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B. INTRODUCTION 

In clinical follow-up studies, subjects are monitored at regular time intervals for a 

physical condition. It is often the case that an event under observation can take place in 

between two successive visits, and it may not be possible for the subject to know the time 

to such an event exactly. For example, consider the situation in which a group of women 
at high risk for breast cancer is asked to take a chemopreventive substance for a fixed time 

period. At the end of the period, each participating woman is required to submit a blood 
or urine sample at regular intervals in order to monitor the level of a validated intermediate 
biomarker. Let X denote the time from cessation of use of the agent to the loss of its 

protective effect, quantified as a return to baseline value of the biomarker. If a woman 

submits a sample for assay on a daily basis, the value of X can be observed exactly, unless 

the protective effect is still present by the time the study is terminated so that X is right 
censored in the usual sense of survival analysis. In practice, however, the follow-up interval 
can be a week or longer; therefore the exact value of X is generally unknown but is known to 
lie between the time points L and R, where L is the number of days from cessation of agent 
intake to the last time the sample was assayed and the protective effect was still present, and 

R is the number of days from cessation of agent intake to the most recent time the sample 
was assayed. If the protective effect is still present, then R takes the value infinity. In any 

case, when the value of X is only known to lie between (L, R), we say that X is censored in 
the interval (L, R). Therefore the observed data consist of either censoring intervals (L, R) 

or exact observations X = L = R. 

Our research project is concerned with nonparametric estimation of the distribution 
function F(t) = Pr(X < t) of a real-valued random variable X, or equivalently its survival 
function S(t) = 1 - F(t), when the sample data are incomplete due to restricted observation 

brought about by interval censoring. Generalized maximum likelihood (GML) method in 
the sense of Kiefer and Wolfowitz [1] is the standard practice of estimating S. At present, 
there are two iterative computation procedures that will yield the GML estimate (GMLE) 

of S at convergence. The first one is due to Peto [2] and makes use of the Newton's method. 
The second is due to Turnbull [3] and makes use of a simpler but slower algorithm called self- 
consistent algorithm. A solution to this algorithm is also called a self-consistent estimator 

(SCE). 

Because there is no closed-form expression for the GMLE of S, it has been difficult to 
study its asymptotic statistical properties, including consistency, normality and efficiency. 
Such a setback in the statistical development of the GMLE has severely limited its use in 

the statistical analysis of interval-censored (IC) data. 

Before we began our funded Army research, we had extended Efron's redistribution-to- 
the-right idea for right-censored data [4] and proposed a redistribution-to-the-center (RTC) 

method to yield a nonparametric estimator of S which are called RTC estimate (RTCE). 



Such an estimator has a closed-form expression and can be readily calculated for IC data 

of any dimension. IC data are said to satisfy DI (disjoint or included) condition if for every 

two censoring intervals, either they are disjoint or one is a subset of the other. For instance, 
in a clinical study in which every subject has the same follow-up schedule, say at time point 

ai, a,2, ..., a,k, then {L, R} = {0,a\}, or {aj,a;+i} or {ai,oo}. A sample of such IC data 
{Li,i?i},..., {Ln,Rn} will satisfy DI condition. We had shown that under DI condition, 

RTCE is actually GMLE itself. This important observation, together with the availability 

of an explicit expression, had motivated us to submit the present proposal on RTCE to the 

Army. 

In our first year of research, we completed our research for Task 1 and Task 2 in 

the Statement of Work for RTCE. However, we also discovered that in the case of non- 

DI data, RTCE may be different from GMLE, and RTCE is not always consistent. The 
interesting and intriguing observation is that the difference between RTCE and GMLE is 
small, at least based on our limited simulation studies [5]. In establishing consistency result 
for RTCE under DI condition, we had gained important insight into proofs of asymptotic 
properties for GMLE, which does not possess a closed-form expression. Because GMLE is 

the preferred estimator for S, we decided to focus our attention on GMLE instead of RTCE 

for the remainder of the funded research, and we have successfully completed all the tasks 
stated in the Statement of Work for GMLE. 

Our research was then extended to study the statistical inferences with multivariate 
interval-censored data, which may also occurred in breast cancer research and Cox regression 
models. Some results have been obtained in these respects. 

C. BODY 

C.l. Basic setup 

Interval-censored data can arise in the following four situations: 

1. Case 2 IC data (C2 data) consist of right-censored (R = oo), left-censored (L = 0) and 
strictly interval-censored observations (0 < L < R < oo). These are by far the most 
common type of IC data in clinical follow-up studies. 

2. Mixed IC data (MIC data) consist of both C2 data and exact observations (L = R). 
Yu, Li and Wong [6] presented an example involving MIC data from a breast cancer 
follow-up study. 

3. Case 1 IC data (Cl data)) consist of either right-censored or left-censored observations. 
For example, when an animal is sacrificed for inspection of a tumor formation, time to 
appearance of the tumor is Cl interval censored. Examples of Cl data can be found in 

[7] and [8]. 

4. Doubly-censored data (DC data) consist of right-, left-censored and exact observations. 

An example with DC data is given in [9]. 



We have formulated four different interval censorship models corresponding to the four 

IC data types. To study the asymptotic properties of the GMLE, we make use of the 

following assumptions: 
(AS1) The censoring distribution is discrete but the survival distribution is arbitrary. 

(AS2) The support set of the censoring vector is finite, but the survival distribution is 

arbitrary. 

(AS3) A probability restriction. See Section C. 

(AS4) A probability restriction. See Section C. 

(AS5) The censoring distribution and the survival distribution are arbitrary, but have 

to satisfy some regularity conditions, stated in Gu and Zhang [10]. 

C.2. Case 1 model 
Case 1 model for Cl data assumes that the survival time X and a random inspection 

time Y are independent. We always observe Y. However, X is not fully observed except 
that we know that either X < Y or X > Y. Under assumption AS1, we have shown that 
GMLE is strongly consistent, asymptotically normal and asymptotically efficient at all the 

inspection times. The results are published in Yu, Schick, Li and Wong [11]. 

C.3. Case 2 model 
The C2 model for C2 data assumes that X and the random censoring vector (Y, Z) are 

independent and that Y < Z with probability one. We do not observe X except that we 
know X is before Y, or between Y and Z, or after Z. We state an assumption for C2 model 

as follows: 
(AS3)     P{X E Iif]Ij}> 0 for any two realizations of (L, R), (Li, Ri) = h and (Lj,Rj) = 

Ij, provided Iifllj ^ 0. 
Under the assumption AS1, we have shown that GMLE is strongly consistent. Under 

the assumptions AS2 and AS3, we have shown that GMLE is asymptotically normal and 
efficient. The results are published in Yu, Schick, Li and Wong [12]. 

C.4. MIC model 
Mixture interval censorship (MIC) model for MIC data assumes that an IC observation 

is drawn from a probability mixture of C2 model and the usual right censorship model for 
right-censored data. 

Define r = sup{t;  Pr{min(X,T) < t) < 1}, rY = sup{<;  Pr(Y < t) = 0}.   and 
TZ = sup{£; Pr(Z < t) < 1}. We assume that r > TZ. We state an assumption for MIC 

model as follows: 

(AS4) Pr(L = r) > 0 if Pr(X < r) < 1 and Pr(i? = rY) > 0 if Pr(X < rY) > 0. 

Under assumptions AS2 and AS4, we have shown that GMLE is strongly consistent 

(Yu, Li and Wong [6]), and under assumptions AS2, AS3 and AS4, GMLE is asymptotically 
normal (Yu, Li and Wong [13]). Recently, we have been able to establish these asymptotic 
properties without the need of assumption AS2.  A manuscript on these results has been 



submitted for publication (Yu, Li and Wong [14]). 
C.5. DC model 

The DC model for DC data assumes that X and a random vector (Y, Z) are independent 

and Y < Z with probability one, and that X is uncensored if Y < X < Z, right censored if 

Z < X and left censored if X < Y. Let Sz and SY be the survival functions of Z and Y, 
respectively, and let K = Sy - Sz- We state an assumption for DC model as follows: 

(AS5) K(x-) > 0 for all x such that S(x) < 1 and S(x-) > 0, 

We have shown in a submitted manuscript (Yu and Wong [15]) that in order to establish 

asymptotic results, GMLE has to be modified. Under assumptions AS4 and AS5 we have 

shown that the modified GMLE is strongly consistent and is asymptotically normal and 

efficient under assumptions AS3, AS4 and AS5. 
C.6. Two-sample nonparametric test 

Based on the asymptotic results that we have established for different IC models, we 

have successively derived the asymptotic distribution of the following two-sample distance 

test statistics for each model: 

D= f2 WitySiit) - S2(t))dt, 

where T\ and r2 are specified time point and W(t) is a weight function. A manuscript on 

the asymptotic results of D is being prepared. 

C.7. Proportional hazards model 
In our original proposal, we had assigned three months of time for Task 7 on Cox 

regression for IC data. However, we have realized that statistical inference for the parameter 
ß in Cox regression under interval censorship is much more involved than its counterpart 
in the usual right-censored situation. In the latter case, the maximum likelihood estimator 

(MLE) of ß does not depend on the baseline survival function S0(t) owing to the simple 
nature of the partial likelihood approach. However, such simplicity of likelihood function 
does not carry over to the interval censorship model, and maximum likelihood estimation 

of ß will involve GML estimation of S0(t) at the same time, thus resulting in a difficult 

high-dimensional estimation problem. 
Under the restrictive assumption that both X and the censoring vector take on finitely 

many values, we have proved that the MLE of ß and the GMLE of So(t), and hence the 

survival function S(t\Z) = S0(t)exp^-, where Z_ denotes a vector of covariates for Cox 
regression, are consistent and asymptotically normal (Li, Yu and Wong [17]). Much more 
effort is needed to pursue research on the asymptotic inference of Cox regression model 

under more relaxed assumptions on the distributions of X and the censoring vector. 
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During the no-cost extension period, we have devoted our effort to the implementation 

of a Newton-Raphson algorithm for computing the MLE of ß and the GMLE of S0(t). 

Although the algorithm is straightforward to derive using the asymptotic covariance matrix 

which we have derived for the Cox parameters, we soon realized there are two difficult 

problems associated with the Newton-Raphson algorithm. The first problem is that the 
algorithm is computationally infeasible for data of moderate size. For example, in the 
prognostic analysis of a breast cancer relapse follow-up study with n = 374 women which 
we shall describe in Section C.9, the Newton-Raphson algorithm broke down owing to the 
numerical difficulty associate with inverting a Hessian matrix of order 60. Another problem 
with the Newton-Raphson algorithm is that it does not guarantee the strict monotonicity 

condition S0(ti) > ■■■ > S^m) is satisfied at each iteration, where t\, ..., tm are the 

ordered distinct times points. When this condition is violated, we shall have to re-compute 

the estimates by assuming S0{tj) = S0(tk) for some j ^ k. Since there are a maximum 
of 2m such possibilities, it will be computationally infeasible to apply the Newton-Raphson 
algorithm to a data set with even a moderate m. 

The above computational problems associated with the Newton-Raphson algorithm 
have motivated us to consider a two-step estimation approach for the Cox regression parame- 

ters. Briefly, in step 1, the regression coefficient are estimated by a simple Newton-Raphson 
algorithm through the device of a data grouping scheme; in step 2, the baseline survival 
function is estimated by a simple self-consistent algorithm based on the original data. The 
details of our novel approach are contained in the DOD grant "Cox regression model for 
interval-censored data in breast cancer follow-up studies", which we have submitted to the 
USAMRMC for consideration for funding. 

C.8. Computer software 

We have made it available to the public a set of computer programs for calculating 
RTCE and GMLE, for carrying out asymptotic inference of GMLE for all patterns of interval 
censorship, and for evaluating the Z-score of the proposed two-sample weighted distance test. 
These programs can be accessed via the internet at qyu@math.binghamton.edu. 

C.9. Applications to breast cancer research 

We have applied our results on asymptotic inference of GMLE for C2 model to two 
breast cancer research projects. The first project is concerned with a chemoprevention 
intervention trial of indole-3-carbinol (I3C) for breast cancer which is being conducted at 
Strang Cancer Prevention Center. The statistical question of interest is the estimation of 
duration of sustaining effect of I3C, which is C2 censored. A preliminary report on a short- 
term trial has recently been published [18]; however, a longer trial lasting for more than one 
year is still ongoing so that more informative data on duration of sustaining effect can be 
obtained. 

The second project is a breast cancer relapse follow-up study based on data obtained 



from 374 women with stages I - III unilateral invasive breast cancer surgically treated at 

Memorial Sloan-Kettering Cancer Center between 1985 and 1990. The median follow-up 
duration was 46 months. Relapse time was given by the time interval between surgery and 

the initial relapse. A relapse that took place between two successive follow-up visits was 

regarded as interval censored. If a patient did not relapse towards the end of the study, 
then her relapse time was right censored. Of the 374 observations, 300 were right censored 

(no relapse), 21 were left censored and 53 were strictly interval censored (74 relapses). Bone 
marrow micrometastasis (BMM) was determined for each woman at the time of surgery. 
An important question is whether remission duration is related to the extent of initial 

tumor burden defined as number of BMM cells detected. Figure 1 compares the relapse-free 

GMLE curves of patients with number of BMM < 14 versus those with number of BMM 
> 14. Our asymptotic two-sample distance test yielded a P value close to 0.1. An abstract 

on a detailed prognostic analysis of the entire data set using our asymptotic results on C2 
data was presented at the annual San Antonio Breast Cancer Symposium in December 1998. 

D. KEY RESEARCH ACCOMPLISHMENTS 

• presented a simple nonparametric estimator of the survival function called RTCE, which 

has an explicit expression and which is equal to GMLE under some restrictions on the 

interval-censored data 

• established consistency, asymptotic normality and asymptotic efficiency of GMLE under 
a variety of interval censorship models 

• presented an asymptotic two-sample nonparametric test for different interval censorship 

models 

• established consistency, asymptotic normality and asymptotic efficiency for the MLE 
of the regression coefficients and GMLE of the survival function at a given covariate 
pattern of a Cox regression model under finite assumptions on the distribution functions 

of both the survival time and the censoring vector 

• identified the computational difficulties associated with the Newton-Raphson algorithm 

for computing the asymptotic estimates of Cox parameters 

• pointed out future directions for a more feasible asymptotic Cox regression analysis of 

interval-censored data 

• made available to the public a set of computer programs for calculating RTCE and 
GMLE, carrying out asymptotic inference of GMLE and for evaluating the Z-score of 

the proposed two-sample nonparametric test 

• applied the established asymptotic generalized maximum likelihood results successfully 

to a breast cancer relapse follow-up study with 374 women 
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E. REPORTABLE OUTCOMES 

• 10 published articles: 
[a] Li, L., Watkins, T. and Yu, Q. (1997). An EM algorithm for smoothing the self- 

consistent estimator of survival functions with interval-censored data. Scandinavian 

Journal of Statistics.   24, 531-542. 

[b] Yu, Q., Li, L. and Wong, G. Y. C. (1999). On consistency of the self-consistent estimator 

of survival functions with interval censored data. Scandinavian Journal of Statistics. 

(In press). 

[c] Yu, Q., Schick, A., Li, L. and Wong, G. Y. C. (1998). Asymptotic properties of the 

GMLE in the case 1 interval-censorship model with discrete inspection times. Canadian 

Journal of Statistics. Vol. 4. 

[d] Yu, Q., Li, L. and Wong, G. Y. C. (1998). Asymptotic variance of the GMLE of a 

survival function with interval-censored data. Sankhya, A. 60, 184-197. 

[e] Yu, Q., Schick, A., Li, L. and Wong, G. Y. C. (1998). Asymptotic properties of the 

GMLE of a survival function with case 2 interval-censored data. Statistics & Probability 

Letters 37, 223-228. 

[f] Yu, Q. and Wong, G. Y. C. (1998). Consistency of self-consistent estimators of a discrete 

distribution function with bivariate right-censored data. Communication in Statistics. 

27, 1461-1476. 

[g] Wong, G. Y. C. and Yu, Q. (1999). Generalized MLE Of a joint distribution function 

with multivariate interval-censored data. Journal of Multivariate Analysis 69, 155-166. 

[h] Schick, A. and Yu, Q. (1999). Consistency of the GMLE with mixed case interval- 

censored data. Scandinavian Journal of Statistics.   (In press). 

[i] Li, L. and Yu, Q. (1997). Self-consistent estimators of survival functions with doubly- 

censored data. Communication in Statistics, 2609-2623. 

[j] Wong, G. Y. O, Bradlow, H. L., Sepkovic, D., Mehl, S., Mailman, J. and Osborne, 

M. P. (1997). A dose-ranging study of indole-3-carbinol for breast cancer prevention. 

Journal of Cellular Biochemistry Supplements 28/29, 111-116. 

Copies of the articles are included in APPENDICES. 
• 2 submitted manuscripts: 

[a] Yu, Q., Li, L. and Wong, G. Y. C. Asymptotic properties of NPMLE with mixed 

interval-censored data. (Submitted to the Annals of the Institute of Statistical Mathe- 

matics) 

[b] Yu, Q. and Wong, G. Y. C. A modified GMLE with doubly-censored data. (Submitted 

to Australian Journal of Statistics). 

• 7 abstract presentations: 
[a] Q. Yu, G, Y.C. Wong and L. Ye. Estimation of a survival function with interval-censored 

data, a simulation study on the redistribution-to-the-inside estimator. 1995 Joint sta- 
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tistical meetings at Orlando, Florida, U.S.. August 13-17, 1995. 
[b] Q. Yu, L. Li and G.Y.C. Wong (1996) Variance of the MLE of a survival function with 

interval-censored data. 1996 Sydney international statistical congress, Australia. July 

8-12, 1996. 
[c] Q. Yu, L. Li and G.Y.C. Wong (1996) Variance of the MLE of a survival function with 

doubly-censored data. 1996 Joint statistical meetings at Chicago, Illinois, U.S.. August 

4-8, 1996. 
[d] Q. Yu and L. Li. Asymptotic properties of self-consistent estimators with doubly- 

censored data. 1997 Joint statistical meetings at Anaheim, California, U.S.. August 
10-14. 

[e] Yu, Q. and G.Y.C. Wong. Asymptotic Properties Of Self-Consistent Estimators of A 
Survival Function ICSA 1997 Applied Statistics Symposium at Rutgers University, New 

Jersey, U.S.. May 30 - June 1, 1997. 
Copies of the abstracts are included in APPENDICES. 

• computer programs for asymptotic inferences of GMLE at the internet site 

QYU@math.binghamton.edu 
• a proposal entitled "Statistical analysis of multivariate interval-censored data in breast 

cancer follow-up studies" based on work support by this award has been funded by 
USAMEMC from 7/1/99 to 6/30/02 to George Y. C. Wong as principal investigator. 

• a proposal entitled "Cox regression model for interval-censored data in breast can- 
cer follow-up studies" based on work supported by this award has been submitted to 
USAMRMC since June 15, 1999 with George Y.C. Wong as the principal investigator, 
and Qiqing Yu as co-investigator. 

F. CONCLUSIONS 
In the four years of our DOD grant, we have successfully accomplished our research 

objectives on the asymptotic inference of the GMLE of the survival function for interval- 
censored data. Under different interval censorship models, we have established consistency, 
asymptotic normality and asymptotic efficiency of the GMLE. When both the survival time 
and the censoring vector take on finitely many values, we have established similar asymptotic 
properties for the maximum likelihood estimators of the regression coefficients and the 
GMLE of the survival function at a given covariate pattern of the Cox regression model for 
interval-censored data. We have made available to the public a set of computer programs 
for carrying out the asymptotic generalized maximum likelihood inference procedures for all 
types of interval-censored data. The results from our research will provide clinicians and basic 
science researchers in breast cancer with a set of fundamentally important statistical tools for 

the analysis of interval-censored data that are encountered in breast cancer chemoprevention 
studies, and relapse follow-up studies in which the time-to-event variable cannot be exactly 

observed. 
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Our research also indicates that asymptotic inferences for the parameters of the Cox re- 

gression model for interval-censored data cannot be feasibly obtained by a standard iterative 
algorithm, such as the Newton- Raphson algorithm. Our investigations into Cox regression 
in this grant have inspired us to consider a computational simpler two-step estimation pro- 

cedure for the parameters of the Cox model. We have consolidated our ideas into a proposal 

entitled "Cox regression model for interval-censored data in breast cancer follow-up studies", 

which has been submitted to the USAMRMC for consideration for funding. 
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ABSTRACT. Interval-censored data arise in a wide variety of application and research areas 
such as, for example, AIDS studies (Kim et al., 1993) and cancer research (Finkelstein, 1986; 
Becker & Melbye, 1991). Peto (1973) proposed a Newton-Raphson algorithm for obtaining a 
generalized maximum likelihood estimate (GMLE) of the survival function with interval- 
censored observations. Turnbull (1976) proposed a self-consistent algorithm for interval- 
censored data and obtained the same GMLE. Groeneboom & Wellner (1992) used the convex 
minorant algorithm for constructing an estimator of the survival function with "case 2" 
interval-censored data. However, as is known, the GMLE is not uniquely defined on the 
interval [0, oo). In addition, TurnbulPs algorithm leads to a self-consistent equation which is 
not in the form of an integral equation. Large sample properties of the GMLE have not been 
previously examined because of, we believe, among other things, the lack of such an integral 
equation. In this paper, we present an EM algorithm for constructing a GMLE on [0, oo). 
The GMLE is expressed as a solution of an integral equation. More recently, with the help of 
this integral equation, Yu et al. (1997a, b) have shown that the GMLE is consistent and 
asymptotically normally distributed. An application of the proposed GMLE is presented. 

Key words: generalized maximum likelihood estimator, EM algorithm, interval censorship, 
self-consistency 

1. Introduction 

Interval-censored data are frequently seen in medical studies, pharmaceutical applications, 
and engineering research. Let X\,X2, ...,X„ denote a random sample of observations of a 
random variable X, called the failure time, with distribution function F, and let 
(Y\, Z[), (Y2, Z2), ..., (Y„, Z„) denote a random sample of observations of a random vector 
(L, R), called the censoring vector, with joint distribution function G(l, r), where with 
probability one, L =£ R. As is common, define S(x) = 1 - F(x) as the survival function of F. For 
each observation Xj, there is a corresponding censoring vector (Yi, Zi). The failure time Xt is 
observed if it is outside the open interval (Yi, Z,). When Xt is within (Yt, Z,), we only observe 
(Yh Zi) but not the value Xt, i.e. X( is censored. When Z-, (Yi) equals oo (0), the failure time Xt is 
subject to a right (left) censorship. If only min {max {Xt, Yi], Zi) is observed, we say the failure 
time is subject to a double censorship. It is readily seen that the interval censoring scheme 
contains right censoring and left censoring schemes as special cases. If the functional form of 
the distribution function F is known, we only need to estimate the parameters of F. However, 
when the functional form of F is unknown, a non-parametric approach must be used. This paper 

focuses on the latter. 
Kaplan & Meier (1958) proposed the product limit estimator (PLE) to estimate the survival 

function when data are right-censored. There have been extensive studies concerning the PLE. 
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Doubly-censored data, which treat right-censored and left-censored data as special cases are 
investigated by many authors. A self-consistent estimator (Efron, 1967) of the survival function 
with doubly-censored data as well as various properties of the estimator such as strong 
convergence, asymptotic normality, etc., are established (see, for example  Turnbull, 1974 
Chang  1990; Gu & Zhang, 1993). The self-consistent estimator is implicitly expressed as a 
solution of an integral equation. No closed forms of the estimator have been presented^ For 
arbitrarily interval-censored data, Peto (1973) proposes a Newton-Raphson algorithm to.obtain 
a generalized maximum likelihood estimator (GMLE) (see Kiefer & Wolfowitz, 1956; Johansen, 
1978) of the survival function. Turnbull (1976) derives a self-consistent algorithm and shows 
that the algorithm converges monotonically to the GMLE. This GMLE is, however, not uniquely 
determined in innermost intervals (see definition below). Furthermore, Turnbull s self-cons.stent 
equation is not in the form of an integral equation. Studies about arbitrarily interval-censored 
data are not as fruitful as those mentioned above due to, among other things, lack of an mtegnd 
equation for the GMLE. Tsai & Crowley (1985) discuss connections among the GMLE, the EM 
algorithm, and the self-consistent estimators for incomplete data, focusing on right censoring 
and double censoring cases, taking advantage of availability of the integral equations for the 
latter two models. Groeneboom & Wellner (1992) use the convex mmorant algorithm for 
computing the MLE of the survival function with "case 2" interval-censored data. The   case 2 
interval censoring is the same as arbitrary interval censoring described above except that the 
exact observations can never be observed (thus it is a special case of the arbitrary interval 
censoring). Yu & Wong (1996a, b) consider a special case of interval-censored data. They 
assume that any two censoring intervals are either disjoint or one includes another. This 
assumption covers a wide variety of situations. They derive an explicit expression for the GMLE 
of the survival function and then prove that the estimator is strongly consistent. 

Since Turnbull's self-consistent GMLE is not uniquely defined on innermost intervals, it is 
not convenient to use the estimator if the data are heavily censored. In this paper, we propose an 
EM approach to construct a GMLE that is defined on the interval [0, oo). This approach also 
gives an integral equation expression for the GMLE. More recently, with the help of this integral 
equation, Yu et al. (1997a, b) prove the uniform strong consistency and asymptotic normality of 

the GMLE. _,*•*■ A 
The organization of the paper is as follows. Section 2 provides the necessary definitions and 

background. In section 3, we prove the convergence of the proposed EM algorithm and show 
that it converges to the same GMLE as Turnbull's. An application of the estimator derived is 

presented in section 4. 

2. Algorithms 

Following the notation of section 1, assume that the vectors (Yi,Z,,X,),i=l,...,n, are 
mutually independent, and that X, and {Y„Z,) are also independent. If r,<*<Z„ the 
censoring interval (Y„ Z,) rather than the failure time X, is observed and we denote the 
observation by an open interval (L„ R,) = {Y„ Z,); if X, is outside (Y„ Z;) we observe the exac 
failure time. In the latter case, we define L, = X,,= R„ and call X, or the closed interval [L„ R,] 
an exact observation. Thus we may assume that the final observations are 

I1'* Rl* ~ \(Lh Ri)     if L,<Ri 

(note: some of the intervals are collapsed to points), and, without loss of generality (WL.OG) 
assume that L, ^ L2 ^ ■ ■ ■ < Ln. Let S£ denote the set {/,, 1 « f« «} and .£ the set 
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K 1 « i «s „}, where {/,, r,} are the realizations of {/,,, /?,}. Ranking the In points (n h and « 
rs) in increasing order yields a sequence, say c, « c2 =s • • • =s C2n. if there exist ties in the 
observations, we suppose that 

1. Rj has smaller rank than Lj if Ä, = Lj<Rj-, 
2. Lj has larger rank than Rj if I, = Rj > Lj\ 

3. If {Lj, Rj} = {Lj, Rj} and ; <j then they are ranked as £,- ^ £,- * Rj « *,. 

Define an innermost interval {p, q) to be the non-empty intersection of observed intervals 
{Li, Ri} such that {p, q) n {Li, R,} is either an empty set or {p, q}. Notice that every exact 
observation comprises a closed innermost interval and that distinct innermost intervals are 
disjoint. Suppose that there are m (« „) such distinct (open or closed) innermost intervals: 
{Pi> <7i}> • •., {Pm, qm), wherep, =S qx =S • • . s:Pm =£ qm and 

ifPi<?/ 
if Pi =qi. 

Turnbull (1976) provides a self-consistent algorithm for obtaining the GMLE of 5, and shows 
that the GMLE assigns weight on innermost intervals only. Specifically, define an indicator 

. function dij = 1 if {pj, qj} c {/,, /-,}, and 0 otherwise. Let 

u..(s) =      ÖM 

where j = (j,, ..., jj are the masses assigned to the corresponding innermost intervals 
satisfying £* , Sj=\, Sj s= o, 1 =S / =s m. Write 

1   " *>=äl>,/s). 

The GMLE, and hence the self-consistent estimator of S, can be obtained by the following 
iterative procedure. 

1. Set the initial values sf = \/m, 1 =sy =£ m. 
2. Compute ft ft), and set s) = TCJ(S°). 

3. Repeat step 2 by replacing s° with s1, and so on. 

This procedure converges monotonically to the estimate of the weight s. Although the 
GMLE of S(x) can be formed as 

S(x) = £ *, x <jL Uj{Pj, qj} 
i,qi>x 

(2.1) 

we only know the amount of weight on innermost intervals but not the way that the weight varies 
within the innermost intervals. We now present an EM algorithm for obtaining the GMLE of 
S(x). The proposed GMLE assigns the same weight on innermost intervals as Turnbull's and 
describes the distribution of the weight within the innermost intervals. Meanwhile, an expression 
for the GMLE is obtained. 

Let H0(x) denote a strictly increasing initial distribution function on [0, a), where 
a & max {/y; r, € JB), (for example, H0(x) = 1 - exp (-*), x s* 0. A choice of the initial H0 is 
given in section 4) and define 

ffiM = 
H0(x)-H0(li) ^ Ho(x) - mil)  ,,      ,,     ^    v- 
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where 1(A) denotes the indicator function of the events and f(x-) = lim,|X/(f). Then define a 
distribution function 

flfr) = H\{XKHilnAx e tt. n)) + /(* € [r„ oo)). 
n\(ri—) — Hi(li) 

In other words, we truncate distribution H\ on each censored interval. Let 

Then use #2 as an initial distribution function and repeat the above procedure to obtain #3. 
More specifically, on the £th iterative procedure, Hk is calculated by 

//*(*)=i£/4w, 
" 1=1 

where, when /, = r„ H'k(x) = 0 if x < /,, 1 if x 3= /,, and, when /, < r„ 

tii/\      Hk-\(x) — Hk-\(li) . r . H'k(x) = -—-—-—-——-I(x e (/,, n)) + Iix 6 [r„ 00)). 
Hk-iiTi-) —Hk-\(!i) 

In terms of conditional expectation, 

Hk(x) = EHk_, -$ScXi*x)|{I,,Ä,},i = l,...,ii 
" 1=1 

This is an EM algorithm (Tsai & Crowley, 1985). A proof of the convergence of the EM 
algorithm is given in the next section. Thus, the limiting distribution, say H, is a self-consistent 
estimator of F. It is known that Turnbull's algorithm is also an EM algorithm. The difference of 
these two EM algorithms is previously described in the paragraph following the definition of 
Turnbull's algorithm. In addition, it is easy to see that in terms of convergence rate one is not 
superior to the other. 

3. Main results 

We first make sure that the proposed EM algorithm is well-defined, namely we need to guarantee 
that the denominators involved in Hk are not zero. This is assured by the following lemma. The 
proof of it is simply by induction on k and is omitted. 

Lemma 1 
Fork>\,Hk{r,-)-Hk{l,)>\ln. 

We now prove that the EM algorithm converges. The proof is similar to th. 2.1 of Tsai & 
Crowley (1985). 

Theorem 1 
As k —> 00, Hk(x) converges to, say H(x). 

Proof. By the definition of the EM algorithm, the initial estimator H\ has its weight on 
observations {I,-, Rt, i= 1, ...,«} only. This implies that it is the EM algorithm for incomplete 
multinomial data, which belong to exponential family. Thus by th. 2 of Wu (1983) the EM 
algorithm converges. 

© Board of the Foundation of the Scandinavian Journal of Statistics 1997. 8 of 
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We now consider a transformation of the observed censoring intervals. The transformed data 
make the proofs simpler and produce the same self-consistent estimate as do the original data. 
Let {/,-,;-,}, Ui«fl, be the original data, and let {/>,, qi), 1 «s i «£ m, be the innermost 
intervals. For convenience, define pm+\ = oo and qo = 0. The transformation proceeds as 
follows. For any i, (1) if there is not any exact observation at q,, then move all rs between qt and 
pi+i to qi, (2) otherwise, move all rs between <?, andpi+i to the smallest r that is greater than qt; 
similarly, if there is not any exact observation at/?,-, then move all k between/?, and q^\ to/?,, 
otherwise, move all Is between p, and q,-i to the largest / that is smaller than />,-. We call the 
transformation S-transformation. We use {/,,', R'j} to denote the S-transformed data. To illustrate 
the transformation, consider the following example. 

Example 1. If the original data are 

d (2 (3 *4 )2 (5 )5 >! x6 (7 )3 xs )7 

where (,- )• denotes the/'th censoring interval, then the S-transformed data are 

(1,2,3 x4 )J (J )s.i *6 (7 )3 *8 )7 

or l\ =li = l'3 = li <x4 <r2 = r2^l'5=ls<r5= r\ = r5 <x6<l'n = h <r\ = r2 <x8 <r7 

= n (we pretend that l\ =£ /'2 « /3 and r's =s rl). 
It is important to note that the S-transformation does not change the innermost intervals and 

(L, R) contains an innermost interval if and only if {V, R') contains the same innermost interval. 
Noting that the likelihood function can be written as 

n(l>AS*)    (see Peto, 1973), 
(=1 \k=\        ) 

we see that the S-transformation does not change the likelihood function. Since the GMLE of s 
is uniquely determined by, and has weight only on, innermost intervals (Peto, 1973), the original 
data and the corresponding S-transformed data produce the same GMLE of s (Yu & Wong, 
1996a). Hence, from now on, we use the following convention. 

Convention 
We suppress the word S-transformation and assume that the data are already S-transformed 
unless otherwise specified. 

Notice that the GMLE of S is entirely determined by s (see (2.1)), and thus the original data 
and the transformed data give the same GMLE of S. 

Theorem 2 
Suppose that the initial distribution Ho is strictly increasing on [0, a) where a is defined in 
section 2. Let .% = (J^Lj {Ph It} a"d 'e' ^ denote the support of the limiting distribution 
function H = lim^«. Hk. Then & C SG. 

Proof It is sufficient to prove that non-innermost intervals do not have weight. If (cm, cm+i) 
is a non innermost interval, then it must be one of the following cases: 

(a) (lj,Xj+i), where lj<Xj+\ <ry, (remember the convention, i.e. there is no additional /, or 
n within (/,-, xj+i]) 

(b) (xj, Ij+i); 
(c) (XJ, r,), where 1 <j and /,• <xj < /-,■; 
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(d) (r„ xj); 
(e) (rp, lj), where lp<rp< lj < r}. 

We now prove that none of the above 

(a). Note that 

lJ^H(Xj+i-) 

non-innermost intervals has weight. First consider 

= [//(,y+1-)-//(/;)]-E^_;-//(/,) 
1=1 

Thus, either H(xJ+x~) - //(/,) = 0, or 

In addition, if (3.1) is true, 

H(xJ+l) - H(lj) = [H(xj+i) - tf((f)]^E^.!)(-^) 

+ i V[/(xy+1 e [n, oo)) - /(/,■ e [n, oo))] 

= [//(x,+1)-//((,)] +i 

which is impossible. Thus, //(•*/+I -) - #(';) = 0. 
Now consider (b) (cm, cm+i) = (*,-, /,+0- Note 

1 ip\H(li+i-) - H(xj) jn ,,     ., 

lti,/(//+i-€(//,r/)) 

=1 

Thus, either H(lj+, -) - //(*,-) = 0, or 

Furthermore, it is readily seen that, if (3.2) is true, 

„(*,+1-)-//(^0   and    -i:^-)-^(/i)=1- (    } 

1 i-A 7(//+i -€(/,-, r,)) ,,0s 

[*(/„,-) -/,(*,-)] ^ [//(/*,-) - //(^-^E^E^f + i^'- e fe. oo)) 

= [//(/,+ ,-) -//(x,-)]+J, 

which is impossible. Thus H(lj+i-) - H(xj) = 0. 

© Board of the Foundation of the Scandinavian Journal of Statistics 1997. 
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The proofs of (c) and (d) are similar to that of (a) and (b). 
Finally consider (e) (cm, cm+i) = (rp, /,), where lP<rp< lj < rj. 
Notice that 

Therefore, 

-w«  ^   ii(,i\l*rI(lj&il"r,)) -Wj-)-H(rp)]-yHiri_}_H{liy 

Thus, either #(/,-) - H(rp) = 0, or 

We now show that case (3.3) leads to a contradiction. Suppose that (3.3) is true. WLOG, we can 
assume that there is no tie at rp and at /,. Then exactly one of the following cases must be true: 

(e.l) The point right before rp, say cm_i, is either /,, or an exact observation, say xpi; 
(e.2) cm-\ is a left endpoint, say lpvpi ^ p. 

If case (e.l) is true, it is easy to reach a contradiction using an argument similar to that of 
case (a) by considering H[l~) - H(rp) and H(rp) - H{cm-\). 

Now suppose that case (e.2) is true. By the definition of H0, it is easy to see that, for k s= 0, 
dHk assigns positive weight to the intervals (lP2, rp) and (rp, lj). We now prove that the ratio 

Hk{lj)-Hk{rp) 
Hk(rp)-Hk(!pi) 

is non-increasing in k. In fact, 

f [Hk(lj) - Hk(rp)] 

fft(f,)"?l?!^6(^j) 

\.nk{rp) - Hk(lP2)\ 

0 if rp € (/,, r,] anrf /, £ (/,, r,) 
in particular if i = p 
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<A Hk(lj) - Hk(rp) i.)r(lr)) 
HM(lj) - Hk+l(rp) _£: 
Hk+i(rp)-HM(lP2)        t^Hk(rp)-Hk(lP2)r,„ 

&/«*-)-W('e(',nD 

[Hk(lj) - Hk(rp)] 
[Hk(rp) - Hk(lP2)] 

and thus ^ —    ,, ... 
[#o(>>) - #o(/K)] 

Taking limits as k —» 00 yields 

H(lj)-H(rp) ^ [H0(lj) - H0(rp)] 
H(rp) - H(lPl) ~~ [H0(rp) - #,,(/„)] 

However, if case (e.2) is true, that is, if H{lj) - H(rp) > 0 and H(rp) - H{lPl) = 0, then 

+no = 
H«i)-mrp) < [Ho(lj)-H0(rp)]^ 

+W    H(rp) - H(lP2) ~~ [H0(rp) - HQ(lP2)] 

The contradiction implies that case (e.2) is impossible. Thus (3.3) is impossible. It follows that 
H(lj) - H{rp) = 0. This completes the proof of theorem 2. 

Remark 1. The result of theorem 2 does not depend on the choice of the initial distribution 
Ho, provided that H0 is chosen by its definition in section 2. Example 2 below indicates that the 
strictly increasing restriction on HQ is necessary. The example also shows that a self-consistent 
estimator is not necessarily a GMLE. 

Example 2. Suppose there are only two censoring intervals: (0, 1) and (0.5, 1.5). Let 

H0(x) = xl(x £ (0, 0.5)) + l-I(x 6 [0.5, 00)) + (x - \)I(x €[1,1.5)) + -I(x € [1.5, 00)). 

Then Hk(x) = H0(x) for k 5= 1, and thus H(x) = lim*-.«, Hk(x) = H0(x). It is readily seen that 
non-innermost intervals (0, 0.5) and (1, 1.5) each has weight 1/2, but the innermost interval (0.5, 
1) does not have any weight. 

The next theorem shows that for each innermost interval the EM and Turnbull's algorithms 
assign the same weight on it. 

Theorem 3 
The limiting equation for the EM algorithm 

H(.x)-H(h) ™~t 
B/=i 

/(xe(/,,i7)) + /(jce[r,,oo)) (3.4) 

is equivalent to Turnbull's self-consistent equation 

*, = ][>„(i)/ii. (3-5) 

Proof. Let dH be the measure induced by H and let dS be the measure induced by the self- 
consistent estimate. It follows from Theorem 2 that both dH and dS assign weight to the 
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innermost intervals only. Then dH assigns weight wj = H{qj-) - H(pj) (H(qj) - H(pj-)) to 
they'th open (closed) innermost interval and dS assigns weight Sj to they'th innermost interval. It 
suffices to show that vv,s satisfy (3.5) and SjS satisfy (3.4). 

W.l.o.g., assume that pj = lj\ and qj = r,7, where j2 ^j\ ■ Note that 

(1) wj = H(rjl)-H(lfl-) if Pj = qj\ 
(2) wj = H(rn-) - H(lji) ifPj <qj. 

We first assume pj = qj, i.e., r/2 = /,,. Then 

" ft (Ä *21 //(r/_)" m) n ft WÄ.o2l 

which is the same as 

It follows that rSpj = qjt then 

If  v> 

*=1 

Similarly, we can show that if pj < qj, then 

This is the same as the equation for ays, i.e., (3.5). 
Analogously we can show that SjS satisfy (3.4). 

As mentioned before, the self-consistent GMLE of Fix) is not uniquely defined for 
x € (pi, qt) if pi <qi (Peto, 1973). For the proposed EM algorithm, the value of the estimate 
H(x) for x € (pi, qi) is uniquely determined once H0 is determined. It is readily seen that the 
GMLE defined by (3.4) can be written as a solution of an integral equation as follows. 

«w=i;p(,«,<„|^|^(/„)+j;pfr«^.(,,„ 

where G*(/, r) is the distribution function of the observable random vector (L, R). Note that 
equation (3.6) needs to be modified if we define censoring intervals to be closed [Y, Z] rather than 
open (Y, Z) as in this paper. Combining theorems 1,2, and 3, we can prove the following theorem. 

Theorem 4 
The limiting distribution H(x) of the EM algorithm is the GMLE ofF, and is independent of Ho 
forx$3S. 

Proof. By theorem 2, the sum of weights on the innermost intervals equals unity, and by 
theorem 3, the limiting equations of the EM and Turabull's algorithms are the same. Since 
TurnbulPs algorithm converges to the GMLE, provided that the support of the estimate is on the 
union of innermost intervals (Turnbull, 1976), the EM algorithm converges to the GMLE, too. 
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In addition since the weight of the GMLE on innermost intervals is uniquely determined by the 
observations given (Peto, 1973), the value of H(x), x ? 5Z, does not depend on the cho1Ce 

of//0. 

4. Applications 

In this section, we shall illustrate the smoothed GMLE technique by using a real data set. It is 
readily seen that the choice of the initial distribution HQ does not affect the total amount of 
weight on innermost intervals but does affect the value of S(x) when x e (p, q), an innermost 

interval. We present an intuitive approach to choose H0. 
We use the midpoint method. For any 1 « i « n if »7 = oo, we ignore the interval [/,, n], and 

if r, < oo, we let m, denote the midpoint of [/,, r,\. Suppose there are * such midpoints and, 
WLOG, suppose that they are distinct with m. <m2 < • • • <mk. The initial distribution 
function Ho is constructed as follows. Firstly construct an empirical cumulative distribution 
function (EDF) based on the midpoints {m,, 1 « i « *}. The EDF jumps at midpoints and is 
constant between two consecutive midpoints. Secondly, for 1 « i =£ * - 1, let /,- be the centre 
point of [«,-, mM] and connect points (t„ i/k) and (*,+1, (i + 1)/*) with a line segment. Finally 
connect (tk ,, (jfc - 1)/*) and (r*. 1) as well as (0, 0) and (m,, 1/*) with a line segment, 
respectively, where r* = max.W,-: H<oo}. This constructed^polygonal line is the initial 

distribution H0 which is continuous and strictly increasing on [0, r*]. 
We now use a data set to demonstrate the proposed EM estimator. 

Example 3. The following data have been used by Finkelstein & Wolfe (1985) to compare 
two different treatments for breast cancer patients. The censoring intervals (in months) arose in 
the follow-up studies for patients treated with radiotherapy and chemotherapy or with radio- 
therapy alone. The failure time is the time until cosmetic deterioration, as determined by the 
appearance of breast retraction. The data are reproduced in Tables 1 and 2. The estimate of S for 
each data set is obtained using the technique derived in this paper. The comparison of the 

survival functions with the treatments is given in Fig. 1. 

Table 1. Radiotherapy and chemotherapy (8, 12] 

(0,22] (24,31] (17,27] (17,23] (24,30] (16,24] 13, oo 
(11,13 (16,20] (18,25] (17,26] (32. oo) (23, oo) 44,48 4,7 

(0 5] (5,8] (12,20] (11, oo) (33,40] (31, oo) (13,39] (19,32 
(4oo) (13 oo) 16,24 (35, oo) (15,22] (11,17] (22,32] (10,35] 
SS »oo 10,17! (8,21]            (4,9] (11,00) (14,19] (4,8] 

(34,00) (30,36] (18,24] (16,60] (35,39] (21,00) (11,20] (48,00) 

Table 2. Radiotherapy alone (45, 00) 

(6,10] (0,7] (46,oo) (00)                 (7,16] (17,00)           (7,14] 
(37,44] (0,8] (4,11] (15,oo) (11,15] (22,00) (46,00) 46,00 
(25,37] (46,oo) (26,40] (46,00) (27,34] (36,44] (46,00)          36,48 
(37,00) (40,oo) (17,25] (46,00) (11,18] (38, oo)           (5 12 (37,00 

(0;5] (18,oo) (24,oo) (36,00)            (5,11] (19,35] (17,25] (24,00) 
(32,00) (33.0Q) (19,26] (37,oo) (34,00) (36,00)  

© Board of the Foundation of the Scandinavian Journal of Statistics 1997. 
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Abstract The self-consistent estimator is commonly used for estimating a survival function 
with interval-censored data. Recent studies on interval censoring have focused on case 
2 interval censoring, which does not involve exact observations, and double censoring, 
which involves only exact, right-censored or left-censored observations. In this paper, we 
consider an interval censoring scheme that involves exact, left-censored, right-censored 
and strictly interval-censored observations. Under this censoring scheme, we prove that 
the self-consistent estimator is strongly consistent under certain regularity conditions. 

Key words and phrases: Case 2 interval-censored data, exact observations, nonpara- 
metric maximum likelihood estimator, self-consistent algorithm, strong consistency. 

1. Introduction 
Recent studies of interval censoring have focused on case 2 interval-censored (IC) data, 

which involve a time-to-event variable X whose value is never observed but is known to 
lie in the time interval between two consecutive inspection times Y and Z. Case 2 interval 
censoring arises naturally in a longitudinal follow-up study in which the event of interest 
cannot be easily observed (for instance, cancer recurrence, elevation of levels of a biomaker 
without any noticeable symptoms). 

In this paper, we consider IC data which consist of both case 2 IC data and exact 
observations. We call such data mixed IC data. Mixed IC data do arise in clinical follow- 
up studies. In a cancer follow-up study in which a tumor marker (for instance, CA 125 
in ovarian cancer) is available, a patient whose marker value is consistently on the high 
(or low) end of the normal range in repeated testing is usually monitored very closely for 
possible relapse. If such a patient should relapse, then time to clinical relapse can often be 
accurately determined, and an exact observation is obtained. However, if a patient is not 
under close surveillance, and would seek help only after some tangible symptoms of the 
disease have appeared, then time to relapse most likely has to be specified to be within 
the dates of two successive clinical visits. 



Another situation in which such mixed IC data can occur is in the usual right-censored 
survival analysis where actual dates of events are not recorded, or missing, for a subset 
of the study population, and can be established only to within specified intervals. An 
example from the Pramingham Heart Study was presented by Odell et al. (1992). In this 
large-scale longitudinal heart disease study, time of occurrence of coronary heart disease 
(CHD) is recorded for almost every participant. However, time of first occurrence of the 
CHD subcategory angina pectoris may be specified only as between two clinical visits, 
several years apart, for some of the participants who suffered from angina pectoris. 

For case 2 IC data, Groeneboom and Wellner (1992) proposed the iterative convex 
minorant algorithm for obtaining the nonparametric MLE (NPMLE) of the distribution 
function, F, of X. The consistency of the NPMLE and the asymptotic distribution of an 
alternative estimator are obtained under the assumption that F and the inspection time 
distribution are both continuous and some additional regularity assumptions. Under the 
only assumption that the random inspection times are discrete, Yu et al. (1998) proved 
the strong consistency of the NPMLE. They further established the asymptotic normality 
of the NPMLE by requiring that the inspection times to take on only finitely many values. 

Another commonly discussed interval censoring scheme is double censoring. Data are 
said to be subject to double censoring if they are exact, left censored or right censored; 
however, they are not to be strictly interval censored. For doubly-censored data, the 
consistency and asymptotic normality of the self-consistent estimator (SCE) have been 
established by Turnbull (1974), Chang and Yang (1987), and Gu and Zhang (1993) under 
different assumptions. 

For mixed IC data, Peto (1973) obtained the NPMLE of F using a Newton-Raphson 
type algorithm. Turnbull (1976) proposed a self-consistent algorithm for estimating F and 
showed that the associated SCE is also the NPMLE. This SCE has been widely employed in 
medical applications. See, for example, Finkelstein (1986) and Becker and Melbye (1991). 
In this paper, we shall establish the strong consistency of the SCE under the assumption 
that F is arbitrary but the support of the inspection times is finite. Although the NPMLE 
is consistent with case 2 interval-censored data (Groeneboom and Wellner, 1992), counter 
example does exist and shows that the SCE may not be consistent with case 2 interval- 
censored data when the inspection times only take on finitely many values (Yu, 1997). 
Intuitively, the proof for the consistency of the SCE should be different from that of the 
NPMLE. We shall show that it is indeed the case in Sections 3 and 4. 

The organization of the paper is as follows. Section 2 presents models to describe the 
mixed IC data and two algorithms for computing the SCE. The strong consistency of the 
SCE is established in Sections 3 and 4. Some proofs are put in the Appendix. 

2. Models For Mixed IC Data 
We shall discuss two models for mixed IC data in this section.  The one in Section 

2.2 is more general than the one in Section 2.1, but we shall show that in terms of the 
properties of the SCE, it suffices to consider the one in Section 2.1. 
2.1. A Simple Model For Mixed IC Data 

Let (Y, Z) denote a pair of extended random censoring times (oo allowed). Assume 
Y < Z with probability one (w.p.l), and X and (Y, Z) are independent. The observable 



mixed IC data are equivalent to a random interval 

(Y, oo) if Y < X and Z = oo (right censored), 
\ T  pi _ ) (~~°°5 Z] ü X < Z and Y = —oo (left censored), (t)   -. 
L  >   -l_»(y, Z] if-oo<Y<X<Z<oo (strictly interval censored),       ^ " ' 

[X,X] if X£(Y,Z\ (exact). 

Let |Li, -RiJ, i = 1, ...., n, be a random sample from [Z<, -RJ and [k, r^J be a realization 
of [LuRi\. Further, let Q(l,r) = P(L <l,R< r). Following Peto (1973) and Turnbull 
(1976), define sample innermost intervals, denoted by [pj, gjj's, to be the nonempty inter- 
sections of the intervals [k,ri\ so that for any pair of intervals \jPj,qjj and |_Z», r-*J, either 
\j>j,qj\ C \li,Ti\ or [j>j,qj\ D [k,ri\ = 0. Note that \jPj,qj\ denotes an half open interval 
if pj < qj and a closed interval if pj = qj. Moreover, every exact observation constitutes 
an innermost interval. We demonstrate the concept of innermost interval by an example. 

EXAMPLE   Suppose n=5 and the observed intervals [k, n\ are (0,3], (2,5], [4,4], (2, oo), 
and (6, 7]. Then there are three innermost intervals: (2, 3], [4, 4] and (6, 7]. 

Suppose there are m (< n) such distinct intervals: LPi,#iJ, LP25(?2j)- • •? LPmjtfroJ) 
where p\ < q\ < p2 < q<i < • • • < qm. Define Sij = I(\j)j,qj\ Q [k,ri\), where 1(A) 
denotes the indicator function of the set A. 

The self-consistent algorithm (Turnbull, 1976) for obtaining the SCE Fn (which assigns 
weight to innermost intervals only) of F is given by 

"nyE) =     / J    Snj,   X ^ U, 

j:qj<x 

where {sni> ■ ■ •, snrn) are the probability masses assigned to the corresponding innermost 
intervals, and satisfy the self-consistent equations 

'•»■ = 1Ev^T-' i = l>->m- <2-2) n Em      r : 

Li, Watkins and Yu (1997) proposed an alternative approach based on the EM algorithm 
for obtaining the SCE Fn and expressing Hn = Fn as a solution of an integral equation 

Hn(x) = [ Hn{*\~'?Lnfh(! <x< r)dQn(l, r) + -T W <x),Hne9,      (2.3) 
J   Hn(r)-Hn(l) 

ni^i 

where 0 = {h: his a, nondecreasing function from [—oo, oo] to [0,1] such that h(—oo) = 0 
and h(oo) = 1} and Qn(l,f) is the empirical version of Q(l,r). They showed that with 
proper initial values, algorithms (2.2) and (2.3) give the same weight snj = Hn(qj)—Hn(pj) 
to the innermost interval \j>j,qj\, when it is not closed, or the same weight Hn(qj) — 
Hn(pj—) to [pj,qj\, when it is closed. That is, Hn and Fn are equivalent. We shall make 
use of expression (2.3) to establish the strong consistency of Fn in Sections 3 and 4. 



Following the identifiability assumption given in Chang and Yang (1987), we define 
K(x) = P{X is not censored \X = x} for each x. Let 77 = inf{x : K(x) = 0} and 
rr = sup{z : K(x) — 0}, if {x : K(x) = 0} 7^ 0. Otherwise, define TJ = rr = 00. For each 
x G (Ti,Tr), either K(x) = 0 or K(x) is not defined. To see this, it suffices to show that 
for any two points a < b satisfying K(a) = K(b) = 0, there do not exist x G (a, b) such 
that K(x) > 0. In fact, K(a) = 0 implies that P{Y < a} > P{Y < a < Z} = 1. Also, 
K(b) = 0 implies that P{Z >b}> P{Y <b<Z} = l. Thus 

P{Y <ri<Tr<Z} = l and K(x) = 0 V x G (77,rr). (2.4) 

There are only four possible cases that model (2.1) implies: (1) 77 > —00 and rr = 00, 
(2) TI = —00 and rr < 00, (3) —00 < r\ < rr < 00, and (4) {x : K(x) = 0} = 0. Case 
(1) is a right censorship model as ~P(Z = 00) = 1 by (2.4). Moreover, case (2) is a left 
censorship model. Both of them do not allow strictly interval-censored observations. If 
case (3) is true, then Y < r\ and Z >rr w.p.l, which is not practically realistic. Thus case 
(4) is the only practical case in model (2.1) that includes both strictly interval-censored 
observations and exact observations. In next subsection we see how to extend model (2.1) 
to cover more general situations. 

2.2. A Model for More General Mixed IC Data. 
Even though case (4) in Section 2.1 does not have the drawback as in the first three 

cases, it implies that P{K(X) > 0} = 1. It is often the case that a study can only last for 
a certain period of time, say, a time interval [a, b], where 0 < F(a) < F(b) < 1. In such a 
case, the mixed interval-censored observation [L, R\ satisfies 

{Lor Re (-00, a) U (6, +00)} = 0. (2.5) 

Consequently, P{K(X) > 0} < P{a < X < 6} < 1. Thus, model (2.1) cannot specify such 
mixed IC data. Note that (2.1) is equivalent to 

lL'R1-\[X,X]    XX${Y,Z\. (2-6) 

We now formulate a model for mixed IC data satisfying (2.5). Assume Y < Z w.p.l., 
and {Y or Z G (—00, a) U (6,00)} = 0. Suppose that X and (Y, Z) are independent and 
the observable random vector 

(Y,Z] if XG(Y,Z], 
ir  R\_J[X,X] ifX£(Y,Z}lmda<X<b, 
l>>n\ ~ \ (_oo?a] if x <£ (y, Z] and X < a, {^n 

(6,00) if X <£ (y, Z] and X > b . 

In the case of (2.5) or (2.7), we can only estimate F(x) for x in [a, ft], or equivalently, the 
cdf F* of X*, where X* = aI{X < a) + XI(a < X < b) + 2bI(X > b). Note that X* 
and (Y,Z) are independent. Due to (2.5) or (2.7), the right-censored observation (6,00) 
will always be an innermost interval.   The NPMLE (or an SCE) F(x) is not uniquely 



determined for x G (6,00) (see, e.g., Peto, 1973), though the total mass assigned by the 
NPMLE (or the SCE) to the interval (&, 00) is uniquely determined. Thus we can, without 
loss of generality (WLOG), assume that the mass is put at the point 26 (e (b, 00)). In 
other words, (b,00) can be treated as an exact observation [2b, 2b]. For a similar reason, 
the left-censored observation (—00, a) can be treated as an exact observation [a, a]. Thus 
model (2.7) is equivalent to 

L^'^J- \[X*,X*]    lfX*£(Y,Z\, K     ' 

If F(a) = 0 and F(b) = 1, then models (2.7) and (2.8) are the same as (2.1) (or (2.6)). 
In view of (2.6) and (2.8), it is easy to see that in the case of (2.5) or (2.7), in order to 

estimate F, it suffices to estimate F*, which reduces model (2.7) to model (2.1). Similar 
modification can be made to handle the situation that there are no observations L or R 
in a union of arbitrary intervals. In view of the above discussion, we shall focus on model 
(2.1) for the rest of the paper. 

3. Consistency In Case Of Finite Support For F 
In this section, we assume that both the support of X, say Sp, and the support of 

Y and Z, say Sa, contain finitely many points. The generalization of F to an arbitrary 
distribution function is given in Section 4. The assumption concerning So is a reasonable 
one. In practice inspections of most follow-up studies are recorded on a discrete time 
scale (daily, weekly, monthly, etc.), and the total study period is finite, so the number 
of censoring points, i.e. the support of Y and Z, is also finite. Such an assumption was 
adopted by Finkelstein (1986) and Becker and Melbye (1991), among others. 

Suppose that X takes on values x\,X2, ■ ■ ■,xu, and [L,R\ takes on values I\ = [1°, rfJ, 
h = L*2^2J> ...,!„ = [l°,r°\ with probability e* = P{L = l?,R = r?} > 0. Based 
on the assumption that K(x) > 0 for all x > 0, Chang and Yang (1987) and Gu and 
Zhang (1993) proved the consistency of the SCE for doubly-censored observations. In 
this paper, we weaken this assumption and prove the consistency of the SCE on the set 
O = {x; K(x) > 0} with mixed IC data. 

For a point x satisfying K{x) = 0 and P{X = x} > 0, since there are no exact 
observations available at this point, the distribution function F is not estimable, and hence 
consistency cannot be assessed. Let us consider the structure of the innermost intervals 
as sample size n —>■ 00. For xi, if K(x{) > 0, then it follows from the strong law of large 
number that P{Xk ^ X{, for all k = 1,2,..., n} —> 0 as n —> 00. In other words, K(xi) 
> 0 implies that [xi,x,] is an innermost interval w.p.l, which further implies that the 
union of all closed innermost intervals coincides with the set Ö. Let A\,Ai,..., Ami be 
the innermost intervals induced by the intervals Ii, i = 1,2,..., v, and call them population 
innermost intervals. It is seen that as n —>• 00 the set of sample innermost intervals induced 
by \Li,Ri\,i = 1,2, ...,n converges almost surely to the set of population innermost 
intervals. Since we are only concerned with large sample properties, we can, WLOG, 
assume that the sample size is large enough so that m = mi. For the rest of the paper, m 
will be used to denote both the number of population innermost intervals and the number 
of sample innermost intervals. Also we shall suppress the qualifier w.p.l throughout the 
rest of the paper to avoid repetition. 



Let sn = (sni, sn2,..., snm) be a solution of (2.2). For sufficiently large n, the sni's are 
the masses assigned to the innermost intervals by the SCE. Since {Hn, n > 1} is a bounded 
monotone sequence, it follows from Helly-Bray selection theorem that there exist a subse- 
quence, say {rife}, of integers, a function H and a vector s, such that limnfc_).00 Hnk(x) = 
H(x) and limnfe-j^ snfc = s = (s1,S2,.--,sTn). Taking the limit in (2.2) and (2.3) with 
respect to n*,, we obtain 

v            x m 

Sj = ^ei    m
t3 J , Sj > 0, j = l,...,m, ^Sj = 1, (3.1) 

where 5{j = I(Aj C [lf,rf\), and 

Jl<x<r ii\r) ~ UK1) 

since Qnfc converges to Q almost surely as n*. —>■ oo. 
We state two lemmas. The proof of Lemma 1 is relegated to the appendix. Hereafter, 

the discussion regarding uniqueness of the solution H(x) of Eq. (3.2) will be restricted to 
the set O. 

Lemma 1 Lets° = (sf,4,...,s°m) where s? = P{X G Aj}, j = l,2,...,m. Thens = s° 
is the unique solution of Eq. (3.1). 

Lemma 2 (Li, Watkins and Yu, 1997) Let dH be the measure induced by a c.d.f. H and 
Sj = dH(Aj) for all j. Then s = (s\,..., sm) is a solution to Eq. (3.1) if and only if H is 
a solution to Eq. (3.2). 

Theorem 1 Suppose Sp and So contain finitely many points. Then (1) F is the unique 
solution of Eq. (3.2) for x G Ö, and (2) the SCE Hn(x) of F{x) satisfies sup^^ \Hn(x) — 
F(x)\ -» 0, as n —>• 00. 

Proof. Since s? — dF(Aj), F is a solution of Eq. (3.2) by Lemmas 1 and 2. Mean- 
while, for each solution H of (3.2), dH is uniquely determined by Lemmas 1 and 2 again. 
Consequently, statement (1) follows. 

It follows from the convergence of Hnk and (1) above that Hnk{x) -> F(x) as nk —>■ 00 
for x G Ö. The convergence of Hn(x) to F(x) forxeö follows from Helly-Bray selection 
theorem. The uniform convergence of Hn is immediate by the assumption that Sp and 
SG contain only finitely many points, a 

REMARK. Even though F(x) is not estimable for x G {ri,rr), it is easy to see that 
H(rr) —H(TI) = F(rr) —F(TI). This remark is also valid for model (2.7). Moreover, under 
model (2.7) F(x) is not estimatable for x < a or x > b. 

4. Consistency Of Hn For Arbitrary F 



In this section, we extend the result of the previous section to the case where G is the 
same as previously defined but F is arbitrary. 

Theorem 2 Suppose that (Y, Z) takes on finitely many values and F is arbitrary. Then 
the solution to Eq. (3.2) is unique. Furthermore, Hn(x) converges to F(x) uniformly for 
all x e O. 

Proof. The main idea of the proof is to partition the interval [0, oo) into finitely many 
subintervals, and then to prove the consistency of the SCE for every such subinterval. 

WLOG, assume that the values that (Y,Z) can take are (aj,&j), i = 1, ..., No, for 
some integer NQ. Rank the 2NQ values {aj,&j} in increasing order to obtain a sequence 
(ties and infinity are allowed). Let d\ < d2 < • • ■ < djv (N < 2NQ) be the distinct finite 
values of the sequence. We first partition [0, oo) into 

[0,0], (0, di), [di, di], (di, d2),..., [dN, dN], (dN, oo). (4.1) 

Note that in this partition, all exact observations in the same interval (dj,dj+i) (or [dj,dj]) 
carry the same weight. This is because for any observed interval, if (dj,dj+i) (or [dj,dj]) 
is not a subset of the interval, then it is disjoint from the observed interval, and because 
the weight received by an innermost interval is determined by all the observed intervals 
that cover the innermost interval (see (2.2)). 

For a fixed e > 0, if there is a value d in an open interval (dj, dj+i) such that P{X = 
d} > e, divide the interval into {dj,d), [d,d], (d, dJ+i). Perform the partitioning for every 
such d. Since the set of such d values is finite, the total number of intervals partitioning 
[0, oo) must also be finite. WLOG, assume (4.1) is the final partition at this stage. 

Consider an interval, say, (di,d2), such that F(d2—) — F(di) > 0. For this fixed e, 
partition (di, d2) into subintervals, say (ci, c2), [c2, c2], (c2, C3,),..., (cfc, Ck+i) (c\ = d\ and 
Ck+i = d2) such that F(ci+\—) — F(ci) < e for i = 1,2,..., k. Perform this second partition 
for every interval (dj, dj+i) and [dj, dj] for alH = 0,1,..., N, where do = 0. 

From now on, we focus our discussion on (di,d2). The argument for other intervals 
is similar. Let c't be the midpoint of the interval (CJ,CJ+I), i = 1, ..., k, and construct a 
new (pseudo) distribution function F' with finite support, F'(dj) = F(d;) and F'(CJ) - 
F'(ci~) = F{ci+i~) - F(ci), for all i. It is readily seen that 

suplF^-F^a;)! < e. (4.2) 
X 

It can be verified that if (TI, rr) is not an empty set, then one of (dj, dj+i) must be (77, rr), 
due to the special structure of partition (4.1). In addition, since consistency is restricted 
to Ö, it is natural to assume that Sp n (di, d2) C Ö. Moreover, since F(d2—) — F(di) > 0 
and Sp n (di,d2) C Ö, the probability of having exact observations in (di,d2) converges 
to one as n —>■ 00. Thus, for n large enough, we can eventually observe exact observations 
in the interval and hence (di, d2] cannot be an half open innermost interval. 

Consider a pseudo random variable X' = Y^iWiH^ ^ (C*JC»+I) + CiI(X = a)]. 
Note that X' has the distribution function F'. Suppose there are h exact observations 
in (CJ,CJ+I), then the pseudo random variable X' will assume the value d as an exact 



observation a total of h times. For sample size n, let wni denote the weight received by- 
all exact observations in (cj,Ci+i), and let w'ni = wni be the weight received by c[ from 
the pseudo observations generated by X'. Let H'n denote the corresponding SCE of F' 
associated with X' and Hn the SCE of F associated with X. It is easy to see that for each 
i and D{ = (di,di+i) or [di,di], 

dHn(Di) = dH'n(Di). (4.3) 

By the results of the previous section and the finiteness of support of F', H'n(di) -> F'(di) 
for each i as n —>■ oo. Thus, it follows from (4.2) and (4.3) that when n is large enough, 

sup\F{x)-Hn(x)\ <c, (4.4) 
xeo 

which proves the consistency of the SCE Hn. By Helly-Bray selection theorem and the 
fact that F is a solution of (3.2), (4.4) also shows that F is the unique solution of (3.2). D 

Appendix 
In this appendix, we give a proof of Lemma 1. To show the uniqueness of the solution 

of (3.1), consider the generalized log-likelihood function 

v m 

A = A(s) = Y^ei (ln Yl 6iJ8i) ■ 
»=1 3=1 

It follows from (2.2) that Y^T=i ^ijsj > 0 f°r every i, 1 < i < v and hence the function 
A is well defined. Let se = (8\,s%,... ,s^) denote the solution of Eq. (3.1) and s° = 
(sf, s£,..., s£j the probability vector with s? =P{X e A{}. 

To facilitate the proof of Lemma 1, we first establish three lemmas.  Following the 
notations of Section 3, let /; = L^>r?J and ei = P{[L,R\ = h) = ct°9i, where 

m 

of = P{x e h} = Y,sna°j> i = 1.-»v» (A-V 
3 = 1 

and 9i = P{ \Y, Z\ = Ii} if I? < r? and P{1? # (Y, Z)} if I? = rf. Thus Zi <9i = E< e* = 
1. It is seen that s° uniquely determines a° = (a°, a^, • • •, &%)■ Let a = (ai,..., av), with 
(Xi = XJ^=I öijsj- Then A can be rewritten as 

A(s) = ^ejlntti = A(a). 
i=\ 

Thus maximizing A(s) is equivalent to maximizing A(a). Note that a°, e^ and gi are fixed, 
but ttj are not. 

8 



Let Xs be a random variable such that P{XS E Aj} = Sj, j > 1. Define a new random 
interval [LS,RS\ to be the counterpart of [L,R\ in (2.1) with X replaced by Xs. Thus a* 
satisfies aigi = P{[LS,RS\ = Ii}. It follows that 

Y,*i9i = l- (A.2) 
i 

Lemma Al Suppose a satisfies (A. 2). Then A (a) is uniquely maximized by a°, where 
c*°i = ei/gi. 

Proof. Let U = <*<&, i = I,...,v. Then i* € [0,1] and J^iU = L Let Mt) = SiLieim^- 
Note that 

Mt) = 5Z e* ln ai + 5Z e* m5i = ^(a) + ]Cei ^ngi 

it i 

and Y^i ei ^n9i is fixed under the given assumption. Hence, maximizing A (a) is equivalent 
to maximizing h(t). It can be shown that h(t) is uniquely maximized by U = e*, i > 1. 
Therefore, the unique maximizer for A(a) is a° = ei/gi. □ 

Lemma A2    s° is the unique maximum point of A(s). 

Proof. Following the notations in Lemma Al, we have A(s) = A((a(s)). By Lemma Al and 
the equality a(s°) = a° (due to (A.l)), s° is a maximum point of A(s). By the finiteness 
assumption on Sp and SQ, each population innermost interval is a realization of [L,R\, 
say, Aj = 1^., except perhaps (77,rr) if (Ti,Tr) is not an empty set. Thus (A.l) implies 
that there are at least m — 1 (out of v) js such that a°. — s?. Since A((a(s)) is uniquely 
maximized by a°, s° is the unique maximum point of A(s). D 

Lemma A3    s% > 0 implies that s% > 0. 

Proof. Note that for each k, if P{X £ 4} > 0, then there is an integer h such that 
Ih = Ak and thus 5hk = 0 if h 7^ k and 1 otherwise. For j = k, Eq. (3.1) yields 

s% > eh-f = eh > 0      (since Ih = Ak and eh > 0). 
s% 

This completes the proof of the lemma, a 

We are now ready to prove Lemma 1. By Lemma A2, s° is the unique maximizer 
of A. Thus, to prove the lemma, it suffices to show that s° = se. Consider the effect of 
increasing a particular component, Sk, by a small amount u and then dividing all the Sj, 
including sk + u, by 1 + u in order to ensure that the components of s sum to 1.   Let 

4(s) = IUThen 

, / N      d    ,   si sk + u sm dfc(s) =—A(——-,..., -——,..., ——) 
ou     1 + u        1 + u        1 + u 

9 

u=0 



:5>#-In5>.J («J=(?,/(i+wL   1    'f^t) f-f    du     4rf      J "=o        V J      1 (afc + «)/(l + «)    it j = kj 
w        v^m     f.. a gr 

i     ■c-\m      r       r u=0 

= ~ Yl en1 ~ ^rn *\ ),   k = l,...,m. (A3) 

Consider two separate situations regarding the values of s£. 
CASE 1. s% > 0, for all Jfe. 

If se is a solution to (3.1), then it follows that s| > 0 for all k. Consequently, 

0 = XWl- tfe       V   fc = l,...,m, (A4) 

since YH=I 
e* = 1- I*1 yiew 0I" (A.3) and (A.4), <4(se) — 0 and s% > 0 for each fc. Therefore, 

se is the maximum point of L. By Lemma A2, se = s°. 
CASE 2. a% = 0 for some /c. 

WLOG, assume that s^ = 0 and s£ > 0 for k = 1,2,... ,ra — 1. We shall show 
that s^j > 0 leads to a contradiction. If s^ > 0, then sf > 0 for all i by Lemma A3. 
Consequently, (A.4) holds. By virtue of (A.3) and (A.4), se is a maximum point of A, and 
it follows that se = s°. However, this contradicts the hypothesis that s^ > s^ = 0. This 
completes the proof for Case 2 and thus the proof of the lemma, D 
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ABSTRACT 

We consider the case 1 interval censorship model in which the survival time has an arbitrary 
distribution function F0 and the inspection time has a discrete distribution function G. In such 
a model one is only able to observe the inspection time and whether the value of the survival 
time lies before or after the inspection time. We prove the strong consistency of the generalized 
maximum-likelihood estimate (GMLE) of the distribution function F0 at the support points of 
G and its asymptotic normality and efficiency at what we call regular points. We also present a 
consistent estimate of the asymptotic variance at these points. The first result implies uniform strong 
consistency on [0,oo) if F0 is continuous and the support of G is dense in [0,oo). For arbitrary 
F0 and G, Peto (1973) and Tumbull (1976) conjectured that the convergence for the GMLE is 
at the usual parametric rate ni. Our asymptotic normality result supports their conjecture under 
our assumptions. But their conjecture was'disproved by Groeneboom and Wellner (1992), who 
obtained the nonparametric rate n* under smoothness assumptions on the F0 and G. 

RESUME 

Nous considerons le modele de censure d'intervalle de cas 1 dans lequel le temps de survie 
a une fonction de repartition arbitraire F0 et le temps d'inspection a une fonction de repartition 
discrete G. Dans un tel modele on est seulement capable d'observer le temps d'inspection et si 
la valeur du temps de survie est superieure ou inferieure le temps d'inspection. Nous prouvons 
convergence forte de l'estimateur du maximum de vraisemblance generalise (GMLE) de la fonction 
de repartition F0 aux points de support de G et sa normalite asymptotique et l'efficacite ä ce que 
l'on appelle les points reguliere. Nous presentons egalement un estimateur convergent de la variance 
asymptotique a ces points. Le premier resultat implique une convergence uniforme forte sur [0, oo) 
si F0 est continu et le support de G est dense en [O.oo). Pour des F0 et G arbitrages, Peto (1973) 
et Turnbull (1976) ont conjecture que la convergence du GMLE est au taux parametrique habituel 
de n\. Notre resultat de normalite asymptotique supporte leur conjecture sous nos hypotheses. 
Mais leur conjecture a ete refutee par Groeneboom et Wellner (1992) qui ont obtenu le taux 
non-parametrique de «5 sous des hypothese de F0 et G lisses. 

1. INTRODUCTION 

In survival analysis, one frequently is unable to precisely observe the survival time X 

♦This work was partially supported by NSF Grant DMS-9402561 and DAMD17-94-J-4332 (Q.Y.), LEQSF 
Grant 357-70-4107 (L.L.), and DAMD17-94-J-4332 (G.Y.C.W.). 
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of interest, but can only assess that it belongs to some random interval. The simplest such 
model is the so-called case 1 interval-censorship model. In this model one is only able 
to observe a random time Y and whether x lies in the random interval [0, Y] or (F,oo). 
More formally, one observes (Y, A), where A = I[X < Y]. Here and below I[A] denotes 
the indicator function of the event A. The random time Y is called the inspection time. 

Such data arise in industrial life testing and medical research. Consider for example an 
animal sacrifice study in which a laboratory animal has to be dissected to check whether 
a tumour has developed. In this case, X is the onset of tumour and Y is the time of the 
dissection, and we only can infer at the time of dissection whether the tumour is present 
or has not yet developed. Other examples are mentioned in Ayer et al. (1955), Keiding 
(1991) and Wang and Gardiner (1996). 

We shall assume throughout that the lifetime X and the inspection time Y are indepen- 
dent and denote their distribution functions by F0 and G, respectively. Our data consist 
of n independent copies (ft, A,) = (YhI[Xi < K,]), i = 1 n, of (F,A). We consider 
estimating (characteristics of) the distribution function F0 based on these data. 

Ayer et al. (1955) derived the explicit expression of the generalized maximum- 
likelihood estimator (GMLE) of the distribution function F0. Moreover, they established 
the weak consistency of the GMLE at continuity points x of F0 under additional assump- 
tions on G. They also mentioned the strong consistency of the GMLE at each support 
point of a discrete Y with finitely many values. Using an inequality of theirs, we shall 
generalize this result to arbitrary discrete Y in our Theorem 2.1. From this result we 
shall derive the uniform strong consistency on the entire line if F0 is continuous and the 
support of Y is dense in the positive half line. Moreover, using Theorem 2.1 of Ayer et 
al. (1955), we shall derive another explicit representation of the GMLE at what we call 
regular points and conclude with its aid the asymptotic normality and efficiency of the 
GMLE at such points. 

Peto (1973) considered the problem of obtaining the GMLE based on interval-censored 
data using a Newton-Raphson algorithm. Turnbull (1976) proposed a self-consistent 
algorithm and showed that it converges to the GMLE F. Both conjectured that for 
arbitrary F0 and G, the GMLE is asymptotically normal at the usual n* rate. Thus 
our results provide a partial justification of their claim for discrete Y. It was, however, 
shown by Groeneboom and Wellner (1992) that this conjecture is false if F0 and G 
satisfy certain smoothness assumptions. Indeed, their Theorem 5.1 establishes that under 
differentiability assumptions on F0 and G the convergence is at the slower n* rate and 
the limiting distribution is not normal. Groeneboom and Wellner (1992) also obtained 
the uniform strong consistency of the GMLE for continuous F0 and G. A variant of this 
result was also proved by Wang and Gardiner (1996) using a totally different approach 
and a slightly different set of assumptions. 

The results of Groeneboom and Wellner (1992) give a fairly detailed description for 
the case of continuous F0 and G, while ours do so for the case of arbitrary F0 and discrete 
G. There are many practical situations in which Y is discrete. In medical research, for 
example, the data are often recorded as integers (to represent number of days, weeks etc.). 
Motivated by this, we assume that the inspection time Y is a discrete random variable 
with density g. This assumption is used by several authors in survival analysis: Becker 
and Melbye (1991) and Finkelstein (1986) among others. 

Our paper is organized as follows. We introduce the GMLE in Section 2 and prove 
its strong consistency. In Section 3 we establish the asymptotic normality and efficiency 
of the GMLE at what we call regular points. Finally, Section 4 summarizes our work, 
discusses some of its implications, addresses some questions raised by it and establishes 
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connections with the work of others. In particular, we show by means of an example 
that our asymptotic normality result fails at nonregular points even though the rate of 
convergence is still «?. 

2. THE CONSISTENCY OF THE GMLE 

By our assumptions, Y is a discrete random variable with density g. LetßL be the set 
of possible values of Y, i.e., Ä = {a G R : g(a) > 0}. For a £Ä, set 

1   " 
N-(a)=-Y/nXj<a,   Yj = a], 

>=' 

1   " 
N:(a)=-Tl[Xj>a,   Yj = a], 

n *—' 
j=i 

1   " 
Nn(a) =-Yl I[Yj = a]. . 

The generalized likelihood is given by 

A„(F) = Y[ F(a)nN"'(a){l - F(a)}nN>\ 

In the above we let F range over the set J of all subdistribution functions. A function F 
is called a subdistribution function if F = aF\ for some distribution function F\ and some 
number a in [0,1]. Thus a subdistribution function has all the properties of a distribution 
function except that its limit at infinity may be less than 1. 

Note that A„(F) depends on F only through the values of F at the points a £Ä for 
which N„(a) > 0. Thus there exists no unique maximizer of A„(F) in the set J. But there 
exists a uniquely determined J -valued random element F„ which maximizes A„( F) and 
satisfies Fn(b) = sup{ F„(a) : a < b, N„(a) > 0} for each b £ R. Here we interpret the 
supremum of the empty set as 0. We call Fn the GMLE of F0. It is easy to check that 
F„(YW) = 0 on the event {N~(Ym) = 0} and Fn(Y{n)) = 1 on the event {N*(Y(n)) = 0}, 
where Yw and Y(n) are the smallest and largest among Y\,..., Y„. For latter use, set 

- / N-(a)/Nn(a)    if   N„(a) > 0, 

(0 otherwise. 

THEOREM 2.1. The GMLE Fn satisfies Fn(a) —> Fo(a) almost surely for each a € Ä. 

Proof. We use the following inequality given in Ayer et al. (1955, p. 644): 

J2i Fn(a) - F0(a)}2Nn(a) < £{ Fn(a) - F0(a)}2Nn(a). 
aeA aeA 

We get 

J2 { Fn(a) - F0(a)}2Nn(a) < £ \Nn(a) - g(a)\ + ]T{ Fn(a) - F0(a)}2g(a). 
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It follows from the SLLN that for each aEA, Nn(a) -»g(a) and F„(a) -> F0(a) almost 
surely. Thus Scheffe's theorem (see Billingsley 1968, p. 224) implies 

/J \N„(a) - g(a)\ —* 0       almost surely 

and the Lebesgue dominated-convergence theorem implies 

^2 { Fn(a) - F0(a)}2g(a) —> 0       almost surely. 
aeA 

It follows that Ysaex. { F»(a) - F0(a)}2N„(a) -* 0 almost surely. This yields the desired 
result, as N„(a) is eventually positive with probability 1 for each aGA.    D 

The above result was already observed by Ayer et al. (1955) in the case when A is 
finite. In this case one can even conclude that the GMLE is uniformly strongly consistent 
on A, i.e., supae? | F„(a) - F0(a)\ —» 0 almost surely. For countably infinite A, however, 
additional assumptions are required to conclude this, as demonstrated by the following 

. example. 

Example 2.2. Supposed = {yt : yi = \ - l//,  / > ]} and G{y) = y fory EA. Then 
the GMLE will not be uniformly strongly consistent on A if 0 < F(l-) < 1. 

Proof. Let Q„ = U?=, Pl^{^ < Yh Y} < Yt). Then Q„ c {N+(YW) = 0}. Since 

Fn(Yw) = 1 on the event {N+( Yin)) = 0}, as observed prior to Theorem 2.1, and since 
^o(l-) < 1, we cannot have uniform strong convergence if lim inf«-^, P(Q„) > 0. But 

P(Qn) = nP lf]{X{ < Yu   Yj < y,}j > nF0(yn){G(yn-)}"-iP(Y1 >y„) 

so that by the choice of A and G 

lim inf P(Q„) > lim inf F0(y„) (1 — 
"—K» n—oo \ fi — 

n-\ 
F(l-) 

>0. 

Consequently, the GMLE is not uniformly consistent on A.    D 

We now address the uniform strong consistency. 

COROLLARY 2.3. Suppose the set A is closed. Assume that F0(a-) = F0(a)for each aEA 
for which there is a strictly increasing sequence of points {a,},->i in A such that a-, \ a. 
Then the GMLE is uniformly strongly consistent on A. 

Proof. Let m be a positive integer. Let A,, = {a E A : *,-_, < a <*,■}, i = l,...,m, 
where x0 = -co, xm = oo and jr.- = M{x : F0(x) > //«}, i = 1,... ,m - I. Let a e *.' 
Then aE^ for some i=\,...,m. Since j? is a closed set, a, = inf J?, and b{ = sup ^ , 
belong to A. Using the monotonicity of F„ and F0, we find that 

\Fn(a) - F0(a)\ < max{| F„(£,) - F0fo)|. I £.(«<) - F0(a,)|} + F0(Z>,) - F„(a,). 

If bi < Xi, then F0(/>,) - F0(a,) < 1/m. If bt = xh then F0(;t,) = F0fo-) - i/i« and 
fijfö) - F0(a,) < 1/m. This shows that lim sup,^ supa6^ \Fn{a) - F0(a)\ < 1/m on 
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the event Q, - fU* {lim«-°° F«(a) = F°(a)}- SinCe m 'S arbkrary and P{Q,) = * by 

Theorem 2.1, we obtain the desired result.    D 

In the next corollary, the set A need not be closed. 

COROLLARY 2.4. Assume that A = {fl,-}/>i, where a: < aM for all i. Let x = sup, a,. If 
F0(x-) = 1, then the GMLE is uniformly strongly consistent on A. 

Proof. Let m be a positive integer. Since 

sup | Fn(a) - F0(a)| < max   | F,(a,) - F0(a,-)| + 1 - F>(«m), 
a£3 

it follows from Theorem 2.1 that lim sup„_oo supaö* | Fn(a) - F0(«)| < 1 - F(am). The 
desired result follows, as m is arbitrary and F0(T-) = 1.    □ 

We call a number x a point of increase of F0 if either FQ(x) < F0(y) for all y > x or 
F0(y) < F0(x) for all y < x. Note that, for each a in the interval (0,1), the left quantile 
FQ\O) = inf{y : F(y) > a} is a point of increase of F0. 

COROLLARY 2.5. Suppose that F0 is continuous and the closure of A contains the set S 
of all points of increase of F0. Then the GMLE is uniformly strongly consistent, i.e., 

sup,6R| Fn(x) - F0(x)\ — 0 almost surely. 

Proof. Let Fx,F2,... be subdistribution functions such that F„(a) —► F0(a) for a\la€A. 
Let m be a positive integer. Since F0 is continuous, there are points x{ < • • • < xm in S such 
that Fofe) - i/(m + 1). The continuity of F0 and the fact that the closure of A contains 
5 imply that there are points a{ < ■ ■ ■ < am in A such that | F0(ai) - F0(x,)| < l/m~. 
Using this and the monotonicity of F0 and F„ we derive that 

| Fn(x) - F0(x)\ < maxm | F„(a,) - F0(a,)\ + -,        x G R. 

This shows that F„ converges to F0 uniformly. ^ 
By the above, the events f\öi { ^(a) ~* Fo(a)} and isuP^R I F"(jc) - FoWI "* "^ 

are identical and thus have probability 1 by Theorem 2.1.    D 

3. THE ASYMPTOTIC NORMALITY OF THE GMLE 

We shall now discuss asymptotic normality and efficiency of F„(x) for regular points 
x as defined next. Let A, = A U {-co, oo}. For x G R, set 

x- :=sup{aeA* :a<x}    and   x+ := inf{a &A, : a > x}. 

We say x is a regular point if x belongs to #, x- and x+ belong to A„ x- < x < x+ and 
F0(x_) < FoM < F0(x+). It is worth mentioning that there may be infinitely many regular 
points For example, if F0 is strictly increasing and A is the set of all positive integers, 
then every positive integer is a regular point. The conditions imposed on regular points 
are somewhat similar to the assumption that F0 and G have positive and continuous 
derivatives needed in the asymptotic distribution result of the GMLE (see Groeneboom 
and Wellner 1992). However, their convergence rate is nJ, while we shall show that the 
convergence rate is n? under our assumptions. 

Given a regular point x, Fn(x) may or may not be the same as Fn(x), as shown by 
the following example. Suppose that F is the exponential distribution function and A - 
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\n m ^ bn\ nanu 2 a;e,regU!ar P°ints-,If a samP'e of si^ 3 consists of observations 
{(1,0) (1,1),(2,1)}, then (F(I),F(2)) = (i, 1), which is the same as (F(l) F(2))  On 

An ^rd' '/."nr1!- u°f.SiZe 3 C°nSiStS °f obs5rvati°ns {(».0),(1.1), (2,0)}, 'then 
fnii     • ~    *'?' IS "0t thC Same aS ^O,^)) = (I,i). However, the 

tetdsWtoLromma that thC tW° CStimat0rS diffCr °n,y °n a Set *hoSC Probability 
LEMMA 3.1. Swflpoj* x « a regular point. Then P(Fn(x) = F„(x)) -* 1. 

Proof. Assume first that x. and *+ belong to A. Let B„ = { F„U )<FW<^frU 
and C„ =,{N{x > > 0, tf,W > 0, Nn{x+) > 0}. It fol,ows tm Theorem 2 ftnl 
7ir} < Fo(x) < F,)(*+) that P^ - 1. and from the'SLLN that P(C„) -> 1   In view 
of Theorem 2.1 in Ayer et al. (1955), we have, on the event B„ nCn, 

F„(jr_) < F„(x) < Fn(x) < F„(x) < Fn(x+). 

That is Fn{x) = Fn(x). Thus the desired result follows, as P(B„ n C„) - 1. This proves 
the claim when x_ and *+ belong to A. 

Ifx+gßL and AT_ 6.3, then j-+ = +oo, since * is a regular point. Let 

B* = { F„(*_) < F„(x) < 1}    and    C„+ = {#„(*_) > 0,  N„(x) > 0}. 

SLLNXtpT^TT 2'J 3nd^f "> < Fü(^ < l th3t P{B^ "* »■ and from th^ 
evetr^ n A "i7 */" TV' The°r'm 2A ln-^ Ä aL (1955)' We have' on «he event B  n C„, that F„(*_) < F„W < F„(*) < F„M. That is, Fn(x) = Fn(x)  Thus 

TbeSngs toS" f0lI°WS' 3S nKnC+n) ^ L ™S Pr°VeS tHe cU*" ^hen *- ^ 

The proof when x+ but not x_ belongs to A is similar and will be omitted.    D 

The above result shows that Fn{x) has the same asymptotic properties as F,,(x). Thus 
the following result is immediate. 

THEOREM 3.2. Let x be a regular point. Then 

fa) - F,M = I ± ^5^{A, - F„(r)} + <*«-*). 

^^ »j{f-W - F„W} Ü asymptotically normal With mean 0 and variance 
i° } foW}/g«. 77us asymptotic variance can be consistently estimated by 
Jf" ~ Fn(x)}/N„{x). Also, ifxx < ... < Xm are regular points, then nk{F„{xx) - 

ol*i),-.., F„(xm) - F0(*m)} w asymptotically normal with mean vector 0 and diagonal 
covanance matrix. "lugunui 

f™Let,KS TW ad?reSS efficien5y considerations. For this fix a regular point x. It follows 
from the above theorem that F„(x) has influence function ij» given by 

We shall now show that y is the efficient influence function for estimating F0(x) This 
w, 1 show that Fn(x) is a least-dispersed regular estimator of F0(x). The reader unfamiliar 
with these concepts should consult the monograph by Bickel et al. (1993) Let #  be 
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the set of all measurable functions such that.[ h dF0 = 0 and J ^ dF0 < oo. For h G tf 
define a sequence F„,A of distribution functions by 

(\+n~ihn)dF0,        te 
h-ooj] 

Fn.h(t) = J 

where hn = A/[2|A| < ^] - J A/[2|A| < **] </F0. Then 

ni{F„^)-FoW}-»//U) = £ 

The tangent (or score function) rh associated with the perturbed distribution Fn,h is given 

by /    A 1-A    ^      H(n{A-F0(n} 

Vw)"i-Fo(ny   F0(n{i-Fo(n}' 

-oojr] 
A</F0. 

xÄ(A,y) = w(n 

Finally, it is easy to check that £ {*(A. ^(A. Y)} = //(*)• Since ths hold. fe afl 
h € tf and since ip is a tangent, i.e., y = xh for some he X with tf (F - /[£-*] 
Fn(*)( 1 - F0«}/g«, we obtain that M, is the efficient influence function if G is known. 
However, ^ is also the efficient influence function if G is unknown, as the tangents for 

G are orthogonal to the tangents {xh : A G # } for F0. 

4. CONCLUDING REMARKS 

The main results of our paper are given in Theorems 2.1 and 3.2. Theorem 2.1 gives the 
strong consistency at each point in Ä, while Theorem 3.2 obtains asymptote normali y 
aTZZpoints Thus F„W is both strongly consistent and asymptotically normally 
d s ributed at each regular point ,. Typically, consistency fails to hold for points o 
increase that are not in the closure of A. Also, the asymptotic normality result may not 
hold for nonregular points, as the following example shows. 

Example 4.1. Assume that A consists of just four points, namely a, < a2 < a3 <*, 
and thaio < F(ai) < F(a2) = F{a3) < F(a4) < 1. On the event An = {F^) < 
f(aT<~Fn(a3   < ~Fn(a<)} we have F„«,) = *M\i = l,-'4- a^°" ^ T 
B„ = {F„£) < FM < W*(«I) < Fn(fl3) <| Fn(a^Fn(a2) > Fn(a3)} we have 
FM) = Fn(ad for i = 1, 4 and F„(a2) = F„(a3) = F„, where 

K = 
N-(a2) + N-(a3) 
Nn(a2) + N„(a3) ' 

It follows from the SLLN that P(An U Bn) ^ 1 Thi. shows *at the asymptotic.dis- 
tribution of MFn(a2) - Fo(a2),Fn_(a3) - F0(a3))

T i. the same as ha of MFn(a ) 
Fn(a,) F'te) - F0(a3))

T, where (F;(a2),F*n(a3)) = (Fn(a2),Fn(a,)) if F„(a2) <^(aj), 
artVia Tl P{J=K if Fn(a2) > F„(a3). An application of Slutsky's theorem 
y^that the asymptotic distribution of >(F>2) - F0(a2),Fn*(a3) - F0(*3))

T « the 
distribution of the bivariate random vector Z* defined by 

Z* = Z* 7|Z2<Z3] + ^2)Z2 + g!af3(1V[Z2>Z31, 
/lZ2-   3J        g(a2) + g(a3)     Vl/ 

where Z2 and Z3 are independent normal random variables with zero means and variances 
FS{1 F(a1)}/g(a2) and F(*3){1 - F<«,)}/,<«,). respectively. One can check that 

the distributions of Z\ and ZJ are not normal. 
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The corollaries in Section 2 address uniform strong consistency under different sets of 
assumptions. Corollary 2.3 implies that the GMLE is uniformly strongly consistent on 
A if F is continuous and A is closed. Corollary 2.4 gives uniform consistency on A if 
this set is generated by an increasing sequence. If F is increasing and A c {x e R : 0 < 
F(x) < 1}, then the assumptions of Corollary 2.4 imply that each point in A is regular 
and thus, in view of Theorem 3.2, the asymptotic normality at each point in A. 

Corollary 2.5 is of interest from a theoretical point of view in that it provides conditions 
that guarantee the uniform strong consistency on the entire line. From a practical point 
of view the imposed conditions are rather unrealistic. For example, if F is the uniform 
distribution on [0,1], then A has to contain a dense subset of [0,1]. But distributions 
G with this property are rarely encountered in practice. Note also that the assumptions 
of Corollary 2.5 rule out the existence of regular points, so that we cannot conclude the 
asymptotic normality from Theorem 3.2. 

It is an open question whether the parametric convergence rate holds at each point in 
A. Since one can show that F„ has parametric convergence rate at each point in A, we 
conjecture that the GMLE has the same property although the limit might not be normal 
as Example 4.1 shows. 

Groeneboom and Wellner (1992) showed that the GMLE is uniformly strongly con- 
sistent if FQ and G are continuous and PFo <C PG. The latter means that the probability 
measure PFo induced by F0 is absolutely continuous with respect to the probability measure 
PG induced by G. In view of our Corollary 2.5, we expect the uniform strong consistency 
also if F0 is continuous and if G is a mixture of a continuous distribution function and a 
discrete distribution function which satisfies the assumptions in Corollary 2.5. 

Groeneboom and Wellner (1992) showed that under the additional assumption that F0 

and G have positive derivatives at a point t0, the convergence rate of F„(t0) is nK It is 
an open question whether the rate «J is still valid without this additional assumption. 

Our parametric convergence rate n* in Theorem 3.2 is in constrast to the nonparametric 
convergence rate n? under their assumptions. Our Theorem 3.2 is trivially true under the 
assumption that both X and Y take on the same finitely many values. In this case, 
the problem reduces to the estimation of the parameters of a multinomial distribution 
function, which is a parametric problem giving the usual «J convergence rate. This 
simple fact was noticed without proof by Peto (1973) and Turnbull (1976) as they both 
conjectured (incorrectly) that the GMLE has a convergence rate n? in general. We have 
established the parametric convergence rate of the GMLE for the first time under the 
assumption that X and Y may take infinitely many values. 
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ASYMPTOTIC VARIANCE OF THE GMLE OF A SURVIVAL 
FUNCTION WITH INTERVAL-CENSORED DATA 
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SUMMARY. Interval-censored data are generated by a random survival time X and a 
random censoring interval. We either observe the exact survival time or only know the survival 
time lies within the censoring interval. T\irnbull (1976) proposes a self-consistent algorithm for 
obtaining the generalized maximum likelihood estimator (GMLE) of a survival function with 
interval-censored data. Yu, Li and Wong (1996) prove the strong consistency of the GMLE. In 
this paper, we establish the asymptotic normality of the GMLE and self-consistent estimators 
(SCE) and present a consistent estimator of the asymptotic variance of the GMLE and SCEs 
with interval-censored data. 

1.      Introduction 

We consider the nonparametric estimation of distribution function F of a 
survival time X with incomplete observations due to interval censoring. Interval- 
censored (IC) data are bivariate observations {LuRi), i = l,...,n, where Li < 
Ri. If Li = B4, then a survival time Xt = L{ = R\ is observed and we say it is 
an exact observation; if Li < Ri, then X{ is censored and a censoring interval 
(Li,Ri] is observed instead. 
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Abstract 

jS^S it^srjt" ;rst is no; *ectly observab,e-but •* ^ * ^e 
We consider the large sample propertes of te ™SiS } palr,,of

I
observable inspection times such that Y <Z. 

function of JT with case 2 ^^^^^J^ ,°' "*"*" (GMLE) °f *e distribution 

the strong consistency of the GMLE at the support points of the '^ ^ "" dj*rete "ado,n Variables- We P™ 
- ^ case of on,y finite ma„y support ^V&£££?£.7„ Jg^* ^^ ^ 

AMS classification: primary 62G05; secondary 62G20 

1. Introduction 

In many biomedical studies, 
to lie before an inspection time 
time Z. This censoring scheme 
studies (Finkelstein and Wolfe 
1992). We assume throughout 
denote the distribution function 

the random survival time X of interest is never observed and is only known 

Sr. re
ec

2
utT inrction times Y and z> - «** «ä 

1985]Tand Im^Jx     7^ t™^ Examples can be fo^ in cancer 
hat 1 and r7/f ,* ***?" and Mdbye> 1991= ^S™ «* EberlJ 
of Av F arid  h      lndePend

u
ent and that Y<Z with probability one. We 

* by F0 and the joint dtstnbution function of (7.Z) by G. The available 
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data for the case 2 interval-censorship model are thus 

Vrj,Zj,I[Xj^Yj\,I[Yj<Xj^Zj}),   j=\,...,n, 

where {XXYUZX\ .   (X„,Yn,Zn) are independent copies of (X,Y,Z) and I[A] is the indicator of the set A 
G o neboom and Wellner (1992) considered the case 2 interval-censorship model with continuous F„ and 

nrov d   hV    r°US G- ^ Pr0P0Sed 3n iteratiVe C°nveX ™nt **»**>" t0 calc^e the GMli and 
fhTfirtt  ""fr g C0nsistency of the GMLE- They showed that the estimator of F0 obtained at 
tne first step of the iterative convex minorant algorithm converges to F0 at the («log«)1^ rate and that its 
asymptotic distribution is not normal. The asymptotic distribution of the GMLE remains uLstd There ar 

W6?S£Z£Z2£^ ThCy inClUdC Pet°'S (1973) N—^ algorithm and Tu^ 

^<S2ZEZ%2^\%T£is discrete- ™s —is - * —i 
s/={aeU: P(Y = a) + P(Z = a)>0} 

in *eFromfth!l Z^^f I " *i W" ^^ ^ ^ ^^^ °f the GMLE at each V*« 
"dfnse TnrO 1 TnT   7 ^       T ^ ^^ °f ^ °MLE * F° is continuous and * is aense in |U,oo). rhis is done in Section 2. 

th™fT3 7\C°nf ^ thC CaSC °f finite •*• We 0btain the J'0int asymptotic normality of the GMLE at 
the usual vG rate for the points in ^ and present a consistent estimator of its asymptotic variance 

2. The consistency of the GMLE 

7=1 

1^ 
<(">*) = -^2l[a<Xj^b,Yj = a,Zj = b], 

1^ 

J=I 

N„(a,b)=l-J2l[Yj=a,Zj=b]. 
7=1 

Then the generalized likelihood is given by 

MF) =    IJ   F{a)nN^^b\F{b) - F{a)f^a'b\\ - F(b)]nN»^ 
(a,b)eSl 

and the normalized generalized log-likelihood is 

&n(F) =    J2   {N~(ab)\og[F{a)] + N°n{a, b)log[F(6) -F(a)] + N+(a, b)log[l -F(b)]\. 
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Here and below we interpret 01og0 = 0 and logO= -oo. In the above we let F range over the set &* of all 
subdistribution functions. A function F\ is called a subdistribution function if F = aF for some distribution 
function F and a number a e [0,1]. Note that A„(F) and i?„(F) depend on F only through the values of F 
at the points a es/. Thus there exists no unique maximizer of An(F) over the set #"*. However, there exists 
a unique maximizer F„ of A„(F) over the set SF* which satisfies F„(x)= sup{F„(a): a<*,l[)"=i(/[i/ = a] + 

I[Zj = a])>0} for all xeU. Here we interpret the supremum of the empty set as 0. We call F„ the GMLE 
of F0. 

Theorem 2.1. The GMLE F„ satisfies Fn(a) -► F0(a) almost surely for all a es/. 

Proof. Verify that 

L{F)--E(Zn(F))=    Y,   9(a,b)ha,b(F) 
(a,b) € SS 

with 

ha,b(F) = F0(a) log[F(o)] + [F0(b) - F0(a)] \og[F(b) - F(a)] + [1 - F„(o)] log[l - F(b)]. 

It is easy to check that the expression ha>b(F) is maximized by a nondecreasing function into [0,1] F if and 
only if F(a) = F0(a) and F(b) = F0(b). Thus, F0 maximizes L{F) and any other nondecreasing function into 
[0,1] that maximizes L(F) coincides with F0 at the points in si. 

Note that &K(F0) = £ E"=i *K*j> YJ,ZJ), where jt is the map defined by 

iK*,y,z) = I[x< v] log(F0(y)) + I\y <x^z] log(F0(z) - F0(y)) + I[z<x] log(l - F0(z)). 

Thus, it follows from the SLLN that S£'„(Fo) -► I(F0) almost surely. By the definition of the GMLE, 
Se„(Fn)^SeH(F0). Consequently, 

liminf &H{Pn)> liminf J2PB(F0) = L(Fo)   almost surely. 
n—»oo n—>oo 

Let Q' denote the event on which liminfn^ooifn(Fn)>I(Fo) and, for each {a,b)e@, N-(a,b)^>F0(a) 
g(a,b),sap„N-(a,b)=4 if F0(a)=0, N%(a,b)^(F0(b) - F0(a))g(a,b),supnN^a,b)=0 if F0(6)=F0(a), 
#+(«, *)-»(! -F0(b))g(a,b) and supBtf+(a,&)=0 if F0(Z>)=1. Fix an coSß'. Let the function F be a 
limit point of F„(-,co) in the sense that /*„(«,©)->F*(a) for all «ej/ and for some sequence {£„} of 
positive integers tending to infinity. We now show that 

L(F*)>L(F0). 

Let xkn(a,b) denote the value of the random variable 

N£(a,b)log(Ft») + A£(a,b)log(Ft„(fc) - Fin(a)) + N+{a,b)log(l - FK{b)) 

at the point m. Thus, by the definition of Q', 

liminf   V   xkn(a,b)^L(F0) 

and 

n-»oo 
(a,6)€* 

xkii(a,b)^g(a,b)ha<b(F*) 
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for each (a,b) e@. Note also that xkn(a,b)^0 for all (a,b) G @. Thus an application of Fatou's Lemma yields 

lim sup   J2   xkn(a,b) = -liminf   V   -xk(a,b) 
(°,b)€<2 (a,b)€SS 

^ ~   Yl   liminf(-xt (a, 6)) 
(a,t)e^ 

=    J2   9(a>b)Kb(F*) 
(a,b)€& 

= L(F*). 

Combining toe above yields L(F0)^L(F*). As F0 maximizes L, we can conclude that L(F*)=L(F0) and 
therefore F (a)-F0(a) for all a erf. Since co was arbitrary and Q' has probability one, we can infer the 
desired result.   D 

Jfrf is a finite set, then it follows from the theorem that the GMLE is uniformly strongly consistent on 
rf. box^arbitrary rf, the uniform strong consistency of the GMLE requires additional assumptions. The proofs 
ot the following corollary and theorem are similar to Yu et al. (1998) and are thus omitted here. 

Corollary 2.2. Suppose that rf is a closed set. Assume that F0(a-) = F0(a) for every a erf for which there 
is a sequence of points {4>lC^ such that at]a. Then the GMLE is uniformly strongly consistent on 
rf, i.e., supae^ \Fn(a) -F0(a)|^0 almost surely. 

We call a number x a point of increase of F0 if either F0(x)<F0(y) for all y>x or F0(y)<F0(x) for all 
y <zx, 

T^re™2-3- Suppose that FQ is continuous and the closure of rf contains the set of all points of increase 
oj t0. lnen the GMLE is uniformly strongly consistent, i.e., suP;ceR \Fn(x) - F0(x)\ ^0 almost surely. 

3. The asymptotic normality of the GMLE 

In this section we shall obtain the asymptotic normality of the GMLE under the assumption that rf contains 
finitely many elements and 

0<F0(a)<F0(b)< 1    for all a,b in si such that a<b. 

Note that under the current assumption the standard method for finite parametric models can be used 
Let ^ denote the set of all distribution functions F which satisfy 0 <F(a) <F(b) < 1 for all a, bins/ with 

a<b. bov F e J*" and a erf, let 

fcWO^V   F{a)        F(b)-F(a))+c.^€äS\F(a)-F(c)     T^F{ä))> 

*„.(/■)=-     y      (&>b) K{a,b)      \ 
*:Äe*A  ^(«)        {F{b)-F{a)f) 

-     y      (     *?("'*>        ,     *f?(El*L\ 
,<U&ss\(F(a)-F{c)? + {l-F{a)?) 
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and 

*„m = #*UF)=iFW*£a)r    a,be«,a<b. 
Then 

Let ai <a2 < ■ ■ ■ <am denote the elements of st. For F e P, let Xn(F) denote the «-dimensional column 
vector with entries WF)), = ^«(F), /=!,...,«, and £n{F) denote the m x m matrix with entries 

(^„(F)),7-^a;;a.(F)5    i,j = \,...,m. 

Finally, set 

J = E[<en{F0){£n{F0)?] = -£[^»(Fo)]. 

The matrix J is positive definite since 

J=D+   y        g(fl"a^    re.-e.ye.-g.)T 

where Z> is the diagonal matrix with positive diagonal elements 

P{Y = ai}     P{Z = ai}      . 

^o(ßi) 1-F0(a,) 

and ei,...,em denote the standard basis in Rm. It is easy to verify that 

&n(fin)-*E[£a(F0)]= -J. 

It thus follows that on the event {Fn e &} 

0 = J?n(Fn) = ifn(Fo) - JAn + 0p(||4,||), 

7^ji"uS thf ™-dimensional column vector with entries £(««) - F0(a,), i= \,...,m. It follows from 
the CLT that n ^n(F0) is asymptotically normal with mean 0 and dispersion matrix J. This shows that 
A„ =/    Se„{Fo) + OpC«-1/2). Thus, we have the following result. 

Theorem 3.1. Suppose F0 belongs to J5". Then 

' FM) ~ F0(ax) 
„1/2 

<Fn(am)-F0(am), 

is asymptotically normal with mean 0 and dispersion matrix J~K A strongly consistent estimator of J is 
given by -SCn(F„). J 
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We consider the problem of estimation of a joint distribution function of a multi- 
variate random vector with interval-censored data. The generalized maximum 
likelihood estimator of the distribution function is studied and its consistency and 
asymptotic normality are established under the case 2 multivariate interval cen- 
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1. INTRODUCTION 

We consider the estimation of a joint distribution function F0 of a multi- 
variate random vector X = (Xlt..., Xd) which is subject to interval censoring. 
In interval censoring, the value of each coordinate variable X, may not be 
directly observable; instead, a pair of extended real numbers L, and R, such 
that Li^Xf^Ri are always observed. The observations Lt and R, satisfy 
one of the following four conditions: Li-R, (exact), 0 = L,<R, (left cen- 
sored), L,<R,= oo (right censored), and Q<Lt<Rt< oo (strictly interval 
censored). A «/-dimensional interval-censored observation corresponding to 
X is represented by the 2c?-dimensional vector (LlfRu ..., Ld, Rd). 

Multivariate interval-censored data arise in a variety of life testing 
situations and biomedical studies. We describe a clinical study in the 
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following example that gives rise to bivariate (d=2) interval-censored 
data. 

EXAMPLE 1.1 (The Italian-American Cataract Study Group (1994)). 
A total of 1399 persons, between 45 of 79 years of age, who had been 
identified in a clinic-based case control study were enrolled in a follow-up 
study between 1985 and 1988. The follow-up study was designed to estimate 
the rate of incidence and progression of cortical, nuclear, and posterior sub- 
capsular cataracts and to evaluate the usefulness of the Lens Opacities 
Classification System II in a longitudinal study. Beginning in 1989, follow- 
up lens photographs were taken and graded at a six-month interval. 
Patients might skip some visits. Data were obtained from Zeiss slit-lamp 
and Neitz retroillumination lens photographs at each patient's visit. The 
exact time that the event of interest occurred was only known to lie within 
the period between two consecutive visits, or was right censored if by the 
end of the study the event still had not taken place. Consequently, bivariate 
interval-censored data were encountered. 

At present, nonparametric estimation of a joint distribution function 
with multivariate interval-censored data has not been considered. A current 
practice is to take the midpoint of the interval (L, R) as an exact observa- 
tion unless it is right censored. Then Dabrowska's (1988) Kaplan-Meier 
estimator on the plane or van der Laan's (1996) repaired generalized maxi- 
mum likelihood estimator can be applied to such data. Another practice is 
to treat the right endpoints of the interval-censored data as exact observa- 
tions unless they are right censored (see Samuelsen and Kongerud (1994)). 
However, these two practices will introduce bias in the analysis (Samuelsen 
and Kongerud (1994)). 

Multivariate right-censored data are special cases of multivariate interval- 
censored data. References for nonparametric estimation of distribution 
functions with multivariate right-censored data can be found in Campbell 
(1981), Hanley and Parnes (1983), Tsai et al. (1986), Dabrowska (1988), 
Gill (1992), Prentice and Cai (1992), Lin and Ying (1993), and van der 
Laan (1996), etc. 

Nonparametric estimation of a distribution function with univariate 
interval-censored data has been studied by Peto (1973), Turnbull (1976), 
Tsai and Crowley (1985), Chang and Yang (1987), Groeneboom and 
Wellner (1992), Gu and Zhang (1993), and Yu et al (1996 and 1998), 
among others. 

In Section 2, we discuss generalized maximum likelihood estimation of 
F0 based on multivariate interval-censored data and formulate the case 2 
multivariate interval censorship model. We establish consistency of the 
generalized maximum likelihood estimate (GMLE) of F„ in Section 3 and 
asymptotic normality of the GMLE in Section 4. 
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2. METHOD OF ESTIMATION 

Let X = (X,,..., Xd) be a d-dimensional random survival vector with a 
joint distribution function F0(x), where x = (x1,..., xd). The observable 
random vector is {Lx, Rx,..., Ld, Rd), where L, ^ R, for all /. Suppose that 

(Ln, Rn,..., Lld, Rid),..., (L„i, Rnl,..., L„j, R„d) 

are i.i.d. copies of {Lx, R^,..., Ld, Rj). We want to estimate the joint 
distribution function FQ(\) (or the survival function S0(x) = 
P{Xl>xx,..., Xd>xd}). Each univariate interval-censored data {Ly,Ry) 
can be viewed as an interval ItJ, where 

h= 
[Lg, Rfjl if      Ly—Ry, 
(Lij,Rij]       if   LyKRy-, 

therefore, each multivariate interval-censored observation can be viewed as 
a rectangular set J( = In x • • • x Iu, i = 1,..., n. 

Define a maximal intersection (MI), /I, with respect to the J]% to be a 
nonempty finite intersection of the J?s such that for each i Ar\J,= 0 
or A. For example, let J^ = (0, 2] x(l, 3], ./2 = (0, 4] x(l, 5], -/3 = 
(3,5]x(4,8], and ^ = (3,5] x(4,8]. Then the possible Mi's are 
(0,2] x (1, 3] and (3,4] x (4, 5]. Let {Alt..., Am} be the collection of all 
possible distinct Mi's. 

Using an argument similar to Hanley and Parnes (1983), it can be 
shown that the GMLE of F0(x) which maximizes the generalized likelihood 
function, An, must assign all the probability masses s1,...,sm to the sets 
Ai,..., Am. Thus the generalized likelihood function is as follows: 

An=Y\(iF(Si)=n 
i-i      «-I 

ZHAJCZSJSJ 
7-1 

(2.1) 

where fiF is the measure induced by a distribution function F, 1( •) is the 
indicator function, s (=(sx, ...,sm_1)')eDs, sm=l—Si— •■• —sm_i, s' is 
the transpose of the vector s, and D,= {s;s,^0, sx+••• +s„_x < 1}. 
Denote the GMLE of s by s and that of F0 by F„. 

The SJs can be obtained by the self-consistent algorithm described by 
Turnbull (1976) for univariate interval-censored data as follows: Let 
5J

0)
 = 1//M for j=l,...,m. Denote bt] = \{Aj c J,). At the h-step, sjh) = 

£7-i (V«) (Vf_1)/2:™-i <5ft4A-1))>./= 1. •••» m,h>\. Repeat until the sjs 
converge. The justification of the convergence of this method for multi- 
variate interval-censored data is similar to that given in Turnbull (1976) for 
univariate data. 
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Given a GMLE s, the GMLE of F0(x) is not uniquely defined on an MI 
unless the MI is a singleton. A GMLE of F0(x) can be obtained as follows: 

£(*)= I Sj. (2.2) 
^y=[0,x1]x ••• x[0,*,,] 

Remark 1. The GMLE of s may not be unique, as the following 
example demonstrates. 

Suppose that a sample of size 4 consists of two-dimensional interval- 
censored observations (1, 6, 1, 3), (1, 6, 4, 6), (1, 3, 1, 6) and (4, 6, 1, 6). 
Then the Mis are 4, = (1,3] x (1,3], A2 = (1, 3] x (4, 6], A3 = 
(4, 6] x (1,3] and ^4 = (4, 6] x(4, 6]. (J„ s2, J3,f4) = r(l/2, 0, 0, 1/2) + 
(l-r)(0, 1/2, 1/2,0) is a GMLE of s, for all re[0, 1]. Thus there are 
infinitely many expressions for GMLE. However, fip(Ji) = 1/4, i= 1,..., 4, 
for all re [0,1]. 

In general, s may not be consistent under discrete assumptions. 
However, the consistency of F„ on a certain set will not be affected (for 
more details, see Section 3). 

The derivation of the GMLE only requires that the observations 
Jx,..., Jn are i.i.d. To derive the asymptotic properties of the GMLE, we 
need further assumptions on F0 and the distribution function of 
(Li,Rl3 ...,Ld,Rd). 

A set of univariate interval-censored data are referred to as case 2 data 
if they consist of strictly interval-censored, right-censored or left-censored 
observations, but do not contain exact observations. For such type of data, 
Groeneboom and Wellner (1992) formulate the case 2 univariate interval 
censorship model. We consider a natural multivariate extension of the 
case 2 univariate interval censorship model in the following. 

Suppose (C/j, Vx,..., Ud, Vd) is a random censoring vector and is 
independent of X. The observable random vector (Ll9 Rt,..., Ld, Rd) 
is generated by the following formula. 

(LHR^UUHV,) if   U,<Xt^V„   i = l rf. 
(0, U,) if x&u» 
(Ut,Vt) if u,<xt^vt 
(K„+oo) if xt>v„ 

We call this model a case 2 multivariate interval censorship model (C2M 
model). In the next two sections, we shall discuss the asymptotic properties 
of the GMLE under the C2M model. For ease of presentation and without 
loss of generality (WLOG), we assumed d=2 hereafter. 
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3. CONSISTENCY OF GMLE 

In this section, we make the following assumptions under the C2M 
model: 

The censoring vector (U, V) is discrete. (3.1) 

Let a = (a,, a2), b = (b1, b2), U = (£/,, U2) and V = (Vx, V2). Define 

^ = {(a,b):s(a,b)>0},       where   g(a, b) = P(U = a, V = b), 

Note that each point in 3S induces a grid of nine cells in R2. Let 

■< = {(*i. x2):x, e {a„ b„ ±co}, i= 1, 2, (a, b) zSS} 

be the set of all such grid points. We shall establish the strong consistency 
of the GMLE at each point in J/+. From this we can infer the uniform 
strong consistency of the GMLE if F0 is continuous and $t% is dense in 
[0, oo f. 

Let (X„ U,, V,), i = l,..., n be i.i.d. copies of (X, U, V). For (a, b) e «, let 

7u(a,b) = (-oo,a1]x(-oo,a2]»   •••> 

/aI(a,b) = (c„6i]x(-Q0,fl2], 

731(a,b) = (Ä1, +oo)x(-oo,a2],   ...,   /33(a)b) = (&1,+oo)x(62,+oo). 

Let s/ be the set of all vertexes of B1,...,Bh, where Bu...,Bh are all 
possible Mis with respect to ItJ(a, b), i, j= 1,2, 3, and (a, b) eäS. Note that 
sd^ is the set of vertexes of the rectangles 7^(a, b)s. Thus s/+^s/ in 
general. Let 

J\UCa,b) = - £ l(X,e/ft(a,b),U, = a,V,=b),       /,fc = l,2,3. 
» 7-1 

Then the generalized likelihood (2.1) is equal to 

MF)= n  n nwMa-i'))]^"- 
(«,b) e»  i-l j-1 

where 

MF((C, d] x (e, /]) =F(d, f) + F(c, e)-F(c, f)-F(d, e).       (3.2) 
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Moreover, the normalized generalized log-likelihood function is 

W) =    Z      £   £^(a,b)ln[M/,(a,b))]. 

Here and below we interpret 0log0 = 0 and log0=— oo. For this 
likelihood function, we let F range over the set SF* of all functions F on 
[ — oo, +oo]2 such that 

F( + oo,+oo) = l, (3.3) 

F( — oo, x) = F(x, — oo) = 0       for each x, (3.4) 

and 

HF{I) > 0       for all rectangle sets / in (— oo, + oo ]2. (3.5) 

In view of (3.2), A„(F) and 3?n(F) depend on F only through the values of 
F at the points xes/^. Because the GMLE of FQ is not unique, we adopt 
expression (2.2) for the GMLE in our proofs below. 

THEOREM 1.    Under Assumption (3.1), the GMLE F„ satisfies /'„(a)-» 
F0(a) almost surely for all aes/^.. 

Proof.   Verify that 

L(F):=E(£en(F))=    £    g(a,b) h^b(F) (3.6) 

with 

3 3 

K b(F) =ZI /*n(/»(a, b)) ln[M^(a, b))]. 

Verify that the expression h^ b(F) is maximized by a function Fe 2F* if and 
only if 

M/,>,b))=^0(/,,(a,b)),       i, ; = 1,2,3. (3.7) 

Equations (3.2) and (3.4) imply that (3.7) is equivalent to F(x) = F0(x) for 
each vertex x of rectangles Iy(a, b), i, j=l,2,3. Thus F0 maximizes L(F) 
and any other function in J*"* that maximizes L(F) will coincide with JF0 

on s/+. 
Note that JS?„(F0) = (1/«) £;_, "MX,, U,, V,), where ^ is the map defined 

by 

<Mx, a, b) = £   Z l(x 6 /„(a, b)) ln(M/,(a, b))). 
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Thus it follows from the SLLN and (3.2) that i?„(F0) -► L(F0) almost 
surely. By the definition of the GMLE, &„(£„)■£ &„(F0). Consequently, 

Jim &„(Fn)^ Hm jS?n(F0) = L(F0) almost surely. 

Let Q' denote the event on which lim,,^« .^„(FJ > L(F0). Fix an coeQ', 
let F* 6 i5"* be a limit point of F^( •, co) in the sense that F^(a, co) -»■ F*(a) 
for all aejj^ and for some sequence {k„} of positive integers tending to 
infinity. We now show that 

L(F*)>L(F0). 

Let ffcn(a, b) denote the value of the random variable £?_i Ej_ i A^/a, •») x 
ln[>/."(/„)] at the point co. By the definition of Q', 

Next, verify that 

Urn      £    ^(a,b)>L(F0). 
"->GO   («,b)e« 

tk(a,b)^g(a,b)h^(F*) 

for each (a, b)e^. Note also that ^(a, b)«;0 for all (a, b)e^f. From 
Fatou's Lemma, 

hm     £    '*„(«, b)=-Hm      I    -^.(a,b) 

<-    Z     lim (-f*„(a,b)) 

=    X    ^b)A.,b(F*) 
(«,b)6« 

= L(F*). 

Combining the above yields L(F0)<L(F*). As F0 maximizes L, we con- 
clude that L(F*) = L(F0) and therefore F*(a) = F0(a) for all aej^. Since 
co is arbitrary and Q' has probability one, the consistency result is thus 
established.   | 

If s/+ is a finite set, then it follows from the theorem that the GMLE is 
uniformly strongly consistent on s/^. For arbitrary s/^, the uniform strong 
consistency of the GMLE requires additional assumptions. 

THEOREM 2. Suppose that (3.1) holds, F0 is continuous and s/+ is dense 
in [0, +oo)2. Then supxe*2 |F„(x)-F0(x)| -»0 almost surely. 
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Proof. Let FUF2,... be functions in &+ such that F„(a) -»F0(a) for all 
ae st*. Let M be a positive integer. Since F„ is continuous, there is a grid 
which partitions the space (-00, + 00]2 into M disjoint rectangles 
/= (c, d] x (e, f\ with grid points (upper-right vertexes of Is) x,,..., xM in 
(-00, +00]2 and ^(7) < l/M for each grid cell I. The continuity of F0 

and the fact that sälis dense in [0. +00)2 imPly that there are Points 

au ..., aM in j/# such that |F0(a,) -F0(x,)| < l/M2. Using this and the facts 
F0,Fne&r* and that F0(c,e)<F0(x)<F0(<i)/) and F„(c,e)s$F„(xH 
F„(rf, /) for each x e 7, we derive that 

|F„(x)-F0(x)|< max   |F„(a,)-F0(a,)| + -,       xe^2. 

This shows that F„ converges to F0 uniformly. 
By the above, the events (]mej*. {Fn(a)->F0(a} and {supx6Ä2 

|F„(x)-Fo(x)|-»0} are identical and thus have probability 1 by 
Theorem 1.   | 

Remark 2. In the case of the bivariate right censorship model, under 
the assumptions in Theorem 2, it is well known that the GMLE is not a 
consistent estimate of a continuous F0 (see Tsai et al. (1986)). 

4. ASYMPTOTIC NORMALITY OF GMLE 

Under the univariate case 2 interval censorship model, Groeneboom and 
Wellner (1992) conjecture that if the censoring distribution is continuous, 
then the GMLE of a continuous F0 is not asymptotically normally dis- 
tributed and the convergence rate is not in y/n. Yu et al. (1998) prove that 
if the censoring vector takes on finitely many values, then under an addi- 
tional assumption the GMLE is asymptotically normally distributed and 
the convergence rate is in *Jn. In the multivariate case, the situation is 
more complicated. In this section we shall obtain the asymptotic normality 
of the GMLE under the C2M model and the assumptions that 

st+ contains finitely many elements, (4.1) 

^0((fli.*i]x(ö2.*2])>0   «"   a,bej*;     and     a,<b„ i' = l,2.   (4.2) 

and 

s/+ = rf   (see Section 3). (4.3) 
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Note that under the current assumptions the standard method for finite 
parametric models can be used. 

Remark 3. The GMLE of s may not be unique (see Remark 1) and 
Theorem 1 does not ensure the consistency of the GMLE s as si and s/+ 
are not the same in general. Note that the consistency of the GMLE F„ on 
s/f is mainly due to Eq. (3.7), since sf+ is the set of all vertexes of the 
rectangles ItJ(a, b)'s. 

By Theorem 1 and (4.3), the GMLE Fn is consistent on the set sä. Since 
Sj=np(Aj), where the vertexes of the MI A} belong to si, s is consistent 
by (3.2). 

Let s°=fiFa{Aj). Then (4.2) yields s°>0 for all;'. Verify that (3.6) yields 

UF)=    E    S(a,b)£   E  ^IK4c/a(a,b)) 
(«,b)6* t—X   1-1    k 

xln ^SjUAjCzIuia,)) 

3 3 

■  E   E E 
(«,b)e«  /-l   7-1 

f(a,b)E^l(^^4(a,b)) 

xln Y,Sjl(AjCzIu(a, b)). 
j 

(4.4) 

Let 

and 

{/„..., Iß) = {/„(a, b): i, j= 1,2, 3, (a, b)e<%}, 

/,i = f(a,b)X^l(4^/a(a,b)). 

We can rewrite (4.4) as 

HF)= E /»*ln E */l(i4y «=/*)= E />*h E 'A- 
A-l y-1 A-l y-1 

From (4.2), ph>0, h = 1,..., £ Set /= -£(32JS?(F0)/3s3s'), where ö-SP/ös 
is an (m-l)xl vector and d2SC/8sds' is an (m-1)X(/M-1) matrix. 
Verify that 
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J=nE\~~dT~   ds' )~   3sSs' 

~VA-/
A    (S"-i**J*)2   /(—i)x(-.-i) 

where 

C/= 

(^ll-^lm)N/^l 

Y!k-l^\kS°k 

{Sßi-Sßm)y/Pß 

Hk-l^fikSk 

(Öß(m-1)-Ößm)y/Pß 

Hk-l<>ßkSk 

We now show that J is nonsingular. Let x, be the upper-right vertex of 
Aj, j= 1,..., m-1. By reordering the 7/s, WLOG, we can assume that the 
upper-right vertex of J, is equal to x„ i = 1,..., m-l. Thus J, n A, = 0 for 
y>i, i = 1,...,m-l. Then the matrix Uhas the upper triangle matrix from 

(Ößl-Ößm)y/Pß        \ 

XT-1*/*4        \ 
{.Sß2-Sem)y/Pß 

J7= *;+<*2i*i 

>/5 Pm-l 

•C-l+S*-! d(m-l)kS°k 

(ÖKm-l)-Ößm)\/Pß  J 
E*=l<V'Sfc I 

Recall s?>0 and/>,>0 for i=l,...,m-l. It follows that the matrix U is 
of full rank and J= UU' is nonsingular. 

It is easy to verify that 

3s 3s' 9s 3s' 

It thus follows that 

OS ÖS 
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where A   is the (m-1 )-dimensional column vector with entries $,-s° = 

nSAd-HrW' i= l> -' m~ L ^ Q"= ^'<"S' = 0^ Verify that 

Q = °&\ "!except on the event Q„, 
ÖS 

and by Theorem 1 and Assumptions (4.1) and (4.2), 

P(ß„)->0       as       n-»oo. 

It follows from the CUT that J~n (d&(F0)/ds) is asymptotically normal 
with mean 0 and dispersion matrix /. This shows that An = J x 
{d&(F0)/ds) + op(n ~1/2). Thus we have the following result. 

THEOREM 3.    Under Assumptions (4.1), (4.2) and (4.3), 

si-sl 

is asymptotically normal with mean 0 and dispersion matrix J l.A strongly 
consistent estimator of J is given by J= - (^(FJ/ös ös'). furthermore 
J~n [F (x) -Fo(x)] is asymptotically normally distributed for aUxes^. A 
consistent estimate of the asymptotic variance ofFn(x) is (1/n) C'J C,.where 
c is a (m-l)xl vector with the ith entry c,= l{A, <= [0,Xj] x [0,x2]) 

««few F0(x) = l. 

Under the assumptions in Theorem 3, the GMLE is also asymptotically 
efficient. The proof of this assertion is straightforward and is omitted. 
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Abstract. In this paper we consider an interval censorship model in which the end- 

points of the censoring intervals are determined by a two stage experiment. In the first 

stage the value A; of a random integer is selected; in the second stage the endpoints are 

determined by a case k interval censorship model. We prove the strong consistency in 

the Iq(/i)-topology of the nonparametric maximum likelihood estimate of the underlying 

survival function for a measure fi which is derived from the distributions of the endpoints. 

This consistency result yields strong consistency for the topologies of weak convergence, 

pointwise convergence and uniform convergence under additional assumptions. These 

results improve and generalize existing ones in the literature. 

Short Title: Interval censorship model. 
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1.    Introduction 

In industrial life testing and medical research, one is frequently unable to observe the random 

variable X of interest directly, but can observe a pair (L, R) of extended random variables such 

that 
-oo<L<X<i?<oo. 

For example consider an animal study in which a mouse has to be dissected to check whether a 

tumor has developed. At the time of dissection we can only infer whether the tumor is present, 

or has not yet developed. Thus, if we let X denote the onset of tumor and Y the time of the 

dissection, then the corresponding pair (L, R) is given by 

(-oo, Y),    X<Y, 
{L'R)-{(Y,oo),       X>Y. 

If X and Y are independent, then this model is called the case 1 interval censorship model (Groene- 

boom and Wellner (1992)) and the data pair (L,R) is usually replaced by the current status data 



(Y,I[X <Y]), where I[A] is the indicator function of the set A. Examples of the current status 

data are mentioned in Ayer et al. (1955), Keiding (1991) and Wang and Gardiner (1996). 

Another interval censorship model is the case 2 model considered by Groeneboom and Wellner 

(1992). Consider an experiment with two inspection times U and V such that U < V and (U, V) is 

independent of X. One can only determine whether X occurs before time U, between times U and 

V or after time V. More formally, one observes the random vector (U, V, I[X < U],I[U < X < V]). 

In this model 
' (-oo, U),   X<U, 

(L,R) = l  (17,V),       U<X<V, 

k(V,oo),       X>V. 

Note that (L, R) is a function of the random vector (U, V, I[X < U], I[U < X < V]). However, V 

cannot be recovered from the pair (L, R) on the event {X < U}. Thus the pair (L, R) carries less 

information than the vector (U, V, I[X < U], I[U < X < V]). 

The case 1 and case 2 models are special cases of the case k model (Wellner, 1995). In this 

model there are k inspection times Y\ < ■ • ■ < Yk which are independent of X, and one observes 

into which of the random intervals (—oo, Yi],..., (Yk, oo) the random variable X belongs. Note 

that the case k model for k > 2 can be formally reduced to a case 2 model with U and V functions 

of X and the inspection times Yi,..., Y&. The resulting U and V are then no longer independent 

of X violating a key assumption used in deriving consistency results for the case 2 model. 

While the case 1 model gives a good description of the animal study mentioned above, a data 

set from a case k model (k > 2) is difficult to find in medical research since it is very unlikely that 

every patient under study has exactly the same number of visits. Finkelstein and Wolfe (1985) 

presented a closely related type of interval-censored data in comparing two different treatments for 

breast cancer patients. The censoring intervals arose in the follow-up studies for patients treated 

with radiotherapy and chemotherapy. The failure time X is the time until cosmetic deterioration 

as determined by the appearance of breast retraction. Each patient had several follow-ups and 

the number of follow-ups differed from patient to patient. One only knows that the failure time 

occurred either before the first follow-up, or after the last follow-up or between two consecutive 

follow-ups. Other examples of such type of interval-censored data can be found in AIDS studies 

(Becker and Melbye (1991); Aragon and Eberly (1992)). 

In this paper we assume that the pair (L, R) is generated as a mixture of case k models. This 

formulation encompasses the various case k models and the data setting occurring in Finkelstein 

and Wolfe (1985). A precise definition of this mixture model is given in Section 2. 

Let Fo denote the unknown distribution function of X. This distribution function is commonly 

estimated by the generalized maximum likelihood estimate (GMLE). Ayer et al. (1955) derived an 

explicit expression of the GMLE for the case 1 model. However, in general the GMLE does not 

have an explicit solution. In deriving a numerical solution for the GMLE, Peto (1973) used the 

Newton-Raphson algorithm; Turnbull (1976) proposed a self-consistent algorithm; Groeneboom 

and Wellner (1992) proposed an iterative convex minorant algorithm.   A detailed discussion of 



some computational aspects is given in Wellner and Zhan (1997). 

Various consistency results are available for the GMLE. In the case 1 model, Ayer et al. 

(1955) proved the weak consistency of the GMLE at continuity points of FQ under additional 

assumptions on G, the distribution function of Y. The uniform strong consistency of the GMLE 

has been established by Groeneboom and Wellner (1992), van de Geer (1993, Example 3.3a), 

Wang and Gardiner (1996) and Yu et al. (1998a) for continuous Fo using various assumptions and 

techniques. In the case 2 model, the uniform strong consistency of the GMLE has been established 

by Groeneboom and Wellner (1992), van de Geer (1993, Example 3.3b), and Yu et al. (1998b) for 

continuous FQ. 

In Section 2 we shall obtain the strong L\ (^)-consistency of the GMLE for our mixture of 

case k models for some measure \i. This result shows that the L\ (/x)-topology is the appropriate 

topology as it gives consistency without additional assumptions in the case k models. Convergence 

in stronger topologies such as the topologies of weak convergence and uniform convergence requires 

additional conditions. This is pursued in Section 3. In the process we also point out some erroneous 

consistency claims in the literature. The proof of the L\ (/^-consistency is given in Section 4. It 

exploits the special structure of the likelihood for this model and does not require any advanced 

theory. Section 5 collects various other proofs. 

2. Main Results 

We begin by giving a precise definition of our model. This is done by describing how the 

endpoints L and R are generated. Let K be a positive random integer and Y = {Yk,j : k = 

1,2,...,j = l,...,k} be an array of random variables such that Yk:i < ••• < Yk,k- Assume 

throughout that (Ä", Y) and X are independent. On the event {K = k}, let (L, R) denote the 

endpoints of that random interval among (—oo, Yj.,i], (Y^i, Yü.,2], • • •, (Yk,k, 00) which contains X. 

We refer to this model as the mixed case model as it can be viewed as a mixture of the various case 

k models. 

In some clinical studies, an examination is performed at the start of the study and follow-ups 

are scheduled one at a time till the end of the study. This can be modeled by taking Yk,j = 5Zi=i & 

and K = sup{fc > 1 : JV^1 & ^ T}> where £i,£2)--- denote the (positive) inter-follow-up times 

and r is the length of the study. In this case K may not be bounded. For example, if the inter- 

follow-up times are independent with a common exponential distribution, then K — 1 is a Poisson 

random variable; thus K is unbounded, yet E(K) < 00. In general, if the inter-follow-up times are 

independent and identically distributed, then E(K) < 00. 

To define the GMLE, let (Li, Ri),..., (Ln, Rn) be independent copies of the pair (L, R) defined 

above and define the generalized likelihood function An by 

n 

An(F) = l[[F(Rj)-F(Lj)),    FeT, 
3=1 



where T is the collection of all nondecreasing functions F from [—00, +00] into [0,1] with F(-oo) = 

0 and F(+oo) = 1. We think of FQ as a member of T. Note that An(F) depends on F only through 

the values of F at the points Lj or Rj, j = 1,... ,n. Thus there exists no unique maximizer of 

A„(F) over the set F. However, there exists a unique maximizer Fn over the set T which is right 

continuous and piecewise constant with possible discontinuities only at the observed values of Lj 

and Rj, j = 1,..., n. We call this maximizer Fn the GMLE of Fo- 

Define a measure fj, on the Borel cr-field B on M. by 

00 k 

u.(B) = y£p(K = k)J^P(Yk,j £B\K = k),        B€B. 
k=i j=i 

We are now ready to state our main result, namely the (strong) L\(ß) consistency of the GMLE. 

2.1. Theorem.   Let E(K) < 00. Then / \Fn - F0\ dp-^Q almost surely. 

The condition E(K) < 00 implies the finiteness of the measure fi and of the expectation 

E\log(Fo(R) — F0(L))]. These two latter conditions play an important role in our proof given in 

Section 4. 

One referee pointed out that results of van de Geer's (1993) (namely her Lemma 1.1 and 

Theorem 3.1) may be used to prove a result very similar to our Theorem 2.1 with the help of some 

inequalities suggested by this referee. This alternative proof leads to L\ (^-consistency for some 

finite measure fi that is equivalent to our measure n and does not require the finiteness of E(K). 

Actually, such a result implies our result in view of the following simple lemma which we state 

without a proof. 

2.2. Lemma. Let /ii and ^2 be two finite measures and g,gi,g2,--- be measurable functions 

into [0,1]. Suppose that fi2 is absolutely continuous with respect to fi\. Then J \gn — g\ du.\ —>■ 0 

implies f \gn — g\ d^ -> 0. 

We have decided to present our original proof since it is direct and elementary and since 

E{K) < 00 is a rather mild assumption that is typically satisfied in applications. 

In the remainder of this section we mention some corollaries of Theorem 2.1. The first one is of 

interest when the inspection times are discrete. It follows from the fact that fj,({a})\Fn(a)—Fo(a)\ < 

f \Fn — FQ\ djj, for every a € M. and generalizes the consistency results given in Yu et al. (1998a,b) 

for the case 1 and case 2 models with discrete inspection times. 

2.3. Corollary. Let E(K) < 00. Then Fn(a) —>• i*b(<z) almost surely for each point a with 

/i({a}) >0. 

In the next corollary we state results for a measure v that depends on the distribution of L 

and R and is easier to interpret than /i. We take v to be the sum of the marginal distributions of 

L and R: 

v(B) = P(L£B) + P{ReB),    B<EB. 



In view of the set inclusion 

oo     k 

{LeB}u{ReB}c U \J{K = k,Ykti e B}, 
k=li=l 

we have v(B) < 2fj,(B). Thus we immediately get the following corollary. 

2.4. Corollary.    Let E(K) < oo. Then the following are true. 

(1) / \Fn — FQ\ du —> 0 almost surely. 

(2) Fn(a) —>• Fo(a) almost surely for each point a with u({a}) > 0. 

3. Other Consistency Results 

In this section we shall show that under additional assumptions strong L\ (jix)-consistency 

implies strong consistency in other topologies such as the topologies of weak convergence, pointwise 

convergence and uniform convergence. Throughout we always assume that E(K) is finite so that 

fjb is a finite measure and P(fiM) = 1 by Theorem 2.1, where 

fip = {lim   f\Fn-Fo\dfi = 0}. 
n-yoo J 

Although the results of this section are formulated for the measure ß defined in the previous 

section, they are true for any finite measure for which the GMLE is strongly Li-consistent as only 

the finiteness of \i and P(0,ß) = 1 are used in their proofs. These proofs are deferred to Section 5. 

Let a be a real number. We call a a support point of \x if /j,((a — e, a + e)) > 0 for every e > 0. 

We call a regular if /j,((a — e, a]) > 0 and ß([a, a + e)) > 0 for all e > 0. We call a strongly regular 

if ii({a — e,a)) > 0 and ß([a,a + e)) > 0 for all e > 0. We call a a point of increase of Fo if 

F0(a + e) - F0(a - e) > 0 for each e > 0. 

In view of the inequality v < 2/i, sufficient conditions for the first three of the above concepts 

are obtained by replacing /x be v. As these sufficient conditions are in terms of the distribution of 

L and R, they are easier to interpret and thus more meaningful from an applied point of view. 

Ayer et al. (1955) established the weak consistency of the GMLE at regular continuity points of 

Fo in the case 1 model. Our first proposition gives a strong consistency result for regular continuity 

points in our more general model. 

3.1. Proposition.   For'each u 6 Clß and each regular continuity point a ofFo, Fn(a;o;) -» Fo(a). 

The next two propositions address weak convergence on an open interval and on the entire 

line. 

3.2. Proposition. Suppose every point in an open interval (a,b) is a support point of ß. Then 

Fn(x;u) —> FQ{X) for every continuity point x of Fo in (a,b) and every u> G ttß. If also Fo(a) = 0 

and Fo(b—) = 1, then Fn(x; u) —>■ FQ(X) for all continuity points x ofFo and all u G fi^. 



3.3. Proposition. If every point of increase ofF0 is strongly regular, then Fn[x\ u) -»■ F0(x) for 

all continuity points of FQ and all w G 0.^. 

Combining these propositions with Corollary 2.3 yields the following results on pointwise con- 

vergence on open intervals and on the entire line. 

3.4. Corollary. Suppose every point x in an open interval (a,b) is a support point of ß and 

satisfies //({a:}) > 0 ifx is a discontinuity point of FQ. Then Fn(x; u) ->■ Fo(x) for every x in (a, b) 

and every u G fl^. Moreover, if F0(a) = 0 and Fo(fc-) = 1, then Fn(x;u)) ->• FQ(X) for all x G R 

and all OJ G O^. 

3.5. Corollary. If every point of increase of Fo is strongly regular and if /i({a}) > 0 for each 

discontinuity point a of Fo, then Fn(x;ui) —>■ FQ(X) for all x G R and all u G fiM. 

The next proposition addresses uniform convergence. 

3.6. Proposition. Suppose that Fo is continuous and that, for all a < b, 0 < Fo(a) < Fo(ft) < 1 

implies fi((a,b)) > 0. Then the GMLE is uniformly strongly consistent, i.e., 

sup \Fn(x) — Fo(x)\ —>■ 0   a.s.. 

This proposition generalizes the strong uniform consistency results given by Groeneboom and 

Wellner (1992) for the case 1 and 2 models. In the case 1 model they require that FQ and G, 

the distribution function of Y, are continuous and that the probability measure /j,p0 induced by 

Fo is absolutely continuous with respect to \i (U-FO << A4)- Proposition 3.6 does not require the 

continuity of G and weakens the absolute continuity requirement. In the case 2 model Groeneboom 

and Wellner assume that Fo is continuous and that the joint distribution of U and V has a Lebesgue 

density g such that g(u, v) > 0 if 0 < Fo(u) < FQ(V) < 1. Their assumption implies that the measure 

/x has a Lebesgue density which is positive on the set {t: 0 < F)(t) < 1} and therefore implies that 

fj,((a,b)) > 0 if 0 < F0(o) < F0(6) < 1. Consequently, Proposition 3.6 improves and generalizes 

their result. 

Proposition 3.6 also generalizes the strong uniform consistency results given by van de Geer 

(1993) for the case 1 and 2 models under the assumption that Fo is continuous and U-F0 « [i. The 

latter implies that fi((a,b)) > 0 if 0 < Fo(a) < Fo(6) < 1. However, if // is discrete, its support is 

dense in (0,+oo), and Fo is exponential, then the assumption in Proposition 3.6 is satisfied, but 

[j,F0 « ß is not true. 

In clinical follow-ups, the studies typically last for a certain period of time, say [TI,T2]. It is 

often that FO(T2) < 1 in which case the conditions in Proposition 3.6 are not satisfied. In this 

regard, Gentleman and Geyer (1994) claimed a vague convergence result in their Theorem 2 and 

Huang (1996) claimed a uniform strong consistency result in his Theorem 3.1. Both of their results 

as stated imply the uniform strong consistency of the GMLE on [TI,T2] in the case 1 model, if Fo 



is continuous and the inspection time Y is uniformly distributed on [r\, T2]. The following example 

shows that this is not true. 

3.7. Example. Consider current status data (Yi,I[Xi < Yi]),... ,(Yn,I[Xn < Yn]), where the 

survival times Xi,..., Xn are uniformly distributed on [0,3] and the inspection times Yi,...,Yn are 

uniformly distributed on [1,2]. Then Fo is the uniform distribution function on [0,3] and fi is the 

uniform distribution on [1,2]. Note that on the event U?=i{-^j > 2 > Yj, Y} < Yi, i = 1,..., n, i ^ 

j} we have F„(l) = 0, and on the event U?=i{-^i — 1 — Yj,Yj > ^i5* = l,...,n,i T^j} we have 

F„(2) = Fn(2-) = 1. Both events have probability 1/3. Since F0(l) = 1/3 and F0(2) = F0(2-) = 

2/3, we see that Fn(x) does not converge to FQ(X) almost surely for x = 1,2 and F„(2—) does not 

converge to Fo(2—) almost surely. This shows that pointwise convergence on the closed interval 

[T"1J7"2] to a continuous Fo is not implied by the condition: /i([a, &]) > 0 for all a and 6 such that 

T\ < a < b < T2- 

The following proposition indicates how to fix the assumptions. 

3.8. Proposition.    Suppose the following four conditions hold for real numbers T\ <TI- 

(1) Fo is continuous at every point in the interval (TI, T2]; 

(2) either /x({n}) > 0 or F0(n) = 0; 

(3) either H({T2}) > 0 or F0(T2-) = 1; 

(4) for all a and b in (n, r2), 0 < F0(a) < F0(b) < 1 implies fi((a, b)) > 0. 

Then the GMLE is uniformly strongly consistent on [TI,T2], i.e., 

sup    \Fn(x) — Fo(x)| —► 0    a.s.. 
Xe[T!,T2] 

4. Proof of Theorem 2.1 

Recall that L may take the value —00 and R the value +00. The normalized log-likelihood is 

ni=i 

By the strong law of large numbers (SLLN), Cn{F) converges almost surely to its mean 

00 

£(F) = F(log [F(R) - F(L)}) = £ P(K = k)E(hF,k(Yk,u ..., Yk,k) \K = k), 
fc=i 

where 

hF,k(yu -..,Vk) = E(i?0^+1) _ Fo(yj)) log(F(yi+i) - F(yj)), 
3=0 



for —oo = yo < y\ < ••• < yk < Vk+i = oo. Here and below we interpret OlogO = 0 and 

logO = —oo. 

It is easy to check that, for each positive integer k and real numbers y\ < • • • < yk, the 

expression hp,k{yii ■■•,yk) is maximized by a function F € T if and only if F(yj) = Fo(yj) for 

j = l,...,fc. Since sup{|plogp| : 0 < p < 1} < 1, \hp0,k\ is bounded by A;. Since K has finite 

expectation, we see that C{FQ) is finite. Hence FQ maximizes £(•) over the set T and any other 

function F € T that maximizes £(•) satisfies that F = Fo a.e. /i. 

Let {Fn} be a sequence in T. By a pointwise limit of this sequence we mean an F € T such 

that Fni(x) -» F(x) for all x G R and some subsequence {n'}. Helly's selection theorem (Rudin 

(1976), pg 167) guarantees the existence of pointwise limits. Let now Q' be the set of all sample 

points u for which the sequence {Fn(-; u)} has only pointwise Hmits F such that C(F) > £(FQ). In 

view of the above discussion, for each w G ti', all the limit points of {Fn(-; UJ)} equal Fo a.e. p and 

this gives that / \Fn(x;u}) — Fo(x)\ dfj,(x) ->■ 0. Thus the desired result follows if we show that £1' 

has probability 1. Let Qn denote the empirical estimator of Q, the distribution of (L,R). By the 

SLLN, ft0 = {Cn{Fo) -> £{F0)} has probability 1, and so does Clv = {Qn{U) -»■ Q(U)} for every 

Borel subset U of A = {(l,r) : —oo < I < r < oo}. Thus we are done if we show that ft' contains 

the intersection Q» of Qo and f]UeU flu for some countable collection U of Borel subsets of A. 

Let a be a positive integer. Then there are finitely many extended real numbers 

-oo = q0 < qi < q2 < • ■ • < qß = oo 

such that fj,((qi-i,qi)) < 2~a for i = 1,..., ß. Now form the sets UQ, ..., U2ß by setting Ü2i-i = 

(<7i_i, qi) for 7 = 1,..., ß, and JJ-n = [ft, ft] for i = 0,..., ß. Let Ua denote the collection of all 

nonempty sets of the form Uij = A f~l (Ui x Uj) for 0 < i < j < 2ß. We shall take U = \Ja Ua. 

Let now UJ belong to Q*. Let Fn denote the distribution function defined by Fn(x) = Fn(x;u) 

and Qn the measure defined by Qn(A) = Qn(A;cü). Let F be a pointwise limit of {Fn}. For 

simplicity in notation we shall assume that Fn(x) —>■ F(x) for all x G R. We shall show that 

C(Fo) < liminf £n(F„)(w) < limsup£n(Fn)(w) < £(F). 

The first inequality follows from Cn(Fn)(uj) > Cn(Fo)(u), a consequence of the definition of the 

GMLE, and the fact that Cn(Fo)(u) —> £(.Fb) by the choice of u>. Thus we only need to establish 

the last inequality. For this note that £n(Fn)((jj) can be expressed as 

'A 

The desired inequality is thus equivalent to 

f log [Fn(r)-Fn(l)]dQn(l,r). 
JA 

limsup / log [Fn(r)-Fn(l)]dQn(l,r) < [ log [F(r) - F(l)]dQ(l,r). (4.1) 
n—>cx>    JA JA 



Now fix a positive integer a and a negative integer q. Then 

f log [Fn(r) - Fn(l)] dQn(l, r) < [ q V log [Fn(r) - Fn(l)] dQn(l, r) 
JA JA 

where 

< £ Mn(U)Qn(U), 
U&tc, 

Mn(U)=   sup  gVlog[FB(r)-FB(l)] 
(i,r)eü 

and U is the closure of U.  It is easy to check that Mn(U) = q V log [Fn(rj7) - Fn(lu)], where 

Hz = sup{r- : (I, r) E U} and lv = inf{Z : (I, r) € f/}. Thus 

Mn(U) -»• M(tf) := <? V log [FM - F(fo)] =   sup   q V log [F(r) - F(Z)]. 
(»,r)e& 

Also, by the choice of w, Qn(U) -* Q(C^) for all Z7 G Wa. Therefore we can conclude that 

]T Mn(U)Qn(U) -+ £ M(U)Q(U). 
ueua ueua 

Let now 

m(C7)=    inf   g V log [F(r-)-F(Z)],    U eUa 
(i,r)eu 

Using the bound 

\q V log(x) - q V log(y)| < e_9|a; -y\,    0<x,y<l, 

it is easy to verify that 

M(U) - m(U) < e~q   sup [F(ru) - F(r) + F(l) - F(lv)],    U GUa. 
(l,r)EÜ 

This shows the following. 

(1) If U = An[(gi_i,ft)x(q,-_i,qj)]. then M(U)-m{U) > 2/a implies either F(ft)-F(ft_i) > 

e«/a or F(^) - Ffo_i) > e«/a; 

(2) if [/ = A n [[ft,ft] x (qj-i,qj)], then Af(17) - m(*7) > 2/a implies F(q,-) - F(gi_1) > e'/a; 

(3) if U = A n [(ft_i, ft) x [qj,qj]], then M([7) - m(U) > 2/a implies F(ft) - F(ft_i) > e«/a. 

Of course, if U contains only one point, then M(U) — m(U) = 0. Using this, we derive 

J2 (M(U) - m(U))Q(U) < - + \q\ £ Q(U)I[(M(U) - m(U)) > 2/a] 
ueua 

a ueua 

2 ß 

< - + \q\ VPfe-, < L < ft)/[F(ft) - F(ft_0 > e*/a] 
a t-: 

ß 

+ \q\Y,P(qi-i <R<Qj)i[F{qj)-HQJ-I) >«7«] 
3 = 1 

<- + H(l + ae-«)21-a. 
a 

9 



In the last step we use the facts that 

P(ft_i <L<qt) + P(ft_i < R < ®) < 2/i((ft_i,ft)) < 21_a 

and that at most 1 + ae~q among the terms F{q{) — F(qo),..., F(qß) — F(qp-i) exceed eq/a. 

Combining the above shows that 

limsup f log [Fn(r) - Fn(l)] dQn(l,r) 
n—>oo   J & 

<  / g V log [F(r) - F(l)] dQ{l, r) + - + \q\(l + ae^1-". 
JA a 

The desired inequahty (4.1) follows from this by first letting a —> oo and then q —> — oo. 

5. Proof of the Propositions 

Fix u G dp. Abbreviate Fn(-;u>) by Fn. Let F be a pointwise limit of Fn. Without loss of 

generality, assume that limn^.oo Fn(x) = F(x) for all x. Set 

fl = {iel: F(x) ^ F0(x)}. 

Since / \Fn — FQ\ dji —> 0 and \i is a finite measure in view of the assumption E{K) < oo, we have 

ß(D) = 0. 

PROOF OF PROPOSITION 3.1: We need to show that D does not contain regular continuity points of 

FQ. Let XQ be a continuity point of FQ. If XQ belongs to D, then F(xo) ^ FO(XQ) and the continuity 

of Fo at XQ and the monotonicity of F and FQ yield that there exists a positive e such that either 

(xo — e,xo] or [so,XQ + e) is contained in D. Thus either /x((xo — e,zo]) = 0 or /i([xo,^o + «)] = 0, 

and a;o is not regular. D 

PROOF OF PROPOSITION 3.2: Let a;0 be a continuity point of F0 which is also an interior point 

of S, the set of support points of /i. Then xo does not belong to D; otherwise, there exist, for 

each e > 0, support points x\ and x2 of [i and a positive r\ such that {x\ — T],xi+ rf) is contained 

in (xo — e,xo] and (x% — t], x2 + rj) is contained in [XQ,XQ + e) and this leads to the contradiction 

H(D) > 0 . This shows that F(x) = Fo(x) for all continuity points x of Fo that belong to the 

interior of S and proves the first part of Proposition 3.2. The second part follows from the first 

part and the monotonicity of F and FQ. O 

PROOF OF PROPOSITION 3.3: Suppose every point of increase of Fo is strongly regular. We shall 

show that D does not contain continuity points of FQ. Let x0 be a continuity point of Fo. If XQ is 

a point of increase of Fo, then it is strongly regular and hence regular and cannot belong to D by 

Proposition 3.1. Suppose now XQ is not a point of increase of FQ. Then again XQ cannot belong to 

D. Otherwise, either F(rr0) > F0(a;o) or F(x0) < F0(a;o) and we shall show that each leads to the 

contradiction ß(D) > 0. In the first case, b := sup{x : Fo(x) = Fo(a;o)} is a point of increase of Fo, 

10 



b > XQ and F(b—) > F(x0) > FQ(X0) = Fo(b—); thus [XQ, b) C D and, since b is strongly regular by 

our assumption, n(D) > fi((xQ,b)) > 0. In the second case, a := inf{a: € M.: FQ(X) = Fo(xo)} is a 

point of increase of FQ, a < XQ and F(a) < F(xo) < FQ(XO) = Fo(a); thus [a, XQ) C D and, since a 

is strongly regular by our assumption, fi(D) > //([a, XQ)) > 0. This shows that D does not contain 

continuity points of FQ, which is the desired result of Proposition 3.3. D 

PROOF OF PROPOSITION 3.6: Make the assumptions of Proposition 3.6. Then D is empty; oth- 

erwise, we can use the continuity of FQ to construct an open interval, that contains a point of 

increase of FQ and is contained in D, and arrive at the contradiction ß(D) > 0. Since D is empty, 

Fn converges to FQ pointwise and hence uniformly as FQ is continuous. This proves Proposition 

3.6. D 

PROOF OF PROPOSITION 3.8: We shall only give the proof in the case p({n}) > 0 and FQ(T2-) = 1. 

We shall show that D n [TI,T2] = 0. This implies that Fn(x) -> FQ(X) for all x € [TI,T2], and, by 

the continuity assumption on Fo, this convergence is even uniform on [TI,T2]. 

It follows from Corollary 2.3 that F(TI) = Fo(ri). This gives the desired result if FQ(TI) = 1. 

Thus assume from now on that Fo(ri) < 1. We are left to show that D\ = D 0 {T\,T<2\ is empty. 

If D\ were not empty, we could use the continuity assumption on FQ, the monotonicity of FQ and 

F and F(TI) = FQ(TI) < FQ(T2—) = 1 to show that D\ contains an open interval (a, b) such that 

0 < FQ(O) < Fo(b) < 1 and T\ < a < b < r2 and arrive at the contradiction ß(D) > /J.((a, b)) > 0. 
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Dose-Ranging Study of Indole-3-Carbinol for Breast 
Cancer Prevention 

George Y.C. Wong,* Leon Bradlow, Daniel Sepkovic, Stephanie Mehl, Joshua Mailman, 
and Michael P. Osborne 

Strang Cancer Prevention Center, New York, New York 

Abstract Sixty women at increased risk for breast cancer were enrolled in a placebo-controlled, double-blind 
dose-ranging chemoprevention study of indole-3-carbinol (I3C). Fifty-seven of these women with a mean age of 47 years 
(range 22-74) completed the study. Each woman took a placebo capsule or an I3C capsule daily for a total of 4 weeks; 
none of the women experienced any significant toxicity effects. The urinary estrogen metabolite ratio of 2- 
hydroxyestrone to 16a-hydroxyestrone, as determined by an ELISA assay, served as the surrogate endpoint biomarker 
(SEB). Perturbation in the levels of SEB from baseline was comparable among women in the control (C) group and the 50, 
100, and 200 mg low-dose (LD) group. Similarly, it was comparable among women in the 300 and 400 mg high-dose 
(HD) group. Regression analysis showed that peak relative change of SEB for women in the HD group was significantly 
greater than that for women in the C and LD groups by an amount that was inversely related to baseline ratio; the 
difference at the median baseline ratio was 0.48 with 95 % confidence interval (0.30, 0.67). No other factors, such as age 
and menopausal status, were found to be significant in the regression analysis. The results in this study suggest that I3C at 
a minimum effective dose schedule of 300 mg per day is a promising chemopreventive agent for breast cancer 
prevention. A larger study to validate these results and to identify an optimal effective dose schedule of I3C for long-term 
breast cancer chemoprevention will be necessary. J. Cell. Biochem. Suppls. 28/29:111-116.     11998 wiley-Uss. inc. 

Key words: chemoprevention; estrogen metabolites; surrogate endpoint biomarker 

Indole-3-carbinol (I3C) is a compound pre- 
sent in cruciferous vegetables such as broccoli, 
Brussels sprouts, cabbage, and cauliflower. This 
compound has been shown to protect against 
certain chemical carcinogens, and to induce the 
enzyme P450A1, which is responsible for the 
formation of the estrogen metabolite 2-hy- 
droxyestrone [1]. Cell culture experiments have 
shown that 2-hydroxyestrone acts to block pro- 
liferation and inhibit promotion of anchorage 
independent growth in mouse mammary cells, 
while its competitive counterpart 16ct-hy- 
droxyestrone acts in a promotional manner [2,3]. 
Therefore, the ratio of 2-hydroxyestrone to 16a- 
hydroxyestrone, as determined by an ELISA 
assay [4], is a potential surrogate endpoint bio- 
marker (SEB) for breast cancer prevention. Two 
animal studies have shown that elevating the 
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estrogen metabolite ratio protects against mam- 
mary tumor formation. Bradlow et al. [5] showed 
this to be the case in the C3HOuJ model, and 
Grubbs et al. [6] showed this in the DMBA- 
induced rat model. In the latter case, protection 
was almost complete. A study in women at 
various levels of breast cancer risk showed that 
16a-hydroxyestrone was elevated in women at 
greater familial risk for breast cancer [7]. The 
same phenomenon had been observed in mice 
at different levels of breast cancer risk [8]. In a 
recent study, women who had a low metabolite 
ratio due primarily to the presence of an en- 
zyme defect, which blocks 2-hydroxylation of 
estradiol, showed a 10-fold increase in breast 
cancer incidence [9]. The ability of I3C to pro- 
mote 2-hydroxylation has been demonstrated 
both in breast cancer cell culture experiments 
[10,11] and in animal studies [5,6]. 

The ability of I3C to induce a significant 
increase in 2-hydroxylation in humans in a 
short time was first demonstrated by Mich- 
novicz and Bradlow [12]. A 3-month trial of I3C 
at 400 mg per day against a placebo control and 
a high fiber diet control showed that the metabo- 

© 1998 Wiley-Liss, Inc. 



112 Wong et al. 

lite shift in favor of 2-hydroxylation pathway 
was sustained over the entire trial period and 
that no significant adverse effects were ob- 
served [13]. The results from these studies sug- 
gest that I3C may be a promising chemopreven- 
tive agent for breast cancer prevention. We 
launched a short-term dose-ranging study of 
I3C in women at increased risk for breast can- 
cer. The overall aim of the intervention study 
was to determine a minimum effective dose 
(MED) of I3C, which will not exceed the safely 
tolerated dose of 400 mg per day established 
[13] and which will result in a sustained in- 
crease in 2-hydroxylation over a 4-week trial 
period. Five doses of I3C were considered: 50, 
100, 200, 300, and 400 mg. A secondary objec- 
tive of the study was to assess toxicity effects of 
I3C when taken daily for 4 consecutive weeks. 
The SEB used in this study was ratio of urinary 
2-hydroxyestrone to 16a-hydroxyestrone. Sixty 
women were recruited in the study, and full 
compliance was obtained in 57. A placebo- 
controlled, double-blind trial design was adopted 
for the study. MED was statistically deter- 
mined to be 300 mg, and a significant difference 
was established in the up-regulation of the SEB 
between the MED group and the placebo group. 
No significant toxicity effects were observed in 
the 57 women at the end of the 4-week trial. 

STUDY POPULATION 

Adult women in good general health but at 
increased risk for breast cancer were candi- 
dates for the dose-ranging study. A woman is 
considered to be at increased risk for breast 
cancer either if she is over 60 years of age or she 
has a family history of the disease (at least one 
first-degree relative or at least two second- 
degree relatives with a history of breast can- 
cer). Women who have had a diagnosis of lobu- 
lar carcinoma in situ or atypia hyperplasia are 
also considered to be at increased risk in our 
study. 

A number of exclusion criteria were imposed 
in order to minimize the chances of confounding 
the outcome of the particular estrogen biomar- 
ker chosen. These included thyroid disorders, 
regular cigarette smoking within the last 6 
months, obesity defined as 25% overweight us- 
ing the nomograph for Body Mass Index, severe 
anorexia, breast feeding, pregnancy or inten- 
tion to become pregnant during the study pe- 
riod. In addition, women who have had any 
form of cancer other than basal or squamous 

cell carcinoma of the skin, or carcinoma in situ 
of the cervix, were excluded from the study. 
Finally, women who regularly consume a large 
amount of cruciferous vegetables were also ex- 
cluded because of the nature of our intervention 
study. 

A total of 60 women who were eligible for the 
trial were selected from over 100 women who 
were eager to participate in the study. Most of 
the women came from the New York metropoli- 
tan area. Each eligible woman was required to 
sign an informed consent form before entering 
the study. 

STUDY DESIGN 

A placebo-controlled, double-blind design was 
adopted for the dose-ranging study. Because a 
rigorous toxicity analysis had not been previ- 
ously carried out, a dose-escalation scheme was 
used in the dose assignment for safety consider- 
ations. First, ten women in the control group 
were given placebo capsules. This was followed 
by assignments often women to each of the five 
ascending dose groups. 

A pre-menopausal participant was asked to 
schedule her appointment within 3 days after 
her next period ended. Every participant was 
asked to bring in two first morning urine 
samples, one from the morning prior to the 
appointment and the other from the morning of 
the appointment. A blood sample was taken 
from each eligible woman on the appointment 
day and she was given a bottle containing seven 
capsules of placebo or I3C. One week later, for ä 
total of 4 weeks, a first morning urine sample 
and a blood sample were collected, and a refill 
was dispensed for the following week. Because 
no reliable biochemical tests for I3C metabo- 
lites are available, compliance monitoring was 
carried out by both pill count and an interview. 

STATISTICAL METHODS 

In the dose-ranging analysis, the level of per- 
turbation of the SEB, namely the urinary estro- 
gen ratio, at any time point was expressed as 
relative change from baseline. For each dose 
group, including the placebo group, the peak 
relative change (PRO over the 4-week trial 
period was obtained for each woman, and the 
mean of the PRC was used to estimate the peak 
relative perturbation for the particular dose 
group over the trial period. We remark that a 
more sensitive approach utilizing a parametric 
statistical model was not feasible here because 
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the individual response profiles could not be 
summarized by a simple parametric curve (for 
instance, a sigmoidal curve). The estimated PRC 
from each dose group was then plotted against 
a dose of I3C to search for an MED. Our dose- 
ranging study suggests a clear dichotomy of 
response between a low-dose group involving 
50, 100, and 200 mg, and a high-dose group 
involving 300 and 400 mg; therefore, paramet- 
ric model fitting at this stage of dose-ranging 
study to identify an MED was not necessary. 
Comparisons of PRC among the dose groups 
were adjusted for confounding factors using 
linear regression. To ensure no serious statisti- 
cal biases were introduced into the dose-rang- 
ing analysis due to non-randomness of dose 
assignment, distributions of various factors that 
could contribute to biases were compared across 
the three dose groups. 

FOOD ITEM ANALYSIS 

Every participant was required to complete a 
simple food intake questionnaire regarding her 
eating habits in the past 3 months preceding 
her initial interview for the intervention trial. 
Both the frequency and the serving size of a 
variety of vegetables, including most known 
I3C-rich vegetables, were recorded for each 
woman. A numeric score representing the total 
monthly consumption of a specific vegetable 
item was calculated from the food intake data. 
Assuming equal weight for every vegetable item, 
we derived for each woman a I3C vegetable 
consumption score and the proportion of I3C 
vegetables in the total vegetables consumed 
averaging over a month. Data from a total of 54 
participants were available for such a food in- 
take analysis. Both the I3C score and the pro- 
portion of I3C vegetable consumption were not 
significantly related to baseline urinary estro- 
gen ratio. 

TOXICITY ANALYSIS 

Clinical chemistry and complete blood counts 
were determined from the blood samples col- 
lected at baseline and at the end of each of the 4 
consecutive weeks of trial. Any parameter whose 
measured value was outside the normal range 
was investigated for possible toxicity. Except 
for two participants who had unexplained small 
increases in the liver enzyme SGPT level (43 to 
65, and 30 to 71), no other toxicity effects were 
encountered. 

DOSE-RANGING ANALYSIS 

A total of 57 women were evaluable for the 
entire dose-ranging study. Except for three 
women from New Jersey, all of the 57 women 
were from the New York metropolitan area. 
Fifty-two (91%) of the women were white. Forty- 
six (81%) were college educated, and twenty- 
four (42%) completed graduate studies. The 
average age of the participants was 46.7 years 
(range 22-74). The average age at menarche 
was 12.4 years (range 8-18). Forty (70%) of the 
women were pre-menopausal, and 38 (67%) of 
the women have been pregnant at least once. 

Figure 1 displays the sample mean relative 
change of the estrogen ratio from baseline over 
time for the control group (n = 10), 50 mg group 
(n = 7), 100 mg group (n = 10), 200 mg group 
(n = 10), 300 mg group (n = 10), and 400 mg 
group (n = 10). The profiles suggest a segrega- 
tion of the treated groups into a low-dose group 
(LD) consisting of women in the 50, 100, and 
200 mg groups, and a high-dose (HD) group 
consisting of women in the 300 and 400 mg 
groups. Moreover, the plots also suggest that 
the control group (C) was not significantly differ- 
ent from the LD group. For the sake of statisti- 
cal power, the dose-ranging analysis hereafter 
will compare data from the C, LD, and HD groups. 

Before we can statistically compare the levels 
of perturbation of the SEB in the three groups, 
we have to rule out the presence of any statisti- 
cal bias due to non-randomness of dose assign- 
ments to the participants. To this end, we exam- 
ined the distributions of a number of potential 

control    -«-60     100    —200   - - 300 -400 

Fig. 1.   Mean relative change of urinary estrogen ratio profile 
plots for the control and five dose groups. 
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confounding factors, including age, age at men- 
arche, baseline estrogen ratio, menopausal sta- 
tus, pregnancy history, and educational level. 
No significant differences were found across the 
three groups with respect to such factors. 

Within each of the three groups, we identified 
the PRC for each of the participants in the 
group and calculated the usual 95% confidence 
interval (CD for the population mean PRC for 
the group. Figure 2 presents the individual 
PRC values and the CI for each group. There 
was no significant difference in mean PRC be- 
tween C and LD. The sample mean ± SD of 
PRC for LD was 0.33 ± 0.36 and that for HD 
was 0.81 ± 0.57; the difference of 0.48 was 
significant at P = 0.001 by the two-sample 
t-test. The 95% CI for the difference in mean 
PRC between the HD and LD groups was esti- 
mated to be (0.22, 0.76). 

The perturbation results were unadjusted for 
any confounding factors. Menopausal status was 
a major concern in the comparison. Figure 3a,b 
shows that within each of HD group and C + 
LD group, there was no significant difference in 
mean relative change of the SEB from baseline 
between pre-menopausal and post-menopausal 
women over the entire trial period. The same 
conclusion was true for comparison based on 
PRC. Besides menopausal status, we also in- 
cluded age, age at menarche, baseline estrogen 
ratio, and educational level in a multivariate 
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Fig. 3. a,b: Mean relative change of urinary estrogen ratio 
profile plots stratified by menopausal status. Vertical bars repre- 
sent usual 95% confidence intervals tor the mean. No signifi- 
cant difference in mean relative change between pre-meno- 
pausal and post-menopausal women was established within 
both control + low-dose group and high-dose group. 

2.5 

1.5 

a.    0.5 

-0.5 
Control 
(N-10) 
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(N»27) 

High 
(N«20) 

Fig. 2. Comparison of peak relative change of urinary estrogen 
ratio among control, low- and high-dose groups. Difference 
between the high-dose group and the other two dose groups, 
unadjusted for confounding factors, was significant at P = 0.05. 

regression to attempt to explain the variation 
in the observed PRC. For the C + LD group, the 
variation in PRC could only be explained by 
random inter-participant differences. However, 
for the HD group, about 50% of the total varia- 
tion in PRC was significantly explained by a 
regression towards the mean effect of baseline 
estrogen ratio (P = 0.001). Figure 4 displays 
the linear relationship between PRC and base- 
line ratio for the HD group, and the lack of 
correlation in the case of the C + LD group. 

From regression analysis, we found a signifi- 
cant adjusted difference in PRC between the 
two groups as long as baseline estrogen ratio 
was less than 2.92. Table I tabulates the differ- 
ences and the corresponding 95% CIs for some 
selected values of baseline ratio. 

DISCUSSION 

The goal of this placebo-controlled, double- 
blind study was to determine a minimum effec- 
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group: y = 1.38-0.29x, P = 0.001, R2 = 0.50. For control + low-dose group, mean peak relative change ±SD = 0.32 ± 0.33. 

tive and safe dose schedule of I3C that will 
result in a significant increase in the urinary 
estrogen metabolite ratio of 2-hydroxyestrone 
to 16a-hydroxyestrone. We have shown in a 
sample of 57 women that an appropriate choice 
of MED was 300 mg and that daily intake of 
I3C at this dose presented no significant toxic- 
ity in a 4-week trial. At this MED dose sched- 
ule, peak relative change of the estrogen me- 
tabolite ratio was significantly greater than 
that at the lower doses, and the difference was 
more pronounced for women with lower base- 
line ratios. However, there was no significant 
perturbation of the biomarker for women with 
high and presumably already protective base- 
line ratios. Menopausal status was not a signifi- 
cant factor for perturbation of the biomarker in 
our analysis, although there was a trend to- 
wards greater up-regulation of the ratio in the 

TABLE I. Adjusted Differences in PRC of 
Urinary Estrogen Ratio Between High-Dose 
Group and Combined Control and Low-Dose 

Group* 

Adjusted 95% CI 

Baseline ratio difference Lower Upper P value 

Ql = 1.41 0.65 0.44 0.88 <0.001 
M = 2.01 0.48 0.3 0.67 <0.001 
Q3 = 2.66 0.29 0.1 0.49 0.004 
C = 2.92 0.22 0 0.43 0.05 

*Q1, M, and Q3 represent the first quartile, median and 
third quartile of baseline ratio, respectively. C represents 
the critical baseline ratio beyond which there was so signifi- 
cant difference in PRC between the two groups. 

case of pre-menopausal women. A larger study 
should be conducted to confirm the findings 
reported here, particularly the lack of effect of 
menopausal status on the perturbation of the 
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biomarker, and to identify an optimal effective 
dose schedule for a long-term breast cancer 
prevention trial. 
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44        APPLICATIONS OF GENERALIZED LINEAR MODELS 

VARIABLE SELECTION IN AUTO-LOGISTIC MODELS 
VAtUAD Fred W.Huffer, Huhn Wu 

E„d W. Buffer, Dept. - Stance, *-* «- «*«"*M—* * ""* 
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(Abstracts not available at press time.) 
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Parameter estimation in varying coefficient models can be done by a local likelihood approach (Tibshiram & Hastie [ JJLSA. 82 
„087V559-5681 which is directly feasible by standard software for generalized linear models. Theoretical results yield asymptotic consistency of 
J^stimates and allow for asymptotic pointwise confidence bands. Moreover, a direct correction of the estimation bias is available by using a simple 

Rsher scoring routine. 
The theoretical results are supported by simulations and real data examples.) 

126.      SURVIVAL ANALYSIS I 

ON SEMIPARAMETRIC RANDOM CENSORSHIP MODELS 
Gerhard Dikta 

Fachhochschule Aachen, Abteilung JVulich, Ginsterweg 1, D - 52428 JVulich. Germany DIKTA@FHSERVER03.DVZ.FH-AACHEN.DE 

In the random censorship model one observes data of the form (Z,6) where Z=(X Y), Xis independent of Y, and 6 indicates whether X 
ic «nsored (6=0) or not (6=1). Denote by m(x)=IE$\Z = x) the regression function of the binary datum 6 given Z=x and assume that m belongs 
to a parametric family with parameter space 9c /Ä*. i.e. m{x) = m(x, da) and $ e 9. We propose a semiparametric estimator of the distribution 
Lction Fof X, denoted by F„ which is based upon maximum likelihood estimation of 0„ and which generalizes the Cheng and Lin estimator in 
the proportional hazards model. We establish uniform consistency and a functional central limit result for F„ which is compared to that of the 

Kaplan-Meier estimator. 

VARIANCE OF THE MLE OF A SURVIVAL FUNCTION WITH DOUBLY-CENSORED DATA 
Qiqing Yu, Linxiong Li and George Wong 

Qiqing, SUNY at Binghamton, University of New Orleans, and Strang Cancer Preventive Institute 

The asymptotic properties of the nonparametric MLE or the self-consistent estimator of a survival function with doubly-censored data have 
been studied by many authors. However, to date, it is not clear from the literature how to produce an estimate of the asymptotic variance of the MLE 
of $S(t)$ with doubly-censored data, even though the existence of such asymptotic variance has been proved, with an abstract form in the Banach 
space (Gu and Zhang (1993)). We present the explicit expressions of the asymptotic variance of the generalized MLE and its estimator. 

Simulation study indicates that the approximation is close even with sample size $n=100$ and the probability of censoring is $85\%$. 

DOUBLE CENSORING: CHARACTERIZATION AND COMPUTATION OF THE NONPARAMETRIC MAXIMUM LIKELIHOOD 
ESTIMATOR 

Jon A. Wellner and Yihui Zhan 
Yihui Zhan, University of Washington, Department of Statistics, Box 354322, Seattle, WA 98195. Email: zhan@staLwashington.edu 

KEY WORDS: Double Censoring, NPMLE, ICM Algorithm, Hybrid Algorithm 

While the likelihood equations have a unique solution in the case of right censored data, this is no longer the case for doubly censored 
data: the likelihood equations may have multiple solutions in the case of double censoring. Algorithms such as the EM algorithm designed to 
calculate one solution of the likelihood equations may converge to a self-consistent estimate other than the NPMLE. The ambiguity of the EM 
algorithm in calculating the NPMLE for doubly censored data and its known slow convergence rate pose real difficulties in applications, especially 

when bootstrap methods are used for inference. 

In this paper we present a characterization of the NPMLE for doubly censored data. The NPMLE is characterized as the left-derivative 
of a convex minorant formed by derivatives of likelihood function. The NPMLE is shown to be one of the self-consistent estimates maximizing the 
likelihood function. Based on the characterization, we propose a new hybrid algorithm that utilizes a composite algorithmic mapping of the EM 
algorithm and the modified ICM algorithm. Numerical simulations demonstrate that the hybrid algorithm converges to the NPMLE more rapidly 
than either of the EM or the naive ICM algorithm for doubly censored data. 

PROPERTIES OF TEST STATISTICS APPLIED TO RESIDUALS IN FAILURE TIME MODELS 
Inmaculada B. Aban, Edsel A.Pe5a 

Inmaculada B. Aban, Department of Math (084), University of Nevada Reno, Reno, NV 89557 

KEY WORDS: Generalized Residual Process. Goodness-of-Fit, Model Validation 

Asymptotic properties of a class of test statistics when applied to hazard-based residuals arising in survival and reliability models will 
be presented. These test statistics are useful in goodness-of-fit testing and model validation. The properties are obtained by examining the asymptotic 
properties of generalized residual processes, which are (possibly random) time-transformations of the processes associated with the incomplete failure 
times. Since the time-transformations depend on unknown model parameters, the residual processes are obtained by replacing the unknown 
Parameters by their estimators. The results therefore shed light on the effects of estimating parameters to obtain the residual processes. Implications 
oonceming possible pitfalls of some existing model validation procedures utilizing hazard-based residuals and ways to correct these problems will 

be discussed. 
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ASC/IMS Contributed: Topics in Statistical Inference III 

320   The Behaviour of the Maximum Likelihood Estimator as a Process and 
Some Applications 

Robert M. LOYNES 
University of Sheffield, England. 

Given a set of observations, supposedly either independent and identically distributed or from 
a stationary AR process, whose distribution contains a fixed-dimension unknown parameter 
the behaviour of the maximum-likelihood estimator (MLE) as a function of the number or 
observations used contains evidence about whether the model assumptions are satisfied or 
whether a change of regime or drift is taking place. A weak convergence result for the process 
of MLEs is given, which allows various tests to be constructed. [ü&> Prof R.M. Loynes, University 
of Sheffield, Probability & Statistics Section, School of Maths & Stats, Sheffield S3 7RH UK- 
R.LOYNES@SHEFFIELD.AC.UK.] 

321 Comparing Groups with Irregular Longitudinal Data 
J. S. MARITZ 
Medical Research Council, South Africa. 

Longitudinal data arise when observations of a dependent variable are made at several suc- 
cessive time points. When such data are recorded for a number of subjects it often happens 
that the time configuration varies from subject to subject, producing irregular longitudinal 
data. Comparison of two or more groups of subjects is considered using exact permutational 
methods. This entails choosing appropriate descriptive and test statistics and generating their 
exact distributions. [A> J. S. Maritz, MRC-CERSA, PO Bo 19070, Tygerberg 7505, South Africa- 
SMARrrZ@EAGLE.MRC.AC.ZA.] 

322 Repeated Ordinal Responses 

Rory St John WOLFE 
Southampton University, UK. 

An approach to modelling repeated ordinal responses is discussed. This involves using 'scaling' 
terms in a cumulative logit model [McCuIlagh /. Roy. Statist. Soc.Ser.B 421980:109-142]. The ap- 
proach is applied to data from telecommunication experiments. A new general purpose method 
of fitting the model in GLIM4 is introduced. Finally the consideration of a random-effects 
model is discussed. [A> Rory Wolfe, Maths Department, Southampton University Hiehfield 
Southampton, S017 1BJ, UK; RW@MATHS.SOTON.AC.UK.] 

323 On Minimum Distance Estimation of Location Parameter for 
Interval Censored Data 

Vasudaven MANGALAM 
Curtin University, Perth, Australia. 

Let Xi,X2, Xn be i.i.d.   with distribution function given by F(x - a) where F is an 
unknown symmetric distribution and a is an unknown location parameter. TX,T2, ....Tn are 
i.i.d. and independent of X?s with unknown distribution G. We.observe (Tit <*•), i= 1" n 

where d{ is the indicator of whether X{ is less than or equal to Tt. A minimum distance 
estimator is constructed for the parameter and the properties are studied. Two-sample extension 
to this is also considered. [A Vasudaven Mangalam, School of Mathematics and Statistics, 
Curtin University of Technology, GPO Box U1987, Perth WA 6001; VASU@CS.CURTIN.EDU.AU.i 

324 Variance of the MLE of a Survival Function with Interval Censored Data 
Qiqing YU 
SUNY at Binghamton. 
Linxiong LI 
University of New Orleans. 
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8-12 July 

George Y. WONG 
Strang Cancer Preventive Institute. 

Interval-censored data consist of „ pairs of observations (I- r) i - 1 u      , 
either observe the exact survival time X if I  - 1 ,','>'   ~   '-' n' where li < *. We 
established the asymptotic Z mal tv offhe „   ~   '' °F 0nIy kn°W X € &> *) chemise   We 
p{x > t) with sLpinte^Z^Zä^aZZTT MLE of a survival Wtion *w (i 
of the MLE. We show that the c^^^'S^Jf^16 ^ """P** *»*** 
supports our result. An application to thl r,n,    dlStribu

l
hon ls In V^- Simulation study also 

— suwv . ^-S^^SSS^* 
325  ££ Re,a"0"S,"I, ■*— P°»» »' » *- and Shape „, «. Crital 

Daryl W. TINGLEY 
Maureen A. TINGLEY 
University of New Brunswick, Fredericton, NB, Canada 

Sa^bT™ the relationship is inves, 
theoretic definitions are used to qua^fy^noÄ limi "" aPPr0aches 2er°- Measure- 
Results are obtained for two extremes of imi^ VCrSUS dissimilar critical regions 
Pearson, and power neSli^e^n colZeT^Z' P°Wer aPProachmg ** °f Ne^ 
Examples illustrate that small tat^TSS ™ . ■ TT"*^ " "* ** de"eaSeS' 
ues of nuisance parameters. Ä^^J^J^^Ple estimates replace val- 
Brunswic, Box 4400 Predericton, NB, CanaÄ £g SS^ * *" 326 ääI^       - ~ns in the 

Julia T. FUKUSHIMA 
San Paulo University. 
Regina C. C. P. MORAN 
State University of Campinas. 
Ioannis G. VLACHONIKOLIS 
Loughborough University of Technology UK 

«^^^^ 
of two theorems on necessary and Zfic^lJ? ""^ 3 Unified aPProach bV means 
the various hierarchical layeTs in ANoST I^Ä^TS *"* ^ SUmS °f sluares <* 
ables.   Some new results concerning rt,estandsH •hke ,multiPles °f ^-square vari- 
peated measurements are derived as a snerJ V^T** ^^ in the analys* of re- 
of Loughborough, Depar^^SiSS^l^ & Vlach°nikolis' diversity 
I.G.VLACHONIKOLIS@LUT.AC.UK.] ' LouShborough, LEICS LE113TU, UK; 

Thursday 11 July: 10:30-12:20 
AS£ Invited: Session in 

Celebration of Ted Hannan's Contributions to Time Series - II 

327   Estimation of Speed, Direction and Structure from Spatial A™ n ♦ 
David R. BRILLINGER P AlTay Data 

University of California, Berkeley, USA 
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WEDNESDAY, AUGUST 13 

228 Palos Verdes B 
-Regular Contributed Papers ""/   ESTIMATION AND ASYMPTOTICS- 

IMS 
CJrair: Thomas E. Nichols, Carnegie Mellon U 

/ ><8:35) ASYMPTOTIC PROPERTIES OF SELF-CONSISTENT 
^ ESTIMATORS WITH DOUBLY-CENSORED DATA. Qiqing Yu, State U of 

New York-Binghamton; Linxiong Li, U of New Orleans 
(8:50) ON CONSISTENCY OF THE BEST-R-POINTS-AVERAGE 
ESTIMATOR FOR THE MAXIMIZER OF A NONPARAMETRIC REGRES- 
SION FUNCTION. Z.D. Bai, Mong-Na L. Huang, Nat'l Sun Yat-Sen U 
(9:05) A GENERAL ESTIMATION METHOD USING SPACINGS. 
Kaushik Ghosh, S. Rao Jammalamadaka, U of California-Santa Barbara 
(9:20) ASYMPTOTICS FOR MULTIVARIATE T STATISTIC. Steven J. 
Sepanski, Saginaw Valley State U 
(9:35) TWO CENTRAL LIMIT THEOREMS FOR FUNCTIONAL 
Z-ESTIMATORS. Yihui Zhan, MathSoft, Inc 
(9:50) DENSITY ESTIMATION FOR A CLASS OF STATIONARY 
NONLINEAR PROCESSES. Kamal C. Chanda, Texas Tech U 
(10:05) FLOOR DISCUSSION 

College Bowl—10:30 a.m. - 12:20 p.m. 

229 H-California B 
COLLEGE BOWL SEMIFINALS AND FINALS 
Mu Sigma Rho 
Organizers: Don Edwards, U of South Carolina; Mark E. Payton, 
Oklahoma State U 
Chair: Mark E. Payton, Oklahoma State U 
Emcee: George Casella, Cornell U 
Scorekeeper: Bruce Collings, Brigham Young U 
Teams: Winners of Quarterfinals (Session 146) 

Invited Sessions—10:30 a.m. -12:20 p.m. 

230 H-California C 
CLASSIFICATION OF RACE AND ETHNICITY: A DISCUSSION— 
Invited Panel 
Council of Professional Assn on Fed Stat, Sec. on Epidem., Govt. Stat. Sec, Sec. 
on Hlth. Policy Stats., Social Stat. Sec. 
Chair/Organizer: Edward J. Spar, COPAFS 
Panelists: Katherine K. Wallman, Office of Mgmt & Budget 

Thomas Sawyer, US House of Representatives 
Linda Gage, California State Finance Dept 
Margo Anderson, U of Wisconsin-Milwaukee 
Roderick J. Harrison, US Bur of the Census 

231 M-Grand C/D 
INTERACTIONS BETWEEN UNIVERSITY GRADUATE 
PROGRAMS AND FOUR-YEAR COLLEGES—Invited Papers 
ASA Crate on Career Development, Sec. on Stat. Educ, Sec. on Teaching oj 
Stat. in Hlth. Sei. 
Chair/Organizer: Rosemary A. Roberts, Bowdoin College 
(10:35) FOUR-YEAR COLLEGES AS A SOURCE OF GOOD GRADUATE 
STUDENTS. Thomas L. Moore, Grinnell College; Dean Isaacson, Iowa 
State U 
(11:00) RECRUITING A STATISTICIAN AT A FOUR-YEAR COLLEGE. 
Gudmund Iversen, Swarthmore College; Philip J. Everson, Swarthmore 
College 
(11:25) PREPARING GRADUATE STUDENTS TO TEACH STATISTICS 
AT A FOUR-YEAR COLLEGE. William I. Notz, Ohio State U; Ann R. 
Cannon, Cornell College 
(11:50) Disc: Lynne Billard, U of Georgia 
(12:10) FLOOR DISCUSSION 

232 H-Hum 
# APPLIED ORDER-RESTRICTED INFERENCE—Invited 1 
ASA Council oj Chapters 
Organizer: Qing Liu, Food & Drug Admin 
Chair: Roslyn A. Stone, U of Pittsburgh 
(10:35) TESTING EQUALITY OF SURVIVAL CURVES UNDEF 
CONSTRAINTS. Tim Wright, U of Missouri; Anura Abeyratne, 
Co; Bahadur Singh, U of Missouri 
(11:00) ORDERED INFERENCE IN CLINICAL TRIALS WITH 
PLE ENDPOINTS. Dei-In Tang, Nathan Kline Inst for Psych Re: 
(11:25) ORDER-RESTRICTED INFERENCE IN 2X2 TABLES V 
HETEROGENEOUS ODDS RATIOS. Qing Liu, Food & Drug, 
(11:50) Disc: Jon H. Lemke, U of Iowa 
(12:10) FLOOR DISCUSSION 

233 M-Orange • 
® PRACTICAL MARKOV CHAIN MONTE CARLO—Invite 
Sec. on Bayesian Stat. Sei, ENAR, WNAR, IMS, Bio. Sec, Bus. & I 
Sec, Stat. Comp. Sec. 
Organizer: James H. Albert, Bowling Green State U 
Chair: Robert E. Kass, Carnegie-Mellon U 
Panelists: Bradley P Carlin, U of Minnesota 

Andrew Gelman, Columbia U 
Minghui Chen, Worcester Polytechnic Inst 

234 H-Palos 
^MATCHING AND CONDITIONAL INDEPENDENCE: N 
DEVELOPMENTS IN TESTING AND ESTIMATION—Invi 
Papers 
Bus. & Econ. Stat. Sec 
Organizer: James J. Heckman, U of Chicago 
Chair: Robert Moffitt, Johns Hopkins U 
(10:35) CONDITIONAL INDEPENDENCE RESTRICTIONS: 1 
AND ESTIMATION. Oliver Linton, Yale U; Pedro Gozalo, Brov. 
(11:05) MATCHING AS AN ECONOMETRIC ESTIMATOR. H 
Ichimura, U of Pittsburgh; Petra Todd, U of Pennsylvania 
(11:35) ALTERNATIVE METHODS FOR EVALUATING SOCI/ 
PROGRAMS: THEORY AND EVIDENCE. James J. Heckman, I 
Chicago 
(12:05) FLOOR DISCUSSION 

235 H-El Ca 
OJUDGEMENT IN OFFICIAL STATISTICS: HOW EXPLIC 
SHOULD WE BE?—Invited Papers 
Govt. Stat. Sec, Social Stat. Sec. 
Chair/Organizer: Michael A. Stoto, Nat'l Academy of Sciences 
Panelists: Jaime Marquez, Federal Reserve Board 

Francisco J. Samaniego, U of California-Davis 
Joseph Sedransk, Case Western Reserve U 
Carl N. Morris, Harvard U 

236 H-Huntii 
®LOST IN SPACE: ASSESSING MULTIVARIATE MISSINi 
DATA—Invited Papers     .-'. 
Sec on Stat. Graph, ENAR, WNAR, Bio. Sec, Sec. on Hlth. Policy 
Organizer: Dianne H. Cook, Iowa State U 
Chair: Hal S. Stern, Iowa State U 
(10:35) SENSITIVITY OF ANALYSES WITH MULTIVARIATE ! 
DATA IN STUDIES OF THE ELDERLY. Robert J. Glynn, Brigh; 
Women's Hosptial 
(11:05) MISSING DATA IN INTERACTIVE HIGH-DIMENSIO 
DATA VISUALIZATION. Deborah E Swayne, Bellcore; Andreas 
Labs, Lucent Technologies 
(11:35) CAN WE SEE WHAT ISNT THERE? EXPLORING AN 
KEEPING TRACK OF MISSINGS. Antony Unwin, Heike Hoftr 
Augsberg 
(12:15) FLOOR DISCUSSION 

O = Theme session 



ICSA 1997 Applied Statistics Symposium 
May 30 - June 1, 1997 

Rutgers University, New Jersey, USA 
Title: Asymptotic Properties Of Self-Consistent Estimators of A Survival Function 

by Qiqing Yu and George Y. C. Wong. 
SUNY at Binghamton and Strang Cancer Prevention Center 

ABSTRACT: The asymptotic properties of the nonparametric maximum likelihood 
estimator and other estimators of a joint distribution function F of a bivariate random 

vector X with right-censored data have been studied by several authors. Among others, an 
important assumption made in their studies is that X lives on a rectangle region [0, a] x [0, b] 

which can be observed. However, in many follow-up studies, a = b = L is the length of the 
study period and X lives on a region larger than [0, L] x [0,L]. Thus it is of interest to 

study whether the asymptotic results established by these authors are still valid without 
that restriction. In this direction, we established the strong consistency of self-consistent 

estimators of a discrete distribution function. 
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your abstract has been accepted. ^ 

If for any reason your poster will not be presented, please notify Ms. Lois Dunnington as early 
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337 RETINOID-INDUCED GROWTH SUPPRESSION OF NORMAL 
HUMAN EPITHELIAL CELLS DOES NOT REQUIRE ACTIVATION 
OF RAR-DEPENDENT GENE TRANSCRIPTION. Yang, L-M., Ludes- 
Meyer, J., Munoz-Medellin, D., Kim, H-T., Reddy, P., Ostrowski, J., 
Reczek, P., and Brown, P. Division of Oncology, Dept. of Medicine, 
Univ. of Texas Health Science Center, San Antonio, TX, Bristol-Myers- 
Squibb, Albany, NY. 

Retinoids inhibit the growth of breast cancer cells and are potential 
agents for cancer treatment and prevention. However, the mechanism by 
which retinoids prevent cancer is not known. The present studies 
investigated the mechanism by which naturally occuring and synthetic 
retinoids inhibit the growth of normal human mammary epithelial cells 
(HMECs). All trans retinoic acid (atRA) and 9cisRA both inhibited the 
growth of normal (184 and HMEC) and malignant (MCF7 and T47D) 
breast cells. We investigated whether retinoids inhibit normal breast 
growth by interfering with the cell cycle or inducing apoptosis. atRA 
treatment caused a cell cycle block (by increasing G0/G1 phase by 20% 
and decreasing S phase by 50%) and did not induce apoptosis. To explore 
the mechanism by which retinoids suppress cell growth, we correlated the 
growth inhibitory effects of retinoids with their ability to activate RAR- 
dependent transcription and transrepress AP-1-dependent transcription in 
breast cells. By measuring RAR-dependent transcription using a retinoid- 
responsive reporter and AP-1-dependent transcription using an AP-1 
responsive reporter, we found that atRA and 9cisRA both activated RAR- 
dependent transcription in 184 normal breast cells and T47D breast cancer 
cells. atRA and 9cisRA also both inhibited AP-1 activity in T47D cells, 
while 9cisRA, but not atRA, inhibited AP-1 activity in 184 cells. Retinoid 
analogs which inhibit AP-1 without activating RAR were then used to 
determine whether inhibition of AP-1 without activation of RAR-dependent 
transcription was sufficient to inhibit breast cell growth. The growth of 
T47D and 184 was inhibited by these anti-AP-1 retinoids. These results 
suggest that RAR-dependent transcription is not required for retinoid- 
induced growth suppression of breast cells, which instead may be 
mediated by inhibition of AP-1. Such studies investigating the molecular 
mechanism by which retinoids inhibit breast cells growth may lead to the 
development of retinoid analogs for breast cancer prevention. 

OOQ A multi-institutional study on the efficacy of prophylactic mastectomy in patients 
with Lobular Carcinoma in Situ (LCIS). Mackarem G*, Hughes KS, Beny D, 
Litten JB, Roche C, Veto J, Morris A, Turk P, Fräser H, Schnaper L, Friedman 
NB, Winer EP, Shaflr M, Wanebo HJ, Capko D, Portes S, Khan S, Kroener J, 
Hawksworth K, Ting P, Barth R. Lahey Hitchcock Breast Center, Burlington, MA 
01805. 
Background: The efficacy of prophylactic mastectomy has not been adequately 
tested and yet women who carry BRCA1 and BRCA2 mutations are being offered 
this procedure. LCIS provides an established model of high risk for breast cancer. 
Published studies report that the risk of developing breast cancer in women with 
LCIS aproaches 33%. Our objective is to evaluate the efficacy of prophylactic 
mastectomy and to estimate lifetime risk reduction from this procedure. 
Methods: Retrospective data on 493 patients with LCIS were collected from 14 
institutions. Patients with the diagnosis of LCIS and no previous or synchronous 
DOS or invasive cancer were eligible. 99 patients were treated with bilateral 
mastectomy (BMX), 74 patients were treated with ipsilateral mastectomy (IMX), 
and 320 patients were followed after initial biopsy (OBS). Ten year actuarial 
disease free survival (DFS) was calculated and compared for all groups, statistical 
significance between DFS was determined using the Mantel-Cox test 
Results: 17 patients developed an ipsilateral (IPSI), 12 a contralateral (CONT) and 
1 a bilateral cancer, median time to recurrence was 63 months. One patient died 
with distant metastasis in the OBS group at 79 months. 
Singe« #pts    Flirmoimi.il    IPSI        CONT      EES       £ 
OBS        320 42 18(6%)       12(4%)    0.7694 
IMX 74 88 0 1 (1%)   0.9487   0.00001 
BMX        99 75 0 - 1.0000   0.00001 
16% of invasive recurrences were node positive. 
Conclusioiu: (l)Prophylactic mastectomy markedly reduces the risk of cancer in 
patients with LCIS. (2) Prophylactic mastectomy has no impact on survival at 10 
year. (3) This data can be useful when extrapolating results to patients with genetic 
predisposition. 

339 Dietary Debydroepiandrosterone (DHEA) Exhibits Strong 
Chemopreventive Activity But Minimal Therapeutic Activity In 
The MNU Induced Rat Mammary Model System. 
Lubet, R A1, Steele,V.E.', Kelloff; G.J.', Eto,I.2, and Grubbs, C.J.a 

1-Chemoprevention Branch NCL Bethesda MD; 2- Dept. Of Nutrition 
Sciences, Univ. Of Alabama at Birmingham 

Female Sprague-Dawley rats (SO day old) administered a single i.v. 
dose of MNU exhibit a high incidence and multiplicity of mammary 
tumors by 100 days of age. Prior studies have shown that DHEA (120, 
600 and 2000 ppm in diet) is a highly effective chemopreventive agent in 
this model decreasing tumor multiplicity by SS, 90 and 98% 
respectively. DHEA doses (2 600 ppm) causes striking hormonal 
changes in treated rats increasing levels of androgens and estrogens 
while simultaneously interfering with normal estrous cycling in rats. 
Interestingly DHEA induced proliferation and apparently differentiation 
in the breasts of treated rats. Morphologically the changes observed in 
DHEA treated rats appear similar to those that occur during pregnancy. 
When rats were treated with DHEA when their first palpable tumors 
arose (40-60 days post MNU) a decrease in the appearance of "new" 
late arising palpable tumors was observed. However DHEA had 
minimal effects on the continued growth of palpable lesions. 

340 AyDOSE-RANGING STUDY OF INDOLE-3-CARBINOL FOR BREAST 
KANCER PREVENTION. Wong GYC\ Bradlow L, Sepkovic D, Mehl 

' S, Mailman J, Osborne MP, Strang Cancer Prevention Center, New 
York, NY, 10021 

Sixty women at increased risk for breast cancer were 
enrolled in a placebo-controlled, double-blind dose-ranging 
chemoprevention study of indole-3-carbinol (I3C). Fifty-seven of 
these women with a mean age of 47 years (range 22-74) 
completed the study. Each women took a placebo capsule or an 
I3C capsule daily for a total of four weeks; none of the women 
experienced any significant toxicity effects. The urinary estrogen 
metabolite ratio of 2-hydroxyestrone to 16a-hydroxyestrone, as 
determined by an ELISA assay, served as the surrogate endpoint 
biomarker ISEB). Perturbation in the levels of SEB from baseline 
was comparable among women in the control (C) group and the 
50, 100, 200 mg low dose ILD) group. Similarly, it was 
comparable among women in the 300, 400 mg high dose IHDI 
group. Regression analysis showed that peak relative change of 
SEB for women in the HD group was significantly greater than that 
for women in the C and LD groups by an amount that was 
inversely related to baseline ratio; the difference at the median 
baseline ratio was 0.48 with 95% confidence interval 10.30, 
0.67). No other factors, such as age or menopausal status, were 
found to be significant in the regression analysis. The results in 
this study suggest that I3C at a minimum effective dose schedule 
of 300 mg per day is a promising chemopreventive agent for 
breast cancer prevention. A larger study to validate these results 
and to identify an optimal effective dose schedule of I3C for long- 
term breast cancer chemoprevention will be necessary. [Support: 
Tiger Foundation and U.S. Army Medical Research and Materiel 
Command under DAMD17-94-J-4332] 
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careful designed experiment should satisfy P(X e B) = 0. Thus this should not be a concern. 
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Abstract 
Mixed interval-censored (MIC) data consist of n pairs of observations (L\,Ri), ..., (Ln,Rn), where 

-oo < L{ < Ri < oo for all i, Lk = Rk and 0 < Lj < Rj < oo for at least one k and one j. The survival 
time Xi is only known to he between Li and Ri, i = 1,2,..., n. Peto (1973) and Turnbull (1976) obtained, 
respectively, the generalized MLE (GMLE) and the self-consistent estimator (SCE) of the distribution func- 
tion of X with MIC data. In this paper, we introduce a model for MIC data and establish strong consistency, 
asymptotic normality and asymptotic efficiency of the SCE and GMLE with MIC data under this model 
with mild conditions. 

Key words and phrases:   Asymptotic normality, generalized maximum likelihood estimator, mixture 
distribution, strong consistency. 
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1. Introduction 
Interval censoring refers to a situation in which, X, the time to occurrence of an event of interest is only 

known to lie in a half-open and half-closed time interval (L, R], where the pair (L, R) is an extended random 
vector such that -co < L < X < R < oo. Interval-censored (IC) data may occur in medical follow-up 
studies when each patient had several visits and the event of interest was only known to take place either 
before the first visit, between two consecutive visits, or after the last one. Thus an IC data set may consist 
of strictly interval-censored (SIC) observations (i.e.,0 < L < R< oo), and right-censored (R = oo) and/or 
left-censored (L — -oo) observations. Examples of IC data can be found in cancer research and AIDS studies 
(see, e.g.,  Finkelstein and Wolfe, 1985). 

Case 1 data (or current status data, see Ayer et al, 1955) is a special case of IC data when each patient 
had only one visit. Observations in a case 1 data set are either left-censored or right-censored. Doubly- 
censored data (see Chang and Yang, 1987) consist of case 1 data and uncensored observations. It is clear 
that neither case 1 data nor IC data contain uncensored observations. Furthermore, doubly-censored data 
do not contain SIC observations. A data set may be a mixture of uncensored observations and IC data which 
contain SIC observations. We call such data mixed interval-censored (MIC) data. 

MIC data arise in clinical follow-up studies. In a cancer follow-up study, a patient whose tumor marker 
value (for instance, CA 125 in ovarian cancer) is consistently on the high (or low) end of the normal range 
in repeated testing is usually monitored very closely for possible relapse. If such a patient should relapse, 
then time to clinical relapse can often be accurately determined, and an uncensored observation is obtained. 
However, if a patient is not under close surveillance, and would seek help only after some tangible symptoms 
of the disease have appeared, then time to relapse most likely has to be specified to be within the dates of 
two successive clinical visits. 

Another situation in which MIC data can occur is in the usual right-censored survival analysis where 
actual dates of events are not recorded, or missing, for a subset of the study population, and can be established 
only to within specified intervals. An example from the Framingham Heart Study was presented by Odell 
et al. (1992). In this large-scale longitudinal heart disease study, times of occurrence of coronary heart 
disease were recorded for almost every participant. However, time of first occurrence of the coronary heart 
disease subcategory angina pectoris was only recorded for about 20% of the participants who suffered from 
angina pectoris, and may be specified only as between two clinical visits, several years apart, for the other 
participants. 

For censored data, Peto (1973) proposed a Newton-Raphson algorithm to obtain the generalized MLE 
(GMLE) of the cumulative distribution function (cdf), F. Turnbull (1976) obtained a self-consistent estima- 
tor (SCE) of the cdf via an EM-algorithm. A detailed discussion of more efficient algorithms for obtaining 
the GMLE is given in Wellner and Zhan (1997). 

For IC data, Groeneboom and Wellner (1992) formulated the case 2 model; Wellner (1995) formulated 
a case k model, where k > 1; Schick and Yu (1999) modified Wellner's case k model by further assuming 
that k, the number of visits by a patient in a follow-up study, is a random integer and the observation (L, R) 
is a mixture of various case k models. 

Various asymptotic distribution results of the GMLE have been obtained for censored data. For case 
1 model the GMLE is asymptotically normally distributed (a.n.) and the convergence rate is ra1/2 if the 
underlying censoring distribution is discrete (Yu et al, 1998b), but the GMLE is not a.n. and the conver- 
gence rate is n1/3 if cdfs have positive derivatives (Groeneboom and Wellner, 1992). For case 2 model the 
GMLE is a.n. with rate n1/2 if the censoring vector takes on finitely many values (Yu et al., 1998c), and 
Groeneboom and Wellner's (1992) conjecture that under certain smoothness conditions the GMLE has a 
pointwise convergence rate of (nhm)1//3. For more recent development on the latter conjecture, we refer to 
Groeneboom (1996) and Van De Geer (1996) . 

For MIC data, several models have been proposed, and the asymptotic properties of the GMLE have 
been investigated under the assumptions that either the censoring vector takes on finitely many values 
(see Petroni and Wolfe, 1994, and Yu et al. 1998a), or the censoring and survival distributions are strictly 
increasing and continuous, and they have "positive separation" (see Huang (1999)). 

In this paper, we shall use the model in Yu et al. (1998a) to establish asymptotic properties of the 
GMLE based on MIC data under the assumption that all underlying distributions are arbitrary with some 
mild conditions.  Since a GMLE is also an SCE (but an SCE may not be a GMLE; see Yu et al, 1998a), 



and our proofs basically use the properties of SCEs, we shall focus on the asymptotic properties of SCEs for 
MIC data. The main results are given in Section 2. The consistency result is proved in Section 3 and the 
asymptotic normality result is proved in Section 4. Some detailed proofs of lemmas in Sections 3 and 4 are 
relegated to Appendices A and B. 

2. Main Results 
We introduce a mixture interval censorship model, a mixture of an interval censorship model and a 

right censorship model, to characterize MIC data. Assume that the observed pair (L, R) is generated by a 
two-stage experiment. Let (T, U, V) be a random censoring vector and K a random integer taking values 0 
and 2. Assume that X and (K, T, U, V) are independent. In the first stage, a value of /C is selected, then 
(L, R) corresponds to the observation from a right censorship model if K. = 0 and from a case 2 model if 
V — O 

(r m_j(X,X)l(x<T) + (T,^)l{x>T) if/C = 0, 
1  ' H)~ \ (-oo, iniixKU) + (U, V)l(u<x<v) + (V, oo)l(JC>v)    if £ = 2, ^X) 

where l^) is the indicator function of the set A. It is known that in order to estimate F, we only need 
to observe (L, R) (see Peto (1973)). Thus, in our model, X, K., U, V and T may not be observed. Let 
7r/t = P(K. = k) > 0, k = 0, 2, and 7r0 + 7r2 = 1. Denote (Li, Ri),..., (Ln, Rn) a random sample from (L, R). 

Suppose that X, (L,R), (U, V), T, U and V have cdfs F, Q, G, GT, GU and Gy, respectively. Define 
T0 = sup{x : F(x) = 0}, TV = supfa; : Gy(x) < 1}, n — sup{x : GT(X) < 1} and r = inf{x : ,F(a;) = 
1 or GT(X) = 1}. Let 0 = {h: h is a nondecreasing function from [—00,00] to [0,1] such that h(—00) = 0 
and h(oo) = 1}. Each solution Hn of the equation 

Hn(x) = [        ^1~~",n<*Qn(*,r) + /    dQn(l,r), Hne@ (2.2) 
Jl<x<r •"n(TJ - ttn(l) Jr<x 

is an SCE of F (Li, Watkins and Yu, 1997), where Qn is the empirical version of Q. 

Theorem 2.1. Let Hn be a solution of (2.2). Suppose that 

(AS1) (a)  TV < Tt, and (b) if F{rt-) < 1 then P{T or V = n} > 0. 

Then lim sup \Hn(x) — F(x)\ = 0 a.s. if F(T) = 1, and   Urn sup \Hn(x) — F{x)\ = 0 a.s.. 
n-+°°X>0 n->°°X<T 

Remark 1. A counterexample similar to that in Schick and Yu (1999) can be constructed to show that the 
GMLE is not consistent if AS Lb is deleted from our Theorem 2.1. 

In clinical follow-ups, a study typically lasts for a certain period of time. Thus it is often true that 
F(T—) < 1. In this regard, Gentleman and Geyer (1994, Theorem 2) claimed a vague convergence result, 
and Huang (1996, Theorem 3.1) claimed a uniform strong consistency result for IC data or case 1 data. Schick 
and Yu (1999) showed that both theorems as stated are false and can be corrected by adding assumption 
ASl.b to their theorems. 

It is well known (see Peto, 1973) that a GMLE Fn(t) is not uniquely determined for t £ (Li,Rj) if 
Li < Rj, (Li,Rj) n {Li,..., L„, Ri,..., R„} = 0 and ßp ((Li,Rj]) > 0. For the convenience of our proof of 
normality, we restrict our attention to the following SCEs: 

Hn is right continuous, Hn(oo) = 1 and SH„ C {RI, ...,Rn}. (2.3) 

Under convention (2.3) the GMLE F is uniquely determined. However there are still SCEs that satisfy (2.3) 
but are not the GMLE. A point x is called a support point of a function / if there exists a sequence of points 
Xk —y x such that \f(xk) — f{x)\ > 0. Denote <S/ the set of all support points of /. 
Theorem 2.2. Let Hn satisfies (2.2) and (2.3). Suppose that AS1 holds and 
(AS2) F(T) > 0 and (SGu USGv)cSF. 

. Then for x < T, y/n(Hn(x) — F(x)) converges in distribution to a normal variate. 
AS1 and AS2 are much weaker than the assumptions made in Petroni and Wolfe (1994), Yu et al. 

(1998a) and Huang (1999). 



Remark 2. In a follow-up study, each patient has Af visits, where Af > 1 is a random integer (rather than 
assuming that each patient has exactly 2 visits (Af = 2) as in the case 2 model). The inspection times are 
Y\ < ■•■ < Y/v"- It is reasonable to assume that X and (Af,{Yt : i > 1}) are independent. Then, on the 
event {Af = k}, modify (U, V) in (2.1) as 

k 

(u,v) = (XuY^x^) + (n-i,n)i(x>n) + y£(Yi-i,Yi)i{Yi_1<x<Yi), (2.5) 
i=2 

where YQ = 0. Thus, a more realistic model for MIC data is the model of a mixture of a right censorship 
model and a modified case 2 model where (U, V) is specified by (2.5), instead of assuming that X and (U, V) 
are independent. This model includes our model (2.1) (in which Af = 2 with probability one) as well as 
Huang's model (in which Af is a fixed positive integer and T = ooj. It is reasonable to assume that Af, the 
number of visits, is bounded. In such a model the proofs of Theorems 2.1 and 2.2 are similar to the proofs 
given in Sections 3 and 4- Thus it suffices to study model (2.1). 

3. Strong Consistency 
We shall prove Theorem 2.1. To this end, we first state two preliminary results. 

Theorem 3.1.    Suppose that F S0, F is right continuous and H is a solution of 

H{-X) = I        S'Sn^-r) + [    Wr), H G 0. (3.1) Ji<x<r H{r) - rl{l) Jr<x 

Then H(x) = F(x) for all x < r if AS1 holds; and H(x) = F(x) for all x <rt if 
(AS3)    F(rt) < 1, rv < Tt and F = F(rt) on [x0, oo), where x0 <rt. 

In (3.1), if H(x) = H{r) = H(l), then we encounter jj in the integrand. Hereafter, define 5 = 1 and 
{5 • 0 = 0. If F satisfies AS3, it can viewed as the cdf of an extended random variable X which equals 00 
with positive probability. 
Proposition 3.2. Suppose that {/n}n>i is a sequence of monotone functions on an interval [a, b) and f(x) 
is a bounded monotone and right continuous function on the same interval. If linin-Kx, fn (x) = f(x) V16 
[a,b) and lim«-^ fn(x-) = f(x-) V x G (a,b], then lim,,.*«,sup^^ \fn(x) - /(x)| = 0. 

We shall present the proof of Theorem 3.1 after we prove Theorem 2.1. We omit the proof of Proposition 
3.2 as it is similar to Lemma 3 of Yu and Li (1994). 
Proof of Theorem 2.1. Let fl be the event {lim^oo Qn(l,r) = Q(l,r) V / < r}. For each u G fi, let Hn 

be a solution of (2.2). We shall prove the theorem in 2 steps. 
Step 1 (limn-+O0Hn(x) = F(x) and lim„_>00i?n(a;-) = F(x-) V x < r). Since {i?„}„>i is bounded 

and monotone, for each subsequence of natural numbers, by Helly's selection theorem, there exists a further 
subsequence, say {ni,}, such that Hmnfc^.00i?n(e(x) = H(x) and ]imnk-yoo Hnk(x-) — H*{x) pointwisely for 
some H and H* G 9, respectively. Thus it suffices to show that H(x) = F(x) and H*(x) = F(x-) for all 
x < T. 

Since Qn converges uniformly to Q, and Hn satisfies (2.2), by the bounded convergence theorem (BCT) 
H satisfies (3.1) and H* satisfies a similar equation like (3.1). Theorem 3.1 yield the first desired equation 
H(x) = F(x) on (—OO,T]. 

By ASl.a, r > r => r = 00 and thus H(r) = F(r) = 1 as H G 0. Then equation (3.1) and its analog 
for H* yield 

F{X~] = L<r FF(r)-F(l)dQ{h r) + l<x 
dQ^ T)    ^ f«*<r + Sr<* = /,<■* + /r<J. 

as H =■ F on (-00, r] U {00}. The latter two equations yield 

H*{x) - F(x-) = (H*(x) - F(x-))c(x), where c(x) = [        __i__dQ(/,r). (3.2) 



By AS1, c(x) = < 1       °,T^      ,   \        .. 'jr./     \     1   I* follows from equation (3.2) and c(x) < 1 
[ 1 — P(L = r) < 1        if x — T and F(r—) < 1. 

that H*(T) = F(r-) if F(r-) < 1, and H*(x) = F(x-) V x < r. In order to show that i?*(r) = F[j-) if 
F(r-) = 1, let xk t T. Note Hn(xk) < Hn(r-) < 1. It yields H(xk) < H*{T) < 1. Now linifc-K» #(a;fc) = 
linife^ ^(xfc) = 1. Thus H*(T) = 1 = F(T-). 

Step 2 (conclusion). By step 1 the sequence {i?n}n>i and F satisfy all the conditions for {/n}n>i and / 
in Proposition 3.2, respectively, where (a, b) = (—oo,r). By Proposition 3.2, Hmn^oo sups<T \Hn{x)—F{x)\ — 
OVaieß. Since P{ü} = 1, Theorem 2.1 follows, n 

The solution H(x) to (3.1) is unique for x < n if AS3 holds by Thereom 3.1, but Theorem 2.1 is false 
if only AS3 holds, as fl<Tt<r F{r)lF(l)dQ(l,r) = 1 if P(T < rt) = 1 and P(V < rt) = 1. The rest of the 
section is devoted to prove Theorem 3.1. 

The theorem is trivially true if F(T) = 0, so without loss of generality (WLOG), we can assume F(T) > 0. 
The outline of the proof is as follows. We first define a functional tl>(h) for h e Q. We then show that h = F 
uniquely maximizes ip(h) for h € 0 (Lemma 3.3) and that each solution H of (3.1) in 9 is a maximum point 
of ip(-). Thus H must equal F. To this end, some notations and lemmas are needed. 

Verify that there are at most countably many intervals (y, z) such that (1) y < z and y < r, (2) 
F(y) = F(z-), and (3) y, z £ SF- Let ß{x) = \F{x) + Gv(x) + Gv(x) + GT(x)]/4. For i > 1, denote A the 
collection of intervals (y, z) satisfying (1), (2), (3) above and fi(z-) — ß{y) > 1/i, then A contains finitely 
many intervals since /x(-) is a cdf. Thus UjA, the collection of all such intervals, is countable. Denote Df 
the set of left endpoints of intervals in D{. 

For a = 1,2, ..., denote Bati the collection of all possible j2~a x 100 percentiles of the distribution fi 
(1 < j < 2a) which are contained in (—oo, r]. Note that for each j such that j2~a < fj,(r) the corresponding 
percentile is given by y — sup{x : fi(x) < j2~a}. Let Ba — (Ba,i U D%) U {r} and denote b\ < • ■ ■ < bß = r 
to be the elements of Ba. Verify that 

/jL(bi-)-ß(b^1)<2-a, z = 2,...,/?. (3.3) 

Define b\* = b\ and &;* = sup{a; : x < 6j, F(x) = F(bi-i)}, i = 2, ...,/3. Moreover, if r < oo, then 
denote fe^+i* = r and bß+\ = oo. For &;, bj € Ba, define 

r.=Eww^))> [bi*'bi]={tb*;!b!} it^t-i,^ 
(Ua, Va) = (bu bj) iibi<U< bi+1, bj-i <V<bj,i<j< ß. (3.4) 

Then P{X £ (bi-i,^]} = P{X G [bit,bi]} as P{X £ (bi-i,bit)} = 0. Define an interval 

In = < 

(—oo,bi\ UK,— 2 and X < bi — Ua, 
{bi, bj] if K. = 2, X e (bi, bj] and (Ua, Va) = (h, bj), ,g ^ 
(bi, oo] if X > h and either K. = 2 and V^ = bi or /C = 0 and Ta = bi, 
[bi.,bi] if X e [hi*, bi], K = 0 and Ta > bt. 

Then the number of distinct realizations Ia<h of the random interval Ia is finite. Denote the joint cdf 
of (Ua,Va) by Ga and the cdf of Ta by Gra- Let L" and Ra be the endpoints of the interval Ia, Qa(l,r,k) 
the joint cdf of (La, Ra,K), and qa,h,k = -P(^a = ^a,/n £ = &)• Abusing notations, let Q(l, r, k) be the joint 
cdf of (L, R, K). Thus Q(l, r) can be viewed as the marginal cdf of (L, R). 

For H G 0, define ßn to be the measure induced by H and 

<M#) - E[ln(fxH(Ia)/fiF(Ia)}   (= 5Z 3a,Mln[/ifr(Ja,fc)/MF(Ja,fc)])- (3-6) 
h,fc 

Here we interpret InO = —oo, OlnO = 0 and Olnoo = 0. It is obvious by construction [see (3.3), (3.4) and (3.5)] 
and by ASl.a that the measures dGa, dGra and dQa converge setwisely to dG, dGr and dQ, respectively. 
We call tp(H) a limit of {ipa(H), a > 1} if a subsequence of {ipa(H)} converges to ip(H), where ip(H) may 
be oo. 



The proofs of the following 2 lemmas are given in Appendix A. 
Lemma 3.3. Suppose that H E 6 and either AS1 or ASS holds. Let ip(H) be a limit of {rpa(H)}.  Then 
(1) tp(H) — 0 if and only if H(x) = F(x) for all x < T, and H(rt) = F(rt) in the case F{rt—) < 1 and 
P(T orV = Tt) > 0; (2) ip{H) < 0. 

A real number x € [T0,T] is called a left point of increase of F 6 6 if F{x) — F(x — e) > 0 for each 
e > 0. Let CF be the set of all left points of increase of F. 

Den°te 7"(a'b) = H(b)-H(a) • 

Lemma 3.4.     Suppose that H is a solution of (3.1),  AS1  or AS3 holds,   and b   e   CF-     Then 

(K1)  I HirPmhdQ&r) = 1 ifF(r) < 1; 

(E.2)   ~fH{a,b)<lforeacha<b;     (E.3) fl<r jfßßgfadQ(l,r) + ]imatblH{a,b) - 1 = 0. 
Proof of Theorem 3.1. Let H be a solution of (3.1). We shall assume that H(x) ^ F(x) for some x < T 

but AS1 holds, or H(x) ^ F(x) for some x < r but AS3 holds; and show that it leads to a contradiction. 
Let I/J(H) be a limit of ipa{H). WLOG, assume lima-n» ipa(H) = ip(H).. Since H ^ F for some to < r, 

V'(JP) = 0 > tp{H) by Lemma 3.3. Therefore, there exists an integer ct\ such that ipa(F) > tpa(H) + 6, for all 
a > ai, where ö = —ip(H)/2 > 0. For each a > c*i, let pi = MF(L^*I^])I * = !>•••)ßi andpß+i = 1 — F(r). 
It is seen that bi, ß, and pi all are functions of a. Then, for a > ai, the above inequality yields 

S<-il>a{H) + MF) 

= hm ^MH) + &MF) ~ ^(g) 
«4.0 u 

^a(jhH + TTZF) - ipa(H) 
<Um      (since — ln(-) and hence —ipa(') is convex) 

«4.0 u 

=m^.^^'Js&-^,^^^m    (by(3.6)) 
«4.0 u 

—— „ ^ 1+« 1+« 1+«     / 
«4-0 u 

qa,j,k—77—r -1 

-f F(r)-F(0 ^ gaiJ-ii0 
-/ 7773 7=77rdQa(/,»-,2)+2^P»-—777—rTT - 1, (3-7) 

where £ is such that Ja>ji = [6i*,fc], i = l,...,/3. Let /ii(Z,r) = ^)-g(?) and ft2(&i*,6i) = HHTI&M])- 
B? 

(E.l), (E.2) and (E.3) in Lemma 3.4, Jl<r fy*™fcdQ(l,r) < 1, thus 

> lim $> /      ffM
e(lffmd<?(*'r)      (by the BCT) 00   

-.0+1 

> y      g(r) - g(n d<^'r)     0^ Fatou s lemma) 

- /    hx(l,r)dQ(l,r). (3.8) 

Since /ii is a nonnegative measurable function, (3.8) implies that it is integrable. Since 

fe.,-,,0 < P(X G L&».bi},X<Ta,IC = 0) (3.9) 
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by the definition of Ua, Va, Ta and Ia [see (3.4) and (3.5)], (E.2) and (3.9) imply that \h2(bi*,bi)\ ^ 1» an(i 
thus Yji=\Pih2{bi*,bi) converges by the BCT as a —► oo. Then 

0 < 8 <expression (3.7) 

hi(l,r)dQa(l,r,k) + Y^Pih2(Pi*,bi) - 1 
l<r and fc=2, or r=oo ^_-i 

< Mm  f /" 

= /     hi(l,r)dQ(l,r) + hm /JPi/i2(&i*,M ~ 1   (since dQa —»• dQ setwisely) 
,/(<r a-K» i=1 

< /     h^l, r)dQ(J,r) + Hm Y>7ff&.,M - 1 (by (3.9)) 
Jl<r a->oo i=1 

< Hm J> / —M^-dQ(l,r) + Urn $>7ff(k.,fc) - 1     (by (3.8)) 

* J*X>[/<Pi#^ydg(z'r)+^'6i)"x]   (by(K1)) 

= /T.,r] [/^MP)^'^»^^1]^    (bytheBCT) 

=0(by(E.3)). 

Thus we reach a contradiction 0 < <5 < 0. This concludes the proof of Theorem 3.1. n 

4. Asymptotic Normality 
If F(r) = 0, the GMLE F(T) = 0 w.p.l. If F(T) < 1, F(i) is not identifiable for i > r. Thus it suffices 

r F(t)    if i < T 
to estimate FT defined by FT(t) = < _F(r)    if r < £ < oo, and assume that F(T) > 0. Here FT e 0 but may 

U if t = oo 
not be a cdf and Theorem 3.1 does not require F be a cdf. 

There are two equivalent forms for equation (3.1): H — BH(Q) and H = TZH(F), where 

BH(Q)(x)= f ™fl~~fldQ(hr)+ [    dQ(l,r)       (RHS of (3.1)), (4.1) 
Ji<x<r H{r)~ H{L) JT<X 

KH(F)(x) = fi<xJ^)-H{t)[F{r) ~ F{1)] ~ [F{X) ~ F(l^dG*^r) + FW, (4-2) 
( Tt2dP{V <l) + n0dGT{l)    if r = oo, 

dG*(l,r)=l n2dP{U < r) if I = -oo, 
[ Tt2dG(l, r) if -oo < I < r < oo, 

dQ(l,r) = [F(r)-F{l)]dG*(l,r) = [FT(r)-FT(l)}dG*(l,r)ifl<r. (4.3) 

Lemma 4.1 . BHn(Qn - Q) = TlHn(
Hn - FT) for each SCE Hn which satisfies (2.3). 

The proof of the lemma is in Appendix B. 
Let V be the collection of all real-valued functions h defined on [—oo, oo] that are right-continuous, have 

left limits at each point and satisfy that 

V a < b < oo, JV(a-) = FT(b) =► h{a-) = h(b). (4.4) 

Define V0 = {heV: F(x) = 0 => h(x) = 0;FT(x-) = 1 =*■ h(x-) = 0}. Verify that (V, || • ||) and (D0) || • ||) 
are both Banach spaces. Let (D2,11 • 11) be a Banach space of real-valued functions defined on [—oo, oo]2 such 
that the Banach space contains all bivariate cdfs, where \\g\\ = swpxy \g(x,y)\. Note that AS1- AS3 are 
basically assumptions on (F, G, GT)- We say (H, G, GT) satisfies AS1 etc., if H E 6 and H replaces the role 



of F in AS1 etc. Let 0O = {H £ 6 n V : SH C 5F, (#, G, GT) satisfies AS1 or AS3}. For each H £ G0, 
HH(-) and ##(•) are linear operators on V and Z>2J respectively. 
Theorem 4.1. Suppose that AS1, AS2 and (2.3) hold. Then 1Z~j£ exists as a bounded operator from V to 
V and the SCE satisfies 

s/n~(Hn - Fr) A KgBFT (W) in V, (4.5) 

where W is the Gaussian process specified by y/n(Qn(l,r) — Q(l,r)) —> W. 
We first state 3 more lemmas, with their proofs relegated to Appendix B. 
For a F G ©0, let Ck be the collection of all the distinct points among Ck,iS, where Ck,i = inf{# : F(x) > 

i/2k}, i = 0, ..., 2fc, k > 1. Let Fk be a step function in 60 such that Ffe(c) = F(c) for each c £ Ck and its 
discontinuity points belong to Ck- Denote T>k (T>ko) the subclass of V (X>o) such that each member is a step 
function with the collection of discontinuity points being a subset of SFk. Obviously, £>&, Ck and Fk depend 
on F. 
Lemma 4.2. If F £ Qol then the linear operator 1lF* exists as a map from T>k onto T>k. 
Lemma 4.3. Assume that AS1, AS2 and (2.3) hold. For each u> G SI, Hn £ 0o. 
Lemma 4.4. If F £ Q0, then WR.F^(-)\\ < 1 for all possible k. 
Proof. We give the proof of asymptotic normality in 4 steps. 

Step 1 (Existence of ftp1, F £ 0O, as a linear operator from V to V). For each g £ V and k > 1, let 
gk £ T>k be such that gk{x) = g{x) if x £ Ck- Then ||<7fc — <7|| ->• 0, since S3k and Sg C SF and C = LikCk is 
dense in <Sp. By Lemma 4.2, TZF

X exists, so "there exists a unique hk £ T>k such that gk = T^Fk(hk)- V K > k 
and V h £ T>, Vk C VK, \\Fk - FK\\ < l/2fc and TZFk(h) - KFK(h) converges to 0 as k -¥ oo by the BCT. 
Hft^OII < ! by Lemma 4.4, thus limfc_>00[TlFl(h) - HF^(h)] = 0 V h £ Vk and V k > 1. Furthermore, 

\\hk- hK\\ <W£(gk) - ft^foOII + WF«(Sk) ~ KF1J9K)\\ 

<\\T^FkH9k) - ^ii(5fc)ll + II^FKII • ll^fe - 9K\\ -»• 0 as k -¥ oo, 

by the assumption ||<7fc — g\\ -+ 0, Lemmas 4.2 and 4.4, and the BCT. That is, \\hk\\ is a Cauchy sequence. 
Since V is a Banach space, there is a function h0 £ V such that \\hk — h0\\ -» 0. By the BCT, g = 
limfc-yoo 1lFk{hk) = TlF(h0). Define h0 = Tl~F

x{g). 

Step 2 (Strong continuity of {K^1 : H £ 0O}). Let g'm£V and Hm £ 0O be such that H^ - g\\ -> 0 
and \\Hm — FT\\ ->• 0 as m -> oo. Then 

WHIü'J -n^{g)\\ <\\^-Hm{9'm) -n£Un)\\ + m^OD - KF*(9)\\ 

<\\KHI - TlplW ■ \\g'J\ + H^ll • ||^ - g\\ -+ 0 as m -+ oo. 

Step 3 (Strong continuity of {BH ■ H £ 90}). Let /ibea simple function in X>2- It follows from (4.1) 
and the BCT that BH(h) -> BFr{h) in P as H ->• FT. Since \\BH \\ < 4 V H G 0O and the collection of simple 
functions is dense in T>2, we have strong continuity. 

Step 4 (Conclusion). By Lemma 4.3, Hn £ 0O. Thus TV^ exists by Step 1. It follows that y/n{Hn — 

FT)) = TlH\BHn{\/n[Qn ~ Q}) by Lemma 4.1. By Theorem 2.1 linin-yoo \Hn(x) - FT(x)\ = 0 a.s. By Steps 
2 and 3, {TH = IZJ^Bu • H G 0O} is strongly continuous. As a consequence of the above 4 statements, and 
the Banach-Steinhaus theorem, sup{||.Ffjn(/i) — TFT{h)\\ : h £ A(e)} ->• 0 a.s. as n —>• oo and then e -¥ 0+ 
for all compact set A C £>2> where A(e) = {h £ T>i : \\h — h'\\ < e for some h' £ A}. By the central Unfit 

theorem, Wn — y/n[Qn - Q) —> W in T>2, {Wn} is uniformly tight (Pollard, 1984, p.81). As a consequence, 
\\^ß{Hn - Fr) - TFr{Wn)\\ = Wi^Hn -fFT)(Wn)\\ = op(l), which implies (4.5) by the continuous mapping 
theorem (Pollard, 1984, p. 70). n 
Remark 3. Our proof of the normality (not the consistency) relies on the form (2.3). It can be shown that 
Theorem 4-1 are actually true without (2.3), and Theorem 2.1 (not Theorem 4-1) are true without (ASl.a). 
For the sake of simplicity, we skip the details. 

Theorem 2.2 is a consequence of Theorem 4.1. 
Remark 4. Under assumptions AS1 and AS2, Hn is also efficient. The proof is analogous to that of Theorem 
3 of Gu and Zhang (1993) and is skipped here. 



Appendix A 
We shall prove Lemmas 3.3 and 3.4. A lemma is needed to prove Lemma 3.3. 

Lemma A.l. Assume that AS1 or AS3 holds. Let tp(H) be a limit of {4>a{H)}, H G 6.  Then i>(H) = 0 
if and only if (1) H(t) = F(t) and H(t-) = F(t-) V t G SF n UaBa D (-oo,r), (2) H(r-) = F(T-) if 
F(r-) < 1 and (3) H(T) = F(T) if F(r-) < 1 and AS1 holds. Moreover, ip(H) < 0. 
Proof. (=*>) Verify that ipa(F) — 0 for all a by ASl.a, and thus lima_).00 i/ja(F) = 0. Then conditions (1) - 
(3) above imply that ^a{H) = ipa(F) = 0 for all a > 1. Thus ip(H) = 0. 

(<=) We first show that ip(H) = 0 implies condition (1). It suffices to show that ip[H) < 0 if for some 
t0 G SF n UaBa n (-oo, r) either (l.a) H(t0) ^ F(t0) or (l.b) H(t0-) ^ JF(*0-). Condition (l.a) implies 
that for each sufficient large a, there is a point bh G SF H BQ such that 6/, = fo- Verify that 

^a(Ä)=S{^(ln(AiH(/a)//iF(/a))|Da,^a,rQ)/C)} 

=i2 /  / fa,2{z,y)dGa(z,y) + 7To / fa,o(t)dGT,a(t), wnere 04-1) 

and 6fe, io and &j G BQ. Note t0 is fixed but the index h of 6^ = i0 depends on a. Define 

3(Jfc,i) = (^o)lnfJg + [l-^o)]lniEfg}    if *o < t, (A2) 

10 otherwise. 

Then 0 = ln[F(i0)f§} + [1 - F(i0)]±E$g] > Wlnfjg} + [1 - F(i0)]ln^fg} = g(0,t), for t > t0, as 

-ln(-) is strictly convex and F(t0) ^ H(t0). Moreover, P{T or V > t0} > 0 as no > 0 and t0 G (-co, r). It 
follows from the above two statements that 

P{0 > g()C,T)} > 0. (A3) 

It is obvious that (l.a.l) g(2,t) > fa,2{u,v) for each (u,v,t) and (l.a.2) 0 = g(0,t) > fa,o(t) for t < t0. We 
shall show that, (l.a.3) g(0,t) > /Q,o(£), for t = bk > to, where bk G Sa and a is sufficiently large. Let 
fgdG™ = iv2fJg{2,t)dGa(u,v)       +      n0 / g(0,t)dGTa(t)> and define 
/t/dG™ in an obvious way. Then (l.a.l), (l.a.2) and (l.a.3) imply that /gdG% > ipa{H). Since dG% 
converges to dGw setwisely by observing that dGa (dGr0) converges to dG (dGr) setwisely and g(k, t) is 
a binary function in (u,v,t,k), the desired result follows from (A.3) and 0 > / gdGw —   lim f gdG™ > 
  a—Kx> 

Urn i/>a(H) > tp{H). 
a—too 

We now establish (l.a.3). Let t0 = bh < bj = t for some integer a0. It is easy to see by our construction 
that Bai C Ba2 if ai < a2 and hence to, t € Ba for all a > a0. For each z = 6* G Bai such that z < t0, 
verify 

m o(0 t) - F(t )MH{Z) F{Z) + (H(t0)-H(z))F(to)-F(z) W g(0,t) - FfrW — — + {F{to)_F{z))       F{to)       } 

4. ri _ FU ^AH{t)-H{to))F{t)-F{to)     1-H(t) 1-F(t) 
+ li    nto)M(F(t)_F(to))    1-F(t0)    

+1-F(i)l-F(t0)
>' 

g(6)-ff(a)      F(s)-F(a)    g(s)-g(a)     F(6) - F(x)    g(b) - g(s) 
V ; F(b) - F(a) ~ F(b) - F(a)     F(x) - F(a) + F(b) - F(a)    F(b) - F(x) 

for all x G (a,b). 

In view of (i) and (ii), (l.a.3) follows by an induction argument. 
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Now consider condition (l.b). If to is a point satisfying condition (l.b), then either (l.b.l) 10 £ SF n 
{UaBa) n (UaB*), where 5* = {a;: x = fc. > 6i-i,6itfci-i G £«}, or (l.b.2) t0 G <SF fl (Ua5Q) n (UQ5*)C, 
where .Ac is the complement of the set A. 

First assume (l.b.l). For each sufficiently large a, there exists a bh* = tQ e B*. Thus replacing t0 by 
io— in the proof for situation (l.a) yields tp(H) < 0. 

On the other hand, in view of (3.3), (l.b.2) implies that F(to~) > F(t) for each t < to and hence 
there exists a sequence of points Xj £ Sp (~l Ua(Ba U U*) such that a:, t *o with either H{xi) ^ F(xi) (if 
Xi — bjt = bj-i) or H(xi—) ^ ^(x,—) (if Xj — bj* > bj-\). In either case, it reduces to situation (l.a) or 
(l.b.l). Thus, we have ip{H) < 0. This concludes the proof for condition (l.b). 

The proofs for conditions (3) and (2) are similar to that for conditions (l.a) and (l.b), respectively, except 
in the proof for condition (3) replacing in the above proof the statement P{to < T} > 0 by P{T or V = 
Tt} > 0 (as AS1 holds). We omit the details. 

Verify that we actually show that either tp(H) = 0 or tp(H) < 0. Thus tp(H) < 0. □ 
Proof of Lemma 3.3. Statement (2) follows from the last statement in Lemma A.l. To prove statement 
(1) , it suffices to show that conditions (1), (2) and (3) in Lemma A.l imply H{x) = F(x) VI<T, i.e. the 
sufficient and necessary condition in Lemma 3.3. 

If a; is a discontinuity point of F and x < T, then there exists an integer N such that F(x)—F(x—) > 2~a 

for all a > N. This implies that a; is a certain j2~N x 100 percentile of \i and thus x £ Ba f\ SF- It follows 
that SF n UaBa contains all discontinuity points of F which belong to (—oo,r]. Thus conditions (1), (2) 
and (3) of Lemma A.l imply H(x) = F(x). 

Suppose now a: is a continuity point of F. Let ux = inf{y : F{y) = F(x)} and vx — sup{y : F(y) = 
F(x)}. If both ux and vx belong to SF^UaBa, we are done, as F(x) = F(ux) = H(u) < H{x) < H(vx—) = 
F(vx-) — F(x) by conditions (1), (2) and (3) in Lemma A.l. 

If neither ux nor vx belongs to Sj?nuQJ3Q, then from the above discussion both ux and vx are continuous 
support points of F satisfying F(ux) = F(vx) = F(x), and there exist two sequences of support points of F, 
say {a;j}t>i and {yj}j>i, which are contained in SF H L)aBa such that Xi t ux and j/j i vx. Consequently, 
F(xi) = H(xi) < H(x) < H(yj) = F{yj) by conditions (1), (2) and (3) in Lemma A.l. This yields 
H(x) = F(x) as F(xi) ->• F(ux) and F(yt) ->• F{vx). 

For simplicity, we skip the proof for the case that only ux or vx belongs to SF n (UaBa). This concludes 
the proof of the lemma, n 

A lemma is needed for proving Lemma 3.4. 
Lemma A.2. Suppose that H is a solution of (3.1) and A is an interval (a,b] C (—oo,r].  Then (J-F(A) > 
0 => pH(A) > 0. 
Proof. Equation (3.1) is equivalent to 

MM]) - Ji<r ^M^ll2dQ(i,r) + P(X G (a,b],X <T,1C = 0). (A4) 

If if is a solution to (3.1), then for each interval A = (a,b] C (—oo,r] such that HF{A) > 0, we have 
PH(A) > P(X € A, X < T, K. = 0) > 0 by the assumption WQ > 0 and b < T. This concludes the proof of 
the lemma, n 
Proof of Lemma 3.4. Assume that H is a solution of (3.1) and b e CF- By Lemma A.2, ^H((a, b]) > 0 V 
a < b. Dividing both sides of equation (A.4) by /iff ((a, b]) yields 

■\-( MM]n(l,r]) P(Xe(a,b},X<T,)C = 0) 
1 - L [H(b)-H(a)]Wr)-H(l)]dQV>r> + H(b)-H(a) ' ° < 6" (^"5) 

For each a < b, (A.5) yields (E.2) as the two summands in (A.5) are nonnegative. 

Denote dH(a,b,l,r) = t ßH((aMn(i,r})      otherwise 
I [H(b)-Hia)][H(r)-H(l)]      OT;nerwlse- 

For each pair (l,r) such that I < b < r, we have H(r) — H(l) > 0 by Lemma A.2. Moreover, 

8H{a,b,I,r) f       ^''CiL as a t b if b E (I,r),   and dH{a,b,l,r) 10 as a t b if b > r. 
H(r) - ti(l) 
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Thus by the monotone convergence theorem, as a t b, we have 

f 8H(a, b, I, r)dQ = /       dH(a, b, I, r)dQ + [    dH(a, b, I, r)dQ -> / „A^'mn dQ. 
J Jbe(i,r] Jb>r J   a\r)-a\i) 

The desired equation (E.3) follows from (A.5), (E.2) and the above equation. 
Assume now 0 < F(r) < 1 and AS1 holds. By ASl.a, I <rt <r =$> r = oo, thus 

/iH((r,oo]) = f        ^,"S^,r)        (by AS1 and (A.4)) (A6) 
Jl<T<r H\r) -HKl) 

> f       dQ{l, r) = (1 - F(T))P(L = T) > 0   (by ASl.b). 

Dividing both sides of equation (A.6) by ßH((Tt,oo]) yields (E.l) under AS1. 
On the other hand, assume that 0 < F(T) < 1 and AS3 holds.   Note that even if we encounter §, 

M*H(rj-g(l)'rl?1[«.<t<r) = 1 hy convention. By AS3, P{x < T < n) > 0 for each x < rt. (A.4) yields 

>(1 - F(rt))P{T E {x, Tt]) > 0,   V x e [x0, n). 

Then dividing both sides of (A.7) by HH({X, OO]) and taking limits yield 

"trtJi<rfJ,H((x,oo))(H(r)-H(l)) J  H(r)-H{l) 

(as TV < Tt and thus I < Tt < r => r = oo), which is (E.l). a 
Appendix B 

In this appendix, we prove lemmas in Section 4. 
Proof of Lemma 4.1. Theorem 3.1, (4.1), (4.2) and (2.3) yield BHn(Qn)(x) = Hn(x) and TZFT(FT)(X) = 
FT(x) V x. Furthermore, 

j        Hn(x)-Hn(l)        {r) _ pAr)] _ [Hn{l) _ FrmdG*{Ur) 

= [       [Hn(x) - Hn(l)]dG*(l,r) - f        f{^~lnf}[Fr(r) - FT(l)]dG*(l,r) 
Jl<x<r Jl<x<r -nn(r) - Hn{L) 

= f       [Hn(x) - Hn(l)]dG*(l,r) - f        ffWS"ffWm^a.O  (by (4.3)) 

= [       \Hn{x) - Hn(l)]dG*(l,r) - BHn{Q){x) + P{R < x}     (by (4.1)) 
Jl<x<r 

= [       [Hn(x)-Hn(l)}dG*(l,r) 
Jl<x<r 

- BHSQK*) + [BHn(Qn)(x) - Hn(x)}        (since BHn(Qn) = Hn) 

+ [FT(x) - f        FT{x) - FT(l)dG*(l,r)}     (= P{R < x} as FT = TIFT{FT)) 
Jl<x<r 

=BHn(Qn - Q)(x) - [Hn(x) - FT(x)} + f       {{Hn(x) - FT{x)\ - [Hn(l) - FT(l)]}dG*. 

Translating certain terms in the first and last expressions of the above equations yields 

BHn(Qn-Q)(x) 
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■L 
Hn(x)    Hn(l)        {r) _ F^r)] _ [Hn{l) _ Frmdcr(itr) 

li<x<r Hn(r)-Hn(l) 

+ [Hn(x) - FT(x)} - f       {[Hn(x) - FT(x)} - [Hn(l) - Fr(l)}}dG*(l,r) 
J l<x<r 

= I        (^(M~f"r
(n{[^(r) - Hn(l)} - [Fr(r) - FT(l)]} 

Ji<x<r \Hn(r)-Hn{l) 

- {{Hn(x) - Hn(l)] - [FT(x) - FT(l)]})dG*(l,r) + [Hn(x) - FT(x)} 

=KHn(Hn - FT)(x) (by (4.2)). D 

Lemma B.l. If F E @0 and KF(h) = 0, where hEV, then hEV0. 
Proof. For each h E V, by (4.2), 

np{h){x) = f       {F^\~FAh(r) - h(l)} - [h(x) - h(l)]}dG*(l,r) + h(x). (B.l) 
Ji<x<r  F(r)-F(l) 

If F(x) = 0, then h = h(x) on (-oo,a;] by (4.4). Thus 
0 = 1lp{h){x) = -I^x<M

x) - h(l)}dG*(l,r) + h(x) = h(x). 
Moreover, if FT(x—) — 1, then h — h(x—) on [x, oo] by (4.4), and 
0 = Kp(h)(x-) = fl<x<r[h(r) - h(x-)}dG*(l,r) + h(x-) = h(x-). Thus heV0.a 

Proof of Lemma 4.2. Note F E Q0. Since 1Zpk is a linear operator on the finite dimensional linear space 
Vk, it suffices to show (1) TlFk is 1-1 and (2) TZFk(Vk) C Vk. 

Step (1). Suppose ~R,Fk{h) = 0, where h E Vk- We shall show that h = 0. Denote a = J2ceck IMC) ~ 
h(c—)| and m = min{mc : mc = Fk(c) — Fk(c—) > 0, c E Cfc}. Note that m > 0 and a is finite as Ck contains 
finitely many points. Choose 7 > 0 such that 7a < TO. Let H = Fk+ 7/1. Since %Fk{h) = 0 and F E Q0, 
h E T>ko by Lemma B.l. As consequences, (1) H(r0-) = Fk{r0-) +0 = 0 and if(oo) = Ffc(oo) + 0=1; (2) 
H(c) > H{c-) for allceCfe [as H{c) - H(c-) > m - 7(/i(c) - h(c-)) > m - 7a > 0]; (3) H{x) E Vk. 

It follows from statements (1), (2) and (3) that H - Fk + 'yh E Qa r\ Vk. Then KFk(H)\x) = 
1lFk(Fk)(x) + nFk(fh)(x) = Fk(x) + 0 for each x. That is Fk = TlFk{H). Note that (H,G,GT) satis- 
fies AS1 or AS3 as H E 0O. Thus Fk = H = Fk + 7/1 by Theorem 3.1, which implies h = 0 as 7 > 0. As a 
consequence, 1ZFk(-) is 1-1. 

Step (2). It suffices to show that A = 1lFk(h)(b) - TlFk(h)(a) = 0 if /i e Vk and /iFfc((a,ö]) = 0. Define 
Hh({a, b]) = h(b) — h(a). By definition of Vk, /x/j((a, 6]) = 0. Then 

A= [   fFk{{h y (°'6]) M»(a, r]) - /ih((f, r] n (a, 6])]dG*(I, r) + /ih((o, fe]) = 0.  o 
Vi<r MFt((«irJ) 

Proof of Lemma 4.3. We fix w e f2, as Hn is random. We shall verify that Hn satisfies the properties of 
90. First, by AS2 Tv<Tt. 

If a <b and F(a-) = F(b), then [0,6] n 5F = 0. It follows that {Ri,...,!^} D [a,6] = 0 by AS2 and 
thus Hn satisfies (4.4) and Hn E V by Convention (2.3). 

If Hn(Tt-) = 1 then (Hn,G,GT) trivially satisfies AS1 and thus Hn E 60. Moreover, if F(rt-) < 1, 
then P(T or V = n) > 0 and thus (#n, G, GT) also satisfie AS1. It follows that Hn E 60. Hence, WLOG, 
we can assume that F(rt-) = 1. and Hn(Tt-) < 1. Then either P(i? = rt) > 0 or P(R = rt) = 0 If 
p(fi = n) > 0, then P(V = rt) > 0 as F(rt-) = 1. I.e., (Hn,G,GT) satisfies AS1 and Hn E 90. If 
P(i? = Tt) = 0 then with probability one i?, ^ rt. WLOG, we can assume that i?j 7^ Tt. Let x0 be the 
largest i?j that is smaller than rt. Then (2.3) implies that ßHn{[xoiTt}) — 0. Moreover, r„ < rt by AS1. 
Hence, (Hn,G,GT) satisfies AS3. It follows that Hn E 90. a 
Proof of Lemma 4.4. Let 01, ..., om be all the discontinuity points of Fk. Then Vk is an m-dimentional 
linear space. Define hi(x) = l(x>0i)- We shall show that 

AFk = TZFk(hi)(oj) - T^Fk(hi){oj-) > 0 for each j and for each hi. {B-ty 
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Verify that 1lFk{hi) £ Vk (by Lemma 4.2), KFk(hi)(0-) = 0 and TlFk(hi)(oo) = 1. Then 

TZFk(hi), i = l, ..., m, are a base of T>k and ||^Ffc(/ii)ll = 1» (-S-3) 

by Lemma 4.2, as £>& is an m-dimensional linear space, and 

/i;, i = 1, ..., m, are a base of T>k and \\hi\\ = 1. (-S-4) 

(B.3) and (B.4) imply that ||ft^|| = 1. 
The proof of the lemma will be completed after we prove (B.2). Letting x = Oj, h = hi, F = Fk, (B.l) 

yields 

where ß(x) — 7To(l - GT{x))h(x). Moreover, {I < x- < r} = {I < x < r} and 

f       tF(x)-F(l),, N     F(r)-F(x).,,„,-,„   , 

Ji<x<r £{r)- t (I) Jl=x<r 

f       fF(x-)-F(Q., ,     FQE)-^-),,,,^.,,^ ■ o,^     Mv   N 

~ Jl<xjF(x)-F(l)h{x) +   F(x) - F(l) h{l)]dG {h r) + ß{x) ~ ß{x-]- 

Replacing F and h by Fk and l(x>0i), respectively, equation (B.5) yields 

AFk > f       h{x)dG*(l,r)- f       h(x)dG*(l,r) + ß(x) -ß(x-) 
Jl=x<r Jl<Cx=r 

=n0P(T = x)h(x) + TTO(1 - GT{x))h{x) - n0(l - GT(x-))h(x-) 

=TTO(1 - GT(x-))(h(x) - h{x-)) 

>0, which is (B.2).  o 
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Abstract 

We consider efficient estimation of a distribution function F of a random variable X with 

doubly-censored data. The double censorship model assumes that X and the random vector 

(Z, Y) are independent and Z <Y with probability one, and that X is uncensored if Z < X < 

Y, right censored if Y < X and left censored if X < Z. Let K(x) = P(Z < x < Y) and let 

B = {x : K(x-) = 0, F(x) > 0 and F(x-) < 1}. Under the assumption P(X e B) = 0, we 

present an example that the generalized maximum likelihood estimator (GMLE) of F with 

doubly-censored data is not asymptotically normally distributed and is not asymptotically 

efficient, and we propose a modified GMLE. We conjecture that it is asymptotically normally 

distributed and asymptotically efficient under the assumption P(X E B) = 0. We give a proof 

under an additional assumption. 

1   Partially supported by DAMD17-94-J-4332. 
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1. Introduction 

We consider efficient estimation of a survival function with doubly-censored data. Let 

Xi, X2, ■. ■, Xn be i.i.d. copies from a random survival time X, with a distribution function F. 

Let {Z\, Yi), (Z2, Y2)) ■-, (Zn,Yn) be i.i.d. copies from a random vector (Z,Y), where Z <Y 

with probability one. Assume that X and (Z, Y) are independent. For each z, 1 < i < n, Xi 

is either observed if Zj < Xi < Yi, or right censored if Xi > Yi, or left censored if Xj < Zj. 

Thus the observation can be represented by a random interval X, where 

'[x,x]    ifz<x<y, 
(Y,oo)       ifY<X, (1.1) 
(-00, Z]    ifX<Z. 

This censoring scheme is called a double censorship model (DC model). 

Doubly-censored data often arise in biomedical studies, reliability research, and many 

other fields. Examples of doubly-censored data can be found in Leiderman et al (1973), 

Samuelsen (1989) and Kim, De Gruttola and Lagakos (1993). 

Turnbull (1974) proposes the generalized maximum likelihood estimator (GMLE) of F 

with doubly-censored data, and shows that the GMLE is a self-consistent estimator (SCE). 

Turnbull (1974), Chang and Yang (1987), Chang (1990) and Gu and Zhang (1993) show that 

the SCEs are consistent, asymptotically normally distributed and asymptotically efficient 

under certain regularity conditions. Denote 

K(x) =P(Z < x < Y), 

Pc(x) = P{X is not censored|X = x}, 

Q = {x: F(x) > 0 and F(x-) < 1}, 

B = {x : K(x-) = 0, x e Q}. 

Turnbull (1974) assumes all random variables takes on finitely many values. Gu and Zhang 

(1993) make weaker assumptions, with a key assumption 

K(x~) = Pc{x) > 0 for all x € Q. (1.2) 

Let Cl be the sample space and let Op = {x : x = X(u) for some u G 0}. Assumption (1.2) 

implies that 

OFDQ and K(x-) = Pc(x) for all xeQ, (1.3) 



which is not true for a discrete random variable X. The condition really needed in the proofs 

of Gu and Zhang (1993) is 

K(x-) > 0 for all xeQ, (1.4) 

rather than (1.2). (1.4) is weaker than (1.2), as it does not imply (1.3). 

A sufficient condition for F to be identifiable on the whole real line is P(X £ B) = 0, 

since all SCEs are consistent under this assumption (Yu and Li (1998)). It is easy to see 

P(X e B) = 0 is weaker than (1.4) since (1.4) implies that B is empty, thus P(X e B) = 0. 

An interesting case of a nonempty B is that B is a discrete set. In such a case, we have 

P(X G B) = 0 if F is continuous. Let (zij,yij), i G K\ and j G i^2, be all the possible values 

of (Z,Y), where K\ and Ki are two index sets. Then B = Q\ Ui,j(zij,yij]. Notice that if 

{zijiVij) = (i,i + l — 1/i), i > 1 and j > 2, then B is a discrete set of all positive integers. 

Here "\" stands for set minus. In a follow-up study, Z stands for the age of a patient at 

the enrollment and Y the age at the termination of the study. Thus it is possible that in a 

follow-up study B is a nonempty discrete set with P(X £ B) = 0, as it is reasonable to assume 

that the lifetime distribution is continuous. 

If P(X G B) = 0, in general, the GMLE of F is not asymptotically normally distributed 

and is not asymptotically efficient (see Section 3). We propose a modified GMLE and show 

that it is efficient under an additional assumption. We conjecture that it is still asymptotically 

normally distributed and asymptotically efficient under the assumption P(X e B) = 0. 

The organization of the current manuscript is as follows. The modified GMLE is proposed 

in Section 2. In Section 3 we present an example such that the GMLE is not asymptotically 

normally distributed and is not asymptotically efficient but the modified GMLE is. In Section 

4, we make some comments. 

2. Modified GMLE 

Let (L, R) be the endpoints of the random interval I in (1.1). Let /j, i = 1, ...,n, be a 

random sample from X, with endpoints (Li, Ri). We call a nonempty finite intersection B of 

ii's an innermost interval (II) if B D Ik — B or 0 for all k. Let B\, ..., BM be all the distinct 



innermost intervals induced by these Zj's and assume that x < y for each x G ß;_i and each 

y G Bi, i = 2, ...,M. An innermost interval A is called a modified innermost interval (m-II) 

if it is either a singleton set or B\ or BM- Let Ai,...,Am be all the distinct m-IIs and assume 

that x < y for each x G A;_i and each y G Ai, i = 2,..., m. 

The modified GMLE (m-GMLE), F, of F is denned by 

F(x)=      Yl      si> 
AjC(-oo,x] 

where (si, ...,sm) maximizes the modified likelihood function 

n     m 

£(*i,..., 5m) = JJ ^ «j-l^ C 1*), where «,- > 0 and £™ x Sj = 1. (2.1) 

Here l(-) is the indicator function. The m-GMLE can be derived by an iterative procedure 

as follows. At step 1, let s,- ' = l/m for j — 1,..., m. At step h, 

S
J 

{h)     ^ l      l(Aj C I^sf-1) 

anEr=il(^C/,)4""1) 

Stop at convergence and the limit lim^^oo Sj ' is the m-GMLE of Sj. 

Thus the m-GMLE redistributes the mass among uncensored observations, or the interval 

(-oo,Ä(i)] if (-00,12(1)) = (Li,Ri) for some i G {l,...,n}, or (L(n),oo) if (L(n),+oo) = 

(Li,Ri) for some i G {1, ...,n}, where 

-R(i) = min{12j : i = 1,..., n} and L(n) = max{Lj : i = 1,..., n}. (2.2) 

Denote £; = max Ai, i = 1, ..., ra - 1. Denote 5jj = l(Aj C /;) and s = (si,..., sm_i)*, where 

s* is the transpose of s. Let A be the (m — 1) x (m — 1) dimensional empirical information 

matrix with the (z, j)th entry 

n     .. m 

2J ~(^u - 8hm)(8hj - Öhm)/(22 ^hkSk)2■ 
h=l fc=l 



Note that F(tk) = J2j=i % = efcS, where e^ is a (m — 1) x 1 vector with the first k entries 

being unity and the others all zero, A; = 1, ..., m — 1, an estimator of the variance of F(tk) is 

a2
P{tk) = e'A-^/n. (2.3) 

Recall that the GMLE F of F(x) can be obtained by F(x) = EBC(-°O,X] ^j f°r a^ x-> 

where (wi, ...,WM) maximizes the generalized likelihood function 

n M 

L = L(wi,...,%) = JJ[^ l(Bj C Ii)wj], with wt > 0 and ^ w; = 1. (2.4) 
t=l     j i=l 

Turnbull (1974) shows that the GMLE of (WI,...,WM) is a solution to the self-consistent 

equation 

^^E^M^^n     »   i = l,-,M,Wi>Oandf;Wi = l. (2.5) 

A solution (WI,...,WM) to (2.5) is called an SCE of (WI,...,WM) and an estimator Fi(x) = 

Y^B-C(-OO,X] ™j ^S caUe(l an SCE of F(x) if (i&i, ...,WM) is an SCE of (tui,...,%). Both the 

GMLE and the m-GMLE are SCEs. These two estimators are the same when the GMLE puts 

zero mass on all the innermost intervals which are not m-IIs. In general, they are different. 

Under the assumption P(I 6 ß) = 0 and an additional assumption that X takes on 

finitely many values, say aji, ..., xm, we can show that the m-GMLE is efficient. Let Ai = {xi} 

and s° = P(X = Xi) i = 1, ..., m. Then s° > 0. Under the above assumptions, with probabil- 

ity one, for n large enough, the random sample contains all the AjS. In view of the likelihood 

function (2.1), the problem reduces to parametric estimation of a multinomial distribution 

function with parameter s. The m-GMLE of s is the MLE of s in this parametric estimation 

problem. Since s° > 0 for all i, by the standard large sample theory (see e.g., Ferguson (1996)), 

the MLE of s is consistent, asymptotically normally distributed and asymptotically efficient. 

The asymptotic covariance matrix can be estimated by the sample information matrix A-1. 

This justifies the use of formula (2.3). An explicit form of the inverse of the information 

matrix of a self-consistent estimator is given in Turnbull (1974). Since the m-GMLE is also a 

self-consistent estimator, the formula is applicable to the m-GMLE. 



Remark We conjecture that the m-GMLE is asymptotically normally distributed and asymp- 

totically efficient if P(X G B) = 0. The above paragraph confirms it with the additional 

assumption that Op is finite. We can further prove the conjecture under the additional as- 

sumption that Op consists of isolated points or B is a union of mutually disjoint intervals 

(ui,V{]s. We decide not to present the latter proof but refer them to a technical report (Yu 

and Wong (1998)), as it is not as short as the above paragraph but still needs an additional 

assumption. 

3. A Simple Example 

We now give an example that the GMLE F of F(x) is not asymptotically efficient and 

y/n(F — F) does not converges in distribution to a Gaussian process, but the m-GMLE does. 

Suppose that in a DC model, P{(Z,Y) G {(0.5,y) : y G [2,3)}) = gx and P({Z,Y) G 

{(z,8) : z G (3,4]}) = g2, where gi + g2 = 1; F(x) = pil(x > 1) + p2l(x > 5), where pi 

and p2 > 0. Then (L,R) takes values (1,1), (5,5), (—oo,y) and (2,00), where y G (3,4] and 

z G [2,3). Given a random sample of size n from (L, R), there are Ni (1, l)'s, iV^ (5,5)'s, N3 

intervals of form (—00, y)'s and N4 intervals of form (2, +oo)'s. 

Note that in this case assumption (1.4) is violated, as Q = [1,5] (see (1.4)) but K(3—) = 

P{Z < 3 < Y) = 0; however, P(X G B) = 0 as B = {3}. 

We now derive the GMLE and the m-GMLE. With probability one, if n is large enough, 

the innermost intervals are [1,1], (y0,z0] and [5,5] and the m-IIs are [1,1] and [5,5], where 

y0 is the largest LjS among all Li < 3 and z0 is the smallest Ri among all Ri > 3.   Let 
77    _       Na Ni 

n ~ N2+N3        JV1+JV4 ' 

Aw = wrhu1^2 x)+u-1(x ä 3)+whr3
1(x ä 5)- 

P(x) = ZL±1>11{X > 1) + ^±I±1(X > 5), (3.1) 
n n 

F(x) = Fi(x)l(t/n > 0) + F{x)l(Un < 0). 

Verify that F and F are the GMLE and m-GMLE of F, respectively. It follows from the 

strong law of large number (SLLN) that the three estimators in (3.1) are all consistent. Note 
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that iVi +i\T3 has a binomial distribution Bin(n,F(2)). Thus F(x) is asymptotically efficient 

for all x, and y/n(F — F) converges in distribution to a Gaussian process. 

Let p = F(4) - F(2), then the m-GMLE of p is p = F(4) - F(2) and the GMLE of p is 

p = F(4) - F(2). In order to show that the GMLE F is not efficient and y/n(F - F) does 

not converges in distribution to a Gaussian process, it suffices to show p is not asymptotically 

efficient and is not asymptotically normally distributed. This is done next. 

Note that p = 0, thus var(p) = 0. However, p = Unl(Un > 0) and y/nUn converges 

in distribution to U, a normal random variable with mean 0 and standard deviation a > 0, 

which can be obtained by the delta method. That is, var(p) < var(p). Thus the GMLE p is 

not asymptotic efficient. Moreover, y/nÜnl(Un > 0) converges in distribution to U1(U > 0), 

which is not a normal random variable. 

4. Discussion 

Under assumption (1.4) and some additional assumptions made in Gu and Zhang (1993), 

both the GMLE and the m-GMLE have the same asymptotic properties as both of them are 

SCEs. If P(X € B) = 0, then both of them are uniformly strongly consistent (see Yu and Li 

(1998)). 

The m-GMLE has two advantages over the GMLE. Under the assumption P(X e B) = 0, 

the GMLE is not efficient but we conjecture that the m-GMLE is. In the end of Section 

2, the conjecture is confirmed in the case that X takes on finitely many values but the 

censoring vector can be arbitrary. In application, there is a computational feasibility problem 

in obtaining the GMLE using the self-consistent algorithm if the sample size is large. It is 

then desirable to reduce the number of parameters to be estimated. The second advantage of 

the m-GMLE over the GMLE is that it has less parameters to estimate. 

When P(X e B) > 0, F is not identifiable on [0, +oo). Thus both the GMLE and the m- 

GMLE are not consistent on [0, +oo). However, the GMLE is consistent at each observation, 

whereas the m-GMLE is not. Thus when the GMLE assigns to an II which is not an m- 

II a mass which is about the same as the mass to an m-II, it may be an indication that 

P(X E B) > 0. In such a case, it is better to use the GMLE. However, we do expect that a 


