
AFRL-IF-WP-TR-2000-1507 

THE STANFORD IBM MANAGEMENT OF 
MULTIPLE INFORMATION SYSTEMS 
(TSIMMIS) - STANFORD 

HECTOR GARCIA-MOINA, PH.D. 

STANFORD UNIVERSITY 
OFFICE OF SPONSORED PROGRAM 
125 PANAMA 
STANFORD, CA 94305-4125 

MARCH 2000 

FINAL REPORT FOR 09/30/1993 - 09/30/1999 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

INFORMATION DIRECTORATE 
AIR FORCE RESEARCH LABORATORY 
AIR FORCE MATERIEL COMMAND 
WRIGHT-PATTERSON AIR FORCE BASE OH 45433-7334 

20001024 006 



NOTICE 

Using Government drawings, specifications, or other data included in this 
document are for any purpose other than Government procurement does 
not in any way obligate the U.S. Government. The fact that the 
Government formulated or supplied the drawings, specifications, or other 
data does license the holder or any other person or corporation; or convey 
any rights or permission to manufacture, use, or sell patented invention 
that may relate to them. 

This report is releasable to the National Technical Information Service 
(NTIS). AtNTIS, it will be available to the general public, including 
foreign nationals. 

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS 
APPROVED FOR PUBLICATION. 

CHARLES P. SATTERTHWAITE, Project Engineer JAMES S. WILLIAMSON, Chief 
Embedded Infbimation System Engineering Branch Embedded Infocmation System Engineering Branch 
AFRL/IFTA AFRL/EFTA 

EUGENE C. BLACKBURN, Chief 
Information Technology Division 
AFRL/IFT 

Do not return copies of this report unless contractual obligations or notice on a 
specific document requires Us return. 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing 
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information 
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

MARCH 2000 
3. REPORT TYPE AND DATES COVERED 

FINAL REPORT FOR 09/30/1993 - 09/30/1999 
4. TITLE AND SUBTITLE 

THE STANFORD IBM MANAGEMENT OF MULTIPLE INFORMATION 
SYSTEMS (TSIMMIS) - STANFORD 

6. AUTHOR(S) 

HECTOR GARCIA-MOINA, PH.D. 

5. FUNDING NUMBERS 

C     F33615-93-1-1339 
PE    62301 
PR    A004 
TA    01 
WU   01 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

STANFORD UNIVERSITY 
OFFICE OF SPONSORED PROGRAM 
125 PANAMA 
STANFORD, CA 94305-4125 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

INFORMATION DIRECTORATE 
AIR FORCE RESEARCH LABORATORY 
AIR FORCE MATERIEL COMMAND 
WRIGHT-PATTERSON AFB, OH 45433-7334 
POC:   CHARLES P. SATTERTHWAITE. AFRL/IFTA. 937-255-6548 EXT. 3584 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

AFRL-IF-WP-TR-2000-1507 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

OBJECTIVE: to improve the access and utility of heterogeneously distributed information. 
BACKGROUND:  DARPA awarded this effort as sister effort to TSIMMIS-IBM. This work develops techniques to access, 
integrate, and utilize distributed heterogeneous information. 

14. SUBJECT TERMS 

Heterogeneous distributed information, Intelligent Query Processing, Databases 
15. NUMBER OF PAGES 

121 
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF 
ABSTRACT 

SAR 
Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. 239.18 
Designed using Perform Pro, WHSIDIOR, Oct 94 



The TSIMMIS Project 
Final Report 

The goal of the Tsimmis Project was to develop tools that facilitate the rapid integration 
of heterogeneous information sources that may include both structured and unstructured 
data. The project developed components that extract properties from unstructured objects, 
that translate information into a common object model, that combine information from 
several sources, that allow browsing of information, and that manage constraints across 
heterogeneous sites. Tsimmis was a joint project between Stanford and the IBM 
Almaden Research Center. 

A common problem facing many organizations today is that of multiple, disparate 
information sources and repositories, including databases, object stores, knowledge 
bases, file systems, digital libraries, information retrieval systems, and electronic mail 
systems. Decision makers often need information from multiple sources, but are unable 
to get and fuse the required information in a timely fashion due to the difficulties of 
accessing the different systems, and due to the fact that the information obtained can be 
inconsistent and contradictory. The TSIMMIS tools support integrated access to multiple 
information sources, and ensure that the information obtained is consistent. 

The enclosed papers give a comprehensive summary of the project and describe the 
major results obtained. In short, the results include: 
• Wrapper building technology for accessing heterogeneous sources; 
• Extraction technology for converting HTML web information to more structured 

form; 
• Mediation technology for combining information from different sources; and 
• Constrain management technology for coordinating multiple sources 



The TSIMMIS Project: 
Integration of Heterogeneous Information Sources* 

Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, 
Kelly Ireland, Yannis Papakonstantinou, Jeffrey Ullman, Jennifer Widom 

Department of Computer Science 
Stanford University 

Stanford, CA 94305-2140 

las t-name@cs.stanford.edu 

Abstract 
The goal of the Tsimmis Project is to develop tools that 

facilitate the rapid integration of heterogeneous information 
sources that may include both structured and unstructured 
data. This paper gives an overview of the project, describ- 

ing components that extract properties from unstructured 
objects, that translate information into a common object 
model, that combine information from several sources, that 
allow browsing of information, and that manage constraints 
across heterogeneous sites. Tsimmis is a joint project be- 
tween Stanford and the IBM Almaden Research Center. 

1       Overview 
A common problem facing many organizations today 
is that of multiple, disparate information sources and 
repositories, including databases, object stores, knowl- 
edge bases, file systems, digital libraries, information 
retrieval systems, and electronic mail systems. Decision 
makers often need information from multiple sources, 
but are unable to get and fuse the required information 
in a timely fashion due to the difficulties of accessing the 
different systems, and due to the fact that the informa- 
tion obtained can be inconsistent and contradictory. 

•Research sponsored by the Wright Laboratory, Aeronautical 
Systems Center, Air Force Material Command, USAF, under 
Grant Number F33615-93-1-1339. The US Government is 
authorized to reproduce and distribute reprints for Government 
purposes notwithstanding any copyright notation thereon. The 
views and conclusions contained in this document are those of the 
authors and should not be interpreted as necessarily representing 
the official policies or endorsements, either express or implied, of 
Wright Laboratory or the US Government. This work was also 
supported by the Reid and Polly Anderson Faculty Scholar Fund, 
the Center for Integrated Systems at Stanford University, and by 
Equipment Grants from Digital Equipment Corporation and IBM 
Corporation. 

The goal of the TSIMMIS1 project is to provide 
tools for accessing, in an integrated fashion, multiple 
information sources, and to ensure that the information 
obtained is consistent. Numerous other recent projects 
have similar goals, of course. Before describing the 
differences between Tsimmis and other data integration 
projects, let us give an overview of the Tsimmis 
architecture, describing the functions of the various 
components and the philosophy of our approach. Refer 
to Figure 1. 

1.1 Translators and Common Model 

Figure 1 shows a collection of (disk-shaped) heteroge- 
neous information sources. Above each source is a trans- 
lator (or wrapper) that logically converts the underlying 
data objects to a common information model. To do 
this logical translation, the translator converts queries 
over information in the common model into requests 
that the source can execute, and it converts the data 
returned by the source into the common model. 

For the Tsimmis project we have adopted a simple 
self-describing (or tagged) object model. Similar models 
have been in use for years; we call our version the Object 
Exchange Model, or OEM. OEM allows simple nesting of 
objects, and a complete specification is given in Section 
2. The fundamental idea is that all objects, and their 
subobjects, have labels that describe their meaning. For 
example, the following object represents a Fahrenheit 
temperature of 80 degrees: 

(temp-in-Fahrenheit, int, 80) 

where the string "temp-in-Fahrenheit" is a human- 
readable label, "int" indicates an integer value, and "80" 
is the value itself. If we wish to represent a complex 
object, then each component of the object has its own 
label. For example, an object representing a set of two 
temperatures may look like: 

'As an acronym, TSIMMIS stands for "The Stanford-IBM 
Manager of Multiple Information Sources." In addition, Tsimmis 
is a Yiddish word for a stew with "heterogeneous" fruits and 
vegetables integrated into a surprisingly tasty whole. 



Constraint 

Manager 

j Application;      9 

\ A 

.Mediator 

Local 
Cons. Mgr. 

Mediator 

Info 
Source 

Translator Translator' 

Info 
Source 

Classifier/Extractor 

Info 
Source 

Classifier/Extractor 

Mediator 

Generator 

Definition 

Translator 
Generator 

Definition 

Figure 1: Tsimmis Architecture 

(set-of-temps, set, {cmpi, cmp2}) 
cmpi: (temp-in-Fahrenheit, int, 80) 
cmp2: (temp-in-Celsius, int, 20) 

OEM is very simple, while providing the expressive 
power and flexibility needed for integrating information 
from disparate sources. We also have developed a 
query language, OEM-QL, for requesting OEM objects. 
OEM-QL is an SQL-like language extended to deal with 
labels and object nesting; see Section 2. 

1.2       Mediators 

Above the translators in Figure 1 he the mediators. A 
mediator is a system that refines in some way informa- 
tion from one or more sources [31]. A mediator em- 
beds the knowledge that is necessary for processing a 
specific type of information. For example, a mediator 
for "current events" might know that relevant informa- 
tion sources are the AP Newswire and the New York 
Times database. When the mediator receives a query, 
say for articles on "Bosnia," it will know to forward the 
query to those sources. The mediator may also pro- 
cess answers before forwarding them to the user, say 
by converting dates to a common format, or by elim- 
inating articles that duplicate information. While the 
task of converting dates is probably straightforward, the 
task of eliminating duplicate information could be very 

complex,—figuring out that two articles written by dif- 
ferent authors say "the same thing" requires real intelli- 
gence. In Tsimmis we are focusing on relatively simple 
mediators based on patterns or rules. Still, even simple 
mediators can perform very useful information process- 
ing and merging tasks. 

Implementing a mediator can be complicated and 
time-consuming, but we believe that much of the cod- 
ing involved in mediators can be automated. Hence, 
one important goal of the Tsimmis project is to au- 
tomatically or semi-automatically generate mediators 
from high level descriptions of the information process- 
ing they need to do. This is illustrated by the mediator 
generator box on the right side of Figure 1. Similarly, we 
provide a translator generator that can generate OEM 
translators based on a description of the conversions 
that need to take place for queries received and results 
returned. This component, also illustrated in Figure 1, 
significantly facilitates the task of implementing a new 
translator. 

1.3        System and User Interfaces 

Mediators export an interface to their clients that is 
identical to that of translators. Both translators and 
mediators take as input OEM-QL queries and return 
OEM objects.    Hence,  end users and mediators can 



obtain their information either from translators and/or 
other mediators. This approach allows new sources to 
become useful as soon as a translator is supplied, it 
allows mediators to access new sources transparently, 
and it allows mediators to be "stacked," performing 
more and more processing and refinement of the relevant 
information. 

End users (top of Figure 1) can access information ei- 
ther by writing applications that request OEM objects, 
or by using one of the generic browsing tools we have 
developed. Our most recent browsing tool provides ac- 
cess through Mosaic or other World- Wide- Web viewers 
[4,29]. The user writes a query on an interactive world- 
wide-web page, or selects a query from a menu. The 
answer is received as a hypertext document. The root 
of this document shows one or more levels of the answer 
object, with hypertext links available to take the user 
to portions of the answer that did not appear on the 
root document. This tool provides a mechanism for ex- 
ploring heterogeneous information sources that is easy 
to interact with and that is based on a commonly used 
interface. The browser is described in more detail in 
Section 3. 

1.4        Labels and Mediator Processing 

It is important to note that there is no global database 
schema, and that mediators can work independently. 
For instance, to build a mediator it is only necessary 
to understand the sources that the mediator will use. 
In fact, it is not even necessary to fully understand the 
sources used. For example, returning to our "current 
events" mediator, suppose one source exports objects 
with subobjects labeled by title, date, author, and 
country. The mediator might always pass the author 
and country subobjects to its client with no additional 
processing. Now suppose a second source provides topic 
and date subobjects. The mediator might convert the 
dates from both sources into a common format, and it 
will know how to convert a mediator query about the 
subject of an article into the appropriate topic or title 
queries to be sent to the sources. 

When a mediator simply passes subobjects to its 
clients (as in author and country above), it might 
append the source name to the labels so that the client 
can interpret the objects correctly. For example* a 
mediator subobject might have label NYTimes. author, 
indicating that this author is from the New York Times 
source and follows its conventions for authors. Another 
object might have the label AP.author. (Of course, the 
mediator could also make the formats consistent and 
export subobjects with label author, but here we are 
illustrating a simple mediator that does not do such 
processing.) 

The key points are that a mediator does not need to 

understand all of the data it handles, and no person or 
software component needs to have a global view of all 
the information handled by the system. 

1.5       Constraint Management 

Another important component in the Tsimmis archi- 
tecture is constraint management, illustrated in Fig- 
ure 1 by a Constraint Manager and two Local Con- 
straint Managers. Integrity constraints specify seman- 
tic consistency requirements over stored information; 
such constraints arise even when the information resides 
in loosely coupled, heterogeneous systems. For exam- 
ple, a construction company keeps data about a build- 
ing under construction. This data must be consistent 
with the architect's design (e.g., walls must be in the 
same places), which may be stored in an entirely differ- 
ent system. Constraint management in the distributed, 
heterogeneous environments addressed by Tsimmis is 
a much more difficult and complex problem than con- 
straint management in centralized systems: Transac- 
tions across multiple information sources usually are not 
provided, and each information source may support dif- 
ferent capabilities for accessing and monitoring the data 
involved in a constraint. 

In current environments, constraints across heteroge- 
neous information sources usually are monitored or en- 
forced by humans, in an ad-hoc fashion (or, frequently, 
not checked at all). For example, an architect may freeze 
the building design and send the latest specifications to 
the construction company so that consistency is "guar- 
anteed." Of course, it is clear that these ad-hoc mech- 
anisms do not work well in general; in our example, it 
is likely that the building may eventually not meet its 
specifications. 

Since in a loosely coupled environment it is generally 
not possible to guarantee that every user or applica- 
tion sees consistent data every time it interacts with 
the system, the Tsimmis constraint manager enforces 
constraints with weaker guarantees than what a cen- 
tralized system may provide. Tsimmis makes "relaxed" 
guarantees, e.g., a constraint is true from 8am to 5pm 
every day, or a constraint is true if some "Flag" is set. 
Ensuring relaxed consistency is especially challenging 
because one now has to deal with the timing of actions 
and of guarantees. However, the advantages of being 
able to handle relaxed guarantees in heterogeneous sys- 
tems are significant; knowing precisely what holds and 
what does not hold, and when, will clearly lead to more 
trustworthy systems. 

The Tsimmis constraint manager supports the defi- 
nition of the interfaces that a source supports for the 
information involved in a constraint (e.g., can a trig- 
ger be set on a data item?), specification of the desired 
constraint (e.g., two items should have the same value), 



and specification of the strategy that is to be followed 
for enforcing the constraint or for detecting violations. 
The Local Constraint Managers in Figure 1 are respon- 
sible for describing and supporting interfaces, while the 
Constraint Manager processes constraints and executes 
strategies. Note that the Constraint Manager actually is 
not centralized as illustrated in Figure 1, but rather is a 
set of distributed components that jointly manage con- 
straints. Constraint management is described in more 
detail in Section 4. 

1.6 Classification and Extraction 

The final component of the Tsimmis architecture con- 
sists of the Classifier/Extractors shown at the bottom 
of Figure 1. Many important information sources are 
completely unstructured, consisting of plain files or in- 
coming bit strings (e.g., from a newswire). Often it 
is possible to automatically classify the objects in such 
sources (e.g., is the file an email message, a text file, 
or a gif image?), and to extract key properties (e.g., 
creation date, author). The Classifier/Extractor per- 
forms this task, based on identifying simple patterns in 
the objects. The information collected by the Classi- 
fier/Extractor can then be exported (via a translator, if 
necessary) to the rest of the Tsimmis system, together 
with the raw data. The Classifier/Extractor component 
is based on the Rufus system developed at the IBM Al- 
maden Research Center [25] and is not discussed further 
in this paper. 

1.7 Related Work 

There are a number of differences between integration 
of information sources in the Tsimmis project and other 
database integration efforts (e.g. [2,13,18,28] and many 
others): 

• Tsimmis focuses on providing integrated access to 
very diverse and dynamic information. The infor- 
mation may be unstructured or semi-structured, of- 
ten having no regular schema to describe it. The 
components of objects may vary in unpredictable 
ways (e.g., some pictures may be'color, others black 
and white, others missing, some with captions and 
some without). Furthermore, the available sources, 
their contents, and the meaning of their contents 
may change frequently. 

• Tsimmis assumes that information access and in- 
tegration are intertwined. In a traditional integra- 
tion scenario, there are two phases: an integration 
phase where data models and Schemas (or parts 
thereof) are merged, and an access phase where data 
is fetched. In our environment, it may not be clear 
how information is merged until samples are viewed, 

and the integration strategy may change if certain 
unexpected data is encountered. 

• Integration in our environment requires more human 
participation. In the extreme case, integration is 
performed manually by the end user. For example, 
a stock broker may read a report saying that IBM 
has named a new CEO, then retrieve recent IBM 
stock prices from a database to deduce that stock 
prices will rise. In other cases, integration may 
be automated by a mediator, but only after a 
human studies samples of the data, determines the 
procedure to follow, and develops an appropriate 
specification for the mediator generator. 

In summary, the Tsimmis goal is not to perform 
fully automated information integration that hides 
all diversity from the user, but rather to provide a 
framework and tools to assist humans (end users and/or 
humans programming integration software) in their 
information processing and integration activities. 

Regarding the constraint management aspects, there 
has been substantial prior work on database constraints, 
focusing on centralized databases (e.g., [14]), tightly- 
coupled homogeneous distributed databases (e.g., [12, 
26]), or loosely-coupled heterogeneous databases with 
special constraint enforcement capabilities (e.g., [8,24]). 
The multidatabase transaction approach weakens the 
traditional notion of correctness of schedules (e.g., [5, 
10]), but this approach cannot handle a situation in 
which different databases support different capabilities. 
In its modeling of time, our work has some similarity 
to work in temporal databases [27] and temporal logic 
programming [1], although our approach is closer to the 
event-based specification language in RAPIDE [19]. 

1.8        Remainder of Paper 

In the rest of this paper we provide additional details 
on some of the Tsimmis components. In Section 2 we 
describe the OEM object model and its query language. 
In Section 3 we present the Tsimmis/Mosaic object 
browser. In Section 4 we outline the main components 
of the constraint management toolkit. In Section 5 we 
conclude, describe the status of the Tsimmis prototype, 
and discuss future directions of our work. 

2       Object Exchange 
As described in Section 1.1, our Object Exchange 
Model (OEM) is used as the unifying object model for 
information processed by Tsimmis components. Note 
that information need not actually be stored using 
OEM, rather OEM is used for the processing of logical 
queries, and for providing results to the user. 

Each object in OEM has the following structure: 



Label    Type     Value     Object-ID 

where the four fields are: 

• Label: A variable-length character string describing 
what the object represents. For each label a 
translator or mediator exports, it should provide a 
"help" page that describes (to a human) the meaning 
and use of the label. These help pages can be very 
useful during exploration of information sources, and . 
for deciding how to integrate information. 

• Type: The data type of the object's value. Each 
type is either an atom (or basic) type (such as 
integer, string, real number, etc.), or the type set or 
list. The possible atom types are not fixed and may 
vary from information source to information source. 

• Value: A variable-length value for the object. 

• Object-ID: A unique2 variable-length identifier for 
the object or A (for null). The use of this field is 
described below. 

In denoting an object on paper, we often drop the 
Object-ID field, i.e. we write (label,type,value), as in 
the examples in Section 1.1. 

Suppose an object representing an employee has 
label employee and a set value. The set consists of 
three subobjects, a name, an office, and a photo. All 
four objects are exported by an information source IS 
through a translator, and they are being examined by 
a client C. The only way C can retrieve the employee 
object is by posing a query that returns the object as 
an answer. 

Assume for the moment that the employee object is 
fetched into C's memory along with its three subobjects. 
The value field of the employee object will be a set of 
object references, say {olt 02,03}. Reference 0\ will be 
the memory location for the name subobject, o2 for the 
office, and 03 for the photo. Thus, on the client side, 
the retrieved object will look like: 

(employee, set, {ox, o2, o3}) 
o\\ location of (name, str, "some name") 
02: location of (office, str, "some office") 
03: location of (photo, bitmap, "some bits") 

On the information source side, the employee object 
may map to a real object of the same structure, or 
it may be an "illusion" created by the translator from 

We assume that identifiers are unique for each information 
source. Uniqueness across information sources can be achieved 
by, e.g., prepending each object identifier with a unique ID for 
the information source. 

other information. If IS is an object database, and the 
employee object is stored as four objects with object 
identifiers ido (employee), id\ (name), id2 (office), and 
id2 (photo), then the retrieved object on the client side 
would have id0 in the Object-ID field for the employee 
object, id\ in the Object-ID^ field for the name object, 
and so on. The non-null Object-ID fields tell client C 
that the objects it has correspond to identifiable objects 
at IS. Suppose instead that IS is a relational database, 
and that the employee "object" is actually a tuple. 
Then, the name, office, and photo objects (attributes 
of the tuple) will not have object identifiers, and their 
Object-ID fields at the client side will be A (null). 

So far we have assumed that the client retrieves the 
employee object and all of its subobjects. However, for 
performance reasons, the translator may prefer not to 
copy all subobjects. For example, if the photo subobject 
is a large bitmap with a unique identifier, it may be 
preferable to retrieve the name and office subobjects 
in their entirety, but retrieve only a "placeholder" for 
the photo object. In this case, the value field for the 
employee object at the client will contain {01,02, ie^}. 
This indicates that the name and office subobjects can 
be found at memory locations oj and 02, but the photo 
subobject must be explicitly retrieved using id$. 

Note that, regardless of the representation used in set 
and list values, the translator always gives the client the 
illusion of an object repository. Thus, we can think of 
our employee object as: 

(employee, set, {cmpi, cmp2, cmpzY) 
cmpi: (name, str, "some name") 
cmp2: (office, str, "some office") 
cmps: (photo, bits, "some bits") 

where each cmpi is some mnemonic identifier for the 
subobject. We use this generic notation for examples 
throughout the remainder of this section. 

As mentioned in Section 1, self-describing models 
have been used in many systems, including file systems 
[30], Lotus Notes [20], by Teknekron Software Systems 
[21], and for electronic mail. In many of these systems, 
nesting of objects is not allowed, so OEM can be viewed 
as a generalization of these models. OEM is simpler 
than conventional object models, but it does support 
the two key features required by object models [6]: 
object nesting and object identity. 

Our primary reason for choosing a very simple model 
is to facilitate integration. As pointed out in [3], 
simple data models have an advantage over complex 
models when used for integration, since the operations 
to transform and merge data will be correspondingly 
simpler. Meanwhile, a simple model can still be very 
powerful: advanced features can be "emulated" when 
they are necessary.   For example, if we wish to model 



an employee class with subclasses active and retired, we 
can add a subobject to each employee object with label 
subclass and value "active" or "retired." Of course this 
is not identical to having classes and subclasses, since 
OEM does not force objects to conform to the rules for 
a class. While some may view this as a weakness of 
OEM, we view it as an advantage, since it lets us cope 
with the heterogeneity we expect to find in real-world 
information sources.3 

2.1        Query Language and Examples 

To request OEM objects from an information source, a 
client issues queries in a language we refer to as OEM- 

QL. OEM-QL adapts existing SQL-Hke languages for 
object-oriented models (e.g., [15,16,17,23]) to OEM. 
Here we will give two examples to illustrate the "flavor" 
of OEM-QL; additional details and examples can be 
found in [22]. 

For the examples, suppose that we are accessing; a 
bibliographic information source called Biblio with the 
object structure shown in Figure 2. (Note that we are 
using mnemonic object references.) Although much of 
this object structure is regular—components have the 
same labels and types—there are some irregularities. 
For example, the call number format is different for each 
document shown, and the nth document uses a different 
structure for author information. 

Example 2.1 Our first example retrieves the topic of 
each document for which "Ullman" is one of the authors: 

SELECT bib.doc.topic 
FROM Biblio 

WHERE bib.doc.authors.author-In = "Ullman" 

Intuitively, the query's WHERE clause finds all paths 
through the subobject structure with the sequence of 
labels [bib, doc, authors, author-In] such that the 
object at the end of the path has value "Ullman." For 
each such path, the SELECT clause specifies that one 
component of the answer object is the object obtained 
by traversing the same path, except ending with label 
topic instead of labels [authors, author-In]. Hence, 
for the portion of the object structure shown in Figure 
2 the query returns: 

(answer, set, {oi, 02}) 
Oi: (topic, str, "Databases") 
02: (topic, str, "Algorithms") D 

Note that some proposed interchange standards, e.g. 
CORBA's Object Request Broker [ll], tend to be significantly 
more complex than OEM. We expect that if such standards are 
adopted, OEM could be used to provide a simpler, more "client- 
friendly" front end. Other proposed standards, such as ODMG's 
Object Database Standard [7], are directed towards interoperabil- 
ity and portability of object-oriented database systems, rather 
than towards facilitating object exchange in highly heterogeneous 
environments. 

(bib, set, {doci, doc2, ..., docn}) 

doci: (doc, set, {aui, topi, cm}) 
au\: (authors, set, {auj}) 

au\: (author-In, str, "Ullman") 
topi: (topic, str, "Databases") 
cni: (local-call#, integer, 25) 

<foc2: (doc, set, {ati2, top2, cn2}) 
au2: (authors, set, {au\, ax^,a^}) 

at4: (author-In, str, "Aho") 
at%: (author-In, str, "Hopcroft") 
au^: (author-In, str, "Ullman") 

top2: (topic, str, "Algorithms") 
en2: (dewey-decimal, str, "BR273") 

docn: (doc, set, {au*, topn, en*}) 

arin-. (one-author, str, "Michael Crichton") 
topn: (topic, str, "Dinosaurs") 
cTini (fiction-call#, int, 95) 

Figure 2: Object structure for example queries 

Example 2.2 Our next example illustrates how vari- 
ables are used to specify different paths with the same 
label sequence. This query retrieves each document for 
which both "Aho" and "Hopcroft" are authors: 

SELECT bib.doc 
FROM Biblio 
WHERE bib.doc.authors.author-ln(al) = "Aho" 

AND bib.doc.authors.author-ln(a2) = "Hopcroft" 

Here, the query's WHERE clause finds all paths through 
the subobject structure with the sequence of labels [bib, 
doc, authors], and with two distinct path completions 
with label author-In and with values "Aho" and 
"Hopcroft" respectively. The answer object contains 
one doc component for each such path. Hence, for the 
portion of the object structure shown in Figure 2 the 
query returns: 

(answer, set, {o}) 

o: (doc, set, {ati2, top2, cn2}) 
au2: (authors, set, {ai&, au|,at4}) 

at4: (author-In, str, "Aho") 
au|: (author-In, str, "Hopcroft") 
aui: (author-In, str, "Ullman") 

top2: (topic, str, "Algorithms") 
cn2: (dewey-decimal, str, "BR273")       D 

2.2       Implementation 

We have argued that OEM and its query language are 
designed to facilitate integrated access to heterogeneous 
data sources. To support this claim we have used the 
OEM model and language to integrate a variety of bibli- 
ographic information sources, including a conventional 



library retrieval system, a relational database holding 
structured bibliographic records, and a file system with 
unstructured bibliographic entries. Using our OEM- 
based system, these sources are accessible through the 
Tsimmis browser (Section 3), allowing evaluation of 
queries and object exploration. 

As an example, consider one of our operational trans- 
lators that accesses the Stanford University Folio Sys- 
tem. Folio provides access to over 40 repositories, in- 
cluding a catalog of the holdings of Stanford's libraries, 
and several commercial sources such as INSPEC that 
contain entries for Computer Science and other pub- 
lished articles. Folio is the most difficult of our infor- 
mation sources, partly because the translator must em- 
ulate an interactive terminal. The translator initially 
must establish a connection with Folio, giving the nec- 
essary account and access information. When the trans- 
lator receives an OEM-QL query to evaluate, it converts 
the query into Folio's Boolean retrieval language. Then 
it extracts the relevant information from the incoming 
screens and exports the information as an OEM answer 
object. The Folio translator is written in C and runs 
as a server process on Unix BSD4.3 systems. Trans- 
lators for the other bibliographic sources have involved 
substantially less coding because the underlying sources 
(e.g., a relational database) are much easier to use. 

We also have implemented mediators that fuse in- 
formation from multiple bibliographic sources. For ex- 
ample, one mediator provides a simple "union" of the 
sources, making the information appear as if it all comes 
from one source. Another mediator performs a "join" 
of two sources, combining entries that refer to the same 
document into a single entry that contains all informa- 
tion on the document available from either source.  > 

Finally, we also have implemented OEM Support Li- 
braries to facilitate the creation of future translators, 
mediators, and end-user interfaces. These libraries con- 
tain procedures that implement the exchange of OEM 
objects between a server (either a translator or a medi- 
ator) and a client (either a mediator, an application, or 
an interactive end-user). The Support Libraries handle 
all TCP/IP communications, transmission of large ob- 
jects, timeouts, and many other practical issues. A Unix 
BSD4.3 and a Windows version of the package have been 
implemented and demonstrated. The Support Libraries 
are described in [22]. 

3       Object Browsing 
The goal of the object browsing component of Tsimmis 
is to provide a platform-independent tool for displaying 
and exploring the OEM objects that are returned as a 
result of OEM-QL queries. Due to the nested structure 
of OEM objects, it is necessary to provide mechanisms 
that let end users navigate easily through the answer 

space, much like they would navigate through a tree 
structure. We have implemented MOBIE (MOsaic 
Based Information Explorer), a graphical browsing 
tool based on Mosaic and the World-Wide-Web [4, 
29] for submitting Tsimmis queries and exploring the 
results. MOBIE lets end users connect to mediators 
or translators and specify queries using OEM-QL. An 
important advantage of using Mosaic as the basis for 
our user interface is its widespread use and popularity. 
(Mosaic currently operates on Unix workstations, on 
Macintosh computers, and on many PC's.) Hence, 
ultimately anyone on the internet should be able to use 
Tsimmis and MOBIE to explore any information source 
on the net, provided there is an appropriate translator 
or mediator available for it. 

We illustrate MOBIE's operation by walking through 
a particular interaction. The first step in accessing 
information through MOBIE is to select a translator or 
mediator (henceforth referred to as TM) and connect to 
it. Figure 3 shows of MOBIE's home page4 with a list 
of currently available TMs. The user may select any of 
the TMs on the list, enter its name in the provided box, 
and click on the Connect button. (Information shown 
below the CONNECT button is used to "fine-tune" the 
communication between the source and the client, and 
can generally be left in its default configuration.) 

After the connection is established, a Query Request 
page (not shown) is displayed and the system is ready 
to accept an OEM-QL query. In the current version of 
MOBIE, queries must be entered by hand, meaning that 
the user must fill in the boxes provided on the screen 
(one box for the SELECT clause, one for the FROM 
clause, and one for the WHERE clause). However, 
future extensions will include the ability to select 
parameterized "frequently asked queries" by clicking on 
menus. 

If a submitted query is valid and successfully executed 
by the TM, the answer object is returned to MOBIE 
and displayed on a Query Result page. Except for 
very small objects, to see the complete result the 
user will move through the structure of the answer 
object using MOBIE's navigational capabilities. This 
is best understood by thinking of the answer object 
as a tree (or a graph, in the most general case), 
where the atom objects are the leaves, and the set 
objects are the internal nodes. Initially, only the root 
of the answer object and its immediate subobjects 
are displayed on the Query Result page (not shown). 
For our bibliographic data, the root is typically a set 
containing a set of documents (labelled doc). The 
user can move from the current level in the object 
structure to a lower level by clicking on the FETCH 

4Mosaic displays information through a series of text screens 
or pages, the first of which is always called the home page. 



[ ? Options        Mavicjater        Annotate 
* view ^SagSSSSiÄasisä^^iK^SBaäiSäSS^SäSSSS^SSESSSjg ^>^^g 

iDocument Title:j   iJ^jjgjffgSSC^ 

I Document U 

Source Connection 
Before you can start using, TSIMM1S. you mutt connta to one of our servers listed below. After you have typed in the name of the 
source In the shaded box. click Connect. 

Hereis a list of currently supported servers. For more information on each server, click Its name. 

tH-i.pt i.. (Translator) 
L liii.io (Tianslatoc) 
t'Nl'JM (Mediator) 
Jy::* (Mediator) 

Please enter your selection from the above lint;  |nT!i^?!?^^^^^^^^r^3^I 

| Connect | 

Additional connection parameters (ihown with some default settings): 

Protocol.: 

>J"."iI I".! J.J. 

If you don't want to connect to a server at this ome. 

J^kjifef y±nirn to üKI.TSI M Ivi ISbonit p;j;e. 

r% 

Q 
T 
| BackHi'.-i.--/«!.-.|| Home|| Reload || Open.. || Save As...|| Clone|p 31 New Windov/11 Close Window! 

Figure 3: MOBIE's home page 

E ocumc "tTltlc;i täss&mismi^&^tääämi ^^^^SiisiSssSs    0 

JGBL 

Fetch  Result 

doc   i»   a   SET    <#   of 

Help Result 1 

ilenents-ll) 

Content(a): 

Fetch 

TITLE    ("Selecced   database    ceseacch   at   ScaAfotd.  "> 

AUTHOR    ("Kellac.     A    .     Ratlunann.     P    ;     UlLnan.     J .   ;     HioJcshoLd, .   ■  ~> 

UBLICATION    ("SICMOD    Record     (Dec.      1990)     vol.19-     no.4.     p        119-22...." 

OCATIQN    ("Stanrord_for   Assocxacion   Jfor    Computing   Machinery       .  .  . ") 

DOCUMENT    TYPE    ("Joucnal    article") 

LANGUAGE     ("English"> 

ABSTRACT    ("Descnbos    seven   pro] ec ts    at,    t>ie    Computer    Science    D ") 

THESAURUS    ("Databaso   Management   Systeme") 

OTHER   SUBJECTS    ("Dataliasa    Research;    Keys    Project;     Precis«    Infocmati 

CtASS   CODES    ("CS16Ü     (Database    management    systems     (DDMS))") 

NOTES    ("Treatment;        Conoral/roview_Abatract   no. C9101723.      .  ") 

|   Go Up To Parent 

c Mew/   Cluei z3 
T 
[ Bac:k|| l--nfvji\i-<;)| Home|| Rnlnnrl || Opcn...|| Snv/c As     || Clone; || I Ji (Mow Window II Close: WincJov- a 

Figure 4: JFetcA Result page displaying a selected document 



ic. Documorft vic«r:iS^SaSp3SäSS2äES^SS 
/f/fe-       Options       Navigate       Annorats 

^Document Tltle:|  |jfeeAgjj^esCrt.%^^Mä^^^^iMMSäM^M^V:'■■?&tt&&i%i\ 

|Docu.ne.nURL:i f^SS^gSW^i^^ 

T 

Fetch Result 

TITLE: 

Selected database research at Stanford. 

Help Result 

| Go Up To Parent | 

|   New   Query   f 

l-Eg£üil-lii^":'dil Home j | Reload || Open... | |SaveAs^^lone|T 3E New Window 11 Close Wlndo\ o 
Figure 5: Fetch Result page showing the title of a document 

buttons preceding each sub-object. The result of clicking 
FETCH for one document in the intial query page is 
shown in Figure 4. The subobjects of this document 
are labelled Title, Author, etc., and their values can 
again be fetched by clicking on the FETCH buttons. For 
example, the result after clicking the TITLE button is 
shown in Figure 5. At this point we have a reached a 
leaf (or atom) in the answer space and cannot descend 
any further. The user can either backtrack to one of 
the parent objects by clicking on the Go Up To Parent 
button, or enter a new query by selecting New Query. 

At any point in the session, the user can ask for help 
by selecting the Help Result button, which displays 
text on the meaning of a particular result object. As 
discussed in Section 2, each TM provides capabilities 
for describing (in English) the meaning of a label, and 
how to interpret the value of objects with that label. 
As an example, the help entry for the author label as 
returned by the translator would explain that author 
objects consist of a last name followed by a first name 
or initials. A MOBIE session is ended by selecting the 
Close Session button on the Query Request page. 

4       Constraint Management 
The Tsimmis Constraint Manager is based on a general 
formal framework we  have developed  for constraints 

in heterogeneous systems. Each information source 
(recall Figure 1) chooses an interface it can offer to 
the local constraint manager (LCM) for each of its 
data items involved in a multi-source constraint. The 
interface specifies how the data item may be read, 
written, and/or monitored by the LCM. Applications 
inform the constraint manager (CM) of constraints 
that need to be monitored or enforced. Based on 
the constraint and the interfaces available for the 
items involved in the constraint, the CM decides on 
the constraint management strategy it executes. This 
strategy monitors or enforces the constraint as well as 
possible using the interfaces offered by the information 
sources. The degree to which each constraint is 
monitored or enforced is formally specified by the 
guarantee. We briefly describe interfaces, strategies, and 
guarantees next. Complete formal specifications of each 
can be found in [9]. 

Interfaces are specified using a notation based on 
events and rules. As an example, we illustrate a 
simple "write interface" for a data item X. With this 
interface, the information source promises to write any 
requested value to X within five seconds. The interface 
is expressed as the rule: 

WR(X, b) -* W(X, b); B<5. 

10 



Here, WR(X,b) represents a write-request event re- 
questing operation X := b. The rule says that when- 
ever such a write-request event occurs, a write event, 
W(X, b), occurs within 5 time units. We assume that 
the interfaces for the data items involved in constraints 
are specified by a "constraint administrator"5 at each 
site, based on the level of access and performance that 
can be provided to the CM for the data item. Cur- 
rently, we rely on the users of our framework to verify 
that the interfaces specified do faithfully represent the 
actual systems. 

The strategy for a constraint describes the algorithm 
used by the CM to monitor or enforce the constraint. 
Like interfaces, strategies are specified using a notation 
based on events and rules. In addition to performing 
operations on the data items involved in a constraint, 
strategies may evaluate predicates over the values of 
data items (obtained through read operations) and 
over private data maintained by the CM. As a simple 
example, consider the strategy description below, which 
issues a write request to Y within 7 seconds whenever 
a notify event is received from X. (A notify event 
represents the source notifying the CM of a write 
to a data item. Thus, e.g., N(X, 5) represents the 
notification that a write X := 5 occurred.) This 
strategy might be used to maintain the constraint X — 
Y. 

N(X,b)-+WR{Y,b); B<7. 

Rule-based strategy specifications are implemented us- 
ing the host language of the CM. The translation from 
rules to host language is usually straightforward, and it 
may be achieved using a rule processing engine. 

The guarantee for a constraint specifies the level 
of global consistency that can be ensured by the 
CM when a certain strategy for that constraint is 
implemented. Typically a guarantee is conditional, e.g., 
a guarantee might state that if no updates have been 
performed recently then the constraint holds, or if the 
value of a CM data item is true then the constraint 
holds. Guarantees are specified using predicates over 
values of data items and occurrences of certain events. 
For example, consider the following guarantee for a 
constraint X = Y: 

(Flag = true)®* => (X = Y)@@[t -a,t-0\. 

This guarantee states that if the Boolean data item Flag 
(maintained by the CM) is true at time t, then X =Y 
holds at all times during the interval [t - a,t - ß). 
Note that this guarantee is weaker than a guarantee 
that X  = Y always holds,  which is a very difficult 

5 The constraint administrator is an individual who is familiar 
with the structure and behavior of a given information source, 
much like a database administrator. 

guarantee to make in the heterogeneous, autonomous 
environments we are considering. 

4.1 A Constraint Management Toolkit 

As part of the Tsimmis prototype, we have built 
a toolkit that permits constraint management across 
heterogeneous and autonomous information systems. 
This toolkit allows us to enforce, for example, a copy 
constraint spanning data stored in a Sybase relational 
database and a file system, or an inequality constraint 
between a wAots-like database and an object-oriented 
database. 

Figure 6 depicts the architecture of our constraint 
management toolkit, which is based on the formal 
framework described above and interfaces with the 
Tsimmis architecture depicted in Figure 1. The Raw 
Information Sources (RIS) are what exist already at 
each site (for example, a relational database, a file 
system, or a news feed). The RISI is the source- 
specific interface offered by each RIS to its users and 
applications. For example, for a Sybase database, 
the RISI is based on a particular dialect of SQL, and 
includes details on how to connect to the server. 

The CM-Translator is the module that implements 
the interfaces for each of its data items. The CM- 
Translator is specified by a configuration file called 
a CM-RID (for Raw Interface Description), which 
includes: (1) which interfaces (selected from a menu of 
interface types) are supported by the CM-Translator, 
and (2) how these interfaces are implemented using the 
underlying RISI.6 The CM-Shells cooperate to execute 
the constraint management strategies. The CM-Shells 
are distributed rule engines that are configured by a 
Strategy Specification file. 

We now describe how constraint administrators would 
use our toolkit to set up constraint management across 
multiple sources. The administrators at each site 
first decide on the CM-Interfaces they are willing to 
offer, selected from menu of predetermined interfaces 
provided by the toolkit. For example, if the underlying 
RIS provides triggers, then a notify interface may be 
offered; if not, perhaps a read/write interface can be 
offered. The choice also depends on the actions the 
administrator wants to allow. For instance, even if the 
RIS allows updates to the source, the administrator 
may disallow a write interface that lets the CM make 
changes to the local data. Each CM-RID file records 
the interfaces supported, as well as the specification of 
the RIS objects to which the interface applies. 

6 Note that the CM-Translator is responsible for translating be- 
tween rule-based interface specifications (as described earlier) and 
source-specific operations. For translation of data and queries, a 
Tsimmis translator can be used. Hence, the CM-Translator to- 
gether with the CM-RID comprise the Local Constraint Manager 
illustrated in Figure 1. 

11 



/ 
t 

Other Sites 

\ 

Constraint Manager  1 

CM-shell 
(A) 

CM-shcll 
(B) 

"'- Strategy 
Spec 

.''' 

~~^~--^^    CM-!nterface     ^>^^ 

CM-Translator 
(A) 

CM-Trunsluior 
(B) CM 

RID 
CM 
RID 

^—         Interface      ^^-  
(RISI) 

Raw Information 
Source 

(A) 

Raw Informution 
Source 

(B) 

Figure 6: Constraint Management Toolkit Architecture 

Next, the administrator uses a Strategy Design Tool 
(not shown in Figure 6) to develop the CM strategy. 
This tool takes as input the multi-source constraints; 
based on the available interfaces, it suggests strategies 
from its available repertoire. For each suggested 
strategy, the design tool can give the guarantee that 
would be offered. The result of this process is a Strategy 
Specification file, which is then used by the CM-Shells 
at run time. Note that knowledgeable administrators 
might choose to write their Strategy Specifications 
directly, bypassing the Design Tool. 

5        Conclusion 

In summary, the Tsimmis project is exploring technol- 
ogy for integrating heterogeneous information sources. 
Current efforts are focusing on translator and mediator 
generators, which should significantly reduce the effort 
required to access new sources and integrate informa- 
tion in different ways. We believe that the OEM model 
described here provides the right flexibility for handling 
unexpected heterogeneity. 

Acknowledgements 

We are grateful to Ed Chang and Jon Goldberg for their 
implementation efforts, to Ashish Gupta, Dalian Quass, 
and Anand Rajaraman for valuable comments, and 
to the entire Stanford Database Group for numerous 
fruitful discussions. 

References 

[1] Martin Abadi and Zohar Manna. Temporal logic pro- 
gramming. Journal of Symbolic Computation, 8(3):277- 
295, 1989. 

[2] R. Ahmed et al. The Pegasus heterogeneous multi- 
database system. IEEE Computer, 24:19-27, 1991. 

[3] C. Batini, M. Lenzerini, and S. B. Navathe. A 
comparative analysis of methodologies for database 
schema integration. ACM Computing Surveys, 18:323- 
364, 1986. 

[4] T. J. Berners-Lee, R. Cailliau, and J.F. Groff. The 
world-wide web. Computer Networks and ISDN Sys- 
tems, 25:454-459, 1992. 

[5] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. 
Overview of multidatabase transaction management. 
VLDBJ, 1(2):181, October 1992. 

[6] R. G. G. Cattell. Object Data Management. Addison- 
Wesley, 1991. 

[7] R. G. G. Cattell. The Object Database Standard: 
ODMG-93. Morgan Kaufmann, 1994. 

[8] Stefano Ceri and Jennifer Widom. Managing semantic 
heterogeneity with production rules and persistent 
queues. In VLDB, pages 108-119, Dublin, Ireland, 
August 1993. 

[9] Sudarshan S. Chawathe, Hector Garcia-Molina, and 
Jennifer Widom. Constraint management in loosely 
coupled 
distributed databases. Technical report, Computer Sci- 
ence Department, Stanford University, 1993. Available 
through anonymous ftp from host db. Stanford. edu as 
pub/chawathe/1993/ca-loosely-coupled-dbs.ps. 

12 



[10] Ahmed Elmagarmid, editor. Special Issue on Uncon- 
ventional Transaction Management, Data Engineering 
Bulletin 14(1), March 1991. 

[11] Object Request Broker Task Force. The Common 
Object Request Broker: Architecture and Specification, 
December 1993. Revision 1.2, Draft 29. 

[12] Paul Grefen. Combining theory and practice in integrity 
control: A declarative approach to the specification of 
a transaction modification subsystem. In VLDB, pages 
581-591, Dublin, Ireland, August 1993. 

[13] A. Gupta. Integration of Information Systems: Bridg- 
ing Heterogeneous Databases. IEEE Press, 1989. 

[14] M. Hammer and D.McLeod. A framework for database 
semantic integrity. In Proceedings of the Second In- 
ternational Conference on Software Engineering, pages 
498-504, San Francisco, California, October 1976. 

[15] M. Kifer, W. Kim, and Y. Sagiv. Querying object- 
oriented databases. In Proceedings of the ACM SIG- 
MOD International Conference on Management of 
Data, pages 59-68, San Diego, California, June 1992. 

[16] W. Kim et al. On resolving schematic heterogeneity 
in multidatabase systems. Distributed And Parallel 
Databases, 1:251-279, 1993. 

[17] H. F. Korth and M. A. Roth. Query languages for 
nested relational databases. In Nested Relations and 
Complex Objects in Databases, pages 190-204. Springer- 
Verlag, 1989. 

[18] W. Litwin, L. Mark, and N. Roussopoulos. Interoper- 
ability of multiple autonomous databases. ACM Com- 
puting Surveys, 22:267-293, 1990. 

[19] David C. Luckham et al. Specification and analysis of 
system architecture using Rapide. IEEE Transactions 
on Software Engineering, 1994. 

[20] D. S. Marshak. Lotus Notes release 3. Workgroup 
Computing Report, 16:3-28, 1993. 

[21] B. Oki et al. The information bus—an architecture 
for extensible distributed systems. In Proceedings of 
the Fourteenth ACM Symposium on Operating System 
Principles, pages 58-68, Asheville, NC, December 1993. 

[22] Yannis Papakonstantinou, Hector Garcia-Molina, and 
Jennifer Widom. Object exchange across heterogeneous 
information sources. In Proceedings Data Engineering 
Conference, Taipei, Taiwan, March 1995. 

[23] M. A. Roth, H. F. Korth, and A. Silberschatz. Extended 
algebra and calculus for nested relational databases. 
ACM Transactions on Database Systems, 13:389-417, 
1988. 

[24] Marek Rusinkiewicz, Amit Sheth, and George Kara- 
batis. Specifying interdatabase dependencies in a mul- 
tidatabase environment. COMP, 24(12):46-51, Decem- 
ber 1991. 

[25] K. Shoens, A. Luniewski, P. Schwarz, J. Stamos, and 
J. Thomas. The rufus system: Information organization 
for semi-structured data. In VLDB, pages 97-107, 
Dublin, Ireland, August 1993. 

[26] Eric Simon and Patrick Valduriez. Integrity control 
in distributed database systems. In Proceedings of the 
Nineteenth Annual Hawaii International Conference on 
System Sciences, pages 621-632, 1986. 

[27] Richard Snodgrass. Temporal databases. COMP, 
19(9):35-42, September 1986. 

[28] G. Thomas et al. Heterogeneous distributed database 
systems for production use. ACM Computing Surveys, 
22:237-266, 1990. 

[29] Steven J. Vaughan-Nichols. How to glue together 
mosaic (internet browser) (tutorial). Government 
Computer News, 13(15):33, July 1994. 

[30] G. Wiederhold. File Organization for Database Design. 
McGraw Hill, New York, 1987. 

[31] G. Wiederhold. Mediators in the architecture of future 
information systems. IEEE Computer, 25:38-49, 1992. 

13 



Object Exchange Across Heterogeneous Information Sources* 

Yannis Papakonstantinou 

Hector Garcia-Molina 

Jennifer Widom 

Department of Computer Science 
Stanford University 

Stanford, CA 94305-2140 

{yannis,hector,widom}@cs.stanford.edu 

Abstract 

We address the problem of providing integrated access to diverse and dynamic information 
sources. We explain how this problem differs from the traditional database integration prob- 
lem and we focus on one aspect of the information integration problem, namely information 
exchange. We define an object-based information exchange model and a corresponding query 
language that we believe are well suited for integration of diverse information sources. We 
describe how the model and language have been used to integrate heterogeneous bibliographic 
information sources. We also describe two general-purpose libraries we have implemented for 
object exchange between clients and servers. 

1    Introduction 

A significant challenge facing the database field in recent years has been the integration of het- 

erogeneous databases. Enterprises tend to represent their data using a variety of conflicting data 

models and Schemas, while users want to access all data in an integrated and consistent fashion. 

There has been substantial progress on database integration techniques [1,9,13,19]; in addition, 

emerging standards such as SQL3 are aimed at eliminating many of the problems. 

At the same time, however, the problem of integration has become much more challenging 

because users want integrated access to information—data stored not just in standardized SQL 

databases, but also in, e.g., object repositories, knowledge bases, file systems, and document re- 

trieval systems. In addition, users want to integrate this information with "legacy" data, and even 

with data that is not stored but rather arrives on-line, e.g. over a news wire. As an example, consider 

a stock broker tracking a company, say IBM. The broker's information sources may include IBM 

product announcements, the stock market ticker tape, IBM profit/loss statements, news articles, 

structured databases containing historical information (dividends per year), personnel information 

(the 100 top-paid executives), general information (the Fortune 500), and so on. Queries may range 

'Research sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force Material Command, 
USAF, under Grant Number F33615-93-1-1339. The US Government is authorized to reproduce and distribute 
reprints for Government purposes notwithstanding any copyright notation thereon. The views and conclusions con- 
tained in this document are those of the authors and should not be interpreted as necessarily representing the official 
policies or endorsements, either express or implied, of Wright Laboratory or the US Government. This work was 
also supported by the Reid and Polly Anderson Faculty Scholar Fund, the Center for Integrated Systems at Stanford 
University, and by Equipment Grants from Digital Equipment Corporation and IBM Corporation. 

14 



from simple ones over a single source (e.g., What were IBM sales in 1990?), to simple ones involving 

multiple sources (e.g., Get all recent news items where an IBM executive is mentioned), to complex 

analyses (e.g., Is IBM stock a good buy today?). 

Although there are many similarities, integrating a disparate set of information sources differs 

from the integration of conventional databases in the following ways: 

• Many of the sources contain data that is unstructured or semi-structured, having no regular 

schema to describe the data. For example, a source may consist of free-form text; even if the 

text does have some structure, the "fields" (e.g., author, title, etc.) may vary in unpredictable 
ways. 

• The environment is dynamic. The number of sources, their contents, and the meaning of 

their contents may change frequently. For example, the stock broker's company may add or 

drop an information source depending on its cost and usefulness; a source that predicts a 

company's earnings may periodically redefine how it computes the earnings. 

• Information access and integration are intertwined. In a traditional environment, there are 

two phases: an integration phase where data models and Schemas are combined, and an 

access phase where data is fetched. In our environment, it may not be clear how information 

is combined until samples are viewed, and the integration strategy may change if certain 

unexpected data is encountered. 

• Integration in our environment requires more human participation. In the extreme case, 

integration is performed manually by the end user. For example, the stock broker may read a 

report saying that IBM has named a new CEO, then retrieve recent IBM stock prices from a 

database to deduce that stock prices will rise. In other cases, integration may be automated, 

but only after a human studies samples of the data and determines the procedure to follow. 

For example, a human may write a program that extracts yearly sales figures from IBM letters 

to stockholders and then "joins" this data (by year) with a table of dividends. 

In light of these differences and difficulties, we believe that the goal is not to perform fully automated 

information integration that hides all diversity from the user, but rather to provide a framework 

and tools to assist humans (end users and/or humans programming integration software) in their 

information processing and integration activities. So, what should the framework and tools look 

like? There are at least three categories: 

1. Information exchange. The various components of an information system need to exchange 

data objects (units of information), either for examination by an end user or for integration 

with other data objects. For this, there needs to be an agreement as to how objects will be 

requested, how they will be represented, what the semantic meaning of each object (and its 

components) is, and how objects are actually transported over a network. Once an exchange 

format is agreed upon, there need to be tools for translating between an information source 
and the exchange format. 

15 



CLIENT 

Query in common 
Query Language 

Result translated inlocommon 
infornuiion formal 

TRANSLATOR 

Query translated into 
Query Language of 

Info Source 

Result from 
Info Source 

INFO 
SOURCE 

Figure 1: Communication through a translator 

2. Information discovery and browsing. Users will want to explore the available informa- 

tion, discovering sources, browsing objects, and learning the semantics of objects and their 

components. Tools for information discovery and browsing allow humans (and ultimately soft- 

ware) to query for sources of interest, to request objects from sources, to navigate through 

objects (exploring their components), and to ask questions about the meaning of objects and 
their components. 

3. Mediators. A mediator is a program that collects information from one or more sources, 

processes and combines it, and exports the resulting information [21]. For example, a mediator 

could be a program that collects IBM yearly stockholder reports, extracts key figures, and 

exports a table of yearly results. A second mediator might take this table and combine it with 

a stock price report to produce a trends analysis for IBM. We envision a variety of tools to 

assist the mediator writer, some resembling a prograrnming environment, others presenting a 

menu of common ways of combining information. 

In this paper we focus particularly on the information exchange problem discussed in point 1, 

since we believe this problem needs to be solved before browsing tools or mediators can be con- 

structed. To motivate the information exchange problem further, consider an information source 

75 that contains bibliographic entries such as those found in many libraries. Some client C (human 

or otherwise) wishes to locate all books by author "J.D. Ullman" on the topic of "databases." 

Since IS and C are likely to be different, we need a common language and information format for 

communication. Client C uses the common language to express a query that requests the desired 

object. A front end to IS, which we call a translator, converts the query to a form that IS can 

process. When IS responds (with a set of bibliographic entries in some format), the translator 

converts the response into an object in the common format and transmits it to C. Finally, C may 

choose to translate the object (or the components it wants) into its own internal model. This form 

of communication is illustrated in Figure 1. 

In Section 2 we present an "object exchange model" (OEM) that we believe is well suited 

for information exchange in heterogeneous, dynamic environments.   OEM is flexible enough to 

\6 



encompass all types of information, yet it is simple enough to facilitate integration; OEM also 

includes semantic information about objects. In Section 3 we describe the query language we 

have designed for requesting objects in OEM. In Section 4 we describe how we have used OEM 

to integrate several heterogeneous bibliographic information sources. In Section 5 we present a 

pair of general-purpose libraries we have implemented that support OEM object exchange between 

any client and server processes. The procedures in these libraries provide communication services, 

session handling, object memory management, and partial object fetches. Calls to these procedures 

are embedded in client programs. In Section 6 we conclude and discuss our ongoing work in 

information integration using OEM. 

2     Object Exchange Model 

The first question to be addressed is: with so many data models around, why do we need another 

one? In fact we do not need another new model. Rather, we adopt a model that has been in use for 

many years. The basic idea is very simple: each value we wish to exchange is given a label (or tag) 

that describes its meaning. For example, if we wish to exchange the temperature value 80 degrees 

Fahrenheit, we may describe it as: 

(temperature-in-Fahrenheit, integer, 80) 

where the string "temperature-in-Fahrenheit" is a human-readable label, "integer" indicates the 

type of the value, and "80" is the value itself. If we wish to exchange a complex object, then 

each component of the object has its own label. For example, an object representing a set of two 

temperatures may look like: 

(set-of-temperatures, set, {cmpnt\, cmpntz}) 

cmpnti is (temperature-in-Fahrenheit, integer, 80) 

cmpnt-i is (temperature-in-Celsius, integer, 20) 

A main feature of OEM is that it is self-describing. We need not define in advance the structure 

of an object, and there is no notion of a fixed schema or object class. In a sense, each object contains 

its own schema For example, "temperature-in-Fahrenheit" above plays the role of a column name, 

were this object to be stored in a relation, and "integer" would be the domain for that column.1 

Note that, unlike in a database schema, a label here can play two roles: identifying an object 

(component), and identifying the meaning of an object (component). To illustrate, consider the 

following object: 

(person-record, set, {cmpnti, cmpnt^-, cmpntz}) 

cmpnti is (person-name, string, "Fred") 

'Of course, if we are exchanging a set of objects where each object has the same structure and labels, then it 

would be redundant to transmit labels with every member of the set. We view this as a data compression issue and 

do not discuss it further here. From a logical point of view, we assume that each object in our model carries its own 

label. 

V7 



cmpnt2 is {office-number-in-building-5, integer, 333) 

cmpntz is (department, string, "toy") 

Like a column name in a relation, the label "person-name" identifies which component in the 

person's record contains the person's name. In addition, the label "person-name" identifies the 

meaning of the component—it is the name of a person. We would not expect to find a dog's name 

"Fido" or "Spot" in this component. 

Thus, we suggest that labels should be as descriptive as possible. (For instance, in our example 

above, replacing "person-name" by "name" would not be advisable.) In addition, if an information 

source exports objects with a particular label, then we assume that the source can answer the 

question What does this label mean?. The answer should be a human-readable description—a type 

of "man page" (similar in flavor to Unix Manual pages). For example, if we ask the source that 

exports the above object about "person-name," it might reply with a text note explaining that this 

label refers to names of employees of a certain corporation, the names do not exceed 30 characters, 

and upper vs. lower case is not relevant. 

It is particularly important to note that labels are relative to the source that exports them. 

That is, we do not expect labels to be drawn from an ontology shared by all information sources. 

For example, a client might see the label "person-name" originating from two different sources that 

provide personnel data for two different companies, and the label may mean something different 

for each source; the client is responsible for understanding the differences. If the client happens 

to be a mediator that exports combined personnel data for the two companies, then the mediator 

may choose to define a new label "generic-person-name" (along with a "man page"), to indicate 

that the information is not with respect to a particular company. Mediators are discussed further 

in Section 4.2. 

We believe that a self-describing object exchange model provides the flexibility needed in a 

heterogeneous, dynamic environment. For example, personnel records could have fewer or more 

components than the ones suggested above; in our temperatures set, we could dynamically add 

temperatures in Kelvin, say. In spite of this flexibility, the model remains very simple. 

As mentioned earlier, the idea of self-describing models is not new—such models have been used 

in a variety of systems (see Section 2.2 for a discussion of these models and systems). Consequently, 

the reader may at this point wonder why we are writing a paper about a self-describing model, if such 

models have been used for many years. A first reason is that we believe it is useful to formally cast 

a self-describing model in the context of information exchange in heterogeneous systems (something 

that has not been done before, to the best of our knowledge), and to extend the model to include 

object nesting as illustrated above. To do this, a number of issues had to be addressed, as will be 

seen in subsequent sections. A second reason is to provide an appropriate object request language 

based on the model. Our language is similar to nested-SQL languages; however, we believe that 

the use of labels within objects leads to a language that is more intuitive than nested-SQL (see 

Section 3). 

\8 



2.1    Specification 

Each object in OEM has the following structure: 

Label    Type    Value    Object-ID 

• 

where the four fields are: 

• Label: A variable-length character string describing what the object represents. 

Type: The data type of the object's value. Each type is either an atom (or basic) type (such 

as integer, string, real number, etc.), or the type set or list. The possible atom types 

are not fixed and may vary from information source to information source. 

• Value: A variable-length value for the object. 

• Object-ID: A unique variable-length identifier for the object or A (for null).  The use of 
this field is described below. 

In denoting an object on paper, we often drop the Object-ID field, i.e. we write (label,type,value), 
as in the examples above. 

Object identifiers (henceforth referred to as OID's) may appear in set and list values as well 

as in the Object-ID field. We provide a simple example to show how sets (and similarly lists) are 

represented without OID's, and to motivate the kind of OID's that are used in OEM. Then we 
discuss OID's in set and list values. 

Suppose an object representing an employee has label "employee" and a set value. The set 

consists of three subobjects, a "name," an "office," and a "photo." All four objects are exported 

by an information source 75 through a translator, and they are being examined by a client C. The 

only way C can retrieve the employee object is by posing a query (see Section 3) that returns the 
object as an answer. 

Assume for the moment that the employee object is fetched into C's memory along with its 

three subobjects. The value field of the employee object will be a set of object references, say 

{oi,o2, o3}. Reference ox will be the memory location for the name subobject, o2 for the office, and 

03 for the photo. Thus, on the client side, the retrieved object will look like: 

(employee, set, {0l, o2, o3}) 

oj is location of (name, string, "some name") 

02 is location of (office, string, "some office") 

03 is location of (photo, bitmap, "some bits") 

On the information source side, the employee object may map to a real object of the same 

structure, or it may be an "illusion" created by the translator from other information. Suppose IS 

is an object database, and the employee object is stored as four objects with OID's id0 (employee), 

idi (name), id2 (office), and idz (photo). In this case, the retrieved object on the client side would 

\9 



have id0 in the Object-ID field for the employee object, idx in the Object-ID field for the name 

object, and so on. The non-null Object-ID fields tell client C that the objects it has correspond to 
identifiable objects at IS. 

Now suppose instead that IS is a relational database, and that the employee "object" is actually 

a tuple. Hence, the name, office, and photo objects (attributes of the tuple) do not have OID's, 

so their Object-ID field at the client side will be A (null). The employee object may have an 

immutable tuple identifier, which can be used in the Object-ID field at the client. Alternatively, 

the employee's Object-ID field at the client might contain A, or it might contain an SQL statement 

that retrieves the employee record based on its key attribute. 

So far we have assumed that the client retrieves the employee object and all of its subobjects. 

However, for performance reasons, the translator may prefer not to copy all subobjects. For exam- 

ple, if the photo subobject is a large bitmap, it may be preferable to retrieve the name and office 

subobjects in their entirety, but retrieve only a "placeholder" for the photo object. In this case, the 

value field for the employee object at the client will contain {ouo2,id3}. This indicates that the 

name and office subobjects can be found at memory locations o2 and o2, but the photo subobject 
must be explicitly retrieved using OID id3. 

Thus, at the client, sets and lists contain elements that may be of two forms, as follows. We 

assume there is an internal tag that indicates the form of each element. 

• Local Object Reference: This identifies an object stored at the client. It will typically be a 

memory location, but if local objects are cached in an object database, then object references 
could be Local OID's in this database. 

• Remote OID: This identifies an object at the information source.2 Each Remote OID is 

either lexical or non-lexical. Lexical OID's are printable strings, and they may be specified 

directly in our query language (see Section 3). Non-lexical OID's are "black boxes," such 

as the tuple identifiers or SQL queries described above. Clients may pass non-lexical OID's 

to translators using special interfaces, but since the OID's are not printable, they cannot be 

used in queries. Remote OID's could be classified further by other properties [6], such as 

whether they are permanent or temporary [4]. (Or, OID's could include a "valid timestamp" 

specifying when they expire.) We do not consider these further classifications here, although 

we may incorporate these concepts in a future extension of our model. 

Note that, regardless of the representation used in set and list values, the translator always 

gives the cbent the illusion of an object repository. Thus, we can think of our employee object as: 

(employee, set, {cmpntj, cmpnt2) cmpnt3}) 

cmpnti is (name, string, "some name") 

cmpnt2 is (office, string, "some office") 

cmpnt3 is (photo, bits, "some bits") 

We assume that identifiers are unique for each information source. Uniqueness across information sources can be 

achieved by, e.g., prepending each object identifier with a unique ID for the information source. 

20 



where each cmpnU is some mnemonic identifier for the subobject. We use this generic notation for 
examples throughout the paper. 

A final issue regarding OEM is that of duplicate objects at the client. Suppose, for example, 

that set object A at the information source has B and C as subobjects. Both B and C are of 

set type, and both have as subobjects the same object D. A query at a client retrieves A and all 

of its subobjects. Will the client have a single copy of object D, or will objects B and C point 

to different copies of D1 Our model does not require a single copy of D at the client, since this 

would place a heavy burden on translators that are not dealing with real objects at the information 

source. However, if both copies of D have the same (non-null) Object-ID field, then the client can 

discern that the two objects correspond to the same object at the source. Also note that we do 

not require translators to discover cyclic objects at the source. Suppose, for example, that A has 

B as a subobject and B has A as a subobject. If the client fetches A from a "smart" translator, 

the translator would return only two objects, a copy of A and a copy of B. Each object's set value 

would be a reference for the other object. However, a "dumb" translator is free to return, say, 

four objects, Au Bu A2, B2, where Ax references Bu Bx references A2, A2 references B2, and B2 

contains the empty set to indicate that for performance reasons the chain was not followed. 

2.2    Related Models and Systems 

In this section we contrast OEM with other similar models and systems. We focus particularly on 

the differences between OEM and more conventional object-oriented models, and we discuss the 
motivation behind our design of OEM. 

Labeled fields are used as the basis of several data models or data formatting conventions. For 

example, a tagged file system [20] uses labels instead of positions to identify fields; this is useful 

when records may have a large number of possible fields, but most fields are empty. Electronic 

mail messages consist of label-value pairs (e.g. label "From" and value "yannis@cs.stanford.edu"). 

More recently, Lotus Notes [15] has used a label-value model to represent office documents, and 

Teknekron Software Systems [16] has used a self-describing object model for exchange of information 

in their stock trading systems. In [13] and [14] self-describing databases are proposed as a solution 

to obtaining the increased flexibility required by heterogeneous systems. 

Recent projects on heterogeneous database systems (e.g., [1,3,11]) have applied object-oriented 

(00) data models to the problem of database integration. OEM differs from these and other 00 

data models in several ways. First, OEM is an information exchange model. OEM does not specify 

how objects are stored at the source. OEM does specify how objects are received at a client, but 

after objects are received they can be stored in any way the client likes. OEM explicitly handles 

cross-system OID's (e.g., in Section 2.1 an employee object at the client points to a photo object 

at the source). In a conventional 00 system there may also be client copies of server objects, but 

there the client copy is logically identical to the server copy and an application program at the 

client is not aware of the difference. 

21 



A very important difference between OEM and conventional 00 models is that OEM is much 

simpler. OEM supports only object nesting and object identity; other features such as classes, 

methods, and inheritance are omitted. (Incidentally, [4] claims that the only two essential features 

of an 00 data model are nesting and object identity.) Our primary reason for choosing a very 

simple model is to facilitate integration. As pointed out in [2], simple data models have an advantage 

over complex models when used for integration, since the operations to transform and merge data 

will be correspondingly simpler. Meanwhile, a simple model can still be very powerful: advanced 

features can be "emulated" when they are necessary. For example, if we wish to model an employee 

class with subclasses "active" and "retired," we can add a subobject to each employee object with 

label "subclass" and value "active" or "retired." Of course this is not identical to having classes 

and subclasses, since OEM does not force objects to conform to the rules for a class. While some 

may view this as a weakness- of OEM, we view it as an advantage, since it lets us cope with the 

heterogeneity we expect to find in real-world information sources.3 

The flexible nature of OEM can allow us to model complex features of a source in a simple 

way. For example, consider a deductive database that contains a parent relation and supports the 

recursive ancestor relation through derivation rules. If we wish to provide an OEM model of this 

data in which it is easy to locate a person's ancestors, we can make the object that corresponds 

to each person contain as subobjects the objects that correspond to his/her parents. It is then 

simple to pose a query in our OEM query language (see Section 3) that retrieves all of a person's 

ancestors. In addition, a user can browse through a person's "family tree" using the browsing 
facility described in Section 4.1. 

A final distinct difference between OEM and conventional 00 models is the use of labels in 

place of a schema. Clearly, it would be trivial to add labels to a conventional 00 model (e.g., all 

objects could have an attribute called "label"). The only difference then is that in OEM labels are 

first-class citizens. We believe this small change makes interpretation and manipulation of objects 

more straightforward, as discussed in the next section. Note that the schema-less nature of OEM is 

particularly useful when a client does not know in advance the labels or structure of OEM objects. 

In traditional data models, a client must be aware of the schema in order to pose a query. In our 

model, a client can discover the structure of the information as queries are posed. 

3    Query Language 

To request OEM objects from an information source, a client issues queries in a language we refer 

to as OEM-QL. OEM-QL adapts existing SQL-like languages for object-oriented models to OEM. 

The basic construct in OEM-QL is an SQL-like SELECT-FROM-WHERE expression. The syntax is: 

3Note that some proposed interchange standards, e.g. CORBA's Object Request Broker [8], tend to be significantly 

more complex than OEM. We expect that if such standards are adopted, OEM could be used to provide a simpler, more 

"client-friendly" front end. Other proposed standards, such as ODMG's Object Database Standard [5], are directed 

towards interoperability and portability of object-oriented database systems, rather than towards facilitating object 
exchange in highly heterogeneous environments. 

22 



SELECT Fetch-Expression 

FROM Object 

WHERE Condition 

The result of this query is itself an object, with the special label "answer": 

{answer, set, {objx, obj2, ..., ofcjn» 

Each returned subobject obji is a component of the object specified in the FROM clause of the 

query, where the component is located by the Fetch-Expression and satisfies the Condition. Details 

are given below. We assume that the Object in the FROM clause is specified using a lexical object- 

identifier, and that for every information source there is a distinguished object with lexical identifier 

"root." (Sources may or may not support additional lexical identifiers.) Certainly the query 

language may be extended with a call interface that allows non-lexical object identifiers in FROM 
clauses. 

The Fetch-Expression in the SELECT clause and the Condition in the WHERE clause both use the 

notion of a path, which describes a traversal through an object using subobject structure and labels. 

For example, the path "bibliography.document.author" describes components that have label 

"author," and that are subobjects of an object with label "document" that is in turn a subobject 

of an object with label "bibliography." Paths are used in the Fetch-Expression to specify which 

components are returned in the answer object; paths are used in the Condition to qualify the 

fetched objects or other (related) components in the same object structure. A path specified in 

a Fetch-Expression may be terminated by the special symbol "OID," in which case only object 

identifiers are returned in the answer object, rather than the objects themselves.4 A syntax and 

semantics for the basic constructs of OEM-QL is given in the Appendix. In the remainder of this 

section we provide a number of examples that serve to illustrate its capabilities. 

For the examples, suppose that we are accessing a bibliographic information source with the 

object structure shown in Figure 2. (Note that we are using mnemonic object references; recall 

Section 2.) Let the entire object (i.e., the top-level object with label "bibliography") be the dis- 

tinguished object with lexical object identifier "root". Note that although much of this object 

structure is regular—components have the same labels and types—there are some irregularities. 

For example, the call number format is different for each document shown, and the third document 
uses a different structure for author information. 

Example 3.1 Our first example retrieves the topic of each document for which "Ullman" is one 
of the authors: 

SELECT bibliography.document.topic 

FROM root 

WHERE bibliography.document.author-set.author-last-name = "Ullman" 

4If there are qualifying objects without OID's, these objects are not returned in the answer object. 

23 



(bibliography, set, {doCl, doc2, ..., doc»}) 

doc-i is (document, set, {authors!, topicly call-numberi}) 

authorsi is (author-set, set, {author\}) 

author\ is (author-last-name, string, "Ullman") 

topici is (topic, string, "Databases") 

call-number! is (internal-call-no, integer, 25) 

doc2 is (document, set, {authors2, topic2> call-number2}} 

authors2 is (author-set, set, {author], author\,authorl)) 

author\ is (author-last-name, string, "Aho") 

author^ is (author-last-name, string, "Hopcroft") 

author^ is (author-last-name, string, "Ullman") 

topic2 is (topic, string, "Algorithms") 

call-number2 is (dewey-decimal, string, "BR273") 

doc» is (document, set, {authors», topic», call-number»}) 

authors» is (single-author-full-name, string, "Michael Crichton) 
topic» is (topic, string, "Dinosaurs") 

call-number» is (fiction-call-no, integer, 95) 

Figure 2: Object structure for example queries 

Intuitively, the query's WHERE clause finds all paths through the subobject structure with the se- 

quence of labels [bibliography, document, author-set, author-last-name] such that the object 

at the end of the path has value "Ullman." For each such path, the FROM clause specifies that one 

component of the answer object is the object obtained by traversing the same path, except ending 

with label topic instead of labels [author-set, author-last-name]. Hence, for the portion of the 
object structure shown in Figure 2 the query returns: 

(answer, set, {obfr, obj2}) 

obJ! is (topic, string, "Databases") 

obj2 is (topic, string, "Algorithms")      D 

Example 3.2 Our second example illustrates the use of "wild-cards" and an existential WHERE 

clause. This query retrieves the topics of all documents with internal call numbers. 

SELECT bibliography.?.topic 
FROM root 

WHERE bibliography.?.internal-call-no 

The "?" label matches any label. Therefore, for this query, the document labels in Figure 2 could 

be replaced by any other strings and the query would produce the same result.  By convention, 

24 



two occurrences of ? in the same query must match the same label unless variables are used (see 

below). Note that there is no comparison operator in the WHERE clause of this query, just a path. 

This means we only check that the object with the specified path exists; its value is irrelevant. 

Hence, for the portion of the object structure shown in Figure 2 the query returns: 

(answer, set, {obji}) 

obji is (topic, string, "Databases")       D 

Example 3.3 In Example 3.2, the wild-card symbol ? was used to match any label. We also allow 

"wild-paths," specified by the symbol "*". Symbol * matches any path of length one or more.5 

Using *, the query in the previous example would be expressed as: 

SELECT *.topic 

FROM root 

WHERE *.internal-call-no    • 

The use of * followed by a single label is a convenient and common way to locate objects with a 

certain label in a complex structure. Similar to ?, two occurrences of * in the same query must 

match the same sequence of labels, unless variables are used.       D 

Example 3.4 Our next example illustrates how variables are used to specify different paths with 

the same label sequence. This query retrieves each document for which both "Aho" and "Hopcroft" 
are authors: 

SELECT bibliography.document 

FROM root 

WHERE bibliography.document.author-set.author-last-name(al) = "Aho" 

AND bibliography.document.author-set.author-last-name(a2) = "Hopcroft" 

Here, the query's WHERE clause finds all paths through the subobject structure with the sequence 

of labels [bibliography, document, author-set], and with two distinct path completions with 

label author and with values "Aho" and "Hopcroft" respectively. The answer object contains one 

"document" component for each such path. Hence, for the portion of the object structure shown 
in Figure 2 the query returns: 

(answer, set, {obj}) 

objis (document, set, {authors2, topic2, call-number2}) 

authors2 is (author-set, set, {author\, author^,author^}) 

author^ is (author-last-name, string, "Aho") 

author^ is (author-last-name, string, "Hopcroft") 

authoi% is (author-last-name, string, "Ullman") 

topic2 is (topic, string, "Algorithms") 

call-no2 is (dewey-decimal, string, "BR273")       D 

Note that our use of wild-card symbols is similar to, e.g., Unix, X-windows, etc. 

25 



Example 3.5 Our next example illustrates how object identifiers may be retrieved instead of 

objects.6 This query retrieves the OID's for all documents with a Dewey Decimal call number: 

SELECT *.0ID 

FROM root 

WHERE *.dewey-decimal 

In this query, since the path in the FROM clause ends with "OID," only object identifiers are returned. 

Hence, for the portion of the object structure shown in Figure 2 the query returns: 

(answer, set, {idi}) 

where idi is the OID for the object referred to as doc2 in Figure 2.      D 

Example 3.6 Although we have used only equality predicates so far, OEM-QL permits any pred- 

icate to be used in the Condition of a WHERE clause. The predicates that can be evaluated for a 

given information source depend on the translator and the source. Suppose, for example, that a 

bibliographic information source supports a predicate called author that takes as parameters a 

document and the last name of an author; the predicate returns true iff the document has at least 

one author with the given last name. Then the query in Example 3.4 might be written as: 

SELECT bibliography.document 

FROM root 

WHERE author(bibliography.document, "Aho") 

and author(bibliography.document, "Hopcroft") 

One of the translators we have built (see Section 4) is for a bibliographic information source called 

Folio that does in fact support a rich set of predicates. All of the predicates supported by Folio are 
available to the client through OEM-QL.      D 

In the Appendix we provide a grammar for the basic OEM-QL syntax and a semantics specified 

as the answer object returned for an arbitrary query. The basic OEM-QL described in this paper 

is certainly amenable to extensions. For example, here we have allowed only one object in the FROM 

clause, so "joins" between objects cannot be described at the top level of a query. The language 

can easily be extended to allow multiple objects in the FROM clause. Similarly, the SELECT clause 

allows only one path to be specified; "constructors" can be added so that new object structures 

can be created as the result of a query. While these extensions are clearly useful, and we plan to 

incorporate them in the near future, we also expect that many translators (especially translators 

for unstructured and semi-structured information sources) will support only the basic OEM-QL 

(some may even support just a subset), since supporting the full extended language may result in 

unreasonable increase of the translator's complexity. One useful extension we plan for OEM-QL, 

Here the client is explicitly requesting OID's instead of objects. In other cases OID's may be retrieved instead 
of objects for efficiency; recall Section 2.1. 

26 



and we expect will be supported by most translators, is the ability to express queries about labels 

and object structure: we expect that clients will frequently need to "learn" about the objects 

exported by an information source before meaningful queries can be posed. 

3.1    Related Languages 

Many query languages for object-oriented and nested relational data models are based on an ex- 

tension of SQL with path expressions, e.g. [10,11,12,17]. As stated earlier, OEM-QL can be viewed 

as an adaptation of these languages to the specifics of OEM. 

In OEM-QL, path expressions range only over objects, while in most other languages they range 

over the schema and the objects. For example, consider the WHERE condition document.author = 

"Smith". In OEM-QL, we simply find all objects with label document that have a subobject with 

label author and value "Smith." In a conventional 00 language, we would have to identify a class 

document with an attribute named author. Then we would range over .all objects of class document 

looking for the matching name. We believe that the simplicity of ranging over objects only leads 

to a more intuitive language and a more compact language definition. 

A significant feature of OEM-QL is that it lets us query information sources where there is no 

regular schema. A conventional language breaks down in such a case, unless one defines an object 

class for every possible type of irregular object. (Note that such a schema would have to be modified 

each time a different object appeared.) Of course, if a particular information source does have a 

schema and a regular structure, the translator for that source should take advantage of the schema. 

For example, suppose all objects are stored in a relational database, and the translator receives 

the WHERE condition document.author = "Smith". The translator could first check that there is 

a relation document with attribute author and, if so, could use an index to fetch the matching 

objects. Thus, the fact that the model and language do not require a schema does not mean that 
a schema cannot be used for query processing. 

4    Implementation of Translators, Browsers, and Mediators 

We have argued that OEM and its query language are designed to facilitate integrated access to 

heterogeneous data sources. To support this claim, in this section we describe how we have applied 

OEM to a particular scenario. The scenario consists of a variety of bibliographic information 

sources, including a conventional library retrieval system, a relational database holding structured 

bibliographic records, and a file system with unstructured bibliographic entries. Using our OEM- 

based system, these sources are accessible through a general-purpose user interface that allows 
evaluation of queries and object exploration. 

Our first operational translator accesses the Stanford University Folio System. Folio provides 

access to over 40 repositories, including a catalog of the holdings of Stanford's libraries, and several 

commercial sources such as INSPEC that contain entries for Computer Science and other published 

articles. Folio is the most difficult of our information sources, partly because the translator must 

27 



emulate an interactive terminal. The translator initially must establish a connection with Folio, 

giving the necessary account and access information. When the translator receives an OEM-QL 

query to evaluate, it converts the query into Folio's Boolean retrieval language. Then it extracts 

the relevant information from the incoming screens and exports the information as an OEM answer 

object. The Folio translator is written in C and runs as a server process on Unix BSD4.3 systems. 

We have also implemented several simple mediators that refine the objects exported by the trans- 

lator (see Section 4.2).- Translators for the other bibliographic sources are nearly complete—they 

have involved substantially less coding because the underlying sources (e.g., a relational database) 

are much easier to use. Our translators and mediators are discussed further in Section 4.2. 

We have also implemented OEM Support Libraries to facilitate the creation of future transla- 

tors, mediators, and end-user interfaces. These libraries contain procedures that implement the 

exchange of OEM objects between a server (either a translator or a mediator) and a client (either 

a mediator, an application, or an interactive end-user). The Support Libraries handle all TCP/IP 

communications, transmission of large objects, timeouts, and many other practical issues. A Unix 

BSD4.3 and a Windows version of the package have been implemented and demonstrated. The 
Support Libraries are described in Section 5. 

Finally, we have implemented a Heterogeneous Information Browser that lets a user submit 

queries and explore resulting objects.7 The Browser is implemented in Visual C++ and runs under 

Windows. The next subsection describes the Browser in more detail. We believe the Browser 

iUustrates the desirability of a simple model and language from the point of view of a user who 
may not be familiar with the underlying information. 

4.1    The Heterogeneous Information Browser 

The Heterogeneous Information Browser (HIB) provides a graphical user interface for submitting 

queries and exploring results. We illustrate its operation by walking through a particular interac- 
tion. Refer to Figure 3. 

When the HIB is opened, it displays a menu of known translators and/or mediators (hereafter 

referred to as TM's). Each entry of the menu specifies the name of a TM, the site where it can be 

found, the communication protocol it uses, and other information that may be needed for locating 

the TM and connecting to it. The user may select any of the TM's on the menu, or the user may 
enter a new TM not listed. 

After a connection is established, an information exchange session starts. The user can either 

type a query directly into the Active Query window, or he may select one of the Frequently-Asked- 

Queries shown in the Queries window. If a Frequently-Asked-Query is selected, it is copied to 

the Active Query window. (Typically, these are fill-in-the-form queries, so the user must complete 

the missing parts.) Frequently-Asked-Queries may come from two places: (1) the user may cache 

previously formulated queries; or (2) the source may provide a list of common queries (we have 

In [18] it is argued that user interfaces and browsers will play an important role in exploring heterogeneous 
information sources. 

28 



Figure 3: Querying and Object Browsing 

not implemented this feature yet). For example, a translator for Folio may provide templates for 

finding documents by author, title, and subject, by far the most common queries. The ability to 

suggest common queries is especially important for "low end" TM's that do not implement the full 

OEM-QL In such a case, the user needs guidance as to what queries the source will be able to 
process. 

If a submitted query is valid and successfully executed by the TM, the answer object is returned 

to the HIB The user can then navigate through the object structure of the answer. This is better 

understood if we think of the answer as a tree (or a graph, in the most general case), where the 

atom objects are the leaves, and the set objects are the internal nodes. Initially, the root and 

its immediate subobjects are displayed in the object viewer, as illustrated in the left window of 

Figure 3. Here, the root (label answer) is a set of six documents (label doc). The user can move 

from the current node to another node by clicking on any of the highlighted direction buttons at 

the bottom of the window. If a button is not activated, there is no object in that direction. For 

example, m the left window of Figure 3 one cannot move UP because there are no objects "above" 

the root. However, the user can move DOWN to the first child of the answer object; the result is 

shown in the right window of Figure 3. During navigation, the object viewer always shows two 

levels of the structure (which can be generalized to k levels). Thus, when the current object is a 

document (label doc) one can see its components, i.e., the TITLE, AUTHOR, and so on (right window). 

If an atom value is too large to be seen in the viewer (e.g., the abstract of a document), the user 
can click on it to open a full window that displays the value. 

At any time, the user can click on the HELP button to display the "man page" for the label of 

the current object. As discussed in Section 2, each TM answers the question What does label X 

mean? by returning a manual entry. This entry describes in English the meaning of the label and 

how the value of the object should be interpreted.   For example, the entry for the author label 

29 



under Folio would explain that names consist of a last name followed by a first name or initials, it 

would specify the maximum length allowed, it would explain how multiple authors are displayed, 

and so on. We feel this is a very useful feature of our approach: any time one sees a data value, it 

is accompanied by a label, and one can immediately find the meaning of the label. This is not only 

useful to the end-user, but also to the mediator implementor who needs to understand the data 
that is being integrated or processed.8 

Notice that the self-describing nature of OEM makes it easy for a user to navigate through 

unknown objects. If a user knows nothing about a particular source, he can simply pose the query: 

SELECT ? 

FROM root 

and then browse.  As he examines the retrieved labels and their "man pages," he can learn the 

meaning of each component. Then he can pose more refined queries. 

4.2    Translators and Mediators 

In this section we iUustrate how OEM is used for translation and mediation in the context of 

our heterogeneous bibliographic information source scenario. The general architecture is shown in 

Figure 4. Translators are built for all participating bibliographic sources. On top of the translators 

we use mediators [22] to support objects and queries that are more refined than the objects and 

queries supported by lower-level translators or mediators. In particular, the mediators directly 

above the translators reconcile discrepancies between sources (e.g., differences in the structure of 

objects, the naming of labels, the format of values, etc.), simplifying the task of the mediator that 
combines information from multiple sources. 

To iUustrate the operation of the translators and mediators, consider the Folio information 

source and its translator. The Folio translator T receives OEM-QL queries and issues Folio queries. 

The set of queries q(T) that T is able to translate and execute should have two properties: 

1. The translation of any q{T) query into a corresponding Folio query should be as simple as 

possible, to minimize the translation implementation effort. 

2. The set q(T) should preserve as much as possible the power of the underlying query language. 

Ideally, there should be no Folio query that does not have a corresponding query in q(T). 

We have satisfied both properties in the case of Folio by supporting predicates in OEM-QL that 

correspond directly to the access methods that Folio provides. As an example, Figure 4 shows a 

typical query entering Folio, asking for the bibliographic entries where the last name of one of the 

authors is "Ullman" and the first name starts with "J." The corresponding query in OEM-QL is: 

»The requirement of providing a «man page» for each label could be viewed as a burden, but if the meaning of 
information is not documented, there is no hope for heterogeneous information access! 

30 



SELECT document 

FROM Library 

WHERE document.authors.author.last-name = 'UH'man' 

AND documem.authors.author.first-name=T 

<answer, set, |ol.o2|> 
01 is <documem, set, |oll,ol2)> 

ol 1 is < title, string, 'New Frontiers in Database System Research' > 
012 is < author-set. set, (ol21) > 

0121 is < author, scl.  (ol2I l,ol212|> 

01211 is < last-name, string, 'Ullman'> 
01212 is < first-name, string, 'J'> 

02 is < document, set, {o21. o22) > 

SELECT document 
FROM Library 

WHERE ducuincnt.aulhors.aulhor.lasl-namc = "Ullnian- 

AND document aulhors.aulhorfirsl-nanic='J' 

Mediator M.. 

<answer, set. |ol,o2)> 
ol is <document, set, |oll.ol2}> 

ol 1 is < title, string, "New Frontiers in Database System Research- > 
ol2 is < author-set, set, (ol21) > 

0121 is < author, set, (ol211.ol212)> 
01211 is < last-name, string, 'Ullman'> 
01212 is < first-name, string, \J'> 

o2 is < document, set, (o21, o22) > 

Mediator Mj s— 

SELECT document 
FROM Library 

WHERE author(document, 'Ullman') 

<answer, set, (ol ,o2)> 

01 is <document, string, 

'TITLE : New Frontiers in Database System Research 
AUTHOR: UllmanJ.' > 

02 is <document, string. '...'> 

Mediator Mj 

Folio 
Translator T 

Sybase 

Translator 

find author Ullman J 
Citation 1 
TITLE : New Frontiers in database system Research 
AUTHOR : UllmanJ. 

Folio Sybase 

Flat Files 

Translator 

. 

Flat 

„. 
Files 

~2> 

Figure 4: Translation and Mediation Architecture 

SELECT collection.document 

FROM Folio 

WHERE author(collection.document,  "Ullman J") 

From this query, T only needs to translate the author predicate to the corresponding author search 
construct. 

As illustrated in Figure 4, translator T uses a straightforward mapping to translate the citations 

returned from Folio (as a string) into an OEM object. Mediator Mr refines the structure of the 

objects exported by T, by extracting the basic components of each bibliographic object (e.g., 

authors, title). In addition, M1 supports a wider and more generic set of queries than T. For 

example, Mx is able to translate the incoming query shown in Figure 4 to the outgoing one. 

A key design criterion here is modularity. Since the translators are likely to be the most complex 

components (they must deal with the idiosyncrasies of the information sources), our goal is to keep 



the work of the translators to a minimum. Once a translator produces its object in some OEM 

format, additional work can be done by mediators. Note that [7] suggests an average of 6 months 

effort to implement a translator for a conventional DBMS. In our experience, the total effort can 

be reduced substantially by shifting work from translators to mediators, and by using the Support 
Libraries described in Section 5. 

The top level mediator Mu in Figure 4 combines the information from several sources into a 

single document collection. The simplest implementation of this mediator performs a union of all 

the collections. When Mu receives a query, it effectively "broadcasts" the query to all mediators 

at lower levels, then merges the answers. Certainly more sophisticated mediation techniques could 

be useful, such as recognizing and eliminating duplicate results. In the following subsection we 

describe some initial ideas we have for specifying and implementing mediators. 

4.2.1     Mediator Generation 

Implementing mediators is a non-trivial task, so our eventual goal is to develop tools for mediator 

generation. (Similar tools can be used for translator generation, but we focus on mediators here.) 

The approach described in this section has not yet been implemented, but the ideas are presented 
to illustrate the type of generators we expect OEM will lead to. 

The object translation work of mediator Mx in Figure 4 (i.e. the "upward" direction) could be 
described by the following "rule": 

document replaced by derive.structure(document) 

This rule specifies that whenever M1 receives an object O from T, M1 replaces each (sub)object 0; 

of O that has label document by a (sub)object 0\ created by derive_structure(0;). The function 

derive-structureO may be implemented in a conventional programming language. However, we 

are currently developing object-pattern-matching and string-pattern-matching tools that describe 

object transformations in a high level "label-driven" language. In this way we wiU often eliminate 
the need for conventional programming of mediators. 

Mediator generators can also describe the process of query translation (the "downward" direc- 

tion). One approach that easily tackles simple cases relies on templates that describe how predicates 

(or groups of predicates) in incoming queries are replaced by predicates (or groups of predicates) 

in outgoing queries. For example, Mx might use the following query rewriting templates, where X 
and Y represent variables to be matched: 

Tl.  document.authors.author.last-name =  "X" 

AND document.authors.author.first-name = "Y"    =>    author(document,  "XY") 

T2.  document, authors, author, last-name = "X"    =>    author (document,  "X") 

T3.  document.authors.author.first-name =  "Y"    =>    author(document,  "Y") 

Then, all queries processed by Mx will be matched against the above templates. For example, if 
the query: 



SELECT document 

FROM Library 

WHERE document.authors.author.last-name = "Ullman" 

is received by Mx, template Tl will be matched. Variable X will be instantiated to Ullman and the 
following query will be generated for T: 

SELECT document 

FROM Library 

WHERE author(document,  "Ullman") 

As is commonly done in rule systems, our templates may be given an evaluation priority. Assume 

that Tl, T2, and T3 are in decreasing priority. The query received by Mx in Figure 4 matches all 

three templates. Since template Tl has highest priority, it is used for the translation shown in the 
Figure. 

5    The OEM Support Libraries 

OEM and OEM-QL are designed for a client to send queries and obtain corresponding answer 

objects from a server. The server may be a translator or a mediator, while the client may be a 

mediator or an end-user program (such as the HIB described in Section 4.1). We have implemented 

general-purpose OEM Support Libraries that provide the common functionality needed for object 

and query exchange. There are two main components: the Client Support Library (CSL) and the 
Server Support Library (SSL). 

Figure 5 illustrates how the Support Libraries are used. The implementor of client applications 

links CSL with the client program in order to create programs with embedded CSL calls; CSL calls 

are used to establish connections with TM servers, to send OEM-QL queries, and to receive OEM 

objects.9 CSL procedures handle all low level communications, and deposit retrieved objects in 

a main memory object buffer. At the server side, the SSL handles incoming connections, buffer 

management, and management of "slave" processes to execute queries. Note that if a server S 

obtains its information from another translator or mediator, then S also acts as a client, so it also 
uses the CSL. 

We expect that our Support Libraries will expedite the implementation of mediators, translators, 

and end-user programs. In addition, implementing these libraries has brought to the surface a 

number of interesting issues regarding the exchange of objects when one or more participants 

are not inherently object-oriented. As far as we know, these issues do not arise in conventional, 

homogeneous object-oriented systems (or at least not in quite this way). Here we discuss one of 

the most important issues that has arisen, namely that of partial object fetches. 

•interactive (as opposed to embedded) OEM-QL queries can be posed using the browser described in Section 4.1, 
which is built on top of the Support Libraries. 



INFO 

SOURCE 

Translator 

Server Support Library 

Information Source 

Dependent Software 

Translator 

or 

Mediator 

Mediator 

Client 

Support 

Library 

Server Support Library 
> 

TM Source-Dependent 

Software 

Client Application Program 

CSL calls 

Client 

Support 

Library 

objects 
Main Memory 

Object Buffer 

Figure 5: Use of the OEM Support Libraries 

In many cases it is extremely inefficient to send the complete answer object to the client in one 

step. In particular: 

1. The client has to wait until the full answer is retrieved from the information source before 

examining the object. This prevents "pipelined" operation, where the client starts processing 

subobjects as they arrive. The problem is exacerbated if we have a string of mediators 

between the source and the client: the client cannot begin processing the answer until all of 

the intermediate TM's have completed their work. 

2. The answer object may be very large. Once a client inspects part of the answer object, the 

client may determine that it does not need some portions of the answer object, or perhaps 

does not need the object at all. 

To avoid these problems, the Support Libraries provide a partial fetch mechanism that enables 

clients to retrieve only parts of the answer object. The mechanism is used as follows. When the 

client wishes to request an object, it calls a queryO function, passing the OEM-QL query as 

a parameter. The client can then fetch either the full answer object (including subobjects) by 

calling the getFullObjectC) function, or the client can fetch only the root of the answer object 

by calling the getRootObjectO function. In the latter case, additional getFullObjectQ and/or 

getRootObjectO calls are used to fetch the subobjects. 

Calls to the getRootObjectO function lead to incomplete objects in the client's memory. To 

illustrate, consider an answer object A whose value is a set of three subobjects, B, C, and D. As 

discussed in Section 2.1, the copy of A placed in the client's memory can identify its subobjects in 

34 



a variety of ways. For example, if subobject B has been fetched to memory, then A will contain a 

reference to B's memory location. If subobject C is a very large object and the server decides not to 

transfer it (as in, e.g., the bitmap object described in Section 2.1), then A will contain an OID for 

C. With partial object fetch there is a third possibility: a subobject, say D, may be "unfetched," 

i.e. it may be in the server's buffers, or not yet returned by the underlying source. The reference to 

an unfetched subobject is something that only the Support Libraries understand, and it is specific 
for the particular call in progress. 

Consider what happens when a client wants to examine an unfetched object. One option is to 

support on-demand retrieval of any unfetched objects. However, this allows the client to traverse 

answer objects in arbitrary order, implying that the server must cache the entire answer object. 

Such on-demand fetching would be very difficult for translators such as the one for Folio (recall 

Section 4). The Folio bibliographic source returns a stream of documents, and the translator has no 

control over the order of the records. For on-demand service, all records would have to be stored by 

the translator. If the user poses a query that is too broad, the answer object might be enormous. 

Consequently, instead of on-demand service, the Support Libraries provides a stream model for 

retrieving unfetched objects. A "preorder traversal" of the answer object is used, and the client 

must perform partial fetches in this order. To illustrate, suppose that after a first getRootObjectO 

call, the client retrieves an object A whose set value contains three unfetched references, ux, u2, and 

u3. If the client decides that the number of documents is too large, the client may choose to submit 

a different query. Otherwise, if the first document is desired, the client issues a getRootObjectO 

call with ui as a parameter. The first subobject is fetched; suppose it is another set with unfetched 

references «n and ui2. Next the client fetches un, which happens to be the title of the document. 

Based on this, the client may decide it wants to skip the rest of the ux object. It can do so by 

issuing a getRootObjectO call with u2\ this causes the ux subobjects that were not fetched to be 

discarded. Thus, even though the client is constrained to traverse the answer object in a particular 

order, uninteresting parts can be skipped. At the server side, the uninteresting parts still have to 

be fetched, but they can be discarded without being transmitted to the client. 

Due to space limitations, our description of the OEM Support Libraries and their services has 

been cursory. Our goal has not been a full description of the Support Libraries, but rather an 

illustration of the challenging practical issues that arise when there is an "impedance mismatch" 

between the way an information source provides objects and the way a client wishes to see them. 

We believe that our Support Libraries provide a general-purpose framework for handling many of 
these issues. 

6    Conclusions and Future Work 

We are developing a complete environment and set of tools for integrated access to diverse and 

dynamic heterogeneous information sources. Exchange of information in our environment is based 

on the Object Exchange Model (OEM) introduced in this paper. OEM retains the simplicity of 

relational models while allowing the flexibility of object-oriented models.  Objects in OEM have 

J5 



a very simple structure, yet the model is powerful enough to encode complex information. For 

flexibility, OEM objects are self-describing. This approach eliminates the need for regular structure 

or a predefined schema. However, when structure or schema are present, they can be exploited by 
OEM translators and mediators. 

OEM objects are requested using a declarative query language OEM-QL, which is based on 

nested-SQL query languages. We have found OEM-QL to be both expressive and easy to use. In this 

paper we have defined the basic constructs of OEM-QL. We are extending the query language along 

the lines discussed in Section 3. In addition, we plan to add language constructs and underlying 

support for data modification operations and for monitors (or active rules). 

We have experimented with OEM and OEM-QL by implementing OEM-based access to several 

quite different bibliographic information sources. Our implementation so far has served a number 
of purposes: 

• It has helped us refine and ratify our design of the model and query language. 

• We have uncovered a number of important issues and generic functionalities in the imple- 

mentation of OEM-based object exchange. This led to our development of the OEM Support 
Libraries described in Section 5. 

• We have realized a need for browsing tools, leading to the Heterogeneous Information Browser 
described in Section 4.1. 

• We have used a layered architecture for translators and mediators (recall Figure 4), which we 

believe expedites the integration of heterogeneous information sources. 

Implementation is currently underway to incorporate additional bibliographic information 

sources into our system. We are also implementing a translator for the Sybase relational database 

system, and a browser based on Mosaic and the World Wide Web system. Meanwhile, we are be- 

ginning to explore techniques for information mediation using OEM. In Section 4.2.1 we described 

our initial ideas for mediator generation. We plan to refine these concepts to develop a number 

of useful mediators that combine bibliographic information from multiple sources. We expect that 

our powerful but simple object exchange model and query language will provide the appropriate 
platform for quickly achieving this goal. 

Acknowledgements 

We are grateful to Ed Chang for implementing the Heterogeneous Information Browser, to Ashish 

Gupta, Laura Haas, and Dalian Quass for valuable comments, and to the entire Stanford Database 

Group for numerous fruitful discussions. 

36 



References 

[1] R. Ahmed et al. The Pegasus heterogeneous multidatabase system. IEEE Computer, 24:19-27, 1991. 

[2] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of methodologies for database 
schema integration. ACM Computing Surveys, 18:323-364, 1986. 

[3] E. Bertino. Integration of heterogeneous data repositories by using object-oriented views. In Proceedings 
of the 1st International Workshop on Interoperability in Multidatabase Systems, pages 22-29, Kyoto, 
Japan, April 1991.. 

[4] R. G. G. Cattell.  Object Data Management. Addison-Wesley, 1991. 

[5] R. G. G. Cattell.  The Object Database Standard: ODMG-93. Morgan Kaufmann, 1994. 

[6] F. Eliasen and R. Karlsen. Interoperability and object identity. SIGMOD Record, 20:25-29, 1991. 

[7] A. K. Elmagarmid and A. A. Helal. Hetrogeneous database systems. Technical Report TR-86-004, 
Program of Computer Engineering, Pennsylvania State University, University Park, PA, 1986. 

[8] Object Request Broker Task Force. The Common Object Request Broker: Architecture and Specifica- 
tion, December 1993. Revision 1.2, Draft 29. 

[9] A. Gupta. Integration of Information Systems: Bridging Heterogeneous Databases. IEEE Press, 1989. 

[10] M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. In Proceedings of the ACM 
SIGMOD International Conference on Management of Data, pages 59-68, San Diego, California June 
1992. ' 

[11] W. Kim et al. On resolving schematic heterogeneity in multidatabase systems. Distributed And Parallel 
Databases, 1:251-279, 1993. 

[12] H. F. Korth and M. A. Roth. Query languages for nested relational databases. In Nested Relations and 
Complex Objects in Databases, pages 190-204. Springer-Verlag, 1989. 

[13] W. Litwin, L. Mark, and N. Roussopoulos. Interoperability of multiple autonomous databases. ACM 
Computing Surveys, 22:267-293, 1990. 

[14] L. Mark and N. Roussopoulos. Information interchange between self-describing databases. IEEE Data 
Engineering Bulletin, 10(3):46-52, September 1987. 

[15] D. S. Marshak. Lotus Notes release 3.  Workgroup Computing Report, 16:3-28, 1993. 

[16] B. Oki et al. The information bus—an architecture for extensible distributed systems. In Proceedings of 
the Fourteenth ACM Symposium on Operating System Principles, pages 58-68, Asheville, NC December 
1993. 

[17] M. A. Roth, H. F. Korth, and A. Silberschatz. Extended algebra and calculus for nested relational 
databases. ACM Transactions on Database Systems, 13:389-417, 1988. 

[18] A. Silberschatz, M. Stonebraker, and J. D. Ullman. Database systems: Achievements and opportunities. 
Communications of the ACM, 34:110-120, 1991. 

[19] G. Thomas et al. Heterogeneous distributed database systems for production use. ACM Computing 
Surveys, 22:237-266, 1990. 

[20] G. Wiederhold. File Organization for Database Design. McGraw Hill, New York, 1987. 

[21] G. Wiederhold. Mediators in the architecture of future information systems. IEEE Computer 25-38-49 
1992. 

[22] G. Wiederhold. Intelligent integration of information. In. Proceedings of the ACM SIGMOD International 
Conference on Management of Data, pages 434-437, Washington, DC, May 1993. 



A    Appendix 

Here we provide a rigorous specification of the query language that was described informally in 

Section 3. The syntax of the language is given in the grammar of Figure 6. We discuss two points 

regarding label variables and predicates, then we define the semantics of queries in our language. 

The parenthesized variable following each label in a path is optional. However, if a label L 

does not include a variable, then L is assigned a variable automatically as follows: L's variable 

is the concatenation of L's position number in its path together with the name of the near- 

est specified variable to the left of L; if there is no variable to the left of L then L's variable 

is L's position number. For example, the path "bibliography.document(d) .topic" becomes 

"bibliography (1). document (d). topic (3d)". This scheme ensures that two labels in different 

paths have the same variable if and only if they should refer to the same object component. (Recall 

from Section 3 that two labels Li and L2 refer to the same object component when they appear in 

paths that are specified identically from the beginning of the path through Lx and L2.) "Wild-card" 

labels (?) and "wild-path" labels (*) are assigned variables in the same manner. 

The predicates that may be specified in a Condition are not fixed and may vary from information 

source to information source, as described in Section 3. Our syntax provides a general notation for 

arbitrary predicates over multiple arguments. We assume that most information sources support 

commonly used binary predicates (e.g. equality and inequality over integers), and for convenience 

we allow these predicates to be written using conventional infix notation, as in the examples of 
Section 3. 

We now define the semantics of an arbitrary query Q. Let 0 be the object specified in Q's 

FROM clause. We define the semantics in two steps. First we define the set of components of object 

O that satisfy query Q. Then we define the object A that is returned as the answer to Q. In our 

definitions we often refer to the label-variable pairs that constitute the paths in Q's SELECT and 

WHERE clauses; for brevity we refer to these pairs as LVs. 

The first definition formalizes the notion of "path traversals" discussed in Section 3. 

Definition A.l (Valid Binding) A binding is a mapping from each LV appearing one or more 

times in query Q to an object component in 0. A binding is valid if: 

1. Each LV is bound to an object whose label matches the LVs label. If the LVs label is ? or *, 
then any object label matches. ; 

2. If an LV with a label that is not * appears as the first element on a path, then the LV is 
bound to object O. 

3. Let LV lv2 follow LV hi on a path. Then hi is bound to an object o of type set or list. If 

lv2 does not have label *, then lv2 is bound to a subobject of o. If lv2 has label *, then lv2 is 

bound to a direct or indirect subobject of o. 

4. For each predicate in Q's WHERE clause, if each path appearing in the predicate is replaced by 

the value of the object bound by the last LV on that path, then the predicate is satisfied.   D 

38 



----::>!£-='! 

Query 

Fetch-Exp 

Path 

Label 

Object 

Condition 

Value 

SELECT Fetch-Exp FROM Object WHERE Condition 

Path    |    Path. OID 

LafceZ   |    Label. Path 

string[(variable)]    |    ?  [(variable)]    |    * [(variable); 

string    /* lexical object identifier */ 

true 

Path 

predicate(Valuei, Value2, ..., Value^ 

Condition\ and Condition 

Path    |    constant 

Figure 6: Query language syntax 

With this Definition we can specify the object components of O that satisfy query Q. 

Definition A.2 An object component o satisfies query Q if and only if there is a valid binding 

such that o is bound to the last LV in the path specified in Q's SELECT clause.   D 

Next we specify the structure of the answer object A that is returned as a result of query Q. 

We consider two cases separately: (1) when the path specified in Q's SELECT clause does not end 

with "OID"; (2) when the path specified in Q's SELECT clause does end with "OID". 

Definition A.3 (Answer Object: Non-OID) The answer object for a query Q whose SELECT 
path does not end with "OID" is: 

(answer, set, {obju ..., objn}} 

obji is (...) 

objn is (...) 

where obj^, ..., objn are exactly those object components of 0 that satisfy query Q according to 
Definition A.2.    D 

Now suppose query Q's SELECT path does end with "OID". In this case the answer object includes 

only the identifiers for the relevant object components, and not the objects themselves. 

Definition A.4 (Answer Object: OID) The answer object for a query Q whose SELECT path 
ends with "OID" is: 

(answer, set, {OIDu ..., 0IDn}) 

where OIDu ..., OIDn are the object identifiers for exactly those object components of 0 that 
have non-A OID's and satisfy query Q according to Definition A.2  D 



Flexible Constraint Management for Autonomous 
Distributed Databases* 

Sudarshan S. -Chawathe, Hector Garcia-Molina and Jennifer Widom 
Computer Science Department 

Stanford University 
Stanford, California 94305-2140 

E-mail: {chaw,hector,widom}@cs.Stanford.edu 

1    Introduction 

When databases inter-operate, integrity constraints arise naturally. For example, consider a flight 
reservation application that accesses multiple airline databases. Airline A reserves a block of X seats 
from airline B. If A sells many seats from this block, it tries to increase X. For correctness, the value 
of X recorded in ^'s database must be the same as that recorded in 5's database; this is a simple 
distributed copy constraint. However, the databases in the above example are owned by independent 
airlines and are therefore autonomous. Typically, the database of one airline will not participate in 
distributed transactions with other airlines, nor will it allow other airlines to lock its data. This renders 
traditional constraint management techniques unusable in this scenario. Our work addresses constraint 
management in such autonomous and heterogeneous environments. 

In an autonomous environment that does not support locking and transactional primitives, it is not 
possible to make "strong" guarantees of constraint satisfaction, such as a guarantee that a constraint 
is always true or that transactions always read consistent data. We therefore investigate and formalize 
weaker notions of constraint maintenance. Using our framework it will be possible, for example, to 
guarantee that a constraint is satisfied provided there have been no "recent" updates to pertinent data, 
or that a constraint holds from 8am to 5pm everyday. Such weaker notions of constraint satisfaction 
requires modeling time, and consequently, time is explicit in our framework. 

Most previous work in database constraint management has focused on centralized (for e.g., [?]) or 
tightly-coupled and homogeneous distributed databases (for e.g., [1], [2], [3], [4]). The multi-database 
transaction approach to constraint management weakens the traditional notion of correctness of sched- 
ules [5], [6]. This approach cannot, however, handle a situation in which different databases support 
different interfaces. In modeling time, our work has similarities with some work in temporal databases 
[7] and temporal logic programming [8]. Our approach is closer to the event-based specification lan- 
guage in RAPIDE [9]. 

'Research sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force Material Command, USAF, 
under Grant Number F33615-93-1-1339. The US Government is authorized to reproduce and distribute reprints for 
Government purposes notwithstanding any copyright notation thereon. The views and conclusions contained in this 
document are those of the authors and should not be interpreted as necessarily representing the official policies or 
endorsements, either express or implied, of Wright Laboratory or the US Government. This work was also supported by 
the Center for Integrated Systems at Stanford University, and by equipment grants from Digital Equipment Corporation 
and IBM Corporation. 

40 



j-M  ■-   PV  r -psBflppn„ 

(Appls.j         ^Constraints 

Guarantees      V-,„iiu   J 

Interfaces     ^S     /    \\\   ^s. 

(DB, WDB2)     böo   '{ DBk) 

Figure 1: Constraint Management Architecture 

In this paper, we give a brief overview of our formal framework for constraint management in 
autonomous systems and describe the constraint management toolkit we are building. The details of 
the underlying execution model, semantics of events, and syntax and semantics of the rule language 
may be found in [10]. 

2    Formal Framework 

In this section, we present an outline of our formal framework for constraint management. Our frame- 
work assumes the simplified system architecture shown in Figure l.1 Each database chooses the inter- 
face it offers to the constraint manager (CM) for each of its data items (involved in an inter-database 
constraint). The interface specifies how each data item may be read, written and monitored by the 
CM. Applications inform the CM of constraints that need to be monitored or enforced. Based on the 
constraint and the interfaces available for the data items involved in the constraint, the CM decides 
on the constraint management strategy it executes. This strategy tries to monitor or enforce the con- 
straint as well as possible using the interfaces offered by the local databases. The degree to which 
each constraint is monitored or enforced is formally specified by the guarantee. We describe interfaces, 
strategies and guarantees below. 

2.1    Interfaces 

The interface for a data item involved in a constraint describes how that data item may be read, 
written, and/or monitored by the constraint manager. Interfaces are specified using a notation based 
on events and rules. For example, consider a simple write interface for a data item X. This interface 
promises to write the requested value to X within, say, 5 seconds. We express this as WR(X, b)@t -* 
Wg(X, b)<&\t, 11- 51. Here WR(X, b)@t represents a "write-request" event which requests the operation 
X *- b, and which occurs at some time t. The rule says that whenever such an event occurs, a "write"2 

event, Wg(X, b) occurs at some time in the interval [t, t + 5]. The interfaces for the data items involved 
in inter-database constraints are specified by the database administrator of each database, based on 
the level of access to the database he or she is willing to offer the CM. Currently, we rely on the users 
of our framework to verify that the interfaces specified do faithfully represent the actual systems. 

Note that we assume a centralized constraint manager for simplicity in presentation only; the constraint manager is 
actually distributed. 

Wg() is a generated write event which occurs as the result of CM activity, to be distinguished from spontaneous write 
events, W,(), which occur due to user/application activity in the underlying database. 

41 



2.2 Strategies 

The strategy for a constraint describes the algorithm used by the constraint manager to monitor or 
maintain the constraint. Like interfaces, strategies are specified using a notation based on events and 
rules. In addition to performing operations on data items involved in a constraint, strategies may 
evaluate predicates over the values of data items (obtained through database read operations) and over 
private data maintained by the Constraint Manager. 

As a simple example, consider the following strategy description, which makes a write request to 
Y whenever it receives a "notify" event from X:3 N(X, b)@t -* WR(Y, b)@[t, t + 7]. 

Once our framework has been used to specify a strategy, and to verify the correctness of a guarantee, 
then the rule-based strategy specification is implemented using the host language of the Constraint 
Manager. This is a simple translation, and may be done using a rule engine. 

2.3 Guarantees 

A guarantee for a constraint specifies the level of global consistency that can be ensured by the Con- 
straint Manager when a certain strategy for that constraint is implemented. Typically a guarantee is 
conditional, e.g., a guarantee might state that if no updates have recently been performed then the 
constraint holds, or that if the value of a CM data item is true then the constraint holds. Guarantees 
are specified using predicates over values of data items and occurrences of certain events. For example, 
consider the following guarantee for a constraint X = Y: (Flag = true)®* => (X = Y)@@[f - a,t - ß]. 
This guarantee states that if the (Boolean) data item Flag is true at some time t, then X = Y (at 
all times) during the interval [t - a,t - ß]. Note that this guarantee is weaker than a guarantee that 
X = Y always, which is very difficult to make in the heterogeneous, autonomous environments we 
study. 

3    A Constraint Management Toolkit 

We are building a toolkit that will permit constraint management across heterogeneous and autonomous 
information systems. For example, this toolkit will allow us to maintain a copy constraint spanning 
data stored in a Sybase relational database and a file system, or an inequality constraint between a 
Wiot's-like database and an object-oriented database. We give a brief overview of this toolkit in this 
section. 

3.1     Architecture 

Figure 2 depicts the architecture of our constraint management toolkit. The Raw Information Source 
(RIS) is what is already present at each site (for example, a relational database, a file system, or a 
news feed.) The RISI is the interface offered by each RIS to its users and applications. For example, 
for a Sybase database, the RISI is based on a particular dialect of SQL, and includes details on how to 
connect to the server. 

The CM-Translator is a module that implements the CM-Interface (the interface discussed in Section 
2.1) using the RISI. The CM-RID is a configuration file used to specify (1) which types of CM-Interface 
(selected from a menu of pre-compiled interface types) are supported by the CM-Translator, and (2) 
how these interfaces are implemented using the underlying RISI. 

A notify event is an event type representing the database containing X notifying the CM of a write to X. Thus 
N(X,5) means that a write X *— S occurred. 

42 



Figure 2: Constraint Management Toolkit Architecture 

The CM-Shell is the module that executes the constraint management strategies described in Section 
2.2. Since we specify strategies using a rule-based language, the CM-Shells are distributed rule engines 
that are configured by a Strategy Specification. 

3.2    Application 

We now describe how database administrators would use our toolkit to set up constraint management 
across autonomous systems. The database administrators at each site first decide on the CM-Interfaces 
they are willing to offer, selected from menu of pre-compiled interfaces provided by the toolkit. For 
example, if the underlying RIS provides triggers, then a notify interface may be offered (where the CM 
is notified of updates); if not, perhaps a read/write interface can be offered. The choice also depends 
on the actions the administrator wants to allow. For instance, even if the RIS allows database updates, 
the administrator may disallow a write interface that lets the CM make changes to the local data. 

Each CM-RID file records the interfaces supported, as well as the specification of the RIS objects to 
which the interface applies. The CM-RID is also the place where site-specific translation information 
is stored. This includes, for example, the name of the Sybase data server that holds the data and its 
port number, how a read request from the CM is translated into an SQL query, how a request to set 
up a notify interface is translated to commands that set up a trigger, and so on. 

Next, the administrator uses a Strategy Design Tool (not shown in Figure 2) to develop the CM 
strategy. This tool takes as input the inter-database constraints, and based on the available interfaces, 
suggests strategies from its available repertoire. For each suggested strategy, the design tool can give 
the guarantee that would be offered. The result of this process is the Strategy Specification file, that 
is then used by the CM-Shells at run time. (Knowledgeable administrators can write their Strategy 
Specifications, bypassing the Design Tool.) 

At run-time, the CM-Shells execute the specified strategy based on the event-rule formalism. The 
CM-Translators take care of translating events to site-specific operations, and vice versa. 

43 



4    Conclusion 

We address the problem of constraint management across heterogeneous and autonomous systems. We 
have argued that this is a problem of practical importance, and that it is not readily amenable to 
traditional constraint management techniques. Constraint management in autonomous environments 
requires weaker notions of consistency than those found in literature. We have proposed an event-based 
formal framework which allows us to express these weaker notions of consistency, and in which time 
is explicitly modeled. We have also described a constraint management toolkit that we are currently 
building, which demonstrates some the practical aspects of our work. In the future, we plan to work 
on expanding our framework to handle more complex interface and constraint types, including those 
with quantification over data'items and probabilities associated with them. 

References 

[1] Eric Simon and Patrick Valduriez. Integrity control in distributed database systems. In Proceedings 
of the Nineteenth Annual Hawaii International Conference on System Sciences paces 621-632 
1986. 

[2] Paul Grefen. Combining theory and practice in integrity control: A declarative approach to 
the specification of a transaction modification subsystem. In Proceedings of the International 
Conference on Very Large Data Bases, pages 581-591, Dublin, Ireland, August 1993. 

[3] Stefano Ceri and Jennifer Widom. Managing semantic heterogeneity with production rules and 
persistent queues. In Proceedings of the International Conference on Very Large Data Bases, pages 
108-119, Dublin, Ireland, August 1993. 

[4] Marek Rusinkiewicz, Amit Sheth, and George Karabatis. Specifying interdatabase dependencies 
in a muhidatabase environment. IEEE Computer, 24(12):46-51, December 1991. 

[5] Ahmed Elmagarmid, editor. Special Issue on Unconventional Transaction Management, Data 
Engineering Bulletin 14(1), March 1991. 

[6] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview of multidatabase transaction 
management. The VLDB Journal, 1(2):181, October 1992. 

[7] Richard Snodgrass. Temporal databases. IEEE Computer, 19(9):35-42, September 1986. 

[8] Martin Abadi and Zohar Manna. Temporal logic programming. Journal of Symbolic Computation 
8(3):277-295, 1989. 

[9] David C. Luckham et al. Specification and analysis of system architecture using Rapide. IEEE 
Transactions on Software Engineering, 1994. 

[10] Sudarshan S. Chawathe, Hector Garcia-Molina, and Jennifer Widom. Constraint man- 
agement in loosely coupled distributed databases. Technical report, Computer Sci- 
ence Department, Stanford University, 1993. Available through anonymous ftp from 
db.Stanford.edu:pub/chawathe/1993/cm-loosely-coupled-dbs.ps. 

44 



A Query Translation Scheme for Rapid 
Implementation of Wrappers* 

Yannis Papakonstantinou, Ashish Gupta, Hector Garcia-Molina, Jeffrey Ullman 

Computer Science Department 

Stanford University 

Stanford, CA 94305-2140. USA 

{yamris,agupta,hector, ullman} @cs. stanford.edu 

Abstract 

Wrappers provide access to heterogeneous information sources by converting application 
queries into source specific queries or commands. In this paper we present a wrapper implemen- 
tation toolkit that facilitates rapid development of wrappers. We focus on the query translation 
component of the toolkit, called the converter. The converter takes as input a Query Descrip- 
tion and Translation Language (QDTL) description of the queries that can be processed by the 
underlying source. Based on this description the converter decides if an application query is 
(a) directly supported, i.e., it can be translated to a query of the underlying system following 
instructions in the QDTL description; (b) logically supported, i.e., logically equivalent to a di- 
rectly supported query; (c) indirectly supported, i.e., it can be computed by applying a filter, 
automatically generated by the converter, to the result of a directly supported query. 

1    Introduction 

A wrapper or translator [C+94, PGMW95] is a software component that converts data and queries 
from one model to another. Typically, wrappers are used to provide access to heterogeneous 
information sources, as illustrated in Figure La. In this case, an application (which could be 
a mediator [Wie92]), issues queries in a single, common query language like SQL. The wrapper 
for each source converts the query into one or more commands or queries understandable by the 
underlying source. The wrapper receives the results from the source, and converts them into a 
format understood by the application. 

As part of the TSIMMIS project [PGMW95, GM+] we have developed hard-coded wrappers 
for a variety of sources, including legacy systems. We have observed, like everyone who has built 
a wrapper, that writing them involves a lot of effort [A+91, C+94, EH86, FK93, Gup89, LMR90, 
MY89. T+90]. However, we have also observed that only a relatively small part of the code deals 
with the specific access details of the source. A lot of code, on the other hand, is either common 
among wrappers (deals with buffering, communications to the application, and so on) or implements 
query and data transformations that could be expressed in a high level, declarative fashion. 

Based on these observations we have developed a wrapper implementation toolkit for rapidly 
building wrappers. The toolkit contains a library of commonly used functions, such as for receiving 

'This work was supported by ARPA Contract F33S15-93-1-1339, by NSF IRI 02-23405, by the Center for Integrated 
Systems at Stanford University, and by equipment grants from Digital Equipment Corporation and IBM Corporation. 
The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding 
any copyright notation thereon. The views and conclusions contained in this document are those of the authors and 
should not be interpreted as necessarily representing the official policies or endorsements, either express or implied, 
of the US Government. 

45 



(a) 

MSL queries 

(b) 

Figure 1: (a) Accessing information through wrappers (b) Supported queries. 

queries from the application and packaging results. It also contains a facility for translating queries 
into source-specific commands and queries, and for translating results into a model useful to the 
application. 

In this paper we focus on the query translation component of the toolkit, which we refer to 
as the converter. (In Section 6 we will describe the other toolkit components and how the con- 
verter is integrated with them.) The implementor gives the converter a set of templates that 
describe the queries accepted by the wrapper. If an application query matches a template, an 
implementor-provided action associated with the template is executed to produce the native query 
for the underlying source. Note, a native query is not necessarily a string of a well-structured query 
language (e.g. SQL). In general, the term "native query" may refer to any program used to access 
and retrieve information from the underlying source. 

EXAMPLE 1.1 To illustrate, consider an application that issues SQL queries. One of the sources 
it accesses has limited functionality, as is true for many sources encountered in a heterogeneous 
environment. For this illustrative example, assume that the source can only do selection on attribute 
dept of some table, followed by a projection. This ability may be specified as the following template. 

select $X.$Y from $X where $X.dept=$Z 

The symbols $X, $Y, and $Z represent placeholders that have to be bound to specific constants to 
produce a valid SQL query. Assume that the following query arrives at the wrapper and is given 
to the converter: 

select emp.name from emp where emp.dept='toy' 

This query matches the template with the bindings $X = "emp", $Y = "name", and $Z = '"toy"1. 
Given the match, the actions associated with the template would then generate the necessary native 
query to do the actual search on the source. For example, if the underlying source was a file system 
the actions could produce a "grep" command to search for the string $Z in say columns 10-20 of 
file $X. Out of the matching lines, it would return the characters between the string $Y and some 
termination character. □ 

Example 1.1 illustrates a very simple template matching facility that could be easily imple- 
mented using Yacc-like tools [LMB92]. However, since the matching facility is based entirely on 
string matching, it does not exploit the semantics of the common query language. The following ex- 
amples show that if converters "understand"'queries they are translating, then they can successfully 
handle many more queries. 

46 



EXAMPLE 1.2 Consider the following query template: 

select $X.$Y from $X where $X.sal=$Zl and $X.dept=$Z2 

Syntactically, only queries where the $XiSal and $X.dept appear in exactly the specified order 
match this template. The query 

select emp.name from emp where emp-dept=,toy' and emp.sal=100 

would not match the template. If we wanted to process this type of query we would have to define 
a second template. In general, we would have to consider an exponential number of orderings of 
the terms in the where clause. It is not practical to have all these templates, especially since all of 
them would have almost identical actions associated with them. D 

EXAMPLE 1.3 Consider a data source that can only do selections on attribute dept and does 
not understand the notion of projecting out attributes. Such a source can be described with the 
following template: 

select * from $X where $X.dept=$Z 

The following query does not match this template because it includes a projection: 

select emp.name from emp where emp.dept='toy' 

However, the wrapper could process the above query by transforming it into one without a pro- 
jection and then doing the projection on the returned answers. This approach would allow the 
wrapper to leverage its own capability to handle a much wider class of queries than those specified 
by the template. 

As we will see, our wrapper toolkit can handle this type of query transformation. When the 
converter is given a query, it generates not only commands for the underlying source, but also a 
filter describing additional processing on the results, if any is required. In our example, the filter 
would specify a projection over the name attribute. D 

In example 1.2 the converter must understand the notion of selection and conjunctive logical ex- 
pressions. In example 1.3 the converter must understand projections and the fact that a projection 
over emp.name can be obtained a-posteriori from a projection over *. While this knowledge gives 
the converter the ability to handle more queries, it does mean that the converter must be targeted 
to a particular incoming query language. Being language specific does not pose a problem for 
converters because our goal is to develop many wrappers for a given common query language, so 
it is to our advantage to exploit the features of the common query language. Furthermore, most 
declarative query languages are based on common principles, so our converter should be easy to 
modify to other query languages. 

Our converters are targeted for the MSL query language [PGMU]. (SQL was only used in 
our initial examples to motivate our ideas.) MSL is a logic-based language for a simple object- 
oriented data model, called OEM [PGMW95]. We believe that both OEM and MSL are well suited 
for integration of heterogeneous information sources. The converter is configured with templates 
written in the Query Description and Translation Language (QDTL). Each template is associated 
with an action that generates the commands for the underlying source. 

Once configured, the converter takes as input an MSL query, and generates commands for the 
source and a filter to be applied to the results. (Actually, in our current design, the converter 
accepts only a subset of MSL; see Section 2.) The converter will process: 

• Directly supported queries. These are queries that syntactically match a template. 

47 



• 

• 

Logically supported queries. These are queries that produce the same results as a directly 
supported query. We use the notion of logical equivalence to detect queries that fall in this 
class. 

Indirectly supported queries. These are queries that can be executed in two steps: first a 
directly supported query is executed, and then a filter is applied to the results of the first 
step. We have appropriately extended the notion of subsumption in order to detect the queries 
that fall in this class. 

Figure l.b graphically shows the types of accepted queries. Although QDTL descriptions syn- 
tactically look like Yacc grammars - suitably modified for the description of queries, rather than 
arbitrary strings - our converter handles a much larger class of queries than the class of directly 
supported queries that is handled by Yacc. For example, our converter understands the commu- 
tativity of a logical conjunction, while Yacc would expect the terms to appear in a specific order. 
Furthermore, our converter introduces the following innovations: 

• A designer can succinctly and clearly define the functionality of each source through a few 
QDTL templates. Note, a QDTL description is more than a list of "parameterized queries" 
since it allows the description and translation of infinite sets of queries (See Section 5.) 

• The converter, in cooperation with the filter processor, automatically extends the query 
capabilities of sources that have limited functionality. Note that unlike relational and object 
oriented databases, where typically all possible queries over the schema are allowed, arbitrary 
information sources, e.g., legacy systems, permit only limited sets of queries. The automatic 
extension of query abilities allows us to bring to the same level of functionality different 
sources and then more easily integrate them. 

• The converter, together with the other functions of the toolkit, make it possible to rapidly 
implement wrappers. 

One important thing to notice is that the capabilities of wrappers can be "gracefully extended." 
That is, one can quickly design a simple wrapper with a few templates that cover some of the 
desired functionality, probably the one that is most urgently needed. Then templates can be added 
as more functionality is required. 

We start our paper with a brief description of the OEM model and the MSL query language. 
Then in Section 3 we give a detailed example that shows how QDTL is used. Indirectly supported 
queries and the notion of query subsumption are further discussed in Section 4, while Section 5 
introduces additional powerful QDTL features such as nonterminal templates and metapredicates. 
In Section 6 we discuss the architecture of wrappers and the wrapper toolkit; we also discuss how 
the converter is used by the wrapper toolkit to rapidly implement wrappers. Section 7 focuses on 
the query translation algorithm at the heart of the converter. This is the algorithm that maps 
input queries to templates and generates filters. The section gives an example-driven description 
of the algorithm, and the full details can be found in the Appendix A. Finally, Section 8 discusses 
related work, and Section 9 presents some conclusions and future work. A proof of the correctness 
of the algorithm can be found at [P+]. 

2    The OEM Model and the MSL Language 

When integrating heterogeneous information sources one often faces unstructured information 
whose form may change dynamically. Many applications that have to deal with such informa- 
tion use some type of self-describing data model where each data item has an associated descriptive 

48 



" 

label. Applications include tagged file systems [Wie87], Lotus Notes [Mar93], the Teknekron In- 
formation Bus [0+93], LOOM frames [MY89], electronic mail, RFC1532 bibliographic records, 
and many more. For this reason we have selected a self-describing model, in particular the Ob- 
ject Exchange Model (OEM) [PGMW95], as.the common data model exported by our wrappers. 
OEM captures the essential features of models used in practice, generalizing them to allow arbi- 
trary nesting and to include object identity. OEM does not directly support classes, methods, and 
inheritance; however, classes and methods can be emulated [PGMW95]. 

To illustrate OEM,-consider the following objects (one object per line): 

<obl, person,   {subl,sub2,sub3,sub4,sub5}> 
<subl,  last_name,   'Smith'> 
<sub2, first_uame,   'John'> 
<sub3, role,   'faculty'> 
<sub4, department,   'CS'> 
<sub5,  telephone,  415-5141292> 

Each OEM object consists of an object-id (e.g., sub4), a label that explains its meaning (e.g., 
department), and a value (e.g., »CS'). Object-id's can be of different types, but for this paper we 
may think of them as terms that are used to link objects to their subobjects. Labels are strings 
that are meaningful to the application or the end user. A value can be a scalar such as an integer 
or a string, or it can be a set of (sub)objects (e.g., the value of the "person" object). 

At each source, some OEM objects are defined to be top-level or root objects. (Of course, the 
source itself probably does not store OEM objects; this is only the "illusion" created by the wrapper 
above that source.) Top-level objects provide "entry points" into the object structure from which 
subobjects can be requested, as explained below. 

An application can request OEM objects from a wrapper using the MSL query language [PGMU]. 
In this paper we will use only a subset of MSL. In particular, we will consider only conjunctive 
queries that extract a single object together with all its descendants - i.e., direct or indirect sub- 
objects. (In Section 9 we discuss why we make these restrictions.) 

To illustrate, consider the following query that searches for top-level person objects (i.e., objects 
with person label) containing a last_name subobject with value 'Smith'. The matching objects, 
together with their last_name, first-name, ... subobjects, are then retrieved. 

(Ql) *P  :- <P person {<L "lastjiame   'Smith'>}> 

The query consists of a single head and a single tail separated by the :- symbol. Variables 
are represented by identifiers starting with a capital letter, such as P and L. The tail describes the 
search pattern, while the head is the object-id of the objects that will be retrieved.1 Intuitively, 
we match the tail pattern against the object structure exported by the wrapper, thereby binding 
the variables to object components of the wrapper's object structure. The result consists of all 
the objects (and their descendants) whose object-ids get bound to the variable that appears in the 
head. 

Now we give more details about the matching process. Tails are based on patterns of the form 
<object-id label value>, where each field may be a constant or a variable. When a field (object-id, 
label, or value) contains a constant then the pattern binds successfully only with OEM objects that 
have the same constant in the corresponding field. On the other hand, when the field contains a 
variable the pattern can successfully bind with' any OEM object (modulo the restrictions imposed 

'The * in the head of the query indicates that subobjects are retrieved too. Without the asterisk, a single object 
is retrieved. 

49 



by the other fields in the pattern) and the variable binds to the contents of the corresponding field. 
If a variable X appears multiple times in a tail, all occurrences of X must bind to the same contents 
for the tail to successfully bind to an OEM object. 

If a pattern A contains a value that has curly braces and more patterns B,C,... inside, then 
pattern .4 binds to OEM objects with a set value. The objects that bind to pattern A have one or 
more subobjects, some of which bind to the patterns B,C,.... For example, query Ql requires that 
person objects have a last-name subobject with value 'Smith'. Note that we allow the person 
objects to have subobjects other than last_name as well. 

For notational convenience we remove object-id variables from object patterns when the object- 
id is not useful, i.e. when it appears exactly once in the query. For instance, in query Ql, variable 
L is not used in the head nor in other parts of the tail. Therefore we can replace the pattern <L 
last-name 'Smith'> in Ql by <last_name 'Smith'> without affecting the query. Thus, notation- 
ally a pattern with two fields represents a three field pattern with a unique but unspecified variable 

in the first field. 

3    A Detailed Example of Query Translation 

We illustrate the use of our converter and QDTL using the following simple example. Say we wish 
to build a wrapper for a university '-lookup" facility that contains information about employees 
and students. (This example is motivated by an actual service offered by our department at 
Stanford). The lookup facility is accessed from the command line of computers and offers limited 
query capabilities. In particular, it can return only the full records of persons, including all fields 
such as "last name", •'first name", and "telephone." There is no way for the user to retrieve only 
one field, e.g., the telephone number, for a person. Furthermore, the only queries that are accepted 
by the lookup facility are: 

1. Retrieve person records by specifying the last name, e.g., 

(L2) lookup -In Smith 

2. Retrieve person records by specifying the first and the last name, e.g., 

(L3) lookup -In Smith -fn John 

3. Retrieve all person records by issuing the command 

(L4) lookup 

The queries accepted by the lookup facility can be easily described in our Query Description 
and Translation Language (QDTL). As discussed in Section 1, a QDTL description consists of a 
set of templates with associated actions. Below we state description Dl that consists of three query 
templates QTl.l, QT1.2, and QT1.3. For simplicity, we do not yet state the associated actions. 

(Dl) (QTl.l) Query  ::= *0   :- <0 person {<lastJiame $LN>}> 
(QT1.2) Query  : := *0   :- <0 person {<last_name $LN> <first_name $FN>}> 
(QT1.3) Query  ::= *0   :- <0 person V> 

Each query template appears following the : := and is a "parameterized query." The identifiers 
preceded by $, such as $LN and $FN, are constant placeholders representing expected constants in 
the input query. Upper case identifiers, such as 0, are variable placeholders denoting variables that 
are expected at that point in the input query. Note, the variable appearing in the query does not 
have to have the same name as the template variable. 

Each template describes many more queries than those that match it syntactically. More 
specifically, each template describes the following classes of queries: 

50 



• Directly supported queries. A query q is directly supported by a template t iffy can be derived 
by substituting the constant placeholders off by constants and the variables off by variables. 
For example, query Ql is directly supported by template QT1.1 by substituting 0 with P and 

$LN with 'Smith'. 

• Logically supported queries. A query q is logically supported by template t if q is logically 
equivalent to some query q' directly supported by /. Two queries q and q' are equivalent if 
they produce the same result regardless of the contents of the queried source. For example, 
the following queries are logically supported by template QT1.2 although they are not directly 

supported: 

*Q   :- <0 person {<first_name  'John'> <last_name  'Smith'>}> 
*0   :- <0 person {<last_name  'Smith'>}> AND <0 person {<first_name  'John>}> 
*0   :- <0 person -C<L0 last_name  'Smith'>}> 

AND <0 person {<L0 L V> <first_name   'John'>}> 

All these queries are equivalent to the following query Q5, that is directly supported by the 

template QT1.2: 

(Q5) *0   :- <0 person {<lastJiame  'Smith'> <first_name  'John'>}> 

• Indirectly supported queries. A query q is indirectly supported by a template t if q can be 
"broken down" into a directly supported query q' and a filter that is applied on the results 
of q'. We give a definition of indirect support in Section 4; for now we present an example. 

Consider the following query: 

(Q6) *Q   :- <Q person {<lastJiame  ' Smith'> <role  ' student'>}> 

This query is not logically supported by any of the templates of description Dl.  However, 
our converter realizes that this query is subsumed by the directly supported query 

(Q7) *Q   :- <Q person {<lastJiame  'Smith'>}> 

This means that the answer to Q7 contains all the information that is necessary for answering 
Q6. Thus, the converter matches Q6 to template QTl.l as if it were Q7, binding $LN to 
'Smith' and 0 to Q. In addition, the converter generates the filter: 

*0   :- <0 person {<role  'student'>}> 

The filter is an MSL query that is applied to the result of query Q7 to produce the result of 

query Q6. 

Note, we often say "the description d supports directly, logically, or indirectly the query </" meaning 
that a template t of d supports directly, logically, or indirectly the query q. 

51 



3.1    Formulation of the Native Query 

QDTL templates are accompanied by actions that formulate the native queries for the source. For 
our converter, the actions are written in C, although we could have selected any other language. 
Let us extend description Dl with actions that formulate native queries such as L2, L3, and L4. 

(D2) (QT2.1) Query   : := *0:- <0 person {<last_name $LN>}> 
(AC2.1) { sprintf(lookup-query,   'lookup -In '/.s', $LN)   ;} 
(QT2.2) Query  ::= ■ *0   :- <0 person {<lastJiame $LN> <firstJiame $FN>}> 
(AC2.2) { sprintf (lookup-query,   'lookup -In V.s -fn V.s',  $LN,  $FN) 

(QT2.3) query   ::= *0   :- <0 person V> 
(AC2.3) { sprintf (lookup-query,   'lookup')   ;   } 

To illustrate, consider again the input query Q5: 

*0  :- <0 person {<last_name  »Smith'> <first_name  'John'»> 

This query matches template QT2.2. by binding placeholder $LN to 'Smith' and $FN to 'John'. 

Then, the action AC2.2 that consists of the C function 

sprintf(lookup_query, /lookup -In #/.s -fn V.s',  $LN,  $FN) 

is executed. In this action, $LN and $FN behave as C variables that at execution time contain 
the values 'Smith' and 'John' respectively. The effect of this action is to write the str.ng 
'lookup -In Smith -fn John' in the variable lookup-query. 

This completes the job of the converter on this query. Then, the implementor-provided part of 
the wrapper takes over, submits the string lookup-query to the source and waits for an answer. 

4    Query Subsumption 

In Section 3 we said that query Q6 was subsumed by Q7 because the former had an ^itional 
condition on the "role" subobject. Thus query Q6 selects a subset of the objects obtained by the 

subsuming query Q7. . , 
\ different type of subsumption, specific to object oriented data, occurs when the subsumed 

query extracts subobjects obtained by the subsuming query. For example, consider the following 
query Q8 that retrieves the first-name subobjects of person objects with last name 'Smith 

(Q8) *F   :- <0 person {<F first-name X> <lastJiame  'Smith'>}> 

Query Q8 is subsumed by the following query Q9, that retrieves the full person objects of persons 

with last name 'Smith' and an unspecified first name. 

(Q9) *0   :- <0 person {<F first-name X>  <last_name   'Smith'>}> 

Notice that Q8 and Q9 have exactly the same conditions. However, Q9 subsumes Q8 because the 
person objects retrieved by the latter contain the first .name objects required by the former. The 
following definitions formalize the notions we have illustrated. 

Definition 4.1  (Object containment) Object O is contained in another object O' if and only if 

• Either O and O' are identical, i.e., they have identical object-id, label, and value; or 

• O is a subobject (direct or indirect) of O'. 

52 



D 

Definition 4.2 (Query subsumption) A quer)' q is subsumed by another query q' if each answer 
object for q is contained in some answer object of q'.2 O 

Definition 4.3  (Indirect support) A query q is indirectly supported by a query q' if 

1. q' subsumes q. and 

2. there is a filter query / that when applied on the result of q' produces the result of q. 

A filter query is formally defined by Definition A.l in Appendix A. We will say that a template t 
indirectly supports a query q if t directly supports a query q' that indirectly supports q. □ 

Note, query subsumption does not necessarily imply indirect support. For example, consider 
the following query 

(Q10) *F  :- <person {<F first_name X>}> 

that subsumes Q8, since it retrieves all first-name objects. However, Q10 does not indirectly 
support Q8, since given a first-name object in the result of Q10, we can not tell whether it is a 
subobject of a person with last-name 'Smith*. 

4.1    Maximal Supporting Queries 

Notice that given a query q there may be more than one queries that support </, and these queries 
may not be logically equivalent. For example, query Q6 on page 7 is supported by query Q7 and 
also by the query 

(Qll) *0   :- <0 person V> 

that retrieves all person objects. 
Note, query Qll also subsumes query Q7. Thus, Q7 derives fewer unnecessary answers than 

Qll. From a performance point of view it is better for the wrapper to send Q7 to the source (after 
the necessary transformation to a native query) rather than Qll, because the former contains more 
conditions of the original query Q6. Indeed, for our example, query Q7 is the best query directly 
supported by description Dl that supports query Q6 because Q7 pushes to the source as many 
conditions as possible. We will say that Q7 is a maximal supporting query for Q6. 

Definition 4.4 (Maximal supporting query) A query qs is a maximal supporting query of 
query q with respect to description d, if        ; 

• qs is directly supported by d, 

• qs indirectly supports q, and 

» there is no directly supported query q's that indirectly supports ry, is subsumed by qs, and is 
not logically equivalent to qs. 

D 

"Note, more general forms of query subsumption may be defined. 

53 



Note, there may be more than one maximal supporting query for a given query. For example, 
assume that a source allows us to place a condition on exactly one subobject of the person objects. 
This source is specified by the QDTL description (actions not shown): 

(D3) (QT3.1) Query  ::= *0  :- <0 person {<$L $V>}> 

For this source, consider input query Q5. This query has two maximal supporting queries: 

(Q12) *0   :- <0 person {<last_name  'Smith'>}> 
(Q13) *0   :- <0 person {<first_name   'John'>}> 

Our converter actually considers all possible maximal supporting queries by considering different 
ways in which the input query can match the templates of a description. Choosing the optimal 
maximal subsuming query (when there is more than one) requires knowledge of the contents, 
semantics, and statistics of the database; our initial implementation does no optimization and 
simply selects one of the maximal supporting queries. Then, the converter executes the actions 
associated with that particular maximal query. We give additional details in Section 6. 

5    Nonterminals and Other QDTL Features 

QDTL allows the use of nonterminals to construct grammars that describe more complex sets of 
supported queries. To illustrate, say that our lookup facility lets us place selection conditions on zero 
or more of the fields of its records. That is, we can issue commands such as 'lookup -fn John', 
'lookup -fn John -role faculty', 'lookup -role student', and so on. Explicitly listing all 
possible combinations of conditions in our templates would be impractical. (If there are 10 lookup 
fields, there would be 210 templates.) 

With nonterminals, this functionality can be described succinctly. For instance, assuming only 
three fields, first_narae, last_name, and role, we can use the following description (without 
actions for now): 

(D4) /* A description with nonterminals */ 
(QT4.1) Query   : := *0P   :- <0P person {  JDptLN .OptFN _0ptRole}>    /*Query Template*/ 
(NT4.2) JDptLN   : := <lastjname $LN> /»Nonterminal template*/ 
(NT4.3) _0ptLn   : := /*  empty nonterminal template*/ 
(NT4.4) .OptFN   ::= <first_name $FN> 
(NT4.5) -OptFN   ::= /* empty */ 
(NT4.6) .OptRole   : := <role $R> 
(NT4.7) .OptRole   : := /* empty */ 

Nonterminals are represented by identifiers that start with an underscore (_). Every nonterminal 
has a definition that consists of a set of nonterminal templates. For example nonterminal JDptRole 
is defined by nonterminal templates NT4.6 and NT4.7. 

A query q is directly supported by a query template t that contains nonterminals if q is directly 
supported by one of the expansions oft. An expansion of t is obtained by replacing each nonterminal 
n of the query template / with one of the nonterminal templates that define n. For example, the 
query 

(Q14) *0   :- <0 person- {<last_name  'Smith'> <role  'professor'>}> 

is directly supported by template QT4.1 because Q14 matches with the expansion 

54 



Ip^Sä^W^^S^WS« 

(E15)   *0P   :- <0P person {<last_name $LN> <role $R>}> 

This expansion is derived from query template QT4.1 by replacing the nonterminal _0ptLN with 
the nonterminal template NT4.2, the nonterminal JDptFN with the nonterminal template NT4.5. 
and the nonterminal JDptRole with the nonterminal template NT4.6. 

5.1 Actions and Attributes Associated with Nonterminals 

Nonterminal templates have associated actions, just like query templates. When a query success- 
fully matches with a template, the action for the nonterminal template used during the matching 
is executed. In addition, every nonterminal rc'is associated with an attribute that is accessible from 
the templates that use n and the templates that define n. These attributes are similar to the 
attributes that Yacc (in general context-free grammar parsers) associate with nonterminals, and 
are used to generate the native query of the underlying source. 

Description D4 can be augmented with code to generate the required lookup native query as 
follows. Note that in the C code, a nonterminal attribute is represented by $ followed by the name 
of the nonterminal. 

(D5) (QT5.1) Query ::= *0P  :- <0P person { JDptLN _0ptFN _0ptRole}> 
(AC5.1) { sprintfC lookup-query,   »lookup */,s */,s 7,s', $_OptLN, 

$_0ptFN,  $_0ptRole)}   ; 
(NT5.2) .OptLN : := <last_name $LN> 
(AC5.2) { sprintf($JDptLN,   '-In '/.s',  $LN)   ;  } 
(NT5.3) .OptLN   :: = 
(AC5.3) { $_0ptLN =  "   ;   } 
(NT5.4) _OptFN ::= <first_name $FN> 
(AC5.4) { sprintf($jDptFN,   '-fn'/.s', $FN)   ;   } 
(NT5.5) _QptFN  :: = 
(AC5.5) { $_0ptFN =  " ;  } 
(NT5.6) JDptRole : := <role $R> 
(AC5.6) { sprintf($JDptRole,   '-role */.s',$R)   ;   } 
(NT5.7) JDptRole   : : = 
(AC5.7) { $_0ptRole =  "   ;   } 

As discussed earlier, query Q14 is directly supported by description D5. When nonterminal 
JDptLN matches the <last_name 'Smith*> clause in the query, its associated code is executed, 
storing the string '-In Smith' in $_0ptLN. Similarly, '-role professor' is stored in $_OptRole. 
When the query matches template QT5.1, variable lookup_query is assigned the string 'lookup 
-In Smith -role professor', which is sent to the lookup facility. 

5.2 Recursion 

Nonterminal templates may recursively contain nonterminals. This flexibility allows us to describe 
infinite sets of expansions. The following description - that describes queries with an arbitrary 
number of conditions on the person subobjects - illustrates recursion 

(D6) /* This query description involves recursion */ 
(QT6.1) Query : := *0P  :- <0P person {  .Cond }> 
(NT6.2) _Cond  : := <$Label $Value> _Cond 
(NT6.3) _Cond  : : = 

55 



The query template above directly supports query Q14. To see this we first expand _Cond with 
the nonterminal template NT6.2, yielding 

(E7) Query   ::= *0P   :- <0P person { <$Label $Value> _Cond }> 

Expanding _Cond again we obtain: 

(E8) Query   ::= *0P   :- <0P person {  <$Label $Value> <$Labell $Valuel> _Cond }> 

Note that in the second expansion we replaced the placeholder names with new names $Labell and 
$Valuel. This policy is essential to avoid confusion with names from other expansions. Finally, 
we expand -Cond with the nonterminal template NT6.3 (i.e., the "empty" template) to produce an 
expansion that directly matches query Q14. 

In some cases we may want to force placeholder names obtained by expanding nonterminals to 
be the same as existing placeholder names in the query template. By using parameters as arguments 
of QDTL nonterminals we can force different templates to refer to the same variable or placeholder 
(refer to [P+] for details). 

5.3    Metapredicates 

Descriptions D I and description D6 accept similar queries, with the exception that D6 accepts any 
subobject label. For example. D6 will accept the query 

*P   :-  <P person {<M fuel   'gasoline'>}> 

(and an action, not shown in description D6, may translate it into the string 'lookup -fuel 
gasoline') while D4 will not. ; 

We can force DG to check for particular labels (and effectively Schemas) by using metapredicates. 
This capability gives us the same functionality as D4 with a more compact specification. To 
illustrate, consider the following modification of the description D6: 

(QT9.1)   Query   ::= *0P   :- <0P person {  _Cond }> 
(NT9.2)   .Cond   ::= <$Label $Value> _Cond personsub($Label) 
(NT9.3)   .Cond   :: = 

The metapredicate personsub($Label) checks whether the constant that matches $Label is a 
valid label for some subobject of person. The metapredicate personsubO is implemented by 
a C function of tin- same name. The wrapper implementor provides this function together with 
description D9 

The converter treats metapredicates simply as additional conditions that must hold for a query 
to match a template. In our example, after we expand query template QT9.1 with the nonterminal 
template NT9.J and then with the nonterminal template NT9.3 we get: 

*0P   :- <0P person {<$Label $Value> personsub($Label)}> 

Matching thus expansion with query Ql requires that we bind $Label to 'last-name' and $Value 
to 'Smith'. This binding implies that personsubO last-name') must hold. The C function 
personsub is thus invoked, and if it answers "yes" the expansion matches the query. 

56 



■'"•"-^^-Sg.^i.-»^^^^!^ 

CLIENT 
Client Support Librarj 

Query OEM Result 

WRAPPER QDTL Description 
Server Support Library 

OEM Result 

Filter 

Cost 
Estimator 

Parse Trees/Filters of Maximal 
Supporting Queries 

Query 
Filter 

Filter Processor 

Query/Description 
Matching 

.CONVERTER 
Parse Tree of 

"optimal" supporting que?; 

Parse Tree of 

directly/logically 

supported query 

Action Execution 

Query 

Native Query 

Constituents 

OEM Result of Supporting Query 

OEM Objects 

DRIVER 

Submit 
Native Query 

Collect 
Result 

Object Components 
Packager 

Extracted InformatioiT 

Native Result String 
Extractor 

T 
DEX Template 

Native Querj Native Result 

INFORMATION 

SOURCE 

Figure 2: The Architecture of a Wrapper 

6    Wrapper Architecture 

Figure 2 shows the architecture of the wrappers generated with our toolkit. The shaded boxes 
represent components provided in the toolkit; the wrapper implementor provides the driver that 
has the primary control of query processing and invokes various services of the toolkit - as is shown 
in Figure 2. The implementor also provides the QDTL description for the converter, as well as the 
Data Extraction (DEX) template for the extractor component of the toolkit. 

Our wrappers behave as servers in a client-server architecture, where the clients are mediators or 
generic client application programs. Clients use the client support library to issue queries and receive 
OEM results (see Figure 2). The server support library component of the toolkit receives queries 
from the client and dispatches the driver for query processing. The driver invokes the converter, 
which finds a query that supports the input query and returns the native query constituents. The 
latter are values assigned to variables of the driver that are used to construct the native query. For 
example, variable lookup_string of description D2 contains the only native query constituent for 
the "lookup" wrapper. 

The driver then submits the native query to the underlying information source and receives the 
result from the source. The driver uses the extractor to extract information from the received result 
and then uses the packager to pack the result components into OEM objects. Finally, if during the 
query/description matching a filter was produced, the driver passes the OEM result and the filter 
to the filter processor. 

Subsection 6.1 discusses the converter architecture in more detail. Then, Subsection 6.2 dis- 
cusses the extractor, while Subsection 6.3 discusses the filter processor. 

57 



r 

NT5.2 
■ 

ac52() 

$LN = ' Smith" 

NT5.5 ac55() NT5.6 ac56() 

$R = " professor" 

Figure 3: The parse tree 

6.1     Converter Architecture 

To illustrate, let us assume that the converter is given description D5 that directly supports query 
Q14 (see Section 5). The query/description matching component of the converter produces the parse 
tree of Figure 3 that contains all the information about the expansions and substitutions obtained 
while matching the query and the description. The parse tree is used by the action execution 
component of the converter to execute the actions that generate the native query constituents. 
Note, the converter - unlike the Yacc processor - performs the query/description matching and the 
action execution in two separate phases because there may be more than one maximal supporting 
queries, and consequently more than one parse trees. The converter executes actions only after it 
selects one of the parse trees. 

The nodes of the parse tree correspond to the templates that were used for the matching. For 
readability, in Figure 3 we have named (top left corner) the nodes of the tree using the labels of the 
corresponding templates in description D5. Also, every node contains a pointer to a C function, 
such as ac52(), ac55(), etc, containing the code for the corresponding action. The root node of 
the parse tree corresponds to query template QT5.1 that matched with the query and points to 
nodes corresponding to the nonterminal templates - NT5.2, NTS.5, and NT5.6 - that were used. 
Every node contains a list of the constant placeholders that appear in the template, along with the 
matching constants. 

If there are multiple maximal supporting queries, the query/description matching component 
passes all the corresponding parse trees to the cost estimator that chooses one of the parse trees 
either by an arbitrary choice or by cost-based selection. The later technique assumes that the 
wrapper has access to cost estimates of the functions provided by the underlying sources, catalog 
estimates, and so on. In our current implementation, our cost estimator does not perform cost 
optimization and selects the first parse tree. However, we believe it is important to have the 
cost optimizer framework in place initially so that optimization may be added later. Once a 
parse tree is selected, the action executor does a postorder traversal of the parse tree and invokes 
the corresponding action functions. The actions have access to the list of [constant placeholder, 
matching constant] pairs. 

6.2    Information Extraction 

Often, legacy systems return data as semi-structured strings. In these cases, the Data Extractor 
(DEX) can be used to parse the result and identify the required data. DEX is configured with 
a description of the source's output and information regarding which parts should be extracted. 
We use a brief example to illustrate how DEX works. Suppose that our sample "lookup" facility 
returns results as a sequence of text lines, of the form: 

58 



Record 1 

Last Name: Smith 

First Name: John 

Role: Student 

Record 2 

Last Name: ... 

The goal of the extractor is to extract the last-name, first-name, and role fields of the "lookup" 
result. This is achieved by giving the following DEX template to the extractor. 

MATCH STRING  (lookup_rasult) 
{ records_number = 0  ;} 
( Record # \n 

Last Name\:\ $$(lookup_array[records_number].last_name)  \n 
First Name\:\ $$(lookup_array[records_number].first_name) \n 
Role\:\ $$(lookup_array[records.number].role) \n 
{ records_number++  ; } 

)* 

Note, inside the $$(...) structures appear the names of C variables of the driver. For our running 
example we may assume that the following data structure has been declared in the driver: 

struct lookup-type { char[40]  last_name  ; 
char[20] first_name  ; 
char[30]  role  ;} lookuparray [200]   ; 

The above pattern specifies the expected syntax of the string lookupjresult (that contains the 
result of lookup), specifies which parts of the output string will be extracted, and in which variables 
of the driver they will be placed. Our extractor can be viewed as a modification of the Yacc and 
Lex tools for the more specific problem of information extraction. 

6.3    Result Creation and Filter Processing 

After the extractor gathers the information in the appropriate data structures of the driver, and 
the packager constructs the OEM result objects, the filter processor applies the filter on the OEM 
result objects. The filter is produced by the converter while matching the input MSL query with 
the QDTL description. The filter is an MSL query and is applied to the output of the packager in 
a 2-step process by the filter processor: First the filter processor creates an algebraic description of 
the MSL query and then it executes the algebraic description. The algebraic operations can "find 
the subobjects of an object," "compare the object-id/label/value of an object to a constant," and 
so on. 

7    The Query Translation Algorithm 

Answering whether a MSL query q is supported by a QDTL description (/ is a hard problem. Often 
we need to reason with descriptions that support infinitely many queries (for instance, descrip- 
tion D6). Fortunately, the problem can be reduced to a well-studied problem in deductive database 
systems. In this section, we discuss how to reduce the "support" problem for QDTL descriptions 
and MSL queries to a relational context, and we extend existing results from deductive database 
theory to solve the support problem. 

59 



7.1     Correspondence of OEM to Relational Models 

In this subsection we discuss how to relationally represent OEM objects, MSL queries, and QDTL 
descriptions. Note that, the principles of our algorithm can be applied to other object-oriented 
models as well. For applying our algorithm, the MSL queries and QDTL descriptions are actually 
converted to relational terms. The objects in the underlying sources are not converted. We discuss 
how they might be represented relationally to better explain the algorithm. 

OEM objects are represented relationally by flattening them into tuples. Each object is rep- 
resented using tuples of three relations, namely top, object, and member. OEM objects can be 
converted mechanically to the relational representation using a few straightforward rules: For an 
object o with object-id oid, label 1, and an atomic value v, we introduce the tuple 

object(oid, 1, v) 

If o is a set object with object-id oid and label 1, then we introduce the tuple 
object(oid, 1, set) 

Assuming that o has subobjects o,-, 1 < i < n, identified by oid; , 1 < i < n we introduce n tuples 
member(oid, oid,) 

where 1 < i < n. Finally, if o is a top-level object identified oid, we also introduce the tuple 
top(oid) 

The relational representation of MSL queries is obtained similarly by querying the top, object, 
and member relations that represent the object structure referenced in the query. 

EXAMPLE 7.1 Consider the query 

*0  :- <0 person {<LM last_name  'Smith'>}> 

The above query selects top-level objects 0, i.e., the subgoal top(0) must hold. Object 0 is a person 
set-object, i.e., the subgoal object(0, person, set) must hold. 0 must have a subobject identified 
by LM, i.e. member(0,LM) must hold. Finally, LM must be a last_name object with atomic value 
'Smith', i.e., object(LM, last_name, 'Smith') must hold. We collect all the object-id's 0 that 
satisfy the stated conditions into a relation, answer. Thus, the MSL query can be written as the 
following datalog query: 

answer(O)   :- top(0),  object(0,  person,  set), 
member(O.LM),  object(LM,  last-name,   'Smith') 

D 

The general algorithm for converting an MSL query to a relational form is given in [P+]. A 
similar algorithm for translating a QDTL description to a relational description is described in [P+]. 
We illustrate the translation via an example. 

EXAMPLE 7.2 Consider description D6 from Subsection 5.2. The equivalent relational repre- 
sentation is: 

(RIO) Query ::= answer(OP) :- top(OP), object(0P, person, set), _Cond(0P) 
_Cond(0P) ::= member(0P, OS), object(OS, $Label, $Value), _Cond(0P) 
_Cond(0P)   ::= 

Note, the nonterminal _Cond has been replaced by the nonterminal _Cond(0P) that has one pa- 
rameter. We need this parameter because we have to denote that object OS that appears in the 
nonterminal template associated with _Cond is a subobject of OP. We associate with every tem- 
plate of the relational representation, the action of the corresponding template of the original QDTL 
template. G 

60 



7.2    Algorithm 

In this section we illustrate the algorithm that for a given MSL query written relationally, finds 
maximal supporting queries from a QDTL description also written relationally. If the query is 
indirectly supported, the algorithm derives the filter MSL query that needs to be applied to the 
OEM objects picked by the underlying source. 

First we illustrate the process of finding a supporting query given the description D and the 
query Q. Then we show how description D can be expressed as a (possibly recursive) Datalog 
program P{D). We show that the problem of determining if a description D supports query Q, 
is the same as the problem of determining if program P(D) contains3 (subsumes) query Q and 
a corresponding filter query exists. Thus, a supporting query is found in two steps: (a) find a 
subsuming query, and (b) find the corresponding filter. We extend an existing algorithm that 
checks containment (from Section 14.5 of [U1189]), to answer step (a). We refer to the containment 
algorithm from [U1189] as QinP. We extend the algorithm to handle step (b). 

Algorithm QinP gives a yes/no answer to the containment question and thus to the subsumption 
question. Thus, we further extend the algorithm to find the actual maximal supporting queries, the 
corresponding filters, and also the native query constituents for the underlying source. We describe 
in detail the extended algorithm X-QinP'm the Appendix. We continue with examples to illustrate 
the required extensions. 

EXAMPLE 7.3 (Finding Supporting Queries) This example illustrates, in relational terms, 
how to find supporting queries for a MSL query from a QDTL description. We use this example 
in the rest of this subsection. 

Consider the query Q16 that selects all person objects that have a subobject with label 
last .name and value 'Smith': 

(Q16)    answer(0) :-top(0),  object(0, person,  set), member(0,N), 
object(N,   last_name,   'Smith') 

Consider the description Dll that supports queries that select person objects that have at least 
one subobject that has a specified label and a specified value. 

(Dll) (QT11.1)     Query ::= answer(P) :-top(P),  object(P, person,  set),  _Cond(P) 
(NT11.1)       _Cond(P) ::= member(P,X),  object(X,$L,$V) 

By expanding template QTll.l using nonterminal expansion rule NT11.1 we obtain expansion 
(E17). 

(E17):     answer(P) :-top(P),  object(P,  person,  set), member(P,X),  object(X,$L,$V) 

(E17) is identical to query Q16 by substituting appropriately variables and placeholders. Thus, 
Dll directly supports Q16. 

Alternatively, consider query QlS that picks person objects with specified values of subobjects 
last_name and ssn. 

(Q18)    answer(Q) :-top(0),  object(0, person,  set), member(0,L), 
object(L,  last_name,   'Smith'), member(0,S), 
object(S,  ssn,   '123') 

A query Q is contained in a program P if for all databases, P derives a superset of the answers derived by Q. 

61 



Description Dll does not directly support query Q18 because the query imposes selection conditions 
on two subobjects whereas the description supports queries with only single subobject selections. 
However, E17 produces two queries that indirectly support QlS: 

• E19 enforces the selection condition on subobject lastjiame. 

(£■19):      answer(0) :-top(0),  object(0, person,  set),  member(0,L), 
object(L, lastjiame,   'Smith') 

• E20 enforces the.selection condition on subobject ssn. 

(E20):      answer(O) :-top(O), object(0, person,  set), member(0,S), 
object(S, ssn,   '123') 

As illustrated above, nonterminals in a query template are expanded to yield expansions of 
the query template that match the query of interest. If a nonterminal is defined using a recursive 
template, then the query template has an infinite number of expansions. To find a supporting 
query requires checking if query Q matches one or more of the infinite number of expansions. 

In the next section we show how to reduce the problem of finding a supporting query in a 
description to the problem of determining whether a conjunctive query is contained in a Datalog 
program. We extend a known solution to the latter problem to find all the supporting queries, the 
corresponding filter queries, and the corresponding native query constituents. 

7.2.1 Expressing Descriptions as Recursive Datalog Programs 

In description Dll. if we replace the query template with the rule defining predicate answer, and 
replace ::= with :- in the nonterminal template NTll.l, then we get a Datalog program that 
uses constant placeholders in addition to variables and constants.4 The constant placeholders are 
similar to variables except that they match a subset of the constants which the variables match, and 
placeholders are used in the actions that produce the native query constituents. We use P(D) to 
refer to the Datalog program corresponding to description D. The process of finding an expansion 
of a query template in a description D that matches a target query Q, is the same as determining 
if the Datalog program P(D) produces a rule E that defines predicate answer and matches query 
Q. Rule E matches query Q if the head of E maps to the head of Q, and each subgoal of E maps 
to some subgoal of Q (with appropriate restrictions on how to map variables, placeholders, and 
constants). Query Q16 and expansion (E17) in Example 7.3 illustrated this case. 

Note, in our framework both Q and E are conjunctive queries [U1189] extended with placeholders. 
From existing work on the containment of Datalog queries we know that the existence of a mapping 
from E to Q is a necessary and sufficient condition for the containment of E in Q.5 Thus, the 
problem of determining if a description D supports a conjunctive query Q is the same problem 
as determining if some rule produced by Datalog program P(D) contains query Q (modulo the 
existence of a filter query). Furthermore, for Datalog this question is the same as asking if the 
program P{D) contains Q. Algorithm QinP from [U1189] answers exactly this question. 

7.2.2 Applicability and Extensions of Algorithm QinP 

First, we illustrate how the containment algorithm QinP finds subsuming queries given a query and 
a description. Then we illustrate the extensions that need to be made to Algorithm QinP. 

Templates with empty expansions are handled as explained in the Appendix. 
"The containment results used in this paper, hold in the presence of constant placeholders. 

62 



;}; '?■ '^i^t^^r^j?^^'^;^:^ 

EXAMPLE 7.4 (Applying Algorithm QinP) Consider query Q18 from Example 7.3. 

(QlS)    answer(O) :-top(0),  object(0, person,  set), member(0,L), 
object(L,  last_name,   'Smith'), member(0,M), 
object(M,  ssn,   '123') 

and the description Dll 

answer(P)     :-    top(P),  object(P, person,  set),  Cond(P) 
Cond(P) :-    member(P.X),  object(X,$L,$V) 

To determine if program P(Dll) contains query Q18 Algorithm QinP does the following: First the 
algorithm "freezes" Q18, i.e., it replaces each variable in each subgoal of Q18 by a corresponding 
"frozen" constant and puts the resulting frozen facts in a database DB(Q18). The frozen constant 
for a variable is represented by a constant of the same name in lower case and with a bar on it. 
The over-bars distinguish frozen constants from regular constants. 

top(ö),  object(ö,  person,  set), member(o,/),  object(f,  last_name,   'Smith'), 
member(ö,m) ,  object(m,   ssn,   '123') 

Then, the program P(Dll) is evaluated on. DB(Q18) to check if the program derives the frozen 
head of Q18, namely "answer(ö)". If yes, then it is the case that the program contains the query. 

While evaluating the program on the frozen database, constant placeholders in P(Dll) are 
assigned only regular constants and not frozen constants, because frozen constants correspond to 
variables in the target query. Variables in P(Dll) are assigned either frozen or regular constants. 
D 

The above example illustrates that Algorithm QinP gives only a yes/no answer to the subsump- 
tion question. That is, if program P{D) derives the frozen head of query Q then we know that D 
subsumes Q. However, the algorithm does not find the particular subsuming query (for instance, 
(£19) in Example 7.3). The algorithm does not find the selection conditions that are not enforced 
by each subsuming query (for instance, (.El!)) does not enforce ssn = '123'). Finally, algorithm 
QinP does not retain enough information to build the native query constituents. Algorithm X-QinP 
provides this functionality and finds all the maximal supporting queries (if there are multiple such 
queries). We illustrate these points via a set of examples. 

EXAMPLE 7.5 (Multiple Subsuming Queries) Example 7.3 shows that query Q18 is indi- 
rectly supported by Description Dll (page 17) via two subsuming queries (£19) and (£20). We 
discuss in more detail how to obtain (£19). 

(£19):      answer(O) :-top(Q), object(0, person, set), member(O.L), 
object(L,  lastjiame,   'Smith') 

(£19) is obtained by algorithm X-QinP, because program P(Dll) derives the frozen head of query 
Q18 using frozen base facts top(ö), object(ö, person, set), member (ö,Ö, and 
object (/.last .name,'Smith'). (£20) is obtained similarly. As guaranteed by extended algo- 
rithm X-QinP, (£19) and (£20) are maximal. O 

Note, in Example 7.5 the subsuming queries (£19) and (£20) do not use all the frozen facts 
obtained by freezing the target query Q18. Facts not used to derive a subsuming query correspond 
to unenforced selection conditions and constitute the residue for that query.   For instance, for 

63 



subsuming query (2T19) the frozen facts member(ö,s) and object(s.ssn,' 123') constitute the 
residue. A non-empty residue implies that the subsuming query does not enforce all the selection 
conditions of the input query. Thus, we need to formulate a filter MSL query that when applied to 
the OEM objects picked by the subsuming query, gives the same result as the input query. A filter 
query may not always exist as illustrated by the following example. 

EXAMPLE 7.6 (Existence of a Filter query) Consider a query Q that for all persons with 
last_name 'Smith' picks the subobject corresponding to the firstjiame. Consider a query tem- 
plate T that picks the first_name subobjects of all persons. Algorithm X-QinP infers that T gener- 
ates a query Qs that subsumes Q along with the residue member(P.LN), object(LN, last_name, 
'Smith'), i.e., the parent objects of the picked first_name subobjects have last-name value 
'Smith'. This unapplied selection condition cannot be enforced on the result of query Qs be- 
cause there is no way to infer from the result what firstjiame is associated with which last_name. 
Thus, no filter query exists for query Qs. Algorithm X-QinP discards subsuming queries for which 
no filter query may be formulated. For instance, we discard a subsuming query if its residue refers 
to an object that is not a subobject of the result of the subsuming query. We also discard queries 
based on other criteria described in the Appendix. 

Algorithm X-QinP generates filter queries for subsuming queries that are retained and thus are 
supporting queries. A conservative filter query may consist of all the conditions in the input query 
that can be applied on the result of the supporting query. In this case, some conditions may be 
redundant. Our algorithm derives optimal filter queries, that is, removes all redundant conditions. 
Below we illustrate the filter MSL query produced by the algorithm for query (£19). 

*0  :- <0 person {<S,  ssn,   '123'>}> 
D 

The last extension to algorithm QinP handles the actions that are executed by the converter 
to generate the native query constituents. The actions are associated with the nonterminal and 
query templates of a description D. When we reduce a query template or nonterminal template 
T of a decription D into a rule R of the datalog program P{D) we associate with R the action 
that is associated with the template T. Then, the problem of executing the actions associated 
with the templates of D reduces to the problem of executing the actions associated with the 
corresponding rules of P(D). Algorithm X-QinP tracks the rules used to derive a supporting query 
and subsequently executes the actions associated with these rules to produce the native query 
constituents. • 

7.3    Performance of X-QinP 

In the worst case, X-QinP is exponential in the number of conditions in the query plus the number 
of templates in the description. Nevertheless, in many practical cases X-QinP is polynomial. For 
example, if both the query and the templates have explicitly specified labels and there is no recursive 
template (e.g., description D4) X-QinP needs time proportional to the product of the query size 
and the number of templates. Furthermore, we expect the number of conditions and templates to 
be relatively small, so running time should be acceptable. 

8    Related Work 

Integration of heterogeneous information sources has attracted great interest from the database 
community[Wie92, LMR90, T+90, Gup89, A+91, C+94, FK93].  Significant work has been done 

64 



on integrating and querying data that is in the same model as the integration system. However, 
underlying sources may have different data models, thus making necessary the existence of wrappers, 
and consequently, the facilitation of the wrapper construction. [EH86] points out that typically 
the construction of a wrapper requires "6 month work". Indeed, there are existing techniques for 
translating schemas and queries of a data model A (say, relational) to schemas'and queries of a data 
model B (say, an object-oriented data model)[QR95, A+91]. Our query translation methodology 
is different from the above cited work in two ways: 

1. We provide a toolkit that can translate queries from our common data model to queries of 
any data model, i.e. we are not bound to a specific "target" data model. Note, the underlying 
information sources may even not have a well-defined data model. 

2. We assume that the source may have limited query capabilities, i.e., not every query over the 
schema of the underlying source can be answered. 

We contribute in two ways to the problem of limited query capabilities (that has been recently 
recognized [RSU, C+94] as being very important in integration of arbitrary heterogeneous infor- 
mation sources): First, we provide a concise language for description of query capabilities. Second, 
we automatically increase the query capabilities of a source. 

The problem of finding a supporting query is related to the problem of determining how to 
answer a query using a set of materialized views in place of some of the base relations used by 
the query [LY85, L+, RSU]. This work uses a fixed set of prespecified views to answer a query. 
However, we use an infinite set of views that are specified via templates. The templates can specify 
views like "all relations obtained by applying a single selection predicate to any relation," thus not 
requiring that the relation name be known. Alternatively, arbitrary numbers of selection conditions 
can be specified, thereby allowing in the set of "available" views, views that have arbitrarily long 
specifications. Another difference from [LY85, L+, RSU] is that our focus is on object oriented views 
and queries and not relational views even though we use some of the same tools, like containment. 

9    Conclusions 

In this paper we have presented a toolkit that facilitates the implementation of wrappers. The 
heart of the toolkit is a converter that maps incoming queries into native commands of the un- 
derlying source. The converter provides the translation flexibility of systems like Yacc, but giving 
substantially more power, i.e. translating a much wider class of queries. 

The wrapper toolkit is currently under implementation, with the server support library, ex- 
tractor, and packager already built and tested. These components, with hard-wired converters, 
have been used to build wrappers for Sybase, a collection of BiBTex files stored on a Unix file 
system, and a bibliographic legacy system. We are currently implementing the QDTL configurable 
converter described in this paper; it should be operational by the summer of 1995. 

In the future, we plan to extend the power of QDTL descriptions and of the converter to handle 
a larger class of queries. The currently handled class of conjunctive MSL queries will be extended 
by using a containment checking algorithm more general than algorithm QinP. Also, we plan to 
extend the algorithm to detect when multiple queries of the underlying source together support the 
given application query. 

65 



Acknowledgements 

We are grateful to Jennifer Widom, Andreas Paepcke, Vasilis Vassalos, and the entire Stanford 
Database Group for numerous fruitful discussions and comments. 

References 

[A+91] R. Ahmed et al. The Pegasus heterogeneous multidatabase system. IEEE Computer, 24:19-27, 
1991. , 

[C+94] M.J. Carey et al. Towards heterogeneous multimedia information systems: The Garlic approach. 
Technical Report RJ 9911, IBM Almaden Research Center, 1994. 

[EH86] A. K. Elmagarmid and A. A. Helal. Heterogeneous Database Systems. TR-86-004, Program of 
Computer Engineering, Pennsylvania State University, University Park, 1986. 

[FK93] J.-C Franchitti and R. King. Amalgame: a tool for creating interoperating persistent, heteroge- 
neous components. In Advanced database systems. N.R Adam, B.K. Bhargava (editors), (ISBN 
3-540-57507-3) Springer-Verlag, 1993, pages 313-36. 

[GM+] H. Garcia-Molinaet al. The TSIMMIS Approach to mediation: Data models and languages (ex- 
tended abstract). To appear in 1995 NGITS workshop. Also available by ftp atdb.stanford.edu 
as pub/garcia/1995/tsimmis-models-languages.ps. 

[Gup89] A. Gupta. Integration of Information Systems: Bridging Heterogeneous Databases. IEEE Press, 
1989. 

[LMB92] J.R. Levine, T. Mason, and D. Brown. Lex & Yacr. O'Reilly k. Associates, Inc., Sebastopol, 
CA, 1992. 

[L+] A.Y. Levy et al. Answering queries using views. To appear in PODS, 1995. 

[LMR90] W. Li twin, L. Mark, and N. Roussopoulos. Interoperability of multiple autonomous databases. 
ACM Computing Surveys, 22:267-293, 1990. 

[LY85] P.A. Larson and H.Z. Yang. Computing queries from derived relations. In Proc. VLDB Conf, 
pages 259-69, 1985. 

[Mar93] D. S. Marshak. Lotus Notes release 3.  Workgroup Computing Report, 16:3-28, 1993. 

[MY89] R. MacGregor and J. Yen. LOOM integrating multiple AI programming paradigms. Proc. Intl. 
Joint Conf. on Artificial Intelligence, August 1989. 

[0+93] B. Oki et al. The Information Bus—an architecture for extensible distributed systems. In Proc. 
of the 14th ACM Symposium on Operating System Principles, pages 58-68, Asheville, NC, 1993. 

[P+] Y.   Papakonstantinou   et   al.        A   query   translation   scheme   for   rapid   implementation 
of   wrappers   (extended   version).       Available   by   ftp   at   db.stainford.edu   as   the   file 
7pub/papakonstantinou/1995/querytran-extended.ps. 

[PGMU] Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. Medmaker: A mediation sys- 
tem based on declarative specifications. Available by ftp at db.stanford.edu as the file 
/pub/papakonstantinou/1995/medmaker.ps. 

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across heterogeneous 
information sources. In Data Engineering Conf, pages 251-60, March 1995. 

[QR95] X. Qian and L. Raschid. Query interoperation among object-oriented and relational databases. 
In Data Eng. Conf, pages 271-9, 1995. 

[RSU] A.  Rajaraman, Y. Sagiv,  and J. Ullman.    Answering queries using templates with bind- 
ing  patterns.      To  appear  in   PODS  95.   Also  available by  ftp  at  db.stanford.edu as 
pub/rajaraman/1994/limited-opsets.ps. 

66 



[T+90] G. Thomas et al. Heterogeneous distributed database systems for production use. A CM Com- 
puting Surveys, 22:237-266, 1990. 

[U1189] J. D. UUman. Principles of Database and Knowledge-Base Systems, volume 2. Computer Science 
Press, New York, 1989. 

[Wie87]        G. Wiederhold. File Organization for Database Design. McGraw Hill, New York, 1987. 

[Wie92]        G. Wiederhold. Mediators in the architecture of future information systems. IEEE Computer, 
25:38-49, 1992. 

67 



Appendix 

A    Extended Algorithm QinP 

A.l    Extended Algorithm 

Now we state a variant of algorithm QinP. Algorithm QinP gives a yes/no answer to the containment 
question and thus to the support question, modulo the existence of a filter query. We extend the 
algorithm to find the maximal supporting queries, to construct the corresponding filter queries, and 
and to construct the corresponding parse trees. 

In particular, we extend and modify the algorithm QinP in the following ways: 

1. we keep track of which specific expansion of the Datalog program actually contains the query 
and thus infer the conditions that constitute the residue for the expansions, 

2. we keep track of the implied equalities. An implied equality arises when we map a variable to 
a constant. For example, consider the query 

(Q21) answer(O)   :-top(0),  object(0,L,V) 

that supports the query 

(Q22) answer(O)   :- top(O),  object(0,person,V) 

Note, we have to filter the result of Q21 to keep only the objects with label person. We will 
say that the corresponding filter has to check the implied equality L = person. Thus, we 
keep the subgoal object of Q22 in the residue, though it maps to the object subgoal of Q21. 

3. we find "maximal" expansions that have as many conditions of the target query as is possible 
given the description, 

4. we relax the condition that the head of the expansion is the same as the query head to allow 
the head of the expansion to represent a parent object of the query head, 

5. we check that the residue conditions can be evaluated, and 

6. we construct the filter that evaluates them. 

The algorithm X-QinP follows four basic steps (there are comments in the algorithm that 
indicate the start of each step): 

• Step 1: Find the queries with minimal residue with respect to the input query. 

• Step 2: Select the maximal subsuming queries, i.e.   the minimal residue queries that pick 
objects that contain the required objects. 

• Step 3:  Select the maximal supporting queries, i.e.  check the existence of an appropriate 
filter query for every selected maximal subsuming query. 

• Step 4: For every maximal supporting query construct an optimal filter query, in the sense 
that the constructed filter query has as few conditions as possible. 

68 



^^I^l^^l^^p^^p?? 

Note, in order to simplify the description of our algorithm we do not include metapredicates 
and we do not describe the execution of actions. 

Input 
Conjunctive Query Q where head is of the form answer{X) 
Description P{D) (recursive Datalog program that 

defines answer and uses EDB member, object, top) 
Output 

A set of maximal supporting queries, associated filters, and associated parse trees 
Method 

Minimize the query Q (see [U1189]), Le. remove all rendundant subgoals 
Freeze the query Q - replace each variable .4 with a constant ö 

% Start of Step 1 : Computation of minimal residue instances 
% add the frozen facts to DB along with the set of underlying facts and implied equalities 
For each ground fact / obtained from the frozen body of Q add to DB 

the five-tuple < /, U, I, A, P > where 

U = {/} % set of underlying facts for f 
I = {} % set of implied equalities used to derive f 
A = {} % set of residue facts resulting from I 
P = / % parse tree associated laith the fact 

The five-tuple < /, U, I, A, P > is called an "instance of fact /". 
% Apply the rules of P(D) to the facts in DB to generate all possible ground facts 
% along with their underlying facts, implied equalities, and parse trees 
For all rules that have an empty body, tt/i(/7) : -" 

Add the fact < h(c), {}, {}, {}, nil > to DB for all constants and frozen constants c in DB. 
Loop 

For 1 < i < k where k is the number of rules in description P{D) do 
Let rule /■,• be: 

h(H_):-Pl(Xi),...,p„(Xn) 
where X is the set of variables and placeholders in i[/U.Y1U...U Xn 

For each assignment 9 that: 
1. maps variables V in X to constants and frozen constants 
2. maps every placeholder V in X to a constant 
3. there exists a vector [?!,..., tn] 

such that tj =< 9(pj(Xj)), Uj, Ij, Aj, Pj > and tj is in DB 
do % derive "optimal" instances of 6{h{H)) 

Initialize sets Itemp and Atemp to {}. 
For each variable V in X that 9 maps to a constant 

Add the mapping V -»■ 0(V) to Itemp % Add an implied equality 
Find a B(pj(Xj)), such that V € Xj, insert 0{pj{Xj)) in Atemp 

% For each valid instantiation of rule r,-, add an instance of a fact to DB 
(A) For every vector [tu ...,tn) where tj =< %j(A'j)), Uj, Ij, Aj, Pj > and tj is in DB 

Let Inew —^ JntwiUntwi *newi -^newi * new -^ = 

< 9(h(H)), \JUiUj), \J%i(fj) U Itemp, \J]=1(Aj) U Atemp, node(n, [Pu..., Pn}) > 
For all t € DB of the form < fnew, Ut,It, At, Pt > 

% Discard tnew if it uses fewer subgoals and 

69 



% has more implied equalities than some t € DB 
If Unew C U, and Intw D It 

continue with next iteration of (A) 
% Discard t if it uses fewer subgoals and has 
% more implied equalities than tnew 

If Ut C U„ew and /, D Inew 

Remove t from DB 
% Add "better" or incomparable new instances 
Add tnew to DB 

Until no new instances of facts are derived 

% Sh i> _': Find all maximal subsuming queries 
For cacli instance t =< /, Ut, It, At, Pt > in DB such that 

assuming that answer(x) is the frozen head of query Q, either 
/ = answer (x), or 
/ = answer(y) and there is a sequence of member facts 

member(x,s~i),.. .,member(s"n, y), i.e. y is reachable from x 
rfsidtu{t) = ((subgoals in frozen' tail(Q)) minus Uj) union Aj 

'/f Stip 3: Check if an appropriate filter f exists for the query q represented by t 
'A  if f exists then q is a maximal supporting query 
if    t =< answer(ü)), Ut, It, At, Pt > satisfies the following conditions 

1. for every subgoal object(f, L, V) or member(f, z') there is a sequence of member facts 
member(w, s~i),....member(s~n, z), n > 0, i.e. z is reachable from x 

'2. there is no frozen constant v that appears in more than two subgoals such that 
an instance of v appears in residue(t) and 
another instance of v is not reachable from id via member facts 

'7 Stf p 4'- Construct filter and maximal subsuming query 
For each instance / =< /, Uj, //, A/, Pj > do 

Initialize store to be the empty set 
For each subset 5 of body(Q) such that S is a superset of residue(t) do 

if Q is equivalent to ^head(Q) : -NV{Uj),Sn then 
% NV replaces each frozen constant x with a unique variable X' except 

% the argument of f that is replaced by the unfrozen variable X 
add S to store 

Eliminate all S 6 store if 35'' € store such that S' C S 
For each remaining S 6 store 

output query head(Q) : —f, S as the filter query. 
PIM

1
 discard / 

Definition A.l (Filter of a query qs with respect to input query q) Assume that qs defines 
the predicate answers and q defines the predicate answer. A filter <// of qs wrt q is any query of 
the form 

answer/(A') : — answers(Y'), (cond(Y)) 

where (cond(Y)) is a set of subgoals member and object such that 

• every subgoal member(Sp, Sc) of (cond(Y)) is reachable from Y. 

70 



• every siibgoal object(0, label, value) of {cond{Y)) is reachable from Y, and 

• answer/(.r) holds if and only if answer (x) also holds 

D 

Definition A.2 (Indirect support of a query q by a query qs) A client query q is indirectly 
supported by a query qs if there is a filter of qs with respect, to q. D 

Definition A.3 (Minimal residue instance) Any instance t =< f,,Ut, It,At, Pt  > is called 
minimal residue instance if there is no t' =< /,,, Ut>, If, At,, Pv > such that Ut C Ut> and It, c It. 

71 



Extracting Semi structured Information from the Web 

J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo 

Department of Computer Science 
Stanford University 

Stanford, CA 94305-9040 

{hector,j oachim,cho,aranha,crespo}@cs.Stanford.edu 
http://www-db.Stanford.edu/ 

Abstract 

We describe a configurable tool for extracting semistructured data from a set of HTML pages and 
for converting the extracted information into database objects. The input to the extractor is a 
declarative specification that states where the data of interest is located on the HTML pages, and 
how the data should be "packaged" into objects. We have implemented the Web extractor using 
the Python programming language stressing efficiency and ease-of-use. We also describe various 
ways of improving the functionality of our current prototype. The prototype is installed and 
running in the TsiMMis testbed as part of a DARPA I3 (Intelligent Integration of Information) 
technology demonstration where it is used for extracting weather data form various WWW sites. 

1. Introduction 
The World Wide Web (WWW) has become a vast information store that is growing at a rapid rate, both in 
number of sites and in volume of useful information. However, the contents of the WWW cannot be 
queried and manipulated in a general way. In particular, a large percentage of the information is stored as 
static HTML pages that can only be viewed through a browser. Some sites do provide search engines, but 
their query facilities are often limited, and the results again come as HTML pages. 
In this paper, we describe a configurable extraction program for converting a set of hyperlinked HTML 
pages (either static or the results of queries) into database objects. The program takes as input a 
specification that declarativejy states where the data of interest is located on the HTML pages, and how the 
data should be "packaged" into objects. The descriptor is based on text patterns that identify the beginning 
and end of relevant data; it does not use "artificial intelligence" to understand the contents. This means that 
our extractor is efficient and can be used to analyze large volumes of information. However, it also means 
that if a source changes the format of its exported HTML pages, the specification for the site must be 
updated. Since the specification is a simple text file, it can be modified directly using any editor. However, 
in the future we plan to develop a GUI tool that generates the specification based on high-level user input. 

The vast majority of information found on the WWW is semistructured in nature (e.g., TSIMMIS [1], LORE 
[2], Garlic [3], Information Manifold [4], RUFUS [5]). This means that WWW data does not have a 
regular and static structure like data found in a relational database. For example, if we look at classified 
advertisements on the Web, the "fields" and their nesting may differ across sites. Even at a single site, 
some advertisements may be missing information, or may have extra information. Because of the 
semistructured nature of WWW data, we have implemented our extractor facility so that it outputs data in 
OEM (Object Exchange Model) [1] which is particularly well suited for representing semistructured data. 
OEM is the model used by our TSIMMIS (The Stanford IBM Manager of Multiple Information Sources) 
project. Thus, one of our TSIMMIS wrappers [6] can receive a query targeted to a set of HTML pages. 
The wrapper uses the extractor to retrieve the relevant data in OEM format, and then executes the query (or 

72 



whatever query conditions have not been applied) at the wrapper. The client receives an OEM answer 
object, unaware that the data was not stored in a database system. 

In this paper, we describe our approach to extracting semistructured data from the Web using several 
examples. Specifically, we illustrate in detail how the extractor can be configured and how a TSIMMIS 
wrapper is used to support queries against the extracted information. 

2. A Detailed Example 
For our running example, let us assume that we have an application that needs to process weather data, 
such as temperature and forecast, for a given city. As one of its information sources, we want to use a 
Web site called IntelliCast [7] which reports daily weather data for most major European cities (see Figure 

country 
Austria 
Belgium 
Czech Republic 
Denmark 
England 
England 
England 
England 
England 

city 
Vienna 
Brussels 
Prague 
Copenhagen 
Birmingham 
Liverpool 
London 
Manchester 
Plymouth 

Tue, Jan IS. 1997 
forecast hi/lo 

snow -71-7 
ptcldy 3/-4 
snow -1/-7 
fog 3/-1 
ptcldy 9/-3 
ptcldy 8/2 
ptcldy 9/0 
ptcldy 8/-1 
ptcldy 9/3 

Wed, Jan 29. 1997 
forecast 

snow 
ptcldy 
snow 
fog 
ptcldy 
ptcldy 
ptcldy 
ptcldy 
ptcldy  

hi/lo 
-2/-7 
3/-4 
-1/-7 
3/-1 
7/3 
6/2 
8/4 
6/3 
8/5 

Figure 1: A snapshot of a section of die IntelliCast weather source. 

Since this site cannot be queried directly from within another application (e.g., "What is the forecast for 
Vienna for Jan. 28, 1997?") we first have to extract the contents of the weather table from the underlying 
HTML page which is displayed in Figure 2. 

2.1 The Extraction Process 

Our configurable extraction program parses this HTML page based on the specification file shown in 
Figure 3. The specification file consists of a sequence of commands, each defining one extraction step. 
Each command is of the form 

/ variables, source, pattern ] 

where source specifies the input text to be considered, pattern tells us how to find the text of interest within 
the source, and variables are one or more extractor variables that will hold the extracted results. The text 
in variables can be used as input for subsequent commands. (If a variable contains an extracted URL, we 
can also specify that the URL be followed, and that the linked page be used as further input.) After the'last 
command is executed, some subset of the variables will hold the data of interest. Later we describe how the 
contents of these variables are packaged into an OEM object. 

' TdfJu"s!io)!smberS Sh0W" °" the 'eft"hand S'de °f tWS and 'he "eXt f'SUreS are n0t Pai1 °f ,he COntem but have been added t0 simPIi^ ,he followin2 

73 



<HTML> ~ — —- 
<HEAD> 
<TITLE>INTELLICAST: europe weather</TITLE> 
<A NAME="europe"x/A> 
<TABLE   BORDER=0   CELLPADDING=0   CELLSPACING=0   WIDTH=509> 
<TR> 

7 <TD colspan=llxl>Click on a city for local £orecasts</IxBRx/TD> 
8 </TR> 
9 <TR> 

10 <TD colspan=llxl> temperatures listed in degrees Celsius </IXBRx/TD> 
11 </TR> 
12 <TR> 
13 <TD  colspan'=llxHR  NOSHADE  SIZE=6  WIDTH=509x/TD> 
14 </TR> 
15 </TABLE> 
16 -STABLE CELLSPACING = 0 CELLPADDING=0 WIDTH=514> 
17 <TR ALIGN=le£t> 

<TH C0LSPAN=2XBRX/TH> 
<TH COLSPAN=2><I>Tue, Jan 28, 1997</IX/TH> 
<TH C0LSPAN=2xI>Wed, Jan 29, 1997</IX/TH> 

</TR> 
<TR ALIGN=left> 
<TH><I>country</Ix/TH> 
<TH><l>city</Ix/TH> 
<TH><I>forecas't</Ix/TH> 
<THXI>hi/lo</IX/TH> 
<TH><I>forecast</Ix/TH> 
<THXI>hi/lo</IX/TH> 

</TR> 
<TR ALIGN=left> 
<TD>Austria</TD> 
<TD><A HREF=http://www.intellicast.com/weather/vie/>Vienna</Ax/TD> 
<TD>snow</TD> 
<TD>-2/-7</TD> 
<TD>snow</TD> 
<TD>-2/-7</TD> 

</TR> 
<TR ALIGN=left> 

<TD>Belgium</TD> 

<TDXA HREF=http://www. intellicast. com/weather/bru/>Brussels</Ax/TD> 
<TD>£og</TD> 
<TD>2/-2</TD> 
<TD>sleet</TD> 
<TD>3/-1</TD> 

</TR> 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

</TABLE> 

</HTML> 

Figure 2: A section of the HTML source file. 

Looking at Figure 3, we see that the list of commands is placed within the outermost brackets '[' and ')', 
and each command is also delimited by brackets. The extraction process in this example is performed by 
five commands. The initial command (lines 1-4) fetches the contents of the source file whose URL is given 
in line 2 into the variable called root. The '#' character in line 3 means that everything (in this case the 
contents of the entire file) is to be extracted. After the file has been fetched and its contents are read into 
root, the extractor will filter out unwanted data such as the HTML markup commands and extra text with 
the remaining four commands. 

The second command (lines 5-8) specifies that the result of applying the pattern in line 7 to the source 
variable root is to be stored in a new variable called temperature. The pattern can be interpreted as 
follows: "discard everything until the first occurrence of the token </TR> ('*' means discard) in the second 
table definition and save the data that is stored between </TR> and </TABLE> ('#' means save)." The two 
<TABLE tokens between the '*' are used as navigational help to identify the correct </TR> token since 
there is no way of specifying a numbered occurrence of a token (i.e., "discard everything until the third 
occurrence of </TR>"). After this step, the variable temperature contains the information that is stored 
in lines 22 and higher in the source file in Figure 2 (up to but not including the subsequent </TABLE> 
token which indicates the end of the temperature table). 

74 



1 [["root"^~ — — — .  

2 '"get! 'http://vArfw.intellicast.com/weather/europe/') • 
3 " # ■ ' 
4 ], 
5 ["temperatures", 
6 "root", 
7 "*<TABLE*<TABLE*</TR>#</TABLE>** 
8 J, 

9 t"_citytemp", 
10 "split(temperatures, '<TR ALIGN=left>'>" 
11 "#" 
12 ), 
13 ["city_temp-, 
14 "_citytemp[l:OJ", 
15 ■#■ 
16 ], 

ll ^ctty'temo""1'01'7'"63^^^ 
19 
20     )] *<TD>#</TD>*HREF=l»>#</A>«<TD>(t</TD>*<TD>#/#</TD>*<TD>#</TD>*<TD>#/#*- 

Figure 3: A sample extractor specification file. 

The third command (lines 9-12) instructs the extractor to split the contents of the temperature variable 

Zu S"T v .°f t6S' USmg the String <TR ALIGN=lef t> (lines 22, 30, 38, etc. in Figure 2) as the 
^chunk delimiter. Note, each "chunk" represents one row in the temperature table. The result of each 
split is stored in a temporary variable called _citytemp. The underscore at the beginning of the name 
-^yt

K
emp m*™tes that this is a temporary variable; its contents will not be included in the resulting 

OEM object. The spht operator can only be applied if the input is made up of equally structured pieces 
with a dearly defined delimiter separating the individual pieces. If one thinks of extractor variables as lists 
up until now each list had only one member) then the result of the split operator can be viewed as a new 

hs with as many members as there are rows in the temperature table. Thus from now on, when we apply a 
pattern to a variable, we really mean applying the pattern to each member of the variable, much like the 
apply operator in Lisp. 

In command 4 (lines 13-16), the extractor copies the contents of each cell of the temporary array into the 
array clty_temp starting with the second cell from the beginning. The first integer in the instruction 
_citytemp[i:0] mdICates the beginning of the copying (since the array index starts at 0, 1 refers to the 
second cell), the second integer indicates the last cell to be included (counting from the end of the array) 

Note TZ1 '^ ha*exc,u*«i *f ** row of the table which contains the individual column headings: 
Note that we could have also filtered out the unwanted row in the second command by specifying an 
additional *</TR> condit.on before the •#• in line 7 of Figure 3. The final command (lines 17 20) extracts 
he individual values from each cell in the city.temp array and assigns them into the variables listed in 

line 1 / (country, c_url, city, etc.). 

ifOHUhnn^ C°K
mmand

u
s have b^n executed'the variables hold the data of interest. This data is packaged 

nto an OEM object shown in Figure 4, with a structure that follows the extraction process.   OEM is a 

Jounronth w K nat 1S partiCula?V wel,-suited for accommodating the structured data commonly 
found on the Web. Data represented in OEM constitutes a graph, with a unique root object at the top and 

r; rdreanvils th 
J,T; f^object (shown as a separate iine in ^ *>«-«a «*? a type and a value^ The label describes the meaning of the value that is stored in this component   The 

value stored m an OEM object can be atomic (e.g., type string, url), or can be a set of OEM subobjects 
For additional information on OEM, please refer to [8] ^ooojecis. 

75 



root 

string 
url 
siring 

complex    !~ 
temperature complex 

city_temp complex 
country 
city_url 

weather_today 
high_today 
low_today 
weather_tom 
high_tomorrow 
lo\v_tomorrow 

city_temp complex { 
country siring 
city_url url 
city string 

} 

"Austria" 
http://www 
"Vienna" 
string 
string 
string 
string 
string 
string 

snow 
■'.■)•• 
:j" 
'snow" 
-.2" 
•-7- 

"Belgium" 
http://www... 
"Brussles" 

Figure 4: The extracted information in OEM format. 

Notice that the sample object in Figure 4 reflects the structure of our extractor specification file That is 
the root object of the OEM answer will have a label root because this was the' first extract vliab ' 

extracZ^l Z \T ^ ^ ^ ^™ because this was the second va L e extracted. In turn, the children are the city.temp objects extracted next, and so on. Notice that variable 
„citytemp does not appear .n the final result because it is a temporary variable. 

2.2 Customizing the Extraction Results 

As discussed in the previous section, the outcome of the extraction process is an OEM object that contains 
he desired data together with information about the structure and contents of the result   Th  contents and 

structure of the resulting OEM object are defined in a flexible way by the specification file   For usance 

Zth h
Ch°Sen ¥*tr3Ct additi°nal data' and t0 Create an °™ resuh that has a uferen    r c uS 

Fill 2 The ^ m   ,gUre 4"   F°; eXamp,e' WC ^ a,S° eXtraCt the date values » «"■ » ad 20 of 
Se an 0EMW1TT°T ^f" the;emperatUre a"d Weather ** that is —-ted with each date creating an OEM object such as the one depicted in Figure 5.   Although not shown in our examole we 

root complex    ( 
temperature             complex 

city_temp complex { 
country strinv "Austria" 
city_url url http:/Avww... 
city 
todays_> 

siring "Vienna" 
leather complex 1 

date string "Tue, Jan 28, 1997" 
weather string "snow" 

1 

high 
low 

string ••.r 
siring       "-7" 

tomorrows.weather complex ( 
date string "Wed, Jan 29, 1997" 
weather string "snow" 
high siring ".•>•• 

,                > 
low string -.7" 

) 
city_temp complex { 

country strinv "Belgium" 
city url url httpiwwww 
city 

) 
string "Brussles" 

1 
}      .         " 

Figure 5: A different OEM result object. 

76 



It is important to note that there may be several different ways of defining the individual extraction steps 
that ultimately result in the same OEM answer object. Thus when defining the specification file one can 
proceed in a way that is most intuitive rather than worrying about finding the only "correct" set of steps. 
For instance, in our example, we could have avoided the usage of the temporary array _citytemp by 
filtering out the unwanted header information in the previous step. However, both approaches ultimately 
lead to the same result2 (with slight differences in performance). 

2.3 Additional Capabilities 

In addition to the basic capabilities described in the previous section, our extractor provides several other 
features and constructs that simplify the extraction steps and at the same time enhance the power of the 
extractor. For example, the extract_table construct allows the automatic extraction of the contents of 
an HTML table (i.e., the data that is stored in each of its rows) as long as the table can be uniquely 
identified through some patterns in the text (this would allow us to collapse steps 2 and 3 in our example). 
An other useful operation is the case operator that allows the user to specify one or more possible patterns 
that are expected to appear in the input. This is especially useful for sources where the structure of the file 
is dynamic (in addition to the actual data). If the first pattern does not match, the parser will try to match 
each of the alternate patterns until a match has been found. If none of the patterns match, the parser will 
ignore the rest of the current input and continue parsing the data from the next input variable (if there is 
one). 

As a last example of the extraction capabilities of our parser, consider the frequent scenario where 
information is stored across several linked HTML pages. For example, one can imagine that the weather 
data for each city is stored on its own separate Web page connected via a hyperlink. In this case, one can 
simply extract the URL for each city and then obtain the contents of the linked page by using the get 
operator as shown in the second line of Figure 3. 

2.4 Querying the Extracted Result 

In order to allow applications to query the extracted results, we need to provide a queryable interface that 
can process queries such as "What is the high and low temperature for Jan. 29 for Vienna, Austria?" and 
return the desired result (e.g., "high: -2, low -7"). Rather than developing a new query processor from 
scratch, we decided for now to reuse the wrapper generation tools that we have developed in the TSIMMIS 
project. With this toolkit, we can generate wrappers that have the ability to support a wide variety of 
queries that are not natively supported by the source, in our case the extracted output (for more details on 
wrappers see [6, 9]). With this approach, we only need to provide a simple interface that accepts a request 
for the entire extracted result (this is equivalent to supporting a query such as "SELECT * FROM ..."). 
Making use of the wrapper's internal query engine, we can indirectly support most of the commonly asked 
queries (i.e., selections and projections on the extracted output). Currently, applications can interact with 
TSIMMIS wrappers using one of two query languages (LOREL3 [2] and MSL4 [10]). Wrappers return 
results in OEM format. 

In the future, we plan to store extracted OEM results in LORE (Lightweight Object Repository) to make use 
of its more sophisticated query processor that has been optimized for answering (LOREL) queries on 
semistructured data. In addition, we will get the ability to cache extracted results which will allow us to 
reuse already extracted information and provides independence from unreliable sources. 

- We chose the approach described here since it demonstrates the additional capabilities of the extractor but the solution without the temporary variable 
is more efficient. 

LOREL (LORE Language)is a query language that was developed at Stanford as part of the LORE (Lightweight Object Repository) project for 
expressing queries against semistructured data represented in OEM. 

MSL (Mediator Specification Language) is a rule-based language, which was developed as part of the TSIMMIS project for querying OEM objects. 

77 



3. Evaluation 
An important design goal when developing our extractor was to find the right balance between its inherent 
capabilities on one hand and ease of use on the other. We think we have achieved both, which becomes 
apparent when one compares our approach to other existing tools such as YACC [11] or PERL [13] 
regular expressions, for example. Although YACC is a more powerful and more generic parser, a YACC 
grammar for extracting Web data from the HTML source in Figure 2 would be much more complex and 
difficult to generate (after all, writing a YACC specification is nothing else than writing a program using a 
much more complex language). For example, YACC does not support hierarchical splitting, an important 
feature of our extractor that demonstrates its close relationship to the hierarchical organization of Web data 
and simplifies the specification that a user has to write. 

We have also considered using an existing HTML parser which is natively available in Python5. This 
HTML parser "understands" SGML syntax and can automatically identify HTML tags in the input stream 
Upon encountering an HTML tag, the parser executes a user-defined function using the tag attributes as 
function input. Thus, it is very easy to extract text and HTML tags from an input file. However, the 
native parser does not understand the semantic connections that exist between some of the tags (i.e., begin 
and end tags, list members, etc.) and cannot easily be used for building an OEM object that preserves the 
hierarchical structure of the data. All of the processing and construction has to be handled by externally 
invoked user-defined functions. In addition, although this native parser is extremely flexible in terms of 
input processing capabilities, it is not as efficient in terms of raw processing speed as our own parser which 
is implemented on top of the Python find command6. 

A drawback of our approach ,is that the extraction mechanism depends on outside (human) input for 
describing the structure of HTML pages. This becomes an issue when the structure of source files changes 
rapidly requiring frequent updates to the specification file. Using a different approach, Ashish et al. [12], 
attempt to insert machine learning techniques into their extraction program for automatically making 
intelligent guesses about the underlying HTML structure of a Web site. Their approach is aimed at 
eliminating most of the user intervention from the extraction process. By contrast, the approach that we are 
pursuing here is two-pronged and relies on human intelligence supported by a flexible extractor program: 
(1) we are enabling our extractor to exit gracefully from a variety of cases in which the underlying 
structure does not match the specification, and (2), we are making the process of writing the extraction 
specification itself as easy and efficient as possible. In the future, we intend to develop a GUI for helping 
users generate and maintain correct specification files. Our planned interface will resemble a Web browser 
in that it can render the marked-up HTML source. More importantly however, it will enable the user to 
simply "highlight" the information that is to be extracted directly on the screen without having to write a 
single line of specification (which will be generated automatically by the GUI). 

4. Conclusion 
There has been much interest recently in moving data from the WWW into databases, of one type or 
another. This way, data that is embedded in HTML documents can be searched more effectively, and can 
be better managed. Our extractor is a flexible and efficient tool that provides a currently missing link 
between a lot of interesting data (which resides on the Web) and the applications (which have no direct 
access to the Web data). 

We are currently using the extractor in our TSIMMIS testbed for accessing weather and intelligence data 
from several Web sites. As a result of our initial tests, we implemented the case operator as described in 
Sec. 2.3. The need for such an operator arose since we frequently encounter minor irregularities in the 
structure of the underlying HTML pages (e.g., weather data that is temporarily missing for a given city, 

Our extractor is implemented using Python [14] version 1.3. 
6 Comparison tests have shown a processing speed of 10K/sec. of text for the native HTML parser vs. 2 MB/sec. for the Python find command. 

78 



etc.) from which our first prototype did not recover. We are now in the process of extracting other kinds of 
semistructured information from the Web and find that the currently implemented set of extraction 
operators is powerful enough to handle all of the encountered sources; i.e., our specification files are 
straightforward and easy to understand. 

References 
[I] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and J. 

Widom, "The TSIMMIS Project: Integration of Heterogeneous Information Sources," In 
Proceedings of Tenth Anniversary Meeting of the Information Processing Society of Japan, 
Tokyo. Japan, 7-18, 1994. 

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener, "The Lorel Query Language for 
Semistructured Data," In Proceedings of ACM SIGMOD International Conference on 
Management of Data, Tucson, Arizona, 1997. 

[3] M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya, W. F. Cody, R. Fagin, A. Flickner, A. W. 
Lumewski, W. Niblack, D. Petkovic, J. Thomas, J. H. Williams, and E. L. Wimmers, 'Towards 
heterogeneous multimedia information systems: the Garlic approach," In Proceedings of Fifth 
International Workshop on Research Issues in Data Engineering (RIDE): Distributed Object 
Management, Los Angeles, California, 123-130, 1995. 

[4] T. Kirk. A. Levy, J. Sagiv, and D. Srivastava, "The Information Manifold," AT&T Bell 
Laboratories, Technical Report 1995. 

[5] K Shoens, A. Luniewski, P. Schwarz, J. Stamos, and J. Thomas, "The RUFUS System: 
Information Organization for Semi-Structured Data," In Proceedings of Nineteenth International 
Conference on Very Large Databases, Dublin, Ireland, 97-107, 1993. 

[6] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. Ullman, "A Query Translation Scheme 
for Rapid Implementation of Wrappers," In Proceedings of Fourth International Conference on 
Deductive and Object-Oriented Databases, Singapore, 1995. 

[7] Weather Services International. "INTELLICAST: Europe Weather." URL, 
http://www.intellicast.com/weather/europe/. 

[8] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom, "Object Exchange Across Heterogeneous 
Information Sources," In Proceedings of Eleventh International Conference on Data 
Engineering, Taipei, Taiwan, 251-260, 1995. 

[9] J. Hammer, M. Breunig, H. Garcia-Molina, S. Nestorov, V. Vassalos, and R. Yemeni, "Template- 
Based Wrappers in the TSIMMIS System," In Proceedings of Twenty-Third ACM SIGMOD 
International Conference on Management of Data, Tucson, Arizona, 1997. 

[10] Y Papakonstantinou, S. Abiteboul, and H. Garcia-Molina, "Object Fusion in Mediator Systems," 
In Proceedings of Twentieth International Conference on Very Large Databases, Bombay, India, 
19% 

[II] S C. Johnson, "Yacc—yet another compiler compiler," AT&T Bell Laboratories, Murray Hill, 
N.J.. Computing Science Technical Report 32, 1975. 

[12] N. Ashish and C. Knoblock. "Wrapper Generation for Semi-structured Internet Sources." 
Workshop on Management of Semistructured Data, Ventana Canyon Resort, Tucson, Arizona. 

[13] L. Wall and R. L. Schwartz (1992). Programming perl, O'Reilly & Associates, Inc., Sebastopol, 
CA 

[14] Corporation for National Research Initiatives. "The Python Language Home Page." URL, 
http://www.python.org/, Reston, Virginia. 

79 



MedMaker: A Mediation System Based on Declarative 
Specifications* 

Yannis Papakonstantinou, Hector Garcia-Molina, Jeffrey Ullman 
Computer Science Department 

Stanford University 
Stanford, CA 94305-2140, USA 

Abstract 
Mediators are used for integration of heterogeneous 

information sources. In this paper we present a sys- 
tem for declaratively specifying mediators. It is tar- 
geted for integration of sources with unstructured or 
semi-structured data and/or sources with changing 
Schemas. In the paper we illustrate the main features 
of the Mediator Specification Language (MSL), show 
how they facilitate integration, and describe the im- 
plementation of the system that interprets the MSL 
specifications. 

1    Introduction 
Many applications require integrated access to het- 

erogeneous information, stored at sources with dif- 
ferent data models and access mechanisms [LMR90, 
Gup89, C+94, A+91]. The TSIMMIS data-integration 
system provides integrated access via an architec- 
ture (see Figure 1.1) that is common in many 
projects: Wrappers [C+94, FK93] (also called transla- 
tors [PGMW95]) convert data from each source into a 
common model, as illustrated in Figure 1.1. The wrap- 
pers also provide a common query language for ex- 
tracting information. Applications can access data di- 
rectly through wrappers, but they may also go through 
mediators [PGMW95, Wie92]. A mediator combines, 
integrates, or refines data from wrappers, providing 
applications with a "cleaner" view. For example, 
a mediator for Computer Science publications could 
provide access to a set of bibliographic sources that 
contain relevant materials. Users accessing the medi- 
ator would see a single collection of materials, with, 
for example, duplicates removed and inconsistencies 
resolved (e.g., all authors names would be in the for- 
mat last name, first name). 

Our focus on this paper is on integration of sources 
that do not have a well defined static schema. This 
class of sources includes databases that have an often 
changing schema, as well as information sources that 
contain-unstructured or semistructured data. There 
are many applications that use such data. A typ- 
ical example is electronic mail where objects have 
some well defined "fields" such as the destination and 
source addresses, but there are others that vary from 
one mailer to another. Furthermore, fields are con- 
stantly being added or modified. The same situa- 
tion arises with medical records, bibliographic infor- 

User/Application 1        User/Application 2 

Integrated View 1 

Mediator 1 

Integrated View 2 

Mediator 2 
00 View 

of Source 1 00 View 
Source 3 

Wrapper 1 

Information 
Source I 

Wrapper 2    |    [Wrapper 3 

Information 
Source 2 

Information 
Source 3 

Figure 1.1: The TSIMMIS architecture for integration 

mation, knowledge representation frames[G+92], and 
many others. 
1.1    The OEM Model 

Most applications that have to deal with un- 
predictable, unstructured information use a self- 
describing model [MR871, where each data item has 
an associated descriptive label. In [PGMW95] we have 
defined a self-describing data model, called the Object 
Exchange Model (OEM), that captures the essential 
features of the models used in practice. It also gener- 
alizes them to allow arbitrary nesting and to include 
object identity. 

To illustrate the OEM model, consider the following 
objects (one object per line): 

<&1, person, set,   {ail, &12, &13, &14}> 
<&11, name,  string,   'George Jones'> 
<&12,  department,  string,   'CS'> 
<&13,  relation, string,   'employee»> 
<&14,affiliations,  set,   {&141, &142}> 

<&141, affiliation,  string,   'AI'> 
<&142, affiliation,  string,   *DB'> 

Each OEM object consists of an object-id (e.g., &12), 
a label that explains its meaning (e.g., department), 
a type (e.g., string), and a value of the specified type 

80 



<&el, employee, set, {4fl,411,4ti,4repl}> 
<4fl, first-name, string, 'Joe'> 
<411, last.name, string, 'Chung'> 
<&tl, title, string, 'professor'> 
<4repl, reports.to, string, 'John Hennessy'> 

<4e2, employee, set, {&f2,412,4t2}> 
<4f2, first_name, string, 'John'> 
<412, last_name, string, 'Hennessy'> 
<4t2, title, string, 'chairman'> 

<4s3, student, set, {4f3,413,4y3}> 
<4f3, firstjiame, string, 'Pierre'> 
<413, last_name, string, 'Huyn'> 
<4y3, year, integer, 3> 

Figure 2.2: The OEM object structure of the cs wrap- 
per 

<4pl, person, set, {4nl,4dl,4rell,4elml}> 
<4nl, name, string, 'Joe Chung•> 
<4dl, dept, string, 'CS'> 
<&rell, relation, string, 'employees 
<4elml, ejnail, string, 'chungOcs'> 

<4p2, person, set, {4n2,4d2,4rel2}> 
<4n2, name, string, 'Nick Naive'> 
<4d2, dept, string, 'CS'> 
<4rel2, relation, string, 'student»> 
<4y2, year, integer, 3> 

Figure 2.3: The OEM object structure of whois 

Problems in Mediator Specification Creating 
the integrated view from the wrapper views requires 
the resolution of a number of problems: 

• schema-domain mismatch: The whois source rep- 
resents names by a long string that contains 
both the first and the last name, while the cs 
database represents names using the "last-name" 
and ufirst_name" subobjects. 

• schematic discrepancy: Data in one database cor- 
respond to metadata of the other. In particular, 
the status of a person - employee or student - 
appears as a value in whois (it was part of a re- 
lational table), while it appears in the schema of 
cs (it was part of the relational schema). 

• schema evolution: The format and contents of the 
sources may change over time, often without no- 
tification to the mediator implementor. For ex- 
ample, an attribute "birthday" may appear in ei- 
ther of the two sources, or the "e-mail" attribute 
may be dropped. We would like our mediator 
specification to be insensitive to as many of these 
changes as possible. For example, if "birthday" is 
included or dropped, it should be automatically 
included or dropped from the med view, without 
need to change the mediator specification. 

<4cpl,  cs.person,   {4mnl,4mrell,4tl,&repl,4elml}> 
<4mnl, name,  string,   'Joe Chung'> 
<4mrell,  rel,  string,   'employee'> 
<4tl,  title,  string,   'professor'> 
<4repl,  reports.to,  string,   'John Hennessy'> 
<4elml,   e-mail,   string,   'chungQcs'> 

Figure 2.4: Object exported by med 

• structure irregularities: Source whois does not 
follow a regular schema (i.e., it is a semistruc- 
tured source.) 

The Mediator Specification of med The follow- 
ing MSL specification MSI defines the med mediator 
we have described, resolving the integration problems 
we have discussed above. We will explain this specifi- 
cation in the paragraphs that follow. 

(MSI) Rules: 
<cs.person {<name N> <rel R> Restl Rest2}> 

:- <person {<name N> <dept  'CS'> 
<relation R>|Restl}>8whois 

AND decomp(N,  LN,  FN) 
AND <R {<first-name FN> 

<last_name LN>   |   Rest2}>6cs 
External: 
decomp(string,string,string)(bound,free,free) 

impl by name_to_lnfn 
decomp(string,string,string)(free,bound,bound) 

impl by lnfn_to_name 

A specification consists of rules that define the view 
provided by the mediator, and declarations of func- 
tions that will be called upon for translating objects 
from one format to another. Each rule (the above 
specification has only one rule) consists of a head and 
a tail that are separated by the :- symbol. The tail 
describes the patterns of objects that must be found 
at the sources, while the head describes the pattern of 
the top-level objects of the integrated view. 

Intuitively, we may think of the process of "cre- 
ating" the virtual objects of the mediator as pattern 
matching. First, we match the patterns that appear in 
the tail against the object structure of cs and whois, 
trying to bind the variables (represented by identifiers 
starting with a capital letter, such as N, Restl, etc.) 
to object components of cs and whois. Then we use 
the bindings to "construct" the objects specified in the 
head of the rule. 

The specification is based on patterns of the form 
<object-id label type value>, where we may place con- 
stants or variables in each position. For simplicity we 
can drop some of the fields when they are irrelevant. 
If one field is dropped, we assume it is the type, so we 
have a pattern of the form <object-id label value>. If 
two fields are dropped, we assume they are the type 
and the object-id. When the object-id is missing in a 
tail pattern, it means that we do not care about the 
object-id's appearing at the sources. When an object- 
id is missing from a head pattern, it means we do not 
care what object-id the mediator uses for the "gener- 
ated" object. 

81 



(e.g., 'CS'). Object-ids can be of different types, but 
for now. think of them as arbitrary strings that are 
used to link objects to their subobjects. (For more 
details, see [PGM].) Labels are strings that are mean- 
ingful to the application or end user. Labels may have 
different meanings at different sources. Indeed, it will 
be the job of mediators to resolve these conflicts. Val- 
ues may be either of an atomic type (e.g., 'George 
Jones' is of type string), or be a set of subobjects 
(e.g., the value of the "affiliations" object is {&141, 
&142}). l 

Some OEM objects (e.g., the object identified by 
&1) are top-ltvel objects, and we write them with the 
leftmost indentation. For performance reasons clients 
query object structures starting, by default, from the 
top-level objects. For example, a simple query may 
ask for top-level -person" objects that have a "depart- 
ment" subobject with value 'CS'. Nevertheless, the 
client is not restricted to query the object structure 
starting from top-level objects, as will be explained in 
Section 2. 

The OEM model forces no regularity on data. For 
example, a second person object may or may not have 
subobjects with the same labels as the person shown 
above. The fact that there is no schema, or each ob- 
ject has its own schema if you will, makes it possible 
to represent heterogeneous, changing information. It 
also facilitates the representation of information inte- 
grated from multiple heterogeneous sources, that typ- 
ically have different schemas. 

1.2    The Mediator Specification Language 
(MSL) 

Given a set of sources with wrappers that export 
OEM objects, we would like to build mediators to in- 
tegrate and refine the information. In particular, we 
restrict our attention to mediators that provide inte- 
grated OEM i it us of the underlying information. The 
significant programming effort involved in the hard- 
coded development of TSIMMIS mediators suggests 
the need for development of systems that facilitate 
mediator development. Our mediation system, Med- 
Maker, provide?, a high level language, called Mediator 
Specification Luuguag? (MSL) that allows the declar- 
ative specification of mediators. At run time, when 
the mediator receive.-, a request for information, Med- 
Maker s Mtdiatui ^deification Interpreter (MSI) col- 
lects and integrate the necessary information from the 
sources, according to the specification. The process is 
analogous to expanding a query against a conventional 
relational database view. Indeed, MSL can be seen a 
view definition language that is targeted to the OEM 
data model and the functionality needed for integrat- 
ing heterogeneous sources. The special requirements 
of integration led to the introduction of a number of 
useful concepts and properties, that are not found in 
conventional view definition languages. In this paper 
we present the following features: 

• MSL mediator specifications can handle some 
schema evolution of the underlying sources with- 
out a need for rewriting of the specification. 

• MSL can handle structure irregularities of the 
sources without producing erroneous or unex- 
pected results. 

• MSL can integrate sources for which we do not 
fully know their object structures. 

• MSL can manipulate both the values and the de- 
scriptive semantic labels in the same fashion, get- 
ting around problems such as schematic discrep- 
ancies [KLK91]. 

The above capabilities are "packaged" in a high-level 
declarative language that combines power with sim- 
plicity and conciseness, thus allowing the client of an 
heterogeneous system to easily define an integrated 
view. 

In the next section we present an extended example 
that illustrates the MSL language and some of its inte- 
gration capabilities. Then, in Section 3 we discuss the 
architecture and implementation of MedMaker. Sec- 
tion 4 compares MedMaker to other systems for the 
integration of heterogeneous information sources and 
discusses ongoing and future work on MedMaker. The 
complete syntax and semantics of MSL are provided 
in [PGM]. 

2    A Mediator Specification Example 
For our extended example, we consider two sources 

that contain information on the staff of a Computer 
Science department.   The first source is a relational   ' 
database containing two tables with schemas 
employee (first jiame, last-name, title, reports_to) 
student (f irst Jiame, last .name, year) 
A wrapper, named cs, exports this information as a 
set of OEM objects, some of which are shown in Fig- 
ure 2.2. Notice how the schema information has now 
been incorporated into the individual OEM objects.1 

A second source is a university '"whois" facility that 
contains information about employees and students. 
A wrapper whois provides access to this source; sev- 
eral sample objects are shown in Figure 2.3. Notice 
that in this case there can be irregularities. For in- 
stance, object &pl contains an email subobject while 
&p2 does not. 

Let us now consider a mediator, called med, that 
has access to wrappers cs and whois and exports a 
set of '-cs.person" objects. Our goal in this example 
is that each "cs.person" object represents a person 
appearing in both sources. The subobjects of each 
•'cs.person" object should represent the combined in- 
formation about this person. For example, since an 
object with information about Joe Chung is exported 
from both cs and whois, med combines this informa- 
tion and exports the object of Figure 2.4. 

'Two minor points: (1) After translation, we have lost 
knowledge that objects at this source must have a regular struc- 
ture. If this information is important to the applications, it 
could be exported as additional facts about this source. (2) One 
could consider it inefficient to repeat the schema in all objects, 
in this case where there is a regular pattern to objects. This 
problem can easily be addressed by data compression when ob- 
jects are exported. Conceptually, we believe it is easier to think 
of each object as having its own labels. 

82 



When the label (value) field contains a constant the 
pattern matches successfully only with OEM objects 
that have the same constant in their label [value) field. 
On the other hand, when the label (value) field con- 
tains a variable, the pattern can successfully match 
with any OEM object, regardless of the label (value) 
of the object. For example, the pattern <name N> 
can match with OEM objects <&1, name, string, 
'Fred'> or <&2, name, string, 'Tora'X As a re- 
sult of a successful matching, the variable N will bind 
to the value of the specific OEM object (either 'Fred' 
or 'Tom' in the example). 

Returning to our mediator specification example, 
we match the patterns of the tail against the top- 
level objects of the corresponding sources, trying to 
bind the variables of the tail to appropriate object 
components. In particular, we match the pattern 
<person {<name N> ... | Restl}> against the ob- 
jects of source whois, trying to bind the variables N, 
R, and Restl to appropriate object components. That 
is, we try to find top-level "person" objects that have 
a '-name" subobject, a "dept" subobject with value 
'CS', and a "relation" subobject. The object iden- 
tified by &pl (see Figure 2.3) satisfies these require- 
ments. As a result, N binds to 'Joe Chung', R binds 
to ' employee', and Restl binds to the remaining sub- 
objects, i.e., it binds to {<&elml, e_mail, string, 
'chung«cs'>} Let us name this set of bindings &„,,!. 
Other objects may also satisfy these conditions and 
produce other bindings for N, R, and Restl. For in- 
stance, N can bind to 'Nick Naive', R to 'CS', and 
Restl to {<&y2, year,  integer, 3>}. 

The specification also indicates that we match 
the pattern <R {<first_name FN> ... | Rest2}> 
against the objects at source cs, obtaining bind- 
ings for the variables R, FN, LN, and Rest2. 
Referring to Figure 2.2, we see that one of 
these binding, call it 6C|1, will bind R to 
'employee', FN to 'Joe', LN to 'Chung', and Rest2 
to {<fttl, title, string, 'professor'> <&repl, 
reports_to,   string,   'John Hennessy'>}. 

The next step is to match the two sets of bind- 
ings. A binding bWii from whois matches a binding 
6CiJ- from cs if the two bindings agree on the values 
assigned to common variables (in this case, R) and 
the name N found in whois "corresponds" to the last 
name, first name pair LN, FN found in cs. For exam- 
ple, binding bwA matches 4C|1 because they both bind 
R to 'employee' and the nameN = 'Joe Chung' cor- 
responds to last name LN = ' Chung' and first name 
FN =  'Joe'. 

External Predicates The correspondence between 
names and first, last name pairs is'given by the pred- 
icate decomp(N,LN,FN). Conceptually, we can think 
of decomp as a predicate that evaluates to true if N is 
a valid decomposition of last, first names LN, FN. In 
practice, decomp is implemented as a pair of functions, 
name.toJLnfn and lnfn_to_name (in principle written 
in any programming language), and defined in the me- 
diator specification. For example, the line decomp ... 
by name_to_lnf n indicates that name_to_lnf n can be 

called with a full name (the first bound parameter); 
the function decomposes the name and returns the last 
and first names (second and third free parameters). 
Similarly, lnf n_to_name can compose a last, first name 
pair and produce a full name. Thus, operationally, to 
check if decompC'Joe Chung', 'Chung', 'Joe') is 
true, we can call name_to_lnfn with input parameter 
'Joe Chung' and see if it returns 'Joe' and 'Chung'. 
If it does, the predicate holds. Equivalently, we can 
call lnf n.to Jiame to perform the check.2 We assume 
that the resulting result would be the same in any 
scenario. (Having more than one function for decomp 
gives flexibility at execution time.) 

Creation of the Virtual Objects For each set of 
matching bindings from the tail patterns, we concep- 
tually create an object in the med view.3 (We stress 
that objects are not really materialized by the media- 
tor specification.) The head of the rule tells us how to 
construct the view objects. For example, the matching 
bindings bwA and bCii result in the object of Figure 2.4. 

Note that even though Restl and Rest2 are bound 
to sets of objects, and <name N> and <rel R> are 
bound to single objects, we can include all four in- 
side the curly braces that define the subobjects for a 
"cs.person" object. In general, when variables that 
have been bound to sets appear inside curly braces 
{} in a rule head, the first level of their contents is 
"flattened out" and included in the set value that is 
described by the curly braces pattern. 

Note also that our sample head did not specify any 
types or object-id's for the view objects. The types, 
of course, are simply set to the types of the bound 
variables (string in our case.) For the object-id's, 
any arbitrary unique strings can be used (e.g., fccpl, 
ftmnl,   ... are used in Figure 2.4.) 

MSL's Solutions to Mediator Specification 
Problems The specification of med solves the inte- 
gration problems mentioned earlier, mainly by exploit- 
ing the free use of variables in the Mediator Specifi- 
cation Language, and the schema/data combination 
ability of OEM. For example, we were able simulta- 
neously to bind variable R to a value in whois and 
a label in cs, thus addressing the schematic discrep- 
ancy. The schema evolution problem is handled by 
the use of variables Restl and Rest2. If, say, new at- 
tributes such as "birthday" are added to cs, no change 
is required to the mediator specification. The new at- 
tribute will be included with Restl and propagated 
to the integrated view. On the same time, the bind- 
ings of variables Rest 1 or Rest2 are not required to 

20f course, if the implemented had provided a function 
checkjiame-lnfn that, is called with all three parameters bound, 
we would simply call check-nameJLnfn with input parameters 
'Joe Chung', 'Chung', and 'Joe. 

3In reality, we first project the bindings of the variables of 
the tail, into bindings of the variables that appear in the head of 
the rule. Then we eliminate duplicated bindings, and finally we 
create an object of med for each set of bindings of the variables 
of the head. 

83 



carry homogeneous sets of objects. For example, bind- 
ing 6u,i binds Restl to {<&elml, e_mail, string, 
'chung«cs'>} while bWt2 binds Restl to {}. In this 
way, MSL can handle the integration of unstructured 
sources that do not have a regular schema. Finally, the 
ability to use external predicates allows us to process 
atomic values in any desirable way. 

One apparent limitation, of the integrated view we 
have defined for med is that it only includes informa- 
tion for people that appear in both cs and whois. In 
particular, we may wish to include information in med 
even if it appears in a single source. In Section ?? 
we briefly present other features of the MSL that let 
us define such views and let us perform other use- 
ful integration tasks. (A complete description appears 
in [PGM].) However, before doing so, in the following 
section we illustrate how our Mediator Specification 
Interpreter (MSI) would process an incoming query, 
against the sample definition we have given. 

Other Features of the Mediator Specification 
Language In the previous two sections we illus- 
trated the basic functionality of the MSL language. 
The language has additional features specifically de- 
signed to facilitate the integration and querying of 
heterogeneous sources. Due to space limitations, we 
cannot provide examples for all these features. In- 
stead, we briefly summarize some features and refer 
the reader to [PGM} for examples and details. 

First, note MSL's ability to retrieve schema infor- 
mation: One can place variables in the label positions 
of an MSL query, and thus retrieve information about 
labels and the object structure of a source. This is a 
useful feature for exploring new or changing sources. 
Second, MSL provides the wildcard feature that al- 
lows searches for objects at any level in the object 
structure of the source, without need to specify the 
entire path to the desired object. The wildcard fea- 
ture is especially useful when we form queries with- 
out complete knowledge of the structure of the under- 
lying data. (Without appropriate index structures, 
wildcard searches may be expensive, so some sources 
may not support them or may support them in a re- 
stricted fashion.) Finally, MSL allows the specifica- 
tion of semantic object-id's that semantical!}' identify 
an exported object and they have meaning beyond the 
mediator call that yielded them. Semantic object-id's 
provide a powerful mechanism for object fusion. Due 
to space limitations we will not discuss any further 
this feature. 

3    Architecture and Implementation of 
MSI 

The Mediator Specification Interpreter (the run- 
time component of MedMaker) processes a query us- 
ing a pipeline with the following three components (see 
Figure 2.5): 

1. The View Expander and Algebraic Optimizer 
(VE&AO) reads the query and the mediator spec- 
ification and discovers which objects it must ob- 
tain from each source. Furthermore, it determines 

query 

View Expander 

& Algebraic Optimizer 
«— mediator specification 

logical datamerge program 

Cost-Based Optimizer 

physical datamerge graph 

Datameree Engine 

1 

Figure 2.5: The basic architecture of MSI 

the conditions that the obtained source objects 
must satisfy. 

2. The cost-based optimizer develops a plan for ob- 
taining and combining the objects specified by the 
VE&AO. The plan specifies what queries will be 
sent to the sources, in what order they will be 
sent, and how the results of the queries will be 
combined in order to derive the result objects. 

3. The datamerge engine executes the plan and pro-  . 
duces the required result objects. 

In the following subsection we use an example to 
overview MSI's query processing. Subsections 3.2 
to 3.5 discuss each component, the languages at each 
interface, and various interesting query decomposition 
and optimization issues. 
3.1     Query Processing Overview 

Let us assume that a client of mediator med wants 
to retrieve all the data for 'Joe Chung.' In this paper, 
we use MSL (with one minor modification discussed 
below) as our query language.4 The use of MSL sim- 
plifies our discussion, and furthermore, MSL makes a 
good query language because of its power and sim- 
plicity.   Using MSL, our query can be expressed as: 

(Ql) JC   :- JC:<cs_person {<name   'Joe Chung*>}>Cmed 

The object pattern (or object patterns) that appears 
in the tail of the query are matched against the ob- 
ject structure of med in exactly the same manner that 
tail patterns of MSL rules are matched against the 
sources. One new MSL feature that appears in the 
tail of our sample query is the object variable JC. The 
operator : indicates that JC must bind to "cs.person" 
objects that have a "name" subobject with value 'Joe 
Chung'. The query head indicates that every object 

4The TSIMMIS project at Stanford is also exploring a dif- 
ferent query language, called LOREL. It is an object-oriented 
extension to SQL and is oriented to the end-user. LOREL is 
described in [Q+]. MSL is more powerful than LOREL (e.g., 
MSL allows the specification of recursive views) and is targeted 
to mediator specification. 

84 



that JC binds to is included in the result. Unlike me- 
diator specification, when MSL is used for querying, 
the objects specified by the query rule head are mate- 
rialized at the client.5 

View Expansion Given our sample query, the 
VE&AO replaces the object pattern of the query 
tail with object patterns that refer to objects of the 
sources, thus deriving the datamerge rule  R2: 

(R2) <cs_person {<name   'Joe Chung'> <rel R> 
Restl Rest2}> 

:- <person {<name   'Joe Chung'> <dept   'CS'> 
<relation R>   |  Restl}>Cwhois 

AND decompCJoe Chung',  LN,  FN) 
AND <R {<firstjiame FN> <last_name LN> 

I   Rest2}>Ccs 

Intuitively, the MSI derived the above rule by match- 
ing the pattern JC: <cs_person ... >Cmed of the query 
tail against the head of the mediator specification rule 
of med.b After the matching, we generate a datamerge 
rule whose head is the head of the query and whose 
tail is the mediator specification rule's tail. 

Execution Plan Now that the MSI knows what ob- 
jects it has to find at the sources, the cost-based opti- 
mizer builds a physical datamerge program that speci- 
fies what queries should be sent to the sources, in what 
order they should be sent, and how the results of the 
queries should be combined in order to produce the 
query result. Here we informally describe a possible 
(and efficient) plan for our running example: 

1. Bindings for the variables R and Restl are ob- 
tained from the source whois. The bindings are 
obtained in two steps. First the following query 
is sent to whois: 

<bind-for_whois {<bind_for_R R> 
<bind_for_Restl Restl>}> 

:- <person {<name  'Joe Chung'> <dept  'CS'> 
<relation R>  |  Restl}>«whois 

Labels bind_for_whois, bindjforJt and 
bind_f or-Restl are simply place-holders that al- 
low the MSI to conveniently pick out the desired 
information from the returned result objects. 

2. Bindings for LN and FN can be obtained from one 
of the decomp functions, i.e., from name_to_lnf n. 
We call it with bound parameter N = 'Joe 
Chung' and obtain LN = 'Chung' and FN = 
'Joe'. 

^Here we do not address the problem of materializing OEM 
objects at clients. The various issues and strategies are dis- 
cussed in [PGMW95]. 

6If there were several rules, the MSI would look for one or 
more matching rule heads. If more than one head matches, then 
more than one rule will be considered; resulting objects will be 
added to the result. 

3. For each of the R binding of step (1), we combine 
it with the single binding of step (2), and sub- 
mit a query to cs to obtain a binding for Rest2. 
For example, for the binding R = 'employee' we 
send the following query to cs: 

<bindjfor_cs {<bind_for_Rest2 Rest2>}> 
:-<employee {<first-name   'Joe'> 

<last_name   'Chung'>|Rest2}>0cs 

4. Once MSI obtains bindings for Rest2 as well, it 
generates objects that follow the pattern of the 
head of (R2). For example, considering the bind- 
ings we have illustrated so far, the MSI would 
generate the object of Figure 2.4. 

3.2 View Expansion and Algebraic Opti- 
mization 

The VE&AO matches the query against the medi- 
ator specification rules and rewrites the query so that 
references to the virtual mediator objects are replaced 
by references to source objects. The result is a logical 
datamerge program that is a set of MSL rules specify- 
ing the result. In Section 3.1 we illustrated the view 
expansion and algebraic optimization process. There, 
expression (R2) was the logical datamerge program. 
In the rest of this section we explain the VE&AO pro- 
cess in more detail. In general, the VE&AO formulates 
the logical datamerge programs in two steps: 

• First it matches the query tail conditions with 
rule heads. The successful matches result in ex- 
pressions called unifiers. Intuitively, our unifiers 
describe the match between the query and the 
rule, the conditions that must be pushed to the 
sources, and other information necessary for the 
rewriting of the query. Note, they can be viewed 
as extensions of the unifiers used in resolution of 
first order clauses [GN88]. 

• Then for every unifier a logical datamerge rule is 
formed. The rule head is formed by applying the 
unifier to the query head, while the rule tail is 
formed by applying the unifier to the mediator 
specification rule tails and subsequently forming 
their conjunction. 

For example, consider the query Ql (Section 3.1) and 
the specification MSI of med. The match" results in 
the unifier d\ where 

N i-> 'Joe Chung', 
< cs_person {< name 'Joe Chung' > 

< rel R >   Restl Rest2}> 

The above unifier consists of one mapping, indicated 
by the »->, and one definition, indicated by the =>. 
(The need for discriminating between mappings and 
definitions will become apparent in the next para- 
graphs.)    The application of 6X  to the query head 

Before we match a query with one or more rules we must 
rename the variables that appear in the query and the rules, so 
that no two rules, or a query and a rule have identically named 
variables. 

01 = JC 

85 



causes the substitution of JC by the structure follow- 
ing the =>. Similarly, the application of 0j. to the me- 
diator rule tail causes the substitution of N by 'Joe 
Chung'. Combining the transformed query head with 
the transformed mediator rule tail we obtain the logi- 
cal datamerge rule Q2. 

In general, a unifier may contain any number of 
mappings and/or definitions. When the VE&AO 
matches a query condition with a rule head it gen- 
erates all unifiers 6 such that 

1. If we apply the mappings to the query con- 
dition and the mediator rule head, the trans- 
formed query condition pattern is contained 
in the rule head pattern. In the example, 
the transformed query condition <cs_person 
{<name 'Joe Chung'>}> is contained in the 
transformed rule head <cs_person {<name 'Joe 
Chung'> <relation R> 
Restl Rest2}> because they have the same la- 
bel cs_person and every subobject pattern of the 
query condition pattern (i.e., the pattern <name 
■Joe Chung'>) is identical to a subobject pat- 
tern of the rule head. Containment guarantees 
that any mediator object generated by the trans- 
formed rule satisfies the query condition pattern. 

2. There is a definition for every object, value, or 
"rest" variable that appears in the query head 
and also appears in the query tail preceding a ":". 
The definition carries all the information about 
the structure of the mediator objects that bind 
to the query variable. For example the definition 
of JC carries all the required information about 
the mediators cs_person objects. 

3.3    Pushing Conditions to the Sources 
The VE&AO pushes conditions such as "the 

name must equal 'Joe Chung"' to the correspond- 
ing source. Indeed, VE&AO pushes to the sources 
all conditions that can be pushed, thus implementing 
the (well-known in relational DB's) "push selections 
down" algebraic optimization. In our environment 
with nested objects that may have unknown structure, 
algebraic optimization is substantially more challeng- 
ing than in a relational environment. To illustrate this 
point, assume that the following query, that retrieves 
the data of 3rd year students, is sent to mediator med 
(specified by MSI): ; 

S :- S:<cs_person {<year 3>}>Cmed 
Mediator med joins data from two sources, and we can- 
not tell in advance whether the "year" object comes 
from one source or the other. In particular, when 
we match the query against the mediator specifica- 
tion, the <year 3> pattern can be "pushed" either 
into Restl or into Rest2. The two possibilities corre- 
spond to the unifiers TX and ro: 

Rest! >-+ {< year 3 >}, 
{< name N >   < rel R > 

|CuiKln]cK»icp(N.R.RKll.Reil2>.lJ..V4)   I 

Tn — 

< cs.person Restl Rest2} > 
" Rest2i->- {< year 3 >}, 

S =>< cs.person    \estl Rest2} > 

I ExlractortepdRe^U) 

Rtiuh ofQcl 

I Parameterized Quer>iQts(R.LN.FN)A:i^.keep.4.diicardidiscarii) 
xül02:<bindin$_tcr_R«t:.   (x0103t> 

xölö<3:<ctlf.f.hiM.  1234SÖ7> 

Nick Naiv« 
Mary Wtb scazi 

1x0204,X0210) 
|xQ3U) 

Naive 
Wsb 

Nick 
Hary 

1 External PreJ(Jeu.mr«i1e_oame.l.l.keep.2)     j 

. ■ ft ftaiei 

Ntfk Naive 
Mary W«b 

student 

sea ft 
1x0204.X0210) 

(x031O 

|Extracturtepw(N.R.Re>rl).l) 

. , 
0» ft« suit 

xu32 
x0S6 

(QnctylQw.wlmis) 

RtsulrofQ* 

x032:<binding_for_vhois.   1x036,x03a.xC40)> 
xö36:<bir.ding_tor_*,   'Nick Niiva-> 
x038:<bindingJor_R.   'SEudanO 
x040:<binding_forJU5tl,   (x0204,x0210)> 

xO204:<d*pt,   'Siapl« Scudi«s'> 
x0210:<yur,   3> 

xOS6:<binding_tor_whois,   (xO60.xO62.xOG6)> 
x060:<binding_torjl.  'H*ry Wab'> 
x062:<binding_(orjl,  'sc*lf> 
x066:<binding_for_Rescl.  (x0314)> 

x0314:<year, 3> 

Figure 3.6: A physical datamerge graph 

The two unifiers give rise to the following two rules, 
that constitute the logical datamerge program: 
(R3)<cs_person  {<name N> <rel R> Restl Rest2}> 

:- <person {<name N> <dept  'CS'> <relation R> 
|Restl:{<year 3>}}>0whois 

AND decomp(N,  LN,  FN) 
AND <R {<first_name FN> <lastjiame LN> 

|Rest2}>0cs 
(R4)<cs_person  {<name N> <relation R> Restl Rest2}> 

:- <person {<name N> <dept   'CS'> <relation R> 
I  Restl}>6whois 

AND decomp(N,  LN,  FN) 
AND <R {<first_name FN> <last_name LN> 

I  Rest2:{<year 3>}}>Ocs 

Note, mappings of the form Restl >->•{< year 3 >} 
cause the attachment of the conditions specified inside 
the {} to the specified variable (Restl in the exam- 
ple). If Restl has already some conditions S asso- 
ciated with it, VE&AO would merge 5 with the the 
<year 3> condition. 

Note, the examples of the previous paragraphs 
dealt with single condition queries. Nevertheless, the 
demonstrated techniques have been easily extended 
and implemented for multiple condition queries. 
3.4 The Physical Datamerge Graph and 

the Datamerge Engine 
The optimizer receives the logical datamerge pro- 

gram from the VE&AO and generates a physical 
datamerge graph. This graph specifies the queries to 
be sent to the sources as well as the mechanics for 
constructing the query result from the results received 
from the sources. The graph is then executed by the 
datamerge engine, which produces the query result. 

In this section we illustrate datamerge graph execu- 
tion through a detailed example. Our goal is not to de- 
scribe our implementation in full detail, but rather to 
show the capabilities of our datamerge engine. As our 

86 



starting point we use logical datamerge rule Q3. From 
it, the optimizer may generate the physical datamerge 
graph of Figure 3.6. This is a "dataflow" graph, where 
the nodes (rounded boxes) represent the operations to • 
be executed by the engine. The rectangles next to 
the arcs of the graph represent tables that flow dur- 
ing a sample run of this graph. Typically, the tuples 
of the tables carry bindings for the logical datamerge 
program variables. 

The datamerge engine executes the graph in' a 
bottom-up fashion. First, the lower query node 
is executed. This causes query Qw to be sent to 
source whois, obtaining bindings for N, R, and Restl. 
Query Qw is provided to the engine by the optimizer, 
and is defined as: 
(Qw) <bindjfor_whois {<bind_for_N N> 

<bind-for-R R> 
<bind_for-Restl Restl>}> 

:- <person {<name N> <dept   'CSJ> 
<relation R> 
I  Restl:{year 3}}>®whois 

The result of Qw is placed in the mediator's mem- 
ory. In Figure 3.6 we show this result at the bottom 
of the figure. The numbers with a "x" prefix repre- 
sent object addresses in the mediator's memory. For 
example, one result object is at address x032; it has 
label bind_for_whois and its value is a set contain- 
ing the objects at locations x036, x038 and x040. For 
readability, we omit the object-id and type fields of 
the objects from the figure. 

The query operator produces a table where each 
line contains the address of a top-level result object 
(x032 and x056 in the example). For readability, we 
add a heading row to our tables (Qw Result in this 
case), but these do not appear in practice. 

The table is passed to the next operator in the 
graph, an extractor node that extracts bindings of 
the variables N, R, and Restl (from the "bind- 
ingJbr.whois" objects) and outputs a table of corre- 
sponding (N, R, Restl) tuples. The extractor node has 
two parameters: the first is the optimizer provided ob- 
ject pattern epw, defined by 
<bind_for_whois  {<bindjfor_N N> <bindjfor_R R> 

<bindJor_Restl Restl>}> 
epw indicates where the desired bindings are found in 
the result objects; the second parameter (1) indicates 
the column of the input table that contains the ob- 
jects that are the subject of the extraction. Again, 
the heading row in the output table is only for read- 
ability. Also for reabability, in the N and R columns we 
write strings, while in reality we have pointers to the 
strings. Similarly, in the Restl column we write the 
full sets while in reality the column contains pointers 
to the indicated sets. 

Then, for every tuple, the external pred(-icate) node 
invokes the predicate decomp. The other parameters 
for this node indicate: the number of arguments for 
decomp (l); the column of the input table containing 
the one input parameter (1); whether the input col- 
umn is kept in the output table;8 and the number of 

As opposed to extractor nodes that always dicard their in- 
put column (after using it). 

result arguments from decomp (2). 
The next node is the parameterized query node. For 

each tuple of its input table, this node generates a 
query for source cs requesting bindings for Rest2 that 
are needed to construct final result objects. The query 
to send is defined by Qcs which is provided by the 
optimizer along with the graph: 
(Qcs(R,LN,FN)) <bind_for_Rest2 Rest2> 

:-<$R {<last_name $LN> 
<first_name $FN>|Rest2}>0cs 

The values for query parameters $R, $LN, and $FN are 
taken from the 2nd, 4th, and 5th columns of the in- 
coming table. (The keep and discard parameters 
again indicate if the inputs columns remain in the out- 
put table.) Thus, for our sample data, two queries 
Qcsl and Qcs2 are emitted: 
(Qcl) <bind_for_Rest2 Rest2> 

:-<student {<lastJiame  'Naive'> 
<first_name  'Nick'>|Rest2}>0cs 

(Qc2) <bind_f or_Rest2 Rest2> 
:-<staff {<lastjiame   'Web'> 

•., <first_name 'Mary'>|Rest2}>ecs 
Let us assume that Qcl returns only the x0102 

"binding_for_Rest2" object and Qc2 does not return 
anything. In this case, the parameterized query node 
outputs the table shown in Figure 3.6. After the upper 
extractor node extracts Rest2 bindings from the re- 
sults of the parameterized query node, the constructor 
node is activated and creates the final result objects. 
The form of these objects is defined by the pattern 
cp(N,R,Restl,Rest2) where 
cp(N,R,Restl,Rest2) = 
<cs_person {<name N> <relation R> Restl Rest2}. 

For each row in the input table, the constructor 
operator takes a row (1st, 2nd, 3rd, and 4th values), 
assigns them to the N, R, Restl, and Rest2 values in 
cp, creating one of the final result objects.9 

Through this example we have illustrated how the 
entire mediation process can be described by a low 
level executable graph. The nodes of our datamerge 
graphs are the "machine language" of MedMaker 
which is run by our implementation of the datamerge 
engine. (Indeed, it is interesting to compare them with 
relational algebra expressions.) 
3.5     Cost-Based Optimization Challenges 

There are more than one physical datamerge graphs 
that correspond to a logical datamerge program. The 
optimizer has to select the "optimal" graph. However, 
optimization of a powerful object-oriented language 
that operates on autonomous and heterogeneous infor- 
mation sources is much harder than the optimization 
of traditional SQL queries on a conventional database. 
Our current implementation uses some very simple 
heuristics to guide datamerge graph selection. This 
seems to work well, at least for simple scenarios. In 
the rest of this section we briefly discuss some of our 
research directions for optimization. 

9 Our current implementation does not have a duplicate elim- 
ination feature, though the MSL semantics describe duplicate 
elimination in the OEM context. 

ST 



Note the following two hard problems for the cost- 
based optimizer of a mediator: First, the limited query 
capabilities of the underlying sources may prohibit 
even simple algebraic optimizations, such as "push 
selections and projections down". For example, the 
source whois may not be able to evaluate the condi- 
tion on "year" that appears in Qw. A solution to this 
problem appears in [PGH].. A second problem arises 
when the wrappers do not provide cost and statistics 
information. In this case, the optimizer has to rely 
on ad-hoc heuristics (e.g., the outer patterns of the 
join order are the ones that have the greatest num- 
ber of conditions) or tries to build its own statistics 
database that is based on results of previous queries 
and on sampling. 

4    Related Work and Discussion 
In this section we contrast MedMaker to other het- 

erogeneous information source integration systems, we 
discuss our motivation behind the design of OEM and 
MSL, and we describe our ongoing work on Med- 
Maker. 

It is widely accepted that the relational data 
model and the corresponding view definition lan- 
guages are insufficient to provide integration, even of 
relational databases [KLK91]. Thus, many projects' 
have adopted (or defined) 00 models to facilitate in- 
tegration (some examples are [C+94, A+91]). We de- 
scribed in Sections 1 and 2 the OEM features that 
make it suitable for integration of heterogeneous in- 
formation systems. Another difference between OEM 
and conventional 00 models is that OEM is much 
simpler and does not have a strong typing system. 
OEM supports only object nesting and object identity, 
while other features, such as classes, methods, and in- 
heritance are not supported directly. (Nevertheless, 
classes and methods can be "emulated" [PGMW95]). 

We believe that MSL mediator specifications tend 
to be short and simple and avoid questions such as 
"what is the class of the view objects?", that compli- 
cate object-oriented view definition[AB91]. In spite of 
its simplicity, MSL is quite powerful. For instance, it 
allows the construction of arbitrarily complex object 
structures (which XSQL [KKS92] does not). 

MSL and OEM can be seen as a form of first-order 
logic. Indeed, we borrow many concepts from logic ori- 
ented languages such as datalog [UU88, U1189], HiLog 
[CKW93], O-Logic [Mai86], and F-Logic fKL89]. 
HiLog first proposed - under a logic framework - the 
idea of mixing schema and data information.10 

A very important difference between MedMaker 
and other integration systems is that MedMaker can 
integrate conventional well-structured databases that 
have a static schema and at the same time can in- 
tegrate sources that do not have a regular schema, 
or sources that have an often-changing schema. The 
ability to integrate all kinds of sources is due to: 

1. OEM's absence of schema, that allows the intu- 
itive representation of heterogeneous, semistruc- 
tured, and changing information. 

[KLK91] has also proposed an interesting mixing of schema 
and data information for the relational data model. 

2. MSL's ability to exploit regularities and complete 
knowledge of the schema (the example of Sec- 
tion 3.3 demonstrated the tradeoff between per- 
formance and partial knowledge of the schema). 

Though systems that integrate well-structured con- 
ventional databases exist (e.g., [A+91, K+93, BLN86, 
LMR90, T+90, Gup89]) and recently systems for the 
integration of sources with minimal structure have also 
appeared [Fre, S+93], we do not know of view defini- 
tion based systems ([A+91, Ber91, CWN94] and oth- 
ers) that handle the whole spectrum of information 
sources simultaneously, and with MSL's flexibility. 

Note, MedMaker performs integration by "work- 
ing" with the structures of the source objects. Se- 
mantic information is effectively encoded in the MSL 
rules that do the integration. There are many projects 
that follow MedMaker's "structural" approach [Ber91, 
DH86, B+86], as well as many projects that follow a 
semantic approach [HM93, H+92]. We believe that the 
power of the structural approach, along with the flex- 
ibility, generality, and conciseness of OEM and MSL 
make the "structural" approach a better candidate for 
the integration of widely heterogeneous and semistruc- 
tured information sources. 

Acknowledgments 
We are grateful to Koichi Munakata for design- 

ing and implementing the datamerge engine. We 
also thank Joachim Hammer, Pierre Huyn, Dalian 
Quass, Anand Rajaraman, Anthony Tomasic, Vasilis 
Vassalos, Jennifer Widom, and the entire Stanford 
Database Group for numerous fruitful discussions and 
comments. 

References 
[A+91] R.   Ahmed  et al.     The  Pegasus heteroge- 

neous multidatabase system. IEEE Com- 
puter, 24:19-27, 1991. 

[AB91] S. Abiteboul and A. Bonner.    Objects and 
views. In Proc. ACM SIGMOD Conference, 
pages 238-47, Denver, CO, May 1991. 

[B+86] Y.J. Breibart et al.   Database integration in 
a distributed heterogeneous database system. 
In Proc. 2nd Intl. IEEE Conf. on Data Engi- 
neering, Los Angeles, CA, February 1986. 

[Ber91] E. Bertino. Integration of heterogeneous data 
repositories by using object-oriented views. 
In Proc Intl Workshop on Interoperability in 
Multidatabase Systems, pages 22-29, Kyoto, 
Japan, 1991. 

[BLN86] C. Batini, M. Lenzerini, and S. B. Navatlie. 
A comparative analysis of methodologies for 
database schema integration. ACM Comput- 
ing Surveys, 18:323-364, 1986. 

[C+94] M.J. Carey et al. Towards heterogeneous mul- 
timedia information systems: The Garlic ap- 
proach. Technical Report RJ 9911, IBM Al- 
maden Research Center, 1994. 



[CKW93] W. Chen, M. Kifer, and D.S. Warren. Hilog: 
a foundation for higher-order logic program- 
ming. Journal of Logic Programming, 15:187- 
230, February 1993. 

[CWN94] S. Chakravarthy, Whan-Kyu Whang, and 
S.B. Navathe. A logic-based approach, to 
query processing in federated databases. In- 
formation Sciences, 79:1-28, 1994. 

[DH86] U.  Dayal and  H.  Hwang.     View definition 
and generalization for database integration 
in a multidatabase system. In Proc. IEEE 
Workshop on Object-Oriented DBMS, Asilo- 
mar, CA, September 1986. 

[FK93] J.C.  Franchitti  and  R.  King.     Amalgame: 
a tool for creating interoperating persis- 
tent, heterogeneous components. Advanced 
Database Systems, pages 313-36, 1993. 

[Fre] M. Freedman. WILLOW: 
Technical overview. Available by anonymous 
ftp from ftp.cac.washington.eduas the file 
uillow/Tech-Report.ps, September 1994. 

[G+92] M.R.  Genesereth et al.     Knowledge  Inter- 
change Format. Version 3.0. Reference Man- 
ual. Technical Report Logic-92-1, Stanford 
University, 1992. Also available by URL 
http://logic.stanford.edu/kif.html. 

[GN88] M.R. Genesereth and N.J. Nillson.    Logical 
Foundations of Artificial Intelligence. Morgan 
Cauffman, 1988. 

[Gup89] A. Gupta. Integration of Information Sys- 
tems: Bridging Heterogeneous Databases. 
IEEE Press, 1989. 

[H  92] M. Huhns et al. Enterprise information mod- 
eling and model integration in Carnot. Tech- 
nical Report Carnot-128-92, MCC, 1992. 

[HM93] J. Hammer and D. McLeod. An approach to 
resolving semantic heterogeneity in a federa- 
tion of autonomous, heterogeneous database 
systems. Intl Journal of Intelligent and Co- 
operative information Systems, 2:51-83, 1993. 

[K  93] W. Kim et al. On resolving schematic hetero- 
geneity in multidatabase systems. Distributed 
And Parallel Databases, 1:251-279, 1993. 

[KKS92] M. Kifer, W. Kim, and Y. Sagiv. Query- 
ing object-oriented databases. In Proc. ACM 
SIGMOD, pages 59-68, 1992. 

[KL89] M. Kifer and G. Lausen.   F-logic:  a higher- 
order language for reasoning about objects, 
inheritance, and scheme. In Proc. ACM SIG- 
MOD Conf., pages 134-46, Portland, OR, 
June 1989. 

[KLK91] R. Krishnamurthy, W. Litwin, and W. Kent. 
Language features for interoperability of het- 
erogeneous databases with schematic discrep- 
ancies. In Proc. ACM SIGMOD, pages 40-9, 
Denver, CO, May 1991. 

[LMR90] W. Litwin, L. Mark, and N. Roussopou- 
los. Interoperability of multiple autonomous 
databases. ACM Computing Surveys, 22:267- 
293, 1990. 

[Mai86] D. Maier. A logic for objects. In J. Minker, ed- 
itor, Preprints of Workshop on Foundations of 
Deductive Database and Logic Programming, 
Washington, DC, USA, August 1986. 

[MR87] L. Mark and N. Roussopoulos. Information in- 
terchange between self-describing databases. 
IEEE Data Engineering, 10:46-52, 1987. 

[PGH] Y. Papakonstantinou, A. Gupta, and L. Haas. 
Capabilities-based query rewriting in media- 
tor systems. 
Available via ftp at db.stanford.edu file 

/pub/papakonstantinou/1995/cbr-extended.ps. 

[PGM] Y. Papakonstantinou and H. Garcia-Molina. 
Object   fusion   in   mediator   systems   (ex- 
tended    version). Available    by   anony- 
mous  ftp  at  db.stanford.edu as   the  file   . 
/pub/papakonst ant inou/1995/fus ion-ext ended.ps. 

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and 
J. Widom. Object exchange across hetero- 
geneous information sources. In Proc. ICDE 
Conf., pages 251-60, 1995. 

[Q  ] D.    Quass   et   al.        Querying   semistruc- 
tured heterogeneous information. To ap- 
pear in DOOD95. Available by anony- 
mous ftp at db.stanford.edu as the file 
/pub/quass/1994/query ing-subm it.ps. 

[S+93] K. Shoens et al.   The Rufus system:   Infor- 
mation organization for semistructured data. 
In Proc. VLDB Conference, Dublin, Ireland, 
1993. 

[T+90] G. Thomas et al.  Heterogeneous distributed 
database systems for production use. ACM 
Computing Surveys, 22:237-266, 1990. 

[U1188] J.D.  Ullman.     Principles of Database and 
Knowledge-Base Systems, Vol. I: Classical 
Database Systems. Computer Science Press, 
New York, NY, 1988. 

[U1189] J.D.  Ullman.     Principles of Database and 
Knowledge-Base Systems, Vol. II: The New 
Technologies. Computer Science Press, New 
York, NY, 1989. 

[Wie92] G. Wiederhold. Mediators in the architecture 
of future information systems. IEEE Com- 
puter, 25:38-49, 1992. 

89 



A Toolkit for Constraint Management in Heterogeneous 
-   Information Systems* 

Sudarshan S. Chawathe 
Hector Garcia-Molina 

Jennifer Widom 

Department of Computer Science 
Stanford University 

Stanford, CA 94305-2140 
{chaw,hector,widom}<Q>cs.stanford.edu 

Abstract 

We present a framework and a toolkit to monitor and enforce distributed integrity' const™inta 
in loosely coupled heterogeneous information systems. Our framework enables and forma z 
Lkened notions of consistency, which are essential in such environments. Our framework.* 
used to describe (1) interfaces provided by a database for the data «terns involved in mter- 
site constraints; (2) strategies for monitoring and enforcing such constraints, (3) guarantee, 
regarding the level of consistency the system can provide. Our toolkit uses this framework to 
provide a set of configurable modules that are used to monitor and enforce constraints spann.ng 
loosely coupled heterogeneous information systems. 

1    Introduction 

We address the management of distributed integrity constraints over data that is stored in a collec- 

tion of loosely coupled heterogeneous information systems. Distributed integrity constraints arise 

naturally whenever data that is semantical^ related is stored in different systems. For example a 

construction company keeps data about a building under construction in its private database. This 

data must be consistent with the architect's design (e.g., walls must be in the same places), which 

is stored in an entirely different database. 
Throughout this paper, we use the term "database" to mean any information system. In 

addition to traditional database systems, we include bibliographic information systems, »who» 

servers, legacy systems, file systems, etc. We use the term »loosely coupled" to refer to information 

systems that do not offer standard control facilities such as those found in traditional distributed 

databases. In particular, such databases do not support multi-database transactions or multi- 

database query and update mechanisms that guarantee data consistency. Often, one or more of the 

component databases does not even support (local) transactions.  Another characteristic of such 

•Research sponsored oy tne ^~ ^ ^„ ^ ? Z^J%^tS£ 

equipment grants from Digital Equipment Corporation and IBM Corporation. 

90 



environments is that different databases support different modes of access to the database. For 

example, one database might provide only read access to its data, while another might provide 

both read and write access. Yet another may provide notification of updates. 

This heterogeneity in the method of database access and control is one of the prime reasons 

why traditional integrity constraint management techniques cannot be applied to loosely coupled 

heterogeneous environments. In particular, traditional approaches to constraint management as- 

sume various facilities such as distributed transactions, remote locking, and prepare-to-commit 

interfaces, which are usually not supported by the databases involved in a loosely coupled system. 

Further, most previous work assumes that all databases in the system offer a homogeneous access 

and control method, as discussed in Section 2. 
In spite of the difficulties outlined above, integrity constraint management is very important in 

many loosely coupled scenarios. Currently, systems involving data stored in several loosely coupled 

databases have no systematic method for monitoring or enforcing integrity constraints over the data. 

In most such systems, integrity constraints are simply not monitored, are monitored manually, or 

are monitored in an ad-hoc manner. Monitoring integrity constraints manually or using ad-hoc 

techniques is tedious and error-prone, while neglecting integrity constraint management altogether 

often leads to irreparable inconsistencies and costly correction measures. 

We argue that in the loosely coupled environment that we study, it is not, in general, possible 

to make the kind of strict consistency guarantees that traditional constraint management systems 

make. For example, it is usually not possible to ensure that every application sees strictly consistent 

data any time it executes. Given this situation, our work focuses on how weakened notions of 

consistency may be defined, implemented, and used. We propose a uniform, rule-based framework 

in which we can formally define guarantees of weak consistency. Our framework is also used to define 

the interfaces (modes of access) provided by each database to the constraint manager. Further, we 

use our rule based framework to specify constraint management strategies. We consider two kinds 

of constraint management. Constraint en/orcemenMnvolves doing the work necessary to make 

(usually a weakened form of) the constraint valid. In some situations, however, the best we can 

do is constraint monitoring. This involves indicating when the constraint is valid and when it is 

not. \Yc have also developed a set of proof rules that enable us to derive the validity of guarantees 

based on interface and strategy specifications [CGMW94]. However, due to space constraints, we 

do not discuss that work in this paper. 
Using our framework, it is possible to capture a wide variety of constraint management tech- 

niques over a wide variety of loosely coupled heterogeneous environments, and to provide formal 

guarantees for weakened constraints. We also show how our interfaces and strategies can be used in 

practice. We describe a toolkit of general-purpose constraint management and translation services 

that can easily be configured to a given heterogeneous environment (for e.g., relational databases, 

object-oriented databases, file systems, bibliographic information systems etc.) Using the toolkit, 

one can describe the interfaces available for each database, and one can select strategies from a 

menu of proven strategies (examples of which are given in this paper) that conform to the inter- 

91 



faces. Based on the interfaces and the strategy, the toolkit offers guarantees of weak consistency to 

applications. At run-time, the toolkit will monitor or enforce the constraints so that the guarantees 

are valid. 

This paper is organized as follows. In Section 2, we discuss how our work relates to traditional 

database constraint management literature as well as other related areas. Wo present a short 

overview of the framework underlying our approach to constraint management in Section 3. We 

expand on the framework by discussing interfaces, strategies and guarantees in Sections 3.1, 3.2, 

and 3.3, respectively. In Section 4, we present our constraint management toolkit and illustrate its 

use with an extended example. We discuss how failures are handled in Section 5. Some additional 

scenarios that illustrate the use of our framework and toolkit are presented in Section 6, while 

Section 7 discusses the use of guarantees and some issues in implementing distributed strategies. 

We summarize our conclusions in Section 8. The appendix presents the formal definition of the 

rule language used in our framework, which is described informally in Section 3. 

2    Related Work 

Most previous work in database constraint management addresses centralized or tightly coupled 

distributed environments. The techniques presented in such work are not applicable in the loosely 

coupled, heterogeneous environment we study because they assume many facilities such as dis- 

tributed transactions, remote locking, prepare-to-commit interfaces, etc. For example, both [SV86] 

and [Gre93] provide useful techniques for monitoring constraints in distributed databases, but these 

techniques rely on a traditional notion of data fragmentation and the presence of global transac- 

tions. 

Reference [CW93] describes a constraint maintenance method for a multi-database environment 

in which each database is relational, supports basic SQL operations, and has a production rules 

facility; in addition, there must be a persistent queue facility between sites. Similarly, [RSK91] de- 

scribes a framework and [GW94] presents a set of protocols for inter-database constraints based on 

a homogeneous relational interface to each database. Neither approach is applicable in a truly het- 

erogeneous environment where each database offers a different interface to the constraint manager, 

and where some (or all) of the databases may not have the required features. 

There has been some work on specific constraint management strategies in a loosely coupled 

environment. For example, the Demarcation Protocol [BGM92] is a method to maintain simple 

arithmetic constraints. Reference [GW93] describes a method for checking distributed constraints 

at a single site whenever possible. These are are special cases of the more general framework we 

present here. (In fact, we can express the Demarcation Protocol in our framework and prove the 

associated guarantee. This is discussed in Section 6.) 

Another approach to constraint management in multi-database environments is to extend the 

transaction concept to multi-databases by suitably weakening the traditional notion of correctness 

of schedules [Elm91]. This approach typically restricts the data items that may be involved in a 

92 



constraint (e.g., constraints may be over local data only for local-serializability[BGMS9'2]). These 

approaches differ from ours in that with extended transactions there still is no mechanism to allow 

different interfaces at the participating sites, and no way to monitor constraints that hold only at 

particular times. 

Finally, the formal aspects of our framework are related to work in Metric Temporal Logic 

(MTL) [Koy92]. Our formalism can be considered an extension of MTL in which events are modeled 

explicitly, and distributed rules are used as the primary constructs for specification. A formalism of 

events and rules is more convenient than a purely state-based formalism for studying many systems 

like the ones we model; a similar observation is made in [L+93]. While our formal framework 

shares its interest in specification with software modeling languages such as LOTOS [BB87] and 

Esterei [BG92], our formalism is much simpler than those languages since it is targeted at modeling 

constraint management systems. 

3    Framework 

In this section, we describe our logical constraint management architecture and define the three main 

components of our framework, namely interfaces, strategies, and guarantees. (The toolkit is covered 

in Section 4.) In the interest of saving space and keeping the discussion intuitive, we introduce 

the concepts in our framework by example. In the appendix, we present the formal definition of 

the rule language we use, and its execution semantics, appendix. As mentioned in Section 2, the 

theoretical framework is similar to Metric Temporal Logic [Koy92], with some additions that make 

it easy and natural to specify constraint management in loosely coupled systems. 

The key components of the logical architecture are illustrated in Figure 1. Our distributed 

constraint manager (CM) consists of a collection of Constraint Manager Shells (CM-Shells). The 

CM-Shell interacts with the local database and cooperates with other CM-Shells to monitor or 

enforce the inter-site constraints. If it is not possible to have a CM-Shell at the site of some 

database, its duties can be performed by one or more of the other CM-Shells, as for Site 3 in the 

figure. In the sequel, we use the term CM to refer to one or more of the CM-Shells acting on the 

behalf of the constraint manager. The three major components of our framework are described 

below: 

• Interfaces. For each data item involved in a constraint, the interface for that data item 

describes, how the item may be read, written, and/or monitored by the CM. For example, 

the interface for a data item X might specify that a request from the CM to read A' will be 

serviced within ii seconds,1 and that any user update to A' will result in a notification to the 

CM within ti seconds. The interface for each data item is dependent on the facilities provided 

by the database system containing that item. Note that we do not fix a specific granularity 

'We consider seconds as our time unit in this paper, but our approach applies equally well with other time units. 

Note also that the use of time does not, in general, require synchronized clocks; this issue is discussed further in 

Section 7. 

93 



Figure 1: Constraint Management Architecture 

for "data items" here. For example, a data item might be a single object or it might be the 

set of all tuples in a database relation. Our framework also lets us define a single interface for 

a set of related data items (e.g., the set of salaries of all employees in the Sales department). 

• Strategies. For a given constraint, a strategy is the specification of an algorithm used by 

the CM for monitoring or enforcing the constraint. Strategies incorporate the operations 

available for the data items involved in the constraint. For example (informally), a naive 

strategy for maintaining the copy constraint A = Y might specify that all updates to A' are 

propagated to V, while all updates to Y are undone. 

• Guarantees. For a given constraint, a guarantee is a logical description of the level of 

consistency guaranteed for that constraint. For example (informally), given a copy constraint 

X - V. where X is the primary copy, a guarantee may state that Y takes every value that 

A" takes: that is. that no values of A' are "lost." 

Figure 1 depicts the relationship between the Constraint Manager, the databases, and the 

applications (or users). Each database offers interfaces to the CM for its data items. Applications 

inform the CM of each constraint that needs to be maintained. The CM provides guarantees to 

the applications, based on the interfaces and the strategy it decides to follow in order to maintain 

the constraint. Our approach applies to both single-site and multi-site applications. In the case of 

multi-site applications (for e.g., application 3 in the figure), the application chooses the CM-Shells 

at one of its sites to be its "local" CM-Shell. This choice is arbitrary and does not affect the validity 

of our approach. 

94 



Our formal framework includes detailed semantics and proof rules that allow us to prove guaran- 

tees from interface and strategy specifications. While arbitrary interfaces, strategies and guarantees 

may be expressed using our framework, in practice we expect most often to use interfaces and strate- 

gies from menus provided by the toolkit, with previously proven guarantees. We also plan to extend 

the toolkit so that it can help the system designer derive new guarantees for different interfaces 

and strategies. -o* 

3.1     Specifying Interfaces 

The interface for a data item involved in a constraint describes how that data item may be read, 

written, or monitored by the constraint manager. Interfaces are specified using a rule-based no- 

tation. Note that, as in any specification system, it is important for interface specifications to 

correctly reflect the actual behavior provided by the database containing that item. As stated 

above, the database administrators at each site can choose the appropriate interfaces from a menu 

or they may write their own custom interfaces. 

For each data item, its interface is defined by a set of interface statements of the form: 

£i A C -*■$ £2 

The meaning of this statement is the following: If an event E-i, of the form indicated by event 

template £lt occurs at time t, and condition C (involving the event and local data items) is true at 

i, then the database guarantees that an event £2 matching template £2 will occur at some time in 

the interval [t, t + 6}. The condition C is evaluated at the time the left-hand side event occurs, and 

it may be omitted when not needed. 

3.1.1     Examples 

In the heterogeneous systems we model, interfaces for data items may vary within and across 

database systems. These interfaces can be quite varied and complex. We believe that our language 

is useful to describe many interfaces that occur in practice. Below, we present some examples of 

interfaces. We use the term CM to denote the CM-Shell responsible for the database offering the 

interface (usually the local CM-Shell). 

Write Interface: When a database offers a write interface for a data item X, it promises to 

perform write operations to A' requested by the CM within some time bound. We use the 

event template WR(X, b) to represent the database receiving a request for the write operation 

X <— b from the CM. Similarly, we use the event template W(X,b) to represent the database 

performing the operation X ■*— b. Let 6 be the time bound within which the database promises 

to perform the requested write operation. This write interface is expressed as follows: 

WR(X,b)-+sW(X,b) 

95 



Note that parameters such as b in the above rule are to be distinguished from local data 

items. Parameters are simply artifacts of the rule language, whereas local data items refer 

to actual data in the local database. We represent parameters by lower-case letters and local 

data items by upper-case letters. 

No Spontaneous Write Interface: When a database offers this interface for a data item A", it 

promises not to update A' spontaneously. An event is called spontaneous if it can occur at any 

time, independent of constraint management. Spontaneous events model actions performed 

by local applications that may be unaware of the CM, and that operate on the local database 

independently. We use the event template Vrs(A',6) to represent an application performing 

the spontaneous write operation X <- b. The "no spontaneous writes" interface guarantees 

that there will be no Ws(X,b) events. We express this in our interface specification language 

by using a special event T (for false), which, by definition, can never occur. Using T, we 

write the following specification for this interface: 

Note that this interface does not mean that X can never be updated, only that it cannot be 

updated without involving the CM. (Data items may have more than one interface.) 

Notify Interface: When a database offers a notify interface for a data item X, it promises to 

notify the CM within some time bound every time X is updated spontaneously. By using 

N(X,b) to represent the CM receiving a notification of the update operation A' *- 6, and 

using 6 to represent the time bound on notification, we express this interface as follows: 

Ws(X,b)->5N(X,b) 

Conditional Notify Interface: This is a refinement of the Notify Interface. In this interface, the 

database notifies the CM only when, in addition to A' being updated spontaneously, some 

condition is satisfied. In addition to reducing communication costs, such an interface is useful 

when the local database can evaluate conditions that cannot be evaluated from the outside. 

A simple example is an interface that sends a notification to the CM only when the update 

changes the value of A by more than 10%. To express this interface, we use a spontaneous 

write event of the form Ws(X,a,b), which represents A' being updated from a to b. We then 

write the following: 
Ws{X,a,b)A.(\b-a\ > a*0A)-s N(X,b) 

Periodic Notify Interface: Another kind of notify interface is one in which the current value of 

the data item is sent to the CM periodically. To describe such periodic interfaces, we use 

the notion of periodic events of the form P(p), which occur every p seconds by definition. A 

300-second periodic notify interface is expressed as follows: 

P(300) A (A = 6)-5 N{X,b) 

96 



This interface states that every time a P(300) event occurs (every 300 seconds), a notification 

with the current value of A" is sent to the CM within S seconds. 

Read Interface: When a database offers a read interface for a data item A", the CM can send it 

a read-request and the database will respond with the current value of A' within some time 

bound 6. We use the event RR(X) to represent the database receiving a read request from 

the CM, and the event R(X,b) to represent the CM receiving the response from the database. 

We express this interface as follows: 

RR(X)A(X = b)^sR(X,b) 

Parameterized Interfaces: In each of the above interfaces, the data item name A" may be pa- 

rameterized, yielding an interface for a set of related data items. For example, let phone(n) 

denote "the phone number of n," where n is the name of an employee. Then, to specify that 

the CM is notified every time the phone number of any employee n is updated (spontaneously), 

we use a Parameterized Notify Interface, written as: 

Ws(phone(n), b) —>■$ N(phone(n),b) 

3.2    Specifying Strategies 

The strategy for a constraint describes the algorithm used by the constraint manager to monitor 

or enforce the constraint. Strategies are specified using a rule-based notation similar to that used 

for interfaces. 

The strategy for a given constraint is defined by a set of strategy statements of the form: 

Zx ^s C1Z2 

where Z\ and Z-i are event templates and C is a condition involving the events and data items local 

to the site of the event matching template £2. (Each event has a unique site.) This statement 

states that if an event matching template Z\ occurs at time t, then there exists a time t' in the time 

interval [i,f + 6] such that if C is true at t' then an event matching template £2 occurs at time t'. 

The condition may be omitted when it is not needed. The events represented by templates Z\ and 

£2 can be at different sites, however, the condition C can refer to data at the site of the right-hand 

side event only. 

3.2.1     Example 

Consider the copy constraint A" = Y, where Ar and Y are at different sites. Let A have a Notify 

Interface (recall Section 3.1.1) and let Y have a Write Interface. A simple strategy in this case is 

the propagation of updates from A" to Y by making a write request at Y whenever a notification 

is received from A'. Assuming the write request can follow the notification within 5 seconds, we 

write: . 

N(X,v)^5WR(Y,v) 

97 



Just like interfaces, strategies can be parameterized. For example, let phonel(n) denote "the 

phone number of n," and let phone2(n) denote the same phone number stored in another database.2 

We can specify that a write request is sent.to phone2{n) within 5 seconds every time a notification 

is received from phonel(n) using the following rule: 

N(phonel{n),v) — s \VR(phone2{n), v) 

In general, our framework is capable of expressing more complex strategies than these examples. 

Each CM-Shell can have private data, stored in the CM-Shell itself, for use in strategies. This data 

may be read and written in the right-hand side of strategy rules. For example, the CM can use 

a local data item Cx to cache the value of A' (obtained, for example, through a Periodic Notify 

Interface) using the following rule: 

N(X;b)-^5W(Cx,b) 

Note that Cx is a local data item maintained by the CM, while 6 is a parameter used only to express 

the rule. To forward a write request to a remote data item Y only when the new value of X differs 

from the cached value, we can write the rule: 

N(X,b)-^5(CxjLb)nVR(Y,b) 

The reader may observe that this and the previous rule are triggered by the same event, and that 

this rule must fire before the previous one. As explained in Appendix A.l, our rule language permits 

a sequence of conditions and events on the right-hand side of rules to achieve this. Note that the 

CM-Shell at each site can use only data that is local to that site, therefore strategies do not need 

global data access. 

Once our framework has been used to specify a strategy (and to verify the correctness of a 

guarantee) then the rule-based strategy specification is implemented using the host language of the 

Constraint Manager. In our toolkit, the implementation uses a distributed rule engine, although 

other implementations could also be used. 

3.3    Specifying Guarantees 

A guarantee is essentially a modified (usually weakened) form of the constraint being managed. As 

we will see, guarantees vary in strength, from guarantees like "A' = Y always," which is very useful 

but very difficult to achieve, to guarantees like "A' = Y if there are no updates for a day," which 

is easy to achieve but not very useful. In between these two extremes is a spectrum of weakened 

guarantees that are both useful and relatively easy to achieve. One of the strengths of our approach 

is that it lets us specify guarantees anywhere in this range, unlike existing systems where one either 

2Note that the two databases can be of different types. For example, the first may be a relational database while 

the second is a flat-file system. The complexity of translation to and from these different data models is handled by 

the CM-Translators, described in Section 4. 



gets strong consistency (with distributed transactions, when applicable), or no consistency at all. 

However, we note that identifying the right weakened guarantees that are meaningful to applications 

and that can be enforced is challenging. We return to this issue in Section 7.1. 

Guarantees are logical expressions involving occurrences of events and predicates over data 

items and time. The basic construct of the guarantee language is the following: 

{Event\Condition}@Time.variable 

For example, W(A',5)@*i means that there is a write operation "A ^— 5" performed at time 

t\. Similarly (A" = 25)@i-2 means that the data item X has value 25 at time *2- In addition to 

this construct, we have predicates over data items, variables, and constants, and the usual logical 

connectives such as and (A), or (V), not (->), implies (=>), etc. We also permit a limited form of 

quantification for variables representing time, as described in the first example below. (Note that 

quantification over data involved in a constraint is achieved by means of parametrized data names, 

as explained in Section 3.1.1.) 

3.3.1     Example: Some Guarantees for Copy Constraints 

Consider the case of an inter-site copy constraint X = Y between a data item A at site Si and 

a data item Y at site 52- Suppose we wish to maintain Y as a copy of A*. Below, we discuss 

some guarantees, one or more of which may be useful for a given application. For simplicity in 

presentation we consider a single copy constraint, but our guarantees also apply to a set of inter- 

site copy constraints over related data items, where X and Y are replaced by parameterized data 

names. 

• A simple guarantee that is desirable in many situations is that at no time should Y have 

a value not previously taken by A*. Informally, we call this the "V follows A'" guarantee. 

Formally, we express this by saying that if Y has a certain value at time tx, then A' must have 

had that value at some time t? before t\. Note that, implicitly, variables on the left-hand side 

of the =>■ sign are universally quantified, while those on the right-hand side are existentially 

quantified: 

(Y = y)@h => (A = y)@t2 A{h<h)    (1) 

• In some cases, one may also want that every value taken by A" is eventually reflected in Y. 

That is, if A' = x at some time, we are guaranteed that Y = x at some later time; there are 

no missing values. Informally, we call this the "A" leads Y" guarantee. Formally, we express 

this as follows: 

(A = x)@h => (1' = x)@t2 A(t2>h)    (2) 

Note that this guarantee may not be desirable in all situations. For example, if A" represents 

the position of a "player" in an interactive distributed game, we usually are only interested 

in the latest position of the player (the most recent value of A'), and we do not care about 

99 



a missed update. On the other hand, there are situations in which it is important for each 

value to be propagated. For example, if .V represents the phone number of an employee, and 

if Y is a copy of A' on another system that is interested in recording all the phone numbers 

of this employee over time, then guarantee (2) is desirable. 

• In many cases, the order in which the updates are propagated is important in addition to the 

assurance that they are eventually propagated. For example, if A* represents the position of 

a robot and Y is its copy on a system that plots the robot's path, we would like to receive 

the updated positions of the robot in the order in which the updates are actually made. 

Informally, we call this the "1' strictly follows A"" guarantee. Formally, we express this as 

follows: 

(Y = </! )@ti A (Y = y2)@t2 A (h < t2) => (X = Vl)@t3 A (X = y2)@t4 A (t3 < U)    (3) 

We call guarantees such as the ones above non-metric since they do not make explicit reference 

to time intervals. That is, they specify only the order in which events occur and predicates are 

satisfied, not an explicit delay between them. In contrast with non-metric guarantees, we also have 

metric guarantees, which state that some event must occur or some predicate must be true within 

some fixed time bound of another event or predicate. We can extend non-metric guarantees (1) 

and (2) above to metric guarantees by placing a bound on the delay between the time at which the 

two conditions mentioned in the guarantees are true. For example, the metric form of guarantee 

(1) is the following: 

(Y = y)@h => (A = y)@t2 A(t1-K<t2<h)     (4) 

where K is a constant. This guarantee specifies that if Y = y at time t\, then A' = y at some time 

t2 that is at most K seconds before t\. Informally, 5' takes values held by A' no more than K seconds 

ago. 

4    A Toolkit for Constraint Management 

We have presented a framework and language for specifying interfaces, strategies, and guarantees 

for constraint management in heterogeneous systems. In this section we describe how we have 

used this framework to develop and implement a toolkit for constraint management. The toolkit 

provides a set of easily configurable services that monitor or enforce constraints spanning multiple 

loosely coupled databases. We first briefly describe the architecture of the toolkit, and then we use 

an example to illustrate some of its features. 

4.1    Architecture 

Figure 2 depicts the architecture of our constraint management toolkit, which is a realization 

of the logical architecture depicted in Figure 1. At the lowest level we have the Raiu Information 

Sources (RIS), which could be relational or object-oriented database systems (OODBs), file systems, 

bibliographic information systems, electronic mail systems, network news systems, and so on. Each 

100 



CM-shel! 
(A) 

CM-Translator 
(A) 

Other Sites 
i 

Strategy 
Spec 

CM-Interface 
(CMI) 

CM 
RID 

Constraint Manager 

CM-sheli 
(B) 

Raw Information 
Source 

__ (A) 

Raw information source 
Interface 
(RISI) 

CM-Translator 
(B) CM 

RID 

Raw Information 
Source 

(B) 

Figure 2: Constraint Management Toolkit Architecture 

RIS lias its own particular interface, which we call RISI. For example, for a Sybase RIS, the RISI is 

SQL-based and includes the protocols to send a query to the Sybase server and receive the results. 

The CM-S'hell processes at the top of the figure implement the selected strategy, which is described 

in the Strategy Specification. Thus, each CM-Shell is a general-purpose process that is configured 

by reading the Strategy Specification file. 

If the CM-Shell were to interact directly with the RIS, it would have to understand the pe- 

culiarities of each RISI. For example, to read a data item X stored in a relational database, a 

CM-Shell would have to issue a request in the particular dialect of SQL that the RIS understands. 

If A' is stored in an OODB or a file system, the procedure to read _Y will be completely differ- 

ent. To factor this complexity away from the CM-Shells, we provide a CM-Translator (for each 

RIS) that presents to the CM-Shells the local capabilities in a standard fashion. This interface 

provided by the CM-Translator is the CM-Interface (CMI). The design and implementation of the 

CM-Translator is helped by the CM-Raw Interface Description (CM-RID) file, which configures 

standard CM-Translators to the particular underlying data source by presenting the specifics of the 

RISI in a standard format. For example, a CM-Translator for relational databases can be config- 

ured to interface with any DBMS (e.g., Sybase, Oracle) and any database (e.g., a payroll database, 

an inventory database) just by specifying the appropriate CM-RID. 

A final component of our architecture (not shown in Figure 2) is a library of common interfaces 

and strategies. Thus, the contents of the Strategy Specification and the CM-RID files can usually be 

selected from available menus of proven strategies and interfaces. However, the toolkit is extensible 

and can accommodate custom interface and strategy descriptions written using our rule language. 

During initialization, the CM-Shells query the CM-Translators about the local capabilities and 

101 



services. The CM-Translators respond with the interface specifications. The CM then suggests 

strategies that are applicable to these interfaces, along with the associated guarantees. The system 

administrator can either select one of the suggested strategies, or specify a different strategy using 

the strategy specification language. Once a strategy is specified, the CM distributes the rules of the 

strategy to CM-Shells based on the site of the event on the left-hand side of the rule. Each rule is 

executed in the CM-Shell handling the site at which the left-hand side event occurs. Based on this 

distribution of rules, the CM also determines, for each event template in each rule, the CM-Shells 

and/or the CM-Translators to which an event matching that template must be forwarded. During 

initialization, the CM-Translators also perform any set-up required for supporting the selected 

interface. For example, a CM-Translator supporting a Notify Interface for a Sybase MS may need 

to declare triggers on the underlying database. 

At run-time, the CM-Shells process events received from their respective CM-Translators and 

fire rules appropriately. The 'events that are produced as a result of rules firing are forwarded to 

the local CM-Translator and other CM-Shells as determined during initialization. CM-Translators 

implement the events using the native facilities of the RIS, thus executing the strategy. The CM- 

Shell supports a simple programmatic interface to allow applications to read auxiliary CM data for 

the guarantees that refer to it. 

4.2    Example 

Consider the following scenario. A company stores the personnel information for some of its em- 

ployees in a local San Francisco branch database A. Personnel information also is stored in a 

database B at the headquarters in New York. These databases are loosely coupled in the sense 

described in Section 1. We wish to maintain the following constraint: For each employee in the 

San Francisco database, the salary stored in database A must equal the salary stored in database 

B. This is an example of a parameterized copy constraint. Let salary 1 (n) denote the salary of n in 

database A, where, intuitively, n represents the employee ID. Similarly, let salary 2 (n) denote the 

salary of n in database B. The constraint is then salaryl(7i) — salary2(n) for all n in database A. 

We first demonstrate how the toolkit is used to define interfaces for salary l(n) and salary2(n), 

and then we show how a simple strategy is specified and implemented. Finally, we discuss the 

validity of different guarantees, and we show how, with very little effort, we can continue to enforce 

the copy constraint even when the interface for salary l(n) changes. The reader may wish to refer 

to Figure 2 as the description proceeds. 

4.2.1     Interfaces 

Suppose the RIS B is a Sybase relational database that provides a write interface for data item 

salary2(n), defined in our language as WR(salary2(n),b) -+s W(salary2(n),b). In practice, this 

interface means that the RIS at site B can be instructed to write object salary2(n). The CM-RID 

tailors the CM-Translator to handle such write requests. In addition to the interface statement, 

the CM-RID at B specifies the following: 

102 



• The command that has to be issued to the RIS to perform the write. In our example, the 

CM-RID specifies that to write a value b to salary2(n), the SQL query "UPDATE EMPLOYEES 

SET SALARY = b WHERE EMPID = n" must be sent to the SQL server. Note that we use the 

parameter n in the query. Our CM-Translator performs the necessary substitution given a 

particular instance of n. 

• Low-level details of the protocol for querying the SQL server. In our example, the CM-RID 

indicates that the underlying RID is a Sybase database, and also specifies the network name 

of the Sybase server, the port number to connect to, the name of the machine on which it is 

running, etc. Using these details, the CM-Translator can send the SQL query to the RIS and 

receive the acknowledgment. 

Suppose the RIS at site A offers a notify interface for data item salaryl(n). This interface is 

defined by the rule Ws(salaryl(n),b) —>5 N(salaryl(n),b). For the purpose of this example, let us 

assume that the notify interface is implemented by declaring a database trigger on the data items 

salaryl(n). The CM-RID specifies what the CM-Translator at A needs to do to declare the trigger, 

and what it should expect to receive from the RIS when salary l(n) changes. 

4.2.2     Strategy 

Consider the following simple strategy: Make a write request to salary2(n) within 6 seconds when- 

ever a notification of a write to salary l(n) is received. We express this using our strategy specifi- 

cation language as follows: 

N(»alaryl[n),b) -+s WR(salary2(n),b) 

This strategy specification is processed by both of the CM-Shells. The strategy specification 

also indicates where objects are located, i.e.; that salaryl(n) is at site A and that salary2(n) is at 

B. As explained earlier, from the site of the event template on the left-hand side of the rule, the 

toolkit ran determine which CM-Shell is responsible for executing each rule. In our example, the 

CM-Shel! at .-I is responsible for the left-hand side of the rule because salary l(n) is at that site. 

When the A CM-Shell receives a N( salary l(n),b) event from its CM-Translator, it forwards the 

event to the B CM-Shell, since the B CM-Shell is responsible for the right-hand side of the rule. 

The B CM-Shell then sends the WR(salary2(n),b) event to its local CM-Translator. Based on the 

expected maximum execution time of each CM-Shell and the maximum transmission time between 

CM-Shell». the database administrators can compute an estimate for 8, the time guarantee in the 

rule. (See the discussion on timing guarantees at the end of Section 5.) 

4.2.3    Guarantees 

Given the interfaces and the strategy above, we can prove that guarantees (1), (2) and (3) of 

Section 3.3.1 are all valid. We can also prove that the associated metric guarantee (4) is valid 

for an appropriate K.  Intuitively, it is easy to see why these guarantees are all valid; yet, there 

103 



are important details (such as a requirement for in-order message processing) that were discovered 

during the process of verification of the guarantee using our proof rules. 

Now consider what happens if the administrator at site A decides to change the interface for 

data item salaryl(n) from the above notify interface to a read interface (described in Section 3.1.1). 

Now the CM is no longer notified of updates to salary l(n); instead, the database at A only offers 

to respond with the current value of salaryl(n) whenever it is requested. Since the only way to 

find out about changes to salaryl(n) in this scenario is to periodically read the salaries, we must 

use a polling strategy. The simplest strategy is to periodically read salaryJ(n) and propagate the 

value read to salary2(n).3 We express this strategy as follows: 

P{60)^SRR(X) 

R(X,b)^sWR(Y,b) 

Recall that the event P(60) represents a periodic event that occurs every 60 seconds. 

Guarantees (1), (3) and (4) from Section 3.3.1 are valid in this scenario, while guarantee (2) is 

not. Intuitively, it is easy to see why guarantees (1), (3) and (4) are valid. The reason guarantee 

(2) is not valid is that since we are polling salaryl(n) periodically, it is possible for us to "miss" 

updates when two or more updates to salaryl(n) occur in the same polling interval. 

4.3    Implementation Status 

We have implemented CM-Translators for Unix files and relational databases. The translators are 

implemented using an object-oriented approach that requires only minor amounts of rewriting when 

moving to different kinds of raw sources (RIS). Currently, some low-level details for communicating 

with, say, Sybase must be embedded in the CM-Translator code. This code has to be rewritten 

to port the CM-Translator to, say, an Oracle database. However, the amount of code that needs 

to be rewritten is typically less than a page. Porting the CM-Translator to, say, a WAIS-like RIS 

involves incorporating the WAIS protocol for the submission of queries and the retrieval of results. 

We could avoid the need to rewrite the CM-Translator by enhancing the CM-RID format to include 

a scripting language such as Tel [Ous90]; there is a tradeoff here between complexity in the CM- 

Translator and complexity in the CM-RID. The design and implementation of translators is in itself 

a difficult and interesting issue. While we currently are building translators by hand, we hope to 

soon exploit related work we are doing in the context of a query mediation project [PGMW95]. 

We have used our toolkit to implement several constraint management scenarios such as copy 

constraints for data with read, write and notify interfaces. Strategies include update propagation, 

polling, and the Demarcation Protocol (described in Section 6). We are currently implementing a 

large scenario for distributed constraints involving several databases at Stanford. The databases 

include the Stanford "whois" database, the Computer Science Department's custom personnel 

3Note that we could certainly do better, for example by caching salaryl(n) at the CM and propagating updates to 

salary'2(n) only when the value of salaryl(n) changes. In the interest of simplicity, we do not consider this strategy 

here. 

104 



database ("lookup"), the database group's Sybase database, and a bibliographic database. There 

are copy constraints for different personnel data such as phone numbers, addresses, etc., stored in 

the different databases. We also have referential integrity constraints, such as one that specifies that 

every paper authored by a Stanford database researcher as reported by the bibliographic database 

must also be mentioned in the Sybase database. 

Using our toolkit, we coordinate the activities of the loosely coupled, heterogeneous databases 

without modifying the databases or the existing applications, thus maintaining database autonomy. 

Heterogeneity in the modes of database access and control is handled in a uniform way by describing 

interfaces using our rule language. Furthermore, incorporating new databases or changing the 

interface to an existing database requires very little work, since only the high-level interface and 

strategy specifications have to be modified (and can be chosen from a menu in most cases). Even 

though the databases in the system are not transactional, our toolkit provides a formal notion of 

data consistency that is useful in practice. 

5    Failure Handling 

In a distributed environment, especially a loosely coupled one, coping with failures is an important 

component of any coordinating software. We classify failures of the databases in our architecture 

into the following two types:4 We say a database interface has had a metric failure when it is unable 

to honor the time bounds specified in the interface specifications. In such a scenario, the actions 

mandated by the interface statements are eventually performed, but not within the time bound 

specified. Such failures may be caused by the underlying database being overloaded or crashing. 

(In many cases, crashes can be mapped to metric failures if the database has some basic recovery 

facilities and can "remember" messages that need to be sent out upon recovery.) When a metric 

failure occurs on one or more of the sites involved in a constraint, the metric guarantees for that 

constraint are no longer valid. However, the non-metric guarantees continue to be valid, which may 

allow many applications to continue to function. 

The second kind of failure is one in which the interface statements are no longer valid at all. 

We call this a logical failure. Such a failure may be caused by catastrophic failure of one or more 

of the databases, and we expect such failures to be very infrequent. When a logical failure occurs, 

both metric and non-metric guarantees involving the failed site are no longer valid until the system 

is reset. 

In our current implementation, failures are detected and flagged. In the future, we plan to 

incorporate a more sophisticated failure handling scheme into our toolkit, permitting applications 

to deal with failures in a more sophisticated manner. Recall that in our toolkit, the CM-Translator 

translates the raw interface (RISI) of the underlying database to the CM-Interface presented to the 

CM-Shell. The CM-Translator also maps (when possible) failures of the RISI into metric or logical 

4Throughout this paper, we assume a reliable network. Therefore, we consider only site (database) failures here. 

Of course, network failures can be viewed as the failure of the sites sending the affected message. 

105 



failures of the CM-Interface. On detecting a failure, the CM-Translator notifies the local CM-Shell, 

which then propagates the information to other CM-Shells so that the affected guarantees may be 

marked as invalid. 

The method used by the CM-Translator to detect failures of the RISI depends on the nature 

of the RISI and the CM-Interface being supported. For example, consider a CM-Translator im- 

plementing a Read Interface with a Unix file system as the underlying database. In this case, the 

the CM-Translator will use the read() system call interface to the Unix file system. Failure of this 

system call can be detected based on the return value, and such a failure can be flagged as a failure 

of the Read Interface. Depending on the reason for the failure of the read() call, the Read Interface 

failure is flagged as either a metric or a logical failure. Similarly, a CM-Translator for a Sybase 

database can detect and flag interface failures based on the error codes returned by calls to the 

Sybase library routines that communicate with the SQL server. 

Sometimes, however, the nature of the RISI may make detecting failures very difficult or impos- 

sible. For example, consider a CM-Translator supporting a Notify Interface for a legacy database, 

and suppose the database simply sends a message to the CM-Translator whenever there is an up- 

date to some data item. If the database fails silently and does not report some update, there is no 

way for the CM-Translator to'detect the failure. If it is not possible to ensure that the probability 

of such undetectable failures is acceptably low, then a Notify Interface should not be used for this 

database. Often, one can use another available interface, such as a Read Interface, and use polling 

to simulate notification, as in the example in Section 4. Note that some probability of undetectable 

failures exists in most systems. For example, undetected hardware failures (e.g., double parity 

errors on disk or memory reads) can silently corrupt data on disk or in memory, and this is not 

detected until some application fails unexpectedly. 

The probability of a metric failure of an interface depends on the choice of the time bound 

in the rules specifying that interface. Typically, these time bounds would be determined based 

on the processing power of the information source, the expected load, the maximum estimated 

communication delay (including retries), etc. In practice, these constants could be chosen to ensure 

that the interface is honored with, say, 99.99% probability. It is well known that all fault tolerant 

systems have to select constants (timeouts, number of retries, etc.) in a similar manner [Cri89]; 

the difference is that our toolkit makes the effects of choosing these constants explicit in the form 

of metric guarantees, so that applications do not have to guess. 

6    Additional Constraint Management Scenarios 

Our framework and toolkit for constraint management can be applied in a variety of scenarios, 

with interfaces and strategies ranging from simple (such as those described so far) to complex. In 

this section, we briefly illustrate some additional scenarios to show the wide range of interfaces, 

strategies and guarantees that our framework and toolkit can cover. 

106 



6.1 Demarcation Protocol 

Consider the inequality constraint X < Y where A' and Y are at different sites. The Demarcation 

Protocol [BGM92] is applicable in this scenario if the sites of Ar and Y both offer certain interfaces. 

The protocol guarantees that the constraint X < Y is always valid. The protocol uses local 

limit data items Xi and 1/ (located at the sites of A' and Y respectively) and uses the constraint 

managers of the underlying databases to enforce the local constraints A' < A"/ and Y < 1/. Using 

our framework, we can accurately specify the interfaces assumed by the Demarcation Protocol, 

which are fairly complex. We can also specify the Demarcation Protocol itself. Then, using our 

proof rules, we can prove the guarantee X < Y based on the specification of the protocol strategy 

and the interfaces. Thus, our framework is capable of expressing a complex scenario, in which 

we use the facilities of the underlying database (such as local constraint managers) in order to 

implement a global constraint, in addition to the simple ones we discuss elsewhere in this paper. 

There are many ways of implementing the Demarcation Protocol such that the above guarantee 

is valid, and some of these are less desirable than the others. For example, an implementation 

that simply does not change the limit data items A; and Yj will satisfy the above guarantee, but 

is not very desirable since it does not permit A (and Y) to ever exceed (respectively, fall below) 

their original limit values. We can formalize this intuitive guarantee by introducing an event to 

denote a request for a limit-change operation, and by specifying that if there is enough "slack" at 

one site, then a change-limit request at the other site must be granted within some time. Different 

implementations of this protocol (called policies in [BGM92]) can then be compared using this 

guarantee. In [CGMW94], we have presented a formal specification of interfaces, strategies and 

guarantees for the Demarcation Protocol.   , 

6.2 Referential Integrity 

Consider a referential integrity constraint that states that for every employee ID having a record 

describing a project assignment ("project record" for short) in one database, there must be a record 

in another database with the salary information for that employee ID ("salary record" for short). 

A weakened form of this constraint, more suitable to loosely coupled heterogeneous systems, is 

the following guarantee: The above referential integrity constraint may be violated for any one 

employee ID for a period of at most 24 hours. We express this guarantee using an exists predicate.5 

An exists predicate E(X), where A" is a data item name (usually parameterized), is true if and only 

if the data item A exists in the database. In our example, let project(i) denote the project record 

of an employee with employee ID i, and let salary(i) denote the salary record of that employee 

as stored in the second database. The guarantee states that if the project record exists at time t 

in the first database, the salary record must exist in the second database within 24 hours (86,400 

We use an explicit exists predicate because our language does not include general quantification for data item 

names (although we do have quantification of time variables). 

107 



seconds), and is expressed as follows: 

E(project(i))@t =» E(salary(i))@(t + 86400) 

A simple strategy to realize the above guarantee is the following. At the end of each working 

day, the CM deletes all project records from the projects database that do not have a corresponding 

salary record in the salary database, perhaps notifying the database owner of the deleted records. 

This strategy assumes-the projects database permits the CM to delete records. If this is not the 

case, then there may be no way for the CM to enforce the referential integrity constraint. However, 

the CM could still monitor the constraint using a technique similar to that described in the next 

section. 

6.3 Monitor 

Consider a scenario where we have a copy constraint A' = Y, both A' and Y have notify interfaces 

(see Section 3.1.1), and the CM cannot update either data item. In this case, the best the CM 

can do is to monitor the constraint. One method of monitoring the constraint is to maintain some 

auxiliary data items at the site of the application6 interested in this constraint. (We discuss the 

storage and access of auxiliary data in Section 7.1.) These auxiliary data items indicate the validity 

of the constraint over time. In particular, we may offer the following guarantee to an application: 

({Flag = true) A (Tb = s))@t => (Ar = y)@@[s,t - K] 

Here Flag and Tb are auxiliary data items The guarantee states that if Flag is true, then A' = Y 

was true at all times in the time interval indicated on the right-hand side. The auxiliary data item 

Tb is used to keep track of the start of thetime interval during which X = Y. (In the guarantee, 

we use Tb by accessing its value s on the right-hand side.) Details of the strategy used to ensure 

this guarantee, as well as the proof of the guarantee using the interface and strategy specifications 

is in [CGMW94]. 

6.4 Periodic Guarantees 

A periodic guarantee is one that states that the constraint is valid periodically. For example, 

consider an old-fashioned banking environment in which all update transactions occur between 

9 a.m. and 5 p.m. Suppose we have a set of copy constraints stating that balances for each account 

at the local branch and the head office must be equal. A simple strategy in this situation is to 

propagate the new values of account balances from the branch to the head office at the end of each 

working day. If the branch offers an interface that guarantees that there will be no updates to 

account balances between 5 p.m. and 8 a.m., and if the propagation of new values at the end of 

the day takes 15 minutes, we can offer a periodic guarantee that the copy constraints will be valid 

every day from 5:15 p.m. to 8 a.m. the next day. Such a guarantee permits, for example, a financial 

In the case of multi-site applications, this is the site of the CM-Shell that services the application. The choice of 
a CM-Shell can be arbitrary. 

108 



analysis application at the main office to proceed with the assurance of consistency, assuming it 

runs in the above time interval. 

7    Discussion 

In this section, we discuss some details of how applications can use the guarantees offered by our 

toolkit. We also explain why the implementation of strategies does not require global data access 

and clocks, and we discuss how auxiliary CM data is stored and accessed. 

7.1    Using Guarantees 

From the viewpoint of an application, weakened notions of consistency as expressed by our guar- 

antees are not as easy to use as conventional, strict consistency is. Yet, given the restrictions on 

data access and control in a loosely coupled heterogeneous environment, weakened consistency is 

usually all that can be offered. Weakened consistency is certainly more useful than no consistency 

guarantees at all, which is what usually is offered to applications in current systems. In this section, 

we discuss how applications can use weakened consistency guarantees. 

The ease of use of a guarantee depends on the "strength" of the guarantee. Guarantees that 

are relatively strong are easy to use. For example, a strong non-metric guarantee like A' < Y (as 

offered by the Demarcation Protocol) permits the application know at all times that the data it 

sees is consistent. Similarly, consider guarantees (1) and (2) of Section 3.3.1 from the viewpoint of 

an application that runs at 5"s site and tabulates the different values taken by A". This application 

can read 1' and be assured that Y is a value previously taken by A" (due to guarantee (1)) and that 

Y does not miss any values that A" takes (due to guarantee (2)). Hence, these guarantees permit 

the application to know that its tabulation is correct. 

The guarantees that are harder to use are those that are conditional on the values of some 

auxiliary data items. For example, consider the following guarantee introduced in Section 6.3: 

({Flag = true) A (Tb = s))@t => (A = Y)@@[s,t - K] 

In order to use this guarantee, the application must read the values of the auxiliary data items Flag 

and Tb. Such auxiliary data may be stored in a private database of the CM-Shell at the site of the 

application. In this case, the application reads their values through the CM-Shell. Alternatively, 

the underlying database at the site may offer to store such auxiliary data for the CM-Shell. In 

this case, the application can read the auxiliary data directly from the database. In our toolkit, 

for example, auxiliary data for a CM-Shell that is at the site of a Sybase database is stored in 

the Sybase database, while the auxiliary data for a CM-Shell that is at the site of a bibliographic 

information system is stored in a private database. 

Note that guarantees are always designed in such a way that that applications can use them 

without the need for global transactions. This is done by ensuring that reading local data only 

is sufficient to conclude some desirable properties of the global data. In the above guarantee, for 

109 



example, by reading local (auxiliary) data items Flag and Tb, an application can determine the 

validity of the global constraint X - Y. It is a straightforward extension of the strategy and 

guarantee in that example to replicate Flag and Tb at the site of each application interested in the 

guarantee, so that each application accesses only local data. 

The reader will note that it is important to read the data items on the left-hand side of the => 

in the guarantee consistently. If the auxiliary data items Flag and Tb are stored in the CM-Shell, 

the CM-Shell ensures that they are read consistently, since they are under its control. If, however, 

they are stored in the underlying database, then the database must have some facility to permit 

consistent read of these datajtems. 

Once the application reads the auxiliary data items Flag and Tb, it can determine whether the 

constraint was valid during the interval specified on the right-hand side of the guarantee. To see 

how this guarantee is useful, suppose that the application received some query results based on the 

values of A' and 1' at some time in the past:. Then this guarantee permits the application to check 

whether that the query was computed based on a consistent state of the data. If A' = Y was true 

at the time at which the earlier query was computed, the application can proceed with confidence 

in the query results. If the guarantee is inconclusive about whether A' = Y was true at the query- 

computation time (either because Flag is false or because the time interval on the right-hand side 

of the guarantee does not include the time of interest to the application), the application can either 

proceed with the understanding that the query results may not be accurate, or it can recompute 

the query in the hope that the new computation will be performed on a consistent state. 

In this paper, we have illustrated guarantees only for some simple copy, inequality, and refer- 

ential integrity constraints. As constraints get more complex, their guarantees will also increase 

in complexity, making them more difficult to use. However, note that simple constraints like the 

ones we consider here are the most common kind of constraints in a loosely coupled heterogeneous 

environment, where it is unlikely that autonomous data repositories will have very complex inter- 

dependencies. Furthermore, if there are complex constraints in a loosely coupled heterogeneous 

system, they are often split into distributed copy constraints plus local constraints. For example, 

consider the constraint X = Y + Z, where A, Y, and Z are at three different sites. A common 

way to manage this constraint is to have cached copies Yc and Zc of Y and Z, respectively, at the 

site where A" is. Hence, we would have the constraints A = Yc + Zc, Yc = Y and Zc = Z. Only 

the simple copy constraints are distributed and they can be handled by the strategies of Section 

3.3.1, for instance. Thus, even if our framework is used for simple constraints only, we believe it 

can cover the vast majority of the scenarios of interest for loosely coupled heterogeneous systems. 

7.2    Executing Strategies 

In Section 7.1 we have seen how the use of guarantees does not require global transactions. Similarly, 

execution of strategies (rules) does not require global transactions. To see this, note that while the 

left-hand side and right-hand side of a rule each (separately) execute "atomically," the entire rule 

does not.  Further, each side of a rule is restricted to accessing data that is all at the same site. 

no 



Thus the atomic execution of each side of the rule can be implemented in the local CM-Shell. 

Another issue is that of clock synchronization. In the formal part of our work, we use global time 

to reason about events and conditions. This approach is similar to that in [Koy92]. For example, 

consider a rule of the form E\ -*-5 £2 where events E\ and E2 matching the event templates £j and 

£■2, respectively, are at different sites. This rule states that if E\ occurs at site S\ at 9:00:00 a.m., 

then E2 must occur at site S2 before 9:00:05 a.m., where both times refer to absolute, wall-clock 

time. Recall that this is a specification of an interface or strategy based on expected maximum 

delays. Implementing such a rule does not require any access to global time (or even a notion of 

time in the implementation). Thus our toolkit does not rely on global clock synchronization for 

implementing strategies even though we use it as a reasoning tool in our formal framework. Certain 

kinds of guarantees, such as the periodic guarantees of Section 6, explicitly refer to global time, and 

they assume global clocks. Such a scenario does not pose a problem as long as the time intervals 

specified in the guarantee are significantly larger than the expected skew in system clocks. In the 

example of Section 6, a clock skew of a few seconds (or even minutes) can be accommodated by 

including an error margin in the interval specified in the guarantee. 

8    Conclusion 

Distributed integrity constraints arise naturally when information systems inter-operate, due to 

interdependencies between data. Traditional constraint management techniques assume facilities 

like atomic transactions, locking, and global queries. While these are reasonable assumptions in 

centralized or tightly coupled distributed environments, they typically do not hold in loosely cou- 

pled heterogeneous environments, and traditional constraint management techniques are therefore 

inapplicable in such cases. Another characteristic of heterogeneous environments is that different 

databases offer different facilities and capabilites for accessing data, which also makes constraint 

management more difficult. Currently, constraints in heterogeneous environments are either not 

monitored at all, or are monitored using ad-hoc techniques. Such techniques are error-prone and 

can lead to irreparable inconsistencies in the databases. 

We have presented a framework and a toolkit for constraint management in loosely coupled, 

heterogeneous information systems: Our framework formalizes weakened notions of consistency, 

which are essential in real-world loosely coupled heterogeneous scenarios, where it is not possible 

to guarantee strict consistency. Our framework also allows us to formally specify the interfaces 

each database offers, along with constraint management strategies. Our toolkit provides a set of 

configurable modules that enable us to monitor and enforce constraints in a uniform and useful 
manner. 

References 

[BB87] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS. Com- 
puter Networks and ISDN Systems, 14(l):25-59, 1987. 

Ill 



[BG92] G. Berry and G. Gonthier.   The ESTEREL synchronous programming language:  Design, se- 
mantics, implementation. Science of Computer Programming, 19(2):87-152, 1992. 

[BGM92] D. Barbara and H. Garcia-Molina. The demarcation protocol: A technique for maintaining 
linear arithmetic constraints in distributed database systems. In Proceedings of the International 
Conference on Extending Database Technology, pages 373-388, Vienna, Austria, March 1992. 

[BGMS92] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview of multidatabase transaction 
management. The VLDB Journal, 1 (2): 181, October 1992. 

[CGMW93] S. Chawathe, H. Garcia-Molina, and J. Widom. Constraint management in loosely 
coupled distributed databases. Technical report, Computer Science Department, Stan- 
ford University, 1993. Available through anonymous ftp from host db.stanford.edu as 
pub/chawathe/1993/cm-loosely-coupled-dbs.ps. 

[CGMW94] S. Chawathe, H. Garcia-Molina, and J. Widom. Constraint management in loosely coupled 
distributed databases. Technical report, Computer Science Department, Stanford University, 
1994. Available through anonymous ftp from host db.stanford.edu. 

[Cri89] F. Cristian. A probabilistic approach to distributed clock synchornization. In Proceedings of the 
Ninth International Conference on Distributed Computing Systems, pages 288-296, Jun 1989. 

[CW93] S. Ceri and J. Widom. Managing semantic heterogeneity with production rules and persistent 
queues. In Proceedings of the International Conference on Very Large Data Bases, pages 108- 
119, Dublin, Ireland, August 1993. 

[Elm91] A. Elmagarmid, editor. Special Issue on Unconventional Transaction Management, Data Engi- 
neering Bulletin 14(1), March 1991. 

[Gre93] P. Grefen.    Combining theory and practice in integrity control:   A declarative approach to 
the specification of a transaction modification subsystem.  In Proceedings of the International 
Conference on Very Large Data Bases, pages 581-591, Dublin, Ireland, August 1993. 

[GW93] A. Gupta and J. Widom. Local verification of global integrity constraints in distributed 
databases. In Proceedings of the ACM SIGMOD International Conference on Management 
of Data, pages 49-58, Washington, D.C., May 1993. 

[GW94] P. Grefen and J. Widom. Integrity constraint checking in federated databases. Memoranda 
Informatica 94-80, Department of Computer Science, University of Twente, The Netherlands, 
December 1994. 

[Koy92] R. Koymans.   Specifying Message Passing and Time-Critical Systems with Temporal Logic. 
Number 651 in Lecture Notes in Computer Science. Springer-Verlag, 1992. 

[L+93] D. Luckham et al. Partial orderings of event sets and their application to prototyping concurrent, 
timed systems. Journal of Systems and Software, 21(3):253-265, June 1993. 

[Ous90] J. Ousterhout.   Tel:  an embeddable command language.   In Proceedings of the  Winter 1990 
USENIX Conference, Washington, D.C., January 1990. 

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across heterogeneous 
information sources, March 1995. 

[RSK91] M. Rusinkiewicz, A. Sheth, and G. Karabatis. Specifying interdatabase dependencies in a 
multidatabase environment. IEEE Computer, 24(12):46-51, December 1991. 

[SV86] E. Simon and P. Valduriez.  Integrity control in distributed database systems.  In Proceedings 
of the Nineteenth Annual Hawaii International Conference on System Sciences, pages 621-632, 
1986. 

112 



Appendix A    Syntax and Semantics of Rule Language 

In Section 3, we motivated and informally presented the rule language used in our framework. 

Many concepts were introduced by example in that section. In this section, we present the formal 

specification of the syntax and semantics of our rule language. Examples of how these definitions 

can be used to prove guarantees of consistency can be found in [CGMW94]. 

Appendix A.l    Events, Templates and Rules 

We first define events and event templates, which are the building blocks of our rule langage. The 

syntax and informal semantics of the rule language are presented next. (Formal semantics of the 

rule language are in the next section.) 

Let {D\, D-2,..., Dn} be the set of all data items in the system, including all the databases and 

any data stored by the constraint manager. An interpretation I is a function that maps each D{ 

to a value, yielding a state of the system.' For example, if we have three data items {D\, Ü2,Dz}, 

then a possible interpretation is {D\ = 7,£2 = 14,D3 = 49}. We permit an interpretation to 

"under-specify" the state by allowing some data items to map to null, meaning these data items 

can assume any value. The system passes through a sequence of states, each represented by an 

interpretation of its data items. 

The behavior of the databases and the constraint manager is described by events. For the 

purposes of constraint management, we divide events into two types: 

• Spontaneous events, which occur as a result of users or application programs operating on 

the databases. 

• Generated events, which occur as a (direct or indirect) result of a strategy being executed by 

the CM or an interface being maintained by a database. 

Each event is represented using a six-tuple: E = (time, desc, old, new, rule, trigger), where the 

components of the tuple are described below: 

time: The time at which the event E occurs. For simplicity, we assume that all references are to 

global "physical" time. We use time mainly for reasoning about correctness, and as we will 

see, in practice we do not require synchronized clocks. 

desc: The descriptor of the event, drawn from the following set of descriptors. (This set can be 

expanded by adding new templates and their semantics.) 

{irs(.iV_), Wg(x,..), RR{x), N(x,-), WR(x,-)} 

old: The interpretation representing the state of the system just before the event occurs. 

new: The interpretation representing the state of the system just after the event occurs. 

11; 



rule: If E is a generated event, this is a rule whose "firing" resulted in the occurrence of this event. 

If E is a spontaneous event, this component is null. Rules are described below. 

trigger: If E is a generated event, this is the event which caused the rule above to fire. If E is a 

spontaneous event, this is null. 

For an event E, we denote a component of the event using clot notation. For example, E.old denotes 

the old component of the event E. 

We define an event template to be an event descriptor in which some of the components are 

parameterized or "wild-carded." An event template represents the set of all event descriptors that 

can be obtained from the template by substituting particular values for the parameters and wild- 

cards. For example, Ws(X,b) represents the infinite set of spontaneous write event descriptors that 

have A" as the first component and any value as the second component. We use "_" to denote 

a wild-card—a parameter whose name is not important. Thus Wg{., _) represents the set of all 

generated write event descriptors (of any value to any data item in the system). We use £ to 

denote event templates. In the sequel we use Ws(X,b) as shorthand for WS(X, _, 6). 

We now define what it means for an event to match an event template. We say an event 

E matches an event template £ if there is an interpretation I of the variables in £ such that 

substituting using I m £ yields E. Such a matching interpretation /, if it exists, is denoted by 

mi(E,£). The special false event template, T, does not match any event (by definition). 

The general form of a rule is 

£Q A CO -* d?A, C2?£2, • • •, Cki£k 

where £-, are event templates, Co is a boolean expression involving data items local to the site of 

£\ and variables, and C,- are boolean expressions involving data items local to the site of £\ and 

variables.7 The meaning of this rule is as follows: If an event matching the event template on the 

LHS occurs at a time t at which the condition Co is true, then there exist *,• € [t, t + 6], i = l...k 

where *,- < £,+1, i = l...k — 1 such that at time 2,-, the condition C, is evaluated, and if it 

evaluates to true, the event matching event template £,- occurs. The event corresponding to the 

event template £,■ is obtained by substituting in £,- using the matching interpretation for the LHS, 

mi(Eo,£o). Note that variables on the LHS are implicitly universally quantified, while variables 

on the RHS that do not occur on the LHS are implicitly existentially quantified. The bindings of 

variables from the LHS are passed on to the RHS (through the matching interpretation), so that a 

variable occurring on both sides takes on the same value. 

Appendix A.2    Valid Executions 

We define the semantics of our rule language using the concept of valid executions over a system 

of databases. A valid execution is an execution (E\,..., En) that satisfies the following properties. 

Note that these properties reflect the semantics of rules described in Section 3 and Appendix A.l. 

' All the events on the RHS of a rule must have the same site. 

114 



1. The events in the sequence are sorted in order of nondecreasing time. 

Vi, j € [1, n],    Ei.time < Ej.time => i < j 

2. For each event in the execution: If the event descriptor is a (spontaneous or generated) write, 

then the new interpretation maps the corresponding data item to the value written, with all 

other data items being mapped to the same value in both old and new. If the event descriptor 

is not a write, then the old and new interpretations are identical. Formally, 

V/ = 1... 71, 

if Ei.desc = Wt{X,a,ß) then E{.new = Ei.old- {X = Q}U{A" = ß} 

else if Ei.desc = Wg(X,ß) then E{.new = Ei.old - {X = .} \J{X = ß} 

else E{.new = Ei.old. 

3. The old interpretation in each event is identical to the new interpretation in the immediately 

preceding event. That is, the only changes to the interpretations are those caused by events. 

Note that interpretations model only data items related to constraints, hence this restriction 

applies to only such constraint data; other data items may change their values. 

Ei.old = Ei-i.new    i = 2.. .n 

4. For all / = 1.. .n, if E; is a spontaneous event then both Ei.rule and Ei.trigger are null. 

5. For all / = 1.. .n, if Et is a generated event, then (informally) its rule component specifies 

the rule whose firing caused E{ to occur, and its trigger component specifies the event whose 

occurrence caused the rule to fire. Further, the LHS and RHS conditions of the rule must be 

satisfied by the appropriate interpretations. 

Formally, if Ei is a generated event then both Ei.rule and Ei.trigger are non-null. Further, 

the following properties are true: 

(a) Ei.trigger is an event that matches the LHS event template of Ei.rule. Let the matching 

interpretation be /; 

(b) / can be extended8 to an interpretation /' such that substituting using /' in a RHS event 

template £,- of Ei.rule gives £,-; 

(c) The LHS condition of Ei.rule is satisfied by Ei.trigger.new; 

(d) The RHS condition Cj (corresponding to €j) of Ei.rule is satisfied by Ei.old. 

6. Informally, the converse of the previous property. That is, if an event matching the LHS 

event template of some rule occurs and if the LHS and (some) RHS conditions of that rule 

are satisfied at the appropriate times, then events matching the corresponding RHS event 

templates occur within the time specified by the rule. 

We say an interpretation / is extended to an interpretation /' if the set of non-mill mappings in / is a subset of 

the set of non-null mappings in /'. 

115 



Formally, if £,■ matches the LHS of a rule r: £0 A C0 -* Cx1£x .. .Ck1£k\ B < 6, and E{.new 

satisfies Co, then there exist tj € [Ei.time,Ei.time + 6],j = l...k where tj < tj+x,j = 

1... Ar — 1 and, for all j = 1 .. .k, exactly one of the following holds true: 

• Cj is false at tj-, 

• there exists an event Ej, such that Ej.time = tj, Ej.old satisfies Cj, and substituting 

using matching interpretation mi(Ei,£0) in £j gives Ej.desc. Further, Ej.rule — r and 

Ej.trigger = £",-. 

7. This property formalizes our assumptions of in-order message delivery between sites and 

in-order processing at each site. To do this, we first introduce some additional notation. 

If Ei and Ej are events in an execution such that Ej.trigger = £, and Ej.rule = R we write 

Ei^R Ej. 

We say rules Äi: £\hCx - C21£\ and R2: £^AC\ -> C2?£f are related if site{£\) = site(€?) 

and site{£\) = site{£%). 

The formal statement of this property is that if E\@ti ~>ßl E2@t2 and E3@t3 ^*R2 EA%U, 

where J?x are R2 are related rules, then ti < f3 iff t2 < r4. 

Using the above specification of the semantics of our rule language, in [CGMVV94] we derive 

proof rules and present proofs of some consistency guarantees. 

116 



http://wwvv-db.stanford.edu/tsimmis/publications.html 
TSIMMIS Publications and Talks 

TSIMMIS Publications 
All TSIMMIS papers and talks are available in postscript. If you need a viewer, check out 
Ghostview — it's free and runs on Unix, Macintosh, DOS, and Windows. 

Overview 
• J. Hammer, H. Garcia-Molina, K. Ireland, Y. Papakonstantinou, J. Ullman, and J. Widom. 

"Information Translation. Mediation, and Mosaic-Based Browsing in the TSIMMIS System". In 
Exhibits Program of the Proceedings of the ACMSIGMOD International Conference on 
Management of Data, page 483, San Jose, California, June 1995. 

• H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and Jennifer Widom. 
"Integrating and Accessing Heterogeneous Information Sources in TSIMMIS". In Proceedings of 
the AAAI Symposium on Information Gathering, pp. 61-64, Stanford, California, March 1995. 

• Y. Papakonstantinou, H. Garcia-Molina and J. Widom. "Object Exchange Across Heterogeneous 
Information Sources". IEEE International Conference on Data Engineering, pp. 251-260, Taipei, 
Taiwan, March 1995. 

• S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and J. 
Widom. "The TSIMMIS Project: Integration of Heterogeneous Information Sources". In 
Proceedings of IPSJ Conference, pp. 7-18, Tokyo, Japan, October 1994. 

• S. Chawathe. H. Garcia-Molina and J. Widom. "Flexible Constraint Management for Autonomous 
Distributed Databases". IEEE Data Engineering Bulletin, Vol. 17, No. 2, pp. 23-27, June 1994. 

Semistructured Data 
• D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom. "Querying, Semistructured 

Heterogeneous Information". In International Conference on Deductive and Object-Oriented 

Databases, 1995. 

Wrappers 
• J. Hammer, M. Breunig, H. Garcia-Molina, S. Nestorov, V. Vassalos, R. Yemeni. 

"Template-Based Wrappers in the TSIMMIS System". In Proceedings of the Twenty-Sixth 
SIGMOD International Conference on Management of Data, Tucson, Arizona, May 12-15,1997. 

• Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, J. Ullman. "A Query Translation Scheme for 
Rapid Implementation of Wrappers". In International Conference on Deductive and 
Object-Oriented Databases, 1995. 

117 

*»M/nn ift-O A 



TSIMMIS Publications and Talks httpy/www-db.s.anford.edu/tsimmis/publications.h 

• J. Hammer, H. Garcia-Molina, K. Ireland, Y. Papakonstantinou, J. Ullman, and J. Widom. 
"Information Translation. Mediation, and Mosaic-Based Browsing in the TSIMMIS System". In 
Exhibits Program of the Proceedings of the ACMSIGMOD International Conference on 
Management of Data, page 483, San Jose, California, June 1995. 

• A. Rajaraman, Y. Sagiv, and J. Ullman. "Answering Queries Using Templates with Binding 
Patterns". In Proceedings of the 14th ACM PODS, pp. 105-112, San Jose, California, May 1995. 

Web Extraction 
• J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. "Extracting Semistructured 

Information from the Web". In Proceedings of the Workshop on Management of Semistructured 
Data. Tucson, Arizona, May 1997. 
( Needs Ghostview 2.0 or higher.) 

Mediators 
• Chen Li, Ramana Yemeni, Vasilis Vassalos, Hector Garcia-Molina, Yannis Papakonstantinou, 

Jeffrey Ullman, Murty Valiveti. "Capability Based Mediation in TSIMMIS". SIGMOD 98 Demo, 
Seattle, June 1998. 

• V. Vassalos , Y. Papakonstantinou. "Describing and Using Query Capabilities of Heterogeneous 
Sources". In VLDB Conference, Athens, Greece, August 1997. 

• H. Garcia-Molina, Y. Papakonstantinou, D. Quass , A. Rajaraman, Y. Sagiv , J. Ullman, V. 
Vassalos , J. Widom. "The TSIMMIS approach to mediation: Data models and Languages". In 
Journal of Intelligent Information Systems, 1997. 

• S. Abiteboul, H. Garcia-Molina, Y. Papakonstantinou, R. Yemeni. "Fusion Query 
Optimization". Technical Report, 1996. 

• Y. Papakonstantinou, S. Abiteboul, H. Garcia-Molina. "Object Fusion in Mediator Systems". In 
VLDB Conference, Bombay, India, September 1996. 

• Y. Papakonstantinou, H. Garcia-Molina, J. Ullman. "Medmaker: A Mediation System Based on 
Declarative Specifications". In International Conference on Data Engineering, pages 132 -141, 
New Orleans, February, 1996. 

Information Browsing 
• J. Hammer, R. Aranha, K. Ireland. "Browsing Obiect-Based Databases Through the Web". 

Technical report, Stanford University, October 1996. 
( Needs Ghostview 2.0 or higher.) 

Constraint Management 
• S. Chawathe, H. Garcia-Molina and J. Widom. "A Toolkit for Constraint Management in 

118 



TSIMMIS Publications and Talks http://www-db.stanford.edu/tsimmis/publications.htni 

Heterogeneous Information Systems". In IEEE Twelfth International Data Engineering 
Conference, pp. 56-65, New Orleans, February 1996. 

• S. Chawathe, H. Garcia-Molina and J. Widom. "Flexible Constraint Management for Autonomous 
Distributed Databases". IEEE Data Engineering Bulletin, Vol. 17, No. 2, pp. 23-27, June 1994. 

Architecture & Implementation 

• H. Garcia-Molina and A. Paepcke. "Proposal for 1**3 Client Server Protocol". Technical Report, 
September 1996. 

S* 
UUILU11 

I  

home page. 

119 


