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Abstract — A method is presented that incorporates microstructural information into a model of 

the mechanical behavior of two-phase composite materials. The approach is to determine periodic 

microstructures that are statistically similar to the actual microstructure of the material under 

consideration. The utility of this method is that computationally tractable finite element 

simulations can then be carried out on representative unit cells that are directly obtained from 

microstructural observations. To illustrate this method, mechanical tests are performed on 

perforated aluminum sheets with various microstructures, and the results are compared to finite 

element simulations of selected representative unit cells. The simulations agree with the trends 

observed in the experiments, including measurements of the overall strength and ductility of the 

sheets. Advantages and limitations of the approach used here are discussed. 
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1. Introduction 

Materials with two distinct phases represent a broad class of materials, including dispersion- 

strengthened alloys, mechanically-alloyed materials, spheroidized steels, and metal- and ceramic- 

matrix composites. Incomplete densification during processing, creep cavitation, or void 

nucleation during ductile fracture can cause even nominally homogeneous materials to contain a 

significant fraction of voids. These voids can also be thought of as secondary phase. The 

microstructure of a two-phase material can in turn have a profound effect on the mechanical 

properties of the material, particularly on the initiation and evolution of damage. For example, 

research by Lewandowski et al. [1] on aluminum-silicon carbide composites has shown that 

fracture usually initiates at large particles, inclusions, and regions of clustered silicon carbide 

particles. They also observed that damage accumulation ahead of a macroscopic crack tends to 

occur in regions where reinforcements are clustered together. 

Many investigators have studied two-phase materials by idealizing the composite microstructure as 

having a simple periodic structure, with one or two reinforcing particles (or voids) within each unit 

cell. With this assumption, estimates of the macroscopic response of the material can be obtained 

by solving an appropriate boundary value problem formulated on a representative unit cell. This 

approach has been used to estimate the flow behavior of metal-matrix composites [2,3] and of 

porous metals [4]. Moreover, simple unit cell models have be used to study the damage 

mechanisms in composite materials, such as interfacial debonding [5], particle cracking [6], and 

ductile failure in the matrix [7]. While these analyses have provided important insights into 

deformation and damage initiation in these materials, they also possess significant limitations as 

well. One important limitation is that the predicted behavior can be strongly affected by the choice 

of assumed unit cell parameters [2,8]. Furthermore, a simple unit cell with one reinforcement (or 

void) cannot provide a realistic portrayal of damage evolution in a composite material. For 

example, experiments on aluminum sheets containing randomly distributed perforations showed the 

pronounced effects of hole distribution on resultant mechanical behavior [9]. Corresponding finite 

element calculations by Becker and Smelser [10] showed that a simple unit cell with one hole could 

not adequately predict the ductility of the sheets. 



More recently, investigators have begun to account for the effects of microstructure on the 

mechanical properties of two-phase materials. A central problem that develops, however, is the 

computational expense associated with incorporating large amounts of microstructural information 

into the model. To make the problems more tractable, researchers have used different procedures 

to simplify the problem. For example, Ostoja-Starzewski et al. [11] developed a finite difference 

lattice model in which damage evolution is simulated by sequentially removing bonds in the model 

if the lattice strain exceeds a critical value. While this method is quite useful in examining the 

effects of material constants on the qualitative behavior of composite materials, more detailed 

descriptions of material behavior are required to model real composite materials. Ghosh et al. [12] 

has developed a model in which a composite material is divided into Voronoi cells, with each cell 

containing one reinforcement at most. For each Voronoi cell, a stress hybrid method is used where 

an equilibrated stress field (derived from an Airy stress function) is assumed within the cell and 

displacements are interpolated on the boundary of the cell. While the method is complex, it 

appears to have great potential in modeling deformation and damage within composite materials. 

The intent of this work is to develop alternative tools for incorporating microstructural information 

into models of two-phase materials. The approach considered here is to determine a periodic 

microstructure that is statistically similar to the actual microstructure under consideration. With a 

periodic microstructure so determined, a numerical analysis can be performed on a single unit cell 

of the periodic structure, with an associated reduction in computational cost. To test the 

procedures, idealized composites are constructed by perforating aluminum sheets with various 

complex patterns of holes and subjecting the specimens to standard uniaxial tensile tests. After 

corresponding periodic microstructures have been determined, finite element simulations of 

uniaxial tensile tests are performed on representative unit cells and the results are compared to 

experimental results. This study is a continuation of an investigation by Povirk [13], who 

compared the elastic behavior of complex microstructures to that of selected representative unit 

cells. 

2. Procedures 

The general procedures used in this study are outlined as follows. Six complex patterns of circles 

were generated and used as templates to obtain aluminum sheets with various hole distributions. 



The mechanical behavior of the perforated sheets was then determined experimentally by uniaxial 

tensile testing. Numerical models of the six complex microstructures were developed by first 

obtaining corresponding unit cells that have similar spatial distributions of holes; the methods used 

in the determination of the unit cell parameters will be discussed subsequently. Finite element 

meshes were then generated for each of the six unit cells, and appropriate periodic boundary 

conditions were implemented. The flow behavior of the aluminum matrix was characterized by 

isotropic, rate-dependent J2 flow theory, with initial strain-hardening followed by eventual strain- 

softening. The behavior predicted by the unit cell models were then compared to the corresponding 

experimental results. 

2.1 Generation of Hole Patterns 

The region in which the hole patterns were generated were assumed to occupy a rectangular region 

of dimensions Hx xH2 (see Figure 1). Each pattern was arbitrarily assumed to contain 115 holes, 

with the hole diameter chosen such that the area fraction was 10 percent. The initial step was to 

discretize this region into an TV, x N2 array of points, given by 
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where r represents a random number ranging from 0 to 1, and the variables s,. are input parameters 

that were used to exert a measure of control over the generated patterns of holes.    Circles were 



placed starting at the point with the maximum value of p and sequentially thereafter at points with 

descending values of p. Any new circle location that overlapped or touched an existing circle was 

rejected. Six different microstructures were generated by selecting an initial "seed" for the random 

number generator and choosing different values of the parameters e,. Templates for the aluminum 

sheets were generated based on the calculated hole coordinates. 

2.2 Experimental Procedure 

Specimens were machined from 1100-H14 aluminum sheets. Each sample has a thickness of 0.81 

mm, a width of 30.5 mm and a gauge length of 30.5 mm. The hole patterns were printed out on a 

laser printer and bonded to the aluminum tensile samples. With the template attached to the 

specimens, holes with a diameter of 1.016 mm were drilled in the appropriate locations. For each 

of the six patterns that were generated, three identical samples were prepared. After drilling, any 

excessive metal extending out of the holes was sanded off, and the specimens were subjected to 

annealing at 400 °C for 60 s. (O-temper [14]) . 

Tensile tests were conducted on an MTS servo-hydraulic testing machine configured with a 458.20 

MicroConsole using a TestLink interface. The MicroConsole was equipped with a DC controller 

for control and data acquisition of the loads and an AC controller for control and data acquisition of 

the displacement. A MTS 632.11B-20 extensometer with an attachment kit for flat sample applied 

was used to measure the strain of the sample. The default distance between the two knife edges of 

the extensometer was 25.4 mm but was modified to be 30.5 mm to match the gauge length of the 

sample. Another DC controller on the Microconsole was used for control and data acquisition of 

the strain data from the extensometer. 

One difficulty involved in the experiments was that as failure progressed, significant rotation of the 

specimen would often occur. This is an important problem, since the model of sheet deformation 

does not account for this effect. To limit this effect, we first applied a small tensile load to align the 

sample. Once the specimen is aligned, we then tightened two adjustable "stops" on each side of 

specimen to limit the rotation of the specimen during testing. The extensometer was then attached 

to the sample, and a constant velocity of 0.04 mm/s was prescribed to the lower grip. The load, 

displacement and strain (actually distance between two knife edges of the extensometer) data was 



output to a computer through a LAB-PC data acquisition expansion board. A LabVIEW [15] 

program was created to process these data and output the engineering stress and strain of the 

sample. Each sample was pulled to complete failure. 

2.3 Selection of Unit Cell Parameters 

The first step in the selection of unit cell parameters is to represent a complex pattern of holes by a 

discrete indicator function 

c(x )=l°   for Phasel ,3) 
*''  *2      [l   for phase 2 

where phase 1 and phase 2 represents the aluminum matrix and the holes, respectively. The 

corresponding unit cell that will be used for the finite element calculations is described by a similar 

indicator function. 

The power spectral density of the complex patterns is obtained at discrete frequencies by first 

calculating the two-dimensional, discrete,  fast Fourier transform of the indicator function, 

Gc(f:\f;>) 
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Because the indicator function is real, its Fourier transform is independent of the signs of the 

frequencies   f"'   and  f"2.    The one-sided power spectral density of the complex pattern, 

Pc (f"', f"2), can then be written as [ 16] 
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The use of the fast Fourier transform requires that both N] and N2 be powers of two. In the 

following discussions, frequencies with indices of «, and n2 will refer to those associated with the 

complex hole patterns. 

The next step is to choose the desired number of holes for the unit cell, an initial set of dimensions 

hx and h2 for the cell, and an initial set of hole positions. The dimensions for the cell were chosen 

to yield the same area fraction of holes as in the complex patterns. The indicator function for the 

unit cell is then written as 

gp{x,y) = %g0(x-ti,y-ti) (7) 
ß=i 

where g0(x,y) describes the shape of the holes, <j),f and (|)v
ß are the coordinates of hole ß and np 

is the number of holes in each unit cell. For this study, each unit cell was assumed to contain 

twelve holes. The unit cell is discretized by an Ml x M2 array of points so that the fast Fourier 

transform of the periodic structure then takes the form 
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and where G0 (f"
h, f"'2) represents the fast Fourier transform of g0 (x, y).   The corresponding 

power spectral density can be obtained by equation (6). Frequencies with indices of m, and m2 

will always refer to those associated with the unit cell. 

Note that the discrete power spectral densities of the complex and periodic structures are, in 

general, obtained at different frequencies. Furthermore, assuming that the dimensions of the unit 

cell are smaller than that of the random structure, the frequencies associated with the periodic 

structure will be spaced at larger intervals in comparison to the complex structure. Therefore, to 

directly compare the spectral density of each structure, the power spectral density of the complex 

structure has to be "rebinned" to match the frequencies of the periodic structure. For a frequency 

bin defined by 
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the rebinned power spectral density of the complex microstructure Pc (f"'1, f"'2) is written as 
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where «J < «, < n{ and n'2<n2< n[ are the range of indices whose frequency bins are within the 

intervals given in (10). Similarly, w(n,,«2) represents the percentage of the frequency bin of 

Pc(f"' ,f"2) located in the intervals in (10). 

For a given set of unit cell dimensions, the hole positions are found by minimizing the function 
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where Ac and Ap are the areas of the entire structure and the unit cell respectively. The function O 

becomes large when holes are either in contact or very close to one another, thereby providing an 

artificial penalty for solutions that are inconsistent with the form of the indicator function given in 

(7). Conversely, when all the holes are isolated from one another, O becomes identically zero. 

The specific form of the function O does not significantly affect the results. 

Finding the absolute minimum of %2 for a given set of cell dimensions was complicated by the fact 

that the residual %2 typically has many local minima. Hole positions were found by initially 

considering the summation shown in equation (12) truncated to include only a few of the lowest 

frequencies, and minimizing this function. Higher frequency terms were then added in the 

summation, and the function was again minimized. This process was repeated until all of the terms 

in the summation were included. Each minimization was carried out by use of the conjugate 

gradient method [16]. Several initial guesses of the hole positions were required for each set of unit 

cell dimensions to be reasonably assured that a reasonable correlation between the spectral 

densities of each microstructure was obtained. With the current state of development of the 

numerical procedures, convergence to the absolute minimum of %2   is not guaranteed.    An 



incremental search was performed over all realistic unit cell dimensions by continually adjusting 

the aspect ratio A2/A,. The most representative unit cell had dimensions and hole positions 

corresponding to the smallest value of x2 obtained by the procedures. 

The motivation for using the power spectral density to compare the complex and periodic hole 

patterns is that it can be thought of as a probability density function in the frequency domain [17]. 

Periodic hole patterns with similar spectral densities to that of the actual perforated sheets should 

therefore have a comparable hole distributions, and presumably, similar mechanical behavior as 

well. A more intuitive way of thinking about the power spectral density is that it can be loosely 

thought of as representing the "diffraction pattern" of a two-phase material, in that the spectral 

density of the indicator function is mathematically very similar to the intensity distribution given by 

the kinematical theory of electron diffraction [18]. For example, if the hole distribution is highly 

ordered, the spectral density will have very sharp peaks, much like the diffraction pattern of a 

single crystal. Conversely, the spectral density becomes more diffuse as the distribution of holes 

becomes more random. 

2.4 Finite Element Calculations 

Simulations of uniaxial tensile tests were performed based on the selected unit cells and the results 

were compared to the experimental behaviors of the corresponding aluminum sheets. Finite 

element meshes were obtained using the commercial mesh generating program Hypermesh [19]. 

Finite strain, plane stress, four-node quadrilateral elements were used in all of the computations. 

Periodic boundary conditions were prescribed for each unit cell to ensure compatibility with 

surrounding unit cells and continuity of tractions across cell boundaries. Denoting the 

displacement and force at the upper right corner node by up and Fp respectively, the boundary 

conditions were prescribed as follows. For the four corners 

ux(0,0) = ux(0,h2) = uy(0,0) = uy(hl,0) = 0 (13) 

ux{K,h2) = up
x,    uy(hl,h2) = up

v (14) 

For the nodes along the edges 

ux(x,h2)-ux(x,0) = 0,      u (x,h2)-u (x,0) = up (15) 

ux(h],y)-ux(0,y) = up,      uv(hl,y)-uv(0,y) = 0 (16) 



To simulate uniaxial tension, a nominal strain rate of s'vv =2.8x10"* s~]  was imposed in the 

vertical direction, and the net forces on the sides of the unit cell were assumed to vanish.  These 

boundary conditions are imposed through the relations 

«;=M„-. Ff=0 (17) 

The nominal stress-strain behavior of the unit cell is then given by 

Ff up 

"»'X*     Zyy = h (18) 

assuming an initial unit thickness. In addition to satisfying compatible cell deformations, the 

boundary conditions described above also yield the necessary condition that the tractions, T, across 

cell boundaries are continuous, 

T(x,0) = -T(x,h2), T(0,y) = -T(h{,y) (19) 

The mechanical behavior of the aluminum was modeled as elastic-viscoplastic, with a stress rate- 

strain rate relation of the form 

V 

x = L:(D-D") (20) 

is where x is the Jaumann rate of Kirchhoff stress, L is a tensor of isotropic elastic moduli, and D 

the total rate of deformation. The plastic rate of deformation was assumed to be isotropic, power- 

law viscoplasticity of the form 

f  =■  \m 

2a 
D'=£0 

a 

g(e). 

3S 
(21) 

where a is the effective stress, s is the effective plastic strain, and S is the deviatoric stress. The 

flow strength g(s) of the aluminum was assumed to be first strain hardening, and then strain 

softening 
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The above relations were chosen so that the material strain-hardens up to a plastic strain of e,, 

strain-softens at plastic strains between s, and s2, and has a complete loss of load carrying 

capacity at plastic strains greater than e2. The initial flow strength is given by <rv while the 

maximum flow strength is indicated by amax. The Young's modulus of the aluminum was also 

assumed to be a function of accumulated plastic strain 
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(23) 

The addition of equation (23) to the model accounts for the reduction in stiffness that is expected as 

damage accumulates in the aluminum matrix. We incorporated the constitutive law into the 

commercial finite element code ABAQUS [20] through a user-supplied subroutine UMAT, using a 

rate-tangent integration method by Peirce et al. [21]. 

2.5 Determination of Material Parameters 

The most obvious method for the determination of material parameters would be standard uniaxial 

tensile tests on (unperforated) aluminum sheets. After material softening and subsequent 

localization of deformation, however, the mechanical behavior of the aluminum can only be 

indirectly inferred through further analysis. The anticipated failure mechanism in the perforated 

aluminum sheets is the localization of deformation between adjacent holes. For this reason, we 

decided to test sheets with a uniform square array of holes, and to infer the mechanical properties of 

the aluminum by finite element analyses of a corresponding unit cell.    It is hoped that the 

10 



parameters determined in this manner will be most appropriate for describing the softening 

behavior of the aluminum in the simulations using the selected representative unit cells. 

More specifically, the tensile sample used to determine the material properties had a 10x10 array 

of 1.016 mm holes. The holes were uniformly spaced over an area with dimensions 28.5 mm x 

28.5 mm to give a hole area fraction of 10 percent. The simulation of the experiment was 

performed with a unit cell having a single hole in its center, and applying the appropriate periodic 

boundary conditions. Because of the additional symmetries of this particular periodic structure, 

only one-quarter of the cell had to be analyzed. 

Two levels of mesh refinement were used in the simulations of the selected representative cells 

with twelve holes; the mesh of the simple unit cell used to ascertain material constants had 

approximately the same level of refinement as the coarser mesh used for the representative cells. 

As in Becker and Smelser [10], the stress exponent was taken to be m = 100, while the material 

parameters av,amax,£,,s2, and n were adjusted to provide a fit to the experimental data.   The 

experimental and numerical stress-strain curves are shown in Figure 2. With the level of 

discretization used in the calculations, the overall rate in which the stresses declined after 

maximum load was surprisingly insensitive to the value of the failure strain £2. Even when a value 

of s2 only slightly greater than s, was used, the numerical simulations exhibited a significantly 

slower drop-off in stresses after maximum load than was observed in the experiments. One 

potential cause of this discrepancy is that fracture in the experiments occurs across only one row of 

holes, while the calculations implicitly assume that failure would occur across every row in the 

array of holes.  The value of the failure strain was somewhat arbitrarily chosen to be e2 = 0.66, 

simply because relatively large values of e2 tended to increase the stable time step increment used 

in the computations. The failure mechanism exhibited in both the experiments and the simulations 

was strain localization directly across the ligaments between holes. The specific material 

parameters used to model the aluminum matrix are shown in Table I. 
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Table I. Material Properties of aluminum 1100-H14. 

Properties Value 

Initial Young's Modulus, E0 72000   MPa 

Poisson's Ratio, v 0.3 

Yield Strength, aY 9           MPa 

Ultimate Strength, amax 100       MPa 

Softening Strain, s, 0.36 

Failure Strain, e2 0.66 

Stress Exponent, m 100 

Strain Rate, 80 0.00028   sx 

Strain Hardening Parameter, n 0.56 

3. Results 

The six complex patterns used in the experiments and the corresponding unit cells used in the finite 

element calculations are shown in Figure 3. In each case, the periodic hole patterns appear to have 

a similar spatial distribution as complex structures from which they were derived. The unit cells 

used for the finite element calculations are outlined in the lower left corner of the periodic 

structures. An example of the power spectral densities for the complex and periodic patterns is 

given in Figure 4. 

Photographs of the tensile specimens, both before and after testing, are shown in Figure 5. During 

the early stages of loading, visible, localized deformation occurred around all of the holes. Thin 

ligaments between some of the holes subsequently necked and then failed. Upon further 

deformation, larger ligaments between holes necked primarily along the horizontal direction. The 

first major drop in load corresponded to rupture of a number of these ligaments, often extending to 

one edge of each of the specimens. 

12 



Modeling localization and failure using the finite element method introduces a complicating factor 

into the analysis. Unfortunately, once localization of deformation occurs, the presence of the finite 

element mesh introduces an artificial length scale into the problem which in turn causes the 

solution to become mesh dependant. We therefore performed calculations on our representative 

unit cells with different element densities to ascertain the effects of mesh refinement on the 

numerical solutions. Each unit cell was therefore modeled with meshes of approximately 900 and 

1800 plane stress, four node, quadrilateral elements. 

Figures 6 compares the experimentally observed nominal stress-strain behavior with those 

predicted by the finite element calculations using the representative unit cells. Figure 6(a) shows 

the results from tensile experiments on perforated aluminum sheets. Figure 6(b) shows results for 

meshes with approximately 900 elements while Figure 6(c) corresponds to calculations with about 

1800 elements. In almost every case, the figures show that the model calculations exhibit the same 

trends in strength and ductility as the six different hole patterns, although the calculations 

overestimate the ductility of the sheets by a significant margin in all cases. In one case, however 

(microstructure #4), there is a significant discrepancy between the ductility predicted by the two 

different meshes. 

Figure 7 displays contour plots of effective plastic strain just prior to failure in each of the 

representative unit cells modeled with approximately 1800 elements. In each case, the predicted 

failure path corresponds to the regions of maximum plastic strain. The effect of the periodic 

boundary conditions is evident, particularly for pattern #1, where the failure path meanders from 

the top to the bottom of the unit cell. The density of the finite element mesh used in the 

calculations is also clearly visible in the figures. Figure 8 compares contours of plastic strain for 

the microstructure #4, the case where the different mesh densities gave significantly different 

predictions of sheet ductility. In this particular case, competing failure paths developed in the 

analysis with the finer mesh, which in turn resulted in a significant increase in the predicted 

ductility when compared with the coarse mesh. 

In order to more clearly see the trends exhibited in the experiments and by the corresponding 

models, we also compared values of the relative ultimate strengths in Figure 9. In Figure 9, the 
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experimental strengths have all been normalized by the measured ultimate strength of hole pattern 

#1. In contrast, the predicted strengths have been normalized to provide a "best fit" to the trends 

measured experimentally. From this perspective, the model also provides reasonably good 

estimates of the trends in ultimate strength exhibited by the perforated sheets. 

4. Discussion 

In this investigation, idealized two-phase microstructures were constructed by perforating sheets of 

aluminum with random patterns of holes. They were then subjected to uniaxial tension tests so that 

nominal stress-strain relationships could be obtained. Each of the complex hole patterns were 

modeled using representative unit cells with a statistically similar distribution of holes. The unit 

cells were obtained by comparing the power spectral densities of the image of the original random 

hole pattern with that of an idealized periodic pattern [13]. The resultant boundary value problem 

was solved by use of finite elements. The experimental results show the strong effect that hole 

distribution can have in thin sheets, which is also expected in other composite materials. The 

predicted nominal stress-strain curves follow the trends in ductility variations between the various 

microstructures, although an over-prediction of ductility is consistently observed. 

There are a number of possible explanations as to why the model overestimated the observed 

ductility in every case. First, the calculations prescribe periodic boundary conditions on the 

representative unit cell, so that the effect of free edges on the behavior of the actual tensile 

specimens is not accounted for in the analysis. The presence of edges in these finite-width 

specimens may allow for premature failure of ligaments near the edges so that the observed 

ductility is lower in comparison to an infinitely large specimen. Second, the material model and 

parameters used in the calculations are highly simplified and may not accurately represent the 

behavior of the aluminum. A third possible reason is that failure will occur along the weakest of 

all possible failure paths in the test specimen. The chosen periodic structure, however, is only in 

some sense typical of the actual distribution of holes in the aluminum test specimens. The unit cell 

used in the finite element calculations is therefore unlikely to have a potential failure path that is as 

weak as the path observed experimentally. The final and most likely reason for the discrepancies, 

however, is simply that failure in the model will occur, by definition, across every unit cell that 
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make up the periodic hole pattern. The fact that the model has, in essence, multiple failure paths 

leads to an over prediction of the ductility of the perforated sheets. 

This idea can also be used to explain the differences in the ductility predicted by the different levels 

of mesh refinement for microstructure #4. In the analysis with the finer mesh, an additional 

potential fracture path developed that significantly increased the predicted ductility. This result 

suggests that ductility predictions may be quite sensitive to small variations in unit cell geometry 

and material constitutive behavior, as well as the level of mesh refinement. In contrast, we expect 

that predictions of ultimate strength (and deformation behavior prior to localization) would be 

relatively insensitive to small variations in model parameters. 

It is worth noting some other important limitations in the methods described in this paper. One 

obvious limitation is that the method is restricted to two-dimensional microstructures, while 

composites with short fiber or particle reinforcements are clearly three-dimensional in nature. Even 

for three-dimensional microstructures, however, it may be possible to adequately model the 

composite with a two-dimensional, generalized plain strain calculations. A more significant 

limitation in our view, however, is that the many composite microstructures (see, for example, Park 

et al. [22]) have regions with large clusters of particles, and conversely, regions with little or no 

reinforcement. Such a microstructure would require a unit cell with much larger numbers of 

reinforcements than those used in the present study, which could in turn render the associated finite 

element calculations overly complex and computationally intractable. 

The numerical methods used in this study could also be improved upon. For example, for 

composites that have particles of various size, morphology, and orientation, it is presently unclear 

as to how representative reinforcements should be selected. Moreover, there are very likely better 

ways to compare the spectral densities of the complex and periodic microstructures, and better 

ways to find the minimum of the residual function %2 (equation (12)) to ensure that the absolute 

minimum (and therefore the most representative unit cell) is found. Perhaps techniques used in 

image analysis or pattern recognition could be used to improve upon or even supplant the 

numerical methods used here. 

15 



Despite the limitations outlined above, however, we believe that the central ideas of this study have 

been validated. With our experiments, we have shown that the spatial distribution of a second 

phase can significantly affect the mechanical behavior, particularly regarding the evolution of 

damage and eventual failure of the material. Using representative unit cells that have a statistically 

similar distribution of holes to that of the perforated aluminum sheets, we have successfully 

predicted the effects that the hole distribution had on the behavior of the sheets. 
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Figure 1.   Typical hole pattern used for the perforated aluminum sheets. 
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   Experiment 
 Unit Cell Model 

Figure 2. The solid line represents the nominal stress vs. strain curve for a perforated 
aluminum sheet with a simple cubic pattern of holes and a volume fraction of ten 
percent. The dashed line is the corresponding predicted response of a simple unit cell 
using the material properties listed in Table I. 
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Figure 3. (continued) 
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Figure 4. Power spectral densities of (a) the original hole pattern; (b) the 
original hole pattern after "rebinning"; and (c) the corresponding periodic 
structure. 
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Figure 5. Photographs of the perforated aluminum sheets before 
and after the uniaxial tensile experiments. 



Before tensile experiment After tensile experiment 

• * * 
• : • 

* • 

■**:,! 1-1 

* :• 
■ #■ *»% 

• • * 
•• •«' 

fwMu 

,. ••• • .. .«. 

Figure 5. (continued) 



Experiments 

(a) 

s 

Unit Cell(coarse mesh) 
1 

4 5 

■^^                 v\              v\        \ 

-         3 

4 0 
5 

    6 

.1 5 

.1 0 

2 5 

2 0 

1 5 

1 0 

s 

 r-—,—i \—   ",-    ,   >-— 

(b) 

Unit Cell(fine mesh) 

S 0 

4 5 

 i   N—         ■    V. i 

3 

4 0 
5 

*" 

<0 

2 5 

20 

1 5 

1 0 

5 

-—..   ,    ,    i 

(c) 

Figure 6. Stress vs. strain behavior of (a) the perforated aluminum sheets; (b) the 
corresponding unit cell calculations with approximately 900 elements; (c) unit cell 
calculations with approximately 1800 elements. Each color represents a different 
hole pattern; each hole pattern was tested three times experimentally. 
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MODELING THE EFFECTS OF HOLE DISTRIBUTION IN 

PERFORATED ALUMINUM SHEETS I: 

REPRESENTATIVE UNIT CELLS 

G. F. Raiser, S. Jia, and G. L. Povirk 

Department of Mechanical Engineering 

Yale University 

New Haven, Connecticut 06520 USA 

Abstract — A method is presented that incorporates micro structural information into a model of 

the mechanical behavior of two-phase composite materials. The approach is to determine periodic 

microstrucrures that are statistically similar to the actual microstructure of the material under 

consideration. The utility of this method is that computationally tractable finite element 

simulations can then be carried out on representative unit cells that are directly obtained from 

microstrucrural observations. To illustrate this method, mechanical tests are performed on 

perforated aluminum sheets with various microstrucrures, and the results are compared to finite 

element simulations of selected representative unit cells. The simulations agree with the trends 

observed in the experiments, including measurements of the overall strength and ductility of the 

sheets. Advantages and limitations of the approach used here are discussed. 



1. Introduction 

Materials with two distinct phases represent a broad class of materials, including dispersion- 

strengthened alloys, mechanically-alloyed materials, spheroidized steels, and metal- and ceramic- 

matrix composites. Incomplete densification during processing, creep cavitation, or void 

nucleation during ductile fracture can cause even nominally homogeneous materials to contain a 

significant fraction of voids. These voids can also be thought of as secondary phase. The 

microstructure of a two-phase material can in turn have a profound effect on the mechanical 

properties of the material, particularly on the initiation and evolution of damage. For example, 

research by Lewandowski et al. [1] on aluminum-silicon carbide composites has shown that 

fracture usually initiates at large particles, inclusions, and regions of clustered silicon carbide 

particles. They also observed that damage accumulation ahead of a macroscopic crack tends to 

occur in regions where reinforcements are clustered together. 

Many investigators have studied two-phase materials by idealizing the composite microstructure as 

having a simple periodic structure, with one or two reinforcing particles (or voids) within each unit 

cell. With this assumption, estimates of the macroscopic response of the material can be obtained 

by solving an appropriate boundary value problem formulated on a representative unit cell. This 

approach has been used to estimate the flow behavior of metal-matrix composites [2,3] and of 

porous metals [4]. Moreover, simple unit cell models have be used to study the damage 

mechanisms in composite materials, such as interfacial debonding [5], particle cracking [6], and 

ductile failure in the matrix [7]. While these analyses have provided important insights into 

deformation and damage initiation in these materials, they also possess significant limitations as 

well. One important limitation is that the predicted behavior can be strongly affected by the choice 

of assumed unit cell parameters [2,8]. Furthermore, a simple unit cell with one reinforcement (or 

void) cannot provide a realistic portrayal of damage evolution in a composite material. For 

example, experiments on aluminum sheets containing randomly distributed perforations showed the 

pronounced effects of hole distribution on resultant mechanical behavior [9]. Corresponding finite 

element calculations by Becker and Smelser [10] showed that a simple unit cell with one hole could 

not adequately predict the ductility of the sheets. 



More recently, investigators have begun to account for the effects of microstructure on the 

mechanical properties of two-phase materials. A central problem that develops, however, is the 

computational expense associated with incorporating large amounts of microstructural information 

into the model. To make the problems more tractable, researchers have used different procedures 

to simplify the problem. For example, Ostoja-Starzewski et al. [11] developed a finite difference 

lattice model in which damage evolution is simulated by sequentially removing bonds in the model 

if the lattice strain exceeds a critical value. While this method is quite useful in examining the 

effects of material constants on the qualitative behavior of composite materials, more detailed 

descriptions of material behavior are required to model real composite materials. Ghosh et al. [12] 

has developed a model in which a composite material is divided into Voronoi cells, with each cell 

containing one reinforcement at most. For each Voronoi cell, a stress hybrid method is used where 

an equilibrated stress field (derived from an Airy stress function) is assumed within the cell and 

displacements are interpolated on the boundary of the cell. While the method is complex, it 

appears to have great potential in modeling deformation and damage within composite materials. 

The intent of this work is to develop alternative tools for incorporating microstructural information 

into models of two-phase materials. The approach considered here is to determine a periodic 

microstructure that is statistically similar to the actual microstructure under consideration. With a 

periodic microstructure so determined, a numerical analysis can be performed on a single unit cell 

of the periodic structure, with an associated reduction in computational cost. To test the 

procedures, idealized composites are constructed by perforating aluminum sheets with various 

complex patterns of holes and subjecting the specimens to standard uniaxial tensile tests. After 

corresponding periodic microstructures have been determined, finite element simulations of 

uniaxial tensile tests are performed on representative unit cells and the results are compared to 

experimental results. This study is a continuation of an investigation by Povirk [13], who 

compared the elastic behavior of complex microstructures to that of selected representative unit 

cells. 

2. Procedures 

The general procedures used in this study are outlined as follows. Six complex patterns of circles 

were generated and used as templates to obtain aluminum sheets with various hole distributions. 



The mechanical behavior of the perforated sheets was then determined experimentally by uniaxial 

tensile testing. Numerical models of the six complex microstructures were developed by first 

obtaining corresponding unit cells that have similar spatial distributions of holes; the methods used 

in the determination of the unit cell parameters will be discussed subsequently. Finite element 

meshes were then generated for each of the six unit cells, and appropriate periodic boundary 

conditions were implemented. The flow behavior of the aluminum matrix was characterized by 

isotropic, rate-dependent J2 flow theory, with initial strain-hardening followed by eventual strain- 

softening. The behavior predicted by the unit cell models were then compared to the corresponding 

experimental results. 

2.1 Generation of Hole Patterns 

The region in which the hole patterns were generated were assumed to occupy a rectangular region 

of dimensions Hx x.H2 (see Figure 1). Each pattern was arbitrarily assumed to contain 115 holes, 

with the hole diameter chosen such that the area fraction was 10 percent. The initial step was to 

discretize this region into an TV, x N2 array of points, given by 

*'     TV, 
*, =0, ,TV, ^~/v/2' k2=0,...,N2 (1) 

The hole patterns were generated by assigning, at each of the discrete points defined by equation 

(1), a number/? of the form 
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where r represents a random number ranging from 0 to 1, and the variables E. are input parameters 

that were used to exert a measure of control over the generated patterns of holes.    Circles were 



placed starting at the point with the maximum value of p and sequentially thereafter at points with 

descending values of p. Any new circle location that overlapped or touched an existing circle was 

rejected. Six different microstructures were generated by selecting an initial "seed" for the random 

number generator and choosing different values of the parameters ej. Templates for the aluminum 

sheets were generated based on the calculated hole coordinates. 

2.2 Experimental Procedure 

Specimens were machined from 1100-H14 aluminum sheets. Each sample has a thickness of 0.81 

mm, a width of 30.5 mm and a gauge length of 30.5 mm. The hole patterns were printed out on a 

laser printer and bonded to the aluminum tensile samples. With the template attached to the 

specimens, holes with a diameter of 1.016 mm were drilled in the appropriate locations. For each 

of the six patterns that were generated, three identical samples were prepared. After drilling, any 

excessive metal extending out of the holes was sanded off, and the specimens were subjected to 

annealing at 400 °C for 60 s. (O-temper [14]) . 

Tensile tests were conducted on an MTS servo-hydraulic testing machine configured with a 458.20 

MicroConsole using a TestLink interface. The MicroConsole was equipped with a DC controller 

for control and data acquisition of the loads and an AC controller for control and data acquisition of 

the displacement. A MTS 632.11B-20 extensometer with an attachment kit for flat sample applied 

was used to measure the strain of the sample. The default distance between the two knife edges of 

the extensometer was 25.4 mm but was modified to be 30.5 mm to match the gauge length of the 

sample. Another DC controller on the Microconsole was used for control and data acquisition of 

the strain data from the extensometer. 

One difficulty involved in the experiments was that as failure progressed, significant rotation of the 

specimen would often occur. This is an important problem, since the model of sheet deformation 

does not account for this effect. To limit this effect, we first applied a small tensile load to align the 

sample. Once the specimen is aligned, we then tightened two adjustable "stops" on each side of 

specimen to limit the rotation of the specimen during testing. The extensometer was then attached 

to the sample, and a constant velocity of 0.04 mm/s was prescribed to the lower grip. The load, 

displacement and strain (actually distance between two knife edges of the extensometer) data was 



output to a computer through a LAB-PC data acquisition expansion board. A LabVIEW [15] 

program was created to process these data and output the engineering stress and strain of the 

sample. Each sample was pulled to complete failure. 

2.3 Selection of Unit Cell Parameters 

The first step in the selection of unit cell parameters is to represent a complex pattern of holes by a 

discrete indicator function 

[0   for phase! 

[1   for phase 2 

where phase 1 and phase 2 represents the aluminum matrix and the holes, respectively. The 

corresponding unit cell that will be used for the finite element calculations is described by a similar 

indicator function. 

The power spectral density of the complex patterns is obtained at discrete frequencies by first 

calculating the two-dimensional,  discrete, fast Fourier transform of the indicator function, 

cc (/;\/;r) 

Gc(f;> \f?) = X  Zexp(27n xtif? )exp(27u ykJ^ )gc{xk^yki) (4) 
*2=o *,=o 

at frequencies given by 

/,       //,'"> 2 '-' 2 J*       H2*      2 2 '-'  2 {) 

Because the indicator function is real, its Fourier transform is independent of the signs of the 

frequencies   f"]   and  f"1.    The one-sided power spectral density of the complex pattern, 

Pc if"1, f"1), can then be written as [ 16] 

pc(f:\f:2)= 

\Gc(f;\f;>)\2    fornl,n2=0 

2\Gc(f;\f;h)\2    /or/i, >0,/i2=0,   or   n, = 0, n2 > 0 (6) 

4|Gc(/;\/;2)2    fom„n2>0 



The use of the fast Fourier transform requires that both N] and N2 be powers of two. In the 

following discussions, frequencies with indices of «, and n2 will refer to those associated with the 

complex hole patterns. 

The next step is to choose the desired number of holes for the unit cell, an initial set of dimensions 

hx and h2 for the cell, and an initial set of hole positions. The dimensions for the cell were chosen 

to yield the same area fraction of holes as in the complex patterns. The indicator function for the 

unit cell is then written as 

gp(x,y) = 'Zgo(x-^,y-^) (7) 
P=I 

where g0(x,y) describes the shape of the holes, ^f and <t>v
p are the coordinates of hole ß and np 

is the number of holes in each unit cell. For this study, each unit cell was assumed to contain 

twelve holes. The unit cell is discretized by an M, x M2 array of points so that the fast Fourier 

transform of the periodic structure then takes the form 

'    G'(//* ,/v">) = Z<W;" >/r )exp(27n f^x )exp(27U f?tf) (8) 
ß=i 

at frequencies given by 

Jx       Ä, ' 2 2 •        h2 
2 2 2 

and where G0 (f"
h, f"'1) represents the fast Fourier transform of g0 (x, y).   The corresponding 

power spectral density can be obtained by equation (6). Frequencies with indices of m, and m2 

will always refer to those associated with the unit cell. 

Note that the discrete power spectral densities of the complex and periodic structures are, in 

general, obtained at different frequencies. Furthermore, assuming that the dimensions of the unit 

cell are smaller than that of the random structure, the frequencies associated with the periodic 

structure will be spaced at larger intervals in comparison to the complex structure. Therefore, to 

directly compare the spectral density of each structure, the power spectral density of the complex 

structure has to be "rebinned" to match the frequencies of the periodic structure. For a frequency 

bin defined by 



L ±L-<f <■>* +^   ,       ^ i^<f <h—^L_ (io) 
2*2 2 ■ 2 

the rebinned power spectral density of the complex microstructure Pc (f"h, f"'1) is written as 

pc(f:",f:h)= z ^(nx,n2)p\rx\f::-) OD 

where n[ < «, < n( and n2<n2< n{ are the range of indices whose frequency bins are within the 

intervals given in (10). Similarly, w{nx,n2) represents the percentage of the frequency bin of 

Pc(f"' J"1) located in the intervals in (10). 

For a given set of unit cell dimensions, the hole positions are found by minimizing the function 

Ml/ M,/rPc(f;",f:,2)-(Ac/Ap)pp(fx
m\f:>) y2 --/2 ... .i2 

x2 = S Z 
m-,=0   m,=0 

+o(^,...,^,*;,...,^)       (i2) 
pc{f:\fp) 

where Ac and Ap are the areas of the entire structure and the unit cell respectively. The function <p 

becomes large when holes are either in contact or very close to one another, thereby providing an 

artificial penalty for solutions that are inconsistent with the form of the indicator function given in 

(7). Conversely, when all the holes are isolated from one another, O becomes identically zero. 

The specific form of the function O does not significantly affect the results. 

Finding the absolute minimum of %2 for a given set of cell dimensions was complicated by the fact 

that the residual %2 typically has many local minima. Hole positions were found by initially 

considering the summation shown in equation (12) truncated to include only a few of the lowest 

frequencies, and minimizing this function. Higher frequency terms were then added in the 

summation, and the function was again minimized. This process was repeated until all of the terms 

in the summation were included. Each minimization was carried out by use of the conjugate 

gradient method [16]. Several initial guesses of the hole positions were required for each set of unit 

cell dimensions to be reasonably assured that a reasonable correlation between the spectral 

densities of each microstructure was obtained. With the current state of development of the 

numerical procedures, convergence to the absolute minimum of x2   is not guaranteed.    An 



incremental search was performed over all realistic unit cell dimensions by continually adjusting 

the aspect ratio h2/h]. The most representative unit cell had dimensions and hole positions 

corresponding to the smallest value of %2 obtained by the procedures. 

The motivation for using the power spectral density to compare the complex and periodic hole 

patterns is that it can be thought of as.a probability density function in the frequency domain [17]. 

Periodic hole patterns with similar spectral densities to that of the actual perforated sheets should 

therefore have a comparable hole distributions, and presumably, similar mechanical behavior as 

well. A more intuitive way of thinking about the power spectral density is that it can be loosely 

thought of as representing the "diffraction pattern" of a two-phase material, in that the spectral 

density of the indicator function is mathematically very similar to the intensity distribution given by 

the kinematical theory of electron diffraction [18]. For example, if the hole distribution is highly 

ordered, the spectral density will have very sharp peaks, much like the diffraction pattern of a 

single crystal. Conversely, the spectral density becomes more diffuse as the distribution of holes 

becomes more random. 

2.4 Finite Element Calculations 

Simulations of uniaxial tensile tests were performed based on the selected unit cells and the results 

were compared to the experimental behaviors of the corresponding aluminum sheets. Finite 

element meshes were obtained using the commercial mesh generating program Hypermesh [19]. 

Finite strain, plane stress, four-node quadrilateral elements were used in all of the computations. 

Periodic boundary conditions were prescribed for each unit cell to ensure compatibility with 

surrounding unit cells and continuity of tractions across cell boundaries. Denoting the 

displacement and force at the upper right corner node by up and Fp respectively, the boundary 

conditions were prescribed as follows. For the four corners 

ux(0,0) = ttx(0,A2) = «,(0,0) = «„(/*, ,0) = 0 (13) 

ux(hx,h2) = up
x,    uy(hi,h2) = up (14) 

For the nodes along the edges 

ux(x,h2)-ux(x,0) = 0,      uy(x,h2)-uy(x,0) = uP (15) 

ux(hl,y)-ux(0,y) = up,      uv(hl,y)-uv(0,y) = 0 (16) 



To simulate uniaxial tension, a nominal strain rate of e')T = 2.8xl0~4 s '  was imposed in the 

vertical direction, and the net forces on the sides of the unit cell were assumed to vanish. These 

boundary conditions are imposed through the relations 

The nominal stress-strain behavior of the unit cell is then given by 

/Z, " "2 

assuming an initial unit thickness. In addition to satisfying compatible cell deformations, the 

boundary conditions described above also yield the necessary condition that the tractions, T, across 

cell boundaries are continuous, 

T(x,0) = -T(x,h2), T(0,y) = -T(A,, v) (19) 

The mechanical behavior of the aluminum was modeled as elastic-viscoplastic, with a stress rate- 

strain rate relation of the form 

T = L:(D-D") (20) 

V 

where x is the Jaumann rate of Kirchhoff stress, L is a tensor of isotropic elastic moduli, and D is 

the total rate of deformation. The plastic rate of deformation was assumed to be isotropic, power- 

law viscoplasticity of the form 

f   —  \ 

D'=s0 

a 

.8(*). 
— (21) 2a 

where a is the effective stress, s is the effective plastic strain, and S is the deviatoric stress. The 

flow strength g(e) of the aluminum was assumed to be first strain hardening, and then strain 

softening 



S(e) = 

°v+(Gmax   -Ov) 

/■ 

1- 
£ -E 

\ 

-^max^ + C0S 

0, 

'S-E 
71 

v  °i   y 

V£2       SlJ 

£ <£, 

S, <£ <£, 
(22) 

£ >£- 

The above relations were chosen so that the material strain-hardens up to a plastic strain of e,, 

strain-softens at plastic strains between £, and s2, and has a complete loss of load carrying 

capacity at plastic strains greater than £2.   The initial flow strength is given by av while the 

maximum flow strength is indicated by a max. The Young's modulus of the aluminum was also 

assumed to be a function of accumulated plastic strain 

£(£) = — En <! 1 + cos 

0, 

71 

V£2 ~~£1 J 

£ <£, 

S, <£  <£2 (23) 

£ > £, 

The addition of equation (23) to the model accounts for the reduction in stiffness that is expected as 

damage accumulates in the aluminum matrix. We incorporated the constitutive law into the 

commercial finite element code ABAQUS [20] through a user-supplied subroutine UMAT, using a 

rate-tangent integration method by Peirce et al. [21]. 

2.5 Determination of Material Parameters 

The most obvious method for the determination of material parameters would be standard uniaxial 

tensile tests on (unperforated) aluminum sheets. After material softening and subsequent 

localization of deformation, however, the mechanical behavior of the aluminum can only be 

indirectly inferred through further analysis. The anticipated failure mechanism in the perforated 

aluminum sheets is the localization of deformation between adjacent holes. For this reason, we 

decided to test sheets with a uniform square array of holes, and to infer the mechanical properties of 

the aluminum by finite element analyses of a corresponding unit cell.    It is hoped that the 
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parameters determined in this manner will be most appropriate for describing the softening 

behavior of the aluminum in the simulations using the selected representative unit cells. 

More specifically, the tensile sample used to determine the material properties had a 10x10 array 

of 1.016 mm holes. The holes were uniformly spaced over an area with dimensions 28.5 mm x 

28.5 mm to give a hole area fraction of 10 percent. The simulation of the experiment was 

performed with a unit cell having a single hole in its center, and applying the appropriate periodic 

boundary conditions. Because of the additional symmetries of this particular periodic structure, 

only one-quarter of the cell had to be analyzed. 

Two levels of mesh refinement were used in the simulations of the selected representative cells 

with twelve holes; the mesh of the simple unit cell used to ascertain material constants had 

approximately the same level of refinement as the coarser mesh used for the representative cells. 

As in Becker and Smelser [10], the stress exponent was taken to be m = 100, while the material 

parameters crv,Gmax, e,, s2, and n were adjusted to provide a fit to the experimental data.   The 

experimental and numerical stress-strain curves are shown in Figure 2. With the level of 

discretization used in the calculations, the overall rate in which the stresses declined after 

maximum load was surprisingly insensitive to the value of the failure strain e2. Even when a value 

of 8 2 only slightly greater than s, was used, the numerical simulations exhibited a significantly 

slower drop-off in stresses after maximum load than was observed in the experiments. One 

potential cause of this discrepancy is that fracture in the experiments occurs across only one row of 

holes, while the calculations implicitly assume that failure would occur across every row in the 

array of holes.   The value of the failure strain was somewhat arbitrarily chosen to be s2 = 0.66, 

simply because relatively large values of 82 tended to increase the stable time step increment used 

in the computations. The failure mechanism exhibited in both the experiments and the simulations 

was strain localization directly across the ligaments between holes. The specific material 

parameters used to model the aluminum matrix are shown in Table I. 
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Table I. Material Properties of aluminum 1100-H14. 

Properties Value 

Initial Young's Modulus, E0 72000   MPa 

Poisson's Ratio, v 0.3 

Yield Strength, oY 9           MPa 

Ultimate Strength, amax 100       MPa 

Softening Strain, 8, 0.36 

Failure Strain, e2 0.66 

Stress Exponent, m 100 

Strain Rate, s0 0.00028   s~l 

Strain Hardening Parameter, n 0.56 

3. Results 

The six complex patterns used in the experiments and the corresponding unit cells used in the finite 

element calculations are shown in Figure 3. In each case, the periodic hole patterns appear to have 

a similar spatial distribution as complex structures from which they were derived. The unit cells 

used for the finite element calculations are outlined in the lower left corner of the periodic 

structures. An example of the power spectral densities for the complex and periodic patterns is 

given in Figure 4. 

Photographs of the tensile specimens, both before and after testing, are shown in Figure 5. During 

the early stages of loading, visible, localized deformation occurred around all of the holes. Thin 

ligaments between some of the holes subsequently necked and then failed. Upon further 

deformation, larger ligaments between holes necked primarily along the horizontal direction. The 

first major drop in load corresponded to rupture of a number of these ligaments, often extending to 

one edge of each of the specimens. 
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Modeling localization and failure using the finite element method introduces a complicating factor 

into the analysis. Unfortunately, once localization of deformation occurs, the presence of the finite 

element mesh introduces an artificial length scale into the problem which in turn causes the 

solution to become mesh dependant. We therefore performed calculations on our representative 

unit cells with different element densities to ascertain the effects of mesh refinement on the 

numerical solutions. Each unit cell was therefore modeled with meshes of approximately 900 and 

1800 plane stress, four node, quadrilateral elements. 

Figures 6 compares the experimentally observed nominal stress-strain behavior with those 

predicted by the finite element calculations using the representative unit cells. Figure 6(a) shows 

the results from tensile experiments on perforated aluminum sheets. Figure 6(b) shows results for 

meshes with approximately 900 elements while Figure 6(c) corresponds to calculations with about 

1800 elements. In almost every case, the figures show that the model calculations exhibit the same 

trends in strength and ductility as the six different hole patterns, although the calculations 

overestimate the ductility of the sheets by a significant margin in all cases. In one case, however 

(microstructure #4), there is a significant discrepancy between the ductility predicted by the two 

different meshes. 

Figure 7 displays contour plots of effective plastic strain just prior to failure in each of the 

representative unit cells modeled with approximately 1800 elements. In each case, the predicted 

failure path corresponds to the regions of maximum plastic strain. The effect of the periodic 

boundary conditions is evident, particularly for pattern #1, where the failure path meanders from 

the top to the bottom of the unit cell. The density of the finite element mesh used in the 

calculations is also clearly visible in the figures. Figure 8 compares contours of plastic strain for 

the microstructure #4, the case where the different mesh densities gave significantly different 

predictions of sheet ductility. In this particular case, competing failure paths developed in the 

analysis with the finer mesh, which in turn resulted in a significant increase in the predicted 

ductility when compared with the coarse mesh. 

In order to more clearly see the trends exhibited in the experiments and by the corresponding 

models, we also compared values of the relative ultimate strengths in Figure 9. In Figure 9, the 
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experimental strengths have all been normalized by the measured ultimate strength of hole pattern 

#1. In contrast, the predicted strengths have been normalized to provide a "best fit" to the trends 

measured experimentally. From this perspective, the model also provides reasonably good 

estimates of the trends in ultimate strength exhibited by the perforated sheets. 

4. Discussion 

In this investigation, idealized two-phase microstructures were constructed by perforating sheets of 

aluminum with random patterns of holes. They were then subjected to uniaxial tension tests so that 

nominal stress-strain relationships could be obtained. Each of the complex hole patterns were 

modeled using representative unit cells with a statistically similar distribution of holes. The unit 

cells were obtained by comparing the power spectral densities of the image of the original random 

hole pattern with that of an idealized periodic pattern [13]. The resultant boundary value problem 

was solved by use of finite elements. The experimental results show the strong effect that hole 

distribution can have in thin sheets, which is also expected in other composite materials. The 

predicted nominal stress-strain curves follow the trends in ductility variations between the various 

microstructures, although an over-prediction of ductility is consistently observed. 

There are a number of possible explanations as to why the model overestimated the observed 

ductility in every case. First, the calculations prescribe periodic boundary conditions on the 

representative unit cell, so that the effect of free edges on the behavior of the actual tensile 

specimens is not accounted for in the analysis. The presence of edges in these finite-width 

specimens may allow for premature failure of ligaments near the edges so that the observed 

ductility is lower in comparison to an infinitely large specimen. Second, the material model and 

parameters used in the calculations are highly simplified and may not accurately represent the 

behavior of the aluminum. A third possible reason is that failure will occur along the weakest of 

all possible failure paths in the test specimen. The chosen periodic structure, however, is only in 

some sense typical of the actual distribution of holes in the aluminum test specimens. The unit cell 

used in the finite element calculations is therefore unlikely to have a potential failure path that is as 

weak as the path observed experimentally. The final and most likely reason for the discrepancies, 

however, is simply that failure in the model will occur, by definition, across every unit cell that 
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make up the periodic hole pattern. The fact that the model has, in essence, multiple failure paths 

leads to an over prediction of the ductility of the perforated sheets. 

This idea can also be used to explain the differences in the ductility predicted by the different levels 

of mesh refinement for microstructure #4. In the analysis with the finer mesh, an additional 

potential fracture path developed that significantly increased the predicted ductility. This result 

suggests that ductility predictions may be quite sensitive to small variations in unit cell geometry 

and material constitutive behavior, as well as the level of mesh refinement. In contrast, we expect 

that predictions of ultimate strength (and deformation behavior prior to localization) would be 

relatively insensitive to small variations in model parameters. 

It is worth noting some other important limitations in the methods described in this paper. One 

obvious limitation is that the method is restricted to two-dimensional microstructures, while 

composites with short fiber or particle reinforcements are clearly three-dimensional in nature. Even 

for three-dimensional microstructures, however, it may be possible to adequately model the 

composite with a two-dimensional, generalized plain strain calculations. A more significant 

limitation in our view, however, is that the many composite microstructures (see, for example, Park 

et al. [22]) have regions with large clusters of particles, and conversely, regions with little or no 

reinforcement. Such a microstructure would require a unit cell with much larger numbers of 

reinforcements than those used in the present study, which could in turn render the associated finite 

element calculations overly complex and computationally intractable. 

The numerical methods used in this study could also be improved upon. For example, for 

composites that have particles of various size, morphology, and orientation, it is presently unclear 

as to how representative reinforcements should be selected. Moreover, there are very likely better 

ways to compare the spectral densities of the complex and periodic microstructures, and better 

ways to find the minimum of the residual function %2 (equation (12)) to ensure that the absolute 

minimum (and therefore the most representative unit cell) is found. Perhaps techniques used in 

image analysis or pattern recognition could be used to improve upon or even supplant the 

numerical methods used here. 
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Despite the limitations outlined above, however, we believe that the central ideas of this study have 

been validated. With our experiments, we have shown that the spatial distribution of a second 

phase can significantly affect the mechanical behavior, particularly regarding the evolution of 

damage and eventual failure of the material. Using representative unit cells that have a statistically 

similar distribution of holes to that of the perforated aluminum sheets, we have successfully 

predicted the effects that the hole distribution had on the behavior of the sheets. 
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Figure 1.   Typical hole pattern used for the perforated aluminum sheets. 
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Figure 2. The solid line represents the nominal stress vs. strain curve for a perforated 
aluminum sheet with a simple cubic pattern of holes and a volume fraction of ten 
percent. The dashed line is the corresponding predicted response of a simple unit cell 
using the material properties listed in Table I. 
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Figure 3. Diagrams of the 6 microstructures used in perforated aluminum 
sheets (left) and their corresponding periodic structures (right). The unit 
cells used in finite element calculations are indicated by dashed 
rectangles. 
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Figure 3. ( continue d) 
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Figure 4. Power spectral densities of (a) the original hole pattern; (b) the 
original hole pattern after "rebinning"; and (c) the corresponding periodic 
structure. 
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Figure 5. Photographs of the perforated aluminum sheets before 
and after the uniaxial tensile experiments. 
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Figure 5. (continued) 



Experiments 

(a) 

S 

Unit Cell(coarse mesh) 

(b) 

Unit Cell(fine mesh) 

(c) 

Figure 6. Stress vs. strain behavior of (a) the perforated aluminum sheets; (b) the 
corresponding unit cell calculations with approximately 900 elements; (c) unit cell 
calculations with approximately 1800 elements. Each color represents a different 
hole pattern; each hole pattern was tested three times experimentally. 
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Figure 7. Contour plots of accumulated effective plastic strain for 
representative unit cells. Regions of dark shading indicate elements that 
have completely failed. 
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Figure 8. Contour plots of effective plastic strain of unit cell #4 with coarse 
and fine mesh. For this particular unit cell, competing failure paths develop 
with the fine mesh, which in turn causes an increase in predicted ductility. 
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Figure 9. Normalized ultimate strengths of the perforated aluminum sheets 
compared to the strengths predicted by the unit cell calculations. 


