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INTRODUCTION 

Breast cancer is a devastating disease which will affect one out of every eight 
women. Although important initial steps towards understanding the molecular biology of 
breast cancer have been made, a cure is not in sight. It is recognized that the medical 
prognosis of breast cancer is very much related to the size and stage at which breast 
cancer is discovered, with better prognosis occurring for breast carcinomas discovered 
earlier. Consequently, the early detection of breast cancer is a very important aspect 
towards improving the prognosis of the individuals stricken with the disease. 

The early detection strategies for breast cancer include principally mammography 
and breast self examination. While self examination is economical and is available and 
important for all women to practice, the smallest palpable lesion that can be found with 
breast self examination is approximately 10 mm, and the average lesion diameter at 
detection with BSE is much larger (>20 mm). Mammography has been found to have 
much greater sensitivity, with routine identification of lesions as small as 2 to 3 mm, and 
with average detection of lesions of about 11 mm in diameter. 

The efficacy of medical screening techniques is traditionally measured using 
clinical trials. Clinical mammography trials are very expensive, and can focus on only 
very narrow issues, since the scale (cohort sizes) and cost increase with the number of 
permutations studied. Clinical trials have been used to measured the effectiveness of 
mammography, however controversy has ensued concerning certain studies. For 
example, the Canadian study was criticized1'2 for employing older mammography 
technology in its early years, with claims that the results were tainted as a result. 
Unfortunately, mammography is again about to face a huge change in technology in the 
next few years, once the digital mammography systems currently facing FDA clearance 
make it into the clinical screening environment. 

The approach being studied in this project is the use of computer simulation 
techniques to simulate many aspects of a clinical trial. The benefit of this approach is 
that many factors which affect the clinical trails outcomes can be studied simultaneously. 
Being only software, the costs of computer simulation are very modest compared to more 
conventional approaches. Furthermore, much is known about the development of breast 
cancer, but this knowledge is spread around the literature in different fields - the growth 
rate of breast cancer, the effectiveness of breast self examination, the population 
distribution, the death rate, etc. - most of the data necessary for building a breast cancer 
screening simulator is available in the literature. In this project, we utilize and build upon 
what is available in the breast cancer literature, with the intention of studying which 
parameters have the most influence on improving the efficacy of breast cancer screening. 
While many of the components of the screening simulation model are being built from 
our own research on mammographic imaging, much of the data are incorporated into the 
simulation model by computer-fitting published data. 

It is hoped that once completed, and after careful and thorough validation, that the 
breast cancer screening model will help in the optimization of breast cancer screening, by 
suggesting better timing regimes, custom-tailored to the characteristics specific to each 
women in the screening population. 
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BODY 

Most aspects of the breast cancer screening model have been developed in this first year 
of the grant at least in a preliminary sense, touching on all of the tasks in the Statement of 
Work (SOW). The following discussion will proceed in the most logical order, which is 
not necessarily the order of the eight tasks as indicated in the SOW. Therefore, the SOW 
Task numbers will not be in numerical order. 

SOW TASK 5: 
Demographic data concerning the age distribution of women in the US is a key input to 
the breast cancer screening model. Figure 1 illustrates the US female population 
projected to July 1, 2000. The distribution of white, black, Asian, and American Indian 
women is as indicated in the figure. These high-resolution (1-year intervals) population 
data were downloaded from the US Census Bureau. The age at which breast cancer 
screening should start is one of the most contentious aspects of breast cancer screening. 
The debate3 generally is involved with whether breast cancer screening should start at age 
50 or at age 40. One of the reasons why there is so much controversy over this is that the 
starting age has a profound effect on the number of women to be screened. Figure 2 
illustrates the US total female population, and the baby boom is clearly seen as the bump 
between approximately ages 30 and 54. If screening commences at age 50, then 41.7 
million women will need to be screened (assuming no end-of-screening age is set). If 
screening were to begin at age 40, an additional 23.3 million women would need to be 
screened, increasing the screening population by 56%. This large increase in the number 
of women screened of course has a profound economic impact: for insurance payers 
(including medicare), it represents a large increase in screening costs. For radiologists, 
clinics, and hospitals, however, screening these women represents an additional source of 
revenue. 

Breast cancer screening seeks to identify women with breast cancer, but breast cancer is 
in competition with other diseases and occurrences as a potential cause of death for each 
women. Consequently, it is necessary to include in the screening model the female death 
rate, excluding breast cancer as a cause. Figure 3 illustrates the high resolution death 
statistics available from the US census bureau. This raw data (Figure 3) shows the data 
for all causes of death, including breast cancer. Other data (not shown) from the National 
Cancer Institute's SEER (Surveillance, Epidemiology, and End Results) program does 
provide death rate statistics for all causes excluding breast cancer, but at lower resolution 
(5 year intervals instead of 1 year intervals). The SEER data also provides the lower 
resolution death rate from all causes. The ratio of the SEER death rates (excluding and 
including breast cancer) was calculated, and the 5 year interval data was computer fit 
using commercially available software (TableCurve 2D, Jandel Scientific, Corta Madera, 
CA). This computer-generated function modifies the death rate from all causes to the 
death rate excluding breast cancer. It was used to modify (by multiplication) the high 
resolution death rate statistics shown in Figure 3, such that they are representative of 
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death rates by all causes except breast cancer. It is necessary to point out that in the 
screening model, our goal is to identify all women with breast cancer by screening (or 
competing methods), and those women as identified with breast cancer then represent a 
separate and unique cohort. Women who do not have breast cancer will face the 
probability of dying only from non-breast cancer causes (using the death rate statistics 
corrected to exclude breast cancer as a cause of death). Women who we have identified 
using the computer model as having breast cancer (whether detected yet or not) not only 
face death by non-breast cancer causes (as the rest of the population), but also face the 
additional probability of dying from breast cancer. This latter probability is affected by 
breast cancer prognosis, which in turn is affected by the current therapies used for 
treating breast cancer. The issue of prognosis will be discussed later. 

The incidence of breast cancer for all races (combined) is shown in Figure 4, and the 
corresponding figures for white and black women are shown in Figures 5 and 6, 
respectively. These figures show the raw data (stars, the individual data points), and the 
computer fit to the data. Because of the multiple bumps in the incidence versus age 
profile, it was necessary to use multiple fitting functions to each curve to achieve the 
desired accuracy. Different analytical fits were performed over three age ranges (0-20, 
20-68, 68-100), and a hybrid fit function was produced. Incidence data is available for 
the white and black populations, but not for the Asian or American Indian populations. 
For these latter two groups, the incidence from the total population (Figure 4) was used, 
whereas white and black women in the screening model were evaluated using the race- 
specific incidence data. As above with the death rate statistics, we are interested in the 
breast cancer incidence amongst women with no-prior breast cancers, and thus the 
incidence rates used are for breast cancer-free women. The raw data was available from 
SEER. Incidence refers to the number of women (in this case at a specific age) who are 
discovered to have breast cancer, but the average size of a breast cancer lesion at 
detection today is about 11 mm. Obviously, such a lesion has been growing for some 
period of time. The data of Spratt4"7 were used to correct the incidence at the time of 
detection back to the time at which the breast cancer lesion was 2.1 mm. The data of 
Spratt give the tumor sojourn time for different age groups of women, and the sojourn 
time was calculated to be the time during which the breast tumor grew from 2.1 mm to 11 
mm. Because younger women generally experience more aggressively growing tumors, 
the sojourn time is shorter for younger women. This data was computer fit, and used to 
correct the incidence data seen on Figures 4, 5 and 6 to reflect the incidence when women 
have a 2.1 mm lesion (not a 11 mm lesion). This effectively shifts the incidence curves 
to the left (back in time) by several years. 

A stochastic model was built which draws from the demographic data shown in Figure 1, 
uses the death rate statistics shown in Figure 3, and applies the cancer incidence data 
shown in Figures 4, 5 and 6. This model generates a database of women, the size of 
which is specified by the user. Our model assumes that all women die at age 100, as 
women over that age number relatively few and their overall influence in the assessment 
of the breast cancer screening issue is negligible. For the statistics generated in this 
report, we used database sizes running from 100,000 women to 1,000,000 women. All 
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races indicated on Figure 1 were modeled. This model predicts that 1 in 8 women will 
face breast cancer in her life, similar to the reports of other epidemiological studies. 

SOW Task 1 
More than 1000 mammograms from the breast screening clinic at UC Davis were 
digitized using a high resolution laser digitizer, and were sub-sampled by averaging to 
smaller, more manageable spatial resolutions (250 urn pixels). Since breast density is 
known to correlate to increased risk of breast cancer8'9, it's inclusion in the screening 

o t 

model is important. Breast density is a low frequency phenomena, and does not require 
high resolution images for its assessment. Co-investigator Lindfors, the Chief of 
Mammography at UC Davis, sat down and assessed each of the images for breast density, 
using her subjective assessment skills based from clinical experience. While we have 
studied computer determined metrics of breast density10, as have others  '  , we still 
consider the radiologist's assessment as the gold standard. We have developed a breast 
density index (BDI) which spans a range from 0 (least dense) to 100 (most dense) as the 
quantitative measure of breast density. As a measure of the precision of the radiologist's 
BDI assessment, Dr. Lindfors studied a subset of 153 mammograms twice, several 
months apart. Figure 7 illustrates the correlation between these two quasi-independent 
sessions, indicating excellent precision (less than 5% of the variance [1-r2] is associated 
with radiologist imprecision). 

The BDI as a function of patient age is illustrated in Figure 8, and in this figure a cloud- 
like relationship between breast density and age is seen. The breast density index (BDI) 
was summed into ten density categories, where category l=BDI(l-9), 2=BDI(10-19), 
3=BDI(20-29), etc. Figure 9 illustrates the distribution of breast density of the screening 
population at UC Davis. It is well known that women's breasts loose density with age, 
and the cloud data seen in Figure 8 show this trend somewhat. To better quantify this 
effect, the data for each age range in five year intervals were assessed using non- 
parametric statistics (median=50%, 25 percentile and 75 percentile). These data are 
shown in Figure 10. 

For each age interval of 5 years, the BDI data was partitioned into 5 pentiles, from least 
dense to most dense. For example, for all the women in the 40-45 age range, the 20% 
(1/5) that had the lowest BDI values were assigned to pentile 1, the next 20% to pentile 2, 
etc. The median and range of each pentile was then computed, as shown in Figures 11, 
12 and 13 for the five pentiles assessed. The median and range data for each pentile was 
computer fit, and the computer fit profiles are illustrated as the dotted lines in Figures 11, 
12 and 13. The computer fit functions were used in generating a model of breast density 
versus age for the computer simulations. The breast density computer model assumes 
that a women who has dense breasts when she is young, continues to be in the dense 
breast category when she gets old. For each women in the simulated data base, the breast 
density model consists of selecting a pentile category (one of those shown on Figures 11, 
12 or 13) at random, and then another floating point random number, t,, is chosen on the 
interval from (-1 to +1). Each women rides the curve of breast density for her assigned 
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pentile, but where she sits on the curve between the upper and lower bounds is 
determined by the value of £. 

The breast density model was assessed using 100,000 women, and the global BDI versus 
age data is illustrated in Figure 14. Good agreement between the measured BDI data 
(solid lines) and the modeled results (dotted lines) is seen. The average BDI for each 
decade of age for both the original data measured in the 1000 women database at UC 
Davis is compared with the simulated results in Figure 15. Again, very good agreement 
exists between the modeled breast density and the original data which is the basis for the 
model. The mean BDI values are shown with values in Figure 16 for reference. 

It is probably not true that every women maintains the same rank amongst her peers in 
terms of breast density as she ages (which is what the breast density model assumes), 
since some women will lose density for example due to weight gain, and some will 
increase density due to weight loss or if placed on hormone therapy. Nevertheless, the 
modeled cohort breast density matches the UC Davis population quite well. The purpose 
of the computer simulation model is not to single out an individual women, but rather to 
produce screening simulation results based on large cohorts of simulated women. For 
these purposes, the breast density model should be adequate. 

SOW Task 2 
In order to assess the detectability of breast cancer in women with different breast 
density, Monte Carlo simulations were used. Simulated spherical breast lesions ranging 
from 2 mm in diameter to 40 mm in diameter were generated for each of the 1000 
digitized mammograms in our database. The measured curves relating optical density to 
gray scale value (and gray scale to optical density) for the Lumisys 150 digitizer used are 
shown in Figure 17. The Hurter and Driffield (H & D) curves for the mammography 
screen-film system used at UC Davis is shown in Figure 18(a), and the inverse curve 
(relating OD to exposure) is shown in Figure 18(b). These look-up tables were used to 
"map" the digital mammographic image data back to be linear with units of exposure, as 
illustrated in Figure 19. The gray scale mammograms were converted to OD using the 
digitizer response curve, and then were converted to exposure using the inverse H & D 
curve. Once the images were linear with exposure, the x-ray shadow (it's attenuation) of 
a spherical breast cancer lesion was calculated and was used to modulate the exposure 
levels of the image. The lesions were placed randomly over the breast parenchyma 
regions of the image, and techniques were used to assure that the entire lesion was placed 
only over breast parenchyma, not over the background areas in the image. The subject 
contrast of a given lesion (how much it perturbs the exposure level) depends upon the 
difference in the linear attenuation coefficient between the normal breast parenchyma and 
the breast cancer lesion itself, A(a (Figure 20). The breast composition data as published 
by Hammerstein13 were used. The ambient breast composition was assumed to be that of 
50% adipose and 50% glandular. As Johns and Yaffe   have shown, the attenuation 
properties of breast cancer are very similar to those of 100% glandular tissue. Therefore, 
the attenuation coefficients for 100% glandular tissue were used for the simulated 
spherical breast cancer lesions. To calculate this realistically, the x-ray spectrum used 
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predominantly at UC Davis, a 26 kVp Mo/Mo x-ray beam, was incorporated (Figure 21) 
in a polyenergetic model.  Using the x-ray spectrum shown in Figure 21, the value of Ap 
was calculated for a range of different lesion diameters and a range of breast thicknesses, 
as shown in Figure 22. The thickness both of the breast and the lesion affects Ap due to 
spectral hardening influences ("beam hardening"), and that is why the curves seen in 
Figure 22 are not simply horizontal, which would imply that Ap is constant. However, 
for the typical compressed breast thickness (4 cm), the value of Ap is pretty constant over 
the range of lesion diameters (1 mm < Ax < 10 mm). Therefore, a constant value for Ap 
of 0.16 was used in this simulation. 

Once the exposure is modulated by the presence of the simulated lesion, the exposure 
distribution is remapped to optical density using the Ff & D curve (Figure 23), and then 
from the optical density (OD), the film transmittance is calculated. The film 
transmittance is the signal seen by the mammographer's eyes, and the transmittance is the 
relative amount of light coming through the mammogram placed on a viewbox. For each 
lesion, the transmittance signal under the lesion is averaged, and the image counts in an 
annular region outside of the circle defining the lesion is averaged as well. The lesion 
and background areas were made equal. The parameter which is used to assess the lesion 
detectability is given the symbol d, and is calculated as shown in Figure 24 as: 

Tie: 

Tbg 

The ratio of the transmittance is taken, since it is thought that the response of the human 
eye is logarithmic with respect to light intensity. For each lesion size under 20 mm, 500 
regions of interest (ROIs) were assessed on each mammogram, 250 containing lesions 
and 250 not containing lesions. For lesions over 20 mm, 100 regions with and 100 
lesions without were assessed. For the placement of a large number of lesions (and non- 
lesions), the two curves as shown in Figure 25 can be produced (idealized curves are 
shown in the figure). Using the basics of signal detection theory15 from the two 
histograms of normal and lesion ROIs, by setting a specific value of the threshold (Figure 
25) the number of true positives (TP), true negatives (TN), false positives (FP) and false 
negatives (FN) can be determined. For each set of these values, the sensitivity and 
specificity were calculated: 

TP 
sensitivity =  TPF = 

TP + FN 

TN 
specificity  =  TNF  = 

TN  +  FP 
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The value of the threshold setting (vertical line shown on Figure 25) was varied in 1000 
even intervals, over the pertinent range ofd, and at each threshold value the sensitivity 
and specificity was calculated. Using this array of data, a receiver operating 
characteristic (ROC) curve was computed (Figure 26). An ROC curve is a plot of 
sensitivity (true positive fraction, TPF) as a function of (1-specificity) ([l-TNF]=false 
positive fraction). Once the ROC was calculated, the area under it, Az, was numerically 
calculated. Figure 26 is representative of the type of ROC curves generated in the 
computer simulation (it is one). The area under the ROC curve, Az, is related to the 
detectability of the lesion (but it is not the probability of detection). For each 
mammogram, an Az value was generated for lesions measuring 2 mm, 4 mm, 6, 8, ....20, 
25, 30, .. .40 mm in diameter. Since each mammogram has associated with it a breast 
density index, the Az values could be related to the BDI. The Az is shown versus the BDI 
for 14 different lesions sizes in Figure 27. The trends shown quantitatively in this figure 
are consistent with clinical observation: (1) larger lesions are easier to see than smaller 
ones (i.e. the Az values increase with increasing lesion diameter), and (2) lesions are more 
difficult to detect in the denser breast (Az values decrease with increasing BDI). Figure 
28 illustrates the same data in a different way. The mean Az value is shown plotted as a 
function of lesion diameter, and curves for 10 different breast density categories are 
shown. 

We note that the above experiments describe a computer observer experiment, however 
on a more limited basis these same types of experiments can be performed using human 
observers. It is not possible to quantity huge numbers with human observes given the 
constraints of time, but we are planning to perform several computer observer (with a 
radiologist) ROC studies with the intention of calibrating the computer observer results 
against a trained human observer. 

The Az value is a parameter that is related to lesion detectability (for example if Az=1.0, 
then the lesion will be quite detectable, and if Az=0.5, it will be undetectable except by 
luck), but it does not represent the probability of detecting a breast cancer lesion when 
one is there. The Az value does describe the general shape of an ROC curve. The 
probability of detecting a lesion, when one is present, is the sensitivity, the ordinate of the 
ROC curve. The problem in relating the Az value to the sensitivity exists because a 
radiologist can slide around on his or her ROC curve, trading off increased sensitivity for 
reduced specificity, or visa versa. We recognized, however, that in mammography there 
is a way to essentially "calibrate" the Az value (that is, an ROC curve based on the 
standard binormal probability density functions for normal and abnormal patients). In 
mammography, for most mammographers the positive biopsy rate ranges from about 
20% to 30%. If the pre-biopsy follow-up aspects of screening mammography (e.g. 
ultrasound, additional views, diagnostic examination) are considered part of the 
examination process, then the positive biopsy rate is equal to the positive predictive value 
(PPV), where: 

TP 
PPV =   

TP +  FP 
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Whereas the sensitivity and specificity are independent of disease prevalence, the positive 
predictive value is not. Therefore, to compute the sensitivity from a given Az value based 
on the positive biopsy rate technique that we developed, a knowledge of disease 
prevalence is needed. Figure 29 shows a plot of the normal, N(£), and cancer, C(£,), 
populations, similar to Figure 25 shown previously, except here the area of the cancer 
population is normalized to the prevalence of the disease in the screening population. In 
Figure 29, the disease prevalence was taken as 2 cancers per 1000 screens, and the 
ordinate axis is plotted logarithmically to demonstrate the large range. The curves are 
actually normal (i.e. Gaussian) in shape, but the logarithmic ordinate changes their usual 
appearance. Once properly normalized for the disease prevalence or cancer detection 
rate (CDR) as it's called sometimes, the sensitivity can be calculated as a function of Az. 
For example, Figures 30 and 31 show the sensitivity (and specificity) as a function of the 
positive biopsy rate (i.e. PPV), for CDR = 10 and CDR = 8, respectively. Higher CDRs 
result in higher sensitivities for the same positive biopsy rate and Az value. This model, 
we think, is valuable in its own right and we intend to publish it soon. Figures 32 and 33 
show the sensitivity as a function of the cancer detection rate, for four different Az values. 
A positive biopsy rate of 10% is shown in Figure 32, and a PBR of 30% is shown in 
Figure 33. Another way of showing the data is demonstrated in Figures 34 and 35, where 
the sensitivity is shown plotted as a function of Az. Notice that for a realistic cancer 
detection rate of 5 cancers per 1000 screens (Figure 34), and for a realistic positive 
biopsy rate of for example 20%, the sensitivity is only 10% at an Az value of 0.87. To 
achieve a sensitivity of 50%, the Az value needs to be 0.94. 

There is much literature which focuses on determining the sensitivity of mammography, 
but there is a certain fallacy with such a notion. As demonstrated using a computer 
observer in Figure 28, the Az value changes markedly as the lesion diameter increases. 
Thus, the sensitivity of mammography depends greatly on the size of the lesion. Once 
the data in Figure 28 is validated against human detection experiment, we hope to report 
the lesion size dependency of the sensitivity of mammography. 

SOW Task 3 
Computer doubling times were assessed by Spratt4"7, and these values were computer fit 
and are shown in Figure 36. The upper and lower range of doubling times are shown for 
ductal carcinoma in situ (DCIS), note negative (N-) and node positive (N+) cancers. 
Longer doubling times of course correspond to more slowly growing cancers. Notice that 
the implication of Figure 36 is that breast cancers for young women grow at a much 
faster rate than the same type of cancer for an older women. The tumor doubling times 
can be converted to growth rates (assuming exponential growth) as illustrate in Figure 37 
for tumor onset at age 40 years. Figure 38 shows tumor growth for an age of onset of 60 
years. The range of growth rates echos the upper and lower limits of the measured 
doubling times (from Figure 36). We evaluated a large number of papers (stacks), and 
find the singular work of the Spratt's (JA. and J.S.) to be most useful for our purposes 
here. A search of the literature will nevertheless be continued along these lines. 
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SOW Task 4 
Prognosis from breast cancer is highly dependent upon the treatment options that are 
available. In the 1960s and 1970s, most women with breast cancer underwent radical 
mastectemy. In more recent years, surgical lump removal perhaps followed by radiation 
is the preferred treatment in the United States. Tumor suppressing drugs such as 
tamoxifen are also being more widely used under research protocols. The problem in 
developing a solid prognosis model for the purposes of building this computer simulation 
system is that the older data have the longest follow-up and therefore are the most 
accurate, but it also reflects an era when the clinical management of breast cancer was 
different. Combining the data from Carter16 and Lopez and Smart17, survival data are 
shown as a function of years post-detection in Figure 39. The data for four different 
tumor sizes (at diagnosis), and for ductal carcinoma in situ (CIS) are illustrated. For the 
four tumor sizes, the data were fit using linear regression with correlation coefficients (r 
) of 0.992, 0.995, 0.993, and 0.989, for the 10, 20, 20-50, and >50 mm data sets. The 
regression fit lines are shown in Figure 39. The absolute value of the slope of each of 
these lines is plotted as a function of lesion diameter in Figure 40, and the four data 
points (plus a zero point) are shown as solid circles. The slope data was computer fit to a 
function using commercially available curve fitting software, and the best fit function is 
shown as the solid line in Figure 40. The data shown (i.e. the computer derived fitting 
function) is capable of relating tumor diameter at the time of detection to the slope of the 
survival curve, for any arbitrary lesion diameter from 0 mm to 50 (using interpolation) or 
beyond (using extrapolation). A set of computer generated survival curves, computed as 
just mentioned, is illustrated in Figure 41 for a range of tumor diameters from 5 mm to 60 
mm (in 5 mm increments). While this method of computing prognosis (i.e. survival 
versus time) is simple, it does very accurately replicate the observed survival data of 
Carter16 and Lopez and Smart17. We consider this a good starting model for prognosis, 
and will continue to improve it depending on the discovery of better data in the literature. 

SOW Task 6 
The elements of the breast cancer screening simulation model as described above were 
combined into a comprehensive pair of routines. The first routine made use of the patient 
demographics, death rate, breast density, and breast cancer incidence models and was 
capable of generating databases with various characteristics. At this point, the databases 
built are similar except for size, and we have constructed data bases ranging from 5,000 
simulated women to 1,000,000 simulated women. The smaller databases are useful for 
debugging purposes. 

The second routine reads in a specified database, and applies a user-selectable screening 
paradigm. Parameters that can be varied include the starting age, stopping age, screening 
interval, and breast density dependent screening parameters. 

SOW Task 7 
Validation of the model against clinical trial data is just beginning. Figure 42 illustrates 
the cancer detection rate as reported by two groups as a function of the age categories of 
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the screened women. Using the same screening parameters as those reported (start at age 
50, screening interval of 2 years), the screening model generated the data with the solid 
circles. We need to emphasize that our approach to peer review reporting of any results 
from the screening model will be extremely conservative. We make absolutely no claims 
at this point, and the results discussed below should be considered highly speculative 
until further, more complete validation can be performed. Given that this is a limited- 
distribution document, however, we will make some observations, which should be 
considered as extremely preliminary. 

Excellent agreement between the data is seen in Figure 42. The model-derived data were 
not fit or tweaked in an iterative scheme to match the comparison data, they are a direct 
output of the screening model, making use of all of the models as described above. We 
are frankly surprised and extremely encouraged that the preliminary results in terms of 
this simple parameter, cancer detection rate, are even in the ballpark of clinically reported 
values. 

The frequency distribution of tumor sizes reported by Shetty and Reiman18 are compared 
against the results of the computer simulation model described here in Figure 43. The 
data of Shetty and Reiman were hard to model precisely because of its long acquisition 
time (1980-1995), which reflects a period in which many screening intervals and start 
ages were popular. 

The number of cancers detected as a function of age in the screening population is 
illustrated in Figure 44. While the shear number of cancers represented in the <50 age 
group is a small (but certainly not negligible) fraction of the total curve, these cancers 
have a profound effect in reducing years of life per cancer victim (since at this young age 
women have many more years left of their lives, on average). The total years of life 
saved are shown in Figure 45. Notice that this curve is shifted left, compared to Figure 
44, illustrating that finding a cancer and treating it at an early stage has a greater potential 
to save more years of life for younger women as compared to older women. 

As another example of the types of data that can be generated by the breast cancer 
screening model, a series of survival curves is shown in Figure 46. The survival curves 
shown marked improvement for screening at shorter intervals. The survival curve for 
BSE alone (i.e. no mammographic screening) is also shown in Figure 46. The survival 
curves shown in this figure are curved (for a large cohort of women), whereas the 
modeled survival for each individual cancer victim is linear as shown in Figure 41. The 
difference is a result of the different tumor sizes at detection, and the different ages at 
detection (which affects growth rate and hence size of tumor at detection). 

Figure 47 illustrates the years of life saved per cancer patient, as predicted from the 
screening model. The data on this figure clearly indicate that shorter screening intervals 
increases the amount of years saved per cancer patient, with a Vi year screening interval 
saving on average 8.5 years for women age 50, where a screening interval of 3 years 
results in an average of 5.1 years saved per women aged 50. What is most striking about 
these results is that they clearly demonstrate that decreased screening interval has a 
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strong benefit for younger women, which is predicable knowing that younger women 
experience in general more aggressive tumors. This curve gives quantitative strength to 
this observation. Another important observation that can be made on Figure 47 is that a 3 
year screening interval is equivalent to the Vi year screening interval for women aged 70 
and above. If this observation proves to be true after further study, it would imply that 
the screening interval could be lengthened for older women with no detrimental affect on 
the outcome (as measured here). However, certainly a broader range of outcome metrics 
needs to be evaluated before any definitive statements could be made. Nevertheless, by 
increasing the screening interval in older women, more women could be screened using 
the same amount of screening resources. This is just an example of the type of result that 
would be useful in using the screening model to optimize the performance of breast 
cancer screening in the United States. 
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KEY RESEARCH ACCOMPLISHMENTS 

At this early phase of the research plan, our key accomplishment is the production of two 
screening model tools. The first model generates data bases of any number of women 
(databases having from 5,000 to 1,000,000 have been generated to date), and these 
women exhibit the proper epidemiological characteristics with respect to breast cancer, as 
determined by cancer rates, age-versus-incidence, number of cancers in the population, 
racial distributions, breast density distribution, and so on. The second model reads in the 
data base generated by the first model, and then applies concepts from fundamental 
detection theory to simulated breast cancer detection over a range of specified 
parameters, including start age, screening interval, and end age for mammography, and 
for different size versus detection distributions for the default competing modality, breast 
self examination. Preliminary results generated from the computer simulation models are 
very encouraging. 

Another key accomplishment is the recognition that the breast biopsy rate can be used to 
compute the sensitivity and specificity of mammography, for known incidence (cancer 
detection rates) and known receiver operating characteristic curve performance (the Az 

value). Since the Az value has a definite dependency on tumor size, and on breast 
density, defining a single pair of sensitivity/specificity values for mammography is 
probably naive. A manuscript showing the relationships between CDR, biopsy rate, and 
Az, will be submitted for publication soon. 
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REPORTABLE OUTCOMES 

(1) JM Boone and KK Lindfors, "Computer simulation of breast cancer screening 
efficacy", Medical Physics 26:1065-1066, 1999 (Abstract) 

(2) JM Boone and KK Lindfors, Symposium Presentation entitled "Computer 
simulation of breast cancer screening efficacy", presented at the 41st annual 
meeting of the American Association of Physicists in Medicine, Nashville, TN 
(July 26, 1999). 
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CONCLUSIONS 

The research is too preliminary to make any definitive conclusions with respect to breast 
cancer screening, per se. However, we can make the intermediate conclusion that our 
experience with the breast cancer screening model to date has given us a great deal of 
enthusiasm to pursue our original goals and produce a completely verified and validated 
screening model. In our next two years, we will concentrate on perfecting and improving 
each of the individual components of the screening model, and on validating the output 
results of the model with peer reviewed, high quality clinical trial data. 
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FIGURE CAPTIONS 

Figure 1. 
The US female population is shown projected to July 1, 2000. The total population, 
including the white, black, Asian, and American Indian components ofthat population 
are illustrated.    The "baby boom" is seen as the distinct hump between the ages of 30 
and 60. Source: US Census Bureau. 

Figure 2. 
One of the reasons why the age in which breast cancer screening should start is 
controversial is that it has a profound impact on the screening population. As illustrated 
in this figure, decreasing the age at first screen from 50 to 40 increases the screening 
population by 23.3 million women, increasing the number of screens by 56%. 

Figure 3. 
In the computer simulation of breast cancer screening, factors which compete with breast 
cancer as a cause of death clearly need to be considered. The US death rate as a function 
age for four ethnic groups is illustrated. Note that the ordinate is a logarithmic axis, 
indicating that after approximately age ten, one's probability of dying increases 
exponentially. Source: US Census Bureau. 

Figure 4. 
The incidence of breast cancer among breast cancer-free women is illustrated. The raw 
data are the individual points. To improve the quality of fit to this data, a hybrid 
computer-fitting technique was used. The curve was split into three discrete regions, and 
three different fits over the different ranges were used. The end result, the hybrid fit, fits 
the data accurately over the entire age range. This figure shows the breast cancer 
incidence for all races. Source: The National Cancer Institute SEER Program. 

Figure 5. 
The breast cancer incidence through white American women is illustrated. 

Figure 6. 
The breast cancer incidence for American black women is illustrated. 

Figure 7. 
In studying the effects of breast density, it was necessary to produce a metric which 
quantifies breast density with reasonable precision. In this study, the assessment of an 
experienced mammographer was used. The mammographer ranked each of 1000 
mammograms on an integer scale from 0 to 100, with 100 indicating a very dense breast. 
To assess the precision of this mammographer's assessment, she assessed the same sub- 
population of 153 women twice, separated by a period of several months. This plot 
shows the relationship of the mammographer's breast density index (BDI) between those 
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two sessions. Given the subjective nature of the assessment, excellent precision was 
demonstrated. 

Figure 8. 
The breast density index as determined by the mammographer is shown plotted as a 
function of the age of the patient. While the data hardly follows any distinct function, 
there is a trend towards reduced breast density index with increased age. 

Figure 9. 
The breast density index data was categorized into ten distinct categories (l=least dense, 
10= most dense). These data represent the probability density function for breast density 
of the screening population studied at UC Davis. 

Figure 10. 
The breast density index is shown as a function of age, and on this plot the median (50 
percentile), along with the 25th and 75th percentile ranges are shown. The clear trend 
indicating a reduction in the BDI as a function of age is seen. 

Figure 11. 
For each age range spanning five years, the BDI was partitioned into five regions having 
equal numbers of women in each region ("pentiles"). In order to model the distribution 
of breast density as a function of age, each pentile as a function of age was parametized. 
This figure shows the lowest pentile (pentile 1, top) indicating the trend of the women in 
the lowest breast density category. Pentile 2 is shown on the lower figure. The median 
and range of the pentile is shown in each case. The computer fit to the raw data is 
illustrated as the dotted lines. 

Figure 12. 
Pentile 3 and pentile 4 data from the UC Davis database are illustrated, with computer 
fitted results (dotted lines) also shown. 

Figure 13. 
Pentile 5 from the UC Davis database is illustrated. This pentile has the largest range. 

Figure 14. 
Using computer-fitting techniques, a computer model was designed to mimic the breast 
density index versus age profile of the UC Davis database. In this figure, the UC Davis 
database median, 25th and 75th percentile are shown as solid lines. The computer model 
results are shown as the dotted lines. Good agreement between the computer model and 
the UC Davis breast density index data is illustrated. 

Figure 15. 
As an additional metric demonstrating the quality of the breast density computer model 
the original data and simulated data for each decade of age are illustrated on this bar 
chart. Excellent agreement is demonstrated. 
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Figure 16. 
The average breast density index for each decade is indicated on this graph. 

Figure 17. 
The gray scale to optical density (a) and optical density-to-gray scale (b) look up tables as 
measured for our Lumisysl50 film digitizer are illustrated. 

Figure 18. 
The Hurter and Driffield (H & D ) curve showing optical density as a function of 
exposure is shown in (a). The inverse transform showing the relationship of exposure as 
a function of optical density for the same curve is shown in (b). 

Figure 19. 
The digitized mammograhic images were transformed using the gray scale to optical 
density look up table, and then were transformed again using the optical density-to- 
exposure transform look up table, resulting in an image linear with exposure. 

Figure 20. 
Simulated spherical lesions of various diameters were added to the digitized 
mammograms. This figure illustrates the modeling used in adding the image data to 
those mammograms. Significant in this figure is the value of A(i, which represents the 
change in linear attenuation coefficient inside the spherical lesions due to the presence of 
cancer. 

Figure 21. 
In order to accurately model the change in the linear attenuation co-efficient due to the 
presence of a breast cancer lesion, a 26 kVp molybdenum anode with molybdenum filter 
x-ray spectrum was used. 

Figure 22. 
This figure illustrates ): arising from a 26 kVp Mo- x-ray spectrum. Curves for 10 
lesions diameters (spanning from 1 mm to 10 mm's as indicated) are shown as a function 
of breast thickness. A(j, changes as a function of breast thickness due to beam hardening. 
Because all ten curves converge at a Ap, of approximately 0.16 at a breast thickness of 4 
cm, this value was used for the A\x as shown on Figure 20 

Figure 23 
Using the image that was transformed to be linear with exposure, the simulated spherical 
lesion was added as described previously. The exposure image was then transformed by 
the H & D curve to optical density, which in turn was transformed through optical 
transmittance as shown on this figure. It is the optical transmittance, which is observed 
by the radiologist sitting in front of the light box. 
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Figure 24 
In order to calculate the detectability of the simulated lesions, the area occupied by the 
lesion was integrated. A region just outside the lesion of equal area was also integrated, 
giving rise to Tiesi0n and Tbg, respectively. A decision parameter, d, was then calculated as 
the ratio as illustrated on the figure. 

Figure 25 
The basic tenants of signal detection theory are shown. Local areas on mammograms 
may consist of normal areas and lesions, and a likely distribution of these populations in 
shown. The abscissa is some decision parameter, d, and for this study d is defined in 
Figure 24. By applying some threshold value (vertical line), the data in the two 
distributions can be placed into the categories true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN). These categories are shown on the figure for the 
placement of the threshold value as shown. Using the values of TP, TN, FP, and FN, the 
quantities sensitivity and specificity can be calculated. An ROC curve (shown in the next 
figure) is computed by moving the threshold value across the two distributions laterally, 
computing sensitivity and specificity at each threshold value. The ROC curve is a plot of 
sensitivity (ordinate) versus (1-specificity) (abscissa). 

Figure 26 
For each mammogram, a total of 500 simulated lesions were placed and their 
detectability assessed using standard detection theory. As a result of this analysis, a 
receiver operating characteristic (ROC) curve could be computed for each image. The 
area under the ROC curve, denoted as Az, was then computed for each mammogram. 
The parameter, Az, is related to the detectability of the lesion. Lesions spanning in 
diameter from 2 mm to 40 mm were studied. 

Figure 27 
The average Az as a function of breast density index is illustrated on this figure, for 
lesions spanning the range from 2 mm to 35 mm. As the BDI increases the average Az 

decreases, indicating that lesion detectability is compromised in the denser breast. In 
addition, larger lesions demonstrate higher Az values, indicating, as expected, larger 
lesions are more detectable than smaller ones. 

Figure 28 
This figure shows a different perspective of the data shown in the last figure. The mean 
Az value is shown as a functional lesion diameter for 10 different categories (deciles) of 
breast density. The most dense 10 percent of breasts illustrate markedly reduced lesion 
detectability compared to the lower density breasts. These data are consistent with 
clinical experience. 

Figure 29 
This figure illustrates the basic tenants of signal detection theory. The relative frequency 
of cases (N = normal cases, C = cancers), is shown as a function of the decision 
parameter. This data was used to convert Az value to a specific probability of detection, 
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which is required for modeling purposes. This figure is similar to Figure 25, except that 
here the disease incidence is accounted for. 

Figure 30 
Using the computer model relating Azto sensitivity (probability of lesion detection), the 
sensitivity or specificity could be calculated at a given cancer detection rate (CDR) and 
Az value, as a function of positive biopsy rate. This figure shows the results for a CDR = 
10andAz= 0.90. 

Figure 31 
This figure shows the sensitivity or specificity as a function of positive biopsy rate for a 
CDR of 8. 

Figure 32 
The sensitivity is illustrated as a function of the cancer detection rate for a positive biopsy 
rate of 10 percent. Four curves showing a range of Az values are illustrated. The 
sensitivity decreases as the number of cancers in the population decreases. Also, the 
sensitivity increases as the Az value increases, as expected. 

Figure 33 
This figure is the same as the last figure, except a positive biopsy rate of 30 percent is 
illustrated. Reduced sensitivity is observed when the positive biopsy rate increases 
(compare with the last figure). 

Figure 34 
The sensitivity is shown as a function of Az value at a cancer detection rate of 5 per 1,000 
for a positive biopsy rate spanning from 5 percent to 50 percent. 

Figure 35 
The sensitivity as a function of Az value is illustrated as in the last figure. As the cancer 
detection rate increases, the sensitivity increases at the same Az value and positive biopsy 
rate. 

Figure 36 
The tumor doubling time as a function of age for three different tumor types is illustrated. 
The three different tumor types are ductile carcinoma in situ, node negative, and node 
positive breast cancer. The pair of lines for each cancer type represent the range (plus or 
minus 95 percent) of measured doubling time for this cancer type. Data from Spratt, et 
al. 

Figure 37 
The tumor doubling time from the last figure has been converted to a growth rate (tumor 
diameter versus time) in this figure. These data show tumor growth rates for a woman at 
age 40. 
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Figure 38 
This figure shows tumor growth rates where the tumor started when the woman was age 
60. Markedly slower growth rates are observed for older women compared to the last 
figure. 

Figure 39 
Five sets of prognosis data were evaluated, for ductile carcinoma in situ and tumors 
discovered at different diameters (as shown). The data for each of the five data sets were 
fit using linear regression, with correlation coefficients in all cases exceeding 0.98. 

Figure 40 
The absolute value of the slope of the linear regression fit (see last figure) is plotted as a 
function of the lesion diameter. Computer fitting techniques were used to fit the data 
points. 

Figure 41 
Using the slope versus lesion diameter fit data from the last figure, survival curves for 
any lesion diameter could be generated. This model was used to estimate the survival of 
women based solely on the diameter of the breast cancer lesion at the time of detection. 

Figure 42 
Results generated by the breast cancer screening model (circles) are compared against 
those reported by others. Here, the cancer detection rate is shown as a function of age. 
Good agreement is seen. 

Figure 43 
The distribution of tumor size at the time of detection is illustrated in this graph, 
comparing the work of Shetty and Reiman with the results produced by the computer 
simulation model. Good agreement is seen. 

Figure 44 
The number of cancers detected is shown as a function of age at cancer detection. These 
data are generated by the computer simulation model, and are an example of types of data 
that can be easily computed from such a model. 

Figure 45 
The computer simulation model can also be used to generate results which are not easily 
measured in a clinical trial. For example, the total years saved in a population due to 
breast cancer screening can be assessed and in this figure the total years saved is shown 
as a function of age at cancer detection. The total years saved in the population under age 
50 is approximately equal to the number of years saved in the population over 75. 

Figure 46 
Survival curves, as shown in this figure, can also be generated from the computer 
simulation model. This figure shows the different survival characteristics depending 

Page 25 



upon the frequency of mammographic screening (df). For comparison, the survival from 
breast self-examination (BSE) is also indicated. Decreasing the screening interval 
demonstrates a measurable improvement in survival, based on these computer simulated 
results. 

Figure 47 
In this figure, the years of life saved per cancer patient is plotted as a function of age at 
cancer detection. The four different curves correspond to four different screening 
intervals, as indicated. Shorter screening intervals clearly benefits younger women based 
on this data. Furthermore, it is seen that a screening interval of three years produces the 
same effect (years of life saved per cancer patient) as a screening interval of six months 
for women 70 years of age and older. If this result proves to be true, it would have major 
ramifications for the screening practices of older women. 

Figure 48 
The number of cancers are shown as a function of the breast density category of the 
woman. The computer simulation model used a risk ratio of 4.0, and this is reflected in 
the data shown. 

Figure 49 
The average years of life saved is illustrated as a function of breast density. Women with 
increased breast density benefit less from mammographic screening. The breast cancer 
simulation model demonstrates this fact quantitatively. 

Figure 50 
The detection rate is shown as a function of screening interval, comparing 
mammographic detection versus detection by breast self examination (BSE). 
Mammography has a higher detection rate as the screening interval decreases 
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