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B. INTRODUCTION

In clinical follow-up studies, subjects are monitored at regular time intervals for a
physical condition. It is often the case that an event under observation can take place in
between two successive visits, and it may not be possible for the subject to know the time
to such an event exactly. For example, consider the situation in which a group of women
at high risk for breast cancer is asked to take a chemopreventive substance for a fixed time
period. At the end of the period, each participating woman is required to submit a blood
or urine sample at regular intervals in order to monitor the level of a validated intermediate
biomarker. Let X denote the time from cessation of use of the agent to the loss of its
protective effect, quantified as a return to baseline value of the biomarker. If a woman
submits a sample for assay on a daily basis, the value of X can be observed exactly, unless
the protective effect is still present by the time the study is terminated so that X is right
censored in the usual sense of survival analysis. In practice, however, the follow-up interval
can be a week or longer; therefore the exact value of X is generally unknown but is known to
lie between the time points L and R, where L is the number of days from cessation of agent
intake to the last time the sample was assayed and the protective effect was still present, and
R is the number of days from cessation of agent intake to the most recent time the sample
was assayed. If the protective effect is still present, then R takes the value infinity. In any
case, when the value of X is only known to lie between (L, R), we say that X is censored in
the interval (L, R). Therefore the observed data consist of either censoring intervals (L, R)
or exact observations X = L = R.

Our research project is concerned with nonparametric estimation of the distribution
function F(t) = Pr(X < t) of a real-valued random variable X, or equivalently its survival
function S(¢) = 1— F(t), when the sample data are incomplete due to restricted observation
brought about by interval censoring. Generalized maximum likelihood (GML) method in
the sense of Kiefer and Wolfowitz [1] is the standard practice of estimating S. At present,
there are two iterative computation procedures that will yield the GML estimate (GMLE)
of S at convergence. The first one is due to Peto [2] and makes use of the Newton’s method.
The second is due to Turnbull [3] and makes use of a simpler but slower algorithm called self-
consistent algorithm. A solution to this algorithm is also called a self-consistent estimator
(SCE).

Because there is no closed-form expression for the GMLE of S, it has been difficult to
study its asymptotic statistical properties, including consistency, normality and efficiency.
Such a setback in the statistical development of the GMLE has severely limited its use in
the statistical analysis of interval-censored (IC) data.

Before we began our funded Army research, we had extended Efron’s redistribution-to-
the-right idea for right-censored data [4] and proposed a redistribution-to-the-center (RTC)
method to yield a nonparametric estimator of S which are called RTC estimate (RTCE).
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Such an estimator has a closed-form expression and can be readily calculated for IC data
of any dimension. IC data are said to satisfy DI (disjoint or included) condition if for every
two censoring intervals, either they are disjoint or one is a subset of the other. For instance,
in a clinical study in which every subject has the same follow-up schedule, say at time point
ai, ag, ..., ax, then {L, R} = {0,a1}, or {a;,ai+1} or {a;,00}. A sample of such IC data
{Ly,R1}, ..., {Ln, R,} will satisfy DI condition. We had shown that under DI condition,
RTCE is actually GMLE itself. This important observation, together with the availability
of an explicit expression, had motivated us to submit the present proposal on RTCE to the
Army.

In our first year of research, we completed our research for Task 1 and Task 2 in
the Statement of Work for RTCE. However, we also discovered that in the case of non-
DI data, RTCE may be different from GMLE, and RTCE is not always consistent. The
interesting and intriguing observation is that the difference between RTCE and GMLE is
small, at least based on our limited simulation studies [5]. In establishing consistency result
for RTCE under DI condition, we had gained important insight into proofs of asymptotic
properties for GMLE, which does not possess a closed-form expression. Because GMLE is
the preferred estimator for S, we decided to focus our attention on GMLE instead of RTCE
for the remainder of the funded research, and we have successfully completed all the tasks
stated in the Statement of Work for GMLE.

Our research was then extended to study the statistical inferences with multivariate
interval-censored data, which may also occurred in breast cancer research and Cox regression
models. Some results have been obtained in these respects.

C. BODY
C.1. Basic setup
Interval-censored data can arise in the following four situations:

1. Case 2 IC data (C2 data) consist of right-censored (R = 00), left-censored (L = 0) and
strictly interval-censored observations (0 < L < R < o). These are by far the most
common type of IC data in clinical follow-up studies.

2. Mixed IC data (MIC data) consist of both C2 data and exact observations (L = R).
Yu, Li and Wong [6] presented an example involving MIC data from a breast cancer
follow-up study.

3. Case 1 IC data (C1 data)) consist of either right-censored or left-censored observations.
For example, when an animal is sacrificed for inspection of a tumor formation, time to
appearance of the tumor is C1 interval censored. Examples of C1 data can be found in
[7] and [8].

4. Doubly-censored data (DC data) consist of right-, left-censored and exact observations.
An example with DC data is given in [9)].



We have formulated four different interval censorship models corresponding to the four
IC data types. To study the asymptotic properties of the GMLE, we make use of the
following assumptions:

(AS1) The censoring distribution is discrete but the survival distribution is arbitrary.

(AS2) The support set of the censoring vector is finite, but the survival distribution is

arbitrary.

(AS3) A probability restriction. See Section C.

(AS4) A probability restriction. See Section C.

(AS5) The censoring distribution and the survival distribution are arbitrary, but have

to satisfy some regularity conditions, stated in Gu and Zhang [10].

C.2. Case 1 model

Case 1 model for C1 data assumes that the survival time X and a random inspection
time Y are independent. We always observe Y. However, X is not fully observed except
that we know that either X <Y or X > Y. Under assumption AS1, we have shown that
GMLE is strongly consistent, asymptotically normal and asymptotically efficient at all the
inspection times. The results are published in Yu, Schick, Li and Wong [11].

C.3. Case 2 model

The C2 model for C2 data assumes that X and the random censoring vector (Y, Z) are
independent and that ¥ < Z with probability one. We do not observe X except that we
know X is before Y, or between Y and Z, or after Z. We state an assumption for C2 model
as follows:

(AS3) P{X € I,nI;} > 0 for any two realizations of (L, R), (L;, R;) = I; and (L;, R;) =
I;, provided I; N I; # 0.

Under the assumption AS1, we have shown that GMLE is strongly consistent. Under
the assumptions AS2 and AS3, we have shown that GMLE is asymptotically normal and
efficient. The results are published in Yu, Schick, Li and Wong [12].

C.4. MIC model

Mixture interval censorship (MIC) model for MIC data assumes that an IC observation
is drawn from a probability mixture of C2 model and the usual right censorship model for
right-censored data.

Define 7 = sup{t; Pr(min(X,T) < t) < 1}, v = sup{t; Pr(Y < t) = 0}. and
17 = sup{t; Pr(Z <t) < 1}. We assume that 7 > 7z. We state an assumption for MIC
model as follows:

(AS4) Pr(L=7)>0if Pr(X <7)<1land Pr(R=71y) > 0if Pr(X <1y) > 0.

Under assumptions AS2 and AS4, we have shown that GMLE is strongly consistent
(Yu, Li and Wong [6]), and under assumptions AS2, AS3 and AS4, GMLE is asymptotically
normal (Yu, Li and Wong [13]). Recently, we have been able to establish these asymptotic
properties without the need of assumption AS2. A manuscript on these results has been

7




submitted for publication (Yu, Li and Wong [14]).
C.5. DC model

The DC model for DC data assumes that X and a random vector (Y, Z) are independent
and Y < Z with probability one, and that X is uncensored if Y < X < Z, right censored if
Z < X and left censored if X < Y. Let Sz and Sy be the survival functions of Z and Y,
respectively, and let K = Sy — Sz. We state an assumption for DC model as follows:

(AS5) K(z—) > 0 for all z such that S(z) < 1 and S(z—) > 0,

We have shown in a submitted manuscript (Yu and Wong [15]) that in order to establish
asymptotic results, GMLE has to be modified. Under assumptions AS4 and AS5 we have
shown that the modified GMLE is strongly consistent and is asymptotically normal and
efficient under assumptions AS3, AS4 and AS5.
C.6. Two-sample nonparametric test

Based on the asymptotic results that we have established for different IC models, we
have successively derived the asymptotic distribution of the following two-sample distance
test statistics for each model:

o= " W) (51(t) — Sa(t))dt,

where 7; and 7, are specified time point and W (t) is a weight function. A manuscript on
the asymptotic results of D is being prepared.

C.7. Proportional hazards model

In our original proposal, we had assigned three months of time for Task 7 on Cox
regression for IC data. However, we have realized that statistical inference for the parameter
B in Cox regression under interval censorship is much more involved than its counterpart
in the usual right-censored situation. In the latter case, the maximum likelihood estimator
(MLE) of 3 does not depend on the baseline survival function So(t) owing to the simple
nature of the partial likelihood approach. However, such simplicity of likelihood function
does not carry over to the interval censorship model, and maximum likelihood estimation
of B will involve GML estimation of Sp(t) at the same time, thus resulting in a difficult
high-dimensional estimation problem.

Under the restrictive assumption that both X and the censoring vector take on finitely
many values, we have proved that the MLE of 8 and the GMLE of Sp(t), and hence the
survival function S(t|Z) = So(t)empéz, where Z denotes a vector of covariates for Cox
regression, are consistent and asymptotically normal (Li, Yu and Wong [17]). Much more
effort is needed to pursue research on the asymptotic inference of Cox regression model
under more relaxed assumptions on the distributions of X and the censoring vector.
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During the no-cost extension period, we have devoted our effort to the implementation
of a Newton-Raphson algorithm for computing the MLE of 8 and the GMLE of S,(t).
Although the algorithm is straightforward to derive using the asymptotic covariance matrix
which we have derived for the Cox parameters, we soon realized there are two difficult
problems associated with the Newton-Raphson algorithm. The first problem is that the
algorithm is computationally infeasible for data of moderate size. For example, in the
prognostic analysis of a breast cancer relapse follow-up study with n = 374 women which
we shall describe in Section C.9, the Newton-Raphson algorithm broke down owing to the
numerical difficulty associate with inverting a Hessian matrix of order 60. Another problem
with the Newton-Raphson algorithm is that it does not guarantee the strict monotonicity
condition S,(t;) > --- > So(tm) is satisfied at each iteration, where ¢, ..., tm, are the
ordered distinct times points. When this condition is violated, we shall have to re-compute
the estimates by assuming S,(t;) = S,(tx) for some j # k. Since there are a maximum
of 2™ such possibilities, it will be computationally infeasible to apply the Newton-Raphson
algorithm to a data set with even a moderate m.

The above computational problems associated with the Newton-Raphson algorithm
have motivated us to consider a two-step estimation approach for the Cox regression parame-
ters. Briefly, in step 1, the regression coefficient are estimated by a simple Newton-Raphson
algorithm through the device of a data grouping scheme; in step 2, the baseline survival
function is estimated by a simple self-consistent algorithm based on the original data. The
details of our novel approach are contained in the DOD grant “Cox regression model for
interval-censored data in breast cancer follow-up studies”, which we have submitted to the
USAMRMC for consideration for funding.

C.8. Computer software

We have made it available to the public a set of computer programs for calculating
RTCE and GMLE, for carrying out asymptotic inference of GMLE for all patterns of interval
censorship, and for evaluating the Z-score of the proposed two-sample weighted distance test.
These programs can be accessed via the internet at qyu@math.binghamton.edu.

C.9. Applications to breast cancer research

We have applied our results on asymptotic inference of GMLE for C2 model to two
breast cancer research projects. The first project is concerned with a chemoprevention
intervention trial of indole-3-carbinol (I3C) for breast cancer which is being conducted at
Strang Cancer Prevention Center. The statistical question of interest is the estimation of
duration of sustaining effect of I3C, which is C2 censored. A preliminary report on a short-
term trial has recently been published [18]; however, a longer trial lasting for more than one
year is still ongoing so that more informative data on duration of sustaining effect can be
obtained.

The second project is a breast cancer relapse follow-up study based on data obtained
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from 374 women with stages I - III unilateral invasive breast cancer surgically treated at
Memorial Sloan-Kettering Cancer Center between 1985 and 1990. The median follow-up
duration was 46 months. Relapse time was given by the time interval between surgery and
the initial relapse. A relapse that took place between two successive follow-up visits was
regarded as interval censored. If a patient did not relapse towards the end of the study,
then her relapse time was right censored. Of the 374 observations, 300 were right censored
(no relapse), 21 were left censored and 53 were strictly interval censored (74 relapses). Bone
marrow micrometastasis (BMM) was determined for each woman at the time of surgery.
An important question is whether remission duration is related to the extent of initial
tumor burden defined as number of BMM cells detected. Figure 1 compares the relapse-free
GMLE curves of patients with number of BMM < 14 versus those with number of BMM
> 14. Our asymptotic two-sample distance test yielded a P value close to 0.1. An abstract
on a detailed prognostic analysis of the entire data set using our asymptotic results on C2
data was presented at the annual San Antonio Breast Cancer Symposium in December 1998.

D. KEY RESEARCH ACCOMPLISHMENTS

e presented a simple nonparametric estimator of the survival function called RTCE, which
has an explicit expression and which is equal to GMLE under some restrictions on the
interval-censored data '

e established consistency, asymptotic normality and asymptotic efficiency of GMLE under
a variety of interval censorship models

e presented an asymptotic two-sample nonparametric test for different interval censorship
models

o established consistency, asymptotic normality and asymptotic efficiency for the MLE
of the regression coefficients and GMLE of the survival function at a given covariate
pattern of a Cox regression model under finite assumptions on the distribution functions
of both the survival time and the censoring vector

e identified the computational difficulties associated with the Newton-Raphson algorithm
for computing the asymptotic estimates of Cox parameters

e pointed out future directions for a more feasible asymptotic Cox regression analysis of
interval-censored data

e made available to the public a set of computer programs for calculating RTCE and
GMLE, carrying out asymptotic inference of GMLE and for evaluating the Z-score of
the proposed two-sample nonparametric test

e applied the established asymptotic generalized maximum likelihood results successfully
to a breast cancer relapse follow-up study with 374 women
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E. REPORTABLE OUTCOMES
¢ 10 published articles:

la] Li, L., Watkins, T. and Yu, Q. (1997). An EM algorithm for smoothing the self-
consistent estimator of survival functions with interval-censored data. Scandinavian
Journal of Statistics. 24, 531-542.

[b] Yu, Q., Li, L. and Wong, G. Y. C. (1999). On consistency of the self-consistent estimator
of survival functions with interval censored data. Scandinavian Journal of Statistics.
(In press).

[c] Yu, Q., Schick, A., Li, L. and Wong, G. Y. C. (1998). Asymptotic properties of the
GMLE in the case 1 interval-censorship model with discrete inspection times. Canadian
Journal of Statistics. Vol. 4.

[d] Yu, Q., Li, L. and Wong, G. Y. C. (1998). Asymptotic variance of the GMLE of a
survival function with interval-censored data. Sankhya, A. 60, 184-197.

le] Yu, Q., Schick, A., Li, L. and Wong, G. Y. C. (1998). Asymptotic properties of the
GMLE of a survival function with case 2 interval-censored data. Statistics & Probability
Letters 37, 223-228.

[f] Yu, Q. and Wong, G. Y. C. (1998). Consistency of self-consistent estimators of a discrete
distribution function with bivariate right-censored data. Communication in Statistics.
27, 1461-1476.

[g] Wong, G. Y. C. and Yu, Q. (1999). Generalized MLE Of a joint distribution function
with multivariate interval-censored data. Journal of Multivariate Analysis 69, 155-166.

[h] Schick, A. and Yu, Q. (1999). Consistency of the GMLE with mixed case interval-
censored data. Scandinavian Journal of Statistics. (In press).

[i] Li, L. and Yu, Q. (1997). Self-consistent estimators of survival functions with doubly-
censored data. Communication in Statistics, 2609-2623.

[jj Wong, G. Y. C., Bradlow, H. L., Sepkovic, D., Mehl, S., Mailman, J. and Osborne,
M. P. (1997). A dose-ranging study of indole-3-carbinol for breast cancer prevention.
Journal of Cellular Biochemistry Supplements 28/29, 111-1186.

Copies of the articles are included in APPENDICES.
e 2 submitted manuscripts:

[a] Yu, Q., Li, L. and Wong, G. Y. C. Asymptotic properties of NPMLE with mixed
interval-censored data. (Submitted to the Annals of the Institute of Statistical Mathe-
matics)

[b] Yu, Q. and Wong, G. Y. C. A modified GMLE with doubly-censored data. (Submitted
to Australian Journal of Statistics).

e 7 abstract presentations:

[a] Q.Yu,G,Y.C. Wong and L. Ye. Estimation of a survival function with interval-censored

data, a simulation study on the redistribution-to-the-inside estimator. 1995 Joint sta-
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tistical meetings at Orlando, Florida, U.S.. August 13-17, 1995. ;

[b] Q. Yu, L. Li and G.Y.C. Wong (1996) Variance of the MLE of a survival function with
interval-censored data. 1996 Sydney international statistical congress, Australia. July
8-12, 1996.

[c] Q. Yu, L. Li and G.Y.C. Wong (1996) Variance of the MLE of a survival function with
doubly-censored data. 1996 Joint statistical meetings at Chicago, Illinois, U.S.. August
4-8, 1996.

[d] Q. Yu and L. Li. Asymptotic properties of self-consistent estimators with doubly-
censored data. 1997 Joint statistical meetings at Anaheim, California, U.S.. August
10-14. :

le] Yu, Q. and G.Y.C. Wong. Asymptotic Properties Of Self-Consistent Estimators of A
Survival Function ICSA 1997 Applied Statistics Symposium at Rutgers University, New
Jersey, U.S.. May 30 - June 1, 1997.

Copies of the abstracts are included in APPENDICES.

e computer programs for asymptotic inferences of GMLE at the internet site
QYU@math.binghamton.edu

e a proposal entitled “Statistical analysis of multivariate interval-censored data in breast
cancer follow-up studies” based on work support by this award has been funded by
USAMEMC from 7/1/99 to 6/30/02 to George Y. C. Wong as principal investigator.

e a proposal entitled “Cox regression model for interval-censored data in breast can-
cer follow-up studies” based on work supported by this award has been submitted to
USAMRMC since June 15, 1999 with George Y.C. Wong as the principal investigator,
and Qiqing Yu as co-investigator.

F. CONCLUSIONS

In the four years of our DOD grant, we have successfully accomplished our research
objectives on the asymptotic inference of the GMLE of the survival function for interval-
censored data. Under different interval censorship models, we have established consistency,
asymptotic normality and asymptotic efficiency of the GMLE. When both the survival time
and the censoring vector take on finitely many values, we have established similar asymptotic
properties for the maximum likelihood estimators of the regression coefficients and the
GMLE of the survival function at a given covariate pattern of the Cox regression model for
interval-censored data. We have made available to the public a set of computer programs
for carrying out the asymptotic generalized maximum likelihood inference procedures for all
types of interval-censored data. The results from our research will provide clinicians and basic
science researchers in breast cancer with a set of fundamentally important statistical tools for
the analysis of interval-censored data that are encountered in breast cancer chemoprevention
studies, and relapse follow-up studies in which the time-to-event variable cannot be exactly
observed.
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Our research also indicates that asymptotic inferences for the parameters of the Cox re-

gression model for interval-censored data cannot be feasibly obtained by a standard iterative

algorithm, such as the Newton- Raphson algorithm. Our investigations into Cox regression

in this grant have inspired us to consider a computational simpler two-step estimation pro-

cedure for the parameters of the Cox model. We have consolidated our ideas into a proposal
entitled “Cox regression model for interval-censored data in breast cancer follow-up studies”,
which has been submitted to the USAMRMC for consideration for funding.
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An EM Algorithm for Smoothing the Self-
consistent Estimator of Survival Functions
with Interval-censored Data

LINXIONG LI, TERRY WATKINS
University of New Orleans

QIQING YU
State University of New York at Binghamton

ABSTRACT. Interval-censored data arise in a wide variety of application and research areas
such as, for example, AIDS studies (Kim et al., 1993) and cancer research (Finkelstein, 1986;
Becker & Melbye, 1991). Peto (1973) proposed a Newton—Raphson algorithm for obtaining a
generalized maximum likelihood estimate (GMLE) of the survival function with interval-
censored observations. Turnbull (1976) proposed a self-consistent algorithm for interval-
censored data and obtained the same GMLE. Groeneboom & Wellner (1992) used the convex
minorant algorithm for constructing an estimator of the survival function with “case 2”
interval-censored data, However, as is known, the GMLE is not uniquely defined on the
interval [0, co). In addition, Turnbull’s algorithm leads to a self-consistent equation which is
not in the form of an integral equation. Large sample properties of the GMLE have not been
previously examined because of, we believe, among other things, the lack of such an integral
equation. In this paper, we present an EM algorithm for constructing a GMLE on [0, o0).
The GMLE is expressed as a solution of an integral equation. More recently, with the help of
this integral equation, Yu et al. (1997a, b) have shown that the GMLE is consistent and
asymptotically normally distributed. An application of the proposed GMLE is presented.

Key words: generalized maximum likelihood estimator, EM algorithm, interval censorship,
self-consistency

1. Introduction

Interval-censored data are frequently seen in medical studies, pharmaceutical applications,
and engineering research. Let X, X, ..., X, denote a random sample of observations of a
random variable X, called the failure time, with distribution function F, and let
M, 2D, (Y2, Zy), ..., (Ya, Z,) denote a random sample of observations of a random vector
(L, R), called the censoring vector, with joint distribution function G(/, r), where with
probability one, L < R. As is common, define S(x) = 1 — F(x) as the survival function of F. For
each observation X;, there is a corresponding censoring vector (Y;, Z;). The failure time X; is
observed if it is outside the open interval (¥;, Z;). When X; is within (¥;, Z;), we only observe
(Y;, Z;) but not the value Xj, i.e. X; is censored. When Z; (;) equals oo (0), the failure time X; is
subject to a right (left) censorship. If only min {max {X;, ¥;}, Z;} is observed, we say the failure
time is subject to a double censorship. It is readily seen that the interval censoring scheme
contains right censoring and left censoring schemes as special cases. If the functional form of
the distribution function F is known, we only need to estimate the parameters of F. However,
when the functional form of F is unknown, a non-parametric approach must be used. This paper
focuses on the latter.

Kaplan & Meier (1958) proposed the product limit estimator (PLE) to estimate the survival
function when data are right-censored. There have been extensive studies concerning the PLE.
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Doubly-censored data, which treat right-censored and left-censored data as special cases, are
investigated by many authors. A self-consistent estimator (Efron, 1967) of the survival function
with doubly-censored data as well as various properties of the estimator such as strong
convergence, asymptotic normality, etc., are established (see, for example, Turnbull, 1974;
Chang, 1990; Gu & Zhang, 1993). The self-consistent estimator is implicitly expressed as a
solution of an integral equation. No closed forms of the estimator have been presented. For
arbitrarily interval-censored data, Peto (1973) proposes a Newton-Raphson algorithm to obtain
a generalized maximum likelihood estimator (GMLE) (see Kiefer & Wolfowitz, 1956; Johansen,
1978) of the survival function. Turnbull (1976) derives a self-consistent algorithm and shows
that the algorithm converges monotonically to the GMLE. This GMLE is, however, not uniquely
determined in innermost intervals (see definition below). Furthermore, Turnbull’s self-consistent
equation is not in the form of an integral equation. Studies about arbitrarily interval-censored
data are not as fruitful as those mentioned above due to, among other things, lack of an integral
equation for the GMLE. Tsai & Crowley (1985) discuss connections among the GMLE, the EM
algorithm, and the self-consistent estimators for incomplete data, focusing on right censoring
and double censoring cases, taking advantage of availability of the integral equations for the
latter two models. Groeneboom & Wellner (1992) use the convex minorant algorithm for
computing the MLE of the survival function with “case 2” interval-censored data. The “case 2”
interval censoring is the same as arbitrary interval censoring described above except that the
exact observations can never be observed (thus it is a special case of the arbitrary interval
censoring). Yu & Wong (19962, b) consider a special case of interval-censored data. They
assume that any two censoring intervals are either disjoint or one includes another. This
assumption covers a wide variety of situations. They derive an explicit expression for the GMLE
of the survival function and then prove that the estimator is strongly consistent.

Since Turnbull’s self-consistent GMLE is not uniquely defined on innermost intervals, it is
not convenient to use the estimator if the data are heavily censored. In this paper, we propose an
EM approach to construct 2 GMLE that is defined on the interval [0, co). This approach also
gives an integral equation expressioﬁ for the GMLE. More recently, with the help of this integral
equation, Yu et al. (1997a, b) prove the uniform strong consistency and asymptotic normality of
the GMLE.

The organization of the paper is as follows. Section 2 provides the necessary definitions and
background. In section 3, we prove the convergence of the proposed EM algorithm and show
that it converges to the same GMLE as Turnbull’s. An application of the estimator derived is
presented in section 4. :

2. Algorithms

Following the notation of section 1, assume that the vectors (Y, Zi, X)), i=1, ..., n, are
mutually independent, and that X; and (Y;, Z;) are also independent. If ¥; <X;< Z;, the
censoring interval (Y}, Z) rather than the failure time X; is observed and we denote the
observation by an open interval (L, R) = (Y, Z)); if X; is outside (¥;, Z;) we observe the exact
failure time. In the latter case, we define L; = X; = R;, and call X; or the closed interval [L;, R;}
an exact observation. Thus we may assume that the final observations are

oo [UuR] ifLi=R
L R'}—{(L,., R) if Li<R

(note: some of the intervals are collapsed to points), and, without loss of generality (WLOG),
assume that Ly <L, <.--<L, Let % denote the set {l;, 1 si=< n} and .# the set
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{rix 1 <i<n}, where {4, r;} are the realizations of {Li, R;}. Ranking the 2n points ( n Is and n
rs) in increasing order yields a sequence, say ¢; < ¢ <. . . < ¢, If there exist ties in the
observations, we suppose that

1. R; has smaller rank than L if Ry = Li <Ry
2. L; has larger rank than RiifL; = Ry > Lj;
3.If{L, R} = {Lj, R;} and i </ then they are ranked as LisL;<R <R,

Define an innermost interval {p, g} to be the non-empty intersection of observed intervals
{Li, R;} such that {p, g} N{L;, R} is either an empty set or {p, q}. Notice that every exact
observation comprises a closed innermost interval and that distinct innermost intervals are
disjoint. Suppose that there are m (= n) such distinct (open or closed) innermost intervals:
{pi @} {Pms g}, wherepy < gy < - - - < p,, < g, and

oyt pa) ifpi<g
{Pu ql} { (pi, qi] if pi=gqi.
Turnbull (1976) provides a self-consistent algorithm for obtaining the GMLE of S, and shows
that the GMLE assigns weight on innermost intervals only. Specifically, define an indicator
function §; = 1 if {pj, 4;} C {I;, r;}, and 0 otherwise. Let

__ s
:uU(S) - z;(n=l 6,‘[(5[(

where s = (s, ..., s,) are the masses assigned to the corresponding innermost intervals,
satisfying 3"\ s; = 1,5, = 0, | <i < m. Write

1 n
= 7 E #y(8).
i=1

The GMLE, and hence the self-consistent estimator of S, can be obtained by the following
iterative procedure.

1. Set the initial values s? = 1/m, 1 <j < m.
2. Compute u,(s), and set s} = m(s°).
3. Repeat step 2 by replacing s® with s', and so on.

This procedure converges monotonically to the estimate of the weight s. Although the
GMLE of S(x) can be formed as

S =" s x ¢ Uipy, 41} @.1)

1,qi>x

we only know the amount of weight on innermost intervals but not the way that the weight varies
within the innermost intervals. We now present an EM algorithm for obtaining the GMLE of
S(x). The proposed GMLE assigns the same weight on innermost intervals as Turnbull’s and
describes the distribution of the weight within the innermost intervals. Meanwhile, an expression
for the GMLE is obtained.

Let Hy(x) denote a strictly increasing initial distribution function on [0, a), where
a = max {r;; r; € A}, (for example, Hy(x) = 1 —exp(—x), x = 0. A choice of the initial Hy is
given in section 4) and define

Ho(x) — Ho(l;)

1 n n
Hy(x) =~ ;ml(x € (i, 1)) + ;I(x € [ri, 00))

}"‘ of the Foundation of the Scandinavian Journal of Statistics 1997.
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where I(4) denotes the indicator function of the event 4 and f(x—) = lim,, f(r). Then define a
distribution function

H(x) — Hy(ly)
Hi(ri—) — Hi(ly)

In other words, we truncate distribution A, on each censored interval. Let

Hi(x) = I(x € (I, 1)) + I(x € [1;, 00)).

Hy(x) = -};ZH;(x).
i=1l

_ Then use H; as an initial distribution function and repeat the above procedure to obtain Hj.
More specifically, on the kth iterative procedure, Hy is calculated by

|
Hix) =~ H(),
i=l

where, when /; = ry, Hi(x) = 0ifx </;, 1 if x = [;, and, when /; <r;,

Hi_1(x) — He ()
Hey(ri=) — Hi ()

In terms of conditional expectation,

%) = I(x € (i, 1)) + I(x € [y, 00)).

1 .
Hy(x) = Eg,_, ;Z[(X,- <Ol R} i=1,...,n].
i=l

This is an EM algorithm (Tsai & Crowley, 1985). A proof of the convergence of the EM
algorithm is given in the next section. Thus, the limiting distribution, say H, is a self-consistent
estimator of F. It is known that Turnbull’s algorithm is also an EM algorithm. The difference of
these two EM algorithms is previously described in the paragraph following the definition of
Turnbull’s algorithm. In addition, it is easy to see that in terms of convergence rate one is not
superior to the other.

3. Main results

We first make sure that the proposed EM algorithm is well-defined, namely we need to guarantee
that the denominators involved in Hy are not zero. This is assured by the following lemma. The
proof of it is simply by induction on k and is omitted.

Lemma 1
Fork = 1, Hi(ri—) — Hy(l;) = 1/n.

We now prove that the EM algorithm converges. The proof is similar to th. 2.1 of Tsai &
Crowley (1985).

Theorem 1
As k — oo, Hi(x) converges to, say H(x).

Proof. By the definition of the EM algorithm, the initial estimator H; has its weight on
observations {L;, R;, i = 1, ..., n} only. This implies that it is the EM algorithm for incomplete
multinomial data, which belong to exponential family. Thus by th. 2 of Wu (1983) the EM
algorithm converges.

© Board of the Foundation of the Scandinavian Journal of Statistics 1997. 4 of]
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We now consider a transformation of the observed censoring intervals. The transformed data
make the proofs simpler and produce the same self-consistent estimate as do the original data.
Let {l, r:}, 1 <i<n, be the original data, and let {p;, ¢;}, 1 <i<m, be the innermost
intervals. For convenience, define p,.; = oo and g9 = 0. The transformation proceeds as
follows. For any i, (1) if there is not any exact observation at g;, then move all rs between g; and
Ppi+1 10 g;, (2) otherwise, move all rs between g; and p;;; to the smallest r that is greater than g;;
similarly, if there is not any exact observation at p;, then move all Is between p; and ¢;_; to p;,
otherwise, move all Is between p; and g;_; to the largest / that is smaller than p;. We call the
transformation S-transformation. We use {L/, R/} to denote the S-transformed data. To illustrate
the transformation, consider the following example.

Example 1. 1f the original data are

GGGxa )Gl hx(3)3x)

where (; ); denotes the jth censoring interval, then the S-transformed data are
(123 x4 )2 (5 )51 X6 (7 )3 x8 )7

orli=b=l=h<u<r=nsl=L<r=ri=r<xx<li=h<ri=rn<x<r
= r7 (we pretend that /{ < /', < /3 andr5 < r{).

It is important to note that the S-transformation does not change the innermost intervals and
(L, R) contains an innermost interval if and only if (L', R") contains the same innermost interval.
Noting that the likelihood function can be written as

n m
L= H(; 6iksk) (see Peto, 1973),
i= =

we see that the S-transformation does not change the likelihood function. Since the GMLE of s
is uniquely determined by, and has weight only on, innermost intervals (Peto, 1973), the original
data and the corresponding S-transformed data produce the same GMLE of s (Yu & Wong,
1996a). Hence, from now on, we use the following convention.

Convention
We suppress the word S-transformation and assume that the data are already S-transformed
unless otherwise specified.

Notice that the GMLE of S is entirely determined by s (see (2.1)), and thus the original data
and the transformed data give the same GMLE of S.

Theorem 2

Suppose that the initial distribution Hy is strictly increasing on [0, a) where a is defined in
section 2. Let & = \Ji_,{pi, qi} and let (% denote the support of the limiting distribution
Sfunction H = limy_..c Hy. Then & C .57

Proof. 1t is sufficient to prove that non-innermost intervals do not have weight. If (c, Cim+1)
is a non innermost interval, then it must be one of the following cases:

(8) (Jj, xj41), where [; <xj4| <ry; (remember the convention, i.e. there is no additional /; or
ri within (lj, Xj+1])

(b) (x, L)

©) (xj, r;), where i <j and [; <x; <r;
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(d) (ri, xj);
(e) (rp, }), where I, <r, <[;<r;.

We now prove that none of the above non-innermost intervals has weight. First consider
(a). Note that

H H(l;
H(xjp1—)— H() = Z%)L_—H_(%zl(lj € (i, )
=1 !

Il lla !
= [HOgn-) - HO)- Z (€ ri)

H(ri—) — H(l)
Thus, either H(x;.1—) — H({};) =0, or
e,
H(ji1-) — H() £ 0 and Z 1 = e R | G3.1)

In addition, if (3.1) is true,

I e i, ri
Hxj1) — H(G) = [H(xi) — HG)] - ZHErJ—i—(——f;()I)_)

+ 13 g € b, o) = 10 € [, )]
i=1

10, € o
> [(Heye) - HOL ZB‘Er_—ES('——I:r()I)—)+

1
= [H(xjr1) — H()) +-

which is impossible. Thus, H(x;y1—) — H({}) = 0.
Now consider (b) (¢, Cmr1) = (%5, [i+1). Note

15N H (G —) - Hey
HOjor) — ) = 5 ) =D 11— € (i )

i=1

18 10— € (i, 1)
= (H(lr—) — H) =S i = e 1
=) = BN, 2 TGy — HAp
Thus, either H(lj;1—) — H(x;) = 0, or
VEN I — € Ui )
) He) 40 and I—€lur) _ 3.2
(fr1=) = HG) # 0 an n,\; H(ri—) — H() e

Furthermore, it is readily seen that, if (3.2) is true,

_ | 1N I € Uiy 1)
[H(1=) = HGg=)] = [H1—) = Hig= ]nﬁ 5o —HD Tr ~ (1 € 7 o)

1
= (H(lj1—) — HeG-) +7
which is impossible. Thus H(/i.1—) — H(x)) = 0.

© Board of the Foundation of the Scandinavian Journal of Statistics 1997.
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The proofs of (c) and (d) are similar to that of (a) and (b).
Finally consider (€) (Cm, Cm+1) = (rp, {j), Where I, <r, <[; <r;.
| Notice that

H(r,) — H(l) &N
H(rp) = - ZH(rp) H(I)z(zje(l,-, r,~))+;;1(rp € [ri, o))

J
H(-) = = ZH(’ D=HD) e+ Y0110 € B o)
i=1

H(ri—)y—H({)
- H(—) - H(l) Uy |
‘ZH(,.‘ = H(I)I(lj €, r))+ Z_l:;l(rp € [ri, o0)).

Therefore,

H(—)—H
H-) — Hirp) = - z e A

I l In i
=[H(j-) - H(p)] - Z ng, e)(— frI ()1) )

Thus, either H(/;—) — H(r,) = 0, or

10; € (i i
H(=)~H(rp) #0 and Z ng_e)( 1:(();) L. (3.3)

We now show that case (3.3) leads to a contradiction. Suppose that (3.3) is true. WLOG, we can
assume that there is no tie at r, and at /;. Then exactly one of the following cases must be true:

(e.1) The point right before r,, say cn—1, is either /, or an exact observation, say xp,;
(e.2) cm- is a left endpoint, say L, p2 # p.

If case (e.1) is true, it is easy to reach a contradiction using an argument similar to that of
case (a) by considering H(l,—) — H(r,) and H(r,) — H(Cm-1).

Now suppose that case (e.2) is true. By the definition of Hy, it is easy to see that, for k = 0,
dH, assigns positive weight to the intervals (/,,, r,) and (r, /;). We now prove that the ratio

Hy(lj) — Hi(rp)
Hi(rp) — Hi(l,)

is non-increasing in k. In fact,

y— [H) — Hi( :
B ety |Gy T DS 0n
Helry) = Hellpy) N 0 if 7, € (i, ri] and I ¢ (i, 12)
Hy(ri—) — H(l) 1ty € i miD in particular if i =p
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&8 Hill) ~ Hi(rp)

Hen() — Hen(rp) o Hirim) = Hil)
Hii(rp) = Hiri(p,) ZHk(rp) Hi(l,,)
Hy(ri—) — He(I)

[Hi(];)) — Hi(rp)]
[Hi(rp) — He(lp,)]
[Ho(};) — Ho(rp)]
[Ho(rp) — Hollp,)]
Taking limits as k — oo yields
H(j) — H(rp) _ [Ho() — Ho(rp)]
H(rp) H(Ipz) [Ho(rp) - HO(Ipz)]
However, if case (e.2) is true, that is, if H(;) — H(r,) > 0 and H(r,) — H(Ip,) = 0, then
H(l) — H(rp) _ [Ho(})) — Ho(rp)]
H(rp) - H(lpz) [HO(rp) - HO(Ipz)]

The contradiction implies that case (e.2) is impossible. Thus (3.3) is impossible. It follows that
H(l;) — H(r,) = 0. This completes the proof of theorem 2.

I((rp, ) < Uiy 1))

ey [ € (Ui 7i])

and thus <

<400

Remark 1. The result of theorem 2 does not depend on the choice of the initial distribution
Hy, provided that Hy is chosen by its definition in section 2. Example 2 below indicates that the
strictly increasing restriction on Hy is necessary. The example also shows that a self-consistent
estimator is not necessarily a GMLE.

Example 2. Suppose there are only two censoring intervals: (0, 1) and (0.5, 1.5). Let

Hy(x) = xI(x € (0, 0.5)) + %I(x €[0.5, c0)) + (x — DI(x € [1, 1.5)) +%I(x € [1.5, 00)).

Then Hi(x) = Hy(x) for k = 1, and thus H(x) = limi_.c Hi(x) = Ho(x). It is readily seen that
non-innermost intervals (0, 0.5) and (1, 1.5) each has weight 1/2, but the innermost interval (0.5,
1) does not have any weight.

The next theorem shows that for each innermost interval the EM and Turnbull’s algorithms
assign the same weight on it.

Theorem 3
The limiting equation for the EM algorithm

1 Hx) — H(l)
Hx) = Z [ml(x €, r)+1(x € [ry oo))} (3.4)

is equivalent to Turnbull s self-consistent equation

5= 1/ (3.5)
i=1

Proof. Let dH be the measure induced by H and let dS be the measure induced by the self-
consistent estimate, It follows from Theorem 2 that both dH and 4S assign weight to the
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innermost intervals only. Then dH assigns weight w; = H(q;—) — H(p;) (H(g;) - H(p;—)) to
the jth open (closed) innermost interval and dS assigns weight s; to the jth innermost interval. It
suffices to show that w;s satisfy (3.5) and s;s satisfy (3.4).

W.lo.g., assume that p; = [; and g; = rj3, where j, < j;. Note that

(1) wy = H(rp) — H(y—) if p; = g3
(2) wy = H(rp—) — H(ly) if p; <pg;.

We first assume p; = g;, i.e., rj, = ;. Then
1 ©H(y) - H(y ) 1
w== Y Al e+ Y I €l n),
" il gy )~ HED) " =Tl ]
which is the same as
! Wi

W=y o)~ )

1 /]
I € Uur)+= Y LI €y riD.
n. ! ‘
i (ri)#y,

i ril=ll, 1 7
It follows that if p; = g;, then

i “ 6,:,'Wj

Similarly, we can show that if p; < g;, then

I yw

7= m ‘
né
=US " Suwi
k=1

This is the same as the equation for s;s, i.e., (3.5).
Analogously we can show that s;s satisfy (3.4).

As mentioned before, the self-consistent GMLE of F(x) is not uniquely defined for
x € (pi, q;) if p; <gq; (Peto, 1973). For the proposed EM algorithm, the value of the estimate
H(x) for x € (p;, ;) is uniquely determined once Hy is determined. It is readily seen that the
GMLE defined by (3.4) can be written as a solution of an integral equation as follows.

H(x) = L L I(I\x<r)——————H(r_)_H(l)dG {, r)+J0 jo Ir=xdG (,r) -

b Hx)—H() , x :
= Il<sx<r)——=dG" (I, r) + PR < x).
J, |, 1= n g et + s

where G*(l, r) is the distribution function of the observable random vector (L, R). Note that
equation (3.6) needs to be modified if we define censoring intervals to be closed [¥, Z] rather than
open (¥, Z) as in this paper. Combining theorems 1, 2, and 3, we can prove the following theorem.

Theorem 4
The limiting distribution H(x) of the EM algorithm is the GMLE of F, and is independent of Hy
Jorx & .F.

Proof. By theorem 2, the sum of weights on the innermost intervals equals unity, and by
theorem 3, the limiting equations of the EM and Turnbull’s algorithms are the same. Since
Turnbull’s algorithm converges to the GMLE, provided that the support of the estimate is on the
union of innermost intervals (Turnbull, 1976), the EM algorithm converges to the GMLE, too.

of the Foundation of the Scandinavian Journal of Statistics 1997.
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In addition, since the weight of the GMLE on innermost intervals is uniquely determined by the
observations given (Peto, 1973), the value of H(x), x ¢ %, does not depend on the choice
OfHo.

4. Applications

In this section, we shall illustrate the smoothed GMLE technique by using a real data set. It is
readily seen that the choice of the initial distribution Hy does not affect the total amount of
weight on innermost intervals but does affect the value of S(x) when x € (p, ¢), an innermost
interval. We present an intuitive approach to choose Hp.

We use the midpoint method. Forany 1 <i=<n, if r; = oo, we ignore the interval [J;, r;], and
if r; <oo, we let m; denote the midpoint of [/;, r;]. Suppose there are k such midpoints and,
WLOG, suppose that they are distinct with m, <my < - -+ <my. The initial distribution
function Hy is constructed as follows. Firstly construct an empirical cumulative distribution
function (EDF) based on the midpoints {m;, 1 <i < k}. The EDF jumps at midpoints and is
constant between two consecutive midpoints. Secondly, for 1 <i=<k-—1,let¢ be the centre
point of [m;, m;.1] and connect points (¢;, i /k) and (i1, (i + 1)/k) with a line segment. Finaily
connect (te_y, (k — 1)/k) and (r*, 1) as well as (0, 0) and (my, 1/k) with a line segment,
respectively, where r* = maxi<<a{ri: i < co}. This constructed polygonal line is the initial
distribution Hy which is continuous and strictly increasing on [0, r*l.

We now use a data set to demonstrate the proposed EM estimator.

Example 3. The following data have been used by Finkelstein & Wolfe (1985) to compare
two different treatments for breast cancer patients. The censoring intervals (in months) arose in
the follow-up studies for patients treated with radiotherapy and chemotherapy or with radio-
therapy alone. The failure time is the time until cosmetic deterioration, as determined by the
appearance of breast retraction. The data are reproduced in Tables 1 and 2. The estimate of S for
each data set is obtained using the technique derived in this paper. The comparison of the
survival functions with the treatments is given in Fig. 1.

Table 1. Radiotherapy and chemotherapy (8, 12]

(©,22] (24,31] (17,27 (17,23] (24, 30] (16, 24] (13, 0)
(11, 13] (16, 20] (18, 25] (17, 26] (32, 00) (23, ) (44,48]  (14,17]

(0, 5] (5, 81 (12,20] (11, 00) (33, 40) (31, ) (13,39]  (19,32]
(34, 0) (13, 00) (16, 24] (35, 00) (15, 22] (11,17] (22,32]  (10,35]
(30, 34] (13, 00) (10,17} (8,21] (4,9 (11, 00) (14, 19] (4, 8]
(34, 00) (30,36]  (18,24] (16, 60] (35, 39] (21, ) (11,20] (48, 00)

Table 2. Radiotherapy alone (45, 00)

(6, 10] ©,7] (46, 00) (0) (7,16) (17, 00) (7, 14]
(37, 44] (, 8] @, 11] (15, 00) (11, 15] (22, 00) (46,00) (46, 00)
(25,37] (46, 00) (26, 401 (46, 00) (27, 34 (36, 44] (46,00)  (36,48]
(37, 0) (40, 00) (17, 25] (46, 00) (11, 18] (38, 00) 6,121 (37,00
©,5) (18, 00) (24, 00) (36, 00) G, 11] (19, 35] (17,251 (24,00

(32, 0) (33, 00) (19, 26] (37, 0) (34, o) (36, 00)

© Board of the Foundation of the Scandinavian Journal of Statistics 1997.
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Abstract The self-consistent estimator is commonly used for estimating a survival function
with interval-censored data. Recent studies on interval censoring have focused on case
2 interval censoring, which does not involve exact observations, and double censoring,
which involves only exact, right-censored or left-censored observations. In this paper, we
consider an interval censoring scheme that involves exact, left-censored, right-censored
and strictly interval-censored observations. Under this censoring scheme, we prove that
the self-consistent estimator is strongly consistent under certain regularity conditions.

Key words and phrases: Case 2 interval-censored data, exact observations, nonpara-
metric maximum likelihood estimator, self-consistent algorithm, strong consistency.

1. Introduction

Recent studies of interval censoring have focused on case 2 interval-censored (IC) data,
which involve a time-to-event variable X whose value is never observed but is known to
lie in the time interval between two consecutive inspection times Y and Z. Case 2 interval
censoring arises naturally in a longitudinal follow-up study in which the event of interest
cannot be easily observed (for instance, cancer recurrence, elevation of levels of a biomaker
without any noticeable symptoms).

In this paper, we consider IC data which consist of both case 2 IC data and exact
observations. We call such data mized IC data. Mixed IC data do arise in clinical follow-
up studies. In a cancer follow-up study in which a tumor marker (for instance, CA 125
in ovarian cancer) is available, a patient whose marker value is consistently on the high
(or low) end of the normal range in repeated testing is usually monitored very closely for
possible relapse. If such a patient should relapse, then time to clinical relapse can often be
accurately determined, and an exact observation is obtained. However, if a patient is not
under close surveillance, and would seek help only after some tangible symptoms of the
disease have appeared, then time to relapse most likely has to be specified to be within
the dates of two successive clinical visits.




Another situation in which such mixed IC data can occur is in the usual right-censored
survival analysis where actual dates of events are not recorded, or missing, for a subset
of the study population, and can be established only to within specified intervals. An
example from the Framingham Heart Study was presented by Odell et al. (1992). In this
large-scale longitudinal heart disease study, time of occurrence of coronary heart disease
(CHD) is recorded for almost every participant. However, time of first occurrence of the
CHD subcategory angina pectoris may be specified only as between two clinical visits,
several years apart, for some of the participants who suffered from angina pectoris.

For case 2 IC data, Groeneboom and Wellner (1992) proposed the iterative convex
minorant algorithm for obtaining the nonparametric MLE (NPMLE) of the distribution
function, F', of X. The consistency of the NPMLE and the asymptotic distribution of an
alternative estimator are obtained under the assumption that F' and the inspection time
distribution are both continuous and some additional regularity assumptions. Under the
only assumption that the random inspection times are discrete, Yu et al. (1998) proved
the strong consistency of the NPMLE. They further established the asymptotic normality
of the NPMLE by requiring that the inspection times to take on only finitely many values.

Another commonly discussed interval censoring scheme is double censoring. Data are
said to be subject to double censoring if they are exact, left censored or right censored;
however, they are not to be strictly interval censored. For doubly-censored data, the
consistency and asymptotic normality of the self-consistent estimator (SCE) have been
established by Turnbull (1974), Chang and Yang (1987), and Gu and Zhang (1993) under
different assumptions.

For mixed IC data, Peto (1973) obtained the NPMLE of F' using a Newton-Raphson
type algorithm. Turnbull (1976) proposed a self-consistent algorithm for estimating F' and
showed that the associated SCE is also the NPMLE. This SCE has been widely employed in
medical applications. See, for example, Finkelstein (1986) and Becker and Melbye (1991).
In this paper, we shall establish the strong consistency of the SCE under the assumption
that F is arbitrary but the support of the inspection times is finite. Although the NPMLE
is consistent with case 2 interval-censored data (Groeneboom and Wellner, 1992), counter
example does exist and shows that the SCE may not be consistent with case 2 interval-
censored data when the inspection times only take on finitely many values (Yu, 1997).
Intuitively, the proof for the consistency of the SCE should be different from that of the
NPMLE. We shall show that it is indeed the case in Sections 3 and 4.

The organization of the paper is as follows. Section 2 presents models to describe the
mixed IC data and two algorithms for computing the SCE. The strong consistency of the
SCE is established in Sections 3 and 4. Some proofs are put in the Appendix.

2. Models For Mixed IC Data

We shall discuss two models for mixed IC data in this section. The one in Section
2.2 is more general than the one in Section 2.1, but we shall show that in terms of the
properties of the SCE, it suffices to consider the one in Section 2.1.
2.1. A Simple Model For Mixed IC Data

Let (Y, Z) denote a pair of extended random censoring times (oo allowed). Assume
Y < Z with probability one (w.p.1), and X and (Y, Z) are independent. The observable
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mixed IC data are equivalent to a random interval

(Y,o0) ifY < X and Z = oo (right censored),

(—00,Z] if X <Z and Y = —oo (left censored),

(Y, Z] if —oo <Y < X <Z < o (strictly interval censored),
(X, X] if X ¢ (Y, Z] (exact).

LL7 RJ = (2.1)

Let |L;, R;], %=1, ..., n, be a random sample from |L, R]| and [l;, ;| be a realization
of | Li,R;]. Further, let Q(I,7) = P(L < !,R < r). Following Peto (1973) and Turnbull
(1976), define sample innermost intervals, denoted by |pj, g;]’s, to be the nonempty inter-
sections of the intervals |l;,r;] so that for any pair of intervals |p;,q;]| and |l;,r;], either
|pj»a;] C |li,7i] or [pj,q;] N [l;,ri] = 0. Note that |p;,g;| denotes an half open interval
if p; < g; and a closed interval if p; = q;. Moreover, every exact observation constitutes
an innermost interval. We demonstrate the concept of innermost interval by an example.

EXAMPLE Suppose n=5 and the observed intervals |l;,7;]| are (0, 3], (2, 5], [4, 4], (2, 00),
and (6, 7]. Then there are three innermost intervals: (2, 3|, [4, 4] and (6, 7].

Suppose there are m (< n) such distinct intervals: |p1,aq1], |p2,@2],--s |Pm>@m],
where p1 < q1 < p2 < @@ < -+ < g Define 6;; = I(|pj,q;] € [l 7)), where I(A)
denotes the indicator function of the set A.

The self-consistent algorithm (Turnbull, 1976) for obtaining the SCE E, (which assigns
weight to innermost intervals 6nly) of F is given by

= Z SnjawZO’

Jjiq; <z
where {sn1,...,Snm} are the probability masses assigned to the corresponding innermost
intervals, and satisfy the self-consistent equations
613 Snj
j=1,..m. (2.2)
Z Zk zksnk Y

Li, Watkins and Yu (1997) proposed an alternative approach based on the EM algorithm
for obtaining the SCE F), and expressing H,, = = F, as a solution of an integral equation

Hp( i«" g))I(l <z <7r)dQn(l,r)+ ;Xn:I(Ri <z), H,€0, (2.3)

i=1

where © = {h: h is a nondecreasing function from [—o0, 0c] to [0, 1] such that h(—o0) =0
and h(oco) = 1} and @Qn(l,r) is the empirical version of Q(l,r). They showed that with
proper initial values, algorithms (2.2) and (2.3) give the same weight s,,; = H,(q;)—Hn(p;)
to the innermost interval |p;,q;], when it is not closed, or the same weight H,(q;) —
H,(p;j—) to |p;,q;], when it is closed. That is, H, and E, are equivalent. We shall make
use of expression (2.3) to establish the strong consistency of F}, in Sections 3 and 4.
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Following the identifiability assumption given in Chang and Yang (1987), we define
K(z) = P{X is not censored |X = z} for each z. Let 7 = inf{z : K(z) = 0} and
T = sup{z : K(z) = 0}, if {z : K(z) = 0} # 0. Otherwise, define 7, = 7. = oo. For each
z € (1, 7.), either K(z) = 0 or K(z) is not defined. To see this, it suffices to show that
for any two points a < b satisfying K(a) = K(b) = 0, there do not exist z € (a,b) such
that K(z) > 0. In fact, K(a) = 0 implies that P{Y < a} > P{Y <a < Z} = 1. Also,
K (b) = 0 implies that P{Z > b} > P{Y <b< Z} =1. Thus

PlY<n<m<Z}=land K(z)=0V z € (1,7,). (2.4)

There are only four possible cases that model (2.1) implies: (1) 7; > —o0 and 7, = o0,
(2) m = —o0 and 7 < 00, (3) —00 < T} < T < 00, and (4) {z : K(z) = 0} = 0. Case
(1) is a right censorship model as P(Z = oo) = 1 by (2.4). Moreover, case (2) is a left
censorship model. Both of them do not allow strictly interval-censored observations. If
case (3) is true, then Y < 7 and Z > 7. w.p.1, which is not practically realistic. Thus case
(4) is the only practical case in model (2.1) that includes both strictly interval-censored
observations and exact observations. In next subsection we see how to extend model (2.1)
to cover more general situations.

2.2. A Model for More General Mixed IC Data.

Even though case (4) in Section 2.1 does not have the drawback as in the first three
cases, it implies that P{K(X) > 0} = 1. It is often the case that a study can only last for
a certain period of time, say, a time interval [a, b], where 0 < F(a) < F(b) < 1. In such a
case, the mixed interval-censored observation | L, R| satisfies

{Lor R € (—00,a) U (b,+00)} = 0. (2.5)

Consequently, P{K(X) > 0} < P{a < X < b} < 1. Thus, model (2.1) cannot specify such
mixed IC data. Note that (2.1) is equivalent to

_ (W7 iXe,2),

b RJ = { X, X] if X ¢ (¥, 2. (2.6)

We now formulate a model for mixed IC data satisfying (2.5). Assume Y < Z w.p.1.,

and {Y or Z € (—o00,a) U (b,00)} = @. Suppose that X and (Y, Z) are independent and
the observable random vector

(v,2] X ez
JxxX] #Xx¢(V.Zanda<X <b,
LRI =1 (el X ¢ (Y2 and X <a, (2.7)
(byoo) fX¢&(Y,Z]and X >0b.

In the case of (2.5) or (2.7), we can only estimate F(z) for z in [a, b], or equivalently, the
cdf F* of X*, where X* = al(X < a) + XI(a < X < b) + 2bI(X > b). Note that X*
and (Y, Z) are independent. Due to (2.5) or (2.7), the right-censored observation (b, c0)
will always be an innermost interval. The NPMLE (or an SCE) ﬁ’(a:) is not uniquely
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determined for z € (b, ) (see, e.g., Peto, 1973), though the total mass assigned by the
NPMLE (or the SCE) to the interval (b, 00) is uniquely determined. Thus we can, without
loss of generality (WLOG), assume that the mass is put at the point 2b (€ (b,00)). In
other words, (b,0c) can be treated as an exact observation [2b,2b]. For a similar reason,
the left-censored observation (—o0,a) can be treated as an exact observation [a,a]. Thus
model (2.7) is equivalent to

v,z if X* € (Y, Z),
L, R| = { [X*,;(*] if X* ¢ (Y,2],

If F(a) = 0 and F(b) = 1, then models (2.7) and (2.8) are the same as (2.1) (or (2.6)).

In view of (2.6) and (2.8), it is easy to see that in the case of (2.5) or (2.7), in order to
estimate F, it suffices to estimate F™*, which reduces model (2.7) to model (2.1). Similar
modification can be made to handle the situation that there are no observations L or R
in a union of arbitrary intervals. In view of the above discussion, we shall focus on model
(2.1) for the rest of the paper.

(2.8)

3. Consistency In Case Of Finite Support For F

In this section, we assume that both the support of X, say S, and the support of
Y and Z, say Sg, contain finitely many points. The generalization of F' to an arbitrary
distribution function is given in Section 4. The assumption concerning S¢ is a reasonable
one. In practice inspections of most follow-up studies are recorded on a discrete time
scale (daily, weekly, monthly, etc.), and the total study period is finite, so the number
of censoring points, i.e. the support of Y and Z, is also finite. Such an assumption was
adopted by Finkelstein (1986) and Becker and Melbye (1991), among others.

Suppose that X takes on values z;, s, ..., Zy, and | L, R| takes on values I; = [I$,7{],
I, = [1§,78], ..., I, = [I9,7] with probability e;, = P{L = I?,R = r{} > 0. Based
on the assumption that K(z) > 0 for all z > 0, Chang and Yang (1987) and Gu and
Zhang (1993) proved the consistency of the SCE for doubly-censored observations. In
this paper, we weaken this assumption and prove the consistency of the SCE on the set
O = {z; K(z) > 0} with mixed IC data.

For a point z satisfying K(z) = 0 and P{X = z} > 0, since there are no exact
observations available at this point, the distribution function F is not estimable, and hence
consistency cannot be assessed. Let us consider the structure of the innermost intervals
as sample size n — oo. For z;, if K(z;) > 0, then it follows from the strong law of large
number that P{X} # z;, forall k = 1,2,...,n} — 0 as n — oo. In other words, K(z;)
> 0 implies that [z;,z;] is an innermost interval w.p.1, which further implies that the
union of all closed innermost intervals coincides with the set O. Let A, Ag,..., An, be
the innermost intervals induced by the intervals I;,7 = 1,2,...,v, and call them population
innermost intervals. It is seen that as n — oo the set of sample innermost intervals induced
by |L;, R;|,i = 1,2,...,n converges almost surely to the set of population innermost
intervals. Since we are only concerned with large sample properties, we can, WLOG,
assume that the sample size is large enough so that m = m;. For the rest of the paper, m
will be used to denote both the number of population innermost intervals and the number
of sample innermost intervals. Also we shall suppress the qualifier w.p.1 throughout the
rest of the paper to avoid repetition.




Let s, = (Sn1, Sn2, - - - » Snm) be a solution of (2.2). For sufficiently large n, the s,;’s are
the masses assigned to the innermost intervals by the SCE. Since {H,,n > 1} is a bounded
monotone sequence, it follows from Helly-Bray selection theorem that there exist a subse-
quence, say {nx}, of integers, a function H and a vector s, such that lim,, . Hp, (z) =
H(z) and lim,,, 00 Sn, = S = (81,82,..,8m). Taking the limit in (2.2) and (2.3) with
respect to ng, we obtain

0;i8; ] ik
Z 5 el —, 520, j=1,..,m, > s;=1, (3.1)

—m < .
k=1 azksk =1

where 8;; = I(A; C |12,7¢]), and

H(z) - H(])
H:c:/ —————dQ(l,r) + P{R <z}, H €O, 3.2
since @), converges to @ almost surely as ng — 0o.
We state two lemmas. The proof of Lemma 1 is relegated to the appendix. Hereafter,
the discussion regarding uniqueness of the solution H(z) of Eq. (3.2) will be restricted to
the set O.

Lemma 1 Lets® = (s%,s3,...,55,) where s = P{X € A;},j=1,2,...,m. Thens =s°
is the unique solution of Eq. (3.1).

Lemma 2 (Li, Watkins and Yu, 1997) Let dH be the measure induced by a c.d.f. H and
sj = dH(A;) for all j. Thens = (s1,...,5m) s a solution to Eq. (3.1) if and only if H is
a solution to Eq. (3.2).

Theorem 1 Suppose Sg and Sg contain finitely many points. Then (1) F is the unique
solution of Eq. (3.2) for x € O, and (2) the SCE H,(z) of F(x) satisfies sup,co |Hn(z) —
F(z)] = 0, as n — oo.

Proof. Since s = dF(4;), F is a solution of Eq. (3.2) by Lemmas 1 and 2. Mean-
while, for each solution H of (3.2), dH is uniquely determined by Lemmas 1 and 2 again.
Consequently, statement (1) follows.

It follows from the convergence of H,, and (1) above that H,, (z) = F(z) as ny — oo
for z € O. The convergence of H,(z) to F(z) for z € O follows from Helly-Bray selection
theorem. The uniform convergence of H, is immediate by the assumption that Sr and
S¢ contain only finitely many points. o

REMARK. Even though F(z) is not estimable for z € (7,7,), it is easy to see that
H(7.)— H(m) = F(1.) — F(7;). This remark is also valid for model (2.7). Moreover, under
model (2.7) F'(z) is not estimatable for z < a or > b.

4. Consistency Of H, For Arbitrary F




In this section, we extend the result of the previous section to the case where G is the
same as previously defined but F is arbitrary.

Theorem 2 Suppose that (Y, Z) takes on finitely many values and F is arbitrary. Then
the solution to Eq. (3.2) is unique. Furthermore, H,(z) converges to F(z) uniformly for
allz € O.

Proof. The main idea of the proof is to partition the interval [0,00) into finitely many
subintervals, and then to prove the consistency of the SCE for every such subinterval.

WLOG, assume that the values that (Y, Z) can take are (a;,b;), ¢ = 1, ..., Ng, for
some integer Ng. Rank the 2Ng values {a;, b; } in increasing order to obtain a sequence
(ties and infinity are allowed). Let dy < d3 < --- < dy (N < 2Ng) be the distinct finite
values of the sequence. We first partition [0, c0) into

[0, O], (0, dl), [d], dl], (dl,dg), ceny [dN, dN], (dN, OO) (41)

Note that in this partition, all exact observations in the same interval (d;,d;+1) (or [d;, d;])
carry the same weight. This is because for any observed interval, if (d;,d;41) (or [d;,d;])
is not a subset of the interval, then it is disjoint from the observed interval, and because
the weight received by an innermost interval is determined by all the observed intervals
that cover the innermost interval (see (2.2)).

For a fixed € > 0, if there is a value d in an open interval (d;,d;+1) such that P{X =
d} > €, divide the interval into (d;,d), [d,d], (d,d;+1). Perform the partitioning for every
“such d. Since the set of such d values is finite, the total number of intervals partitioning
[0, 00) must also be finite. WLOG, assume (4.1) is the final partition at this stage.

Consider an interval, say, (d;,ds), such that F(d;—) — F(dy) > 0. For this fixed e,
partition (dy, dz) into subintervals, say (c1, ¢2), [c2, 2], (€2, €3, ), - -, (Cky Ckt+1) (€1 = di and
ck+1 = d2) such that F(c;y1—)—F(c;) < efori=1,2,...,k. Perform this second partition
for every interval (d;,d;+1) and [d;,d;] for all i = 0,1,..., N, where dy = 0.

From now on, we focus our discussion on (dj,d3). The argument for other intervals
is similar. Let ¢} be the midpoint of the interval (c;,ciy1), ¢ = 1, ..., k, and construct a
new (pseudo) distribution function F’ with finite support, F'(d;) = F(d;) and F'(c}) —
F'(c;—) = F(ci+1—) — F(c;), for all i. It is readily seen that

sup |F(z) — F'(z)] <e (4.2)

It can be verified that if (7, 7,.) is not an empty set, then one of (d;, d;+1) must be (7, 7.),
due to the special structure of partition (4.1). In addition, since consistency is restricted
to O, it is natural to assume that Sp N (dy,dy) C O. Moreover, since F(dy—) — F(d;) > 0
and S r N (d1,d2) C O, the probability of having exact observations in (d;, ds) converges
to one as n — 0o. Thus, for n large enough, we can eventually observe exact observations
in the interval and hence (d1,d2] cannot be an half open innermost interval.

Consider a pseudo random variable X' = 3 [, I(X € (¢, civ1) + GI(X = ¢)].
Note that X’ has the distribution function F’. Suppose there are h exact observations
in (c;,ci4+1), then the pseudo random variable X’ will assume the value ¢, as an exact
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observation a total of A times. For sample size n, let w,; denote the weight received by
all exact observations in (¢;,¢i41), and let w!; = wy,; be the weight received by ¢, from
the pseudo observations generated by X’. Let H! denote the corresponding SCE of F”’
associated with X’ and H,, the SCE of F associated with X. It is easy to see that for each
i and D, = (di,di+1) or [dz,dz],

dHn(D;) = dH,(D;). (4.3)

By the results of the previous section and the finiteness of support of F/, H, (d;) — F’(d;)
for each i as n — co. Thus, it follows from (4.2) and (4.3) that when n is large enough,

sup |F(z) — Ha(z)] < (4.4)

which proves the consistency of the SCE H,,. By Helly-Bray selection theorem and the
fact that F' is a solution of (3.2), (4.4) also shows that F' is the unique solution of (3.2). o

Appendix
In this appendix, we give a proof of Lemma 1. To show the uniqueness of the solution
of (3.1), consider the generalized log-likelihood function '

A= A(S) = Zei (an&iij).

i=1

It follows from (2.2) that Z;nzl 0;8; > 0 for every 4, 1 < ¢ < v and hence the function
A is well defined. Let s® = (s§,s5,...,55,) denote the solution of Eq. (3.1) and s° =
(s¢,89,...,82,) the probability vector with s? =P{X € A;}.

To facilitate the prodf of Lemma 1, we first establish three lemmas. Following the
notations of Section 3, let I; = |I¢,r?] and e; = P{|L,R| = I} = a?g;, where

1
o =P{XeL}=) 0§;s i=1,.,v, (A.1)
i=1

and g; = P{|Y,Z| =L} ifl¢ <rand P{I? ¢ (Y,Z)} if I =r?. Thus ) ,02¢9; =) ,€; =
1. It is seen that s° uniquely determines a° = (af,a3,...,a%). Let a = (o, ..., ay), with
o; = Z;nzl dij8j. Then A can be rewritten as

A(s) = z”: eilna; = A(a).
=1

Thus maximizing A(s) is equivalent to maximizing A(a). Note that o, e; and g; are fixed,
but «; are not.




Let X be a random variable such that P{X, € A;} = s, j > 1. Define a new random
interval | L,, Rs| to be the counterpart of | L, R] in (2 1) with X replaced by Xs. Thus oy
satisfles a;9; = P{|Ls, Rs| = I;}. It follows that

Lemma A1l Suppose a satisfies (A.2). Then A(a) is uniquely mazimized by a°, where
a? =e;/g;.

Proof. Let t; = a;g;, i =1,...,v. Thent; € [0,1] and Y, ¢; = 1. Let h(t) = 3_;_, e;Int;.
Note that
Zellnaz—{—z:ezlng,—)\ —{—Ze,lngz

and ), e;Ing; is fixed under the given assumption. Hence, maximizing A(a) is equivalent
to maximizing h(t). It can be shown that h(t) is uniquely maximized by ¢; = e;, ¢ > 1.
Therefore, the unique maximizer for A(a) is af = e;/g;. o

Lemma A2 s° is the unique mazimum point of A(s).

Proof. Following the notations in Lemma A1, we have A(s) = A((a(s)). By Lemma A1l and
the equality a(s®) = a° (due to (A.1)), s° is a maximum point of A(s). By the finiteness
assumption on Sr and Sg, each population innermost interval is a realization of | L, R,
say, A; = I;;, except perhaps (7, 7,) if (7, 7,) is not an empty set. Thus (A.1) implies
that there are at least m — 1 (out of v) js such that of, = s7. Since A((a(s)) is uniquely
maximized by a°, s° is the unique maximum point of A(s). o

Lemma A3 s? > 0 implies that s§ > 0.

Proof. Note that for each k, if P{X € Ag} > 0, then there is an integer h such that
Iy, = Ay and thus dpr = 0 if h # k and 1 otherwise. For j = k, Eq. (3.1) yields

8% .
s3> ehs—’: =ep, >0 (since I, = A and e, > 0).
k

This completes the proof of the lemma. o

We are now ready to prove Lemma 1. By Lemma A2, s° is the unique maximizer
of A. Thus, to prove the lemma, it suffices to show that s® = s®. Consider the effect of
increasing a particular component, s, by a small amount v and then dividing all the s;,
including sx + u, by 1 + u in order to ensure that the components of s sum to 1. Let
di(s) = -f;% weo- Lhen

8 81 Sk +u Sm
. d .
k(s) = (1+u T 14w’ 14w

9
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Consider two separate situations regarding the values of sf.
CASE 1. s > 0, for all k.
If s° is a solution to (3.1), then it follows that sf, > 0 for all k. Consequently,

0= Zez( —W) k=1,..,m, (A.4)
A

since Y_;_; e; = 1. In view of (A.3) and (A.4), dx(s®) = 0 and s¢ > 0 for each k. Therefore,
s® is the maximum point of L. By Lemma A2, s¢ = s°.
CASE 2. s7 = 0 for some k.

WLOG, assume that s, = 0 and s§ > 0 for £ = 1,2,...,m — 1. We shall show
that s7, > 0 leads to a contradiction. If s, > 0, then s > 0 for all ¢ by Lemma A3.
Consequently, (A.4) holds. By virtue of (A.3) and (A.4), s® is a maximum point of A, and
it follows that s® = s°. However, this contradicts the hypothesis that s¢, > s% = 0. This
completes the proof for Case 2 and thus the proof of the lemma. o
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ABSTRACT

We consider the case 1 interval censorship model in which the survival time has an arbitrary
distribution function Fy and the inspection time has a discrete distribution function G. In such
a model one is only able to observe the inspection time and whether the value of the survival
time lies before or after the inspection time. We prove the strong consistency of the generalized
maximum-likelihood estimate (GMLE) of the distribution function Fo at the support points of
G and its asymptotic normality and efficiency at what we call regular points. We also present a
consistent estimate of the asymptotic variance at these points. The first result implies uniform strong
consistency on [0, 00) if Fy is continuous and the support of G is dense in [0, 00). For arbitrary
Fo and G, Peto (1973) and Turnbull (1976) conjectured that the convergence for the GMLE is
at the usual parametric rate ni. Our asymptotic normality result supports their conjecture under
our assumptions. But their conjecture was disproved by Groeneboom and Weliner (1992), who
obtained the nonparametric rate n3 under smoothness assumptions on the Fo and G.

RESUME

Nous considérons le modéle de censure d’intervaile de cas 1 dans lequel le temps de survie
a une fonction de répartition arbitraire Fo et le temps d’inspection a une fonction de répartition
discréte G. Dans un tel modéle on est seulement capable d’observer le temps d’inspection et si
la valeur du temps de survie est superieure ou inférieure le temps d’inspection. Nous prouvons
convergence forte de Iestimateur du maximum de vraisemblance généralisé (GMLE) de la fonction
de répartition Fy aux points de support de G et sa normalité asymptotique et I’efficacité a ce que
I’on appelle les points réguliers. Nous présentons également un estimateur convergent de la variance
asymptotique  ces points. Le premier résultat implique une convergence uniforme forte sur [0, 00)
si Fy est continu et le support de G est dense en [0, 00). Pour des Fo et G arbitraires, Peto (1973)
et Turnbull (1976) ont conjecturé que la convergence du GMLE est au taux paramétrique habituel
de nt. Notre résultat de normalité asymptotique supporte leur conjecture sous nos hypothéses.
Mais leur conjecture a été réfutée par Groeneboom et Wellner (1992) qui ont obtenu le taux
non-paramétrique de n3 sous des hypothése de Fo et G lisses.

1. INTRODUCTION

In survival analysis, one frequently is unable to precisely observe the survival time X

*This work was partially supported by NSF Grant DMS-9402561 and DAMDI17-94-J-4332 (Q.Y.), LEQSF
Grant 357-70-4107 (L.L.), and DAMD17-94-J-4332 (G.Y.C.W.).
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of interest, but can only assess that it belongs to some random interval. The simplest such
model is the so-catled case 1 interval-censorship model. In this model one is only able
to observe a random time Y and whether x lies in the random interval {0, Y] or (Y, 00).
More formally, one observes (Y, A), where A = I[X < Y]. Here and below I[A] denotes
the indicator function of the event A. The random time Y is called the inspection time.

Such data arise in industrial life testing and medical research. Consider for example an
animal sacrifice study in which a laboratory animal has to be dissected to check whether
a tumour has developed. In this case, X is the onset of tumour and Y is the time of the
dissection, and we only can infer at the time of dissection whether the tumour is present
or has not yet developed. Other examples are mentioned in Ayer et al. (1955), Keiding
(1991) and Wang and Gardiner (1996).

We shall assume throughout that the lifetime X and the inspection time Y are indepen-
dent and denote their distribution functions by Fo and G, respectively. Our data consist
of n independent copies (¥;,A;) = (Y, IIX; < YD), i =1,....n, of (Y,A). We consider
estimating (characteristics of) the distribution function Fo based on these data.

Ayer et al. (1955) derived the explicit expression of the generalized maximum-
likelihood estimator (GMLE) of the distribution function Fo. Moreover, they established
the weak consistency of the GMLE at continuity points x of Fo under additional assump-
tions on G. They also mentioned the strong consistency of the GMLE at each support
point of a discrete ¥ with finitely many values. Using an inequality of theirs, we shall
generalize this result to arbitrary discrete Y in our Theorem 2.1. From this result we
shall derive the uniform strong consistency on the entire line if Fy is continuous and the
support of Y is dense in the positive half line. Moreover, using Theorem 2.1 of Ayer et
al. (1955), we shall derive another explicit representation of the GMLE at what we call
regular points and conclude with its aid the asymptotic normality and efficiency of the
GMLE at such points.

Peto (1973) considered the problem of obtaining the GMLE based on interval-censored
data using a Newton-Raphson algorithm. Tumbuil (1976) proposed a self-consistent
algorithm and showed that it converges to the GMLE F. Both conjectured that for
arbitrary Fy and G, the GMLE is asymptotically normal at the usual n rate. Thus
our results provide a partial justification of their claim for discrete Y. It was, however,
shown by Groeneboom and Wellner (1992) that this conjecture is false if Fp and G
satisfy certain smoothness assumptions. Indeed, their Theorem 5.1 establishes that under
differentiability assumptions on Fy and G the convergence is at the slower n’ rate and
the limiting distribution is not normal. Groeneboom and Wellner (1992) also obtained
the uniform strong consistency of the GMLE for continuous Fp and G. A variant of this
result was also proved by Wang and Gardiner (1996) using a totally different approach
and a slightly different set of assumptions. ‘

The results of Groeneboom and Wellner (1992) give a fairly detailed description for
the case of continuous Fy and G, while ours do so for the case of arbitrary Fy and discrete
G. There are many practical situations in which Y is discrete. In medical research, for
example, the data are often recorded as integers (to represent number of days, weeks etc.).
Motivated by this, we assume that the inspection time Y is a discrete random variable
with density g. This assumption is used by several authors in survival analysis: Becker
and Melbye (1991) and Finkelstein (1986) among others.

Our paper is organized as follows. We introduce the GMLE in Section 2 and prove
its strong consistency. In Section 3 we establish the asymptotic normality and efficiency
of the GMLE at what we call regular points. Finally, Section 4 summarizes our work,
discusses some of its implications, addresses some questions raised by it and establishes
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connections with the work of others. In particular, we show by means of an example

that our asymptotic normality result fails at nonregular points even though the rate of
. . ]

convergence is still nz.

2. THE CONSISTENCY OF THE GMLE

By our assumptions, Y is a discrete random variable with density g. Let 4 be the set
of possible values of ¥, i.e., 4 = {a € R : g(a) > 0}. For a € 4, set

e 1
Ni@==~3 IX;<a Y;=adl,
j=t

1 n
Ni@=~3 1X;>a, Y;=a]
J=1

l n
Nn(a) = ~ S IY;=a). .
j=1

The generalized likelihood is given by

An(F) = H F(a)™ @{1 — F(a)}"™@,
aeq

In the above we let F range over the set F of all subdistribution functions. A function F
is called a subdistribution function if F = aF for some distribution function F; and some
number a in [0, 1]. Thus a subdistribution function has all the properties of a distribution
function except that its limit at infinity may be less than 1.

Note that A,(F) depends on F only through the values of F at the points a € A for
which N,(a) > 0. Thus there exists no unique maximizer of A,( F) in the set ¥ . But there
exists a uniquely determined F -valued random element I:",, which maximizes A,( F) and
satisfies F,(b) = sup{ F,(a) : a < b, Ny(a) > 0} for each b € R. Here we interpret the .
supremum of the empty set as 0. We call F, the GMLE of Fy. It is easy to check that
Fo(Y1)) = 0 on the event {N; (Y;;) = 0} and F,(¥,y) = 1 on the event {N}(¥(,)) = 0},
where Y1y and Y, are the smallest and largest among Y},...,Y,. For latter use, set

P — {gv"—(a)/Nn(a) if Ny@>0,

otherwise.

TuEoREM 2.1. The GMLE F, satisfies Fua) — Fola) almost surely for each a € 4.
Proof. We use the following inequality given in Ayer et al. (1955, p. 644):

Y {Fu(@) — Fo@}YNy(a) < Y { Fula) — Fo(@)}*Ny(a).
acA a€a

We get

Y A Fu@ — Fo@PNof@) < Y IN@) = g(@)| + 3 { Fala) — Fo(@)}g(a).

aea a€A a€c
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It follows from the SLLN that for each a € A, Ny(a) — g(a) and F,(a) — Fo(a) élmost
surely. Thus Scheffé’s theorem (see Billingsley 1968, p. 224) implies

Z INu(a) — g(a)) — 0 almost surely
ueq

and the Lebesgue dominated-convergence theorem implies

Z{ Fu(@) = Fo(@)}’g(@) — 0  almost surely.
acA

It follows that 3", { Fy(a) — Fo(a)}*N,(a) — 0 almost surely. This yields the desired
result, as N,(a) is eventually positive with probability 1 foreacha e 2. O

The above result was already observed by Ayer et al. (1955) in the case when 4 is
finite. In this case one can even conclude that the GMLE is uniformly strongly consistent
onA, i.e., Supyeq | Fya)— Fo(a)| — 0 almost surely. For countably infinite 4, however,
additional assumptions are required to conclude this, as demonstrated by the following

. example.

Example 2.2. Suppose A = {y; :y; = 1 —1/i, i > 1} and G(y) =y fory € 4. Then
the GMLE will not be uniformly strongly consistent on 4 if 0 < F(1-) < 1.
Proof. Let Q, = U:'=,ﬂ#,.{X,- <Y, ¥; < Yi}. Then Q, C {N*(Y(,) = 0}. Since
Fu(Y) = 1 on the event {N*(Y(s)) = 0}, as observed prior to Theorem 2.1, and since
Fy(1-) < 1, we cannot have uniform strong convergence if lim inf,_, P(Q,) > 0. But

n
P(%,) = nP (ﬂ{xl <Y, %<y }) > 1 Fo(ya{G(ya—)}"" ' P(Y) 2 y,)

j=2
so that by the choice of 4 and G

. . 1\
Iim inf P(Q,) > lim inf Folyn) (l - ——) =
n—od n—o0

n—1

Consequently, the GMLE is not uniformly consistent on 4. O
We now address the uniform strong consistency.

CoroLLARY 2.3. Suppose the set A is closed. Assume that F ola—) = Fy(a) for eacha € 4
for which there is a strictly increasing sequence of points {ai}i1 in A such that a; 1 a.
Then the GMLE is uniformly strongly consistent on 4.

Proof. Let m be a positive integer. Let 4; = {aed:xiy<a<x}i=1,....m,
where xy = —00, x,, = 00 and x; = inf{x : Fo(x) > i/my,i=1,....m—1 Letac 4.
Thena € 4, forsome i = 1,...,m. Since 4 is a closed set,a; = inf 4; and b; = sup 4;
belong to 4. Using the monotonicity of £, and Fy, we find that

|Fa(@) — Fo@)| < max{] Fo(b;) — Fo(bi)|, | Eu(ar) — Folap)|} + Fotbs) — Folay).

If b; < x;, then Fy(b;) — Fo(a;) < 1/m. If b; = x;, then Fo(x;)) = Fo(xi—) = i/m and
Fo(bi) — Fo(a;) < 1/m. This shows that lim SUPn—oo SUPuca [Fu(a) — Fy(a)] < 1/m on
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the event Q. = (,ea {limp—co F,(a) = Fo(a)}. Since m is arbitrary and P(Q,) = 1 by
Theorem 2.1, we obtain the desired result. O

In the next corollary, the set 4 need not be closed.

COROLLARY 2.4. Assume that A = {a;}i>1, where a; < a4 for all i. Let T = sup; a;. If
Fo(t—) = 1, then the GMLE is uniformly strongly consistent on a.

Proof. Let m be a positive integer. Since

sup | Fula) — Fo(@)] < max | Fu(ai) — Folan)] + 1 = Foldm),
aca 1<i<m

it follows from Theorem 2.1 that lim Sup, ..o SUPaca | F.(a) — Fo(a)] <1 — F(an). The
desired result follows, as m is arbitrary and Fo(t—) = 1. a

We call a number x a point of increase of Fo if either Fy(x) < Fo(y) for all y > x or
Fo(y) < Fo(x) for all y < x. Note that, for each « in the interval (0, 1), the left quantile
Fy'(o) = inf{y : F(y) 2 a} is a point of increase of Fo.

COROLLARY 2.5. Suppose that Fy is continuous and the closure of A contains the set S
of all points of increase of Fo. Then the GMLE is uniformly strongly consistent, Le.,
supxer | Fr(x) — Fo(x)| — O almost surely.

Proof. Let F\,F3,... be subdistribution functions such that F,(a) — Fo(a) for alla€e 4.
Let m be a positive integer. Since Fo is continuous, there are points x; < - -+ < Xy in S such
that Fo(x;) = i/(m+1). The continuity of Fy and the fact that the closure of 4 contains
S imply that there are points a; < -+ < Gm in 4 such that | Fo(a;) — Fo(x)| < 1/m2.
Using this and the monotonicity of Fo and F, we derive that

3
| Fo(x) — Fox)| < max | Fala;) — Folap)| + ~  XE R.

This shows that F, converges to Fo uniformly. i
By the above, the events [\ cq { Fx(@) — Fo(@)} and {supxer | Ey(x) — Fo(x)| — 0}
are identical and thus have probability 1 by Theorem 2.1. O

3. THE ASYMPTOTIC NORMALITY OF THE GMLE

We shall now discuss asymptotic normality and efficiency of F,(x) for regular points
x as defined next. Let 4, = A U {—o00,00}. For x € R, set

x_:=sup{la€A,:a<x} and Xx,:= inflac 4, :a>x}.

We say x is a regular point if x belongs to 4, x— and x, belong to A,, x_ <x <X and
Fo(x-) < Fo(x) < Fo(x4). It is worth mentioning that there may be infinitely many regular
points. For example, if Fy is strictly increasing and 4 is the set of all positive integers,
then every positive integer is a regular point. The conditions imposed on regular points
are somewhat similar to the assumption that Fy and G have positive and continuous
derivatives needed in the asymptotic distribution result of the GMLE (see Groeneboom
and Wellner 1992). However, their convergence rate is n%, while we shall show that the
convergence rate is n? under our assumptions.

Given a regular point x, F,(x) may or may not be the same as F,(x), as shown by
the following example. Suppose that F is the exponential distribution function and A=
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{1,2}. Then both 1 and 2 are regular points. If a sample of size 3 consists of observations
{(1,0), (1, 1),(2, )}, then (F(1), F(2)) = (4, 1), which is the same as (F(1), F(2)). On
the other hand, if a sample of size 3 consists of observations {(1,0), (1, 1), 2, 0)}, then
(F(1),F(2)) = (,0), which is not the same as (F(1),F@) = (4, 1). However, the
following lemma shows that the two estimators differ only on a set whose probability
tends to zero.

LeEmma 3.1, Suppose x is a regular point. Then P( f’,,(x) = 1:",,(,\’)) — 1.

Proof. Assume first that x_ and x; belong to 4. Let B, = {F,,(x_) < I:’,,(x) < ﬁ‘,,(x+)}
and C, = {N,(x_) > 0, N,(x) > 0, Ny(x,) > 0}. It follows from Theorem 2.1 and
Fo(x-) < Fy(x) < Fo(x,) that P(B,) — 1, and from the SLLN that P(Cy) — 1. In view
of Theorem 2.1 in Ayer er al. (1955), we have, on the event B, N C,,

Falxeo) < Fod) < Fuo) < Fox) < By,

That is, I:‘,,(x) = F,(x). Thus the desired result follows, as P(B,NC,) — 1. This proves
the claim when x_ and x, belong to 4. '
Ifx, €4 and x_ € 4, then Xs+ = 400, since x is a regular point. Let

By ={F,(x))<F,)<1} and C'= {Nu(x=) >0, N,(x) > 0}.

It follows from Theorem 2.1 and Fyo(x~) < Fy(x) < 1 that P(B}) — 1, and from the
SLLN that P(C;) — 1. In view of Theorem 2.1 in Ayer et al. (1955), we have, on the
event BY N CJ, that F(x_) < Fo(x) < Fo(x) < Fy(x). That is, F,(x) = F,(x). Thus
the desired result follows, as P(B7 M Cy;) — 1. This proves the claim when x_ but not
x; belongs to 4.

The proof when x, but not x_ belongs to 4 is similar and will be omitted. [J

The above result shows that F,(x) has the same asymptotic properties as F,(x). Thus
the following result is immediate.

THEOREM 3.2. Let x be a regular point. Then

« IY = s
Fu(x) — Fo(x) = %Z —[ng)x]{Aj - Fo(x)} + Op(n_i).

j=1

Consequently, n%{f’,,(x) — Fo(x)} is asymptotically normal with mean 0 and variance
Fox){1 — Fo(x)}/g(x). This asymptotic variance can be consistently estimated by
f’,,(x){l - ﬁ',,(x)}/N,,(x). Also, if xy < -+ < x,, are regular points, then n%{f’,,(xl) -
Fo(xy),..., F,,(x,,,) ~ Fo(x)} is asymptotically normal with mean vector 0 and diagonal
covariance matrix,

Let us now address efficiency considerations. For this fix a regular point x. It follows
from the above theorem that Fyu(x) has influence function Y given by

I[Y = x]
———{A — Fy(x)}.
gx) { o}

We shall now show that Y is the efficient influence function for estimating Fy(x). This
will show that F,(x) is a least-dispersed regular estimator of Fy(x). The reader unfamiliar
with these concepts should consult the monograph by Bickel et al. (1993). Let # be

YA, Y) =
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the set of all measurable functions such that [hdFy = Oand | W dFy <oo.Forh € H
define a sequence F, of distribution functions by

Fou(t) = / (1+n~th)dFy, 1ER,
(—o00.1]
where h, = hI[2{h| < n}] — [ hIT2|h| < n7] dFo. Then

n? { Fpn(x) — Fox)} — H(x) = / h dFy.

(—oo.x]

The tangent (or score function) T, associated with the perturbed distribution Frp is given

b
g 1—a ) _ HOO{A = Ry}
1= Fo(Y)] ~ Fo(M{1 — Fo(")}

Finally, it is easy to check that E {p(A, YA, Y)} = H(x). Since this holds for all

he# and since ¥ is a tangent, i.e., Y = T, for some heH with HY)=1I[Y =x]
Fo(x){1 —Fo(x)}/g(x), we obtain that v is the efficient influence function if G is known.
However, V is also the efficient influence function if G is unknown, as the tangents for
G are orthogonal to the tangents {w:heH } for Fo.

A
(A, Y) = H(Y) (FO(Y) -

4. CONCLUDING REMARKS

The main results of our paper are given in Theorems 2.1 and 3.2. Theorem 2.1 gives the
strong consistency at each point in A, while Theorem 3.2 obtains asymptotic normality
at regular points. Thus F,(x) is both strongly consistent and asymptotically normally
distributed at each regular point x. Typically, consistency fails to hold for points of
increase that are not in the closure of 4. Also, the asymptotic normality result may not
hold for nonregular points, as the following example shows.

Example 4.1. Assume that 4 consists of just four points, namely a; < a; < a3 < da4,
and that 0 < F(a)) < F(a) = F(a3) < F(as) < 1. On the event A, = {Fula)) <
F(a2) < Fu(as) < Fu(as)} we have F(a;) = Ful@), i = 1,...,4, and on the event
B, = { Fala) < Fol@) < Fulaa), Fal@) < Fula) < Fu(as), Fa(az) > Fu(a3)} we have
Fu(a)) = Fu(a) for i =1, 4 and F.(ay) = Fa(as) = Fp, where

g N; (a2) + N, (a3)
Nn(a2) + Nu(as) -

It follows from the SLLN that P(A, U B,) — 1. This shows that the asymptotic dis-
wribution of v/n(Fa(az) — Fola2), Fulaz) — Fo(as))" is the same as that of /n(Fy(a2) —
Fo(az), F3(as) — Folas))T, where (F;(@), F (@) = (Fu(@), Fu(@)) if Fa(az) < Folas),
and Fl(ay) = Fy(a3) = F, if Fa(az) > Fu(az). An application of Slutsky’s theorem
yields that the asymptotic distribution of Jn(Ex(ay) — Fola), Fr(as) — Fo(as))" is the
distribution of the bivariate random vector Z* defined by

z* Z g(a2)Z, +glas)Z; (1
Zt = ‘):(2)12<z ()12 Z,
<z; 2, ) =B T re@ i 2>z}

where Z, and Z3 are independent normal random variables with zero means and variances
F(a){1 — F(a»)}/g(az) and F(a3){1 — F(a3)}/g(a3), respectively. One can check that
the distributions of Z; and Z; are not normal.

e
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The corollaries in Section 2 address uniform strong consistency under different sets of
assumptions. Corollary 2.3 implies that the GMLE is uniformly strongly consistent on
A if F is continuous and A4 is closed. Corollary 2.4 gives uniform consistency on 4 if
this set is generated by an increasing sequence. If F is increasingand 4 C {x e R: 0 <
F(x) < 1}, then the assumptions of Corollary 2.4 imply that each point in 4 is regular
and thus, in view of Theorem 3.2, the asymptotic normality at each point in 4.

Corollary 2.5 is of interest from a theoretical point of view in that it provides conditions
that guarantee the uniform strong consistency on the entire line. From a practical point
of view the imposed conditions are rather unrealistic. For example, if F is the uniform
distribution on {0, 1], then 4 has to contain a dense subset of [0, 1]. But distributions
G with this property are rarely encountered in practice. Note also that the assumptions
of Corollary 2.5 rule out the existence of regular points, so that we cannot conclude the
asymptotic normality from Theorem 3.2. ,

It is an open question whether the parametric convergence rate holds at each point in
A. Since one can show that F, has parametric convergence rate at each point in 4, we
conjecture that the GMLE has the same property although the limit might not be normal
as Example 4.1 shows.

Groeneboom and Wellner (1992) showed that the GMLE is uniformly strongly con-
sistent if Fp and G are continuous and Pr, < Pg. The latter means that the probability
measure Pr, induced by Fy is absolutely continuous with respect to the probability measure
Pg induced by G. In view of our Corollary 2.5, we expect the uniform strong consistency
also if Fy is continuous and if G is a mixture of a continuous distribution function and a
discrete distribution function which satisfies the assumptions in Corollary 2.5.

Groeneboom and Wellner (1992) showed that under the additional assumption that Fy
and G have positive derivatives at a point 1, the convergence rate of ﬁ‘,,(to) is ni. It is
an open question whether the rate n7 is still valid without this additional assumption.

Our parametric convergence rate n: in Theorem 3.2 is in constrast to the nonparametric
convergence rate n3 under their assumptions. Our Theorem 3.2 is trivially true under the
assumption that both X and Y take on the same finitely many values. In this case,
the problem reduces to the estimation of the parameters of a multinomial distribution
function, which is a parametric problem giving the usual n} convergence rate. This
simple fact was noticed without proof by Peto (1973) and Turnbull (1976) as they both
conjectured (incorrectly) that the GMLE has a convergence rate n? in general. We have
established the parametric convergence rate of the GMLE for the first time under the
assumption that X and Y may take infinitely many values.
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ASYMPTOTIC VARIANCE OF THE GMLE OF A SURVIVAL
FUNCTION WITH INTERVAL-CENSORED DATA
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SUMMARY. Interval-censored data are generated by a random survival time X and a
random censoring interval. We either observe the exact survival time or only know the survival
time lies within the censoring interval. Turnbull (1976) proposes a self-consistent algorithm for
obtaining the generalized maximum likelihood estimator (GMLE) of a survival function with
interval-censored data. Yu, Li and Wong (1996) prove the strong consistency of the GMLE. In
this paper, we establish the asymptotic normality of the GMLE and self-consistent estimators
(SCE) and present a consistent estimator of the asymptotic variance of the GMLE and SCEs
with interval-censored data.

1. Introduction

We consider the nonparametric estimation of distribution function F of a
survival time X with incomplete observations due to interval censoring. Interval-
censored (IC) data are bivariate observations (L, Ri), ¢ = 1,...,n, where L; <
R;. If L; = R;, then a survival time X; = L; = R; is observed and we say it is
an ezact observation; if L; < R;, then X; is censored and a censoring interval
(L, Ri] is observed instead.
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survival analysis.
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data for the case 2 interval-censorship model are thus
(Y. Z, N < GLITY < X, <41, j=1,...,n,

where (X1, Y1,2y),...,(X,, Ya,Z,) are independent copies of (X,Y,Z ) and I[A] is the indicator of the set A.

Groeneboom and Wellner (1992) considered the case 2 interval-censorship model with continuous % and
absolutely continuous G. They proposed an iterative convex minorant algorithm to calculate the GMLE and
proved the uniform strong consistency of the GMLE. They showed that the estimator of Fy obtained at
the first step of the iterative convex minorant algorithm converges to F, at the (nlogn)'3 rate and that its
asymptotic distribution is not normal. The asymptotic distribution of the GMLE remains unresolved. There are
other approaches to derive the GMLE. They include Peto’s (1973) Newton-Raphson algorithm and Turnbull’s
(1976) self-consistent algorithm. .

In this paper, we assume that Fy is arbitrary, but (¥,Z) is discrete. This assumption is used by several
authors (Becker and Melbye, 1991; Finkelstein, 1986). Let

o ={aeR: P(Y =a)+ P(Z=a)>0}

be the set of all possible values of ¥ or Z. We establish the strong consistency of the GMLE at each point
in /. From this we can then infer the uniform strong consistency of the GMLE if Ky is continuous and &7
is dense in [0,00). This is done in Section 2.

In Section 3 we consider the case of finite /. We obtain the joint asymptotic normality of the GMLE at
the usual /n rate for the points in o and present a consistent estimator of its asymptotic variance.

2. The consistency of the GMLE

Let % denote the set of all pairs (a,b) such that g(a,b)=P(Y =a, Z =b)>0. In other words, % is the set
of all possible values of (Y, Z). For (a,b) e B, let

1
N,,_(a,b) = -’-1— ZI[_XjSa,Y} =a,Zj=b],
=1

N(a,b) = % Y lla<X<b,Y=a,Z;=b],
J=1

1< :
N,,*"(a,b): ; _EII[X}>b’Y}=a’Zj=b]’
J:

n
Ny(a,b) = % > 1Y =a,z=b).
j=1

Then the generalized likelihood is given by

AFy= TI F@y™ @OFe) - FapHed - pepes
(a,b)ez

and the normalized generalized log-likelihood is

Lu(F)= Z {N; (ab)log[F (a)] + N2(a, b) log[F(b) — F(a)] + N, (a, b)log[1 — F(b)]}.
(ab)ez




Qiging Yu et al. | Statistics & Probability Letters 37 (1998) 223-228 225

Here and below we interpret 0log 0 =0 and log 0= — oco. In the above we let F range over the set F* of all
subdistribution functions. A function F, is called a subdistribution function if Fi =aF for some distribution
function F and a number a € [0, 1]. Note that A,(F) and Z,(F) depend on F only through the values of F
at the points a € .o¢. Thus there exists no unique maximizer of A,(F) over the set F*. However, there exists
a unique maximizer F, of A,(F) over the set #* which satisfies Eo(x) = sup{Fp(a): a<x, Yl =al+

I[Z; =a])>0} for all x € R. Here we interpret the supremum of the empty set as 0. We call F, the GMLE
of F.

Theorem 2.1. The GMLE F, satisfies E,(a)— Fy(a) almost surely for all a € of.
Proof. Verify that

LF)=E(L(FN=Y_ 9(a bhas(F)
(a,b)e #
with
ho(F) = Fo(a) log[F ()] + [Fo(b) — Fo(a@)]log[F(b) — F(a)] + [1 — Fy(b)]log[1 — F(b)].

It is easy to check that the expression A, ,(F) is maximized by a nondecreasing function into [0,1] F if and -
only if F(a)=Fy(a) and F(b)=Fy(b). Thus, Fy maximizes L(F) and any other nondecreasing function into
[0,1] that maximizes L(F) coincides with Fp at the points in /.

Note that Z,(Fo) = 3 ¥(X;, ¥}, Z;), where  is the map defined by

Y(x, y,2) =Ix <yl log(Fy(y)) + Iy <x <z]log(Fo(z) — Fo(»)) + Iz <x]log(l — Fo(2))-

Thus, it follows from the SLLN that Z.(Fp)— L(Fy) almost surely. By the definition of the GMLE,
ZL(Fy) = %(Fy). Consequently,

l,i;m iélof La(E) 2 liminf %, (Fy) =L(F) almost surely.
Let € denote the event on which liminf,_, oo &(Fy)=L(F) and, for each (a,b)€ %, N, (a,b) — Fo(a)
g(a,b),sup, N; (a,0)=0 if Fy(a)=0, NJ(a,b)— (Fo(b) — Fy(a)) g (a,b),sup, NJ(a,b)=0 if Fy(b)=Fo(a),
N*(a,b)— (1 — Fyp(b)) g (a,b) and sup, N,f(a,0)=0 if Fyp(b)=1. Fix an we Q. Let the function F* be a

limit point of F,(-,®) in the sense that Fy (a,w)—F *(a) for all a€ &/ and for some sequence {kn} of
positive integers tending to infinity. We now show that

L(F*)>L(Fy).
Let x;,(a,b) denote the value of the random variable
N (a,b)log(Fy,(a)) + Ng (a,b) log(Fx, (b) — Fr,(@)) + N (a,b) log(1 — Fi (b))

at the point w. Thus, by the definition of ',

lim inf > xi(a, b)2L(F)
(a,byeR

and

Xk, (a,b) — g(a, bYha o (F™)




| S

226 Qiging Yu et al. | Statistics & Probability Letters 37 (1998) 223-228

for each (a,b) € 4. Note also that xt,(a,5) <0 for all (a,b) € . Thus an application of Fatou’s Lemma yields

limsup " x(a,b) = — liminf > —x(a,b)
" byed T abea

<— ) liminf(~x,(a, b))
@bea "%

= ) g(a, B p(F*)
(a,b)eR
= L(F*).
Combining the above yields L(FR)<L(F*). As Fy maximizes L, we can conclude that L(F *)=L(Fb) and

therefore F*(a)=Fy(a) for all a € .o/. Since o was arbitrary and ' has probability one, we can infer the
desired resuit. []

If o is a finite set, then it follows from the theorem that the GMLE is uniformly strongly consistent on
/. For arbitrary .o/, the uniform strong consistency of the GMLE requires additional assumptions. The proofs
of the following corollary and theorem are similar to Yu et al. (1998) and are thus omitted here.

Corollary 2.2. Suppose that of is a closed set. Assume that Fy(a—)= Fy(a) for every a€ s/ for which there
is a sequence of points {ai}iz1 C o such that a;1a. Then the GMLE is uniformly strongly consistent on
A, Le., Sup,c , |Fy(a) ~ Fy(a)| — 0 almost surely.

We call 2 number x a point of increase of Fy if either Fy(x) <Fy(y) for all y>x or F(y) <Fy(x) for all
y<x.

Theorem 2.3. Suppose that Fy is continuous and the closure of o contains the set of all points of increase
of Fy. Then the GMLE is uniformly strongly consistent, i.e., SUp,eg [Fr(x) — Fo(x)| — O almost surely.

3. The asymptotic normality of the GMLE

In this section we shall obtain the asymptotic normality of the GMLE under the assumption that &/ contains
finitely many elements and

0<Fy(a)<Fy(b)<1 for all a,b in & such that a<b.

Note that under the current assumption the standard method for finite parametric models can be used. .
Let & denote the set of all distribution functions F which satisfy 0 <F(a)<F(b)<1 for all a,b in o7 with
a<b. For F€ # and ac ., let

_ N7(a,b)  N%ab) N°(a, b) _N;r(c,a)>
ZnalF)= Z (F(a) *F(b)—F(a))Jr Z (F(a)—F(c) 1-F(a))’

b: (a,b)e B c: (ea)e B
Ny (a,b) N(a,b)
gn,a,a(F): - Z (_n___ + *n___z
b Chea\ FX@) T (F®)-F(a))

NY(a,b) N (c,a)
> ((F(a) “Fy T ~F(a)>2)

c: (c,a)eR
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and
_ ___Nab)
gn,a,b(F)—gn,b,a(F_)— W’ a,be.sa{,a<b.
Then
_9Z(F) _ Al
L a(F)= T(a) and gn,a,b(F)—gn,b,a(F)—— m, abey.

Let gy <ay < --- <am denote the elements of <. For F e".g'” , let ,S?,,(F ) denote the m-dimensional column
vector with entries (%,(F)); = Lna(F), i=1,...,m, and Z,(F) denote the m x m matrix with entries

(ZaF))j = Snaa(F), ij=1,...,m.
Finally, set

I =E[Z (BN LaFo)) 1= ~ E[Z0(Ro)]
The matrix J is positive definite since

g(aiyaj)

J=D+ )
1<ig<m F0(8)) = Fo(a;)

(e —e;)ei — ¢)T,

where D is the diagonal matrix with positive diagonal elements

d_P{Y=a,} P{Z=a,}
" Fya) 1 - Fp(a;)’

and ey,...,e, denote the standard basis in R™. It is easy to verify that

b)) = E[Zo(Fo)] = — J.

=1,...,m,

It thus follows that on the event {F, e 7}
0= gn(ﬁ;!) = gn(ﬁ)) —J4, + Op(”An”)’

where 4, is the ng-dimensiona] column vector with entries F‘,,(a,-) ~ Fy(ay), i=1,...,m. It follows from
the CLT that n'22,(R) is asymptotically normal with mean O and dispersion matrix J. This shows that
4, =J7 P (R) + 0p(n~12). Thus, we have the following result.

Theorem 3.1. Suppose Fy belongs to &. Then

Fy(a) — Fyay)

nl/2

Fn(am) ~ Fy(am)
Is asymptotically normal with mean 0 and dispersion matrix J='. A strongly consistent estimator of J is
given by — L. (F;).
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We consider the problem of estimation of a joint distribution function of a multi-
variate random vector with interval-censored data. The generalized maximum
likelihood estimator of the distribution function is studied and its consistency and
asymptotic normality are established under the case 2 multivariate interval cen-
sorship model and discrete assumptions on the censoring random vectors.  © 1999
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1. INTRODUCTION

We consider the estimation of a joint distribution function F, of a multi-
variate random vector X = (X}, ..., X;) which is subject to interval censoring.
In interval censoring, the value of each ccordinate variable X; may not be
directly observable; instead, a pair of extended real numbers L, and R, such
that L,< X,<R, are always observed. The observations L, and R, satisfy
one of the following four conditions: L,= R, (exact), 0 =L, <R, (left cen-
sored), L, < R,= oo (right censored), and 0 <L, < R, < oo (strictly interval
censored). A d-dimensional interval-censored observation corresponding to
X is represented by the 2d-dimensional vector (L;, Ry, .., L, Ry).

Multivariate interval-censored data arise in a variety of life testing
situations and biomedical studies. We describe a clinical study in the

* Partially supported by Degér'tment of the Army DAMD17-94-J-4332 and DAMD
17-99-1-9390. g -

t Partially supported by NSF grant DMS-9402561, DAMD]7-94-J-4332 and Department
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156 WONG AND YU

following example that gives rise to bivariate (d=2) interval-censored
data.

ExaMpLE 1.1 (The Italian-American Cataract Study Group (1994)).
A total of 1399 persons, between 45 of 79 years of age, who had been
identified in a clinic-based case control study were enrolled in a follow-up
study between 1985 and 1988. The follow-up study was designed to estimate
the rate of incidence and progression of cortical, nuclear, and posterior sub-
capsular cataracts and to evaluate the usefulness of the Lens Opacities
Classification System II in a longitudinal study. Beginning in 1989, follow-
up lens photographs were taken and graded at a six-month interval.
Patients might skip some visits. Data were obtained from Zeiss slit-lamp
and Neitz retroillumination lens photographs at each patient’s visit. The
exact time that the event of interest occurred was only known to lié within
the period between two consecutive visits, or was right censored if by the
end of the study the event still had not taken place. Consequently, bivariate -
interval-censored data were encountered.

At present, nonparametric estimation of a joint distribution function
with multivariate interval-censored data has not been considered. A current
practice is to take the midpoint of the interval (L, R) as an exact observa-
tion unless it is right censored. Then Dabrowska’s (1988) Kaplan-Meier
estimator on the plane or van der Laan’s (1996) repaired generalized maxi-
mum likelihood estimator can be applied to such data. Another practice is
to treat the right endpoints of the interval-censored data as exact observa-
tions unless they are right censored (see Samuelsen and Kongerud (1994)).
However, these two practices will introduce bias in the analysis (Samuelsen
and Kongerud (1994)).

Multivariate right-censored data are special cases of multivariate interval-
censored data. References for monparametric estimation of distribution
functions with multivariate right-censored data can be found in Campbell
(1981), Hanley and Parnes (1983), Tsai et al. (1986), Dabrowska (1988),
Gill (1992), Prentice and Cai (1992), Lin and Ying (1993), and van der
Laan (1996), etc. '

Nonparametric estimation of a distribution function with univariate
interval-censored data has been studied by Peto (1973), Turnbull (1976),
Tsai and Crowley (1985), Chang and Yang (1987), Groeneboom and
Wellner (1992), Gu and Zhang (1993), and Yu et al (1996 and 1998),
among others.

In Section 2, we discuss generalized maximum likelihood estimation of
F, based on multivariate interval-censored data and formulate the case 2
multivariate interval censorship model. We establish consistency of the
generalized maximum likelihood estimate (GMLE) of F, in Section 3 and
asymptotic normality of the GMLE in Section 4.
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2. METHOD OF ESTIMATION

Let X =(X,, .., X;) be a d-dimensional random survival vector with a
joint distribution function Fy(x), where x=(x,, .., x;). The observable
random vector is (L, Ry, .., Lg, Ry), where L;< R, for all i. Suppose that

(Llls Rlls seey le’ Rld)s ey (Lnls Rnls ) Lnd, Rnd)

are iid. copies of (L, Ry,.., L, R ). We want to estimate the joint
distribution function Fg(x) (or the survival function Sy(x)=
P{X,>x,, .., X;>x,4}). Each univariate interval-censored data (L,, R,)
can be viewed as an interval I;, where

" ULy Ryl i Ly<Ry;

therefore, each multivariate interval-censored observation can be viewed as
a rectangular set S=1I;; x --- X[y, i=1,.,n

Define a maximal intersection (MI), A, with respect to the 4s to be a
nonempty finite intersection of the s such that for each i AnS=
or A. For example, let 4 =(0,2]x%x(1,3], £A£=(0,4]x(1,5], A=
(3,5]x(4,8], and 4 =(3,5]%(4,8]. Then the possible MDs are
(0,21 x(1,3] and (3,4] x(4,5]. Let {4,, .., 4,,} be the collection of all
possible distinct MT’s.

Using an argument similar to Hanley and Parnes (1983), it can be
shown that the GMLE of Fy(x) which maximizes the generalized likelihood
function, A4,, must assign all the probability masses s,, ..., s,, to the sets
Ay, .y A,,. Thus the generalized likelihood function is as follows:

A= ur(H) =11 [ S 104, < %) s,], 2.1)

im] jeml ljml

where ur is the measure induced by a distribution function F, 1(-) is the
indicator function, s (=(8y, wuy Spi—1)') €Dy, Spp=1—8;— +++ —5,,_1, 8 i
the transpose of the vector s, and D,={s;5,20,5,+ --- +5,_,<1}.
Denote the GMLE of s by § and that of F,, by F,.

The §;’s can be obtained by the self-consistent algorithm described by
Turnbull (1976) for univariate interval-censored data as follows: Let
s =1/m for j=1,.,m. Denote é,=1(4;,c.%). At the h-step, s{" =

11 (1n) (Bys D /xp, das$ ), j=1, .., m, h > 1. Repeat until the s;'s
converge. The justification of the convergence of this method for multi-
variate interval-censored data is similar to that given in Turnbull (1976) for
univariate data.
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Given a GMLE §, the GMLE of Fy(x) is not uniquely defined on an MI
unless the MI is a singleton. A GMLE of Fy(x) can be obtained as follows:

F(x)= Y 5. (2.2)

Ajc[o, xp1% -0 %[0, x4]

Remark 1. The GMLE of s may not be unique, as the following
example demonstrates. '

Suppose that a sample of size 4 consists of two-dimensional interval-
censored observations (1,6,1,3), (1,6,4,6), (1,3,1,6) and (4,6,1,6).
Then the MIs are 4,=(1,31x(1,3], 4,=(1,3]x(4,6], A4;3=
(4,61x(1,3] and A4,=(4,6]1x(4,6]. (81,82, §3,54)=r(1/2,0,0,1/2)+
(1—r)0,1/2,1/2,0) is a GMLE of s, for all re[0,1]. Thus there are
infinitely many expressions for GMLE. However, ug(£)=1/4, i=1, .., 4,
for all re[0,1].

In general, § may not be consistent under discrete assumptions.
However, the consistency of ¥, on a certain set will not be affected (for
more details, see Section 3).

The derivation of the GMLE only requires that the observations
4, ., S, are iid. To derive the asymptotic properties of the GMLE, we
need further assumptions on F, and the distribution function of
(Ll’ Rl: ] Ld’ Rd)

A set of univariate interval-censored data are referred to as case 2 data
if they consist of strictly interval-censored, right-censored or left-censored
observations, but do not contain exact observations. For such type of data,
Groeneboom and Wellner (1992) formulate the case 2 univariate interval
censorship model. We consider a natural multivariate extension of the
case 2 univariate interval censorship model in the following. '

Suppose (U, Vy,.., Us, V) is a random censoring vector and is
independent of X. The observable random vector (L,, R;,.., Ly R,)
is generated by the following formula.

(03 Ui) lf A,i< Ub
(L, R)=<{(U, V) if U<X,<V, i=1,.,d
(V;, +00) if X,>V,

We call this model a case 2 multivariate interval censorship model (C2M
model). In the next two sections, we shall discuss the asymptotic properties
of the GMLE under the C2M model. For ease of presentation and without
loss of generality (WLOG), we assumed d =2 hereafter.

]
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3. CONSISTENCY OF GMLE

In this section, we make the following assumptions under the C2M
model:

The censoring vector (U, V) is discrete. (3.1)
Let a=(a,, a;), b=(b;, b,), U=(U,, U,) and V = (¥, V,). Define
#A=1{(a,b): g(a,b)>0},  where g(a,b)=P(U=a, V=Db),
Note that each point in £ induces a grid of nine cells in R Let
oA, = {(xy, %,): x,€{a,, b, oo}, i=1,2,(a,b)e B}

be the set of all such grid points. We shall establish the strong consistency
of the GMLE at each point in &,. From this we can infer the uniform
strong consistency of the GMLE if F, is continuous and ./, is dense in
[0, )2

Let (X,,U,, V), i=1, .., n be iid. copies of (X, U, V). For (a, b) € &, let

Iii(a,b)=(—00,a;] x(—0, a5], .. -
121(8’ b) = (als bl] X ( — 0, a2]9 reey eoey

131(8, b) = (bls + CD) X ( — 00, 02], evey 133(8, b) = (bla + w) X (sz + (X)).
Let of be the set of all vertexes of B,,.., B,, where B,,.., B, are all
possible MIs with respect to I,(a, b), i, j=1, 2, 3, and (a, b) € #. Note that

o, is the set of vertexes of the rectangles I,(a,b)s. Thus o, #&/ in
general. Let

1 n
N,(a, b) = Y, U(X;el,(a,b),U;=2a,V,=b), ik=123.
J=1
Then the generalized likelihood (2.1) is equal to

3 3
AFy= TI I TI [ur(Zy(a b)),

b)) e iml jm1

where

ue((c, d1x (e, f1)=F(d, f)+ F(c,e)—F(c, f)—F(d,e).  (32)
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Moreover, the normalized generalized log-likelihood function is

3 3
Z(F)= Y Y Y Nuy(ab)In[ur(Iy(a, b)].

(ab)ed iml jml

Here and below we interpret 0log0=0 and log0= —oco. For this
likelihood function, we let F range over the set #* of all functions F on
[ —o0, +00]? such that

F(+00, +00)=1, (3.3)

F(—o0,x)=F(x, —0)=0 for each x, (34)
and
ue(I) =0 for all rectangle sets Jin (—o0, +0]% (3.5)

In view of (3.2), 4,(F) and %,(F) depend on F only through the values of
F at the points x € &, . Because the GMLE of F, is not unique, we adopt
expression (2.2) for the GMLE in our proofs below.

THEOREM 1. Under Assumption (3.1), the GMLE F, satisfies F,(a) -
Fy(a) almost surely for all ae o,

Proof. Verify that

L(F):=E(%(F))= ). g(a,b)h,y(F) (3:6)
(a,b)ed
with
3 3
hoW(F) =3, 3. ur(Iy(a,b)) In[up(Iy(a, b))].
il juml

Verify that the expression A, ,(F) is maximized by a function Fe # * if and
only if

/‘F(Iij(a’ b)) =auFo(Iij(a9 b))s L j= 1,2,3. (3'7)

Equations (3.2) and (3.4) imply that (3.7) is equivalent to F(x) = Fy(x) for
each vertex x of rectangles I (a, b), i, j=1, 2, 3. Thus F, maximizes £(F)
and any other function in % * that maximizes L(F) will coincide with F,
on &f,.

Note that Z(F,) = (1/n) ¥]_, ¥(X;, U;, V,), where ¢ is the map defined
by

3 3

Y(x,a,b)=3 3 Uxely(a b)) In(us(Iy(a, b))

im] jeal

P—
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Thus it follows from the SLLN and (3.21 that Z(F,) — L(F,) almost
surely. By the definition of the GMLE, %4,(F,) > %,(F,). Consequently,

lim Z(F,)> lim %(F,)=L(F,)almost surely.

n— o0

Let ©' denote the event on which lim, _, ., Z(F,) =L(F,). Fix an we ',
let F* e 7* be a limit point of F (-, ®) in the sense that £ (a, @) - F*(a)
for all ae o/, and for some sequence {k,} of positive integers tending to
infinity. We now show that

L(F*) Z2L(Fo).

Let #, (a, b) denote the value of the random variable Y1 Xjm1 Ney(a, b) x
In[u pk”(Iy)] at the point w. By the definition of &',

lim Y (s b) >L(F).

n-— oo (nbyed

Next, verify that
tk,,(aa b) had g(a’ b) h-, b(F*)

for each (a, b)e%. Note also that f, (a, b)<0 for all (a,b)e%. From
Fatou’s Lemma,

lim Z tk,,(a: b)= — lim Z - tk.(a’ b)

B0 (o b)ed R ® (ab)ed
<— Y lim (—tc(a,b))
(.’h)ean—voo
= Y g(a,b)h, (F*¥)
(a,b)e@
=L(F*).

Combining the above yields L(Fy) <E(F*). As F, maximizes L, we con-
clude that E(F*)=L(F,) and therefore F*(a) = Fy(a) for all ae </, . Since
w is arbitrary and ©’ has probability one, the consistency result is thus
established. |

If o/, is a finite set, then it follows from the theorem that the GMLE is
uniformly strongly consistent on /. For arbitrary <, the uniform strong
consistency of the GMLE requires additional assumptions.

THEOREM 2. Suppose that (3.1) holds, Fq is continuous and o, is dense
in [0, +00)> Then supy.qa |Fu(x)— Fo(x)| = 0 almost surely.
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Proof. Let Fy, F,, ... be functions in #* such that F,(a) — Fy(a) for all
aesf,. Let M be a positive integer. Since Fy is continuous, there is a grid
which partitions the space (—oo, + ©]? into M disjoint rectangles
I=(c, d] x (e, f] with grid points (upper-right vertexes of Is) Xy, .., Xpr i1
(—o0, +00]% and pg(I)<1/M for each grid cell 1. The continuity of Fy
and the fact that o/, is dense in [0, +o0)? imply that there are points
ay, .., & in 7, such that [Fo(a,) — Fo(x,)| < 1/M?2. Using this and the facts
F,, F,e F* and that Fy(c, e) < Fo(x) < Fo(d, f) and F,(c,e)<F,(x)<
E(d, f) for each x eI, we derive that

3
|Fa(x) — Fo(x)| < ,max |F(a;) — Fo(a)| + x € &>,

<i<M M

This shows that F, converges to F, uniformly.

By the above, the events ()ucw, {Fu(a)— Fo(a} and {sup;ca:
|F (x) — Fo(x)| >0} are identical and thus have probability 1 by
Theorem 1. | .

Remark 2. In the case of the bivariate right censorship model, under
the assumptions in Theorem 2, it is well known that the GMLE is not a
consistent estimate of a continuous F, (see Tsai et al. (1986)).

4. ASYMPTOTIC NORMALITY OF GMLE

Under the univariate case 2 interval censorship model, Groeneboom and
Wellner (1992) conjecture that if the censoring distribution is continuous,
then the GMLE of a continuous F, is not asymptotically normally dis-
tributed and the convergence rate is not in \/r_t Yu et al. (1998) prove that
if the censoring vector takes on finitely many values, then under an addi-
tional assumption the GMLE is asymptotically normally distributed and
the convergence rate is in ﬁ In the multivariate case, the situation is
more complicated. In this section we shall obtain the asymptotic normality
of the GMLE under the C2M model and the assumptions that

o/, contains finitely many elements, 4.1)

ypo((al,bl]x(az,bz])>0 if a,bes, and .a,<b, i=12. (42)
and

s, = (see Section 3). (4.3)
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Note that under the current assumptions the standard method for finite
parametric models can be used.

Remark 3. The GMLE of s may not be unique (see Remark 1) and
Theorem 1 does not ensure the consistency of the GMLE § as &/ and
are not the same in general. Note that the consistency of the GMLE F, on
&, is mainly due to Eq. (3.7), since «, is the set of all vertexes of the
rectangles I,(a, b)’s.

By Theorem 1 and (4.3), the GMLE F, is consistent on the set <. Since
§;=pg(4,), where the vertexes of the MI 4, belong to <, § is consistent
by (3.2).

Let 57 =p5(4,). Then (4.2) yields s7 >0 for all j. Verify that (3.6) yields

E(F)= Y g(ab) Z Z Y s21(A4y < 1y(a, b))

(n,b)eR im]l Iml k
xIn Y 5;1(4; = I(a, ))
J

3 3

- ¥ T 3|ee b E (e < L b)|

(a,b)e@ iml Im1l

xin ¥ s1(4, < Iy(a,b)). (44)
J

Let
{I, .. Ig} ={I(a,b):i, j=1,2,3,(a,b) e &},

and
Pu=g(a,b) Y sp1(A, = Iy(a, b)).
k

We can rewrite (4.4) as

B m B m
L(Fy=Y piln Y s;1(4; )= Y paln 3 5,04.
A=l j=1 k=1 j=1

From (4.2), p,>0, h=1, .., p. Set J= — E(0>%(F,)/0s 0s*), where 8.Z/0s
is an (m—1)x1 vector and 9>%/ds0s' is an (m—1)x(m—1) matrix.
Verify that
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_ dL(F,) 0L(Fo)\ _ o*L
J—nE( ds os’ >_ ds 0s*

i (5;.:—5;,...)(5;.;—5:.».))
= = UU‘,
(;.gl Pa (Xr=10m 52)2 (m—1)x(m—1)
where
(511—51".)\/;: (5p1‘5pm)\/l7ﬂ
Y ra10uSk 2ra10m5t

U= . .
(51(»-—1) —O1m) VP (5,9(»-—1) —me) v Ps

m m o
Y1 0165k Y ha1 95k

We now show that J is nonsingular. Let x, be the upper-right vertex of
4;j=1,.,m—1 By reordering the I;’s, WLOG, we can assume that the

upper-right vertex of I; is equal to x,, i= 1,..,m—1 Thus I, n4;= & for
j>i,i=1,.,m—1. Then the matrix U has the upper triangle matrix from

N2 (51— 3pm) /75

= . s
0 VP2 . ) (0p2—9pm) \/Pp
U= 55+0257 i1 OpSk

v/ Pm—1 (5ﬁ(m—l)_‘sﬂm)\/a

50 1+ X0t S m—1) kS 1 0mSk

Recall 59>0 and p,>0 for i=1,.,m—1.1It follows that the matrix U is

of full rank and J= UU" is nonsingular.
It is easy to verify that

PLE,) | o (PLEF) _
Os Os* osos' |

It thus follows that

0L(F,) _0Z(Fy)

_JAn+ op( "An" )1

ds Os
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where 4, is the (m — 1)-dimensional column vector with entries §,—s7 =
ue(4) —ug(d), i=k ., m— 1. Let 2, = {inf, ¢, §;=0}. Verify that

0.2(F,)
Js

0= except on the event 2,

and by Theorem 1 and Assumptions (4.1) and (4.2),
P(R,)—0 as n— oo,

It follows from the CLT that ﬁ (0L(F,)/0s) is asymptotically normal
with mean 0 and dispersion matrix J. This shows that 4,=J “1x
(0ZL(F,)/0s) + o,,(n“"z). Thus we have the following result.

TuEOREM 3. Under Assumptions (4.1), (4.2) and (4.3),

§1—s‘1’
Jn

o
Sm—1—Sm_1

is asymptotically normal with mean 0 and dispersion matrix J —1, A strongly
consistent estimator of J is given by J= —(aZ.sf(ﬁ,,)/as 0s*). Furthermore,
ﬁ [F(x)—Fo(x)] is asymptotically normally distributed for all xe o4, A
consistent estimate of the asymptotic variance of F(x)is (1/n) ¢'J~te, where
¢ is a (m—1)x1 vector with the ith entry ¢;=1(4,<[0,x,;1x[0,x,])
unless Fo(x)=1. '

Under the assumptions in Theorem 3, the GMLE is also asymptotically
efficient. The proof of this assertion is straightforward and is omitted.
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Abstract. In this paper we consider an interval censorship model in which the end-
points of the censoring intervals are determined by a two stage experiment. In the first
stage the value k of a random integer is selected; in the second stage the endpoints are
determined by a case k interval censorship model. We prove the strong consistency in
the Ly (1)-topology of the nonparametric maximum likelihood estimate of the underlying
survival function for a measure p which is derived from the distributions of the endpoints.
This consistency result yields strong consistency for the topologies of weak convergence,
pointwise convergence and uniform convergence under additional assumptions. These
results improve and generalize existing ones in the literature.
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1. Introduction

In industrial life testing and medical research, one is frequently unable to observe the random
variable X of interest directly, but can observe a pair (L, R) of extended random variables such
that

—-0<L<X<R<oo.

For example consider an animal study in which a mouse has to be dissected to check whether a
tumor has developed. At the time of dissection we can only infer whether the tumor is present,
or has not yet developed. Thus, if we let X denote the onset of tumor and Y the time of the
dissection, then the corresponding pair (L, R) is given by

(—OO,Y), X ..<_ Y7

(L.R) :{ (Y,0), X>Y.

If X and Y are independent, then this model is called the case 1 interval censorship model (Groene-
boom and Wellner (1992)) and the data pair (L, R) is usually replaced by the current status data

1



(Y,I[X <Y]), where I[A] is the indicator function of the set A. Examples of the current status
data are mentioned in Ayer et al. (1955), Keiding (1991) and Wang and Gardiner (1996).
Another interval censorship model is the case 2 model considered by Groeneboom and Wellner

(1992). Consider an experiment with two inspection times U and V such that U < V and (U, V) is
independent of X. One can only determine whether X occurs before time U, between times U and
V or after time V. More formally, one observes the random vector (U, V, I[X < U], I[lU < X < V]).
In this model

(—OO, U)’ X <,

(L,R)y =< (U,V), U<X<V,
(V, 00), X>V.

Note that (L, R) is a function of the random vector (U, V,I[X < U},I[U < X < V]). However, V
cannot be recovered from the pair (L, R) on the event {X < U}. Thus the pair (L, R) carries less
information than the vector (U,V,I[X < U], I[lU < X <V]).

The case 1 and case 2 models are special cases of the case k model (Wellner, 1995). In this
model there are k inspection times Y7 < --- < Yy which are independent of X, and one observes
into which of the random intervals (—o0,Y1],..., (Y%, c0) the random variable X belongs. Note
that the case k model for £ > 2 can be formally reduced to a case 2 model with U and V functions
of X and the inspection times Y3,...,Ys. The resulting U and V are then no longer independent
of X violating a key assumption used in deriving consistency results for the case 2 model.

While the case 1 model gives a good description of the animal study mentioned above, a data
set from a case k model (k > 2) is difficult to find in medical research since it is very unlikely that
every patient under study has exactly the same number of visits. Finkelstein and Wolfe (1985)
presented a closely related type of interval-censored data in comparing two different treatments for
breast cancer patients. The censoring intervals arose in the follow-up studies for patients treated
with radiotherapy and chemotherapy. The failure time X is the time until cosmetic deterioration
as determined by the appearance of breast retraction. Each patient had several follow-ups and
the number of follow-ups differed from patient to patient. One only knows that the failure time
occurred either before the first follow-up, or after the last follow-up or between two consecutive
follow-ups. Other examples of such type of interval-censored data can be found in AIDS studies
(Becker and Melbye (1991); Aragon and Eberly (1992)).

In this paper we assume that the pair (L, R) is generated as a mixture of case k models. This
formulation encompasses the various case k models and the data setting occurring in Finkelstein
and Wolfe (1985). A precise definition of this mixture model is given in Section 2.

Let Fy denote the unknown distribution function of X. This distribution function is commonly
estimated by the generalized maximum likelihood estimate (GMLE). Ayer et al. (1955) derived an
explicit expression of the GMLE for the case 1 model. However, in general the GMLE does not
have an explicit solution. In deriving a numerical solution for the GMLE, Peto (1973) used the
Newton-Raphson algorithm; Turnbull (1976) proposed a self-consistent algorithm; Groeneboom
and Wellner (1992) proposed an iterative convex minorant algorithm. A detailed discussion of
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some computational aspects is given in Wellner and Zhan (1997).

Various consistency results are available for the GMLE. In the case 1 model, Ayer et al.
(1955) proved the weak consistency of the GMLE at continuity points of Fy under additional
assumptions on G, the distribution function of Y. The uniform strong consistency of the GMLE
has been established by Groeneboom and Wellner (1992), van de Geer (1993, Example 3.3a),
Wang and Gardiner (1996) and Yu et al. (1998a) for continuous Fp using various assumptions and
techniques. In the case 2 model, the uniform strong consistency of the GMLE has been established
by Groeneboom and Wellner (1992), van de Geer (1993, Example 3.3b), and Yu et al. (1998b) for
continuous Fj.

In Section 2 we shall obtain the strong L;(u)-consistency of the GMLE for our mixture of
case k models for some measure p. This result shows that the L;(u)-topology is the appropriate
topology as it gives consistency without additional assumptions in the case & models. Convergence
in stronger topologies such as the topologies of weak convergence and uniform convergence requires
additional conditions. This is pursued in Section 3. In the process we also point out some erroneous
consistency claims in the literature. The proof of the L;(u)-consistency is given in Section 4. It
exploits the special structure of the likelihood for this model and does not require any advanced
theory. Section 5 collects various other proofs.

2. Main Results

We begin by giving a precise definition of our model. This is done by describing how the
endpoints L and R are generated. Let K be a positive random integer and Y = {Y;; : k =
1,2,...,5 = 1,...,k} be an array of random variables such that Y ; < -+ < Yg . Assume
throughout that (K,Y) and X are independent. On the event {K = k}, let (L, R) denote the
endpoints of that random interval among (—o0, Y 1], (Yk,1, Yx,2), - - -5 (Y&,k, 00) Which contains X.
We refer to this model as the mized case model as it can be viewed as a mixture of the various case
k models.

In some clinical studies, an examination is performed at the start of the study and follow-ups
are scheduled one at a time till the end of the study. This can be modeled by taking Yz ; = Ef;ll &
and K = sup{k > 1: Ef;ll : < T}, where £1,£2,... denote the (positive) inter-follow-up times
and 7 is the length of the study. In this case K may not be bounded. For example, if the inter-
follow-up times are independent with a common exponential distribution, then K — 1 is a Poisson
random variable; thus K is unbounded, yet E(K) < co. In general, if the inter-follow-up times are
independent and identically distributed, then E(K) < oo.

To define the GMLE, let (Ly, Ry),. .., (Ln, Ry,) be independent copies of the pair (L, R) defined
above and define the generalized likelihood function A, by




where F is the collection of all nondecreasing functions F' from [—o0, +00] into [0, 1} with F(—o0) =
0 and F(+00) = 1. We think of Fp as a member of F. Note that A,(F') depends on F only through
the values of F' at the points L; or Rj, j = 1,...,n. Thus there exists no unique maximizer of
A, (F) over the set . However, there exists a unique maximizer F, over the set F which is right
continuous and piecewise constant with possible discontinuities only at the observed values of L;
and R, j =1,...,n. We call this maximizer F, the GMLE of F,. '

Define a measure u on the Borel o-field B on R by

o) k
WB)=> P(K=k)Y PW;jcB|K=k), BeB.
k=1

i=1
We are now ready to state our main result, namely the (strong) L;(u) consistency of the GMLE.

2.1. Theorem. Let E(K) < co. Then [ |Fy, — Foldu — 0 almost surely.

The condition E(K) < oo implies the finiteness of the measure p and of the expectation
Ellog(Fo(R) — Fo(L))]. These two latter conditions play an important role in our proof given in
Section 4. '

One referee pointed out that results of van de Geer’s (1993) (namely her Lemma 1.1 and
Theorem 3.1) may be used to prove a result very similar to our Theorem 2.1 with the help of some
inequalities suggested by this referee. This alternative proof leads to L;(ji)-consistency for some
finite measure fi that is equivalent to our measure p and does not require the finiteness of E(K).
Actually, such a result implies our result in view of the following simple lemma which we state
without a proof.

2.2. Lemma. Let yu; and ug be two finite measures and g, g1, g2,... be measurable functions
into [0,1]. Suppose that py is absolutely continuous with respect to py. Then [ |gn, — g|dus — 0
implies [ |gn — g| dua — 0.

We have decided to present our original proof since it is direct and elementary and since
E(K) < oo is a rather mild assumption that is typically satisfied in applications.

In the remainder of this section we mention some corollaries of Theorem 2.1. The first one is of
interest when the inspection times are discrete. It follows from the fact that p({a})|Fn(a)— Fo(a)| <
f |, — Fo| dp for every a € R and generalizes the consistency results given in Yu et al. (1998a,b)
for the case 1 and case 2 models with discrete inspection times. |

2.3. Corollary. Let E(K) < co. Then F,(a) — Fy(a) almost surely for each point a with
p({a}) >0.

In the next corollary we state results for a measure v that depends on the distribution of L
and R and is easier to interpret than pu. We take v to be the sum of the marginal distributions of
L and R:

v(B)=P(Le B)+ P(Re B), BeB.




In view of the set inclusion

oo k

{Le BYU{ReB}c |J | J{K =k,Yi;i € B},

k=1i=1
we have v(B) < 2u(B). Thus we immediately get the following corollary.
2.4. Corollary. Let E(K) < oo. Then the following are true.

(1) [|F, — Fy|dv — 0 almost surely.
(2) Fy(a) = Fy(a) almost surely for each point a with v({a}) > 0.

3. Other Consistency Results

In this section we shall show that under additional assumptions strong L;(u)-consistency
implies strong consistency in other topologies such as the topologies of weak convergence, pointwise
convergence and uniform convergence. Throughout we always assume that E(K) is finite so that

p is a finite measure and P(f2,) = 1 by Theorem 2.1, where

2, = { lim / \£ — Fy| dp = O},

Although the results of this section are formulated for the measure u defined in the previous
section, they are true for any finite measure for which the GMLE is strongly L;-consistent as only
the finiteness of 4 and P(€),) =1 are used in their proofs. These proofs are deferred to Section 5.

Let a be a real number. We call a a support point of p if u((a — €,a + €)) > 0 for every € > 0.
We call a regular if p((a — €,a]) > 0 and u([a,a + €)) > 0 for all € > 0. We call a strongly regular
if pu((a — €,a)) > 0 and p([a,a +€)) > 0 for all € > 0. We call a a point of increase of Fy if
Fo(a+ €) — Fo(a — €) > 0 for each € > 0.

In view of the inequality v < 24, sufficient conditions for the first three of the above concepts
are obtained by replacing p be v. As these sufficient conditions are in terms of the distribution of
L and R, they are easier to interpret and thus more meaningful from an applied point of view.

Ayer et al. (1955) established the weak consistency of the GMLE at regular continuity points of
E} in the case 1 model. Our first proposition gives a strong consistency result for regular continuity

points in our more general model.

A

3.1. Proposition. For'eachw € 2, and each regular continuity point a of Fy, Fy(a;w) — Fy(a).
The next two propositions address weak convergence on an open interval and on the entire
line.

3.2. Proposition. Suppose every point in an open interval (a,b) is a support point of u. Then
F(z;w) = Fo(z) for every continuity point z of Fy in (a,b) and every w € Q. If also Fy(a) =0
and Fo(b—) = 1, then F,(x;w) — Fo(x) for all continuity points z of Fy and all w € Q.
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3.3. Proposition. If every point of increase of Fy is strongly regular, then F,(x;w) — Fo() for
all continuity points of Fy and all w € Q.

.Combining these propositions with Corollary 2.3 yields the following results on pointwise con-
vergence on open intervals and on the entire line.

3.4. Corollary. Suppose every point z in an open interval (a,b) is a support point of u and
satisfies p({x}) > 0 if z is a discontinuity point of Fy. Then F,(z;w) — Fo(z) for every z in (a, b)
and every w € Q,. Moreover, if Fo(a) = 0 and Fyo(b—) = 1, then Fo(z;w) = Fo(z) for all z € R
and all w € Q.

3.5. Corollary. If every point of increase of Fy is strongly regular and if p({a}) > 0 for each
discontinuity point a of Fy, then Fn(x, w) — Fy(z) for all z € R and all w € €1,.

The next proposition addresses uniform convergence.

3.6. Proposition. Suppose that Fy is continuous and that, for all a < b, 0 < Fy(a) < Fp(b) < 1
implies pu((a,b)) > 0. Then the GMLE is uniformly strongly consistent, i.e.,

sup |Fy(z) — Fo(z)| = 0 as..
z€R

This proposition generalizes the strong uniform consistency results given by Groeneboom and
Wellner (1992) for the case 1 and 2 models. In the case 1 model they require that Fy and G,
the distribution function of Y, are continuous and that the probability measure pp, induced by
Fy is absolutely continuous with respect to p (#p, << p). Proposition 3.6 does not require the
continuity of G and weakens the absolute continuity requirement. In the case 2 model Groeneboom
and Wellner assume that Fj is continuous and that the joint distribution of U and V' has a Lebesgue
density g such that g(u,v) > 0if 0 < Fy(u) < Fp(v) < 1. Their assumption implies that the measure
 has a Lebesgue density which is positive on the set {t : 0 < Fy(¢t) < 1} and therefore implies that
p((a,b)) > 0if 0 < Fp(a) < Fp(b) < 1. Consequently, Proposition 3.6 improves and generalizes
their result.

Proposition 3.6 also generalizes the strong uniform consistency results given by van de Geer
(1993) for the case 1 and 2 models under the assumption that Fp is continuous and pg, << u. The
latter implies that p((a,b)) > 0 if 0 < Fy(a) < Fo(b) < 1. However, if p is discrete, its support is
dense in (0, +00), and Fy is exponential, then the assumption in Proposition 3.6 is satisfied, but
UF, << p is not true.

In clinical follow-ups, the studies typically last for a certain period of time, say [, 72]. It is
often that Fy(72) < 1 in which case the conditions in Proposition 3.6 are not satisfied. In this
regard, Gentleman and Geyer (1994) claimed a vague convergence result in their Theorem 2 and
Huang (1996) claimed a uniform strong consistency result in his Theorem 3.1. Both of their results

as stated imply the uniform strong consistency of the GMLE on [ry, 73] in the case 1 model, if Fy

6




is continuous and the inspection time Y is uniformly distributed on [r1, 73]. The following example
shows that this is not true.

3.7. Example. Consider current status data (Y1, I[X; < Vi]),..., (Y, I[X, < Y,]), where the
survival times X1, ..., X, are uniformly distributed on [0, 3] and the inspection times Y3,...,Y, are
uniformly distributed on [1,2]. Then Fj is the uniform distribution function on [0,3] and p is the
uniform distribution on [1,2]. Note that on the event |J;_;{X; >2>Y;,Y; <Y,i=1,...,n,i #
j} we have F,(1) = 0, and on the event U;zl{Xj <1<Y,Y;>Y,i=1,...,n,i # j} we have
F(2) = F,,(2—) = 1. Both events have probability 1/3. Since Fy(1) = 1/3 and Fy(2) = Fy(2—) =
2/3, we see that F,(z) does not converge to Fo(z) almost surely for z = 1,2 and F,(2—) does not
converge to Fp(2—) almost surely. This shows that pointwise convergence on the closed interval
[11,72] to a continuous Fp is not implied by the condition: u([a,b]) > 0 for all @ and b such that
n<a<b<m.

The following proposition indicates how to fix the assumptions.

3.8. Proposition. Suppose the following four conditions hold for real numbers 1 < T».

(1) Fp is continuous at every point in the interval (71, T2|;

(2) either p({r}) > 0 or Fy(r1) = 0;

(3) either u({m2}) >0 or Fo(me—) =1;

(4) for all @ and b in (11, 72), 0 < Fy(a) < Fy(b) < 1 implies p((a, b)) > 0.

Then the GMLE is uniformly strongly consistent on [T, T2, I.e.,

sup |Fy(z) — Fo(z)| = 0 as..

26[7177'2]

4. Proof of Theorem 2.1

Recall that L may take the value —oco and R the value +00. The normalized log-likelihood is
1 n
== log[F(R;)~F(L;), FeF.
By the strong law of large numbers (SLLN), £, (F) converges almost surely to its mean
L(F) = E(log [F(R) - Z (K = k)E(hpi(Yi- -, Yir) | K = k),

where
k

hek(s, - 9) = O (Fo(yi41) — Fo(y;)) log(F(ys41) — F(y3)),
=0




for —0c0o =y < Y1 < +++ < Yp < Yp41 = 0o. Here and below we interpret 0log0 = 0 and
log0 = —cc.

It is easy to check that, for each positive integer ¥ and real numbers y; < -+ < yg, the
expression hpk(y1,...,Yx) is maximized by a function F € F if and only if F(y;) = Fp(y;) for
Jj =1,...,k Since sup{|plogp| : 0 < p < 1} < 1, |hg, k| is bounded by k. Since K has finite
expectation, we see that L(Fp) is finite. Hence Fy maximizes L£(-) over the set F and any other
function F' € F that maximizes £(-) satisfies that F' = Fj a.e. p.

Let {F,} be a sequence in F. By a pointwise limit of this sequence we mean an F' € F such
that F.(z) — F(z) for all z € R and some subsequence {n'}. Helly’s selection theorem (Rudin
(1976), pg 167) guarantees the existence of pointwise limits. Let now Q' be the set of all sample
points w for which the sequence {F},(-;w)} has only pointwise limits F' such that £L(F) > £(Fp). In
view of the above discussion, for each w € €/, all the limit points of {#,(-;w)} equal Fy a.e. u and
this gives that [ |F},(z;w) — Fy(x)| du(z) — 0. Thus the desired result follows if we show that €/
has probability 1. Let Q, denote the empirical estimator of Q, the distribution of (L, R). By the
SLLN, Qo = {L.(Fo) — L(Fy)} has probability 1, and so does Qy = {Qn(U) = Q(U)} for every
Borel subset U of A = {(I,7) : —00 <1 < r < 0}. Thus we are done if we show that Q' contains
the intersection €2, of Qg and nveu Qu for some countable collection U of Borel subsets of A.

Let & be a positive integer. Then there are finitely many extended real numbers
—0=g <@ << <gg=0

such that p((gi—1,¢;)) < 27 for i = 1,...,3. Now form the sets Uy, ...,Usg by setting Us;_1 =
(gi-1,q;) for i = 1,...,8, and Uy = [g;,q;] for 2 = 0,...,8. Let U, denote the collection of all
nonempty sets of the form U;; = AN (U; x Uj) for 0 <4 < j < 28. We shall take U = |J, Ua.

Let now w belong to €. Let F, denote the distribution function defined by Fy,(z) = F,(z;w)
and @, the measure defined by Q,(4) = Qn(A;w). Let F be a pointwise limit of {F,}. For
simplicity in notation we shall assume that F,,(z) — F(z) for all z € R. We shall show that

L(Fp) < linrgigf Ln(Fy)(w) < limsup L (Fp)(w) < L(F).

n—oo

The first inequality follows from L,(F,)(w) > Ln(Fp)(w), a consequence of the definition of the
GMLE, and the fact that £,(Fp)(w) — L(Fp) by the choice of w. Thus we only need to establish
the last inequality. For this note that £,(F},)(w) can be expressed as

/A log [Fa(r) — Fa(l)] dQn(l, 7).

The desired inequality is thus equivalent to

lim sup /A log [Fa(r) — Fa(D)] d@u(l, ) < /A log [F(r) — F(1)]dQ(, 7). (4.1)

n-+00
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Now fix a positive integer o and a negative integer q. Then
/A log [Fa(r) — Fa(l)] d@u(l, ) < /A gV 10g [Fa(r) — Fa(l)] d@n(l, )
< ¥ MaU)QaU),

Uelta

where

Mp(U)= sup qVlog [Fn(r) — Fu(l)]
{l,r)eU

and U is the closure of U. It is easy to check that M,(U) = qV log [F,(ry) — Fn(ly)], where
ry =sup{r: (l,r) € U} and ly = inf{l : ({,r) € U}. Thus
M (U) = M(U) := gV log [F(ry) — F(ly)] = S Vlog [F(r) — F(I)].
»T)E
Also, by the choice of w, Q.(U) = Q(U) for all U € U,. Therefore we can conclude that
Y Ma(U)Qn(U) = 3 MU)Q).
U€la U€Ua

Let now
m(U)= inf _qVlog [F(r)—F()], U € Ua.
{l,r)ev

Using the bound
lgViog(z) —qViog(y)l < ez —y|, 0<zy<l,
it is easy to verify that
M@U)-m(U)<e™? sup [F(ry)—F(r)+ F()— F(lv)l, U € Ua,.
(1,r)ev

This shows the following.

(1) U = AN{(gi-1,9) X (gj-1,g;)], then M(U)—m(U) > 2/c implies either F(g;)—F(gi—1) >

e?/a or F(q;) — F(gj—1) > €?/a;
(2) i U = AN [lgsya:] X (g-1,45), then M(U) —m(U) > 2/a implies F(g;) — F(gj—1) > e/
(3) if U = AN[(gi—1,%)  [g;,;]], then M(U) — m(U) > 2/c implies F(g;) — F(gi-1) > e/c.

Of course, if U contains only one point, then M(U) — m(U) = 0. Using this, we derive

Y (MU) - mU)QU) < %+ lal Y QUDIM(U) — m(U)) > 2/a]

Uela UelUa

B

< —2 +lgl Y P(gi-1 < L < @)I[F(g:) = F(gi1) > €7/l
i=1
B

+q| ZP(QJ‘—I < R < ¢;)I[F(g;) — F(gj-1) > €%/c]

2
< = + |g|(1 + ae~9)2t7e,
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In the last step we use the facts that
P(gi—1 < L < ¢;) + P(gi-1 < R < ) < 2u((¢i-1,q:)) < 21

and that at most 1+ ce™? among the terms F(q;) — F(qo), ..., F(gs) — F(gp-1) exceed e?/a.

Combining the above shows that

n-»00

lim sup/Alog [Fa(r) — Fr(1)] dQn(l,7)
< /Aq Vlog [F(r) — F(1)]dQ(l,7) + % + |g|(1 + ae™ )22,

The desired inequality (4.1) follows from this by first letting & — oo and then ¢ — —o0.

5. Proof of the Propositions

Fix w € Q,. Abbreviate Fn(-;w) by F,. Let F be a pointwise limit of F,,. Without loss of
generality, assume that lim,,_,, F,(z) = F(z) for all z. Set

D ={zeR: F(z) # Fo(z)}.

Since [ |F, — Fy|dp — 0 and p is a finite measure in view of the assumption E(K) < oo, we have
(D) = 0.

PROOF OF PROPOSITION 3.1: We need to show that D does not contain regular continuity points of
Fy. Let zo be a continuity point of Fy. If ¢ belongs to D, then F(z¢) # Fo(zo) and the continuity
of Fyy at z¢ and the monotonicity of F' and Fy yield that there exists a positive € such that either
(zo — €, 0] or [zo,zo + €) is contained in D. Thus either u((zo — €,x0]) = 0 or u([zo, o + €)] = 0,
and z( is not regular. [

PROOF OF PROPOSITION 3.2: Let z¢ be a continuity point of F; which is also an interior point
of S, the set of support points of u. Then zp does not belong to D; otherwise, there exist, for
each € > 0, support points z; and z3 of ¢ and a positive 7 such that (z; — n,z; + n) is contained
in (zo — €, o] and (x2 — 7,23 + 1) is contained in [zg,zo + €) and this leads to the contradiction
pu(D) > 0 . This shows that F(z) = Fy(z) for all continuity points = of Fy that belong to the
interior of S and proves the first part of Proposition 3.2. The second part follows from the first
part and the monotonicity of F' and Fy. O

PROOF OF PROPOSITION 3.3: Suppose every point of increase of Fy is strongly regular. We shall
show that D does not contain continuity points of Fy. Let zy be a continuity point of Fy. If ¢ is
a point of increase of Fp, then it is strongly regular and hence regular and cannot belong to D by
Proposition 3.1. Suppose now z, is not a point of increase of Fy. Then again zo cannot belong to
D. Otherwise, either F(zq) > Fy(zo) or F(zo) < Fo(zo) and we shall show that each leads to the
contradiction (D) > 0. In the first case, b := sup{z : Fo(z) = Fo(z¢)} is a point of increase of Fp,
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b > zg and F(b—) > F(zo) > Fo(zq) = Fo(b—); thus [zo,b) C D and, since b is strongly regular by
our assumption, (D) > p((zo,b)) > 0. In the second case, a := inf{z € R : Fo(z) = Fo(zo)} is a
point of increase of Fy, a < zo and F(a) < F(zq) < Fo(zo) = Fo(a); thus [a,z¢) C D and, since a
is strongly regular by our assumption, u(D) > u([a,z¢)) > 0. This shows that D does not contain
continuity points of Fp, which is the desired result of Proposition 3.3. OJ

PROOF OF PROPOSITION 3.6: Make the assumptions of Proposition 3.6. Then D is empty; oth-
erwise, we can use the continuity of Fy to construct an open interval, that contains a point of
increase of Fy and is contained in D, and arrive at the contradiction u(D) > 0. Since D is enipty,
F,, converges to Fy pointwise and hence uniformly as Fy is continuous. This proves Proposition
3.6. 0O

PROOF OF PROPOSITION 3.8: We shall only give the proof in the case u({r1}) > 0 and Fy(m2—) = 1.
We shall show that D N 11, 73] = 0. This implies that F,,(z) — Fo(z) for all z € [y, 72}, and, by
the continuity assumption on Fp, this convergence is even uniform on [r, 72).

It follows from Corollary 2.3 that F(r1) = Fo(71). This gives the desired result if Fo(m) = 1.
Thus assume from now on that Fy(1;) < 1. We are left to show that D; = D N (71, 72| is empty.
If Dy were not empty, we could use the continuity assumption on Fy, the monotonicity of Fy and
F and F(1) = Fo(11) < Fo(m2—) = 1 to show that D; contains an open interval (a,b) such that
0 < Fy(a) < Fo(b) < 1and 14 < a < b < 72 and arrive at the contradiction u(D) > p((a,b)) > 0.
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Dose-Ranging Study of Indole-3-Carbinol for Breast
Cancer Prevention

George Y.C. Wong,* Leon Bradlow, Daniel Sepkovic, Stephanie Mehl, Joshua Mailman,
and Michael P. Osborne

Strang Cancer Prevention Center, New York, New York

Abstract  Sixty women at increased risk for breast cancer were enrolled in a placebo-controlled, double-blind
dose-ranging chemoprevention study of indole-3-carbinol (13C). Fifty-seven of these women with a mean age of 47 years
(range 22-74) completed the study. Each woman took a placebo capsule or an I13C capsule daily for a total of 4 weeks;
none of the women experienced any significant toxicity effects. The urinary estrogen metabolite ratio of 2-
hydroxyestrone to 16a-hydroxyestrone, as determined by an ELISA assay, served as the surrogate endpoint biomarker
(SEB). Perturbation in the levels of SEB from baseline was comparable among women in the control (C) group and the 50,
100, and 200 mg low-dose (LD) group. Similarly, it was comparable among women in the 300 and 400 mg high-dose
(HD) group. Regression analysis showed that peak relative change of SEB for women in the HD group was significantly
greater than that for women in the C and LD groups by an amount that was inversely related to baseline ratio; the
difference at the median baseline ratio was 0.48 with 95 % confidence interval (0.30, 0.67). No other factors, such as age
and menopausal status, were found to be significant in the regression analysis. The results in this study suggest that 13C at
a minimum effective dose schedule of 300 mg per day is a promising chemopreventive agent for breast cancer
prevention. A larger study to validate these results and to identify an optimal effective dose schedule of I3C for long-term

breast cancer chemoprevention will be necessary. ). Cell. Biochem. Suppls. 28/29:111-116.

2 1998 Wiley-Liss. Inc.

Key words: chemoprevention; estrogen metabolites; surrogate endpoint biomarker

Indole-3-carbinol (I3C) is a compound pre-
sent in cruciferous vegetables such as broccoli,
Brussels sprouts, cabbage, and caulifiower. This
compound has been shown to protect against
certain chemical carcinogens, and to induce the
enzyme P450A1, which is responsible for the
formation of the estrogen metabolite 2-hy-
droxyestrone [1]. Cell culture experiments have
shown that 2-hydroxyestrone acts to block pro-
liferation and inhibit promotion of anchorage
independent growth in mouse mammary cells,
while its competitive counterpart 16a-hy-
droxyestrone acts in a promotional manner [2,3].
Therefore, the ratio of 2-hydroxyestrone to 16a-
hydroxyestrone, as determined by an ELISA
assay [4], is a potential surrogate endpoint bio-
marker (SEB) for breast cancer prevention. Two
animal studies have shown that elevating the
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estrogen metabolite ratio protects against mam-
mary tumor formation. Bradlow et al. [5] showed
this to be the case in the C3HOudJ model, and
Grubbs et al. [6] showed this in the DMBA-
induced rat model. In the latter case, protection
was almost complete. A study in women at
various levels of breast cancer risk showed that
16a-hydroxyestrone was elevated in women at
greater familial risk for breast cancer [7]. The
same phenomenon had been observed in mice
at different levels of breast cancer risk [8]). In a
recent study, women who had a low metabolite
ratio due primarily to the presence of an en-
zyme defect, which blocks 2-hydroxylation of
estradiol, showed a 10-fold increase in breast
cancer incidence [9]. The ability of I3C to pro-
mote 2-hydroxylation has been demonstrated
both in breast cancer cell culture experiments
[10,11] and in animal studies {5,6].

The ability of I3C to induce a significant
increase in 2-hydroxylation in humans in a
short time was first demonstrated by Mich-
novicz and Bradlow [12]. A 3-month trial of I3C
at 400 mg per day against a placebo control and
a high fiber diet control showed that the metabo-
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lite shift in favor of 2-hydroxylation pathway
was sustained over the entire trial period and
that no significant adverse effects were ob-
served [13]. The results from these studies sug-
gest that I3C may be a promising chemopreven-
tive agent for breast cancer prevention. We
launched a short-term dose-ranging study of
I3C in women at increased risk for breast can-
cer. The overall aim of the intervention study
was to determine a minimum effective dose
(MED) of I3C, which will not exceed the safely
tolerated dose of 400 mg per day established
[13] and which will result in a sustained in-
crease in 2-hydroxylation over a 4-week trial
period. Five doses of I3C were considered: 50,
100, 200, 300, and 400 mg. A secondary objec-
tive of the study was to assess toxicity effects of
I3C when taken daily for 4 consecutive weeks.
The SEB used in this study was ratio of urinary
2-hydroxyestrone to 16a-hydroxyestrone. Sixty
women were recruited in the study, and full
compliance was obtained in 57. A placebo-
controlled, double-blind trial design was adopted
for the study. MED was statistically deter-
mined to be 300 mg, and a significant difference
was established in the up-regulation of the SEB
between the MED group and the placebo group.
No significant toxicity effects were observed in
the 57 women at the end of the 4-week trial.

STUDY POPULATION

Adult women in good general health but at
increased risk for breast cancer were candi-
dates for the dose-ranging study. A woman is
considered to be at increased risk for breast
cancer either if she is over 60 years of age or she
has a family history of the disease (at least one
first-degree relative or at least two second-
degree relatives with a history of breast can-
cer). Women who have had a diagnosis of lobu-
lar carcinoma in situ or atypia hyperplasia are
also considered to be at increased risk in our
study.

A number of exclusion criteria were imposed
in order to minimize the chances of confounding
the outcome of the particular estrogen biomar-
ker chosen. These included thyroid disorders,
regular cigarette smoking within the last 6
months, obesity defined as 25% overweight us-
ing the nomograph for Body Mass Index, severe
anorexia, breast feeding, pregnancy or inten-
tion to become pregnant during the study pe-
riod. In addition, women who have had any
form of cancer other than basal or squamous

cell carcinoma of the skin, or carcinoma in situ
of the cervix, were excluded from the study.
Finally, women who regularly consume a large
amount of cruciferous vegetables were also ex-
cluded because of the nature of our intervention
study.

A total of 60 women who were eligible for the
trial were selected from over 100 women who
were eager to participate in the study. Most of
the women came from the New York metropoli-
tan area. Each eligible woman was required to
sign an informed consent form before entering
the study.

STUDY DESIGN

Aplacebo-controlled, double-blind design was
adopted for the dose-ranging study. Because a
rigorous toxicity analysis had not been previ-
ously carried out, a dose-escalation scheme was
used in the dose assignment for safety consider-
ations. First, ten women in the control group
were given placebo capsules. This was followed -
by assignments of ten women to each of the five
ascending dose groups.

‘A pre-menopausal participant was asked to
schedule her appointment within 3 days after
her next period ended. Every participant was
asked to bring in two first morning urine
samples, one from the morning prior to the
appointment and the other from the morning of
the appointment. A blood sample was taken
from each eligible woman on the appointment
day and she was given a bottle containing seven
capsules of placebo or I3C. One week later, for a
total of 4 weeks, a first morning urine sample
and a blood sample were collected, and a refill
was dispensed for the following week. Because
no reliable biochemical tests for I3C metabo-
lites are available, compliance monitoring was
carried out by both pill count and an interview.

STATISTICAL METHODS

In the dose-ranging analysis, the level of per-
turbation of the SEB, namely the urinary estro-
gen ratio, at any time point was expressed as
relative change from baseline. For each dose
group, including the placebo group, the peak
relative change (PRC) over the 4-week trial
period was obtained for each woman, and the
mean of the PRC was used to estimate the peak
relative perturbation for the particular dose
group over the trial period. We remark that a
more sensitive approach utilizing a parametric
statistical model was not feasible here because
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the individual response profiles could not be
summarized by a simple parametric curve (for
instance, a sigmoidal curve). The estimated PRC
from each dose group was then plotted against
a dose of I3C to search for an MED. Qur dose-
ranging study suggests a clear dichotomy of
response between a low-dose group involving
50, 100, and 200 mg, and a high-dose group
involving 300 and 400 mg; therefore, paramet-
ric model fitting at this stage of dose-ranging
study to identify an MED was not necessary.
Comparisons of PRC among the dose groups
were adjusted for confounding factors using
linear regression. To ensure no serious statisti-
cal biases were introduced into the dose-rang-
ing analysis due to non-randomness of dose
assignment, distributions of various factors that
could contribute to biases were compared across
the three dose groups.

FOOD ITEM ANALYSIS

Every participant was required to complete a
simple food intake questionnaire regarding her

eating habits in the past 3 months preceding:

her initial interview for the intervention trial.

Both the frequency and the serving size of a .

variety of vegetables, including most known
I3C-rich vegetables, were recorded for each
woman. A numeric score representing the total
monthly consumption of a specific vegetable
item was calculated from the food intake data.
Assuming equal weight for every vegetable item,
we derived for each woman a I3C vegetable
consumption score and the proportion of 13C
vegetables in the total vegetables consumed
averaging over a month. Data from a total of 54
participants were available for such a food in-
take analysis. Both the I3C score and the pro-
portion of I3C vegetable consumption were not
significantly related to baseline urinary estro-
gen ratio.

TOXICITY ANALYSIS

Clinical chemistry and complete blood counts
were determined from the blood samples col-
lected at baseline and at the end of each of the 4
consecutive weeks of trial. Any parameter whose
measured value was outside the normal range
was investigated for possible toxicity. Except
for two participants who had unexplained small
increases in the liver enzyme SGPT level (43 to
65, and 30 to 71), no other toxicity effects were
encountered.

DOSE-RANGING ANALYSIS

A total of 57 women were evaluable for the
entire dose-ranging study. Except for three
women from New Jersey, all of the 57 women
were from the New York metropolitan area.
Fifty-two (91%) of the women were white. Forty-
six (81%) were college educated, and twenty-
four (42%) completed graduate studies. The
average age of the participants was 46.7 years
(range 22-74). The average age at menarche
was 12.4 years (range 8-18). Forty (70%) of the
women were pre-menopausal, and 38 (67%) of
the women have been pregnant at least once.

Figure 1 displays the sample mean relative
change of the estrogen ratio from baseline over
time for the control group (n = 10), 50 mg group
(n = 7), 100 mg group (n = 10), 200 mg group
(n = 10), 300 mg group (n = 10), and 400 mg
group (n = 10). The profiles suggest a segrega-
tion of the treated groups into a low-dose group
(LD) consisting of women in the 50, 100, and
200 mg groups, and a high-dose (HD) group
consisting of women in the 300 and 400 mg
groups. Moreover, the plots also suggest that
the control group (C) was not significantly differ-
ent from the LD group. For the sake of statisti-
cal power, the dose-ranging analysis hereafter
will compare data from the C, LD, and HD groups.

Before we can statistically compare the levels
of perturbation of the SEB in the three groups,
we have to rule out the presence of any statisti-
cal bias due to non-randomness of dose assign-
ments to the participants. To this end, we exam-
ined the distributions of a number of potential

- - control -e-80 ———100 ——200 <~ 300 -—==400

Mean Relative Change

0.2
0 1 2 3 4
Time in weeks
Fig. 1. Mean relative change of urinary estrogen ratio profile

plots for the control and five dose groups.
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confounding factors, including age, age at men-
arche, baseline estrogen ratio, menopausal sta-
tus, pregnancy history, and educational level.
No significant differences were found across the
three groups with respect to such factors.

Within each of the three groups, we identified |

the PRC for each of the participants in the
group and calculated the usual 95% confidence
interval (CI) for the population mean PRC for
the group. Figure 2 presents the individual
PRC values and the CI for each group. There
was no significant difference in mean PRC be-
tween C and LD. The sample mean * SD of
PRC for LD was 0.33 * 0.36 and that for HD
was 0.81 * 0.57; the difference of 0.48 was
significant at P = 0.001 by the two-sample
t-test. The 95% CI for the difference in mean
PRC between the HD and LD groups was esti-
mated to be (0.22, 0.76).

The perturbation results were unadjusted for
any confounding factors. Menopausal status was
a major concern in the comparison. Figure 3a,b
shows that within each of HD group and C +
LD group, there was no significant difference in
mean relative change of the SEB from baseline
between pre-menopausal and post-menopausal

‘women over the entire trial period. The same

conclusion was true for comparison based on
PRC. Besides menopausal status, we also in-
cluded age, age at menarche, baseline estrogen
ratio, and educational level in a multivariate

25
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Fig. 2. Comparison of peak relative change of urinary estrogen
ratio among control, low- and high-dose groups. Difference
between the high-dose group and the other two dose groups,
unadjusted for confounding factors, was significant at P = 0.05.

(a) Control and Low Dose

e pre-menopausal (N=27)
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Fig. 3. a,b: Mean relative change of urinary estrogen ratio
profile plots stratified by menopausal status. Vertical bars repre-
sent usual 95% confidence intervals for the mean. No signifi-
cant difference in mean relative change between pre-meno-
pausal and post-menopausal women was established within
both control + low-dose group and high-dose group.

regression to attempt to explain the variation
in the observed PRC. For the C + LD group, the
variation in PRC could only be explained by
random inter-participant differences. However,
for the HD group, about 50% of the total varia-
tion in PRC was significantly explained by a
regression towards the mean effect of baseline
estrogen ratio (P = 0.001). Figure 4 displays
the linear relationship between PRC and base-
line ratio for the HD group, and the lack of
correlation in the case of the C + LD group.

From regression analysis, we found a signifi-
cant adjusted difference in PRC between the
two groups as long as baseline estrogen ratio
was less than 2.92. Table I tabulates the differ-
ences and the corresponding 95% Cls for some
selected values of baseline ratio.

DISCUSSION

The goal of this placebo-controlled, double-
blind study was to determine a minimum effec-
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Fig. 4. Plot of peak relative change of urinary estrogen ratio vs. baseline value. Linear regression was significant only in the high-dose
group: v = 1.38-0.29x, P = 0.001, R? = 0.50. For control + low-dose group, mean peak relative change =5D = 0.32 = 0.33.

tive and safe dose schedule of I3C that will
result in a significant increase in the urinary
estrogen metabolite ratio of 2-hydroxyestrone
to 16a-hydroxyestrone. We have shown in a
sample of 57 women that an appropriate choice
of MED was 300 mg and that daily intake of
I3C at this dose presented no significant toxic-
ity in a 4-week trial. At this MED dose sched-
ule, peak relative change of the estrogen me-
tabolite ratio was significantly greater than
that at the lower doses, and the difference was
more pronounced for women with lower base-
line ratios. However, there was no significant
perturbation of the biomarker for women with
high and presumably already protective base-
line ratios. Menopausal status was not a signifi-
cant factor for perturbation of the biomarker in
our analysis, although there was a trend to-
wards greater up-regulation of the ratio in the

TABLE 1. Adjusted Differences in PRC of
Urinary Estrogen Ratio Between High-Dose
Group and Combined Control and Low-Dose

Group*
Adjusted 95% CI
Baseline ratio difference Lower Upper P value
Ql=141 0.65 044 088 <0.001
M=201 0.48 0.3 0.67 <0.001
Q3 = 2.66 0.29 0.1 0.49 0.004
C=292 0.22 0 0.43 0.05

*Q1, M, and Q3 represent the first quartile, median and
third quartile of baseline ratio, respectively. C represents
the critical baseline ratio beyond which there was so signifi-
cant difference in PRC between the two groups.

case of pre-menopausal women. A larger study
should be conducted to confirm the findings
reported here, particularly the lack of effect of
menopausal status on the perturbation of the
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biomarker, and to identify an optimal effective
dose schedule for a long-term breast cancer
prevention trial.
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ESTIMATION OF A SURVIVAL FUNCTION WITH INTERVAL-CENSORED DATA, A SIMULATION STUDY ON
' THE REDISTRIBUTION-TO-THE-INSIDE ESTIMATOR
Qiqing Yu, George Wong, Ling Ye
Qiqing Yu, Department of Applied Math and Statistics, SUNY at Stony Brook, Stony Brook, NY 11794

We consider nonparametric es imation of a survival function with interval-censored data. Yu and Wong Propose
(1994) a Redistribution—to—the-lnside Estimator (RTIE) to estimate the survival function. The RTIE has an explicit

expression and has been shown to be the GMLE and an consistent estimate in some special cases. In this note, we present
the results of simulation study on the RTIE.

43. EMPIRICAL BAYES METHODS FOR COMBINING LIKELIHOODS

(Abstracts not available at press time.)
44. - APPLICATIONS OF GENERALIZED LINEAR MODELS

VARIABLE SELECTION IN AUTO-LOGISTIC MODELS
Fred W. Huffer, Hulin Wu
Fred W. Huffer, Dept. of Statistics, Florida State University, Tallahassee, FL 32306

KEY WORDS: Spatial Binary Data, Pseudo-likelihood Estimation, Logistic Regression

Besag’s auto-logistic model is widely applicable to the modeling of spatial binary data with covariates. However,
fitting this model by maximum likelihood (via Markov Chain Monte Carlo) is very time consuming. For this reason
meaximum likelihood is not practical in the preliminary model-building/covariate gelection stage of data analysis if there
are many covariates under consideration. Maximum pseudo-likelihood (MPL) estimation is not efficient, but is rapidly
computed and easily implemented by standard logistic regression software. We study the use of MPL for covariate
selection. In particular, we examine the properties of the "reductionin deviance” and AIC (Akaike’s Information Criterion)
when these are computed from the pseudo-likelihood function. These quantities often behave somewhat differently than
their likelihood-based counterparts and require appropriate adjustment. We apply our results to the selection of good
climate covariates for use in modeling the distribution of various Florida plant species.

ESTIMATION OF CAN CER MORTALITY RATES: A HIERARCHICAL BAYES GLM APPROACH
Malay Ghosh, Kannan Natarajan, Lance Waller
Malay Ghosh, University of Florida, 923 Griffin-Floyd Hall, Gainesville, Florida 32611

The paper considers estimation of cancer mortality rates for local areas. The raw estimates are usually based o
small sample sizes, and hence are usually unreliable. A hierarchical Bayes generalized linear models approach is take
which connects the local areas, thereby enabling one to " borrow strength ". Two sets of data are analyzed. The first sc
of data relates to cancer mortality estimation for several small counties in Missouri where no spatial effects are presen
The second set of data relates to cancer mortality estimation for several census tracts in a certain region in the state
New York, where spatial effect is present.

' SMALL AREA INFERENCE FOR BINARY VARIABLES USING HIERARCHICAL LINEAR MODELS
Donald Malec, J. Sedransk
Donald Malec, ORM, National Center for Health Statistics, 6525 Belerest Rd.,, Hyattsville, MD 20782

KEY WORDS: Bayesian Methodology, Disability, Gibbs Sampler, Synthetic Estimation

Using conventional methods, the National Health Interview Survey (NHIS) is designed to provide prec
estimates for the entire United States but not for most states nor for subpopulations within states. Our investigat!
concerns improved inference for binary random variables for small areas and subpopulations within small areas. In t
paper, model-based state estimates of the proportion of individuals experiencing partial work limitation (i.e., disabili
are developed using Bayesian methods with hierarchical structure. To evaluate the accuracy of these estimates, disabil
data collected in the "long form” of the 1990 U.S. Census of Population and Housing are used. First, a sample of
Census is drawn to mimic the multi-stage design of the NHIS. Then, data from this sample are used to provide estime

for a set of small areas. Finally, these estimates are compared with synthetic estimates and the true values obtained fi

the Census.

45. ANALYSIS OF VARIANCE
(Abstracts not available at press time.)

48
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from % 80 is 2 known link function and /) is a function in u. Conventionally, 4 are some metrically scaled variables while x are qualitative

2 regressors:

‘ Parameter estimation in varying coefficient models can be done by a local likelihood approach (Tibshirani & Hastie [ J.A.S.A. 82

(1937);559—568] which is directly feasible by standard software for generalized Linear models. Theoretical results yield asymptotic consistency of
; and allow for asymptotic pointwise confidence bands. Moreover, a direct correction of the estimation bias is available by using a simple

Fisher scoring routine.

; The theoretical results are supported by simulations and real data examples.}

H

126. SURVIVAL ANALYSISI

ON SEMIPARAMETRIC RANDOM CENSORSHIP MODELS
Gerhard Dikta
Fachhochschule Aachen, Abteilung J\"ulich, Ginsterweg 1, D - 52428 N\"ulich, Germany DIKTA@FHSERVER03.DVZ.FH-AACHEN.DE

In the random censorship model one observes data of the form (Z,5) where Z=(X, Y), X is independent of Y, and 8 indicates whether X
is censored (8=0) or not (8=1). Denote by m(x)=IE(5\Z = x) the regression function of the binary datum o given Z = x and assume that m belongs
1o a parametric family with parameter space Ac IR, i.e. m(x) = m(x, 6) and & € 6. We propose a semiparametric estimator of the distribution
function F of X, denoted by F,, which is based upon maximum likelihood estimation of 8, and which generalizes the Cheng and Lin estimator in
the proportional hazards model. We establish uniform consistency and a functional central limit result for F, which is compared to that of the
Kaplan-Meier estimator.

VARIANCE OF THE MLE OF A SURVIVAL FUNCTION WITH DOUBLY-CENSORED DATA
Qiqing Yu, Linxiong Li and George Wong
Qiqing , SUNY at Binghamton, University of New Orleans, and Strang Cancer Preventive Institute

The asymptotic properties of the nonparametric MLE or the self-consistent estimator of a survival function with doubly-censored data have
been studied by many authors. However, to date, it is not clear from the literature how to produce an estimate of the asymptotic variance of the MLE
of $S()$ with doubly-censored data, even though the existence of such asymptotic variance has been proved, with an abstract form in the Banach
space (Gu and Zhang (1993)). We present the explicit expressions of the asymptotic variance of the generalized MLE and its estimator.

Simulation study indicates that the approximation is close even with sample size $n=100$ and the probability of censoring is $85\%$.

DOUBLE CENSORING: CHARACTERIZATION AND COMPUTATION OF THE NONPARAMETRIC MAXIMUM LIKELIHOOD
ESTIMATOR
Jon A. Wellner and Yihui Zhan
Yihui Zhan, University of Washington, Department of Statistics, Box 354322, Seattle, WA 98195. Email: zhan@stat.washington.edu

KEY WORDS: Double Censoring, NPMLE, ICM Algorithm, Hybrid Algorithm

While the likelihood equations have a unique solution in the case of right censored data, this is no longer the case for doubly censored
data: the likelihood equations may have multiple solutions in the case of double censoring. Algorithms such as the EM algorithm designed to
calculate one solution of the likelihood equations may converge to a self-consistent estimate other than the NPMLE. The ambiguity of the EM
algorithm in calculating the NPMLE for doubly censored data and its known slow convergence rate pose real difficulties in applications, especially
when bootstrap methods are used for inference.

In this paper we present a characterization of the NPMLE for doubly censored data. The NPMLE is characterized as the left-derivative
of a convex minorant formed by derivatives of likelihood function. The NPMLE is shown to be one of the self-consistent estimates maximizing the
likelihood function. Based on the characterization, we propose a new hybrid algorithm that utilizes a composite algorithmic mapping of the EM
algorithm and the modified ICM algorithm. Numerical simulations demonstrate that the hybrid algorithm converges to the NPMLE more rapidly
than either of the EM or the naive ICM algorithm for doubly censored data.

PROPERTIES OF TEST STATISTICS APPLIED TO RESIDUALS IN FAILURE TIME MODELS
Inmaculada B. Aban, Edsel A.Pefia
Inmaculada B. Aban, Department of Math (084), University of Nevada Reno, Reno, NV 89557

KEY WORDS: Generalized Residual Process, Goodness-of-Fit, Model Validation

Asymptotic properties of a class of test statistics when applied to hazard-based residuals arising in survival and reliability models will
be presented. These test statistics are useful in goodness-of-fit testing and model validation. The properties are obtained by examining the asymptotic
lfmpetties of generalized residual processes, which are (possibly random) time-transformations of the processes associated with the incomplete failure
times. Since the time-transformations depend on unknown model parameters, the residual processes are obtained by replacing the unknown
Parameters by their estimators. The results therefore shed light on the effects of estimating parameters to obtain the residual processes. Implications
::n;es!cning possible pitfalls of some existing model validation procedures utilizing hazard-based residuals and ways to correct these problems will

iscussed.
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320 The Behaviour of the Maximum Likelihood Estimator as a Process and
Some Applications

Robert M. LOYNES
University of Sheffield, England.

Given a set of observations, supposedly either independent and identically distributed or from
a stationary AR process, whose distribution contains a fixed-dimension unknown parameter,
the behaviour of the maximum-likelihood estimator (MLE) as a function of the number of
observations used contains evidence about whether the model assumptions are satisfied, or
whether a change of regime or drift is taking place. A weak convergence result for the process
of MLEs is given, which allows various tests to be constructed. [#2 Prof R.M. Loynes, University
of Sheffield, Probability & Statistics Section, School of Maths & Stats, Sheffield S3 7RH UK;
R.LOYNES@SHEFFIELD.AC.UK.]

321 Comparihg Groups with Irregular Longitudinal Data

J. 5. MARITZ
Medical Research Council, South Africa.

Longitudinal data arise when observations of a dependent variable are made at several suc-
cessive time points. When such data are recorded for a number of subjects it often happens
that the time configuration varies from subject to subject, producing irregular longitudinal
data. Comparison of two or more groups of subjects is considered using exact permutational
methods. This entails choosing appropriate descriptive and test statistics and generating their
exact distributions. [£2 J. S, Maritz, MRC-CERSA, PO Bo 19070, Tygerberg 7505, South Africa;
SMARITZ@EAGLEMRC.AC.ZA.] ‘

322 Repeated Ordinal Responses

Rory St John WOLFE
Southampton University, UK.

An approach to modelling repeated ordinal responses is discussed. This involves using ‘scaling’
terms in a cumulative logit model [McCullagh J. Roy. Statist. Soc.Ser.B 42 1980:109-142]. The ap-
proach is applied to data from telecommunication experiments. A new general purpose method
of fitting the model in GLIM4 is introduced. Finally the consideration of a random-effects
model is discussed. [ Rory Wolfe, Maths Department, Southampton University, Highfield,
Southampton, SO17 1B]J, UK; RW@MATHS.SOTON.AC.UK.]

323 On Minimum Distance Estimation of Location Parameter for
Interval Censored Data

» Vasudaven MANGALAM
Curtin University, Perth, Australia.

Let X1, X>,.... X, be iid. with distribution function given by F(z — a) where F is an
unknown symmetric distribution and @ is an unknown location parameter. Ty,T5,... T, are
iid. and independent of X/s with unknown distribution G. We.observe (T, di),i=1,..,n
where d; is the indicator of whether X; is less than or equal to 7;. A minimum distance
estimator is constructed for the parameter and the properties are studied. Two-sample extension
to this is also considered. [#£v Vasudaven Mangalam, School of Mathematics and Statistics,
Curtin University of Technology, GPO Box U1987, Perth WA 6001; VASU@CS.CURTIN.EDU.AU.]

324 Variance of the MLE of a Survival Function with Interval Censored Dat

- Qiqing YU
SUNY at Binghamton.
Linxiong LI

University of New Orleans.
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/ George Y. WONG
Strang Cancer Preventive Institute,

Interval-censored data consist of n pairs of observations (liyry), i = 1,...,n, where {; <7 We
either observe the exact survival time X if l; = p; or only know X ¢ (i, ;) otherwise. We
established the asymptotic normality of the nonparametric MLE of a survival function S ®) (=
P(X > t) with such interval-censored data and present an estimate of the asymptotic variance

325 On the Relationship Between Power of a Test and Shape of its Critical
Region '
Daryl W. TINGLEY
Maureen A. TINGLEY
University of New Brunswick, Fredericton, NB, Canada.

With the Neyman-Pearson Lemma as yard-stick for comparisons, the relationship is investi-
gated between test power and shape of critical region, as test size approaches zero. Measure-
theoretic definitions are used to quantify the notion of similar versus dissimilar critical regions.
Results are obtained for two extremes of limiting power: power approaching that of Neyman-
Pearson, and power negligible when compared with Neyman-Pearson, as test size decreases,
Examples illustrate that small test sizes are not practical when sample estimates replace val-
ues of nuisance parameters. [Z2 Maureen Tingley, Dept of Math and Stat, University of New
Brunswick, Box 4400 Fredericton, NB, Canada E3B 5A3; MAUREEN@MATH.UNB.CA.]

326 A Generalisation of Cochran’s Theorem and Its Applications in the
Analysis of Variance of Repeated Measures

Jalia T. FUKUSHIMA

San Paulo University.

Regina C. C. P. MORAN

State University of Campinas.,

loannis G. VLACHONIKOLIS
Loughborough University of Technology, UK.

Cochran’s theorem and its many corollaries and interrelationships have played a most promi-

of Loughborough, Department of Mathematical Sciences, Loughborough, LEICS LE113TU, UK:
I.G.VLACHONIKOLIS@LUT.AC.UK.]

Thursday 11 July: 10:30-12:20

ASC Invited: Session in
Celebration of Ted Hannan’s Contributions to Time Series - IT

327 Estimation of Speed, Direction and Structure from Spatial Array Data
David R. BRILLINGER
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- 228 Palos Verdes B
ESTIMATION AND ASYMPTOTICS—Regular Contributed Papers
IMS
Chtair: Thomas E. Nichols, Camegie Mellon U

VK;S) ASYMPTOTIC PROPERTIES OF SELF-CONSISTENT

ESTIMATORS WITH DOUBLY-CENSORED DATA. Qiging Yu, State U of
New York-Binghamton; Linxiong Li, U of New Orleans
(8:50) ON CONSISTENCY OF THE BEST-R-POINTS-AVERAGE
ESTIMATOR FOR THE MAXIMIZER OF A NONPARAMETRIC REGRES-
SION FUNCTION. Z.D. Bai, Mong-Na L. Huang, Nat'l Sun Yat-Sen U
(9:05) A GENERAL ESTIMATION METHOD USING SPACINGS.
Kaushik Ghosh, S. Rao Jammalamadaka, U of California-Santa Barbara
(9:20) ASYMPTOTICS FOR MULTIVARIATE T STATISTIC. Steven J.
Sepanski, Saginaw Valley State U
(9:35) TWO CENTRAL LIMIT THEOREMS FOR FUNCTIONAL
Z-ESTIMATORS. Yihui Zhan, MathSoft, Inc
(9:50) DENSITY ESTIMATION FOR A CLASS OF STATIONARY
NONLINEAR PROCESSES. Kamal C. Chanda, Texas Tech U
(10:05) FLOOR DISCUSSION

: COHegé,Bdwl;1‘0:30 am. -~1220 pm. -

229 H-California B
COLLEGE BOWL SEMIFINALS AND FINALS

Mu Sigma Rho

Organizers: Don Edwards, U of South Carolina; Mark E. Payton,
Oklahoma State U

Chair: Mark E. Payton, Oklahoma State U
Emcee: George Casella, Cornell U
Scorekeeper: Bruce Collings, Brigham Young U
Teams: Winners of Quarterfinals (Session 146)

_Invited ',S€55i0“5+10130, am. - 12:20 p.m ‘.

230 H-California C
CLASSIFICATION OF RACE AND ETHNICITY: A DISCUSSION—
Invited Panel )
Council of Professional Assn on Fed Stat, Sec. on Epidem., Govt. Stat. Sec., Sec.
on Hlth. Policy Stats., Social Stat. Sec.
Chair/Organizer: Edward ]. Spar, COPAFS
Panelists: Katherine K. Wallman, Office of Mgmt & Budget

Thomas Sawyer, US House of Representatives

Linda Gage, California State Finance Dept

Margo Anderson, U of Wisconsin-Milwaukee

Roderick J. Harrison, US Bur of the Census

231 M-Grand C/D
INTERACTIONS BETWEEN UNIVERSITY GRADUATE
PROGRAMS AND FOUR-YEAR COLLEGES—Invited Papers

ASA Cmte on Career Development, Sec. on Stat. Educ., Sec. on Teaching of
Stat. in Hith. Sci.

Chair/Organizer: Rosemary A. Roberts, Bowdoin College

(10:35) FOUR-YEAR COLLEGES AS A SOURCE OF GOOD GRADUATE
STUDENTS. Thomas L. Moore, Grinnell College; Dean Isaacson, lowa
State U

(11:00) RECRUITING A STATISTICIAN AT A FOUR-YEAR COLLEGE.
Gudmund Iversen, Swarthmore College; Philip J. Everson, Swarthmore
College

(11:25) PREPARING GRADUATE STUDENTS TO TEACH STATISTICS
AT A FOUR-YEAR COLLEGE. William I. Notz, Ohio State U; Ann R.
Cannon, Cornell College

(11:50) Disc: Lynne Billard, U of Georgia

(12:10) FLOOR DISCUSSION

.,

N > i N Ay . v A N v A . YA N v A . .
Y o v 2 v 2 - Y 2\ ~ » .

232 H-Hunt
#£:APPLIED ORDER-RESTRICTED INFERENCE—Invited !
ASA Council of Chapters

Organizer: Qing Liu, Food & Drug Admin

Chair: Roslyn A. Stone, U of Pittsburgh

(10:35) TESTING EQUALITY OF SURVIVAL CURVES UNDEF
CONSTRAINTS. Tim Wright, U of Missouri; Anura Abeyratne,
Co; Bahadur Singh, U of Missouri

(11:00) ORDERED INFERENCE IN CLINICAL TRIALS WITH

PLE ENDPOINTS. Dei-In Tang, Nathan Kline Inst for Psych Re:
(11:25) ORDER-RESTRICTED INFERENCE IN 2X2 TABLES V
HETEROGENEQUS ODDS RATIOS. Qing Liu, Food & Drug
(11:50) Disc: Jon H. Lemke, U of lowa

(12:10) FLOOR DISCUSSION

233 M-Orange *
#PRACTICAL MARKOV CHAIN MONTE CARLO—Invit¢
Sec. on Bayesian Stat. Sci., ENAR, WNAR, IMS, Bio. Sec., Bus. & F
Sec., Stat. Comp. Sec.
Organizer: James H. Albert, Bowling Green State U
Chair: Robert E. Kass, Carnegie-Mellon U
Panelists: Bradley P. Carlin, U of Minnesota

Andrew Gelman, Columbia U

Minghui Chen, Worcester Polytechnic Inst

234 H-Palos
#MATCHING AND CONDITIONAL INDEPENDENCE: N
DEVELOPMENTS IN TESTING AND ESTIMATION—Invi
Papers

Bus. & Econ. Stat. Sec.

Organizer: James J. Heckman, U of Chicago

Chair: Robert Moffitt, Johns Hopkins U

(10:35) CONDITIONAL INDEPENDENCE RESTRICTIONS: T
AND ESTIMATION. Oliver Linton, Yale U; Pedro Gozalo, Brow
(11:05) MATCHING AS AN ECONOMETRIC ESTIMATOR. H
Ichimura, U of Pittsburgh; Petra Todd, U of Pennsylvania
(11:35) ALTERNATIVE METHODS FOR EVALUATING SOCV/
PROGRAMS: THEORY AND EVIDENCE. James J. Heckman, 1
Chicago

(12:05) FLOOR DISCUSSION

235 H-El Ca
OJUDGEMENT IN OFFICIAL STATISTICS: HOW EXPLIC
SHOULD WE BE?—Invited Papers
Govt. Stat. Sec., Social Stat. Sec.
Chair/Organizer: Michael A. Stoto, Nat'l Academy of Sciences
Panelists: Jaime Marquez, Federal Reserve Board
Francisco J. Samaniego, U of California-Davis
Joseph Sedransk, Case Western Reserve U
Carl N. Morris, Harvard U

236 H-Huntix
#LOST IN SPACE: ASSESSING MULTIVARIATE MISSIN(
DATA—Invited Papers .. =

Sec. on Stat. Graph., ENAR, WNAR, Bio. Sec., Sec. on Hith. Policy
Organizer: Dianne H. Cook, lowa State U

Chair: Hal S. Stern, Iowa State U

(10:35) SENSITIVITY OF ANALYSES WITH MULTIVARIATE
DATA IN STUDIES OF THE ELDERLY. Robert J. Glynn, Brigh:
Women’s Hosptial

(11:05) MISSING DATA IN INTERACTIVE HIGH-DIMENSIO
DATA VISUALIZATION. Deborah E Swayne, Bellcore; Andreas
Labs, Lucent Technologies

(11:35) CAN WE SEE WHAT ISN'T THERE? EXPLORING AN
KEEPING TRACK OF MISSINGS. Antony Unwin, Heike Hofir
Augsberg

(12:15) FLOOR DISCUSSION

© = Theme session



ICSA 1997 Applied Statistics Symposium

May 30 - June 1, 1997

Rutgers University, New Jersey, USA

Title: Asymptotic Properties Of Self-Consistent Estimators of A Survival Function
by Qiqging Yu and George Y. C. Wong.

SUNY at Binghamton and Strang Cancer Prevention Center

ABSTRACT: The asymptotic properties of the nonparametric maximum likelihood
estimator and other estimators of a joint distribution function F' of a bivariate random
vector X with right-censored data have been studied by several authors. Among others, an
important assumption made in their studies is that X lives on a rectangle region [0, a| x [0, b]
which can be observed. However, in many follow-up studies, a = b = L is the length of the
study period and X lives on a region larger than [0, L] x [0, L]. Thus it is of interest to
study whether the asymptotic results established by these authors are still valid without
that restriction. In this direction, we established the strong consistency of self-consistent
estimators of a discrete distribution function.
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Strang Cancer Prevention Ctr
428 E 72 St
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RE: A dose-ranging study of indole-3-carbinol for breast cancer prevention.

Dear Dr. Wong:

Your abstract referenced above has been accepted as a poster presentation (Program # 340) for
the 20th Annual San Antonio Breast Cancer Symposium to be held December 3-6, 1997.
Enclosed is a first draft copy of the program and instructions for a poster presentation. (Please
review the instructions carefully, particularly the times for putting up and removing the posters,
since our schedule is very tight.) The final program along with meeting registration and hotel
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your abstract has been accepted.
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If for any reason your poster will not be presented, please notify Ms. Lois Dunnington as early
as possible, by electronic mail (lois dunmngton@msmtp ddde. sac1 org), by FAX (210-949-5009),

or by phone (210-616-5912). .
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We look forward to your presentation at our symposium.
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337 RETINOID-INDUCED GROWTH SUPPRESSION OF NORMAL
HUMAN EPITHELIAL CELLS DOES NOT REQUIRE ACTIVATION
OF RAR-DEPENDENT GENE TRANSCRIPTION. Yang, L-M., Ludes-
Meyer, J., Munoz-Medellin, D., Kim, H-T., Reddy, P., Ostrowskl, I,
Reczek, P and Brown, P. Division of Oncology, Dept of Medicine,
Univ. of Texas Health Science Center, San Antonio, TX, Bristol-Myers-
Squibb, Albany, NY.

Retinoids inhibit the growth of breast cancer cells and are potential
agents for cancer treatment and prevention. However, the mechanism by
which retinoids prevent cancer is not known. The present studies
investigated the mechanism by which naturally occuring and synthetic
retinoids inhibit the growth of normal human mammary epithelial cells
(HMECs). All trans retinoic acid (atRA) and 9ClSRA both inhibited the
growth of normal (184 and HMEC) and malignant (MCF7 and T47D)
breast cells. We investigated whether retinoids inhibit normal breast
growth by interfering with the cell cycle or inducing apoptosis. atRA
treatment caused a cell cycle block (by increasing GO/G1 phase by 20%
and decreasing S phase by 50%) and did not induce apoptosis. To explore
the mechanism by which retinoids suppress cell growth, we correlated the
growth inhibitory effects of retinoids with their ability to activate RAR-
dependent transcription and transrepress AP-1-dependent transcription in
breast cells. By measuring RAR-dependent transcription using a retinoid-
responsive reporter and AP-1-dependent transcription using an AP-1
responsive reporter, we found that atRA and 9cisRA both activated RAR-
dependent transcription in 184 normal breast cells and T47D breast cancer
cells. atRA and 9cisRA also both inhibited AP-1 activity in T47D cells,
while 9cisRA, but not atRA, inhibited AP-1 activity in 184 cells. Retinoid
analogs which inhibit AP-1 without activating RAR were then used to
determine whether inhibition of AP-1 without activation of RAR-dependent
transcription was sufficient to inhibit breast cell growth. The growth of
T47D and 184 was inhibited by these anti-AP-1 retinoids. These results
suggest that RAR-dependent transcription is not required for retinoid-
induced growth suppression of breast cells, which instead may be
mediated by inhibition of AP-1. Such studies investigating the molecular
mechanism by which retinoids inhibit breast cells growth may lead to the
development of reunond analogs for breast cancer prevention.

339 Dietary Dehydroepiandrosterone (DHEA) Exhibits Strong
Chemopreventive Activity But Minimal Therapeutic Activity In
The MNU Induced Rat Mammary Model System.

Lubet, RA, Steele,V.E', Kelloff, G.J., Eto,1.2, and Grubbs, C.J.?

1-Chemoprevention Branch NCI, Bethesda MD; 2- Dept. Of Nutrition
Sciences, Univ. Of Alabama at Birmi

Female Sprague-Dawley rats (50 day old) administered a single i.v.

dose of MNU exhibit a high incidence and muitiplicity of mammary
tumors by 100 days of age . Prior studies have shown that DHEA (120,
600 and 2000 ppm in diet) is a highly effective chemopreventive agent in
this model decreasing tumor multiplicity by 55, 90 and 98%
respectively. DHEA doses (2600 ppm) causes striking hormonal
changes in treated rats increasing levels of androgens and estrogens
while simultaneously interfering with normal estrous cycling in rats.
Interestingly DHEA induced proliferation and apparently differentiation
in the breasts of treated rats. Morphologically the changes observed in
DHEA treated rats appear similar to those that occur during pregnancy.
‘When rats were treated with DHEA when their first paipable tumors
arose (40-60 days post MNU) a decrease in the appearance of “n
late arising palpable tumors was observed. However DHEA had
minimal effects on the continued growth of palpable lesions.
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338 A multi-institutional study on the efficacy of prophylacti y in |

with Lobular Carcinoma in Situ (LCIS) Mackamn G*, Hughes KS, Beny D,
Litten JB, Roche C, Veto J, Morris A, Turk P, Fraser H, Schnaper L, Friedman
NB, Winer EP, Shafir M, Wanebo HJ, Capko D, Pories S, Khan S, Kroener J,
Hawksworth K, Ting P, Barth R. Lahey Hitchcock Breast Center, Burlington, MA
01805.
Background: The efficacy of prophylacti y has not been adequately
tested and yet women who carry BRCA1 and BRCA?2 mutations are being offered
this procedure. LCIS provides an established model of high risk for breast cancer.
Published studies report that the risk of developing breast cancer in women with
LCIS aproaches 33%. Our objective is to eval the efficacy of prophylactic
and to esti lifetime risk reduction from this p

Methods: Retrospective data on 493 patients with LCIS were collected from 14
institutions. Patients with the diagnosis of LCIS and no previous or synchronous
DCIS or invasive cancer were eligible. 99 patients were treated with bilateral
mastectomy (BMX), 74 patients were treated with ipsilateral mastectomy (IMX),
and 320 patients were followed after initial biopsy (OBS). Ten year actuarial
disease free survival (DFS) was calculated and compared for all groups, statistical
significance between DFS was determined using the Mantel-Cox test.

: 17 patients developed an ipsilateral (IPSI), 12 a contralateral (CONT) and
1 a bilatera] cancer, median time to recurrence was 63 months. One patient died
with distant metastasis in the OBS group at 79 months.
Surgety #pts FU(monbs) IPSL CONT  DES 4
OBS 320 42 18 (6%) 12(4%) 0.7694
IMX 74 88 0 1(1%) 0.9487 0.0000]
BMX 9 - 75 0 - 1.0000 0.00001
16% of invasive recurrences were node positive.
Conclusions: (1)Prophylactic mastectomy markediy reduces the risk of cancer in
patients with LCIS. (2) Prophylactic mastectomy has no impact on survival at 10
year. (3) This data can be useful when extrapolating results to patients with genetic
predisposition.

-~
DOSE-RANGING STUDY OF INDOLE-3-CARBINOL FOR BREAST
ZANCER PREVENTION. Wong GYC*, Bradlow L, Sepkovic D, Meh!
S, Mailman J, Osborne MP, Strang Cancer Prevention Center, New
York, NY, 10021 -

Sixty women at increased risk for breast cancer were
enrolled in a placebo-controlled, double-blind dose-ranging
chemoprevention study of indole-3-carbinol (I3C). Fifty-seven of
these women with a mean age of 47 years (range 22-74)
completed the study. Each women took a placebo capsule or an
I3C capsule daily for a total of four weeks; none of the women
experienced any significant toxicity effects. The urinary estrogen
metabolite ratio of 2-hydroxyestrone to 16a-hydroxyestrone, as
determined by an ELISA assay, served as the surrogate endpoint
biomarker (SEB). Perturbation in the levels of SEB from baseline
was comparable among women in the control {C) group and the
50, 100, 200 mg low dose (LD) group. Similarly, it was
comparable among women in the 300, 400 mg high dose {HD)
group. Regression analysis showed that peak relative change of
SEB for women in the HD group was significantly greater than that
for women in the C and LD groups by an amount that was
inversely related to baseline ratio; the difference at the median
baseline ratio was 0.48 with 95% confidence interval (0.30,
0.67). No other factors, such as age or menopausal status, were
found to be significant in the regression analysis. The resuits in
this study suggest that 13C at a minimum effective dose schedule
of 300 mg per day is a promising chemopreventive agent for
breast cancer prevention. A larger study to validate these results
and to identify an optimal effective dose schedule of 13C for long-
term breast cancer chemoprevention will be necessary. [Support:
Tiger Foundation and U.S. Army Medical Research and Materiel
Command under DAMD17-94-J-4332]
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careful designed experiment should satisfy P(X € B) = 0. Thus this should not be a concern.
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Abstract

Mixed interval-censored (MIC) data consist of n pairs of observations (L1, R1), ..., (Ln, Rr), where
—00 <L <R; < ooforalli, Ly = Rr and 0 < Lj < R; < oo for at least one k and one j. The survival
time X; is only known to lie between L; and R;, i = 1,2,...,n. Peto (1973) and Turnbull (1976) obtained,
respectively, the generalized MLE (GMLE) and the self-consistent estimator (SCE) of the distribution func-
tion of X with MIC data. In this paper, we introduce a model for MIC data and establish strong consistency,
asymptotic normality and asymptotic efficiency of the SCE and GMLE with MIC data under this model
with mild conditions.

Key words and phrases: Asymptotic normality, generalized maximum likelihood estimator, mixture
distribution, strong consistency.
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1. Introduction

Interval censoring refers to a situation in which, X, the time to occurrence of an event of interest is only
known to lie in a half-open and half-closed time interval (L, R], where the pair (L, R) is an extended random
vector such that —oo < L < X < R < oco. Interval-censored (IC) data may occur in medical follow-up
studies when each patient had several visits and the event of interest was only known to take place either
before the first visit, between two consecutive visits, or after the last one. Thus an IC data set may consist
of strictly interval-censored (SIC) observations (i.e.,0 < L < R < 0), and right-censored (R = co) and/or
left-censored (L = —o0) observations. Examples of IC data can be found in cancer research and AIDS studies
(see, e.g., Finkelstein and Wolfe, 1985).

Case 1 data (or current status data, see Ayer et al., 1955) is a special case of IC data when each patient
had only one visit. Observations in a case 1 data set are either left-censored or right-censored. Doubly-
censored data (see Chang and Yang, 1987) consist of case 1 data and uncensored observations. It is clear
that neither case 1 data nor IC data contain uncensored observations. Furthermore, doubly-censored data
do not contain SIC observations. A data set may be a mixture of uncensored observations and IC data which
contain SIC observations. We call such data mized interval-censored (MIC) data.

MIC data arise in clinical follow-up studies. In a cancer follow-up study, a patient whose tumor marker
value (for instance, CA 125 in ovarian cancer) is consistently on the high (or low) end of the normal range
in repeated testing is usually monitored very closely for possible relapse. If such a patient should relapse,
then time to clinical relapse can often be accurately determined, and an uncensored observation is obtained.
However, if a patient is not under close surveillance, and would seek help only after some tangible symptoms
of the disease have appeared, then time to relapse most likely has to be specified to be within the dates of
two successive clinical visits.

Another situation in which MIC data can occur is in the usual right-censored survival analysis where
actual dates of events are not recorded, or missing, for a subset of the study population, and can be established
only to within specified intervals. An example from the Framingham Heart Study was presented by Odell
et al. (1992). In this large-scale longitudinal heart disease study, times of occurrence of coronary heart
disease were recorded for almost every participant. However, time of first occurrence of the coronary heart
disease subcategory apgina pectoris was only recorded for about 20% of the participants who suffered from
angina pectoris, and may be specified only as between two clinical visits, several years apart, for the other
participants.

For censored data, Peto (1973) proposed a Newton-Raphson algorithm to obtain the generalized MLE
(GMLE) of the cumulative distribution function (cdf), F. Turnbull (1976) obtained a self-consistent estima-
tor (SCE) of the cdf via an EM-algorithm. A detailed discussion of more efficient algorithms for obtaining
the GMLE is given in Wellner and Zhan (1997).

For IC data, Groeneboom and Wellner (1992) formulated the case 2 model; Wellner (1995) formulated
a case k model, where k£ > 1; Schick and Yu (1999) modified Wellner’s case k model by further assuming
that k, the number of visits by a patient in a follow-up study, is a random integer and the observation (L, R)
is a mixture of various case k& models.

Various asymptotic distribution results of the GMLE have been obtained for censored data. For case
1 model the GMLE is asymptotically normally distributed (a.n.) and the convergence rate is nt/2 if the
underlying censoring distribution is discrete {Yu et al., 1998b), but the GMLE is not a.n. and the conver-
gence rate is n'/3 if cdfs have positive derivatives (Groeneboom and Wellner, 1992). For case 2 model the
GMLE is a.n. with rate nl/2 if the censoring vector takes on finitely many values (Yu et al., 1998c), and
Groeneboom and Wellner’s (1992) conjecture that under certain smoothness conditions the GMLE has a
pointwise convergence rate of (nlnn)l/ 3. For more recent development on the latter conjecture, we refer to
Groeneboom (1996) and Van De Geer (1996) .

For MIC data, several models have been proposed, and the asymptotic properties of the GMLE have
been investigated under the assumptions that either the censoring vector takes on finitely many values
(see Petroni and Wolfe, 1994, and Yu et al. 1998a), or the censoring and survival distributions are strictly
increasing and continuous, and they have “positive separation” (see Huang (1999)).

In this paper, we shall use the model in Yu et al. (1998a) to establish asymptotic properties of the -
GMLE based on MIC data under the assumption that all underlying distributions are arbitrary with some
mild conditions. Since a GMLE is also an SCE (but an SCE may not be a GMLE; see Yu et al., 1998a),
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and our proofs basically use the properties of SCEs, we shall focus on the asymptotic properties of SCEs for
MIC data. The main results are given in Section 2. The consistency result is proved in Section 3 and the
asymptotic normality result is proved in Section 4. Some detailed proofs of lemmas in Sections 3 and 4 are
relegated to Appendices A and B.

2. Main Results
We introduce a mizture interval censorship model, a mixture of an interval censorship model and a
right censorship model, to characterize MIC data. Assume that the observed pair (L, R) is generated by a
two-stage experiment. Let (T,U, V) be a random censoring vector and X a random integer taking values 0
and 2. Assume that X and (K,T,U,V) are independent. In the first stage, a value of K is selected, then
(L, R) corresponds to the observation from a right censorship model if X = 0 and from a case 2 model if
K=2,ie.,
(L, R)= { (X, X)L (x<T) + (T,00)1(x>T) ff K=0, (2.1)
’ (=00, D)1 x<vy + (U, V)l wex<vy + (Vi00)1(x>v) K =2,

where 1(4) is the indicator function of the set A. It is known that in order to estimate F', we only need
to observe (L, R) (see Peto (1973)). Thus, in our model, X, X, U, V and T may not be observed. Let
m,=P(K=k)>0,k=0,2, and my +m3 = 1. Denote (L1, Ry),...,(Ln, Ry) a random sample from (L, R).

Suppose that X, (L, R), (U,V), T, U and V have cdfs F, Q, G, Gr, Gy and Gy, respectively. Define
7o = sup{z : F(z) = 0}, 7, = sup{z: Gy(z) <1}, n =sup{z: Gr(z) < 1} and 7 = inf{z : F(z) =
1 or Gr(z) = 1}. Let © = {h: h is a nondecreasing function from [—o0, co] to [0,1] such that h(—o0) = 0
and h(oo) = 1}. Each solution H, of the equation -

. Hn(w) — Hn(l)
Ha(z) = /Km B eebn+ [ dantn, Hco 2.2)

is an SCE of F (Li, Watkins and Yu, 1997), where Q,, is the empirical version of Q.

Theorem 2.1. Let H,, be a solution of (2.2). Suppose that

(AS1) (a) 7y <7¢, and (b) if F(1y~) < 1 then P{T or V =1} > 0.
Then lim sup |Hp(z) — F(z)] =0 as. if F(r) =1, and lim sup |Hp(z) — F(z)| =0 ass..
: 700 >0 N0 z<r

Remark 1. A counterezample similar to that in Schick and Yu (1999) can be constructed to show that the
GMLE is not consistent if AS1.b is deleted from our Theorem 2.1.

In clinical follow-ups, a study typically lasts for a certain period of time. Thus it is often true that
F(r—) < 1. In this regard, Gentleman and Geyer (1994, Theorem 2) claimed a vague convergence result,
and Huang (1996, Theorem 3.1) claimed a uniform strong consistency result for IC data or case 1 data. Schick
and Yu (1999) showed that both theorems as stated are false and can be corrected by adding assumption
AS1.b to their theorems. .

It is well known (see Peto, 1973) that a GMLE F,(t) is not uniquely determined for ¢t € (L;, R;) if
L; < Rj, (Li,Rj) N {L1,...; Ln, Ry, ..., Rn} = 0 and py ((Ls, R;]) > 0. For the convenience of our proof of
normality, we restrict our attention to the following SCEs:

H, is right continuous, H,(o0) =1 and Sy, C {Ri,..., Rn}. (2.3)

Under convention (2.3) the GMLE F is uniquely determined. However there are still SCEs that satisfy (2.3)
but are not the GMLE. A point z is called a support point of a function f if there exists a sequence of points
zx — « such that |f(zx) — f(z)] > 0. Denote Sy the set of all support points of f.
Theorem 2.2. Let H,, satisfies (2.2) and (2.3). Suppose that AS1 holds and
(ASQ) F('r) > 0 and (SGUUSGV) C Sp.
. Then for z < 7, \/n(H,(z) ~ F(z)) converges in distribution to a normal variate.

AS1 and AS2 are much weaker than the assumptions made in Petroni and Wolfe (1994), Yu et al.
(1998a) and Huang (1999).




Remark 2. In a follow-up study, each patient has N visits, where N' > 1 is a random integer (rather than
assuming that each patient has ezactly 2 visits (N' = 2) as in the case 2 model). The inspection times are
Y1 < -+ < Yp. It is reasonable to assume that X and (N,{Y; : i > 1}) are independent. Then, on the
event {N =k}, modify (U,V) in (2.1) as

k

U, V) = (Y1, Y2)L(x<vi) + (Yeo1, Vi) Lxsysy + 3 (Yi-1, Y) 1 (visy < x<vi): (2.5)
=2

where Yo = 0. Thus, a more realistic model for MIC data is the model of a mizture of a right censorship
model and a modified case 2 model where (U, V') is specified by (2.5), instead of assuming that X and (U,V)
are independent. This model includes our model (2.1) (in which N' = 2 with probability one) as well as
Huang’s model (in which N is a fized positive integer and T = o). It is reasonable to assume that N, the
number of visits, is bounded. In such a model the proofs of Theorems 2.1 and 2.2 are similar to the proofs
given in Sections 3 and 4. Thus it suffices to study model (2.1).

3. Strong Consistency
We shall prove Theorem 2.1. To this end, we first state two preliminary results.
Theorem 3.1. Suppose that F € ©, F' is right continuous and H is a solution of

(=) -H@)
H(z) = /(Kr—()———dQ(l) [_daun), Beo. 3.1)

Then H(z) = F(z) for all x < 7 if AS1 holds; and H(m) = F(z) for all z < 1 if
(AS3) F(1:) <1, 1y <7 and F = F(1¢) on [z,,00 where Zo < Ty
In (3.1), if H(z) = H(r) = H(l), then we encounter 8 in the integrand. Hereafter, define 3 = 1 and

-0 = 0. If F satisfies AS3, it can viewed as the cdf of an extended random variable X which equals co
w1th positive probability.
Proposition 3.2. Suppose that {fn}n>1 is a sequence of monotone functions on an interval [a,b) and f(x)
is a bounded monotone and right continuous function on the same interval. If lim, fn @)=fle)Vze
la,b) and lim, o fr(z—) = f(z—) V = € (a,b], then lim,_, SUP,e(ap) [ fn (@) — f(2)] =

‘We shall present the proof of Theorem 3.1 after we prove Theorem 2.1. We omit the proof of Proposition
3.2 as it is similar to Lemma 3 of Yu and Li (1994).

Proof of Theorem 2.1. Let Q2 be the event {lim,_,o, Qn(l,r) = Q(l,r) VI < r}. For each w € , let H,
be a solution of (2.2). We shall prove the theorem in 2 steps.

Step 1 (limpeoHn(z) = F(z) and lim,_,o Ha(z—) = F(z—) V 2 < 7). Since {Hp}n>1 is bounded
and monotone, for each subsequence of natural numbers, by Helly’s selection theorem, there exists a further
subsequence, say {n}, such that lim,, o Hp,(z) = H(z) and lim,, 00 Hy, (z—) = H*(z) pointwisely for
some H and H* € ©, respectively. Thus it suffices to show that H(z) = F(z) and H*(z) = F(z—) for all
z<T.

Since @, converges uniformly to @, and H,, satisfies (2.2), by the bounded convergence theorem (BCT)
H satisfies (3.1) and H* satisfies a similar equation like (3.1). Theorem 3.1 yield the first desired equation
H(z) = F(z) on (—o0, 7).

By ASl.a, r > 7 = r = oo and thus H(r) = F(r) = 1 as H € ©. Then equation (3.1) and its analog
for H* yield

F(:L'—) :-/l<x§r WdQ(l,r)+[<m dQ(l,’I‘) (as fl<:c<r+fr§a: = fl<z_<_r+fr<z)’
v [ H@=FQ .
0= [ el + [ e,

as H = F on (—o00, 7] U {o0}. The latter two equations yield

1

H*(m) - F((IJ—) = (H*(:L‘) - F(z—))c(.’z:), where C(.’L‘) = [<z<r mdQ(l, T). (32)
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1-mP(T'>z)<1 ifz<rT,
By A8, ofz) = { 1- P(L(= 7) <) 1  ifz=rand F(r-) <
that H*(1) = F(r—) if F(r—) < 1, and H*(z) = F(z—) Y ¢ < 7. In order to show that H*(7) = F(7-) if
F(r—) =1, let xx 1 7. Note H,(zx) < Ho(7—) < 1. 1t yields H(zx) < H*(7) < 1. Now limg—oo H(zx) =
limg oo F(z) = 1. Thus H*(7) =1 = F(r-).

Step 2 (conclusion). By step 1 the sequence {Hy,},>1 and F satisfy all the conditions for {fn},>1 and f
in Proposition 3.2, respectively, where (a, b) = (—oc0, 7). By Proposition 3.2, limy, o SUp, <, [Hn(z)~F(z)| =
0V w € Q. Since P{Q2} = 1, Theorem 2.1 follows. o

The solution H(z) to (3.1) is unique for z < 7 if AS3 holds by Thereom 3.1, but Theorem 2.1 is false
if only AS3 holds, as [;_, o, Frermd@r) = 1 P(T < 1) = 1 and P(V < 7) = 1. The rest of the
section is devoted to prove Theorem 3.1.

The theorem is trivially true if F/(r) = 0, so without loss of generality (WLOG), we can assume F'(7) > 0.
The outline of the proof is as follows. We first define a functional (k) for h € ©. We then show that h = F
uniquely maximizes (k) for h € © (Lemma 3.3) and that each solution H of (3.1) in © is a maximum point
of (). Thus H must equal F. To this end, some notations and lemmas are needed.

Verify that there are at most countably many intervals (y,z) such that (1) y < z and y < 7, (2)
F(y) = F(z—), and (3) y,2 € Sr. Let u(z) = [F(z) + Gy(z) + Gv(z) + Gr(z)]/4. For i > 1, denote D; the
collection of intervals (y, ) satisfying (1), (2), (3) above and p(z—) — u(y) > 1/4, then D; contains finitely
many intervals since u(-) is a cdf. Thus U;D;, the collection of all such intervals, is countable. Denote Df
the set of left endpoints of intervals in D;.

For a = 1,2, ..., denote B, ; the collection of all possible j27* x 100 percentiles of the distribution p
(1 £ j < 2*) which are contained in (—oo, 7]. Note that for each j such that 2~ < u(r) the corresponding
percentile is given by y = sup{z : u(z) < j27°}. Let By = (Ba,1 UDE) U {7} and denote by < --- <bg =7
to be the elements of B,. Verify that

/‘L(bi_) - /-l‘(bi—l) <27%,i=2,..,0. (33)

Define by, = by and b, = sup{z : z < b;, F(z) = F(b;i-1)}, ¢ = 2,...,8. Moreover, if 7 < 0o, then
denote bg 1. = 7 and bgy; = co. For b;,b; € B,, define

1 It follows from equation (3.2) and ¢(z) < 1

B+1
b'*abi if bi* > bi— ’
Ta = Zbil(Te[bi»le))’ Lbi*,bi] - { Ebli*v bz]] if bi* = bi—i’ and
i=1
(Uas Vo) = (b, b;) if b; SU < bigy, bj—1 <V < b;, 1 <5< B (3.4)

Then P{X c (bi—1,bi]} = P{X (S I_bi*abi]} as P{X € (bi_]_,bi*)} = 0. Define an interval

(~00,b;] fK=2and X <b; =U,,

I = (bi,b]'] fK=2X¢€ (bi,bj] and (Ua,Va) = (bi,bj),

@ (bs, 0] if X > b; and either X =2 and V, = b; or K =0 and T, = b;,
l_bi*,bi] ifX e I_bi*abi], K =0and T, > b;.

(3.5)

Then the number of distinct realizations I, » of the random interval I, is finite. Denote the joint cdf
of (Uy, Vo) by Go and the cdf of T, by Gr,. Let L* and R* be the endpoints of the interval I, Qo (l,7, k)
the joint cdf of (L*, R*,K), and ga,nk = P(Io = Inn, K = k). Abusing notations, let Q(l,r, k) be the joint
cdf of (L, R, K). Thus Q(l,r) can be viewed as the marginal cdf of (L, R).

For H € ©, define uy to be the measure induced by H and

YoH) = Elln(pn(Ia)/pre)] (=) dansnlus(Tan)/pr(lan))- (3.6)
h.k

Here we interpret In0 = —oo0, 0ln0 = 0 and Olnoco = 0. It is obvious by construction [see (3.3), (3.4) and (3.5)]
and by ASl.a that the measures dG,, dGr, and d@, converge setwisely to dG, dGr and d(), respectively.
We call Y(H) a limit of {¢o(H),a > 1} if a subsequence of {¢o(H)} converges to 1(H), where ¥(H) may

be oo.



The proofs of the following 2 lemmas are given in Appendix A.
Lemma 3.3. Suppose that H € © and either AS1 or AS3 holds. Let ¥/(H) be a limit of {¢po(H)}. Then
(1) Y(H) = 0 if and only if H(z) = F(z) for all z < 7, and H(r¢) = F(7) in the case F(z—) < 1 and
P(T or V =1) > 0; (2) %(H) < 0.

A real number z € [1,,7] is called a left point of increase of F € O if F(z) — F(z —¢€) > 0 for each
€ > 0. Let Ly be the set of all left points of increase of F.

P(X € (a,b],X < T,K = 0)
H(b) - H(a)

Lemma 3.4. Suppose that H is a solution of (3.1), ASI or AS3 holds, and b € Lp. Then
(B.1) [ pe0.dQ(l,r) =1 i F(r) < 1;

(E.2) vu(a,b) <1 foreacha<b; (E3) [, T}(‘:‘f_{%dQ(l, 7) + limg4s Y2 (a,b) — 1 = 0.

Proof of Theorem 3.1. Let H be a solution of (3.1). We shall assume that H(z) # F(z) for some z < 7

but AS1 holds, or H(z) # F(z) for some z < 7 but AS3 holds; and show that it leads to a contradiction.
Let 9(H) be a limit of ¥, (H). WLOG, assume limy— o0 Yo(H) = ¥(H). Since H # F for some t5 < 7,

¥(F) =0 > ¢(H) by Lemma 3.3. Therefore, there exists an integer a; such that ¥, (F) > ¥ (H) + 6, for all

a > oy, where § = —¢(H)/2 > 0. For each a > oy, let p; = pup(|bis, b:]), i =1, ..., 8, and pgt1 =1 — F(7).

It is seen that b;, 8, and p; all are functions of a. Then, for a > «j, the above inequality yields

§ < = Ya(H) + Ya(F)

—lim T.}Ta";ba(H) + HL,L%(F) _"pa(H)
ud0 u

Yooz H + T F) — Ya(H)

u

Denote vu(a,b) =

<lim
i

(since —In(-) and hence —,(+) is convex)

Z 1 #aigur Ta,s) 2 ln#H(I i)
i & Qo g, k0 e — Dk Qo kIS
B e (by (3.6))

ul0 u

>k g e[ln(1 + 2252d)) —In(1 4 w)]
ok dord, pr o HiuF _ .
; (as 1+1; = 1+uH+ i+ e F)

=lim
ul0

_ UF'(IQJ)_
=2 ikl

_ F(r)~ F() N T
- /¢<r s o B AD QO+ X op s 1, (37)

i=1

where j; is such that I, j, = |bis, bi), ¢ = 1,..., 8. Let hy(l,7) = %ﬂ)t%ﬁa)_ and ha(bix, b;) = nHL(OL‘bJ:,ObT By

1 i i
(E.1), (E-2) and (E.3) in Lemma 3.4, [,_, gra=gpd@(,7) < 1, thus

B+1

Lbseq.m)
> 1 —I=dQ(l, by the BCT
oo alﬂo;p.’ I<n H('I') _ H(l) Q( T) ( Yy € )

> / limg— 00 E]ﬁill pj]-(bj
~Jicr H(r) - H(l)

= hi(l,r)dQ(,r). (3.8)

l<r

<CP4Q(,r)  (by Fatou's lemma)

Since h; is a nonnegative measurable function, (3.8) implies that it is integrable. Since
qa,j,-,O SP(XE l_b‘n)bz}sX STOL”C:O) (3'9)
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by the definition of U,, V,, Ty and I, [see (3.4) and (3.5)], (E.2) and (3.9) imply that |hg (b, b;)| < 1, and
thus Zf=1 piha(bi., b;) converges by the BCT as a@ — co. Then

0 < 6 <expression (3.7)

B
< lim [/ hl(l,r)an(l’ Ty k) + Zpih2(bi*’bi) - 1]
i<r and k=2, or r=c0

a—o0 i=1

= hl(l r)dQ(l,r) + Iim Zp,hg(b,*,b) 1 (since dQq — dQ setwisely)
< =1

< [ ha(t, 1)U, ) + lim zmﬂ(bi*,bi) -1 (by (3.9))

B+1

B
Z / H((b eag)(l)dQ(l,r)+ Im » pivm(binbi) =1 (by (38))
a—)oo a0 ;3

Letr
< Bm }_jlpz[ <rm+*€“—”mdcz(z,r)+m<bz-*,bi)—1] (by (E.1))

- /[ ][ %d()(l,r)+l§gfm(a,b)—l]dF(b) (by the BCT)
=0 - (by (E.3)).

Thus we reach a contradiction 0 < § < 0. This concludes the proof of Theorem 3.1. o

4. Asymptotic Normality R
If F(r) =0, the GMLE F(r) = 0 w.p.1. If F(r) < 1, F(t) is not identifiable for ¢ > 7. Thus it suffices
F(t) ift<r
to estimate F defined by F.(t) = F(r) if T <t < oo, and assume that F(7) > 0. Here F, € © but may

1 ift=c0
not be a cdf and Theorem 3.1 does not require F be a cdf.

There are two equivalent forms for equation (3.1): H = By(Q) and H = Ry (F), where

H(z) - H()

Ba@ = | e =gpdan+ [ don)  (RHES of (31) (4.1
Ra(F)e) = [ (G =P ) = FO - [Fla) - FOBAG(,r) + Fla), (42)
{ mdP(V < 1) +m0dGr(l) if r = oo,
dG*(l,r) mdP(U < 1) ifl = —o0,
medG(l, ) if —oo<l<r<oo,
dQ(l,r) = [F(r) — FQ))dG*(l,7) = [Fy(r) — Fy(1)JdG*(l,r) i 1 < . | (4.3)

Lemma 4.1 . By, (Qn — Q) = Ru, (Hn — F;) for each SCE H,, which satisfies (2.8).

The proof of the lemma is in Appendix B.

Let D be the collection of all real-valued functions h defined on [—o0, 00| that are right-continuous, have
left limits at each point and satisfy that

Va<b<oo, Fria—) = F(b) = h(a—) = h(b). (4.4)
Define Dy = {h € D: F(z) = 0= h(z) = 0; F-(z—) =1 = h(z—) = 0}. Verify that (D,||-]|) and (Do, ||-||)
are both Banach spaces. Let (Ds, ||-||) be a Banach space of real-valued functions defined on [—o0, 00]? such

that the Banach space contains all bivariate cdfs, where [|g|| = sup, , |9(z,y)|. Note that AS1- AS3 are
basically assumptions on (F, G, Gr). We say (H, G,Gr) satisfies AS1 etc., if H € © and H replaces the role
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of F in ASl etc. Let ©, = {H € ©ND: Sy C Sr, (H,G,Gr) satisfies AS1 or AS3}. For each H € O,,
Ru(-) and By(-) are linear operators on D and Ds, respectively.

Theorem 4.1. Suppose that AS1, AS2 and (2.8) hold. Then ’R;Tl exists as a bounded operator from D to
D and the SCE satisfies

Vi(Hn = Fr) =5 REBr, (W) in D, (45)

where W is the Gaussian process specified by v/n(Qn(l,7) — Q(l, 7)) 2w,

We first state 3 more lemmas, with their proofs relegated to Appendix B. _

For a F' € ©,, let C, be the collection of all the distinct points among Ck,iS, where ¢ ; = inf{z : F(z) >
i/2F},i =0, ..., 2%, k > 1. Let F} be a step function in ©, such that Fi(c) = F(c) for each ¢ € Cf and its
discontinuity points belong to C. Denote Dy (Dio) the subclass of D (Dp) such that each member is a step
funcj;ion with the collection of discontinuity points being a subset of Sg,. Obviously, Dg, Cy and F} depend
on F.

Lemma 4.2. If F € O, then the linear operator ’R,;: erists as a map from Dy onto Dy.
Lemma 4.3. Assume that AS1, AS2 and (2.3) hold. For each w € , H, € ©,.
Lemma 4.4. If F € ©,, then HR;:()H < 1 for all possible k.

Proof. We give the proof of asymptotic normality in 4 steps.

Step 1 (Existence of ’R,;,l, F € ©,, as a linear operator from D to D). For each g € D and k > 1, let
gk € Dy be such that gx(z) = g(z) if z € Cr. Then {|gx — g|| = 0, since S,, and §; C S and C = UxCy is
dense in S;. By Lemma 4.2, ’R,I_,: exists, so ‘there exists a unique hy € Dy, such that gx = R, (he). VK > k
and V h € D, Dy C Dk, ||F — Fk|| < 1/2% and Rp, (h) — Rp, (k) converges to 0 as k — oo by the BCT.
IR7 () < 1 by Lemma 4.4, thus limge0 [R5, (h) = Rz (h)] =0V h € Dy and V k > 1. Furthermore,

bk — hill <IRE, (95) — R (90|l + IR 7 (95) = R ()|
IR, (96) = R (9011 + IR E | - llgi = gxl| — 0 as k — oo,

by the assumption ||gr — g|| = 0, Lemmas 4.2 and 4.4, and the BCT. That is, ||hk|| is a Cauchy sequence.
Since D is a Banach space, there is a function h, € D such that {|hx — ho|| = 0. By the BCT, g =
limy—, 0 Rr, (hk) = R(ho). Define b, = R71(g)-

Step 2 (Strong continuity of {R5' : H € ©,}). Let ¢/, € D and H,, € ©, be such that ||g/, — g/| = 0
and ||Hp, — Fr|| = 0 as m — oco. Then

IRE: (gh) — RES@I SIIREE (9m) = REHGI + I1R7: (gh) — REL ()
<Rz — Rel - llgmll + IRE - llgh, — gll = 0 as m — oo.

Step 3 (Strong continuity of {By : H € ©,}). Let h be a simple function in D. It follows from (4.1)
and the BCT that By (h) — B, (h) in D as H — F;. Since ||Bg|| < 4V H € O, and the collection of simple
functions is dense in D5, we have strong continuity.

Step 4 (Conclusion). By Lemma 4.3, H, € ©,. Thus R;Ii exists by Step 1. It follows that /n(H, —
F.) = ’R‘I_:IiBHn (vn[Qr — Q]) by Lemma 4.1. By Theorem 2.1 lim,—00 |Hn(z) — Fr(z)| = 0 a.s. By Steps
2 and 3, {Fy = ’R;IIB u : H € ©,} is strongly continuous. As a consequence of the above 4 statements, and
the Banach-Steinhaus theorem, sup{||F#, (k) — Fr,(h)|| : h € A(e)} — 0 a.s. as n = oo and then € — 0+
for all compact set A C Dy, where A(e) = {h € Dy : ||h — I'|| < € for some h' € A}. By the central limit

theorem, W, = v/n[Qn — Q] Ly Win D, {W,,} is uniformly tight (Pollard, 1984, p.81). As a consequence,
\|vn(Hyp — Fr) — Fr, (W)l = ||[(Fu, — Fr,)(Wa)|| = 0p(1), which implies (4.5) by the continuous mapping
theorem (Pollard, 1984, p. 70). o

Remark 3. Our proof of the normality (not the consistency) relies on the form (2.8). It can be shown that
Theorem 4.1 are actually true without (2.8), and Theorem 2.1 (not Theorem 4.1) are true without (ASl.a).
For the sake of simplicity, we skip the details.

Theorem 2.2 is a consequence of Theorem 4.1.

Remark 4. Under assumptions AS1 and AS2, H,, is also efficient. The proof is analogous to that of Theorem
3 of Gu and Zhang (1993) and is skipped here.




Appendix A

We shall prove Lemmas 3.3 and 3.4. A lemma is needed to prove Lemma 3.3.
Lemma A.1. Assume that AS1 or AS3 holds. Let y(H) be a limit of {¢)o(H)}, H € ©. Then y(H) =0
if and only if (1) H(t) = F(t) and H(t—) = F(t—) Vt € Sr NUaBy N (—00,7), (2) H(t—) = F(r-) if
F(r—) <1 and (3) H(t) = F(r) if F(t—) < 1 and AS1 holds. Moreover, ¥(H) < 0.
Proof. (=) Verify that ¢, (F) = 0 for all & by ASl.a, and thus lim,_,o %o (F) = 0. Then conditions (1) -
(3) above imply that ¢, (H) = ¢ (F) = 0 for all & > 1. Thus ¥(H) =

(<) We first show that (H) = 0 implies condition (1). It suffices to show that ¥(H) < 0 if for some
to € SpNUgBq N (—00,7) either (1.a) H(ty) # F(to) or (1.b) H(ty—) # F(to—). Condition (1.a) implies
that for each sufficient large «, there is a point b, € Sp N B, such that b, = t,. Verify that

Yo (H) =E{E(In(pn(Ia)/pr(1a)|Us; Va, Ta, K)}

- f / fa,z(z,y)dc:,,(z, y)+ 7o / fao(t)dGr.a(t), where (4.1)
2, Hy)-HE) _H<y_>
fa2( y) () F() ()]IDF() F()+[1 F( )] —F(y)’
_ Hby) | e ([brs, bi]) 1= H(b)
faob;) =F(or)lngpts + kZMuF(Lbk*, b= s + L= Pl —p s

and by, tp and b; € B,. Note ty is fixed but the index h of by, = ¢y depends on «. Define

o(k,t) = { F(to)lnged + [1 - F(to)Ini=mse} i to <1, (42)
0 otherwise.
H -H -
Then 0 = In F(t) 269} + [1 - Fto)| 1522 | > F(to)n 2} + [1 - F(to)in =28 = g(0,2), for ¢ > to, as
—In(-) is strictly convex and F(to) # H(to). Moreover, P{T or V > t;} > 0 as my > 0 and tp € (—00,7). It
follows from the above two statements that

P{0> g(K,T)} > 0. (A.3)

It is obvious that (1.a.1) g(2,t) > fa,2(u,v) for each (u,v,t) and (1.2.2) 0 = g(0,%) > fa0(t) for t < to. We
shall show that, (1.a.3) g(0,¢) > fa0(t), for t = by > to, where by € B, and « is sufficiently large. Let
f gdG¥ = 72 [ [ 9(2,8)dGa(u,v) +  mo [ g(0,t)dGr, (), and define

J 9dG" in an obvious way. Then (l.a.1), (l.a.2) and (1.a.3) imply that [ gdG¥ > to(H). Since dG¥
converges to dG* setwisely by observing that dGo (dGr,) converges to dG (dGr) setwisely and g(k,t) is
a binary function in (u,v,t,k), the desired result follows from (A.3) and 0 > [ gdG® = Iim [ gdG¥ >

aﬁ Ya(H) 2 ¢(H).

We now establish (1.a.3). Let ¢, = by, < b; = ¢ for some integer a,. It is easy to see by our construction
that B,, C Ba, if a3 < as and hence tp, ¢ e B, for all o > o,. For each z = b; € B,, such that z < tg,
verify

i H(:) F() . (H(to) - H(2) F(to) - F()
% 9008 = Flo {5 Fee) T (Feo) —F(9) ~ F@)
) (H(t) - H{to) F(#) — F{to) . 1 H({#) 1 F(z)
T =Pl G =Ry 1-F) T 1O I-F)
H() - H(a) | F(o)=F(a), H(x)-H(a)  F(6)=Fz) H()~H(z)
Fo)~Fla) = F(b)— Fla) “Fl@)—Fla) T F(5)— Fla) " F(5) — ()
for all z € (a, b).

(i) In

In view of (i) and (ii), (1.2.3) follows by an induction argument.
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Now consider condition (1.b). If ¢, is a point satisfying condition (1.b), then either (1.b.1) t; € SN
(UaBa) N (UaBL), where B: = {z : £ = bjx > bi_1,bi,bi—1 € Ba}, or (1.b.2) tg € Sp N (UaBa) N (UaBg)S,
where A° is the complement of the set A.

First assume (1.b.1). For each sufficiently large a, there exists a bp. = to € Bj;. Thus replacing ¢y by
to— in the proof for situation (1.a) yields ¥/(H) < 0.

On the other hand, in view of (3.3), (1.b.2) implies that F(to—) > F(t) for each ¢ < to and hence
there exists a sequence of points z; € Sp N U,(B, U B%) such that z; 1 to with either H(z;) # F(z;) (if
z; = bjx = bj_1) or H(z;—) # F(zi—) (if z; = bjx > bj—1). In either case, it reduces to situation (1.a) or
(1.b.1). Thus, we have ¥(H) < 0. This concludes the proof for condition (1.b).

The proofs for conditions (3) and (2) are similar to that for conditions (1.a) and (1.b), respectively, except
in the proof for condition (3) replacing in the above proof the statement P{to < T} > 0 by P{T or V =
7:} > 0 (as AS1 holds). We omit the details.

Verify that we actually show that either ¥(H) =0 or ¥(H) < 0. Thus ¥(H) < 0. o
Proof of Lemma 3.3. Statement (2) follows from the last statement in Lemma A.1. To prove statement
(1) , it suffices to show that conditions (1), (2) and (3) in Lemma A.1 imply H(z) = F(z) V 2 < 7, i.e. the
sufficient and necessary condition in Lemma 3.3.

If z is a discontinuity point of F and z < 7, then there exists an integer N such that F((z)—F(z—) > 27
for all @ > N. This implies that z is a certain 727V x 100 percentile of 4 and thus z € B, N Sp. It follows
that Sp N UsBa contains all discontinuity points of F' which belong to (—oo,7]. Thus conditions (1), (2)
and (3) of Lemma A.1 imply H(z) = F(z).

Suppose now z is a continuity point of F. Let u, = inf{y : F(y) = F(z)} and v, = sup{y : F(y)
F(z)}. If both u, and v, belong to Sp MUy By, we are done, as F(z) = F(u,) = H(u) < H(z) < H(vz—)
F(vg—) = F(z) by conditions (1), (2) and (3) in Lemma A.1. .

If neither u, nor v, belongs to SpNU, B, then from the above discussion both u; and v, are continuous
support points of F satisfying F'(u;) = F(v;) = F(z), and there exist two sequences of support points of F,
say {z;}i>1 and {y;};>1, which are contained in Sg N UyB, such that z; 1 u, and y; | v,. Consequently,
F(z;) = H(z;) < H(z) < H(y;) = F(y;) by conditions (1), (2) and (3) in Lemma A.1. This yields
H(z) = F(z) as F(z;) = F(uz) and F(y;) — F(vg).

For simplicity, we skip the proof for the case that only u, or v, belongs to SpN(UqB,). This concludes
the proof of the lemma. o

A lemma is needed for proving Lemma 3.4.

Lemma A.2. Suppose that H is a solution of (8.1) and A is an interval (a,b] C (—oo,7]. Then pp(A) >
0= pu(4) >0. .
Proof. Equation (3.1) is equivalent to

_ [ palebn @) )
wil(at) = [ HEAT N a0U ) + P(X € (B X ST K =0). (4.4)
If H is a solution to (3.1), then for each interval A = (a,b] C (—o0,7] such that ur(A) > 0, we have
pr(A) > P(X € A, X <T,K =0) > 0 by the assumption myp > 0 and b < 7. This concludes the proof of
the lemma. o

Proof of Lemma 3.4. Assume that H is a solution of (3.1) and b € L. By Lemma A.2, py((a,b]) >0V
a < b. Dividing both sides of equation (A.4) by px((a,b]) yields

pu((a,b] 0 (1 7))

1=/ P(X € (a,b], X <T,K =0)
1<r [H(b) = H(a)][H(r) — H(1)]

H(b) — H(a) ’

dQ(l,r) + a<b. (A.5)

For each a < b, (A.5) yields (E.2) as the two summands in (A.5) are nonnegative.
0 if pu((a, 8]0 (0, 7)) =0,

Denote 0H (a,b,l,r) = { H(b)ﬂ‘_t;{(zib;}(’;;_ml otherwise.

For each pair (I,7) such that [ < b < r, we have H(r) — H(l) > 0 by Lemma A.2. Moreover,

Leeqr)

BH(a, b,l,r) T mm

asatbifbe (l,r), and dH(a,b,l,r)}0asatbifb>r.
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Thus by the monotone convergence theorem, as a 1 b, we have
)
8H(a,b,l,r dQ=/ 0H(a,b,L,1)dQ + | aH a,b,1,7) Q-»/—"’—e&dc).
Jou@sina=[  omabin ( () - HQ)
The desired equation (E.3) follows from (A.5), (E.2) and the above equation.

Assume now 0 < F(7) < 1 and AS1 holds. By ASl.a, [ <7y <7 = r =00, thus

patrocl) = [ FEZZEA00r) (b ASLand (A0) (4.6)

> / dQ(i,r) = (1 - F(r))P(L=7) >0 (by ASLb).
l=r<r

Dividing both sides of equatlon (A.6) by pg((r,o0]) yields (E.1) under ASI.
On the other hand, assume that 0 < F(r) < 1 and AS3 holds. Note that even if we encounter §,

%ﬂl[%gq) =1 by convention. By AS3, P(z < T < 7;) > 0 for each 2 < 7;. (A.4) yields

(o) = [ 2@ g, (A7)
>(1-F(n))P(T € (z,7]) >0, Vz€zo,72)-

Then dividing both sides of (A.7) by px((2,00]) and taking limits yield

_ g ((z,00] N (I, 7))
atre Jicr pr((z,00))(H(r) — H(1))

(as 7y < 7t and thus | < 7 < r = r = o0}, which is (E.1). o
Appendix B
In this appendix, we prove lemmas in Section 4.
Proof of Lemma 4.1. Theorem 3.1, (4.1), (4.2) and (2.3) yield By, (Qnr)(z) = Hn(z) and Rr, (Fr)(z) =
F.(z) V¥ z. Furthermore,

1(l<n<r

dQ(l r) = o) = HQ) H(l)dQ(l ,7)

Hy(z) — Ha(l) _ ~ .
/ISKTH(T) .. (1) (r) = Fr(r)] - [Ha (1) — F(D]}G" (1, 7)

— _ (17 n(z) — Hy(l) " .l s
_[Sz<r[Hn(z) Hn(l)]dG (l, ) ,/.<z<r H,(r) - H, ()[F +( ) F‘r(l)]dG (l, )
= - “(Lr Hp(z) = Ha(l) 1y

= /lSm[Hn(w) H,(}dG*(l,7) = / reor Bor) — I, ()dQ(l ) (by (4.3))

- fzqq[H"(“” — Ha(1))dG" (,7) - Bar, (Q)(@) + PR <z} (by (4.1))

B /i<a:<,.[H"(w) - Hn(l)]dG*(l’T)
"—BHn (Q)(z) + [By, (Qn)(x) — Ha(z)] (since By, (Qn) = Hn)
HRE- [ F@-RO@Q (= PRS o} s B =R (F)

<z<r

=By, (@n — Q)(z) — [Ha(z) — Fr(2)] + /K {[Hn(2) — Fr(z)] - [Ha(!) — F-(D]}dG"™.
Llz<Llr
Translating certain terms in the first and last expressions of the above equations yields

B, (Qn - Q)(a)
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I R -
"/ i<z<r Hn(r) — Ha(l) {[Ha(r) = Fr(r)] - [Ha(D) - F-()]}G*(,7)
+Hale) = Flo)] = [ {1Hule) ~ Feo)] - [Hn®) = FeQIHG" (0,7

— H,(z) - H,(l) o _ N
—/zgz« (—_—Hn(’l')—Hn(l){[Hn( ) = Ho(D)] = [Fr(r) = F-Q)]}

~ {{Ha(2) = Ha(0)] ~ [Fr(2) = F O]} )dG" (i 7) + [Ha(2) = Fr(a)]
=Ru,(Hn — F;)(z) (by (4.2)). 0

Lemma B.1. If F € ©, and R;(h) = 0, where h € D, then h € Dy.
Proof. For each h € D, by (4.2),

e F(z) - F() (e — TG (r
Re0)E) = | o o) b = @) - hOBAG L) +hE). (B)

If F(z) = 0, then h = h(z) on (—o0,z] by (4.4). Thus
0= Rp(h)(®) = — fyc,<, 1h(@) - H(]AG" (I, ) + h(z) = h(a).
Moreover, if Fr(z—) = 1, then h = h(z—) on [z, 0] by (4.4), and
0=Rp(h)(z—) = [icpepP(r) = h(z=)]dG*(l,r) + h(z—) = h(z—). Thus h € Dy. o
Proof of Lemma 4.2. Note ' € ©,. Since RF, is a linear operator on the finite dimensional linear space
Dy, it suffices to show (1) Rp, is 1-1 and (2) Rp, (D) C Dk.

Step (1). Suppose Rp, (h) = 0, where h € Dy. We shall show that h = 0. Denote a = )_ ¢, |h(c) —
h(c—)| and m = min{m, : = Fi(c)— Fr(c—) > 0,c € Ci}. Note that m > 0 and « is finite as Cj, contains
finitely many points. Choose v > 0 such that ya < m. Let H = F + «h. Since Rp,(h) = 0 and Feo,,
h € Dyo by Lemma B.1. As consequences, (1) H(m,—) = Fi(1o—) + 0 =0 and H(co) = Fi(o0) +0=1; (2)
H(c) > H(c—) for all ¢ € C, [as H(c) — H(c—) > m —~(h(c) — h(c—)) > m —ya > 0]; (3) H(z) € Di.

It follows from statements (1), (2) and (3) that H = Fy + yh € ©, N Dx. Then Rp, (H)(z) =
RF.(Fr)(z) + RF, (vh)(z) = Fi(z) + 0 for each . That is F, = Rp, (H). Note that (H,G,Gr) satis-
fies AS1 or AS3 as H € ©,. Thus Fy = H = F}, + vh by Theorem 3.1, which implies h =0 asy > 0. As a
consequence, R, () is 1-1.

Step (2). It suffices to show that A = R, (h)(b) — R, (h)(a) =0 if h € Dy and pr, ((a,b]) = 0. Define
pn((a, b]) = h(b) — h(a). By definition of Dy, up((a,b]) = 0. Then

a= [ AT (@) - (710 (@867 4 ) + in((a) = 0. @

Proof of Lemma 4.3. We fix w € Q, as H,, is random. We shall verify that H,, satisfies the properties of
O,. First, by AS2 7, < 7.

If a < b and F(a—) = F(b), then [a,b] NS = 0. It follows that {Ry,...,R,} N [a,b] = @ by AS2 and
thus H, satisfies (4.4) and H, € D by Convention (2.3).

If H,(7s—) = 1 then (H,,G,Gr) trivially satisfies AS1 and thus H, € ©,. Moreover, if F(r;—) < 1,
then P(T or V = 1) > 0 and thus (H,, G, Gr) also satisfie AS1. It follows that H, € ©,. Hence, WLOG,
we can assume that F(r;—) = 1. and Hn(r;—) < 1. Then either P(R=7) > 0or PR =7) =0 If
P(R=m7) >0, then P(V = 7) > 0 as F(r—) = 1. Le., (Hy,,G,Gr) satisfies AS1 and H, € ©,. If
P(R = 7¢) = 0 then with probability one R; # 1:. WLOG, we can assume that R; # 1;. Let z, be the
largest R; that is smaller than 7;. Then (2.3) implies that pg, ([zo,7:]) = 0. Moreover, 7o < Tt by ASIL.
Hence, (H,, G, Gr) satisfies AS3. It follows that H, € ©,. o
Proof of Lemma 4.4. Let oy, ..., 0, be all the discontinuity points of Fy. Then Dy is an m-dimentional
linear space. Define h;(z) = 1(;>,,). We shall show that

Ar, = R, (hi)(0;) — R, (hi)(0j—) > 0 for each j and for each h;. (B.2)
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Verify that R, (hi) € Di (by Lemma 4.2), Rp, (hi)(0—) = 0 and R, (hi)(c0) = 1. Then
RrF,(hi), i =1, ..., m, are a base of Dy and ||RF, (hi)|| = 1,
by Lemma 4.2, as Dy, is an m-dimensional linear space, and .
hiy i =1, ..., m, are a base of Dy, and ||h;}| = 1.

(B.3) and (B.4) imply that ||Rg}|| = 1.

(B.3)

(B.4)

The proof of the lemma will be completed after we prove (B.2). Letting z = 0j, h = h;, F = Fy, (B.1)

yields
Re0e) = [ (RO R0+ e HOMG () + A,
where B(z) = mo(1 — Gr(z))h(z). Moreover, {{ <z— <r}={l<z <r} and
e B0 S

_ F(z—) - F(l) F(r) = F(z-) Lot Bl — Bl
/z<xgr[ F(r)—F(l) h(r) + F(r) = F() h(1))dG*(1,r) + B(z) — B(z—)

- (F(@) = F(=))(A(r) = b)) ey | i
_/z<z<, F(r)— F(Ql) dG*(l,r) + /l=w h(z)dG*(l, )

_ [ Fe)=FQ) o F@) = F@=)y e ey g
/Kz:,[ F@) —FQ) "t Fay = rg MOME ) + @) - Bla-).

Replacing F' and h by F}, and 1(,5,,), respectively, equation (B.5) yields

Ap, 2 /z=z< h(z)dG*(1,r) — / h(z)dG*(I,r) + B(z) — B(z—)

I<z=r
=moP(T = z)h(z) + 7ol ~ Gr(z))h(z) — mo(1 — Gr(z—))h(z—)
=mo(1 — Gr(z—))(h(z) — h(z-))
>0, which is (B.2). o
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Abstract

We consider efficient estimation of a distribution function F' of a random variable X with
doubly-censored data. The double censorship model assumes that X and the random vector
(Z,Y) are independent and Z < Y with probability one, and that X is uncensored if Z < X <
Y, right censored if Y < X and left censored if X < Z. Let K(z) = P(Z <z <Y) and let
B={z: K(z—) =0, F(z) > 0 and F(z—) < 1}. Under the assumption P(X € B) =0, we
present an example that the generalized maximum likelihood estimator (GMLE) of F' with
doubly-censored data is not asymptotically normally distributed and is not asymptotically
efficient, and we propose a modified GMLE. We conjecture that it is asymptotically normally
distributed and asymptotically efficient under the assumption P(X € B) = 0. We give a proof

under an additional assumption.

1 Partially supported by DAMD17-94-J-4332.
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1. Introduction

We consider efficient estimation of a survival function with doubly-censored data. Let
X1,X5,...,X, beii.d. copies from a random survival time X, with a distribution function F.
Let (Z1,Y1),(Z5,Y2), ..., (Zn,Yy,) be i.i.d. copies from a random vector (Z,Y’), where Z <Y
with probability one. Assume that X and (Z,Y) are independent. For each i, 1 <1i <n, X;
is either observed if Z; < X; <Y;, or right censored if X; > Y;, or left censored if X; < Z;.

Thus the observation can be represented by a random interval Z, where

X,X] #Z<X<Y,
I={ (Y,00) Y <X, (1.1)
(—0,2] fX<2Z.

This censoring scheme is called a double censorship model (DC model).

Doubly-censored data often arise in biomedical studies, reliability research, and many
other fields. Examples of doubly-censored data can be found in Leiderman et al (1973),
Samuelsen (1989) and Kim, De Gruttola and Lagakos (1993).

Turnbull (1974) proposes the generalized maximum likelihood estimator (GMLE) of F
with doubly-censored data, and shows that the GMLE is a self-consistent estimator (SCE).
Turnbull (1974), Chang and Yang (1987), Chang (1990) and Gu and Zhang (1993) show that
the SCEs are consistent, asymptotically normally distributed and asymptotically efficient
under certain regularity conditions. Denote

K(z)=P(Z<z<Y),

P,(z) = P{X is not censored|X = z},

Q={z: F(z)>0and F(z—) < 1},

B={z: K(z—)=0, z € Q}.

Turnbull (1974) assumes all random variables takes on finitely many values. Gu and Zhang

(1993) make weaker assumptions, with a key assumption
K(z—) = P.(z) >0forall z € Q. (1.2)

Let © be the sample space and let Op = {z : £ = X (w) for some w € Q}. Assumption (1.2)
implies that
Or D Q and K(z—) = P,(z) for all z € Q, (1.3)
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which is not true for a discrete random variable X. The condition really needed in the proofs

of Gu and Zhang (1993) is
K(z—)>0forall z € Q, (1.4)

rather than (1.2). (1.4) is weaker than (1.2), as it does not imply (1.3).

A sufficient condition for F' to be identifiable on the whole real line is P(X € B) = 0,
since all SCEs are consistent under this assumption (Yu and Li (1998)). It is easy to see
P(X € B) = 0 is weaker than (1.4) since (1.4) implies that B is empty, thus P(X € B) = 0.

An interesting case of a nonempty B is that B is a discrete set. In such a case, we have
P(X € B) =0 if F is continuous. Let (2;;,;;), ¢ € K1 and j € Kj, be all the possible values
of (Z,Y), where K; and K, are two index sets. Then B = Q \ U; ;(2ij,¥s;]. Notice that if
(2i5,9i5) = (4,4 +1—1/4), ¢ > 1 and j > 2, then B is a discrete set of all positive integers.
. Here “\” stands for set minus. In a follow-up study, Z stands for the age of a patient at
the enrollment and Y the age at the termination of the study. Thus it is possible that in a
follow-up study B is a nonempty discrete set with P(X € B) = 0, as it is reasonable to assume
that the lifetime distribution is continuous.

If P(X € B) =0, in general, the GMLE of F is not asymptotically normally distributed
and is not asymptotically efficient (see Section 3). We propose a modified GMLE and show
that it is efficient under an additional assumption. We conjecture that it is still asymptotically
normally distributed and asymptotically efficient under the assumption P(X € B) = 0.

The organization of the current manuscript is as follows. The modified GMLE is proposed
in Section 2. In Section 3 we present an example such that the GMLE is not asymptotically
normally distributed and is not asymptotically efficient but the modified GMLE is. In Section

4, we make some comments.

2. Modified GMLE
Let (L, R) be the endpoints of the random interval Z in (1.1). Let I;, 2 = 1,...,n, be a
random sample from Z, with endpoints (L;, R;). We call a nonempty finite intersection B of

I’s an innermost interval (I1) if BN I, = B or () for all k. Let By, ..., Bas be all the distinct
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innermost intervals induced by these I;’s and assume that = < y for each z € B;_; and each
Yy € B;, 1 =2,...,M. An innermost interval A is called a modified innermost interval (m-II)
if it is either a singleton set or By or Bys. Let Aj,...,Ar, be all the distinct m-IIs and assume
that z <y for each z € A;_; andeachy € 4;,1=2,....m

The modified GMLE (m-GMLE), F', of F is defined by

AjC(—oo,z]
where (81, ..., §») maximizes the modified likelihood function
L(81, .y 8m) = HZsjl(Aj C I;), where s; > 0 and Z;’T__l s; = 1. (2.1)
=1 j=1

Here 1(-) is the indicator function. The m-GMLE can be derived by an iterative procedure

as follows. At step 1, let 55.1) =1/mfor j =1,...,m. At step h,

no . (A CI)(hl)

=23

—v, J
=1 n2k=1 (Ak C I’L) ](gh 2

=1,...,m, and h > 2.

Stop at convergence and the limit lim,_, o s§h) is the m-GMLE of s;.

Thus the m-GMLE redistributes the mass among uncensored observations, or the interval
(o0, Ryy] if (=00, Ryy) = (Li, R;) for some i € {1,...,n}, or (Ln),00) if (L), +o0) =
(Li, R;) for some ¢ € {1,...,n}, where

Rny =min{R;:i=1,..,n} and L,y = max{L; :i=1,...,n}. (2.2)

Denote t; = max A;, i =1, ..., m — 1. Denote &;; = 1(4; C I;) and § = (31, ..., §m—1)?, where
st is the transpose of s. Let A be the (m — 1) x (m — 1) dimensional empirical information

matrix with the (z, j)th entry

3

|
Z — 6,” - 6hm 5h] — 5hm Z 5hk3k
h=1 k=1
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Note that F(t;) = Z;’___l 3; = ek8§, where ey is a (m — 1) x 1 vector with the first k entries

being unity and the others all zero, k = 1, ..., m — 1, an estimator of the variance of ﬁ‘(tk) is

&%‘(tk) =etAley/n. (2.3)

Recall that the GMLE F of F(z) can be obtained by F(z) = 3 B, C(—o0e] Wj for all z,

where (1, ..., War) maximizes the generalized likelihood function

n

: M
L =L(wy,..,wsr) = [[[D_ 1(B; € L)w;], withw; >0and » w;=1. (2.4)

i=1 j i=1
Turnbull (1974) shows that the GMLE of (ws,...,wps) is a solution to the self-consistent
equation

n

M
1  1(B; C L)w; ,
wj=) = M( AR , j=1,., M, w;>0and Y w;=1. (2.5)
N3 k=1 1(Bx C L)wy

i=1 i=1
A solution (W1, ...,War) to (2.5) is called an SCE of (wy,...,wp) and an estimator Fy(z) =
ZBjc(—oo,m] W; is called an SCE of F(z) if (w1, ...,Wp) is an SCE of (wy,...,wn). Both the
GMLE and the m-GMLE are SCEs. These two estimators are the same when the GMLE puts
zero mass on all the innermost intervals which are not m-IIs. In general, they are different.
Under the assumption P(X € B) = 0 and an additional assumption that X takes on
finitely many values, say zi, ..., Z,, we can show that the m-GMLE is efficient. Let A; = {;}
and s = P(X =x;) i =1, ..., m. Then s? > 0. Under the above assumptions, with probabil-
ity one, for n large enough, the random sample contains all the A;s. In view of the likelihood
function (2.1), the problem reduces to parametric estimation of a multinomial distribution
functioh with parameter s. The m-GMLE of s is the MLE of s in this parametric estimation
problem. Since s? > 0 for all 4, by the standard large sample theory (see e.g., Ferguson (1996)),
the MLE of s is consistent, asymptotically normally distributed and asymptotically efficient.
The asymptotic covariance matrix can be estimated by the sample information matrix AL
This justifies the use of formula (2.3). An explicit form of the inverse of the information
matrix of a self-consistent estimator is given in Turnbull (1974). Since the m-GMLE is also a

self-consistent estimator, the formula is applicable to the m-GMLE.
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Remark We conjecture that the m-GMLE is asymptotically normally distributed and asymp-
totically efficient if P(X € B) = 0. The above paragraph confirms it with the additional
assumption that Op is finite. We can further prove the conjecture under the additional as-
sumption that Op consists of isolated points or B is a union of mutually disjoint intervals
(us,vi]s. We decide not to present the latter proof but refer them to a technical report (Yu
and Wong (1998)), as it is not as short as the above paragraph but still needs an additional

assumption.

3. A Simple Example

We now give an example that the GMLE F' of F(z) is not asymptotically efficient and
Vvn(F — F) does not converges in distribution to a Gaussian process, but the m-GMLE does.

Suppose that in a DC model, P((Z,Y) € {(0.5,y) : y € [2,3)}) = g1 and P((Z,Y) €
{(2,8) : z € (3,4]}) = go, where g3 + g2 = 1; F(z) = p11(z > 1) +p21(w > 5), where p;
and pa > 0. Then (L, R) takes values (1,1), (5,5), (—o0,y) and (z,00), where y € (3,4] and
z € [2,3). Given a random sample of size n from (L, R), there are Ny (1,1)’s, N3 (5,5)’s, N3
intervals of form (—co,y)’s and Ny intervals of form (z,+00)’s.

Note that in this case assumption (1.4) is violated, as @ = [1, 5] (see (1.4)) but K(3—) =
P(Z <3<Y)=0; however, P(X € B) =0 as B = {3}.

We now derive the GMLE and the m-GMLE. With probability one, if n is large enough,
the innermost intervals are [1,1], (yo,2,] and [5,5] and the m-IIs are [1,1] and [5,5], where

Yo is the largest L;s among all L; < 3 and z, is the smallest R; among all R; > 3. Let

U, =N _ N
n N2+N3 N1+Ny?

- N1 N2

Fi(r) = ——=1(z > 1)+ U,1(z > 3) + —2>—1(z > 5),

1(z) NN (z21)+U (w_3)+N2+N3 (z 25)

. N; + N;

F(z) = %1(.@ >1)+ —J-Vz—:;—&l(m > 5), (3.1)

F(z) = Fy(z)1(U, > 0) + F'(2)1(U, < 0).

Verify that F and F' are the GMLE and m-GMLE of F, respectively. It follows from the

strong law of large number (SLLN) that the three estimators in (3.1) are all consistent. Note
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that Ny + N3 has a binomial distribution Bin(n, F(2)). Thus F'(z) is asymptotically efficient
for all z, and +/n(F — F) converges in distribution to a Gaussian process.

Let p = F(4) — F(2), then the m-GMLE of p is p = F'(4) — F(2) and the GMLE of p is
p = F(4) — F(2). In order to show that the GMLE F is not efficient and Vn(F — F) does
not converges in distribution to a Gaussian process, it suffices to show p is not asymptotically
efficient and is not asymptotically normally distributed. This is done next.

Note that p = 0, thus var(p) = 0. However, p = U,1(U, > 0) and /nU, converges
in distribution to U, a normal random variable with mean 0 and standard deviation o > 0,
which can be obtained by the delta method. That is, var(p) < var(p). Thus the GMLE  is
not asymptotic efficient. Moreover, \/nU,1(U, > 0) converges in distribution to U1(U > 0),

which is not a normal random variable.

4. Discussion

Under assumption (1.4) and some additional assumptions made in Gu and Zhang (1993),
both the GMLE and the m-GMLE have the same asymptotic properties as both of them are
SCEs. If P(X € B) = 0, then both of them are uniformly strongly consistent (see Yu and Li
(1998)).

The m-GMLE has two advantages over the GMLE. Under the assumption P(X € B) = 0,
the GMLE is not efficient but we conjecture that the m-GMLE is. In the end of Section
2, the conjecture is confirmed in the case that X takes on finitely many values but the
censoring vector can be arbitrary. In application, there is a computational feasibility problem
in obtaining the GMLE using the self-consistent algorithm if the sample size is large. It is
then desirable to reduce the number of parameters to be estimated. The second advantage of
the m-GMLE over the GMLE is that it has less parameters to estimate.

When P(X € B) > 0, F is not identifiable on [0, +00). Thus both the GMLE and the m-
GMLE are not consistent on [0, +00). However, the GMLE is consistent at each observation,
whereas the m-GMLE is not. Thus when the GMLE assigns to an II which is not an m-
IT a mass which is about the same as the mass to an m-II, it may be an indication that

P(X € B) > 0. In such a case, it is better to use the GMLE. However, we do expect that a
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