatches by exploiting the benefits of archi-
tectural modeling, analysis, and simulation in the negotia-
tion process.

5 ARCHITECTURE-TO-DESIGN CONNECTOR

The CBSP approach presented in the preceding section sug-
gests the key architectural elements and their properties for
an application. However, in its current form, CBSP does not
provide guidance for achieving an effective topology of
those architectural elements: the S and SP categories of win
conditions provide only hints about the characteristics of the
topology. Similarly, in the course of architectural decompo-
sition, the architect may discover that additional components
and connectors are needed that have not been identified
through requirements elicitation and refinement. For these
reasons, CBSP must be complemented with architectural
design principles.

There exists a large body of work on arriving at an effective
architecture for a given problem. Architectural styles [33]
provide rules that exploit recurring structural and interaction
patterns across a class of applications and/or domains.
Domain-specific software architectures (DSSA) and prod-
uct-line architectures (often referred to as application-family
architectures) [28] provide generic, reusable architectural
solutions (reference architectures) for a class of applications

in a single domain and instantiate those solutions to arrive at
a specific application architecture. Finally, a large body of
architecture modeling notations—ADLs—and their support-
ing toolsets [24] allows developers to effectively model, ana-
lyze, implement, deploy, and evolve software systems.

5.1 Model Connector

As discussed in Section 3.2, a C2-style architecture describes
a system in terms of high-level components, connectors, and
their configurations. Furthermore, the style imposes certain
constraints on allowed component interactions and topolo-
gies. Based on the information provided in a C2SADEL
model of the architecture, the SAAGE environment is capa-
ble of generating a partial implementation of that architec-
ture [23]. At the same time, many lower-level issues (e.g.,
any additional processing and data objects, specific data
structures, and algorithms) that are needed to complete that
implementation are not provided at the architectural level.
For that reason, the "outer skeleton" of the application gener-
ated from the architectural model must be complemented
with the details typically provided through lower-level
design activities. In other words, a model connector is
needed to bridge architectural and design models.

Software architecture researchers have studied the issue of
refining an architecture into a design. An approach represen-
tative of the state-of-the-art in this area is SADL [26]. SADL
incrementally transforms an architecture across levels of
abstraction using a series of refinement maps, which must
satisfy a correctness-preserving criterion. While powerful,
this model connector can be overly stringent [13]. It sacri-
fices design flexibility to a notion of (absolute) correctness.
The role of the human designer is virtually eliminated. Fur-
thermore, formally proving the relative correctness of archi-
tectures at different refinement levels may prove impractical
for large architectures and large numbers of levels [1]. Such
an approach can be of value, however, if applied to the most
critical parts of a system, and complemented by a more prag-
matic model connector. We propose such a connector.

Our approach is based on enabling the synthesis of a design
model from an ADL model. In particular, we choose UML as
the target design language because of its wide adoption and
large number of modeling features. We have conducted and
in-depth study of the feasibility of mapping ADLs to UML
[21,22,30]; this study involved three representative ADLs

Component Internal Object -* Class
State Variable -» Class Private Attribute
Component Invariant -* Tagged Value + Class Documentation
Provided Operation -» Class Operation
Required Operation -» Class Documentation
Operation Pre/Post Condition -» Pre/Post Condition on Class Operation

Component -» «C2-Component» Class
Internal Object -» «C2-Componenf» Class Attribute
Component Top Interface -» «Interface» Class
Component Bottom Interface -* «Interface» Class
Outgoing Request -» «Interface» Class «out» Operation
Incoming Notification -» «Interface» Class «in» Operation

Connector -* «C2-Connector» Class
Connector Top Interface-» \^) Bottom Interfaces of attached Components
Connector Bottom Interface-» _) Top Interfaces of attached Components

Architecture Configuration -* Object Diagram + Component Diagram
Component/Connector Binding -» Object Link (instance of an association)

Figure 4. Partial rule set for transforming a C2SADEL model into a
UML model.

57

Figure 5. Synthesis of an intermediate UML model from a C2 architectural model.

[24] (C2SADEL,
Rapide [19], and Wright
[2]) and two strategies
for developing an ADL-
to-UML model connec-
tor.

Based on this study, we
have implemented a
C2SADEL-to-UML
connector. This connec-
tor results in an interme-
diate model that is, on
the one hand, repre-
sented in UML, but on
the other hand, it
reflects the structure,
details, and properties of
the architectural model.
The transformation
from C2SADEL to this
intermediate UML model is defined by a set of rules; an
excerpt of the rule set is shown in Figure 4. The most impor-
tant requirement of the transformation is that the synthesized
UML model be initially correct with respect to the architec-
tural model; once the UML model is further refined, it is, of
course, possible to introduce inconsistencies with the archi-
tectural model. Techniques for detecting and resolving these
inconsistencies are presented in Section 6.

As already discussed, we have completed an initial integra-
tion of our DRADEL environment for architecture-based
development in C2 with Rational Rose, a commercial UML
modeling environment, resulting in the SAAGE toolset [1].
This integration allows automated synthesis of the intermedi-
ate UML models corresponding to C2SADEL architectures.
The ultimate intent of this integration is to facilitate model
connectors by providing shared representation and tool sup-
port across requirements, architecture, and design models.

5.2 Application to the Cargo Router Example

The C2 architecture of the cargo router application, dis-
cussed in Section 3.2, is mapped into several UML diagrams
as indicated by the rules in Figure 4. In particular, each C2
component and connector is mapped to a specific set of
UML class diagrams, representing its internal details as
modeled in C2SADEL. Additionally, the overall configura-
tion is mapped to UML component and object diagrams,
showing the dependencies among the instances of the classes
used to represent the components and connectors. Figure 5
shows the synthesized UML view of the cargo routing archi-
tecture. All the details of the architecture represented in
C2SADEL are transferred into this intermediate model.

5.3 Model Connector Characteristics

The higher degree of formalization of architectural and
design models renders this model connector easier to specify
than in the case of requirements (recall Section 4). At the
same time, the semantics of an ADL are typically defined
explicitly, while several aspects of UML semantics remain

implicit. We have tried to address this discrepancy and
ensure the proper semantics of the intermediate UML model
by placing constraints, specified in OCL, on UML modeling
elements.1 In turn, this approach was effective in revealing
the relationships among architectural and design (i.e., UML)
concepts:
• We made sure that the entire architectural model is trans-

ferred into the intermediate UML model. Only further
refinement of the UML model will introduce elements that
are potentially unrelated to those in the architecture.

• Certain aspects of the architectural model complement
those in the UML model. For example, the services a C2
component requires are explicit, first-class constructs in
C2SADEL and are used as the basis of architectural analy-
sis. In the UML model, these services become a part of
system documentation, intended as a guide to the designer.

• Given the number and diversity of UML diagrams, certain
aspects of an architecture end up being mapped to multiple
diagrams. For example, architectural topology is reflected
in Object and Component diagrams (see Figure 4). Such
redundancy is inavoidable when the target models have
overlapping concerns. At the same time, the redundancy
presents a problem in that changes in one such view must
always be propagated to all other views.

• Architecture-level analysis tools are optimistically inaccu-
rate by design since they deal with high-level, partial sys-
tem models. Thus, coupling architectural models with
lower-level, design models has the potential to eliminate
any "false negatives" by identifying additional inconsis-
tencies.

6 INTER-DESIGN CONNECTORS

Once the intermediate UML model is synthesized from the
architecture, that model must be further refined to address
the missing lower-level design issues, such as additional pro-

1. The OCL formulae are abstracted away in the UML stereotypes
(denoted with'"« »") in Figure 5. The complete OCL specifi-
cation of the C2 rules can be found in [30].

58

cessing and data elements, specific data structures, and algo-
rithms. This section discusses a set of design model
connectors we have developed to bridge related design mod-
els (e.g., class diagrams) at different levels of abstraction, as
well as different design models (e.g., class and statechart dia-
grams) at the same level of abstraction. As in the preceding
sections, we distinguish between synthesis methods for cre-
ating intermediate models and analysis methods for identify-
ing inconsistencies.

6.1 Model Connectors

In order to help bridge design models, we have investigated
ways of describing and identifying the causes of mismatches
across UML and architectural views [12]. To this end, we
have devised and applied a set of design model connectors,
comprised into a view integration framework [12]. These
connectors are accompanied by a set of activities and tech-
niques for identifying inconsistencies in an automatable
fashion. As in the preceding sections, our approach makes
use of intermediate models.

Figure 6 depicts how synthesis and analysis can be used for
bridging design models. The design model connectors can be
divided into two categories: design refinement and design
view connectors. Each is further discussed below.

Design refinement connectors: The upper left area of Figure
6 shows the case of bridging between higher-level and lower-
level views. We already discussed one such example in Sec-
tion 5, where we showed a refinement from C2 to UML (syn-
thesis). Intermediate models are used to simplify that
process. Similarly, intermediate models can be abstracted out
of lower-level models so that they can be compared more
easily with higher-level models (analysis).

Design view connectors: UML supports a wide range of dia-
grams, including sequence, collaboration, statechart, and so
on. The principles of synthesis and analysis discussed above
also apply to these additional types of diagrams. Our view
integration framework currently encompasses eight different
connectors between a variety of UML models. Each model
connector yields an intermediate model (as shown in the
lower right area of Figure 6) that simplifies view comparison.

Higher-
level Design

Generated
Intermediate

Models

compare

^! 7

[Generated ^
Intermediate (_

I Model j

Design
View A

£> Intermediate
I Model

compare

<7

[Generated
Intermediate k, -

Model I ' t'MWlorm

Design
View B

specific

Figure 7. Design model connectors.

In our investigation of various UML views, we have identi-
fied three major transformational dimensions (see Figure 7).
Views can be seen as abstract or concrete, generic or spe-
cific, and behavioral or structural. The abstract-concrete
dimension was foreshadowed in Section 5, where the C2
architecture was the abstract view and the generated interme-
diate UML model was the concrete view. The generic-spe-
cific dimension denotes the generality of modeling
information. For instance, a class diagram naturally
describes a relationship between classes that must always
hold, whereas an object diagram describes a specific sce-
nario. Finally, the behavior-structure dimension takes infor-
mation about behavior to infer structure. For instance, test
scenarios (which are behavioral) depict interactions between
objects (structural) and can thus be used to infer structure.

Manual management of design model connectors across
these three dimensions is often infeasible due to the com-
plexity of the models. Two factors contribute to the complex-
ity: the existence of "helper classes" in a design and the
overall number of classes and possible interactions. In order
to control this complexity, we have developed a tool, UML/
Analyzer, that uses an abstraction technique to eliminate
helper classes. UML/Analyzer searches for class and object
patterns and replaces them with simpler, more abstract pat-
terns of the same type.

For instance, to identify a mismatch in the class diagram
shown in Figure 8d, we need to eliminate the helper classes
availableGoods and aSurplus that "obstruct" our view of the
direct relationship between aVehicle and aWarehouse. In this
particular example, UML/Analyzer sees an aggregation from
aVehicle to availableGoods, followed by a generalization
(inheritance) from availableGoods to aSurplus, which is, in
turn, followed by an association from aSurplus to aWare-
house (Figure 8c). The tool then uses its abstraction rules to
replace the box (class) and line (relationship) patterns.2 Fur-
ther applying our abstraction rules on the example, we end
up finding an association relationship between aVehicle and
aWarehouse (Figure 8a). This example is further discussed

Figure 6. Consistent refinement and evolution of design models.

2. UML/Analyzer's rules have been created in collaboration with
the Rational Software Corporation. Rational also implemented
our abstraction method in a tool called Rose/Architect [11].

59

(a) (b) (c) (d)

ivailabI«Goods

rv

Potential Mismatch:
Vehicle's ability to interact
with aWarehouse violates

/>C2 behavior

JL

**

IM3 J\^ IM2 J\^

iu7plus

ft T V
1 •VehicleCoHection ,'

aSurplus

;
y ^^^f availabteGoods

7
"- IheWarehouBaCollsction

Design Excerpt

Figure 8. Series of intermediate models (from right to left) produced
to identify behavioral mismatch.

below.

6.2 Application to the Cargo Router Example

In the interest of brevity, we will focus the application of
design model connectors to class and object views only. We
use the intermediate UML model, produced by the architec-
ture-to-design connector discussed in Section 5, as our start-
ing point. Figure 9 shows an excerpt of the consistency
checking process in the context of the cargo router applica-
tion. The figure depicts a lower-level design (right side) and
its abstraction as an intermediate model (middle). The inter-
mediate model can then be compared more easily with the
the original model (i.e., architecture, shown on the left side)
to ensure consistency.

The components and connectors in the original, C2 model
may be seen as the interfaces for compact, self-sustaining
sections of the implementation. Since C2 elements are often
coarse-grain, it is reasonable to assume that a collection of
objects (or classes) is needed to implement each C2 element.
Using UML/Analyzer, we can automatically derive an inter-
mediate, abstracted model out of the lower-level design as
discussed above. Figure 9 depicts this abstraction in the con-
text of Vehicle, Warehouse, CommunicationConn, and Car-
goRouter. We can see that the association relationship
between CargoRouter and Vehicle is in violation of the origi-
nal architecture's structure since no corresponding link
between the CargoRouter and Vehicle can be found in the C2

CargoRouter

T
:esConn Potential Mismatch:

Link between
CargoRouter and Vehicle'

violates C2 structure

C2 Architectural View

CargoRouter

architecture (left side).

Another potential mismatch between the two models
depicted in Figure 9 is a result of C2's rule that two compo-
nents at the same level (e.g., Vehicle and Warehouse) are not
allowed to directly interact. The intermediate model again
helps to detect that mismatch as shown in Figure 8. The
object aVehicle is part of availableGoods, which, in turn, is a
child of aSurplus. Since aSurplus can only access the object
aWarehouse (part of another component), it follows that it is
possible for Vehicle to interact with Warehouse—a violation
of the C2 model.

6.3 Model Connector Characteristics

The comparatively higher degree of formalization than in the
case of the requirements again allows one to automatically
build connectors between design models. Tools such as
UML/Analyzer adopt transformation techniques to automati-
cally synthesize intermediate models. These intermediate
models are then used, e.g., to detect structural and behavioral
inconsistencies by employing comparison (i.e., analysis)
techniques. As it can be seen in the context of Figure 8, a
series of intermediate models may be generated in response
to a single transformation.

Using our taxonomy of model element relationships, we can
characterize the relationships between different design mod-
els as follows:
• During design refinement, all elements of a high-level

model are typically transferred into a lower-level model.
However, this is not the case when bridging heterogeneous
models (e.g., collaboration and statechart diagrams) at the
same level of abstraction. Certain elements in such models
will be unrelated. Another source of unrelated elements
between views is further refinement of a given design
model, whereby additional detail is introduced.

• An underlying principle of UML is that elements of differ-
ent views complement each other. For example, an object
diagram depicts a specific scenario, while the correspond-
ing class diagram describes the relationship between any
instances of the involved classes.

• When different concerns are expressed in UML, a certain
level of redundancy is inevitably created. Redundant infor-
mation is a prerequisite to being able to link heteroge-
neous views and to identify inconsistencies across

them [12].
• A major purpose of design model con-

nectors is to ensure consistency between
design views at the same or different lev-
els of abstraction by pointing out contra-
dictory elements (e.g., the relation
between Vehicle and CargoRouter in
Figure 9). UML/Analyzer employs
transformation and comparison tech-
niques to support detection of such con-
tradictory elements.

V UML Design Class View

Figure 9. Use of Intermediate Model to find Structural Inconsistency

7 CONCLUSION

In this paper, we have discussed a set of
techniques whose ultimate goal is to facili-

60

täte the consistent transformation of a system's requirements
into its implementation. We believe that this is an important
contribution in that our approach provides some novel solu-
tions to a difficult problem, studied extensively by software
engineering researchers. For example, the CBSP approach
provides a good balance of the structure and flexibility
needed to address the problem of deriving an effective archi-
tecture from a system's requirements. System quality
requirements in particular tend to drive the choice of archi-
tecture [10]; at the same time, the "optimal" architecture if
often a discontinuous function of the required quality level.
Highly formal approaches are typically unable to adequately
deal with this discontinuity, while the collaborative CBSP
approach can handle it more readily. CBSP addresses the
issue by involving experts in a voting process to determine
the architectural relevance of negotiation artifacts and to
identify incomplete and inconsistent requirements.

Another, perhaps even more important contribution of this
paper lies in its identification of a set of underlying princi-
ples needed to enable a series of model transformations: all
of the model connectors we have developed to date and dis-
cussed in this paper rely the use of intermediate models, the
coupling of analysis and synthesis of varying degrees of
automation, and the framework for relating model elements
across models. While we have developed and applied these
principles in the context of specific requirements, architec-
ture, and design modeling approaches, we have taken special
care to ensure their broader applicability. Thus, for example,
the CBSP approach does not depend on the use of WinWin,
but can instead be applied to arbitrary requirements model
artifacts. Similarly, we have already applied our ADL-to-
UML model connector to several ADLs [22,30].

Our work in this arena continues along several dimensions.
The MBASE approach [3,6] and its support for multiple
model categories is used as the conceptual integration plat-
form for this work. We are also integrating the tool support
provided by EasyWinWin, SAAGE, and UML/Analyzer to
facilitate easier development and implementation of model
connectors; we intend leverage all three tools' use of Ratio-
nal Rose to this end. Finally, we are investigating additional
model connectors that will, in particular, enable the use of
multiple ADLs to enable architectural modeling of different
system characteristics. We are currently studying the possi-
bility of using the ACME architecture interchange language
[14] as the intermediate model for such a model connector

8 REFERENCES
1. M. Abi-Antoun and N. Medvidovic. Enabling the Refinement of *

Software Architecture into a Design. UML'99, Fort Collmv CO
October 1999.

2. R. Allen and D. Garlan. A Formal Basis for Architectural C unnet •
tion. ACM Transactions on Software Engineering and A/i-iW. ./<>>:>.
vol. 6, no. 3, July 1997.

3. Boehm B., Port D., Egyed A., Abi-Antoun M., The MBASF Life
Cycle Architecture Package, In: Donohoe P. (ed.). Software Architec-
ture, Kluwer Academic Publishers, 1999.

4 B Boehm, In. H. Identifying Quality Re-quirement Conflicts. IEEE
Software, 13(2), March 1996.

5 B Boehm A. Egyed, J. Kwan, D. Port, A. Shah, R. Madachy. Using
the WinWin Spiral Model: A Case Study. IEEE Computer, 7:33-44,
1998

6 Boehm B., and Port D., Escaping the Software Tar Pit: Model Clashes
and How to Avoid Them. ACM Software Engineering Notes, January

1999.
7. Boehm B., Gruenbacher P., Supporting Collaborative Requirements

Negotiation: The Easy-Win Win Approach. International Conference
on Virtual Worlds and Simulation, San Diego 2000.

8. G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Lan-
guage User Guide. Addison-Wesley, 1998.

9. Chung L., Gross D., Yu E., Architectural Design to Meet Stakeholder
Requirements, In: Donohoe P. (ed.), Software Architecture, Kluwer
Academic Publishers, 1999.

10. Egyed A., Gruenbacher P., Medvidovic N. Refinement and Evolution
Issues between Requirements and Architecture, Technical Report,
USC-CSE, Los Angeles, CA, 2000.

H.A. Egyed and P. Kruchten. Rose/Architect: A Tool to Visualize Archi-
tecture. In Proceedings of the Hawaii International Conference on
System Sciences, January 1999.

12. A. Egyed and N. Medvidovic. A Formal Approach to Heterogeneous
Software Modeling. In Proceedings of the Conference on the Founda-
tional Aspects of Software Engineering, 2000.

13. D. Garlan. Style-Based Refinement for Software Architecture. In
Proceedings of the Second International Software Architecture Work-
shop (ISAW-2), pp. 72-75, San Francisco, CA, October 1996.

14. D. Garlan, R. Monroe, and D. Wile. ACME: An Architecture
Description Interchange Language. In Proceedings ofCASCON'97,
November 1997.

15 P Gruenbacher. Collaborative Requirements Negotiation with Easy-
WinWin, Technical Report, USC-CSE, 2000.

16. Gruenbacher P., Egyed A., Medvidovic N. Dimensions of Concerns
in Requirements Negotiation and Architecture Modeling, Technical
Report, USC-CSE, Los Angeles, CA, 2000.

17. GroupSystems.com. http://www.groupsystems.com/
18. Kazman R., Barbacci M., Klein M., Carriere, S.J., Woods S.G., Expe-

rience with Performing Architecture Tradeoff Analysis, ICSE 99.
19. D. C. Luckham and J. Vera. An Event-Based Architecture Definition

Language. IEEE Transactions on Software Engineering, vol. 21, no.
9, pp. 717-734, September 1995.

20. N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of Off-the-Shelf
Components in C2-Style Architectures. ICSE'97, Boston, MA, May
1997. . .

21. N. Medvidovic and D.S. Rosenblum. Assessing the Suitability of a
Standard Design Method for Modeling Software Architectures. First
IFIP Working Conference on Software Architecture (WICSA1), pp.
161-182, San Antonio, TX, February 1999.

22. N. Medvidovic, D. S. Rosenblum, J. E. Robbins, and D. F. Redmiles.
Modeling Software Architectures in the Unified Modeling Language.
Submitted for publication, 1999.

23. N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A Language and
Environment for Architecture-Based Software Development and
Evolution. ICSE'99.

24. N. Medvidovic and R.N. Taylor. A Classification and Comparison
Framework for Software Architecture Description Languages.
Accepted for publication in IEEE Transactions on Software Engi-
neering, January 2000.

25. Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. Towards
a Taxonomy of Software Connectors. ICSE 2000.

26. M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct Architec-
ture Refinement. IEEE Transactions on Software Engineering, vol.
21, no. 4, pp. 356-372, April 1995.

27. H. Partsch and R. Steinbruggen. Program Transformation Systems.
ACM Computing Surveys, vol. 15, no. 3, pp. 199-236, September
1983.

28. D. E. Perry. Generic Descriptions for Product Line Architectures. In
Proceedings of the Second International Workshop on Development
and Evolution of Software Architectures for Product Families (ARES
II), Las Palmas de Gran Canaria, Spain, February 1998.

29. D.E. Perry and A. L. Wolf. "Foundations for the Study of Software
Architectures." ACM SIGSOFTSoftware Engineering Notes, vol. 17,
no. 4, pages 40-52, October 1992.

30. J. E. Robbins, N. Medvidovic, D. F. Redmiles, and D. S. Rosenblum.
Integrating Architecture Description Languages with a Standard
Design Method. In ICSE'98, Kyoto, Japan, 1998.

31. Rout, T. P. SPICE: A framework for software process assessment.
Journal Software Process Improvement and Practice, Pilot Issue, John
Wiley & Sons, 1995.

32. M. Shaw. Procedure Calls are the Assembly Language of Software
Interconnection: Connectors Deserve First-Class Status. In Proceed-
ings of the Workshop on Studies of Software Design, 1993.

33. M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, April 1996.

61

Barry Boehm
Alexander
Egyed
Julie Kwan
Dan Port
Archita Shah
University of
Southern
California

Ray Madachy
Litton Data
Systems and
University of
Southern
California

Using the Win Win
Spiral Model:
A Case Study
Fifteen teams used the WinWin spiral model to prototype, plan, specify, and

build multimedia applications for USC's Integrated Library System. The

authors report lessons learned from this case study and how they extended

the model's utility and cost-effectiveness in a second round of projects.

At the 1996 and 1997 International Con-
ferences on Software Engineering, three
of the six keynote addresses identified
negotiation techniques as the most critical
success factor in improving the outcome

of software projects. At the USC Center for Software
Engineering, we have been developing a negotiation-
based approach to software system requirements engi-
neering, architecture, development, and management.
Our approach has three primary elements:

• Theory W, a management theory and approach,
which says that making winners of the system's
key stakeholders is a necessary and sufficient con-
dition for project success.1

• The WinWin spiral model which extends the spi-
ral software development model by adding Theory
W activities to the front of each cycle. The sidebar
" Elements of the WinWin Spiral Model" describes
these extensions and their goals in more detail.

• WinWin, a groupware tool that makes it easier
for distributed stakeholders to negotiate mutu-
ally satisfactory (win-win) system specifications.2

In this article, we describe an experimental valida-
tion of this approach, focusing on the application of
the WinWin spiral model. The case study involved
extending USC's Integrated Library System to access
multimedia archives, including films, maps, and
videos. The Integrated Library System is a Unix-based,
text-oriented, client-server COTS system designed to
manage the acquisition, cataloging, public access, and
circulation of library material. The study's specific goal
was to evaluate the feasibility of using the WinWin
spiral model to build applications written by USC
graduate student teams. The students developed the
applications in concert with USC library clients, who
had identified many USC multimedia archives that
seemed worthy of transformation into digitized, user-
interactive archive management services.

0018-9162/96/S10.00 O 1998 IEEE
62

The study showed that the WinWin spiral model is
a good match for multimedia applications and is likely
to be useful for other applications with similar char-
acteristics—rapidly moving technology, many candi-
date approaches, little user or developer experience
with similar systems, and the need for rapid comple-
tion. The study results show that the model has three
main strengths.

• Flexibility. The model let the teams adapt to accom-
panying risks and uncertainties, such as a rapid pro-
ject schedule and changing team composition.

• Discipline. The modeling framework was suffi-
ciently formal to maintain focus on achieving
three main, or "anchor-point," milestones: the
life-cycle objectives, the life-cycle architecture, and
the initial operational capability. (Table A in the
sidebar describes these milestones.)

• Trust enhancement. The model provided a means
for growing trust among the project stakeholders,
enabling them to evolve from adversarial, con-
tract-oriented system development approaches

July 1998

Elements of the WinWin
Spiral Model

The original spiral model1 uses a cyclic
approach to develop increasingly detailed
elaborations of a software system's defin-
ition, culminating in incremental releases
of the system's operational capability.
Each cycle involves four main activities:

• Elaborate the system or subsystem's
product and process objectives, con-
straints, and alternatives.

• Evaluate the alternatives with respect
to the objectives and constraints.
Identify and resolve major sources of
product and process risk.

• Elaborate the definition of the prod-
uct and process.

• Plan the next cycle, and update the
life-cycle plan, including partition of
the system into subsystems to be
addressed in parallel cycles. This can
include a plan to terminate the pro-
ject if it is too risky or infeasible.
Secure the management's commit-
ment to proceed as planned.

Since its creation, the spiral model has
been extensively elaborated2 and success-
fully applied in numerous projects.3-4

However, some common difficulties led
USC-CSE and its affiliate organizations to
extend the model to the WinWin spiral
model described in the main text.

Negotiation front end
One difficulty was determining where

the elaborated objectives, constraints, and
alternatives come from. The WinWin spi-
ral model resolves this by adding three
activities to the front of each spiral cycle,
as Figure A shows.5

• Identify the system or subsystem's key
stakeholders.

• Identify the stakeholders' win condi-
tions for the system or subsystem.

• Negotiate win-win reconciliations of
the stakeholders' win conditions.

We have found in experiments with a
bootstrap version of the WinWin group-
ware tool that these steps do indeed pro-

2. Identify stakeholders'
win conditions.

1. Identify
next-level
stakeholders.

, Review and
commit.

. Validate
product
and process
definitions.

3a. Reconcile win
conditions.

3b. Establish next-
level objectives,
constraints, and
alternatives.

4. Evaluate product and
process alternatives.
Resolve risks.

5. Define next
level of product
and process,
including partitions.

Figure A. How the WinWin spiral model differs from the original spiral model. The new model adds
front-end activities (blue) that snow where objectives, constraints, and alternatives come from. This
lets users more clearly identify the rationale involved in negotiating win conditions for the product.

duce the key product and process objec-
tives, constraints, and alternatives for the
next version.6 The model includes a stake-
holder WinWin negotiation approach that
is similar to other team approaches for
software and system definition such as
gIBIS, Viewpoints, Participatory Design,
and Joint Application Design. However,
unlike these and other approaches, we use
the stakeholder win-win relationship as the
success criterion and organizing principle
for software and system definition. Our
negotiation guidelines are based on the
Harvard Negotiation Project's techniques.7

Process anchor points
Another difficulty in applying the spiral

model across an organization's various pro-
jects was that the organization has no com-
mon reference points for organizing its
management procedures, cost and schedule
estimates, and so on. This is because the
cycles are risk driven, and each project has
different risks. In attempting to work out
this difficulty with USC-CSE's industry and
government affiliates using our Cocomo II
cost model, we found a set of three process
milestones, or anchor points,8 which we
could relate to both the completion of spi-
ral cycles and to the organization's major
decision milestones.

The life-cycle objectives (LCO) and the
life-cycle architecture (LCA) milestones rat-
ify the stakeholders' commitment to a fea-
sible and consistent package of the six key
milestone elements shown in Table A for the
LCO anchor point.

The LCO version focuses on establishing
a sound business case for the package. It
need only show that there is at least one fea-
sible architecture.

The LCA version commits to a single
choice of architecture and elaborates it to the
point of covering all major sources of risk in
the system's life cycle.8 The LCA is the most

toward methods that were mutually supportive
and cooperative.

From lessons learned during the case study, we iden-
tified several possible enhancements, some of which
we made. We then used the enhanced model on 16
projects in the following year. The second-year pro-
jects overcame many of the weaknesses in the first-
year projects. We are incorporating improvements
identified by student critiques and are planning third-
year projects. Industry is also looking at the WinWin
spiral model. Companies such as Rational Inc. have
already adopted several elements of the WinWin spi-
ral model as part of their project management and
product life-cycle processes.

MODEL APPLICATION
We applied the WinWin spiral model in four cycles:

• Cycle 0. Determine the feasibility of an appro-
priate family of multimedia applications.

• Cycle 1. Develop life-cycle objectives (LCO mile-
stone) , prototypes, plans, and specifications for indi-
vidual applications and verify the existence of at
least one feasible architecture for each application.

• Cycle 2. Establish a specific, detailed life-cycle
architecture (LCA milestone), verify its feasibil-
ity, and determine that there are no major risks in
satisfying the plans and specifications.

• Cycle 3. Achieve a workable initial operational
capability (IOC milestone) for each project

Computer
63

critical milestone in the software system's life
cycle. As an analogy, it is similar to the commit-
ment you make in getting married (just as LCO
is like getting engaged and IOC like having your
first child).

The initial operational capability, or IOC,
anchor point has three key elements:8

• Software preparation, including both
operational and support software with
appropriate commentary and documen-
tation; data preparation or conversion;
the necessary licenses and rights for
COTS and reused software, and appro-
priate operational readiness testing.

• Site preparation, including facilities,
equipment, supplies, and COTS vendor
support arrangements.

• User, operator, and maintainer prepara-
tion, including selection, team building,
training, and other qualifications for famil-
iarization use, operations, or maintenance.

Definition of

operational

concept

Top-level system

objectives and scope

Environment

parameters and

assumptions

Evolution parameters

Operational concept

Operations and

maintenance

scenarios

and parameters

Organizational

life-cycle

responsibilities

(stakeholders)

Definition of

system

requirements

Top-level functions,

interfaces, quality

attribute levels,

including:

Growth vectors

Priorities

Stakeholders'

concurrence

on essentials

We found that the LCO and LCA mile-
stones are highly compatible with the suc-
cessful architecture review board practice
pioneered by AT&T and Lucent Technolo-
gies.9 We used board sessions about 20 per-
cent of the time in the first-year projects and
100 percent of the time in the second-year
projects, with much better results.

References

1. B. Boehm, "A Spiral Model of Software
Development and Enhancement," Computer,
May 1988, pp. 61-72.

2. "Process Engineering with the Evolutionary
Spiral Process Model: Version 01.00.06,"
Tech. Report SPC-93098-CMC, Software Pro-
ductivity Consortium, Herndon, Va., 1994.

3. W. E. Royce, "TRW's Ada Process Model for
Incremental Development of Large Software
Systems," Proc. 12th Int'l Conf. Software
Eng., IEEE CS Press, Los Alamitos, Calif.,
1990, pp. 2-11.

Table A. Contents of the LCO milestone.

T. Frazier and J. Bailey, "The Costs and
Benefits of Domain-Oriented Software
Reuse: Evidence from the STARS Demon-
stration Projects," IDA Paper P-3191, Insti-
tute for Defense Analyses, Alexandria, Va.,
1996.
B. Boehm and P. Bose, "A Collaborative Spi-
ral Software Process Model Based on Theory
W," Proc. Int'l Conf. Software Process, IEEE
CS Press, Los Alamitos, Calif., 1994, pp. 59-
68.
B. Boehm et al., "Software Requirements as
Negotiated Win Conditions," Proc. Int'l
Conf. Requirements Eng., IEEE CS Press, Los
Alamitos, Calif., 1994, pp. 74-83.

. R. Fisher and W. Ury, Getting to Yes, Penguin
Books, New York, 1981.

. B. Boehm, "Anchoring the Software Process,"
IEEE Software, July 1996, pp. 73-82.

. "Best Current Practices: Software Architec-
ture Validation," AT&T, Murray Hill, N.J.
1993.

Milestone element

Definition of
system and Definition of

software architecture life-cycle plan

Top-level definition

of at least one feasible

architecture

Physical and logical

elements and

relationships

Choices of COTS and

reusable software

elements

Identification

of infeasible

architecture options

Identification of life-cycle

stakeholders

Users, customers,

developers, maintain-

ed, interoperators, gen-

eral public, others

Identification of life-cycle

process model

Top-level stages, incre-

ments

Top-level WWWWWHH
(Why, What, When,

Who, Where, How,

How Much?) by stage

Feasibility

rationale

Assurance of

consistency among

elements above

Via analysis,

measurement,

prototyping,

simulation, etc.

Business case

analysis for

requirements,

feasible

architectures

System

prototype(s)

Exercise key usage

scenarios

Resolve critical risks

including system preparation, training, use, and
evolution support for users, administrators, and
maintainers.

We used Theory W in all the cycles, but we used the
WinWin groupware tool in Cycle 1 only, because this
is where it currently works best.

Cycle 0: Application family
From 1993 to 1996, the USC Center for Software

Engineering (CSE) experimented with teaching the
WinWin spiral model in its master's software engi-
neering course, taught by Barry Boehm. The experi-
ments involved using hypothetical applications, one
of which was an advanced library application. Some

of the library staff became interested in having the
CSE students develop useful USC library applications.

The CSE in turn had been looking for a source of
new applications on which to test the WinWin spiral
model. So in the summer of 1996 we met with some
of the library staff to explore respective win condi-
tions and to determine if we could identify a feasible
set of life-cycle objectives for a family of USC library
applications. Table 1 summarizes the win conditions
for the three primary stakeholders: the library infor-
mation technology community; the library operations
community (including users); and the CSE.

As the table indicates, the library information tech-
nology community was energized by their dean's
vision to accelerate the libraries' transition to digital

64
July 1998

Table 1. Win conditions for the three primary stakeholders in the case study.

Library Information Technology Community Library Operations Community Center for Software Engineering

Accelerated transition to digital library capabilities;

vision of Dean of the University Libraries

Evaluation of emerging multimedia archiving and

access tools

Empowering library multimedia users

Enhancement of library staff capabilities in digital

library services

Leveraging of limited budget for advanced applica-

tions

Continuity of service

No disruption of ongoing transition to

SIRSI-based Library Information System

Career growth opportunities for system

administrators

No disruption of USC network operations

and services

More efficient operations via technology

Similarity of projects (for fairness, project

management)

Reasonable match to the WinWin spiral model

15-20 projects at 5-6 students per team

Achieve a meaningful life-cycle architecture in

one semester

Achieve a meaningful initial operational capability

in two semesters

Adequate network, computer, and infrastructure

resources

capabilities. However, there was little budget for eval-
uating emerging multimedia technology and develop-
ing exploratory applications.

The library operations community and its users
were already undergoing a complex transition to the
new Integrated Library System. They were continu-
ally looking for new technology to enhance their oper-
ations. But they were also highly sensitive to the risks
of disrupting services, and they had limited resources
to experiment in new areas.

The biggest risk identified in Cycle 0 was the risk of
having too many different applications and losing con-
trol of the project. Achieving a meaningful IOC in two
semesters, a win condition for CSE, meant following a
rapid project schedule. Because the students would be
unfamiliar with both one another and with their library
applications and clients, they could easily go off in all
directions. We resolved this risk by focusing on a single
application area—library multimedia archive services—
and by developing a common domain model and set of
product guidelines for all teams to follow.

Cycle 1: Application life-cycle objectives
Figure 1 shows the project guidelines we negotiated

with the library staff during Cycle 0 and provided to
the CS students on the first day of class. The guidelines
allowed 2.5 weeks for the students to organize them-
selves into teams and 11.5 weeks to complete the life-
cycle objective and life-cycle architecture milestones.

We also gave each project some guidelines for de-
veloping five documents (in the artifacts list under
"Project Objectives" in Figure 1), including recom-
mended page budgets. Each team had to develop two
versions, one for the LCO milestone and an elabora-
tion for the LCA milestone. To ensure that everyone
used a common development process, we gave the
teams a sample multimedia archive prototype and a
domain model for a typical information archive exten-
sion. The domain model, in Figure 2, identifies the key
stakeholders involved in such systems and key con-
cepts like the system boundary, the boundary between
the system being developed and its environment.

The project guidelines and domain model were key

to the teams' rapid progress because they provided a
common development perspective. The course lectures
followed the WinWin spiral model. We began with
overviews of the project artifacts (in Figure 1 under
"Project objectives") and how they fit together. We
continued with a discussion of the key planning and
organizing guidelines. In later lectures, we provided
more detail on the project artifacts and had guest lec-
tures on library operations and the SIRSI system and
on technological aspects such as user interface design
and multimedia system architecture.

We focused each team during Cycle 1 by having
them use the WinWin groupware tool for requirements
negotiation.2 "WinWin user negotiations" in Figure 1
identifies the four key forms in the WinWin negotia-
tion model (win conditions, issues, options, and agree-
ments) , and their relationships. It also summarizes the
stakeholder roles (developer, customer, and user) to be
played by the team members. To minimize disruption
to library operations, we had the operational concept
and requirements team members enter the user arti-
facts, rather than the librarians themselves.

Figure 3a shows the final list of applications and the
teams required to develop them. We ended up with 12
applications and 15 development teams, comprising
both on- and off-campus students. We let the project
teams select their own members to mitigate the risk
of forming teams with incompatible people and
philosophies. Most teams had six people.

Figure 3b shows two problem statements prepared
by the library clients. These statements are much less
detailed than a typical requirements set in an indus-
trial application. The team had to go from short state-
ments like this to a consistent set of prototypes, plans,
and specifications (typically 200 pages) in 11 weeks.

To help them organize and navigate the WinWin
artifacts and control the associated terminology, we
gave each team a domain taxonomy and guidelines
for relating the taxonomy elements to elements of the
requirements specification. Figure 4 shows part of the
taxonomy and guidelines.

Figure 5 shows the look and feel of the WinWin
tool. In the lower right is a win condition form entered

Computer 65

Project objectives
Create the artifacts necessary to establish a successful life-cycle architecture and plan for adding a multimedia access capability to
the USC Library Information System. These artifacts are

1. An operational concept definition
2. A system requirements definition
3. A system and software architecture definition
4. A prototype of key system features
5. A life-cycle plan
6. A feasibility rationale, assuring the consistency and feasibility of items 1-5.

Team structure
Each of the six team members will be responsible for developing the LCO and LCA versions of one of the six project artifacts. In
addition, the team member responsible for the feasibility rationale will serve as project manager with the following primary
responsibilities:
• Ensure consistency among the team members' artifacts (and document this in the rationale).
• Lead the team's development of plans for achieving the project results and ensure that project performance tracks the plans.

Project approach
Each team will develop the project artifacts concurrently, using the WinWin spiral approach defined in the article "Anchoring the
Software Process." There will be two critical project milestones: the life-cycle objectives (LCO) and life-cycle architecture (LCA).
The LCA package should be sufficiently complete to support development of an initial operational capability (IOC) version of the
planned multimedia access capability by a CS577b student team during the spring 1997 semester. The life-cycle plan should estab-
lish the appropriate size and structure of the development team.

WinWin user negotiations
Each team will work with a representative of a community of potential users of the multimedia capability (art, cinema, engineer-
ing, business, etc.) to determine that community's most significant multimedia access needs and to reconcile these needs with a
feasible implementation architecture and plan. The teams will accomplish this reconciliation by using the USC WinWin groupware
support system for requirements negotiation. This system provides WinWin forms for stakeholders to express their win conditions
for the system, to define issues dealing with conflicts among win conditions, to support options for resolving the issues, and to con-
summate agreements to adopt mutually satisfactory (win-win) options.

There will be three stakeholder roles:
• Developer. The architecture and prototype team members will represent developer concerns, such as the use of familiar

packages, stability of requirements, availability of support tools, and technically challenging approaches.
• Customer. The plan and rationale team members will represent customer concerns, such as the need to develop an IOC in one

semester, limited budgets for support tools, and low-risk technical approaches.
• User. The operational concept and requirements team members will work with their designated user-community representative

to represent user concerns, such as particular multimedia access features, fast response time, friendly user interface, high reliabil-
ity, and flexibility of requirements.

Major milestones
September 16 All teams formed
October 14 WinWin negotiation results
October 21, 23 LCO reviews
October 28 LCO package due
November 4 Feedback on LCO package
December 6 LCA package due, individual critique due

Individual project critique
The project critique is to be done by each individual student It should be about 3-5 pages, and should answer the question, "If we
were to do the project over again, how would we do it better—and how does that relate to the software engineering principles in
the course?"

Figure 1. Guidelines given to the 15 teams on how to conduct their respective multimedia archive projects. Because each project team received the same

guidelines, the teams were able to progress rapidly in specifying and building the applications.

by one of the team members on the Hancock Library the amount of WinWin training needed and the corn-
photo archive project, expressing the need to accom- plexiiies of supporting 15 simultaneous negotiations,
modate future upgrades, such as different image for- some with mixes of on- and off-campus negotiators,
mats. The graph at the top shows how the win con- As a result, we moved the deadline for completing the
dition "swong-WINC-5" is linked to other WinWin WinWin negotiations and the LCO packages back a
forms such as issues, options, and agreements. The week. Fortunately, the LCO packages were good
taxonomy helps categorize these forms into common enough to let us make up that time in the next cycle,
concerns, such as those that affect user controls. Under the revised schedule, all 15 teams delivered

The WinWin negotiation period took longer than their LCO packages on time. The degree of com-
we expected for several reasons. We underestimated pleteness was generally appropriate, but components

July 1998
66

System block diagram
This diagram shows the usual block diagram for extensions providing access to new information archive assets from an existing
information archive (IA) system:

Users

IA system 0 & M support

New-asset access New assets
New-asset
managers

■*-

Existing IA system
Existing
assets

Existing-asset
managers

System boundary IA system infrastructure
IA system infrastructure operations

and maintenance (O & M)

The system boundary focuses on the automated applications portion of the operation and defines such external entities as users,
operators maintainers, assets, and infrastructure (campus networks, etc.) as part of the system environment. The diagram
abstracts out such additional needed capabilities as asset catalogs and direct user access to O&M support and asset managers.
Some stakeholder roles and responsibilities include:

. Asset managers. Furnish and update asset content and catalog descriptors. Ensure access to assets. Provide accessibility status
information. Ensure asset-base recoverability. Support problem analysis, explanation, training, instrumentation, operations

. operators Maintain high level of system performance and availability. Accommodate asset and services growth and change.
Protect stakeholder privacy and intellectual property rights. Support problem analysis, explanation, training, instrumentation,

operations analysis. ,-._,.,_ ■ .. ^ ♦
. Users. Obtain training. Access system. Query and browse assets. Import and operate on assets. Establish, populate, update,

and access asset-related user files. Comply with system policies. Provide feedback on use.
. Application software maintained Perform corrective, adaptive, and perfective (tuning, restructuring) maintenance on software.

Analyze and support prioritization of proposed changes. Plan, design, develop, and verify selected changes. Support problem
analysis, explanation, training, instrumentation, and operations analysis.

. Service providers (network, database, or facilities management services). Roles and responsibilities similar to asset managers.

Figure 2. Domain

model for extending

an information

archive system. The

domain model and

the guidelines in Fig-

ure 1 helped give the

15 teams a unified

perspective of project

development.

often had serious inconsistencies in assumptions, rela-
tionships, and terminology. Most teams had planned
time for members to review each others' artifacts, but
most individual members ended up using that time to
finish their artifacts. Some concepts—such as the
nature of the system boundary, organizational rela-
tionships, and the primary goal of the life-cycle plan-
caused problems for students without industrial expe-
rience. We covered these concepts in more depth in
subsequent course lectures.

Cycle 2: Application life-cycle architectures
In Cycle 2, the teams chose a specific life-cycle archi-

tecture for their applications and elaborated the con-
tent of their LCO artifacts to the level of detail
required for the LCA milestone. This included
responding to the instructors' comments on their LCO
packages. The most frequent problems were incon-
sistencies among the artifacts, failure to specify qual-
ity attributes, a general misunderstanding about the

application's scope (the system boundary in Figure 2a)
and the inability to recognize that the plan was to
focus on the development activities in Cycle 3.

Because of delays and changes in prototyping equip-
ment, the teams developed their prototypes in Cycle 2.
This had the unfortunate effect of destabilizing some
of the Win Win agreements and product requirements.
Once the library clients saw the prototypes, they
wanted to change the requirements (the IKIWISI—I'll
know it when I see it—syndrome). In the following
year, we had the teams do the initial prototyping and
Win Win negotiations concurrently.

On the positive side, the prototypes generally
expanded the librarians' perceptions of what the teams
could produce. The librarian who proposed the Edgar
corporate data problem was amazed with the end
product, which built on the seemingly simple text-for-
matting problem and delivered a one-stop Java site
that synthesized several kinds of business information.
She commented in her evaluation memo:

Computer 67

Team Application
1. Stereoscopic slides
2. Latin American pamphlets
3,5. Edgar corporate data
4. Medieval manuscripts
6.10. Hancock Library photo archive
7. Interactive TV courseware delivery
8.11. Technical reports archives
9. Student film archive
12. Student access to digital maps
13. Los Angeles regional history photos
14. Korean-American museum
15. Urban planning documents

(a)

Medieval manuscripts
I am interested in how to scan medieval manuscripts
so that a researcher could both read the content
and study the scribe's hand, special markings, and so
on. A related issue is how to transmit such images.

Edgar corporate data
Increasingly the government is using the WWW as a
tool for dissemination of information. Two much-
used sites are the Edgar database of corporate infor-
mation (http://www.sec.gov/edgarhp.htm) and the
Bureau of the Census (http://www.census.gov). Part of
the problem is that some information (particularly
that at the Edgar site) is available only as ASCII files.
For textual information, the formatting of statistical
tables is often lost in downloading, e-mailing, or
transferring to statistical programs. While this infor-
mation is useful for the typical library researcher, it is
often too much trouble to put it in a usable format.

(b)

Figure 3. (a) Proposed
multimedia
applications and (b) two
problem statements
prepared by the library
clients. 77ie numbers in
(a) designate the teams
that designed the appli-
cation. Because we had
15 teams and 12 appli-
cations, some library
clients agreed to work
with two teams. From
statements like those in
(b), the teams had to
generate detailed spec-
ifications in 11 weeks.

1. Operational Modes
1.1 Classes of Service (research, education, general public)
1.2 Training
1.3 Graceful Degradation and Recovery

2. Capabilities
2.1 Media Handled

2.1.1 Static (text, images, graphics, etc.)
2.1.2 Dynamic (audio, video, animation, etc.)

2.2 Media Operations
2.2.1 Query, Browse
2.2.2 Access
2.2.3 Text Operations (find, reformat, etc.)
2.2.4 Image Operations (zoom in/out, translate/rotate, etc.)
2.2.5 Audio Operations (volume, balance, forward/reverse, etc.)
2.2.6 Video/Animation Operations (speedup/slowdown, forward/reverse, etc.)
2.2.7 Adaptation (cut, copy, paste, superimpose, etc.)
2.2.8 File Operations (save, recall, print, record, etc.)
2.2.9 User Controls

2.3 Help
2.4 Administration

2.4.1 User Account Management
2.4.2 Use Monitoring and Analysis

3.Interfaces
3.1 Infrastructure (SIRSI, UCS, etc.)
3.2 Media Providers
3.3 Operators

4. Quality Attributes

Figure 4. Part of the
domain taxonomy and
use guidelines given to
each project team. The
taxonomy specializes the
WinWintooltothe
stakeholders' domain,
and serves as a checklist
for completing the nego-
tiation process. It also
helped the teams orga-
nize the WinWin forms
and relate them to the
requirements specifica-
tion.

The taxonomy serves as a requirements checklist and navigation aid:
The taxonomy elements map onto the requirements description table of contents in the course notes.
Every WinWin artifact should point to at least one taxonomy element (modify elements if appropriate).
Every taxonomy element should be considered as a source of potential stakeholder win conditions and
agreements.

" [The team] obviously looked beyond the parameters
of the problem and researched the type of informa-
tion need the set of data meets. My interactions with
the team were minimal, not because of any difficulty,
but because as a group they had a synergy and
grasped the concepts presented to them. The solution
the team came up with was innovative, with the
potential to be applied to other, similar problems."

Other library clients were also very satisfied with the

value added relative to their time invested.
The teams were able to surmount several chal-

lenges characteristic of real-world projects. For exam-
ple, they could not use the Integrated Library System's
test server for their prototypes because it was needed
in transitioning from the old system to the new
Integrated Library System. There were also delays in
arranging for a suitable alternative Web server. At
times librarians could not provide input on critical
decisions, which led to extra rework. Inevitable per-

68
July 1998

Figure 5. Sample

screens from the

WinWin groupware

tool. The artifact

rationale window

(upper left) lets users

immediately see

links among the pro-

ject stakeholders' win

conditions, issues,

options, and negoti-

ated agreements. The

screen in the lower

right expands one of

these forms, a stake-

holder's win

condition. The current

negotiation outline is

the taxonomy window

(middle right) and the

latest changes are
listed in the message

window (bottom left).

Bwong-WHC-3
currant web site

swong-HINC-4
maintained by P3C

1
-f 1 si

swong-IS8U-4
Customer will no"

 itr
Related Artifact»! Refresh, artifacts] JEdit Enable

swong-HIHC-5
_jn^adinqLsyste

swong-HIHC-6
RotrteytowO^yL

swomj-ISSU-5
[SQL in.. user . inte *

swong-ISSU-6
[Database cannot

laS
ID

1 Operational Modes
1.1 Classes of Service
1.2 Online Training, Documentation
1.3 Backup Bystesi

2 Capabilities
9 1 rHwwiiH» awrt MmAla Par

J

swong-HIHC-7 I Ifewong-MHC-S

CREATION DaTE
Double click to see artifacl JlO/17/96 13:24

REVISION DSTE Unglich-iGRE-15 has been o
tinglich-aCHE-lS has bees m ,
tinglich-aoRE-15 tinglieh v jiWZJ/96 19:09
nsrinlva-WaOÜ-3 kolta votad gßxJE
gsriniva-aGRE-4 has been a» p "
asrinlva-»GRE-4 has been w> l«™«0»«

&cjrading system

Choicest Body/Rationale

Body

gsrlniva-aGRE-4 has been er- STATDS
gsriniva-aGRE-4 has been K»
gsriniva-aGRE-4 has been mo act iw

gsriniva-aGRE-4 gsriniva vo PRIORITY
gsriniva-aGRE-4 a vote is I ^ fll(jh

8T»TE

Syste» upgrades should be allowed, because
] ihrary «ay haw» hnages in other format in
UM future, system should be reusable.
Library doesn't want to spend money later

Rationale

»ppiy Delete Cancell

J

sonnel conflicts arose within the 15 teams. However,
we were able to minimize conflicts within a team, in
large part because the teams were self-selected.

The WinWin spiral model's mix of flexibility and
discipline let the project teams adapt to these chal-
lenges while staying on schedule. In particular, the use
of risk management and a continuously evolving top
n risk list3 helped the teams focus their effort on the
most critical success factors for their projects.

Another difficulty was maintaining consistency across
multiple product views. The guidelines we gave the stu-
dents were from the course textbook,4 evolving com-
mercial standards like J-STD-016-1995, and object-ori-
ented methods, particularly the Booch method and
Object Modeling Technology. The views included sys-
tem block diagrams, requirements templates, use sce-
narios, physical architecture diagrams, class hierarchies,
object interaction diagrams, dataflow diagrams, state-
transition diagrams, data descriptions, and requirements
traceability relations. Each had its value, but the over-
all set was both an overkill and weakly supported by
integrated tools. In the following year, we used a more
concise and integrated set of views based on the Ratio-
nal Unified Modeling Language and tool set.5

Cycle 3: Initial operational capability
A major challenge for Cycle 3 was that many stu-

dents involved in Cycles 1 and 2 during the fall 1996
Software Engineering I course, which was a core course

for an MS in computer science, did not take Software
Engineering II in spring 1997 because it was not a core
course. Thus, we were able to continue only six pro-
jects during Cycle 3, involving 28 students and eight
applications. The projects that continued were driven
by the project experience of the students who «en-
rolled, rather than by the priorities of the librarians.

Only one team retained most of its LCO/LCA par-
ticipants for Cycle 3. The other teams had to work with
a mix of participants with varying project backgrounds.
This was particularly challenging when we had to inte-
grate teams that had produced different LCA artifacts
for the same application. In two cases, the instructors
had to persuade students to join different teams because
they continued to fight about whose architecture was
better. Other conflicts developed within teams in which
some members had extensive LCA experience on the
application and others had none. In one case, experi-
enced members exploited those less experienced; in
another case, the reverse happened.

Other challenges included changes in course in-
structor, process model (spiral to risk-driven water-
fall), and documentation approach (laissez-faire to
put-everything-on-the-Web). There were also infra-
structure surprises: the Integrated Library System's
server and search engine, which we expected to be
available for Cycle 3, were not.

Risk management. Despite these obstacles, each pro-
ject successfully delivered its IOC package—code, life-

Computer 69

cycle documentation, and demonstrations—on time.
We believe a major reason was our strong emphasis
on risk management, which enabled teams to depart
from a pure waterfall approach to resolve whatever
critical risk items surfaced. We had each team form a
top-n risk list, which helped them characterize each
cycle and gave everyone a flavor of what to expect.

The risk list helped the team prioritize risks by
assessing risk exposure (probability of loss times mag-
nitude of loss). Each week, the team reassessed the risk
to see if its priority had changed or to determine how
much progress had been made in resolving it. A key
strategy was design to schedule, in which a team iden-
tified a feasible core capability and optional features
to be implemented as the schedule permitted.

Some risks from a typical team risk list included

• Tight schedule. Risk aversion options included
studying the requirements carefully so as not to
overcommit, descoping good-to-have features
if possible, and concentrating on core capabil-
ities. Risk monitoring activities included closely
monitoring all activities to ensure that sched-
ules are met.

• Project size. Risk aversion options included
descoping good-to-have features and capabilities
if requirements were too excessive and identify-
ing the core capabilities to be built.

• Finding a search engine. Risk aversion options
included conducting a software evaluation of
search engines, actively sourcing free search
engines for evaluation and selection, and deter-
mining the best one for the project. Risk moni-
toring activities included submitting evaluation
reports and conducting demonstrations so that
an informed decision can be made.

• Required technical expertise lacking. Risk aver-
sion options included identifying the critical and
most difficult technical areas of the project and
having team members look into them as soon as
possible. Monitoring activities included closely
following the progress of critical problems and
seeking help if necessary.

Client involvement and reaction. The librarians'
involvement with the student teams during the second
semester was, for the most part, qualitatively and
quantitatively different than during the first semester.
Major system requirements had already been negoti-
ated, but there were a few new requirements that
added subtle differences to the original concepts.
Nonetheless, the time required for the librarians' par-
ticipation was not as extensive as it had been.

Except for one project, the librarians were
delighted with the final presentations. Five library
clients wanted either to adopt the application as is or
extend it for possible adoption. The sixth applica-

tion—the only one not well received—was an
attempt to integrate the three photographic-
image projects (stereoscopic slides, Hancock
Library photo archive, Los Angeles regional
history photos) into a single application. The
team had only a short time to patch together
pieces of three architectures and user interfaces.
Some resulting features were good (a colored-
glasses stereo capability with good resolution,
for example), but none of the clients were
enthusiastic about implementing the results.

The librarians expressed that working with
Theory W and the WinWin philosophy made it
easy for them to "think big" about their pro-
jects. The negotiation process balanced that
vision by allowing teams and librarians to agree on a
feasible set of deliverables for the final products dur-
ing the academic session. And, although the time com-
mitment was not great, participation in this project let
the librarians focus part of their time on multimedia
applications and software engineering. One of the
greatest advantages for librarians was that they
became more familiar with digital library issues and
the software engineering techniques involved in their
implementation.

Nature of products. As one librarian noted in her
evaluation memo

The interaction between the student teams and the
librarians produced obvious differences in products
designed for different users. For example, the techni-
cal reports interface mirrored the technical nature of
the type of material included and expected future
users of the system, while the student film archive
interface reflected the needs and interests of a very
different clientele.

The librarians said
that working with
Theory Wand the

WinWin philosophy
made it easy
for them to

"think big" about
their projects.

Figure 6, the user interface for the medieval manu-
scripts application, typifies the look and feel of the
products. The Netscape-based application uses vari-
ous windows to display the manuscript's attributes,
to query for desired manuscripts using a search engine,
and to enter and catalog new manuscripts.

Adoption of applications. The students spent summer
1997 refining two of the five applications. However,
only one of these—the student film archive—was actu-
ally implemented. As it turned out, this application was
the only one with sufficient budget, people, and facil-
ities to sustain the product after it was implemented. In
the following year, we agreed to let the USC library
choose which applications would be developed to IOC
in spring 1998, and we agreed that we would imple-
ment only the applications the client could sustain.

LESSONS LEARNED
When we started the course, we were not sure about

any of our choices on such issues as team size, docu-

70
July 1998

Figure 6. The user

interface for the

medieval manuscripts

application in Figure

3a. The application

satisfies the client's

need to scan medieval

manuscripts in a way

that permits

researchers to simul-

taneously study spe-

cial markings and

read historical data

about the image.

ihl.mil m.i)ll.l..l.lfl!IBllHM JIM«!

B«* Fox«) flffcad Home S««ch Gukfc Ptint S«u»y £"r OiQilal Marwiscitpt Archive Display leal Image Page

Irfemet N«««idCool UOIUD ' .

Digital Manuscript
Home Pag

cm
.,£*»£* SS""» 6»_ fi°"!'?**?'.Ji!*L

3 -sjJTSwkiwkt Ä Loe«^|i'ö'>™5^^?!*5§^3--

m

Internat NMY aridCocf LookÜD

m

Southern
m on-line
of your in

T.
CoDecioi

«^■■■■■Hl ■!.■■ JNJILI1.II JJUJ' I.I.IIU.IU1I.,. ^IJ.1.11
Pi t* ¥•"_ S» fr""™?*^1* M*_ ^ :

"5- Bask, f««!., Mw Ho« -$«** Bud« ftirr Security

,i|"Boofc»ak« jt l«cal^)tiU»:/''5gmelii!CBju:8IVct577_3&'cma/scipU/*lä

Intone) NewandCool U*t)p .- ■■ ■ .' ' ■ ■

Antiphonarium

Aiajphonarium

fcääoit Church

Date

Typ«

il 5th Century

iüturgical & Ritual

Style iNot Avalabie

B<r

~ ;:Qn veiiunx red stares with black Gregot
(Capitals and rubrication.

Physical Characteristics iJDimension of leaves is 57cmx41cra
^ p™^™ ~»™... fbocuirWic'Öone ^ :

r T* y?V ****** w^

r r*-"- ■-»—..-^-i-.::--v-
K I ' ~ ---*—•*
I —■——r^--.—-T-r«-._

^*.-^A. •+»

L^„^'d»„-tagL-^fe---
*;**?■*•' «l-|

merit guidelines, tools, milestones, and course mater-
ial. However, the library clients and management
found the projects sufficiently valuable that they com-
mitted both to a continued series of similar projects
and to supporting the product's transition and sus-
taining it after implementation. We, in turn, obtained
extensive data and feedback on how to improve the
course and project approach both for future courses
and for industrial practice.

Number of cycles. For projects of this size, using a
single cycle each for the LCO and LCA milestones was
about right. Smaller projects can get to the LCA mile-
stone in a single cycle; larger projects may take several
cycles to achieve their LCO and LCA goals. Given the
results of our LCO reviews, using a single cycle would
have produced less satisfactory results in about half
the projects. In several projects, the detail was not bal-
anced in either the archiving or query/browsing parts
of the LCO packages; the LCA cycle let them correct
that imbalance. Using three cycles to produce the LCO
and LCA milestones would have left insufficient time
to both produce and coordinate three sets of artifacts.

Degree of flexibility. The teams were able to adapt to
real-world conditions, such as pleasant and unpleas-
ant surprises with COTS packages, the unavailability
of expected infrastructure packages such as the server,
lack of expertise on library information systems; and
personnel complications. More formal or contract-
oriented approaches would not have been able to
accommodate these changes in the short time (11
weeks) available.

Communication and trust. We found that, at least for
this type of application, the most important outcome
of product definition is not a rigorous specification,
but a team of stakeholders with enough trust and
shared vision to adapt effectively to unexpected

changes. In the beginning, the library clients were con-
siderably uncertain about going forward with the pro-
jects. By the LCA milestone, however, the uncertainty
and doubt about working with the student teams had
been replaced with enthusiasm and considerable trust,
although many were still uncertain about the appli-
cations' technical parameters. This growth continued
through the development period and led to a mutual
commitment to pursue additional projects in the fol-
lowing year. The ability of the Win Win approach to
foster trust was consistent with earlier experiences.6

Smooth transitions. In previous uses of the Win Win
spiral model, the transition from WinWin stakeholder
agreements to requirements specifications had been
rough. The WinWin groupware tool helped smooth
this transition. Mapping the WinWin domain taxon-
omy onto the table of contents of the requirements
specification and requiring the use of the domain tax-
onomy as a checklist for developing WinWin agree-
ments effectively focused stakeholder negotiations.
We are exploring how to automate parts of the
requirements transition to make it even smoother.

Use of developer time. Although our approach
avoided some inefficiencies, we still experienced sig-
nificant bottlenecks from documentation overkill and
attempts to coordinate multiple views. The second-
year projects (described later) had less redundant and
voluminous documentation, used the Rational Rose
integrated object-oriented tool set (which decreased
the amount of documentation), and thus yielded fewer
inconsistencies. We also had five instead of six mem-
bers per team, which reduced inconsistencies and over-
head because fewer people had to talk to one another.

Finally, we added training and opportunities for feed-
back. The WinWin groupware tool helped with team
building and feature prioritization, but people needed

Computer 71

more preliminary training and experience in its use. Stu-
dents also cited the need for more training on key Web
skills and more feedback on intermediate products. For
the second-year projects, we added homework exam-
ples both on Win Win principles and preliminary use.
We set up special sessions for training on Win Win and
Web prototyping. We also set up special LCO and LCA
architectural review board sessions for all projects,
rather than just three in-class sessions.

Client acceptance. We learned two lessons here. The
first is don't finish negotiations before prototyping. If
you do, the agreements destabilize once the clients see
the prototypes. In the second-year projects, we had the
teams negotiate and prototype concurrently. The sec-
ond lesson is make sure the clients are empowered to
support the product not just with knowledge and enthu-
siasm, but also with resources for the product's opera-
tion and maintenance. In the second-year projects, this
became our top criterion for selecting applications.

RESULTS OF SECOND-YEAR PROJECTS
In the second-year projects, which we just com-

pleted, 16 teams developed similar library-related pro-
jects. The process of the second year followed the
process of the first year for the most part (from the
LCO to LCA to IOC milestones). The changes we
made reflected customer and student wishes, their sug-
gestions, and other lessons learned during the first year.

From the 16 projects in the first semester, the clients
selected five applications for development according
to the library's commitment to sustain them after the
second semester (IOC). Four are now transitioning to
library operations, and the fifth has good prospects
for transition after refinement this summer. We
adapted several parts of the first-year process in the
second-year projects.

Documentation. We restructured the document
guidelines to reduce duplication, and to adapt them
for use with Rational Rose and the Unified Modeling
Language (we had used OO development and design
methods the first year but we did not provide partic-
ular tool support for it). The average length of the
LCO package decreased from 160 pages in the first-
year projects to 103 in the second year.

Layered architectural description. Using UML and
Integrated Systems Development Methodology
(ISDM)7 as our object-oriented methods, we were able
to more strongly refine our system software architec-
tural description into three model layers: domain
description, system analysis, and system design. Each
layer was analogous to the others, but had a different
intended audience. The layering improved internal
consistency because it maintained distinct relations
(documented via simple reference tracing) between the
views within and outside each layer. Many teams still
found the concepts of consistency and tracing difficult
to grasp, but they were more aware than in the first-

year projects that these issues were important.
Through the domain description, the teams
were able to rapidly understand the parts of
their client's domain that were relevant to the
target system. With this intermediate represen-
tation, the teams were able to work with the
client to communicate vital responsibilities,
qualities, and components of the target system
without losing the client in too much technical
design detail. During system analysis, one client
commented "I can really see that this [the sys-
tem] has all the things I expected and is what I
wanted." In all, layering helped manage the
architectural complexity by letting teams cap-
ture, validate, and refine information in a prac-
tical and useful way as well as communicate
them effectively.

Client acceptance. The extra Win Win and
prototyping preparation and training, early pro-
totyping, and adoption of LCO and LCA review
boards fit naturally into the WinWin spiral
approach and increased the productiveness and qual-
ity of the second-year projects over the first-year efforts.
There were fewer requirements breakdowns in the later
stages of the life cycle, which increased client partici-
pation and acceptance to the point of" client activism."
Indeed, when a team was given some criticism by the
review board, often the client would actively defend
the team and their efforts. The resulting discussions
often led to identifying additional important objectives,
constraints, and alternatives, making the spiral model
iterations more effective, and producing more satis-
factory products for the clients. The overall satisfac-
tion rating from client critiques, on a scale of 1 to 5,
went from 4.3 in the first year to 4.7 in the second.

We are currently addressing improvements
for the third year of projects. Of the 80 stu-
dents in the second-year projects, 26 indi-

cated the need for more UML and Rose education (18
indicated that UML and Rose were very helpful), 13
indicated the need for better document guidelines,
and nine indicated the need for a Cocomo II model
calibrated to the student projects.

We believe our results so far indicate that the WinWin
spiral model will transition well to industry use. The
digital library projects were in a sense an industry test
because about 20 percent of the teams were purely
industry employees, and additional teams had mixes of
industry employees and full-time students. In fact, since
the first-year projects, industrial organizations have
adopted many elements of the WinWin spiral model.
Rational, for example, has adopted the LCO, LCA, and
IOC definitions as the major milestones in their
Objectory or Rational Unified Management Process.8-9

MCC is developing an industrial-grade version of the
WinWin tool as part of its Software and System

We found that the
most important

outcome of product
definition is not

a rigorous
specification,
but a team of

stakeholders with
enough trust and
shared vision to

adapt effectively
to unexpected

changes.

72
July 1998

We believe our
results so far

indicate that the
WinWin spiral model
will transition well

to industry use.

Acknowledgments
This research is sponsored by DARPA through Rome Lab-
oratory under contract F30602-94-C-0195 and by the affil-
iates of the USC Center for Software Engineering: Allied Sig-
nal, Bellcore, Boeing, Electronic Data Systems, Federal
Aviation Administration, GDE Systems, Hughes Aircraft,
Interactive Development Environments, Institute for Defense
Analysis, Jet Propulsion Laboratory, Litton Data Systems,
Lockheed Martin, Loral Federal Systems, MCC, Motorola,
Network Programs, Northrop Grumman, Rational Soft-
ware, Raytheon Science Applications International, Soft-
ware Engineering Institute, Software Productivity Consor-
tium, Sun Microsystems, TI, TRW, USAF Rome Laboratory,
US Army Research Laboratory, and Xerox. We also thank
Denise Bedford, Anne Curran, Simei Du, Ellis Horowitz,
Ming June Lee, Phil Reese, Bill Scheding, and Nirat Shah
for support in key areas.

References
1. B. Boehm and R. Ross, "Theory W Software Project

Management: Principles and Examples," IEEE Trans.

Software Eng., July 1989, pp. 902-916.
2. B. Boehm et al., "Cost Models for Future Software

Processes: COCOMO 2.0," Annals Software Eng., Vol.
1,1995, pp. 57-94.

3. B. Boehm, "Software Risk Management: Principles and
Practices," IEEE Software, Jan. 1991, pp. 32-41.

4. I. Sommerville, Software Engineering, 5th ed., Addison-
Wesley, Reading, Mass., 1996.

5. G. Booch, I. Jacobson, and J. Rumbaugh, "The Unified
Modeling Language for Object-Oriented Development,"
Ver. 1.0, Rational Software Corp., Santa Clara, Calif., 1997.

6. B. Boehm and P. Bose, "A Collaborative Spiral Software
Process Model Based on Theory W" Proc. Infl Conf.
Software Process, IEEE CS Press, Los Alamitos, Calif.,

1994, pp. 59-68.
7. D. Port, "Integrated Systems Development Methodol-

ogy," Telos Press, 1998 (to appear).
8. "Rational Objectory Process," Ver. 4.1, Rational Soft-

ware Corp., Santa Clara, Calif., 1997.
9. W.E.Royce, Unified Software Management, Addison-

Wesley, Reading, Mass., 1998 (to be published).

Barry Boehm is the TRW professor of software engi-
neering and director of the Center for Software Engi-
neering at the University of Southern California. His
current research involves the Win Win groupware sys-
tem for software requirements negotiation, architec-
ture-based models of software quality attributes, and
the Cocomo U cost-estimation model. Boehm received
a PhD in mathematics from the University of Cali-
fornia at Los Angeles. He is an AIAA fellow, an ACM
fellow, an IEEE fellow, and a member of the National
Academy of Engineering.

Alexander Egyed is a PhD student at USC's Center
for Software Engineering. His research interests are
in software architecture and requirements negotiation.
He received an MS in computer science from USCand
is a student member of the IEEE.

Julie Kwan is executive and research programs librar-
ian for the Marshall School of Business, Information
Services Division at USC. Her interests include infor-
mation needs and information-seeking behaviors;
business, scientific, and technical information trans-
fer; and customer-analysis methodologies. She
received an MS in library science from the University
of Illinois and is a member of the American Library
Association, the Medical Library Association, and the
Special Libraries Association.

Dan Port is a research assistant professor at USC and
a research associate with the Center for Software Engi-
neering. His primary research interests are in compo-
nent and object-oriented architectures, systems inte-
gration, and partially ordered event structures. He
received a PhD in applied mathematics at the Massa-
chusetts Institute of Technology.

Ray Madachy is the manager of the Software Engi-
neering Process Group at Litton Guidance and Con-
trol Systems and an adjunct assistant professor of
computer science at USC. He received a PhD in indus-
trial and systems engineering from USC. He is a mem-
ber of the IEEE, ACM, and the International Coun-
cil in Systems Engineering.

Contact the authors through Egyed at the Center for
Software Engineering, USC, Los Angeles, CA 90089-
0781; aegyed@sunset.usc.edu.

73

List of Published Papers and Technical Reports

USC-CSE-95-506 (technical report) published in IEEE Software, March 1996
Aids for Identifying Conflicts Among Quality Requirements
Barry Boehm and Hoh In

One of the biggest risks in software requirements engineering is the risk of over emphasizing one
quality attribute requirement (e.g., performance) at the expense of others at least as important
(e.g., evolvability and portability). This paper describes an exploratory knowledge-based tool for
identifying potential quality attribute risks and conflicts early in the software/system life cycle.

The Quality Attribute Risk and Conflict Consultant (QARCC) examines the quality attribute
tradeoffs involved in software architecture and process strategies (e.g., one can improve
portability via a layered architecture, but usually at some cost in performance). It operates in the
context of the USC-CSE WinWin system, a groupware support system for determining software
and system requirements as negotiated win conditions.

USC-CSE-95-507 (technical report) published in IEEE Software, July 1996
Anchoring the Software Process
Barry Boehm

The current proliferation of software process models provides flexibility for organizations to
deal with the unavoidably wide variety of software project situations, cultures, and environments.
But it weakens their defenses against some common sources of project failure, and leaves them
with no common anchor points around which to plan and control. This article identifies three
milestones - Life Cycle Objectives, Life Cycle Architecture, and Initial Operational Capability -
which can serve as these common anchor points. It also discusses why the presence or absence of
these three milestones or their equivalents is a critical success factor, particularly for large
software projects, but for other software projects as well.

USC-CSE-96-500 (technical report) published in COMPSAC96
Software Cost Option Strategy Tool (S-COST)
Barry Boehm and Hoh In

The resolution process of cost conflicts among requirements is complex because of highly
collaborative and coordinated processes, complex dependencies, and exponentially increasing
option space. This paper describes an exploratory knowledge-based tool (called "S-COST") for
assisting stakeholders to surface huge option space and diagnose risks of each option.
The S-COST operates in the context of the USC-CSE WinWin system (a groupware support
system for determining software and system requirements as negotiated win conditions), QARCC
(a support system for identifying conflicts in quality requirements), and COCOMO
(Constructive COst estimation MOdel).

74

USC-CSE-96-501 (technical report)
Foundations of the WinWin Requirements Negotiation System
MingJune Lee

Requirements Engineering (RE) constitutes an important part of Software Engineering. The
USC WinWin requirements negotiation system addresses critical issues in requirements
engineering including (1) multi-stakeholder considerations, (2) change management, and (3)
groupware support. The WinWin approach to date has primarily involved exploratory
prototyping. The system is now converging on a relatively stable set of artifacts and
relationships. This makes it feasible and important to formalize these artifacts and relationships
to provide a solid scientific framework for the WinWin system. This is the focused problem
addressed by the research presented in this paper.

USC-CSE-96-502 (technical report)
The WinWin Requirements Negotiation System: A Model-Driven Approach
Mingjune Lee and Barry Boehm

Requirements Engineering constitutes an important part of Software Engineering. The USC
WinWin requirements negotiation system addresses critical issues in requirements engineering
including (1) multi-stakeholder considerations, (2) change management, and (3) groupware
support. This paper presents our current research efforts on constructing and reconciling several
formal and semi-formal models of the system and its operations, includeing inter-artifact
relationships, artifact life cycles, and equilibrium model. It concentrates on determining the
relationships among the various models or views of the WinWin requirements engineering
process.

USC-CSE-96-504 (technical report) published in INCOSE'97
Analysis of Software Requirements Negotiation Behavior Patterns
Alexander Egyed and Barry Boehm

Roughly 35 three-person teams played the roles of user, customer, and developer in ne-
gotiating the requirements of a library information system. Each team was provided with a
suggested set of stakeholder goals and implementation options, but were encouraged to exercise
creativity in expanding the stakeholder goals and in creating options for negotiating an eventually
satisfactory set of requirements.

The teams consisted of students in a first-year graduate course in software engineering at
USC. They were provided with training in the Theory W (win-win) approach to requirements
determination and the associated USC WinWin groupware support system. They were required to
complete the assignment in two weeks.

Data was collected on the negotiation process and results, with 23 projects providing
sufficiently complete and comparable data for analysis. A number of hypotheses were formulated
about the results, e.g. that the uniform set of initial conditions would lead to uniform results. This

75

paper summarizes the data analysis, which shows that expectations of uniform group behavior
were generally not realized.

USC-CSE-96-505 (technical report)
Models for Composing Heterogeneous Software Architectures
Ahmed Abd-Allah and Barry Boehm

A persistent problem in software engineering is the problem of software composition. The
emergence of software architectures and architectural styles has focused attention on a new set of
abstractions with which we can create and compose software systems. We examine the problem
of providing a model for the composition of different architectural styles within software
systems, i.e. the problem of composing heterogeneous architectures. We describe a model of pure
styles that is based on a uniform representation. We provide a disciplined approach for analyzing
some key aspects of architectural composition, and show the conditions under which systems will
fail to be composed.

USC-CSE-97-501 (technical report)
Extending Reliability Block Diagrams to Software Architectures
Ahmed Abd-Allah

Reliability block diagrams focus on components and connectors as do software architectures.
However, some architectural styles possess characteristics which make traditional reliability
block diagrams unusable as an analysis technique. In order to use the diagrams, they must be
extended to reflect common architectural choices such as concurrency, distribution, dynamism,
and implicit connectors.

USC-CSE-97-502 (technical report)
Detecting Architectural Mismatches During Systems Composition—An Extension to the
AAA Model
Cristina Gacek

The USC Architect's Automated Assistant (AAA) tool and method provides a capability for
early detection of architectural style mismatches among four architectural styles: Main-
Subroutine, Pipe-and-Filter, Event-Based, and Distributed Processes.

The work proposed here is to formalize some additional architectural styles—namely
Blackboard, Closed-Loop Feedback Control, Logic Programming, Real-Time, Rule- Based, and
Transactional Database styles—and to extend the mismatch analysis capability to cover
interactions of the original four styles with the new ones. The application of the mismatch
analysis capability to a relevant problem will also be included in the future.

76

IEEE Software, May/June 1997, pp. 17-19
Software Risk Management
Barry Boehm and Tom DeMarco

In mature disciplines, risk management has been de rigeur for centuries. When Michelangelo
set out to raise the dome of St. Peters in 1547, he was well aware of the potential collapse zones
under staging, the possibility of materials failure, and the human capacity for error. For each of
these major risks he prepared a mitigation plan: a fallback, a safely factor, or an alternative.

Today, we routinely practice risk management in our stewardship of the environment, in
planning financial strategy, in construction engineering, and in medicine. But how do we apply it
to the ultimate risky business, software development?

USC-CSE-97-503 (technical report)
WinWin Reference Manual—A System for Collaboration and Negotiation
Ellis Horowitz

WinWin is a computer program that aids in the capture, negotiation, and coordination of
requirements for a large system. It assumes that a group of people, called stakeholders, have
signed on with the express purpose of discussing and refining the requirements of their proposed
system. The system can be of any type. This is the 1999 update of the original WinWin
Reference Manual.

USC-CSE-97-504 (technical report) published at ESEC/ FSE'97
Developing Multimedia Applications with the WinWin Spiral Model
Barry Boehm, Alex Egyed, USC-Center for Software Engineering
Julie Kwan, USC University Libraries
Ray Madachy, USC-CSE and Litton Data Systems

Fifteen teams recently used the WinWin Spiral Model to perform the system engineering and
architecting of a set of multimedia applications for the USC Library Information Systems. Six of
the applications were then developed into an Initial Operational Capability. The teams consisted
of USC graduate students in computer science. The applications involved extensions of USC's
UNIX-based, text-oriented, client-server Library Information System to provide access to various
multimedia archives (films, videos, photos, maps, manuscripts, etc.).

Each of the teams produced results which were on schedule and (with one exception)
satisfactory to their various Library clients. This paper summarizes the WinWin Spiral Model
approach taken by the teams, the experiences of the teams in dealing with project challenges, and
the major lessons learned in applying the Model. Overall, the WinWin Spiral Model provided
sufficient flexibility and discipline to produce successful results, but several improvements were
identified to increase its cost-effectiveness and range of applicability.

77

USC-CSE-97-506 (technical report)
Detecting Architectural Mismatches During Systems Composition
Cristina Gacek

The USC Architect's Automated Assistant (AAA) tool and method provides a capability for
early detection of architectural style mismatches among four architectural styles: Main-
Subroutine, Pipe-and-Filter, Event-Based, and Distributed Processes. For these four styles,
mismatch detection is based on a set of seven conceptual features distinguishing each style, and a
set of eight types of bridging connectors characterizing compositions among the four styles.

The work proposed here is to formalize some additional architectural styles—namely
Blackboard, Closed-Loop Feedback Control, Logic Programming, Real-Time, Rule- Based, and
Transactional Database styles—and to extend the mismatch analysis capability to cover
interactions of the original four styles with the new ones. The analysis results will test various
hypotheses, such as the sufficiency of the original seven conceptual features and eight bridging
connector types to characterize the broader set of styles and their composition.

We will also try to provide a more formal basis for detecting and classifying architectural
conceptual features, thus providing a formal framework for extending the models. The
application of the broadened mismatch analysis capability to a relevant problem will also be
included in the future.

USC-CSE-97-508 (technical report) published at ICSP'98
WinWin Requirements Negotiation Processes: A Multi-Project Analysis
Barry Boehm and Alexander Egyed

Fifteen 6-member-teams were involved in negotiating requirements for multimedia software
systems for the Library of the University of Southern California. The requirements negotiation
used the Stakeholder WinWin success model and the USC WinWin negotiation model (Win
Condition-Issue-Option-Agreement) and groupware system. The negotiated results were
integrated into a Life Cycle Objectives (LCO) package for the project, including descriptions of
the system's requirements, operational concept, architecture, life cycle plan, and feasibility
rationale. These were subsequently elaborated into a Life Cycle Architecture package including a
prototype; six of these were then implemented as products.

The software engineers involved were computer science students (mostly first year graduate
level) at USC and the customers were librarians of the USC Library. Their set of problems were
very diverse, having to do with Medieval Manuscripts, Student Films, Corporate Business Data,
Stereoscopic Slides, and more, each project with its unique constraints and desired capabilities.

A number of hypotheses were tested regarding the effectiveness of the WinWin approach in
supporting the development of effective LCO packages, in satisfying Library clients, and in
stimulating cooperation among stakeholders. Other hypotheses involved identification of
WinWin improvements, relationships among negotiation strategies on LCO package and project
outcomes.

78

Some of the more illuminating results were:

• Most of the stakeholder Win Conditions were non-controversial (were not involved in
Issues). Also, most Issues were decoupled from other Issues and were easy to resolve.
This implies that requirements negotiation support systems should focus at least as much
on handling simple relationships well as on handling complex relationships well.

• Negotiation activity varied by stakeholder role. Users and customers were more active in
the early stages; developers and customers in the late stages.

• LCO package strength and consistency (measured by LCO grading criteria) could be
predicted from three attributes (team experience, non-sequential negotiation, and
efficiency in producing negotiation artifacts).

• The strongest positive effects of using the WinWin approach were increasing coop-
erativeness, focusing participants on key issues, reducing friction, and facilitating
distributed collaboration.

• The major improvements for the WinWin approach (now being implemented) were
increasing WinWin training, reducing usage overhead, and concurrent negotiation and
prototyping.

USC-CSE-97-509 (technical report) published at ISPW 10
Process Support of Software Product Lines (ISPW 10)
Barry Boehm

The focus of ISPW 10 was on "Process Support of Software Product Lines." Much of the
technology currently available to support the software process has focused on the process of
developing and evolving a single software product. Increasingly, organizations are finding
advantages in product-line software approaches, involving investments in domain engineering,
product line architectures, and rapid applications composition with extensive use of commercial-
off-the-shelf (COTS) and other reusable software assets. Recent books on software reuse and
product line management provide extensive evidence of the advantages: factors of 1.5 to 4
improvements in development time, factors of 1.5 to 6 in productivity, and factors of 2-10 in
defect rates. This paper summarizes the original issues and major conclusions of the Workshop.

USC-CSE-98-500 (technical report) published at INCOSE'98
A Comparison Study in Software Requirements Negotiation
Alexander Egyed and Barry Boehm

In a period of two years, two rather independent experiments were conducted at the
University of Southern California. In 1995, 23 three-person teams negotiated the requirements
for a hypothetical library system. Then in 1996, 14 six-person teams negotiated the requirements
for real multimedia related library systems.

79

A number of hypotheses were created to test how real software projects differ from
hypothetical ones. Other hypotheses address differences in uniformity and repeatability.

The results indicate that repeatability in 1996 was even harder to achieve then in 1995
(Egyed-Boehm, 1996). Nevertheless, this paper presents some surprising commonalties between
both years that indicate some areas of uniformity.

In both years, the same overall development process (spiral model) was followed, the same
negotiation tools (WinWin System) were used, and the same people were doing the analysis of
the findings. Thus, the comparison is less blurred by fundamental differences like terminology,
process, etc.

USC-CSE-98-501 (technical report) published at ICSE'98
Software Requirements Negotiation: Some Lessons Learned
Barry Boehm and Alexander Egyed

Negotiating requirements is one of the first steps in any software system life cycle, but its
results have probably the most significant impact on the system's value. However, the processes
of requirements negotiation are not well understood. We have had the opportunity to capture and
analyze requirements negotiation behavior for groups of projects developing library multimedia
archive systems, using an instrumented version of the USC WinWin groupware system for
requirements negotiation. Some of the more illuminating results were:

• Most stakeholder Win Conditions were non-controversial (were not involved in Issues)

• Negotiation activity varied by stakeholder role.

• LCO package quality (measured by grading criteria) could be predicted by negotiation
attributes.

WinWin increased cooperativeness, reduced friction, and helped focus on key issues.

USC-CSE-98-505 (technical report) published the OMG-DARPA-MCC Workshop on
Compositional Software Architectures
Composing Components: How Does One Detect Potential Architectural
Mismatches?
Cristina Gacek and Barry Boehm

Nowadays, in order to be competitive, a developer's usage of Commercial off the Shelf
(COTS), or Government off the Shelf (GOTS), packages has become a sine qua non, at times
being an explicit requirement from the customer. The idea of simply plugging together various
COTS packages and/or other existing parts results from the megaprogramming principles. What
people tend to trivialize is the side effects resulting from the plugging or composition of these
subsystems. Some COTS vendors tend to preach that because their tool follows a specific

80

Standard, say CORBA, all composition problems disappear. Well, it actually is not that simple.
Side effects resulting from the composition of subsystems are not just the result of different
assumptions in communication methods by various subsystems, but the result from differences in
various sorts of assumptions, such as the number of threads that are to execute concurrently, or
even on the load imposed on certain resources. This problem is referred to as architectural
mismatches. Some but not all of these architectural mismatches can be detected via domain
architecture characteristics, such as mismatches in additional domain interface types (units,
coordinate systems, frequencies), going beyond the general interface types in standards such as
CORBA.

Other researchers have successfully approached reuse at the architectural level by limiting
their assets not by domain, but rather by dealing with a specific architectural style. I.e., they
support reuse based on limitations on the architectural characteristics of the various parts and
resulting systems. This approach can be successful because it simply avoids the occurrence of
architectural mismatches.

Our work addresses the importance of underlying architectural features in determining
potential architectural mismatches while composing arbitrary components. We have devised a set
of those features, which we call conceptual features, and are building a model that uses them for
detecting potential architectural mismatches. This underlying model has been built using Z.

USC-CSE-98-507 (technical report) published IFIP'98
Telecooperation Experience with the WinWin System
Alexander Egyed and Barry Boehm

WinWin is a telecooperation system supporting the definition of software-based applications
as negotiated stakeholder win conditions. Our experience in using WinWin in defining over 30
digital library applications, including several telecooperation systems, is that it is important to
supplement negotiation support systems such as WinWin with such capabilities as prototyping,
tradeoff analysis tools, email, and videoconferencing. We also found that WinWin's social
orientation around considering other stakeholders' win conditions has enabled stakeholders to
achieve high levels of shared vision and mutual trust. Our subsequent experience in
implementing the specified digital library systems in a rapidly changing web-based milieu
indicated that achieving these social conditions among system stakeholders was more important
than achieving precise requirements specifications, due to the need for team adaptability to
requirements change. Finally, we found that the WinWin approach provides an effective set of
methods of integrating ethical considerations into practical system definition processes via
Rawls' stakeholder negotiation-based Theory of Justice.

USC-CSE-98-509 (technical report) published at EUROMICRO'98
Improving the Life-Cycle Process in Software Engineering Education
Barry Boehm and Alexander Egyed

81

The success of software projects and the resulting software products are highly dependent on
the initial stages of the life-cycle process - the inception and elaboration stages. The most critical
success factors in improving the outcome of software projects have often been identified as being
the requirements negotiation and the initial architecting and planing of the software system.
Not surprisingly, this area has thus received strong attention in the research community. It has,
however, been hard to validate the effectiveness and feasibility of new or improved concepts
because they are often only shown to work in a simplified and hypothesized project environment.
Industry, on the other hand, has been cautious in adopting unproven ideas. This has led to a form
of deadlock between those parties.
In the last two years, we had had the opportunity to observe dozens of software development
teams in planing, specifying and building library related, real-world applications. This
environment provided us with a unique way of introducing, validating and improving the life
cycle process with new principles such as the WinWin approach to software development. This
paper summarizes the lessons we have learned.

USC-CSE-98-510 (technical report) published in WICSA'99
The MBASE Life Cycle Architecture Milestone Package: No Architecture Is An Island
Barry Boehm, Dan Port, Alexander Egyed, Marwan Abi-Antoun

This paper summarizes the primary criteria for evaluating software/system architectures in
terms of key system stakeholders' concerns. It describes the Model Based Architecting and
Software Engineering (MBASE) approach for concurrent definition of a system's architecture,
requirements, operational concept, prototypes, and life cycle plans. It summarizes our
experiences in using and refining the MBASE approach on 31 digital library projects. It
concludes that a Feasibility Rationale demonstrating consistency and feasibility of the various
specifications and plans is an essential part of the architecture's definition, and presents the
current MBASE annotated outline and guidelines for developing such a Feasibility Rationale.

USC-CSE-98-511 (technical report) published in Annals of Software Engineering, 1999
A Stakeholder Win-Win Approach to Software Engineering Education
Barry Boehm, Alexander Egyed, Dan Port, and Archita Shah , USC-Center for Software
Engineering, Julie Kwan, USC University Libraries and Ray Madachy, USC-CSE and Litton
Data Systems

We are applying the stakeholder win-win approach to software engineering education. The
key stakeholders we are trying to simultaneously satisfy are the students; the industry recipients
of our graduates; the software engineering community as parties interested in improved practices;
and ourselves as instructors and teaching assistant. In order to satisfy the objectives or win
conditions of these stakeholders, we formed a strategic alliance with the University of Southern
California Libraries to have software engineering student teams work with Library clients to
define, develop, and transition USC digital library applications into operational use. This adds
another set of key stakeholders: the Library clients of our class projects. This paper summarizes
our experience in developing, conducting, and iterating the course. It concludes by evaluating the
degree to which we have been able to meet the stakeholder-determined course objectives.

82

USC-CSE-98-512 (technical report) published in IEEE Computer, July 1998
Using the WinWin Spiral Model: A Case Study
Barry Boehm, Alexander Egyed, Julie Kwan, Dan Port, and Archita Shah, USC-Center for
Software Engineering and Ray Madachy, USC-CSE and Litton Data Systems

Fifteen teams used the WinWin spiral model to prototype, plan, specify, and build
multimedia applications for USC's Integrated Library System. The authors report lessons learned
from this case study and how they extended the model's utility and cost-effectiveness in a second
round of projects.

USC-CSE-98-513 (technical report) published in Proceedings, Conceptual Modeling Symposium
Conceptual Modeling Challenges for Model-Based Architecting and Software Engineering
(MBASE)
Barry Boehm and Dan Port

The difference between failure and success in developing a software-intensive system can
often be traced to the presence or absence of clashes among the models used to define the
system's product, process, property, and success characteristics. (Here, we use a simplified
version of one of Webster's definitions of "model" a description or analogy used to help visualize
something. We include analysis as a form of visualization).

Section 2 of this paper introduces the concept of model clashes, and provides examples of
common clashes for each combination of product, process, property, and success models.
Section 3 introduces the Model-Based Architecting and Software Engineering (MBASE)
approach for endowing a software project with a mutually supportive base of models. Section 4
presents examples of applying the MBASE approach to a family of digital library projects.

Section 5 summarizes the main conceptual modeling challenges involved in the MBASE
approach, including integration of multiple product views and integration of various classes of
product, process, property, and success models. Section 6 summarizes current conclusions and
future prospects.

USC-CSE-98-514 (technical report) published HICSS'99
Rose/Architect: a tool to visualize architecture
Alexander Egyed and Philippe Kruchten

Rational Rose is a graphical software modeling tool, using the Unified Modeling Language
(UML) as its primary notation. It offers an open API that allows the development of additional
functionality ("add-ins"). In this paper, we describe Rose/Architect, a Rose™ "add-in" used
to visualize architecturally-significant elements in a system's design, developed jointly by
University of Southern California (USC) and Rational Software. Rose/Architect can be used in
forward engineering, marking architecturally significant elements as they are designed and

83

extracting architectural views as necessary. But it can be even more valuable in reverse
engineering, i.e., extracting missing key architectural information from a complex model. This
model may have been reverse-engineered from source code using the Rose reverse engineering
capability.

USC-CSE-98-517 (technical report) published in Software Engineering Notes, 1999
Escaping the Software Tar Pit: Model Clashes and How to Avoid Them
Barry Boehm and Dan Port

"No scene from prehistory is quite so vivid as that of the mortal struggles of great beasts in
the tar pits... Large system programming has over the past decade been such a tar pit, and many
great and powerful beasts have thrashed violently in it...
"Everyone seems to have been surprised by the stickiness of the problem, and it is hard to discern
the nature of it. But we must try to understand it if we are to solve it."
Fred Brooks, 1975

Several recent books and reports have confirmed that the software tar pit is at least as
hazardous today as it was in 1975. Our research into several classes of models used to guide
software development (product models, process models, property models, success models), has
convinced us that the concept of model clashes among these classes of models helps explain
much of the stickiness of the software tar-pit problem.

We have been developing and experimentally evolving an approach called MBASE ~ Model-
Based (System) Architecting and Software Engineering - which helps identify and avoid
software model clashes. Section 2 of this paper introduces the concept of model clashes, and
provides examples of common clashes for each combination of product, process, property, and
success model. Sections 3 and 4 introduce the MBASE approach for endowing a software project
with a mutually supportive set of models, and illustrate the application of MBASE to an example
corporate resource scheduling system. Section 5 summarizes the results of applying the MBASE
approach to a family of small digital library projects. Section 6 presents conclusions to date.

USC-CSE-98-518 (technical report) published in ICRE'99
Requirements Engineering, Expectations Management, and The Two Cultures
Barry Boehm, Marwan Abi-Antoun, and Dan Port, USC-CSE,
Julie Kwan, USC University Libraries.
Anne Lynch, University of Southern California

In his seminal work, The Two Cultures, C.P. Snow found that science and technology
policymaking was extremely difficult because it required the combined expertise of both
scientists and politicians, whose two cultures had little understanding of each other's principles
and practices.

During the last three years, we have conducted over 50 real-client requirements negotiations
for digital library applications projects. Those largely involve professional librarians as clients

84

and 5-6 person teams of computer science MS-degree students as developers. We have found that
their two-cultures problem is one of the most difficult challenges to overcome in determining a
feasible and mutually satisfactory set of requirements for these applications.

During the last year, we have been experimenting with expectations management and
domain-specific lists of "simplifiers and complicators" as a way to address the two-cultures
problem for software requirements within the overall digital library domain. Section 2 of this
paper provides overall motivation and context for addressing the two-cultures problem and
expectations management as significant opportunity areas in requirements engineering. Section 3
discusses the digital library domain and our stakeholder Win-Win and Model-Based (System)
Architecting and Software Engineering (MBASE) approach as applied to digital library projects.
Section 4 discusses our need for better expectations management in determining the requirements
for the digital library projects are products over the first two years, and describes our approach in
year 3 to address the two-cultures problem via expectations management. Section 5 summarizes
results to date and future prospects.

USC-CSE-98-519 (technical report)
Guidelines for the Life Cycle Objectives (LCO) and the Life Cycle Architecture (LCA)
deliverables for Model-Based Architecting and Software Engineering (MBASE)
Barry Boehm, Dan Port, Marwan Abi-Antoun and Alexander Egyed

Over our three years of developing digital library products for the USC Libraries, we have
been evolving an approach called Model-Based (System) Architecting and Software Engineering
(MBASE). MBASE involves early reconciliation of a project's success models, product models,
process models, and property models. It extends the previous spiral model in two ways:

Initiating each spiral cycle with a stakeholder win-win stage to determine a mutually
satisfactory (win-win) set of objectives, constraints, and alternatives for the system's next
elaboration during the cycle.

Orienting the spiral cycles to synchronize with a set of life cycle anchor points: Life Cycle
Objectives (LCO), Life Cycle Architecture (LCA), and Initial Operational Capability (IOC). The
MBASE guidelines present the content and the completion criteria for the LCO and LCA
milestones (which correspond to the Inception and Elaboration Phases of the Rational Unified
Process) of the following system definition elements:

- Operational Concept Description (OCD)
- System and Software Requirements Definition (SSRD)
- System and Software Architecture Description (SSAD)
- Life Cycle Plan (LCP)
- Feasibility Rationale Description (FRD)
- Risk-driven prototypes

The guidelines also include a suggested domain taxonomy to be used as a checklist and
organizing structure for the WinWin requirements negotiation. The guidelines attempt to achieve

85

high conceptual integrity, little redundancy, and strong traceability across the various system
definition elements, and are compatible with the Unified Modeling Language (UML).

These guidelines were used by 20 teams of 5-6 person teams of computer science graduate
students during Fall 1998, and were revised twice following the LCO and LCA Architecture
Review Boards. These guidelines were used for rebaselining the LCA packages during Spring 99.

USC-CSE-99-511 (technical report)
Automating Architectural View Integration in UML
Alexander Egyed

Architecting software systems requires more than what general-purpose software
development models can provide. Architecting is about modeling, solving and interpreting, and
in doing so, placing a major emphasis on mismatch identification and reconciliation within and
among architectural views (such as diagrams). The emergence of the Unified Modeling Language
(UML), which has become a de-facto standard for 00 software development, is no exception to
that. This work describes causes of architectural mismatches for UML views and shows how
integration techniques can be applied to identify and resolve them in a more automated fashion.

USC-CSE-99-512 (technical report) published in part in IEEE Computer, 3/99
Making RAD Work for Your Project
Barry Boehm

A significant recent trend we have observed among our USC Center for Software
Engineering's industry and government Affiliates is that reducing the schedule of a software
development project was becoming considerably more important than reducing its cost. This led
to an Affiliates' Workshop on Rapid Application Development (RAD) to explore its trends and
issues. Some of the main things we learned at the workshop were:

- There are good business reasons why software development schedule is often more
important than cost.

- There are various forms of RAD. None are best for all situations. Some are to be
avoided in all situations.

- For mainstream software development projects, we could construct a RAD
Opportunity Tree which helps sort out the best RAD mixed strategy for a given
situation.

USC-CSE-99-515 (technical report)
Using Patterns to Integrate UML Views
Alexander Egyed

86

Patterns play a major role during system composition (synthesis) in fostering the reuse of
repeatable design and architecture configurations. This paper investigates how knowledge about
patterns may also be used for system analysis to verify the conceptual integrity of the system
model.

To support an automated analysis process, this work introduces a view integration
framework. Since each view (e.g. diagram) adds an additional perspective of the software system
to the model, information from one view may be used to validate the integrity of other views.
This form of integration requires a deeper understanding as to what the views mean and what
information they can share (or constrain). Knowledge about patterns, both in structure and
behavior, are thereby a valuable source for view integration automation.

USC-CSE-99-516 (technical report)
Enabling Distributed Collaborative Prioritization
Daniel Port and Jung-Won Park

One of the most common problems within a risk driven software collaborative development
effort is prioritizing items such as requirements, goals, and stakeholder win-conditions.
Requirements have proven particularly sticky in this as it is often the case that they can not be
fully implemented when time and resources are limited introducing additional risk to the project.
A practical approach to mitigating this risk in alignment with the WinWin development approach
is to have the critical stakeholders for the project collaboratively negotiate requirements into
priority bins which then are scheduled into an appropriate incremental development life cycle.

We have constructed a system called the Distributed Collaboration Priorities Tool (DCPT)
which to assist in collaborative prioritization of development items. DCPT offers a strcutually
guided approach to collaborative prioritization much in the spirit of USC's WinWin requirements
capture and negotiation system. In this paper, we will discuss the prioritization models
implemented within DCPT via an actual prioritization of new WinWin system features. We also
discuss DCPT's two-way integration with WinWin system, some experiences using DCPT, and
current research directions.

USC-CSE-99-520 (technical report) published in Journal for Computer Standards and Interfaces
Optimizing Software Product Integrity through Life-Cycle Process Integration
Barry Boehm and Alexander Egyed

Managed and optimized - these are the names for the levels 4 and 5 of the Capability Maturity
Model (CMM) respectively. With that the Software Engineering Institute (SEI) pays tribute to
the fact that, after the process has been defined, higher process maturity, and with that higher
product maturity, can only be achieved by improving and optimizing the life-cycle process itself.
In the last three years, we had had the opportunity to observe more than 50 software development
teams in planning, specifying and building library related, real-world applications. This
environment provided us with a unique way of introducing, validating and improving the life
cycle process with new principles such as the WinWin approach to software development.

87

This paper summarizes the lessons we have learned in our ongoing endeavor to integrate the
Win Win life-cycle process. In doing so, we will not only describe what techniques have proven
to be useful in getting the developer's task done but the reader will also get some insight on how
to tackle process improvement itself. As more and more companies are reaching CMM levels two
or higher this task, of managing and optimizing the process, becomes increasingly important.

USC-CSE-99-521 (technical report) published in Journal for Systems Engineering
Comparing Software System Negotiation Requirements Patterns
Alexander Egyed and Barry Boehm

In a period of two years, two rather independent experiments were conducted at the University of
Southern California (USC). In 1995, 23 three-person teams negotiated the requirements for a
hypothetical library system. Then, in 1996, 14 six-person teams negotiated the requirements for
real-world digital library systems.
A number of hypotheses were created to test how more realistic software projects differ from
hypothetical ones. Other hypotheses address differences in uniformity and repeatability of
negotiation processes and results. The results indicate that repeatability in 1996 was even harder
to achieve then in 1995. Nevertheless, this paper presents some surprising commonalties between
both years that indicate some areas of uniformity.

As such we found that the more realistic projects required more time to resolve conflicts and
to identify options (alternatives) than the hypothetical ones. Further, the 1996 projects created
more artifacts although they exhibited less artifact interconnectivity, implying a more divide and
conquer negotiation approach. In terms of commonalties, we found that people factors such as
experience did have effects onto negotiation patterns (especially in 1996), that users and
customers were most significant (in terms of artifact creation) during the goal identification
whereas the developers were more significant in identifying issues (conflicts) and options. We
also found that both years exhibited some strange although similar disproportional stakeholder
participation.

USC-CSE-99-522 (technical report) published in ICSE'99
WinWin: a System for Negotiating Requirements
Ellis Horowitz, Joo H. Lee, and June Sup Lee

WinWin is a system that aids in the capture and recording of system requirements. It also
assists in negotiation. The WinWin system has been available for several years and it being used
by dozens of software development groups. In this presentation we will go over the capabilities
of the system and discuss how it might be used on your software development project.

USC-CSE-99-523 (technical report) published in IEEE IT Professional, Jan-Feb 1999
When Models Collide: Lessons From Software System Analysis
Barry Boehm and Dan Port

88

This paper analyzes several classes of model clashes encountered on large, failed IT projects
(e.g., Confirm, Master Net), and shows how the MBASE approach could have detected and
resolved the clashes.

USC-CSE-99-526 (technical report) published in FASE, May 2000.
A Formal Approach to Heterogeneous Software Modeling
Alexander Egyed and Nenad Medvidovic

The problem of consistently engineering large, complex software systems of today is often
addressed by introducing new, "improved" models. Examples of such models are architectural,
design, structural, behavioral, and so forth. Each software model is intended to highlight a
particular view of a desired system. A combination of multiple models is needed to represent and
understand the entire system. Ensuring that the various models used in development are
consistent relative to each other thus becomes a critical concern. This paper presents an approach
that integrates and ensures the consistency across an architectural and a number of design
models. The goal of this work is to combine the respective strengths of a powerful, specialized
(architecture-based) modeling approach with a widely used, general (design-based) approach. We
have formally addressed the various details of our approach, which has allowed us to construct a
large set of supporting tools to automate the related development activities. We use an example
application throughout the paper to illustrate the concepts.

USC-CSE-99-527 (technical report) published in IWSAPF 2000
Software Connectors and Refinement in Product Families
Alexander Egyed, Nikunj Mehta, and Nenad Medvidovic

Product families promote reuse of software artifacts such as architectures, designs and
implementations. Product family architectures are difficult to create due to the need to support
variations. Traditional approaches emphasize the identification and description of generic
components which prove too rigid to support variations in each product. This paper presents an
approach that supports analyzable family architectures using generic software connectors that
provide bounded ambiguity and support flexible product families. It describes the transformation
from a family architecture to a product design through a four-way refinement and evolution
process

USC-CSE-99-529 (technical report) published in ICSE 2000
Towards a Taxonomy of Software Connectors
Nikunj Mehta, Nenad Medvidovic ami Sandeep Phadke

Software systems of today are frequently composed from prefabricated, heterogeneous
components that provide complex functionality and engage in complex interactions. Existing
research on component-based development has mostly focused on component structure,
interfaces, and functionality. Recently, software architecture has emerged as an area that also
places significant importance on component interactions, embodied in the notion of software
connectors. However, the current level of understanding and support for connectors has been
insufficient. This has resulted in their inconsistent treatment and a notable lack of understanding
of what the fundamental building blocks of software interaction are and how they can be

89

composed into more complex interactions. This paper attempts to address this problem. It
presents a comprehensive classification framework and taxonomy of software connectors. The
taxonomy is used both to understand existing software connectors and to suggest new,
unprecedented connectors. We demonstrate the use of the taxonomy on the architecture of an
existing, large system.

USC-CSE-2000-500 (technical report)
Why Consider Implementation-Level Decisions in Software Architectures?
Nikunj Mehta, Nenad Medvidovic and Marija Rakic

Software architecture provides a high-level abstraction of the structure, behavior, and properties
of a software system aimed at enabling early analysis of the system and its easier
implementation. Often, however, important details about a system are left to be addressed in its
implementation, resulting in differences between conceptual and concrete architectures. This
paper describes an approach towards bringing these two closer by making certain
implementation-level decisions explicit in the architecture. Specifically, we focus on the choices
made in modeling and implementing component interactions. The process is based on a
taxonomy of software connectors that the authors have developed to better understand
component interactions, and an architectural framework developed to support a variety of
connectors.

USC-CSE-2000-507 (technical report)
Spiral Development: Experience, Principles, and Refinements
Barry Boehm. USC Center for Software Engineering

This presentation opened the USC-SEI Workshop on Spiral Development* Experience and
Implementation Challenges held at USC February 9-11, 2000. The workshop brought together
leading executives and practitioners with experience in transitioning to spiral development of
software-intensive systems in the commercial, aerospace, and government sectors. Its objectives
were to distill the participants' experiences into a set of critical success factors for transitioning to
and successfully implementing spiral development, and to identify the most important needs,
opportunities, and actions to expedite organizations' transition to successful spiral development.
To provide a starting point for addressing these objectives, I tried in this talk to distill my
experiences in developing and transitioning the spiral model at TRW; in using it in system
acquisitions at DARPA; in trying to refine it to address problems that people have had in
applying it in numerous commercial, aerospace, and government contexts; and in working with
the developers of major elaborations and refinements of the spiral model such that the Software
Productivity Consortium's Evolutionary Spiral Process and Rational, Inc's Rational Unified
Process. I've modified the presentation somewhat to reflect the experience and discussions at the
Workshop.

USC-CSE-2000-508 (technical report) published in IEEE Computer 2000
Managing Software Productivity and Reuse
Barry Boehm

90

USC-CSE-2000-509 (technical report) published in UML 1999
Extending Architectural Representation in UML with View Integration
Alexander Egyed and Nenad Medvidovic

UML has established itself as the leading 00 analysis and design methodology. Recently, it has
also been increasingly used as a foundation for representing numerous (diagrammatic) views that
are outside the standardized set of UML views. An example are architecture description
languages. The main advantages of representing other types of views in UML are 1) a common
data model and 2) a common set of tools that can be used to manipulate that model. However,
attempts at representing additional views in UML usually fall short of their full integration with
existing views. Integration extends representation by also describing interactions among multiple
views, thus capturing the inter-view relationships. Those inter-view relationships are essential to
enable automated identification of consistency and conformance mismatches. This work
describes a view integration framework and demonstrates how an architecture description
language, which was previously only represented in UML, can now be fully integrated into
UML.

USC-CSE-2000-510 (technical report) published in ASE 2000
Automatically Detecting Mismatches during Component-Based and Model-Based
Development
Alexander Egyed and Cristina Gacek
A major emphasis in software development is placed on identifying and reconciling architectural
and design mismatches. Those mismatches happen during software development on two levels:
while composing system components (e.g. COTS or in-house developed) and while reconciling
view perspectives. Composing components into a system and 'composing' views (e.g. diagrams)
into a system model are often seen as being somewhat distinct aspects of software development,
however, as this work shows, their approaches in detecting mismatches complement each other
very well. In both cases, the composition process may result in mismatches that are caused by
clashes between development artefacts. Our component-based integration approach is more high-
level and can be used early on for risk assessment while little information is available. Model-
based integration, on the other hand needs more information to start with but is more precise and
can handle large amounts of redundant information. This paper describes both integration
approaches and discusses their commonalties and differences. Both integration approaches are
automateable and some tools support is already available.

USC-CSE-2000-511 (technical report)
Automated Abstraction for Object-Oriented Models
Alexander Egyed

Working with multiple views allows development concerns to be broken up and investigated
separately, thus, reducing software development complexity. On the downside, views also require
an explicit notion on how to exchange information among them - a necessity caused by the fact
that problems and solutions described in views have to be integrated with one another to form a
coherent and consistent whole. This paper discusses a method for automated abstraction of

91

diagrammatic views with a major emphasis on class and object diagrams. This technique is also
suited for consistency checking and reverse engineering. Our approach is fully tool supported and
we have since validated both tool and model through a series of experiments.

USC-CSE-2000-512 (technical report)
Using Model Transformations to Detect Inconsistencies between Heterogeneous Views
Alexander Egyed

Development is about modeling, solving and interpreting, and in doing so a major emphasis is
placed on mismatch identification and reconciliation within and among diagrammatic and textual
views. It has been acknowledged that view integration techniques generally do not scale because
of the complexities involved. In response, it has been proposed to use view transformation
techniques to simplify comparison. However, what has been only little explored is the fact that
view transformation introduces new types of scalability problems reducing, if not worsening,
their benefits towards view integration. This work introduces a view integration framework and
demonstrates how transformation can enable view comparison in a more scalable and reliable
fashion. We will discuss view integration in the context of the Unified Modeling Language
(UML) where we will show, on concrete examples, how transformation simplifies view
integration and how the resulting scalability problems can be addressed.

USC-CSE-2000-513 (technical report)
Software Lifecycle Connectors: Bridging Models across the Lifecycle
Nenad Medvidovic, Paul Gruenbacher, Alexander Egyed, and Barry Boehm

Numerous notations, methodologies, and tools exist to support software system modeling. While
individual models may clarify certain system aspects, the large number and heterogeneity of
models may ultimately hamper the ability of stakeholders to communicate about a system. The
major reason for this is the discontinuity of information across different models. In this paper, we
present an approach for dealing with that discontinuity. We propose an extensible set of
"connectors" to bridge models, both within and across the activities in the software development
lifecycle. While the details of these connectors are dependent upon the source and destination
models, they share a number of underlying characteristics. We illustrate our approach by
applying it to a large-scale system we are currently designing and implementing in collaboration
with a third-party organization.

USC-CSE-2000-514 (technical report)
Architectural Integration and Evolution in a Model World
Alexander Egyed (USC-CSE) and Rich Hilliard (ISIS 2000)

Architectural Description Languages (ADLs) fall into the narrow category of frequently using
only one fixed representation scheme. Over the past years, it has become more obvious that no
single such ADL is adequate in addressing a large number of stakeholder concerns. This paper,
therefore, discusses the need and challenges of multi-view development with ADLs and
introduces a decorative stance in handling view integration issues and scalability concerns related
to consistency checking.

92

USC-CSE-2000-515 (technical report)
Refinement and Evolution Issues between Requirements and Architecture
Alexander Egyed, Nenad Medvidovic, and Paul Gruenbacher

Though acknowledged as very closely related to a large extent, requirements engineering and
architecture modeling have been pursued independently of one another, particularly in the large
body of software architecture research that has emerged over the past decade. The dependencies
and constraints imposed by elements of one on those of the other are not well understood. This
paper identifies a number of relevant relationships we have identified in the process of trying to
relate the WinWin requirements engineering approach with architecture and design-centered
approaches (e.g., C2 and UML).

USC-CSE-2000-516 (technical report)
An Integrated Perspective on Software Mismatch Detection and Resolution
Alexander Egyed, Nenad Medvidovic, and Cristina Gacek

Modeling software systems all too often neglects the issue of mismatch identification and
resolution. The traditional view of modeling over-emphasizes synthesis at the expense of analysis
- the latter frequently being seen as a problem one only needs to deal with during the integration
stage towards the end of a development project. This paper discusses three software modeling
and analysis techniques, all tool supported, and emphasizes the vital role analysis can play in
identifying and resolving risks early on. This work also combines model based development with
component based development (e.g., COTS and Legacy systems) and shows how their mismatch
detection capabilities complement each other in providing a more comprehensive coverage of
development risks.

USC-CSE-2000-517 (technical report)
A Scenario-Driven Approach to Traceability
Alexander Egyed (USC-CSE)
Software engineering uses models and views to handle software development concerns. The
major drawback of a model-based development approach is that concerns cannot be investigated
individually, since they tend to affect each other. It follows that a model-based development
approach requires that common assumptions and definitions are recognized and maintained in a
consistent fashion. We have investigated ways on how to automate the issue of identifying model
inconsistencies and to this end we have found that automated inconsistency detection depends
heavily on the ability to locate product information common to multiple models - also known as
the traceability problem. This paper therefore discusses a technique where scenario executions
and their observations are used to cross-reference, transform, and analyze models. This technique
is useful for forward engineering and reverse engineering.

USC-CSE-2000-518 (technical report)
Extending UML for Automated Consistency Checking
Alexander Egyed and Paul Gruenbacher

93

The Unified Modeling Language (UML) supports a wide range of diagrammatic and textual
views for modeling software development concerns. UML views are independent but connected;
its meta-model enables their description under a common roof. Despite the fact that the standard
seems to converge, the past UML conferences showed that researchers and practitioners alike
have even grander plans for the future of UML. In this paper, we will discuss the problem of
consistency checking within UML and show how the current UML standard can support it. Our
finding is that UML currently exhibits a series of deficiencies with a particularly negative impact
onto scalability. Resolving those deficiencies requires the adaptation and the augmentation of
UML.

USC-CSE-2000-519 (technical report)
Validating Consistency between Architecture and Design Descriptions
Alexander Egyed

No abstract.

PhD Dissertation
Detecting Architectural Mismatches During Systems Composition
Cristina Gacek

The USC Architect's Automated Assistant (AAA) tool and method version 0.1 provides a
capability for early detection of software architectural style mismatches among four architectural
styles: Main-Subroutine, Pipe-and-Filter, Event-Based, and Distributed Processes. For these four
styles, mismatch detection is based on a set of seven conceptual features distinguishing each
style, and a set of bridging connectors characterizing compositions among the four styles.
However, it was a significant open question whether these conceptual features and connectors
were sufficient to characterize composition of other architectural styles.
The work presented here formalizes some additional architectural styles-namely Blackboard,
Closed-Loop Feedback Control, Logic Programming, Real-Time, Rule-Based, Transactional
Database, and Internet Distributed Entities styles~and extends the mismatch analysis capability
to cover interactions of the original four styles with the new ones. The analysis results tested
various hypotheses, such as the extensibility of the conceptual feature framework for mismatch
detection, and the sufficiency of the original seven conceptual features to characterize the broader
set of styles and their composition.
In our work we found that the underlying conceptual feature framework could work to cover a
broader range of styles and systems, with some extensions. However, the conceptual feature set
and the underlying Z-language formal model were not sufficient to cover the full range of styles
and systems interactions.
We have developed extensions to the conceptual feature set and Z formal model to cover the full
set of compositional interactions analyzed. Additionally, we provide means for checking each
and every mismatch at the model level, including the dynamic ones, as well as a fully operational
tool.
We also provide an initial discussion of a more formal basis for detecting and classifying
architectural conceptual features, thus providing a formal framework for extending the models.

94

PhD Dissertation
Conflict Identification and Resolution for Software Attribute Requirements
Hohln

A critical success factor in requirements engineering involves determining and resolving conflicts
among candidate system requirements proposed by multiple stakeholders. Many software
projects have failed due to requirements conflicts among the stakeholders.
The WinWin system developed at USC provides an approach for resolving requirements
conflicts among the stakeholders. The WinWin system provides a framework for negotiation
between the stakeholders to identify and resolve these conflicts. However, such systems do not
scale well for large software projects containing many requirements.
Based on an analysis of the options for addressing this problem, I have focused on
semiautomated tools and techniques for identifying and resolving conflicts among software
quality attributes. I have developed two prototype support tools, QARCC and S-COST, which
expand the capabilities of the WinWin system. QARCC focuses on software architecture
strategies for achieving quality attribute objectives. S-COST focuses on tradeoffs among
software cost, functionality, and other quality attributes. I have also developed portions of
underlying theories and models which serve as the basis for the prototype tools.

Finally, I evaluated the theories, models, and tools with the results of WinWin negotiations,
such as the CS577 15-project samples.

PhD Dissertation
Heterogeneous View Integration and its Automation
Egyed A lexander

Software systems are characterized by unprecedented complexity. One effective means of dealing
with that complexity is to consider a system from a particular perspective, or view (e.g.,
architecture or design diagram). Views enable software developers to reduce the amount of
information they have to deal with at any given time. They enable this by utilizing a divide-and-
conquer strategy that allows large-scale software development problems to be broken up into
smaller, more comprehensible pieces. Individual development issues can then be evaluated
without the need of access to the whole body of knowledge about a given software system. The
major drawback of views is that development concerns cannot truly be investigated by
themselves, since concerns tend to affect one another. Successful and precise product
development supported via multiple views requires that common assumptions and definitions are
recognized and maintained in a consistent fashion. In other words, having views with inconsistent
assumptions about a system's expected environment reduces their usefulness and possibly
renders invalid solutions based on them.
Developing software systems therefore requires more than what general-purpose software
development models can provide today. Development is about modeling, solving, and
interpreting, and in doing so a major emphasis is placed on mismatch identification and
reconciliation within and among diagrammatic and textual views. Our work introduces a view
integration framework and demonstrates how its activities enable view comparison in a more
scalable and reliable fashion. Our framework extends the comparison activity with mapping and
transformation to define the 'what' and the 'how' of view integration. We will demonstrate the

95

use of our framework on the Unified Modeling Language (UML), which has become a de-facto
standard for object-oriented software development. In this context we will describe causes of
model inconsistencies among UML views, and show how integration techniques can be applied
to identify and resolve them in a more automated fashion. Our framework is tool supported.

GSAW 97, El Segundo, CA
Proceedings of the Ground System Architectures Workshop (GSAW 97)
Judy Kerner, Ed.

GSAW 98, El Segundo, CA
Proceedings of the 2nd Ground System Architectures Workshop (GSAW 98)
Judy Kerner, Ed.

GSAW 99, El Segundo, CA
Proceedings of the 3rd Ground System Architectures Workshop (GSAW 99)
Sergio Alvarado, Ed.

Technical Report, The Aerospace Corporation, ATR-99(7470)-l
Evaluation Criteria for Satellite Ground System Architectures
Charles Simmons

This report presents criteria for evaluating satellite ground system architectures and development
efforts. Although much work has been done on the quantitative evaluation of architectures, this
report focuses primarily on manual, qualitative, heuristic evaluation - an area that has received
much less attention.

96

References

1. Boehm, B. and Bose, P.: "A Collaborative Spiral Process Model based on Theory W," Proceedings of the 3rd
International Conference on Software Processes, 1994.

2. Boehm, B. and Egyed, A.: "WinWin Requirements Negotiation Processes: A Multi-Project Analysis,"
Proceedings of the 5th International Conference on Software Processes (ICSP), pp. 125-136, June 1998.

3. Boehm, B., Port, D.: "Escaping the Software Tar Pit: Model Clashes and How to Avoid Them," ACM Software
Engineering Notes, pp. 36-48, January 1999a.

4. Boehm, B., Port, D.: "When Models Collide: Lessons from Software Systems Analysis," IT Professional, pp.
49-56, January 1999b-February 1999b.

5. Boehm, B. W., Bose, P., Horowitz, E., and Lee, M. J.: "Software Requirements Negotiation and Renegotiation
Aids: A Theory-W Based Spiral Approach," Proceedings of 17th International Conference on Software
Engineering (ICSE 17), pp. 243-253, April 1995.

6. Egyed, A., Boehm, B.: "Comparing Software System Requirements Negotiation Patterns," Systems Engineering
Journal, 6(1), pp. 1-14, June 1999.

7. Kellner, M.: "Tutorial: Developing and Documenting Improved Software Engineering Processes," SEPG
Conference "99, 1999.

«U.S. GOVERNMENT PRINTING OFFICE: 2000-510-079-10012

97

DISTRIBUTION LIST

addresses number
of copies

ROGER J. DZIEGIEL, JR 10
AFRL/IFTD
525 BROOKS ROAD
ROBE*- NY 13441-4505

DR. BARRY BOEHW
USC, LOS ANGELES
941 W. 37TH PLACE SAL ROOM 328
LOS ANGELES, CA 90089-0781

AFRL/IFOIL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROHE NY 13441-4514

ATTENTION: DTIC-OCC
DEFENSE TECHNICAL INFO CENTER
8725 JOHN J. KINGMAN ROAD, STE 0944
FT- 3ELV0IR, VA 22060-6218

DEFENSE ADVANCED RESEARCH
PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

ATTN: NAN PFRIMMER
IIT RESEARCH INSTITUTE
201 MILL ST.
ROME, NY 13440

AFIT ACADEMIC LIBRARY
AFIT/LDR, 2950 P.STREET
AREA S, 3LDG 642
WRIGHT-PATTERSON AFB OH 45433-7765

AFRL/HESC-TDC
2698 6 STREET, BLDG 190
WRIGHT-PATTERSON AFB OH 45433-7604

DL-1

ATTN: SMDC IM PL
US ARMY SPACE & MISSILE OEF CMO
P.O. BOX 1500
HUNTSVILLE AL 35807-3801

COMMANDER, CODE 4TL000D
TECHNICAL LIBRARY, NAWC-WD
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-6100

CDR, US ARMY AVIATION & MISSILE CMD
REDSTONE SCIENTIFIC INFORMATION CTR
ATTN: AMSAM-RD-OB-R, (DOCUMENTS)
REDSTONE ARSENAL AL 35898-5000

REPORT LIBRARY
MS P364
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM 87545

ATTN: D'30RAH HART
AVIATION BRANCH SVC 122.10
F0B10A, RM 931
800 INDEPENDENCE AVE, Sy
WASHINGTON DC 20591

AFIWC/MSY
102 HALL 3LVD, STE 315
SAN ANTONIO TX 78243-7016

ATTN: KAROLA M- YOURISON
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE
PITTSBURGH PA 15213

USAF/AIR FORCE RESEARCH
AFRL/VS0SA<LI3RARY-3LDG
5 WRIGHT DRIVE
HANSCOM AF3 MA 01731-3004

LABORATORY
1103)

ATTN: EILEEN LADUKE/D460
MITRE CORPORATION
202 BURLINGTON RD
3EDF0RD MA 01730

DL-2

OUSD(P)/OTSA/OUTD
ATTN: PATRICK 6. SULLIVAN, JR.
400 ARWY NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

AFRL/IFT
525 BROOKS ROAD
ROME, NY 13441-4505

AFRL/IFT«
525 BROOKS ROAD
ROHE# NY 13441-4505

DL-3

MISSION
OF

AFRL/INFORMÄTIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

